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Abstract 
 

The Vredefort Dome is located southwest of Johannesburg, South Africa, and 

represents the deeply eroded remnant of the central uplift of the world’s largest 

known impact structure, with an estimated diameter of ~300 km. The Vredefort 

impact structure is also the oldest known impact structure on Earth (~2.02 Ga). The 

Vredefort Dome comprises an ~40 km wide core of Archaean basement gneisses and 

an ~20 km wide collar of subvertical to overturned Late Archaean to 

Palaeoproterozoic supracrustal strata. 

This project presents the results of Landsat-TM and aerial photograph 

analysis, as well as field mapping of Witwatersrand Supergroup metasedimentary 

strata in the collar of the Vredefort Dome. The aim of this study was to investigate the 

structures (such as folds, faults, fractures), at all scales, and other deformation 

features (such as shatter cones and pseudotachylitic breccias) in the field area, and to 

establish geometric and temporal relationships between these features with regard to 

the impact cratering process. This study revealed a highly heterogeneous internal 

structure of the collar involving folds, faults, fractures and melt breccias that are 

interpreted as the product of shock deformation and central uplift formation during 

the Vredefort impact event. Broadly radially-oriented symmetric and asymmetric 

folds, with wavelengths from tens of metres to kilometres, and conjugate radial to 

oblique faults with strike-slip displacements of, typically, tens to hundreds of metres 

accommodated tangential shortening of the collar of the dome that decreased from 

~17 %, at a radial distance from the dome centre of 21 km, to <5 % at a radial 

distance of 29 km. Ubiquitous shear fractures containing pseudotachylitic breccia, 

particularly in the metapelitic units, display variable local slip senses consistent with 

either tangential shortening or tangential extension; however, it is uncertain whether 

they formed at the same time as the larger faults during the rise of the central uplift or 

earlier, during the shock compression phase of cratering.  

Contrary to the findings about shatter cones of some earlier workers in the 

Vredefort structure, the Vredefort cone fractures do not show uniform apex 

orientations at any given outcrop, nor do small cones show a pattern consistent with 

the previously postulated “master cone” concept. The model of simple back-rotation 

of the strata to a horizontal pre-impact position also does not lead to a uniform 

centripetal-upward orientation of the cone apices. Striation patterns on the cone 

surfaces are variable, ranging from typically diverging, i.e., branching off the cone 
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apex, to subparallel to parallel on almost flat surfaces. Striation angles on shatter 

cones do not increase with distance from the crater centre, as suggested previously. 

Instead, individual outcrops present a range of such striation angles, and a more 

irregular distribution of striation angle values with regard to the distance from the 

crater centre suggests localised controls involving the nature and shape of various 

heterogeneities in the target rock on this aspect of cone morphology.  

On the basis of the observations made during this study on small-scale 

structures in the collar of the Vredefort Dome, the relationship of shatter cones with 

curviplanar fractures (multipli-striated joint sets - MSJS) is confirmed. Pervasive, 

metre-scale tensile fractures crosscut shatter cones and appear to have formed after 

the closely-spaced MSJ-type fractures. The results of this study indicate that none of 

the existing models is able to explain all characteristics of shatter cones fully; 

therefore, a combination of aspects of the different models may currently be the best 

possible way to explain the formation and origin of shatter cones, and the formation 

of the related MSJ and their characteristic aspects (e.g., curviplanar shape, melt 

formation, etc.). The observed variety of shatter cone orientations, surface 

morphology and striation geometry in the dome concurs broadly with the results of 

some previous studies. The abundance of striated surfaces along closely-spaced sets 

of fractures (MSJ) observed in this study can be reconciled with reflection/scattering 

of a fast propagating wave at heterogeneities in the target rocks, as proposed by 

recent studies. This would mean that closely-spaced fractures and shatter cones were 

not formed during shock compression, as widely postulated in the past, but 

immediately after the passage of the shock wave, by the interference of the scattered 

elastic wave and the tensional hoop stress that develops behind the shock front. 

In addition to shatter cones, quartzite units show two other fracture types – a 

centimetre-spaced rhomboidal to orthogonal type that may be the product of shock-

induced deformation and related to the formation of shatter cones, and later joints 

accomplishing tangential and radial extension. The occurrence of pseudotachylitic 

breccia within some of these later joints confirms the general impact timing of these 

features. 

 Pseudotachylitic breccias in the collar rocks occur as up to several centimetre-

wide veins with variable orientations to the bedding and as more voluminous pods 

and networks in zones of structural complexity, such as the hinges of large-scale folds 

and along large-scale faults, as well as locally, at lithological interfaces. In places, 
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tension gash arrays along thin veins are observed indicating that movement occurred 

along these planes. Initial cooling calculations for pseudotachylitic breccias of 

different widths and compositions (metapelite or quartzite) suggest that thick veins 

(<10 cm) could have stayed molten over the entire duration of crater development (at 

least 10 minutes), making it possible for shock-induced melts to intrude dilational 

sites, such as fold hinges and extensional fractures, during the formation and 

subsequent collapse of the central uplift. Intrusion of such melts may also have 

lubricated movements along brittle and ductile structures. Thus, the presence of both 

shock- and friction-generated melts is likely in the collar of the Vredefort Dome.  

 Based on the spatial and geometric relationship between the structures and 

other deformation features observed in the collar rocks of the Vredefort Dome, it is 

possible to establish a temporal sequence of deformation events. Shatter cones and 

related closely-spaced fractures were formed during the contact/compression phase of 

the cratering process. The formation of at least some shock-induced pseudotachylitic 

breccia also belongs into this phase. Large-scale folds and faults and friction-

generated melts can be related to the initial formation of the central uplift and 

extensional joints to the subsequent collapse of the central uplift. 
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