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Abstract

The Vredefort Dome is located southwest of Johannesburg, South Africa, and
represents the deeply eroded remnant of the central uplift of the world’s largest
known impact structure, with an estimated diameter of ~300 km. The Vredefort
impact structure is also the oldest known impact structure on Earth (~2.02 Ga). The
Vredefort Dome comprises an ~40 km wide core of Archaean basement gneisses and
an ~20 km wide collar of subvertical to overturned Late Archaean to
Palaeoproterozoic supracrustal strata.

This project presents the results of Landsat-TM and aerial photograph
analysis, as well as field mapping of Witwatersrand Supergroup metasedimentary
strata in the collar of the Vredefort Dome. The aim of this study was to investigate the
structures (such as folds, faults, fractures), at all scales, and other deformation
features (such as shatter cones and pseudotachylitic breccias) in the field area, and to
establish geometric and temporal relationships between these features with regard to
the impact cratering process. This study revealed a highly heterogeneous internal
structure of the collar involving folds, faults, fractures and melt breccias that are
interpreted as the product of shock deformation and central uplift formation during
the Vredefort impact event. Broadly radially-oriented symmetric and asymmetric
folds, with wavelengths from tens of metres to kilometres, and conjugate radial to
oblique faults with strike-slip displacements of, typically, tens to hundreds of metres
accommodated tangential shortening of the collar of the dome that decreased from
~17 %, at a radial distance from the dome centre of 21 km, to <5 % at a radial
distance of 29 km. Ubiquitous shear fractures containing pseudotachylitic breccia,
particularly in the metapelitic units, display variable local slip senses consistent with
either tangential shortening or tangential extension; however, it is uncertain whether
they formed at the same time as the larger faults during the rise of the central uplift or
earlier, during the shock compression phase of cratering.

Contrary to the findings about shatter cones of some earlier workers in the
Vredefort structure, the VVredefort cone fractures do not show uniform apex
orientations at any given outcrop, nor do small cones show a pattern consistent with
the previously postulated “master cone” concept. The model of simple back-rotation
of the strata to a horizontal pre-impact position also does not lead to a uniform
centripetal-upward orientation of the cone apices. Striation patterns on the cone

surfaces are variable, ranging from typically diverging, i.e., branching off the cone



apex, to subparallel to parallel on almost flat surfaces. Striation angles on shatter
cones do not increase with distance from the crater centre, as suggested previously.
Instead, individual outcrops present a range of such striation angles, and a more
irregular distribution of striation angle values with regard to the distance from the
crater centre suggests localised controls involving the nature and shape of various
heterogeneities in the target rock on this aspect of cone morphology.

On the basis of the observations made during this study on small-scale
structures in the collar of the VVredefort Dome, the relationship of shatter cones with
curviplanar fractures (multipli-striated joint sets - MSJS) is confirmed. Pervasive,
metre-scale tensile fractures crosscut shatter cones and appear to have formed after
the closely-spaced MSJ-type fractures. The results of this study indicate that none of
the existing models is able to explain all characteristics of shatter cones fully;
therefore, a combination of aspects of the different models may currently be the best
possible way to explain the formation and origin of shatter cones, and the formation
of the related MSJ and their characteristic aspects (e.g., curviplanar shape, melt
formation, etc.). The observed variety of shatter cone orientations, surface
morphology and striation geometry in the dome concurs broadly with the results of
some previous studies. The abundance of striated surfaces along closely-spaced sets
of fractures (MSJ) observed in this study can be reconciled with reflection/scattering
of a fast propagating wave at heterogeneities in the target rocks, as proposed by
recent studies. This would mean that closely-spaced fractures and shatter cones were
not formed during shock compression, as widely postulated in the past, but
immediately after the passage of the shock wave, by the interference of the scattered
elastic wave and the tensional hoop stress that develops behind the shock front.

In addition to shatter cones, quartzite units show two other fracture types — a
centimetre-spaced rhomboidal to orthogonal type that may be the product of shock-
induced deformation and related to the formation of shatter cones, and later joints
accomplishing tangential and radial extension. The occurrence of pseudotachylitic
breccia within some of these later joints confirms the general impact timing of these
features.

Pseudotachylitic breccias in the collar rocks occur as up to several centimetre-
wide veins with variable orientations to the bedding and as more voluminous pods
and networks in zones of structural complexity, such as the hinges of large-scale folds

and along large-scale faults, as well as locally, at lithological interfaces. In places,



tension gash arrays along thin veins are observed indicating that movement occurred
along these planes. Initial cooling calculations for pseudotachylitic breccias of
different widths and compositions (metapelite or quartzite) suggest that thick veins
(<10 cm) could have stayed molten over the entire duration of crater development (at
least 10 minutes), making it possible for shock-induced melts to intrude dilational
sites, such as fold hinges and extensional fractures, during the formation and
subsequent collapse of the central uplift. Intrusion of such melts may also have
lubricated movements along brittle and ductile structures. Thus, the presence of both
shock- and friction-generated melts is likely in the collar of the VVredefort Dome.
Based on the spatial and geometric relationship between the structures and
other deformation features observed in the collar rocks of the VVredefort Dome, it is
possible to establish a temporal sequence of deformation events. Shatter cones and
related closely-spaced fractures were formed during the contact/compression phase of
the cratering process. The formation of at least some shock-induced pseudotachylitic
breccia also belongs into this phase. Large-scale folds and faults and friction-
generated melts can be related to the initial formation of the central uplift and

extensional joints to the subsequent collapse of the central uplift.
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