A PHYTOCHEMICAL AND PHARMACOLOGICAL STUDY OF TEN COMMIPHORA SPECIES INDIGENOUS TO SOUTH AFRICA

MARIA PENELOPE PARASKEVA

A DISSERTATION SUBMITTED TO THE FACULTY OF HEALTH SCIENCES, UNIVERSITY OF THE WIWATERSRAND, JOHANNESBURG IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHARMACY

JANUARY, 2007

DECLARATION

I, Maria Penelope Paraskeva, declare that this dissertation is my own, unaided work except where acknowledged. It is being submitted in fulfilment for the degree of Master of Pharmacy at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University.

.....

(Signature of Candidate)

...... day of, 2007

ABSTRACT

Commiphora species (from which myrrh is obtained) has been a source of several novel and bio-active natural compounds. Traditionally, *Commiphora* (Burseraceae) is used in southern Africa for the treatment of ulcers, fevers, and as a remedy for snake and scorpion bites. In western Africa, the macerated stem is used in the treatment of rheumatic conditions. The resin of some *Commiphora* species is applied topically to aid in wound healing. Documented uses include antibacterial and antifungal properties, as well as cytotoxic, cytostatic and anti-oxidant activity. The botanical diversity of this genus in South Africa warrants a study of this plant group, to provide scientific evidence for the traditional use of *Commiphora* species in African healing rites.

Ten Commiphora species were investigated. Fresh plant material of the selected species were identified and collected from natural populations in the Limpopo Province. Active compounds, viz. kaempferol and dihydrokaempferol, in C. glandulosa (stem) were isolated using bioassay-guided fractionation and identified using nuclear magnetic resonance spectroscopy. The stem and leaf extracts of each species were analysed for in vitro antioxidant, antimicrobial, anti-inflammatory, anticancer activity, as well as cytotoxicity. The anti-oxidant activity of the extracts was investigated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and the 2,2'-azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) assays. Extracts generally exhibited poor anti-oxidant activity in the DPPH assay, with the exception of C. schimperi (stem), C. neglecta (stem), C. tenuipetiolata (stem and leaf), and C. edulis (stem), which possessed IC₅₀ values ranging between 7.31 µg/ml and 10.81 µg/ml. Isolated compounds were subjected to the DPPH assay to determine the antioxidant potential of each compound, separately and in combination to establish possible synergistic, antagonistic or additive effects. The flavonol, kaempferol (IC₅₀ = $3.32 \mu g/ml$) showed exceptional radical scavenging activity, in contrast to the low activity displayed by dihydrokaempferol (IC₅₀ = $301.57 \mu g/ml$), their combination being antagonistic. Greater antioxidant activity was observed for most species in the ABTS assay when compared to the results obtained in the DPPH assay. The best activity was observed for the stem extracts of C. neglecta (IC₅₀ = 7.28 μ g/ml) and *C. mollis* (IC₅₀ = 8.82 μ g/ml).

In vitro antimicrobial efficacy was determined against Gram-positive and Gram-negative bacteria as well as yeasts using the MIC microtiter plate assay. A greater selectivity was exhibited by the extracts against the Gram-positive bacteria and yeast than against the Gram-negative bacteria. Using death kinetics studies (time-kill studies), the rate at which the antimicrobial agent kills pathogens over a 24-hour period was determined. The antibacterial activity of *Commiphora marlothii* (stem) was observed to begin at ca. 30 min of the exposure of *S. aureus* to the different concentrations of plant extract. All concentrations exhibited antibacterial activity, with a complete bactericidal effect achieved by all test concentrations by the 24th hour. *Commiphora pyracanthoides* (stem) displayed anti-inflammatory activity through good inhibition of the 5-LOX enzyme (IC₅₀ = 27.86 µg/ml).

The ability of extracts and kaempferol to inhibit the *in vitro* growth of three human cancer cell lines, namely the colon adenocarcinoma (HT-29), breast adenocarcinoma (MCF-7), and the neuronal glioblastoma (SF-268), was evaluated using the sulforhodamine (SRB) antiproliferative assay. The most active *Commiphora* species against the HT-29 cells were *C*. glandulosa (leaf and stem) and C. marlothii (leaf). The MCF-7 cell line was the most sensitive to indigenous Commiphora species, with C. edulis (leaf and stem), C. glandulosa (leaf and stem), C. marlothii (leaf), C. pyracanthoides (leaf and stem), C. schimperi (stem), and C. viminea (stem) all possessing an inhibition greater than 80% at 100 µg/ml. Commiphora glandulosa (leaf and stem) and C. pyracanthoides (leaf and stem) were the two most active species against the SF-268 cells, with IC₅₀ values ranging between 68.50 μ g/ml and 71.45 µg/ml. The inhibition of the cancer cell proliferation by kaempferol in all three-cancer cell lines was determined, with IC₅₀ values of 9.78 µg/ml in HT-29 cells, 20.21 µg/ml in MCF-7 cells and 43.83 µg/ml in SF-268 cells. The microculture tetrazolium cellular viability (MTT) assay was used to determine the cellular toxicity of the extracts against transformed human kidney epithelium (Graham) cells. Commiphora glandulosa (stem) proved to be most toxic $(IC_{50} = 30.5 \ \mu g/ml)$. The IC₅₀ values for all other extracts were in excess of 95 $\mu g/ml$ suggesting low *in vitro* toxicity for the majority of the species.

A phytochemical investigation of the non-volatile constituents of the leaf and stems was conducted using high performance liquid chromatography (HPLC). The HPLC profiles and UV spectra of the stem extracts, and the representative flavonoid patterns in the leaf extracts of the species indicate that a similarity exists in their chemical fingerprint.

<u>M. Paraskeva, A.M. Viljoen, S.F. van Vuuren, H. Davids and R.L. van Zyl, 2005.</u> The pharmacological activity of 10 species of *Commiphora* indigenous to South Africa. Podium presentation, 5th Annual Meeting of the Indigenous Plant Use Forum (IPUF). Grahamstown, 27-30 June 2005. (Abstract in Appendix C)

<u>M. Paraskeva, A.M. Viljoen, S.F. van Vuuren, H. Davids and R.L. van Zyl, 2005.</u> The biological activity of 10 species of *Commiphora* indigenous to South Africa. Podium presentation at the University of Johannesburg Post Graduate Symposium. Johannesburg, 2 November 2005 (Abstract in Appendix C)

<u>M. Paraskeva, S.F. van Vuuren, S. Drewes and A.M. Viljoen, 2006.</u> The antibacterial and antioxidant activity of South African indigenous *Commiphora* species and the isolated compounds from *C. glandulosa*. Podium presentation at the University of the Witwatersrand, International Conference on Pharmaceutical and Pharmacological Sciences (ICPPS). Vereeniging, Johannesburg, 20-23 September 2006 (Abstract in Appendix C) I dedicate this dissertation to my parents, Panagiotis and Irene Paraskeva

Thank you for your valuable guidance, patience and understanding.

"I have few illusions, but I feel a responsibility to work towards the things I consider good and right. I don't know whether I will be able to change certain things for the better, or not at all. Both outcomes are possible. There is only one thing I will not concede and that is that it might be meaningless to strive in a good cause."

President Vaclev Have of the Czech Republic

This work was carried out at the University of the Witwatersrand, Johannesburg, Faculty of Health Sciences, Department of Pharmacy and Pharmacology, during the years 2005 and 2006.

Although I am the sole author of this dissertation, I am by no means the sole contributor. I would like to take this opportunity and use this as a platform to express my sincere gratitude to those who have contributed to my dissertation, to my education and to my life.

Firstly, to my supervisor Professor Alvaro Viljoen, for his constant enthusiasm and commitment, as well as his support at every brick wall that I encountered. Professor Viljoen has the enviable ability to always see the positive side to everything as well as to draw inspiration even in the deepest moments of disappointments and setbacks. Mostly I would like to offer gratitude to Prof. for allowing me to benefit from his wide knowledge in the field of Pharmacognosy, and for the steadfast encouragement to face all challenges and to embrace them. Thank you for giving me several enjoyable opportunities to present my research and providing just the right amount of guidance to ensure that my efforts contribute to the mainstream of Pharmaceutical chemistry.

I offer great thanks to my co-supervisor Mrs. Sandy van Vuuren, for her constant encouragement and kind attention. I would like to express my appreciation for all the support and guidance she offered, giving so generously of her time and expertise especially in the field of Microbiology. You, too, have been an inspiration, thank you!

I am grateful to Dr. Robyn van Zyl, who supervised the toxicity component of this dissertation, and I would also like to acknowledge Dr. Hajeera Davids for aiding immensely in the cancer work, your advice and assistance is much appreciated.

I am further indebted to Dr. Paul Steenkamp and Mr. Nial M. Harding for their technical guidance with the HPLC analysis.

I would like to express my heartfelt gratitude to Professor Siegfried Drewes, Department of Chemistry, University of KwaZulu-Natal, for his collaboration and kind assistance in the final chemical characterisation of the two isolated compounds.

I am especially grateful to Mr. Marthinus Steyn for accompanying me on the field excursion which ensured the authenticity of all plant material collected.

I am also indebted to the National Research Foundation (Indigenous Knowledge Systems) for the financial assistance. I would also like to acknowledge the technical and administrative staff of the Department of Pharmacy and Pharmacology at the University of the Witwatersrand, for all their assistance.

Many thanks go to my friends and colleagues, Dr. Jeanette Lotter, Mr. Guy Kamatou, Miss Samantha Pillay, Miss Neha Singh, Miss Lisa du Toit, Miss Sheri-lee Harillal and Miss Ayesha Essop for sharing in the ups and downs of research, for the creative atmosphere that they brought forth in the laboratories and for their understanding and team spirit. A special thank you to Miss Miao-Juei Huang for being my audience the night before every conference presentation, and for her constant support and advice.

This dissertation emerged amid many friendships, providing lasting lessons, thank you to Miss Sanvila Puhaça, Dr. Ana Rebic, Mr. Andrew Savvas, Mr. Paul Lambrou, Mr. George Christelis and Mrs. Voula Christelis.

In addition I would like to thank Miss Rupal Patel, whose belief in my abilities started me on this journey of my Masters degree. Thank you for your absolute confidence in me and for your constant encouragement and friendship throughout both my undergraduate and postgraduate degree.

ACKNOWLEDGEMENTS continued

To a most remarkable friend, Miss Jacqueline Lalli. I feel an eternal gratititude for the friendship that we share. Thank you for brightening my days with your visits and outlooks and for putting up with me at my most stressful and sleep-deprived times. You never let me lose sight of my goals, and I appreciate your continued motivation and advice.

I am forever grateful to my grandparents, whose values encouraged the pursuit of a higher education. Thank you to the Argyrou, Dalakas, Fintanis and Terpizis families (in alphabetical order), and all other extended family, for providing unconditional love and support. I would like to thank my parents who provided me with the personal foundation and work ethic which has been so indispensable to both my personal and professional life. Your patience, understanding and love is much to be admired and appreciated. Knowing that you are always there to accommodate my erratic moods has always allowed me to be myself. Thank you for reminding me that though we are like mere threads of a tapestry, with no beginning and no end, tangled and in disarray, the way a tapestry looks from the back, the creator weaving the tapestry sees it from the front and knows the beauty of the picture He is creating.

To God, for always giving His fullest blessing.

The prayer of Jabez

'Oh, that you would bless me indeed, and enlarge my territory, that Your hand would be with me, and that You would keep me from evil'

TABLE OF CONTENTS

DECLARATION	
ABSTRACT	
PRESENTATIONS	
DEDICATION	
ACKNOWLEDGEMENTS	
TABLE OF CONTENTS	
LIST OF FIGURES	
LIST OF TABLES	
LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS	
CHAPTER 1 CENERAL INTRODUCTION	
CHAPTER I: GENERAL INTRODUCTION	••
1.1 Ethnopharmacological research	••
1.2 An introduction to the family Burseraceae and genus <i>Commiphora</i>	
1.2.1 The family: Burseraceae	•••
1.2.2 The genus <i>Commiphora</i>	•••
1.2.3 Characteristic features of <i>Commiphora</i> species	•••
1.3 Commiphora myrrha	
1.4 Medicinal uses of myrrh and guggul	
1.4.1 In vitro pharmacological investigations of myrrh and guggul	
1.4.2 <i>In vivo</i> pharmacological investigations of myrrh and guggul	
1.4.3 Preclinical and clinical investigations of myrrh and guggul	
1.5 The phytochemistry of myrrh	
1.6 <i>Commiphora</i> and its traditional uses	
1.6.1 <i>Commiphora</i> and its role in Ayurvedic medicine	
1.6.2 <i>Commiphora</i> and its role in Chinese medicine	
1.6.3 The African traditional uses of <i>Commiphora</i> species	
1.6.4 Additional uses	

1.7 A review of the phytochemistry documented for certain <i>Commiphora</i> species	52
1.8 Selection of plant material	52
1.8.1 The selection of <i>Commiphora</i> species for the screening of biological activities	\$ 55
1.8.2 The selection of biological activity assays performed	55
1.9 Aim of the study	56
1.10 Objectives of the study	56

2.1 Brief introduction to the species under investigation	59
2.2 A description of the 10 indigenous <i>Commiphora</i> species under investigation	60
2.2.1 Commiphora africana (A.Rich.) Engl. var. africana	60
2.2.2 Commiphora edulis (Klotzsch) Engl. subsp. edulis	61
2.2.3 Commiphora glandulosa Schinz	62
2.2.4 Commiphora marlothii Engl	63
2.2.5 Commiphora mollis (Oliv.) Engl	64
2.2.6 Commiphora neglecta I.Verd	65
2.2.7 Commiphora pyracanthoides Engl	66
2.2.8 Commiphora schimperi (O.Berg) Engl	67
2.2.9 Commiphora tenuipetiolata Engl	68
2.2.10 Commiphora viminea Burtt Davy	69
2.3 Preparation of plant extracts for determination of biological activity	70

CHAPTER 3: THE ANTI-OXIDANT ACTIVITY OF *COMMI-PHORA* SPECIES AND THE ISOLATION OF KAEMPFEROL AND DIHYDROKAEMPFEROL..... 73

3.1 Free radicals and their scavengers	73
3.1.1 Natural anti-oxidants	74
3.1.2 Flavonoids - their therapeutic potential	74

3.1.3 <i>Commiphora</i> and its anti-oxidant potential	75
3.1.4 Isolation of bio-active compounds	76
3.2 Materials and methods	78
3.2.1 Thin layer chromatography	78
3.2.2 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay	79
3.2.2.1 Principle of the assay	79
3.2.2.2 Screening for anti-oxidant activity using thin layer chromato-	
graphy	79
3.2.2.3 Colorimetric spectrophotometric assay	81
3.2.3 2,2'-Azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) assay	83
3.2.3.1 Principle of the assay	83
3.2.3.2 Screening for anti-oxidant activity using thin layer chromato-	
graphy	83
3.2.3.3 Colorimetric spectrophotometric method	83
3.2.4 Isolation of compound 1 – column chromatography	85
3.2.4.1 Silica gel column chromatography	85
3.2.4.2 Size-exclusion column chromatography	86
3.2.5 Isolation of compound 2 – column chromatography	87
3.2.5.1 Silica gel column chromatography	87
3.2.5.2 Size-exclusion column chromatography	87
3.2.6 Nuclear magnetic resonance	87
3.2.7 Anti-oxidant activity of isolated compounds	89
3.3 Results	90
3.3.1 Screening for anti-oxidant activity using thin layer chromatography	90
3.3.2 Colorimetric spectrophotometric assays	91
3.3.3 Isolation of compounds	94
3.3.4 Isobologram construction of the interaction between the isolated	
compounds with anti-oxidant activity	98
3.4 Discussion.	100
3.4.1 Screening for anti-oxidant activity using thin layer chromatography	100
3.4.2 Colorimetric spectrophotometric method	101
3.4.3 Isolation of compounds	108

3.4.4 Isobologram construction of the interaction between the isolated	
compounds with anti-oxidant activity	111
3.5 Conclusion	111
CHAPTER 4: ANTIMICROBIAL ACTIVITY	113
4.1 Introduction	113
4.1.1 Chemotherapeutic agents: factors affecting their effectiveness	113
4.1.2 Drug resistance	114
4.1.3 Natural products and their role in drug discovery	115
4.1.4 Commiphora species and their known antimicrobial activity	116
4.2 Materials and methods	116
4.2.1 Minimum inhibitory concentration assay	117
4.2.1.1 Principle of the method	117
4.2.1.2 Protocol	117
4.2.2 Death kinetic assay	119
4.2.2.1 Principle of the assay	119
4.2.2.2 Protocol	119
4.3 Results	122
4.3.1 Minimum inhibitory concentration	122
4.3.2 Death kinetic assay	123
4.4 Discussion.	123
4.4.1 Minimum inhibitory concentration (MIC) assay	125
4.4.2 Death kinetic assay	131
4.5 Conclusion	131
CHAPTER 5: ANTI-INFLAMMATORY ACTIVITY	134
5.1 Introduction.	134
5.1.1 Inflammatory response process	134
5.1.2 The lipoxygenase system	134

5.1.4 <i>Commiphora</i> species and their anti-inflammatory effects	138
5.1.5 Flavonoids - their anti-inflammatory potential	140
5.2 Materials and methods	142
5.2.1 Principle of the assay	142
5.2.2 Protocol	142
5.2.2.1 Preparation of plant samples	142
5.2.2.2 5-Lipoxygenase assay	143
5.3 Results	144
5.4 Discussion	148
5.5 Conclusion.	151

6.1 Introduction	152
6.1.1 Natural products and carcinogenesis defence	155
6.1.2 Flavonoids - a source of anticancer agents	156
6.1.3 The investigation of <i>Commiphora</i> as an anticancer agent	158
6.2 Materials and methods	162
6.2.1 Principle of the method	162
6.2.2 Protocol	162
6.2.2.1 Cell lines and cell culture	162
6.2.2.2 Preparation of plant samples	163
6.2.2.3 The sulforhodamine B assay	163
6.3 Results	166
6.4 Discussion	170
6.5 Conclusion.	175

CHAPTER 7: CYTOTOXICITY OF INDIGENOUS COMMIPHORA

SPECIES	177
---------	-----

7.1 Introduction	177
7.1.1 Commiphora and its cytotoxic properties	178
7.2 Materials and methods	179
7.2.1 Cytotoxicity	179
7.2.2 Principle of the method	180
7.2.3 Protocol	180
7.2.3.1 Cell culture maintenance	180
7.2.3.2 Preparation of plant samples	181
7.2.3.3 The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium	
bromide (MTT) cellular viability assay	182
7.3 Results	183
7.4 Discussion	187
7.5 Conclusion.	190

CHAPTER 8: HIGH PERFORMANCE LIQUID CHROMATO-

GRAPHY	191
8.1 Introduction	191
8.1.1 Flavonoids	192
8.1.2 Non-volatile chemical constituents found in <i>Commiphora</i> species	193
8.2 Materials and methods	194
8.3 Results	195
8.4 Discussion	203
8.5 Conclusion	209

CHAPTER 9: GENERAL CONCLUSIONS 211

CHAPTER 10: RECOMMENDATIONS FOR FURTHER

RESEARCH	216
----------	-----

REFERENCES	219
APPENDIX A - HPLC DATA	249
APPENDIX B – NMR DATA	269
APPENDIX C - ABSTRACTS OF PRESENTATIONS PRESENTED AT CONFERENCES	273

LIST OF FIGURES

Figure 1.1:	The tribal relationships within the family Burseraceae as revealed by the	
	phylogeny of Clarkson et al. (2002)	39
Figure 1.2:	The North American origin and dispersal hypothesis for Burseraceae.	
	The map shows Eocene shorelines (53 Ma) and early Eocene fossil	
	locations of Burseraceae (blue circles)	39
Figure 1.3:	Characteristic features of Commiphora, with its papery bark, trifoliate	
	leaves, ripe fruit and pseudo-aril (left); pseudo-aril with exposed black	
	seeded stone (right)	41
Figure 1.4:	Commiphora myrrh, a thorny shrub, or small tree about 3m in height	42
Figure 1.5:	Oleo-gum-resin of myrrh	42
Figure 1.6:	A diagrammatic summary of indigenous Commiphora species,	
	evaluating the phytochemistry and biological activities	58
Figure 2.1:	Commiphora species indigenous to South Africa (the species	
	highlighted in bold were investigated in this study)	59
Figure 2.2:	Commiphora africana leaves (left) and the recorded geographical	
	distribution of the species (right)	60
Figure 2.3:	Commiphora edulis tree with fruit (left) and the recorded geographical	
	distribution of the species (right)	61
Figure 2.4:	Commiphora glandulosa tree (left) and the recorded geographical	
	distribution of the species (right)	62
Figure 2.5:	Commiphora marlothii tree (left) and the recorded geographical	
	distribution of the species (right)	63
Figure 2.6:	Commiphora mollis tree (left) and the recorded geographical	
	distribution of the species (right)	64
Figure 2.7:	Commiphora neglecta tree bearing fruit (left) and the recorded	
	geographical distribution of the species (right)	65
Figure 2.8:	Commiphora pyracanthoides tree (left) and the recorded geographical	
	distribution of the species (right)	66

Figure 2.9:	Commiphora schimperi tree bearing fruit revealing pseudo-aril (left) and	
	the recorded geographical distribution of the species (right)	67
Figure 2.10:	Commiphora tenuipetiolata tree (left) with papery bark (insert) and the	
	recorded geographical distribution of the species (right)	68
Figure 2.11:	Commiphora viminea tree with characteristic bark that has dark	
	horizontal bands (insert) and the recorded geographical distribution of	
	the species (right)	69
Figure 3.1:	Overview of procedure from extraction to identification	77
Figure 3.2:	Diagrammatic representation of chemical reaction of the reduction of	
	DPPH in the presence of an electron donating anti-oxidant	80
Figure 3.3:	Representative 96-well microtiter plate, indicating final concentrations	
	of plant extracts (left); A 96-well microtiter plate prepared for use in the	
	DPPH assay. Purple wells indicate the absence of anti-oxidant effect,	
	yellow wells are indicative of the presence of extracts with anti-oxidant	
	activity (right)	82
Figure 3.4:	Diagrammatic representation of the formation of the ABTS radical after	
	the addition of potassium persulphate	84
Figure 3.5:	Glass column used in silica gel column chromatography for the isolation	
	of compound 1. The extract was loaded onto the silica; the mobile phase	
	was added at constant flow rates	86
Figure 3.6:	Schematic representation of the isolation and purification of compounds	
	1 (kaempferol) and 2 (dihydrokaempferol) isolated from Commiphora	
	glandulosa (stem)	88
Figure 3.7:	Isobologram depicting possible synergistic, antagonistic or additive	
	effects as a result of either an interaction or a lack of interaction that	
	exists between the compounds concerned	89

Figure 3.8:	Thin layer chromatography plate developed in a mobile phase consisting	
	of toluene: dioxin: acetic acid (90:25:10), was used to determine the	
	presence of anti-oxidant compounds present in the extracts of the	
	Commiphora species studied, using the DPPH spray reagent. The anti-	
	oxidant compounds are observed as yellow-white spots on a purple	
	background	90
Figure 3.9:	Thin layer chromatography plate, developed in a mobile phase	
	consisting of toluene: dioxin: acetic acid (90:25:10), indicating anti-	
	oxidant compounds present in the extracts of the Commiphora species	
	studied, using ABTS spray reagent	91
Figure 3.10:	Comparative DPPH and ABTS radical scavenging capacity of each of	
	the Commiphora species extracts and the isolated kaempferol and	
	Trolox control, demonstrated by IC_{50} values with the exception of <i>C</i> .	
	edulis leaves and C. neglecta leaves; the standard error of the mean of	
	three replicates are denoted by error bars ($n = 3$ experiments)	93
Figure 3.11:	The chemical structure of kaempferol (compound 1)	95
Figure 3.12:	The chemical structure of dihydrokaempferol (compound 2)	96
Figure 3.13:	Isobologram of the interaction between Commiphora glandulosa (stem)	
	and vitamin C, showing a synergistic relationship	99
Figure 3.14:	Isobologram of the interaction between isolated compounds kaempferol	
	and dihydrokaempferol, showing an antagonistic relationship	100
Figure 3.15:	The mechanism of DPPH radical scavenging by kaempferol as proposed	
	by Tsimogiannis and Oreopoulou (2006)	104
Figure 3.16:	The basic chemical structure of flavonols	106
Figure 3.17:	Isolated steps from the metabolic pathway of flavonoids	110

Figure 4.1:	Representative 96-well microtiter plate, indicating final concentrations	
	of plant extracts (left); A 96-well microtiter plate prepared for use in the	
	MIC assay. Red wells indicate the absence of inhibitory activity (or the	
	presence of <i>p</i> -iodonitrotetrazolium) (right)	120
Figure 4.2:	Log ₁₀ reduction time kill plot of <i>Commiphora marlothii</i>	123
Figure 4.3:	The comparative structural complexity of the outer membranes and cell	
	walls of Gram- negative and Gram- positive bacteria	126
Figure 5.1:	The translocation of 5-lipoxygenase and cytosolic phospholipase A_2 ,	
	upon cellular stimulation, to the nuclear membrane, followed by the	
	substantial generation of leukotrienes	135
Figure 5.2:	Schematic representation of the 5-lipoxygenase pathway and simplified	
	scheme of the generation of other eicosanoids from arachidonic acid,	
	indicating the cyclo-oxygenase pathway	137
Figure 5.3:	The basic chemical structure of flavones	140
Figure 5.4:	The chemical structure of a prenylated flavonoid, kuwanon C	141
Figure 5.5:	Schematic representation of the 5-lipoxygenase assay	144
Figure 5.6:	The percentage 5-lipoxygenase enzyme inhibition by Commiphora leaf	
	and stem extracts at a concentration of 100 µg/ml	147
Figure 6.1:	Flavonoids that block or suppress multi-stage carcinogenesis	157
Figure 6.2:	The chemical structures of podophyllotoxin, 4-deoxypodophyllotoxin	
	and Erlangerin A - D	159
Figure 6.3:	The chemical structure of guggulsterone	160
Figure 6.4:	Molecular targets of dietary agents for the prevention and therapy of	
	cancers. Highlighted in orange are the targets of guggulsterone isolated	
	from Commiphora mukul	161

Figure 6.5:	Representative 96-well microtiter plate, indicating concentrations of	
	plant extracts (left); A 96-well microtiter plate prepared for use in the	
	SRB assay. Pink wells are an indication of stained cells (right)	165
Figure 6.6:	Percentage cell growth inhibition of Commiphora neglecta (leaf) against	
	the MCF-7 cell line, C. viminea (leaf) against the HT-29 cell line and C.	
	edulis (leaf) against the SF-268 cell line, indicating the concentration-	
	dependent inhibitory effect	168
Figure 6.7:	Representative antiproliferative activity at 100 μ g/ml of indigenous	
	Commiphora species under investigation and 5'-Fluorouracil in the SRB	
	assay against two cancer cell lines - the neuronal SF-268 and colon	
	adenocarcinoma HT-29 cell lines; the standard error of the mean of three	
	replicates are denoted by error bars (n = 3 experiments)	169
Figure 6.8:	The basic chemical structure of flavones	172
Figure 7.1:	Representative 96-well microtiter plate indicating final concentrations of	
	plant extracts and arrangement of controls prepared for use in the MTT	
	assay	181
Figure 7.2:	The IC_{50} values depicting the cytotoxicity of the 10 stems and leaves of	
	indigenous Commiphora species, ; the standard error of the mean of	
	three replicates are denoted by error bars ($n = 3$ experiments)	185
Figure 7.3:	A comparison between the cytotoxicity elicited by Commiphora species	
	on the normal human transformed kidney epithelium cells in the MTT	
	assay and the breast adenocarcinoma MCF-7 cell line in the SRB assay	186
Figure 8.1:	The basic chemical structure of flavonoids	193
Figure 8.2:	HPLC chromatograms of 10 indigenous Commiphora stem extracts	196
Figure 8.3:	HPLC chromatograms of 10 indigenous Commiphora leaf extracts	197
Figure 8.4:	The chemical structures and corresponding UV spectra of a flavonol	
	(left) and a flavone (right)	199

Figure 8.5:	The chemical structure, corresponding UV spectrum (insert), and HPLC	
	chromatogram of kaempferol	202
Figure 8.6:	Chromatogram of Commiphora pyracanthoides (stem) with UV	
	absorption maxima (insert) of compounds eluting at the retention times	
	13.73 min and 14.72 min	206
Figure 8.7:	Chromatogram of Commiphora edulis (stem, top) and Commiphora	
	edulis (leaves, bottom), with UV absorption maxima of compounds	
	eluting at the retention times of approximately 34.02 min and 34.50	
	min	207
APPENDIX A		
Figure A1:	HPLC chromatogram of <i>Commiphora africana</i> stem extract	249
Figure A2:	HPLC chromatogram of <i>Commiphora africana</i> leaf extract	250
Figure A3:	HPLC chromatogram of Commiphora edulis stem extract	251
Figure A4:	HPLC chromatogram of Commiphora edulis leaf extract	252
Figure A5:	HPLC chromatogram of <i>Commiphora glandulosa</i> stem extract	253
Figure A6:	HPLC chromatogram of <i>Commiphora glandulosa</i> leaf extract	254
Figure A7:	HPLC chromatogram of Commiphora marlothii stem extract	255
Figure A8:	HPLC chromatogram of Commiphora marlothii leaf extract	256
Figure A9:	HPLC chromatogram of Commiphora mollis stem extract	257
Figure A10:	HPLC chromatogram of <i>Commiphora mollis</i> leaf extract	258
Figure A11:	HPLC chromatogram of <i>Commiphora neglecta</i> stem extract	259
Figure A12:	HPLC chromatogram of <i>Commiphora neglecta</i> leaf extract	260
Figure A13:	HPLC chromatogram of <i>Commiphora pyracanthoides</i> stem extract	261
Figure A14:	HPLC chromatogram of <i>Commiphora pyracanthoides</i> leaf extract	262
Figure A15:	HPLC chromatogram of <i>Commiphora schimperi</i> stem extract	263
Figure A16:	HPLC chromatogram of Commiphora schimperi leaf extract	264

Figure A17:	HPLC chromatogram of <i>Commiphora tenuipetiolata</i> stem extract	265
Figure A18:	HPLC chromatogram of <i>Commiphora tenuipetiolata</i> leaf extract	266
Figure A19:	HPLC chromatogram of <i>Commiphora viminea</i> stem extract	267
Figure A20:	HPLC chromatogram of <i>Commiphora viminea</i> leaf extract	268
APPENDIX B		
Figure B1	¹ H NMR spectrum of Compound 1	269
Figure B2	¹³ C NMR spectrum of Compound 1	270
Figure B3	¹ H NMR spectrum of Compound 2	271
Figure B4	¹³ C NMR spectrum of Compound 2	272

LIST OF TABLES

Table 1.1:	Drugs derived from plants, their clinical uses and sources	36
Table 1.2:	The different sources of myrrh and their chemical constituents	48
Table 1.3:	The traditional uses of <i>Commiphora</i> species indigenous to southern Africa.	51
Table 1.4:	The phytoconstituents of extracts and the oleo-gum-resin documented for a few	
	species of Commiphora presenting interesting chemical profiles, adapted	
	from Hanuš <i>et al.</i> (2005)	53
Table 2.1:	Collection data for the 10 indigenous Commiphora species under	
	investigation	72
Table 3.1:	In vitro anti-oxidant activity (µg/ml) of extracts from indigenous Commiphora	
	species, as shown by the DPPH and ABTS assays. Results are given as mean \pm	
	s.d, n=3	92
Table 3.2:	Comparing the experimental data of ¹ H NMR of the aglycone kaempferol with	
	that obtained by Bin and Yongmin (2003), Soliman et al. (2002) and Xu et al.	
	(2005)	95
Table 3.3:	Comparing the experimental data of ¹³ C NMR of the aglycone kaempferol with	
	that obtained by Bin and Yongmin (2003), Soliman et al. (2002) and Xu et al.	
	(2005)	96
Table 3.4:	Comparing the experimental data of ¹ H NMR of dihydrokaempferol with that	
	obtained by Güvenalp and Demirezer (2005) and Xu et al.	
	(2005)	97
Table 3.5:	Comparing the experimental data of ¹³ C NMR of dihydrokaempferol with that	
	obtained by Güvenalp and Demirezer (2005) and Xu et al.	
	(2005)	97
Table 3.6:	Data generated for the construction of the isobologram to indicate the	
	interaction between Commiphora glandulosa stem extract and vitamin C, in the	
	DPPH assay	98
Table 3.7:	Data generated for the construction of the isobologram to indicate the inter-	
	action between kaempferol and dihydrokaempferol, in the DPPH	
	assay	99

LIST OF TABLES continued

Table 4.1:	MIC values obtained for extracts of indigenous Commiphora species against	
	Staphylococcus aureus, Bacillus cereus, Klebsiella pneumoniae, Pseudo	
	monas aeruginosa, Candida albicans, Cryptococcus neoformans. n =	
	3	124
Table 5.1:	The percentage 5-lipoxygenase enzyme inhibitory activity of Commiphora	
	species stem and leaf extracts <i>in vitro</i> at 100 μ g/ml and their corresponding IC ₅₀	
	values	145
Table 6.1:	Incidence rates of the major cancers in the caucasian and black population of	
	South Africa.	153
Table 6.2:	Cytotoxic drugs developed from plant sources	154
Table 6.3:	The percentage cell growth inhibition (CGI) of colon adenocarcinoma cell line (HT-	
	29), breast adenocarcinoma cell line (MCF-7) and neuronal cell line (SF-268) on	
	exposure to stem and leaf extracts of indigenous Commiphora species, kaempferol	
	and reference compound 5'-Fluorouracil, and the IC_{50} values of the respective	
	species. Results are given as mean \pm s.d, n=3	167
Table 7.1:	The cytotoxicity of extracts of indigenous Commiphora species, kaempferol and	
	quinine against the transformed human kidney epithelium cells. Results are	
	given as mean \pm s.d, n=3	184
Table 8.1:	HPLC-UV maxima of the tentatively identified flavonoid derivatives present in	
	the Commiphora leaf extracts	198
Table 8.2:	HPLC results of the compounds, expressed in percentage area, detected in	
	Commiphora stem extracts	200
APPENDIX		
Table A1:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora africana stem extract	249
Table A2:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora africana leaf extract	250

LIST OF TABLES continued

Table A3:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora edulis stem extractxx	x 2 1
Table A4:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora edulis leaf extract	252
Table A5:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora glandulosa stem extract	253
Table A6:	Retention time, percentage integration area, and UV maxima for peaks from	
	Commiphora glandulosa leaf extract	254
Table A7:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora marlothii stem extract	255
Table A8:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora marlothii leaf extract	256
Table A9:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora mollis stem extract	257
Table A10:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora mollis leaf extract	258
Table A11:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora neglecta stem extract	259
Table A12:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora neglecta leaf extract	260
Table A13:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora pyracanthoides stem extract	261
Table A14:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora pyracanthoides leaf extract	262
Table A15:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora schimperi stem extract	263
Table A16:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora schimperi leaf extract	264

LIST OF TABLES continued

Table A17:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora tenuipetiolata stem extract	265
Table A18:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora tenuipetiolata leaf extract	266
Table A19:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora viminea stem extract	267
Table A20:	Retention time, percentage integration area and UV maxima for peaks from	
	Commiphora viminea leaf extract	268

LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS

2,2'-azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid)
Activated protein kinase
Activator protein 1
American Type Culture Collection (Manassas, VA, USA)
Adenosine Triphosphate
Androgen Receptor
Voucher specimen numbers (Alvaro Viljoen)
Average
Bcl2-associated X protein
B-cell lymphoma-2
Carbon 2
Carbon 3
Carbon 6
Circa (around; about)
Commiphora africana leaves
Commiphora africana stem
Cyclin-dependent kinase
Commiphora edulis leaves
Commiphora edulis stem
Cellular FADD-like interleukin-1-converting enzyme (FLICE) inhibitory
protein
Colony forming units
Commiphora glandulosa leaves
Commiphora glandulosa stem
Cellular inhibitor of apoptosis protein
Commiphora marlothii leaves
Commiphora marlothii stem
Commiphora mollis leaves
Commiphora mollis stem
Commiphora neglecta leaves
Commiphora neglecta stem

CO ₂ :	Carbon dioxide
CPL:	Commiphora pyracanthoides leaves
CPS:	Commiphora pyracanthoides stem
CSF:	Colony stimulating factors
CSL:	Commiphora schimperi leaves
CSS:	Commiphora schimperi stem
CTL:	Commiphora tenuipetiolata leaves
CTS:	Commiphora tenuipetiolata stem
CVL:	Commiphora viminea leaves
CVS:	Commiphora viminea stem
COX:	Cyclo-oxygenase
°C:	Degrees Celsius
DMEM:	Dulbecco's Modified Eagle's Medium
DMSO:	Dimethyl sulfoxide
DNA:	Deoxyribonucleic acid
DPPH:	2,2-diphenyl-1-picrylhydrazyl
DSM:	Deutsche Sammlung von Mikroorganismen (culture collection; Braunschweig,
	Germany)
EDTA:	Ethylene diamine tetraacetic acid
EGF:	Epidermal growth factor
EGFR:	Epidermal growth factor receptor
Egr-1:	Early growth response 1
ELAM:	Endothelial leucocyte adhesion molecule
EpRE:	Electrophile responsive element
ER-a:	Estrogen receptor alpha
ER-β:	Estrogen receptor beta
FCS:	Foetal calf serum
FGF:	Fibroblast growth factor
FLAP:	5-Lipoxygenase activating protein
FTPase:	Farnesyl-protein transferase
FXR:	Farnesoid X receptor
g:	Gram

GC:	Gas chromatography
GPS:	Global positioning system
GST:	Glutathione S-transferase
GST-px:	Glutathione peroxidase
HER2:	Human epidermal growth factor receptor 2
HETE:	Hydroxyeicosatetraenoic acid
HL-60:	Leukemic cancer cell line
5-HPETE:	5-hydroxyperoxyeicosatetraenoic acid
HPLC:	High performance liquid chromatography
HPLC-UV:	High performance liquid chromatography-ultraviolet
HPRT:	Hypoxanthine guanine phosphoribosyl transferase
HT-29:	Colon adenocarcinoma cell line
H ₂ O ₂ :	Di-hydrogen Dioxide (Hydrogen peroxide)
OH:	Hydroxide
ICAM-1:	Intercellular adhesion molecule-1
IC ₅₀ :	Inhibitory concentration
IFN-γ:	Interferon gamma
IGF:	Insulin-like growth factor
IKK:	IkappaBalpha kinase
IL-1:	Interleukin
iNOS:	Inducible nitric oxide synthase
INT:	<i>p</i> -iodonitrotetrazolium
JAK2:	Janus kinase 2 protein kinase
JNK:	c Jun N-terminal kinase
KH ₂ PO ₄ :	Potassium di-hydrogenphosphate
K ₂ S ₂ O ₈ :	Potassium persulfate
λ:	Lambda (wavelength)
LOX:	Lipoxygenase
LPS:	Lipopolysaccharide
m:	Meters
Ma:	Million years ago

MAPK:	Mitogen-activated protein kinases
MCF-7:	Breast adenocarcinoma cell line
MDR:	Multiple drug resistance
mg:	Milligram
MIC:	Minimum inhibitory concentration
min:	Minutes
ml:	Milliliter
mM:	Millimolar
MMP:	Matrix metalloproteinase
MTT:	3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
μg:	Microgram
μl:	Microlitre
n:	Number of experimental runs
NaCl:	Sodium chloride
NADH:	Nicotinamide adenine dinucleotide
NADPH:	Nicotinamide adenine dinucleotide phosphate
NaHCO ₃ :	Sodium hydrogen carbonate
Na ₂ HPO ₄ .2 H ₂ O:	Di-sodium hydrogenphosphate dehydrate
NCI:	National cancer institute
NCTC:	National collection of type cultures (Central Public Laboratory Service,
	London, UK)
NDGA:	Nordihydroguaiaretic acid
NF-ĸB:	Nuclear factor-kappa B
nm:	Nanometer
NMR:	Nuclear magnetic resonance
NR:	Nuclear receptors
Nrf2:	NF-E2-related Factor 2
NSAID:	Non-steroidal anti-inflammatory drugs
NW:	New world
OW:	Old world
O ₂ :	Oxygen

PARP:	Polyadenosine-5'-diphosphate-ribose polymerase
PBS:	Phosphate buffer saline
PCA:	Principle component analysis
PDGF:	Platelet-derived growth factor
Pgp:	P-glycoprotein
pH:	Potential hydrogen
PKA:	Protein kinase A
РКС:	Protein kinase C
PLA ₂ :	Phospholipase A ₂
ΡΡΑRγ:	Peroxisome proliferator-activated receptor gamma
ppm:	Parts per million
p21/WAF:	Cyclin dependent kinase inhibitor complex
p27Kip/Cip:	Cyclin dependent kinase inhibitor complex
ր53։	Tumour suppressor gene
R _f :	Retention factor
RNA:	Ribonucleic Acid
ROS:	Reactive oxygen species
rpm:	Revolutions per minute
RPMI 1640:	Roswell Park Memorial Institute Media 1640
s:	Seconds
SABS:	South African Bureau for Standards
SAR:	Structure-activity relationship
s.d.:	Standard deviation
SDG:	Succinate-dehydrogenase
SF-268:	Neuronal glioblastoma cancer cell line
spp.:	Species
SRB:	Sulphorhodamine
Src:	protein kinase
STAT:	Signal transducer and activator of transcription
subsp.:	Subspecies
syn.:	Synonym

TEAC:	Trolox equivalent anti-oxidant capacity
TGFα/β:	Transforming growth factor alpha/beta
TLC:	Thin layer chromatography
TNF:	Tumour necrosis factor
TRAF1:	Tumour necrosis factor receptor-associated factor
TSA:	Tryptone soya agar
TSB:	Tryptone soya broth
TYK2:	Tyrosine kinase 2
uPA:	Urokinase-type plasminogen activator
UV:	Ultra violet
UV-VIS:	Ultraviolet-visible
UV-VIS: var:	Ultraviolet-visible Variant
UV-VIS: var: VCAM:	Ultraviolet-visible Variant Vascular cell adhesion molecule
UV-VIS: var: VCAM: VEGF:	Ultraviolet-visible Variant Vascular cell adhesion molecule Vascular endothelial growth factor
UV-VIS: var: VCAM: VEGF: vs:	Ultraviolet-visible Variant Vascular cell adhesion molecule Vascular endothelial growth factor Versus
UV-VIS: var: VCAM: VEGF: vs: WHO:	Ultraviolet-visible Variant Vascular cell adhesion molecule Vascular endothelial growth factor Versus World Health Organization
UV-VIS: var: VCAM: VEGF: vs: WHO: w/v:	Ultraviolet-visible Variant Vascular cell adhesion molecule Vascular endothelial growth factor Versus World Health Organization Weight per volume
UV-VIS: var: VCAM: VEGF: vs: WHO: w/v: xIAP:	Ultraviolet-visible Variant Vascular cell adhesion molecule Vascular endothelial growth factor Versus World Health Organization Weight per volume Inhibitor of apoptosis protein
UV-VIS: var: VCAM: VEGF: vs: WHO: w/v: xIAP: ↓:	Ultraviolet-visible Variant Vascular cell adhesion molecule Vascular endothelial growth factor Versus World Health Organization Weight per volume Inhibitor of apoptosis protein Decrease