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Abstract

The search for alternative methods of synthesizing cubic boron niti®le)( one of
the hardest known materials, at low thermo-baric conditions has stimulated considerable
research interest due to its great potential for numerous practical industrial applications.
The practical applications are motivated by the material’s amazing combination of ex-
traordinarily superior properties. TheBN phase is presently being synthesized from
graphite-like boron nitride modifications at high thermo-baric conditions in the presence
of catalytic solvents or by ion—beam assisted (chemical and physical) deposition methods.
However, the potential and performancecBiN have not been fully realized largely due
to central problems arising from the aforementioned synthesis methods.

The work reported in this dissertation is inspired by the extensive theoretical investi-
gation of the influence of defects ififacting the transformation of the hexagonal boron
nitride (hBN) phase to theBN phase that was carried out by Mosuang and LowtRby$§

Rev B66, 014112(2002)). From their investigation, using ab-initio local density ap-
proach, for the B, C, N, and O simple defectshiBN, they concluded that the defects
introduced intohBN could facilitate a low activation—energy hexagonal-to-cubic boron
nitride phase transformation, under less extreme conditions.

We use ion implantation as a technique of choice for introducing ‘controlled’ defects
into the hot—pressed polycrystalline 99.98N powder samples. The reasons are that the
technique is non—equilibrium (not influenced bytdsion laws) and controllable, that is
the species of ions, their energy and number introduced per unit area can be changed and
monitored easily. We investigate the structural modificatiorts8M by ion implantation.
Emphasis is given to the possibilities of influencing a low activation—erneBdi+to-cBN
phase transformation. The characterization of the structural modifications induced to the
hBN samples by implanting with Heons of energies ranging between 200 keV and 1.2
MeV, at fluences of up to 1910' ionscm2, was accomplished by correlating results
from X-Ray Diffraction (XRD), micro-RamanutRaman) spectroscopy measurements,
and two-dimensional X-Y Raman (2D-Raman) mapping measurements. The surface to-



pography of the samples was investigated using Scanning Electron Microscopy (SEM).
Efforts to use Surface Brillouin Scattering (SBS) were hampered by the transparency of
the samples to the laser light as well as the large degree of surface roughness. All the
implantations were carried out at room temperature under high vacuum.

2D-Raman mapping andRaman spectroscopy measurements done before and after
He" ion irradiation show that an inducddN-to-cBN phase transformation is possible:
nanocrystals 0o€BN have been observed to have nucleated as a consequence of ion im-
plantation, the extent of which is dictated by the fluences of implantation. The deviation
of the measured spectra from the Raman spectra of single cogthls expected, has
been observed before and been attributed to phonon confineffiectse Also observed
are phase transformations from the pre-existiB§ modification to: (a) the amorphous
boron nitride @BN), (b) the rhombohedral boron nitrideBN) modifications, (c) crys-
talline and amorphous boron clusters, which are a result of the agglomeration of elemen-
tary boron during and immediately after ion implantation. These transformations were
observed at high energies. Unfortunately, the XRD measurements carried out could not
complement the Raman spectroscopy outcomes probably because the respective amounts
of the transformed materials were well below the detection limit of the instrument used
in the former case.



Nomenclature

BN boron nitride

aBN amorphous boron nitride

cBN cubic boron nitride

n-cBN nanocrystalline cubic boron nitride
hBN hexagonal boron nitride

rBN rhombohedral boron nitride

WBN  wurtzite boron nitride

tBN turbostratic boron nitride

HPHT high pressure and high temperature

dE energy lost by an ion traversing in matter

dx distance traversed

S stopping power (subscriptsn & e denote total, nuclear & electronic, respectively)
N number of scattering elements

o scattering cross sections

X depth in matter

n(x) density of implantdmplanted species

¢ dose, fluence, or the number of ions per unit area
Rp mean projected range

AR, average deviation iRy,

Eq displacement energy

G Gibbs free energy

U internal energy

p pressure

Vv volume

T absolute temperature

S entropy
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Chapter 1

Introduction

1.1 Motivation

The amazing combination of superior mechanical, physical, chemical, optical, elec-
tronic and thermal properties of cubic boron nitridBK) makes it a very useful and
promising material for a wide variety of industrial applications and has stimulated con-
siderable academic interest. This promise has driven researcBfor over 50 years.

As a result the material has found many applications that include being used as an abrasive
material (grinding and polishing) and in high temperature semiconductor devices (owing
to the high thermal and hardness values) as well as in photonic devices (owing to the wide
bandgap).

cBN was first synthesized by Wentorf Jr. in 1956 under extreme high pressure and
high temperature (HPHT) conditions by and since tharts have been made to syn-
thesize this material at relatively low pressures (relative to those used in the direct HPHT
synthesis methods) in order to make the process more commercially viable and therefore
be of practical use to industry. The synthesi<BN and other diamond-like phases is
normally done under HPHT conditions though the catalytic method is presently the main
method of obtainingBN on an industrial scale.

The recent situation in the search for new superhard materials indicates that the syn-
thesis of materials with hardness exceeding that of diamond is unlikely. Research has
therefore been refocused on the search for new superhard phases to synthesize materials
more useful than diamond, rather than harder than diamond. Research has also been re-
focused to finding more ‘practical’ ways to synthesize the existing and new materials for
industrial use.



1.2. Thesis Outline 2

In the research work carried out by Mosuang and Lowther on the influence of de-
fects in dfecting the transformation ¢iBN to cBN investigated using thab-initio local
density approach for the simple defects B, C, N, and O, the results suggested that de-
fects introduced in the hexagonal phase could facilitate a transformation to the cubic
phase. The work reported herein seeks to investigate experimentally the possibility of us-
ing ion implantation as a technique of influencing the structural transformation from the
soft hexagonal boron nitride phase to the ultrahard cubic phase of boron nitride under less
extreme conditions of temperature and pressure. Raman spectroscopy and Xraay di
tion are the main experimental techniques used to characterize the irradiated materials.
Scanning electron microscopy and surface Brillouin scattering were also used to reveal
the nature of the sample surfaces.

1.2 Thesis Outline

This thesis is organized as follows: Chapter 2 gives an overview of the principles
that govern and characterize the transport of energetic ions propagating in matter. The
chapter also includes the stopping mechanisms and the resultant disruption of the pre-
existing lattice structure caused by the ions as they come to rest. A detailed treatment of
the material under investigation, boron nitride, is given in Chapter 3. The phase diagram,
the structures and physico-chemical properties of the hexagonal and cubic phases, the
synthesis otBN, as well as the mechanisms underlining the hexagonal to cubic phase
transformations are also discussed. Chapter 4 describes the experimental details; this
includes the theory of the experimental techniques employed, the experimental setups
including the methods and practices of the respective techniques. Chapter 5 discusses and
analyses the results obtained from performing the experimental techniques and methods
described in Chapter 4. Chapter 6 summarized the results obtained and discussed in
Chapter 5 whilst Chapter 6 concludes the research and also goes as far as suggesting
routes to future work. In Appendix A, the theory of the Raman scattering process is
discussed.



Chapter 2

Principles of lon Implantation

2.1 Introduction

The surface layer of a solid material plays a participatory role in all the material’s
interactions with its external environment for example in friction, wear, oxidation, fatigue,
impact among others, therefore the industrial applications of most materials are largely
dependent on their surface characteristics.

lon implantation is a harsh and non—equilibrium technique of modifying the structural,
physical and chemical characteristics of thin films, and surface layer properties of solid
state materials, to depths of less than a micrometre [1]. It is achieved by the bombardment
of the solid material with high energy charged particles. Most of the implants will come
to rest within a shallow layer of the host material, creating many point defects in the
stopping process. It is the added atoms/anthe interactions of the created defects that
changes the host material’s properties. For example, nitrogen ion implantation into a
wide range of materials improves their surface hardness and wear resistance, ion beams
have been successfully used to synthesize new metastable phases of remarkable properties
that are otherwise unattainable by any other technique thermodynamically, semiconductor
material doping is a good example.

lon implantation has been used in a wide variety of fields both as a powerful research
tool for investigating solid state material processes and properties, and as a means of con-
trollably modifying the electrical, physical, chemical, mechanical and optical properties
of solid surfaces [2]. The method of introducing ions into a solid material requires high
voltage equipment that can electrostatically accelerate the ions and direct them onto the
target material. A detailed description of the ion implanter is given inBkgerimental



2.2. lon Implantation 4

Techniqueshapter.

2.2 The Physics of lon Implantation

2.2.1 Introduction

The passage of an energetic ion moving in matter is characterized by interplay of
several scattering processes as a result of the Coulombic interactions of the projectile ions
with the solid target’s nuclei and electron clouds. These interaction mechanisms involve
the transfer of momentum or energy, in some cases the transfer of charges between the
interacting parties. The predominance and contribution of each of the several interaction
processes is reflected by its respective interaction cross section.

This section focuses on the propagation and subsequent stopping processes of the
energetic ions in the target material; ion implantation.

2.2.2 lon Stopping in Matter

When an energetic ion is implanted into a target material, it rapidly decelerates; trans-
ferring its momentum to the target material’s atoms and electrons. The ion will eventually
come to rest at some depth below the surface [1]. This energy which is lost in a succession
of Coulomb interactions between the projectile ion and the material in which it traverses
is deposited to the atoms that make up the target material. These energy loss mechanisms
have traditionally been separated into two distinct processes based on their characteristics
and the energy regimes in which they are predominant; at high propagation velocities the
electronic energy loss mechanigstaminates the ion stopping, also known as electronic
stopping or inelastic energy loss. At low propagation velocitiesitheear energy mech-
anismdominates, also known as nuclear stopping or the elastic energy loss mechanism
[1,3,4,5,6,7].

The other processes that are known to take place include the generation of phonons —
leading to the local heating of the target material, charge exchange (between the projectile
and the target nuclei), the sputtering and degradation of the target surface atoms, nuclear
reactions, the emission of high energy radiation (bremsstrahlung and Cheyea#ia+

$1s the radiation emitted by a charge moving faster than the local speed ogl'rgbt/ing past a target
atom in a mediumy is the refractive index of the medium. Sometimes spelt as Cerenkov. Thid e
reduces to bremsstrahlung if its speed is less than that of the local speed of light
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tion) and the emission of other secondary particles such as Auger electrons [5]. These
processes are characterized by very low scattering cross section as compared to nuclear
and electronic interactions and are hence deemed negligible hereinafter.

The nuclear and electronic stopping criteria are normally quantified by their respective
‘stopping powers’S, theoretical quantities given as the enedjy lost by an ion as it
traversed a distanakx in matter. The arithmetic sum of the two stopping powers (nuclear
stopping powelS, and electronic stopping pow&:) is called the total stopping power,

{52

The equation 2.2 shows how the total interaction cross sectipnelates to the total

St as in equation 2.1 [3, 8].

stopping power of the material as well as the number of scattering centres in the target

(2] (%)

This parameter is relevant only for computational purposes; in practice, the implant

materials N.

(2.2)

final penetration depth as well as the amount of lattice damage created as a result of the
ion stopping in matter are of critical importance [3].

Electronic Energy Loss Mechanism

Electronic stopping is often dominant in the beginning of the incident ion’s path in
the implanted material, that is when the ion velocity is relatively high [1, 6] as illustrated
in fig 2.1.

The electronic stopping arises from the inelastic interactions between the projectile
ion nucleus (and its electrons) and the electrons of the target atoms. These interactions
normally result in the excitations and at times ionization of the target atoms [7]. The slow-
ing down can also be attributed to the “viscous drag” the projectile nucleus experiences
when it interacts with the target atoms’ cloud of electrons as a result of the electrostatic
attractions of charges of opposite polarities [1]. Hence electronic stopping is also known
as the inelastic energy loss mechanism.

At such high energies, and also taking into consideration the nature of the interactions,
the cross section of any displacement is low, hence the passage of the ion at such energies
is characterized by slight trajectory deflections, behaving like its ‘ripping through’ the
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cloud of electrons. The variation of the electronic stopping po&gwith energy,E (or
velocity) in Region | depicted in fig 2.1 is given in equation 2.3 [9].

Se o —E05 (2.3)

The electronic stopping reaches a maximum at projectile velocities comparable to the
Bohr velocities of the valency electrons of the target atoms (Region Il). At relativisti-
cally high projectile velocities, in the Bethe —Bloch formalism, the electronic stopping
decreases as the projectile is stripped of all its valence electrons, becomes smaller and
virtually sees neither the target nuclei nor its sea of electrons [2, 3, 7] this is illustrated in
fig 2.1. This region (lIl) is not covered in the present work.

Nuclear Energy Loss Mechanism

At the projectile ion’s end-of-range, when the ion has slowed down significantly, the
electronic stopping cross section becomes small and the duration which the projectile
nucleus spends in the vicinity of each target nucleus also becomes sizable. As a result, the
cross section of the binary nuclear collisions will become large and will start dominating
the ion stopping process [9].

LOW l INTERMEDIATE | HIGH
ENERGIES | ENERGIES : ENERGIES
I | (BETHE -BLOCH
| i REGION}
] I |
o I ELECTRONIC |
W |  STOFPING il
|
g | |
2 a .
o |
& ' |
7 ' l
NUCLEAR | |
STOPPING ]I I
e o i
/ | :
S ! |
voze'3
ION VELOCITY

Figure 2.1: Nuclear and electronic components of the ion stopping power as a function of ion
velocity.
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The projectile ion and target nucleus interaction is generally considered a binary col-
lision interaction between the two nuclei. The nuclear stopping power in this region (1)
has an inverse square dependence on energy [3], as shown in equation 2.4 and fig 2.1.

Shoc —E2 (2.4)

These nuclear interactions involve large amounts of energy, much greater than the
struck atom’s lattice displacement enerfgy. This mechanism is therefore largely re-
sponsible for the massive disruption of the specimen lattice structure that follows ion
irradiation.

Range and Range Distribution of Implants

The ion loses its energy in a series of random discrete collisions and subsequent ion
deflections. Hence the energy loss process itself is a stochastic process. It therefore
follows that the energy loss per collision, the total path length of penetration and the final
density distribution of the implanted ions in matter also have a random variation from ion
to ion.

In theory, the final density of implantgx), irrespective of the species, is statistically
distributed as a function of the deptland may be roughly approximated by a Gaussian
distribution [2, 3, 4]. The parameters used to define this distribution are the mean pro-
jected ranger,, the average deviation from the mean projected raxigeand the total
number of ions per unit area The implant density as a function of depth is then given by
equation 2.5 below. The statistical parameters in equation 2.5 are illustrated schematically
in fig 2.2.

B ¢ (X=Rp)?
n(X) = ARD—\/Z_R- . eXp{-TRpZ} (25)

2.2.3 Radiation Damage

After a series of inelastic electronic collisions and a few elastic knock—on collisions
during the high energy regime of the ion trajectory, the projectile’s momentum drops
drastically. As the ion traverses in this low energy regime the nuclear stopping power
which has an inverse square relationship with the ion energy becomes the dominant stop-
ping mechanism as illustrated in equation 2.4 [3, 7]. This is because at low energies the
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Figure 2.2: A three dimensional distribution (depth and lateral) of the implant concentration with
respect to the depth of the implanted material after [4].

projectile spends more time in the vicinity of the target nuclei hence the cross section of
ballistic nuclear collisions becomes greater.

The disruption of the preexisting lattice atomic arrangement as a result of the ion
bombardment is what is known eadiation damageThe projectile ion embarks on vig-
orous displacement collisions with the target nuclei and if their energy is greater than the
displacement energy of that materig}, (which is the energy required to create a Frenkel
pair that has a separation greater than the recombination radius, so inhibiting spontaneous
recombination) then the target atom is dislodged from its lattice position leaving a va-
cancy site [10, 11]. The recoil atom, in turn, if it has recoil energy much greatergBhan
will further cause the creation of Frenkel pairs. The result is a cascade of displacements
in very short time duration (as compared to the time of flight of the projectile ion). This
is known as a collision cascade and is characterized by a very large number of Frenkel
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pair defects in a small volume surrounding the ion track, this phenomenon is known as a
displacement spikevhich is an amorphous state [1, 6, 12, 13]. Fig 2.3 summarizes this
phenomenon [6].

close replacement
Frenkel pair collision sequences

1) O o0 O O O O
primary O O O O] Oy O O
ion O 0 O O O T 00O O

J 00 O
vacancies . . O /, O O O

energy transpoert

by“_fo_cused ® Q o
50 e 000

OO OO O O

- ONO,/0 O O O

interstitials

depleted zone

Figure 2.3: A schematic representation of the collision cascade process showing the collision cas-
cade and the focused collision sequence extending beyond the main cascade regime,
after [6].

However, if the ion or recoil energy drops bel&y, then the projectile is no longer ca-
pable of ejecting the target nuclei from their stable lattice positions. Instead they lose their
energy through ‘hard’ collisions that induce large amplitude vibrations without leaving
their lattice sites (which are essentially potential wells). The collision—induced vibration
energy is shared by the neighbouring nuclei and appears as a source of heat. This region
normally develops into a plasma-—like structure; this structure develops rapitiy ?s)
and is known as #ghermal spike This is one of the contributions to the sample heating
during ion implantation [4]. Thermal spikes occur at the centre of displacement spikes;
this region is also characterized by very high compressive stresses and high thermal en-
ergy [11].

The final damage configuration depends on the ion implantation conditions such as
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the implantation dose, on the implantation temperature, on the properties of the target
material, as well as on the massiveness (with respect to the target nuclei) and swiftness of
the projectile ions [1, 14].

The point defects of the same sign (that is either interstitials or vacancies) may fur-
ther interact during and after the ion implantation to form extended defects (disordered
regions which extend over a large region of a solid) in the form of dislocation loops, grain
boundaries, impurity clusteegyglomerations, crystallif@morphous inclusions, voids or
gaseous inclusions. Agglomeration proceeds by eith@ugdon’migration to other sites
or annihilation by recombining with one another at defect recombination sites such as
the surface or grain boundaries or other crystallographic extended defects that might act
as defect sinks. Defects may also cluster to form extended defects in order to reduce
the strain energy as well as the free energy of the system. Agglomeration is a transient
process, the defect interactions are largely governed by the temperatures at which the
implantation is done or at which the sample is annealed as well as the respective defect
migration energies [5, 6, 15, 16].

When a typical group lll-nitride material is implanted with gaseous ionic species,
the atoms of the gaseous species, either the implants or nitrogen atoms from the nitride
compound, have been observed to agglomerate to form gas molecules and subsequently
a fine distribution of bubbles leading to the volume expansion of the sample; a good
example is N — GaN [15, 17, 18]. However, ion implantation experiments dfrk
diamond under ambient temperature has also shown that the volume expansion can arise
due to the agglomerations of interstitials and that the expansion is linearly proportional to
the ion dose [19].

According to the studies on ‘point defect engineering’ in ion implanted diamond car-
ried out by Derry and co—workers [16]; there exisffelient temperature regimes that
govern the mobility of point defects in the damage cascade caused by the implanted ion.
Generally at very low temperatures (typically less than 320K in diamond) all the point
defects are immobile. At higher temperatures (typically between 320K and 800K in di-
amond) the interstitials become mobile whilst the vacancies remain immobile, whilst at
even higher temperatures (typically greater than 800K in diamond) all the primary defects
are mobile [16]. The general rule is that the mobility of the interstitials is larger than that
of the vacancies. However, if the individual primary defects cluster and form secondary
defect agglomerations or dislocation loops they become immobile and very stable even at
high temperatures.
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2.2.4 Channelling

So far, the discussion assumes that the implanted material is amorphous. In practice
the crystal orientation influence on the ion penetration is callecctiamnelling gect
When an ion beam is well aligned with a low—index crystallographic direction of a single
crystal, for examplg100) in cBN, there is a massive reduction in the yield of small
impact—parameter interaction processes; hence few vigorous knock—on collisions [20,
21].

In amorphous materials the projectile interacts chaotically with the individual atoms
in the material. On the contrary, the charged particles moving along axes or planes of
symmetry of a crystal interact only with the nuclear planes or chains instead of the indi-
vidual lattice atoms that constitute the planes. The ion beam in this case is not scattered
chaotically but is instead gently and collectively steered by a succession of gentle lower
energy-loss large impact—parameter collisions with ‘walls’ of atomic rows and planes that
form the ‘channels’. Hence the ion beam penetrates deeper into the sample than a similar
ion traversing with the same energy but in an amorphous material [7, 9] as the probability
of nuclear encounters is much less.



Chapter 3

Boron Nitride

3.1 Introduction

The compositional tetrahedr@+ C—N-Sihas stimulated considerable experimental
and theoretical interests, one of the reasons being that it is within this system that most of
the hardest known materials of superior chemical and physical properties are found. Such
compounds include the hypothetig;N,4, diamond (C), metastable boron carbonitride
phases (B&N, BC;N), cubic boron nitride¢BN) and silicon carbide (SiC) [22, 23].

The primary emphasis in this work is @BN. Boron nitride (BN) is a binary com-
pound of boron and nitrogen, the elements which straddle carbon in the periodic table of
elements; this makes BN isoelectronic to carbon. However, there are signifiant di
ences in the properties of carbon and boron nitride, primarily due to tferekhces in
chemical bonding: BN has mixed covalent and ionic bonding while bonding in carbon
is completely covalent. As a result, bdiBN andcBN have lower mechanical strength,
thermal conductivity and Debye temperatures than their carbon counterparts, but larger
lattice constants and energy bandgaps. There are practiferetdices between BN and
carbon as wellcBN can be doped either n- or p-type, but diamond is readily doped only
p-type. Both phases of boron nitride are more resistant to oxidation than their carbon
counterparts, due to the formation of a non-volatile boron oxide [24].

Four primary crystalline polymorphic modifications of BN are known and are shown
in Table 3.1: hexagonal boron nitriddBN, rhombohedral boron nitriderBN, cubic
boron nitride -€BN and wurtzite boron nitridewBN. These are analogous to graphite,
rhombohedral graphite, diamond and hexagonal diamond respectively [25, 26, 27, 28, 29].
The cBN andwBN modifications are both hard, dense and diamond-like phases. They

12
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are characterized by high density 3-dimensionalisridized B— N bonds; these two
phases however havefidirent packing sequences of the closest packed diatomic planes
and structural arrangements. TH&N andhBN are softer and graphite—like, having 2-
dimensional sphybridized B—N bonds that form hexagonal-linked layers. Likewise
the respective packing sequences of the two structures distinguish them [27, 29, 30].

StructuraL PHASE  a(A)  c(A)  Aromic posiTioNs

hBN 2.50 6.66 B:(0,0,0)%%,2)
N: (2,1,0),(0,03)
rBN 250 9.99 B:(0,00)%3.1).,G2.29
N: (4, 5.0).G. 3, 5).(0,03)
cBN 3.62 - B: (0,0,0).£,1,0),(04,1),2,0.3)
N: (G 22, (%,%,zo G2 hGodd
wBN 255 4.42 B:(0,0,0)% 2 3,2
N: (O 0’3) (3’ 3’_

Table 3.1:Structural data for the boron nitride phases, after [30]. The structural diagrams of the
four phases are also presented in [30].

In addition to the crystalline phases, BN also exists in two disordered phases: tur-
bostratic boron nitride BN, a partially disordered graphitic phase, with random stacking
of the hexagonal ghonded basal layers, as well as an amorphous boron nitride phase —
aBN, which is characterized by atomic level disorder [27, 28, 29].

The transformation of one structural phase into another is theoretically possible. This
is as a result of the variety of polymorphic modifications that exist as brought about by
the ability of BN to have a variety of local bonding. The progress of the structural phase
transformation can however be hindered by the energy barrier of the respective transfor-
mation. As a result the transformation that follows is a result of the alteration that occurs
to the atom—to—atom local bonding or the local electronic structure that accompanies the
shearing of the planes in the transformed structure.

3.2 Phase Diagram of BN

A phase is a homogeneous portion of matter whose physico-chemical properties are
similar throughout. The phase diagram of BN (fig 3.1) gives a graphical representation of
the states and phases of equilibrium at any given pressure and temperature condition. The
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underlying quantity which determines the stability of a phase is its Gibbs free eigrgy,
a thermodynamic function which is given by equation 3.1, wheiethe pressureV is
the volume U is the system’s internal energy,is the absolute temperature, aBds the
system’s entropy.

G=U+pV-TS (3.1)
Given the conditions of high pressure the system shifts towards a stable and steric
arrangement of low specific volume, to minimize its free energy. BN has many allotropic

phases some of which are metastable in nature; for the purposes of this study, we are only
interested in the stabEBN andhBN phases and their phase diagram.
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Figure 3.1: The generally accepted phase diagram of boron nitride is shown in the solid line (1)
and the dotted line (2) shows the Corrigan—Bundy phase diagram [31, 33]

The equilibrium line of thecBN and hBN phases was determined by free energy
calculations. The dierence between the two phases’ Gibbs free energies is zero where
the two phases coexist [31, 32].

The phase diagram of BN that is shown in fig 3.1, shows that the low temperature
region has a strikingly dierent form from that of carbon where diamond is metastable
under ambient thermobaric conditions. Instead cBN phase is thermodynamically sta-
ble at temperatures up to 1600K, because the equilibrium line intersects the temperature
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axis (and not the pressure axis slightly below 2GPa as previously conceived) at about
1570K [25, 33]. In addition to its thermostability at ambient conditions, as a result of
cBN'’s low molar volume, it is characterized by a wide region of thermodynamic stability
at high pressures, for this reason and its wide variety of superior properties it can be useful
under extremely tough applications in engineering and in industry [34].

3.3 Hexagonal Boron Nitride

In their 2001 paper [35], Solozhenko and co-workers desciiitigdd as: “The most
commonly used form of boron nitride ... a basis for many advanced technologies.”

3.3.1 The Structure ofhBN

The hBN crystal structure is shown in fig 3.2. TH@N crystal lattice comprises
flat or nearly flat basal planes formed by atoms arranged into a network of regilar B
hexagons or hexagonal rings. Each hexagonal ring has three boron atoms and three nitro-
gen atoms, with each boron atom bonded to three nitrogen atoms (nearest—neighbours) in
the same plane. The hexagonal rings of the same layer are bonded through loc&lized sp
hybridization while the adjacent layers are of relatively weaker bonding arising from the
delocalizedr orbitals [29].

Figure 3.2: The structure of hBN

The basal planes are stacked in théirection in such a way that each hexagon (or
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each boron atom) of layer A sits directly above the hexagon (or a nitrogen atom) of layer
A’ in that fashion, hence tH@8N is often denoted the AAA’ . .. stacking sequence (see
fig 3.2) [28, 36, 37]. The Alayer notation ilhBN means that there is a 18€btation
in the atomic arrangements of the layer with respect to layer A, while graphite exhibits
an ABAB. .. stacking sequence where only half the atoms in the basal layer A are sitting
directly above the atoms in layer B, alternating in that fashion [30].

ThehBN crystal structure has four atoms in its unit cell. X-raffidiction data shows
that there exist five possibleBN structures of dferent space groups. Among the five
possible structures, the P&mc structure is most commonly accepted one. It is possible
for these five structures to be transformed into each other, by translational shearing of one
BN basal layer relative to the other layer in the unit cell, or by rotating the BN basal layer
around thec-axis of the crystal [27, 38].

The in—plane B— N distance is 0.145nm and the interlayer distance is 0.333nm [36,
37]. Thea lattice parameter dfiBN is greater than that of graphite whilst tbgparame-
ter is smaller; this reflects on thefidirent bonding environments between the two com-
pounds; Since the C— C bond is pure covalent it is much stronger and therefore shorter
than the B— N bond; whilst the B— N bond is partially ionic and partially covalent, the
intralayer (covalent bonding) interaction is reduced and the electrostatic interlayer inter-
action (Van der Waals interaction) strengthens and hence the interlayer distzritN
is shorter than that of graphite [39].

As a direct consequence of the nature of bonding and the crystal strutBNed)as
been widely used in vacuum technology and in electronics because it is a good electrical
insulator that also has a good thermal conductivity and thermal stability. It has applica-
tions in the nuclear energy industry and in research as a refractory material. It is as soft
as graphite and hence has been used as a lubricant in many industries. It has been used in
almost all the cases aBN synthesis as a starting material or as a critical component of
the precursor material.

3.4 Cubic Boron Nitride

Also known as borazon, sphalerite —BN®BN; cBN crystallizes in the zincblende
lattice structure [24]. The structure, shown in fig 3.3, has a cubic unit cell, containing
four boron atoms and four nitrogen atoms. The position of the atoms within the unit cell
is identical to the diamond crystal structure; both structures consist of two fcc sublattices,
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offset by one quarter of the distance along a body diagonal (see also table 3.1). Each
atom in the structure may be viewed as positioned at the centre of a tetrahedron, with its
four nearest atomic neighbours defining the four corners of the tetrahedron; that is, the
atoms in the structure are basically arranged in &bspded 3-dimensional tetrahedral
network of fourfold coordinated atoms. Each boron atom is tetrahedrally surrounded by,
and covalently bonded to, four nitrogen atoms [40]. This structure has a lattice parameter
of a=3.62A [40] and a density of 3.49gm3 [28].

The lattice may also be envisioned as stacked layers of six-membered rings with each
ring in the chair conformation, as shown in fig 3.3. In the cubic form, the layers of chairs
are joined by staggered bonds and the six-membered rings between the chairs are also
chairs. In the direction&l00) the stacking sequence is ABC ABC ABC. [40].

Figure 3.3: The structure of cBN

cBN has been shown, and has now been accepted generally as being the most ther-
modynamically stable phase of BN under ambient conditions as opposed to the earlier
perception that the most stable phase Wahl [41, 42]. The general chemical trend is
that if a material is able to form strong covalent bonds, a low coordination is favoured
due to the Pauli exclusion and electrostatic repulsion between the bond charges. So since
C —C is neutral carbon it is expected to be stable in the layered graphite structure. The
bonding in BN is patrtially ionic and partially covalent so it turns out that the layered
structurehBN is polar (attributed to the higher ionicity of the B— N bond) as compared
to thecBN structure, thusBN is the electrostatically favoured structure [43].
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A summary of the general propertiesa®N is given in Table 3.2, where the properties
of cBN are compared to those of other superhard phases as well as GaAs a common group
[I1—V compound. As a direct result of the bonding natwBN has a variety of useful
properties that includes being the third hardest known material, a very high thermal and
chemical stability, high melting temperature, a wide indirect bandgap, the second highest
thermal conductivity and it is also the lightest known group Il -V compound.

These properties malaBN very useful and promising in a wide variety of industrial
applications. Its amazing combination of extraordinary mechanical, physical, chemical,
optical, electronic and thermal properties make it desirable for use in cutting saws, drill
tips, grinders, dies, and wear resistant coatings and a promising material in the semicon-
ductor industry in applications such as diodes, heat conductors and heat sinks. Its light
weight coupled with all the above mentioned properties makes it a possible candidate for
space applications [49]. This promise has driven researatBdhfor over the past 50
years, the major setback being tleBN does not occur naturally. Various methods have
to be adopted to synthesize it.

3.4.1 Synthesis otBN

There exist a variety of methods of synthesizeBN from a variety of low—density
modifications of BN. The low—density modification phases are normally derived from
hBN by mechanical means such as ball-milling. BN itself is synthesized via the re-
ductive nitridation of naturally occurring boron—based ores using urea—based compounds
such as ammonia. In principle, these synthesis methods can be divided into direct and
indirect synthesis methods [28]. Direct methods involve the use of single component
low-dimensionahBN-like modifications as the starting materials to be subjected to the
direct high pressure high temperature synthesis conditions. Most of the indirect methods
make use of suitable catalyst—solvent systems (multicomponent) in the synthesis process.
However, physical and chemical deposition methods are indirect but they do not make use
of a catalytic solvent. Essentially, most of these methods make use of high thermobaric
conditions.

Direct HPHT synthesis

This is the primary method afBN synthesis through the direct solid state transfor-
mation of low-dimensional BN phases likdd8N under HPHT conditions, the method
was first used in 1956. Typical thermobaric conditions to achieve the transformation are
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PropERTIES OF CBN VALUES REMARKS AND POSSIBLE APPLICATIONS REFERENCES
PrysicaL
- density gcm 3 3.49 diamond: 3.52, SiC: 3.21, GaAs: 5.32; [28, 44]
this make<BN the lightest Ill -V compound;
- lattice constant A 3.62 diamond: 3.57, SiC: 4.36; [24, 44, 45]
(for hBN; a: 2.50 andc: 6.66)
MECHANICAL
- Vicker’s hardness GPa 60-75 diamond: 115BC;N: 74, SiC: 39.8 [28, 44, 46]
finds numerous applications in abrasion
- Bulk modulus GPa 847 diamond: 1141, SiC: 130 [24, 44]
CHEMICAL
- reactivity low Oxidation resistant; Performs exceptionally [28]
well under very high temperatures; does not
react with ferrous materials; wear resistant;
a good machining media for hard materials;
resistive to corrosive attach; non-toxic;
ELECTRICAL
- resistivity x 10°Q cm 1-10 diamond: 14 GaAs:10° [44]
- dielectric constant 4.10 diamond: 5.50, SiC: 9.60-10.0, GaAs: 12.5; [44]
OrTiCcAL
- band-gap (eV) 6.1-6.4 diamond:5.45, SiC: 2.39-3.26, GaAs: 1.43 [44, 47]

indirect band-gap;

Possible blue light emission material for
manufacturing junction and diodes;

- Transparency Optically transparent over a wide range of
frequencies ; Ideal coating for optical sensors
in rugged environments;

THERMAL

- conductivity Wem K 13 diamond: 20, SiC: 5; [24, 28, 44]
cBN is a superb heat sink;

- stability high Stable in air at temp. up to 140G [28, 48]

- linear expansion cdicient | 1.15—-1.9 diamond: 0.81 [24, 44]

(x 10°K™) at 300K

- melting temperature 2967°C diamond: 3373K [28]

can sustain high temperature operations

Table 3.2: The general properties cBN in comparison to other superhard materials, after [28, 44]
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p=12GPa,T =2000K [28, 50, 51]. This is a region in the BN phase diagram where the
cBN is stable and the low dimensional BN phases are metastable. Even thowfgNhe
phase is the most stable form of BN, a direct and spontaneous phase transformation from
hBN to cBN is hindered by a very high activation energy barrier [28, 29]. For the same
reasons, the thermobaric conditions at which a transformation can be achieved far exceed
the phase diagram equilibrium conditions [34].

When a low dimensional BN modification (a thermodynamic system) is subjected to
HPHT conditions, it is conceivable that the minimization of the Gibbs free energy of the
system (equation 3.1) can easily be achieved by structural transformations that favour a
reduction in the molar volume, which is feasible sireBN has a lower molar volume
compared to low dimensional BN modifications; it therefore characterized by a wide
region of thermodynamic stability at high pressures [34, 43].

However, compression alone will not achieve the desired solid state phase transfor-
mation. In principle, the change in the B—N bond dimensional order (fronospp’)
proceeds by bond breaking and the subsequent bond reconstruction in order to change
the bonding nature [28]. So in direct HPHT transformations, the high temperatures over-
come the energy barrier of transformation whilst the pressure modifies the electronic and
structural bond arrangement of thBN material [52].

Indirect cBN Synthesis

The indirect synthesis method involves the use of multicomponent catalyst—solvent
precursor material; the catalytic method is presently the main method of obtaBikg
at industrial scale. There also exist other indirect synthesis methods in which the start-
ing material is not necessarily a multicomponent catalyst—solvent, for example ion beam
assisted deposition methods where boron thin films are the starting materials.

For the past few yeardterts have been made to synthesize this material at relatively
low pressures (relative to those used in the direct HPHT synthesis methods) in order to
make the process more commercially viable and therefore be of practical use to industry.

Catalytic Synthesis

It has been shown that the extreme thermobaric conditions used in direct synthesis
methods can be reduced considerably by the useffd@rdnt solvents or flux precursor
materials. These solvents have been showrttfecathe kinetics in catalytic ways. The
hBN is partially dissolved into the flux precursor material forming a eutectic melt mixture;
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when moderately high pressures and temperatures are applied to the eutectic composition,
the formation ofcBN crystallites proceeds as a precipitation from the supersaturated in-
termediate melt composition at slightly lower thermodynamic conditions (as shown on
the phase diagram, s&ection 2.2: The Phase Diagrdjras a result of the éerences

in the solubilities of the eutectic melt composition afelient pressures. The sizes of the
crystallites depend on the temperature [28, 34] and the reaction kinetics.

The flux precursors are normally alkali and alkaline earth metal nitrides of general for-
mula X3N,, the common ones being My, which forms an MgN,-BN eutectic system.
Some boron nitrides of alkali and alkaline earth metals have been shown to be great cata-
lysts as well, for example EBN,, MgzB,N4 and CaB,N,4 [28, 34, 53]. Some alloys such
as Fe—Al, Ni-Al, Mg—Al and Ag—Cd were also reported #getive catalyst-solvents for
the hBN to cBN phase transformation; the Mg—Al alloy was found to be mé&aotive
and has practical utility as it can be handled in air without the use of any glove box [53].

The use of low ordered turbostratic and amorphous boron nitride as the starting ma-
terials instead of well crystallized highly ordered hexagonal boron nitride has also been
extensively investigated, by JY Huang and co-workers [29, @B formation could be
observed at even lower, T values. Water molecules adsorbed at the surface of the start-
ing material have been observed to be having a catalffecten the transformation: the
transformation at the surface has been observed to occur at muchggweonditions
than the bulk of the material [28, 29, 49].

The use of some fluids in their supercritical state has been reported for the synthe-
sis of cBN at reduced pressures. Singh and co-workers have used a number of liquids
in supercritical state namely liquid ammonia, hydrazine and water, along with a num-
ber of conventional catalysts namely MgBVigsN,, LisN and AIN. They have observed
spontaneous crystallization oBN at pressures as low as 2GP&hBN-Li;N-NH3; and
hBN-MgB,—NH3; multicomponent systems [41, 53].

lon Beam Assisted Deposition Synthesis

lon beam assisted physical vapour deposition (PVD) and chemical vapour deposition
(CVD) methods have also been used to synthese thin films during film growthat
much lower pressure and temperature conditions. Generally, the ion assisted PVD meth-
ods used involve the surface bombardment of a supported boron thin film by energetic
nitrogen or argon ions under evacuated conditions at room temperature. The films de-
posited in this way dfier poor adhesion to the substrate as well as cracking as a result
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of the high compressive stresses induced by the energetic ions. The CVD methods in-
volve chemical reactions of gaseous reactants on or near the vicinity of a heated substrate
surface at atomic levels, making it possible to deposit single monolayers.

3.4.2 ThehBN-to—cBN Phase Transformation

There are two possible mechanisms of direct transformation from low—density phases
to thecBN phase, the dliusionless martensitic—type transformations involving well crys-
tallized starting materials likeBN or rBN and the difusional transformations involving
amorphized or poorly crystallized starting materials, for example ball ntilBd or aBN
[29, 49, 51].
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Figure 3.4: A schematic diagram of the progression of an ion implantation-induced hBN-to-cBN

phase transition.

Generally, the respective characteristics and manner in which the transformation pro-
gresses for each mechanism distinguish the two mechanisms. In nucleation mechanisms,
changes take place presumably atom—by—atom in such a way that neighbours before the
transformation are not necessarily neighbours after the transformation. Hence this mech-
anism is dubbed: d¢iusional, the position of each individual atom is governed by the



3.4. Cubic Boron Nitride 23

Fickian difusion laws. Whilst in the martensitic mechanism the whole group of atoms
rearrange simultaneously while retaining their neighbours, only at a somewhat altered
separation, it is thus known as dtdisionless mechanism [54], a shear-like transforma-
tion is a good example of this transformation mechanism.

Given a comparison of the steric arrangementiBIN andcBN, it is apparent that
the phase transformation ididisionless. The martensitic—type phase transformation pro-
gresses through what has come to be known as the ‘progressive buckling and stretching of
the basal hexagon’ (see fig 3.4). Under high pressure, the flat (0@R})®neycombs in
the basal layers lose their flatness as a result of the changes in the electron density in the
interatomic and interlayer spaces. The electron density in the space between the B—N
bonds of the same layer decreases; this weakens the bond, thereby an increase in the bond
length so the BN; honeycomb becomes stretched. At the same time, the electron density
between the boron atom and the nitrogen atom in adjacent layers increases, thus decreas-
ing local interlayer spacing and as a result forms a bond — so the bonding network is now
tetrahedral and 3-dimensional. TheNB honeycomb is buckled into a cubic chair config-
uration resembling the diamond-like structure [55]. In other words, the HPHT conditions
have transfigured a low —density’dgpnded network into an $fponded network of lower
specific volume. The pressuréect in this process can also be viewed as inducing bond
rotations and inducing a (0001) layer to split into two planes one containing only boron
atoms and the other only containing nitrogen atoms — this is easily conceivable if one
looks at the initial and final structures [50]. In this case, an atom maintains its neighbour
before and after the transformation.

The extreme conditions of phase transformation have been observed to be greatly
influenced by the nature of the starting material, altering the grain siz¢srahd crys-
tallinity has been used to reduce the transformation conditions greatly. Theidnal
transformation is prevalent in cases were the starting material is not well crystallized.
Unlike in the previous case, neighbours before the transformation are not necessarily
neighbours after the transformation [28]. Hence transformations of the ball il
aBN andtBN phases under HPHT are shown to occur at somewhat lower thermobaric
conditions.



Chapter 4

Experimental Detalils

4.1 Introduction

In this work, we investigate the structural modificationsh&N by ion implanta-
tion and the possibility of using ion implantation as a technique of influencingBhe-
to—cBN phase transformation under less extreme conditions. This chapter describes the
samples and their preparation. The basic principles of the experimental techniques, the
specific details and features of the experimental systems that were employed to perform
experiments for this thesis are also discussed.

lon implantation is used in this work as a technique to introduce considerable struc-
tural modification to thenBN phase. The samples were characterized by Raman spec-
troscopy and x-ray diraction (XRD). With these methods one can obtain important in-
formation about the nature of a material’s structure on a scale of the order of a few lattice
constants. The characterization was done before and after ion implantation. Surface
Brillouin Scattering (SBS) and Scanning Electron Microscopy (SEM) were also used to
obtain more information on the nature of the surface of the initial material.

4.2 Samples and Sample Preparation

Hot—pressed polycrystallineBN powder samples were used throughout this work.
The samples used in the preliminary studies were supplied and prepared by Mr M Rebak
of the Sample Preparation Lab at iThemba LABS (Gauteng). The samples that were
used for the greater part of this study were supplied by Goodf@lidambridge Limited
(England) in the form of a 15mm diameter rod. TH&N powder is generally synthesized

24
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via theAmide methodThis method is generally the reductive nitridation of boron oxide

or other naturally found boron—based ores using urea compounds or ammonia. After the
synthesis, the powder is moulded into its final forms vigedent processes, in this case by

the hot—pressing process. A detailed description of the synthesis (including information
on the nature and amounts of binders and other additives) could not be provided by the
manufacturers as the information is considered classified and a trade secret.

The rod was machined into small circular discs of 0.5mm—2.0mm thicknesses and
diameters ranging from 3.0mm-8.0mm. Given the polycrystalline and hot—pressed na-
ture of the samples and the fine diamond grit sintered cutting disk used in the sample
preparation, little sample polishing was done.

The sample preparation for SEM is relatively easy, the microscope only requires the
sample to be electrically conductive; sinkBN is not, some fine graphite powder is
‘sprinkled’ evenly on the sample surface (outside the area that is to be investigated) then
the sample is mounted on an aluminium sample holder and loaded into the Ultra High
Vacuum (UHV) via a sample introduction system. There was no special sample prepara-
tion requirement for the ion implantation, Raman spectroscopy, normal XRD and GIXRD
(see discussion on Section 4.4.3). However, in the case of SEM, the technique probes the
surface topography and the surface composition, among other things, so the sample sur-
face has to be dust and contaminant free. In addition to this, since SEM is done under
UHV conditions the samples have to be free of moisture or other solvents (which might
vaporize or out—gas while in the vacuum) the samples may be baked at slightly o“€r 100
for a while to dry completely. Degradation of the samples has been shown to be very sen-
sitive to moisture and several deterggsdvents, for this reason care was taken to ensure
the samples were kept in a dry atmosphere, when possible.

4.3 lon Implantation

4.3.1 Introduction

The ion implantation experiments described in this work were performed at iThemba
LABS (Gauteng) formerly the Schonland Research Institute for Nuclear Sciences of the
University of the Witwatersrand.

He* implantations intchBN were performed using the pressurized 1.4 MeV Cock-
croft—Walton particle accelerator, “Christine”. The samples were implanted at energies
between 200 keV and 1.2 MeV to fluences ranging up toxL1D' iongcm? at room
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temperature.

The damage profiles, the collision details, and the ranges of the implant species in
hBN, were predicted by the TRIM Monte Carlo simulations which were performed using
the SRIM® computer program versiop006.01[56]. Fig 4.1 shows typical simulation
outputs: [a] depicts the implant range distribution (QsRbelow the surface) whilst
[b] depicts replacement collision detail, the target vacancies, and the target replacement
profiles created by the alpha ions, realized for particles implanted into a viBdakolid
at 200keV. It is clear from this fig that the projected range of the implanis2&m, is
very much smaller than the thickness dimensions of the sample. It is thus very important
that only the characterization techniques that are sensitive to the surface layer region
must be employed to probe the resultant modifications introduced by the ion beams in

this region.
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Figure 4.1: Shows the outputs of a SRIM2006 Monte Carlo calculation, whetepladicles were
implanted into hBN at 500 keV. [a] depicts the range of the implants whilst [b] depicts
replacement collision detall, the target vacancies, and the target replacement profiles
created by the implants.

4.3.2 Instrumentation

The Cockcroft—-Walton particle accelerator was converted from a Philips PW5121
electron accelerator to generate positive ions. A schematic diagram is given in fig 4.2.
The description of the accelerator presented herein is based on the information given in
the following references [57, 58, 59].
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Figure 4.2: A schematic diagram of the Cockcroft—Walton particle accelerator. After [57-59]

The accelerator has a radio frequency ion source which ionizes the gas allowing posi-
tive charges to be accelerated to the target chamber via the evacuated beamline. Although
only “He* and sometime¥H* ion beams were used in this study;,@and*He" beams can
also be generated and accelerated by this machine. The acceleration voltage is generated
by means of a 14 stage voltage stack of doubling circuits — Cockcroft-Walton voltage
generator.

The ion source operates at high positive potential so the generated (positive) ions are
repelled and accelerated towards the target chamber which sits at ground potential.

Both the Cockcroft-Walton generator and the ion source are housed in a pressurized
tank'vessel with an insulating N- CO, gas mixture to prevent electrostatic discharges.

In the beamline during the beam transportation, the ion beam loses its shape mainly as
a result of rapid expansions due to the space — chaftpet. This dect is more dominant
at low ion propagation energies where the ions are exposed to one another for much longer

Talso known as the ‘blow —up'fiect
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resulting in significant mutual repulsion of the individual ions causing the beam to diverge
away from the main beam axis. The magnetic quadrupole lenses follow immediately after
the acceleration stage. The focusing is achieved by making use of magnetic lenses which
apply transverse forces to maintain a small beam radius about the main beam axis (other
implantergaccelerators also use electrostatic quadrupole lenses or both). The quadrupole
lenses operate in a way analogous to that in which the optical lens focuses light.

The accelerator tube is contaminated with small amounts of residual gases and the
ion beam itself with unwanted species — by bending the beam ovet aud@e of the
analysing magnet, only the desired ion species pass through the magnet’s resolution slits
and remain in the beamline axis.

The beamline, the analysing magnet and the target chamber are all maintained under
high vacuum maintained by theffiision and turbo-molecular pumps, this minimizes the
scattering of the ion beam by the residual gases and patrticles.

Before entering the target chamber, where the sample is mounted, the beam is col-
limated by means of two collimatgsdits 2.4m apart. We used a square upstream colli-
mator of adjustable dimensions and a 4mm diameter downstream collimator to limit the
divergence of the scanned ion beam.

The sample was mounted in the target chamber; where the actual implantation takes
place. The chamber is electrically isolated from the vacuum pumps and the rest of the
beamline. The dose delivered was measuiéthe chamber by integrating the current of
the ion beam.

4.4 Characterization Techniques

4.4.1 Raman Spectroscopy
Introduction

This section gives the description of the spectrometer, its attachments and how these
instruments can be adapted to achieve the various techniques of Raman microscopy. A
general discussion of the classical and quantum mechanical theories of Raman scattering
is deferred to Appendix A.
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Raman Instrumentation

The Raman scattering measurements done in this work were carried out using a
Jobin—Yvon T64000 spectrometer at the Raman and Luminescence Laboratory housed
in the School of Physics at the University of the Witwatersrand. The schematic diagram
of the spectrometer is shown in fig 4.3. It is appropriate that the resolution of the micro-
scope is of the same order as the implantatidlieeted surface thickness (abowi, see
also fig 4.1).

Inelastic scattering is a very weak process and the Raman scattered line is also close to
the Rayleigh scattered signal which is several orders of magnitude (typicé)lgtiénger.

A careful signal processing is therefore necessary if useful information is to be extracted
from the scattered signal components.

In the Jobin—Yvon T64000 spectrometer used, the Raman excitation is performed
with a coherent and intense argon—ion ‘(Alaser beam source. However, lasers are
not perfectly monochromatic light sources, as they have a finite linewidth and contain
a broadband component of spontaneous light radiation from the lasing material. A cus-
tom designed laser transmission filter is inserted into the incident beam path between the
source and the sample to further narrow the incident beam linewidth [60]. The filtered
beam is focused down to a small volume (to the orderofi®) on the sample through the
objective. The scattered light is collected by the same objective of a microscope. At this
stage the Raman signal is swamped by stray light signals (noise), the Rayleigh signal and
other fluorescent signals from the scattering materidioldgraphic notch filterbetween
the sample and the monochromators provides for the necessary rejection of the unwanted
light components swamping up the relatively weak Raman signal before it can be detected
and measured by the spectrometer. The holographic notch filter is also custom made to
operate at 514.5nm and have a narrow bandpass of dowhQ@cnT! [60, 61].

The filtered light is directed to the monochromators, the principal components of the
spectrometer; an apparatus designed to measure the distribution of a signal in a particular
wavelength region. The monochromator separates a broadband signal into single spectral
lines according to wavelengths. Monochromators are basedioadtiion grating disper-
sive systems [60], MONO X in fig 4.3 shows the unit monochromator. However, a single
monochromator does not discriminat@aently to separate the Raman broadband sig-
nal. The Jobin—Yvon T64000 spectrometer is a triple monochromator dispersive system
as shown in the schematic diagram of the instrument (fig 4.3). In the coupled configu-
ration, a monochromator has the capability for measuring a Raman signal of very low
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Figure 4.3: The schematic diagram of the Jobin—Yvon T64000 spectrometer used in this work
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intensity in a broadband vibratimotation band with high resolution [60]. However, the
Jobin—-Yvon T64000 spectrometer can be used in single spectrograph mode if the Raman
line is not so close~1000cnT?) to the Rayleigh line, without compromising the spectral
resolution greatly.

An array of CCD detectors is integrated onto the third monochromator exit slit. These
optoelectronic devices detect and convert output photons to a digital signal that can be
presented, manipulated and stored on to the interfaced computer.

Experimental Detail

The Raman experimental spectrometer system interfaced is to a PC and thus is soft-
ware controlled. The spectrometer can be operated either in a macro—-Raman mode, where
measurements are done in the macro—sample compartment, normally for a very large or
irregular sample specimen; or in the micro-Raman mode, where the measurements are
done on the microscope stage. The laser light can be focused dowmtorithe sample
surface and a spectrum recorded. The spectrometer can also be operated in the 2-D map-
ping mode, where the computer controlled measurements are carried out on a motorized
X-Y microscope stage. It is also possible to operate the spectrograph in a 3-D scanning
mode, also known as Confocal microscopy, with the aid of a piezo Z- stage scanner [62].
For the experimental work covered in this thesis, the Raman spectrometer was used in the
micro-Raman and 2-D mapping operation modes.

All the Raman experiments in this work were carried out under ambient conditions.

A 514.5nm line of an Ar ion laser was used as excitation source, at a beam power of
200mW, using a 2R objective (spot size-1.5um), along with an 1800 groovgsm grat-

ing in the spectrometer and a nitrogen cooled CCD detector. In the first set of Raman mea-
surements, virgin and implantddBN samples were characterized using micro-Raman
operated in single spectrograph mode. In the second set of Raman experiments, the data
acquisition was modified by the introduction of the motorized X-Y stage for the 2-D map-
ping measurements under the objective microscope. The mapping is done by sequential
translation of the X-Y microscope stage which is software controlled. The sample was
firmly held on to the X-Y stage by a self—adhesive tape to prevent (sample) motion out
of the beam focus during the ‘jacking’ stage movements. 2-D mapping experiments were
carried out over a 30Q0n x 300Qum square matriarea, of 20« 20 points, covering the

entire implanted region for each sample. Measurements of the amplitude, position and
broadening of the primargBN peak over the mapped area were carried out and the Ra-
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man maps were automatically obtained. The output spectra were measured by a nitrogen
cooled CCD detector linked to a computer that displays, analyses and stores the data.

4.4.2 X-ray Diffraction
Introduction

In this study, XRD was used to investigate and identify the BN phases present in the
samples — which are hot—pressed powder and polycrystalline in nature and to determine
the extent to which ion implantation induces solid—solid phase transformatitNn

In x-ray powder difractometry, x-rays are generated within a sealed x-ray tube that is
under vacuum. The wavelengths of the x-rays are characteristic of the metal target of the
source. Common target metals used in x-ray tubes include Cu, Mo, Fe and Co. In this
work we used a Cu (£ 29) metal target corresponding to a wavelength of 0.154nm for
Cu(Ka,) characteristic radiation [63]. These x-rays are collimated by a set of slits and
directed onto the sample at an anglé he resultant x-ray diraction peaks are produced
by constructive interference of the monochromatic x-ray beam elastically scattered from
each set of lattice planes at specific angles [64]. A typical XRD spectrum consists of a
plot of reflected intensities versus the detector angular ramge, 2

Each difraction peak is unique, it measures tiespacing of the scattering set of
planes [63]. The peak position, intensity and width give information on the material’'s
atomic or molecular composition and arrangement, crystallite distribution and orientation
(or planar orientation in single crystals). The intensity of each pe@grdifrom the other
peaks in the pattern and reflects the relative strength of tfi@ction from the related
plane. Thepeak intensityor the area under afiliaction peak (minus the background
signal) is used as a quantitative measure of the phase abundance [63].

Following Bragg'’s law, the position of firaction peaks and the-spacings that they
represent provide information about the location of lattice planes in the crystal struc-
ture [64]. It therefore follows that the characteristic setdeSpacings generated in a
typical x-ray scan profile provides a unique “fingerprint” of the major, minor and trace
phaseg£ompounds present in a sample.

A graphical software package for data acquisition and analysis — DIFPRAVA,
in combination with ICDD Powder Oiiraction File databases (PDFs), was used in this
work for data evaluation and phase identification. This was made possible by the soft-
ware’s searcimatch option, a capability to do background subtraction and a calculation
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of parameters such as lattice parameters from the line profile position [63, 65].

Some parameters of the powdeffdiction patterns such as the peak positiof),(2
the peak intensity (as a percentage), and the lattice spatijngaf the scattering planes
were recorded, after which a comparison was made with the parameters available in the
databases. The scattering planes of separdtigratisfy the Bragg diraction condition:
A = 2dn sin 29, wherehkl are the Miller indices which are proportional to the directional
cosines of the scatteriygjffracting planes whilst is the wavelength of the radiation used
[63].

To meet the objectives of this study, two complementary x-rdyadition methods
were employed: the normal XRD scattering technique and the grazing incidence angle
x-ray diffraction, GIXRD.

X-ray Scattering Techniques

The normal XRD measurement technique is based of-## Bragg—Brentano scat-
tering geometry, which probes both the surface and bulk of the sample material. The
GIXRD scattering technique is a highly surface sensitive method that is based on a low
incidence angle.

Figure 4.4: A schematic diagram of a typical powdeyftictometer used in thé—26 Bragg—
Brentano geometry.

Most of the XRD scan measurements described in this thesis was done using the
BRUKER AXS D8 Advance diractometer in the Jan Boeyens Structural Chemistry Lab-
oratory at the University of the Witwatersrand. Thé&mictometer was used in tide- 20
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Bragg—Brentano dliraction geometry. A PW1710 Philips powdeiffdactometer from

the School of Processing and Material Engineering was also used in the same geometry
of operation. A schematic diagram of dfdactometer operating in the Bragg—Brentano
diffraction geometry is shown in fig 4.4. In this geometry, the source is stationary whilst
the sample and the detector (D) are in constant motion. It is also essential to note that the
source, the sample (at O), and the detector remain on the tangent of the focus circle. In
order to maintain these conditions, the detector and the sample are moved in such a way
that at any given time the sample surface is at an ahgleilst the detector maintains & 2

angle with the incident x-ray beam. In practice, the sample rotates (in a rocking manner
about O) at half the angular velocity of the detector [64, 63]. The slit systepan(ES)

as well as the monochromatanirror (M) help collimate the x-ray beam before and after
scattering of the beam on the sample surface.

4.4.3 Grazing Incidence Angle X-ray Dffraction

The conventionad — 29 Bragg—Brentano scanftliaction geometry is a bulk material
characterization method, it is not useful for the study of ultra thin, graded composition
and multi-layered thin films, partly because of poor sensitivity and partly because of the
presence of the interferingtfect of the substrate. On the other hand, GIXRD enables
one to probe the near—surface region [66], by improving surface sensitivity, via a strong
interaction, total external reflection and thus limiting penetration.

The GIXRD scan geometry is a slight modification of conventighald geometry.
Incident pencil-narrow, near parallel, and monochromatic x-ray beams strike the sample
surface at a fixed grazing angle that is close to the critical angle for total external reflection
(typically less than 9, depending on the solid material). These conditions are necessitated
by the need to prevent the possibilities of interferen®eots from the sample subsurface
and the need to enhance the sensitivity of thi&ralition experiment to the surface atoms
[65].

Narrow aperture slits are used to collimate the incident radiation whilst the combina-
tion of mirrors and filters are used as monochromators.

High energy x-rays have a refractive index of less than unity in most materials. In
other words, the material is, for x-rays, less refractive than vacuum. fAtisutly small
incidence angles (typically1°) x-rays undergo total external reflection from the sample
surface [67].

During the measurement of the GIXRDfldacted profile, unlike in th&—29 scan
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arrangement, where both the sample and the detector are in synchronized rotational mo-
tion, the sample remains fixed whilst the detector rotated throughélam@ular range.
Throughout the measurement, the incident angle and the area under irradiation remains
constant.

The diffracted beam optics is also modified to a parallel beam optics; a long Soller slit
and a flat plate monochromator (graphite) is incorporated on thacted beam side to
allow only those beams that are nearly parallel to arrive at the detector. The Soller slit is
also instrumental in the rejection offflise scattered and background x-rays [67].

For the purposes of this work, wide angle x-raffidiction profiles were recorded on
a Philips PW1710 diractometer with Cu(K) radiation. A glancing angle setup was used
for all the measurements with an incidence angle°adrid exposure times of the order of
20 hours.

4.4.4 Surface Brillouin Scattering
Introduction

Brillouin scattering is the inelastic scattering of an incident optical wave by thermally
excited acoustic phonons generated and propagating in matter. It is contact—free and non-
destructive. The mechanisms of optical light scattering in opaque and transparent media
are diferent. Transparent media exhibit thkasto—optical scattering mechanismiilst
Brillouin scattering in an opaque medium is attributed to the small amplitude surface
ripples, hencaurface ripple scattering mechanig68].

lon bombardment modifies the surface and near—surface region bBtlesample
material. The elasto—optical scattering mechanism is a bulk material phenomenon and
is therefore not applicable to this work. In the surface ripple mechanism, the phonons
present at the sample surface move in thermal equilibrium with very small amplitudes;
that is, ripples. As a result of these ripples that appear to the incoming optical radiation
as ‘gratings’ on the surface propagating at the speed of sound, the incoming radiation
is Doppler shifted and gives rise to a change in the light frequency. This allows for
two scattering possibilities involving the creation or annihilation of a phonon; that is, the
Stokes and anti—Stokes scattering processes respectively. The scattering process is largely
dependent on the dielectric constant of the material.

The velocity of sound is determined directly from the Brillouin shift, from this veloc-
ity shift, the elastic constants and velocity anisotropy, phase transitions as well as other
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acoustic interactions with low frequency interactions can be determined.

The spectral width of the scattered light, examined with high spectral resolution,
yields information about attenuation arising from the structural relaxations, anharmonic-
ity among other possible mechanisms [69].

Apparatus

For all the SBS measurements carried our for the purpose of this thesis, a Sander-
cock (3+3) multipass tandem Fabry—Perot Interferometer (FPI) was used. Fig 4.5 shows
a complete set—up schematic diagram of the apparatus. All measurements were carried
out at room temperature in the backscattering and also in thec@(tering geometries.

A concise description of the instrument construction and mathematical treatment of SBS
is given in references [68, 70]. The instrument is housed in the Laser Spectroscopy Lab-
oratory in the School of Physics at the University of the Witwatersrand.

A schematic diagram of the SBS apparatus in a backscattering geometry is shown in
fig 4.5. An intense Argon—ion laser source< 514.5nm) was used throughout this work
together with interferometric spectral analysis because the cross section of Brillouin scat-
tering is very small therefore the intensity of the acoustically inelastic scattered optical
signal is very weak. The figure shows how the exciting and scattered light are manip-
ulated with the aid of mirrors and other components to direct the scattered light to the
detector. The scattered light from the sample is frequency analyzed by the Fabry—Perot
Interferometer (FPI). The FPI is an optical instrument commonly used for high resolution
optical studies; it basically consists of two partially reflecting accurately parallel mirrors.

It is used in the tandem and multipass mode to improve on the spectral resolution, con-
trast of spectral linewidths as well as reducing the signal-to-noise ratio. Using an FPI in
this mode, weak Brillouin scattered light components can be separated from the intense
Rayleigh scattered componerttieiently. A silicon avalanche diode detector, attached

to the FPI, was used to collect the data, which was recorded on a multichannel analyzer
before being converted to a digital signal. The detector and multichannel analyzer are
attached to a dedicated P@earing data display, manipulation and storage.
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Figure 4.5: A schematic diagram of the SBS instrument used in a backscattering geometry. The
beam splitter (BS) extracts a small portion of the incident laser light (Reference light)
that is fed to the detector by means of an optical fibre cable. The mirrors (M) ma-
nipulate the light from one point to another, altering their configuration changes the
scattering geometry. The Acoustic-Optic Modulator (AOM) is used to to adjust the
power of the laser light. The lenses&"B) are used for scattered light collection and
focusing. The shutter and pin-hole (PH) protect the detector. After [68,70].

4.4.5 Scanning Electron Microscopy
Introduction

In a scanning electron microscope (SEM), a beam of electrons with energies up to
40 keV is finely focused at the surface of the specimen and scanned across it. On elec-
tron impact, some secondary electrons with energies of a few tens of electron volts are
emitted and some of the high—energy incident electrons are backscattered. The intensity
of both the secondary and backscattered electrons is very sensitive to the angle at which
the electron beam strikes the surface; that is, to topographical features on the specimen.
In this way, SEM can reveal the sample composition, crystallography and 3-D surface
topographical images of high resolution which means that closely spaced features can be
examined at a high magnification [71]. The information (on the surface properties of the
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specimen) that can be obtained from the SEM experiments, includes the chemical ele-
ments, magnetic and electrical fields, voltage distribution, resistivity variation, electrical
recombination fields, defect structures and light emitting properties [72, 73].

Apparatus

The SEM experiments in this work were done at the Electron Microscopy Unit at
the University of the Witwatersrand. A schematic diagram showing how the electron
microscope is constructed is illustrated in fig 4.6. The electrons are generated from a
tungsten filament. They are accelerated to about 20 keV down the optical column through
condenser and objective lenses. These lenses confine the electron beam to form into a
fine beam spot as well as to focus the beam onto the sample surface. A scanning coil
mechanism between the lenses raster scans the beanxietigy-directions to obtain a
uniform illumination of the surface [71, 72].

electron
gun

| condenser
lens

objective
lens

electrons from
specimen

detector

specimen

Figure 4.6: The schematic diagram of the scanning electron microscope instrument
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Upon impact with the sample, several particles can be emitted (depending on the elec-
tron beam incident energy). In SEM experiments the secondary electrons of interest are
backscattered electrons and secondary emitted electrons. In this case we were interested
in the backscattered electrons, the intensity of which depends on the angle of incidence
and on topography, surface conductivity, surface potential and magnetic fields. These are
the properties we can therefore investigate using SEM [71].

When collected, the backscattered electrons induce a current in the collector, which is
amplified and used to build up an image of the surface whose contrast relates to the topog-
raphy and surface properties. The SEM equipment allows for the real-time monitoring of
the image that is built up, it also has an inbuilt camera to capture the images.



Chapter 5

Results and Discussions

5.1 Introduction

Experimental results, characterization results as well as the simulation results are re-
ported in this chapter. A complete analysis and discussion of the results is also presented
herein, whilst the summary and conclusions derived from these results as well as sugges-
tion for further studies are deferred to the next chapters. Most of the work described was
carried out using alpha ion beams, however, proton beams were also used to investigate
the probabilities of using smaller ions that caused the least lattice damageIM2006
simulation program was used to help choose implant energies and assist in interpreting
the results. Unless otherwise stated, 99.9% ‘research grade’ hot—pressed polycrystalline
hBN powder samples supplied by Goodfellow (UK) were used throughout this study.

5.2 Preliminary Results

5.2.1 SRIM2006 Simulation

SRIM2006was used to perform TRIM Monte Carlo calculations in order to predict
the final implant depth distribution and the collision details of both the projectile ion and
the recoil atoms. This information was used in selecting the implant energies as well as
to help explain the results obtained.

Fig.s 5.1a and 5.1b show the range distribution of the ifplants inhBN for TRIM
calculations performed at 200 keV and 1.2 MeV, respectively. The calculated projected
range distributions of the implants are 0.g82(fig 5.1a) and 2.68n (fig 5.1b).

40
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Figure 5.2: Collision detailgddamage profiles predicted for Hémplanted into hBN at: [a] 200

keV, and [b] 1.2 MeV.

Fig.s 5.2a and 5.2b show the profiles of the target displacements, target vacancies, and
the replacement collisions as predicted by TRIM calculations performed at 200 keV and
1.2 MeV, respectively. The damage profiles also show the energy lost by ‘aioi&e
nuclear collisions as it comes to resthBN. Whilst the damage profile created by the
recoil atoms shows the density of vacancies created and the total energy lost to recoil

atoms. TRIM calculations performed at 500 keV are shown in fig 4.1.
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5.2.2 0-26 XRD measurements

Preliminary powder dfraction measurements were carried out on virgin samples and
on samples implanted with 1.2 MeV Hearticles to fluences of 1010 iongcn? and
1.0x 10'® iongcm?. ‘Commercial gradehBN samples were used. The measurements
were carried out using the Bruker AXS Advanced D8rdictometer. The detector was
set to scan betweeri &nd 69.99.

Fig 5.3 shows the XRD line profile obtained from the measurements. In addition to
the broad feature appearing arourigd mfumerous peaks (of high and low intensities) are
observed.
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Figure 5.3: The XRD line profiles measured for virgin and implanted ‘commercial grade’ hBN
samples in the preliminary studies were observed to be similar. The implanted samples
were implanted with 1.2 MeV Heparticles to fluences of 110" ionscn? and
1.0x 10'% jongcn?. Please note that the legend may not be legible on printed copies.

5.2.3 SBS and SEM Results

SEM was used in this work mainly to investigate the surface topography. It became
apparent to investigate the nature of the surface after the SBS experiments had failed to
produce any results, it was observed that the samples are transparent to the incoming laser
light due to the porosity of the samples. It was also observed that due to the high degree
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Figure 5.4: SEM micrographs showing the surface topography of the unimplanted samples used.

of surface roughness, the light scattered was in all directions and hence the collected light
was of the same magnitude as the background light, a meaningful spectrum could not
be produced. In addition to that, we also wanted to detect any boric oxides, any other
opportunistic compounds on the surface, and other binders that might have been included
during thehBN synthesis process. Foreign compounds on the sample surface would
have diferent conductivities as compared to the rest of the surface and heferermt
contrasts on the SEM micrographs. Fig 5.4 shows the SEM micrographs obtained from
the measurements.

5.2.4 Discussion

The dffraction patterns observed for both the virgin and the 1.2 MeV ikgplanted
samples are similar. Thus, structural changes introduced by the ion implantation, if any,
are below the detection limit of the technique or are being masked by the evidently high
signal-to—noise ratio.

The difraction pattern fig 5.3 is observed for both samples, and shows dominant peaks
around 14.6 28.8, 41.7, 43.8, 55.0', and 59.5. These peaks are characteristic of the
hBN phase and are well documented in the reference pattern given in [74]. In addition to
these, peaks appearing around, 28, 42°, 51°, and the broad escape peak centred®on 7
may be due to silicon — possibly, from the sample holders used. There is also a possibility
that the additional peaks appearing around 48rtel 50.0 may be due to small amounts
of cBN originally present in the samples. It was further noted that the samples used
were hot—pressedBN powder (conditions: 200C, 14MPa and binders to help form a
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dense, strong engineering material [48]); under conditions these conditions, it is feasible
that somecBN crystallites can precipitate and grow. The origins of the other numerous
small peaks scattered across the profile could not be established, it is however suspected
that they are due to binders, catalystgaod other materials used in the manufacturing
process.

Due to the sample’s high degree of surface roughness and the material’s transparency
to laser, SBS measurement results on research grade samples could not be obtained. We
further investigated the nature of the surfaces using SEM. The micrographs (fig 5.4) re-
vealed that the surfaces exhibited a high degree of roughness and porosity as a result of
the polycrystalline nature of the material as well as the hot—pressing process.

5.3 Raman Spectroscopy

We report and discuss the results obtained from the micro-Ram&arhan) and
two-dimensional, point—to—point Raman mapping (2D-Raman) measurements of virgin
and implanted ‘research gradeaBN samples.

5.3.1 UnimplantedhBN
u—Raman

Fig 5.5 show the Raman spectra of unimplarttBtl measured at threeféerent and
arbitrary points on the sample surface. The spectra shows dominant Lorentzian—shaped
peaks of high Raman intensity which are observed at 1365cm

Discussion

The observed peaks are consistent with the documeniRa@man spectrum which is
characteristic of a nominally—pufgBN with minimum internal stresses [75]. The base-
line of spectrum A is lower than for spectra B and C. This is possibly due to the natural
fluctuations of the Raman signal as a result of the randomly oriented interacting crystal-
lites with a distribution of shapes and sizes. HBN phase exhibits two phonon modes
that are attributed to the,Esymmetry vibration. Both modes are due to in—plane atomic
displacements: the low-frequency mode (not measured in fig 5.5) which is characteris-
tic of the ‘rigid—layer shear’ vibratioetweenthe basal plane appears around 52¢m



5.3. Raman Spectroscopy 45

50000 —

] 1365.0cm A
45000 — B

40000 ] ﬁ
35000 ]
30000 i |
25000 i

20000 - 4 ||
923.1cm |

Raman Intensity / (Arbitrary Units)

R—

15000 —

,)
o
e
ooy A

10000 +—+—mb-+-——v—-+"-—"-"TFT""—"T—"""T—" """
800 900 1000 1100 1200 1300 1400 1500

-1
Wavenumber / cm

Figure 5.5: Theu-Raman spectra measured at thregatent and arbitrary points on the surface
of the unimplanted samples.

whilst the high-frequency mode which is characteristic of a B— N bond stretching vibra-
tion within the basal plane appears around 136646, 77, 78, 79].

2D-Raman

Fig.s 5.6 —5.8 show the 2D-Raman maps of unimplanted samples measured on the
surface. The 2D-Raman mapping measurements were performed using a software—controllec
motorized X-Y microscope stage and automated spectral analysis. Here both the intensity
map (fig 5.6), the position map (fig 5.7), and the width map (fig 5.8) are obtained from
point-to-point measurements of the princip®N pu-Raman peak at each of the 220
points on a 3000m x 300Q:m wide matrix on the sample surface.

The intensity map (fig 5.6) shows the relative intensities of the measured 136%.4cm
Raman peaks plotted against the dimensions of the scanned matrix. The brightest and
the darkest points on the 2D map correspond to the highest and lowest intensities of
the principalnBN Raman peak measured, respectively. The measured values of the two
extremes are given in table 5.1.
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DIAGRAM | BRIGHTEST SPOT  DARKEST SPOT
Fic 5.6 16,500 8,500
Fic 5.7 1365.4cm 1365.1cm?
Fic 5.8 9.0cn? 8.6¢n?

Table 5.1:Values corresponding to the measured brightest and darkest spots in fig.s 5.6 —5.8.
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Figure 5.6: The 2D-Raman intensity map of the 1365.4tiRaman peak measured across the
unimplanted sample surface.

The peak position of the exciting laser line is taken to be Gcrithe position map
(fig 5.7) shows the relative positions of the measured indivigeRaman peaks from the
zero position. The contrast gives information on the shifts in the Raman lines from one
another. The 2D-Raman maps are plotted against 3000 300Qum wide matrix of
the scanned sample surface. The brightest spot and the darkest spot on the map correspond
to the highest peak position and the lowest peak position of the prindgRaman line
measured, respectively. In table 5.1, the values of the measured two extremes are given.
2D-Raman width maps show the spatial variation of the broadening gi-B@man
lines across the scanned surface. Fig 5.8 shows th@Mfmeasured and plotted against
the scanned 30@Mn x 300Qum wide matrix of the sample surface. The colour contrast
shows the distribution of the peak width, this information is vital in the assessment of
how the crystallinity of the sample surface correlates with the radiation damage that the
material has been exposed to. The brightest spot on the map and the darkest spot (given in
table 5.1) on the map correspond to the highest and the least peak width values measured,
respectively.
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Figure 5.7: The 2D-Raman position map showing the relative positions of the Raman peaks mea-
sured across the unimplanted hBN sample surface.

Discussion

The 2D-Raman maps (fig.s 5.6 —5.8) complementuti®aman spectra observed in
the (fig 5.5). The small shifts in the positions, intensities and widths of the peaks that is
observed 2D maps can be attributed to the natural fluctuations of the Raman signal as a
result of the randomly oriented interacting crystallites with a distribution of shapes and
sizes. It is thus perceived that the samples being characterized are nominally pure and
that the sample’s internal stresses are at a minimum [75].

5.3.2 1.2 MeV H¢ implanted hBN

Theu—Raman and 2D-Raman measurement results fréfardnthBN samples im-
planted with 1.2 MeV Heions to fluences of 1.8 10'° iongcm? and 1.0x 10'® iong'cn?
using a 1.4 MeV Cockcroft—-Walton accelerator are reported in this section.

u—Raman

The yu-Raman spectra shown in fig 5.9 are for samples implanted to a fluence of
1.0x 10" iongcm?. The spectrad, B and C were measured from fierent spots in the
centre of the implanted area of the sample whilst the spégtéaandF were measured
from different arbitrary spots outside the implanted area of the sample.

The y-Raman spectra shown in fig 5.10 are for samples implanted to a fluence of
1.0x 10*® iongcn?. The spectraa, b, cand d were measured from fierent arbitrary
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Figure 5.8: The 2D-Raman width map showing the broadening of the 1365X4BRaman peak
measured across the unimplanted hBN sample surface.

spots on the sample surface in the region outside the implanted area, aylfjigt, h, i,

j and k were measured from fierent arbitrary spots on the sample surface in the im-
planted region. Of particular interest is the broad feature observed fomihegk around
1296.6¢cm?, shown in fig 5.10 as an insert.

Discussion

Threeu-Raman features, two Lorentzian-shaped and one Gaussian-shaped, are ob-
served in fig 5.9 whilst in addition to these three, a weaker and smaller Gaussian peak is
observed in fig 5.10.

The narrow Lorentzian-shaped peaks appearing around 5$3amd 1367.3cmt are
characteristic of the low- and high-frequerfdgN phonon modes. These have been dis-
cussed already, see Sectibr8.1 The comparable intensities of the Lorentzian peaks
measured inside and outside the implanted region shows that, in both cases, the bom-
barded region is still predominanthBN.

The u-Raman spectraB (in fig 5.9), andf andj (in fig 5.10) are Gaussian-shaped
features, observed to be confined only to the implanted regions of the sample. They are
centred around 752.9cthand 760.2cmt, respectively. Notably, the intensity of this
feature is twice as weak (lower intensity) for implantation at fluences ok 1@° (fig
5.10) as compared to that observed for implantations at fluences =fl0# (fig 5.9).

This is possibly because the larger extent of radiation damage introduced by the heavier
bombardment at the surface greatly attenuates the scattered Raman signals. Though the
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Figure 5.9: Theu-Raman spectra taken atffiirent points on the hBN sample that was implanted
with 1.2 MeV Hé ions to a fluence of 1.0 10'° iongcn?

hexagonal phase retains its structure initially, heavier bombardment results in the distor-
tion of the pre-existing ordered lattice structure. The broad feature is definitely a result

of ion implantation as it is not evident in the Raman spectra of virgin samples, and its

peak parameters (intensity, position and width) dfected by the implantation fluences

as well as the macro- and micro-strains induced by ion bombardment.

The broad feature has been observed before by Sachdev and co—workers who at-
tributed it to either crystalline or amorphous boron. The boron clusters are extended
defects, appearing as the visible brown spot that forms on the sample surface during
implantation [77, 80]. On the other hand, Jun Liu and co—workers observedBNat
Raman spectrum can be identified N spectrunexceptfor the extra peak that appears
at 789cm? [81]. The later would suggest &iBN—to—+BN phase transformation to have
taken place because for both fluences, the 789@uak lies within the broad feature’s
‘width’.

The fourthu-Raman Gaussian feature observed only in fig 5.10 is much weaker,
skewed, and relatively noisier. The feature appears around 1296.6¢ftris also not
observed in virgin samples and is therefore its origins are attributed to ion implantation.
The room—-temperature Raman spectruroBil has been measured previously by several
investigators [76, 78, 82, 83]. The spectrum exhibits two strong Lorentzian-shaped peaks
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Figure 5.10: Theu-Raman spectra taken atffiitrent points on the sample that was implanted to a
fluence of 1. 106 iongcn?. The insert shows a weak 1296.6¢mpeak observed.

representing the transverse-optical phonon mode (TO) and longitudinal-optical phonon
mode (LO) at 1057cmt and 1306cmt, respectively. On the other hand it has also been
reported that for micro- and nano-crystal sizz#N, the TO and LO phonons degrade
into a single, broader and rather asymmetrical phonon band 128%¢8j.

2D-Raman

Fig.s 5.11—-5.13 show the 2D-Raman maps obtained from the X-Y mapping measure-
ments of the implantedBN samples.

Fig 5.11 shows the 2-D Raman intensity maps obtained for the samples implanted to
afluences of 1.8 10" iongcn? (fig 5.11a), and 1.8 10*® iongcn? (fig 5.11b); the maps
were measured around the principal 1367.3chBN Raman peak. The brightest and the
darkest points on the map correspond to the highest and the lowest intensities of the peaks
measured, respectively. The measured values of the two extremes are given in table 5.2.

Fig 5.12 shows the position maps obtained from 2-D Raman mapping measurements
of the samples implanted to fluences of £.00* iongcn? (fig 5.12a), and 1.6 10'°
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DIAGRAM FLUENCE BRIGHTEST SPOT DARKEST SPOT
(ionscm2)

Fic 5.11a 10 30,000 counts 10,700 counts
Fic 5.11b 10 18,000 counts 1,500 counts

Fic 5.12a 101 1365.4cm* 1365.3cm*
Fic 5.1% 106 1365.8cm* 1366¢nT?
Fic 5.13a 10% 8.9cnt? 8.6¢cnT?
Fic 5.1 106 * *

Table 5.2: The values corresponding to the measured brightest and the darkest spots in fig.s 5.11 —
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Figure 5.11: The 2D-Raman intensity maps of the sample implanted to fluences of: [@]LD!0
iongcn?, and [b] 1.0x 10'® iongcn?.

iongcn? (fig 5.12b). The brightest spot and the darkest spot on the map correspond to
the highest peak position and the lowest peak position of the princgd|IRaman line
measured, respectively. Table 5.2 gives the values of the measured two extremes.

Fig 5.13 shows the 2-D Raman width maps obtained for the samples implanted to flu-
ences of 1.6 10% iongcn? (fig 5.13a), and 1.6 10 iongcn? (fig 5.13b). The brightest
spot on the map and the darkest spot (given in table 5.2) on the map correspond to the
highest and the least peak width values measured, respectively. The Raman width mea-
surements for the 1010'® iongcn? fluence implanted samples (fig 5.13b) can not be
used as the bright spot appearing on the map masks out the contrast of the map that was;
the bright spot could possibly be detector saturation or something on the sample surface.
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Figure 5.12: The 2D-Raman maps showing the relative positions of the principal Raman peaks

measured on the sample implanted to fluences of: [ak1.0' ionscn?, and [b]
1.0x 106 ionscn?.
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Figure 5.13: The 2D-Raman width map showing the broadening of the principal Raman line
measured on the sample implanted to fluences of: [ak1.0 iongcn?, and [b],
1.0x 108 jonscn?.

Discussion

The 2D-Raman maps are not perfectly centred on the implanted spot, but the im-
planted spot is however visible. The measured values of the peak position, and peak
width shows that the material is still predominantigN — this result complements the
u—Raman spectra measured (see fig.s 5.9 and 5.10). The generally low Raman intensity,
greater width and the wider peak position distributions in the irradiated regions can be
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attributed to the implantation—induced residual stresses and the loss of crystallinity of
the surface in this region, whilst retaining the initial phase bond order. The extent of
this is more pronounced in the implanted region for the samples implanted to fluences
of 1.0x 10'® iongcm?, however, the peak position shifting and broadening of the Raman
lines for both cases is clearly insignificant [75]. The 2D-Raman maps were not measured
for the broad peak.

5.3.3 750 keV He implanted hBN

u—Raman Results and Discussion
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Figure 5.14: The u.—Raman spectrum measured inside the irradiated region of the hBN sample
that was implanted with 750 keV Héons to a fluence of 2010 ionscn?. The
red and green lines are the Lorentzian and Gaussian plot fits.

Someu—Raman measurements were carried out dnBdthsample that was implanted
with 750 keV He ions to a fluence of 2.2 10*® iongcn?. The measurements were made
at twenty diferent points in a single line across the implanted sample’s diametep—The
Raman spectra of all the twenty measured points is shown in fig B.1 in Appendix B. Fig
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5.14 shows theg—Raman spectrum measured inside the implanted region of the sample
(point L).

Despite the low signal-to-noise ration, two noticeable features dominate the spec-
trum; a Lorentzian-shaped peak appearing at 1365.75and a Gaussian-shaped peak
centred at 1295.92cth The Gaussian-shaped peak is observed to be confined only to
the implanted sections of the sample. The intensity of the Lorentzian-shaped peaks in the
implanted regions is also observed to be severely attenuated. In general, the Raman sig-
nal measured in the implanted regions is characterised by a low signal-to-noise ratio. As
discussed before (in Sectidn3.2), the two peaks can be attributed to the residizN
and to the nanocrystal sizeBN phases, respectively.

5.3.4 500 keV He implanted hBN

The u—Raman and 2D-Raman measurement results fréferdnthBN samples im-
planted with 500 keV Heions to fluences of 2.8 10*® iongcn? and 1.0x 107 iongcn?
using the 1.4 MeV Cockcroft—-Walton accelerator are reported in this section.

2D-Raman

Fig.s 5.15—-5.17 show 2D-Raman maps measured around the phBlrpeak ap-
pearing at 1366¢m. Fig.s 5.18—5.20 are 2D-Raman maps measured around the broader
and weaker Raman feature observed around 1290cithe broad feature is confined
to the implanted regions and is more pronounced for thex 2@° iongcn? fluence im-
planted sample. The feature is much weaker, much broader, and characterized with larger
measurement errors for the X0 iongcn? fluence implanted samples.

Fig 5.15 shows the intensity maps, of the primaBN Raman peak at 1366cH
for the samples implanted with 500 keV H®ns to fluences of 2.8 10'° iongcn? (fig
5.15a) and 1.6& 10* iongcn? (fig 5.15b). The brightest spot on the map corresponds to
the highest Raman peak intensity on the map; the darkest one, to the least Raman peak
intensity on the map. The measured highest and least Raman peak intensity values are
given in table 5.3.

Figure 5.16 shows peak position maps of the prinf#{ Raman line at 1366¢m
for samples implanted with Heions at 2.0< 10 iongcn? (fig 5.15a) and 1.6 10
iongcn? (fig 5.16b) fluences. The lightest spot and the darkest spot on the map corre-
spond to the highest peak position measured and the lowest peak position of the principal
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DIAGRAM FLUENCE BRIGHTEST SPOT DARKEST SPOT
(ionscm2)

Fic5.15a | 2x10% 43,000 counts 350 counts
Fic 5.1% 107 40,000 counts 100 counts
Fic5.16a| 2x10 1365.5cmt 1365cntt

Fic 5.1 10 1366.6¢cmt 1364.7cm?
Fic 5.17a| 2x10% 11.4cm?! 8.2cnt!
Fic 5.1 10t 14.2cm? 7.2cntt

Table 5.3: The values corresponding to the brightest and the darkest spots measured around the

principal 1366¢cm* Raman peak in fig.s 5.15-5.17.

hBN Raman line measured, respectively. The measured (highest and lowest) peak posi-

tion values are given in table 5.3.

Figure 5.17 shows the 2-D Raman width maps obtained for th& 20° iongcn?
fluences (fig 5.17a), and the A0 iongcn? fluences (fig 5.17b) implanted samples.
The darkest spot on the map corresponds to the least measured Raman peak width, and
the opposite is true. The measured peak width values are given in table 5.3.

DIAGRAM FLUENCE BRIGHTEST SPOT DARKEST SPOT
(ionscm2)

Fic5.18 | 2x10'% * 0 counts
Fic 5.1 10 60 counts 0 counts
Fic5.1% | 2x10° 1292cntt 1298cntt
Fic 5.1% 10 1290cnt?t 1300cn?
Fic5.208| 2x10' * *

Fic 5.2 10 65cnT?! *

Table 5.4:The values corresponding to the brightest and the darkest spots measured around the
1290cm! Raman peak in fig.s 5.18 —5.20.

There also appears an extra weak and much broader Raman feature evident only
within the irradiated region. Its intensity, position, and width were measured around
1290cm! and plotted against the 30@® x 300Qum wide matrix of the sample surface
for both fluences (2.8 10*® iongcn? and 1.0x 10! iongcn?). The feature was char-
acterized with larger measurement errors, especially for the 10 iongcn? fluence
implanted samples, hence some values in table 5.3 are missing.
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Figure 5.15: The 2D-Raman intensity maps measured for the samples implanted to fluences of:
[a] 2.0 x 10 iongcn?, and [b] 1.0x 10 ionscn?. The maps were measured
around the principal 1366cnt Raman peak.

Figure 5.18 shows the 2D-Raman measured intensity maps. The brightest spot on
the map corresponds to the highest Raman peak intensity on the map; the darkest one,
to the least Raman peak intensity on the map. The measured highest and least Raman
peak intensity values are given in table 5.4. The measured peak intensity values for the
green and red spots on the map are 100 counts and 290 counts for the samples implanted
to fluences of 2.& 10*® iongcn? (fig 5.18a). The yellow spots are erroneous; they are a
result of the detector saturation.

Figure 5.19 shows the 2D-Raman position maps measured around the 129eain
The brightest spot on the map corresponds to the highest Raman peak position on the
map; the darkest one, to the lowest Raman peak position on the map. The measured peak
position values (highest and lowest) are given in table 5.4. Again, the yellow spots are
erroneous; they are a result of the detector saturation.

Figure 5.20 shows the Raman width maps measured around 1290€he darkest
spot on the map corresponds to the least measured Raman peak width, and the opposite is
true. The measured peak width values are given in table 5.4. For the samples implanted
to a fluence of 2.& 10 iongcn? (fig 5.17a), the red spots on the map corresponds to
35cnT?, and the green spots to 22chwhilst for the samples implanted at x@0'
iongcn? (fig 5.19b), the red spots correspond 40énand the yellow spots correspond
to 65cnT?,
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Figure 5.16: The 2D-Raman position maps measured for the sample implanted to fluences of: [a]
2.0x 10 jongcn?, and [b] 1.0x 107 iongen?. The maps were measured around
the principal 1366cmt Raman peak.

Discussion

2D-Raman mapping measurements of the samples implanted to fluences 4020
iongcn? show two features. The principal LorentzihBN peak is observed around
1365cn! (fig 5.16a) with a maximum peak width of 11.4chin the implanted region
(fig 5.17a). In addition to this peak, a Gaussian peak centred around 129@ign.19a)
is observed. The broad feature is more pronounced for the samples implanted 46%.0
iongcn?, much broader and weaker for samples implanted ak 1@’ iongcn? and
is only confined to the implanted region. Generally, the Raman measurements of the
samples implanted to a fluence of ¥Q0' iongcn? show a significant decrease in the
intensity of the Raman scattered signals from the irradiated region, considerable shifting
and broadening in the primary LorentzibBN peaks as well as the broad feature being
relatively weak and broader, it appears between 1281amd 1300cm.

The map in fig 5.16b shows that the peak positidiedences are significant as com-
pared to fig 5.16a; this can be attributed to induced residual stresses in the implanted
sample surface. The maps 5.15 and 5.16 also show that the material is predominantly
hBN and indicate a higher degree of radiation induced damage [75]. However, a closer
analysis of the position maps 5.19 and 5.20 show thadiB4-to—nanocrystallineBN
(n-cBN) phase transformation resulted from the ion implantation.

The room—temperature Raman spectruntBN has been measured previously by
several investigators [76, 78, 82, 83]. The spectrum ahénite single crystabf black
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Figure 5.17: The 2D-Raman width maps of the sample implanted to fluences of: [a] 20t
iongcn?, and [b] 1.0x 1017 iongen?. The maps were measured around the principal
1366¢cmt Raman peak.
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Figure 5.18: The extra 2D-Raman intensity maps of the sample implanted to fluences of: [a]
2.0x 10% jongcn?, and [b] 1.0x 107 iongcn?.
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Figure 5.19: The extra 2D-Raman position maps of the sample implanted to fluences of: [a]
2.0x 10*® jongcn?, and [b] 1.0x 107 iongcn?.
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Figure 5.20: The extra 2D-Raman width maps of the sample implanted to fluences of: [a]
2.0x 108 jongcn?, and [b] 1.0x 10 iongcn?.
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cBN [76] exhibits two strong lines representing the Brillouin zone centre transverse-
optical phonon mode (TO) and a longitudinal-optical phonon mode (LO) at 105 Zomd
1306cnT?!, respectively. It has also been reported that the Raman spectrammoophous

BN shows an additional weaker and broader feature around 126@emd thananocrys-
talline cBN (n-cBN) also exhibits a weak and broad feature centred on 1285F#8].

In fact, for the neBN phase the TO and LO phonons degrade into a single, broader and
rather asymmetrical phonon band 1285émBesides the low Raman scattering cross-
section (due to the generally low light absorptiorcBN because of the wide bandgap),
the peak intensity is further lowered in the material due to phonon—confinerieatse
associated to small crystal size and high defect density [78, 82, 83]. The observed exper-
imental data is in agreement with the theory described above.
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Figure 5.21: The u.—Raman spectrum measured inside the irradiated region of the hBN sample
that was implanted with 350 keV Héons to a fluence of 1010 ionscn?. The
red line is a Lorentzian fit.
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5.3.5 350 keV He implanted hBN
u—Raman Results and Discussion

The y—Raman measurement results shown in this section were carried ti&Non
samples that were implanted with 350 keV*Hens to a fluence of 1.8 10'° iongcn?
and 2.0x 10'® iongcn?. In each case, the-Raman measurements were made at twenty
different points in a single line across the implanted sample’s diametery-IRa&man
spectra of all the twenty measured points, for each case, are shown in fig B.2 and fig B.3
in Appendix B. Fig 5.21 shows the-Raman spectrum measured for the sample implanted
to 1.0x 10'° Het iongcn?; fig 5.22, that was implanted to 2010 He* iongcn?.
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1400 Model: Gauss

Chi*2/DoF = 815.28978
1200 < RA2 = 0.72324

yo 13.76045 +0.91196

XC 1366.01332  £0.12422
w 9.1971 +0.25022
A 4516.60775  +£107.97858
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Figure 5.22: The u.—Raman spectrum measured inside the irradiated region of the hBN sample
that was implanted with 350 keV Héons to a fluence of 2010 ionscn?. The
red and green lines are the Lorentzian and Gaussian plot fits, respectively.

In both cases, the Lorentzian-shaped peak appearing at 13657catill domi-
nant, even in the implanted sections of the sample. Although the Raman signal is heavily
attenuated and slightly broadened, this shows that the implanted region remains predom-
inantly hBN. A significant Gaussian-shaped peak centred at 1280.03smbserved in
fig 5.22. As seen in the previous discussions, the Gaussian-shaped peak is observed to
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be confined only to the implanted sections of the sample. Unlike in the previous discus-
sions, a Gaussian-shaped peak centred around 92%wbserved in fig 5.21, however,
its origins could not be identified.
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Figure 5.23: The measured—Raman spectrum of the hBN sample that was implanted at 200 keV
with 1.0x 10'® He* iongcn?.

5.3.6 200 keV He implanted hBN
u—Raman

Two hBN samples were implanted with 200 keV H@ns to fluences of 1.2 10*°
iongcn? and 2.0x 10'% iongcn?. The u—Raman profiles measured at twentyfelient
points across the samples’ implanted region are presented in this sectiop—Raman
profiles measured are shown in fig B.4 and fig B.5 in Appendix B. Fig 5.23 (S in B.4)
and fig 5.24 (N in B.5) shows the typical magnified individual spectrum observed in the
implanted regions.
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Figure 5.24: One of the twenty—Raman profile measured affirent points along an hBN sample
surface that was implanted at 200 keV to fluences okA.0' iongcn?.

Discussion

The expected intense Raman peaks are observed on either extreme of the spectra, out-
side the implanted regions. The Raman spectra measured in the implanted section of the
samples, in both cases, are heavily attenuated. This is expected given the sample surface
degradation as a result of implantation. However, the absence of other dominant features
that were observed for Heémplantations at 1.2 MeV and 500 kev (around 760tand
1290cn?) clearly shows that despite the massive irradiation, the ifiB phase is re-
tained. The evident darkness gradient of the implanted spot on the sample surface, and
the observed unevenness of the individual, ngisRaman spectra (e.g. fig 5.23) was
attributed to the fact that the sample surfaces were not implanted uniformly as a con-
sequence of two possible phenomena whdbects are characteristic of low energy ion
implantations antr their combination; firstly, the space—chardieet (see Section.3.2
and secondly, the build-up of surface charge during implantation at low energies resulting
in the repulsion of incoming ions by the surface being implanted.
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Figure 5.25: Theu—Raman spectra measured at twengfadent points in a single line along the
irradiated sample’s diameter for the sample that was implanted with 200 KeV H
ions to fluences of 1:010 iongcn?.

5.3.7 200 keV H implanted hBN
u—Raman and Discussions

For purposes of comparison, somm®N sample were implanted with*Hoarticles at
200 keV to fluences of 2.0 10 and 2.0x 10'® iongcn?. As before, theu—Raman mea-
surements were taken at twentyfdrent points along a single line across the implanted re-
gion. Figs 5.25 and 5.26 show theRaman profiles measured from all the twenty points
from the samples that were implanted to dosesx1L0"™ and 2.0x 10'® H* iongcn?,
respectively. The peaks appearing on each extreme were measured on the unimplanted
region. Fig 5.27 shows the-Raman spectrum measured inside the implanted region of
the sample that was irradiated to fluences of210' H* iongcn?.

Unlike spectra measured for Hemplanted samples where the Raman scattered sig-
nal were heavily attenuated; the profiles observed for thankplanted samples show
that there was less radiation damage on the sample surface. The measRBedan
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Figure 5.26: Theu—Raman spectra measured at twengfedent points in a single line along the
irradiated sample’s diameter for the sample that was implanted with 200 KeV H
ions to fluences of 2:910'% ionscn?.
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Figure 5.27: Theu—Raman spectrum measured at an arbitrary point, inside the irradiated sam-
ple region for the sample that was implanted with 200 keVidhs to fluences of
1.0x 10 jongcn.

spectra are similar to those that have been observed before. From the spectra, its evident
the implanted region remains predominartyN. A significant Gaussian-shaped peak
centred at 1290.13crhis observed in fig 5.27. As seen in the previous discussions, the
Gaussian-shaped peak is observed to be confined only to the implanted sections of the
sample.

5.4 XRD Measurements

5.4.1 UnimplantedhBN
6—26—-XRD and GIXRD

Powder difraction6/20 measurements were carried on virgin samples using the Bruker
AXS Advanced D8 diractometer. The instrument was run with the following settings
and measurement conditions: Start Positi@Th.]: 5,0100, End Positiori2Th.]: 89.997,
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Figure 5.28: The XRD line profile of unimplanted hBN samples (the black line) the red lines show
the software matched peaks showing the positions where the documented hBN peaks
should appear. Please note that the legend may not be legible on printed copies.

The observed XRD line profile is shown in fig 5.28. The black line shows the XRD
spectrum as obtained from the experiments whilst the red ‘markers’ show peak positions
that the Bruker DIFFRAEYS EVA software matched with the documented peak positions
of hBN whose lattice parameters ame= 2.5A andc = 6.66A [74]. The matched peaks
appear at the following peak positions: 26.81.6, 43.9, 50.0, 59.5, 71.3, 75.9,
81.7°, 85.3, and 87.7. There are, however, some unidentified peaks around2345,

29.7 and 47. Their intensities are small as compared to the dominant peaks; for the
purposes of this work, they can be considered as insignificant.

The powder diraction line profile obtained from GIXRD measurements is shown
in fig 5.29. The measurements were done°agirhzing incidence angle over a 20 hour
exposure. The line profile is corrected for instrument drift and it showffiadiion peak
centred around 2'avhich is characteristic of theBNg2) plane.
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Figure 5.29: The grazing angle XRD spectrum of unimplanted hBN collected gtalzing inci-
dence and 20hours exposure ( the spectrum is corrected for instrument drift).

Discussions

The XRD line profile, fig.s 5.28, show narrow peaks appearing at the following peak
positions: 26.8 41.6, 43.9, 50.0, 59.5, 71.3, 75.9, 81.T, 85.3, and 87.7. The
peak positions correspond to the following lattice plan@BN goz), hBN(100), hBN(101),
hBN(102), hBN(110), andhBN12), respectively [45]. Unidentified peaks around 228°,
30°, and 47 have been observed. Their intensities are however much smaller as com-
pared to the dominant peaks; for the purposes of this work, they can be considered as
insignificant.

The GIXRD line profile, fig 5.29, shows that the material under investigation is pre-
dominantly hexagonal. The instrument used to carry out these measurements was still
under calibration.

The Raman spectroscopy, XRD, and GIXRD measured results obtained are comple-
mentary; its evident that the samples under characterization are nominally—pure, they
have minimum internal stresses and the material inhomogeneities are insignificant.
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Figure 5.30: The XRD spectra of hBN samples implanted with alpha particles to a fluence of
1.0x 10 jongcn?.

5.4.2 1.2 MeV H¢€ implanted hBN
6—26 XRD and GIXRD

0—29 XRD measurements were done on the implanted samples using the Philips
PW1710 difractometer. The measurements were carried out under the following instru-
ment settings and measurement conditions: Start Posttdin[]: 10,0100, End Position
[°2Th.]: 65,1300, Step Sizé3Th.]: 0,0200, Anode Material: Cu, Generator Settings:
40kV, 20mA, Goniometer Radius [mm]: 173,00.

The difraction line profile measured for the @0 iongcn? implanted sample is
shown in fig 5.30. The dominant and narrow peaks were observed at the following peak
positions: 26.65 41.46, 43.72, 50.0F, 55.00 and 59.37.

The difraction line profile measured for the xA0'® iongcm? implanted sample
is shown in fig 5.31. Dominant and narrow peaks were observed at the following peak
positions: 26.61, 41.42, 43.68, 49.97, 54.96 and 59.34.

The peaks positions are well documented and correspond tbBiNephase. The
diffraction patterns (fig 5.30 and 5.31) are fairly similar. However, peak positions in fig
5.31 are slightly down-shifted and the peak intensities have decreased significantly. In
addition to this, some small peaks: 48.8&nd 60.5 cropped up in fig 5.31, they could
not be matched thBN or any other BN modification.

The line profile observed from the GIXRD measurements is shown in fig 5.32. Dom-
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Figure 5.31: The XRD spectra of hBN implanted with 1.2 MeV alpha particles at a 1@°
iongcn? ion fluence.

inant peaks were observed at the following peak positions:°28B88, 43.0, 47.0,
49.4, and 50.2.

Discussion

The lattice parameters of hBN were determined to be 2.5A and 3.33A. The peak
positions are well documented and correspond tohBN phase [84] - (see also the
discussion 5.2.4). XRD measurements carried out using the Bruker AXS Advanced D8
diffractometer produced a line profile similar to fig 5.28. Given the results obtained from
the XRD measurements (fig.s 5.28, 5.30, 5.31, and 5.32) it is suggested that the amount
of the radiation damage and the Raman detected pheBNsand amorphouysrystalline
boron clusters) is below the 5% detection limit.

5.4.3 500 keV Hé implanted hBN
6—20 XRD

XRD measurements were done on the samples; the experiments were carried out using
the Bruker AXS Advanced D8 ffractometer. The instrument was run with the follow-
ing settings and measurement conditions: Start Positidhh.]: 5,0100, End Position
[°2Th.]: 89.997, Step Sizé2Th.]: 0,0210.
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Figure 5.32: The grazing angle XRD spectrum of implanted hBN collected gtalzing incidence
and 20hours exposure

The difraction line profile obtained for the 2:010'° iongcn? implanted sample is
shown in fig 5.33. The dominant and narrow peaks were observed at the following po-
sitions: 27.0, 41.8, 44.2°, 50.5, 55.5 and 59.7. The peak positions matched peak
positions forhBN documented in the reference [84].

Discussion

The XRD difraction pattern realized from measurements on the sample implanted to
a fluence of 2.6 10'% iongcn? (fig 5.33) shows peaks that are characteristic ofiBN
phase [74]. However, theftliaction pattern peaks are evidently much broader than those
obtained from XRD measurements on virgin and 1.2 MeV kheplanted samples (fig
5.28). A quickSRIM2006simulation of 500 keV Heimplanted intohBN shows that the
ion range is approximately 1uth and the mean projected range about 670A. A similar
simulation for 1.2 MeV Hé shows an ion range of approximately 2u60and the mean
projected range about 750A, see also the discussion in Segtioh Evidently, as the
ion implant energy decreases the ion range becomes shallower whilst the nuclear stop-
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Figure 5.33: The djfraction line profile obtained for the 2010 iongcn? implanted hBN sam-
ple is shown in figure. Please note that the legend may not be legible on printed

copies.

ping which is the mechanism of extensive damage moves closer to the surface. Thus the

broadening observed at lower energies is evidence of the shallow radiation—induced dam-

age. However, the oBN phase, observed in Raman scattering measurements, was not

detected in these XRD measurements, we suspect because the amount of the transformed

material was probably well below the 5% detection limit of thrdictometer.



Chapter 6
Summary

Due to the very high detection limit of the XRDfttiactometer used as well as the
low x-ray scattering factor of theBN nanocrystals (only 5% or more of the transformed
cBN can be detected)-Raman and 2D-Raman scattering measurements were the main
characterization techniques used in this work to identify the possible occurrence of the
phase transformation.

FG. lon ENERGY , DOSE | || orentzian | Gaussian le/lL r

(keV, iongcn?) | (arbt. units) (arbt. units) (cmt)
525 | H 200, 1.0x 10 | — — — —

5.27 |H 200, 2.0x 10 | 22000.0 493.093 0.022411290.13
5.23 | He 200, 1.0<10% | 22647.1 — — —

524 | He 200,5.0¢10% | 22827.4 163.9 0.007181292.48
521 |He 350,1.0<10% | 21352.0 — — —

522 |He 350, 2.0<10% | 18447.7 108.1 0.005861280.03
5.1% | He 500, 2.0< 10* | 43000.0 * * 1292-1298
5.1% | He 500, 1.0<10*" | 40000.0 60 0.001501290-1300
5.14 |He 750,2.0¢10% | 28382.4 126.7 0.004461295.92
5.9 He 1200, 1.0x 10% | 18600.0 — — —

5.10 | He 1200, 2.6<10* | 26000.0 200 0.007691296.6

Table 6.1:A summary of thg-Raman and 2D-Raman results presented in Chapt€&ri§the po-
sitioniwvavenumber of the bBN Gaussian peak. The Gaussian peaks were normalized
to the Lorentzian peaks that were measured outside the irradiated spot. * means the
measured values were erroneous due to detector saturation.
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Ideally, the Raman spectrum of single crystBN exhibits two strong Lorentzian-
shaped lines representing the Brillouin zone centre transverse-optical phonon mode and
the longitudinal-optical phonon mode (at 1057¢nand 1306cmt, respectively. The
hBN phase also exhibits two Lorentzian-shaped phonon modes that are attributed to the
Ezq Symmetry vibration at 52cm (this is usually a tiny, sharp peak) and at 1367¢m
(principal peak used for characterization). The broad Raman phonons observed around
Qcm ! have been attributed to the presence of nanocrystaiBf The deviation from
the ideal Lorentzian lineshapes have been observed by other researchers before and has
been attributed to the phonon confinemeffie&ts.

Results obtained from the Raman scattering measurements carried out andHe
implantedhBN are summarized in table 6.1. Two graphs, fig 6.1 and fig 6.2 have been
drawn from the values in the table.

0.030 o o D
\ ExpGro1 fit of Data1_D|
|
0.025 \
< \
el |
N |
S 0.020 |
S \
— |
— \
~ \
£ 0.015 \
Ei \
3
5 \
— 0.010 1 \
L °
(O —
0.005 o)
T T T T T T T T T T T
200 400 600 800 1000 1200

Implantation Energy (keV)

Figure 6.1: The graph shows the normalized intensity of the Gaussian peaks plotted against the
implantation energy. Note that for 200 keV ‘Hthe plotted value is an estinate;

four times measured values, since the implantation dose at this energy is a quarter of
2.0x 106 jongcn?.

Fig 6.1 shows the graph of the normalized¢BN Gaussian peak intensities plotted
against the implantation energies. The Gaussian peaks were normalized to the principal
hBN Lorentzian peaks that were measured outside the irradiated spot.

e |g/IL roughly quantifiegstimates the amount of tlBN nanocrystals present in
the implanted sample.
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Figure 6.2: The positiofjwavenumber of the oBBN Gaussian peaks plotted against the implanta-
tion energy.

e Greater quantities of theBN nanocrystals are observed towards 200 keV. Given
the SRIM2006 damage profiles (see fig 5.1 and 5.2), it appears that as the ion en-
ergy decreases the elastic damage profile comes closer to the surface to within the
penetration depth of the probing Raman laser beam.

e The steep gradient of the plot towards the low implantation energies has been at-
tributed to nuclear stopping induced phase transformation; that of the gentle slope
towards the higher energies, to electronic stopping induced transformations.

Fig 6.2 shows the graph of the position of the Gaussian peaks plotted against the implan-
tation energies.

e The plot is a second order exponential decay curve that shows an indication of
saturation around 1300ct This might suggest that the nanocrystals observed at
lower energies (thus nuclear stopping induced) are characterized with considerable
disorder compared with those obtained at higher energies.



Chapter 7
Conclusions and Outlook

The possibilities of using ion implantation as a technique of introducing defects into
hBN in order to influence a low—activation energBN—-to-cBN phase transformation,
under less extreme conditions, were investigated. lon beam induced phase transforma-
tions to other BN modifications were also investigated. SENRaman and 2D-Raman
measurements, and XRD measurements were used to characterizé impldated sam-
ples.

The results obtained in this study show that nanocrystat8df (n-cBN) were suc-
cessfully produced at room temperature by lieplantation ofhBN at energies between
200keV and 1.2MeV for fluences of up to*1@ongcn?. The conditions under which the
n-cBN phase nucleates were beyond the scope of this study. However, there is a possibil-
ity that the transformation progresses as illustrated in fig 3.4 or from the disoricighked
phase.

e According to the plots fig 6.1 and 6.2 in Chapter 6, kiBN—to-cBN phase trans-
formation was observed to be more favourable towards the low energies of implan-
tation. This strongly suggests that thiBN to cBN phase transformation is greatly
influenced with the nuclear stopping criteria.

e The optimum dose that influences the phase transformation was observed to be of
the order of 18 iongcn?. Implantations at doses above the optimum dose (of the
order of 187) were observed to damage the sample extensively whilst implantations
performed at a dose below the optimum dose, even at higher energies were observed
not to have influenced tH&8N to cBN phase transformation in any significant way.

¢ In addition to the neBN phase, structural transformations to &N and aBN

76



77

phases were observed. Amorph@ngstalline boron clusters, probably due to ex-
cess boron in the implanted region, were also observed. These were only observed
for implantations done at 1.2MeV.

e The origins of thenBN-to-rBN transformation were attributed to the lateral shear-
ing/shifting of the basal planes in response to the implantation induced stresses
which results in slight changes in the packing sequence between the initial and final
phases. ThaBN phase observed (a phase which is characterized by atomic level
disorder) was attributed to implantation induced disorder due to nuclear stopping.
The observed amorphalasystalline boron clusters were attributed to the agglom-
eration of elementary boron in the disordered phase or a result of excess boron
following the evolution of nitrogen gas molecules.

For future research, we suggest the use of low energy implantations with heavier ion
species such as'ON*, C*, and Ar to investigate the nature of this phenomenon. We
also suggest further theoretical modelling and experimental work to be focussed on the
concise understanding of the dynamics and nature ohBi¢ to cBN structural trans-
formation. In addition, the characterization @N is nontrivial; the conclusive phase
and crystallinity identification requires application of several techniques including In-
frared reflectance spectroscopy, Fourier-transform infrared spectroscopy, electron and
X-ray diffraction, transmission electron microscopy, electron energy-loss spectroscopy,
and possibly synchrotron radiation based methods to complementRiagnan and 2D-
Raman scattering measurements.



Appendix A

Raman Spectroscopy Theory

A.1 Introduction

The Appendix discusses the theory of Raman scattering process. The discussion is
partly based on the series of lectures presented by RM Erasmus [85] and S. Ndiaye [86].

When a material is illuminated, some light will be transmitted, some will be absorbed
and a very small fraction will be scattered. The scattering is a result of inhomogeinities in
the material such as molecular vibrations and defects. Most of the scattered light will be
scattered elastically, that is the frequency and energy of the incident and the scattered light
will be the same. This scattering process is calayleigh scatteringAn even smaller
fraction of the scattered light, typically aboutIpwill be inelastically scattered. This
scattering process is known as tRaman gect The incident light radiation undergoes
an energy change, theftlirence between the incident light eneifgy. and the energy
of the Raman scattered light is equal to the energy involved in changing the molecule’s
vibrational state fronv; to v; and the energy éierence is called the Raman shift [ref].

In other words the shift in frequency of the incident light is due to the interaction of
the photons of light with the phonons (vibrations and rotations of the molecules) in the
material being investigated [60].

Raman spectroscopy is a non—destructive characterization technique that is based on
analyzing the Raman scattered light. The Raman shift profiles (data plots of intensity
against frequengwavenumber) that are drawn from the Raman spectroscopy gives infor-
mation on the vibrational spectrum of material, this can be used to ‘fingerprint’ the phase
structure of the material because the vibrational spectrum is unique and characteristic of
a unique bonding environment [30]. In this work Raman spectroscopy is an important
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tool that detects the structural modifications that are brought about by the implantation of
different ionic species as well as the structural stresses that correspond to them most im-
portantly, it is a vital tool in revealing the possible occurrence of a phase transformation
[30]. The Raman spectroscopy also gives information on the material's chemical com-
position, phase structure, an estimate of the grain size (for polycrystalline materials) and
temperature [83].

A.2 Raman HEffect

Raman scattering is primarily concerned with lattice dynamics. It can be treated in
two ways, either classically or quantum mechanically.

A.2.1 Classical Treatment

Classically, the Ramartlect can be viewed as arising from the interaction of the inci-
dent electromagnetic radiation with the dipole moment of the molecules of the illuminated
material. Both the oscillating electric and magnetic field components of the electromag-
netic radiation are capable of interacting with the molecule but the magnetic component
has a negligible ffect on the molecule’s dipole moment.

When a polarizable molecule is exposed to an external oscillating electric @ﬁld,
the molecule’s equilibrium electronic distribution changes. As a result, induced dipoles
are created around molecules. If the induced dipoles, under the influence of the external
electric field, undergo a normal molecular vibration; the induced dipoles can cause radi-
ation. The aim in Raman spectroscopy is to excite these induced molecular vibrations to
gain information on the bonding environment of the molecules in the material.

The external oscillating electric field of incident frequenoy,, the position vector,

r, the wavevectog,., and timet can be expressed as:-

Ej = E? - coS(inc - ' — Winct) (A.1)

The normal coordinate, of the molecular vibration is characterized by the normal
frequencywy, and wavevectogk. The normal coordinate can be represented as:-

& = & cosi - T — wit) (A.2)

The induced dipole moment;, can be described in terms of a power series of of
the influencing external electric field and the ease of polarization of the molecules, the
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polarizability ). Equation A.3 shows that in practice, is a non-linear quantity. The
non-linearity is a result of the anisotropy, a property of the illuminated material.

Ui = ,ui(l) + ,ui(z) + ,ui(3) + (‘higher order terms’) (A.3)

whereu™ is given by:-

1~
,Ui(z) = élgijk E;Ex (A.4)

1.
,Ui(3) = gYik E,ExE

E;, Eix, and By are components of the exciting electric field. Whils, ]?ijk, and
¥i are all diferent polarization tensors of th&2the 39, and the # rank respectively.
Polarizability is an intrinsic property of a material. The variation of the instantaneous
polarizability tensorgj, with the normal vibration is non-linear and given in equation A.5
as a Taylor series. The ‘higher order terms’ arise from the first and second order hyper—
polarizability tensorsp; ik andyijq (whose magnitudes are both very small compared to
the polarizability tensow;):-

Oaij (winc, k)
3"
From equations A.1, A.2, A.4, and A.5, the induced dipole moment (equation A.3) of
a molecule under the influence of electromagnetic radiation becomes:-

@ij(Winc, Ok) = @ (Winc) + ( ) - &+ (‘higher order terms’) (A.5)

0 (Winc, Ok)
0éx

+ (‘higher order terms’]}- E? cOS@inc - F — winct)

/Yi = [&,OJ (winc) + ( ) . ‘fl(() COSGK - a)kt)

(A.6)

The first terni in equation A.6 is simply the product of the polarizability in equilib-
rium configurationef (winc) and the external electric fieﬁj. The term is dependent only
on the incidence radiation frequeneyi,; it relates to the elastic Rayleigh scattering of
the incident radiation. It is the most probable process. Thigher order termsreferred
to in equation A.6 are a result of the non—linear change in the polarizability arising from
the non-linear anharmonic coupled molecular oscillations resulting in combinational fre-
guencies, the term is also known as the Hyper—Raman scattering term.
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The ‘second termin equation A.6 is the term if greatest interest; it relates to the
Raman scatteringfiect. When simplified it looks like:-

0ij(winc, G) - £ E°
Py 2

: { COS[@inc + 0) - ' = (wk — winc)t )] (A7)

+ COS[@k — inc)I" — (Winc — Wit ]}

The equation A.7 shows that the Raman scattering process is accompanied by a net
Oincx Ok frequency shift. The frequency shift is characteristic of the molecule and provides
a basis for Raman spectroscopy [87]. Of critical importance is the parfiateintial part

a&ij (winc,0k)
o€

of the light excited molecule. This term is known as the classical Rarffantselec-

If 0aij (winc,0k)
9€

with intensities proportional to the square of this term, else if this term is zero, then the

of the term; that gives the change in the spatial variation of the polarizability

tion rule. # 0, then the inelastically scattered Raman modes are observed
molecule can not be polarized and the Ramfiect can not be observed, in such a case
the material is deemed Raman—inactive. If the polarizability of a molecule changes as
it rotates or vibrates, incident radiation of frequengy., according to classical theory,
should produce scattered radiation.

A.2.2 Quantum Mechanical Treatment

From a quantum mechanical perspective, the Rarffantecan be considered, in prin-
ciple, as a light—-matter interaction where the incident photon interacts with the phonon in
matter. The phonons can either be vibrational, rotational modes or a combination of both.
The basis of this treatment comes from the understanding that the electronic, vibrational
and rotational states of a molecule are considered to be quantized; fig A.1 illustrates this
[ref]. The energy of a vibrational energy level depends on things like molecular structure,
environment, atomic mass, bond order, molecular geometry and hydrogen bonding. All
these &ect the vibrational force constant which in turn dictates the vibrational energy.

The direct transition from one vibrational (or rotational) statéo anothew,.; gives
rise to an IR spectrum and the direct transition from any statethe virtual stateand
relaxation back to that state gives rise to the Rayleigh scattering, this process has a large
cross—section. Raman scattering can arise as a result of a change in the vibrational or

fan imaginary state lower than the real excited electronic state; that is, no stationary state of the molecule
exists for this virtual energy state.
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Figure A.1: Anillustration of the Rayleigh (R), anti-Stokes (a-S) and Stokes (S) Raman scattering
processes, each electronic has several vibrational states, in turn, each vibrational
state has several rotational energy states (not shown here).

rotational or electronic energy states of a molecule in a vibrational state to a virtual state
and the subsequent relaxation transition to another vibrational or rotational state almost
simultaneously. The molecule can either gain or lose energy in the anti-Stokes and Stokes
process respectively. The progression of the transition is governed by the quantum me-
chanical selection rules.

The scattering process is viewed as the creation and annihilation of vibrational excita-
tions (phonons) by photons and the resultant Raman frequency shift equals the frequency
of the phonon created or annihilated. It is perceivable that since the Rdteahis a
two photon process. The permitted transitions are; for a vibrational transitioh < O
(Stokes transition) and = 1 — 0 (anti-Stokes transition), hence the overall vibrational
transitions obeys tha v = +1 selection rule. For rotational transitions, ‘each rotational
‘photon’ transition obeys tha J = +1 transition, therefore it follows that the overall
transition obey\ J = 0, + 2, since this process is a two photon process whele= 0
corresponds to Rayleigh scatteridg) = 2 to Stokes scattering adJ = —2 to an anti—
Stokes scattering transition. Wheldds the total angular momentum quantum number
andv is the vibrational quantum number.



Appendix B

Some spectrum presented in the main text (fig 5.14 and fig 5.21—-5.24) are extracts
derived from a group of spectrum (fig B.1—B.5, respectively, shown in this section for
entirety) measured at twentyfférent points in a single line along the implanted sample’s
diameter.
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Figure B.1: Theu—Raman spectra measured at twengfedent points in a single line along the
implanted sample’s diameter. The hBN sample was implanted with 850 Keldriée
to a fluence of 2.8 106 jongcn?. The spectrum marked L is shown in fig 5.14.
Notice the severity of the Raman signal attenuation in the implanted sections.
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Figure B.2: Theu—Raman spectra measured at twenggedent points in a single line along the
implanted sample’s diameter. The hBN sample was implanted with 350 Keidirée
to a fluence of 2.8 10 iongcn?. The spectrum marked R is shown in fig 5.21.
Notice the absence of the Gaussian-shaped peak about 1285cm
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Figure B.3: Theu—Raman spectra measured at twengfedent points in a single line along the
implanted sample’s diameter. The hBN sample was implanted with 350 Keldr$e
to a fluence of 2.8 10 iongcn?.
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Figure B.4: Theu—Raman spectra measured gffelient points as a function of position across the
implanted diameter of an hBN sample implanted to fluences of 108 He*/cn? at
200keV.
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Figure B.5: Theu—Raman spectra measured gffdient points as a function of position across the
implanted diameter of an hBN sample implanted to fluences of 808° He*/cn? at
200keV.
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