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Abstract

In this dissertation, the interacting Cuntz chain Hamiltonian for an open

string - giant graviton system with an arbitrary number of strings attached

is derived, thus generalizing the single string results of hep-th/0701067. The

open strings considered carry angular momentum on an S3 embedded in the

S5 of the AdS5×S5 background. In the process, we construct operators in the

N = 4 super Yang-Mills theory dual to states with open strings ending on

boundstates of sphere giant gravitons. The techniques we develop facilitate

the computation of one-loop anomalous dimensions of these operators. The

problem of computing the one loop anomalous dimensions is replaced with

the problem of diagonalizing an interacting Cuntz oscillator Hamiltonian.

Our Cuntz oscillator dynamics illustrates how the Chan-Paton factors for

open strings propagating on multiple branes can arise dynamically.
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1 Introduction

The AdS/CFT correspondence, originally conjectured by Maldacena, sug-

gests a duality between a string theory defined on a certain space (the prod-

uct of a negatively curved space and a closed manifold) and a conformal field

theory on the boundary of that space. A concrete proposal for operators

in the gauge theory dual to giant gravitons (membranes which are extended

in the AdS5 or S5 space of the AdS5 × S5 background) was made by [1], [2]

who motivated identifying these giants with Schur polynomials labeled by

Young diagrams. This was then extended by [3] who identified systems in

which open strings are attached to giant gravitons with operators known as

restricted Schur polynomials. Here, attaching open strings corresponds to ex-

citing the giant gravitons. The technology necessary to calculate correlators

of restricted Schur polynomials dual to giant gravitons with strings attached

was developed in [4]. Before the introduction of this and other related tech-

nology in [4], [5], the dynamics of membranes (in particular, giant gravitons

with open strings attached) was not within our means to explore. Indeed,

the membrane is traditionally treated as no more than a static, unchanging

boundary condition for open strings. With the new technology built upon re-

stricted Schur polynomials, probing the dynamics of open string -membrane

systems becomes tractable, at least in principle. Up to this point however,

only the dynamics of giants with a single string attached have been explored,

[5]. Our primary aim is to further develop and bring to fruition the tech-

nology required to treat a general open - string giant graviton system with

not just one string attached but any number of strings and thus allow the

exploration of the resultant dynamics in a universal manner. To this end, we

develop techniques to allow the construction of restricted Schur Polynomials

dual to states with open strings stretching between two giants. In practice,

this requires obtaining projection operators (termed intertwiners) that act

on representations of the symmetric group and extract off-diagonal blocks of

the matrix. We then extend this to allow the calculation of restricted charac-

ters used in constructing operators dual to a system of an arbitrary number

of giants with any number of strings attached, including some or all of the
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strings being stretched between the giants. Next, we treat the dynamics of

this quite general system. In order to do this, boundary interaction terms of

the Cuntz chain Hamiltonian are derived for the case of two or more strings

attached to a giant (in a manner analogous to [5]). In particular, the bound-

ary interactions describing the transfer of a unit of momentum from an open

string to a giant (termed hop off), from a giant to an open string (termed

hop on) and what is termed the “kissing interaction” are explored. This is

done by elucidating all possible transitions (and their interaction strengths)

between states of the open string - giant system, a process which entails

deriving the necessary identities, inverting them and normalizing the states.

The full Cuntz chain Hamiltonian thus obtained provides some very valuable

physical insights which we explore, such as how the Chan-Paton factors of

the open strings arise dynamically. The techniques developed in the course

of this endeavor also allow the further investigation of the emergence of a

new Yang-Mills theory from the matrix degrees of freedom of the original

gauge theory. In addition, the means to more convincingly demonstrate the

duality between membranes and Schur polynomials is provided. We begin

with a brief review of the AdS/CFT correspondence in section 2, followed

by a review of some aspects of giant gravitons in section 3, excited giants in

section 4 and the Cuntz oscillator chain (and Cuntz chain Hamiltonian) in

section 5. The main results of this dissertation are presented in sections 6 to

9. In section 6 we derive the intertwiners discussed above. We then present

a straightforward and general algorithm to compute restricted characters in

section 7. In section 8 we derive the general Cuntz chain Hamiltonian for

multiple strings attached to an arbitrary number of branes. The interpreta-

tion of our results follows in section 9 and we conclude with a discussion of

the results in section 10. The new results derived in this dissertation have

been presented in the arXiv e-print [6] which has been submitted to JHEP

for publication.
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2 The AdS/CFT Conjecture

2.1 Overview

The AdS/CFT correspondence, also known as the gauge theory - gravity

correspondence is an intriguing duality between a theory with gravity and one

without gravity [7], [8], [9]. In its original form as conjectured by Maldacena,

the correspondence relates Type IIB string theory defined on AdS5 × S5 and

N = 4, 3+1 dimensional Super - Yang Mills theory. Type IIB string theory

(along with all other string theories) includes a massless spin 2 particle which

is naturally interpreted as the graviton. Thus Type IIB string theory, as with

the other string theories, can be considered as a theory containing gravity.

N = 4 SYM theory is a quantum field theory with a U(N) gauge symmetry.

One of most useful aspects of the AdS/CFT correspondence (and one that

simultaneously frustrates efforts to explore the duality more exhaustively) is

the fact that it is a strong-weak coupling duality. It allows us to study string

theory in the strong coupling domain by studying the weakly coupled dual

gauge theory and vice versa. The fact that the string theory is defined on

a space with a different dimensionality to that of the gauge theory can be

related to one of the profound physical ideas that accompany the conjecture

- the holographic principle [10], [11]. The other deep physical idea related to

the AdS/CFT conjecture is the proposal that gauge theories at large N are

in some way equivalent to string theories [12].

2.2 Holographic Principle

In a loose sense, the holographic principle states that the entropy (number of

degrees of freedom) in a theory of quantum gravity scales like the surface area

of the system and not the volume. This idea was originally explicated in the

context of black holes. Black holes, in addition to being viewed as classical

gravitational systems, can also be viewed as thermodynamic systems with

temperature and entropy as illustrated by Bekenstein and Hawking. The

identification of parameters essentially follows from the linking of the laws of

black hole mechanics with the laws of thermodynamics. The temperature of
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the black hole, T is associated with the surface gravity, κ and the entropy, S

with the area of the horizon, A in the following way:

S =
A

4G
,

T =
κ

2π
.

The identification of entropy with the area of the horizon does however

present a difficulty. From the perspective of statistical mechanics, we would

expect the number of degrees of freedom (and hence entropy) of the system

to scale like the volume of the system and not the area. A possible resolution

comes in identifying a d-dimensional theory of gravity with a d−1 dimensional

local field theory. This provides consistency since an area in d dimensions

is like a volume in d − 1 dimensions. This motivates the identification of a

theory containing gravity in the volume of some d - dimensional space with

a local field theory on the boundary of the space.

The interpretation of the dimensionality mismatch between the space in

which the string theory lives and the space in which the gauge theory lives

in the AdS/CFT conjecture now becomes clear. The boundary of AdS5 × S5

space is 3+1 dimensional Minkowski space and thus the correspondence links

a theory with gravity defined on the volume of a space to a theory without

gravity defined on the boundary of the space and we see that the AdS/CFT

correspondence is a concrete realization of the holographic principle.

2.3 Large N Gauge Theories and String Theories

The notion that gauge theories and string theories may be related and in

certain limits equivalent underlies the AdS/CFT correspondence. One of the

most powerful motivations for this idea comes from comparing the perturba-

tive expansion of a large N gauge theory in 1/N (keeping λ = g2N constant)

and the perturbative (loop) expansion in string theory. The perturbative

gauge theory expansion has the form:
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∑

g≥0

N2−2gfg(λ). (1)

The form of this expansion arises in the following way. The Feynman di-

agrams of a Yang Mills theory can be written in a ribbon (double line)

notation. In this notation each matrix index is replaced by a labeled dot. To

obtain the values of correlators, pairs of dots are joined with ribbons. Each

line linking the dots corresponds to a Kronecker delta with the indices of the

joined dots. A closed loop in these diagrams corresponds to a single power

of N as a result of the contraction of the indices of the Kronecker delta’s. In

these diagrams the closed loops formed by the ribbons could be considered to

constitute a triangulation (or a generalization thereof) of a surface. It turns

out that the power of N associated with a particular ribbon diagram can be

linked to a surface with a particular topology, with the diagrams at leading

order in N being associated with surfaces with the topology of a sphere (or

plane). This link comes in the form of the Euler characteristic of the diagram

(a topological invariant) - which allows the power of N associated with a par-

ticular diagram to be written in terms of the genus, g (number of handles)

of the corresponding surface. A perturbative expansion of the gauge theory

can now be organized in terms of powers of N (via the genus) and powers of

λ and this leads directly to the expansion above. The link to string theory

now becomes apparent - it seems natural to identify these surfaces with the

worldsheets of strings. The similarity of the loop expansion in string theory

to the above serves to illustrate this:

∑

g≥0

g2g−2
s Zg. (2)

Here gs=1/N and g corresponds to the genus of the worldsheet of the string.

Thus we can see that (2) is also a genus expansion. Note also that Zg is a

function of the string tension and equivalently of the string length, ls. We

therefore expect a relation between λ and ls. The form of this relation is

discussed in section 2.6.
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2.4 Anti-de Sitter Space

Anti-de Sitter space is the maximally symmetric solution of Einstein’s equa-

tions with a negative cosmological constant. AdSd space can be thought of

as a hypersurface with the following equation embedded in d + 1 dimensional

flat space:

(x0)2 + (xd)2 −
d−1∑

i=1

(xi)2 = R2.

Here R is a constant which is identified as the radius of curvature of the AdSd

space. This has metric

ds2 = −(dx0)2 − (dxd)2 +
d−1∑

i=1

(dxi)2.

For example, if we consider d = 3 and utilize global co-ordinates which have

form[35]:

x0 = R coshµ cos t, x3 = R cosh µ sin t,

x1 = R sinhµ cos θ,

x2 = R sinhµ sin θ.

we obtain the following form of the metric:

ds2 = R2
(
− cosh2 µdt2 + dµ2 + sinh2 µdθ2

)
. (3)

where µ ≥ 0, 0 ≤ t, θ ≤ 2π.

This co-ordinate chart covers the entire hyperboloid. The boundary of the

AdS space in this co-ordinate system is obtained by taking µ →∞. For µ →∞
the metric becomes:

ds2 = R2e2µ
(
−dt2 + dθ2

)
.

Thus when d = 3, the boundary of the AdS space in global co-ordinates
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corresponds to RxS1 (up to a scaling). Similarly, for d = 5, we have that the

boundary of AdS5 is conformally equivalent to RxS3. Since the AdS/CFT

correspondence relates a conformal field theory on the boundary of the AdS

space to a gravitational theory defined on the volume of the space, we expect

a conformal field theory defined on RxS3 to be dual to a gravitational theory

on AdS space. In section 3 we will see that considering N = 4 super Yang

Mills defined on RxS3 is particularly useful.

We could also utilize Poincare co-ordinates (which are local) which have the

form[35]:

x0 =
1
2r

(R2 + x2 + r2 − t2), x3 = R
t

r
,

x1 = R
x

r
,

x2 =
1
2r

(−R2 + x2 + r2 − t2).

and thus obtain the following form of the metric:

ds2 =
R2

r2
(−dt2 + d~x2 + dr2). (4)

The boundary of the AdS space in this case corresponds to r = 0. This can

be seen by introducing the co-ordinate r′ and setting

r′ = log
1
r
,

i.e.

r = e−r′ .

The metric now becomes:

ds2 = R2
(
e2r′

(
−dt2 + d~x2

)
+ dr2

)
.

So we see that as r′ →∞ (i.e. r → 0), we have:
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ds2 ∼ e2r′
(
−dt2 + d~x2

)
.

which is conformally equivalent to 2 dimensional Minkowski space for d = 3.

In general, the boundary of AdSd space in Poincare co-ordinates corresponds

to d − 1 dimensional Minkowski space (up to a scaling). Thus, in terms of

the AdS/CFT correspondence, we see that N = 4 super Yang Mills (defined

on Minkowski space) makes contact with the dual gravitational theory in

Poincare co-ordinates. Finally note that as r′ → −∞ (r →∞), g00 → 0 i.e. the

geometry has a horizon.

2.5 Motivation

The primary motivation for the AdS/CFT conjecture is obtained by con-

sidering a system of N parallel, coincident (or near coincident) D3 branes

in Type IIB string theory and then taking a low energy limit. This system

of D3 branes admits two possible descriptions. The first description entails

considering the D3 branes as massive charged objects that curve space and

thus act as a source for supergravity fields (we thus consider a supergravity

solution carrying D3 brane charge). Naturally, this description can only be

trusted at large N and large ’t Hooft coupling where the background be-

comes approximately flat. The second description, views the D3 branes as

hypersurfaces on which open strings are allowed to end. It is noteworthy

that in the first description, only closed strings appear whereas in the second

description both open and closed strings appear.

Consider the first description, the metric for the D3 brane then has the form:

ds2 =
(

1 +
R4

r4

)−1/2

(−dt2 + dx2
1 + dx2

2 + dx2
3) +

(
1 +

R4

r4

)−1/2

(dr2 + r2dΩ2
5).

Now, the low energy limit yields very long wavelength supergravity modes

propagating in the bulk region where space is approximately flat (space is

flat as a consequence of the fact that N and the ’t Hooft coupling are large).
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In addition, all the modes of Type IIB string theory close to the stack of

branes will be red-shifted due to the very large gravitational potential and

thus appear to be shifted to low energy (from the perspective of an external

observer). The supergravity modes do not interact with the D3 branes since

their wavelengths are much larger than the gravitational size of the branes

in the limit considered. Also, the modes very near to the horizon find it

increasingly difficult to escape the gravitational potential and return to the

bulk. The near horizon geometry of the D3 branes is given by taking the

limit r ¿ R:

ds2 =
r2

R2
(−dt2 + dx2

1 + dx2
2 + dx2

3) + R2 dr2

r2
+ R2dΩ2

5.

This is nothing but the metric of AdS5 × S5 space. Thus, in this description,

we have two decoupled sectors in the theory - long wavelength supergravity

modes freely propagating in flat 10 dimensional Minkowski space and all the

modes of Type IIB string theory in the AdS5 × S5 geometry.

The second description, involves both open and closed strings in the Type IIB

string theory in which the open strings end on D-branes. The closed string

states in the bulk are described in the low energy limit by Type IIB Super-

gravity whereas the open string states are described in the low energy limit

by N = 4 SYM theory. In this low energy limit, the interaction Lagrangian

mixing the bulk and brane sectors falls away and the two sectors again de-

couple, with the supergravity theory in the bulk becoming free. Thus, the

two decoupled sectors are now 3+1 dimensional N = 4 SYM theory and long

wavelength supergravity modes propagating in the bulk.

In both descriptions, one of the decoupled sectors of the theory is that of long

wavelength supergravity modes propagating in flat 10 dimensional Minkowski

space. Since the two descriptions and their low energy physics should be

equivalent, this leads us to conclude that the other sector of the descriptions

should also match. Hence, the conjecture: Type IIB superstring theory on

AdS5 × S5 is dual to N = 4 3+1 dimensional SYM theory.
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2.6 Identification of Parameters in AdS/CFT

The mapping of parameters of the string theory into those of the gauge theory

(and vice versa) is as follows:

gs = g2
Y M , (5)

(
R

ls

)4

= 4πg2
Y MN = 4πλ. (6)

The parameters in the Type IIB string theory have the following description:

gs is the string coupling constant and ls is the string length. The parameter R

is the radius of curvature of the AdS5 and S5 spaces constituting the AdS5×S5

geometry. The parameters relating to the N = 4, 3+1 dimensional SYM

theory with gauge group U(N) are N and g2
Y M , the coupling constant. The

above equations explicitly demonstrate the strong-weak coupling nature of

the duality. The string theory is only tractable when the string length is

much smaller than the radius of curvature of the space (corresponding to

large ’t Hooft coupling, λ) and the string coupling constant is small (which

corresponds to small g2
Y M). This is due to the fact that only when the

string coupling, gs is small can higher order terms in the loop expansion be

neglected. Further, when evaluating the leading term in the loop expansion,

ls ¿ R (i.e. λ large) implies that curvature corrections can be dropped. In

contrast the gauge theory is only tractable when λ is small.
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3 Giant Gravitons

Since the AdS/CFT correspondence is a strong - weak coupling duality in

the ’t Hooft coupling of the field theory, the quantities used to begin to

probe (and test) the duality must be such that calculations performed at

weak coupling can be faithfully extrapolated to strong coupling (they should

only receive small or no corrections). Quantities protected by supersymmetry

such as those associated with BPS states serve this purpose. Giant gravitons

are half-BPS states (half of the supersymmetries are preserved) which have

facilitated the calculation of many useful quantities on both sides of the cor-

respondence. Giant gravitons are D3 branes which are extended in the AdS5

or S5 space of the AdS5×S5 background. These giant gravitons are gravitons

propagating in the bulk that have been spatially extended (blown up) as a

result of the five form flux present [13]. The magnitude of the enlargement is

determined by the angular momentum of the giant. This can be understood

as follows: the worldvolume of the D3 brane has 3 spatial dimensions and

one time dimension and thus, in the membrane action, the volume element

couples to a potential with 4 indices. This volume element changes sign at

antipodal points of the brane (along with the term in the membrane action

which couples to the potential) and thus each pair of antipodal points on the

brane constitutes a dipole. The presence of the five form flux then leads to

the spherical enlargement of the giant graviton. This process can be con-

sidered to be the analog (as in [13]) of a dipole moving on a plane or the

surface of a sphere in the presence of a constant magnetic field. In such a

system, the dipole is stretched in the direction perpendicular to its direction

of motion by an amount proportional to the magnitude of its momentum (in

the case of a spherical surface - angular momentum). It turns out that for

gravitons moving on an AdS5×S5 background of radius R, where the number

of units of five form flux is N , and the angular momentum of the giant, L, is

fixed, the gravitons expand as [13]:

r =

√
L

N
R. (7)

In the case of the S5 space, the gravitons can only expand until they reach the
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maximum radius possible - that of the S5 itself, R. This then implies an upper

bound on angular momentum of the giant, corresponding to N . The giant

gravitons are classically stable as a result of the fact that the force due to the

five form flux precisely balances the tension of the brane. A concrete proposal

for operators in the gauge theory dual to giant gravitons was made by [1],

[2] who motivated identifying these giants with Schur polynomials labeled

by Young diagrams. Although various aspects of this proposal are still being

explored and extended, by now there is a wealth of evidence supporting it.

To see why the Schur polynomials were originally singled out, we begin by

considering N = 4 SYM theory on RxS3 (which is conformally equivalent to

R4). The conformal equivalence of RxS3 to R4 can be seen by considering the

metric on R4:

ds2 = dr2 + r2dΩ2
3.

After setting τ = log r, we obtain

ds2 = e2τ (dτ2 + dΩ2
3).

After Weyl rescaling:

ds2 = dτ2 + dΩ2
3.

This is nothing but the metric on RxS3. Recall that in section 2.4 we il-

lustrated how the boundary of AdS5 in global co-ordinates is RxS3. Thus,

the N = 4 SYM theory defined on RxS3 will make contact with the dual

gravitational theory in global co-ordinates.

Dilations on R4 can be seen to correspond to time translations (after Wick

rotation τ = it) on RxS3. To see this consider the dilation r → ear:

τ = log r → log ear = log r + a = τ + a.

As a result, conformal dimensions of N = 4 SYM on R4 map into energies of
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the theory on RxS3 and by the state operator correspondence of conformal

field theory we have that the generator of dilations on R4 maps into the

Hamiltonian for the N = 4 SYM theory on RxS3. The utility of considering

the theory on RxS3 is that in the limit (8) (in which R charge is denoted by J)

the half-BPS states (and small deformations of these states) decouple from

the full N = 4 SYM theory, and can be described in terms of the quantum

mechanics of a single complex matrix [14]. The Schur polynomials we will

later describe will be built out of complex matrices governed by this matrix

quantum mechanics. Note that the Hamiltonian in (8) is obtained via a

suitable time slicing of AdS5 × S5 [14].

H = lim
ε→0

(∆− J) + 2∆ε

2ε
. (8)

The action for the theory on RxS3 (with radius of the S3 set to 1) is as follows:

S =
N

4πλ

∫
dt

∫

S3

dΩ3

2π2

(
1
2
(Dφi)(Dφi) +

1
4
([φi, φj ])2 − 1

2
φiφi + . . .

)
.

Note that terms involving gauge fields and fermions have been dropped and

only scalar fields retained since it is these that we are presently interested

in. The following complex scalar fields are formed from the original six real

scalar fields present in the theory:

Z = φ1 + iφ2, Y = φ3 + iφ4, X = φ5 + iφ6. (9)

We now return to the question of what exemplifies Schur polynomials as

promising candidates for the gauge theory operators dual to half-BPS giant

gravitons. To answer this we consider a specific kind of giant graviton dual

to a half-BPS operator built out of one of the complex matrices, Z. We

denote the number of Zs in the operator by n. Depending on the number of

Zs present in the operator, it has a different dual in the gravitational theory.

For n = O(1) the operator is dual to a point like graviton, for n = O(
√

N) the

operator is dual to a string and for n = O(N), the operator is dual to a giant

graviton. This can be seen in the following way. We know that a graviton

propagating in the bulk of the AdS5 × S5 background expands to a radius
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given by (7). In addition, from relation (6) in section 2.6 we have that:

R = (4π)
1
4 N

1
4 (gY M )

1
2 ls. (10)

Combining (7) and (10) we have:

r =

√
L

N
(4π)

1
4 N

1
4 (gY M )

1
2 ls. (11)

We identify the number of Zs in the gauge theory operator with the momen-

tum of the object in the gravitational theory to which it is dual. Thus when

n = O(1) we have that L is O(1), when n = O(
√

N), L is O(
√

N) etc. Now, when

L is O(1) we see from (11) that

r ∼
√

1
N

N
1
4 (gY M )

1
2 ls,

= N− 1
4 (gY M )

1
2 ls.

Thus in the limit N → ∞, r → 0. In other words the radius of the object in

the dual gravitational theory goes to zero and we have a point like particle.

When L is O(
√

N), we have:

r ∼ 1

N
1
4

N
1
4 (gY M )

1
2 ls,

= (gY M )
1
2 ls.

Thus for L ∼ O(
√

N), the size of the object in the dual gravitational theory is

on the order of the string length ls and we therefore identify these objects as

strings.

Finally, when L is O(N),we have:

r ∼ N
1
4 (gY M )

1
2 ls,

= R.
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Thus for L ∼ O(N), the size of the object in the dual gravitational theory is

on the order of the radius of curvature of the AdS5 × S5 background and we

therefore identify these objects as giant gravitons.

Now, suitable operators in the gauge theory dual to the aforementioned ob-

jects in the gravitational theory should be orthogonal. For O(1) Zs a suitable

set of operators is simply a product of traces of the Zs, one for each partition

of n. Orthogonality follows in this case since the two point function of the Zs

is diagonal, 〈Z†ij(t)Zkl(t)〉 ∝ δilδjk, and the non-planar diagrams are suppressed

for O(1) Zs.

However, for O(N) Zs comprising the half-BPS operator, large combinatoric

factors overcome the suppression of the non-planar diagrams and the prod-

ucts of traces are no longer orthogonal (their two point functions are no

longer diagonal). However, Schur polynomials which have the form shown

below seem to satisfy all requirements:

χR(Z) =
1
n!

∑

σ∈Sn

χR(σ)Zi1
iσ(1)

Zi2
iσ(2)

. . . Z
in−1

iσ(n−1)
Zin

iσ(n)
.

The Schur polynomial is labeled by R which is a Young diagram of n boxes.

Young diagrams of n boxes are in one-to-one correspondence with the irre-

ducible representations of the symmetric group Sn and thus a Schur polyno-

mial labeled by R is associated with a particular irreducible representation

of the symmetric group. The factor χR(σ) is the character of σ ∈ Sn in the

irreducible representation R. The Schur polynomials do have diagonal two

point functions as demonstrated by Corley, Jevicki and Ramgoolam [1] and

are thus suitable operators for n = O(N) Zs. It therefore seems natural to

identify this Schur polynomial operator as being dual to a giant graviton

in the dual gravitational theory. For operators that are built out of Z, X,

and Y see the recent paper [15]. There is also physically motivated evidence

based on the characteristics of giant gravitons and their dynamics. One such

piece of evidence is provided by considering the cutoff in angular momentum

for a giant graviton expanding in the S5 space of the AdS5 × S5 background

as discussed previously. If we identify Young diagrams of a single column
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(totally anti-symmetric rep) with spherical giants then this cutoff in angular

momentum is manifest. This is due to the fact that the number of boxes in a

column is identified as angular momentum of the giant and there are at most

n = N rows in such a column (matching the cutoff on angular momentum

described above). For a giant graviton expanded in the AdS5 space of the

AdS5×S5 background, we see that identification with a single row of a Young

diagram (totally symmetric rep) yields similarly encouraging results. This

identification does not place a limit on the size of the giant in AdS5 space

and rightly so (the giant’s size should be unbounded in this case) but it does

place a limit on the number of AdS giants in that the Young diagram can

have at most N rows and thus N AdS giants. This cut off is also necessary

for consistency with the dual gravitational theory. This is due to the fact

that one unit of five form flux is lost when passing through each AdS giant.

Thus, if there are N or more AdS giants the flux at the center of the AdS

space will become zero or negative. A positive five form flux is required to

support an AdS giant however. Given the identification of a spherical giant

graviton with a column of O(N) boxes, it seems natural to identify a Young

diagram with O(1) columns in which each column has O(N) boxes as a bound

state of spherical giants. Similarly, we can identify a Young diagram con-

sisting of O(1) rows each containing O(N) boxes with a bound state of AdS

giants. Treating the dynamics of such systems requires that the giants can

be excited; we review the technology and notation relating to excited giants

next.
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4 Excited Giant Gravitons

4.1 Restricted Schur Polynomials

On the string theory side, exciting a giant graviton corresponds to attaching

open strings to the giant. In the dual field theory, the Schur polynomial

operators described previously are extended to include open strings in their

description. This is done in the following way. Firstly, for each open string

attached to the giant we replace a matrix Z in the Schur polynomial by

an open string word denoted by ((W a)ij). This open string word simply

corresponds to the product of O(
√

N) matrices each of which could in principle

be fermions, Higgs fields or covariant derivatives of these fields. Secondly,

the overall coefficient of the polynomial is modified from 1
n! to 1

(n−k)!
, where

k is the number of open strings attached. Finally, the conventional trace

operation used in obtaining the character is replaced with an operation known

as a restricted trace, a concept which will be elaborated upon shortly. The

resultant operator shown below is known as a restricted Schur polynomial.

χ
(k)
R,R1

(Z, W (1), . . . , W (k)) =
1

(n− k)!

∑

σ∈Sn

TrR1
(ΓR(σ))Tr(σZ⊗n−kW (1) . . . W (k)),

T r(σZ⊗n−kW (1) . . .W (k)) = Zi1
iσ(1)

Zi2
iσ(2)

. . . Z
in−k

iσ(n−k)
(W (1))in−k+1

iσ(n−k+1)
. . . (W (k))in

iσ(n)
.

In this definition, R1 is an irreducible representation of Sn−k and we therefore

associate it with a Young diagram with n − k boxes. Here n is O(N) and k

is O(1). Consider the case where all the open strings attached to the giants

are distinguishable (this corresponds to all the open string words in the re-

stricted Schur polynomial operator being distinct). The representation R of

Sn will subduce a representation of the Sn−k ⊗ (S1)k subgroup which will be

reducible for the case σ ∈ Sn−k. Now, the restricted trace operation corre-

sponds to tracing over only those indices belonging to a particular irreducible

component of R (i.e. tracing over a particular block of the matrix ΓR(σ) under

restricting Sn to Sn−k⊗ (S1)k). In order to see the subtleties involved we need
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to consider the following cases:

First consider the situation where the irreducible representation R1 only ap-

pears once under restricting from Sn to Sn−k ⊗ (S1)k. Consider for example

restricting Sn to Sn−2 ⊗ (S1)2. Further, suppose that under restricting to Sn

to Sn−2 ⊗ (S1)2 we have:

R → R1 ⊕R2 ⊕R3.

For σ ∈ Sn−2, a suitable choice of basis yields:




ΓR1
(σ)i1j1 0 0

0 ΓR2
(σ)i2j2 0

0 0 ΓR3
(σ)i3j3


 . (12)

Thus, in this case, TrR1
(ΓR(σ)) is uniquely defined i.e. simply trace over

ΓR1
(σ). If σ 6∈ Sn−2, we utilize the same basis used previously and still trace

over the same block of ΓR(σ) even though ΓR(σ) need not be block diagonal.

TrR1
(ΓR(σ)) does not have an obvious group theoretic interpretation (for one

thing it is basis dependent, unlike the character), nonetheless we interpret

operators defined using TrR1
(ΓR(σ)), where the trace is taken over an on -

diagonal block, as being dual to a system with one open string attached to

each giant.

Now consider the situation where the irreducible representation R1 appears

more than once. Considering the same restriction as above, Sn to Sn−2⊗(S1)2,

suppose we now have:

R → R1 ⊕R1 ⊕R2.

For σ ∈ Sn−2 we have in a suitable basis:

ΓR(σ) =




ΓR1
(σ)i1j1 0 0

0 ΓR1
(σ)i1j1 0

0 0 ΓR2
(σ)i2j2


 . (13)
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TrR1
(ΓR(σ)) is no longer uniquely defined as a result of the fact that the

representation R1 appears with multiplicity greater than one. The operators

defined using TrR1
(ΓR(σ)) are still interpreted as being dual to a system with

one open string attached to each giant however. The primary difference

is that the particular diagonal block that is traced over is determined by

what subgroups are used in the restriction. These subgroups are the set of

elements of the permutation group that leave an index invariant, σ(i) = i.

Choosing the index to be the index of an open string, we can associate

the subgroups participating with specific open strings. The subgroups are

specified by dropping boxes from R, so that we can now associate boxes in

R with specific open strings. This leads to a convenient graphical notation

which has been developed in [4, 5]. There is an obvious generalization to

the case that a representation R1 appears n times after restricting to the

subgroup.

Now, if we assume that the irreducible representation R1 appears more than

once and the chain of subductions of R (i.e. the order in which we drop boxes

from R) indicates that the trace must be taken over an off - diagonal block of

ΓR(σ), we can provide another valid definition of TrR1
(ΓR(σ)). Consider ΓR(σ)

in the basis utilized above for a general element σ ∈ Sn.

ΓR(σ) =




A
(1,1)
i1j1

A
(1,2)
i1j2

A
(1,3)
i1j3

A
(2,1)
i2j1

A
(2,2)
i2j2

A
(2,3)
i2j3

A
(3,1)
i3j1

A
(3,2)
i3j2

A
(3,3)
i3j3


 . (14)

We take the trace over the off diagonal blocks A
(1,2)
i1j2

and A
(2,1)
i2j1

as a valid

definition for TrR1
(ΓR(σ)) for example. Again TrR1

(ΓR(σ)) does not have an

obvious group theoretic interpretation. This is most easily illustrated by an

example:

Consider an irreducible representation of S5, R = and and irreducible

representation of S3, R1 = which is subduced from R. The full set of
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irreducible representations that R subduces via the removal of two boxes are

as follows:

Figure 1: Irreducible representations subduced from R by removing two boxes

TrR1
(ΓR(σ)) can now be seen to correspond to either tracing over block A or

block B of the ΓR(σ) matrix below:

B

A

ΓR(σ) =

Figure 2: Off-Diagonal blocks associated to R1

Here we see how the irreducible representations and in particular, the spe-

cific chain of subductions involved, identify which block of the matrix ΓR(σ))

to trace over (as discussed above). We interpret operators defined using re-

stricted characters which correspond to traces over off diagonal blocks as

being dual to systems where open strings are stretched between the giants.

If any of the strings are identical, one needs to decompose with respect to

a larger subgroup and to pick a representation for the strings which are

indistinguishable. Thus, for example, if we consider a bound state of a giant

system with three identical strings attached, we would consider an Sn−3 ⊗ S3

subgroup of Sn. The restricted Schur polynomial would be given by χ
(3)
R,R1

with
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R an irreducible representation of Sn and R1 an irreducible representation of

Sn−3 ⊗ S3. The S3 subgroup would act by permuting the indices of the three

identical strings; the Sn−3 subgroup would act by permuting the indices of

the Zs out of which the giant is composed. Write R1 = r1 × r2 with r1 are

irreducible representation of Sn−3 and r2 an irreducible representation of S3.

As an example, if we take R to be an irreducible representation of S9

R = , dim(R) = 84

then we can have

R1 = ⊗ , dim(R1) = 5, R1 = ⊗ , dim(R1) = 10,

R1 = ⊗ , dim(R1) = 9, R1 = ⊗ , dim(R1) = 18,

R1 = ⊗ , dim(R1) = 32,

or

R1 = ⊗ , dim(R1) = 10.

By summing the dimensions of these representations, it is easy to see that

we have indeed listed all of the representations that are subduced by R.

In practice the restricted trace is obtained by utilizing projection operators

in both cases. The operators defined in [4] are utilized for tracing over on-

diagonal blocks (one string attached to each membrane). The operators used

to calculate the restricted trace for the off diagonal blocks, which we term

intertwiners, will be explained in detail in section 6. Thus we have:

TrR1
= Tr (ΠΓR(σ)) .
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where Π is a product of projection operators and/or intertwiners, used to

implement the restricted trace. Π is defined by the sequence of irreducible

representations used to subduce R1 from R, as well as the chain of subgroups

to which these representations belong. Since the row and column indices of

the block that we trace over (denoted by R1 in the above formula) need not

coincide, we need to specify this data separately for both indices. The graph-

ical notation - which we review briefly below - summarizes this information.

For the case that we have k strings, we label the words describing the open

strings 1, 2, ..., k. Denote the chain of subgroups involved in the reduction by

Gk ⊂ Gk−1 ⊂ · · · ⊂ G2 ⊂ G1 ⊂ Sn. Gm is obtained by taking all elements Sn that

leave the indices of the strings W (i) with i ≤ m inert. To specify the sequence

of irreducible representations employed in subducing R1, place a pair of labels

into each box, a lower label and an upper label. The representations needed

to subduce the row label of R1 are obtained by starting with R. The second

representation is obtained by dropping the box with upper label equal to 1;

the third representation is obtained from the second by dropping the box with

upper label equal to 2 and so on until the box with label k is dropped. The

representations needed to subduce the column label are obtained in exactly

the same way except that instead of using the upper label, we now use the

lower label. For example, block A of ΓR(σ)) in Figure 2 is labeled by:

1
2

2
1

For further details and explicit examples, see [4].

4.2 Open String Words

The open string words built out of the Z and Y matrices are of the form:

W i
j = (Y Z...ZY Z...ZY Z...ZY )ij .
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We can label these open string words as:

(W ({n1, n2, · · · , nL−1}))ij = (Y Zn1Y Zn2Y · · ·Y ZnL−1Y )ij . (15)

where {n1, n2, · · · , nL−1} are Cuntz lattice occupation numbers (the Cuntz os-

cillator chain will be discussed in the next section). The giant is built out of

Zs; the first and last letters of the open string word W are not Zs. We will

always use L to denote the number of Y fields in the open string word and

J = n1 + n2 + · · · + nL−1 to denote the number of Z fields in the open string

word. The number of fields in each word is J + L ≈ L in the case that J ¿ L

which we will assume in this dissertation. For the words W (1),W (2) to be dual

to open strings, we need to take L ∼ O(
√

N). We do not know how to contract

the open strings words exactly; when contracting the open string words, only

the planar diagrams are summed. To suppress the non-planar contributions

we take L2

N ¿ 1. To do this we consider a double scaling limit in which the

first limit takes N → ∞ holding L2

N fixed and the second limit takes the ef-

fective genus counting parameter L2

N to zero. Taking the limits in this way

corresponds, in the dual string theory, to taking the string coupling to zero,

in the string theory constructed in a fixed giant graviton background. Since

the two strings are distinguishable they are represented by distinct words

and hence, in the large N limit, we have

〈W (i)(W (j))†〉 ∝ δij .

When computing a correlator of two restricted Schur polynomials, the fields

belonging to the giants in the two systems of excited giant gravitons are

contracted amongst each other, the fields in the first open string of each

are contracted amongst each other and the fields in the second open string

are contracted amongst each other. We drop the contributions coming from

contractions between Zs in the open strings and Zs associated to the brane

system, as well as contractions between Zs in different open string words.

When computing two point functions in free field theory, if the number of
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boxes in the representation R is less than1 O(N2) and the numbers of Z’s in the

open string is O(1), the contractions between any Zs in the open string and

the rest of the operator are suppressed in the large N limit[17]. Contractions

between Zs in different open string words are non planar and are hence

subleading (clearly there are no large combinatoric factors that modify this).

An important parameter of our excited giant graviton system is N − b0. This

parameter can scale as O(N), O(
√

N) or O(1). In section 8.3, we will see that

when N−b0 is O(1) the sphere giant boundary interaction is O( 1
N ), when N−b0

is O(
√

N) the boundary interaction is O( 1√
N

) and when N − b0 is O(N), the

boundary interaction is O(1). Since we want to explore the dynamics arising

from the boundary interaction, we will assume that N − b0 is O(N).

As will be discussed in section 5, the giant boundstate and the open string

can exchange momentum. Thus the value of J is not a parameter that we can

choose, but rather, it is determined by the dynamics of the problem. Cases in

which J becomes large correspond to the situation in which a lot of momen-

tum is transferred from the giant to the open string, presumably signaling

an instability. See [18] for a good physical discussion of this instability. In

cases where J is large, back reaction is important and the approximations we

are employing are no longer valid. This will happen when J becomes O(
√

N)

since the assumption that we can drop non-planar contributions when con-

tracting the open string words breaks down. Essentially this is because as

more and more Zs hop onto the open string, it is starting to grow into a state

which is eventually best described as a giant graviton itself. One can also

no longer neglect the contractions between any Zs in the open string and

the rest of the operator, presumably because the composite system no longer

looks like a string plus giant (which can be separated nicely) but rather, it

starts to look like one large deformed threebrane. Thus, the fact that our

approximation breaks down has a straight forward interpretation: We have

set up our description by assuming that the operator we study is dual to a

threebrane with an open string attached. This implies that our operator can

1When the number of operators in the Young diagram is O(N2), the operator is dual
to an LLM geometry[16].
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be decomposed into a “threebrane piece” and a “string piece”. These two

pieces are treated very differently: when contracting the threebrane piece,

all contractions are summed; when contracting the string piece, only planar

contractions are summed. Contractions between the two pieces are dropped.

When a large number of Zs hop onto the open string our operator is simply

not dual to a state that looks like a threebrane with an open string attached

and our approximations are not valid. We are not claiming that this operator

can not be studied using large N techniques - it may still be possible to set

up a systematic 1/N expansion. We are claiming that the diagrams we have

summed do not give this approximation.
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5 Cuntz Chain Hamiltonian

Our goal is to compute the one loop anomalous dimensions of operators in

the N = 4 super Yang Mills theory which are dual to open strings ending

on bound states of giant gravitons. It has been demonstrated that the one

loop anomalous dimensions of operators dual to closed string states give

rise to an integrable spin chain [19], [20]. Bethe Ansatz techniques can be

utilized to solve the resulting integrable spin chain model describing the full

planar one loop spectrum of anomalous dimensions, [20]. Attempts to utilize

a similar approach for operators dual to open strings are hindered by the

fact that the open string and the giant graviton to which it is attached can

exchange momentum and thus the number of sites in the spin chain lattice

is no longer fixed (i.e. it becomes a dynamical variable). This difficulty was

overcome with the introduction of the Cuntz oscillator chain which has a

fixed number of lattice sites [21]. The Cuntz chain uses one of the matrices

defined above, Y say, to define a lattice which is populated by another of

the previously described matrices, Z for instance. This is in contrast to how

the spin chain is obtained - under restricting to the SU(2) sector, one of the

matrices, Y say, is mapped into spin down and the other, Z, is mapped into

spin up. Many encouraging results utilizing the Cuntz oscillator approach

have been obtained - the coherent state expectation value of the Cuntz chain

Hamiltonian reproduces the open string action for an open string attached

to a sphere giant in AdS5×S5 [21], [18] for an open string attached to an AdS

giant in AdS5 × S5 [22] and for an open string attached to a sphere giant in a

deformed AdS5 × S5 background[23]. This parallels the spin chain results for

the closed string where the low energy description of the spin chain relevant

for closed string states appearing on the field theory side matches perfectly

with the low energy limit of the string action in AdS5 × S5 [24]. This is an

important result because it shows how a string action can emerge from large

N gauge theory.

The Hamiltonian for this Cuntz oscillator chain consists of two parts: the

bulk term which describes the transposition of adjacent Y ’s and Zs in the

Cuntz oscillator chain (i.e. the open string word (17)) and boundary inter-
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action terms. It is useful to decompose the potential for the scalars into D

terms and F terms. The advantage of this decomposition is that it is known

that at one loop, the D term contributions cancel with the gauge boson ex-

change and the scalar self energies[25]. Consequently we will only consider

the planar interactions arising from the F term. The F term interaction pre-

serves the number of Y ’s (the lattice is not dynamical) and allows impurities

(the Zs) to hop between neighboring sites. The bulk term has the form:

Hbulk = 2λ

L∑

l=1

â†l âl − λ

L−1∑

l=1

(â†l âl+1 + âlâ
†
l+1), (16)

where

âiâ
†
i = I, â

†
i âi = I − |0〉〈0|.

See [18] for the derivation of this result. The boundary interaction terms

arise from the interaction of the open string with the giant to which it is

attached. This interaction introduces sources and sinks for the impurities

at the boundaries of the lattice. The boundary interaction allows Zs to hop

from the string onto the giant, or from the giant onto the string. Since the

number of Zs gives the angular momentum of the system in the plane that

the giant is orbiting in, the boundary interaction allows the string and the

brane to exchange angular momentum. We can classify the different types

of boundary interaction depending on whether momentum flows from the

string to the brane or from the brane to the string. Consider the interaction

that allows a Z to hop from the first or last site of either string onto the

giant. In this process the string loses momentum to the giant graviton. We

call this a “hop off” process because a Z has hopped off the string. The

opposite process in which a Z hops off the brane and onto the string is called

a “hop on” process. In the “hop on” process the giant loses momentum to

the string. In addition to these momentum exchanging processes, there is

also a boundary interaction in which a Z belonging to the giant “kisses” the

first (or last) Y in the open string word so that no momentum is exchanged.

We call this the kissing interaction. To derive the boundary interactions

27



and hence the full Cuntz chain Hamiltonian for multiple strings attached to

an arbitrary number of giant gravitons, we need to be able to compute the

two point functions of restricted Schur polynomials dual to such systems. In

addition to the technology developed in [4] we need to be able to calculate

restricted characters for stretched string states. We treat this in the next

section.
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6 Intertwiners

We now describe how to obtain the intertwiner projection operators used

to construct the gauge theory operators dual to states with open strings

stretching between giant gravitons.

6.1 Strings stretching between two branes

The Gauss Law is a strict constraint on the allowed excited brane configu-

rations [3] : since the branes we consider have a compact world volume, the

total charge on any given brane must vanish. This implies that to construct a

state with strings stretching between two branes, we need at least two strings

in the brane plus string system. Thus, in constructing the restricted Schur

polynomial, we will need to remove at least two boxes. For concreteness, con-

sider the case of two sphere giants, so that our restricted Schur polynomial

is built with the Young diagram R that has two columns and each column

has O(N) boxes. R has a total of n = O(N) boxes. Denote the two boxes to be

removed in constructing the restricted Schur polynomial by box 1 and box

2. To attach strings stretching between these two giants, the two boxes must

belong to different columns. Assume that box 1 belongs to column 1 and

box 2 to column 2. After restricting Sn to an Sn−1 subgroup, representation

R subduces irreducible representation R′ (whose Young diagram is obtained

by removing box 1 from R) and irreducible representation S′ (whose Young

diagram is obtained by removing box 2 from R). If we now further restrict

to an Sn−2 subgroup, one of the irreducible representations subduced by R′ is

R′′ (whose Young diagram is obtained by removing box 2 from R′) and one of

the irreducible representations subduced by S′ is S′′ (whose Young diagram

is obtained by removing box 1 from S′). Note that R′′ and S′′ have the same

Young diagram (and hence the same dimension) but act on distinct states

in the carrier space of R. The two possible intertwiners we can define map

between the states belonging to R′′ and the states belonging to S′′.

The precise form of the intertwiners depends on the basis used for the

Sn−2 irreducible representations ΓR′′(σ) and ΓS′′(σ). In writing down the inter-

twiner, we assume that ΓR′′(σ) and ΓS′′(σ) represent σ with the same matrix.
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With this assumption, it is possible to put the elements of the basis of the

carrier space of R′′ into one to one correspondence with the elements of the

basis of the carrier space of S′′: |i, R′′〉 ↔ |i, S′′〉. We will use this correspon-

dence below. In a suitable basis, we have

ΓR(σ) =




ΓR′′(σ) 0 · · ·
0 ΓS′′(σ) · · ·
· · · · · · · · ·


 ,

for σ ∈ Sn−2. In constructing the restricted Schur polynomial, we also consider

more general σ ∈ Sn. In this case, if σ /∈ Sn−2, ΓR(σ) will not be block diagonal.

Even in this more general case, we will use the labels of the Sn−2 subduced

subspaces to label the carrier space of irreducible representation R. Denote

the projection operator that projects from the carrier space of R to the R′′

subspace by PR→R′→R′′ , and the projection operator that projects from the

carrier space of R to the S′′ subspace by PR→S′→S′′ . Clearly, the intertwiner

which maps from S′′ to R′′ must take the form

IR′′,S′′ = PR→R′→R′′OPR→S′→S′′ =




0 M · · ·
0 0 · · ·
· · · · · · · · ·


 . (17)

The second possible intertwiner that we can construct is given by

IS′′,R′′ = PR→S′→S′′OPR→R′→R′′ =




0 0 · · ·
M 0 · · ·
· · · · · · · · ·


 .

We want to find a unique specification for O so that M is simply the identity

matrix. For σ ∈ Sn−2 we have

ΓR(σ)IR′′,S′′ =




0 ΓR′′(σ)M · · ·
0 0 · · ·
· · · · · · · · ·
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and

IR′′,S′′ΓR(σ) =




0 MΓS′′(σ) · · ·
0 0 · · ·
· · · · · · · · ·


 .

Now, by assumption, ΓR′′(σ) = ΓS′′(σ) since we have σ ∈ Sn−2. Thus,

[
ΓR(σ), IR′′,S′′

]
=




0
[
ΓR′′(σ),M

] · · ·
0 0 · · ·
· · · · · · · · ·


 . (18)

Applying Schur’s Lemma (for irreducible representation R′′) to the right hand

side implies that M is the identity matrix if and only if
[
ΓR(σ), IR′′,S′′

]
= 0 for

all σ ∈ Sn−2. Clearly, for σ ∈ Sn−2 we have
[
ΓR(σ), PR→R′→R′′

]
=

[
ΓR(σ), PR→S′→S′′

]
=

0 so that

0 =
[
ΓR(σ), IR′′,S′′

]
= PR→R′→R′′

[
ΓR(σ), O

]
PR→S′→S′′ .

Thus, we will require

[
ΓR(σ), O

]
= 0, ∀σ ∈ Sn−2. (19)

If we specify a condition that determines the normalization of the intertwiner,

then this normalization condition and (19) provide the specification for O

that we were looking for. The normalization of the intertwiner is fixed by

demanding that

Tr (M) = dim(R′′),

with dim(R′′) the dimension of irreducible representation R′′. This provides a

unique definition of the intertwiner.

For the example we are considering here, imagine that the Sn−1 subgroup

is obtained as

G = {σ ∈ Sn|σ(n) = n},

and further that the Sn−2 subgroup is obtained as

H = {σ ∈ G|σ(n− 1) = n− 1}.
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Then the intertwiner is given by

IR′′,S′′ = NPR→R′→R′′ΓR(n, n− 1)PR→S′→S′′ ,

with

N−1 =
Tr R′′,S′′(ΓR(n, n− 1))

dim(R′′)
≡

dim(R′′)∑

i=1

〈R′′, i|ΓR(n, n− 1)|S′′, i〉
dim(R′′)

.

This last equation makes use of the correspondence between the bases of the

carrier spaces R′′ and S′′. Using the technology developed in section 7, we

find
Tr R′′,S′′(ΓR(n, n− 1))

dim(R′′)
=

√
1− 1

(c1 − c2)2
,

where c1 and c2 are the weights associated with box 1 and box 2 respectively.

Note that the above trace is invariant under simultaneous similarity trans-

formations of R′′ and S′′. It will however, change under general similarity

transformations so that this last result is dependent on our choice of basis.

6.2 The General Construction

In the previous section we have developed our discussion of the intertwiner

using a system of two branes with strings stretching between them. Our con-

clusion however, is completely general. For any system of branes with strings

stretching between the branes, the intertwiner is always given, up to normal-

ization, by the product (projection operator)×(group element)×(projection

operator). The Gauss Law forces the net charge on any given brane’s world-

volume to vanish. This implies that for every string leaving a brane’s world-

volume, there will be a string ending on the worldvolume. Thus, starting

with any particular brane with a stretched string attached, we can follow the

string to the next brane, switch to the stretched string leaving that brane,

follow it and so on, until we again reach the first brane. If we move along k

stretched strings before returning to the starting point, the group element is

ΓR(n, n − k + 1). The normalization factor easily follows using the results of

section 7.
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6.3 Example

Consider the excited brane system described by the diagram (see section 4

for a summary of our graphical notation)

1
2

2
3

3
1 .

The boxes are labeled by the upper index in each box and the weight of box

i is denoted ci. The projector PR→R′′′1
projects through the following sequence

of irreducible representations

→ → → .

The projector PR→R′′′2
projects through the following sequence of irreducible

representations

→ → → .

The intertwiner is now given by

I12 = NPR→R′′′2
ΓR ((n, n− 2)) PR→R′′′1

,

where

N−1 =
Tr R′′′2 ,R′′′1

(ΓR ((n, n− 2)))

dim(R′′′1 )
=

1
c2 − c3

√
1− 1

(c1 − c2)2

√
1− 1

(c1 − c3)2
,
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is easily computed using the methods of section 7. To understand the order

of the projection operators, note that

Tr R′′′1 ,R′′′2

(
ΓR(σ)

)
=

∑

i

〈i, R′′′1 |ΓR(σ)|i, R′′′2 〉

= Tr (N−1PR→R′′′2
ΓR(n, n− 2)PR→R′′′1

ΓR(σ)),

so that the row (column) index of the trace is column (row) index of the

intertwiner respectively.
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7 Restricted Characters

Starting from Sn, define a chain of subgroups Gi i = 1, ..., d as follows

G1 = {σ ∈ Sn|σ(n) = n} (20)

Gi = {σ ∈ Gi−1|σ(n− i + 1) = n− i + 1}, i = 2, 3, ..., d. (21)

In this section we will give a simple algorithm for the computation of

χR1,R2

(
(p1, p2, ..., pm)

)
≡ Tr R1,R2

(
ΓR

(
(p1, p2, ..., pm)

))

with R1 and R2 irreducible representations of Gd subduced from R, (p1, p2, ..., pm)

is an element of Sn specified using the cycle notation and n − d < pi ≤ n ∀i.
We call χR1,R2

a restricted character. If R1 = R2, we will simply write χR1
.

We have already seen that restricted characters determine the normalization

of the intertwiners. Further, they are also needed in the derivation of the

hopping identities that determine the interactions between strings and the

branes to which they are attached.

In section 7.1 we will derive the algorithm for the computation of the

restricted character. Subsequently, we describe in section 7.2 a graphical

notation which considerably simplifies the computation. The remainder of

section 7 then develops this diagrammatic notation further.

7.1 Computing Restricted Characters

Consider an irreducible representation R of Sn labeled by a Young diagram

which has at least two boxes, either of which can be dropped to leave a valid

Young diagram. Label these two boxes by 1 and 2. Denote the weights

of these boxes by c1 and c2. Denote the irreducible representation of Sn−2

obtained by dropping box 1 and then box 2 by R′′1. Denote the irreducible

representation of Sn−2 obtained by dropping box 2 and then box 1 by R′′2.

Our first task is to compute

Tr R′′1 ,R′′2
(ΓR ((n, n− 1))) .
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Using the subgroup swap rule obtained in [4], we can write

χR′′1
((n, n− 1)) =

[
1− 1

(c1 − c2)2

]
χR′′2

((n, n− 1)) +
1

(c1 − c2)2
χR′′1

((n, n− 1)) (22)

+

√
1− 1

(c1 − c2)2
1

c1 − c2

[
χR′′1 ,R′′2

((n, n− 1)) + χR′′2 ,R′′1
((n, n− 1))

]
.

A second application of the subgroup swap rule gives

χR′′2 ,R′′1
((n, n− 1)) =

[
1− 1

(c1 − c2)2

]
χR′′1 ,R′′2

((n, n− 1)) +
1

(c1 − c2)2
χR′′2 ,R′′1

((n, n− 1))

+

√
1− 1

(c1 − c2)2
1

c1 − c2

[
χR′′2

((n, n− 1))− χR′′1
((n, n− 1))

]
. (23)

Now, substituting the results[4]

χR′′1
((n, n− 1)) =

1
c1 − c2

dim(R′′1), χR′′2
((n, n− 1)) =

1
c2 − c1

dim(R′′2),

into (22) and (23) and solving, we obtain

χR′′1 ,R′′2
((n, n− 1)) =

√
1− 1

(c1 − c2)2
dim(R′′1) = χR′′2 ,R′′1

((n, n− 1)) .

Next, consider an irreducible representation of Sn labeled by Young dia-

gram R . Choose three boxes in this Young diagram, and label them 1, 2 and

3 respectively. Choose the boxes so that dropping box 1 gives a legal Young

diagram R′ labeling an irreducible representation of Sn−1, dropping box 1 and

then box 2 gives a legal Young diagram R′′ labeling an irreducible represen-

tation of Sn−2, and dropping box 1, then box 2 and then box 3 again gives a

legal Young diagram R′′′ labeling an irreducible representation of Sn−3. We

will compute

χR′′′ ((n, n− 2)) = Tr R′′′ (ΓR ((n, n− 2))) .

In what follows, we will frequently need to refer to vectors belonging to

the carrier spaces of specific representations subduced by R when boxes are

dropped from R. A convenient notation is to list the labels of the boxes

that must be dropped from R in the order in which they must be dropped.
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Thus, the ket |i, 123〉 is the ith ket belonging to the carrier space of the Sn−3

irreducible representation obtained by dropping box 1, then box 2 and then

box 3 from R; the ket |j, 231〉 is the jth ket belonging to the carrier space of

the Sn−3 irreducible representation obtained by dropping box 2, then box 3

and then box 1 from R (assuming of course that the boxes can be dropped

from R in this order, giving a legal Young diagram at each step). Start by

writing

χR′′′((n, n− 2)) =
dim(R′′′)∑

i=1

〈i, 123|ΓR ((n, n− 2)) |i, 123〉

=
dim(R′′′)∑

i=1

〈i, 123|ΓR′ ((n− 1, n− 2)) ΓR ((n, n− 1)) ΓR′ ((n− 1, n− 2)) |i, 123〉.

Noting that ΓR′ ((n− 1, n− 2)) |i, 123〉 must belong to the carrier space of R′,

and using the completeness relation (1R′ is the identity on the R′ carrier

space)

1R′ =
dim(R′)∑

k=1

|k, 1〉〈k, 1|,

we have

χR′′′ ((n, n− 2)) =
dim(R′′′)∑

i=1

dim(R′)∑

j,k=1

〈i, 123|ΓR′ ((n− 1, n− 2)) |k, 1〉〈k, 1|ΓR ((n, n− 1)) |j, 1〉

×〈j, 1|ΓR′ ((n− 1, n− 2)) |i, 123〉.

Now, decompose R′ into a direct sum of Sn−2 irreducible representations

R′ = ⊕R′′β. Use the label β to denote the box that must be dropped from R′

to obtain R′′β. Thus, we can write

1R′ =
dim(R′)∑

k=1

|k, 1〉〈k, 1| =
∑

β

dim(R′′β)∑

k=1

|k, 1β〉〈k, 1β|,
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and hence

χR′′′ ((n, n− 2)) =
dim(R′′′)∑

i=1

∑

β1,β2

dim(R′′β1
)∑

k=1

dim(R′′β2
)∑

j=1

〈i, 123|ΓR′ ((n− 1, n− 2)) |k, 1β1〉

×〈k, 1β1|ΓR ((n, n− 1)) |j, 1β2〉〈j, 1β2|ΓR′ ((n− 1, n− 2)) |i, 123〉.

Now, introduce the operator O(2) obtained by summing all two cycles of the

Sn−2 subgroup of which the R′′β are irreducible representations. This operator

is a Casimir of Sn−2. If the Young diagram R′′β has ri boxes in the ith row and

ci boxes in the ith column, then when acting on the carrier space of R′′β we

have[26]

O(2)|i, 1β〉 =


∑

i

ri(ri − 1)
2

−
∑

j

cj(cj − 1)
2


 |i, 1β〉 ≡ λβ |i, 1β〉.

Clearly, for the problem we study here, λβ1
= λβ2

if and only if Rβ1
and

Rβ2
have the same shape as Young diagrams. From the definition of the G2

subgroup given above, it is clear that

[
O(2),ΓR ((n, n− 1))

]
= 0.

It is now a simple matter to see that

λβ1
〈k, 1β1|ΓR ((n, n− 1)) |j, 1β2〉 = 〈k, 1β1|O(2)ΓR ((n, n− 1)) |j, 1β2〉

= 〈k, 1β1|ΓR ((n, n− 1)) O(2)|j, 1β2〉
= λβ2

〈k, 1β1|ΓR ((n, n− 1)) |j, 1β2〉

so that 〈k, 1β1|ΓR ((n, n− 1)) |j, 1β2〉 vanishes if Rβ1
and Rβ2

do not have the same

shape. A completely parallel argument, using a Casimir of Sn−3, can be used

to show that 〈j, 1α1α2|ΓR′ ((n− 1, n− 2)) |i, 123〉 is only non-zero if α1 = 2, α2 = 3

or α1 = 3, α2 = 2. Thus,

χR′′′ ((n, n− 2)) =
dim(R′′′)∑

i=1,j,k

[
〈i, 123|ΓR′ ((n− 1, n− 2)) |k, 123〉〈k, 123|ΓR ((n, n− 1)) |j, 123〉
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× 〈j, 123|ΓR′ ((n− 1, n− 2)) |i, 123〉+ 〈i, 123|ΓR′ ((n− 1, n− 2)) |k, 132〉
× 〈k, 132|ΓR ((n, n− 1)) |j, 132〉〈j, 132|ΓR′ ((n− 1, n− 2)) |i, 123〉

]

=
[

1
(c2 − c3)2

1
c1 − c2

+
(

1− 1
(c2 − c3)2

)
1

c1 − c3

]
dim(R′′′).

This example illustrates the general algorithm to be used to compute

restricted characters:

• The group element whose trace is to be computed, can be decomposed

into a product of two cycles of the form ΓR ((i, i + 1)). A complete set of

states is inserted between each factor.

• Using appropriately chosen Casimirs, one can argue that the only non-

zero matrix elements of each factor, are obtained when the order of

boxes dropped to obtain the carrier space of the bra matches the order

of boxes dropped to obtain the carrier space of the ket, except for the

(n− i + 1)th and (n− i + 2)th boxes, whose order can be swapped.

• We can plug in the known value of the restricted character, which we

have computed for precisely the two cases arising in the previous point.

7.2 Strand Diagrams

Strand diagrams are a graphical notation designed to compute restricted

characters. Strand diagrams keep track of two things:

• The order in which boxes are to be dropped and the identity (= position

within the Young diagram) of the boxes.

• The group element whose trace we are computing.

If we are to drop n boxes, we draw a picture with n columns. The columns are

populated by labeled strands - each strand represents one of the boxes that

are to be dropped. We label the strands by the upper index in the box. Here

we make use of the graphical notation summarized in section 4. Whatever

appears in the first column is to be dropped first; whatever appears in the

39



second column is to be dropped second and so on. The strands are ordered

at the top of the diagram, according to the order in which they must be

dropped to get the row index. The strands are ordered at the bottom of the

diagram according to the column index. The strands move from the top of

the diagram to the bottom of the diagram, without breaking, so that strands

ends at the top connect to the corresponding strand ends at the bottom. To

connect the strands (which in general are in a different order at the top and

bottom of the diagram) we need to weave the strands, thereby allowing them

to swap columns. The allowed swaps depends on the specific group element

whose trace we are computing. To determine the allowed swaps, write the

group element as a product of cycles of the form (i, i + 1). For example, we

would write

(n, n− 2) = (n, n− 1)(n− 1, n− 2)(n, n− 1).

Each time we drop a box, we are considering a new subgroup. The action

of the permutation group can be visualized as a permutation of n indices.

The subgroups are obtained by considering elements that hold certain indices

fixed (see (20) and (21)). Choose the subgroups involved so that when box i is

dropped, n− i+1 is held fixed. Clearly then, each column j is associated with

the index n− j + 1. Each cycle (i, i + 1) is drawn as a box which straddles the

columns associated with indices i and i+1. When the strands pass through a

box, they may do so without swapping or by swapping columns. Each box is

associated with a factor. Imagine that the strands passing through the box,

reading from left to right, are labeled n and m. The weights associated with

these boxes are cn and cm respectively. If the strands do not swap inside the

box the factor for the box is

fno swap =
1

cn − cm
.

If the strands do swap inside the box, the factor is

fswap =

√
1− 1

(cn − cm)2
.
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Denote the product of the factors, one from each box, by F . We have

Tr R1,R2

(
ΓR(σ)

)
=

∑

i

Fidim(R1),

where the index i runs over all possible paths consistent with the boundary

conditions. With a little thought, the astute reader should be able to convince

herself that this graphical rule is nothing but a convenient representation of

the computation of the last subsection.

7.3 Strand Diagram Examples

In this section we will illustrate the use of strand diagrams in the computation

of restricted characters. For our first example, we consider the computation

of

χ1 = Tr 1
3

2
1

3
2

(
Γ

(
(6, 4)

))
.

Writing (6, 4) = (6, 5)(4, 5)(6, 5) we obtain the strand diagram shown in Figure

Figure 3: The strand diagram used in the computation of χ1.

3. The factors for the upper most, middle and lower most boxes are

√
1− 1

(c1 − c2)2
,

√
1− 1

(c1 − c3)2
,

1
c2 − c3
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respectively. Thus,

χ1 =

√
1− 1

(c1 − c2)2

√
1− 1

(c1 − c3)2
1

c2 − c3
dim( )

= 2

√
1− 1

(c1 − c2)2

√
1− 1

(c1 − c3)2
1

c2 − c3
.

The alert reader may worry that our recipe is not unique. Indeed we could

also have written (6, 4) = (4, 5)(6, 5)(4, 5). In this case, we obtain the strand

diagram given in Figure 4. In this case, the factors for the upper most,

middle and lower most boxes are

1
c2 − c3

,

√
1− 1

(c1 − c2)2
,

√
1− 1

(c1 − c3)2

respectively. This gives exactly the same value for χ1. Next, we consider the

Figure 4: A second strand diagram that can be used in the computation of
χ1.

computation of

χ2 = Tr
1

2
3

(
Γ

(
(6, 4)

))
.

This example is interesting as more than one path contributes. Writing

(6, 4) = (4, 5)(6, 5)(4, 5) we obtain the strand diagrams shown in Figure 5. The
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product of factors for the diagram on the left is

1
c1 − c3

[
1− 1

(c2 − c3)2

]
.

The product of factors for the diagram on the right is

1
c1 − c2

1
(c2 − c3)2

.

Thus,

χ2 =
(

1
c1 − c3

[
1− 1

(c2 − c3)2

]
+

1
c1 − c2

1
(c2 − c3)2

)
dim( )

= 2
(

1
c1 − c3

[
1− 1

(c2 − c3)2

]
+

1
c1 − c2

1
(c2 − c3)2

)
.

The reader can check that the same value for χ2 is obtained by decomposing

(6, 4) = (6, 5)(4, 5)(6, 5).

Figure 5: The strand diagrams used in the computation of χ2.

Finally, consider

χ3 = Tr
1

2
3

(
Γ

(
1
))

.

Since we consider the identity element, the strand diagram has no boxes and
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hence χ3 = dim( ) = 2. Since (4, 5)(4, 5) = 1 we could also have written

χ3 = Tr
1

2
3

(
Γ

(
(4, 5)(4, 5)

))
.

In this case there are two strand diagrams given in Figure 6. Summing the

contributions from these two strand diagrams we obtain

χ3 =
1

(c2 − c3)2
dim( ) +

(
1− 1

(c2 − c3)2

)
dim( ) = dim( ) = 2.

Once again, the two ways of writing the restricted character give the same

result. Note that the trace

Figure 6: The strand diagrams used in the computation of χ3.

χ3 = Tr 1
2

2
1

3

(
Γ

(
1
))

,

clearly vanishes because we are tracing the identity over an off the diagonal

block. This is reflected graphically by the fact that there is no strand diagram

that can be drawn - the order of strands at the top of the diagram does not

match the order of strands at the bottom of the diagram and since we consider

the identity element, the strand diagram has no boxes.
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See appendix A for an application of strand diagrams to obtaining irreducible

matrix representations of Sn.

7.4 Tests of the Restricted Character Results

By summing well chosen restricted characters, one can recover the char-

acters of Sn which are known. This provides a number of tests that our

restricted character formulas pass. As an example, consider the computation

of χR ((6, 7)) for

R = .

From the character tables for S7 we find χR ((6, 7)) = 4. In terms of restricted

characters

χR ((6, 7)) = χ
2 1

((6, 7))+χ
1

2

((6, 7))+χ
2

1

((6, 7)) .

Using the algorithm given above, it is straight forward to verify that

χ
2 1

((6, 7)) = dim( ) = 4,

χ
1

2

((6, 7)) =
1
6
, χ

2
1

((6, 7)) = −1
6
,

which do indeed sum to give 4. The reader is invited to check some more

examples herself.

As a further check of our methods, we have computed the restricted char-

acters Tr R1,R2

(
ΓR

[
σ
])

numerically. This was done by explicitly constructing

the matrices ΓR

[
σ
]
. Each representation used was obtained by induction.

One induces a reducible representation; the irreducible representation that

participates was isolated using projection operators built from the Casimir

obtained by summing over all two cycles. See appendix B.2 of [4] for more

details. The resulting irreducible representations were tested by verifying
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the multiplication table of Sn. The intertwiners were computed using the

projection operators of [4] and the results of section 6; the normalization of

the intertwiner was computed numerically.
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8 General Cuntz Chain Hamiltonian

8.1 Overview and Notation

We now derive the full Cuntz chain Hamiltonian for a general open string

- giant system with any number of open strings attached and some or all

of the strings stretching between the giants. As discussed in section 5, the

full Cuntz chain Hamiltonian consists of a bulk term (18) describing the

hopping of Z’s into and out of lattice sites set up by the Y’s in the open

string word (i.e. the bulk of the open string) and boundary interaction

terms describing the transfer of angular momentum to the giant from the

open string and vice versa as well as the kissing interaction in which no

momentum is transferred. Since we already have the bulk term (18), we

now need to derive the boundary interaction terms. To make our discussion

concrete, we mostly consider the specific example of two strings attached to a

bound state of two sphere giants2. Note however, that most of the formulas

we derive (and certainly all the techniques we develop) are applicable to

the general problem. Both the strings and the branes that we consider are

distinguishable. In this case there are a total of six possible states. For a

bound state of two sphere giant gravitons, we need to consider restricted

Schur polynomials labeled by Young diagrams with two columns each with

O(N) boxes. Denote the number of boxes in the first column by b0+b1 and the

number of boxes in the second column by b0. Thus we choose b0 to be O(N)

(b1 is chosen to be O(1)). It is natural to interpret the number of boxes in

each column as the momentum of each giant. We can use the state operator

correspondence (see section 8.2.5 and appendix B for further discussion) to

associate a Cuntz chain state with each restricted Schur polynomial. The

Cuntz chain states have six labels in total: the first two labels are b0 and b1

which determine the momenta of the two giants; the next two labels are the

branes on which the endpoints of string one are attached and the final two

labels are the branes on which the endpoints of string two are attached. We

label the strings by ‘1’ and ‘2’. The brane corresponding to column 1 of the

2In Appendix C we consider a boundstate of three sphere giants with two open strings
attached.
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Young diagram is labeled ‘b’ (for big brane) and the brane corresponding

to column 2 of the Young diagram is labeled ‘l’ (for little brane). Since the

second column of a Young diagram can never contain more boxes that the

first column, and since the radius of the giant graviton is determined by the

square root of its angular momentum, these are accurate labels. Consider a

state with string 1 on big brane and string 2 on little brane. The restricted

Schur polynomial (written using the graphical notation of [4],[5]) together

with the corresponding Cuntz chain state are (in this case, b0 = 3 and b1 = 4)

2

1 ←→ |3, 4, bb, ll〉.

We will call states with strings stretching between branes “stretched string

states”. When labeling the Cuntz chain state corresponding to a stretched

string state, we will write the end point label corresponding to the upper

index first. Thus,

1
2

2
1 ←→ |3, 4, lb, bl〉.
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The remaing four states are

1

2 ←→ |3, 4, ll, bb〉

2
1

1
2 ←→ |3, 4, bl, lb〉,

2
1

←→ |2, 6, ll, ll〉
2
1 ←→ |4, 2, bb, bb〉.

The construction of the operators dual to excitations described by strings

stretching between the branes is facilitated by the results of sections 6 and 7.

In the notation of [4], we assume that when the restricted Schur polynomial

is to be reduced, string 1 is removed first and string 2 second. This implies

that, when using the graphical notation, removing the box occupied by string

1 first will always leave a valid Young diagram. This choice is arbitrary, but

useful for explicit computation. Once we have the form of the Hamiltonian,

we can always change to a “physical basis”.

We now derive a set of identities that allow us to compute the term in the

Hamiltonian describing the “hop off” process. These identities make exten-

sive use of the technology for computing restricted characters which we have

developed in sections 6 and 7. Concretely, these identities allow us to ex-

press objects like χ
(2)
R,R′′(Z,ZW (1), W (2)) in terms of χ

(2)
S,S′′(Z, W (1),W (2)) where

S is a Young diagram with one more box than R3. This then allows us to

describe the boundary interaction that results when the hopping interaction

3The number of primes on the label of the restricted Schur polynomial indicates how
many boxes are dropped, i.e. R′′ is obtained by dropping two boxes from R.
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(described by the bulk hamiltonian) causes a Z to hop past a Y marking an

endpoint of the open string (17) and subsequently be transferred to the giant

(i.e. hop off). Since the Hamiltonian must be Hermitian, we can obtain the

“hop on” term by daggering the “hop off” term. Finally, we obtain the mo-

mentum conserving boundary interaction by expressing the kiss as a hop on

followed by a hop off. This determines the complete Cuntz oscillator chain

Hamiltonian needed for a one loop computation of the anomalous dimensions

of operators dual to excited giant graviton bound states.

8.2 Hopping Identities

In this section, we derive identities that can be used to obtain the Cuntz

chain Hamiltonian that accounts for the O(g2
Y M ) correction to the anomalous

dimension of our operators. To construct the “hop off” process, we use the

fact that whenever a Z field hops past the borders of the open string word

W , the resulting restricted Schur polynomial decomposes into a sum of two

types of systems, one is a giant with a closed string and another is a string-

giant system where the giant is now bigger. In the large N limit only the

second type needs to be considered. The identities we derive in this section

express this decomposition. The irreducible representations which play a

role in the derivation of the identities are illustrated in Figure 7. The basic

structure of the derivation of these identities is very similar. For this reason,

we explicitly derive an identity in the next subsection and simply state the

remaining identities. In contrast to the case of a single string attached[5], here

it does make a difference if the first or last sites of the string participate in

the hopping. The identities needed in these two cases are listed separately.

We have performed extensive numerical checks of the identities, which we

describe next. Finally, we explain how to express the leading large N form

of the identities, in terms of states of the Cuntz chain.
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Figure 7: This figure shows the irreducible representations that are used in
the hopping identities. Starting from R, the figure shows which irreducible
representation is obtained when boxes in R are dropped.

8.2.1 Derivation of a Hopping Identity

Our starting point is the restricted Schur polynomial

χ
(2)
R,R′′

∣∣∣
1

∣∣∣
2

=
1

(n− 2)!

∑

σ∈Sn

Tr R′′ (ΓR(σ)) Zi1
iσ(1)

· · ·Zin−2

iσ(n−2)
(W (2))in−1

iσ(n−1)
(W (1))iniσ(n)

.

There are two labeled boxes in R; dropping box 1 gives irreducible representa-

tion R′; dropping box 2 gives irreducible representation R′′. Since R′ is an irre-

ducible representation of the Sn−1 subgroup G1 = {σ ∈ Sn|σ(n) = n}, we say that

the open string described by the word W (1) is associated to box 1. Since R′′ is

an irreducible representation of the Sn−2 subgroup G2 = {σ ∈ G1|σ(n−1) = n−1},
we say that the open string described by the word W (2) is associated with
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box 2. Notice that, in the chain of subductions used to define the restricted

Schur polynomial, the box associated with W (1) is dropped before the box

associated to W (2). We have indicated this with the notation
∣∣∣
1

∣∣∣
2
. Rewrite

the sum over Sn as a sum over G1 and its cosets

χ
(2)
R,R′′(Z,W (1),W (2))

∣∣∣
1

∣∣∣
2

=
1

(n− 2)!

∑

σ∈G1

[
Tr R′′ (ΓR′(σ))Zi1

iσ(1)
· · ·Zin−2

iσ(n−2)
(W (2))in−1

iσ(n−1)
Tr (W (1))

+ Tr R′′ (ΓR((1, n)σ)) (W (1)Z)i1iσ(1)
· · ·Zin−2

iσ(n−2)
(W (2))in−1

iσ(n−1)
+ · · ·+

+ Tr R′′ (ΓR((n− 2, n)σ)) Zi1
iσ(1)

· · · (W (1)Z)in−2

iσ(n−2)
(W (2))in−1

iσ(n−1)
+

+ Tr R′′ (ΓR((n− 1, n)σ))Zi1
iσ(1)

· · ·Zin−2

iσ(n−2)
((W (1)W (2))in−1

iσ(n−1)

]
.

The first term on the right hand side is

1
(n− 2)!

∑

σ∈G1

Tr R′′ (ΓR′(σ)) Zi1
iσ(1)

· · ·Zin−2

iσ(n−2)
(W (2))in−1

iσ(n−1)
Tr (W (1)) = χ

(1)
R′,R′′(Z,W (2))Tr (W (1)).

Using the methods of section 7, we know that

Tr R′′ (ΓR((n− 1, n)σ)) =
1

c1 − c2
Tr R′′ (ΓR′(σ)) ,

so that the last term on the right hand side is

1
(n− 2)!

∑

σ∈G1

Tr R′′ (ΓR((n, n− 1)σ))Zi1
iσ(1)

· · ·Zin−2

iσ(n−2)
(W (1)W (2))in−1

iσ(n−1)

=
1

c1 − c2
χ

(1)
R′,R′′(Z, W (1)W (2)).

Focus on the remaining terms on the right hand side. Each of these terms

makes the same contribution. We need to evaluate

Tr R′′ (ΓR((j, n)σ) =
dim(R′′)∑

i=1

〈i, 12|ΓR((j, n))ΓR′(σ)|i, 12〉.

Using the techniques of section 7, it is straight forward to show that (the

sum on α in the next equation is a sum over all boxes that can be removed

from R′′ to leave a valid Young diagram; the relevant Sn−3 subgroup is given
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by {σ ∈ G2|σ(j) = j})

Tr R′′ (ΓR((j, n)σ) =
∑
α

dim(R′′′α )∑

i,k=1

〈i, 12α|ΓR((j, n))|k, 12α〉〈k, 12α|ΓR′(σ)|i, 12α〉

+
∑
α

dim(R′′′α )∑

i,k=1

〈i, 12α|ΓR((j, n))|k, 1α2〉〈k, 1α2|ΓR′(σ)|i, 12α〉

=
∑
α

1
c1 − cα

[
1 +

1
(c1 − c2)(c2 − cα)

]
Tr R′′′α

(ΓR′(σ))

+
∑
α

1
c1 − c2

1
c1 − cα

√
1− 1

(c2 − cα)2
Tr T ′′′α ,R′′′α

(ΓR′(σ)).

Thus, summing the remaining n− 2 terms we obtain

∑
α

1
c1 − cα

[
1 +

1
(c1 − c2)(c2 − cα)

]
χ

(2)
R′,R′′′α

(Z, W (1)Z, W (2))
∣∣∣
2

∣∣∣
1

+
∑

α
1

c1 − c2

1
c1 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′α ,R′′′α

(Z,W (1)Z,W (2))
∣∣∣
2

∣∣∣
1
.

A straight forward application of the subgroup swap rule gives

χ
(2)
R′,R′′′α

(Z,W (1)Z,W (2))
∣∣∣
2

∣∣∣
1

=
[(

1− 1
(c2 − cα)2

)
χ

(2)
R′,T ′′′α

(Z,W (1)Z,W (2))

+
1

(c2 − cα)2
χ

(2)
R′,R′′′α

(Z, W (1)Z, W (2))+

√
1− 1

(c2 − cα)2
1

c2 − cα

(
χ

(2)
R′→R′′′α T ′′′α

(Z,W (1)Z,W (2))

+χ
(2)
R′→T ′′′α R′′′α

(Z, W (1)Z, W (2))
)] ∣∣∣

1

∣∣∣
2
,

χ
(2)
R′→T ′′′α R′′′α

(Z,W (1)Z,W (2))
∣∣∣
2

∣∣∣
1

=
[(

1− 1
(c2 − cα)2

)
χ

(2)
R′→R′′′α T ′′′α

(Z, W (1)Z, W (2))

− 1
(c2 − cα)2

χ
(2)
R′→T ′′′α R′′′α

(Z, W (1)Z, W (2))+

√
1− 1

(c2 − cα)2
1

c2 − cα

(
χ

(2)
R′,R′′′α

(Z,W (1)Z,W (2))

−χ
(2)
R′,T ′′′α

(Z, W (1)Z, W (2))
)] ∣∣∣

1

∣∣∣
2
.

Thus, we finally obtain

χ
(2)
R,R′′(Z,W (1),W (2))

∣∣∣
1

∣∣∣
2

= χ
(1)
R′,R′′(Z,W (2))Tr (W (1)) +

1
c1 − c2

χ
(1)
R′,R′′(Z, W (1)W (2))
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+
∑
α

[
1

c1 − cα

(
1− 1

(c2 − cα)2

)
χ

(2)
R′,T ′′′α

(Z, W (1)Z, W (2))

+
1

c1 − c2

1
(c2 − cα)2

χ
(2)
R′,R′′′α

(Z,W (1)Z,W (2))

+
1

c1 − c2

1
c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→R′′′α T ′′′α

(Z, W (1)Z,W (2))

+
1

c1 − cα

1
c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′α R′′′α

(Z, W (1)Z, W (2))

] ∣∣∣
1

∣∣∣
2
.

The above identity is relevant for interactions in which the impurity hops

out of the last site of the string. For the hopping interaction in which the

impurity hops out of the first site of the string, the right hand side of our

identity should be written in terms of ZW (1). This identity is easily derived

by rewriting the sum over Sn in terms of right cosets of G1 instead of left

cosets as we have done above.

The identity derived above is relevant for the description of interactions in

which string 1 exchanges momentum with the branes in the boundstate. To

derive identities that allow string 2 to exchange momentum with the branes

in the boundstate, we first use the subgroup swap rule to swap strings 1 and

2. We then rewrite the sum over Sn in terms of a sum over Sn−1 and its

cosets and then employ character identities as above. We give a complete set

of identities in the next two subsections.

8.2.2 Identities Relevant to Hopping off the first site of the string

χ
(2)
R,R′′(Z,W (1),W (2))

∣∣∣
1

∣∣∣
2

= χ
(1)
R′,R′′(Z,W (2))Tr (W (1)) +

1
c1 − c2

χ
(1)
R′,R′′(Z, W (2)W (1))

+
∑
α

[
1

c1 − cα

(
1− 1

(c2 − cα)2

)
χ

(2)
R′,T ′′′α

(Z, ZW (1),W (2))

+
1

c1 − c2

1
(c2 − cα)2

χ
(2)
R′,R′′′α

(Z,ZW (1), W (2)) (24)

+
1

c1 − c2

1
c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′α R′′′α

(Z, ZW (1),W (2))

+
1

c1 − cα

1
c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→R′′′α T ′′′α

(Z, ZW (1),W (2))

] ∣∣∣
1

∣∣∣
2
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The form of this identity is rather intuitive. The first term on the right hand

side contributes to the process in which the bound state emits string 1; the

second term describes the process in which the two open strings join to form

one long open string. In both of these processes, the box which string 1

occupied on the left hand side does not appear on the right hand side. These

two processes will not contribute to our Cuntz chain Hamiltonian; they are

relevant for the description of interactions which change the number of open

strings attached to the boundstate and do not contribute at the leading order

of the large N expansion.

It is instructive to consider the form of this identity for well separated

branes. For well separated branes, we have |c1 − c2| À 1. For |c1 − cα| ∼ 1,

|c2 − cα| À 1 so that of the last four terms only the first one contributes,

giving ≈ 1
c1−cα

χ
(2)
R′,T ′′′α

(Z, ZW (1),W (2)). Thus, string 2 stays in box 2 and string

1 is close to where it started. Note that dropping terms of order (c1 − c2)−1

or (cα − c2)−1 we obtain

χ
(2)
R,R′′(Z,W (1),W (2))

∣∣∣
1

∣∣∣
2
≈ χ

(1)
R′,R′′(Z, W (2))Tr (W (1))+

∑
α

1
c1 − cα

χ
(2)
R′,T ′′′α

(Z, ZW (1),W (2)),

which is the identity of [5].

Next, consider the stretched string identities

χ
(2)
R→R′′S′′(Z, W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2
χ

(1)
R′,R′′(Z, W (2)W (1))

+
∑
α

[
1

c1 − cα

1
c2 − cα

√
1− 1

(c1 − c2)2
χ

(2)
R′,R′′′α

(Z,ZW (1),W (2)) (25)

+
1

c1 − cα

√
1− 1

(c2 − cα)2

√
1− 1

(c1 − c2)2
χ

(2)
R′→T ′′′α R′′′α

(Z, ZW (1),W (2))

] ∣∣∣
1

∣∣∣
2

χ
(2)
R→S′′R′′(Z, W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2
χ

(1)
S′,S′′(Z, W (2)W (1))

+
∑
α

[
1

c1 − cα

1
c2 − cα

√
1− 1

(c1 − c2)2
χ

(2)
S′,S′′′α

(Z,ZW (1),W (2)) (26)
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+
1

c2 − cα

√
1− 1

(c1 − cα)2

√
1− 1

(c1 − c2)2
χ

(2)
S′→W ′′′

α S′′′α
(Z,ZW (1), W (2))

] ∣∣∣
1

∣∣∣
2
.

Notice that in contrast to (24), (25) and (26) do not have a term on the

right hand side corresponding to emission of string 1. This is what we would

expect for an operator dual to a state with two strings stretching between

branes, since if string 1 is emitted, it leaves a state with string 2 stretched

between branes; this state is not allowed as it violates the Gauss Law. The

process in which the two open strings join at their endpoints is allowed. In

this process, it is the box with the upper 1 label that is removed. Thus,

we can identify the Chan-Paton label for the side of the string defining the

first lattice site of the Cuntz chain with the upper label for the string, in our

diagrammatic notation. This corresponds to the first label of the restricted

Schur polynomial. We will see further evidence for this interpretation when

we interpret the final form of the Hamiltonian.

If we again consider the limit of two well separated branes, we find that

(25) becomes

χ
(2)
R→R′′S′′(Z, W (1),W (2))

∣∣∣
1

∣∣∣
2
≈ χ

(1)
R′,R′′(Z, W (2)W (1))+

∑
α

1
c1 − cα

χ
(2)
R′→T ′′′α R′′′α

(Z, ZW (1),W (2))
∣∣∣
1

∣∣∣
2
.

In this case, the box with upper 1 label and lower 2 label moves from box 1

to box α (which are close to each other in the Young diagram) and box with

upper 2 label and lower 1 label stays where it is.

The first three identities that we have discussed corresponded to an inter-

action in which an impurity from the first site of string 1 interacts with the

brane. The next three identities that we discuss correspond to an interaction

in which an impurity from the first site of string 2 interacts with the brane.

The first three terms of the identity

χ
(2)
R,R′′(Z, W (1), W (2))

∣∣∣
1

∣∣∣
2

=
(

1− 1
(c1 − c2)2

)
χ

(1)
S′,S′′(Z, W (1))Tr (W (2))

+
1

(c1 − c2)2
χ

(1)
R′,R′′(Z, W (1))Tr (W (2)) +

1
c1 − c2

χ
(1)
R′,R′′(Z, W (1)W (2))

+
∑
α

[
1

c2 − cα

(
1− 1

(c1 − c2)2

)
χ

(2)
S′,S′′′α

(Z, W (1), ZW (2))
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+
1

c2 − cα

1
(c1 − c2)2

χ
(2)
R′,R′′′α

(Z,W (1), ZW (2)) (27)

+
1

c1 − c2

1
c1 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→R′′′α T ′′′α

(Z,W (1), ZW (2))

] ∣∣∣
1

∣∣∣
2

change the number of open strings attached to the boundstate. The first two

terms correspond to gravitational radiation; for both of these terms, string 2

is emitted as a closed string. The third term corresponds to a process in which

the two open strings join to give a single open string. The order of the open

string words in this term is not the same as the order in the corresponding

term of (24). The term above is natural because it is the first site of string 2

that is interacting; the order in (24) also looks natural because in that case it

is the first site of string 1 that is interacting. Notice that the above identity is

rather different to (24). Physically this is surprising - since in both cases it is

the first site of the string interacting, these identities should presumably look

identical. This mismatch between the two identities is a consequence of the

fact that we have treated string 1 and string 2 differently when constructing

the operator. See section 9 for further discussion of this point.

If we again consider the limit of two well separated branes, we find that

(27) becomes (take |c1 − c2| À 1, |c1 − cα| À 1 and |c2 − cα| ∼ 1)

χ
(2)
R,R′′(Z,W (1),W (2))

∣∣∣
1

∣∣∣
2
≈ χ

(1)
S′,S′′(Z, W (1))Tr(W (2))+

∑
α

1
c2 − cα

χ
(2)
S′,S′′′α

(Z,W (1), ZW (2)).

This again reproduces the identity of [5]. Thus, the content of the formula

for well separated branes matches the corresponding limit of (24). This is

satisfying, because in this limit the order in which the strings are attached

does not matter. This follows because the swap factor of [5] behaves as

|c1 − c2|−1.

The remaining two identities are stretched string identities. In contrast

to what we found for the stretched string identities (27), (28), there are terms

corresponding to gravitational radiation in these identities. We interpret this

as a signal that there is some mixing between the operators we have defined

(which as explained above, made some arbitrary choices) to get to a “physical
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basis”. See section 9 for more details. The first term in both identities

χ
(2)
R→R′′S′′(Z, W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2
χ

(1)
S′,S′′(Z,W (1)W (2))

+
1

c1 − c2

√
1− 1

(c1 − c2)2
(
χ

(1)
R′,R′′(Z,W (1))− χ

(1)
S′,S′′(Z,W (1))

)
Tr (W (2))

+
∑
α

[
1

c1 − cα

1
c2 − c1

√
1− 1

(c1 − c2)2
χ

(2)
S′,S′′′α

(Z,W (1), ZW (2)) (28)

+
1

c2 − cα

√
1− 1

(c1 − c2)2

√
1− 1

(cα − c1)2
χ

(2)
S′→S′′′α W ′′′

α
(Z,W (1), ZW (2))

+
1

c1 − c2

1
c1 − cα

√
1− 1

(c1 − c2)2
χ

(2)
R′,R′′′α

(Z,W (1), ZW (2))

] ∣∣∣
1

∣∣∣
2
,

χ
(2)
R→S′′R′′(Z, W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2
χ

(1)
R′,R′′(Z, W (1)W (2))

+
1

c1 − c2

√
1− 1

(c1 − c2)2
(
χ

(1)
R′,R′′(Z,W (1))− χ

(1)
S′,S′′(Z,W (1))

)
Tr (W (2))

+
∑
α

[
1

c2 − cα

1
c1 − c2

√
1− 1

(c1 − c2)2
χ

(2)
R′,R′′′α

(Z, W (1), ZW (2)) (29)

+
1

c1 − cα

√
1− 1

(c1 − c2)2

√
1− 1

(cα − c2)2
χ

(2)
R′→R′′′α T ′′′α

(Z, W (1), ZW (2))

+
1

c2 − c1

1
c2 − cα

√
1− 1

(c1 − c2)2
χ

(2)
S′,S′′′α

(Z,W (1), ZW (2))

] ∣∣∣
1

∣∣∣
2
,

corresponds to two open strings joining to form one long open string. The

order of the open string words in these terms again looks natural given that it

is the first site of string 2 that is interacting. They will again not contribute

in the leading order of the large N expansion. It is satisfying that the content

of the large distance limit of (28)

χ
(2)
R→R′′S′′(Z, W (1),W (2))

∣∣∣
1

∣∣∣
2
≈ χ

(1)
S′,S′′(Z,W (1)W (2))+

∑
α

1
c2 − cα

χ
(2)
S′→S′′′α W ′′′

α
(Z, W (1), ZW (2)),

is in complete agreement with the large distance limit of (25).
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8.2.3 Identities Relevant to Hopping off the last site of the string

In this subsection, impurities hop between the last site of the strings and the

threebrane. There are again six possible identities that we could consider.

The first three identities describe an interaction between the last site of string

1 and the threebrane. The first identity

χ
(2)
R,R′′(Z, W (1),W (2))

∣∣∣
1

∣∣∣
2

= χ
(1)
R′,R′′(Z,W (2))Tr (W (1)) +

1
c1 − c2

χ
(1)
R′,R′′(Z, W (1)W (2))

+
∑
α

[
1

c1 − cα

(
1− 1

(c2 − cα)2

)
χ

(2)
R′,T ′′′α

(Z, W (1)Z, W (2))

+
1

c1 − c2

1
(c2 − cα)2

χ
(2)
R′,R′′′α

(Z,W (1)Z,W (2)) (30)

+
1

c1 − c2

1
c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→R′′′α T ′′′α

(Z, W (1)Z,W (2))

+
1

c1 − cα

1
c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′α R′′′α

(Z, W (1)Z, W (2))

] ∣∣∣
1

∣∣∣
2

can be obtained from (24) by (i) swapping the labels on the twisted string

states on the right hand side and (ii) swapping the order of the open string

words in the second term on the right hand side. This is exactly what we

would expect - it is now the last site of the string that is interacting; to swap

the first and last sites, we must swap Chan-Paton indices i.e. we must swap

the labels on the twisted string states. The discussion of this identity now

parallels the discussion of (24) and is not repeated.

Consider next the stretched string identities

χ
(2)
R→S′′R′′(Z,W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2
χ

(1)
R′,R′′(Z,W (1)W (2))

+
∑
α

[
1

c1 − cα

1
c2 − cα

√
1− 1

(c1 − c2)2
χ

(2)
R′,R′′′α

(Z, W (1)Z, W (2)) (31)

+
1

c1 − cα

√
1− 1

(c2 − cα)2

√
1− 1

(c1 − c2)2
χ

(2)
R′→R′′′α T ′′′α

(Z, W (1)Z, W (2))

] ∣∣∣
1

∣∣∣
2
,
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χ
(2)
R→R′′S′′(Z, W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2
χ

(1)
S′,S′′(Z, W (1)W (2))

+
∑
α

[
1

c1 − cα

1
c2 − cα

√
1− 1

(c1 − c2)2
χ

(2)
S′,S′′′α

(Z,W (1)Z,W (2)) (32)

+
1

c2 − cα

√
1− 1

(c1 − cα)2

√
1− 1

(c1 − c2)2
χ

(2)
S′→S′′′α W ′′′

α
(Z,W (1)Z,W (2))

] ∣∣∣
1

∣∣∣
2
.

It is satisfying that identity (31) can be obtained from (25) and (32) from

(26) by swapping the labels for stretched string states on both sides, and

reversing the order of the open string words in the first term on the right

hand side. The discussion of these identities now parallel the discussion of

(25) and (26) and is not repeated.

The remaining three identities describe an interaction between the last

site of string 2 and the threebrane. The identity

χ
(2)
R,R′′(Z, W (1), W (2))

∣∣∣
1

∣∣∣
2

=
(

1− 1
(c1 − c2)2

)
χ

(1)
S′,S′′(Z, W (1))Tr (W (2))

+
1

(c1 − c2)2
χ

(1)
R′,R′′(Z, W (1))Tr (W (2)) +

1
c1 − c2

χ
(1)
R′,R′′(Z, W (2)W (1))

+
∑
α

[
1

c2 − cα

(
1− 1

(c1 − c2)2

)
χ

(2)
S′,S′′′α

(Z, W (1),W (2)Z)

+
1

c2 − cα

1
(c1 − c2)2

χ
(2)
R′,R′′′α

(Z,W (1),W (2)Z) (33)

+
1

c1 − c2

1
c1 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′α R′′′α

(Z,W (1), W (2)Z)

] ∣∣∣
1

∣∣∣
2

can be obtained from (27) by (i) swapping the labels on the twisted string

states on the right hand side and (ii) swapping the order of the open string

words in the second term on the right hand side. Finally, the stretched string

identities

χ
(2)
R→R′′S′′(Z, W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2
χ

(1)
R′,R′′(Z, W (2)W (1))

+
1

c1 − c2

√
1− 1

(c1 − c2)2
(
χ

(1)
R′,R′′(Z,W (1))− χ

(1)
S′,S′′(Z,W (1))

)
Tr (W (2))
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+
∑
α

[
1

c2 − cα

1
c1 − c2

√
1− 1

(c1 − c2)2
χ

(2)
R′,R′′′α

(Z, W (1), W (2)Z) (34)

+
1

c1 − cα

√
1− 1

(c1 − c2)2

√
1− 1

(cα − c2)2
χ

(2)
R′→T ′′′α R′′′α

(Z, W (1),W (2)Z)

− 1
c1 − c2

1
c2 − cα

√
1− 1

(c1 − c2)2
χ

(2)
S′,S′′′α

(Z,W (1),W (2)Z)

] ∣∣∣
1

∣∣∣
2

χ
(2)
R→S′′R′′(Z, W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2
χ

(1)
S′,S′′(Z,W (2)W (1))

− 1
c1 − c2

√
1− 1

(c1 − c2)2
(
χ

(1)
S′,S′′(Z, W (1))− χ

(1)
R′,R′′(Z,W (1))

)
Tr (W (2))

+
∑
α

[
1

c1 − cα

1
c2 − c1

√
1− 1

(c1 − c2)2
χ

(2)
S′,S′′′α

(Z,W (1),W (2)Z) (35)

+
1

c2 − cα

√
1− 1

(c1 − c2)2

√
1− 1

(cα − c1)2
χ

(2)
S′→W ′′′

α S′′′α
(Z,W (1),W (2)Z)

+
1

c1 − c2

1
c1 − cα

√
1− 1

(c1 − c2)2
χ

(2)
R′,R′′′α

(Z,W (1), W (2)Z)

] ∣∣∣
1

∣∣∣
2

can be obtained from (27) and (28) by swapping the labels for stretched

string states on both sides, and reversing the order of the open string words

in the first term on the right hand side.

8.2.4 Numerical Test

An important result of this dissertation are the identities presented in the

previous two subsections, since they determine the hop-off interaction. The

hop-on interaction follows from the hop-off interaction by Hermitian conju-

gation and the kissing interaction by composing the hop-on and the hop-off

interactions. Thus, the complete boundary interaction and the correspond-

ing back reaction on the brane are determined by these identities. For this

reason, we have tested the identities numerically. In this subsection we will

explain the check we have performed.

Our formulas are identities between restricted Schur polynomials. They
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must hold if we evaluate them for any4 numerical value of the matrices Z

and W . Our check entails evaluating our identities for randomly generated

matrices W (1), W (2) and Z, to check their validity. Evaluating a restricted

Schur polynomial entails evaluating a restricted character as well as a product

of traces of a product of the matrices W (1), W (2) and Z.

The restricted character Tr R′′,S′′
(
ΓR

[
σ
])

or Tr R′′
(
ΓR

[
σ
])

was computed by

explicitly constructing the matrices ΓR

[
σ
]
. Each representation used was ob-

tained by induction. One induces a reducible representation; the irreducible

representation that participates was isolated using projection operators built

from the Casimir obtained by summing over all two cycles. See appendix

B.2 of [4] for more details. The resulting irreducible representations were

tested by verifying the multiplication table of Sn. The restricted trace is

then evaluated with the help of a projection operator or an intertwiner. The

intertwiner was computed using the results of section 5.

The trace Tr (σZ⊗n−1W (1)W (2)) = Zi1
iσ(1)

Zi2
iσ(2)

· · ·Zin−2

iσ(n−2)
(W (2))in−1

iσ(n−1)
(W (1))iniσ(n)

for any given σ ∈ Sn is easily expressed as a product of traces of powers of Z,

W (1) and W (2).

In total we verified over 50 specific instances of our identities, which

provides a significant check of each identity.

8.2.5 Identities in terms of Cuntz Chain States

The state-operator correspondence is available for any conformal field the-

ory. Using this correspondence, we can trade our (local) operators for a set

of states. Concretely, this involves quantizing with respect to radial time.

Considering a fixed “radial time” slice we obtain a round sphere. The states

dual to the restricted Schur polynomial operators are the states of our Cuntz

chain. Thus, we need to rewrite the identities obtained in this section as

statements in terms of the states of the Cuntz oscillator chain. The states of

the Cuntz oscillator chain are normalized. Normalized states correspond to

operators whose two point function is normalized. Using the technology of [4]

it is a simple task to compute the free equal time correlators of the restricted

4In particular, not necessarily Hermitian.
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Schur polynomials. After making use of the free field correlators to write our

identities in terms operators with unit two point functions, we find that not

all terms are of the same order in N . We drop all terms which are sublead-

ing in N . These terms are naturally interpreted in terms of string splitting

and joining processes, so that they will be important when interactions that

change the number of open strings are considered.

The discussion for all of the identities above is rather similar, so we will

be content to discuss a specific example which illustrates the general features.

Consider the right hand side of (24). From the equal time correlator (there

are a total of hi fields in open string word W (i); fR is the product of the

weights of the Young diagram R; dR is the dimension of R as an irreducible

representation of the symmetric group; nR is the number of boxes in Young

diagram R)

〈χ(1)
R′,R′′(Z, W (2))Tr (W (1))χ(1)

R′,R′′(Z,W (2))†Tr (W (1))†〉

=
(

4πλ

N

)h1+h2+nR′′
h1N

h1+h2−1nR′′fR′
dR′′

dR′
(36)

we know that the operator χ
(1)
R′,R′′(Z, W (2))Tr (W (1)) corresponds to the state

(all Cuntz chain states are normalized to 1)

√(
4πλ

N

)h1+h2+nR′′
h1Nh1+h2−1nR′′fR′

dR′′

dR′
|R′, R′′,W (2); W (1)〉.

The result (36) is not exact. When computing 〈Tr (W (1))Tr (W (1))†〉 we have

only summed the leading planar contribution. When computing

〈χ(1)
R′,R′′(Z, W (2))χ(1)

R′,R′′(Z, W (2))†〉 we have only kept the F0 contribution in the

language of [4].

We have also factorized 〈χ(1)
R′,R′′(Z, W (2))Tr (W (1))χ(1)

R′,R′′(Z,W (2))†Tr (W (1))†〉 as

〈χ(1)
R′,R′′(Z, W (2))χ(1)

R′,R′′(Z, W (2))†〉 ×〈Tr (W (1))Tr (W (1))†〉 which is valid at large

N . Similarly, (again we sum only the leading order at large N)

〈χ(1)
R′,R′′(Z, W (2)W (1))χ(1)

R′,R′′(Z, W (2)W (1))†〉 =
(

4πλ

N

)h1+h2+nR′′
Nh1+h2−1nR′′fR′

dR′′

dR′
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implies that χ
(1)
R′,R′′(Z, W (2)W (1)) corresponds to the state

√(
4πλ

N

)h1+h2+nR′′
Nh1+h2−1nR′′fR′

dR′′

dR′
|R′, R′′,W (2)W (1))〉.

Finally, the correlators (again we sum only the leading order at large N)

〈χ(2)
R′,T ′′′α

(Z,ZW (1), W (2))χ(2)
R′,T ′′′α

(Z,ZW (1), W (2))†〉 =
(

4πλ

N

)h1+h2+1+nT ′′′α
Nh1+h2−1n2

R′
dT ′′′α

dR′
fR′ ,

〈χ(2)
R′,R′′′α

(Z,ZW (1),W (2))χ(2)
R′,R′′′α

(Z, ZW (1),W (2))†〉 =
(

4πλ

N

)h1+h2+1+nT ′′′α
Nh1+h2−1n2

R′
dR′′′α

dR′
fR′ ,

〈χ(2)
R′→T ′′′α R′′′α

(Z, ZW (1),W (2))χ(2)
R′→T ′′′α R′′′α

(Z,ZW (1), W (2))†〉 =
(

4πλ

N

)h1+h2+1+nT ′′′α
Nh1+h2−1n2

R′
dT ′′′α

dR′
fR′ ,

〈χ(2)
R′→R′′′α T ′′′α

(Z, ZW (1),W (2))χ(2)
R′→R′′′α T ′′′α

(Z,ZW (1), W (2))†〉 =
(

4πλ

N

)h1+h2+1+nT ′′′α
Nh1+h2−1n2

R′
dT ′′′α

dR′
fR′

imply the correspondences

χ
(2)
R′,T ′′′α

(Z, ZW (1),W (2)) ←→
√(

4πλ

N

)h1+h2+1+nT ′′′α
Nh1+h2−1n2

R′
dT ′′′α

dR′
fR′ |R′, Tα′′′ , ZW (1), W (2)〉,

χ
(2)
R′,R′′′α

(Z, ZW (1),W (2)) ←→
√(

4πλ

N

)h1+h2+1+nT ′′′α
Nh1+h2−1n2

R′
dR′′′α

dR′
fR′ |R′, R′′′α , ZW (1),W (2)〉,

χ
(2)
R′→T ′′′α R′′′α

(Z, ZW (1),W (2)) ←→
√(

4πλ

N

)h1+h2+1+nT ′′′α
Nh1+h2−1n2

R′
dT ′′′α

dR′
fR′ |R′, T ′′′α R′′′α , ZW (1),W (2)〉

χ
(2)
R′→R′′′α T ′′′α

(Z, ZW (1),W (2)) ←→
√(

4πλ

N

)h1+h2+1+nT ′′′α
Nh1+h2−1n2

R′
dT ′′′α

dR′
fR′ |R′, R′′′α T ′′′α , ZW (1),W (2)〉

Consider the factor

n2
R′

dR′′′α

dR′
=

(hooks)R′
(hooks)R′′′α

,

where (hooks)R is the product of the hook lengths of Young diagram R. It is

straight forward to compute this ratio of hook lengths, which is generically of

order N2 implying that
dR′′′α
dR′

is of order 1. Using this observation, it is equally

easy to verify that
dT ′′′α
dR′

and dR′′
dR′

are also both O(1). Given these results, it is
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simple to see that the sum of operators

χ
(1)
R′,R′′(Z, W (2))Tr (W (1)) +

1
c1 − c2

χ
(1)
R′,R′′(Z, W (2)W (1))

+
∑
α

[
1

c1 − cα

(
1− 1

(c2 − cα)2

)
χ

(2)
R′,T ′′′α

(Z,ZW (1),W (2))

+
1

c1 − c2

1
(c2 − cα)2

χ
(2)
R′,R′′′α

(Z, ZW (1),W (2))

+
1

c1 − c2

1
c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′α R′′′α

(Z, ZW (1),W (2))

+
1

c1 − cα

1
c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→R′′′α T ′′′α

(Z, ZW (1),W (2))

] ∣∣∣
1

∣∣∣
2

corresponds to the following sum of normalized states

√(
4πλ

N

)h1+h2+nR′′
Nh1+h2−1n2

R′fR′

[√
h1dR′′

nR′dR′
|R′, R′′, W (2);W (1)〉

+
1

c1 − c2

√
dR′′

nR′dR′
|R′, R′′,W (2)W (1)〉

+
∑
α


 1

c1 − cα

(
1− 1

(c2 − cα)2

) √
dT ′′′α

dR′
|R′, T ′′′α , ZW (1),W (2)〉

+
1

c1 − c2

1
(c2 − cα)2

√
dR′′′α

dR′
|R′, R′′′α , ZW (1),W (2)〉

+
1

c1 − c2

1
c2 − cα

√
1− 1

(c2 − cα)2

√
dT ′′′α

dR′
|R′, T ′′′α R′′′α , ZW (1),W (2)〉

+
1

c1 − cα

1
c2 − cα

√
1− 1

(c2 − cα)2

√
dT ′′′α

dR′
|R′, R′′′α T ′′′α , ZW (1),W (2)〉





 .

Recalling that h1 = O(
√

N) and nR′ = O(N), it is clear that the first two terms

are subleading. These two terms correspond to gravitational radiation (first

term) and string joining (second term); they are the only terms that corre-

spond to an interaction that changes the number of open strings attached

to the excited giant system. Although we have illustrated things with an

example, this conclusion is general - for all of the identities obtained in this

section, terms that do not correspond to two strings attached to the giant

system can be dropped in the leading large N limit. This is consistent with
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the results of [4].

8.3 Hop-Off Interaction

We now have the ability to express objects like χ
(2)
R,R′′(Z, ZW (1),W (2)) in terms

of χ
(2)
S,S′′(Z,W (1),W (2)) where S is a Young diagram with one more box than

R. This is easily achieved by inverting the identities derived above. To get

the hop-off interaction in the Hamiltonian, we rewrite the identities in terms

of normalized Cuntz chain states.

+1 → 1 Hop-off interaction: This term in the Hamiltonian describes the hop

off process in which a Z hops out of the first site of string 1. We write +1 → 1

to indicate that the string before the hop has one extra Z in its first site.

H+1→1




|b0 − 1, b1, bb, ll〉
|b0 − 1, b1, ll, bb〉
|b0 − 1, b1, bl, lb〉
|b0 − 1, b1, lb, bl〉

|b0 − 2, b1 + 2, ll, ll〉
|b0, b1 − 2, bb, bb〉




= −λ

√
1− b0

N
M1




|b0 − 1, b1 + 1, bb, ll〉
|b0, b1 − 1, ll, bb〉

|b0 − 1, b1 + 1, bl, lb〉
|b0, b1 − 1, lb, bl〉

|b0 − 1, b1 + 1, ll, ll〉
|b0, b1 − 1, bb, bb〉




,

where

M1 =




−(b1)21
1

b1(b1+1)2
0 (b1)0

b1+1
(b1)1
b1+1 − (b1)1

b1(b1+1)

− 1
(b1+2)(b1+1)2

−(b1)21 − (b1)2
b1+1 0 − (b1)1

(b1+1)(b1+2)
− (b1)1

b1+1

− (b1)1
(b1+1)(b1+2)

(b1)1
b1+1 −(b1)1(b1)2 0 − b1

(b1+1)2
1

(b1+1)2

− (b1)1
b1+1 − (b1)1

b1(b1+1)
0 −(b1)0(b1)1 1

(b1+1)2
b1+2

(b1+1)2

− (b1)2
b1+1 0 1

b1+2 0 −(b1)1(b1)2 0

0 (b1)0
b1+1 0 − 1

b1
0 −(b1)0(b1)1




,

and

(b1)n =
√

b1 + n− 1
√

b1 + n + 1
b1 + n

.

The term in the Hamiltonian describing the process in which the Z hops out

of the last site of string 1 is described by swapping the labels of the endpoints
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of the open strings. Concretely, it is given by

H1+→1




|b0 − 1, b1, bb, ll〉
|b0 − 1, b1, ll, bb〉
|b0 − 1, b1, lb, bl〉
|b0 − 1, b1, bl, lb〉

|b0 − 2, b1 + 2, ll, ll〉
|b0, b1 − 2, bb, bb〉




= −λ

√
1− b0

N
M1




|b0 − 1, b1 + 1, bb, ll〉
|b0, b1 − 1, ll, bb〉

|b0 − 1, b1 + 1, lb, bl〉
|b0, b1 − 1, bl, lb〉

|b0 − 1, b1 + 1, ll, ll〉
|b0, b1 − 1, bb, bb〉




,

where M1 is the matrix given above. We write 1+ → 1 to indicate that the

string before the hop has one extra Z in its last site.

+2 → 2 Hop-off interaction: This term in the Hamiltonian describes the hop

off process in which a Z hops out of the first site of string 2.

H+2→2




|b0 − 2, b1 + 1, bb, ll〉
|b0 − 1, b1 − 1, ll, bb〉
|b0 − 2, b1 + 1, bl, lb〉
|b0 − 1, b1 − 1, lb, bl〉
|b0 − 2, b1 + 1, ll, ll〉
|b0 − 1, b1 − 1, bb, bb〉




= −λ

√
1− b0

N
M2




|b0 − 1, b1, bb, ll〉
|b0 − 1, b1, ll, bb〉
|b0 − 1, b1, bl, lb〉
|b0 − 1, b1, lb, bl〉
|b0 − 1, b1, ll, ll〉
|b0 − 1, b1, bb, bb〉




,

where

M2 =




−(b1)21 − 1
(b1+2)(b1+1)2

− (b1)1
(b1+1)(b1+2)

− (b1)1
b1+1 0 − (b1)2

b1+1

1
b1(b1+1)2

−(b1)21
(b1)1
b1+1 − (b1)1

(b1+1)b1

(b1)0
b1+1 0

0 − (b1)2
b1+1 −(b1)1(b1)2 0 0 1

b1+2
(b1)0
b1+1 0 0 −(b1)0(b1)1 − 1

b1
0

− (b1)1
b1(b1+1)

− (b1)1
b1+1

1
(b1+1)2

b1+2
(b1+1)2

−(b1)1(b1)0 0
(b1)1
b1+1 − (b1)1

(b1+1)(b1+2)
− b1

(b1+1)2
1

(b1+1)2
0 −(b1)2(b1)1




.

Notice that these interactions (as is the case for all of the boundary inter-

actions) are highly suppressed for a maximal giant[27]. The term in the

Hamiltonian describing the process in which the Z hops out of the last site

of string 2 is described by swapping the labels of the endpoints of the open
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strings.

The function (b1)n also appears in the Hamiltonian relevant for a single

string attached to a giant[5]. Notice that (b1)n vanishes when b1 = 1− n, but

tends to 1 very rapidly as b1 is increased from this value. The diagonal terms

in the Hamiltonian with a (b1)1 factor will thus vanish when b1 = 0. The radius

of each giant is determined by their momentum. Since b1 is the difference in

momentum of the two giants, b1 = 0 corresponds to coincident giants. Thus,

(b1)n is switching off short distance interactions. The hop-off Hamiltonian

does not generate illegal Young diagrams from legal ones precisely because

these interactions are switched off.

Finally, note that the structure of the hop-on and hop-off interactions,

clearly reflect the fact that the open strings attached to the giants are ori-

entable.

8.4 Hop-On Interaction

Since N = 4 super Yang-Mills theory is a unitary conformal field theory, we

know that the spectrum of anomalous dimensions of the theory is real. This

implies that the energy spectrum of our Cuntz chain Hamiltonian must be

real and hence the Hamiltonian must be Hermitian. Thus, the hop on term

in the Hamiltonian is given by the Hermitian conjugate of the hop off term.

To give an example, we will now derive the term in the Hamiltonian

describing the process in which a Z from the brane hops into the first site of

string 1. Let |ψ〉 denote the state with a brane of momentum Pbrane = P and

a string of momentum Pstring = p and |φ〉 denote the state with Pbrane = P + 1

and Pstring = p− 1. Then,

H+1→1|ψ〉 = −λ

√
1− b0

N
M1|φ〉,

and

〈φ′|H+1→1|ψ〉 = −λ

√
1− b0

N
〈φ′|M1|φ〉 = −λ

√
1− b0

N
(M1)φ′φ.
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Daggering we find (keep in mind that M1 is real)

〈ψ|H1→+1|φ′〉 = (〈φ′|H+1→1|ψ〉)†

= −λ

√
1− b0

N
〈φ|(M1)T |φ′〉

= −λ

√
1− b0

N

(
(M1)T

)
φφ′

.

Thus we obtain

H1→+1|φ〉 = −λ

√
1− b0

N
N1|ψ〉,

with N1 = (M1)T .

8.5 Kissing Interaction

Figure 8: The Feynman diagram on the left of this figure shows the kissing
interaction. The white ribbons are Z fields, the black ribbons are Y fields.
The interacting black ribbon shown marks the beginning of the string; there
are 3 Zs in the first site of the string. The Feynman diagram on the right
of this figure shows a hop-on interaction followed by a hop-off interaction. If
you shrink the composite hop-on/hop-off interaction to a point, you recover
the kissing interaction.

The kissing interaction corresponds to the Feynman diagram shown on

the left in Figure 8. Notice that the number of Z fields in the giant is
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unchanged by this process so that the string and brane do not exchange

momentum by this process. As far as the combinatorics goes, we can model

the kissing interaction as a hop on (the string) followed by a hop off. We

know both the hop on and hop off terms so the kissing interaction follows.

This is illustrated by the Feynman diagram shown on the right in Figure 8.

The kissing interaction must be included for both endpoints of both strings.

A straight forward computation easily gives

Hkissing = λ

(
1− b0

N

)
1,

for each endpoint of either string. In this formula 1 is the identity operator.

The fact that the kissing interaction comes out proportional to the iden-

tity operator is a non-trivial check of our hop-on and hop-off interactions.

Indeed, the contraction of the F term vertex which leads to the kissing in-

teraction removes an adjacent Z and Y and then replaces them in the same

order. Thus, the kissing interaction had to come out proportional to the

identity. The careful reader may worry that this is not in fact true - indeed,

the restricted Schur polynomial includes terms in which the open string word

is traced and terms in which the two open string words are multiplied. For

these terms there is no Z next to the word to “do the kissing”. Precisely

these terms were considered in section 8.2.5. They do not contribute at large

N .
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9 Interpretation

The operators we are studying are dual to giant gravitons with open strings

attached. Since the giant gravitons have finite volume, the Gauss Law implies

that the total charge on each giant must vanish - there must be the same

number of strings leaving each brane as there are arriving on each brane.

These operators do indeed satisfy these non-trivial constraints[3], providing

convincing evidence for the proposed duality. The low energy dynamics of

the open strings attached to the giant gravitons is a Yang-Mills theory. This

new emergent 3 + 1 dimensional Yang-Mills theory is not described as a local

field theory on the S3 on which the original Yang-Mills theory is defined - it

is local on a new space, the world volume of the giant gravitons[3],[28]. This

new space emerges from the matrix degrees of freedom participating in the

Yang-Mills theory. Reconstructing this emergent gauge theory may provide

a simpler toy model that will give us important clues into reconstructing the

full AdS5×S5 quantum gravity. In this section, our goal is to make contact

with this emergent Yang-Mills dynamics.

9.1 Dynamical Emergence of Chan-Paton Factors

Return to the H+1→1 hop-off interaction obtained in section 8.3. Recall that

this corresponds to the interaction in which a Z hops out of the first site of

string 1. If we expand the matrix M1 for large b1, we find

M1 =
∞∑

n=0

M1(n)b−n
1 .

The leading order M1(0) is simply −1 with 1 the 6× 6 identity matrix. The Z

simply hops off the string and onto the brane without much rearranging of

the system. This is the dominant process. Next, consider the term of order
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b−1
1 . It is simple to compute

M1(1) =




0 0 0 1 1 0

0 0 −1 0 0 −1

0 1 0 0 −1 0

−1 0 0 0 0 1

−1 0 1 0 0 0

0 1 0 −1 0 0




.

The radius of the giant graviton Rg is related to its momentum P by Rg =√
P
N . The giant orbits with a radius R =

√
1−R2

g. For the two giants in the

bound state we are considering we have P1 = b0 and P2 = b0 + b1. Using

the fact that b0 = O(N) and b1 = O(1) it is simple to verify that both the

difference in the radii of the two giants and the difference in the radii of their

orbits is proportional to b1. Thus, a b−1
1 dependence indicates a potential

with an inverse distance dependence which is the correct dependence for

massless particles moving in 3+1 dimensions. In Figure 9 we have represented

the transitions implied by M1(1) graphically. Transitions between any two

adjacent Young diagrams are allowed.

72



Figure 9: The order b−1
1 terms in the hop-off interaction. This interaction

allows a transition between the operators described by any two adjacent
Young diagrams. The figures between the Young diagram show the open
string diagram relevant for the clockwise transition. The kets are associated
to the open string states before the transition; the bras to the states after
the transition. The end point labels ‘b’ and ‘l’ are for big brane and little
brane.
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As an example, consider the transition

1

2 →

2
1

1
2 .

The upper label of string 1 has moved. In all of the transitions shown, the

upper index of string 1 always moves, so that it is natural to associate the

upper index of string 1 with the first site of string one, and to look for an

interpretation of this interaction in terms of open string processes that involve

the upper index of string 1. The figures between the Young diagram show

that there is indeed a natural interpretation for these transitions. It is clear

that our Cuntz oscillator dynamics illustrates how the Chan-Paton factors

for open strings propagating on multiple branes arise dynamically. Drawing

all possible ribbon diagrams correctly accounts for both M1(0) and M1(1).

9.2 Physical Basis

Although the interpretation of the b−1
1 terms is encouraging, there are extra

higher order corrections (M1(2)b−2
1 , M1(3)b−3

1 and higher orders) that do not

seem to have a natural open string interpretation. In addition to this, the

interaction we have obtained depends on the open string words describing

each open string, the Young diagram describing the brane bound state system

as well as the order in which the strings were attached. This dependence on

the order in which the strings are attached is not physically sensible.

It is natural to expect that the resolution to these two puzzles is con-

nected. Recall that when constructing the restricted Schur polynomial we

have assumed that when computing reductions, string 1 is removed first and

string 2 second. This arbitrary choice defines a basis for the Cuntz oscillator

chain. We interpret the unphysical features of our interactions, described in
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the previous paragraph, as reflecting a property of the basis it is written in

and not as an inherent problem with the interaction. In this section we will

define a new physical basis, singled out by the requirement that the bound-

ary interaction does not depend on the order in which the open strings are

attached.

A few comments are in order. A basis for the 1
2 BPS states (giants with

no open strings attached) is provided by the taking traces of Z or by taking

subdeterminants or by the Schur polynomials. These are three perfectly

acceptable bases, since using any single one of these bases we can generate, by

taking linear combinations of the elements of the basis considered, a member

from every 1
2 BPS multiplet[1]. From a physical point of view, these different

bases are not on an equal footing: the Schur polynomial is the most useful.

Indeed, the Schur polynomials diagonalize the matrix of two point correlators

(Zamolodchikov metric) so that they can be put into correspondence with the

(orthogonal) states of a Fock space. In the same way, the basis for excited

giants gravitons we have been considering is a perfectly acceptable basis.

However, it is the operators in the physical basis (defined below) that have

a good physical interpretation.

Denote our two strings by string A and string B. The state obtained by

attaching string A first will be denoted by |b0, b1, xAyA, xByB〉, where xAyA are

the endpoints of string A and xByB are the endpoints of string B. The state

obtained by attaching string B first will be denoted by |b0, b1, xByB , xAyA〉〉. In

each subspace of sharp giant graviton momentum (definite b0 and b1), we can

write the following relation between these two sets of states




|b0, b1, bb, ll〉
|b0, b1, ll, bb〉
|b0, b1, bl, lb〉
|b0, b1, lb, bl〉
|b0, b1, ll, ll〉
|b0, b1, bb, bb〉




= PT




|b0, b1, bb, ll〉〉
|b0, b1, ll, bb〉〉
|b0, b1, bl, lb〉〉
|b0, b1, lb, bl〉〉
|b0, b1, ll, ll〉〉
|b0, b1, bb, bb〉〉




,
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where

P =




0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




and

T =




(
1− 1

(b1+1)2

)
1

(b1+1)2
− 1

(b1+1)

√
1− 1

(b1+1)2
− 1

(b1+1)

√
1− 1

(b1+1)2
0 0

1
(b1+1)2

(
1− 1

(b1+1)2

)
1

(b1+1)

√
1− 1

(b1+1)2
1

(b1+1)

√
1− 1

(b1+1)2
0 0

1
(b1+1)

√
1− 1

(b1+1)2
− 1

(b1+1)

√
1− 1

(b1+1)2

(
1− 1

(b1+1)2

)
− 1

(b1+1)2
0 0

1
(b1+1)

√
1− 1

(b1+1)2
− 1

(b1+1)

√
1− 1

(b1+1)2
− 1

(b1+1)2

(
1− 1

(b1+1)2

)
0 0

0 0 0 0 1 0

0 0 0 0 0 1




.

The matrix T is determined by the subgroup swap rule of [4]. It is satisfying

that PT × PT = 1. It is straight forward to check that

H+1→1 = A2→1 PT H+2→2 A1→2 PT,

where 


|b0 − 2, b1 + 2, bb, ll〉
|b0 − 1, b1, ll, bb〉

|b0 − 2, b1 + 2, bl, lb〉
|b0 − 1, b1, lb, bl〉

|b0 − 2, b1 + 2, ll, ll〉
|b0 − 1, b1, bb, bb〉




= A2→1




|b0 − 1, b1, bb, ll〉
|b0 − 1, b1, ll, bb〉
|b0 − 1, b1, bl, lb〉
|b0 − 1, b1, lb, bl〉
|b0 − 1, b1, ll, ll〉
|b0 − 1, b1, bb, bb〉




, and




|b0 − 2, b1 + 1, bb, ll〉
|b0 − 1, b1 − 1, ll, bb〉
|b0 − 2, b1 + 1, bl, lb〉
|b0 − 1, b1 − 1, lb, bl〉
|b0 − 2, b1 + 1, ll, ll〉
|b0 − 1, b1 − 1, bb, bb〉




= A1→2




|b0 − 2, b1 + 1, bb, ll〉
|b0 − 2, b1 + 1, ll, bb〉
|b0 − 2, b1 + 1, bl, lb〉
|b0 − 2, b1 + 1, lb, bl〉
|b0 − 3, b1 + 3, ll, ll〉
|b0 − 1, b1 − 1, bb, bb〉




.

Denote the similarity transformation which takes us to the physical basis by
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S. In this basis, we denote H+1→1 by Ĥ+1→1 and H+2→2 by Ĥ+2→2. Clearly

Ĥ+1→1 = SH+1→1S
−1, Ĥ+2→2 = SH+2→2S

−1.

The transformation S is now determined by the requirement

Ĥ+1→1 = PĤ+2→2P.

We have not yet been able to solve this equation for S. Due to the presence

of A1→2 and A2→1 in the relation between H+1→1 and H+2→2, it seems that

S must mix subspaces of different giant momenta (b0, b1). In this case the

physical basis will not have sharp giant momentum and hence the resulting

states will not have a definite radius. This is not too surprising: the open

strings will pull “dimples” out of the giant graviton’s world volume so that

the giant with an open string attached does not have a definite radius. We

leave the interesting question of determining the transformation S for the

future.
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10 Discussion

A bound state of giant gravitons can be excited by attaching open strings.

The problem of computing the anomalous dimensions of these operators can

be replaced with the problem of diagonalizing a Cuntz oscillator Hamilto-

nian. In this dissertation we have developed the technology needed to con-

struct this Cuntz oscillator Hamiltonian to one loop. Firstly, we have given

an algorithmic construction of the operators dual to excitations described by

open strings which stretch between the branes. This involved giving an ex-

plicit construction of the intertwiner which is used to construct the relevant

restricted Schur polynomial. Secondly, we have developed methods that al-

low an efficient evaluation of any restricted character. Our method expresses

the restricted character graphically as a sum of strand diagrams. Finally,

we have explained how to derive the boundary interaction terms from iden-

tities satisfied by the restricted Schur polynomials. Since the excited giant

graviton operators are small excitations of BPS states, we expect that our

results can be extrapolated to strong coupling and hence can be compared

with results from the dual string theory. The form of our Cuntz oscillator

Hamiltonian provides evidence that the excitations of the giant gravitons

have the detailed interactions of an emergent gauge theory. In particular,

we have demonstrated the dynamical emergence of the Chan-Paton factors

of the open strings. We have also started to clarify the dictionary relating

the states of the Cuntz oscillator chain to the states of string field theory on

D-branes in AdS5×S5. Although we have mainly considered a bound state of

two sphere giants with two open strings attached, our methods are applica-

ble to an arbitrary bound state of giant gravitons with any number of open

strings attached.

Our result is a generalization of the spin chains considered so far in the

literature: usually the spin chain gives a description of closed strings. Our

Cuntz oscillator describes the dynamics of an open string interacting with a

giant graviton. Both the state of the string (described by the Cuntz chain

occupation numbers) and the state of the giant graviton (the shape of the

Young diagram) are dynamical in our approach.
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It is worth emphasizing that the new emergent gauge symmetry is distinct

from the original gauge symmetry of the theory[3]. The excited giant graviton

operators[3] are obtained by taking a trace over the indices of the symmetric

group matrix ΓR(σ) appearing in the sum

1
(n− k)!

∑

σ∈Sn

ΓR(σ)Tr (σZ⊗n−kW (1) · · ·W (k)), where

Tr (σZ⊗n−kW (1) · · ·W (k)) = Zi1
iσ(1)

Zi2
iσ(2)

· · ·Zin−k

iσ(n−k)
(W (1))in−k+1

iσ(n−k+1)
· · · (W (k))iniσ(n)

.

The color indices of the original super Yang-Mills theory are all traced: every

term in the above sum is a color singlet with respect to the gauge symmetry

of the original Yang-Mills theory. The color indices of the new gauge theory

arise from the labeling of the partial trace over ΓR(σ). In some sense we are

“substituting” symmetric group indices for the original gauge theory indices.

We call this mechanism “color substitution”.

There are a number of directions in which this work can be extended. For

Young diagrams with m columns we expect an emergent Yang-Mills theory

with gauge group U(m). It would be nice to repeat the calculations we per-

formed here in that setting5. Another interesting calculation would involve

studying the dynamics of two giant gravitons with strings stretched between

them. In general, the boundary terms will certainly have different values

at each boundary (as anticipated in [18]) in which case there will be a net

flow of Zs from one brane to the other. This flow of Z’s will produce a force

between the two giants, conjectured to be an attractive force in[18].

A very concrete application of our methods is the construction of the

gauge theory operator dual to the fat magnon[29]6. The fat magnon is a

bound state of a giant graviton and giant magnons (fundamental strings).

Essentially, due to the background five form flux, the giant magnon becomes

fat by the Myers effect[31]. The fat magnon has the same anomalous di-

mension as the giant magnon. It would be nice to explicitly recover this

anomalous dimension using our technology.

5For the m = 3 case, see Appendix C.
6The fat magnon in the plane wave background is the hedgehog of [49]
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Finally, there is now a proposal for gauge theory operators dual to brane-

anti-brane states[32]. This proposal was made, at the level of the free field

theory, by identifying the operators that diagonalize the two point functions

of operators built from Z and Z†. Since these states are non-supersymmetric,

corrections when the coupling is turned on are expected to be important for

the physics. It would be interesting to extend the technology developed in

this dissertation to this non-supersymmetric setting.
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A Representations of Sn from Strand Diagrams

Using Strand diagrams, it is possible to write down the irreducible matrix

representations of Sn. We will treat the simplest nontrivial example of S3.

First consider the irreducible representation. Start by numbering the

boxes in the Young diagram labeling the irreducible representation, with an

ordering in which the boxes are to be removed, so that one is left with a legal

Young diagram after each box is removed. These labeled Young diagrams

are in one-to-one correspondence with the matrix indices of the matrices in

the irreducible representation. For our example,

i = 1,↔
3 1
2 i = 2,↔

3 2
1 .

i.e.

A11 A12

A21 A22

ΓR(σ) =

Figure 10: Labeling of matrix elements by Young diagrams

Each matrix element of Γ ((12)) is given by a single strand diagram

[
Γ ((12))

]

11

= Tr
3 1
2

((12)) =
1

c1 − c2
=

1
2
,

[
Γ ((12))

]

12

= Tr
3 1

2
2
1

((12)) =

√
1− 1

(c1 − c2)2
=
√

3
2

,
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[
Γ ((12))

]

21

= Tr
3 2

1
1
2

((12)) =

√
1− 1

(c1 − c2)2
=
√

3
2

,

and [
Γ ((12))

]

22

= Tr
3 2
1

((12)) =
1

c1 − c2
= −1

2
,

so that

Γ ((12)) =

[
1
2

√
3

2√
3

2 −1
2

]
.

In exactly the same way we obtain

Γ ((23)) =

[−1 0

0 1

]
.

These two elements can now be used to generate the complete irreducible

representation.

Next consider . There is only one valid labeling 3 2 1 , so that

the representation is one dimensional. It is straight forward to obtain

Tr
3 2 1

((12)) =
1

c1 − c2
= 1, Tr

3 2 1
((23)) =

1
c2 − c3

= 1,

which are the correct results. Finally, consider . Again, there is only one

valid labeling so that the representation is again one dimensional. We find

Tr
3
2
1

((12)) =
1

c1 − c2
= −1, Tr

3
2
1

((23)) =
1

c2 − c3
= −1,

which are again the correct results.
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B State/Operator Map

In this appendix we will simply quote the six normalization factors that enter

the relation between the restricted Schur polynomials and the normalized

Cuntz chain states relevant for the excited two giant graviton bound state7.

The normalization factors are not exact - we simply quote the leading large

N value of these normalizations. These factors are determined completely by

the F
(1)
0 F

(2)
0 contribution in the language of [4]. The factor fR is the product

of weights of the Young diagram R. The open string word W (1) contains a

total number of h1 Higgs fields; the open string word W (2) contains a total

number of h2 Higgs fields.

State Normalization

|b0 − 1, b1, 11, 22〉
(

4πλ
N

) 2b0+b1+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

|b0 − 1, b1, 22, 11〉
(

4πλ
N

) 2b0+b1+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

|b0 − 1, b1, 12, 21〉
(

4πλ
N

) 2b0+b1+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

|b0 − 1, b1, 21, 12〉
(

4πλ
N

) 2b0+b1+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

|b0 − 2, b1 + 2, 22, 22〉
(

4πλ
N

) 2b0+b1+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
b1+3
b1+1

|b0, b1 − 2, 11, 11〉
(

4πλ
N

) 2b0+b1+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
b1−1
b1+1

7See section 8.1 for the restricted Schur polynomials corresponding to these states.
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C Boundstate of three Sphere Giants

In this appendix, we will compute the +1 → 1 interaction for two strings

attached to a bound state of three sphere giants. This example is interesting

because, firstly, it does partially illustrate our claim that the methods we

have developed apply to any bound state of giants and secondly, in this

situation, we expect an emergent U(3) gauge theory. The three sphere giant

boundstate is described by a Young diagram with three columns. When

labeling the open string endpoints we will use the labels ‘b’, ‘m’ and ‘l’ for

the first column (‘b’ for big brane), second column (‘m’ for medium brane)

and third column (‘l’ for little brane) respectively. The relevant Cuntz chain

states together with their normalizations are shown in the table below.
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State Normalization

|b0, b1 − 1, b2, bb, mm〉
(

4πλ
N

) 3b0+2b1+b2+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
(b1+b2+1)b1

(b1+b2+2)(b1+1)

|b0 − 1, b1 + 1, b2 − 1, bb, ll〉
(

4πλ
N

) 3b0+2b1+b2+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
(b1+2)b2

(b2+1)(b1+1)

|b0, b1 − 1, b2,mm, bb〉
(

4πλ
N

) 3b0+2b1+b2+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
(b1+b2+1)b1

(b1+b2+2)(b1+1)

|b0 − 1, b1, b2 + 1,mm, ll〉
(

4πλ
N

) 3b0+2b1+b2+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
(b2+2)(b1+b2+3)
(b2+1)(b1+b2+2)

|b0 − 1, b1 + 1, b2 − 1, ll, bb〉
(

4πλ
N

) 3b0+2b1+b2+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
(b1+2)b2

(b2+1)(b1+1)

|b0 − 1, b1, b2 + 1, ll,mm〉
(

4πλ
N

) 3b0+2b1+b2+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
(b2+2)(b1+b2+3)
(b2+1)(b1+b2+2)

|b0, b1, b2 − 2, bb, bb〉
(

4πλ
N

) 3b0+2b1+b2+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
(b2−1)(b1+b2)

(b2+1)(b1+b2+2)

|b0, b1 − 2, b2 + 2, mm,mm〉
(

4πλ
N

) 3b0+2b1+b2+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
(b2+3)(b1−1)
(b2+1)(b1+1)

|b0 − 2, b1 + 2, b2, ll, ll〉
(

4πλ
N

) 3b0+2b1+b2+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
(b1+3)(b1+b2+4)
(b1+1)(b1+b2+2)

|b0, b1 − 1, b2, bm, mb〉
(

4πλ
N

) 3b0+2b1+b2+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
(b1+b2+1)b1

(b1+b2+2)(b1+1)

|b0, b1 − 1, b2,mb, bm〉
(

4πλ
N

) 3b0+2b1+b2+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
(b1+b2+1)b1

(b1+b2+2)(b1+1)

|b0 − 1, b1 + 1, b2 − 1, bl, lb〉
(

4πλ
N

) 3b0+2b1+b2+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
(b1+2)b2

(b2+1)(b1+1)

|b0 − 1, b1 + 1, b2 − 1, lb, bl〉
(

4πλ
N

) 3b0+2b1+b2+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
(b1+2)b2

(b2+1)(b1+1)

|b0 − 1, b1, b2 + 1,ml, lm〉
(

4πλ
N

) 3b0+2b1+b2+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
(b2+2)(b1+b2+3)
(b2+1)(b1+b2+2)

|b0 − 1, b1, b2 + 1, lm, ml〉
(

4πλ
N

) 3b0+2b1+b2+h1+h2−2

2
b0
√

fR

√
Nh1+h2−2

√
(b2+2)(b1+b2+3)
(b2+1)(b1+b2+2)

The labels b0, b1 and b2 again determine the momenta of the giants. The

giant corresponding to the first column has a momentum of b0 + b1 + b2, the

giant corresponding to the second column has a momentum of b0 + b1 and the

giant corresponding to the third column has a momentum of b0. We take b0

to be O(N) and b1, b2 to be O(1).

To determine the boundary interactions, we start by rewriting the iden-

tities of section 8.2 for the case that we have a Young diagram with three

columns. To obtain the boundary interaction terms in the Hamiltonian, these

identities are then inverted and rewritten in terms of normalized Cuntz chain
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states.

The term in the Hamiltonian describing the process in which a Z hops

out of the first site of string 1 is given by

H+1→1




|b0, b1 − 1, b2, bb,mm〉
|b0 − 1, b1 + 1, b2 − 1, bb, ll〉
|b0, b1 − 1, b2,mm, bb〉

|b0 − 1, b1, b2 + 1,mm, ll〉
|b0 − 1, b1 + 1, b2 − 1, ll, bb〉
|b0 − 1, b1, b2 + 1, ll, mm〉
|b0, b1, b2 − 2, bb, bb〉

|b0, b1 − 2, b2 + 2,mm, mm〉
|b0 − 2, b1 + 2, b2, ll, ll〉
|b0, b1 − 1, b2, bm,mb〉
|b0, b1 − 1, b2,mb, bm〉

|b0 − 1, b1 + 1, b2 − 1, bl, lb〉
|b0 − 1, b1 + 1, b2 − 1, lb, bl〉
|b0 − 1, b1, b2 + 1,ml, lm〉
|b0 − 1, b1, b2 + 1, lm,ml〉




= −λ

√
1− b0

N
M




|b0, b1 − 1, b2 + 1, bb,mm〉
|b0 − 1, b1 + 1, b2, bb, ll〉
|b0, b1, b2 − 1,mm, bb〉

|b0 − 1, b1 + 1, b2,mm, ll〉
|b0, b1, b2 − 1, ll, bb〉

|b0, b1 − 1, b2 + 1, ll,mm〉
|b0, b1, b2 − 1, bb, bb〉

|b0, b1 − 1, b2 + 1,mm,mm〉
|b0 − 1, b1 + 1, b2, ll, ll〉
|b0, b1 − 1, b2 + 1, bm,mb〉
|b0, b1, b2 − 1,mb, bm〉
|b0 − 1, b1 + 1, b2, bl, lb〉
|b0, b1, b2 − 1, lb, bl〉

|b0 − 1, b1 + 1, b2,ml, lm〉
|b0, b1 − 1, b2 + 1, lm, ml〉




,

where the non-zero elements of M are presented below. Note that the matrix

elements are listed column by column i.e. all non-zero elements of the first

column are presented first followed by all non-zero entries of the second

column etc.):

M1 1 = −(b2)21(b1 + b2)2,

M3 1 = − (b1 + b2)2
(b2 + 1)2(b2 + 2)

,

M6 1 = − (b1 + 2)
√

b2 + 2
√

b1√
b2 + 1 (b1 + 1)3/2 (b1 + b2 + 2)

,

M4 1 =
−b1 − b2 − 3√

b2 + 1 (b1 + 1)3/2 (b1 + b2 + 2)
√

b1
√

b2 + 2
,

M8 1 = −
√

b1 − 1
√

b2 + 3
√

b1 + b2 + 3√
b2 + 1

√
b1 + b2 + 2 (b2 + 2)

√
b1

,
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M10 1 = − (b1 + b2)2(b2)1
(b2 + 1)(b2 + 2)

,

M11 1 = − (b1 + b2)2(b2)1
(b2 + 1)

,

M14 1 =
√

b2 + 2
√

b1 + 2

(b1 + 1)3/2√b2 + 1 (b1 + b2 + 2)
,

M15 1 =
(b1 + b2 + 3)

√
b1 + 2

(b1 + 1)3/2√b2 + 1 (b1 + b2 + 2)
√

b2 + 2
,

M2 2 = −(b1 + b2)22(b2)1,

M5 2 =
(b2)1

(b1 + b2 + 2)2(b1 + b2 + 3)
,

M4 2 = − b1
√

b1 + b2 + 3
√

b1 + 2

(b1 + 1)3/2 (b2 + 1)
√

b1 + b2 + 2
,

M6 2 =
−b2 − 2

(b2 + 1) (b1 + 1)3/2√b1 + b2 + 2
√

b1 + 2
√

b1 + b2 + 3
,

M13 2 = − (b2)1(b1 + b2)2
(b1 + b2 + 2)

,

M9 2 = −
√

b1 + b2 + 4
√

b1 + 3
√

b2 + 2√
b2 + 1

√
b1 + b2 + 2

√
b1 + 2 (b1 + b2 + 3)

,

M12 2 = − (b2)1(b1 + b2)2
(b1 + b2 + 2)(b1 + b2 + 3)

,

M14 2 = − (b2 + 2)
√

b1

(b1 + 1)3/2 (b2 + 1)
√

b1 + b2 + 2
√

b1 + b2 + 3
,

M1 3 =
(b1)1

b2(b2 + 1)2
,

M15 2 = −
√

b1 + b2 + 3
√

b1

(b1 + 1)3/2 (b2 + 1)
√

b1 + b2 + 2
,

M3 3 = −(b2)21(b1)1,

M2 3 =
b1 + 2√

b2 + 1 (b1 + 1) (b1 + b2 + 2)3/2√b1 + b2 + 1
√

b2
,

M10 3 =
(b1)1(b2)1
(b2 + 1)

,

M5 3 = − (b1 + b2 + 3)
√

b2
√

b1 + b2 + 1√
b2 + 1 (b1 + 1) (b1 + b2 + 2)3/2

,

M11 3 =
(b1)1(b2)1
b2(b2 + 1)

,

M7 3 =
√

b2 − 1
√

b1 + b2
√

b1 + 2√
b2 + 1

√
b1 + 1b2

√
b1 + b2 + 1

,

M12 3 =
√

b2
√

b1 + b2 + 3

(b1 + b2 + 2)3/2 (b1 + 1)
√

b2 + 1
,
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M13 3 = − (b1 + 2)
√

b1 + b2 + 3

(b1 + b2 + 2)3/2 (b1 + 1)
√

b2 + 1
√

b2
,

M2 4 =
√

b1 + 2 (b1 + b2 + 1)
√

b1 + b2 + 3

(b2 + 1)
√

b1 + 1 (b1 + b2 + 2)3/2
,

M4 4 = −(b1)21(b2)1,

M5 4 = − b2√
b1 + 1 (b2 + 1) (b1 + b2 + 2)3/2√b1 + b2 + 3

√
b1 + 2

,

M6 4 = −
√

b2 + 2
√

b2

(b1 + 1)2 (b2 + 1) (b1 + 2)
,

M9 4 = −
√

b1 + b2 + 4
√

b1 + 3
√

b2√
b2 + 1

√
b1 + 1 (b1 + 2)

√
b1 + b2 + 3

,

M12 4 = − b2
√

b1 + b2 + 1

(b1 + b2 + 2)3/2 (b2 + 1)
√

b1 + 1
√

b1 + 2
,

M13 4 =
√

b1 + 2
√

b1 + b2 + 1

(b1 + b2 + 2)3/2 (b2 + 1)
√

b1 + 1
,

M14 4 = − (b2)1(b1)1
(b1 + 1)(b1 + 2)

,

M1 5 =
b1

(b2 + 1)3/2 (b1 + 1)
√

b1 + b2 + 2
√

b2
√

b1 + b2 + 1
,

M15 4 = − (b2)1(b1)1
(b1 + 1)

,

M2 5 =
(b1)1

(b1 + b2 + 2)2(b1 + b2 + 1)
,

M3 5 =
√

b1 + b2 + 1 (b2 + 2)
√

b2

(b2 + 1)3/2 (b1 + 1)
√

b1 + b2 + 2
,

M5 5 = −(b1)1(b1 + b2)22,

M7 5 =
√

b2 − 1
√

b1 + b2
√

b1√
b1 + 1

√
b1 + b2 + 2 (b1 + b2 + 1)

√
b2

,

M10 5 = −
√

b1 + b2 + 1
√

b2 + 2

(b2 + 1)3/2 (b1 + 1)
√

b1 + b2 + 2
,

M11 5 = − b1
√

b2 + 2

(b2 + 1)3/2 (b1 + 1)
√

b1 + b2 + 2
√

b1 + b2 + 1
,

M12 5 =
(b1)1(b1 + b2)2

b1 + b2 + 2
,

M13 5 = − (b1)1(b1 + b2)2
(b1 + b2 + 2)(b1 + b2 + 1)

,

M1 6 =
√

b1b2
√

b2 + 2√
b1 + 1 (b2 + 1)3/2 (b1 + b2 + 2)

,

M3 6 =
b1 + b2 + 1√

b1 + 1 (b2 + 1)3/2 (b1 + b2 + 2)
√

b2 + 2
√

b1
,
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M4 6 =
(b1 + b2)2
b1(b1 + 1)2

,

M6 6 = −(b1)21(b1 + b2)2,

M8 6 =
√

b1 − 1
√

b2 + 3
√

b1 + b2 + 1√
b1 + 1

√
b1 + b2 + 2

√
b2 + 2b1

,

M10 6 =
(b1 + b2 + 1)

√
b2

(b2 + 1)3/2√b1 + 1 (b1 + b2 + 2)
√

b1
,

M11 6 =
√

b1
√

b2

(b2 + 1)3/2√b1 + 1 (b1 + b2 + 2)
,

M14 6 =
(b1)1(b1 + b2)2

b1 + 1
,

M1 7 = −
√

b1
√

b2 + 2
√

b1 + b2 + 3
(b2 + 1)2

√
b1 + 1

√
b1 + b2 + 2

√
b2

,

M15 6 = − (b1)1(b1 + b2)2
b1(b1 + 1)

,

M2 7 = −
√

b1 + 2
√

b2 + 2
√

b1 + b2 + 3√
b2 + 1

√
b1 + 1 (b1 + b2 + 2)2

√
b1 + b2 + 1

,

M3 7 = −
√

b1
√

b2 + 2
√

b1 + b2 + 3
√

b2√
b1 + 1 (b2 + 1)2

√
b1 + b2 + 2

,

M5 7 = −
√

b1 + 2
√

b2 + 2(b1 + b2)2√
b1 + 1

√
b2 + 1 (b1 + b2 + 2)

,

M7 7 = −
√

b1 + b2 + 3
√

b2 + 2
√

b2 − 1
√

b1 + b2√
b2
√

b1 + b2 + 1
√

b2 + 1
√

b1 + b2 + 2
,

M10 7 =
√

b1
√

b1 + b2 + 3
(b2 + 1)2

√
b1 + 1

√
b1 + b2 + 2

,

M11 7 =
√

b1 (b2 + 2)
√

b1 + b2 + 3
(b2 + 1)2

√
b1 + 1

√
b1 + b2 + 2

,

M12 7 =
√

b1 + 2
√

b2 + 2
(b1 + b2 + 2)2

√
b2 + 1

√
b1 + 1

,

M13 7 =
√

b1 + 2
√

b2 + 2 (b1 + b2 + 3)
(b1 + b2 + 2)2

√
b2 + 1

√
b1 + 1

,

M1 8 =
√

b1 + 2
√

b1 + b2 + 1(b2)1
(b2 + 1)

√
b1 + 1

√
b1 + b2 + 2

,

M3 8 = −
√

b1 + 2
√

b1 + b2 + 1
√

b2

(b2 + 1)2
√

b1 + 1
√

b1 + b2 + 2
√

b2 + 2
,

M4 8 = −
√

b1 + 2
√

b1 + b2 + 3
√

b2

(b1 + 1)2
√

b2 + 1
√

b1 + b2 + 2
√

b1
,

M6 8 = −
√

b1 + 2
√

b1 + b2 + 3
√

b2
√

b1√
b2 + 1 (b1 + 1)2

√
b1 + b2 + 2

,
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M8 8 = −
√

b1 − 1
√

b2 + 3
√

b1 + 2
√

b2√
b1 + 1

√
b2 + 1

√
b1
√

b2 + 2
,

M10 8 = −
√

b1 + 2
√

b1 + b2 + 1b2

(b2 + 1)2
√

b1 + 1
√

b1 + b2 + 2
,

M11 8 =
√

b1 + 2
√

b1 + b2 + 1
(b2 + 1)2

√
b1 + 1

√
b1 + b2 + 2

,

M14 8 =
√

b1 + b2 + 3
√

b2

(b1 + 1)2
√

b2 + 1
√

b1 + b2 + 2
,

M15 8 =
(b1 + 2)

√
b1 + b2 + 3

√
b2

(b1 + 1)2
√

b2 + 1
√

b1 + b2 + 2
,

M2 9 =
√

b1
√

b2(b1 + b2)2√
b1 + 1

√
b2 + 1 (b1 + b2 + 2)

,

M4 9 =
√

b1
√

b1 + b2 + 1
√

b2 + 2
√

b1 + 2√
b1 + b2 + 2

√
b2 + 1 (b1 + 1)2

,

M5 9 = −
√

b1
√

b1 + b2 + 1
√

b2√
b1 + 1

√
b2 + 1 (b1 + b2 + 2)2

√
b1 + b2 + 3

,

M6 9 = −
√

b1
√

b1 + b2 + 1
√

b2 + 2√
b2 + 1 (b1 + 1)2

√
b1 + b2 + 2

√
b1 + 2

,

M9 9 = −
√

b1 + b2 + 4
√

b1 + 3
√

b1
√

b1 + b2 + 1√
b1 + 1

√
b1 + b2 + 2

√
b1 + b2 + 3

√
b1 + 2

,

M12 9 = −
√

b1 (b1 + b2 + 1)
√

b2

(b1 + b2 + 2)2
√

b1 + 1
√

b2 + 1
,

M13 9 =
√

b1
√

b2

(b1 + b2 + 2)2
√

b1 + 1
√

b2 + 1
,

M14 9 = − b1
√

b1 + b2 + 1
√

b2 + 2
(b1 + 1)2

√
b2 + 1

√
b1 + b2 + 2

,

M15 9 =
√

b1 + b2 + 1
√

b2 + 2
(b1 + 1)2

√
b2 + 1

√
b1 + b2 + 2

,

M3 10 = −
√

b2 + 3(b1 + b2)2
(b2 + 2)

√
b2 + 1

,

M4 10 =
√

b2 + 3
(b1 + b2 + 2)

√
b2 + 2

√
b1
√

b1 + 1
,

M8 10 =
√

b1 − 1
√

b1 + b2 + 3√
b1 + b2 + 2 (b2 + 2)

√
b1

,

M10 10 = −
√

b2 + 3
√

b1 + b2 + 1
√

b1 + b2 + 3
√

b2√
b2 + 1

√
b2 + 2 (b1 + b2 + 2)

,

M15 10 = −
√

b2 + 3
√

b1 + 2√
b1 + 1 (b1 + b2 + 2)

√
b2 + 2

,

M1 11 =
(b2 − 1)

√
b1
√

b1 + 2

(b1 + 1)
√

b2
2 − 1b2

,
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M2 11 =
√

b2 − 1
(b1 + 1)

√
b2
√

b1 + b2 + 1
√

b1 + b2 + 2
,

M7 11 = −
√

b1 + b2
√

b1 + 2√
b1 + 1b2

√
b1 + b2 + 1

,

M11 11 = −
√

b2 − 1
√

b1
√

b1 + 2
√

b2 + 2√
b2 + 1

√
b2 (b1 + 1)

,

M13 11 = −
√

b2 − 1
√

b1 + b2 + 3√
b1 + b2 + 2 (b1 + 1)

√
b2

,

M5 12 = −
√

b1 + b2 + 4
√

b2 + 2
√

b2
(b2 + 1)

√
b1 + b2 + 2 (b1 + b2 + 3)

,

M6 12 = −
√

b1 + b2 + 4
(b2 + 1)

√
b1 + b2 + 3

√
b1 + 2

√
b1 + 1

,

M9 12 =
√

b1 + 3
√

b2 + 2√
b2 + 1 (b1 + b2 + 3)

√
b1 + 2

,

M12 12 = −
√

b1 + b2 + 4
√

b2 + 2
√

b2
√

b1 + b2 + 1√
b1 + b2 + 2

√
b1 + b2 + 3 (b2 + 1)

,

M14 12 = −
√

b1 + b2 + 4
√

b1√
b1 + 1 (b2 + 1)

√
b1 + b2 + 3

,

M1 13 = −
√

b1 + b2
(b1 + 1)

√
b1 + b2 + 1

√
b2
√

b2 + 1
,

M2 13 =
√

b1 + b2
√

b1
√

b1 + 2
(b1 + 1)

√
b1 + b2 + 2 (b1 + b2 + 1)

,

M7 13 = −
√

b2 − 1
√

b1√
b1 + 1 (b1 + b2 + 1)

√
b2

,

M11 13 =
√

b1 + b2
√

b2 + 2√
b2 + 1 (b1 + 1)

√
b1 + b2 + 1

,

M13 13 = −
√

b1 + b2
√

b1
√

b1 + 2
√

b1 + b2 + 3√
b1 + b2 + 1

√
b1 + b2 + 2 (b1 + 1)

,

M5 14 =
√

b1 + 3
(b2 + 1)

√
b1 + 2

√
b1 + b2 + 3

√
b1 + b2 + 2

,

M6 14 = − (b1 + 3)
√

b2 + 2
√

b2

(b2 + 1)
√

b1
2 + 4 b1 + 3 (b1 + 2)

,

M9 14 =
√

b1 + b2 + 4
√

b2√
b2 + 1 (b1 + 2)

√
b1 + b2 + 3

,

M12 14 =
√

b1 + 3
√

b1 + b2 + 1√
b1 + b2 + 2 (b2 + 1)

√
b1 + 2

,

M14 14 = −
√

b1 + 3
√

b2 + 2
√

b2
√

b1√
b1 + 1

√
b1 + 2 (b2 + 1)

,

M3 15 =
√

b1 − 1
(b1 + b2 + 2)

√
b1
√

b2 + 2
√

b2 + 1
,
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M4 15 =
(b1 − 1) (b1 + b2)2√

b1
2 − 1b1

,

M8 15 = −
√

b2 + 3
√

b1 + b2 + 1√
b1 + b2 + 2b1

√
b2 + 2

,

M10 15 =
√

b1 − 1
√

b2√
b2 + 1 (b1 + b2 + 2)

√
b1

,

M15 15 = −
√

b1 − 1
√

b1 + b2 + 1
√

b1 + b2 + 3
√

b1 + 2√
b1 + 1

√
b1 (b1 + b2 + 2)

.

For large b1 and b2, we find that M = −1 with 1 the 15×15 identity matrix.

We can also identify terms in M that behave as b−1
1

M1 =
1
b1




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1

0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0

0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0




,
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terms that behave as b−1
2

M2 =
1
b2




0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0

−1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0

−1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




,
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and terms that behave as (b1 + b2)−1

M3 =
1

b1 + b2




0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0

0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0




.

By looking at the Cuntz chain states, it is straight forward to see that M1 is

reproduced by ribbon diagrams in which a pair of labels undergoes a l ↔ m

transition, that M2 is reproduced by ribbon diagrams in which a pair of labels

undergoes a b ↔ m transition and that M3 is reproduced by ribbon diagrams

in which a pair of labels undergoes a l ↔ b transition. This is exactly the

structure expected from an emergent U(3) gauge theory.

94



References

[1] S. Corley, A. Jevicki and S. Ramgoolam, “Exact correlators of giant

gravitons from dual N = 4 SYM theory,” Adv. Theor. Math. Phys. 5,

809 (2002) [arXiv:hep-th/0111222].

[2] V. Balasubramanian, M. Berkooz, A. Naqvi and M. J. Strassler, “Giant

gravitons in conformal field theory,” JHEP 0204, 034 (2002) [arXiv:hep-

th/0107119].

[3] V. Balasubramanian, D. Berenstein, B. Feng and M. x. Huang, “D-

branes in Yang-Mills theory and emergent gauge symmetry,” JHEP

0503, 006 (2005) [arXiv:hep-th/0411205].

[4] R. de Mello Koch, J. Smolic and M. Smolic, “Giant Gravitons - with

Strings Attached (I),” JHEP 0706, 074 (2007), arXiv:hep-th/0701066.

[5] R. de Mello Koch, J. Smolic and M. Smolic, “Giant Gravitons - with

Strings Attached (II),” JHEP 0709 049 (2007), arXiv:hep-th/0701067.

[6] D. Bekker, R. de Mello Koch and M. Stephanou, “Giant Gravitons -

with Strings Attached (III),” (2007), arXiv:0710.5372[hep-th].

[7] J. M. Maldacena, “The large N limit of superconformal field theories and

supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor.

Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200].

[8] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory cor-

relators from non-critical string theory,” Phys. Lett. B 428, 105 (1998)

[arXiv:hep-th/9802109].

[9] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math.

Phys. 2, 253 (1998) [arXiv:hep-th/9802150].

[10] G. ’t Hooft, “Dimensional Reduction in Quantum Gravity,” Utrecht

THU-93-26 (1993) [gr-qc/9310006].

95



[11] L. Susskind, “The World as a Hologram,” J.Math.Phys. 36 (1995) 6377-

6396 [arXiv:hep-th/9409089].

[12] G. ’t Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl.

Phys. B72 (1974) 46.

[13] J. McGreevy, L. Susskind and N. Toumbas, “Invasion of the giant gravi-

tons from anti-de Sitter space,” JHEP 0006, 008 (2000) [arXiv:hep-

th/0003075].

[14] D. Berenstein, “A toy model for the AdS/CFT correspondence,” JHEP

07 (2004) 018 [arXiv:hep-th/0403110].

[15] T. W. Brown, P.J. Heslop and S. Ramgoolam, “Diagonal multi-

matrix correlators and BPS operators in N = 4 SYM,” (2007)

arXiv:0711.0176[hep-th].

[16] H. Lin, O. Lunin and J. M. Maldacena, “Bubbling AdS space and 1/2

BPS geometries,” JHEP 0410, 025 (2004) [arXiv:hep-th/0409174],

H. Y. Chen, D. H. Correa and G. A. Silva, “Geometry and topology of

bubble solutions from gauge theory,” Phys. Rev. D 76, 026003 (2007)

[arXiv:hep-th/0703068].

[17] R. de Mello Koch and M. Stephanou, work in progress.

[18] D. Berenstein, D. H. Correa and S. E. Vazquez, “A study of open strings

ending on giant gravitons, spin chains and integrability,” [arXiv:hep-

th/0604123].

[19] J. A. Minahan and K. Zarembo, “The Bethe-ansatz for N = 4 super

Yang-Mills,” JHEP 0303, 013 (2003) [arXiv:hep-th/0212208].

[20] N. Beisert and M. Staudacher, “The N = 4 SYM integrable super spin

chain,” Nucl. Phys. B 670 (2003) 439 [arXiv:hep-th/0307042].

[21] D. Berenstein, D. H. Correa and S. E. Vazquez, “Quantizing open spin

chains with variable length: An example from giant gravitons,” Phys.

96



Rev. Lett. 95, 191601 (2005) [arXiv:hep-th/0502172].

[22] D. H. Correa and G. A. Silva, “Dilatation operator and the Super

Yang-Mills duals of open strings on AdS Giant Gravitons,” [arXiv:hep-

th/0608128].

[23] R. de Mello Koch, N. Ives, J. Smolic and M. Smolic, “Unstable giants,”

Phys. Rev. D 73, 064007 (2006) [arXiv:hep-th/0509007].

[24] M. Kruczenski, “Spin Chains and String Theory,” Phys. Rev. Lett. 93,

161602 (2004) [arXiv:hep-th/0311203].

[25] E. D’Hoker, D. Z. Freedman and W. Skiba, “Field theory tests for cor-

relators in the AdS/CFT correspondence,” Phys. Rev. D 59, 045008

(1999) [arXiv:hep-th/9807098],

W. Skiba, “Correlators of short multi-trace operators in N = 4 super-

symmetric Yang-Mills,” Phys. Rev. D 60, 105038 (1999) [arXiv:hep-

th/9907088],

N. R. Constable, D. Z. Freedman, M. Headrick, S. Minwalla, L. Motl,

A. Postnikov and W. Skiba, “PP-wave string interactions from per-

turbative Yang-Mills theory,” JHEP 0207, 017 (2002) [arXiv:hep-

th/0205089].

[26] J.-Q. Chen, Group Representation Theory for Physicists, Singapore,

World Scientific (1989).

[27] D. Berenstein and S. E. Vazquez, “Integrable open spin chains from

giant gravitons,” JHEP 0506, 059 (2005) [arXiv:hep-th/0501078].

[28] V. Balasubramanian and A. Naqvi, “Giant gravitons and a correspon-

dence principle,” Phys. Lett. B 528, 111 (2002) [arXiv:hep-th/0111163].

[29] S. Hirano, “Fat magnon,” JHEP 0704, 010 (2007) [arXiv:hep-

th/0610027].

97



[30] M. Ali-Akbari, M. M. Sheikh-Jabbari and M. Torabian, “Tiny graviton

matrix theory / SYM correspondence: Analysis of BPS states,” Phys.

Rev. D 74, 066005 (2006) [arXiv:hep-th/0606117],

M. M. Sheikh-Jabbari and M. Torabian, “Classification of all 1/2 BPS

solutions of the tiny graviton matrix theory,” JHEP 0504, 001 (2005)

[arXiv:hep-th/0501001],

M. M. Sheikh-Jabbari, “Tiny graviton matrix theory: DLCQ of IIB

plane-wave string theory, a conjecture,” JHEP 0409, 017 (2004)

[arXiv:hep-th/0406214].

[31] R. C. Myers, “Dielectric-branes,” JHEP 9912 (1999) 022 [arXiv:hep-

th/9910053].

[32] Y. Kimura and S. Ramgoolam, “Branes, Anti-Branes and Brauer Alge-

bras in Gauge-Gravity duality,” arXiv:0709.2158 [hep-th].

[33] J. P. Rodrigues, “Large N spectrum of two matrices in a harmonic

potential and BMN energies,” JHEP 0512, 043 (2005) [arXiv:hep-

th/0510244],

A. Donos, A. Jevicki and J. P. Rodrigues, “Matrix model maps in

AdS/CFT,” Phys. Rev. D 72, 125009 (2005) [arXiv:hep-th/0507124],

R. de Mello Koch, A. Jevicki and J. P. Rodrigues, “Instantons in c = 0

CSFT,” JHEP 0504, 011 (2005) [arXiv:hep-th/0412319],

R. de Mello Koch, A. Donos, A. Jevicki and J. P. Rodrigues, “Derivation

of string field theory from the large N BMN limit,” Phys. Rev. D 68,

065012 (2003) [arXiv:hep-th/0305042],

R. de Mello Koch, A. Jevicki and J. P. Rodrigues, “Collective string

field theory of matrix models in the BMN limit,” Int. J. Mod. Phys. A

19, 1747 (2004) [arXiv:hep-th/0209155].

[34] D. Berenstein and R. Cotta, “A Monte-Carlo study of the AdS/CFT cor-

respondence: An exploration of quantum gravity effects,” JHEP 0704,

071 (2007) [arXiv:hep-th/0702090],

D. Berenstein and R. Cotta, “Aspects of emergent geometry in the

98



AdS/CFT context,” Phys. Rev. D 74, 026006 (2006) [arXiv:hep-

th/0605220],

D. Berenstein and D. H. Correa, “Emergent geometry from q-

deformations of N = 4 super Yang-Mills,” JHEP 0608, 006 (2006)

[arXiv:hep-th/0511104],

D. Berenstein, “Large N BPS states and emergent quantum gravity,”

JHEP 0601, 125 (2006) [arXiv:hep-th/0507203],

D. Berenstein, “Strings on conifolds from strong coupling dynamics, part

I,” arXiv:0710.2086 [hep-th].

[35] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz,

“Large N field theories, string theory and gravity,” Phys. Rept. 323,

183 (2000) [arXiv:hep-th/9905111].

[36] J. de Boer, “Introduction to the AdS/CFT correspondence,” Prepared

for 10th International Conference on Supersymmetry and Unification

of Fundamental Interactions (SUSY02), Hamburg, Germany, 17-23 Jun

2002

[37] R. de Mello Koch, “Lectures on the gauge theory / gravity correspon-

dence,” Prepared for 4th International Workshop on Contemporary

Problems in Mathematical Physics (COPROMAPH4), Contonou, Re-

public of Benin, 5-11 Nov 2005

[38] D. Berenstein, “ Shape and Holography: Studies of dual operators to

giant gravitons,” Nucl. Phys. B675 179, (2003) [arXiv:hep-th/0306090].

[39] D. Berenstein, J. M. Maldacena and H. Nastase, “Strings in flat space

and pp waves from N = 4 super Yang Mills,” JHEP 0204, 013 (2002)

[arXiv:hep-th/0202021].

[40] R. Russo and A. Tanzini, “The duality between IIB string theory on

pp-wave and N = 4 SYM: A status report,” Class. Quant. Grav. 21,

S1265 (2004) [arXiv:hep-th/0401155],

99



D. Sadri and M. M. Sheikh-Jabbari, “The plane-wave / super Yang-Mills

duality,” Rev. Mod. Phys. 76, 853 (2004) [arXiv:hep-th/0310119].

[41] M. T. Grisaru, R. C. Myers and O. Tafjord, “SUSY and Goliath,” JHEP

0008, 040 (2000) [arXiv:hep-th/0008015].

[42] A. Hashimoto, S. Hirano and N. Itzhaki, “Large branes in AdS and their

field theory dual,” JHEP 0008, 051 (2000) [arXiv:hep-th/0008016].

[43] S. R. Das, A. Jevicki and S. D. Mathur, “Giant gravitons, BPS bounds

and noncommutativity,” Phys. Rev. D 63, 044001 (2001) [arXiv:hep-

th/0008088],

S. R. Das, A. Jevicki and S. D. Mathur, “Vibration Modes of Giant

Gravitons,” Phys. Rev. D 63 024013 (2001) [arXiv:hep-th/0009019].

[44] V. Balasubramanian, M. x. Huang, T. S. Levi and A. Naqvi, “Open

strings from N = 4 super Yang-Mills,” JHEP 0208, 037 (2002)

[arXiv:hep-th/0204196],

O. Aharony, Y.E. Antebi, M. Berkooz and R. Fishman, “Holey sheets:

Pfaffians and subdeterminants as D-brane operators in large N gauge

theories,” JHEP 0212, 096 (2002) [arXiv:hep-th/0211152],

D. Berenstein, “ Shape and Holography: Studies of dual operators to

giant gravitons,” Nucl. Phys. B675 179, (2003) [arXiv:hep-th/0306090].

[45] D. Berenstein and S. E. Vazquez, “Integrable open spin chains from gi-

ant gravitons,” JHEP 0506, 059 (2005) [arXiv:hep-th/0501078],

D. Berenstein, D. H. Correa and S. E. Vazquez, “Quantizing open spin

chains with variable length: An example from giant gravitons,” Phys.

Rev. Lett. 95, 191601 (2005) [arXiv:hep-th/0502172],

R. de Mello Koch, N. Ives, J. Smolic and M. Smolic, “Unstable giants,”

Phys. Rev. D 73, 064007 (2006) [arXiv:hep-th/0509007],

A. Agarwal, “Open spin chains in super Yang-Mills at higher loops:

Some potential problems with integrability,” [arXiv:hep-th/0603067],

100



K. Okamura and K. Yoshida, “Higher loop Bethe ansatz for open spin-

chains in AdS/CFT,” [arXiv:hep-th/0604100],

D. H. Correa and G. A. Silva, “Dilatation operator and the Super

Yang-Mills duals of open strings on AdS Giant Gravitons,” [arXiv:hep-

th/0608128],

N. Mann and S. E. Vazquez, “Classical Open String Integrability,”

[arXiv:hep-th/0612038].

[46] V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, “Entropy of

near-extremal black holes in AdS5,” arXiv:0707.3601 [hep-th].

[47] D. M. Hofman and J. M. Maldacena, “Reflecting magnons,”

arXiv:0708.2272 [hep-th].

[48] S. Corley and S. Ramgoolam, “Finite factorization equations and sum

rules for BPS correlators in N = 4 SYM theory,” Nucl. Phys. B 641,

131 (2002) [arXiv:hep-th/0205221],

R. de Mello Koch and R. Gwyn, “Giant graviton correlators from dual

SU(N) super Yang-Mills theory,” JHEP 0411, 081 (2004) [arXiv:hep-

th/0410236],

T. W. Brown, “Half-BPS SU(N) correlators in N = 4 SYM,” arXiv:[hep-

th/0703202],

S. Ramgoolam, “Wilson loops in 2-D Yang-Mills: Euler characters and

loop equations,” Int. J. Mod. Phys. A 11, 3885 (1996) [arXiv:hep-

th/9412110].

[49] D. Sadri and M. M. Sheikh-Jabbari, “Giant hedge-hogs: Spikes on giant

gravitons,” Nucl. Phys. B 687, 161 (2004) [arXiv:hep-th/0312155],

M. Ali-Akbari and M. M. Sheikh-Jabbari, “Electrified BPS Giants:

BPS configurations on Giant Gravitons with Static Electric Field,”

arXiv:0708.2058 [hep-th].

101


