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Abstract

The axial map of a town is one of the key components of the space syntax method – a tool

for analysing urban layout. It is derived by placing the longest and fewest lines, called axial

lines, to cross the adjacencies between convex polygons in a convex map of a town. Previous

research has shown that placing axial lines to cross the adjacencies between a collection of

convex polygons is NP-complete, even when the convex polygons are restricted to rectangles

and the axial lines to have orthogonal orientation.

In this document, we show that placing orthogonal axial lines in orthogonal rectangles

where the adjacencies between the rectangles are restricted to be crossed only once (ALP-

SC-OLOR) is NP-complete. As a result, we infer the single adjacency crossing version

of the general axial line placement problem is NP-complete. The transformation of NP-

completeness of ALP-SC-OLOR is from vertex cover for biconnected planar graphs. A

heuristic is then presented that gives a reasonable approximate solution to ALP-SC-OLOR

based on a greedy method.
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Chapter 1

Introduction

1.1 Introduction to the Problem

Computational geometry is a discipline that deals with the algorithmic aspects of geometrical

problems. Most geometric problems are defined for two-dimensional space as it is a simplified

form of the n-dimensional space. Art gallery and visibility problems are among the well

known geometric problems that are defined in a two-dimensional space and have been the

focus of research in the field of computational geometry. Another problem in the field

which was introduced recently is the axial line placement (ALP) problem. Sanders [2002]

introduced the axial line placement problem in attempting to automate the space syntax

method [Hillier et al. 1983] – a technique of determining how complex an urban layout is by

analysing its spatial structure.

Space syntax is composed of four essential phases, one of which is deriving the axial map

of the area (region) of interest. According to Hillier et al. [1983], the axial map is constituted

by placing the fewest and longest lines (called axial lines) to cross the adjacencies between the

convex polygons that form the convex map of the region of interest. Space syntax is described

in more depth in Chapter 2. Sanders [2002] showed that placing axial lines in a collection of

convex polygons is NP-complete. Depending on the configuration of the convex polygons and

the orientation of the axial lines, ALP can be divided into three subproblems [Sanders 2002]:

the convex polygons restricted to orthogonal rectangles while the axial lines have orthogonal

orientation (ALP-OLOR), the convex polygons restricted to orthogonal rectangles while

the axial lines have arbitrary orientation (ALP-ALOR), and arbitrary orientation of axial

lines to cross the adjacencies between the convex polygons (ALP-ALCP). Each of these

subproblems have been shown to be NP-complete [Sanders 2002] which implies that they

may not be solved in reasonable time for large data sets.
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In this dissertation, we considered the problem of placing a minimum number of orthog-

onal axial lines to cross the adjacencies between a collection of orthogonal rectangles where

the adjacencies are restricted to be crossed only once, and investigated if the problem is poly-

nomially solvable or if it is NP-complete. The problem is referred to as ALP-SC-OLOR for

the rest of the document. Note that for the rest of the document ALP-OLOR, ALP-ALOR

and ALP-ALCP refer to the multiple adjacency crossing version of the subproblems.

In this chapter, a brief description of the problem area is given accompanied by an

example that demonstrates the relationship and difference between ALP-OLOR and ALP-

SC-OLOR. Section 1.3 presents the significance of the problem in context of the areas where

the research is applied to, followed by an overview of the research approach. A brief overview

of the results of the research is also included in this chapter. The final section presents the

road-map of the whole document.

1.2 Statement of the Problem

The axial line placement problem takes a collection of convex polygons as input and produces

a minimum number of lines (called axial lines) that can cross the adjacencies between the

convex polygons such that each adjacency is crossed at least once while the lines should

cross as many adjacencies as possible. Previous research on ALP and its subproblems were

considering the axial lines to cross as many adjacencies as possible. In this dissertation,

we studied the single adjacency crossing of ALP whereby we considered the problem of

placing single-crossing orthogonal lines in orthogonal rectangles and investigated whether

the problem is polynomially solvable or if it is NP-complete. The aim of studying the most

restrictive subproblem of ALP was that the result obtained during the course of the research

could give insight of the single adjacency crossing of the general ALP problem.

In proving the NP-completeness of ALP-OLOR, Sanders [2002] categorized the axial lines

into two: essential and choice lines. The essential lines are the lines that cross the adjacencies

that have never been crossed while the choice lines are the lines some of which are required

while others are redundant. Selecting the minimum number of choice lines may require

exponential time and hence led to the NP-completeness of the problem. This is discussed

in more detail in Subsection 2.7.4.1. In ALP-SC-OLOR, due to the restriction imposed on

the adjacencies we may not have choice lines. In other words, the NP-completeness of ALP-

OLOR may not have any effect in ALP-SC-OLOR which implies ALP-SC-OLOR could be

solved in polynomial time. Figure 1.1 shows an example of such scenario. Lines ‘a’ and ‘d’

are essential while ‘b’ and ‘c’ are choice lines. On the other hand, selecting the minimum

2



combination of single-crossing lines may require exponential time due to the many possible

combinations of single-crossing lines. Hence there was also possibility that ALP-SC-OLOR

could be NP-complete. The ALP-SC-OLOR problem may have more than one solution due

to the restriction imposed on the adjacencies. Figure 2.3 illustrates two possible solutions

of ALP-SC-OLOR. The research aimed at investigating if any one solution can be obtained

in polynomial time or if it is NP-complete.

a

b

c

d

i. ii.

Figure 1.1: An example of ALP-OLOR [Sanders 2002] (i) and ALP-SC-OLOR (ii)

1.3 Significance of the Problem

Space syntax is a method of analysing an urban layout by studying its spatial structure

[Hillier et al. 1983]. As it requires large data input, automating the technique would highly

benefit the end-users. The space syntax method has four essential phases [Mills 1992]:

separating “space”, where one can move, from the “non-space”, where one cannot move in

an aerial map of a town; partitioning the “space” region which is the focus of interest into a

minimum number of convex polygons which produces the convex map of the town; placing

the fewest and longest lines (called axial lines) to cross the shared adjacencies between the

convex polygons; and integrating the local and global relationships of a “space” with its

3



neighbours and the entire urban grid. The phases of the space syntax method are illustrated

in Figure 2.1. Space syntax is discussed in Chapter 2 in more depth.

Sanders [2002] has shown that the problem of placing axial lines to cross the adjacen-

cies between a collection of convex polygons, which is the third step in space syntax, is

NP-complete. As computing for the exact solution may grow exponentially with respect

to the input size, heuristic algorithms have been provided which give reasonable approxi-

mate solutions to ALP-OLOR [Sanders 2002], ALP-ALOR [Sanders and Kenny 2001] and

ALP-ALCP [Hagger 2005] that can be applied in automating the space syntax method.

Furthermore, Sanders et al. [2000] developed a polynomial time algorithm that solves the

problem of placing orthogonal axial lines to cross special cases of configuration of orthogonal

rectangles (chains and trees of rectangles).

The dissertation conceived another approach of approximating the general axial line

placement problem by considering adjacencies to be crossed only once. More specifically,

the research considered ALP-OLOR where the adjacencies between the orthogonal rectangles

can only be crossed once, and explored if it can be solved in polynomial time or if it is NP-

complete. As ALP-OLOR is a more simplified form of ALP-ALOR and ALP-ALCP, the

result of the research could be extended to the single-crossing version of the subproblems.

If the problem had been found to be polynomially solvable, the next step would be to adopt

the approach to convex polygons and axial lines with arbitrary orientation. This would

contribute in developing a tight heuristic for the general axial line placement problem. On

the other hand, a proof of NP-completeness implies that the single-crossing of ALP may

not be solved efficiently for large data input, and hence suggests such approach may not be

helpful for automating the space syntax method.

In addition to its application in space syntax, ALP can also be considered as an art

gallery problem in which the gallery is protected by ray guards – guards that can see along

a single ray [Sanders 1999]. For the case of ALP-ALOR, the orthogonal rectangles represent

an art gallery of rectangular rooms while the adjacencies between the orthogonal rectangles

represent walls that separate the rooms of the gallery. The problem is to place the doorways

and the guards of the gallery in such a way that the gallery will be protected by a minimum

number of guards. On the ALP-SC-OLOR case, the walls between the adjacent rooms will

have exactly one doorway. The problem would then be placing the doorways in such a way

that the gallery is protected by a minimum number of horizontal (or vertical) ray guards.

In other words, each ray guard is responsible to protect some doorways while a doorway is

patrolled by exactly one guard.

4



1.4 Overview of the Research Approach

ALP-SC-OLOR is a simplified form of ALP in which a minimum number of single-crossing

orthogonal axial lines are required to intersect the adjacencies between a collection of or-

thogonal rectangles. The aim of the proposed research was to investigate if ALP-SC-OLOR

can be computed in polynomial time or to show that it is an NP-complete problem if it

seems to have exponential complexity.

In order to attain the aim of the research, there were two general approaches: either to

transform ALP-SC-OLOR to a known problem in the class of problems of P in polynomial

time in which case ALP-SC-OLOR is polynomially solvable or to transform a known NP-

complete problem to ALP-SC-OLOR in polynomial time which implies ALP-SC-OLOR is

NP-complete.

The research proceeded with the second approach – transforming a known NP-complete

problem to ALP-SC-OLOR. As a starting point, we introduced a graph theory problem

which is defined only on bipartite graphs, namely bipartite independent dominating set

(BIDS). BIDS is shown to be NP-complete by a reduction from the vertex cover problem

for planar graphs. Then, using the fact that any bipartite planar graph can be represented

in a grid using vertical and horizontal segments, we transformed BIDS into its equivalent

segment representation called orthogonal bipartite independent dominating set (OBIDS).

The final transformation was from OBIDS to a special case of ALP-SC-OLOR in which the

lines are required to be maximal when they cross choice adjacencies. Choice adjacencies are

adjacencies that can be crossed by more than one maximal lines. The research proceeded to

develop a heuristic algorithm that gives an approximate solution to ALP-SC-OLOR based

on a greedy method. The next section presents highlights of the results of the research.

1.5 Overview of the Research Results

In the previous section, the methodology adopted in attaining the aim of the research was

highlighted. The findings of the research shows that ALP-SC-OLOR is NP-complete. The

transformation is three way: from vertex cover for biconnected planar graphs to bipartite

independent dominating set (BIDS) for planar graphs, then to a grid representation of BIDS

(OBIDS) and finally to a normalized single-crossing orthogonal axial lines in orthogonal

rectangles (ALP-NSC-OLOR). As ALP-SC-OLOR is a special case of the single-crossing

versions of ALP-ALOR and ALP-ALCP, both problems remain NP-complete despite the

restriction imposed on the adjacencies.
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We also presented a heuristic algorithm that gives a reasonable approximate solution to

ALP-SC-OLOR based on a greedy method. The heuristic has three phases: determining

vertical adjacencies between a collection of rectangles, generating all possible single-crossing

lines to cross the vertical adjacencies and selecting the minimum number of lines to cover

all the adjacencies. The algorithm is discussed in depth in Chapter 5.

1.6 Structure of the Document

The rest of the dissertation is organized as follows. Chapter 2 begins by presenting a brief

description of the space syntax method and its components. This gives a basis for describing

the problem area in more depth and in relation to the general axial line placement problem.

Terms and definitions used in the field of computational geometry in general and on problems

related to ALP in particular are also given as they will appear frequently in the rest of

the dissertation. As ALP-SC-OLOR was found to be NP-complete, the concept of NP-

completeness is presented along with the techniques of proving NP-completeness of a new

problem. Previous research on ALP is also included in the chapter focusing on polynomial

time algorithms developed to solve special cases of the ALP-OLOR problem and heuristic

algorithms for ALP-OLOR and ALP-ALCP. Finally, a brief overview of domination and

dominating set is presented as the bipartite independent dominating set problem introduced

in Chapter 4 belongs to the dominating set domain.

Chapter 3 outlines the research methodology. First, the research question is given –

determining whether ALP-SC-OLOR is polynomially solvable or whether it is NP-complete,

followed by the two general approaches to follow in answering the research question. The two

approaches are transforming ALP-SC-OLOR to a known problem in P and transforming a

known NP-complete problem to ALP-SC-OLOR. Section 3.3 presents a brief discussion on

the focus of the research based on whether ALP-SC-OLOR is polynomially solvable or it is

NP-complete.

In Chapter 4, a proof of NP-completeness of ALP-SC-OLOR is presented. A formal

definition of the bipartite independent dominating set problem is given first followed by its

proof of NP-completeness. Section 4.4 discusses different approaches to represent a graph

using segments in a grid. An outline of representing a graph using vertical and horizontal

segments is also presented in the section. Section 4.5 focuses on the final transformation

from orthogonal bipartite independent dominating set to the problem of placing normalized

single-crossing axial lines in orthogonal rectangles (ALP-NSC-OLOR). ALP-NSC-OLOR is

a special case of ALP-SC-OLOR in which the axial lines are required to be maximal when
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they cross choice adjacencies. A choice adjacency is a shared edge between two rectangles

where it can be crossed by two or more maximal lines.

Chapter 5 presents a heuristic algorithm for ALP-SC-OLOR based on a greedy method.

First, the three phases of the heuristic are discussed along with their correctness and com-

plexity analysis. Section 5.4.2 details the empirical analysis of the heuristic. The final section

presents the experimental results of the algorithm which reflects the solution produced by

the heuristic is close to the optimal.

In Chapter 6 future work identified during the course of the research is presented. It

is mainly developing heuristics for ALP-SC-OLOR using various approaches and exploring

special configurations where ALP-SC-OLOR is polynomially solvable.

The last chapter highlights the main findings and conclusions of the document. It also

points out the main contributions of the dissertation. Section 7.4 states the limitations

of the research which are mainly lack of large data sets to analyse the performance and

running time of the heuristic. The chapter concludes by presenting a summary of the whole

document.
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Chapter 2

Background and Related Work

2.1 Introduction

Visibility and guarding are well known geometric problems that have been studied exten-

sively. ALP, which was briefly described in Chapter 1, is a recently introduced problem in

the area of computational geometry that attempts to automate the space syntax method

– a technique of urban analysis. The axial line placement (ALP) problem is to find the

fewest and longest lines that cross each adjacency between a collection of convex polygons.

Based on the configuration of the convex polygons and the orientation of the axial lines,

ALP is classified into ALP-OLOR, ALP-ALOR and ALP-ALCP. Each of these subproblems

has been found to be NP-complete. In this dissertation, we considered a variation of ALP-

OLOR where the adjacencies between the orthogonal rectangles are restricted to be crossed

only once and determined if the problem still remains NP-complete or if it can be solved in

polynomial time.

This chapter introduces the space syntax method in more depth which will be the basis

for describing the axial line placement problem and the problem area considered for the

dissertation. Terms and definitions in the field of computational geometry that are used in

the rest of the document are given next. Section 2.6 discusses the theory of NP-completeness

and the techniques of transformation in proving the NP-completeness of a new problem. The

visibility and guarding problems have some commonalities with ALP and hence they are

discussed in depth in Section 2.7. A discussion on previous research on ALP is also included

in this chapter, focusing on the algorithms and methods of transformation used in proving

NP-completeness of the problems. Lastly, domination and dominating set, a well known

graph theory problem, is described along with its variations as the bipartite independent

dominating set introduced in Chapter 4 fits into the domination domain.
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2.2 Space Syntax

Space syntax is a technique introduced by Hillier et al. [1983] for analysing and describing

architectural patterns at the building and urban level. By studying the space representation

of an urban layout, space syntax helps in determining how the structure of the urban layout

is related to the social and economic factors. Space syntax is based on the idea that an

architectural pattern of a town is an interconnected space where any “space” is accessible

from every other “space” [Jiang 1998]. The method considers the global and local relations

of a “space” in determining the integration factor [Hillier 1996] – the global measure is

determined by integrating the relation of the “space” with the overall layout whereas the

local measure is determined by the relation of the “space” and its neighbours.

Space syntax has been serving as a tool to assist architects to simulate the effects of

their design by modeling and analysing urban patterns with respect to human activities

such as pedestrian movement and traffic flow [Thomson 2003]. There are four essential steps

required when the space syntax method is applied to an urban layout [Mills 1992; Jiang

1998; Sanders 2002].

• The first step is to take an aerial map of a town and then separate the “space” where

one can move (roads, parking areas etc.) from the “non-space” where one cannot

move (buildings, street blocks, etc). Figure 2.1(i) is an example of this phase – the

shaded region represents the “non-space” while the rest of the region represents the

“space”. The result of this process is the layout of the town, and as described above,

the “space” is the object of interest. Image processing techniques can be applied to the

aerial map in separating the “space” from the “non-space”. Furthermore, the “space”

is approximated to a polygon with holes (the “non-space”). Figure 2.1(ii) shows the

approximated polygon with holes of the original layout.

• The second step is to partition the polygon (with holes) to produce the convex map of

the area, i.e. the polygon is partitioned into a minimum number of convex polygons.

A polygon is convex if a line segment joining any two points of the polygon lies entirely

within the polygon including its boundaries. New vertices (called Steiner points) could

be introduced during the partitioning process. Unlike a polygon without holes which

could be partitioned into a minimum number of convex polygons in polynomial time

irrespective of Steiner points [Chazelle and Dobkin 1979; Keil and Snoeyink 2002],

partitioning a polygon with holes is known to be NP-hard whether Steiner points

are allowed [Lingas 1982] or not [Keil 1985]. Consequently, in automating this phase
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Figure 2.1: The steps of space syntax
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heuristic algorithms that approximate the exact solution could be applied since the

exact solution may not be computed efficiently for large data inputs. Lien and Amato

[2004] developed an algorithm that partitions a simple polygon with or without holes

into “approximated” convex polygons in O(nr) time, where n is the number of vertices

of the polygon and r is the number of reflex angles of the polygon. The algorithm

recursively partitions the polygon until a user specified bound is attained. The lower

the specified bound, the higher will be the number of convex components. If the

specified bound is zero, the polygon will be partitioned into components which are all

convex. Figure 2.1(iii) shows the convex map of the area (region) of interest.

• During the third step, an axial map of the town is derived from the convex map. An

axial map is composed of the longest and fewest number of lines (called axial lines) that

cover the convex map. The axial lines are placed to cross each adjacency (shared edge)

of the convex polygons in the convex map, and must be maximal – they must cross as

many adjacencies as possible while each adjacency must be crossed by at least one axial

line. The placement of the axial lines is associated with the lines of sight. The problem

of placing the minimum number of axial lines was found to be NP-complete [Sanders

2002] which implies it may only be solved efficiently for small data sets in reasonable

time. However, there are heuristic algorithms that give approximate solutions for the

general problem and specific configurations. More about the problem of placing axial

lines and its variations is given in the next section as it is the focus of the dissertation.

Figure 2.1(iv) is an example of placing axial lines to cross the adjacencies between the

convex polygons produced during the previous step.

• The final step is to compute the local and global relationships of a “space” with its

neighbours and the entire grid. These are computed by assigning values to the axial

lines based on their depth (the degree to which they are integrated), and then apply-

ing graph algorithms to the axial map of the town – the axial lines are represented as

nodes (vertices) and an edge is placed between the vertices if the axial lines intersect.

If two axial lines intersect, they are considered as adjacent and an edge is placed to

join their associated vertices. Usually, the graph representation of the axial map is

undirected and unweighted [Penn 2003]. This approach avoids the metric distance be-

tween the lines that form the axial map since both long and short lines are represented

by dimensionless nodes. As longer lines are more likely to intersect other lines, they

are more integrated (depth) than the shorter ones. Based on the depth of the axial

line (and hence the degree of the vertex) the integration values are computed using

11



standard formulae [Jiang 1998]. Figure 2.1(v) is a graph representation of the axial

map.

The rest of the document will focus on the third step – placing axial lines in a collection of

convex polygons and its variations.

2.3 The Axial Line Placement Problem

In automating the space syntax method, each of its phases need to have either an efficient

algorithm which gives the exact solution or an algorithm which gives an approximated

solution in reasonable time. As we have seen in the previous section, each phase of the space

syntax method has such algorithm and hence can contribute in automating the method.

Since the focus of the dissertation is on the third phase – placing axial lines to cross the

adjacencies between convex polygons (ALP) – we assume that we are given a collection of

non-overlapping convex polygons. More formally ALP can be stated as: given a collection

of non-overlapping convex polygons, find the longest and fewest number of lines (axial lines)

that cross each adjacency between the polygons. Each adjacency must be crossed at least

once while an axial line should cross as many adjacencies as possible. Moreover, the lines

must lie entirely within the area defined by the polygons. ALP has been known to be

NP-complete [Sanders 2002]. Based on the configuration of the convex polygons and the

orientation of the axial lines, ALP can be divided into three subproblems.

i. Orthogonal axial lines to cross the adjacencies between a collection of orthogonal rect-

angles (ALP-OLOR). Here, the convex polygons are restricted to be orthogonally

aligned rectangles while the axial lines have orthogonal orientation. By orthogonal

rectangles, we mean that the boundaries of the rectangles are parallel to the Cartesian

x and y axes while the orthogonal axial lines refer to the horizontal lines (to cross

vertical adjacencies) and vertical lines (to cross horizontal adjacencies). As one can be

computed from the other by rotating 90◦ (or 270◦), usually only one of these variations

is considered. ALP-OLOR is the most restrictive subproblem of ALP and is known to

be NP-complete [Sanders 2002].

ii. Axial lines of arbitrary orientation to cross the adjacencies between a collection of

orthogonal rectangles (ALP-ALOR). This problem considers the convex polygons to

be orthogonally aligned rectangles while the axial lines may have arbitrary orientation.

In contrast to ALP-OLOR, an axial line in ALP-ALOR could cross both vertical and
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iii.

Figure 2.2: ALP-OLOR, ALP-ALOR and ALP-ALCP each having three axial lines

horizontal adjacencies between the orthogonal rectangles. ALP-ALOR was found to

be a member of NP-complete class of problems [Sanders 2002].

iii. Axial lines of arbitrary orientation to cross the adjacencies between a collection of

convex polygons (ALP-ALCP). This is the most general subproblem. A collection of

non-overlapping convex polygons are crossed by axial lines of arbitrary orientation.

As ALP-OLOR and ALP-ALOR are NP-complete, and they are special cases of the

ALP-ALCP, it follows that ALP-ALCP is also NP-complete [Sanders 2002].

An example of each of the subproblems of ALP is given in Figure 2.2. The subproblems

are discussed in more depth in Section 2.7 focusing on the method of transformation used in

proving the NP-completeness of the problems, heuristics developed and special configurations

of rectangles (or convex polygons) in which the axial lines can be placed in polynomial time.
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2.4 The Single-crossing Version of ALP

As described above, ALP and its subproblems are NP-complete which implies that the

problems may not be solved efficiently (unless P = NP ). Consequently, focusing on special

cases where the problem can be solved in polynomial time and heuristic algorithms that give

reasonably approximated solutions are essential. One way of considering a variation of ALP

is to restrict the adjacencies between the collection of convex polygons to be crossed only

once while the lines can cross one or more adjacencies. In this dissertation, we considered

the problem of placing orthogonal axial lines to cross the adjacencies between orthogonally

aligned rectangles only once (ALP-SC-OLOR) and investigated if the problem can be solved

efficiently or if it remains NP-complete.

ii.i.

Figure 2.3: The choice of constructing the axial lines is essential in ALP-SC-OLOR to get

minimum number of lines

ALP-SC-OLOR can be formally stated as: given a collection of non-overlapping orthog-

onally aligned rectangles, find the fewest number of orthogonal axial lines that can cross

the adjacencies between the rectangles only once while the axial lines can cross one or more

adjacencies. By orthogonally aligned rectangles, we mean that the sides of the rectangles are

parallel either to the horizontal or to the vertical axes. Likewise, by orthogonal axial lines

we mean that the lines are parallel to either the horizontal axis (to cross vertical adjacen-
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cies) or the vertical axis (to cross horizontal adjacencies). In this document, we considered

horizontal axial lines and vertical adjacencies as the vertical axial lines to cross horizontal

adjacencies version can be computed from the other.

For the same configuration of orthogonal rectangles, ALP-SC-OLOR and ALP-OLOR

may not have the same solution due to the restriction imposed on the adjacencies in ALP-

SC-OLOR. Figure 1.1 has shown the difference between these two versions. Consequently,

it might be possible to find an efficient algorithm to compute the ALP-SC-OLOR problem

despite the NP-completeness of ALP-OLOR. On the other hand, the choice of constructing

the axial lines in ALP-SC-OLOR is essential to get minimum axial lines (Figure 2.3), which

is also the case for ALP-OLOR. The aim of the dissertation was to explore if a polynomial

time algorithm can be developed for ALP-SC-OLOR or a proof of NP-completeness if the

problem seems to require exponential time to compute the minimum number of combination

of single-crossing lines.

ii.i.

Figure 2.4: ALP-SC-OLOR with two possible solutions

By definition, the axial lines are the fewest and longest lines that cross every adjacency

of a collection of convex polygons. For a given collection of convex polygons, it is possible

to have more than one solution that differ in the way the axial lines are placed and the

adjacencies they cross. Moreover, due to the restriction on the adjacencies between the
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orthogonal rectangles to be crossed exactly once in ALP-SC-OLOR, we may have more than

one solution depending on the lines that cross the adjacencies. Figure 2.4 shows two possible

solutions of ALP-SC-OLOR to the same configuration of orthogonal rectangles. The focus

of the dissertation was on one possible way of placing a minimum number of single-crossing

lines to cross the adjacencies between the rectangles.

2.5 Basic Terminologies and Definitions

There are various terms that are common and widely used in the field of computational

geometry. Some of these terms are defined below as they will be used frequently throughout

the document. Most of the definitions are taken from Manber [1989], Shermer [1992] and

Asano et al. [2000].

• A point p is defined by a pair of Cartesian coordinates (x, y).

• A line is defined by a pair of distinct points p and q and is denoted by −pq−.

• A line segment is represented by a pair of distinct points p and q in which the points

are the end points of the line segment. It is denoted by pq.

• An orthogonal line (or orthogonally aligned line) is a line that is parallel to either the

x-axis or the y-axis.

• A path P is a sequence of points p1, p2, ..., pn and the line segments joining the points.

• A closed path is a path whose last point is the same as the first point. It is also called

a polygon.

• A polygon can also be defined as a sequence of three or more points p1, p2, ..., pn and

the line segments joining the points p1p2 , p2p3 , ..., pnp1 . The points that define the

polygon are called vertices and the line segments joining the points (vertices) are called

edges. The edges can also be represented as (p1 , p2 ), (p2 , p3 ), ..., (pn , p1 ).

• A simple polygon is a polygon such that if any two of its edges are non-consecutive,

then they do not intersect.

• An interior angle of a polygon is the angle between two consecutive edges of the

polygon on the inside of the polygon.

• A reflex angle (or reflex vertex) of a polygon is an interior angle of a polygon which is

greater than 1800.
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• A convex polygon is a polygon such that the line segment joining any two points of

the polygon lies entirely within the polygon (and its boundaries). In other words, a

convex polygon is a polygon with no reflex angle.

• A sub-polygon is a simple polygon that lies entirely within another polygon.

• A polygon with holes is a polygon with one or more sub-polygons removed from it.

The sub-polygons must lie entirely within the polygon. Figure 2.1(ii) shows a polygon

with three holes. Note that a convex polygon cannot have holes.

• A rectangle is a polygon with four vertices and four edges such that a pair of its

consecutive edges form an interior angle of 90◦.

• An orthogonal rectangle is a rectangle with all of its edges orthogonally aligned, that

is, parallel to the x-axis or the y-axis.

• A comb polygon is a polygon with k-prongs, each prong having two edges and adjacent

prongs are separated by an edge [O’Rourke 1995]. An example of a comb polygon with

6-prongs is given in Figure 2.5.

Figure 2.5: A comb polygon with 6-prongs

• An orthogonal comb polygon is a comb polygon in which the prongs are orthogonally

aligned. An example of such a polygon is given in Figure 2.6.

• A decomposition of a polygon P is called a partition of P if the sub-polygon compo-

nents do not overlap except at their boundaries [Keil 2000]. If the sub-polygons are
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Figure 2.6: An orthogonal comb polygon with 6-prongs

allowed to overlap, then the decomposition is called a cover of P. In either case of the

decomposition, each sub-polygon must lie entirely within the original polygon while

the union of the sub-polygons constitutes the original polygon.

• A Steiner point is a point that is not part of the original vertices of a polygon but

introduced during a decomposition of the polygon [Keil 2000]. Although introducing a

Steiner point makes the partitioning process complex, it is helpful in partitioning the

polygon into the fewest sub-components. An example of partitioning a polygon with

and without a Steiner point is given in Figure 2.7.

• A triangulation is a decomposition of a polygon into triangles by a maximal set of

non-intersecting diagonals (line segments joining non-adjacent vertices). Figure 2.8

shows a simple polygon and a possible way of its triangulation.

• In a polygon two points, q and r, are visible to one another if the line segment qr

joining the two points lies within the polygon and its boundaries or q = r (a point is

visible to itself). Figure 2.9(i) illustrates point a can see points b and c, but not d.

• Two points q and r in a polygon are link-j visible (or Lj visible) if they can be

connected by j or fewer line segments that lie within the polygon and its boundaries.

A point is visible to itself, and hence it is L0 visible. Moreover, any two distinct points

in a convex polygon are L1 visible, since the line segment joining them lies within the

polygon (and its boundaries). In Figure 2.9(ii), points a and b are L3 visible.
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i. ii.

Figure 2.7: Partitioning a polygon into convex polygons with and without Steiner point

• A visibility polygon V(p) of a point p in a polygon P is the set of all points of P that

are visible from p [Asano et al. 2000]. p can be any point inside, outside or on the

boundary of the polygon.

• In a polygon a point q is visible from an edge uv if there is a point w in uv such that

i. ii.

Figure 2.8: A simple polygon and a possible way of its triangulation [de Berg et al. 2000]
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a

b

c

d.

i.

a

b

ii.

Figure 2.9: (i) Point a is visible from b and c but not from d, and (ii) Points a and b are L3

visible

qw lies entirely within the polygon. The point w is considered as mobile point within

the edge.

• A polygon P is completely visible from an edge uv if every point in P is visible from

every point in uv.

• A polygon P is strongly visible from an edge uv if every point in P is visible from some

point in uv.

• A polygon P is weakly visible from an edge uv if there exists at least one point in P

which is visible from some point in uv. Figure 2.10(i-iii) shows a polygon visibility

from an edge uv.

• A visibility polygon V(e) of an edge e in a polygon P is the set of all points of P that

are weakly visible from e.

• A graph G(V,E) is a set of vertices V and a set of edges E that joins the vertices. A

graph can be directed or undirected.

• A graph G(V,E) is planar if it can be drawn in a plane by representing the vertices

as points and the edges as simple curves joining the points such that none of its edges

cross each other.
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• A graph G(V,E) is bipartite if V can be partitioned into two disjoint sets of vertices

V1 and V2, (V = V1 ∪ V2 and V1 ∩ V2 = ∅), such that if (v1, v2) ∈ E then v1 ∈ V1 and

v2 ∈ V2.

i.

u v w

ii.

u v

iii.

u v

Figure 2.10: A polygon (i) completely visible, (ii) strongly visible and (iii) weakly visible

from the edge uv [Avis and Toussaint 1981]

2.6 NP-complete Problems

2.6.1 Introduction

Computers are helpful in solving real-life problems. However, not all problems are solvable

by computers. This could be due to the fact that either the problems are too expensive (in

terms of resources – memory, processor, etc.) to be solved efficiently or they cannot be solved

by computers whatever resource we may have [Garey and Johnson 1979]. Some geometric

problems fall into the first category – they may not be solved efficiently. In the previous

sections, we used the term NP-complete (or NP-hard) to describe such problems. Moreover,

it was stated that if a problem is NP-complete it is worthwhile to search for algorithms that

can give approximate solutions or special cases of the problem where it can be solved in

polynomial time.

Garey and Johnson [1979] classified algorithms based on the relationship between the

input size and their corresponding running time into polynomial time and exponential time

algorithms. Polynomial time algorithms are algorithms whose time complexity is bounded

by a polynomial function P , that is, O(P (n)) for some polynomial function P , where n is
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the size of the input. Such algorithms are considered to be efficient and their corresponding

problems are tractable since the running time of these algorithms is bounded by a polynomial

function with respect to their input size. If an algorithm’s time complexity is not bounded

by a polynomial function, then it is categorized as an exponential time algorithm1. Since

the running time of the latter algorithms grow exponentially with respect to the input size,

solutions for these problems are feasible only for small size of input.

The section begins by introducing decision problems which will be the basis for defining

the P and NP classes of problems. The notion of efficient algorithms is also given fol-

lowed by common properties of NP-complete problems which focuses on the way of proving

NP-completeness of a new problem. The last subsection presents the concept of NP-hard

problems.

2.6.2 Decision Problems

In relation to complexity theory, there are problems, called decision problems that can only

have yes or no answers. Manber [1989] described the concept of decision problems using

language-recognition problems: if U is considered to be the set of all inputs to the decision

problem and L ∈ U be the set of all inputs where their answer is yes, the decision problem

will be to determine whether an input instance belongs to L. The input to a decision problem

has two parts [Baase and Van Gelder 2000]: the instance description part which contains

information about the expected input (could be sets, graphs, etc.), and the question part

that contains the yes − no question. In other words, a decision problem matches all the

input values of a problem into yes or no output. For example,

Instance: Given two positive integers m and n.

Question: Is there a positive integer k such that m = k ∗ n?

Decision problems are important since most problems can be converted to decision prob-

lems and they can also determine whether a certain property is satisfied for their inputs

[Harel 1987]. In converting optimization problems to decision problems, we need to intro-

duce an additional argument with the input which bounds the value to be optimized. For

example, the optimization problem “Given G(V,E), find the path with a minimum number

of edges to traverse from u to v where u,v ∈ V” can be converted into a decision problem as

1This definition also includes functions such as nlog n which may not be considered as exponential functions

in other instances.
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“Given G(V,E), is there a path to traverse from u to v, u,v ∈ V with the number of edges

fewer than or equal to k, for some positive integer k?” More formally,

Instance: Given G(V,E) and two vertices u, v ∈ V and a positive integer k.

Question: Is there a path in G from u to v with fewer than or equal to k number

of edges?

If an efficient algorithm is derived to solve a decision problem, it can be modified to solve

the corresponding optimization problem. On the other hand, if a decision problem is shown

to be hard, then its related optimization problem is also hard [Cormen et al. 2001].

Associated with the decision problems, there are two classes: P and NP [Baase and

Van Gelder 2000]. The class P (polynomial time) contains decision problems that can be

solved in deterministic polynomial time – problems that can be solved by algorithms in

which their worst case time complexity is bounded by a polynomial function. Although

the polynomial function can be very large, it can be considered that if a problem is not in

P then it would be expensive or impossible to get a solution. In practice, most problems

with polynomial time algorithms have low-degree polynomial running time [Manber 1989].

Moreover, it is possible to solve complex problems by combining several algorithms of simpler

problems in P as combination of polynomials is still a polynomial (the closure property of

polynomials for addition, multiplication and composition operations). On the other hand,

the NP (nondeterministic polynomial time) class contains decision problems in which a

given proposed solution can be verified in polynomial time whether it is a solution or not.

The NP class can also be defined more formally using nondeterministic algorithms [Garey

and Johnson 1979]. Nondeterministic algorithms comprise of two phases: the guessing phase

and the checking phase. Given a problem instance I of a decision problem, the first phase

guesses some structure S, and then both I and S are provided as inputs to the checking

phase. If the output of the checking phase is true then the algorithm outputs yes whereas

if the checking phase returned false, there is no output. The class NP contains decision

problems that can be solved in nondeterministic polynomial time.

Clearly P ⊆ NP since we can consider any polynomial time deterministic algorithm as a

special case of polynomial time nondeterministic algorithm using the deterministic algorithm

as a checking phase and ignoring the guessing phase [Garey and Johnson 1979]. However, it

is not yet known whether P = NP or not. It is widely believed that P 6= NP .
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2.6.3 NP-completeness

A problem D is NP-complete if the problem is in NP and every problem in NP is poly-

nomially reducible to D [Manber 1989]. By polynomial reduction, we mean that for two

problems D1 and D2 and input spaces U1 and U2, there exists a polynomial function f such

that u ∈ U1 if and only if f(u) ∈ U2. NP-complete problems have a common property that

if an efficient algorithm exists to any of them then there exist efficient algorithms for all

NP-complete problems.

When presenting a proof of NP-completeness of a new problem, we need to show the

following conditions hold [Baase and Van Gelder 2000]:

• the problem is in NP .

• it is possible to transform a known NP-complete problem to the new problem.

• the transformation function is polynomial.

Two problems, P1 and P2 are equivalent if each problem is polynomially reducible to the

other [Manber 1989]. The one sided polynomial reducibility (transformation) in condition

two above reflects the fact that when proving the NP-completeness of a problem, we are

intending to show how hard the problem is. In other words, when problem P1 is reduced

to another problem P2, P2 is considered to be harder than P1 [Manber 1989]. Polynomial

reducibility is transitive since composition of polynomial functions is polynomial. Conse-

quently, if a known NP-complete problem is polynomially reducible to a new problem, then

every NP-complete problem is polynomially reducible to the new problem.

In order to make use of the second condition of proving NP-completeness of a new prob-

lem, we need to have a known NP-complete problem that could be polynomially reducible to

a new problem. The first NP-complete problem which was proved by Cook [1971] is the Sat-

isfiability (SAT) problem. Let S be a boolean expression in conjunctive normal form (CNF),

that is, a sequence of AND expressions each of which contains OR expressions. For example,

S = (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z)

where ∧ corresponds to the boolean operator AND , ∨ corresponds to OR and ¬ corre-

sponds to NOT , is a boolean expression. The satisfiability problem is then to determine

whether a given boolean expression is satisfiable. A boolean expression is satisfiable if there

exists an assignment of true and false to the variables such that the value of the expres-

sion is true. For the above example, x = FALSE , y = TRUE and z = TRUE satisfies the
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expression S. SAT is in NP since given a boolean expression and a proposed solution, we

can verify if the proposed solution satisfies the expression in polynomial time. The complete

proof of NP-completeness of the SAT problem can be found in Garey and Johnson [1979];

Cook [1971].

When proving the NP-completeness of a problem, most of the time, it is easier to show

that the problem is in NP than to find a polynomial transformation function that transforms

a known NP-complete problem to the new problem. Garey and Johnson [1979] present

general transformation approaches that can be used when dealing with proving the NP-

completeness of a new problem. These are restriction, local replacement and component

design [Garey and Johnson 1979, p. 63–74].

a. Restriction: This reduction approach is based on the idea that if a special case of a

problem is NP-complete then the problem is also NP-complete (provided that it is in

NP ). There should be one to one correspondence between the instances of the target

problem and its special case. In other words, the answer to the special case is ‘yes’ if

and only if the answer to the target problem is ‘yes’. As discussed in Chapter 4, this

method will be used in proving the NP-completeness of ALP-SC-OLOR by showing

that its special case is NP-complete.

b. Local Replacement: In this reduction, the basic unit of an instance of a known NP-

complete problem is replaced in the same way as an instance of the target problem.

That is we need to pick some aspects of a known NP-complete problem instance to

make a collection of basic units, and then correspond with the instances of the target

problem by replacing each basic unit, in a uniform way but with a different structure.

The local replacement method will be used later in the transformation presented in

Chapter 4.

c. Component Design: This is the hardest of the three reduction methods. In compo-

nent design reduction we need to design instances of components of the target problem

and then “realize” instances of a known NP-complete problem by combining the com-

ponents. Generally, there are two basic components in this approach: making choices

(like selecting vertices) and testing properties (like checking if all the edges are cov-

ered). The two components are joined together in a target instance so that the choices

are communicated to the property testers, and the property testers then check whether

the choices made satisfy the required constraints.

Note that for a problem to be NP-complete, we need to explicitly show that it is in
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NP in addition to the above reduction methods. Otherwise, the problem remains NP-hard

(which is discussed in the next subsection).

2.6.4 NP-hardness

A problem D is said to be NP-hard if any NP-complete problem is polynomially reducible to

D while D may not be necessarily in NP [Cormen et al. 2001]. The notion of NP-complete

problems is that if any NP-complete problem can be solved in polynomial time, then every

problem in NP can be solved in polynomial time algorithm. On the other hand, NP-hard

problems constitute a lower bound to the NP-complete problems – they are at least as hard

as any NP-complete problem. When we want to prove that a problem is NP-hard, we only

need to show that the second and third conditions given in Subsection 2.6.3 hold. That is,

• reducing (transforming) a known NP-complete problem to the new problem.

• proving the transformation function is polynomial.

There are problems that are NP-hard but not NP-complete. The problem of determining

chromatic number of a graph – the fewest number of colours needed to colour a given graph

– is an example of such a problem [Brassard and Bratley 1996]. The problem can be stated

as:

Question: Given a graph G, find the chromatic number of G.

By reducing the 3-colourable problem, which is a known NP-complete problem, it follows

that determining the chromatic number of a given graph G is NP-hard. However, as a given

proposed solution may not be verified in polynomial time, the problem of determining the

chromatic number of a given graph is not in NP and hence it is not NP-complete. NP-hard

problems may not also be decision problems [Brassard and Bratley 1996].

There are also problems that cannot be solved by any algorithm. Turing [1936, as cited

in Garey and Johnson [1979]] has shown that given a program and its input, there is no

algorithm that could determine whether the program will terminate or not. The problem is

known as halting problem and can be formally stated as:

Instance: Given a program and its input.

Question: Will the program terminate?

The halting problem is a decision problem but it is not decidable. Hopcroft and Ullman

[1979] defined a problem to be undecidable if there is no algorithm that could determine
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whether the answer to a given instance of the problem is yes or no. In other words, the

undecidability of a problem is associated with the existence or non-existence of algorithms

that could solve a problem with infinite instances.

2.7 Related Work

2.7.1 Introduction

This section focuses on previous work on visibility and guarding problems with a brief

historical background and how they relate to the axial line placement problem followed by

previous research on ALP. Visibility and guarding problems have been the focus of research

areas as they are helpful in solving real-life problems. Visibility problems are mainly of the

form: “Given two objects, which could be points or edges in a polygon with or without holes,

are they visible to one another?” while guarding problems are of the form: “Given a point

or an edge and a polygon with or without holes, what proportion of the polygon can be seen

by the object?”

The section is organized as follows. First an overview of previous work on visibility the-

ory is given in context to the general axial line placement problem. The art gallery problem,

a guarding problem that requires the minimum number of guards to protect an art gallery, is

presented next highlighting how ALP is considered as a variation of the art gallery problem,

followed by research done on ALP focusing on the algorithmic aspects and the results ob-

tained. Lastly, the dominating set problem is briefly described as the bipartite independent

dominating set problem introduced in Chapter 4 fits into the domination domain.

2.7.2 Visibility Problems

Visibility problems have been the focus of research for quite a long time – as long as Brunn’s

theorem of kernel set [Asano et al. 2000]. Since then several variations of the problem have

been studied. The basis for most visibility problems is the visibility graph of a polygon –

graphs that have nodes for representing the vertices of the polygon and lines between the

nodes if the vertices see each other [O’Rourke 1997], that is, the graph will have a node for

every vertex of the polygon and an edge joining the nodes if their associated vertices of the

polygon are visible.

Another variation of the visibility problem is to find the visibility polygon of a point –

given a polygon and a point (inside or outside the polygon) what proportion of the polygon

is visible from the point. Davis and Benedikt [1979] developed an algorithm to find the
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visibility polygon of a point, which first computes the vertices of the polygon that are visible

to the point of interest, and then computes the closest point of intersection between the line

that contains the point of interest and lies within the polygon, and the edges of the polygon

that contains the invisible vertices. The algorithm runs in O(n2) time. Later a linear

algorithm was developed by Joe [1990] that computes the visibility polygon of a point. On

the other hand, Asano et al. [1986, as cited in Asano et al. [2000]] considered a variation of

the problem in which the polygon contains holes. Using an “angular plane sweep” method,

they developed an algorithm that runs in O(n log h), where n is the number of edges while

h is the number of holes within the polygon, to solve the visibility polygon of a point when

the polygon contains holes.

Bose et al. [1992] also studied the visibility polygon of a point which could be inside

or outside of a simple polygon. The method they followed was to decompose the polygon

into visibility regions as a preprocessing phase so that queries of visibility regions from a

point can be recovered efficiently. The preprocessing time, which is the dominant cost, is

O(n3 log n) with space complexity of O(n3 ). Their algorithm retrieves the visibility polygon

of a point in O(log n + k) time, where k is the size of the visibility polygon. Furthermore,

the number of vertices that are visible from a given point can be retrieved in O(log n) time.

By introducing the weak and strong visibility notions, Avis and Toussaint [1981] consid-

ered the visibility of a polygon from an edge. The complete, strong and weak visibility terms

were defined in Section 2.5. The problem was motivated using the question of how a guard

can be placed in a polygon [Avis and Toussaint 1981]. If a polygon is completely visible

from an edge, a guard can be placed anywhere on the edge, and if it is strongly visible from

an edge, there is at least one place a guard can be placed to protect the polygon. Finally,

the weak visibility of a polygon from an edge implies that the polygon cannot be guarded

from a single position of the edge. They developed an algorithm to determine the visibility

polygon from a given edge in linear-time. Their work was extended to the visibility between

two edges of a polygon [Avis et al. 1986]. As the visibility between edges is more applicable

to this dissertation, the extended definitions [Avis et al. 1986] are given as follows.

• Edge uv is completely visible from edge xy if every point on edge uv is visible to every

point on edge xy.

• Edge uv is strongly visible from edge xy if there exists a point on edge xy that is

visible to every point on edge uv.

• Edge uv is weakly visible from edge xy if every point on edge uv is visible to some

point on edge xy.
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Figure 2.11: Visibility between two edges, uv and xy [Avis et al. 1986]

• Edge uv is partially visible from edge xy if there exists a point on edge uv which is

visible to some point on edge xy.

Figure 2.11(i-iv) shows complete visibility, strong visibility, weak visibility and partial

visibility between edges uv and xy respectively.

The partial edge visibility is directly applicable in placing axial lines of arbitrary orienta-

tion to cross shared edges between a collection of convex polygons. In the case of ALP-ALOR

and ALP-ALCP, if a line is placed to cross the adjacencies between the convex polygons (or-

thogonal rectangles in the case of ALP-ALOR), the adjacencies must be partially visible

to one another. du Plessis and Sanders [2000] conducted research on partial edge visibility

in chains of rectangles and developed a linear time algorithm to compute the problem. In

the case of ALP-OLOR and ALP-SC-OLOR, the partial visibility between the adjacencies

is restricted to be in horizontal orientation (vertical orientation for horizontal adjacencies),

that is based on common y-range value (and based on common x-range value for horizontal

adjacencies).

29



2.7.3 The Art Gallery Problem

The art gallery problem is a well-known guarding problem introduced by Victor Klee in

1973 [O’Rourke 1987]. The problem deals with determining the minimum number of guards

required to protect an art gallery with n walls. In terms of a graph representation, the

problem would be to determine the minimum covering points (guards or cameras) that can

survey 3600 with respect to their fixed position in a simple polygon of n vertices (art gallery)

[de Berg et al. 2000]. There are many variations of the art gallery problem – restricting

the polygons to be orthogonal polygons, the polygons to have holes or be without holes,

considering mobile guards (edge or diagonal guards) and stationary guards (vertex or point

guards), and variations on the power of the guards, etc. [O’Rourke 1987; Urrutia 2000;

Michael and Pinciu 2003]. In this subsection previous work on some of these variations is

discussed.

The problem of determining the minimum number of guards required to cover a given

polygon is NP-hard [O’Rourke 1987]. The transformation was from an instance of 3SAT,

a well known NP-complete problem [Garey and Johnson 1979]. Another approach to look

at the guarding problem is to determine the number of guards that are always sufficient

and sometimes required to cover a given polygon. A convex polygon can be guarded by a

single guard, and the guard can be placed anywhere within the polygon and its boundaries.

Finding the lower bound on the number of guards for any simple polygon is more challenging

as it depends on the configuration (shape) of the polygon and the placement of the guards.

In solving the art gallery problem, Chvátal [1975] was the first to prove that bn/3c guards are

always sufficient and sometimes necessary to patrol an art gallery, where n is the number of

vertices of the gallery. The proof is based on the claim that every polygon can be partitioned

into at most bn/3c triangles in such a way that each partition is patrolled by a single guard,

which was proved by induction. A simplified and easier proof to the problem was presented

by Fisk [1978] by triangulating the polygon and then 3-colouring the vertices of each triangle.

By placing guards in the least frequently used colour in colouring the resulting graph, bn/3c

guards are always sufficient to patrol each triangle and hence the polygon. A comb polygon

(see Figure 2.5) with k-prongs, n ≥ 3k , requires bn/3c guards to cover it since each prong

needs to be covered by one guard. For a complete proof, the interested reader can refer

to O’Rourke [1987, p.4–13]; de Berg et al. [2000, p.47–58]. Moreover, de Berg et al. [2000]

presented an algorithm to compute the number of guards that are always sufficient and

sometimes required to cover an art gallery with n walls in O(n log n) time.

Kahn et al. [1983] considered a simplified version of the art gallery problem where the
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gallery is restricted to be an orthogonal polygon. An orthogonal polygon is one whose edges

are parallel to one of the coordinate axes. Orthogonal polygons are useful since they can

be used for approximating arbitrary simple polygons [O’Rourke 1987]. The solution to the

problem was given by Kahn et al. [1983] mainly based on the work of Fisk [1978], and that

bn/4c guards are sufficient to cover an orthogonal art gallery. The bn/4c guards are required

to cover an orthogonal comb polygon (see Figure 2.6). The method they employed was first

partitioning the polygon into convex quadrilaterals (quadrilateralization) and then placing

diagonals on the non-intersecting vertices of the convex quadrilateral [Kahn et al. 1983].

The resulting graph can be coloured using 4-colours (the intersection points of the diagonals

are not considered as vertices of the graph). By placing guards in the position of the least

frequently used colour, the entire orthogonal polygon can be guarded by bn/4c guards.

Another variation of the art gallery problem studied by Michael and Pinciu [2003] is to

find the minimum number of guards to protect the gallery not only from external entities

but also from untrustworthy guards – guards must patrol each other besides protecting the

gallery. To state the problem formally, let P be a simple polygon (art gallery) to be guarded.

A set S of points in P is a “guarded guard set for P” if the following conditions hold.

i. For every point x ∈ P , there exists a point w ∈ S such that x is visible from w.

ii. For every point w ∈ S, there exists another point v ∈ S such that w is visible from v.

Michael and Pinciu [2003] have shown that b(3n−1)/7c guards are sufficient to cover an

art gallery of size n, where n ≥ 5 and the “guards are guarded” each other. Furthermore, for

orthogonal art gallery problem of size n ≥ 6 whose “guards are guarded”, bn/3c guards are

sufficient to protect the gallery and the guards from each other. The method they applied in

computing the “guarded guard set” is based on Fisk [1978]’s work of the art gallery problem

and then proving their results hold by induction on the number of vertices of the polygon.

Sanders [1999] considered the application of ALP in guarding problems by posing a new

variation in the area where the guards can only see along a single ray. The problem was

called ray guarding. By considering the collection of orthogonal rectangles as rooms of an

art gallery and the adjacencies between the orthogonal rectangles as walls that separate the

gallery, the problem is to place the doorways of the gallery in such a way that it can be

protected by a minimum number of guards. The doorways of the gallery would be placed in

the orientation of the axial lines that cross the adjacencies between the orthogonal rectangles.

In the case of ALP-SC-OLOR, the problem would be to place the doorways in such a way

that they can be protected by the minimum number of horizontal ray guards – guards that

can only see along a horizontal ray. Moreover, each doorway is allowed to be guarded by
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only one guard while a guard can patrol one or more doorways. This makes the guards

responsible for the doorways they are assigned to.

2.7.4 The Axial Line Placement Problem

The axial line placement problem deals with finding the minimum number of straight line

segments that can cross the adjacencies between a collection of convex polygons. Variations

of this problem are the convex polygons to be orthogonal rectangles while the axial lines

have orthogonal orientation (orthogonal axial lines in orthogonal rectangles), the convex

polygons to be orthogonal rectangles the axial lines have arbitrary orientation (arbitrary

axial lines in orthogonal rectangles). Sanders [2002] has shown that each of these problems

is NP-complete. Previous research on the subproblems of ALP are discussed next.

2.7.4.1 ALP-OLOR

As stated above, Sanders [2002] has shown that the problem of placing orthogonal axial lines

to cross adjacencies in a configuration of adjacent orthogonal rectangles is NP-complete. The

proof of NP-completeness was presented in two phases: first transforming the vertex cover

problem for planar graphs [Garey and Johnson 1979] to a Stick diagram mapping the vertices

of the graph to horizontal lines and the edges of a graph to vertical lines; and the second

transformation is from Stick diagram to an instance of ALP-OLOR mapping the horizontal

lines to a choice of axial lines and the vertical lines to the adjacencies between orthogonal

rectangles that are crossed by the axial lines. The vertex cover problem can be stated as

[Garey and Johnson 1979]:

Given a graph G(V,E) find the fewest number of vertices Vc ⊆ V such that each edge

in the graph is incident to at least one of the vertices in Vc, i.e. if pq ∈ E, then at

least one of p or q is in Vc.

Sanders [2002] also developed a heuristic algorithm which gives an approximated solution

to the ALP-OLOR problem. The heuristic identifies the adjacencies using a line sweeping

method and then applies a greedy algorithm to determine the axial lines. The heuristic

algorithm runs in O(n3) although the worst case time-complexity is O(n4) (this configuration

of the orthogonal rectangles is a special case where the choice of extending the axial lines

would be O(n)). The heuristic algorithm has five essential steps [Sanders 2002].

1. Determining adjacencies between the orthogonal rectangles using a line sweeping method.

The algorithm sorts the rectangles in ascending order of their x-coordinate (only verti-

cal adjacencies are considered as the same can be applied to the horizontal adjacencies)
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while breaking ties based on y-coordinates. Each adjacency is determined by compar-

ing the coordinates of the right edge of a rectangle with the coordinates of the left

edge of the next rectangle. If the rectangles have the same x-coordinate, the rect-

angles could share an adjacency and this would be verified using the y-coordinate.

Otherwise, the rectangles do not share an adjacency, and consequently the algorithm

considers the next rectangle.

2. Generating all orthogonal axial lines that cross the adjacencies between the rectangles.

This step is based on the common range of y-coordinate of the adjacencies to determine

how far an axial line can be extended.

3. Determining the essential lines. These lines are the ones that cross at least one adja-

cency that has never been crossed by another axial line.

4. Removing redundant lines. These are the lines that cross only the adjacencies that are

already crossed by the essential ones.

5. Once the redundant lines are removed, there could also exist “choice lines” with the

essential lines. These are lines only some of which are necessary while the others can

be removed. The algorithm resolves the choice conflict by repeatedly choosing the

“choice line” which crosses the highest number of previously uncrossed adjacencies.

Furthermore, Sanders et al. [2000] studied special cases of the ALP-OLOR problem that

can be solved in polynomial time. The result of their study reveals that orthogonal axial

lines can be placed in chains and trees of rectangles in polynomial time.

A chain of rectangles is a collection of orthogonally aligned rectangles such that each

rectangle is horizontally adjacent to at most one other rectangle on both sides [Sanders et

al. 2000]. They applied a greedy technique to develop an algorithm that solves the problem

in O(n lg n) time complexity for chains of rectangles. The algorithm comprises five steps

[Sanders et al. 2000].

1. Sorting the rectangles in ascending order of their x-coordinate while breaking ties

based on minimum y-coordinate. This can be done using the merge-sort algorithm in

O(n lg n) time complexity, where n is the number of orthogonal rectangles.

2. Defining the chain of the rectangles. By traversing through the sorted list of orthogonal

rectangles from left to right, this step can be done in O(n).

3. Determining forward lines. The forward lines are produced by traversing through the

chain of rectangles having common range of y-coordinate which implies a line can be
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Reverse lines

Final lines

i. ii.

Figure 2.12: An example of a chain of rectangles and the forward, reverse and final lines

produced by the O(n lg n) algorithm

placed to cross the adjacencies between the chain of rectangles. If the last adjacency

fails to have common range of y-coordinate with the previous chain, a new line is

started from the last adjacency. Clearly, determining the forward lines can be done in

O(n).

4. Determining reverse lines. The same as step 3 but here the algorithm starts from the

rightmost rectangle and traverse towards the left. This process can also be done in

linear time.

5. Merging the forward and reverse lines. The forward lines are extended as far as possible

to the right while the reverse lines are extended as far as possible to the left. Moreover,

each adjacency is crossed by both forward and reverse lines. By merging these lines,

the algorithm produces maximal lines, and hence the final lines. The merging step can

be done in linear time since every rectangle is visited once – from left to right.

Figure 2.12 shows an example of a chain of rectangles and the forward, reverse and final

lines produced by the algorithm.
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A tree of rectangles is a collection of orthogonally aligned rectangles where each rect-

angle is horizontally adjacent to zero or one rectangles on the left (right) and to zero or

more rectangles on the right (left) [Sanders et al. 2000]. Sanders et al. [2000] developed an

algorithm that runs in O(n2) time complexity to compute the minimum axial lines in trees

of rectangles. An example of a tree of rectangles and the worst performance of the algorithm

is given in Figure 2.13.

i. ii.

Figure 2.13: A tree of orthogonal rectangles and the worst case of the algorithm developed

by Sanders et al. [2000]

The results obtained for trees and chains of rectangles are generalized to any hole free

collection of orthogonal rectangles. Kruger and Sanders [2005] have shown that ALP-OLOR

is polynomially solvable for all hole free collections of rectangles. A hole in a collection of

rectangles is a region which is entirely bounded by the collection of rectangles but is not

part of the rectangles. And thus a hole free collection of rectangles is a configuration of

rectangles with no holes.

The method used by Kruger and Sanders [2005] was first to construct a graph from

the collection of rectangles in such a way that the adjacencies between the rectangles are

represented by vertices and an edge is placed between two vertices if their corresponding

adjacencies can be crossed by the same line. Then a minimum clique cover of the resulting
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graph produces the minimum number of lines required to cross each adjacency between the

collection of rectangles. Kruger and Sanders [2005] have shown that if the collection is hole

free, then the resulting graph can be triangulated and hence the minimum clique cover can

be computed in polynomial time [Golumbic 1980]. Consequently, ALP-OLOR can be solved

in polynomial time for hole free collections of rectangles.

The approach can be extended to a collection of rectangles with holes where the resulting

graph does not contain chord-less cycles of more than three vertices [Kruger and Sanders

2005].

2.7.4.2 ALP-ALOR

Sanders [2002] has shown that the problem of placing axial lines of arbitrary orientation to

cross adjacencies between orthogonal rectangles is NP-complete by transforming the vertex

cover problem for planar graphs into an instance of ALP-ALOR. The transformation was

done in two steps: first from vertex cover for planar graphs to a stick diagram and the second

step from stick diagram to an instance of ALP-ALOR mapping the horizontal lines to the

axial lines while the vertical lines to a canonical choice unit.

Sanders and Kenny [2001] considered a number of other heuristics that could give ap-

proximate solutions to ALP-ALOR. Some of these are presented below.

• Calculating a solution in two passes. The heuristic is a modification of the ALP-OLOR

heuristic with two passes. The first pass is to extend lines from the leftmost rectangle

to the rightmost rectangle, while the second pass is extending lines from top to lower

neighbours. The two passes generate all possible lines. Then the final three steps are

the same as ALP-OLOR: determining the essential lines, removing redundant ones and

resolving choice conflicts which were discussed in the previous subsection.

• Finding the longest axial line. By locating the extreme rectangles, the heuristic gen-

erates the longest chain until all of the adjacencies are crossed. The idea behind the

heuristic is that the line that crosses these extreme rectangles could also cross other

intermediate adjacencies. The algorithm continues until all the adjacencies are crossed,

and the result would be an approximate solution to ALP-ALOR.

• Crossing one adjacency at a time. Once all adjacencies have been determined, the

heuristic stores the information in an adjacency matrix. The adjacencies are then

sorted in order of their x-coordinate while breaking ties with minimum y-coordinate

first. By taking one adjacency at a time, the heuristic algorithm crosses the adjacencies
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with a line as long as the line can be extended.

• Improved crossing one adjacency at a time. Ferris [2003] has developed a heuristic

algorithm to the ALP-ALOR problem by improving the “Crossing one adjacency at

a time” heuristic. The improvement of the new heuristic lies in the formation of a

new chain of rectangles when a line fails to cross the chain of rectangles. That is, the

“Crossing one adjacency at a time” heuristic starts with the next adjacency once a

chain is formed whereas the improved heuristic creates a new chain starting from the

last rectangle of the current chain when a line fails to cross all the adjacencies within

the chain of rectangles. Another improvement is on extending the axial lines to be

maximal and removing redundant lines. The worst case running time of the heuristic

is O(n3) while its average case running time is O(n2).

Sanders [2003] also developed an algorithm that determines the exact solution to ALP-

ALOR. As the problem is NP-complete, the exact solution algorithm could only compute

the solution in reasonable time for small input size. The development of this algorithm is

essential in evaluating the heuristics developed for ALP-ALOR and ALP-OLOR with respect

to the exact solution in terms of their running time and performance. The method employed

in determining the exact solution is by repeatedly extending each line while considering every

adjacency provided that the line can cross the adjacency.

2.7.4.3 ALP-ALCP

As discussed in the previous subsections, the problem of placing arbitrary axial lines to cross

the adjacencies between a collection of convex polygons is NP-complete [Sanders 2002]. The

proof of NP-completeness was derived from the NP-completeness of ALP-ALOR since it is

a special case of ALP-ALCP. Hagger [2005] developed a heuristic algorithm for ALP-ALCP

based on a greedy method. The algorithm selects a starting polygon and then a set of lines

are generated using a depth first search. Then the algorithm recursively chooses exactly one

line that extends the furthest from the current set of lines. It terminates when all adjacencies

are crossed. The complexity of the algorithm is O(ln3 ) where n is the number of polygons

and l is a parameter passed to the algorithm that limits the number of lines found by the

search.

Hagger [2005] outlined three possible ways to select a starting polygon: choosing a poly-

gon randomly and then generating lines from it; choosing a polygon based on the number

of adjacencies and position in the configuration, and generating lines from it; and detecting

special configurations in the collection of convex polygons and then placing lines using spe-
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cific algorithms applied to the special configurations. Associated with the third option of

selecting a starting polygon, Hagger [2005] identified two possible configurations of collec-

tions of convex polygons that can be solved in polynomial time. These are chains of convex

polygons and stars of convex polygons.

A chain of convex polygons is a configuration of convex polygons in which each polygon

is adjacent to exactly to two polygons except the first and the last polygons in the chain that

are adjacent to only one polygon. ALP in chains of convex polygons can be transformed to

interval point cover by a quadratic time algorithm [Hagger 2005]. A star of convex polygons

is a collection of convex polygons all of which are adjacent to a central polygon. The

algorithm of chains of convex polygons can be extended to transform ALP in stars of convex

polygons to maximum cardinality matching. A network of stars consists of a collection of

stars of convex polygons. Figure 2.14 shows examples of configurations of a chain of convex

polygons and a star of convex polygons.

i. ii.

Figure 2.14: (i) A chain of convex polygons and, (ii) a star of convex polygons

2.7.4.4 Summary

ALP-OLOR is the simplified version of the ALP-ALOR and ALP-ALCP problems. In

general, various research on ALP-OLOR could be extended to ALP-ALOR and ALP-ALCP

by adopting the variations that could arise due to the arbitrary orientation of the axial
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lines and the configuration of the convex polygons. For instance, the NP-completeness

of ALP-OLOR can also be extended to the other two. Moreover, the heuristic algorithm

for ALP-OLOR was adopted to approximate the exact solution to ALP-ALOR with some

modifications due to the orientation of the axial lines, i.e. in ALP-OLOR only horizontal

adjacencies are considered while in ALP-ALOR vertical adjacencies need also be considered.

In this dissertation, we considered ALP-SC-OLOR, which is a single-crossing version of the

ALP-OLOR problem, and investigated if a polynomial time algorithm could be developed

to solve the problem. The research is vital in that the outcome could be extended to the

single-crossing versions of ALP-ALOR and ALP-ALCP as research has not been done on

the single-crossing version of these problems.

2.7.5 Domination and Dominating Sets

Domination and dominating sets have been active research areas in graph theory. As the

transformation presented in Chapter 4 is based on a variation of a dominating set problem, a

description of the general dominating set and its variations are presented in this subsection.

Let G = (V ,E ) be a graph where V is the set of vertices and E the set of edges. A vertex

v dominates a vertex u (or vice versa) if either (u, v) ∈ E or u = v . A k-dominating set of G

is a set D ⊆ V with k vertices in which every vertex of V is dominated by at least one vertex

of D. When there is no edge in E connecting any two vertices of D, then D is called the

independent dominating set of G. The k-dominating problem was found to be NP-complete

[Corneil and Perl 1984]. Furthermore, they showed that the independent dominating set

problem for arbitrary graphs is NP-complete. However, Corneil and Perl [1984] proved that

the k-domination set problem is polynomially solvable for trees and permutation graphs.

Based on the number of vertices that can dominate a vertex and those being dominated,

there are several variations of the dominating set problem.

Perfect domination set (or perfect codes) D of a graph G = (V ,E ) is a variation of the

dominating set in which for every vertex v ∈ V either v is in D or has exactly one neighbour

in D. This problem was studied by, among others, Livingston and Stout [1990]; Klostermeyer

and Eschen [2000]; and Fellows and Hoover [1991]. Moreover, Fellows and Hoover [1991]

considered semi-perfect and weakly perfect domination problems. A semi-perfect domination

set D of a graph G is a subset of the set of vertices V where D is a dominating set and

each vertex not in D is adjacent to exactly one vertex in D. In semi-perfect domination,

there is no restriction on the number of adjacencies between the vertices in D. On the other

hand, a weakly perfect domination set D of a graph G is a subset of the vertices V in which
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each vertex not in D has one neighbour in D, and the vertices in D are adjacent to at

most one vertex in D. Fellows and Hoover [1991] showed that the perfect domination, semi-

perfect domination and weakly perfect domination problems are members of the class of

NP-complete problems. The reduction was from the three dimensional matching problem.

But the perfect domination set problem is polynomially solvable for a family of trees of

graphs [Fellows and Hoover 1991].

Klostermeyer and Eschen [2000] considered a generalization of the independent and dis-

tance domination problems. D ⊆ V is a (k , q) independent dominating set of G if every

vertex of V is within a distance of k of at least one vertex of D and any pair of vertices of D

are at a distance of at least q+1. They proved (k , k + 1 ) is NP-complete by a reduction from

one in three 3SAT with no negated trials. They also presented algorithms that determine

if a graph contains a perfect code in polynomial time for graphs of families of trees and

interval graphs.

2.8 Conclusion

The chapter introduced the space syntax method, a tool for analysing urban layout and

its components. ALP, one of the components of space syntax, has been found to be NP-

complete which implies that it can only be computed for small input size in reasonable

time. Consequently, developing heuristics that give approximated solutions and investigating

special cases of the problem that can be solved in polynomial time is essential. Some of the

heuristics and special cases solvable in polynomial time are discussed in the chapter. The

dissertation considered another approach of approximating the axial line placement problem

whereby the adjacencies between the orthogonal rectangles are restricted to be crossed only

once, and explored if the problem can be solved efficiently or if it is NP-complete. Depending

on the outcome of the research, the result could be extended to the single-crossing of ALP-

ALOR and ALP-ALCP by adopting the variations on the orientation of the axial lines and

the configuration of the convex polygons.

The chapter also discussed the theory of NP-completeness focusing on the common prop-

erties of the problems in the P and NP class of problems and techniques for proving NP-

completeness of a new problem. It was also highlighted why we need to concentrate on

heuristics and polynomial time solvable special cases of an NP-complete problem rather

than attempting to compute for the exact solution. Visibility and guarding problems were

discussed in depth as they have some commonalities with ALP. The partial edge visibility

is essential in placing the axial lines to cross adjacencies between a collection of convex
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polygons. In the ALP-SC-OLOR case, the partial edge visibility is restricted to common

y-coordinate range as the focus is on vertical adjacencies and horizontal lines. ALP can also

be considered as a variation of the art gallery problem where the gallery is protected by ray

guards – guards that can only see along a ray. The bipartite independent dominating set

problem, which is used during the transformation of NP-completeness of ALP-SC-OLOR,

is a variation of the dominating set problem. As a result, a brief discussion on domination

was included in the chapter. A formal definition of the bipartite independent dominating

set problem is given in Chapter 4.

41



Chapter 3

Research Method

3.1 Introduction

Chapter 2 stated the aim of the research along with the general ALP problem and the space

syntax method. It also presented a brief description of the theory of NP-complete problems

focusing on the method of proving NP-completeness of a new problem and the common

properties of NP-complete problems. Previous work on visibility and guarding problems

were also discussed in more depth as the problems have some commonalities with ALP and

ALP-SC-OLOR.

The chapter begins by addressing the research question. Next, an outline of the approach

followed in attempting to answer the research question is given. An overview on the direction

of the research once a decision was made whether ALP-SC-OLOR is polynomially solvable

or NP-complete is also included in the chapter. Lastly, the conclusion of the chapter is

presented.

3.2 Research Question

As discussed in the previous chapters, the axial line placement problem was introduced

by Sanders [2002] in attempting to automate the space syntax method. Sanders [2002]

identified two major research questions when he was dealing with ALP: multiple adjacency

crossings and single adjacency crossings. In multiple adjacency crossings, the adjacencies

between the collection of rectangles are crossed by at least one axial line whereas in single

adjacency crossings, the adjacencies are crossed by exactly one axial line. The multiple

adjacency crossing of ALP has been studied extensively, some of which were discussed in

Section 2.7.4. On the contrary, research had not been done on the single-crossing version

of ALP. In this dissertation, we dealt with the single-crossing of ALP where the axial lines
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are restricted to have orthogonal orientation while the collection of convex polygons are

restricted to orthogonal rectangles (ALP-SC-OLOR). Considering the most simplified form

of ALP gives insight into the single-crossing versions of ALP-ALOR and ALP-ALCP.

In the previous chapters, it was discussed that ALP-OLOR which is the multiple ad-

jacency crossing version of ALP-SC-OLOR is NP-complete. The NP-completeness of the

problem is due to the ‘choice’ axial lines that cross two or more adjacencies but some of

which are redundant, i.e. the ‘choice’ of axial lines may not be resolved in polynomial time.

In this dissertation, we considered the single adjacency crossing version of placing orthogonal

axial lines in orthogonal rectangles (ALP-SC-OLOR) and examined whether the restriction

imposed on the adjacencies could lead the problem to be solved in polynomial time or if it

is NP-complete. To formally state the research question:

Given a collection of non-overlapping adjacent orthogonal rectangles, can a minimum

number of single-crossing orthogonal axial lines be placed in polynomial time to cross

the adjacencies between the rectangles?

The problem of placing single adjacency crossing of orthogonal axial lines in orthogonal

rectangles has some commonalities with the general partitioning problem which is a known

NP-complete problem [Garey and Johnson 1979]. In order to elaborate the commonality,

first let us transform ALP-SC-OLOR into a decision problem. Since ALP-SC-OLOR is

an optimization problem, an additional variable is introduced that bounds the number of

single-crossing axial lines. That is,

Instance: Given a collection of non-overlapping orthogonal rectangles R1, R2, ..., Rn

where each Ri, 1 ≤ i ≤ n, is adjacent to one or more other rectangles and

a positive integer k ≤ 2n − 4 .

Question: Is there a set of orthogonal axial lines L such that each adjacency

between the orthogonal rectangles is crossed only once and |L| ≤ k?

The number of vertical adjacencies formed by a collection of orthogonal rectangles is

bounded by 2n − 4 , where n is the number of rectangles. This can be verified by Euler’s

formula for triangle-free graphs which is discussed in more depth in Section 5.2.2. If the

single-crossing lines are placed in such a way that a line crosses only one vertical adjacency,

the total number of single-crossing lines required will maximally be 2n − 4 . But the challenge

is to compute the minimum single-crossing lines to cover all vertical adjacencies in the

configuration.
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As it is outlined above, ALP-SC-OLOR has some commonalities with the general par-

titioning problem. The partitioning problem can be written as a decision problem in the

following form:

Instance: Given a finite set A and a size s(a) ∈ Z+ for each a ∈ A.

Question: Is there a subset A
′ ⊆ A such that∑

a∈A′

s(a) =
∑

a∈A−A′

s(a)?

The adjacencies between the orthogonal rectangles can be computed in polynomial time,

i.e. O(n log n) using a line sweeping method [Sanders 2002]. Let C be a collection of the

adjacencies. If we can partition C into k disjoint sets, for some positive integer k, such that

if u, v ∈ Ci, 1 ≤ i ≤ k, are partially visible based on y-coordinate value, then each element

belonging to the same subset would be crossed by the same axial line.

On the contrary, the geometrical configuration of the rectangles could possibly force

ALP-SC-OLOR to be solved in polynomial time as the partitioning problem may not be

represented in a geometrical grid.

3.3 Approach

There were two general approaches followed to answer the research question:

• to transform ALP-SC-OLOR to a problem in P in polynomial time which implies

ALP-SC-OLOR is polynomially solvable.

• to transform a known NP-complete problem into ALP-SC-OLOR in polynomial time

which implies ALP-SC-OLOR is NP-complete.

If ALP-SC-OLOR had been found to be polynomially solvable, the focus of the research

would have been on:

• developing an algorithm that solves ALP-SC-OLOR.

• analysing the correctness and running time of the algorithm.

• the analysis on the lower bound of the problem.

On the other hand, if the problem appeared to be NP-complete, the focus of the research

would be on:
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• developing a heuristic that gives a reasonably approximated solution of ALP-SC-

OLOR.

• theoretical and empirical analysis of the performance and running time of the heuristic.

• exploring special configurations of rectangles in which ALP-SC-OLOR is polynomially

solvable.

In answering the research question, the second approach was followed which is attempting

to transform a known NP-complete problem to ALP-SC-OLOR. As a starting point, we

defined a graph theory problem which is applied only to bipartite graphs, named bipartite

independent dominating set (BIDS), and showed that it is NP-complete by a reduction from

the vertex cover problem. Previous research has shown that any bipartite planar graph

can be represented in a grid using vertical and horizontal segments. Using the outline

of transforming a bipartite planar graph into a grid of vertical and horizontal segments

presented in Chapter 4, we defined an orthogonal bipartite independent dominating set

(OBIDS) problem which is a segment representation of BIDS. Then using a suitable choice

unit we transformed OBIDS to a special case of ALP-SC-OLOR – crossing the adjacencies

between the rectangles using normalized lines (ALP-NSC-OLOR). The normalized lines are

single-crossing with the additional property that the lines are required to be maximal when

they cross choice adjacencies. Choice adjacencies are adjacencies that can be crossed by

more than one maximal line.

A heuristic for ALP-SC-OLOR was also developed based on a greedy method. The

heuristic consists of three parts: determining adjacencies between the collection of rectangles,

generating all possible single-crossing lines, and selecting a minimum number of single-

crossing lines that cross all the vertical adjacencies only once. Theoretical and empirical

analysis on the performance and running time of the heuristic was also carried out which

is presented in Chapter 5 in detail. The last task in the category outlined above, which is

exploring for special cases of ALP-SC-OLOR that are polynomially solvable, is left as future

work.

3.4 Conclusion

The chapter has presented the research question which was to determine whether a polyno-

mial time algorithm could be developed for ALP-SC-OLOR or whether it is an NP-complete

problem. The two general approaches that could have been taken to answer the research
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question were also discussed followed by an outline of the direction of the research depending

whether ALP-SC-OLOR is polynomially solvable or whether it is NP-complete.

As ALP-SC-OLOR is found to be NP-complete, the research carried on with developing

a heuristic for ALP-SC-OLOR but exploring special configurations of rectangles in which

ALP-SC-OLOR is polynomially solvable is left as future work due to time constraints. The

next chapter presents a transformation of NP-completeness of ALP-SC-OLOR.
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Chapter 4

NP-completeness of

ALP-SC-OLOR

4.1 Introduction

In the previous chapters, it was stated that ALP was found to be NP-complete, even when

it is restricted to placing orthogonal axial lines in orthogonal rectangles [Sanders 2002]. This

research considered the problem of placing orthogonal axial lines in orthogonal rectangles

where the adjacencies between the orthogonal rectangles are allowed to be crossed only once.

At first glance, the restriction imposed on the adjacencies to be crossed only once seems to

simplify the problem, and hence it might be solvable in polynomial time. But it turned

out that selecting the minimum combination of single-crossing lines may require exponential

time and hence the single-crossing version of orthogonal axial lines in orthogonal rectangles

has been found to be NP-complete. This chapter deals with the proof of NP-completeness

of ALP-SC-OLOR.

In the following section, a formal definition of the bipartite independent dominating set

(BIDS) problem is given along with its proof of NP-completeness. Then a discussion on

representing a planar graph in a grid is presented accompanied by an outline of transfor-

mation of a bipartite planar graph into a grid of segments. The last section deals with the

transformation of NP-completeness of ALP-SC-OLOR.

4.2 Bipartite Independent Domination Set

As introduced in the previous chapters, the axial line placement problem is to find a mini-

mum number of maximal lines that cross all the adjacencies between a collection of convex
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polygons. One approach of representing ALP as a bipartite graph problem is to represent

all the axial lines as a set of nodes of one category and all the adjacencies between the

convex polygons as another category of set of nodes such that an edge is placed between two

nodes of the resulting bipartite graph if the corresponding axial line intersects the associated

adjacency. The solution to the problem would be to select the minimum number of nodes as-

sociated with the lines that dominate all the nodes associated with the adjacencies. Likewise,

the single-crossing version of the orthogonal lines in orthogonal rectangles (ALP-SC-OLOR)

can be represented as a bipartite graph problem from the all possible single-crossing lines

to the adjacencies they cross, i.e. the nodes in the bipartite graph which correspond to the

single-crossing lines are connected to the nodes associated with the adjacencies that can be

intercepted by the lines. The solution to ALP-SC-OLOR would be the minimum number

nodes associated with the single-crossing lines that dominate all the nodes associated to

the adjacencies provided that each node that corresponds to the adjacencies is dominated

by exactly one node in the solution set. An example of a bipartite graph representation of

an instance of ALP-SC-OLOR is shown in Figure 4.1. As a result of the bipartite graph

representation of ALP, we introduced the following graph theory problem which is defined

only for bipartite graphs.

a

b

c

d

1

2

3

a

b

c

d

1

3

A B

2

Figure 4.1: Bipartite graph representation of ALP-SC-OLOR
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Definition 4.1. Given a bipartite graph G
′
= (A,B, E

′
), the bipartite independent dom-

inating set (BIDS) of G
′
is a minimum set A

′ ⊆ A such that for every b ∈ B, there exists

a ∈ A
′

in which (a, b) ∈ E
′
, and for all a1, a2 ∈ A

′
, if (a1, b) ∈ E

′
and (a2, b) ∈ E

′
, where

b ∈ B, then a1 = a2.

If A
′

is a bipartite independent dominating set of G
′
, then each vertex of the second

category should be dominated by exactly one element from the set A
′
.

The bipartite independent dominating set problem is an optimization problem. By in-

troducing a new variable M which bounds the cardinality of the solution set, the BIDS

problem can be written as a decision problem in the following form:

Instance: Given a bipartite graph G
′
= (A,B, E

′
) and a positive integer M ≤

|A|.

Question: Is there a bipartite independent dominating set A
′ ⊆ A and |A′ | ≤M?

Theorem 4.1 shows that the BIDS problem is NP-complete for planar graphs. The

NP-completeness transformation is from vertex cover for planar graphs. The vertex cover

problem can be defined as:

Definition 4.2. Given a graph G = (V,E), the vertex cover of G is a minimum set V
′ ⊆

V such that for every edge (u, v) ∈ E, at least one of u or v is in V
′
. We say that an edge

(u, v) is covered by vertex u (or v) if u ∈ V
′
(or v ∈ V

′
).

The vertex cover problem is NP-complete even when it is restricted to planar graphs

[Garey et al. 1976]. It is one of the six basic NP-complete problems [Garey and Johnson

1979] which have been used in proving NP-completeness of various optimization problems.

When written as a decision problem, vertex cover has the following form:

Instance: Given a graph G = (V,E) and a positive integer K ≤ |V |.

Question: Is there a vertex cover V
′ ⊆ V and |V ′ | ≤ K?

In vertex cover, at least one of the two vertices that form an edge should be in the solution

set.

The following theorem states the NP-completeness of the BIDS problem. The proof

method used is local replacement. This type of transformation has been discussed in Garey

and Johnson [1979] as one of the three techniques of proving the NP-completeness of a
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problem. The transformation by replacing edges with a suitable choice unit also appeared

in Kariv and Hakimi [1979]; Fellows and Hoover [1991]; and Corneil and Perl [1984].

vi vj

G G'

vi vjxk
yk

zk

pk

qk

rk

vi

vj

xk

yk

zk

pk

qk

rk

A B

Figure 4.2: Unit of transformation from vertex cover to BIDS

Theorem 4.1. The BIDS problem is NP-complete for planar graphs.

Proof. Consider the bipartite graph G
′

= (A,B, E
′
) and suppose that A

′ ⊆ A is given,

where |A′ | = M . To check this given A
′
is a BIDS of G

′
the following has to be done.

• it has to be established that every vertex of B is dominated by exactly one vertex from

A
′
.

• it has to be established that A
′
is a minimum set with this property.

The above two tasks can clearly be done in polynomial time, and hence the BIDS problem

is in NP .

We show that the problem is NP-hard by transforming an instance of vertex cover for

planar graphs. Let G = (V,E) be a planar graph. The basic units of the instance of vertex

cover are the edges of G. The local replacement substitutes for each edge in E by the choice

unit shown in Figure 4.2 in a uniform way. That is, each edge (vi, vj) ∈ E is replaced by

a collection of edges (vi, pk), (xk, pk), (xk, qk), (yk, qk), (zk, qk), (zk, rk) and (vj , rk), where

(vi, vj) = ek, to form an instance of BIDS of G
′
. By construction, G

′
is bipartite as its

vertices can be categorized into two sets, and there is no edge in E
′
connecting the vertices

of the same category. The instance of G
′
= (A,B, E

′
) can be stated as:
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A = V ∪(X∪Y ∪Z), where X = ∪kxk, Y = ∪kyk and Z = ∪kzk

B = P∪Q∪R, where P = ∪kpk, Q = ∪kqk and R = ∪krk

E
′
= {(vi, pk), (xk, pk), (xk, qk), (yk, qk), (zk, qk), (zk, rk), (vj , rk)|(vi, vj) ∈ E where (vi, vj) =

ek}

Clearly |A| = |V |+3|E|, |B| = 3|E| and |E′ | = 7|E|, and the instance can be constructed

in polynomial time. Moreover, G
′
is planar since G is planar and replacing each individual

segment by the unit choice does not change the planarity of the resulting graph.

We want to show that G has a vertex cover of size K if and only if G
′
has a BIDS of size

K + |E|. Suppose V
′
is a vertex cover of G of size K or less. Since adding additional vertices

to V
′
does not change the property of its vertex cover, we can assume that |V ′ | = K. Since

for every edge (vi, vj) of G we have at least vi ∈ V
′
or vj ∈ V

′
, we can develop a set A

′
of

size K + |E| using the following rules which constitute a bipartite independent dominating

set of G′.

1. If vi ∈ V
′
but vj /∈ V

′
, then add vi and zk to A

′
.

2. If vi /∈ V
′
but vj ∈ V

′
, then add vj and xk to A

′
.

3. If vi ∈ V
′
and vj ∈ V

′
, then add vi, vj , and yk to A

′
.

Clearly V
′ ⊆ A

′
. Moreover at each choice unit of G

′
, and hence every edge consideration

of G, exactly one element of X or Y or Z is included in A
′
, and hence |A′ | = K + |E|.

Furthermore, the above rules and the choice of transformation guarantee that the elements

of B are dominated by exactly one element of A′. Hence, A
′

satisfies all the properties of

BIDS.

Conversely, suppose A′ is a BIDS of G′ of size M or less. Without loss of generality,

we can assume that |A′ | = M
′
. As A

′ ⊆ A, there exist two disjoint sets V
′ ⊆ V and

D ⊆ (X∪Y ∪Z) such that A
′
= V

′∪D.

From the transformation unit, it is easy to see that each qi can only be dominated by

di, di ∈ D. Moreover, we cannot have more than one of di in A
′
which is the BIDS of G

′
,

otherwise qi will be dominated by more than one element of A
′
. Therefore, for each edge

replacement (choice unit) we have exactly one element of D in A
′
. On the other hand, none

of the di ’s, di ∈ A
′
, can dominate all vertices in B. xi can dominate pi and qi but not

ri; zi can dominate ri and qi but not pi; and yi can only dominate qi but not pi and ri.

Therefore for every choice unit there must exist at least one vi ∈ V such that vi ∈ A
′
and

hence vi ∈ V
′
. The final assertion implies that every edge in G is covered by at least one
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element of V
′
, which fulfils the required property of vertex cover.

From the above discussion, it can easily be deduced that |V ′ | = M − |E|. This is due to

the fact that A
′
= V

′∪D, and V
′
and D are disjoint sets. And for each choice unit of G

′
,

we need exactly one element of D in A
′
and |D| = |E|.

Therefore, every BIDS of G
′
should include the vertex cover of G. That completes the

transformation.

G G'

v6

v1 v2

v3

v4

v5

x1

v1 y1

z1 v2

v6

v5

v4

v3

x2

x3

x4

x5

x7

x6

z2

z3z6

z7

z5

z4

y2

y3

y4y5

y6

y7

Figure 4.3: A complete transformation from an instance of a vertex cover problem to an

instance of BIDS

In Figure 4.3 an illustration is given on how the transformation from G to G′ proceeds.

For clarity reasons, only the label of the vertices in the first category of G
′
are given. A brief

description of how A
′
(BIDS of G

′
) is constructed from V

′
(vertex cover of G) by applying

the three rules stated above is presented next.

Let V
′
= {v2, v5, v6}. Furthermore, let the first edge of G to consider be (v1, v2). Then

by rule 2, v2 and x1 are added to A
′
, i.e. A

′
= {v2, x1}.

Then, consider the edge (v1, v6). By rule 2, v6 and x6 are added to A
′
.

=⇒ A
′
= {v2, v6, x1, x6}.
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Then, the next edge to consider would be (v2, v3). By rule 1, z2 is added to A
′
(v2 is already

in A′).

=⇒ A
′
= {v2, v6, x1, x6, z2}.

Then, consider the edge (v2, v4). By rule 1, z3 is added to A
′
(v2 is already in A′).

=⇒ A
′
= {v2, v6, x1, x6, z2, z3}.

The next edge to consider would be (v4, v5). By rule 2, v5 and x4 are added to A
′
.

=⇒ A
′
= {v2, v5, v6, x1, x4, x6, z2, z3}.

The next edge to consider would be (v4, v6). By rule 2, x7 is added to A
′
(v6 is already in

A
′
).

=⇒ A
′
= {v2, v5, v6, x1, x4, x6, x7, z2, z3}.

The last edge to consider would be (v5, v6). By rule 3, y5 is added to A
′

(v2 and v6 are

already in A
′
).

=⇒ A
′
= {v2, v5, v6, x1, x4, x6, x7, y5, z2, z3}.

It can be easily verified that V
′
is vertex cover of G, and A

′
is BIDS of G

′
.

4.3 Bipartite Independent Dominating Set for Biconnected

Planar Graphs

As we have seen in the previous section, the BIDS problem was proved to be NP-complete.

The transformation was from the vertex cover problem by replacing the edges with a suitable

transformation unit. As our objective is to prove ALP-NSC-OLOR, which will be explained

in detail in Section 4.5, is NP-complete we need to represent BIDS in a grid using vertical

and horizontal segments. We also need to maintain the property that each of the horizon-

tal segments intercept at least two vertical segments. As a result, the BIDS problem for

biconnected planar graphs is considered.

A graph G = (V,E) is biconnected if there is no cut vertex in V , i.e. the removal of

any vertex from V does not make the graph disconnected. The vertex cover problem for

biconnected planar graphs was shown to be NP-complete [Sanders 2002]. The transformation

of NP-completeness was from vertex cover for planar graphs.

Now, suppose the graph G in Theorem 4.1 is a biconnected plane graph. Clearly, the

q′is in the resulting graph G
′
are cut vertices. By introducing a new vertex t to the choice

unit in Figure 4.2 and new edges that connect t to vertices x, y and z, q is no longer a cut

vertex. The new transformation unit is shown in Figure 4.4. For any biconnected planar

graph G = (V,E), |V | ≥ 3, and applying the new transformation in Figure 4.4, G
′

is a
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biconnected bipartite planar graph. The instance of G
′
= (A,B, E

′
) can be stated as:

A = V ∪(X∪Y ∪Z), where X = ∪kxk, Y = ∪kyk and Z = ∪kzk

B = P∪Q∪R∪T , where P = ∪kpk, Q = ∪kqk, R = ∪krk and T = ∪ktk

E
′
= {(vi, pk), (xi,j , pk), (xk, qk), (xk, tk), (yk, qk), (yk, tk), (zk, qk), (zk, tk),

(zk, rk), (vj , rk)|(vi, vj) ∈ E, where (vi, vj) = ek}

Clearly |A| = |V |+3|E|, |B| = 4|E| and |E′ | = 10|E|, and the instance can be constructed

in polynomial time, since every edge of G is replaced by the suitable choice. By applying

the rules for the general BIDS, we state the following corollary which is a result of Theorem

4.1.

vi vj

G G'

vi vjxk
yk

zk

pk

qk

rk

tk

Figure 4.4: A transformation unit for biconnected planar graphs

Corollary 4.1. The BIDS problem for biconnected planar graphs is NP-complete.

The instance of a BIDS problem for biconnected planar graphs guarantees that every

vertex in the second category is connected to at least two vertices of the first category of

the bipartite graph. The biconnected property of the bipartite graph will be used later in

our transformation.

In the next section, a discussion on representing a planar graph using segments is pre-

sented followed by an outline of representing bipartite planar graphs in a grid of vertical and

horizontal segments.
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4.4 Grid Representation of Bipartite Planar Graphs

As we have seen in the previous sections, the BIDS problem is NP-complete. In order to

transform an instance of the BIDS problem into an instance of the ALP-SC-OLOR problem,

the bipartite planar graph should be represented as a grid of vertical and horizontal segments

in a plane.

Research has been done in transforming planar graphs into a grid representation of ver-

tical and horizontal segments in a plane. Tamassia and Tollis [1986] and Sanders [2002]

studied independently the representation of a planar graph in a grid of vertical and hor-

izontal segments. Tamassia and Tollis [1986] called the approach visibility representation

of planar graphs. Two segments are visible if they can be joined by a segment that does

not intersect other segments. They studied three variations of the representation – weak

visibility representation, ε-visibility representation and strong visibility representation. In

weak visibility or w-visibility, the vertices are represented by horizontal segments and a ver-

tical segment joins two horizontal segments when their corresponding vertices are adjacent.

Here, it is possible that the segments are visible even if their corresponding vertices are not

adjacent. For example, segments v1 and v3 in Figure 4.5(ii) are visible even though their

associated vertices are not adjacent. The second representation, ε-visibility, is representing

the vertices by horizontal interval lines in such a way that two vertices are adjacent if and

only if their corresponding interval lines are visible. An interval line may contain none, one

or both of its end points. ε-visibility differs from w-representation in that the interval lines

may not be segments. The third variation, strong visibility or s-visibility, represents the

vertices by horizontal segments such that two vertices are adjacent if and only if their asso-

ciated segments are visible. s-visibility differs from ε-visibility in that the vertices are always

represented by segments, and not interval lines. An example of visibility representation of a

graph is given in Figure 4.5.

Castro et al. [2002] presented a different approach of representing any triangle-free pla-

nar graph as an intersection graph of segments in which the segments have only horizontal,

vertical or oblique orientation and the segments do not cross each other. A graph is triangle-

free if it does not contain a cycle of length three. In the intersection graph representation,

every vertex has a corresponding segment such that two vertices are adjacent if their corre-

sponding segments intersect. Their approach is based on Grøotzsch’s Theorem which states

that every planar triangle-free graph is 3-colourable [Thomassen 1994]. The vertices with

the same colour are then represented by segments of the same orientation in such a way

that if two vertices are adjacent, their associated segments intersect. Figure 4.6 illustrates
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Figure 4.5: (i) A graph with five vertices, (ii) its w-visibility representation, (iii) its ε-

visibility representation, and (iv) its s-visibility representation
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an intersection graph representation of a planar graph.

h1

v1

h2

v3

o1

o2

h3

v2

h4

h4

v1

h1

h2

v3

h3

o1

o2

v2

Figure 4.6: A graph and its vertical, horizontal and oblique orientation segment representa-

tion

The representation of a planar graph using a grid of segments has a special effect when

the graph is bipartite. As any bipartite graph is 2-colourable, studies have been done whether

it is always possible to represent the vertices of the same colour as vertical (or horizontal)

segments while the vertices of the other colour as horizontal (or vertical) segments such that

two segments intersect if their corresponding vertices are adjacent. de Fraysseix et al. [1991]

and Hartman et al. [1991] have independently shown that any bipartite planar graph can

be represented as vertical and horizontal segments in such a way that two segments have

a point in common if and only if their associated vertices are adjacent. More specifically,

the vertices of the first category are represented as vertical (or horizontal) segments while

the vertices of the second category are represented as horizontal (or vertical) segments in

which two segments intersect when their corresponding vertices are adjacent. Furthermore,

de Fraysseix et al. [1991] provided a linear time algorithm to transform a bipartite planar

graph into a grid representation of orthogonal vertical and horizontal segments in a plane.

Their algorithm is based on dividing all the faces of the graph into quadrilaterals (dummy

edges and vertices are introduced so that each face is bounded by a cycle, if necessary) and

then joining the vertices of the same colour that form a quadrilateral face with a directed

diagonal based on the orientation of the vertices in that face. Then they show that both
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diagonals have bipolar orientation and hence each diagonal will have exactly one sink and one

target vertex. The final phase of the algorithm is to represent the diagonals that connect all

black-coloured vertices as horizontal (or vertical) segments and the diagonals that connect all

the white-coloured vertices as vertical (or horizontal) segments where two segments intersect

whenever their associated vertices in the planar graph are adjacent.

Czyzowicz et al. [1998] also developed a linear time algorithm to represent a bipartite

planar graph in a ladder form of vertical and horizontal segments in which for every vertex in

the bipartite graph, there is a corresponding segment (vertical or horizontal) such that two

segments intersect if and only if their corresponding vertices are adjacent. The algorithm

given by Czyzowicz et al. [1998] first divides all the faces of the bipartite planar graph into

quadrilaterals. Dummy edges and vertices could be introduced during quadrilateralization.

Then the vertices that make up the outer face of the graph are represented as alternating

vertical and horizontal segments while intersecting whenever they are adjacent. Then the

remaining vertices are represented by segments in the ladder while traversing from left

to the right. When a vertex that was not represented by a segment is detected, a new

segment is introduced in the ladder while extending the ladder towards the left or downward

to represent the vertex, and extending the segment if its corresponding vertex is re-used.

Finally, the segments introduced as a result of the dummy vertices are removed and the

remaining segments are resized as a result of the dummy segments. The proof of their work

is based on the mathematical induction on the number of vertices.

As any bipartite planar graph can be transformed to a biconnected bipartite planar graph

by adding dummy edges, and our interest is on biconnected planar graphs, the proof of the

following theorem assumes the graph is biconnected.

Theorem 4.2. Any bipartite planar graph G = (X, Y,E) can be represented by a grid of

orthogonal vertical and horizontal segments I = (H∪V ) such that two segments intersect if

and only if their corresponding vertices are adjacent.

Proof. The proof is by induction on the number of internal faces of G. The basis case is the

graph forming a simple cycle, in which it can be represented in a grid by alternating vertical

and horizontal segments in a ladder form as shown in Figure 4.7.

The induction hypothesis is a biconnected bipartite planar graph with n − 1 internal

faces, n ≥ 2 can be represented as a grid of vertical and horizontal segments. We want to

show that a biconnected bipartite planar graph with n internal faces can be represented in

a grid of segments.
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Let G be a biconnected bipartite planar graph with n internal faces, n ≥ 2 . Moreover, let

P be an internal face of G which shares a boundary with the external face. By deleting all the

vertices and edges that lie between P and the external face only, we have a planar graph G
′

with n− 1 internal faces. Clearly, G
′
is biconnected and bipartite as deletion of the vertices

and edges does not change the bipartite or biconnected property of the graph. As G
′

is

2-colourable, say black and white, by the induction hypothesis, G
′
has a grid representation

of segments in such a way that the vertices with black colour are associated with vertical (or

horizontal) segments while the vertices with white colour are associated with the horizontal

(or vertical) segments such that two segments intersect if their corresponding vertices are

adjacent.

Now, consider the bipartite graph G. There are two cases that may arise depending on

the number of edges between P and the external face in G.

i. There is only one edge, say (u1, u2), between P and the external face. Then each

vertex of G has a corresponding segment (vertical or horizontal – depending on the

colour of the vertex) in the grid. As u1 and u2 are of different colour, one of them has a

corresponding vertical segment while the other has a corresponding horizontal segment

in the grid. By connecting the segments associated with u1 and u2, G is represented

in the grid. An example is shown in Figure 4.8.

ii. There are more than one edges, say (u1, u2), ..., (uk−1, uk), k > 2 between P and the

external face. Then extend the segments associated with the vertices u1 and uk, and

introduce a sequence of alternating vertical and horizontal segments to correspond the

new vertices (the vertices that fall in P and the external face) in a ladder form as shown

in Figure 4.8. Consequently, G is represented in the grid of vertical and horizontal

segments.

Therefore any bipartite planar graph can be represented by a grid of vertical and horizontal

segments. The generalization is due to the fact that any bipartite planar graph can be

transformed to a biconnected bipartite planar graph by introducing additional edges and

vertices. Sanders [2002] has presented a linear time algorithm to transform a planar graph

into a biconnected planar graph. It is not hard to adopt the algorithm to bipartite graphs.

The following steps describe a grid representation of biconnected planar graphs based

on Theorem 4.2. The approach is a variation of the work by Czyzowicz et al. [1998] in
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Figure 4.7: Ladder representation of a bipartite planar graph (basis case)

which they repeatedly represent the outer face of the graph in the grid and then deleting

the vertices that are already represented from the bipartite graph.

• Introduce dummy edges if there are any edges which fall entirely in the external face,

so that all edges lie either between the internal and external faces or between two

internal faces. The dummy edges join two vertices of different colour. As the graph

is bipartite it is two colourable. Introduce dummy vertices also if it is necessary (to

maintain the planarity property of the graph).

• Pick the left most internal face and represent it in a ladder form.

• Consider the subsequent internal faces in breadth search first (BFS) order while up-

dating the ladder representation, as shown in Figure 4.8. The ladder representation

is updated by extending the segments associated with the vertices in the new cycle

if they are already represented by segments, and including new segments for those

vertices that do not have corresponding segments in the grid.

• Resize the segments which were connected as a result of the introduction of dummy

edges. Similarly, delete the segments in the resulting grid that are associated with the

dummy vertices.
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Figure 4.8: Ladder representation of a bipartite planar graph (induction step)
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The above approach differs from the work by Czyzowicz et al. [1998] in that the above

steps form the grid representation of a graph by extending and merging the smaller ladders

while the latter approach partitions the ladder that corresponds to the outer face into a

collection of smaller ladders.

The transformation using the above approach (and the ladder representation in general)

is linear on the number of vertices since every vertex is not visited more that the number

of its incident edges times. Since G is bipartite it is triangle free, i.e. G contains no cycles

of length three. And according to Euler’s formula for triangle free graphs the number of

edges is bounded by 2n − 4 . Hence the sum of the degree of the vertices is G is bounded by

4n − 8 and consequently the transformation is linear.

Once a bipartite planar graph is transformed into a grid of vertical and horizontal seg-

ments, we define a set similar to BIDS for planar graphs but applied in a grid of orthogonal

segments.

Definition 4.3. Given a grid of orthogonal configuration I = H ∪ V , of horizontal segments

H and vertical segments V , an orthogonal bipartite independent dominating set (OBIDS)

of I is a minimum set H
′ ⊆ H of horizontal segments that intersect all the vertical segments

in such a way that no two segments of H
′
cross the same vertical segment.

As the orthogonal bipartite independent dominating set problem is an optimization prob-

lem, it has the following form when written as a decision problem.

Instance: Given a grid I = H∪V of horizontal and vertical segments and a

positive integer P ≤ |H|.

Question: Is there an orthogonal bipartite independent dominating set H
′ ⊆ H

and |H ′ | ≤ P?

The orthogonal bipartite independent dominating set problem is a special case of the

packing problem applied to a grid of segments. Although the optimal packing problem is

NP-complete [Fowler et al. 1981], the geometrical configuration of the grid of segments seems

to simplify the problem of orthogonal bipartite independent dominating set. The following

theorem states that the OBIDS problem is NP-complete.

Theorem 4.3. The OBIDS problem is NP-complete.
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Proof. Clearly OBIDS is in NP – given a set of horizontal segments H
′
where each horizontal

segment intercepts at least two vertical segments, and a positive integer P , |H ′ | ≤ P , we

can verify whether the segments in H
′
cross all the vertical segments such that no vertical

segment is crossed by two or more horizontal segments of H
′
in polynomial time.

We show the problem is NP-hard by reducing an instance of BIDS for biconnected planar

graphs. Let G = (A,B, E) be a bipartite biconnected planar graph. By Theorem 4.2, G has

an equivalent orthogonal grid representation I = H∪V in such a way that the vertices of

A are represented by the horizontal segments H while the vertices of B are represented as

vertical segments. Since each vertex in G has degree greater than one (G is biconnected),

each horizontal segment intercepts at least two vertical segments. As detailed above, the

transformation can be done in polynomial time since a vertex in G is not visited more than

its incident edges times.

Suppose A
′
is BIDS of G of size M or less. Clearly, A

′ ⊆ A, and hence has an equivalent

set of horizontal segments H
′
, H

′ ⊆ H. By Theorem 4.2, each vertex in A
′

has a corre-

sponding horizontal segment in H
′
, which implies that if we have a BIDS of G of size M ,

then a set of horizontal segments of I of size M can be found that intercept each vertical

segment exactly once.

Conversely, if a set of horizontal segments H
′
in I of size P that intersect each vertical

line exactly once can be found, then by Theorem 4.2, there can be found a corresponding

BIDS of G of size P . Therefore, OBIDS is NP-complete.

The following definition is entailed to maintain the connectivity property of graphs in

their corresponding grid representation.

Definition 4.4. A grid representation is biconnected if it requires removal of at least two

segments in order for the grid to be disconnected.

Theorem 4.2 states any bipartite planar graph has a corresponding grid representation

using vertical and horizontal segments. Suppose G(A,B ,E ) is a biconnected bipartite planar

graph. Then G can be represented in a grid of vertical and horizontal segments, say I.

Clearly I is a biconnected grid. From Corollary 4.1, in general the BIDS of G is NP-complete.

Consequently, OBIDS of I is NP-complete as it is the corresponding grid representation of

G. The following corollary states the OBIDS problem for biconnected grids is NP-complete.

Corollary 4.2. The OBIDS problem for biconnected grids is NP-complete.
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In the next section, a transformation from an instance of OBIDS for biconnected grids

to a normalized orthogonal axial lines in orthogonal rectangles, which is a special case of

ALP-SC-OLOR, is presented.

4.5 Normalized Orthogonal Axial Lines in Orthogonal

Rectangles

The previous section detailed the NP-completeness of the OBIDS problem. In this section,

a proof of NP-completeness of ALP-SC-OLOR is given which is based on placing normalized

orthogonal axial lines in orthogonal rectangles.

In ALP-SC-OLOR, a minimum number of orthogonal lines are required to cross the

adjacencies between the orthogonal rectangles in such a way that the adjacencies are allowed

to be crossed only once. There are many ways to cross the adjacencies between the collection

of rectangles using combinations of single-crossing lines some of which are redundant. In

this section, we introduce a new problem by imposing an additional restriction to ALP-SC-

OLOR using the notion of maximality. A line is maximal if it crosses as many adjacencies

as possible. Based on the maximality of the orthogonal lines, the adjacencies between the

orthogonal rectangles fall into two categories: essential and choice adjacencies. Essential

adjacencies are those adjacencies that can be crossed by only one particular maximal line,

while choice adjacencies are those that can be crossed by two or more maximal lines. Figure

4.9 shows the essential and choice adjacencies.

In order to obtain a minimum number of single-crossing lines, the choice adjacencies

should be crossed by a minimum number of lines since a line is always required to cross the

essential adjacencies. Based on the property of the single-crossing lines and the notion of

maximality, we considered a special case of the ALP-SC-OLOR problem as follows:

Definition 4.5. A normalized orthogonal line is a single-crossing line such that when the line

crosses a choice adjacency then it is required to be maximal, i.e. the line should cross as many

choice adjacencies as possible. The problem of normalized orthogonal lines in orthogonal

rectangles (ALP-NSC-OLOR) is to place a minimum number of normalized orthogonal axial

lines to cross the adjacencies between a collection of orthogonal rectangles.

An example of normalized orthogonal lines placed to cross the adjacencies between or-

thogonal rectangles is shown in Figure 4.9. In the first diagram, the line which crosses choice

adjacencies ’a’ and ’b’ is not maximal, although it crosses choice adjacencies and hence it is
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not normalized line. The same reasoning applies to the lines that cross choice adjacencies ’c’,

’d’ and ’e’. As a result, the problem is not a valid ALP-NSC-OLOR. In the second diagram

The choice adjacencies ’a’, ’b’, ’c’, ’d’ and ’e’ are crossed by a maximal line, and hence the

problem is a valid ALP-NSC-OLOR with 4 normalized lines. The third diagram is also a

valid ALP-NSC-OLOR, but the number of normalized lines is 6 which is not minimum.

The proof of NP-completeness of ALP-SC-OLOR presented in this chapter is based on

the restriction method described in Section 2.6.3. First we consider the problem of plac-

ing normalized orthogonal lines to cross the adjacencies between a collection of orthogonal

rectangles (ALP-NSC-OLOR) and show that it is NP-complete. Then we show that solving

ALP-SC-OLOR cannot be easier than solving ALP-NSC-OLOR.

As ALP-NSC-OLOR is an optimization problem, it has the following form when written

as a decision problem.

Instance: Given a collection of orthogonal rectangles R1, R2, ..., Rn such that

each rectangle is adjacent to at least one another rectangle, and a positive

integer T ≤ 2n − 4 .

Question: Is there a set Q of normalized orthogonal lines in which each vertical

adjacency between the rectangles is crossed by the lines in Q exactly once,

and |Q | ≤ T?

The following theorem states that ALP-NSC-OLOR is NP-complete.

Theorem 4.4. The problem of placing a minimum number of normalized orthogonal lines

in orthogonal rectangles (ALP-NSC-OLOR) is NP-complete.

Proof. Clearly ALP-NSC-OLOR is in NP since given a set of horizontal normalized orthog-

onal lines Q and a positive integer T , |Q| ≤ T , it can be checked if every adjacency in the

configuration is crossed by only one line of Q in polynomial time.

In order to show that ALP-NSC-OLOR is NP-hard, we transform the problem of OBIDS

for biconnected grids to ALP-NSC-OLOR. Suppose I is a biconnected grid of vertical and

horizontal segments. The basic unit of instances of OBIDS are the vertical segments of

I. The local replacement substitutes for each vertical segment in I, a choice unit of two

orthogonal rectangles that share an adjacency as shown in Figure 4.10 and whenever a

horizontal segment intercepts two vertical segments, their associated orthogonal rectangles

are joined by an orthogonal rectangle (connector) to produce I
′
. That is, if vi and vj ∈ I
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Choice adjacencies

Essential adjacencies

Single crossing axial lines

Figure 4.9: An example of ALP-NSC-OLOR

are vertical segments that are intercepted by a horizontal segment hk, hk ∈ I, then vi would

be replaced by two adjacent orthogonal rectangles, Ril and Rir, while vj would be replaced

by two other adjacent orthogonal rectangles, Rjl and Rjr. Then Ril, Rir, Rjl, Rjr ∈ I
′
.

Moreover, an orthogonal rectangle, Rkh, is included that connects Rir and Rjl assuming

that Rir is to the left of Rjr since their associated vertical segments are intercepted by a

horizontal segment.

The transformation can be done in polynomial time since each vertical line is visited

not more than (1+k) times when the segment is replaced by the choice unit, where k is the

number of horizontal segments that intercept the vertical segment.

Now, suppose H
′
is an OBIDS of I. Then we have a set of horizontal lines of size P = |H ′ |
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in which each vertical line in I is intercepted by exactly one horizontal line of H
′
. Since I is

biconnected and every vertical line of I is replaced by two orthogonal rectangles that form an

adjacency in I
′
, essentially each vertical line in I has a corresponding choice adjacency in I ′.

Every connector in I ′ introduces two essential adjacencies that can be crossed by the same

normalized line which should be included in the solution of ALP-NSC-OLOR. Moreover,

some of the adjacencies formed by the connectors and the choice units could be crossed by

the maximal lines. Therefore, the total number of normalized axial lines required in I ′ is:

|Q| = P + Total Number of Connectors − Shared Connectors

where shared connectors are the number of connectors in which the adjacencies they formed

are crossed by the maximal lines and P is the size of OBIDS of I.

vi

hk

vj

ui uj

ck

I I’

Figure 4.10: Transformation unit of an OBIDS problem to an instance of ALP-NSC-OLOR

Conversely, suppose Q, is a set of normalized axial lines that cross each adjacency between

the rectangles in I ′, |Q| ≤ T . Now, consider a set of lines

H
′
= {l|l ∈ Q and l crosses choice adjacencies.}

Since the lines in Q are normalized, H
′
contains the maximal lines that crosses the choice

adjacencies. By construction, each vertical line of I has a corresponding choice adjacency

in I
′
, and if two vertical lines are crossed by the same horizontal line in I, the rectangles

that form their corresponding adjacencies are connected by another rectangle. Therefore,

we can get a set of horizontal lines of size |H ′ | which is OBIDS of I. Figure 4.11 shows a
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Figure 4.11: An illustration on how the transformation proceeds from an instance of OBIDS

to ALP-NSC-OLOR
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complete transformation of an instance of OBIDS for biconnected grids to an instance of

ALP-NSC-OLOR.

Before proceeding to the proof of NP-completeness of ALP-SC-OLOR, we demonstrate

how a solution to the OBIDS problem gives a solution to ALP-NSC-OLOR. Let us consider

the diagrams in Figure 4.12. For the sake of clarity, only the horizontal lines are labeled

in the first diagram, while the maximal lines and the choice adjacencies are labeled in the

second diagram. Our interest is to find a solution of the OBIDS problem in the first case,

and a solution to the ALP-NSC-OLOR problem in the second one.

In the first diagram, there are three possible combination of horizontal lines to intercept

the vertical lines exactly once: lines 1, 3, 5; lines 2, 4, 6; and lines 6, 7. As the problem of

OBIDS is an optimization problem, we are interested in the minimum solution, and hence

the solution is combination of lines 6 and 7. In the case of ALP-NSC-OLOR, there are also

three possible solutions – the maximal lines 1, 3, 5 along six other single crossing lines which

cross only essential lines (9 normalized single crossing lines in total); the maximal lines 2, 4,

6 along six other single crossing lines that only cross the essential adjacencies (9 normalized

single crossing lines in total); and the maximal lines 3 and 7 along with five other single

crossing lines which cross only essential adjacencies (7 normalized single crossing lines in

total). And hence the solution to the OBIDS problem corresponds to the solution to the

ALP-NSC-OLOR problem.

Next, we show that ALP-SC-OLOR is NP-complete using the restriction technique. In

the restriction method, the focus is on the target problem whereby we add restrictions while

retaining the essential properties of the problem so that the resulting restricted problem

is identical to a known NP-complete problem [Garey and Johnson 1979]. In our case, the

essential aspects of ALP-SC-OLOR is that all adjacencies between the collection of rectangles

should be crossed by exactly one line in the solution set. And this property is maintained in

ALP-NSC-OLOR, i.e crossing the adjacencies in the collection of rectangles by normalized

lines.

The restriction method is based on the concept that an algorithm that solves a given

problem in polynomial time should also solve a special case of the problem in polynomial

time. ALP-NSC-OLOR is a special case of ALP-SC-OLOR whereby the single-crossing lines

are restricted to be normalized orthogonal lines. The following theorem is based on Theorem

4.4 and the above discussion.
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Figure 4.12: How the solution of OBIDS gives a solution to ALP-NSC-OLOR
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Theorem 4.5. ALP-SC-OLOR is NP-complete.

Proof. Clearly, ALP-SC-OLOR is in NP since given a set of horizontal lines L and a positive

integer K, it is possible to check if every adjacency between the orthogonal rectangles is

crossed only once in polynomial time.

Theorem 4.4 stated that placing normalized axial lines in orthogonal rectangles is NP-

complete. The ALP-NSC-OLOR problem is a special case of ALP-SC-OLOR in which the

orthogonal axial lines are restricted to be normalized orthogonal lines. Therefore, ALP-SC-

OLOR is NP-complete.

The NP-completeness of ALP-NSC-OLOR arises due to the fact that selecting the min-

imum combination of normalized orthogonal axial lines to cross all the adjacencies between

the collection of rectangles exactly once takes exponential time. ALP-NSC-OLOR is a sim-

plification of ALP-SC-OLOR in that it greatly reduces the number of combinations of single-

crossing lines to cross the adjacencies in the configuration. That is, in ALP-NSC-OLOR the

choice adjacencies are required to be crossed by maximal lines whereas in ALP-SC-OLOR

the lines that cross the choice adjacencies may not be maximal which could form a number

of combinations of single-crossing lines to cover the adjacencies in the configuration.

Now, consider the configuration of rectangles in Figure 4.13. Adjacencies 3 and 4 are

choice adjacencies while adjacencies 1, 2 and 5 are essential. Adjacency 3 can be crossed

by lines a or b. As adjacencies are restricted to be crossed only once, which line crosses

adjacency 3 affects which line (or lines) is going to cross its neighbouring adjacencies 4 and

5. That is, the choice (decision) we make at a choice adjacency clearly determines which lines

will cross the neighbouring adjacencies. Figure 4.13 is a simple configuration of rectangles

with two choice adjacencies. With complex configuration of rectangles and many choice

adjacencies, computing for the exact solution requires exhaustive search.

4.6 Single-crossing Versions of ALP-ALOR and ALP-ALCP

The previous section stated that ALP-SC-OLOR is NP-complete. The single-crossing version

of ALP-ALOR, which will be referred to as ALP-SC-ALOR, is a more generalized problem

of ALP-SC-OLOR whereby the single-crossing axial lines have freedom to have arbitrary

orientation. This freedom of orientation produces more choice adjacencies which makes it

even harder to make decisions locally at every choice adjacency.
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Figure 4.13: Placing single-crossing lines to cross choice adjacencies

In the case of the single-crossing of ALP-ALCP, which will be referred to as ALP-SC-

ALCP, the freedom is not only on the orientation of the single-crossing axial lines but also

on the shape of the collection of polygons. If ALP-SC-OLOR, which is the more restricted

problem of ALP-SC-ALOR and ALP-SC-ALCP, cannot be solved in polynomial time then

neither of the generalized problems can be solved in polynomial time. As a result, the NP-

completeness of ALP-SC-OLOR can be extended to ALP-SC-ALOR and ALP-SC-ALCP.

4.7 Conclusion

The research question the dissertation aimed to answer was to determine whether ALP-SC-

OLOR could be solved in polynomial time or it is NP-complete. As discussed in the previous

sections, ALP-SC-OLOR has been found to be NP-complete. The proof of NP-completeness

presented in the chapter was based on the reduction from vertex cover to ALP-NSC-OLOR

which is a special case of ALP-SC-OLOR where the axial lines are required to be maximal

72



when they cross choice adjacencies.

As detailed above, the proof of NP-completeness of ALP-SC-OLOR is given by restricting

the problem into a special case of the general problem where the single-crossing orthogonal

lines in ALP-SC-OLOR are restricted to be maximal when they cross choice adjacencies.

Garey and Johnson [1979] described that an algorithm that solves a given problem in a

general case should also solve a special case of the general problem. As a result, if a special

case of a given problem is found to be NP-complete, the general problem should also be

NP-complete. And hence ALP-SC-OLOR is NP-complete.

In general, if a problem is found to be NP-complete, computing the exact solution takes

exponential time in the worst case, which implies the problem can only be solved efficiently

for data of small size input. As a result, if a problem is found to be NP-complete, it is

worthwhile to focus on heuristic algorithms that give reasonably approximated solutions and

special configurations that are solvable in polynomial time than attempting to develop an

algorithm that gives an optimal (exact) solution. In the next chapter, a heuristic algorithm

for ALP-SC-OLOR based on a greedy method is given.
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Chapter 5

Heuristic for ALP-SC-OLOR

5.1 Introduction

Chapter 4 presented a proof of NP-completeness of placing single-crossing orthogonal axial

lines in orthogonal rectangles. The proof was a three way reduction: from vertex cover for

biconnected planar graphs to a bipartite independent dominating set (BIDS) for biconnected

planar graphs, and then to orthogonal biconnected bipartite independent dominating set

(OBIDS) and finally, to a special case of ALP-SC-OLOR where the adjacencies between the

orthogonal rectangles are crossed by normalized orthogonal axial lines. As it is discussed in

more detail in Garey and Johnson [1979], if a special case of a given problem is NP-complete,

then the general problem is also NP-complete since any algorithm that could solve the general

problem in polynomial time should also solve the special case in polynomial time. And hence,

we concluded that ALP-SC-OLOR is NP-complete.

In general, if a problem is found to be NP-complete, it cannot be solved in polynomial

time unless P = NP . As this is still an open question, if a problem is found to be NP-complete

it is worthwhile to concentrate on heuristic algorithms that give reasonable approximate

solutions and special cases of the problem that could be solved in polynomial time rather

than attempting to solve for the exact solution. This is due to the fact that exhaustive

search for the exact solution grows exponentially with the size of the input of the problem.

As a result a heuristic algorithm for ALP-SC-OLOR based on a greedy method is presented

in this chapter.

In the next section, the general description of the heuristic algorithm is discussed followed

by a high level outline of the heuristic. The theoretical and empirical complexity analysis of

the heuristic is also included in this chapter. The final section presents a discussion on the

performance of the heuristic.
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5.2 Heuristic Algorithm

As detailed in the previous chapters, the ALP-SC-OLOR problem aims at crossing the ad-

jacencies between a collection of orthogonal rectangles by a minimum number of orthogonal

axial lines in such a way that each adjacency is crossed by only one line. In this dissertation,

we considered a greedy method with local improvement for developing a heuristic algorithm

for ALP-SC-OLOR that gives a reasonable approximate solution.

Before presenting the heuristic, let us define the notion of axial lines. By definition,

axial lines are lines that may cross an adjacency or adjacencies between a collection of

convex polygons – in our case orthogonal rectangles. There could be a number of axial lines

that may cross an adjacency. If two or more axial lines cross the same adjacencies, they are

considered to be equivalent. In other words, if we consider the axial lines L1 and L2 as sets,

and the elements each set being the adjacencies the lines crosses, then we can say that the

axial line L1 is a subset of L2 if all the adjacencies crossed by L1 are also crossed by L2.

And consequently, two axial lines are considered to be equivalent if both lines are subsets of

one another.

The approach of the heuristic is first to generate all possible single-crossing lines and

then repeatedly add the lines that cross the highest number of adjacencies not crossed by

the lines in the solution set to the solution set provided that no two lines in the solution set

cross the same adjacency. As adjacencies are restricted to be crossed only once, the order of

placing the lines in the solution set may affect the final number of lines produced to cover

the adjacencies. As a result, a local improvement has been considered in Section 5.2.4.

Once all single-crossing lines are generated, the ALP-SC-OLOR problem could be con-

sidered as an instance of a set packing exact-cover problem – given a set and subsets to

the set, selecting a minimum number of subsets that cover all the elements and none of the

elements is in more than one subset of the solution set. And a greedy method is well known

to give a reasonably approximated solution to the set packing problem [Skiena 1998].

The heuristic has three phases – determining the adjacencies between the orthogonal

rectangles, placing all possible single-crossing orthogonal lines to cross each adjacency and

the final phase is to select the fewest number of single-crossing orthogonal lines to cross

all the adjacencies between the rectangles. Algorithm 1 presents a high-level outline of the

heuristic.

Before discussing the three phases of the heuristic algorithm, the data structures used

in the algorithm are described below.
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Algorithm 1 A high-level algorithm to compute an approximate minimum number of single-
crossing lines to cross the adjacencies between a collection of rectangles

INPUT: An array of rectangle record.
OUTPUT: An approximate minimum number of single-crossing lines

{NextApproximateSolution is the set of minimum single-crossing lines produced during

one iteration of the outer WHILE loop. It is initialized with empty list.}

{BestApproximateSolution is the set of minimum single-crossing lines so far.}

{an untraversed adjacency is an adjacency where no line has been considered which

originates from the adjacency and is being extended to the right}

{an uncrossed adjacency is an adjacency where it is not crossed by any of the lines in

the set NextApproximateSolution}

5: Determine the adjacencies between the collection of rectangles
for each adjacency do

Form a list of the lines that originate from the adjacency and are extended to the
right
Sort the list of lines in descending order of the number of adjacencies the lines cross

end for

10: while there is an untraversed adjacency do
Add the first line from the list of lines originating from the current adjacency to the
set of NextApproximateSolution

while there is an uncrossed adjacency do
Goto the next uncrossed adjacency OR to the first adjacency if we reach the last
adjacency
Add the line that crosses the only adjacencies which are not crossed by the lines in
the set of NextApproximateSolution to that set (NextApproximateSolution)

15: end while

if the number of lines in the local solution set is less than BestApproximateSolution
then

Update the set of BestApproximateSolution to be NextApproximateSolution
end if

Set the NextApproximateSolution to be empty
20: Goto the next adjacency

end while
Output BestApproximateSolution
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5.2.1 Data Structures

There are three records defined in the heuristic: records of rectangles, adjacencies and

lines. The rectangles are defined by their left-bottom coordinates and right-top coordinates.

Associated with the rectangle record are adjListLeft and adjListRight that keep track of

the left and right adjacencies of a rectangle, respectively. The record also has a field name

that uniquely identifies a particular rectangle. The rectangles are considered to be non-

overlapping and orthogonal.

The adjacencies are defined by the left (leftRectangle) and right (rightRectangle) rect-

angles that form the adjacency, and their bottom and top (bottomMargin and topMargin

respectively) y−value range of their common edge. A field, name, is also included in the

adjacency record in order to identify an adjacency uniquely. The field is computed based on

Algorithm 2 starting from 1 and incrementing when a new adjacency is detected. Although

an adjacency can uniquely be identified by the two rectangles it is formed by, the name

field is used for checking whether the adjacency is crossed or not by a line in the solution

set in constant time. The values of all the fields associated with the adjacency record are

computed from the collection of orthogonal rectangles.

The line record is defined by the list of adjacencies the line crosses (adjList), the minimum

y−value of the upper margin of the adjacencies (upperMargin) and the maximum y−value

of the lower margin of the adjacencies (lowerMargin). The line record also contains the

field degree to keep track of the number of adjacencies the line crosses. Likewise, all the

values of the fields associated with the line record are computed from the configuration of

the orthogonal rectangles and the adjacencies formed by the rectangles.

Initially, the rectangles are stored in an array. An array of adjacency record is defined to

store the adjacencies between the rectangles. By storing the adjacency record in an array,

it can be accessed using indices in constant time. Moreover, it is possible to check whether

an adjacency is already crossed or not by a line in the solution set in constant time as the

problem restricts adjacencies to be crossed only once.

5.2.2 Determining Adjacencies

The total number of vertical and horizontal adjacencies formed by a collection of non-

overlapping orthogonal rectangles is linear with respect to the number of rectangles. This

can be verified using Euler’s formula where given a planar graph G = (V ,E ), the number of

non-crossing edges |E| that joins the vertices is bounded by 3n− 6, where n is the number

of vertices of the graph. As described in Sanders [2002] in more detail, by representing the
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rectangles as a vertices of a graph and placing edges between the vertices if their corre-

sponding rectangles are adjacent, the number of vertical and horizontal adjacencies formed

by the rectangles is bounded by 3n − 6. In ALP-SC-OLOR, we are interested in vertical

adjacencies and horizontal lines, and hence we give a tighter bound on the number of vertical

adjacencies.

The following lemma serves as the basis for determining the upper bound on the total

number of vertical adjacencies formed by a collection of non-overlapping orthogonal rectan-

gles. The proof is omitted as it is trivial.

Lemma 5.1. Two rectangles that are vertically adjacent to the same rectangle cannot be

vertically adjacent to one another.

Suppose R1, R2 and R3 be three adjacent rectangles. Moreover, suppose rectangles R1

and R2 are adjacent to rectangle R3. Then there are four possible configurations of the

rectangles: R1 and R2 are to the left of R3, R1 and R2 are to the right of R3, R3 is to the

right of R1 and to the left of R2, and R3 is to the left of R1 and to the right of R2.

Figure 5.1 shows the possible configurations of three non-overlapping adjacent orthogonal

rectangles. The fourth configuration is omitted as it is symmetric to Figure 5.1(iii). The

following theorem states the upper bound on the total number of vertical adjacencies in a

collection of non-overlapping orthogonal rectangles.
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Figure 5.1: Possible configurations of three non-overlapping adjacent orthogonal rectangles
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Theorem 5.1. The number of vertical adjacencies in a collection of non-overlapping or-

thogonal rectangles is at most 2n − 4 , n ≥ 3 , where n is the number of rectangles.

Proof. From Euler’s formula, the total number of edges in a simple planar graph is at most

3n − 6 , where n is the number of vertices. If the graph does not contain a cycle of three

(it is triangle-free) then the total number of edges is at most 2n − 4 [Wilson and Watkins

1990].

Let R be a collection of n non-overlapping rectangles. Now, construct a graph G from

the collection of rectangles in R in such a way that each rectangle in R has a corresponding

vertex in G and, if two rectangles in R are vertically adjacent then connect their associated

vertices in G by an edge. Clearly the resulting graph is planar with n vertices.

To show that the total number of vertical adjacencies in R is at most 2n − 4 , it suffices

to show that G does not contain cycles of three, i.e. G is triangle-free.

Suppose G contains a cycle of three, and let Vi, Vj and Vk be the vertices that form a cycle

of three. Then by construction of G, there are three rectangles in R associated with Vi, Vj

and Vk. Let Ri, Rj and Rk be the three rectangles associated with Vi, Vj and Vk respectively.

As the vertices are connected by an edge in G, Ri, Rj and Rk are vertically adjacent to each

other. But by Lemma 5.1, the three rectangles cannot be vertically adjacent to each other.

Therefore, G must be a triangle-free graph and from Euler’s formula for triangle-free graphs,

the total number of edges in G is at most 2n − 4 .

As each edge in G corresponds to a vertical adjacency in R, the total number of vertical

adjacencies in a collection of non-overlapping orthogonal rectangles is at most 2n − 4 .

Algorithm 2 presents a method of determining adjacencies between a collection of rect-

angles. As the aim of the problem was to determine the minimum number of lines to cross

the adjacencies, it was assumed that initially the rectangles are in an array. The algorithm

first defines an array of adjacency record (line 2 ) which stores the adjacencies between the

rectangles. The algorithm proceeds by picking one rectangle and then checks repeatedly if

it forms an adjacency with any of the rectangles, while updating the array of adjacencies

when an adjacency is detected. As the checking of rectangles is from left to right, the array

of rectangle record is copied to LSorted , and sorted based on their left edge (LSorted [i ].left),

while breaking ties in minimum LSorted [i ].bottom first (lines 3-5 ). There are three indices

defined in the algorithm: i is the index of the current rectangle in LSorted which is under

consideration, j is the index of the adjacency record, and k is the index of the subsequent

rectangles in LSorted to be checked for potential adjacency with LSorted [i ]. Initially the
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Figure 5.2: An example of a collection of non-overlapping orthogonal rectangles

index of the current rectangle (i) and the index of the adjacency record (j) have a value of

one (line 6 ).

When we compare two rectangles for adjacency, one of the following three conditions

may occur:

• The x−value of the right edge of the current rectangle (LSorted [i ]) is less than the

x−value of the left edge of the rectangle to be checked for potential adjacency (LSorted [k ]).

As there is a horizontal gap between the rectangles, they cannot be adjacent. And

hence none of the rectangles in LSorted can be adjacent with the current rectangle

under consideration (line 10 ). In that case increment i, that is, advance to the next

rectangle for consideration (line 35 ).

• The x−value of the right edge of the current rectangle (LSorted [i ]) is greater than

the x−value of the left edge of the rectangle to be checked for potential adjacency

(LSorted [k ]) – (line 10 ). The two rectangles cannot be adjacent, but the subsequent

rectangles in LSorted can be adjacent with the current rectangle which is LSorted [i ].

In that case increment k, that is, consider the next rectangle after LSorted [k ] to check

for adjacency with LSorted [i ] (line 32 ).
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Algorithm 2 An algorithm that determines the adjacencies between a collection of non-
overlapping orthogonal rectangles

INPUT: An array of rectangle record Rect .
OUTPUT: An array of adjacency record Adj .

{Let the array of rectangles be Rect with size n}
Create an array of adjacency record Adj (with size = 2n − 4 )
Create an array of rectangle record LSorted
Copy Rect to LSorted

5: Sort LSorted in ascending order of LSorted .left while breaking ties in LSorted .bottom
i ← j ← 1
{i is the index of the current rectangle under consideration in LSorted, j is the index of
Adj and k is the index of the rectangle from LSorted to be checked for adjacency with
LSorted[i]}

while (i ≤ n− 1) do
k ← i + 1

10: while (k ≤ n and LSorted [i ].right ≥ LSorted [k ].left) do
{there is no horizontal gap between the two rectangles}

if (LSorted [i ].right = LSorted [k ].left) then
{the rectangles have the same x−value. Therefore, there is a possibility to have
a common adjacency}

if (LSorted [i ].bottom < LSorted [k ].top AND
LSorted [i ].top > LSorted [k ].bottom) then

15: {the rectangles are adjacent}
Create adjacency j and store it in Adj [j ]
Adj [j ].leftRectangle ← LSorted [i ]
Adj [j ].rightRectangle ← LSorted [k ]
Adj [j ].upperMargin ← Minimum(LSorted [i ].top,LSorted [k ].top)

20: {the Minimum function returns the argument with the smallest value}

Adj [j ].lowerMargin ← Maximum(LSorted [i ].bottom,LSorted [k ].bottom)
{the Maximum function returns the argument with the largest value}

{append the adjacency into the list of adjacencies of its neighbourhood rectan-
gles that form the adjacency}
Append Adj [j ] into the list of adjacencies of Rect [LSorted [i ].name].adjListRight

25: Append Adj [j ] into the list of adjacencies of Rect [LSorted [k ].name].adjListLeft
j ← j + 1

else if (LSorted [i ].top ≤ LSorted [k ].bottom) then
{LSorted[i] is not adjacent to LSorted[k]. It cannot be adjacent to the rest of
rectangles in LSorted either}
Exit inner while loop

30: end if
end if

k ← k + 1
{go to the next rectangle for potential adjacency checkup}

end while

35: i ← i + 1
{consider next rectangle to check for adjacency}

end while
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• The x−value of the right edge of the current rectangle (LSorted [i ]) is equal to the

x−value of the left edge of the rectangle to be checked for potential adjacency (LSorted [k ])

– (line 12 ). Here, depending on the value of the top and bottom edges of the rectan-

gles three cases may arise:

– The y−value range of the current rectangle (LSorted [i ]) overlaps with the y−value

range of the rectangle to be checked for adjacency (LSorted [k ]) – line 14 . Then

the two rectangles are adjacent. The information concerning the adjacency (the

left and right rectangles, and the lower and upper margins of the adjacency) are

stored in the Adj array. Furthermore, the adjacency is appended to the left and

right list of adjacencies of the rectangles respectively (lines 16-25 ). And finally,

k is incremented (line 32 ).

– The y−value of the top edge of the current rectangle (LSorted [i ]) is less than

the y−value of the bottom edge of the rectangle being checked for adjacency

(LSorted [k ]) – line 27 . The two rectangles cannot be adjacent and the current

rectangle cannot be adjacent to any of the rest of LSorted . In that case i is

incremented – advance to the next rectangle and start checking for potential

adjacency (line 35 ).

– The y−value of the bottom edge of the current rectangle (LSorted [i ]) is greater

than the y−value of the top edge of the rectangle being considered for adjacency

(LSorted [k ]). The two rectangles cannot be adjacent but the rest of the rectan-

gles in LSorted could be adjacent to the current rectangle under consideration

(LSorted [i ]). Hence k is incremented (line 32 ).

In order to demonstrate how the algorithm determines the adjacencies between a col-

lection of non-overlapping orthogonal rectangles, consider the configuration of rectangles in

Figure 5.2. In the algorithm, i is the index of the current rectangle under consideration,

k is the index of the rectangle to be checked for potential adjacency against the current

rectangle (LSorted [i ]) and j is the index of the adjacency record. Lines 2 and 3 of the

algorithm copies the array Rect to LSorted . Then LSorted is sorted by x−value of the left

edge of the rectangles in ascending order while breaking ties in increasing y−value of the

bottom edge of the rectangles (line 5 ). So, once the rectangles are sorted, they will be in

the order of 5, 1, 2, 6, 7, 3, 8, and 4. i is initialized to 1 while k is initialized to 2 (line

9 ). As LSorted [1 ] is rectangle 5 and LSorted [2 ] is rectangle 1, the algorithm first checks

if rectangle 5 shares a common edge (adjacency) with rectangle 1. Since LSorted [1 ].right

is greater than LSorted [2 ].left , k is incremented (line 32 ) which will be 3. The algorithm
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A List of Functions:

——————————————————————————————————————–

• head(ALine): returns the first line from the list of lines ALine.

• head(Adj): returns the first adjacency from the list of adjacencies Adj .

• tail(ALine): deletes the first line from the list of lines ALine, and returns the rest of

the list.

• tail(Adj): deletes the first adjacency from the list of adjacencies Adj , and returns the

rest of the list.

• computeDegree(ALine): returns the number of adjacencies crossed by line ALine.

• partiallyVisible(ALine, Adj): returns true if there is a horizontal partial visibility

between the adjacencies crossed by line ALine and adjacency Adj .

• isMarked(ALine, Crossed): returns true if any of the adjacencies crossed by line

ALine is already crossed, and false otherwise. If an adjacency k is already crossed,

then Crossed [k ] is true , and false if it is not yet crossed.

• markAdj(ALine, Crossed): marks the indices of the adjacencies crossed by line

ALine as true in the boolean array Crossed , and returns the index of the next un-

crossed adjacency higher than head(ALine.adjList); or the smallest index of uncrossed

adjacency if we are at the last adjacency; or −1 if all the adjacencies are crossed.

• unMarkAdj(ALine, Crossed): marks the indices of the adjacencies crossed by line

ALine as false in the boolean array Crossed , i.e. if an adjacency with index k is

crossed by ALine, then Crossed [k ] will be marked as false .

———————————————————————————————————————

Figure 5.3: A list of functions used in the heuristic algorithm
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next considers rectangle 5 (LSorted [1 ]) and rectangle 2 (LSorted [3 ]). As LSorted [5 ].right is

equal to LSorted [2 ].left , line 15 checks if there is a vertical overlap between the two rect-

angles. As there is an overlap, the rectangles are adjacent and the information of adjacency

is kept in the array Adj (lines 16-21 ). Moreover, the adjacency is appended to the right

adjacency list (adjListRight) of rectangle 5 and to the left adjacency list (adjListLeft) of

rectangle 2 (lines 24 and 25 ). Then k is incremented, and the algorithm proceeds until

all the adjacencies between the rectangles are determined.

The complexity of the algorithm is O(n2 ) in the worst case although its performance

is much better in the average case as it skips unnecessary computations. The algorithm

checks each rectangle against the others if they have common adjacency until either there is

horizontal gap between the rectangles (e.g. Rectangles 5 and 7 in Figure 5.2 where the rest

of the rectangles in LSorted cannot be adjacent with Rectangle 5) or the right edge of the

current rectangle is the same as the left edge of the other rectangle but there is a vertical

gap between the two rectangles (e.g. Rectangles 1 and 6 in Figure 5.2 in which the rest of

the Rectangles in LSorted cannot be adjacent to rectangle 1). A discussion on complexity

analysis of the algorithm is given in Section 5.4.

5.2.3 Generating All Possible Single-crossing Orthogonal Lines

Once the adjacencies between the orthogonal rectangles are determined, the next phase is

to place all possible single-crossing orthogonal lines to cross the adjacencies. A method of

generating all possible single-crossing lines is given in Algorithm 3.

The algorithm starts by defining two arrays of line record (lines 2 and 4 ) with the same

size as the number of adjacencies: AllLines[i ] which stores the list of lines that originate from

adjacency i (list of lines whose left most adjacency is i) and that could be extended towards

the right, and Extend [i ] which stores the list of lines that are extended up to adjacency i.

In other words, all lines that may originate from a particular adjacency i and be extended

to the right are stored in AllLines[i ] and the lines extended as far as adjacency i are stored

in Extend [i ]. First a line AllLines[i ] is created to cross the current adjacency i and another

one Extend [i ] that is extended up to adjacency i (line 8 ). Then the algorithm checks

if any previously generated lines can possibly be extended towards the current adjacency

under consideration. In order to do that, the algorithm picks the rectangle to the left of the

current adjacency. Then if any previous line can be extended towards the current adjacency,

it should be already extended (or included) up to the left adjacency (left edge) of the current

rectangle which is to the left of the current adjacency. So, line 14 of the algorithm stores
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Algorithm 3 An algorithm that generates all possible single-crossing orthogonal lines to
cross the adjacencies between a collection of non-overlapping rectangles

INPUT: An array of adjacency record Adj [] (produced by Algorithm 1).
OUTPUT: An array of line record AllLines[].

m ← number of vertical adjacencies
Create an array of line record AllLines[] with size m
{to keep track the list of lines that originate from a particular adjacency and are extended
towards the right}
Create an array of line record Extend [] with size m

5: {to keep track the list of lines that are extended up to a particular adjacency}

for i = 1 to m do
{loop through the array of adjacency record}
Create lines AllLines[i ] and Extend [i ]
Add Adj [i ] to the list of adjacencies crossed by AllLines[i ]

10: Add Adj [i ] to the list of adjacencies crossed by Extend [i ]
{currect is the rectangle to the left of current adjacency}
currect ← Adj [i ].leftRectangle
{leftadj is the list of left adjacencies of currect}
leftadj ← currect .leftAdj

15: while (leftadj is not empty) do
extline ← Extend [head(leftadj ).name]
{extline is the list of lines that cross leftadj and hence candidates for possible ex-
tension towards the current adjacency}

while (extline is not empty) do
if (partiallyVisible(head(extline), Adj [i ]) = true) then

20: {the head of extline can be extended towards the current adjacency}
{copy the head of extline to newline}
newline ← head(extline)
{add the current adjacency to the list of adjacencies crossed by newline}
Append Adj [i ] to newline.adjList

25: first ← the left most (first) adjacency crossed by newline

{add the extended line (newline) to the list of lines originated from adjacency
first ; and to the list of lines that are extended up to the current adjacency and
are candidates for possible extension towards the right}
Append newline to the list of AllLines[first ]
Append newline to the list of Extend [i ]

end if

30: extline ← tail(extline)
end while

leftadj ← tail(leftadj )
end while

end for
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the list of these left adjacencies in leftadj . Then the algorithm considers each line that

crosses the left adjacency of the rectangle towards the current adjacency (lines 16-18 )

and checks if any of them is horizontally partially visible with the current adjacency under

consideration (line 19 ). For those lines that are horizontally partially visible, a copy of the

line is formed and the current adjacency is included to the list of adjacencies crossed by the

new line (copied line) (line 21 ). Then the new line is appended to the list of lines that

are extended up to the current adjacency (Extended [i ]). Moreover, the line is appended to

the list of lines that are originated from the same adjacency (lines 25-28 ). This process

continues until all the adjacencies in the configuration of non-overlapping rectangles are

considered in turn.

To demonstrate how the algorithm generates all possible single-crossing lines to cross the

adjacencies, consider the configuration of rectangles in Figure 5.4. For the sake of conve-

nience, we represent the lines by the adjacencies they cross, i.e, −2− is used to represent the

line that crosses adjacency 2 while −2 − 4 − 6− represents the line that crosses adjacencies

2, 4 and 6. The first adjacency to consider is adjacency 1. Then AllLines[1 ] = Extend [1 ]

= −1−. Likewise, for adjacencies 2 and 3, we have AllLines[2 ] = Extend [2 ] = −2−, and

AllLines[3 ] = Extend [3 ] = −3− respectively. The next adjacency to consider would be

adjacency 4, in which case AllLines[4 ] = Extend [4 ] = −4−. Moreover, lines 22 and 24

of the algorithm extends line −2− to include adjacency 4, and append the line −2− 4− in

the list of lines of AllLines[2 ] (line 27 ). Furthermore, line 28 appends line −2 − 4− to

the list of lines extended up to adjacency 4, which is Extend [4 ]. The algorithm continues

until all adjacencies are considered. The lines generated and their representation is shown

in Figure 5.4.

5.2.4 Selecting an Approximate Minimum Number Single-crossing Or-
thogonal Axial Lines

Algorithm 4 presents a greedy method to determine the approximate minimum number

of lines from all possible single-crossing lines. The idea behind the algorithm is that by

repeatedly selecting the lines that cross the highest number of adjacencies from the list of

previously uncrossed adjacencies, we could get a reasonably approximated solution which is

close to the optimal lines that cross all adjacencies exactly once. As the problem restricts

adjacencies to be crossed only once, a boolean array Crossed is defined to keep track of

which adjacencies are already crossed by the lines in the solution set. Initially, the array is

set to false (lines 2 and 4 ). The computeDegree function (line 5 ) computes the number

of adjacencies a line crosses and the degree field of the line record is updated accordingly.
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Figure 5.4: Placing all possible single-crossing orthogonal lines in orthogonal rectangles

87



For each index of the adjacency record, Algorithm 4 sorts the list of lines that originate

from the adjacency based on the number of adjacencies they cross (degree) in descending

order. The algorithm traverses through the list of lines that originate from the adjacency

under consideration, add the line that crosses the highest number of previously uncrossed

adjacencies (not crossed by the lines in the local solution set) to the set of local solution and

marks the adjacencies as crossed. There is at least one line that crosses previously uncrossed

adjacencies – the line that crosses the current adjacency only.

The iteration starts from the first adjacency and selects the first line, i.e. the highest

degree, from the list of lines and marks the adjacencies crossed by the line as true in the

boolean array Crossed (lines 9-15 ). Moreover, the markAdj function returns the smallest

adjacency higher than the current adjacency which is not yet crossed (the smallest index of

Crossed higher than the current adjacency whose value is false); or the smallest uncrossed

adjacency if we reach the last adjacency; or -1 if all the adjacencies are crossed by the lines

in the current solution. If there are uncrossed adjacencies, we pick our next line in the

solution by traversing through the list of lines originating from the uncrossed adjacency and

are extended towards the right (lines 20-23 ). At each step an uncrossed adjacency is de-

tected, a line that originates from the uncrossed adjacency and crosses previously uncrossed

adjacencies is included to the local solution and the number of lines in the local solution is

incremented subsequently (lines 25-26 ). Once all the adjacencies are crossed, the num-

ber of lines in the local solution is compared to the global number of lines (the smallest

so far) and the global solution is updated if the local solution is minimum (lines 29-32 ).

Before starting the next iteration, the boolean array Crossed is reset to false and a new

iteration begins from the next adjacency. This process continues until all the adjacencies

are considered in turn.

To demonstrate how the heuristic algorithm proceeds, consider the configuration of or-

thogonal rectangles in Figure 5.2. Algorithm 3 generates all possible single-crossing orthog-

onal lines to cross the adjacencies, as shown in Figure 5.4. The heuristic algorithm then

begins by selecting the line that crosses the highest number of adjacencies from the list of

lines of AllLines[1 ], which is −1− 5−. The next minimum uncrossed adjacency higher than

one is 2, in which case, we select the line −2− 4− 6− from the list of lines originating from

adjacency 2. The next adjacency to consider would be adjacency 3. The line −3 − 5 − 7−

cannot be included to the local solution because adjacency 5 is already crossed by a line

in the local solution. By the same reasoning, the line −3 − 5− cannot be part of the local

solution. So, line −3− is included to the local solution set. The final uncrossed adjacency
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Algorithm 4 An algorithm to compute the approximate minimum number of single-crossing
orthogonal lines to cross the adjacencies between a collection of orthogonal rectangles

INPUT: An array of all possible lines AllLines[] (produced by Algorithm 2).
OUTPUT: A list of single-crossing lines globalsoln.

m ← number of vertical adjacencies
Create a boolean array Crossed with size m
{to mark the adjacencies as crossed, if a line that crosses the adjacency is included in
the local solution}
Initialize Crossed as false

5: computeDegree(AllLines)
Sort the list of lines in AllLines in descending order of the number of adjacencies they
cross (AllLines[i ].degree)
globalnum ← m
{globalnum stores the minimum number of single-crossing lines detected so far. It is
initialized with the trivial solution – each adjacency is crossed by a line that crosses the
adjacency only}

for i = 1 to m do
10: {loop through the array of list of lines AllLines}

currline ← AllLines[i ]
{the list of lines that originate from adjacency i and are extended towards the right}
localsoln ← head(currline)
localnum ← 1

15: k ← markAdj(head(currline),Crossed)

while (k 6= −1) do
{there are uncrossed adjacencies}
currline ← AllLines[k ]
{the list of lines that originate from adjacency k and are extended towards the
right}

20: while (isMarked(head(currline), Crossed)) do
{check if any of the adjacencies crossed by currline are already crossed. If so, go
to the next line in the list, otherwise include the line in the list of localsoln}
currline ← tail(currline)

end while

{update the local solution}
25: Append head(currline) to localsoln

localnum ← localnum + 1
k ← markAdj(head(currline), Crossed)

end while

if (localnum < globalnum) then
30: {a smaller number of single-crossing lines detected, and hence the global solution is

updated}
globalnum ← localnum
globalsoln ← localsoln

end if

unMarkAdj(localsoln), Crossed)
35: {reset array Crossed to false}

end for
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is adjacency 7 and hence the line −7− is included in the local solution. During the first

iteration we need four lines to cross the adjacencies between the collection of orthogonal

rectangles, and hence the global solution is updated with the current local solution.

The second iteration starts by selecting the lines that originate from adjacency 2, in

which the line −2− 4− 6− is included in the local solution. The next uncrossed adjacency

higher than two is adjacency 3. The line with highest adjacency crossing is −3 − 5 − 7−

in which case it is included in the local solution as none of the adjacencies are previously

crossed by the lines in the local solution. The final uncrossed adjacency is adjacency 1, and

hence the line −1− is selected. As we found fewer lines than the first iteration, the global

solution is updated by the new local solution. The algorithm continues by selecting the lines

that originate from each adjacency in turn until the lines originating from all adjacencies

are considered in turn, and the heuristic returns the minimum of all as the approximated

solution to the ALP-SC-OLOR problem.

In the example above, the heuristic algorithm gives the optimal solution, but this is

not always true. An example of a configuration of orthogonal rectangles that the heuristic

algorithm fails to give an optimal solution is given in Figure 5.5. The heuristic gives six

single-crossing orthogonal lines, while the adjacencies between the collection of rectangles

can be crossed by five single-crossing orthogonal lines.

Once a line is included in the set of local solution, another approach is to start from

the smallest uncrossed adjacency rather than going to the next uncrossed adjacency. This

was due to the fact that as adjacencies are restricted to be crossed only once, the order of

the lines added to the local solution affects the final solution. But in most cases, the result

obtained by this approach coincides with the approach discussed above. This is because

selecting a line from the list originating the left most adjacency is extended further towards

the right, and hence may cover the adjacencies with higher indices. But the converse is not

true – a line originating from a higher adjacency cannot cross adjacencies with the smaller

indices as the lines are extended from the left most towards the right. As a result it was

considered as redundant, and left out from the algorithm.

5.3 Correctness of the Heuristic

The correctness of the heuristic algorithm depends on two factors: each adjacency must be

crossed by a line from the set of lines in the final solution and no adjacency is crossed more

than once. The lines generated by Algorithm 3 are organised in such a way that the lines

that have the same leftmost adjacency are placed in a list and the list is stored in an array
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(AllLines) of the same index as the leftmost adjacency. Algorithm 4 starts by selecting

the first line from the list of lines that cross the leftmost adjacency, while traversing to the

right by considering the leftmost uncrossed adjacency at every step. And when a line is

included in the local solution, all the adjacencies the line crosses are marked as crossed so

that another line that may cross any previously crossed adjacency will not be included in

the final solution. The isMarked function checks if any of the adjacencies crossed by a line is

already crossed by a line in the final solution. This guarantees that none of the adjacencies

formed by the collection of rectangles is crossed more than once or is left uncrossed.

Lines produced by the heuristic

Optimal lines

Figure 5.5: An example of a configuration of orthogonal rectangles where the heuristic fails

to give the optimal solution (1)

At every new addition of a line to the local solution, the adjacencies the line crosses are

marked as crossed , and the index of the smallest uncrossed adjacency k higher than the

current adjacency is computed (markAdj function). Line 20 of Algorithm 4 selects a line

that crosses previously uncrossed adjacency. There is at least one line that originates from

the current adjacency under consideration and crosses previously uncrossed adjacencies by

a line in the local solution – the line that crosses the current adjacency only. The while

loop (lines 16-28 ) guarantees us that all adjacencies are crossed. At every iteration, the

global solution (so far minimum number of single-crossing lines identified by Algorithm 4)
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Lines produced by the heuristic

Optimal lines

Figure 5.6: An example of a configuration of orthogonal rectangles where the heuristic fails

to give the optimal solution (2)

is updated by the local solution if the number of lines in the local solution is less than the

number of lines in the global solution (lines 29-32 ).

There is a trivial solution to the problem where each single-crossing line crosses a single

adjacency, in which case the number of single-crossing lines would be the same as the number

of vertical adjacencies. As the objective of the problem is to compute for the minimum single-

crossing lines, the lines with higher degree are selected to the local solution provided that

the adjacencies were not previously crossed.

The heuristic does not always produce the optimal solution. This is because the heuristic

always includes at least one maximal line whereas the optimal solution may not contain a

maximal line. An example of such scenario is given in Figure 5.5. The heuristic may also

fail to give the optimal solution due to the order of the lines the heuristic chooses to include

in the solution even if the optimal solution contains one or more maximal lines.

A loose guaranteed solution analysis of the heuristic could be performed based on the set

packing exact-cover problem – given a collection of sets, computing the union of a minimum
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number of disjoint sets such that every set in the collection is a subset of the union set

(solution set). A greedy algorithm produces a solution within a factor of k of the optimal,

where k is the highest cardinality of the collection of sets. This is because choosing the set

with maximal cardinality may prevent the greedy algorithm from selecting other k sets in

the collection that may have a common element with the maximal set but disjoint to one

another and hence may constitute the solution. In the case of ALP-SC-OLOR, Algorithm

4 considers the maximal lines that may originate from each adjacency in turn. As a result,

the solution obtained by the heuristic is much tighter than the k factor bound, where k is

the maximum number of adjacencies that can be crossed by the same line.

5.4 Complexity Analysis

Theoretical and empirical analysis of the heuristic algorithm has been performed. This is

based on how close the solution of the heuristic algorithm is as compared to the optimal

solution, and determining the running time of the heuristic. Since running time to compute

the exact solution of an NP-complete problem grows exponentially with respect to the input

size, a trade-off is necessary on a heuristic which runs faster but the result may not be

optimal. In the following subsections, the theoretical and empirical complexity analysis of

the heuristic are discussed.

5.4.1 Theoretical Analysis

As described in the previous section, the heuristic algorithm has three phases: determining

the adjacencies between a collection of orthogonal rectangles, generating all possible single-

crossing lines to cross the adjacencies between the rectangles, and selecting the minimum

number of single-crossing lines to cover all the adjacencies between the collection of orthogo-

nal rectangles. As these phases are independent to each other, they are analysed individually

below.

5.4.1.1 Determining Adjacencies

The first phase of the heuristic is to determine the adjacencies between the orthogonal

rectangles. Since in ALP-SC-OLOR we are interested in vertical adjacencies only Theorem

5.1 shows the number of vertical adjacencies is bounded by 2n − 4 , n ≥ 3, where n is the

number of rectangles.

When analysing the complexity of Algorithm 2, copying the array of rectangles is O(n).

Merge sort can be used in sorting the array of rectangles, which will be O(n log n). The
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Figure 5.7: A configuration of orthogonal rectangles that exhibit the worst performance of

Algorithm 2

outer while loop (line 8 ) runs n times and the inner while loop (line 10 ) runs n times

in the worst case although there is an improvement in the average case – when a gap is

detected between two rectangles, the two rectangles cannot be adjacent. In other words,

if there are horizontal and vertical gaps between the current rectangle under consideration

and another rectangle then there is no adjacency between the two rectangles and the rest of

the rectangles in LSorted , and hence the rest of the sorted array of rectangles are skipped

from checking for adjacency with the current rectangle. Figure 5.7 shows the worst case

scenario of the algorithm of determining adjacencies. In that case, all the rectangles are

checked against one another whether they are adjacent or not, which would be O(n2 ).

The best performance of Algorithm 2 is when the configuration of rectangles form a

chain of rectangles. In that case, the outer while loop runs n times whereas the inner while

loop runs only once. As the sorting operation would be dominant, the complexity of the

algorithm in the best case is O(n log n). An example of a chain of rectangles is given in

Figure 5.8.

Sanders [2002] presented an O(n log n) algorithm for determining adjacencies between

a collection of rectangles using a line sweeping method. During implementation of the

heuristic, Algorithm 2 was used as the overall complexity of the heuristic cannot be improved
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even if we used the line sweeping method to determine the adjacencies between the collection

of rectangles.

Figure 5.8: An example of a configuration of orthogonal rectangles the heuristic exhibits its

best running time

5.4.1.2 Generating All Possible Single-crossing Orthogonal Lines

An algorithm for generating all possible non-redundant single-crossing lines that might be

part of the solution set of single-crossing lines is given in Algorithm 3. The lines that originate

from the same adjacency (left-most adjacency) form a list and then the list is stored in an

array with the same index as the left-most adjacency. In the worst case, the number of lines

originating from a particular adjacency is linear with respect to the number of adjacencies

and hence the number of rectangles. If we have adjacencies a1, a2, ..., ak such that every

adjacency is horizontally partially visible to the other adjacencies then there are k lines that

originate from adjacency 1 (a1) and are extended towards the right adjacencies, (k−1) lines

that originate from adjacency 2 (a2) and extended towards the right adjacencies, and so on,
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and there will be one line that originates from adjacency k (ak). Clearly, the total number

of lines produced is quadratic with respect to the number of adjacencies.

When analysing the complexity of Algorithm 3, the for loop (line 6 ) iterates m times

where m is the number of adjacencies. leftadj stores the adjacencies a rectangle may form

with its left neighbours, and hence the outer while statement (lines 15 ) could loop O(n)

times. The inner while loop (line 18 ) iterates through the list of lines that could be

extended further to the right which is O(m). Copying a line (lines 23 ) could take O(m)

work. Adding an adjacency to a list of adjacencies crossed by the same line or appending

a line to a list of lines (lines 24–28 ) can be done in constant time. Therefore, the overall

complexity of the algorithm for generating all possible single-crossing lines is O(m3). But

then since the number of adjacencies is linear with respect to the number of rectangles the

overall complexity of Algorithm 3 in the worst case is O(n3).

The worst running time of the algorithm is when the collection of rectangles form a

chain where all the adjacencies formed are horizontally partially visible to one another. In

that case, every line originating from any adjacency will be extended to all the adjacencies

to its right. The for statement will iterate m times and the inner while statement loops

O(m) times for each iteration of the for loop. Making a new copy of a line could be done

in O(m) time. The outer while loop executes only once for every loop of the for statement.

Therefore, the overall complexity of Algorithm 3 is O(n3) as the number of adjacencies is

linear with respect to the number of rectangles.

The best case is when there is only one line generated from each adjacency in which the

rectangles form a chain as shown in Figure 5.8. The total number of lines produced will

be m which is the same as the number of adjacencies. The for statement loops m times

whereas the outer while iterates only once since each rectangle in the configuration has one

left adjacency and the inner while loop is executed only once. Therefore, the overall best

case complexity is O(n) since m is linear with respect to the number of rectangles.

5.4.1.3 Selecting an Approximate Minimum Number of Single-Crossing Or-

thogonal Lines

As discussed previously, the algorithm of selecting an approximate minimum number of

single-crossing lines is presented in Algorithm 4. It was also discussed in the previous

section that the maximum number of possible single-crossing lines is quadratic with respect

to the number of adjacencies. The computeDegree subroutine (line 5 ) counts the number

of adjacencies each line can cross. Clearly, the running time of the subroutine is bounded by
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O(n3 ), where n is the number of adjacencies and hence the number of rectangles. This is

because the maximum number of lines is quadratic (with respect to the number of rectangles)

and, in the worst case, we need to traverse through the list of adjacencies crossed by each

line.

Sorting the lines that originate from the same adjacency by their degree (line 6 ) was

implemented based on insertion sort, which would be O(n2) in the worst case. This is because

the single-crossing lines are kept in a list and the overall complexity cannot be improved

even if the running time of sorting is improved to O(n log n). As there are m adjacencies

which is linear with respect to the number of rectangles, the total complexity of sorting is

O(n3). The for loop on line 9 iterates through the number of adjacencies which is m times.

The markAdj subroutine (line 15 ) marks the indices of the adjacencies crossed by the line

passed as parameter as true in the boolean array and then computes for the next adjacency

k which was previously uncrossed by the lines in the local solution. Clearly the subroutine

takes linear time with respect to the number of adjacencies.

Figure 5.9: A configuration of rectangles in which lines originated from O(n) adjacencies

are extended to other O(n) adjacencies
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The outer while loop on line 16 traverses through the adjacencies. Marking the adja-

cencies as crossed and computing for k can be done in O(n). The inner while loop is bounded

by O(n2) – n for the list of lines and n for isMark function – as the number of adjacen-

cies is linear with respect to the number of rectangles. Therefore, the overall complexity

of the outer while loop is O(n3). Resetting adjacencies as unmarked is linear, and hence

the complexity of the for loop is O(n4). As it is the dominant component of the algorithm,

the complexity of selecting a minimum number of single-crossing lines to cross adjacencies

between a collection of rectangles is O(n4).

The complexity analysis of Algorithm 4, as presented above, is based on the potential

number of iterations. As a result, the worst case of the algorithm could not be constructed.

Figure 5.9 shows a configuration of rectangles where n/2 rectangles are adjacent to a par-

ticular rectangle forming O(n) adjacencies, and the lines originated from these adjacencies

are extended further to O(n) other adjacencies. The time complexity of Algorithm 4 for

the configuration of rectangles of the form of Figure 5.9 is O(n3) – O(n) work for traversing

through the lines in a list of lines originated from O(n) adjacencies, and this work is repeated

for each adjacency in turn.

The best performance of Algorithm 4 is when the orthogonal rectangles form a chain of

rectangles where the adjacencies are not horizontally partially visible to one another. This

configuration forces the generation of all possible lines to produce only one line from each

adjacency. The for loop executes m times whereas the outer while loop runs m times, and

hence the overall complexity in the best case is O(n2), as the inner while loop is executed

only once. Figure 5.8 shows a chain of rectangles in which Algorithm 4 performs best.

5.4.1.4 Summary

The theoretical analysis of the heuristic algorithm was categorized into three phases. Since

each phase is independent of one another, a discussion on the best and worst cases of each

phase was presented individually. In the worst case, selecting the approximate minimum

single-crossing lines is the dominant method and hence the complexity is O(n4). In the

best case, selecting the approximate minimum single-crossing lines is the dominant method.

Hence, the running time of the heuristic is O(n2) in the best case. The configuration of

rectangles that exhibit best performance of the heuristic is given in Figure 5.8.
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5.4.2 Empirical Analysis

As discussed above, the theoretical analysis of the heuristic shows that its complexity is

O(n4) in the worst case. In order to verify the theoretical analysis, the running time of the

heuristic was tested on randomly generated rectangles of size of 100 to 1550 at an interval

of 50. For each data size, five instances were generated and each instance was repeated

five times. This is in order to minimize the external factors (processes) that may affect the

timing measurement. The equipment in which the empirical analysis was performed was a

Pentium III 870MHz processor with 128MB RAM. The operating system was Linux and the

language of implementation was Java.

The empirical result of the approximation algorithm is given in Table 5.1. The data

has been plotted and a curve fitted in order to determine the complexity of the heuris-

tic empirically for the tested data. As shown in Figure 5.10, the curve that best fits was

Y = 0 .026X 2 − 4 .2X + 456 . A cube function (Y = 0 .0000048X 3 + 0 .017X 2 − 1 .45X + 100 )

curve was also fitted to the graph of the running time of the heuristic, but the quadratic

function curve was found to be better fitted (line fit coefficient of the cube function was

0.968 while that of the quadratic function is 0.974). Moreover, the small coefficient of the

highest degree in the cube curve reflects the fact that the running time of the heuristic for the

tested data was quadratic. A possible reason for the quadratic complexity of the heuristic

could be none or few of the rectangles generated during experimentation exhibit the worst

performance of the algorithm.

Another possible reason for the gap between the theoretical and empirical complexity

analysis is that in the theoretical analysis, the loops and functions are analysed based on

the potential number of iterations they can loop, i.e. bound on the number of iterations.

5.5 Experimental Results

Algorithm 2, Algorithm 3 and Algorithm 4 were coded and tested on a number of non-

overlapping orthogonal rectangles. In order to verify the performance of the heuristic, an

exact solution algorithm was also implemented based on exhaustive search. In order to make

the exact solution more efficient, only lines that originate from adjacencies which were not

previously crossed were considered in searching for minimum combination. That is, if a line

is selected from a list of lines originating from a particular adjacency, the other lines in the

list are not considered during that particular combination. Since the number of possible
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Number of Average Number of Standard Average Standard

Rectangles Lines Produced Deviation Running Deviation

(to the nearest integer) Time (in ms)

100 47 2.30 314.32 2.83

150 73 2.59 470.99 28.67

200 95 5.86 1198.32 15.38

250 124 8.17 1552.35 78.36

300 151 12.21 2389.20 41.70

350 164 6.83 3167.00 63.93

400 200 10.86 5745.56 38.91

450 224 18.30 6568.43 122.96

500 237 9.62 8026.24 104.91

550 267 13.91 11470.72 583.29

600 291 13.77 12467.08 303.74

650 323 15.27 14565.44 151.38

700 340 20.28 16905.44 300.39

750 366 18.84 20713.69 232.84

800 388 19.10 22575.68 1095.39

850 413 28.40 29307.21 927.51

900 446 12.46 32766.24 553.42

950 464 18.46 35392.65 965.07

1000 498 6.02 37399.00 673.12

1050 510 31.60 42053.56 1348.30

1100 548 9.42 44542.80 1100.17

1150 574 3.40 47733.12 1904.86

1200 579 13.65 55771.32 806.48

1250 625 14.86 57717.52 1515.04

1300 638 10.21 64076.65 1301.13

1350 665 8.62 71283.02 1440.24

1400 697 12.50 77304.75 1511.26

1450 718 7.41 86063.43 2371.60

1500 737 20.06 88944.80 2331.47

1550 777 2.65 94633.80 1772.91

Table 5.1: Empirical analysis of the heuristic algorithm
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Figure 5.10: Running time of the heuristic algorithm
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Number of rectangles 30 40 50

Number of tests 20 15 10

Max. number of vertical adjacencies 46 59 75

Min. number of vertical adjacencies 28 41 44

Average number of vertical adjacencies 30 51 61

Standard deviation 4.26 4.50 10.87

Max. number of single-crossing lines 316 371 457

Min. number of single-crossing lines 70 116 109

Average number of single-crossing lines 165 227 273

Standard deviation 61.86 61.32 125.47

Max. heuristic deviation from optimal 2 3 2

Min. heuristic deviation from optimal 0 0 0

Average heuristic deviation from optimal 0.45 0.60 0.60

Standard deviation 0.69 0.91 0.84

Average heuristic solution 13.55 19.27 23.3

Average optimal solution 13.10 18.67 22.7

Max. running time (optimal solution) 11654.27 sec 5374.93 min 489.27 hrs

Min. running time (optimal solution) 10.56 sec 10.73 min 9.84 hrs

Average running time (optimal solution) 875.44 sec 1321.72 min 175.74 hrs

Relative standard deviation (%) 299.47 145.12 108.93

Table 5.2: Experimental result
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single-crossing lines could be quadratic with respect to the number of adjacencies and hence

the number of rectangles, computing the exact solution was only possible for small number

of rectangles. As a result, twenty cases were tested for rectangles of size 30, fifteen cases for

rectangles of size 40 and ten cases for rectangles of size 50.

The rectangles used for testing were randomly generated. The width and height of

the rectangles were randomly generated between units of 1 and 10. The rectangles were

generated on top of one another until the height reached (Integer(
√

n)) ∗ 10 ∗ p where p is

a random number between 0.1 and 0.75. This is in order to favour more rectangles being

extended to the right than to the top, and hence more vertical adjacencies would be produced

between the rectangles. That is, as p gets higher the rectangles would be extended towards

the top than to the right. Then the next rectangles were placed (generated) adjacent to the

previously created ones towards their right hand side. When the rectangles were generated

on top of one another, a hole was included between the rectangles based on a probability of

0.05% to 5% in order to generate different configurations. A hole is a region which is entirely

bounded by the collection of rectangles but is not part of the rectangles (the shaded region

in Figure 5.2).

The heuristic performed well for the data used during experimentation. In most cases,

it was able to determine the minimum single-crossing lines required to cross all adjacencies,

although there were differences from the optimal solution in some cases. The difference arises

due to the fact that the heuristic includes at least one maximal line that may originate from

a particular adjacency in the final solution, in which case the optimal solution may not

contain any of these lines. As it is illustrated in Figure 5.5, the optimal solution may not

contain any of the maximal lines whereas the heuristic produces one maximal line (second

from top) in its final solution. The order in which the heuristic chooses the single-crossing

lines may also prevent the heuristic from producing the optimal solution even if the optimal

solution contains maximal lines. An example of such scenario is shown in Figure 5.6.

The results of the experiment are given in Table 5.2. The results reflect the heuristic

gives a reasonable approximate solution. But the observed result could be due to the small

number of rectangles used for experimentation, and hence the heuristic may not perform

well with the increase of the number of rectangles.

5.6 Conclusion

This chapter presented the experimental results obtained by the heuristic algorithm proposed

for ALP-SC-OLOR. The heuristic is based on the greedy method. It was implemented and
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the accuracy of the solution obtained was evaluated with respect to the exact solution. But

as the implementation of the exact solution was a brute force algorithm, it was only possible

to run for configuration of small number of rectangles. As a result, the conclusion is limited

for small data sets and may not be generalized for large data sets.

In order to determine the running time of the heuristic empirically, the heuristic algo-

rithm was coded and tested on several randomly generated rectangles. The result shows

that the average case complexity for the tested data was O(n2), although in the worst case

the running time complexity could be O(n4). This is based on best curve fit with least

square analysis. As the theoretical analysis was performed based on the potential number

of iterations, the worst case may not be constructed.
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Chapter 6

Future Work

6.1 Introduction

The problem of placing a minimum number of single-crossing orthogonal lines to cross the

adjacencies between a collection of orthogonal rectangles has been found to be NP-complete.

As it is open question whether any NP-complete problem could be solved efficiently for a

given input or not, research associated with NP-complete problems are mainly developing

heuristic algorithms which give approximate solutions and exploring special cases of the NP-

complete problem that is polynomially solvable. Accordingly the future research presented

in this chapter is mainly developing heuristics for the ALP-SC-OLOR and BIDS problems

based on different approaches and special configurations in which ALP-SC-OLOR and BIDS

are polynomially solvable.

In the next section, future work associated with ALP-SC-OLOR is presented followed by

possible research on single adjacency crossing axial lines in deformed urban grids. Lastly,

an outline of future research on BIDS is given.

6.2 ALP-SC-OLOR

6.2.1 Special Cases of ALP-SC-OLOR

As it is presented in Section 2.7.4.1 although ALP-OLOR is in general NP-complete, a

number of configurations of orthogonal rectangles have been found in which ALP-OLOR

is polynomially solvable. As a generalization to the special cases, ALP-OLOR has been

found to be polynomially solvable for any hole free collection of rectangles. A collection of

rectangles is hole free if it does not contain holes. A possible research would be to explore

special configurations of collections of rectangles in which ALP-SC-OLOR is solvable in
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polynomial time.

6.2.2 Heuristic for ALP-SC-OLOR

The heuristic for ALP-SC-OLOR discussed in Chapter 5 is based on a greedy method where

it first produces all possible single-crossing lines and then recursively checks if there are a

minimum number of single-crossing lines less than the current solution by considering the

maximal line that can originate from a particular adjacency and extended towards the left at

every iteration. Another approach is to categorize the collection of rectangles into groups of

rectangles where ALP-SC-OLOR is polynomially solvable and compute the single-crossing

lines independently. Possible research is to develop a heuristic for ALP-SC-OLOR using the

latter approach.

6.2.3 Modern Heuristic Techniques for ALP-SC-OLOR

Another possible research area is to look at heuristics for ALP-SC-OLOR based on modern

heuristic techniques such as simulated annealing and tabu search. These heuristic tech-

niques are well known to give good approximate solutions to combinatorial and permutation

problems [Dowsland 1995; Glover and Laguna 1995]. Simulated annealing investigates new

and unknown areas in the domain of the solution of a problem while making use of already

determined solution knowledge in computing the optimal solution. On the other hand, tabu

search computes a number of adjacent solutions and then selects the solution that best

improves the value of the objective function.

6.3 Single-crossing Axial Lines in Deformed Urban Grids

Hillier et al. [1983] defined axial lines as the longest and fewest lines to cross the adjacencies

formed in a collection of convex polygons. A deformed urban grid is an urban grid in which

the corridors are deformed rectangles and the intersection corridors are deformed squares

[Sanders 2000]. Placing axial lines in deformed urban grids was found to be NP-complete

[Wilkins and Sanders 2004]. As an NP-complete problem may not be solved efficiently

for a given data input, one approach to benefit the end users of the system is to look at

approaches where the problem could be solved efficiently. Penn et al. [1998, as cited in Turner

et al. [2005]] redefined the notion of axial lines to be associated with the decomposition of

the convex polygons and then analysed the placement of the axial lines to the pedestrian

movement in which case they were found to be correlated.
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A possible research question is to redefine the axial lines based on the property of single

adjacency crossing and then determine if the axial lines can be placed to cross the adjacencies

in the grid in polynomial time or if the problem remains NP-complete. If it is polynomially

solvable, the next step will be to analyse whether the placement of the lines correlates with

pedestrian movement which could be endorsed in automating the space syntax method if

the result is positive.

6.4 Bipartite Independent Dominating Set

In Chapter 4 we have defined a graph theory problem, bipartite independent dominating set,

which is applied to bipartite graphs only. It has been shown that BIDS is NP-complete by

a transformation from the vertex cover problem. The bipartite independent dominating set

has applications in packing and job allocation problems. For example, consider the following

problem:

Given a collection of items some of which may not be placed together, how should the

items be packed using minimum packing materials?

The problem can be reformulated as a bipartite graph problem where the items are

represented as vertices in one category and packing materials as vertices in another category

such that each vertex which corresponds to the packing material is connected by an edge

to the vertices which correspond to the items that could be packed together. The solution

to the BIDS problem of the resulting graph gives a possible way of packing the items using

minimum packing materials.

A possible research area will be to develop heuristics for BIDS and identifying configu-

rations of bipartite graphs in which the BIDS problem is polynomially solvable.

6.5 Conclusion

The chapter presented some possible research areas identified during the course of the re-

search. The future research detailed above is based on the concept that if a problem is

found to be NP-complete, it is worthwhile to develop heuristic methods that give reasonable

approximate solutions and special cases in which the problem is polynomially solvable rather

than attempting to solve the exact solution of the problem. This is because in general solv-

ing the problem may require exponential time. As a result some of the research presented

above deal with developing heuristics for ALP-SC-OLOR using different approaches.

107



The bipartite independent dominating set which was identified during the transforma-

tion from vertex cover to ALP-NSC-OLOR has applications in packing and job allocation

problems. Consequently, it would be worthwhile to develop heuristic algorithms that give

approximate solutions.
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Chapter 7

Conclusion

7.1 Introduction

The aim of the dissertation, as stated in Chapter 1, was to explore whether single-crossing

orthogonal axial lines can be placed to cross each adjacency between a collection of orthogo-

nal rectangles (ALP-SC-OLOR) in polynomial time or if it is NP-complete. As research had

not been done before on the single-crossing version of the axial line placement problem, the

outcome of the research could give insight on the single-crossing of the general ALP problem

and its subproblems.

In this chapter, a brief description of the summary of findings and conclusions of the

dissertation will be presented along with the contribution of the research. Some limitations

of the research are stated next. Lastly, the overall conclusion of the dissertation is provided.

7.2 Summary of Findings and Conclusions

The problem area considered in the dissertation fits into axial line placement which was

discussed in Chapter 2 in more depth. Placing the fewest and longest lines to cross each

adjacency of a convex map forms the axial map of the region of interest. The axial map is

one of the four components that constitute the space syntax method. Space syntax, which

comprises four essential phases, is a method of analysing and determining how complex a

town plan is by studying its spatial structure. The four phases of space syntax are separating

the “space” from “non-space” in an aerial map of a town and then approximating the grid to

a polygon with holes; deriving the convex map of the town by partitioning the polygon into

convex polygons; deriving the axial map of the town by placing the longest and fewest lines

(called axial lines) to cross all adjacencies between the convex polygons; and integrating the

local and global relationships of the “space”. As the input to the space syntax method is
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usually a large data set, its automation highly benefits the end users. Consequently, each

of the stated phases need to have an efficient algorithm that gives the exact solution or

heuristic algorithms that give approximate solutions.

The problem of placing the axial lines to cross the adjacencies between a collection of

convex polygons (ALP-ALCP) was found to be NP-complete which implies that it can only

be solved in reasonable time for small data sets or special configurations. Furthermore,

the simplifications of the problem where the convex polygons are restricted to be orthogo-

nal rectangles and the axial lines with orthogonal orientation (ALP-OLOR) and arbitrary

orientation (ALP-ALOR) were found to be NP-complete. The dissertation considered a vari-

ation of the ALP-OLOR problem where the adjacencies between the collection of orthogonal

rectangles are restricted to be crossed exactly once (ALP-SC-OLOR).

Section 2.6 dealt with decision problems and the theory of NP-completeness. NP-

complete problems have a common property that if any of them can be solved in polynomial

time, then all NP-complete problems can be solved in polynomial time which in turn implies

P = NP . On the other hand, if any of the NP-complete problems is shown that it cannot

be solved in polynomial time then all NP-complete problems cannot be solved in polyno-

mial time which in turn implies P 6= NP . NP-complete problems are considered to be the

‘hardest’ in the NP class. Computing the exact solution of NP-complete problems requires

exponential time, and hence in general these problems can only be solved in reasonable time

for small data sets. Consequently, if a problem is NP-complete it is worthwhile to find special

cases of the problem that can be solved in polynomial time or develop heuristic algorithms

that approximate the exact solution.

In Section 2.7 review of geometric problems that have commonalities with ALP and

previous work on ALP were presented. The section discussed the visibility and guarding

problems along with their relationship to ALP. In placing the axial lines to cross the adjacen-

cies between a collection of convex polygons, the adjacencies need to be partially visible to

one another. In the case of ALP-SC-OLOR, the adjacencies between the collection of rect-

angles should be horizontally partially visible in order to place a line which crosses them.

On the other hand, ALP can be considered as a variation of an art gallery problem where

the gallery is protected by ‘ray guards’ – guards that can only see along a ray.

Chapter 3 presented the research question and the methodological strategy followed in

answering the research question. The research question was to determine if ALP-SC-OLOR

can be solved in polynomial time or if it is NP-complete. There were two general approaches

to answer the research question: transforming ALP-SC-OLOR to a known problem in P in
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polynomial time which would imply ALP-SC-OLOR is polynomially solvable or transforming

a known NP-complete problem to ALP-SC-OLOR in polynomial time which would imply

that ALP-SC-OLOR is NP-complete. Although the problem has some similarities with

the general partitioning problem, which is a known NP-complete problem, the geometrical

configuration of the rectangles could simplify ALP-SC-OLOR. The direction of the research

once a decision was made on the problem were also outlined in the chapter.

In Chapter 4, a proof of NP-completeness of ALP-SC-OLOR was presented. The reduc-

tion was three way: from vertex cover for biconnected planar graphs to bipartite indepen-

dent dominating set (BIDS), and then to orthogonal bipartite independent dominating set

(OBIDS), and lastly to a normalized single-crossing orthogonal lines in orthogonal rectan-

gles (ALP-NSC-OLOR) which is a special case of the ALP-SC-OLOR problem having the

additional property that the lines are required to be maximal when they cross choice adja-

cencies. Choice adjacencies are those that could be crossed by two or more maximal lines. As

is discussed briefly in Section 2.6, if a special case of a general problem is NP-complete, the

general problem is also NP-complete. And hence, we concluded that placing single-crossing

orthogonal axial lines in orthogonal rectangles (ALP-SC-OLOR) is NP-complete.

The running time of an NP-complete problem grows exponentially with the increase in

the input size. As a result, a trade-off is necessary on a heuristic which runs faster but

the result may not be optimal. Chapter 5 presented a heuristic algorithm for ALP-SC-

OLOR based on a greedy method. The heuristic has three phases: determining vertical

adjacencies between a collection of orthogonal rectangles, generating all possible single-

crossing lines that cross the vertical adjacencies, and selecting the approximate minimum

number of single-crossing lines to cross all the vertical adjacencies between the rectangles.

The heuristic was coded and run on randomly generated orthogonal rectangles in order to

compare the solution obtained against the exact (optimal) solution. The experimental results

show that in most cases the solution obtained by the heuristic matches or only slightly differs

from the optimal solution. However, this may not be the case as the number of rectangles

increases. The heuristic is guaranteed to produced a solution within a k factor of the optimal

solution, where k is the maximum number of adjacencies a line can cross in the collection

of rectangles. The performance of the heuristic is expected to be close to the optimal as

it assumes local improvement. Although the theoretical worst case time complexity of the

algorithm is O(n4 ), the running time complexity of the heuristic for the tested data was

O(n2 ). This is based on the line fit least square analysis. The gap between the theoretical

and empirical analysis is due the theoretical analysis of the heuristic which was done based
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on the potential number of iterations. As a result, the configuration of rectangles that

exhibit the worst performance may not be constructured.

In general, if a problem is found to be NP-complete, it cannot be solved in polynomial

time unless P = NP . As a result, research on NP-complete problems mainly focuses on good

heuristic algorithm that give approximate solution close to the exact solution or special con-

figurations of the problem that are polynomially solvable. The future work identified during

the course of the research, presented in Chapter 6, is mainly applying different approaches of

devising heuristics and considering polynomially solvable configurations of ALP-SC-OLOR

and BIDS.

7.3 Contribution of the Research

ALP-OLOR is a special case of ALP-ALOR and ALP-ALCP. Consequently, as a result of

NP-completeness of ALP-OLOR, one can conclude that ALP-ALOR and ALP-ALCP are

also NP-complete.

Similarly, as discussed in Chapter 4, ALP-SC-OLOR has been found to be NP-complete.

And hence the NP-completeness of ALP-SC-OLOR can be extended to the single-crossing

versions of ALP-ALOR and ALP-ALCP. This is due to the fact that any polynomial

time algorithm that solves a general problem should also solve the special case. The NP-

completeness of the special case implies such algorithm may not exist unless P = NP . Based

on the result of the research we can conclude that the single-crossing version of the general

ALP problem is also NP-complete.

Another contribution of the dissertation is that some new NP-complete problems have

been identified during the course of the research. This contributes to the open question of

whether P = NP or not. Besides, the newly identified NP-complete problems can also be

used to prove the NP-completeness of other new problems.

7.4 Limitations of the Research

The limitations associated with the research are due to the small size of data used for the

empirical analysis of the heuristic described in Chapter 5. This is due to the time constraint

as more time was spent on the transformation of NP-completeness (that is, attempting to

answer the research question). The limitations can be summarized as follows:

• The implementation of the exact solution algorithm of ALP-SC-OLOR used in Section

5.5 was based on exhaustive search. As a result, it was only possible to compute the
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exact solution for a small number of rectangles. Based on the result obtained from the

exact solution algorithm, it was concluded that the heuristic produced fairly close to

the optimal solution. However, the heuristic may not produce solutions that are close

to the optimal for a large number of rectangles.

• The data used during the empirical analysis of the heuristic of ALP-SC-OLOR were

not enough to deduce the average case analysis. With larger data sets, the empirical

complexity of the algorithm may not remain the same. And hence the conclusion of

the empirical analysis is only for the tested data, and may not reflect the average case

time complexity of the heuristic.

7.5 Overall Conclusion

The axial line placement problem, which was introduced in attempting to automate the space

syntax method, is to place the fewest and longest lines to cross all adjacencies between a

collection of convex polygons. As the problem was found to be NP-complete, another ap-

proach to approximate the problem is to consider adjacencies to be crossed only once. The

aim of the research was to determine if axial lines can be placed to cross the adjacencies

between a collection of rectangles when adjacencies are restricted to be crossed only once

(ALP-SC-OLOR) in polynomial time or if it is NP-complete. The result obtained reveals

that ALP-SC-OLOR is NP-complete despite the restriction imposed on the adjacencies.

Moreover, the result implies that the single-crossing version of the general axial line place-

ment problem is NP-complete. And hence, the single-crossing version may not be useful

to approximate the general ALP problem. A heuristic that gives approximate solution to

ALP-SC-OLOR based on a greedy method is also presented in this dissertation.
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Appendix

List of Abbreviations

The following list contains abbreviations used in the document.

ALP Axial line placement

ALP-ALCP Axial line placement: Axial lines of arbitrary orientation in

convex polygons

ALP-ALOR Axial line placement: Axial lines of arbitrary orientation in

orthogonal rectangles

ALP-OLOR Axial line placement: Orthogonal axial lines in orthogonal rectangles

ALP-NSC-OLOR Axial line placement: Normalized single-crossing orthogonal

axial lines in orthogonal rectangles

ALP-SC-ALCP Axial line placement: Single-crossing axial lines of arbitrary orientation

in convex polygons

ALP-SC-ALOR Axial line placement: Single-crossing axial lines of arbitrary orientation

in orthogonal rectangles

ALP-SC-OLOR Axial line placement: Single-crossing orthogonal axial lines in

orthogonal rectangles

BIDS Bipartite independent dominating set

OBIDS Orthogonal bipartite independent dominating set
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