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Abstract

Differential Equations (DEs) are among the most widely usathematical tools in different area
of sciences. Solving DEs, either analytically or numetcdias become a centre of interest for
many mathematicians and a large variety of methods are raysaailable to solve DEs numer-
ically.

When solving a mathematical problem numerically, evahgathe error is of high importance in
practice. Most of the methods already available for sohbits are implemented with a mecha-
nism to perform a local error control.

However, in the real realm, it is common to require the nuoarsolution to approximate the
exact solution with accuracy to a certain number of decirfeadgs or significant figures. To satisfy
this condition, we require the global error to be bounded Ipecifically determined tolerance.
In this case, a local error control is not longer efficient. @@ hand, controlling the local error
only cannot ensure that the required accuracy will be aekievOn the other hand, the use of
such approach requires the user to do some preliminaryestui the problem, and have deep
understanding of the method. Thus, we need a mechanism tawkttre global error in order to
compute the numerical solution for a user-supplied acgueguirement in automatic mode.

The global error estimate calculated in the course of suadna@ can also be applied to improve
the numerical solution obtained. It is straight forwardcsinif the error estimate is found with
sufficiently high accuracy, we can just add it to the numésodution to get a better approximation
to the exact value.

Thus, accurate evaluation of the the global error is crdorahe purpose mentioned above.

Several techniques are already developed to compute thalgtoror of the numerical solution.
The most common algorithms include the Richardson extedjool, Zadunaisky's technique, Solv-
ing for the correction, and Using two different methods.



These methods use two integrations to evaluate the glotwal end the provided error estimate is
valid if the global error admits an expansion in powers ofdtep size. Another approach, known
as solving the linearised discrete variational equatian,aso be used. This last differs from the
others by the use of a truncated Taylor expansion of the tlefékae method to estimate the global
error; and solving the problem and estimating the error igghty the same as one step of the
underlying method.

In this research, we will investigate numerically and comepihe efficiency of different techniques
for global error evaluation applied to multistep methodssfalving ordinary differential equations
(ODEs) and differential algebraic equations (DAES). W firist study the global error evaluation
techniques in multistep formulas for solving ODEs on unifagrids. In the case of nonuniform
grids, both multistep methods with variable coefficientd arterpolation-type multistep methods
will be considered. Then, we will extend our study to muéigstmethods for solving DAES.

Theoretical background will accompany numerical works.e Betcuracy and reliability of the

global error evaluation strategies will be discussed amdpaved for different types of multistep
methods for solving ODEs and DAEs. We will analyse the efficiein terms of accuracy obtained
and CPU time spent. For that, a series of nhumerical expetsrierconducted on a set of test
problems with known solutions.
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Chapter 1
Introduction

Mathematicians, specially Numerical Analysts, startedvtsk on numerical methods for DEs
since the work of Euler in 1810. Different methods have bemrelbped and improved to provide
good approximations to the solutions when there are anyt Mysortantly, to ensure the reliability

of mathematical models, numerical methods should be acaniag by a procedure to monitor any
drastic changes in the error.

Almost all numerical methods for solving DEs developed saif®e a stepsize selection based on
the local error control to obtain the numerical solution.wdwer, this technique intended to keep
the local error less than or equal to a prescribed toleraasesbme drawbacks. Considering the
principal term of the local error as its estimate does norajutae that the local error itself will
be small, unless the grid has sufficiently small diameterrédwer, in one step of the integration,
the local error does not remember the error introduced ithalprevious steps. Thus, keeping the
local error relatively small does not automatically proelacreasonably small global error which
is more important in practice.

Numerical analysts started to work on a more indispensalleife, which is the global error eval-
uation, in early 1970. Several methods have been developegbod survey of such techniques
can be found in [20]. Methods presented in [20] are not ontyedi to estimate the global error in
numerical ODEs, they can also be applied for other problesod) as DAEs and PDEs. For numer-
ical ODEs and DAEs, an additional approach termed as sothi@d¢jnearised discrete variational
equation (SLDVE) was introduced in [10] and developed iradi@t [12] and [14].

In this dissertation, we focus on the behaviour of globabreevaluation strategies when applied



to multistep methods for ODEs and semi-explicit index 1 DAHse algorithms include:

1. Richardson extrapolation,

2. Using two different methods,
3. Zadunaisky’s technique,

4. Solving for the correction,

5. Solving the linearised discrete variational equation.

We aim to compare the methods implemented in multistep fasimcluding both weakly and

strongly stable ones. Their performance will be invesaddbr uniform and non-uniform grids

and we will use the same set of test problems with exact soiggiaphs for all methods and grids.
A similar comparison was presented by Aid and Levacher ifiddDDEs.

We organise the remainder of this dissertation as follovihisiintroductory part, ODEs and index
1 DAEs are presented with exact solutions graph. In the nexpter, we recall basic concepts
of multistep methods, and outline briefly the global errgpaaxsion theory. Notions of weak and
strong stability are introduced and different implemenota of multistep methods with variable
stepsize are presented. We give also a survey of global eveduation strategies. In the third
chapter, we conduct numerical experiments and discuss meaheesult obtained for ODEs. In
the fourth chapter we deal with the numerical data for ind®AE. We summarise the results and
draw a conclusion in the last chapter.

1.1 Ordinary Differential Equations

The ODEs that we are interested in have the form
X(t) = f(t.x(t), (1.1)

wheret is called theindependent variableand x(t), known as thedependent variableis the
solution. Ifxis anN dimensional vector valued function, the domain and theeafd andx are
given by

x:D— RN,

f:[to, T]xD— RN

2



whereltp, T] € R andD c RN,

DEs are usually broken into two classes according to thetiaddi conditions provided to solve
them. If such conditions are given at several values ttie problem is called boundary value

problem(BVP); and when the conditions are provided at a certainevaft, the problem is called
initial value problem(IVP). In this work, we deal with IVP, i.e with a problem of tfh@m

X (t) = f(t,x(t)), t € [to, T], (1.2a)
X(to) = Xo. (1.2b)

For practical reasons in scientific modelling, it is impatte study whether an ODE admits solu-
tions, and if it does whether it is unique. For this purpose,recall the definition of &ipschitz
condition

Definition 1.1. [4] The function f: [to, T] x RN — RN is said to satisfy a "Lipschitz condition” in
its second variable if there exists a constant L such thaaforte [to, T] and yz € RN

1Tty — (2l <Llly—2.

L is known as the "Lipschitz constant”.

The following theorem, proved in [4], ensures the existearug uniqueness of the solution to IVP
(1.2).

Theorem 1.2. [4] Consider an IVP (1.2) where ftp, T] x RN — RN is continuous in its first
variable and satisfies the Lipschitz condition in its seceadable. Then there exists a unique
solution to this problem.

An equation of the form (1.1) is said to hen-autonomouand represents the natural form of many
problems which arise in mathematical modelling tasks. Hewret is more practical, specially
when dealing with numerical methods, to use the followirmresentation the problem.

X (t) = f(x(t)). (1.3)

The latter is termed aautonomousequation. Any non-autonomous ODE can be written in an
equivalent autonomous form by introducing a new independamable that is always equal to
This prototype will be used when we discuss numerical metfiodODEs.

3
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Figure 1.1: Graph of the exact solution to Problem ODE1

1.1.1 Samples of Ordinary Differential Equations

Problem ODE1: An oscillatory problem
We consider the ODE described by

X (t) = x(t) cogt), (1.4)
with the initial conditionx(0) = 1 fort € [0, 1]. The exact solution to this problem is
X(t) = eSnX®)
and is plotted in Figure 1.1

Problem ODE2: A non-linear stable ODE

The following equations represent a non-linear system oE©D

X (1) = —X3(t)xa(t) +%a(t),
Xo(t) = —Xq (1) — X3(t)X%2(1), (1.5)
Xa(t) = Xa(t), Xy(t) = —xa(t)

fort € [0,1] and with the initial conditionx(0) = (1,1,1,1)T.
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Figure 1.2: Graph of the exact solution to Problem ODE2

The exact solution to this problem is:

x1(t) = (cost + sint)e~+eost—sint,
Xo(t) = (cost — sint)e~tHeos—sint.
X3(t) = cost + sint,
X4(t) = cost — sint.

The behaviour of the exact solution is shown in Figure 1.2

Problem ODE3: A simple ODE. It is given by

X (t) = 266 (t)xa(t),
X(t) = 1Qe5(><3(t)—1)><4(t)’

1.6
X3(t) = 2txa(t), o
X4(t) = —2tIn(xa(t))

with the initial conditionx(0) = (1,1,1,1)T and fort € [0,1]. The exact solution to this

5
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Figure 1.3: Exact Solution of Problem ODE3
problem is
in(t2
xq(t) = et
in(12
Xp(t) = €25,
xa(t) = sin(t?) +1,
2
X4(t) = cogt?),

and shown graphically in Figure 1.3
Problem ODEA4: A Stiff ODE. As a sample of stiff ODE we take the following piteln
X (t) = A (x(t) —sin(ut)) + pcog ut) (1.7)

with the initial conditionx(0) = 1 whent € [0, 1] The exact solution to problem (1.7) is given

by
X(t) = sin(ut) + €.
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Figure 1.4: Graph of the exact solution to Problem ODE4

In this work, A and u take the values-3 and 4 respectively. The behaviour of the corre-

sponding exact solution is shown in Figure 1.4.

1.2 Index 1 Semi-explicit Differential Algebraic Equations

Equation (1.1) represents the explicit form of an ODE. A gah®DE can have the form
F(t,x(t),X(t))=0. (1.8)
Equation (1.8) is known as the implicit form of an ODE. Wheisipossible to solve this equation

for X' (as a function of andx), we will get the prototype (1.1).

Another form of DEs, known as Semi-Explicit Differentialgdbraic Equations can also arise from
equation (1.8). Itis given by the system of differential ahglebraic equations

X (t) = f(t,x(t), y(v),
0= g(t,x(t),y(t))

or, equivalently,
X (t) = f(t,x(t), y(t)), (1.99)

y(t) = g(t, x(t), y(t)). (1.9b)



ODE (1.9a) depends on the additional algebraic varigidad the solutior(x,y)" has to satisfy
the algebraic constraint given in the form of equation (1.9b

Semi-explicit DAEs are also broken into two classes: IVP &wP. However, unlike explicit
ODEs for which the initial or boundary values have a certagedlom, for DAE, they have to be
consistentthat is to satisfy the algebraic constraint (1.9b). Thasndial value DAE has the form

X (t) = f(t,x(t),yt)), (1.10a)

y(t) = g(t,x(t),y(t)), (1.10b)
X(to) = Xo,Y(to) = Yo,
Yo = d(to, X0, Yo)-

(1.10c)

In this dissertation, we foccus @emi-explicit Index 1 DARhat is the case wheig — d,g(X,y)
is non-singular for anyx",y"). Here and in what followsly is the identity matrix inRN and
dy9(x,y) denotes the partial derivative giwith respect toy evaluated at the poirfk, y).

Existence and unigueness of the solution to the system &89t straightforward like that of
(2.1). In addition to the condition under which ODE (1.9ajgid a unique solution, one needs
also to examine the case for the algebraic restriction §1.91he uniqueness of the solution to
the equation (1.9a) depends on the smoothnegsre$pect to the variable. Concerning equation
(1.9b), the typical way to deal with a non-linear problemhis implicit function theorem.

If xandy are vector valued functions with dimensiNrandM respectivelyD is a compact subset
of RN*M andG = (f7,g")T, problem (1.9) admits a unique solutitx (t),yT (1)) if the following
conditions are fulfilled:

| - Smoothness conditiohe mappings : D — RN™M is sufficiently differentiable.
Il - Non-singularity conditionThe matrixly — d,g(x,y) is non-singular for anyx,y").

Il - Inclusion condition There exist a convex sBl such thaix},y)T € Do andDg C D. Here
C denotes the inclusion with some neighbourhood.



1.2.1 Samples of Index-1 Differential Algebraic Equations

Problem DAEL: The first index 1 semi-explicit DAE problem is:
Xy (t) = 10texp(5(y2(t) — 1)) %(t),

Xp(t) = —2tIn(y1(t)),

1

ya(t) =xi(t)5,
ya(t) = (X2(t)*+y2(t)?) /2

(1.11a)

(1.11b)
(1.11c)

(1.11d)

We considet € [1.07087121.4123836and the initial condition is assumed to be

(x(1.0708712, %,(1.0708712,y1(1.0708712,y,(1.0708712)"

where

The last formulae constitute the exact solution to problérhX) (See for example [11]).
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Problem DAE2: Middly Stiff DAE

As a sample of stiff DAE, we take the following problem:

X(t)=A (li—)\x(t) — sin(ut)) +y(t) + pcog ut) (1.12a)
y(t) = A (x(t) —y(t)), (1.12b)
t € [0,1]. The initial values are

A

X(0) =1, y(0) = Tin

The exact solution to this problem is well known (see [14]) given by the formulas

X(t) = M + sin(put) (1.13a)
A
y(t) = 1+—)\X(t)' (1.13b)

We will examine the above-mentioned global error estinmatrategies on test problem

(2.12) whemt = —3 andu = 4. The graphs of the exact solution (1.13) are given in Figure
1.6.
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Chapter 2
Multistep Methods and Error Evaluations

Multistep methods were developed as an extension of tha Bndéhods. Such methods are also
referred to adMethods with memorlgy Shampine [17] because of the use of previously computed
approximate solution to perform one integration step.

In this chapter, we recall the basic properties of multistephods such as order, stability, conver-
gence and global error expansion. Then, we introduce diftestrategies to evaluate the error for
multistep method.

2.1 Multistep Methods

2.1.1 Formulation of Multistep Methods

Consider the uniform grid
w={to<ti<...<tk =T, ty=t_1+hfork=1,2,...Kandh € R}. (2.1)

At a pointty of mesh (2.1), a multistep method for ODEs makes use of pusiyocomputed
solution values to update the solutionxif ;,i =1,2,...1 for somel € N, and the corresponding
derivatives are used to compute the new vadyghe method is ah—step linear method. Such a

method has the following general form:
[ |

Z)aiXk_i:hZ)Bifk_i fork=1,1+1,...K (2.2)
L z

12



wherex,_; stands for the approximation ®fty ;) and fx_; = f(Xc_j)-
The first multistep methods, known as thdams-Bashforth methoadere published in 1883 by
Adams and Bashforth [8]. THestep AB method has the form
[
Xk:Xk—l'i‘h.ZlBi fei (2.3)
1=

Later, Moulton worked on the AB methods and came up with nethibat have the general form

|
X =Xc1+hS Bifii (2.4)
2
and possess better properties than those of Adams and Bashfo

In the AB methods (2.3), notice th8y = 0. The method is said to explicit Otherwise, that is if
Bo # 0, the method ismplicit.

Another range of multistep methods, known as Baekward Difference Formula@BDF) were
introduced by Curtiss and Hirschfelder in 1952. These naghse severad values per step, but

only one evaluation of. BDF methods have the general formula
[

_%aixk,i = hfk. (2.5)

Although the first multistep methods for ODE were developetl883, the fundamental theory of
these methods was first established only in 1956 by Dahl{flisBasic properties of numerical
methods include consistency, stability and convergence.

2.1.2 Consistency - Stability - Convergence

The consistency of a method is defined by its ability to sdheetést problems

X (t) =0, withx(tg) =1 (2.6)
and

X (t)=1, withx(tp) =0 (2.7)
correctly.
It is shown that a multistep method for ODE is consistentéf parameters; andg;, i =0,1,...1

satisfy

do+0a1+4...+0 =0,
o+ 01 | (2.8)

a1+20p...+loy=Lo+Pri+...+ 5.

13



In modern literature it is also termed as consistency ofrotde

The stability of a method is concerned with the boundednefgeamumerical solution to
X (0) =0, (2.9)

as the stepsizk tends to 0. The difference equation obtained when applyimykistep method
to this problem has the form

AoXk + A1 Xk—1+ ...+ o Xk—| = 0. (2.10)

Thus, the method igero-stabldf all solutions to the difference equation (2.10) are baeohds
k — o. Using the properties of difference equations [4], a midpsnethod for ODE is zero-stable

if its characteristic polynomial
[

Z)aiti =0 (2.11)
i=

satisfies theoot condition that is the roots of (2.11) lie in the unit disk, and thereasrepeated
root on the boundary.

The stability property of a multistep method is defined byydhke root condition. However, it is
shown in practice that there is a difference in the stahidlityhe methods. In fact, the root condition
suggests that there is no repeated root of (2.11) on the wcli¢,cand the consistency of method
(2.2) implies that 1 is a simple root. There may be or may naither simple solutions of modulo
1. The presence of such other roots is referred weesk stabilityand the method is described as
weakly stabl¢8]. Otherwise, the method &rongly stable

As example, the first Dahlquist barrier affirms that the ormfea |-step method does not exceed
I+2iflisevenand+1if | isodd [8], and it is stated in [4] that for methods with maxioaler,
all the roots of (2.11) lie on the unit circle. That is the noath are weakly stable.

The convergence of a multistep method is defined as follows

Definition 2.1. [8] The linear multistep method (2.2) is called convergdrfor all initial value
problem (1.2) satisfying the conditions in Theorem 1.2,

X(t) —xp(t) — Oforh— O,t € [to, T]

whenever
X(to+kh) —xn(to+kh) — 0 forh— 0,k=0,1,...,1 -1

14



where
Xh(t) = X ift =to+kh.

The consistency, stability and convergence of a multisteghod are related by the following
theorem.

Theorem 2.2.[4, 8] A linear multistep method is convergent if and onlyt iistable and consis-
tent.

2.1.3 Local Error and Order of Convergence

The growing needs of highly accurate methods and the fagialement in computer technology
show that the convergence of a multistep method, as defiri2efinition 2.1 is no longer sufficient.
One needs stronger property of the multistep method to erikat the error in the approximation
is relatively small and the convergence to the exact salutém be achieved faster. This property
is referred to as therder of convergencef the method. By analogy with Definition 2.1, we define
the convergence of ordgrof a multistep method as follow:

Definition 2.3. Method (2.2) is convergent of order p if for any sufficienthyo®th right hand side
fin(1.2),
[IX(t) =xa(t)]] = O(hP),  h—0, (2.12)

wherever the starting values satisfy

[[X(to) = || =O(hP), h—0, k=0,1,...I -1 (2.13)
Define the defect of a multistep method by

[ [
L(t,hx(1) = ¥ aix(ti) —h'Y Bif (X(tci))- (2.14)
i;} | | i;} | |
The method is said to baonsistent of order [f the defect satisfies
L(t,h,x(t)) = O(hP*Y)

for any sufficiently regular ODE. It is proved also, that thethod has ordep if the defect vanishes
for any polynomial of degree less than or equap{®].

It is also stated in [8] that a multistep method is convergdiarderp if and only if it is consistent
of orderp and stable.

15



2.2 Global Error Expansion

In global error expansion, we seek for the global error egmamin powers of the stepsite To
deal with the existence of such an expansion for multistejmauks, Hairer and Lubich [7] consid-
ered the formulation of a multistep method as a one-stepaddtha space of higher dimension.
This formulation, first introduced by Butcher in 1966 [3] aBkkeel in 1976 [19], consists of:

- an initial procedure to compute the initial values
up = ®(h), (2.15)
- aforward step procedure to update the solution
Ukt1 = SW+ hdy(ty, gk, h) (2.16)
whereSis a square matrix and thy are sufficiently differentiable, and

- a sufficiently smooth correct value functiat, h).

The vectorsy andz(t, h) are given by
U = (Xe_i11,---, %) " and (2.17a)
z(t,h) = (x(t— (I = Dh),...,.x@®)T. (2.17b)
Having established this reduction to one-step method, anenow apply result of the global error

expansion theory to the one-step method obtained and pnavé imethod (2.2) is convergent of
orderp, then the global error has an expansion of the form

Z(t,h) — Un = ep(t)hP +ep 1 (P4 ey ()N +E(t, )N+ (2.18)

wheret = a+nh[7]. The existence of expansion (2.18) is proved for strgis¢hble methods. The
coefficientsej(t) of the above mentioned expansion are given in [7].

2.3 Stability of Multistep Methods

In addition to the zero-stability discussed in section2,.the notion ofA-stabilityis also important
for numerical methods. Basically, it determines whetheumerical method is suitable for stiff
problems or not.
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Consider the test problem
X (t) = AX(t) (2.19)

whereA is a complex number. To be able to solve this problem using listep method, the

difference equation
| |

.;aixnfi = h.;Bi fni

Z)(ai —2B)%-i =0, (2.20)

wherez = Ah, must be bounded as— . For the solution to (2.20) to be bounded, the roots of

or, equivalently,

the characteristic equation given by

(i —zB)w =0 (2.21)
i; | |
must lie in the open unit disk.
After rearranging (2.21), we have
a(w
z= % (2.22)
where |
a(w) =Y o
2"
and |
Blw) = pw
2

and we are interested in the valueszaforresponding tow| < 1. This part of the plan is called
stability regionof the method.

Equation (2.22) maps the unit circle on a closed curve knasvih@boundary locus curven the
complex plane. The stability region is the portion of theygaclosed by the boundary locus curve.
A method is said to bé-stableif its stability region covers the half plane the with negatreal
part.

The A-stability of a multistep method is restricted by the@®d Dahlquist barrier which states
that an A-stable linear multistep method has order of cayerere of at most 2.
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2.4 Variable Stepsize Multistep Methods

Fixed stepsize methods have the advantage that they ardceaaplement. However, on one
hand, one may want to increase the stepsize to achieve #gration faster when the approxi-
mate solutions are reasonably accurate. On the other haadnay want to reduce it to improve
the accuracy of the computed values. Thus, methods witlbarstepsize are practically more
efficient.

So far, two classes of implementation of variable stepsiakistep methods were developed. The
first class consists of recomputing the method coefficientsaah step of the integration. The
second class lies on the interpolation of the previouslymated solutions and apply a fixed step
method on a uniform grid within the step.

We further consider the non-uniform grid

w={tp<ti<..<tk=T,tx=t 1+hqfork=12...K}. (2.23)

2.4.1 Variable Stepsize Multistep Methods with Variable Cefficients

Consider the autonomous ODE
X = f(x(t)) (2.24)

where f(x(t)) andx(t) € RN andt € [to, T], with the initial conditionx(tp). A variable stepsize
multistep method with variable coefficients update the tsmtuto the equation (2.24) using the

formula |

|
Z}ahkxk_i =he) Bikfuoifork=1,1+1,...K (2.25)

i=
wherehy is the stepsize at the step numlbgrand the coefficients; x and 3 x depend on the

stepsize ratiosy = %, i=k—1I,... k.

Recall the definition of the local truncation error and thdesrof a multistep method introduced
for a fixed-stepsize multistep method. Method (2.2%)Bsistent of order [ the local truncation

error | |

L(tk, h,x(t)) = ; Ot kX (te—i) — h_;ﬁi,kf (X(tk—i))- (2.26)

vanishes for any polynomials of degree less than or equa[&
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To study the stability of method (2.25), we consider agaetést problenx/'(t) = 0 fort € [a,b].
When method (2.25) is applied to this equation, we get
[

Z)ai,kxkﬂ =0.
i—=

Consider the vectaXc = (Xi,,_4,...,%)". Itis easy to see that the stability of method (2.25) is
equivalent to the boundedness of each component of thenXctfor all k. The vectorsx are

related by
Xir1 = ArXk
where
—a|,17j ... —Qa1j —0on
1 o ... 0
Aj= _ (2.27)
0 :
0 1 0

for j =0,1,...kandXo = (X 1, X" ,,...,x])T. Clearly, we haveXc;1 = AAc_1...AgXo. Thus,
method (2.25) izero-stablaf the matrix AcAx_1 . .. Ax_| is bounded for alk,l > 0 [8].

The following theorem, established in 1984 by Crouzeix argbdana [5], relates the stability of
method (2.25) to the stepsize ratio and the coefficiarasid 3.

Theorem 2.4. Assume that [8]:

() SioQik=0

(i) The coefficientsr x = aj(Weri-1,. .., W1, W) are continuous functions in a neighbour-
hood of(1,1,...,1)

(i) The roots ofz!zo ai(1,1,...,1)t) = 0, with the exception df, lie within the open unit disk
it <1

Then there exist real numbessand Q such that the method is stablaf< hﬂ < Q for all k.
k—1

The definition of the convergence and convergence of godafrmethod (2.25) are the same as
for methods with fixed stepsize methods given by Definitiadhdhd Definition 2.3 respectively,
and the classical result given in Theorem 2.2 holds for wgistepsize methods with variable
coefficients. The following theorem is proved in [8]:
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Theorem 2.5.[8] Assume that

(a) The method (2.25) is stable, consistent of order p and haademicoefficients; n, i n,
(b) the starting vector valuegxxy, . .. X are accurate up to ChP) and

(c) the stepsize ratioahi are bounded by sonte for all n.
n—1

Then it is convergent of order p.

2.4.2 Interpolation Type Multistep Methods

The rigorous formulation and study of the second class aalbe stepsize multistep method can
be found in [13]. Such methods can be described as combirsatigpolynomial interpolation with
a fixed stepsize multistep method. It works as follows:

At the (k+ 1)’st step of the integration, two additional uniform gridgided by

Wi = {t{ i =ty—ihq, i=0,1,...,1} (2.28a)
and
W1 = {1 =t—(i—1he, i=0,1,....1} (2.28b)
are introduced. Using the grid poir§ ; with the corresponding solution valugs ,, for i =
0,1, ..., 1, we compute the Hermite polynomial interpolation at thmm’:}ﬁﬁ_i, that is
X =HPL T ) i=12 (2.29a)

Now, we can apply a fixed step multistep method on the gkig, to get

| |
a1t Y A =Bof () +he Y BT (4L ), (2.29b)
=1 =1
BT =t X=Xt k=1, 141, ..., K-1 (2.29¢)
wheref(xX ), i=0,1, p—I—1,withp<2+1landy , i=0,1, ..., are given.

The defect of the interpolation-type multistep method il by

L (tii-2, X(t), i) = aoX(tie-1) — MiBof (X(tit-1))
| |
S aiAPL ) —he S BFARL ), (2.30)
j=1 =1
k=1-1,...,K—1,
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WhereH|+1 is the Hermite interpolating polynomial fitted to the poin(g‘jﬁi), i=0,1, ..., 1,
and f(x(tf ), i=0,1, p—I -

The order of the interpolation LM method (2.29) is given bymma 1 in [13], which says that
if the underlying multistep method is of ordgrthe non-uniform gridv in (2.23) has sufficiently
small diameter and the stepsize rati;]es— fork=1,2...K—1 are bounded (in total) then the
interpolation LM method (2.28) will be ordenin(s, p).

The stability of method (2.29) does not result directly frimat of the underlying LM method. To
study the stability of method (2.29), Kulikov and Shindimealered a reduction of the multistep
method to a one-step method in a space of higher dimensi¢n [13

Given the vector
X = (00T, 04 ) T, )T (2.31a)

and

F ) = ((FR)T (FO )T, ()T (2.31b)
the interpolation LM method (2.29) is equivalent to thedaling one-step method :

Xk = (U@ In) ((Ha(k) @ In)XE+ hi(Ha() @ In)F ()
(U2 @ In)F (Ha(k) @ )X+ hi(Ha(K) @ 1) GOXE)) (2.32)
+h(Uz® In)F (XS,

wherely is the identity matrix of ordeN and® denotes the direct product of two matrices. The
coefficient matrices are given in [10] and the interpolatiwatricesH; (k) andH(k) are introduced
in [13].

Define the seW(, ,, (to, T) of grids on the intervalto, T| satisfying the following conditions:
0<aw <hg/hg <wp <o k=12, K1, (2.33a)
h/hg <0, k=0,1,...,K1 (2.33Db)
whereh is the diameter of the grid.
The stability of the interpolation type multistep methodiéfined as follow.

Definition 2.6. The interpolation type multistep method is said to be stablthe setVy, , (to, T)
if, for a finite constant R, we have

m J—
I rLulHl(k—j) I<R m=0,1,.... k=141, k=1—-11,....K—1 (2.34)

21



for any grid we Wg, , (to,T).

It is also shown in [13] that the interpolation multistep hred is convergent if and only if it is
stable and consistent.

2.5 Multistep Methods for Semi-Explicit Index 1 DAE

Different methods have also been developed to solve a seplicik index 1 DAE. Examples can
be found in [2, 9]. In this work, we will consider tretate space forrmethod to solve the system
of equation (1.10).

We further assume that the problem has a unique solutiorerGhe initial conditions (1.10c) and
the grid in (2.23), the state space form approach consistaig) (1.10a) using method a multistep
method for ODE and require the solutish= (x",y")T to satisfy the algebraic constraint (1.10b).
Thus, a state space form multistep method with variablefictaits for solving (1.10) has the form

[
Z)O’kakﬂ—j =hey Bjkf(Xer1—jYkr1-j), (2.35a)
i= i=

Yir1 = 91, Yk 1) (2.35b)
fork=1I,+1,...K where all coefficients are the same as for method (2.25yard ...z_1 are

given.

For interpolation multistep methods, we consider againaith@itional grids given in (2.28) and
solve (1.10) using the procedure described in (2.29). Tansnterpolation type LM method to
solve (1.10) has the form

=R ), =12, (2.36a)
AoXic1-1+ jlzlajxtﬂ_j = Bof (Xr1, Yir1) +hi jlzlﬁj 4T Va1 ) (2.36b)
Yir1 = 9(%+1, Ykr1), (2.36¢)
T =ter, 2T =21, k=11+1,...,K-1 (2.36d)
Whererjrl is the interpolating polynomial based on the poiz(tg_i),i =0,1,...,1,and

F (X)), vt )),i=0,1,p—1-1.
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The x—component of the defect of methods (2.35) and (2.36) arelairto (2.26) and (2.30)
respectively, where the algebraic compongmiust be added as an argumenit @ind the right hand
side functionf. They— component of the defect is alway equal to zero as a directecuence of
(2.35b) and (2.36¢).

2.6 Global Error Evaluation Techniques

When using numerical methods to solve any mathematicalgmtd) evaluation of the error in the

approximate solution is of extreme importance. The growiegd for high accuracy computation
has always obliged mathematicians to develop and impravées to keep the error smaller than
a given tolerance. Error evaluations, in one hand, tell wg &ccurate the approximate solutions
are. On the other hand, they allow us to improve the appradamaccordingly.

A review and classification of global error evaluation tecues were presented by Skeel in [20].
Most of the methods presented in [20] can be applied for uaritumerical methods for solving

different mathematical problems such as ODEs, index 1 DAES. Concerning the estima-

tion of the error propagated in numerical solutions of OD&spmparison of some methods was
established by Aid and Levacher in [1].

In this work, we focus on some methods presented in the Skesliew [20] and the error eval-
uation introduced by Kulikov and Shindin in [10] for muligt methods. Namely, the algorithms
include:

Richardson extrapolation,
Using two different methods,
Zadunaisky'’s technique,
Solving for the correction,

Solving the linearised discrete variational equation.

In this section, we give a brief theoretical overview of thmwae-mentioned techniques. For this
purpose, we will further consider an ODE given by the pragbet{1.8) and DAE defined in (1.10).
Furthermorez" = (x",y")T will denote the solution to (1.10). A brief description okthmple-
mentation will follow the theoretical aspect of each method
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2.6.1 Richardson Extrapolation

The Richardson extrapolation is a widely used techniquevatuate the global error. It was first
introduced in 1910 for partial differential equations [Bpbr multistep methods, the validity of this
method lies on the existence of global error expansion ofdima (2.18) (See section 2.2).

In parallel to the integration of the ODE (1.8) with stepsizeone integrates the same problem
using the same multistep method, but with a smaller stepzsiil'me existence of the expansion of
the global error allows us to write

X(t) — X! = hes(t) + O(hS*1) (2.37a)
and s
X(t) — gy = ('—2‘) es(t) +O(h*HY), (2.37b)

wheres s the order of the method, and] ande/2 denote the numerical solution obtained at the

pointt, with stepsizeh andg respectively. It follows from equations (2.37a) and (2.)3Hat the
leading term of the global error DKE is given by

h Xh/2
hes(ty) = X'Z‘S 2 (2.38)

This term provides an estimate of the global error accumaté ©(hs+1).

The same procedure and arguments hold for the index 1 sgphcieOAE given by (1.10); that is
the global error of the numerical solutiagis given by

_h2
260 - 2= 22 1 o(tet)

For the implementation, we will use the following procedure

e Fork=0,1,...,s—1

As the real solutions to the test problems are known, thelybgilused as initial values for
the integrations. That is :
X =x(ty), k=0,1,...s— 1.

Thus, the real error d is also known to be equal to O fer=0,1,...,s— 1, and it will be

used as its own estimate. The exact values of the solutidraisd be attributed as initial
. . . h :

value for the integration using the stepsgc,ethat is

x?/z =X(tj), j=0,1,...2(s—1).
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e Fork>s

Step 1 Compute the numerical solutioﬁ with stepsizeh using formula (2.2)

: : : _h
Step 2 Compute the numerical solutlo@ﬁ1 with stepS|z% using formula (2.2)

: : . _h
Step 3 Compute the numerical solutloagﬁ2 with stepsuez using formula (2.2)

Step 4 Compute the estimation of the erroriﬁl using formula (2.38).

Modified Newton methods with 3 iterations are used to soleertbn-linear equation that results
from (2.2) in the case of implicit methods. The initial guéssthe iteration was computed using a
polynomial interpolation based on the previously computegherical solutions. This implemen-
tation is used for all the methods that we consider in thisatistion.

The same procedure will be used in the case of index 1 DAE vv*ﬂamgﬁl and xgﬁz will be
replaced byz, zgﬁl andzgﬁ2 respectively.

Eventhough the Richardson extrapolation is one of theesanthethod to estimate the global error,
its validity is still restricted to uniform grids. It also bahe drawback that the numerical solutions
needed irStep 2andStep 3increase the cost of the integration considerably.

2.6.2 Using Two Different Methods

In this technique, two integrations of the original probl€til0) are also carried out in parallel.
The fundamental requirements are that the two methods h#feeedt orders, and the problem
is integrated on the same grid by these two methods. Itsityalids on the existence of the
asymptotic expansion of the global error as well.

Assume that the chosen methods have orgleands, such thas; < s,. If the numerical solutions
computed at the poirg are denoted by& andxﬁ, respectively, we have

X(tk) — Xt = X(tk) — X +X¢ — X

Thus, we easily conclude
X(tx) — Xt = X2 — Xt + O(h%2). (2.39)

Equation (2.39) says that the diﬁerenﬁ&xﬁ provides an estimate for the error of the less accurate
solutionxt. This estimate is accurate @(h%).
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Similarly, for equation (1.10), we obtain
2(ty) — zt = 22 — 7t + O(h%). (2.40)

For the implementation, the exact solutions at the pdinks=0,1,...,s1 — 1,5 — 1 will be used
as initial values for each multistep methods, and the cpaording error estimate are set to be 0.
In this work, we chose multistep methods of ordgr= 4 to solve the initial problems and the
methods of ordes, = 5 from the same classes are used as higher order method tatothp
second numerical solution and the error estimatd fors; .

2.6.3 Zadunaisky Technique

The Zadunaisky’s technique first appeared in 1966 in [21¢ Mlethod is classified as a differential
correction by Skeel in [20] and a survey of the method foredéhtial equations is provided in [1].

The idea of the Zadunaisky’s technique lies on the fact thatgroblem, "close” to the original

one, is given with its exact solution, then one can expedtttieaerror produced in its numerical
integration provides an approximation of the error in theetical solution to the original problem.
The method works as follow.

Using the approximate solutions of the original probleme @onstructs a continuous approxi-
mation of the exact solution. This continuous approximai® usually given by the piecewise
polynomial

Ph(t) =Pi(t), t € [t pym - timl,J =1, 2., (2.41)

wherePj is a polynomial interpolation based on the poitt&ndxy, k= (j —1)m, ..., jm for
some integem[21]. Then, we consider the neighbouring problem definedheysiystem

(1) = f(X(t)) — f(A(t)) +Pa(t), (2.42)

with the initial conditions of the original problem. It is ®ato see thah, satisfies the equation
(2.42). We solve the equation (2.42) numerically using #ees method and the same grid as for
solving the original problem (1.8). K'is the solution of the (2.42) at the poiptthen,

Ex = X — X« (2.43)
is expected to be an estimation of the erroxyn
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For index 1 DAE R, is the polynomial interpolation based yandz, k= (j—1)m, ..., jmand
the neighbouring problem is given by

K(t) = F(X(t),9(t)) — f (Phx, Phy) + 0P, (2.44a)

¥(t) = g(X(t),9(t)) — 9(Phx, Phy) + Py (2.44D)

Here and in what followsh, x andR, y are thex andy-component of the polynomi&, respectively.

For the implementation, exact solutions will also be usetdisl values for the initial and the
neighbouring problems. Thatig = x(tx) andxXg = x(tx) fork=0,1,...,s— 1. The corresponding
global error estimate are set to 0.

Fork > s, we use the following procedure to solve the equation anchagt the global error.

step 1 To start, we sef =1

Step 2 Compute the numerical solutiof of the original probelm at the point for k = j(m—
1),...,jm

Step 3 Using the numerical solutions computed in Step 1, consthecpolynomial interpolation
R, using formula (2.41)

Step 4 Compute the numerical solutioq 6f the neighbouring problem (2.42) at the pdipfor
k=jm-1),...,jm

Step 5 The global error estimate ig = x, for k= j(m—1),...,jm

Step 6 Increasegj by 1 and repeat the process from Step 2.

The same procedure is applied for the implementation of tle¢had for index 1 DAE. The
Zadunaiky’s technique theoretically provides an appration to the error with higher order,
depending on the degree of the polynomial interpolation [ this work, we chose the value
m=s+1.

2.6.4 Solving for the Correction

The solving for the correction uses the interpolation pssdatroduced for Zadunaiky’s technique
in equation (2.41). With the same definition [, the global error at the grid pointsi =1, +
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1,...,Kis given by the equation
E(t) = x(t) —Fh(t) (2.45)
One can easily verify thdt satisfies to the ODE

E'(t) = f(Rh(t) +E(1)) — Ry(t) (2.46)

with the initial conditionE(0) = 0. The idea is then to solve the equation (2.46) using the same
method and on the same grid as for solving the original eqndfi.8). The approximate solution
Ex of this problem at the poirif is an estimation of the error .

For index 1 DAE, the equation of the error consists also ohaex 1 DAE described as follow.

(2.47)

whereEy is thex-component o andEy denotes ity-component.

For the implementation, exact solutions will also be usenhiisl values for the initial problem,
that isxx = X(tx). For the equation (2.46) for the error, the initial values @r

Fork > s, we use a procedure similar to the one used for Zadunaisdgfsiques:

step 1 To start, we sef =1

Step 2 Compute the numerical solutiog of the original probelm at the poing for k = j(m—
1),...,jm

Step 3 Using the numerical solutions computed in Step 1, consth&cpolynomial interpolation
R, using formula (2.41)

Step 4 Compute the numerical solutidi of the error equation (2.46) at the poiptfor k =
j(m=1),...,jm

Step 5 Increasegj by 1 and repeat the process from Step 2.

The solving for the correction theoretically provides atineation with the same accuracy of the
Zadunaisky's technique [1, 20]. For the numerical testsalse usedn= s+ 1.

28



2.6.5 Solving the Linearised Discrete Variational Equatio

The solving the linearised discrete variational equat®Ii{VE) was first introduce in [10]. In the
case of multistep methods for ODEs, the global error is giwethe relation

ag k(X(tkr1 — Xiy1) = Za.k (tks1—i — Xer1—i)
(2.48)

+ hy %bu k(F(X(tkg1—i)) — F(Xer1—i)) 4+ L(tk, X(t), hy)

The smoothness of the right hand side functfasilows us to use the Taylor expansion and get

S

Ao k(X(tky1) — Xkr1) = Z &y je(X(tkr1—i) — Xiep1-i)

k

+ hy %bi,k‘]f (Mer1-i) (Rt 1-1) — 1) (2.49)
i=
+ L (t, X(t), )
fork=s—11,...,K—1 whereJ; designs the Jacobian of the functibn
If the errors at the initial point_;_j, 1=1,2,...,1 are known, the global error is given by
X(tici1) — X1 = (BokIN — Mkbodf (1)) X Xk
(2.50)

+ hy _io (X(ter 1) — Xir1-i)°

where
S

Xk = .;(hkbi,ka (Xt 1-i) — @i kdN) (X(ter1-i) = Xeg2-i) + Lt X(), hie).

If we setx(tx,1 i) —Xs1-j=0fori=12 ... s, we get from equation (2.50) the following ap-
proximation for the local error

D1 = (qokIn — hibodr (Xer1)) Lt X(1), hi). (2.51)

Expression in equation (2.51) provides an accurate estmaf the local error. However, the
formula cannot be used for real computation as it depende®mexact solution of the problem.
To overcome this problem, Kulikov and Shindin [12] make ufséhe Taylor expansion of(t) and

29



X (t) at the pointy,1 and the fact that the method has ordér get an approximatiob(ty, x(t), hy)
to L(tx, X(t), hx) given by the formula

( 1>s+1
(s+1)!

+l

Lt x(t), hy) =

(2.52)

S

3 (o) (Fn0)

This formula will also be used to compute the global errorti®/ean of equation (2.50).
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Chapter 3
Numerical Results for ODESs

We introduced the theoretical background of different glaror evaluation strategies in Chapter
2. In this chapter, we aim to compare these methods when tigeyrgplemented in multistep
formulae for ODEs. To perform the test, we consider as tesiblpms the ODEs with known
solution described in section 1.1.1.

We present the result obtained for each global error evialua¢chnique on the test problems.
Then at the end of each test, we will draw a conclusion acngrtdi accuracy and running time of
the methods under discussion.

3.1 Numerical Result for Adams Methods

In this section, we discuss the numerical results obtairezhwhe global error evaluation strategies
are implemented on Adams methods. The coefficients of thbadst as well as their stability
properties are discussed in [8, 9] for different order folaeu Adams methods are know to be
strongly stable.

3.1.1 Implementation on Uniform Grids

To find the real error and its estimate, we integrate the tedilems on the intervdD, 1] using
uniform grid and construct the global error evaluation tegbes for the Adams methods of order
4. Three different stepsizes are used for each test probtenglabal error evaluation techniques.
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h=10"2 h=10"3 h=10"*
Richardson 2.668e-12 1.310e-16 2.180e-16
Using 2 methods 1.100e-12 8.760e-17 8.055e-17
Zadunaisky 1.458e-02 1.458e-03 1.458e-04
SC 9.612e-01 9.961e-01 9.996e-01
SLDVE 9.851e-12 1.906e-16 9.825e-18

Table 3.1: Accuracy of the global error evaluation techegjapplied to ODE1 on the uniform

grids.
h=102 h=10"3 h=10"%
Richardson 0.032 0.311 3.049
Using 2 methods 0.026 0.249 2.631
Zadunaisky 0.082 0.781 7.875
SC 0.078 0.779 7.717
SLDVE 0.018 0.159 1.508

Table 3.2: CPU time (in sec) of the global error evaluatiopligg to ODE1 on the uniform grids

Here, we use test problems with known solution, thus theistavalues which correspond to the

exact solution at the starting points are given with sufficeccuracy.

We consider three uniform grids;, w, andws in the interval[0, 1] and with stepsizé = 102,
h=10"2 andh = 10~* respectively.

1. Problem ODE1: Numerical results for ODE1 on uniform grids are presentdeigures 3.1
and Table 4.19. The graphs for the Zadunaisky’s technigdé&ansolving for the corrections
are not presented in Figure 3.1 because the error estimatputed using these methods
differ significantly from the real error. The accuracy of thadunaisky’s technique and
solving for the correction, as shown in Table 4.19, are low.fér the using two methods,
Richardson extrapolation and SLDVE, Figure 3.1 shows tiaetror estimate provided by
these methods coincide with the real errortier 10-2 andh= 10-3. Forh=10"% however,
the Figure 3.1 and Table 4.19 exhibit the advantage of SLD¥&sing two methods and the
Richardson extrapolation lose some accuracy.
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Figure 3.1: The true error and its estimates obtained fomAsdenethods applied to ODE1 on the
uniform grids

In terms of CPU time, Table 3.2 shows that SLDVE is less expertean the Richardson
extrapolation and the using two different methods. Nam®8lDVE runs 15 times faster
than using two methods and 2 times faster than the Richamldospolation when they are
used to estimate the true error in Adams methods on the umifoids.

2. Problem ODE2: Numerical results for ODEZ2 on uniform grids are given in Fegy8.2 and
Table 3.3. In this case also, the graphs for the Zadunaigégfmique and the solving for the
correction were omitted in Figure 3.2 as the error estimatesputed using these strategies
do not agree with the real error (See Table 3.3).Hrerl0 2 andh = 103, Figure 3.2 shows
that the behaviour of the error estimate computed usingdRilson extrapolation, using two
different methods and SLDVE are very similar to the real erftne global error evaluation
strategies provided an error estimate with accuracy up tdHowever, forh = 1074, only
SLDVE gives the same accuracy. The order of error estimattisced for the Richardson
extrapolation and using two different methods (See Taldg 3.

In terms of CPU time, the SLDVE is characterised by its lowriag time, followed by the
using two methods and Richardson extrapolation. The CPH fimthe Zadunaisky'’s tech-
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h=10"2 h=10"3 h=10"%
Richardson 1.855e-11 3.372e-16 2.140e-16
Using 2 methods 3.515e-12 1.789e-16 9.156e-17
Zadunaisky 1.960e-02 1.990e-03 1.989e-04
SC 9.6125e-01 | 9.961e-01 9.996e-01
SLDVE 2.8407e-10 | 2.7998e-15 | 2.7618e-20

Table 3.3: Accuracy of the global error evaluation techegjapplied to ODE2 on the uniform
grids.

Real Error
Rirchardson  +

Using Two Methods ~ x
SLDV.E x

h=103

Figure 3.2: The true error and its estimates obtained fomAglmethods applied to ODE2 on the

uniform grids
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Table 3.4: CPU time (in sec) of the global error evaluatiopliggo to ODE2 on the uniform grids

Table
grids.

h=10"2 h=10"3 h=10"*
Richardson 0.054 0.539 5.296
Using 2 methods 0.046 0.419 4.471
Zadunaisky 0.119 1.186 11.952
SC 0.114 1.143 11.550
SLDVE 0.027 0.291 2.472

h=10"2 h=10"3 h=10"*
Richardson 9.091e-08 9.077e-13 2.232e-14
Using 2 methods 1.146e-07 1.223e-13 1.497e-14
Zadunaisky 3.568e+00 3.623e-01 3.629e-02
SC 4.188e-05 4.423e-09 4.525e-13
SLDVE 3.101e-07 3.094e-12 1.815e-14

3.5: Accuracy of the global error evaluation techegapplied to ODE3 on the uniform

nique and the solving for the correction show that the metlamd computationally expensive
(See Table 3.4).

Problem ODE3: Numerical results for ODE3 on uniform grids are given in Fg8.3 and

Table 3.5. In Figure 3.3, only the error estimate given byhRidson extrapolation, using
two methods and SLDVE are presented with the true error Isecalithe lack of accuracy
in the error estimate when Zadunaisky’s technique and sglior the correction are used
(See Table 3.5). Figure 3.3 exhibits the ability of the Rrdlsan extrapolation, using two
methods and SLDVE to estimate the true error. For the thegesstes, the behaviour of the

true error and its estimates are very similar.

We notice that SLDVE runs faster than the other methods teatamsider in this disserta-
tion. The Zadunaisky’s technique and solving for the cdroecare shown to be computa-

tionally expensive (See Table 3.6).

. Problem ODE4: The accuracy of different error estimation strategies iadpio the 4h

order Adams method for solving ODE4 on the uniform grid akegiin Table 3.7. Richard-
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Figure 3.3: The true error and its estimates obtained fomAsdenethods applied to ODE3 on the
uniform grids

h=10"7? h=10"3 h=10"*
Richardson 0.061 0.583 5.852
Using 2 methods 0.048 0.458 4.839
Zadunaisky 0.128 1.217 12.242
SC 0.160 1.627 16.431
SLDVE 0.030 0.307 2.736

Table 3.6: CPU time (in sec) of the global error evaluatiopligg to ODE3 on the uniform grids
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h=10"2 h=10"3 h=10"*
Richardson 2.042e-10 2.019e-15 3.571e-16
Using 2 methods 4.664e-11 2.991e-16 3.052e-16
Zadunaisky 4.289e-02 4.290e-03 4.290e-04
SC 9.639e-01 9.961e-01 9.996e-01
SLDVE 2.872e-10 3.166e-15 3.388e-16

Table 3.7: Accuracy of the global error evaluation techegjapplied to ODE4 on the uniform

grids.
h=102 h=10"3 h=10"%
Richardson 0.036 0.315 3.108
Using 2 methods 0.028 0.253 2.647
Zadunaisky 0.085 0.793 7.889
SC 0.160 1.627 16.431
SLDVE 0.020 0.157 1.571

Table 3.8: CPU time (in sec) of the global error evaluatiopligg to ODE4 on the uniform grids

son extrapolation, using two different methods and SLDVEkamrrectly and provide the
same accuracy for different stepsizes.. Figure 3.4 shoaiglhle true error and its estimates
agree very well foh = 102 andh = 103, but the error evaluation technique present some
difficulties to estimate the error for= 10~*. The graphs for Zadunaisky’s technique and
the solving for the correction are not show in Figure 3.4 hiseaof the lack of accuracy in
the error estimate. The error in the global error estimatedaup to 101 and 10 when
h=10"*. In addition to their poor accuracy, these methods are ctatipnally expensive
(See Table 3.8). For the stiff problem ODE4, we notice that$hDVE, like for non-stiff
problems, solve the equation and evaluate the global easierf than the other methods
under consideration here (See Table 3.8).

5. Comparison We stress that we used the Adams methods of order 4 in theieqés.

For the oscillatory problemdDE1) given by equation 1.4, table 4.19 and figure 3.1 show
that Richardson extrapolation, Using Two Different Meth@hd SLDVE provide error es-
timate with the same accuracy. Concernening the Zadurigsigégghnique and Solving for
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Figure 3.4: The true error and its estimates obtained fomAsdenethods applied to ODE4 on the
uniform grids

the Correction, the accuracy of these error estimationsraeasonably low. In other words,
we think that those two methods are not accurate to estirhatertor generated by Adams
methods. It correlates with the opinion of Aid and Levadiérin terms of CPU time (See
table 3.2), the SLDVE runs. times faster than Using two different methods and 2 times
faster than the Richardson extrapolation. The same restdtebserved when we run the
test using ODE?2) described by the system of equations (1.5) @DBDIE3) given by system
(1.6), which are also non-stiff problems.

For ODE4, which is a stiff ODE, fdn = 102, Richardson extrapolation, Using two methods
and SLDVE produced an error estimation with an accura€y(bf°). The same results were
obtained when we reduced the step sizté to 102 andh = 10~4. The errors in the error

estimation provided the Zadunaisky’s technique and thei&gfor the correction raised up
to 10°L.

In terms of CPU time, SLDVE runs alsoSltimes faster than using two methods and 2 times
faster than the Richardson extrapolation (See table 3.8).
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T=1072 T=1073 T=10"*
Richardson - - -
Using 2 methods 1.434e-05 9.618e-07 1.629e-09
Zadunaisky 9.996e-01 9.965e-01 9.996e-01
SC 1.766e-04 6.035e-07 6.089e-09
SLDVE 2.862e-09 2.239%e-14 2.098e-19

Table 3.9: Accuracy of the global error evaluation techegjior Adams methods applied to ODE1
on the non-uniform grids

3.1.2 Implementation On Non-uniform Grids

In this section, we present the numerical results for Adamathods of order 4 on the non-uniform

grids.
For the non-uniform grid, we use the following scheme:

ty1=160+t 1i=0,---,K (3.1)

where0 takes the valueé and?1 consecutively and take the values 1@, 102 and 104,

We first note that the Richardson extrapolation are onlyiegple on uniform grid. Thus;
(dash) will be used in the tables to indicate that no resudid@be presented for the Richardson

extrapolation.

1. Problem ODEL1: Numerical results for ODE1 on non-uniform grids are giveRigure 3.5,
and Table 3.9. The graph for the Zadunaisky’s techniquetipliotted in Figure 3.5 because
of the lack of accuracy in the error estimate computed udirgydtrategy (See Table 3.9).
Figure 3.5 shows that only SLDVE appears to provide an atewstimation of the global
error. Although using two different methods and solving thee correction provided error
estimates better than the Zadunaisky’s technique, Figireu®d Table 3.9 show that the
accuracy of the error estimate are also low.

In addition to its ability to estimate the global error catig, the SLDVE presents also the
smallest CPU time among the methods under consideratien(Bee Table 3.10).

2. Problem ODE2: Numerical results for ODEZ2 on non-uniform grids are givefigures 3.6
and Table 3.11.
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Figure 3.5: The true error and its estimates obtained fomAsdenethods applied to ODE1 on the

non-uniform grids

T=10"7? T=10"3 T=10"*
Richardson - - -
Using 2 methods 0.028 0.253 2.647
Zadunaisky 0.085 0.793 7.889
SC 0.160 1.627 16.431
SLDVE 0.020 0.212 2.272

Table 3.10: CPU time (in sec) of the global error evaluatippli@d to ODE1 on the non-uniform

grids
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Figure 3.6: The true error and its estimates obtained fomAsdenethods applied to ODE2 on the
non-uniform grids

For problem ODEZ2, Table 3.11 and Figure 3.6 tell us that ohey SLDVE was able to
estimate the global error correctly when the Adams methaatdér 4 is used to solve the
problem on the non-uniform grids. In addition to the accuyratthe error estimate, the
SLDVE has low CPU time when compared to the other methodsatbatonsider here (See
Table 3.12.

3. Problem ODE3: Numerical results for ODE3 on non-uniform grids are giveFRigures 3.7
and Table 3.13. The same results as for ODE1 and ODE2 araebttir ODES.

4. Problem ODE4: Numerical results for ODE4 on non-uniform grids are giveFigures 3.8
and Table 3.15. Recall ODE4 was chosen as a sample of stiff @&iite 3.15 and figure 3.8
confirm that the result obtained for the non-stiff ODEs asmalbtained for the stiff ODE
when the different error evaluation strategies are appbatie Adams methods of order 4
on the non-uniform grids.

5. ComparisonFor the Adams methods of order 4, the tables and figures sleoabihty of the
SLDVE to evaluate the true error for non-stiff and stiff pleins. This method is also leading
in terms of CPU time. Following the SLDVE is the using two dint methods. Despite the
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T=102 T=103 T=10"%
Richardson - - -
Using 2 methods 3.151e-05 1.307e-06 2.084e-09
Zadunaisky 9.655e-01 9.965e-01 9.996e-01
SC 5.307e-04 1.718e-06 1.724e-08
SLDVE 5.893e-09 5.922e-13 2.909e-16

Table 3.11: Accuracy of the global error evaluation techegjfor Adams methods applied to
ODEZ2 on the uniform grids

T=102 T=103 T=10"%
Richardson - - -
Using 2 methods 0.028 0.253 2.647
Zadunaisky 0.085 0.793 7.889
SC 0.160 1.627 16.431
SLDVE 0.040 0.332 3.580

Table 3.12: CPU time (in sec) of the global error evaluatippli@d to ODEZ2 on the non-uniform

T=10"7? T=10"3 T=10"*
Richardson - - -
Using 2 methods 8.957e-04 1.524e-04 2.550e-07
Zadunaisky 1.200+05 1.094e+05 1.081e+05
SC 7.218e-03 7.229e-05 7.229e-07
SLDVE 5.144e-06 5.322e-11 5.350e-16

Table 3.13: Accuracy of the global error evaluation teche&jfor Adams methods applied to
ODE3 on the non-uniform grids
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Figure 3.7: The true error and its estimates obtained fomAglmethods applied to ODE3 on the

non-uniform grids

T=1072 T=103 T=10"*
Richardson - - -
Using 2 methods 0.028 0.253 2.647
Zadunaisky 0.085 0.793 7.889
SC 0.160 1.627 16.431
SLDVE 0.040 0.344 3.832

Table 3.14: CPU time (in sec) of the global error evaluatmmXdams methods applied to ODE3

on the non-uniform grids
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Figure 3.8: The true error and its estimates obtained fomAglmethods applied to ODE4 on the

T=1072 T=103 T=10"*
Richardson - - -
Using 2 methods 9.143e-05 3.773e-06 6.340e-09
Zadunaisky 1.018e+00 1.000e+00 9.998e-01
SC 1.233e-03 5.039e-06 5.161e-08
SLDVE 1.452e-08 1.393e-13 1.383e-18

Table 3.15: Accuracy of the global error evaluation teche&jfor Adams methods applied to

ODE4 on the non-uniform grids
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T=1072 T=1073 T=10"*
Richardson - - -
Using 2 methods 0.028 0.253 2.647
Zadunaisky 0.085 0.793 7.889
SC 0.160 1.627 16.431
SLDVE 0.028 0.220 2.308

Table 3.16: CPU time (in sec) of the global error evaluatmmXdams methods applied to ODE4

on the non-uniform grids

reasonably low CPU time for the using two different methdlds,error estimates produced
by this method are not very satisfactory for non-stiff aniff problems. Concerning the
Zadunaisky'’s technique and solving for the correction gbigmation of the global error are
high, and the CPU time are not competitive when comparedd@ttDVE and the using
two different methods.

3.2 Numerical Result for BDF formulae

3.2.1 Implementation on Uniform Grids

In this section, we present the numerical results obtaiaedifferent global error evaluation tech-
niques when they are applied to BDF formulae of order 4 toestite test problems on the uniform
grids.

1. Problem ODE1: Numerical results for ODE1 on uniform grids are presente#figures
3.9 and Table 3.17. We did not plot the graph of the error eggéncomputed using the
Zadunaisky'’s technique and solving for the correction igureé 3.9 because the error esti-
mates differ a lot from the real error. As shown in Table 3thé difference of between
the real error and its estimate raised up 08e — 04 for the Zadunaisky’s technique and
9.997e — 01 for solving for the correction fon = 10~4. The true error and the error esti-
mates produced by the Richardson extrapolation, using tethoas and SLDVE are drawn
in Figure 3.9. The figure shows that the error estimates antttie error agree very well for
h= 102 andh=10"3. Forh = 10"* the behaviour of the true error differs significantly
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Figure 3.9: The true error and the estimates obtained for Bidfaulae on the uniform grids,
ODE1

from its estimates. However, the numerical data given Tall& shows that, although the
order of accuracy the estimations are reducechfer— for the Richardson extrapolation,
using two methods and SLDVE, these methods are still verypatitive when compared to
the Zadunaisky'’s technique and the solving for the coroecti

In terms of CPU time, the SLDVE represents the least experaivong the methods un-
der consideration in this dissertation. The using two d#ffie methods and Richardson ex-
trapolation are also cheap compared to the Zadunaiskysigge and the solving for the

correction (See Table 3.18).

2. Problem ODE2: Numerical results for ODE2 on uniform grids are given in Fegi3.10
and Table 3.19. For the same reason as for ODE1, the graphef@adunaisky’s technique
and solving for the correction are not plotted in Figure 3.10

Table 3.19 shows the accuracy of the global error evaluaéohnique for BDF formulae
applied to ODE2. The error estimation provided by the Ridean extrapolation and the
using two different methods are the most accuratéferl0-2 andh = 10~3. However for
smaller stepsizéy= 104, the SLDVE produced the best estimation of the error. Intiwtdi
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h=10"7? h=10"3 h=10"*
Richardson 2.186e-11 5.590e-16 2.428e-16
Using 2 methods 1.106e-11 2.684e-16 2.973e-15
Zadunaisky 1.030e+00 5.104e-03 5.104e-04
SC 9.750e-01 9.975e-01 9.997e-01
SLDVE 7.143e-12 2.976e-16 2.297e-15

on the uniform grids.

Table 3.17: Accuracy of the global error evaluation techegfor BDF formulae applied to ODE1

h=102 h=10"3 h=10"*
Richardson 0.040 0.384 3.785
Using 2 methods 0.032 0.309 3.045
Zadunaisky 0.065 0.522 5.109
SC 0.068 0.523 5.077
SLDVE 0.024 0.199 1.694

Table 3.18: CPU time (in sec) of the global error evaluatenBDF formulae applied to ODE1

on the uniform grids
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Figure 3.10: The true error and the estimates obtained fdf BIDmulae on the uniform grids,
ODE2

SLDVE presents the advantage in terms of CPU time (See Table)3

3. Problem ODE3: Numerical results for ODE3 on uniform grids are given in Fegi3.11
and Table 3.21.

The graphs of the true error and its estimate provided by tbiesiRdson extrapolation, using
two methods and SLDVE are drawn in Figure 3.11. The figure shbat the behaviour of
the true error and its estimate agree very welldet 102 andh = 10-3. However, Table
3.21 show that the SLDVE evaluates the true error with moeeipion than the Richardson
extrapolation and using two methods do. In addition to theuescy of the error estimate,
SLDVE represents the least time consuming among the methatlaie consider here. The
Zadunaisky'’s technique is characterised by the lack oftghd estimate the true error and
high CPU time.

4. Problem ODE4: Numerical results for ODE4 on uniform grids are given in Fegi3.12
and Table 3.23.

Similar results are obtained for the stiff ODE ODE4 in terrhaccuracy and CPU time.
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h=10"2 h=10"3 h=10"%
Richardson 1.704e-10 1.910e-15 7.979%e-16
Using 2 methods 3.534e-11 3.896e-16 2.049e-15
Zadunaisky 1.029e+00 6.979e-03 6.964e-04
SC 9.750e-01 9.975e-01 9.997e-01
SLDVE 5.150e-08 5.376e-12 6.790e-16

on the uniform grids.

Table 3.19: Accuracy of the global error evaluation techegfor BDF formulae applied to ODE2

h=10"2 h=10"3 h=10"%
Richardson 0.069 0.683 6.887
Using 2 methods 0.052 0.532 5.302
Zadunaisky 0.097 0.832 8.328
SC 0.095 0.837 8.298
SLDVE 0.038 0.309 2.812

ODE2 on the uniform grids

Table 3.20: CPU time (in sec) of the global error evaluatippli@d to BDF formulae for solving

h=10"7? h=10"3 h=10"*
Richardson 1.450e-06 1.439%e-11 1.229e-12
Using 2 methods 1.144e-06 1.184e-12 6.842e-13
Zadunaisky 1.193e+01 1.263e+00 1.269e-01
SC 2.949e-04 3.330e-08 2.779%e-12
SLDVE 9.877e-08 1.969e-13 5.879e-13

Table 3.21: Accuracy of the global error evaluation techegfor BDF formulae applied to ODE3
on the uniform grids.
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h=103

Figure 3.11: The true error and the estimates obtained fdf BIDmulae on the uniform grids,
ODE3

h=10"7? h=10"3 h=10"*
Richardson 0.080 0.786 7.868
Using 2 methods 0.054 0.582 5.831
Zadunaisky 0.097 0.872 8.851
SC 0.165 1.521 15.235
SLDVE 0.034 0.343 3.038

Table 3.22: CPU time (in sec) of the global error evaluatippli@d to BDF formulae for solving
ODE3 on the uniform grids
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Figure 3.12: The true error and the estimates obtained fdf RIDmulae on the uniform grids,
ODE4

h=102 h=10"3 h=10"*
Richardson 1.822e-09 1.794e-14 2.154e-15
Using 2 methods 4.638e-10 6.346e-16 8.876e-16
Zadunaisky 1.033e+00 1.501e-02 1.501e-03
SC 9.999e-01 9.998e-01 9.999e-01
SLDVE 1.227e-09 1.267e-14 9.925e-16

Table 3.23: Accuracy of the global error evaluation techegfor BDF formulae applied to ODE4
on the uniform grids.
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h=10"2 h=10"3 h=10"*
Richardson 0.041 0.402 3.947
Using 2 methods 0.031 0.312 3.104
Zadunaisky 0.069 0.519 5.102
SC 0.066 0.522 5.057
SLDVE 0.019 0.188 1.728

Table 3.24: CPU time (in sec) of the global error evaluatippli@d to BDF formulae for solving
ODEZ4 on the uniform grids

5. Comparison BDF formulae are known to have strong stability propertiescall that to do
the test, we chose to use the methods of order 4.

The numerical results obtained for the error evaluatioatstjies applied to the BDF for-
mulae are very similar to the results when the error evalnagchniques are applied to the
Adams methods. SLDVE, Richardson extrapolation and Usimgdifferent methods are
competitive in terms of accuracy. However, SLDVE shows moterest in terms of CPU
time. The opinion of Aid and Levacher [1] about the Zaduksstechnique and the solving
for the correction agrees also with our results for BDF foaewon the uniform grids. That
is the Zadunaisky'’s technique and the solving for the ctioedailed to estimate the true
error correctly. In terms of CPU time, SLDVE has the advaatager all the other methods
that we are interested in in this work.

3.2.2 Implementation on non-uniform Grids

In this section, we use the non-uniform grid introduced ict®@ 3.1.2. The numerical results
for the global error evaluation strategies applied to theé-B@rmulae of order 4 are arranged as

follows:

1. Problem ODE1: The numerical results for BDF methods for solving ODE1 on-naiform
grids are presented in Table 3.25 and Figure 3.13. In Figl& ghe graphs for the Zadunaisky’s
technique and solving for the correction are not plottedidar accuracy reason. As for
SLDVE and using two methods, the figure illustrates that therestimate computed using
SLDVE agree very well with the real error and the error estenggven by using two method
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T=1072 T=1073 T=10"*
Richardson - - -
Using 2 methods 1.147e-11 1.142e-16 4.423e-16
Zadunaisky 4.112e-03 4.047e-04 4.040e-05
SC 4.658e-03 7.907e-13 1.518e-15
SLDVE 7.397e-12 5.906e-17 5.753e-22

on the non-uniform grids.

Table 3.25: Accuracy of the global error evaluation techegfor BDF formulae applied to ODE1

T=102 T=103 T=10"%
Richardson - - -
Using 2 methods 0.024 0.659 4.389
Zadunaisky 0.140 1.369 15.195
SC 0.446 1.402 13.976
SLDVE 0.017 0.144 1.379

Table 3.26: CPU time (in sec) of the global error evaluat@nBDF formulae applied to ODE1
on the non-uniform grids

differs slightly from the real error. Table 3.25 summarise accuracy of the global error es-
timation strategies when they are applied to BDF on noneumifgrids. The table confirms
the ability of SLDVE to estimate the error with high accuradhis advantage of SLDVE
over the other global error evaluation strategies constleere is also noticed in terms of
CPU time (See Table 3.26).

2. Problem ODE2;:

The numerical results for the global error evaluation styets applied to BDF for solving
ODEZ2 on the non-uniform grids are given in Table 3.27 and fedli14. Figure 3.14 il-
lustrates that the behaviour of the error estimate compusaty SLDVE and using two
methods are similar to the real error. Using two methods kiewnie show to be less accurate
than SLDVE. The graphs for Zadunaisky’s technique and sglfor the correction were not
plotted for low accuracy reason. The accuracy of the methoglpresented in Table 3.27,
where fort = 1072 andt = 103, SLDVE and using two methods have the same accuracy
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Figure 3.13: The true error and the estimates obtained féf 8bmulae on the non-uniform grids,
ODE1
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Figure 3.14: The true error and the estimates obtained féf ®Dmulae on the non-uniform grids,
ODE2

but for T = 1074, SLDVE is more accurate. The efficiency of SLDVE is noticesioain
terms of CPU time (See Table 3.28).

3. Problem ODES3:

The numerical results for BDF for solving ODE3 on the nonfoim grids are given in Table
3.29 and Figure 3.15. In Figure 3.15, only the graphs for SER¥d using two methods are
plotted because of the lack of accuracy in the error estigaterated using Zadunaisky’s
technique and solving for the correction (See Table 3.2%ure 3.15 illustrates that the
error estimate computed using SLDVE and using two methodavsevery similarly to the
real error fort = 1072,10 2 and 10*. The accuracy of the methods given in Table 3.29
however shows the difference in the accuracy of the methmds+ 104,

4. Problem ODE4: For the global error evaluation strategies applied to BD&ving ODE4
on the non-uniform grids, the results are presented in TaBlkand Figure 3.16. The graphs

55



T=102 T=103 T=10"%
Richardson - - -
Using 2 methods 3.632e-11 3.520e-16 2.744e-16
Zadunaisky 6.140e-03 5.540e-04 5.510e-05
SC 8.889e-03 3.871e-12 1.002e-15
SLDVE 3.604e-11 3.350e-16 3.326e-21

on the non-uniform grids.

Table 3.27: Accuracy of the global error evaluation techegfor BDF formulae applied to ODE2

T=102 T=103 T=10"%
Richardson 0.040 0.384 3.785
Using 2 methods 0.032 0.309 3.045
Zadunaisky 0.065 0.522 5.109
SC 0.068 0.523 5.077
SLDVE 0.024 0.199 1.694

on the non-uniform grids

Table 3.28: CPU time (in sec) of the global error evaluat@nBDF formulae applied to ODE2

T=10"7? T=10"3 T=10"*
Richardson - - -
Using 2 methods 1.257e-06 1.259e-12 5.286e-14
Zadunaisky 1.024e+00 1.007e-01 1.005e-02
SC 1.461e-02 1.461e-02 1.461e-02
SLDVE 2.1776e-07 2.5542e-12 2.5908e-17

Table 3.29: Accuracy of the global error evaluation techegfor BDF formulae applied to ODE3

on the non-uniform grids.
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Figure 3.15: The true error and the estimates obtained féf 8Dmulae on the non-uniform grids,
ODE3

T=10"7? T=10"3 T=10"*
Richardson - - -
Using 2 methods 0.032 0.309 3.045
Zadunaisky 0.065 0.522 5.109
SC 0.068 0.523 5.077
SLDVE 0.024 0.199 1.694

Table 3.30: CPU time (in sec) of the global error evaluat@nBDF formulae applied to ODE3

on the non-uniform grids
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1=107
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Figure 3.16: The true error and the estimates obtained féf ®Dmulae on the non-uniform grids,
ODE4

for Zadunaisky’s technique and solving for the correctiogrevalso omitted in this case.
Figure 3.16 show that SLDVE estimates the global error ctigreUsing two methods can
also be considered as a good strategy to estimate the realrethis case for = 102 and

T =103. Fort = 104, Table 3.31 illustrates the advantage of SLDVE.

5. Comparison:

According to the tests conducted on the sample ODEs, SLDVE®0d strategy to evaluate
the global error in BDF for solving ODEs on non-uniform grid$he efficiency of the
technique is not only shown in its accuracy but also in terin€®@U time. Using two
different methods can also be considered as a good techfuggibal error evaluation in
this case. Although this strategy is more expensive than\@.[ terms of running time,
the accuracy of the error estimate were shown to be compesifiecially forr = 102 and

T = 1073, Zadunaisky’s technique and solving for the correctionvjgted error estimate
with low accuracy.
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T=1072 T=103 T=10"*
Richardson - - -
Using 2 methods 5.150e-10 4.758e-16 3.022e-16
Zadunaisky 1.183e-02 1.187e-03 1.188e-04
SC 1.183e-02 1.187e-03 1.188e-04
SLDVE 3.3471e-10 3.4178e-15 3.4247e-20

on the non-uniform grids.

Table 3.31: Accuracy of the global error evaluation techegfor BDF formulae applied to ODE4

T=1072 T=1073 T=10"*
Richardson 0.040 0.384 3.785
Using 2 methods 0.032 0.309 3.045
Zadunaisky 0.065 0.522 5.109
SC 0.068 0.523 5.077
SLDVE 0.024 0.199 1.694

Table 3.32: CPU time (in sec) of the global error evaluat@nBDF formulae applied to ODE4

on the non-uniform grids
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Figure 3.17: The true error and the estimates obtained fstrilig;n methods on the uniform grids,
ODE1

3.3 Numerical Results for Nystiom Methods

In this section, we present the numerical results obtainethe different global error evaluation
strategies applied to Nystrom methods of order 4. We chtdusenethod as example of weakly
stable method. The numerical tests were conducted on the stproblems with know solution
described in Section 1.1.1.

3.3.1 Implementation on Uniform Grids

Here, we present the numerical results obtained on the amigpids. The behaviour of the error
estimates will be observed on the uniform grids with stegsfiz= 102, h= 103 andh=10"*.

1. Problem ODEL: The numerical results for ODE1 are given in Table 3.33 andfe@.17.
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h=10"7? h=10"3 h=10"*
Richardson 7.056e-08 7.055e-11 7.075e-14
Using 2 methods 6.455e-10 6.637e-15 1.112e-16
Zadunaisky 1.360e-06 6.984e-10 7.141e-13
SC 4.376e-07 6.979e-10 7.141e-13
SLDVE 3.296e-09 3.102e-14 3.070e-19

Table 3.33: Accuracy of the global error evaluation techiegfor Nystrom methods applied to

ODEL1 on the uniform grids.

h=102 h=10"3 h=10"*
Richardson 0.041 0.351 3.424
Using 2 methods 0.031 0.282 2.713
Zadunaisky 0.045 0.426 4.225
SC 0.048 0.431 4.244
SLDVE 0.019 0.212 1.949

Table 3.34: CPU time (in sec) of the global error evaluatiechhiques for Nystrom methods
applied to ODE1 on the uniform grids
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h=10"2 h=10"3 h=10"*
Richardson 1.020e-06 6.581e-11 6.549e-14
Using 2 methods 1.064e-06 1.169e-14 1.036e-13
Zadunaisky 7.335e-05 9.838e-10 9.868e-13
SC 7.149e-05 7.731e-08 9.868e-13
SLDVE 1.214e-06 1.180e-11 1.152e-16

Table 3.35: Accuracy of the global error evaluation teche&for Nystrom methods applied to
ODEZ2 on the uniform grids.

For problem ODE1, Table 3.33 exhibits the advantage thastak SLDVE over the other
global error evaluation strategies under consideratior.h@&he technique produced very
accurate error estimate on the three grids with stephize$0 2, h=10"3andh=10"*. In
addition to the high accuracy provided by this technique nttethod integrates the equation
and evaluates the global error faster than the other steatdtat we consider here (See Table
3.34). Using two different methods also provided very aataiestimation of the true error
for h=10"2 andh = 10~3. However, when the stepsize is reduceti to 104, the order of
accuracy of the error estimate computed by the using twerdifft methods is also reducing.
The technique also is not better than SLDVE in terms of CPletinntegrating ODE1
the equation and estimating the global error using two ifiemethods last approximately
1.5 times longer than when SLDVE is used. The Richardson exd@éipn, Zadunaisky’s
technique and solving for the correction lead to less ateuwnaor estimate (See Table 3.33).
The CPU time for these methods are also not competitive wberpared to that of SLDVE
and using two different methods.

2. Problem ODEZ2: The numerical results for ODE2 are given in Table 3.35 andiei@.18.

For ODEZ2, the Richardson extrapolation, using two methods%L.DVE computed an es-
timation of the global error with similar accuracy fore= 10-2 andh = 10-3. As the step-
size is reduce tt = 104, SLDVE provided an error estimate with better accuracy than
the Richardson extrapolation and using two methods (Sele BaB5). The performance of
SLDVE to estimate the global error in Nystrom method appteeODE?2 is also found better
in terms of CPU time (See Table 3.34). Zadunaisky’s techipud solving the correction
lead to an error estimate with low accuracy. These techrdgdéobal error evaluation are
also shown less efficient in terms of CPU time (See Table 3.34)
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Figure 3.18: The true error and the estimates obtained fstrilig;n methods on the uniform grids,
ODE2

h=10"7? h=10"3 h=10"*
Richardson 0.067 0.648 6.456
Using 2 methods 0.057 0.491 5.290
Zadunaisky 0.072 0.706 7.149
SC 0.074 0.704 7.025
SLDVE 0.037 0.334 3.418

Table 3.36: CPU time (in sec) of the global error evaluatiechhiques for Nystrom methods
applied to ODEZ2 on the uniform grids
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Figure 3.19: The true error and the estimates obtained fstrlig;n methods on the uniform grids,
ODES3

3. Problem ODE3: The numerical results for ODES3 are given in Table 3.37 andiéi@.19.

In Figure 3.19, the graph for Zadunaisky'’s technique andisglfor the correction are not
plotted because of the low accuracy (See Table 3.37. SLD\Euamg two methods pro-
vided an error estimate similarly accurate for the threpsitesh = 1072, h= 102 and
h=10"* (See Table 3.37). However, the performance of these twaagjkripor evaluation
strategies differs significantly in terms of CPU time. SLDWiegrates the equation ODE3
and calculate the estimation of the error faster than thegusvo corrections. The Richard-
son extrapolation, Zadunaisky’s technique and solvingHercorrection also estimated the
true error with similar accuracy. These methods are shovire tless efficient than SLDVE
and using two methods in terms of accuracy and CPU time wiesarthused to estimate the
global error in the Nystri method applied to ODES.

4. Problem ODE4: The numerical results for ODE4 are given in Table 3.39 andrfei@.20.

ODE4 was chosen as a sample of stiff ODE, and the Nystromadethorder 4 which is
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h=10"2 h=10"3 h=10"%
Richardson 1.411e-04 1.411e-07 1.412e-10
Using 2 methods 2.050e-05 2.028e-10 3.139%¢e-14
Zadunaisky 1.855e-03 1.852e-06 1.831e-09
SC 1.951e-03 2.101e-06 2.116e-09
SLDVE 9.931e-05 1.032e-09 1.036e-14

ODES3 on the uniform grids.

Table 3.37: Accuracy of the global error evaluation teche&for Nystrom methods applied to

h=10"2 h=10"3 h=10"%
Richardson 0.073 0.706 7.150
Using 2 methods 0.057 0.542 5.745
Zadunaisky 0.075 0.752 7.671
SC 0.142 1.374 13.696
SLDVE 0.041 0.359 3.691

Table 3.38: CPU time (in sec) of the global error evaluatiechhiques for Nystrom methods
applied to ODE3 on the uniform grids

h=10"7? h=10"3 h=10"*
Richardson 1.344e-06 7.314e-10 7.318e-13
Using 2 methods 6.639e-06 6.027e-10 1.336e-12
Zadunaisky 4.383e-03 5.551e-06 5.684e-09
SC 4.245e-03 5.538e-06 5.683e-09
SLDVE 1.697e-05 1.685e-09 1.685e-13

Table 3.39: Accuracy of the global error evaluation techegfor Nystrom methods applied to
ODEA4 on the uniform grids.
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Figure 3.20: The true error and the estimates obtained fatrlign methods on the uniform grids,
ODE4

h=102 h=10"3 h=10"*
Richardson 0.037 0.351 3.520
Using 2 methods 0.030 0.280 2.792
Zadunaisky 0.046 0.435 4.285
SC 0.046 0.431 4.235
SLDVE 0.021 0.223 1.999

Table 3.40: CPU time (in sec) of the global error evaluatiechhiques for Nystrom methods
applied to ODE4 on the uniform grids
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a weakly stable method is not a good method to solve ODE4 ricallgr However, Figure
3.20 shows that Richardson extrapolation, using two metlaodl SLDVE tend to evaluate
the global error more accurately when the stepsize is sriédl.omitted the Zadunaisky’s
technique and solving for the correction from the graph bseaf the low accuracy of the
error estimate (See Table 3.39). The CPU time of the SLDVRvshbat the method is more
efficient than Richardson extrapolation and using two masthi{&ee Table 3.40).

5. Comparison

According to the numerical tests conducted on the diffegéotial error evaluation strategies,
Richardson extrapolation, using two methods and SLDVEekthe same advantages on
Zadunaisky'’s technique and solving for the correction imte of accuracy. The figures
show that the true error and the estimates provided by Rislarextrapolation, using two

methods and SLDVE agree very well, except for the using tiferdint methods applied to

the stiff problem ODE4 on a grid with large stepsize- 10-2. In addition to the accuracy

of the error estimate, SLDVE is more efficient in terms of Ciidet

3.3.2 Implementation on Non-uniform Grids

In this section, we present the results obtained for themdgsimethod on the non-uniform grids.
The tests were conducted on the samples of ODEs describextiin®1.1.1 and the grids are as
described in 3.1.

1. Problem ODE1: The numerical results obtained for ODE1 are given in Tabdd &nd
Figure 3.21. Figure 3.21 exhibits the ability of the using twethods to estimate the global
error for Nystrom methods applied to ODE1 on the non-unifgrids. For this test problem,
the approximate solution is accurate of order 2 only. Howethe error estimate provided
by using two methods is accurate of order 4 (See Table 3.41)VE and the Zadunaisky
technique provided an estimate of the error accurate ofr@dé&he graph for solving for
the correction is not presented in Figure 3.21 because dhtikeof accuracy in the error
estimate (See Table 3.41). In terms of CPU time, using twierdiht methods and SLDVE
present the same advantage over the other methods comsid¢né disseratation. Solving
problem ODE1 and estimating the true error take long whe #teinaisky technique or the
solving for the correction is used as global error evaluesimategies (See 3.42).
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Figure 3.21: The true error and the estimates obtained fatriign methods applied to ODE1 on
the non-uniform grids

T=1072 T=1073 T=10"*
Richardson - - -
Using 2 methods 2.247e-08 2.756e-13 2.840e-17
Zadunaisky 1.741e-05 1.756e-07 1.758e-09
SC 6.943e-01 7.189e-01 7.214e-01
SLDVE 8.985e-06 2.281e-07 2.419e-09

Table 3.41: Accuracy of the global error evaluation teche&for Nystrom methods applied to
ODEL1 on the non-uniform grids.
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T=1072 T=1073 T=10"*
Richardson - - -
Using 2 methods 0.026 0.230 2.265
Zadunaisky 0.044 0.401 3.906
SC 0.042 0.397 4.192
SLDVE 0.024 0.268 2.099

Table 3.42: CPU time (in sec) of the global error evaluatmm\ystrom methods applied to ODE1
on the non-uniform grids

T=102 T=103 T=10"%
Richardson - - -
Using 2 methods 1.796e-06 4.592e-10 4.593e-13
Zadunaisky 1.453e-05 1.397e-07 1.391e-09
SC 6.943e-01 7.189e-01 7.214e-01
SLDVE 4.433e-08 3.853e-12 3.798e-16

Table 3.43: Accuracy of the global error evaluation techiegfor Nystrom methods applied to

ODEZ2 on the non-uniform grids.

2. Problem ODEZ2: The numerical results obtained for ODE2 are given in Tab#8 &nd
Figure 3.22. The error estimate produced by the solvingfercbrrection was not plotted in
Figure 3.22 as it differs significantly from the real erroh€laccuracy of the error estimate is
givenin Table 3.43. According to Figure 3.22, using two noeithand SLDVE provided very
accurate estimation of the global error. However, Tabl® 3ldows that the error estimate
computed using SLDVE are the most accurate. In addition,\BERuns faster than using
two methods (See Table 3.44).

3. Problem ODE3: The numerical results obtained for ODE3 are given in Tabdb &nd
Figure 3.23.

The error estimate produced by the solving for the corractias not plotted in Figure
3.23 as it differs significantly from the real error as its@ecy shows in Table 3.45. In
figure 3.23, the exact error coincide with the error estintati@puted using two methods
and SLDVE. Table 3.45 shows that the two strategies estarthgeglobal error with similar
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Figure 3.22: The true error and the estimates obtained fatrlign methods applied to ODE2 on
the non-uniform grids

T=1072 T=1073 T=10"*
Richardson - - -
Using 2 methods 0.042 0.385 3.758
Zadunaisky 0.064 0.622 6.264
SC 0.066 0.617 6.281
SLDVE 0.036 0.381 3.242

Table 3.44: CPU time (in sec) of the global error evaluatmm\ystrom methods applied to ODE2
on the non-uniform grids
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Figure 3.23: The true error and the estimates obtained fetriig;n methods applied to ODE3 on
the non-uniform grids

accuracy. However, Table 3.46 exhibits the advantage of\@&_Dver using two different
methods in terms of CPU time. The Zadunaisky’s techniquleagvs to be less accurate than
using two methods and SLDVE (see Table 3.45) and is expeirsiéms of computation
time (see Table 3.46).

4. Problem ODE4: The numerical results obtained for ODE4 are given in Tab#& &nd
Figure 3.24.

In this case also, the error estimate computed using soleirtge correction was not plotted
in Figure 3.24 because of the lack of accuracy (See Table.3la7Figure 3.24, the real
error, the error estimate produced by using two methods &W@E coincide. However,
Table 3.47 shows that the SLDVE is more accurate than usingltfierent methods. The
advantage of SLDVE is also show in Table 3.48 in terms of Ciréti

5. Comparison
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T=102 T=103 T=10"%
Richardson - - -
Using 2 methods 5.571e-05 6.277e-09 6.354e-13
Zadunaisky 3.946e-03 4.329e-05 4.367e-07
SC 1.778e+05 1.671e+05 1.659e+05
SLDVE 3.026e-05 2.652e-09 3.617e-13

ODES3 on the non-uniform grids.

Table 3.45: Accuracy of the global error evaluation teche&for Nystrom methods applied to

T=102 T=103 T=10"%
Richardson - - —
Using 2 methods 0.042 0.405 4.074
Zadunaisky 0.403 0.680 6.699
SC 0.063 0.645 6.480
SLDVE 0.039 0.399 3.454

Table 3.46: CPU time (in sec) of the global error evaluatmm\ystrom methods applied to ODE3
on the non-uniform grids

T=102 T=103 T=10%
Richardson - - -
Using 2 methods 2.444e-05 5.875e-09 5.885e-12
Zadunaisky 8.298e-05 7.585e-07 7.533e-09
SC 1.151e+00 1.144e+00 1.143e+00
SLDVE 6.305e-07 6.201e-11 6.201e-15

Table 3.47: Accuracy of the global error evaluation techiegfor Nystrom methods applied to

ODE4 on the non-uniform grids.
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Figure 3.24: The true error and the estimates obtained fatrlign methods applied to ODE1 on
the non-uniform grids

T=1072 T=1073 T=10"*
Richardson - - -
Using 2 methods 0.026 0.230 2.295
Zadunaisky 0.045 0.402 3.951
SC 0.045 0.396 3.969
SLDVE 0.026 0.251 2.119

Table 3.48: CPU time (in sec) of the global error evaluatmrNystrom methods applied to ODE4
on the non-uniform grids
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The numerical tests conducted on the non-uniform gridsheixthie advantage of SLDVE
over the other methods considered in this work in terms ofil@@y and computation time.
Using two different methods also produced interestingltesar some cases. According
to the same numerical test, solving for the correction isangbod strategie to estimate the
exact error of Nystrom methods on non-uniform grids.
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Chapter 4
Numerical Results for Index 1 DAEs

Numerical results for ODEs were presented in Chapter 3. ig1¢hapter, we will present the
numerical results for index 1 DAEs. The numerical tests wereducted on the test problems with
known solution described in Section 1.2.1.

4.1 Numerical Results for Adams methods

In this section, we present and compare the numerical seshbtained for different global error
evaluation strategies when they are applied to Adams metfaydsolving semi-explicit index 1
DAE.

4.1.1 Implementation on the Uniform Grids

1. Problem DAE1: The numerical results for the Adams methods on the uniforicsgare
given in Figure 4.1 and the CPU time of the different globabeevaluation strategies are
given in Table 4.2. In Figure 4.1, we omitted the graph of thereestimations provided
by the Zadunaisky’s technique and solving for the correctis the behaviour of the true
error differs significantly from the error estimates getetldy these technique. The figures
shows the ability of SLDVE to estimate to true error when tldams method of order 4 is
used to solve the problem DAE1L. For the three different &tepsthe error estimate and the
true error agree very well. The performance of SLDVE is alisfactory in terms of CPU
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Figure 4.1: The true error and its estimates obtained fomdglmethods applied to DAE1 on the

uniform grids

time when the method compared with the global error evalnatirategies that we consider
in this work. Table 4.2 shows that SLDVE and the using two roéghare the least time

consuming among the methods under consideration here.

2. Problem DAEZ2: Very similar results were obtained when the same Adams rdetfas used
to solve the stiff equation DAE2. Figure 4.2 shows that onlip8E was able to approximate
the global error correctly ; and Table 4.2 exhibits the atlwge of SLDVE and using two

methods in terms of CPU time.

4.1.2 Implementation on the Non-uniform Grids

1. Problem DAEZ1;:

On the non-uniform grids, we recall that the Richardsonagpdlation is not applicable. The
good performance of SLDVE can be seen in Figure 4.3. In tiss edso, the graph of the
error estimate generated by the Zadunaiskys techniquehendalving for the correction
were omitted because of the lack of accuracy. For the Zadkysitechnique, the error in
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Table 4.1: Accuracy of the global error evaluation techemjapplied to DAE1 on the uniform

grids.

Table 4.2: CPU time (in sec) of the global error evaluatiopligg to DAE1 on the uniform grids

Table 4.3: Accuracy of the global error evaluation techesjapplied to DAE2 on the uniform

grids.

h=10"7? h=10"3 h=10"*
Richardson 2.332e-06 4.797e-07 7.508e-07
Using 2 methods 9.037e-07 4.797e-07 7.508e-07
Zadunaisky 2.332e-06 4.797e-07 5.430e-07
SC 1.229e+00 9.531e+00 9.431e+00
SLDVE 2.402e-08 3.437e-13 9.795e-17

h=10"7? h=10"3 h=10"*
Richardson 0.060 0.540 5.356
Using 2 methods 0.036 0.284 3.041
Zadunaisky 0.088 0.804 8.101
SC 0.084 0.824 8.133
SLDVE 0.037 0.357 3.028

h=10"2 h=10"3 h=10"%
Richardson 1.865e-12 2.132e-16 8.133e-17
Using 2 methods 6.974e-11 2.347e-16 5.719e-17
Zadunaisky 8.568e-10 8.426e-15 5.234e-17
SC 1.569e+00 1.500e+00 1.500e+00
SLDVE 8.119e-09 4.926e-14 4911e-19
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Figure 4.2: The true error and its estimates obtained fomdgdaethods applied to DAE2 on the
uniform grids

h=10"7? h=10"3 h=10"*
Richardson 0.108 0.972 9.593
Using 2 methods 0.084 0.736 7.416
Zadunaisky 0.104 1.076 10.621
SC 0.160 1.588 13.097
SLDVE 0.052 0.431 4.012

Table 4.4: CPU time (in sec) of the global error evaluatiopligg to DAE2 on the uniform grids
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Figure 4.3: The true error and its estimates obtained fomdgdmethods applied to DAE1 on the
non-uniform grids

the estimate is up to 228403 fort = 102, and for the solving for the correction the error
raised up to D107+ 02. In terms of CPU time, SLDVE presents an advantage over the
methods applicable on non-uniform grids (See Table 4.6) .

2. Problem DAE2: The behaviour of the true error and its estimates are veryasimhen the
Adams method is applied to the stiff problem DAE2 on the naifeum grids (See Table 4.8
and Figure 4.4).

4.2 Numerical Results for BDF formulae

4.2.1 Implementation on the Uniform Grids

1. Problem DAEZ1;:

Numerical results for the BDF formula of order 4 on the umfogrids are given in Fig-
ure 4.5 and Table 4.10. In Figure 4.5, we notice the advarda§e.DVE compared to the
Richardson extrapolation and the using two methods. Theedrtor and the error estimate
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h=10"2 h=10"3 h=10"%
Richardson - - -
Using 2 methods 7.902e-08 9.783e-15 9.117e-15
Zadunaisky 2.268e+02 1.436e-01 1.400e-02
SC 1.010e+00 9.531e+01 9.531e+01
SLDVE 2.402e-08 1.479e-13 1.763e-18
Table 4.5: Accuracy of the global error evaluation techemjapplied to DAE1 on the non-uniform

grids.

T=102 T=103 T=10"%
Richardson - - —
Using 2 methods 0.056 0.544 5.880
Zadunaisky 0.088 0.736 8.013
SC 0.084 0.800 8.049
SLDVE 0.040 0.312 3.416

Table 4.6: CPU time (in sec) of the global error evaluatiopligol to DAE1 on the non-uniform

grids
h=102 h=10"3 h=10%

Richardson - - -

Using 2 methods 3.045e-09 3.015e-14 2.927e-18

Zadunaisky 2.268e+02 1.430e-01 1.400e-02

SC 1.571e+00 1.000e-03 1.876e-04

SLDVE 1.050e-06 1.213e-10 1.231e-14
Table 4.7: Accuracy of the global error evaluation techemjapplied to DAE2 on the non-uniform
grids.
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Figure 4.4: The true error and its estimates obtained fomdglmethods applied to DAE2 on the
non-uniform grids

T=10"7? T=10"3 T=10"*
Richardson - - -
Using 2 methods 0.080 0.756 7.928
Zadunaisky 0.164 1.624 15.981
SC 0.156 1.536 15.541
SLDVE 0.052 0.432 5.024

Table 4.8: CPU time (in sec) of the global error evaluatiopligol to DAE1 on the non-uniform
grids
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Figure 4.5: The true error and its estimates obtained for Bfulae applied to DAE1 on the
uniform grids

generated by SLDVE agree very well for all the stepsizes. Sttepe of the true error is
conserved by the Richardson extrapolation and the usingneihods, however the error
estimate generated by these methods agree with the trueosigowhen the later is suffi-
ciently small. Table 4.10 exhibits the good performanceldd@E in term of CPU time. In
addition to the lack of accuracy in the error estimate, théusaiskys technique and solving
for the correction are computationally expensive when camreg to SLDVE and using two
methods (See Table 4.10).

2. Problem DAE2: For problem DAEZ2, Figure 4.6 shows that only the error esntam-
puted using SLDVE agrees with the true error. For the solfamghe correction, the error
in the estimate raised up to®14 forh = 10-2. For the Zadunaiskys technique, the differ-
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h=10"7? h=10"3 h=10"*
Richardson 2.332e-06 4.797e-07 7.508e-07
Using 2 methods 6.316e-04 7.116e-04 6.413e-04
Zadunaisky 6.316e-04 1.436e-01 9.529e+01
SC 1.010e+02 1.436e-01 9.529e+01
SLDVE 2.402e-08 3.437e-13 9.795e-17

Table 4.9: Accuracy of the global error evaluation techemjapplied to DAE1 on the uniform

h=10"2 h=10"3 h=10"%
Richardson 0.100 1.020 10.129
Using 2 methods 0.080 0.708 7.332
Zadunaisky 0.108 1.068 10.677
SC 0.104 1.024 10.793
SLDVE 0.032 0.508 4.644
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Table 4.10: CPU time (in sec) of the global error evaluatippli#d to DAE1 on the uniform grids
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Figure 4.6: The true error and its estimates obtained for Bidfulae applied to DAE2 on the
uniform grids

ence between the true error and the error estimate raisea LiP1t0e+ 02. The advantage
of SLDVE is also shown by Table 4.12 which gives the CPU timehef different global
error evaluation strategies when they are applied to the ®DRulae to solve DAE2 on the
uniform grids.

4.2.2 Implementation on the Non-uniform Grids

1. Problem DAEZ1;:

On the non-uniform grids, SLDVE and using to methods appnaxé the true error correctly.
The behaviour of the true error and the error estimate catiedlby these two methods agree
very well specially wherr is small (See Figure 4.7). When the Zadunaiskys technique is
used, the true error differs significantly from is estim&amely, the difference between the
true error and its estimate produced by the Zadunaiskysigeé raised up to 982687 for

T =10"2. Similar results were obtained for the solving for the coiian for which the error

in the approximate values of the true error wass289 whenr = 10~2. In terms of CPU
time, Table 4.14 shows the advantage of SLDVE over the mesthiwat we consider in this
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h=10"7? h=10"3 h=10"*
Richardson 6.690e-07 6.678e-11 7.659e-15
Using 2 methods 6.690e-07 6.678e-11 7.659e-15
Zadunaisky 1.569e+00 1.506e-03 1.500e-04
SC 1.010e+02 1.436e-01 9.529e+01
SLDVE 6.047e-06 5.935e-10 5.925e-14

Table 4.11: Accuracy of the global error evaluation teche&japplied to DAE2 on the uniform

grids.

h=10"2 h=10"3 h=10"%
Richardson 0.072 0.708 7.268
Using 2 methods 0.056 0.548 5.508
Zadunaisky 0.080 0.808 8.249
SC 0.088 0.804 7.993
SLDVE 0.040 0.332 3.768

Table 4.12: CPU time (in sec) of the global error evaluatippli@d to DAE2 on the uniform grids
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Implementation on the Non-uniform Grids

1.45

4.3 Numerical Results for Nysbm methods

different global error evaluation strategies are reduoel t

Real Error
Using Two Methods
S.L.D.V.E

Figure 4.7: The true error and its estimates obtained for Bidfulae applied to DAEL on the

. Problem DAE2: Similar results were obtained when the global error evaluadtrategies
are applied to the BDF formulae of order 4 to solve the stifiipjem DAE2 on the non-
uniform grids (See Table 4.16 and Figure 4.8). Accordingguife 4.8, the true error and the
estimates computed using SLDVE or using two methods haveaime behaviour, specially
whent is small. These methods also present the same advantagms\deCPU time (See

Table 4.16).

1. Problem DAE1L: As shown in Figure 4.9, the numerical results for the Nystrdethods
are unusual. For all the values ofthe true error as well as its estimate calculated by the




Table 4.13: Accuracy of the global error evaluation techegapplied to DAE1 on the non-

h=10"2 h=10"3 h=10"%
Richardson - - -
Using 2 methods 7.213e-04 7.121e-07 1.963e-13
Zadunaisky 9.962e+01 1.436e-01 1.427e-02
SC 9.962e+01 1.436e-01 9.529e+01
SLDVE 5.930e-05 5.838e-09 5.830e-13

uniform grids.

Table 4.14: CPU time (in sec) of the global error evaluatippli@d to DAE1 on the non-uniform

grids

T=102 T=103 T=10"%
Richardson - - -
Using 2 methods 0.056 0.588 5.796
Zadunaisky 0.096 0.912 8.893
SC 0.088 0.932 8.793
SLDVE 0.044 0.464 4,772

h=10"7? h=10"3 h=10"*
Richardson - - -
Using 2 methods 2.640e-05 2.653e-08 2.655e-11
Zadunaisky 1.556e+00 1.885e-03 1.876e-04
SC 1.556e+00 1.885e-03 1.876e-04
SLDVE 6.785e-06 6.655e-10 6.644e-14

Table 4.15: Accuracy of the global error evaluation teche&applied to DAE2 on the non-
uniform grids.
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Figure 4.8: The true error and its estimates obtained for Bidfulae applied to DAE2 on the
non-uniform grids

T=10"7? T=10"3 T=10"*
Richardson - - -
Using 2 methods 0.048 0.436 4.528
Zadunaisky 0.072 0.676 6.640
SC 0.072 0.648 7.180
SLDVE 0.040 0.348 3.672

Table 4.16: CPU time (in sec) of the global error evaluatippli@d to DAE2 on the non-uniform
grids
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Figure 4.9: The true error and its estimates obtained fotfdgsmethods applied to DAE1 on the
non-uniform grids

T=10"7? T=10"3 T=10"*
Richardson - - -
Using 2 methods 7.213e-04 7.121e-07 1.963e-13
Zadunaisky 9.962e+01 1.436e-01 1.427e-02
SC 9.962e+01 1.436e-01 9.529e+01
SLDVE 5.930e-05 5.838e-09 5.830e-13

Table 4.17: Accuracy of the global error evaluation teche&applied to DAE1 on the non-

uniform grids.
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T=1072 T=1073 T=10"*
Richardson - - -
Using 2 methods 0.132 1.328 13.717
Zadunaisky 0.184 1.784 17.933
SC 0.168 1.836 17.665
SLDVE 0.104 1.060 10.157

Table 4.18: CPU time (in sec) of the global error evaluatippli#d to DAE1 on the non-uniform

T=102 T=103 T=10"%
Richardson - - -
Using 2 methods 7.213e-04 7.121e-07 1.963e-13
Zadunaisky 9.962e+01 1.436e-01 1.427e-02
SC 9.962e+01 1.436e-01 9.529e+01
SLDVE 5.930e-05 5.838e-09 5.830e-13

Table 4.19: Accuracy of the global error evaluation techeiapplied to DAE2 on the non-

uniform grids.

2. Problem DAEZ2: Recall that the Nystrom methods are weakly stable and vegiiate the
stiff problem DAE2 on the non-uniform grids. Figure 4.10 wisathat the error estimate
computed using SLDVE agrees very well with the true erroradidition to this ability to
provide a good approximation of the error, SLDVE is also ghaaterms of CPU time
(See Table 4.20). Only this method exhibit a good perforreénderms of accuracy and
CPU time. The error estimate produced by the Zadunaiskysigae and solving for the
correction are not accurate, and the methods are shown tonijeutationally expensive.
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Figure 4.10: The true error and its estimates obtained fatfyn methods applied to DAE2 on
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the non-uniform grids

Table 4.20: CPU time (in sec) of the global error evaluatippli@d to DAE2 on the non-uniform

grids

T=1072

T=103

T=10"%

Richardson

Using 2 methods

0.044

0.380

3.776

Zadunaisky

0.060

0.588

6.856

SC

0.060

0.588

5.748

SLDVE

0.032

0.304

3.208
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Chapter 5
Conclusion

The main aim of this dissertation was to compare the perfoomaf different global error eval-
uation techniques when they are applied to multistep methodolve both ODEs and index 1
DAEs.

To achieve this goal, a theoretical background of the methaas first provided. We implemented
different techniques for global error evaluation in C++ &odsidered two sets of test ODEs and
index 1 DAEs problems to conduct numerical experiments. t€eewere performed for different
types of multistep methods and different grids. We condutiie test on a personal computer with
processotntel(R) Pentium(R) 4 CPU 3.20GHmderUbuntu Linux

Numerical results for ODEs were presented in Chapter 3. €hkelts showed that the SLDVE
provides an excellent approximation to the error producganhltistep methods. This method
exhibits advantages in terms of accuracy and CPU time. Weé tegpoint out that SLDVE was

able to estimate the error with accuracy of order 5 even whetrtie error itself is large. This was
the case, as example, when we used the Adams method of o@eol ¢ the stiff ODE ODE4 on

the uniform grids. This result was also confirmed when thetfdys method, which is a weakly
stable multistep method, was used to solve the same problem.

Following the SLDVE are the Richardson extrapolation areluking two different methods. On
uniform grids, these methods provided the same accuradyeaSUDVE, but are more expensive
in terms of CPU time. The numerical results indicate thaRfehardson extrapolation integrates
the equation and evaluates the global error 3 times slower$.DVE. As for using two different

methods, the integration of the problem and the evaluatiadheoglobal error last 2 times longer
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than the SLDVE. This result can be explained by the numbeigbt hand function calls and the
resolution non-linear equations needed when implicit méshare used.

The solving for the corrections and the Zadunaisky’s tegph@ivere particularly expensive and the
accuracy of the global error estimate were not satisfactdrg latter result confirms the conclusion
of Aid and Levacher in [1]. Similar results were obtainedrion-uniform grids.

For the index-1 DAE, similar results were obtained. The qanfance of SLDVE was confirmed
in terms of accuracy and CPU time. This global error evatunasitrategie worked well for both
non-stiff and stiff problems. We specially want to point theit SLDVE was the only strategie that
presents the ability to estimate the error correctly wherNiastrom method of order 4 was used to
solve the stiff problem DAE2 on the non-uniform grids. Rid&on extrapolation and using two
different methods show some interest only for some problems

The similarity in the results for ODE and DAE can be explailbgdhe fact that thetate space
form methods were used to solve the DAES, that is the ODE part adiation was solve using

the usual linear multistep methods for ODEs.
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