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Abstract

In this dissertation we study the dynamics of excited giant gravi-

tons. Giant gravitons are spherical membranes with a D3-brane dipole

charge. Giant gravitons are excited by attaching open strings to them.

We develop techniques to compute the one-loop anomalous dimensions

of operators in the N = 4 super Yang-Mills theory which are dual to

open strings ending on boundstates of sphere giant gravitons. The

results presented in this dissertation are applicable to excitations in-

volving an arbitrary number of strings. We consider open strings which

carry angular momentum on an S3 embedded in the S5 of the AdS5×S5

background. The problem of computing the one-loop anomalous di-

mensions is replaced by the problem of diagonalizing an interacting

Cuntz oscillator Hamiltonian. We provide evidence that our Cuntz os-

cillator dynamics show how Chan-Paton factors emerge dynamically.
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1 Introduction

The gauge theory/gravity correspondence[1],[2],[3] has given us intriguing

insights into the quantum gravity problem. As we shall see in section 2.1,

the claim is made that a quantum string field theory on Anti-deSitter (AdS )

space with certain boundary conditions is equivalent to a Quantum Field

Theory (QFT) defined on a brane. Thus, we should be able to use a N = 4

super Yang-Mills theory as a definition of quantum gravity on AdS5×S5.

There has been interesting progress in this direction recently, for more de-

tails see [4],[5]. However, the correspondence is not yet understood well

enough for this to be possible. A detailed understanding of the gauge the-

ory/gravity correspondence is frustrated by the fact that it is a weak/strong

coupling duality in the ’t Hooft coupling. At weak ’t Hooft coupling the

field theory may be treated perturbatively, but the spacetime of the dual

quantum gravity is highly curved. In the opposite limit of strong ’t Hooft

coupling we have to face the difficult problem of strongly coupled quantum

field theory. The dual quantum gravity however, simplifies, because in this

limit the curvature of the spacetime is small. For this reason, most compu-

tations which can be carried out on both sides of the correspondence (and

hence clearly shed light on the correspondence) compute quantities that are

protected by symmetry - typically supersymmetry (see [6] and references

therein). The number of these tests and the agreement found is impressive.

However, computing and comparing protected quantities is not satisfying -

to probe dynamical features of the correspondence it would be nice to be

able to compare quantities that are not protected by any symmetries. This

is in general, a formidable problem. In [7], the notion of an almost BPS

state was introduced. These states are systematically small deformations

of states that are protected. For this reason, for almost BPS states, it is
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possible to reliably extrapolate from weak to strong coupling. A good exam-

ple of almost BPS states are the BMN loops[8]. By studying BMN loops it

has been possible to probe truly stringy aspects of the gauge theory/gravity

correspondence (see [9] and references therein).

In this dissertation, we will be examining giant gravitons. Giant gravi-

tons are half-BPS states, and are the source of many quantities that are

accessible on both sides of the correspondence. In addition, they are ex-

amples of protected non perturbative objects, which make them interesting

from a string theory perspective. A giant graviton is a spherical D3 brane

extended in the sphere[10] or in the AdS space [11],[12],[13] of the AdS×S

background. They are (classically) stable due to the presence of the five

form flux which produces a force that exactly balances their tension. The

force of the five form flux is a velocity dependent (similar to the Lorentz

force law) force. Thus, the size of the giant graviton is determined by it’s

angular momentum. The dual description of giant gravitons is in terms of

Schur polynomials in the Higgs fields[14],[15], which we will review in section

2.2.

Our interest in giant gravitons is due to the fact that excited giant gravi-

tons provide a rich source of nearly BPS states. We can excite giant gravitons

by attaching open strings to them. The gauge theory operator dual to an

excited sphere giant is known and the anomalous dimension of this operator

reproduces the expected open string spectrum[16]1. This has been extended

and the operators dual to an arbitrary system of excited giant gravitons is

now known[20]. The dual operators, restricted Schur polynomials, beauti-

fully reproduce the restrictions imposed on excitations of the brane system

by the Gauss law. Further, these excited giant gravitons have recently been
1See [17],[18],[19] for further studies of non-BPS excitations that have been interpreted

as open strings attached to giant gravitons.
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identified as the microstates of near-extremal black holes in AdS5×S5[21].

Although the evidence for identifying the restricted Schur polynomials as

the operators dual to excited giant gravitons is convincing, much remains

to be done. For example, we do not yet understand the detailed mecha-

nism allowing Chan-Paton factors, expected for strings attached to a bound

state of giant gravitons, to emerge from the super Yang-Mills theory. In

this dissertation, our goal is to explore this issue, by providing techniques

which allow the computation of the anomalous dimensions of excited giant

gravitons, to one loop. We will argue that the Chan-Paton factors emerge

from the symmetric group labels of the restricted Schur polynomials.

The computation of anomalous dimensions of operators in N = 4 super

Yang-Mills theory has progressed considerably. Much of the recent progress

was sparked by a remarkable paper of Minahan and Zarembo[22] which

shows that the spectrum of one loop anomalous dimensions of operators

dual to closed string states, in a sub sector of the theory, gives rise to an

integrable SO(6) spin chain. This result can be generalized to include the

full set of local operators of the theory[23]. The integrable spin chain model

describing the full planar one loop spectrum of anomalous dimensions can

be solved by Bethe-Ansatz techniques[23]. Clearly, it is desirable to find a

similar approach for operators dual to open strings. A naive generalization

is frustrated by the fact that, since the open string and giant can exchange

momentum, the number of sites of the open string lattice becomes a dy-

namical variable2. This was circumvented in [25] by introducing a Cuntz

oscillator chain. Restricting to the SU(2) sector, the spin chain is obtained

by mapping one of the matrices, say Z, into a spin up and the other, say

Y , into a spin down. In contrast to this, the Cuntz chain uses the Y s to set
2An exception to this is an open string attached to a maximal giant graviton[24].
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up a lattice which is populated by the Zs. Thus the number of sites in the

Cuntz chain is fixed.

The power of the spin chain goes beyond the computation of anomalous

dimensions. Indeed, the low energy description of the spin chain relevant

for closed string states appearing on the field theory side matches perfectly

with the low energy limit of the string action in AdS5×S5[26]. This is an

important result because it shows how a string action can emerge from large

N gauge theory. For the open string, the coherent state expectation value of

the Cuntz chain Hamiltonian reproduces the open string action for an open

string attached to a sphere giant in AdS5×S5[25],[17], for an open string

attached to an AdS giant in AdS5×S5[27] and for an open string attached

to a sphere giant in a deformed AdS5×S5 background[28]. Recently[29],

the worldsheet theory of an open string attached to a maximal giant has

been studied. Evidence that the system is integrable at two loops has been

obtained.

The fact that the open string can exchange momentum with the giant is

reflected in the fact that there are sources and sinks (at the endpoints of the

string) for the particles on the chain. The structure of these boundary inter-

actions is complicated: since the brane can exchange momentum with the

string, the brane will in general be deformed by these boundary interactions.

The goal of this dissertation is to determine this Cuntz chain Hamiltonian

for multiple strings attached to an arbitrary system of giant gravitons. In

particular, this entails accounting for back reaction on the giant graviton.

To compute the Cuntz chain Hamiltonian, we need the two point functions

of restricted Schur polynomials. It is an involved combinatoric task to com-

pute the two point functions of restricted Schur polynomials. The required

technology to compute these correlators, in the free field limit, has recently
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been developed in [30]3. This was then extended to one loop, for operators

dual to giants with a single string attached[32]. In this dissertation, we

extend the existing technology, allowing the one loop computation of cor-

relators dual to giant graviton systems with an arbitrary number of strings

attached.

The construction of the operators dual to excitations described by strings

stretching between the branes requires the construction of an “intertwiner”[30].

One of the results of this dissertation, is to provide a general construction

of the intertwiner. This construction is given in section 4.

The dissertation is organized as follows.

In section 2 we review the AdS/CFT correspondence and Schur polyno-

mials. In section 2.1, we review the history behind the holographic principle,

and examine the concrete realisation of this principle, the AdS/CFT cor-

respondence. In section 2.2, we examine the operators dual to giant gravi-

tons, the Schur polynomials. We also introduce the graphical notation used

throughout this dissertation.

In section 3 we define the restricted character. In section 3.1 we ex-

amine how the restricted character is calculated. In section 3.2, we intro-

duce a graphical notation known as “strand diagrams”, which is designed

to simplify the computation of restricted characters. In section 3.3, we give

examples illustrating how strand diagrams are used. In section 3.4 we il-

lustrate how we can use restricted characters to calculate characters of Sn,

thus providing an important check of our restricted character formula. In

section 3.5, we use strand diagrams to write down the irreducible matrix

representations of Sn.

In section 4 we introduce the operators dual to states with open strings
3For some earlier related work, see[31].
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stretching between giant gravitons. In section 4.1, we give the definition of

an “intertwiner” for a system of two branes, with strings stretching between

them. In section 4.2, we generalize the result given in section 4.1. In sec-

tion 4.3, we consider a system of three branes, with three strings stretched

between them.

In section 5 we derive identities that can be used to obtain the Cuntz

chain Hamiltonian that accounts for the O(g2
YM ) correction to the anoma-

lous dimension of our operators. In section 5.1, we discuss the derivation of

a hopping identity. In section 5.2, we examine the identities which are rele-

vant to hopping off the first site of the string, as there is a difference if the

first site or the last site of the string participates in the hopping. In section

5.3, we examine the identities which are relevant to hopping off the last site

of the string. In section 5.4, we discuss the extensive numerical tests that

were performed in order to test our identities. In section 5.5, we rewrite

our operators in terms of Cuntz chain states by using the state-operator

correspondence.

In section 6 we simply quote the six normalization factors that enter the

relation between the restricted Schur polynomials and the normalized Cuntz

chain states for the excited two giant graviton bound state.

In section 7 we present the main technical result of the dissertation.

In section 8 we describe a new “physical basis”. The Hamiltonian we

derive in section 7 treats string 1 and string 2 differently, which arises be-

cause when we build our operators, we treat the two strings differently. The

new physical basis is singled out by requiring the two strings to be treated

on an equal footing.

We conclude the main sections with a discussion of the main results.

The appendices provide background for the interested reader. Appendix
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A reviews the properties of Young diagrams. Appendix B gives a simple

example on how to calculate characters. This example gives useful back-

ground to the more general formula given in the main sections. In appendix

C we review the subgroup swap rule and in appendix D we show how the

subgroup swap rule is used in conjunction with the reduction rule by calcu-

lating a two point function. In addition, we show how to determine which

terms in the two point function are subleading.

The new results obtained in this dissertation have been posted on the

arXiv[48] and have been submitted for publication to the Journal of High

Energy Physics.
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2 Background

2.1 AdS/CFT Correspondence

The AdS/CFT correspondence is a concrete realisation of the holographic

principle. The holographic principle was initially proposed by Gerard ’t

Hooft in [42] and extended by Leonard Susskind in [46]. Although the vast

majority of authors use the term “holographic principle” there are some

authors who feel that it has been elevated to the status of ‘principle’ without

sufficient merit, and that it should rather be viewed as a conjecture[45].

One might take this criticism to mean that there isn’t sufficient evidence for

the holographic principle. As we shall see, there does exist evidence which

suggests that we should take this principle very seriously. The elevation

from conjecture to principle does require us to assume that the properties

of black holes we shall investigate apply generally4.

A hologram (in the usual sense) is a case where a 2-dimensional surface

can give rise to a 3-dimensional image. The holographic principle takes this

idea, and applies it to the universe. It says that the number of degrees of

freedom available do not scale like the volume of the system (as one would

expect) but rather they scale like the surface area[47]. The analogy to a

hologram now becomes clear. This seems to be an outrageous claim, how

can we be expected to believe that degrees of freedom scale like surface area?

To understand why this claim is made, we will need to examine black holes.

There are four laws of black hole mechanics

• The Zeroth Law

A stationary black hole’s horizon has a constant surface gravity, κ.
4There are heuristic arguments as to why we should take this assumption seriously,

but they are beyond the scope of this dissertation.
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• The First Law

dM =
κ

8π
dA+ ΩdJ + ΦdQ.

• The Second Law

The horizon area does not decrease with time, dAdt ≥ 0.

• The Third Law

It is not possible to form a black hole with vanishing surface gravity.

The zeroth and third laws given above are stated in terms of the surface

gravity. The surface gravity of a black hole is defined to be the force required

to keep an object of unit mass stationary at the event horizon by an observer

at infinity. The zeroth law tells us that this surface gravity is a constant

over the entire event horizon. To gain some insight into the first law, we

will first examine the second law.

The second law appears to be very similar to the law of thermodynamics

which states that entropy cannot decrease5. Because of this similarity it

seems natural that we identify the area of the horizon with entropy. Once

we have made that connection, we can then make the analogy between

surface gravity and temperature. To do this, let us now examine the first

law (neglecting angular momentum and electric charge)

dM = κ
dA

8πG
(2.1)

and compare it with the corresponding thermodynamics equation

dE = TdS. (2.2)

It is now clear that surface gravity is playing the role of temperature. With
5Also known as the area theorem, which was proved by Stephen Hawking.
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this insight, we can now understand that the third law is analogous to not

being able to reach absolute zero in thermodynamics, and the zeroth law

is equivalent to saying that a system in equilibrium will have a uniform

temperature.

This analogy is interesting, but is it just an analogy? Clearly not, else

we would not be discussing it! Initially, there was skepticism that this could

be true due to the “no hair” theorem. This theorem states that all you

need to specify the state of a black hole is to specify it’s charge, angular

momentum, and it’s mass6. This is where the reader may be skeptical.

How can an object that requires so few parameters to know it’s state have

such large entropy? Progress was made when Stephen Hawking showed that

black holes should radiate, thus giving a way to calculate the temperature of

a black hole. This temperature read off the predicted black body radiation

spectrum, was the same as the ‘temperature’ in the analogy above. As was

mentioned above, we will assume that this property of gravity is general,

and therefore entropy is proportional to area, not volume.

This identity of a temperature and an entropy is astounding, and the

implications are equally astounding. Indeed, as Jacobson has argued[44], it

suggests that the Einstein equations are an equation of state! How would

we begin to quantize the wave equation for sound travelling through air?

We don’t. Similarly, this identity suggests that we shouldn’t quantize the

Einstein equation. This isn’t to say that the phenomenon that the Einstein

equation describes is not quantum mechanical, but rather that we cannot re-

cover this underlying quantum mechanical system by canonically quantizing

the Einstein equation. We obviously require a new approach.

In [1] the proposal is made that a quantum string field theory on Anti-
6That is, in 3+1 dimensions.
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deSitter (AdS ) space with certain boundary conditions is equivalent to a

Quantum Field Theory (QFT) defined on a brane. Here we are seeing the

implementation of the holographic principle. What Maldacena has claimed

is that a theory of quantum gravity defined in one spacetime is equivalent

to another non-gravitational theory defined on another spacetime of lower

dimension! Let us examine this in more detail.

The correspondence claims that a maximally supersymmetric SU(N)

Yang-Mills theory in 4-dimensional Minkowski spacetime is dual to a type

IIB closed superstring theory[43]. The type IIB string theory lives in 10-

dimesions, five of those dimensions form a 5-sphere (S5), while the other

five form a noncompact AdS space. This AdS5× S5 space has negative cur-

vature, and N units of five form flux. We call the SU(N) Yang-Mills theory

“maximally supersymmetric” as it has the most supersymmetry possible for

a non-gravitational theory. This field theory has no dimensionful parame-

ters, it is invariant under conformal transformations. We therefore call it a

Conformal Field Theory (CFT). The duality claims that we have two dif-

ferent theories describing the same physics. We could thus use the N = 4

super Yang-Mills theory as a definition of quantum gravity on AdS5 × S5.

N indicates the number of spinor supercharges that the gauge theory

has. N = 4 is the maximal number of supercharges possible for our gauge

theory which exists in four dimensions[6]. There are fifteen operators which

generate the conformal symmetries. Of these generators, six are the Lorentz

generators, four are the spacetime translation generators, another four are

the conformal transformations, and the last generator gives rise to the scaling

symmetry. These symmetries must appear in our dual description. That

is, on the string theory side. We do find that the isometries of the AdS5

space are generated by fifteen operators, and these operators satisfy the
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same Lie algebra as our field theory operators. There are also isometries

associated with the S5 space, and these correspond to symmetries in the

field theory description due to scalar fields and fermions. This provides

further confidence that the correspondence is correct.

We leave the interesting problem of proving the AdS/CFT correspon-

dence as a challenging exercise for the reader.

2.2 Schur Polynomials

In this subsection we will review Schur Polynomials and their labelling,

Young diagrams7. For a more detailed discussion the interested reader can

consult [20; 30; 32].

Schur polynomials in the Higgs field have been proposed to be the op-

erators dual to giant gravitons[14; 15]. The Schur polynomial is defined as

follows

χR(Z) =
1
n!

∑

σ∈Sn

χR(σ)Zi1iσ(1)
Zi2iσ(2)

. . . Ziniσ(n)
(2.3)

where R is a Young diagram with n boxes, χR(σ) is the character of σ ∈ Sn
in representation R, and Z is built out of two of the six Higgs in N = 4

super Yang-Mills theory. We can look up the values for χR(σ) in character

tables for the symmetric group. Alternatively, we will show in section 3 that

it is possible to calculate χR(σ) using the formula we develop to calculate

restricted characters.

There is a link between Sn and U(N) that arises because the symmetric

group and the unitary group commute. To get irreps of the unitary group

we first guess that they are related to the symmetric group. A natural

choice is then to try symmetric and antisymmetric tensors. This is known

as the Frobenius-Schur duality, which is a duality between the representation
7For a brief summary of Young diagrams and their properties see Appendix A
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theory of the symmetric group and the unitary group. The symmetric and

antisymmetric tensors are eigenfunctions of the symmetric group.

The Schur polynomial, χR(U), is usually evaluated on the field of uni-

tary matrices, U ∈ U(N). This gives us the character of U(N) element

U in the irrep labelled by the Young diagram R. In this dissertation we

will be studying χR(Z), where Z is not an element of the group, but rather

Z ∈ u(N), the algebra. A sphere giant’s angular momentum is cut off, so if

we can find operators that also cut off angular momentum, then that will be

convincing evidence that they are dual to sphere giants. The antisymmetric

representation for a Young diagram is indeed cut off. The number of boxes

in a Young diagram corresponds to the degree of the Schur polynomial that

it labels. Angular momentum is a conserved quantity arising from the sym-

metry of the five sphere. The symmetry which leaves the five-sphere in the

geometry invariant is the SO(6) rotations.

On the field theory side, the SO(6) rotations rotate the six Higgs fields

of the theory into each other. This is called the R symmetry which has

corresponding R charge. Under this R symmetry the field Z is charged

with one unit, therefore n fields correspond to a charge n state. R charge is

mapped into angular momentum, and therefore the Schur polynomial with

degree n is dual to a state with angular momentum n.

Thus, each column of the Young diagram is interpreted as a membrane.

The number of boxes in a given column is the angular momentum of the

corresponding membrane. Since the angular momentum of the giant deter-

mines the size of the giant, the longer the column, the bigger the brane.

We excite giant gravitons by attaching open strings. The proposal was

made in [20] to insert words (W (a))ji describing open strings into the operator

describing the system of giant gravitons in order to achieve this. Each word
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corresponds to one open string.

χ
(k)
R,R1

(Z,W (1), ...,W (k)) =
1

(n− k)!
∑

σ∈Sn

TrR1(ΓR(σ))Tr(σZ⊗n−kW (1) · · ·W (k)),

(2.4)

where

Tr(σZ⊗n−kW (1) · · ·W (k)) = Zi1iσ(1)
Zi2iσ(2)

· · ·Zin−k

iσ(n−k)
(W (1))in−k+1

iσ(n−k+1)
· · · (W (k))iniσ(n)

.

The representation R of the giant graviton system is a Young diagram with

n boxes, i.e. it is a representation of Sn. R1 is a Young diagram with n− k
boxes, i.e. it is a representation of Sn−k. ΓR(σ) is the matrix representing

σ in irreducible representation R of the symmetric group Sn. If we imagine

that the k words are all distinct, then this corresponds to a case where all the

open strings are distinguishable. We no longer have a nice group theoretical

interpretation for this object.

Under a state-operator map, we map states of the string theory to op-

erators of the quantum field theory

〈φ|ψ〉 ←→ 〈O†φOψ〉.

At large N we have

〈χR,Rαχ
†
S,Sβ
〉 ∝ δRSδRα,Sβ

,

so these operators are dual to orthogonal states, as required.

Consider an Sn−k ⊗ (S1)k subgroup of Sn. The representation R of

Sn will subduce a (generically) reducible representation of the Sn−k ⊗ (S1)k

subgroup. One of the irreducible representations appearing in this subduced

representation is R1. TrR1 is an instruction to trace only over the indices
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belonging to this irreducible component. If the representation R1 appears

more than once, things are more interesting. The example discussed in [20]

illustrates this point nicely. Suppose R → R1 ⊕ R2 ⊕ R2 under restricting

Sn to Sn−2 × S1 × S1. Choose a basis so that

ΓR(σ) =




ΓR1(σ)i1j1 0 0

0 ΓR2(σ)i2j2 0

0 0 ΓR2(σ)i3j3



, ∀σ ∈ Sn−2 × S1 × S1,

ΓR(σ) =




A
(1,1)
i1j1

A
(1,2)
i1j2

A
(1,3)
i1j3

A
(2,1)
i2j1

A
(2,2)
i2j2

A
(2,3)
i2j3

A
(3,1)
i3j1

A
(3,2)
i3j2

A
(3,3)
i3j3



, σ /∈ Sn−2 × S1 × S1.

There are four suitable definitions for TrR2(ΓR(σ)): Tr(A(2,2)), Tr(A(2,3)),

Tr(A(3,2)) or Tr(A(3,3)). Interpret the operator obtained using Tr(A(2,3)) or

Tr(A(3,2)) as dual to the system with the open strings stretching between

the giants and the operator obtained using Tr(A(2,2)) or Tr(A(3,3)) as dual

to the system with one open string on each giant. In general, identify the

“on the diagonal” blocks with states in which the two open strings are each

on a specific giant and the “off the diagonal” blocks as states in which

the open strings stretch between two giants. Since the representation R2

appears with a multiplicity two, there is no unique way to extract two R2

representations out of R. Therefore the specific representations obtained will

depend on the details of the subgroups used in performing the restriction.

These subgroups are the set of elements of the permutation group that leave

an index invariant, σ(i) = i. Choosing the index to be the index of an

open string, we can associate the subgroups participating with specific open
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strings. The subgroups are specified by dropping boxes from R, so that we

can now associate boxes in R with specific open strings. This leads to a

convenient graphical notation which has been developed in [30; 32].

Graphically, when we wish to attach an open string to a giant graviton

we place a number in one of the boxes of a Young diagram. The number can

only be placed in a box such that the removal of that box still leaves a valid

Young diagram. Consider the example in Figure 1. Two open strings have

been attached, one on the large threebrane, one on the smaller threebrane.

The numbering of the boxes indicates the order in which the strings would

be removed. We can see that by removing the boxes labelled “1” and “2”

we are still left with a valid Young diagram. Each string is given a certain

orientation. This illustrates an important point. The end points of an open

string carry charge8, and so the way they are attached to the membrane is

important. It doesn’t make a difference in this example, but we will see in

a moment why orientation is important. This figure corresponds to an “on

the diagonal” block. A simple example of an on-diagonal block calculation

is given in Appendix B.

The world volume of a giant graviton is a compact space, and the Gauss

law on a compact space implies that the total charge must sum to zero. This

restricts the number of ways in which we can attach strings to membranes.

Consider Figure 2. The two strings that we have attached now stretch be-

tween the two membranes, the arrow-heads indicate that they have opposite

orientation, thus ensuring that the total charge sums to zero. This figure

corresponds to an “off the diagonal” block.

Now consider Figure 3. We now have three membranes, with three

strings attached. Notice that the number of strings leaving a brane equals
8That is, color charge
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Figure 1: This figure illustrates the correspondence between our operators
and giant gravitons. In this example, each membrane has one string at-
tached.

the number of strings ending on a brane. This is the easiest way to check

that the Gauss law is not being violated. Let’s examine the string labelling

in more detail. The labels placed in the Young diagram specify the sequence

of irreps employed in subducing R1. We place a pair of labels into each box,

a lower label and an upper label9. The representations needed to subduce

the row label of R1 are obtained by starting with R. The second repre-

sentation is obtained by dropping the box with upper label equal to 1; the

third representation is obtained from the second by dropping the box with

upper label equal to 2 and so on until the box with label k is dropped. The

representations needed to subduce the column label are obtained in exactly

the same way except that instead of using the upper label, we now use the

lower label.

As an example of the restrictions imposed by the Gauss law, consider

the state given by Figure 4. This state is forbidden. The number of strings

leaving a brane does not equal the number of strings ending on a brane.
9For the example in Figure 1, the upper label and the lower label are the same, and

we represent this by only inserting a single number.
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Figure 2: This figure illustrates the correspondence between our operators
and giant gravitons. In this example, two strings stretch between the mem-
branes with opposite orientation, in accordance with Gauss’ law.

There is no restricted Schur polynomial that can reproduce this state. This

shows that the restricted Schur polynomials correctly implement the Gauss

law. For further details and explicit examples, we refer the reader to [30].

So far, we have considered the case where the all the strings are dis-

tinguishable. If, however, any of the strings are identical, then we need

to decompose with respect to a larger subgroup, and pick a representation

where the strings are indistinguishable. For example, consider a bound state

of a giant system with three identical strings attached, we would consider

an Sn−3 ⊗ S3 subgroup of Sn. The restricted Schur polynomial would be

given by χ(3)
R,R1

with R an irrep of Sn and R1 an irrep of Sn−3 ⊗ S3. The S3

subgroup would act by permuting the indices of the three identical strings;

the Sn−3 subgroup would act by permuting the indices of the Zs out of

which the giant is composed. Write R1 = r1 × r2 with r1 are irrep of Sn−3

and r2 an irrep of S3.
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Figure 3: This figure illustrates the correspondence between our operators
and giant gravitons. In this example, three strings stretch between three
membranes. For each membrane, the number of strings leaving a brane
equals the number of strings ending on a brane. This is a general requirement
of the Gauss law.

As an example, if we take R to be an irrep of S9

R = , dimR = 84

then we can have

R1 = ⊗ , dimR1 = 5, R1 = ⊗ , dimR1 = 10,

R1 = ⊗ , dimR1 = 9, R1 = ⊗ , dimR1 = 18,

R1 = ⊗ , dimR1 = 32,
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Figure 4: This figure illustrates the restrictions imposed by the Gauss law.
This state is forbidden, the number of strings leaving a brane does not equal
the number of strings ending on a brane. Consequently, there is no restricted
Schur polynomial corresponding to this state.

or

R1 = ⊗ , dimR1 = 10.

By summing the dimensions of these representations, it is easy to see that

we have indeed listed all of the representations that are subduced by R.

We call the operator 2.4 a restricted Schur polynomial of representation

R with representation R1 for the restriction. This operator is dual to excited

giant gravitons. The giant graviton system is dual to an operator containing

a product of O(N) fields; the open strings are dual to an operator containing

a product of O(
√
N) fields. We will examine the case where:

• The number of strings is O(1), that is, k is O(1).

• The number of boxes in the Young diagram is O(N), that is, n is

O(N).
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3 Restricted Characters

Starting from Sn, define a chain of subgroups Gi i = 1, ..., d as follows

G1 = {σ ∈ Sn|σ(n) = n} (3.1)

Gi = {σ ∈ Gi−1|σ(n− i+ 1) = n− i+ 1}, i = 2, 3, ..., d. (3.2)

In this section we will give a simple algorithm for the computation of

χR1,R2

(
(p1, p2, ..., pm)

)
≡ TrR1,R2

(
ΓR

(
(p1, p2, ..., pm)

))

with R1 and R2 irreps of Gd subduced from R, (p1, p2, ..., pm) is an element

of Sn specified using the cycle notation and n − d < pi ≤ n ∀i. We call

χR1,R2 a restricted character. If R1 = R2, we will simply write χR1 . We

will see in section 4 that restricted characters determine the normalization

of the intertwiners. Further, they are also needed in the derivation of the

hopping identities that determine the interactions between strings and the

branes to which they are attached.

In the next subsection we will derive the algorithm for the computation

of the restricted character. The second subsection describes a graphical

notation which considerably simplifies the computation. The remainder of

this section then develops this diagrammatic notation further.

3.1 Computing Restricted Characters

Consider an irrep R of Sn labelled by a Young diagram which has at least

two boxes, either of which can be dropped to leave a valid Young diagram10.

Label these two boxes by 1 and 2. Denote the weights of these boxes by c1
10See Appendix A for a review of Young diagrams.
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and c2. Denote the irrep of Sn−2 obtained by dropping box 1 and then box

2 by R′′1 . Denote the irrep of Sn−2 obtained by dropping box 2 and then box

1 by R′′2 . Our first task is to compute

TrR′′1 ,R′′2 (ΓR ((n, n− 1))) .

Using the subgroup swap rule (see Appendix C), we can write

χR′′1 ((n, n− 1)) =
[
1− 1

(c1 − c2)2
]
χR′′2 ((n, n− 1)) +

1
(c1 − c2)2χR

′′
1
((n, n− 1)) (3.3)

+

√
1− 1

(c1 − c2)2
1

c1 − c2
[
χR′′1 ,R′′2 ((n, n− 1)) + χR′′2 ,R′′1 ((n, n− 1))

]

A second application of the subgroup swap rule gives

χR′′2 ,R′′1 ((n, n− 1)) =
[
1− 1

(c1 − c2)2
]
χR′′1 ,R′′2 ((n, n− 1)) +

1
(c1 − c2)2χR

′′
2 ,R

′′
1
((n, n− 1))

+

√
1− 1

(c1 − c2)2
1

c1 − c2
[
χR′′2 ((n, n− 1))− χR′′1 ((n, n− 1))

]
. (3.4)

Now, substituting the results[30]

χR′′1 ((n, n− 1)) =
1

c1 − c2 dimR′′1 , χR′′2 ((n, n− 1)) =
1

c2 − c1 dimR′′2 ,

into (3.3) and (3.4) and solving, we obtain

χR′′1 ,R′′2 ((n, n− 1)) =

√
1− 1

(c1 − c2)2 dimR′′1 = χR′′2 ,R′′1 ((n, n− 1)) .

Next, consider an irrep of Sn labelled by Young diagram R . Choose three

boxes in this Young diagram, and label them 1, 2 and 3 respectively. Choose

the boxes so that dropping box 1 gives a legal Young diagram R′ labelling

an irrep of Sn−1, dropping box 1 and then box 2 gives a legal Young diagram
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R′′ labelling an irrep of Sn−2, and dropping box 1, then box 2 and then box

3 again gives a legal Young diagram R′′′ labelling an irrep of Sn−3. We will

compute

χR′′′ ((n, n− 2)) = TrR′′′ (ΓR ((n, n− 2)))

In what follows, we will frequently need to refer to vectors belonging to

the carrier spaces of specific representations subduced by R when boxes are

dropped from R. A convenient notation is to list the labels of the boxes

that must be dropped from R in the order in which they must be dropped.

Thus, the ket |i, 123〉 is the ith ket belonging to the carrier space of the Sn−3

irrep obtained by dropping box 1, then box 2 and then box 3 from R; the

ket |j, 231〉 is the jth ket belonging to the carrier space of the Sn−3 irrep

obtained by dropping box 2, then box 3 and then box 1 from R (assuming

of course that the boxes can be dropped from R in this order, giving a legal

Young diagram at each step). Start by writing

χR′′′((n, n− 2)) =
dimR′′′∑

i=1

〈i, 123|ΓR ((n, n− 2)) |i, 123〉

=
dimR′′′∑

i=1

〈i, 123|ΓR′ ((n− 1, n− 2)) ΓR ((n, n− 1)) ΓR′ ((n− 1, n− 2)) |i, 123〉.

Noting that ΓR′ ((n− 1, n− 2)) |i, 123〉 must belong to the carrier space of

R′, and using the completeness relation (1R′ is the identity on the R′ carrier

space)

1R′ =
dimR′∑

k=1

|k, 1〉〈k, 1|
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we have

χR′′′ ((n, n− 2)) =
dimR′′′∑

i=1

dimR′∑

j,k=1

〈i, 123|ΓR′ ((n− 1, n− 2)) |k, 1〉〈k, 1|ΓR ((n, n− 1)) |j, 1〉

×〈j, 1|ΓR′ ((n− 1, n− 2)) |i, 123〉.

Now, decompose R′ into a direct sum of Sn−2 irreps R′ = ⊕R′′β. Use the

label β to denote the box that must be dropped from R′ to obtain R′′β. Thus,

we can write

1R′ =
dimR′∑

k=1

|k, 1〉〈k, 1| =
∑

β

dimR′′
β∑

k=1

|k, 1β〉〈k, 1β|

and hence

χR′′′ ((n, n− 2)) =
dimR′′′∑

i=1

∑

β1,β2

dimR′′
β1∑

k=1

dimR′′
β2∑

j=1

〈i, 123|ΓR′ ((n− 1, n− 2)) |k, 1β1〉.

×〈k, 1β1|ΓR ((n, n− 1)) |j, 1β2〉〈j, 1β2|ΓR′ ((n− 1, n− 2)) |i, 123〉

Now, introduce the operator O(2) obtained by summing all two cycles of

the Sn−2 subgroup of which the R′′β are irreps. This operator is a Casimir

of Sn−2. If the Young diagram R′′β has ri boxes in the ith row and ci boxes

in the ith column, then when acting on the carrier space of R′′β we have[41]

O(2)|i, 1β〉 =


∑

i

ri(ri − 1)
2

−
∑

j

cj(cj − 1)
2


 |i, 1β〉 ≡ λβ|i, 1β〉.

Clearly, for the problem we study here, λβ1 = λβ2 if and only if Rβ1 and

Rβ2 have the same shape as Young diagrams. From the definition of the G2
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subgroup given above, it is clear that

[
O(2),ΓR ((n, n− 1))

]
= 0.

It is now a simple matter to see that

λβ1〈k, 1β1|ΓR ((n, n− 1)) |j, 1β2〉 = 〈k, 1β1|O(2)ΓR ((n, n− 1)) |j, 1β2〉

= 〈k, 1β1|ΓR ((n, n− 1))O(2)|j, 1β2〉

= λβ2〈k, 1β1|ΓR ((n, n− 1)) |j, 1β2〉.

so that 〈k, 1β1|ΓR ((n, n− 1)) |j, 1β2〉 vanishes if Rβ1 and Rβ2 do not have the

same shape. A completely parallel argument, using a Casimir of Sn−3, can

be used to show that 〈j, 1α1α2|ΓR′ ((n− 1, n− 2)) |i, 123〉 is only non-zero

if α1 = 2, α2 = 3 or α1 = 3, α2 = 2. Thus,

χR′′′ ((n, n− 2)) =
dimR′′′∑

i=1,j,k

[
〈i, 123|ΓR′ ((n− 1, n− 2)) |k, 123〉〈k, 123|ΓR ((n, n− 1)) |j, 123〉

× 〈j, 123|ΓR′ ((n− 1, n− 2)) |i, 123〉+ 〈i, 123|ΓR′ ((n− 1, n− 2)) |k, 132〉

× 〈k, 132|ΓR ((n, n− 1)) |j, 132〉〈j, 132|ΓR′ ((n− 1, n− 2)) |i, 123〉
]

=
[

1
(c2 − c3)2

1
c1 − c2 +

(
1− 1

(c2 − c3)2
)

1
c1 − c3

]
dimR′′′ .

This example illustrates the general algorithm to be used to compute

restricted characters:

• The group element whose trace is to be computed, can be decomposed

into a product of two cycles of the form ΓR ((i, i+ 1)). A complete set

of states is inserted between each factor.

• Using appropriately chosen Casimirs, one can argue that the only non-

zero matrix elements of each factor, are obtained when the order of
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boxes dropped to obtain the carrier space of the bra matches the order

of boxes dropped to obtain the carrier space of the ket, except for the

(n− i+ 1)th and (n− i+ 2)th boxes, whose order can be swapped.

• We can plug in the known value of the restricted character, which we

have computed for precisely the two cases arising in the previous point.

3.2 Strand Diagrams

Strand diagrams are a graphical notation designed to compute restricted

characters. Strand diagrams keep track of two things:

• The order in which boxes are to be dropped and the identity (= posi-

tion within the Young diagram) of the boxes.

• The group element whose trace we are computing.

If we are to drop n boxes, we draw a picture with n columns. The columns

are populated by labelled strands - each strand represents one of the boxes

that are to be dropped. We label the strands by the upper index in the

box. This graphical notation should be familiar from the background given

in section 2.2. Whatever appears in the first column is to be dropped first;

whatever appears in the second column is to be dropped second and so on.

The strands are ordered at the top of the diagram, according to the order in

which they must be dropped to get the row index. The strands are ordered at

the bottom of the diagram according to the column index. The strands move

from the top of the diagram to the bottom of the diagram, without breaking,

so that strand ends at the top connect to the corresponding strand ends at

the bottom. To connect the strands (which in general are in a different

order at the top and bottom of the diagram) we need to weave the strands,

thereby allowing them to swap columns. The allowed swaps depend on the
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specific group element whose trace we are computing. To determine the

allowed swaps, write the group element as a product of cycles of the form

(i, i+ 1). For example, we would write

(n, n− 2) = (n, n− 1)(n− 1, n− 2)(n, n− 1)

Each time we drop a box, we are considering a new subgroup. The action of

the permutation group can be visualized as a permutation of n indices. The

subgroups are obtained by considering elements that hold certain indices

fixed (see equations (3.1) and (3.2)). Choose the subgroups involved so that

when box i is dropped, n − i + 1 is held fixed. Clearly then, each column

j is associated with the index n− j + 1. Each cycle (i, i+ 1) is drawn as a

box which straddles the columns associated with indices i and i+ 1. When

the strands pass through a box, they may do so without swapping or by

swapping columns. Each box is associated with a factor. Imagine that the

strands passing through the box, reading from left to right, are labelled n

and m. The weights associated with these boxes are cn and cm respectively.

If the strands do not swap inside the box the factor for the box is

fno swap =
1

cn − cm

If the strands do swap inside the box, the factor is

fswap =

√
1− 1

(cn − cm)2
.

These factors should not be confused with the swap and no swap factors

used in the subgroup swap rule (see Appendix C). In fact, the factors are

completely reversed in this case. Denote the product of the factors, one from
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each box, by F . We have

TrR1,R2

(
ΓR(σ)

)
=

∑

i

FidimR1

where the index i runs over all possible paths consistent with the bound-

ary conditions. With a little thought, the astute reader should be able to

convince herself that this graphical rule is nothing but a convenient repre-

sentation of the computation of the last subsection.

3.3 Strand Diagram Examples

In this section we will illustrate the use of strand diagrams in the com-

putation of restricted characters. For our first example, we consider the

computation of

χ1 = Tr 1
3

2
1

3
2

(
Γ

(
(6, 4)

))

Writing (6, 4) = (6, 5)(4, 5)(6, 5) we obtain the strand diagram shown in

Figure 5. The factors for the upper most, middle and lower most boxes are

√
1− 1

(c1 − c2)2 ,
√

1− 1
(c1 − c3)2 ,

1
c2 − c3

respectively. Thus,

χ1 =

√
1− 1

(c1 − c2)2

√
1− 1

(c1 − c3)2
1

c2 − c3 dim

= 2

√
1− 1

(c1 − c2)2

√
1− 1

(c1 − c3)2
1

c2 − c3 .

The alert reader may worry that our recipe is not unique. Indeed we

could also have written (6, 4) = (4, 5)(6, 5)(4, 5). In this case, we obtain the

28



Figure 5: The strand diagram used in the computation of χ1.

strand diagram given in Figure 6. In this case, the factors for the upper

most, middle and lower most boxes are

1
c2 − c3 ,

√
1− 1

(c1 − c2)2 ,
√

1− 1
(c1 − c3)2

respectively. This gives exactly the same value for χ1.

Next, we consider the computation of

χ2 = Tr 1
2

3

(
Γ

(
(6, 4)

))
.

This example is interesting as more than one path contributes. Writing

(6, 4) = (4, 5)(6, 5)(4, 5) we obtain the strand diagrams shown in Figure 7.
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Figure 6: A second strand diagram that can be used in the computation of
χ1.

The product of factors for the diagram on the left is

1
c1 − c3

[
1− 1

(c2 − c3)2
]
.

The product of factors for the diagram on the right is

1
c1 − c2

1
(c2 − c3)2 .

Thus,

χ2 =
(

1
c1 − c3

[
1− 1

(c2 − c3)2
]

+
1

c1 − c2
1

(c2 − c3)2
)

dim

= 2
(

1
c1 − c3

[
1− 1

(c2 − c3)2
]

+
1

c1 − c2
1

(c2 − c3)2
)
.
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The reader can check that the same value for χ2 is obtained by decomposing

(6, 4) = (6, 5)(4, 5)(6, 5).

Figure 7: The strand diagrams used in the computation of χ2.

Finally, consider

χ3 = Tr 1
2

3

(
Γ

(
1
))
.

Since we consider the identity element, the strand diagram has no boxes and

hence χ3 = dim = 2. Since (4, 5)(4, 5) = 1 we could also have written

χ3 = Tr 1
2

3

(
Γ

(
(4, 5)(4, 5)

))

In this case there are two strand diagrams given in Figure 8. Summing
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the contributions from these two strand diagrams we obtain

χ3 =
1

(c2 − c3)2 dim +
(

1− 1
(c2 − c3)2

)
dim = dim = 2.

Once again, the two ways of writing the restricted character give the same

result. Note that the trace

Figure 8: The strand diagrams used in the computation of χ3.

χ3 = Tr 1
2

2
1

3

(
Γ

(
1
))
,

clearly vanishes because we are tracing the identity over an off the diagonal

block. This is reflected graphically by the fact that there is no strand dia-

gram that can be drawn - the order of strands at the top of the diagram does

not match the order of strands at the bottom of the diagram and since we

consider the identity element, the strand diagram has no boxes. The astute

reader may be wondering whether it is possible to decompose the identity
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as (6, 5)(6, 5). Indeed, this is possible, and gives us two strand diagrams of

opposite sign, which cancel to zero as required. However, we will always use

the simplest decomposition. For the identity, the simplest decomposition is

to have no boxes at all.

3.4 Tests of the Restricted Character Results

By summing well chosen restricted characters, one can recover the charac-

ters of Sn which are known. This allows us to perform a number of tests,

which our restricted character formulas pass. As an example, consider the

computation of χR ((6, 7)) for

R = .

From the character tables for S7 we find χR ((6, 7)) = 4. In terms of re-

stricted characters

χR ((6, 7)) = χ 2 1 ((6, 7))+χ 1
2

((6, 7))+χ 2
1

((6, 7)) .

Using the algorithm given above, it is straight forward to verify that

χ 2 1 ((6, 7)) = dim = 4,

χ 1
2

((6, 7)) =
1
6
, χ 2

1

((6, 7)) = −1
6
,

which do indeed sum to give 4. The reader is invited to check some more

examples herself.

As a further check of our methods, we have computed the restricted char-
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acters TrR1,R2

(
ΓR

[
σ
])

numerically. This was done by explicitly constructing

the matrices ΓR
[
σ
]
. Each representation used was obtained by induction.

One induces a reducible representation; the irreducible representation that

participates was isolated using projection operators built from the Casimir

obtained by summing over all two cycles. See appendix B.2 of [30] for more

details. The resulting irreducible representations were tested by verifying

the multiplication table of Sn. The intertwiners were computed using the

projection operators of [30] and the results of section 4; the normalization

of the intertwiner was computed numerically.

3.5 Representations of Sn from Strand Diagrams

Using Strand diagrams, it is possible to write down the irreducible matrix

representations of Sn. We will treat the simplest nontrivial example of S3.

First consider the irrep. Start by numbering the boxes in the Young

diagram labelling the irrep, with an ordering in which the boxes are to be

removed, so that one is left with a legal Young diagram after each box is

removed. These labelled Young diagrams are in one-to-one correspondence

with the matrix indices of the matrices in the irrep. For our example,

i = 1,↔
3 1
2 i = 2,↔

3 2
1 .

Each matrix element of Γ ((12)) is given by a single strand diagram

[
Γ ((12))

]

11

= Tr 3 1
2

((12)) =
1

c1 − c2 =
1
2
,
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[
Γ ((12))

]

12

= Tr 3 1
2

2
1

((12)) =

√
1− 1

(c1 − c2)2 =
√

3
2
,

[
Γ ((12))

]

21

= Tr 3 2
1

1
2

((12)) =

√
1− 1

(c1 − c2)2 =
√

3
2
,

and [
Γ ((12))

]

22

= Tr 3 2
1

((12)) =
1

c1 − c2 = −1
2
,

so that

Γ ((12)) =




1
2

√
3

2
√

3
2 −1

2


 .

In exactly the same way we obtain

Γ ((23)) =



−1 0

0 1


 .

These two elements can now be used to generate the complete irrep.

Next consider . There is only one valid labelling 3 2 1 , so that

the representation is one dimensional. It is straight forward to obtain

Tr 3 2 1 ((12)) =
1

c1 − c2 = 1, Tr 3 2 1 ((23)) =
1

c2 − c3 = 1,

which are the correct results.

Finally, consider . Again, there is only one valid labelling so that the

representation is again one dimensional. We find

Tr 3
2
1

((12)) =
1

c1 − c2 = −1, Tr 3
2
1

((23)) =
1

c2 − c3 = −1,
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which are again the correct results.
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4 Intertwiners

Intertwiners are used to construct operators dual to states with open strings

stretching between giant gravitons. In this section we provide a general

discussion of intertwiners and their construction.

4.1 Strings stretching between two branes

The Gauss Law is a strict constraint on the allowed excited brane configurations[20]:

since the branes we consider have a compact world volume, the total charge

on any given brane must vanish. This implies that to construct a state with

strings stretching between two branes, we need at least two strings in the

brane plus string system. Thus, in constructing the restricted Schur polyno-

mial, we will need to remove at least two boxes. For concreteness, consider

the case of two sphere giants, so that our restricted Schur polynomial is

built with the Young diagram R that has two columns and each column has

O(N) boxes. R has a total of n = O(N) boxes. Denote the two boxes to

be removed in constructing the restricted Schur polynomial11 by box 1 and

box 2. In order to attach strings stretching between these two giants, the

two boxes must obviously belong to different columns. We will assume that

box 1 belongs to column 1 and box 2 to column 2. After restricting Sn to an

Sn−1 subgroup, representation R subduces irrep R′ (whose Young diagram

is obtained by removing box 1 from R) and irrep S′ (whose Young diagram

is obtained by removing box 2 from R). If we now further restrict to an Sn−2

subgroup, one of the irreps subduced by R′ is R′′ (whose Young diagram is

obtained by removing box 2 from R′) and one of the irreps subduced by

S′ is S′′ (whose Young diagram is obtained by removing box 1 from S′).

Note that R′′ and S′′ have the same Young diagram (and hence the same
11See [20; 30; 32] for a detailed discussion of restricted Schur polynomials.
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dimension) but act on distinct states in the carrier space of R. The two

possible intertwiners we can define map between the states belonging to R′′

and the states belonging to S′′.

The precise form of the intertwiners depends on the basis used for the

Sn−2 irreps ΓR′′(σ) and ΓS′′(σ). In writing down the intertwiner, we assume

that ΓR′′(σ) and ΓS′′(σ) represent σ with the same matrix. With this as-

sumption, it is possible to put the elements of the basis of the carrier space

of R′′ into one to one correspondence with the elements of the basis of the

carrier space of S′′: |i, R′′〉 ↔ |i, S′′〉. We will use this correspondence below.

In a suitable basis, we have

ΓR(σ) =




ΓR′′(σ) 0 · · ·
0 ΓS′′(σ) · · ·
· · · · · · · · ·



,

for σ ∈ Sn−2. In constructing the restricted Schur polynomial, we also

consider more general σ ∈ Sn. In this case, if σ /∈ Sn−2, ΓR(σ) will not be

block diagonal. Even in this more general case, we will use the labels of

the Sn−2 subduced subspaces to label the carrier space of irrep R. Denote

the projection operator that projects from the carrier space of R to the R′′

subspace by PR→R′→R′′ , and the projection operator that projects from the

carrier space of R to the S′′ subspace by PR→S′→S′′ . Clearly, the intertwiner

which maps from S′′ to R′′ must take the form

IR′′,S′′ = PR→R′→R′′OPR→S′→S′′ =




0 M · · ·
0 0 · · ·
· · · · · · · · ·



. (4.1)
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The second possible intertwiner that we can construct is given by

IS′′,R′′ = PR→S′→S′′OPR→R′→R′′ =




0 0 · · ·
M 0 · · ·
· · · · · · · · ·



.

We want to find a unique specification for O so that M is simply the identity

matrix. For σ ∈ Sn−2 we have

ΓR(σ)IR′′,S′′ =




0 ΓR′′(σ)M · · ·
0 0 · · ·
· · · · · · · · ·




and

IR′′,S′′ΓR(σ) =




0 MΓS′′(σ) · · ·
0 0 · · ·
· · · · · · · · ·



.

Now, by assumption, ΓR′′(σ) = ΓS′′(σ) since we have σ ∈ Sn−2. Thus,

[
ΓR(σ), IR′′,S′′

]
=




0
[
ΓR′′(σ),M

] · · ·
0 0 · · ·
· · · · · · · · ·



. (4.2)

Applying Schur’s Lemma (for irrep R′′) to the right hand side implies that

M is the identity matrix if and only if
[
ΓR(σ), IR′′,S′′

]
= 0 for all σ ∈ Sn−2.

Clearly, for σ ∈ Sn−2 we have
[
ΓR(σ), PR→R′→R′′

]
=

[
ΓR(σ), PR→S′→S′′

]
=

0 so that

0 =
[
ΓR(σ), IR′′,S′′

]
= PR→R′→R′′

[
ΓR(σ), O

]
PR→S′→S′′ .
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Thus, we will require

[
ΓR(σ), O

]
= 0, ∀σ ∈ Sn−2. (4.3)

If we specify a condition that determines the normalization of the inter-

twiner, then this normalization condition and (4.3) provide the specification

for O that we were looking for. The normalization of the intertwiner is fixed

by demanding that

Tr(M) = dimR′′ ,

with dimR′′ the dimension of irrep R′′. This provides a unique definition of

the intertwiner.

For the example we are considering here, imagine that the Sn−1 subgroup

is obtained as

G = {σ ∈ Sn|σ(n) = n},

and further that the Sn−2 subgroup is obtained as

H = {σ ∈ G|σ(n− 1) = n− 1}.

Then the intertwiner is given by

IR′′,S′′ = NPR→R′→R′′ΓR(n, n− 1)PR→S′→S′′ ,

with

N−1 =
TrR′′,S′′(ΓR(n, n− 1))

dimR′′
≡

dimR′′∑

i=1

〈R′′, i|ΓR(n, n− 1)|S′′, i〉
dimR′′

.

This last equation makes use of the correspondence between the bases of the

carrier spaces R′′ and S′′. Using the technology developed in section 3, we
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find
TrR′′,S′′(ΓR(n, n− 1))

dimR′′
=

√
1− 1

(c1 − c2)2 ,

where c1 and c2 are the weights associated with box 1 and box 2 respectively.

Note that the above trace is invariant under simultaneous similarity trans-

formations of R′′ and S′′. It will however, change under general similarity

transformations so that this last result is dependent on our choice of basis.

4.2 The General Construction

In the previous subsection we developed our discussion of the intertwiner

using a system of two branes with strings stretching between them. Our con-

clusion however, is completely general. For any system of branes with strings

stretching between the branes, the intertwiner is always given, up to normal-

ization, by the product (projection operator)×(group element)×(projection

operator). The Gauss Law forces the net charge on any given brane’s world-

volume to vanish. This implies that for every string leaving a brane’s world-

volume, there will be a string ending on the worldvolume. Thus, starting

with any particular brane with a stretched string attached, we can follow the

string to the next brane, switch to the stretched string leaving that brane,

follow it and so on, until we again reach the first brane. If we move along k

stretched strings before returning to the starting point, the group element

is ΓR(n, n− k+1). The normalization factor easily follows using the results

of section 3.
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4.3 Example

Consider the excited brane system described by the diagram (see 2.2 for a

summary of our graphical notation)

1
2

2
3

3
1 .

The boxes are labelled by the upper index in each box and the weight of

box i is denoted ci. The projector PR→R′′′1
projects through the following

sequence of irreps

→ → → .

The projector PR→R′′′2
projects through the following sequence of irreps

→ → → .

The intertwiner is now given by

I12 = NPR→R′′′2
ΓR ((n, n− 2))PR→R′′′1

,
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where

N−1 =
TrR′′′2 ,R

′′′
1

(ΓR ((n, n− 2)))
dimR′′′1

=
1

c2 − c3

√
1− 1

(c1 − c2)2

√
1− 1

(c1 − c3)2 ,

is easily computed using the methods of section 3. In fact, the strand dia-

gram we use is the same one given by figure 5. To understand the order of

the projection operators, note that

TrR′′′1 ,R
′′′
2

(
ΓR(σ)

)
=

∑

i

〈i, R′′′1 |ΓR(σ)|i, R′′′2 〉

= Tr(N−1PR→R′′′2
ΓR(n, n− 2)PR→R′′′1 ΓR(σ)),

so that the row (column) index of the trace is column (row) index of the

intertwiner respectively.
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5 Hopping Identity

In this section, we derive identities that can be used to obtain the Cuntz

chain Hamiltonian that accounts for the O(g2
YM ) correction to the anoma-

lous dimension of our operators. To construct the “hop off” process, we use

the fact that whenever a Z field hops past the borders of the open string

word W , the resulting restricted Schur polynomial decomposes into a sum

of two types of systems, one is a giant with a closed string and another is

a string-giant system where the giant is now bigger. In the large N limit

only the second type needs to be considered. The identities we derive in

this section express this decomposition. The irreps which play a role in the

derivation of the identities are illustrated in Figure 9. The basic structure of

the derivation of these identities is very similar. For this reason, we explic-

itly derive an identity in the next subsection and simply state the remaining

identities. In contrast to the case of a single string attached[32], here it

does make a difference if the first or last sites of the string participate in

the hopping. The identities needed in these two cases are listed separately.

We have performed extensive numerical checks of the identities, which we

describe next. Finally, we explain how to express the leading large N form

of the identities, in terms of states of the Cuntz chain.

5.1 Derivation of a Hopping Identity

Our starting point is the restricted Schur polynomial

χ
(2)
R,R′′

∣∣∣
1

∣∣∣
2

=
1

(n− 2)!

∑

σ∈Sn

TrR′′ (ΓR(σ))Zi1iσ(1)
· · ·Zin−2

iσ(n−2)
(W (2))in−1

iσ(n−1)
(W (1))iniσ(n)

.

There are two labelled boxes in R; dropping box 1 gives irrep R′; dropping

box 2 gives irrep R′′. Since R′ is an irrep of the Sn−1 subgroup G1 =
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Figure 9: This figure shows the irreps that are used in the hopping identities.
Starting from R, the figure shows which irrep is obtained when boxes in R
are dropped.

{σ ∈ Sn|σ(n) = n}, we say that the open string described by the word

W (1) is associated to box 1. Since R′′ is an irrep of the Sn−2 subgroup

G2 = {σ ∈ G1|σ(n−1) = n−1}, we say that the open string described by the

word W (2) is associated with box 2. Notice that, in the chain of subductions

used to define the restricted Schur polynomial, the box associated with W (1)

is dropped before the box associated to W (2). We have indicated this with
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the notation
∣∣∣
1

∣∣∣
2
. Rewrite the sum over Sn as a sum over G1 and its cosets

χ
(2)
R,R′′(Z,W

(1),W (2))
∣∣∣
1

∣∣∣
2

=
1

(n− 2)!

∑

σ∈G1

[
TrR′′ (ΓR′(σ))Zi1iσ(1)

· · ·Zin−2

iσ(n−2)
(W (2))in−1

iσ(n−1)
Tr(W (1))

+ TrR′′ (ΓR((1, n)σ)) (W (1)Z)i1iσ(1)
· · ·Zin−2

iσ(n−2)
(W (2))in−1

iσ(n−1)
+ · · ·+

+ TrR′′ (ΓR((n− 2, n)σ))Zi1iσ(1)
· · · (W (1)Z)in−2

iσ(n−2)
(W (2))in−1

iσ(n−1)
+

+ TrR′′ (ΓR((n− 1, n)σ))Zi1iσ(1)
· · ·Zin−2

iσ(n−2)
((W (1)W (2))in−1

iσ(n−1)

]
.

The first term on the right hand side is

1
(n− 2)!

∑

σ∈G1

TrR′′ (ΓR′(σ))Zi1iσ(1)
· · ·Zin−2

iσ(n−2)
(W (2))in−1

iσ(n−1)
Tr(W (1)) = χ

(1)
R′,R′′(Z,W

(2))Tr(W (1)).

Using the methods of section 3, we know that

TrR′′ (ΓR((n− 1, n)σ)) =
1

c1 − c2 TrR′′ (ΓR′(σ)) ,

so that the last term on the right hand side is

1
(n− 2)!

∑

σ∈G1

TrR′′ (ΓR((n, n− 1)σ))Zi1iσ(1)
· · ·Zin−2

iσ(n−2)
(W (1)W (2))in−1

iσ(n−1)

=
1

c1 − c2χ
(1)
R′,R′′(Z,W

(1)W (2)).

Focus on the remaining terms on the right hand side. Each of these terms

makes the same contribution. We need to evaluate

TrR′′ (ΓR((j, n)σ) =
dimR′′∑

i=1

〈i, 12|ΓR((j, n))ΓR′(σ)|i, 12〉.

Using the techniques of section 3, it is straight forward to show that (the

sum on α in the next equation is a sum over all boxes that can be removed
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from R′′ to leave a valid Young diagram; the relevant Sn−3 subgroup is given

by {σ ∈ G2|σ(j) = j})

TrR′′ (ΓR((j, n)σ) =
∑
α

dimR′′′α∑

i,k=1

〈i, 12α|ΓR((j, n))|k, 12α〉〈k, 12α|ΓR′(σ)|i, 12α〉

+
∑
α

dimR′′′α∑

i,k=1

〈i, 12α|ΓR((j, n))|k, 1α2〉〈k, 1α2|ΓR′(σ)|i, 12α〉

=
∑
α

1
c1 − cα

[
1 +

1
(c1 − c2)(c2 − cα)

]
TrR′′′α

(ΓR′(σ))

+
∑
α

1
c1 − c2

1
c1 − cα

√
1− 1

(c2 − cα)2
TrT ′′′α ,R′′′α

(ΓR′(σ)).

Thus, summing the remaining n− 2 terms we obtain

∑
α

1
c1 − cα

[
1 +

1
(c1 − c2)(c2 − cα)

]
χ

(2)
R′,R′′′α

(Z,W (1)Z,W (2))
∣∣∣
2

∣∣∣
1

+
∑

α

1
c1 − c2

1
c1 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′α ,R′′′α

(Z,W (1)Z,W (2))
∣∣∣
2

∣∣∣
1
.

A straight forward application of the subgroup swap rule gives

χ
(2)
R′,R′′′α

(Z,W (1)Z,W (2))
∣∣∣
2

∣∣∣
1

=
[(

1− 1
(c2 − cα)2

)
χ

(2)
R′,T ′′′α

(Z,W (1)Z,W (2))

+
1

(c2 − cα)2
χ

(2)
R′,R′′′α

(Z,W (1)Z,W (2))+

√
1− 1

(c2 − cα)2
1

c2 − cα
(
χ

(2)
R′→R′′′α T

′′′
α

(Z,W (1)Z,W (2))

+χ(2)
R′→T ′′′α R′′′α

(Z,W (1)Z,W (2))
)] ∣∣∣

1

∣∣∣
2
,

χ
(2)
R′→T ′′′α R′′′α

(Z,W (1)Z,W (2))
∣∣∣
2

∣∣∣
1

=
[(

1− 1
(c2 − cα)2

)
χ

(2)
R′→R′′′α T

′′′
α

(Z,W (1)Z,W (2))

− 1
(c2 − cα)2

χ
(2)
R′→T ′′′α R′′′α

(Z,W (1)Z,W (2))+

√
1− 1

(c2 − cα)2
1

c2 − cα
(
χ

(2)
R′,R′′′α

(Z,W (1)Z,W (2))

−χ(2)
R′,T ′′′α

(Z,W (1)Z,W (2))
)] ∣∣∣

1

∣∣∣
2
.
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Thus, we finally obtain

χ
(2)
R,R′′( Z ,W (1),W (2))

∣∣∣
1

∣∣∣
2

= χ
(1)
R′,R′′(Z,W

(2))Tr(W (1)) +
1

c1 − c2χ
(1)
R′,R′′(Z,W

(1)W (2))

+
∑
α

[
1

c1 − cα

(
1− 1

(c2 − cα)2

)
χ

(2)
R′,T ′′′α

(Z,W (1)Z,W (2))

+
1

c1 − c2
1

(c2 − cα)2
χ

(2)
R′,R′′′α

(Z,W (1)Z,W (2))

+
1

c1 − c2
1

c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→R′′′α T

′′′
α

(Z,W (1)Z,W (2))

+
1

c1 − cα
1

c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′α R′′′α

(Z,W (1)Z,W (2))

] ∣∣∣
1

∣∣∣
2
.

The above identity is relevant for interactions in which the impurity hops

out of the last site of the string. For the hopping interaction in which the

impurity hops out of the first site of the string, the right hand side of our

identity should be written in terms of ZW (1). This identity is easily derived

by rewriting the sum over Sn in terms of right cosets of G1 instead of left

cosets as we have done above.

The identity derived above is relevant for the description of interactions

in which string 1 exchanges momentum with the branes in the boundstate.

To derive identities that allow string 2 to exchange momentum with the

branes in the boundstate, we first use the subgroup swap rule to swap strings

1 and 2. We then rewrite the sum over Sn in terms of a sum over Sn−1 and

its cosets and then employ character identities as above. We give a complete

set of identities in the next two subsections.
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5.2 Identities Relevant to Hopping off the first site of the

string

χ
(2)
R,R′′( Z ,W (1),W (2))

∣∣∣
1

∣∣∣
2

= χ
(1)
R′,R′′(Z,W

(2))Tr(W (1)) +
1

c1 − c2χ
(1)
R′,R′′(Z,W

(2)W (1))

+
∑
α

[
1

c1 − cα

(
1− 1

(c2 − cα)2

)
χ

(2)
R′,T ′′′α

(Z,ZW (1),W (2))

+
1

c1 − c2
1

(c2 − cα)2
χ

(2)
R′,R′′′α

(Z,ZW (1),W (2)) (5.1)

+
1

c1 − c2
1

c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′α R′′′α

(Z,ZW (1),W (2))

+
1

c1 − cα
1

c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→R′′′α T

′′′
α

(Z,ZW (1),W (2))

] ∣∣∣
1

∣∣∣
2
.

The form of this identity is rather intuitive. The first term on the right

hand side contributes to the process in which the bound state emits string

1; the second term describes the process in which the two open strings join to

form one long open string. In both of these processes, the box which string 1

occupied on the left hand side does not appear on the right hand side. These

two processes will not contribute to our Cuntz chain Hamiltonian; they are

relevant for the description of interactions which change the number of open

strings attached to the boundstate and do not contribute at the leading

order of the large N expansion.

It is instructive to consider the form of this identity for well separated

branes. For well separated branes, we have |c1 − c2| À 1. For |c1 − cα| ∼ 1,

|c2 − cα| À 1 so that of the last four terms only the first one contributes,

giving

≈ 1
c1 − cαχ

(2)
R′,T ′′′α

(Z,ZW (1),W (2)).

Thus, string 2 stays in box 2 and string 1 is close to where it started. Note

49



that dropping terms of order (c1 − c2)−1 or (cα − c2)−1 we obtain

χ
(2)
R,R′′(Z,W

(1),W (2))
∣∣∣
1

∣∣∣
2
≈ χ(1)

R′,R′′(Z,W
(2))Tr(W (1))+

∑
α

1
c1 − cαχ

(2)
R′,T ′′′α

(Z,ZW (1),W (2)),

which is the identity of [32].

Next, consider the stretched string identities

χ
(2)
R→R′′S′′( Z ,W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2χ
(1)
R′,R′′(Z,W

(2)W (1))

+
∑
α

[
1

c1 − cα
1

c2 − cα

√
1− 1

(c1 − c2)2χ
(2)
R′,R′′′α

(Z,ZW (1),W (2)) (5.2)

+
1

c1 − cα

√
1− 1

(c2 − cα)2

√
1− 1

(c1 − c2)2χ
(2)
R′→T ′′′α R′′′α

(Z,ZW (1),W (2))

] ∣∣∣
1

∣∣∣
2
,

χ
(2)
R→S′′R′′( Z ,W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2χ
(1)
S′,S′′(Z,W

(2)W (1))

+
∑
α

[
1

c1 − cα
1

c2 − cα

√
1− 1

(c1 − c2)2χ
(2)
S′,S′′′α

(Z,ZW (1),W (2)) (5.3)

+
1

c2 − cα

√
1− 1

(c1 − cα)2

√
1− 1

(c1 − c2)2χ
(2)
S′→W ′′′

α S′′′α
(Z,ZW (1),W (2))

] ∣∣∣
1

∣∣∣
2
.

Notice that in contrast to (5.1), (5.2) and (5.3) do not have a term on the

right hand side corresponding to emission of string 1. This is what we would

expect for an operator dual to a state with two strings stretching between

branes, since if string 1 is emitted, it leaves a state with string 2 stretched

between branes; this state is not allowed as it violates the Gauss Law. The

process in which the two open strings join at their endpoints is allowed. In

this process, it is the box with the upper 1 label that is removed. Thus, we

can identify the Chan-Paton label for the side of the string defining the first
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lattice site of the Cuntz chain with the upper label for the string, in our

diagrammatic notation. This corresponds to the first label of the restricted

Schur polynomial. We will see further evidence for this interpretation when

we interpret the final form of the Hamiltonian.

If we again consider the limit of two well separated branes, we find that

(5.2) becomes

χ
(2)
R→R′′S′′(Z,W

(1),W (2))
∣∣∣
1

∣∣∣
2
≈ χ

(1)
R′,R′′(Z,W

(2)W (1))

+
∑
α

1
c1 − cαχ

(2)
R′→T ′′′α R′′′α

(Z,ZW (1),W (2))
∣∣∣
1

∣∣∣
2
.

In this case, the box with upper 1 label and lower 2 label moves from box

1 to box α (which are close to each other in the Young diagram) and box

with upper 2 label and lower 1 label stays where it is.

The first three identities that we have discussed corresponded to an

interaction in which an impurity from the first site of string 1 interacts

with the brane. The next three identities that we discuss correspond to an

interaction in which an impurity from the first site of string 2 interacts with

the brane. The first three terms of the identity

χ
(2)
R,R′′( Z ,W (1),W (2))

∣∣∣
1

∣∣∣
2

=
(

1− 1
(c1 − c2)2

)
χ

(1)
S′,S′′(Z,W

(1))Tr(W (2))

+
1

(c1 − c2)2χ
(1)
R′,R′′(Z,W

(1))Tr(W (2)) +
1

c1 − c2χ
(1)
R′,R′′(Z,W

(1)W (2))

+
∑
α

[
1

c2 − cα

(
1− 1

(c1 − c2)2
)
χ

(2)
S′,S′′′α

(Z,W (1), ZW (2))

+
1

c2 − cα
1

(c1 − c2)2χ
(2)
R′,R′′′α

(Z,W (1), ZW (2)) (5.4)

+
1

c1 − c2
1

c1 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→R′′′α T

′′′
α

(Z,W (1), ZW (2))

] ∣∣∣
1

∣∣∣
2

change the number of open strings attached to the boundstate. The first
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two terms correspond to gravitational radiation; for both of these terms,

string 2 is emitted as a closed string. The third term corresponds to a

process in which the two open strings join to give a single open string. The

order of the open string words in this term is not the same as the order

in the corresponding term of (5.1). The term above is natural because it

is the first site of string 2 that is interacting; the order in (5.1) also looks

natural because in that case it is the first site of string 1 that is interacting.

Notice that the above identity is rather different to (5.1). Physically this is

surprising - since in both cases it is the first site of the string interacting,

these identities should presumably look identical. This mismatch between

the two identities is a consequence of the fact that we have treated string

1 and string 2 differently when constructing the operator. See section 8 for

further discussion of this point.

If we again consider the limit of two well separated branes, we find that

(5.4) becomes (take |c1 − c2| À 1, |c1 − cα| À 1 and |c2 − cα| ∼ 1)

χ
(2)
R,R′′(Z,W

(1),W (2))
∣∣∣
1

∣∣∣
2
≈ χ

(1)
S′,S′′(Z,W

(1)W (2))

+
∑
α

1
c2 − cαχ

(2)
S′,S′′′α

(Z,W (1), ZW (2)).

This again reproduces the identity of [32]. Thus, the content of the formula

for well separated branes matches the corresponding limit of (5.1). This is

satisfying, because in this limit the order in which the strings are attached

does not matter. This follows because the swap factor of [32] behaves as

|c1 − c2|−1.

The remaining two identities are stretched string identities. In contrast

to what we found above, there are terms corresponding to gravitational

radiation in these identities. We interpret this as a signal that there is some
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mixing between the operators we have defined (which as explained above,

made some arbitrary choices) to get to a “physical basis”. See section 8 for

more details. The first term in both identities

χ
(2)
R→R′′S′′( Z ,W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2χ
(1)
S′,S′′(Z,W

(1)W (2))

+
1

c1 − c2

√
1− 1

(c1 − c2)2
(
χ

(1)
R′,R′′(Z,W

(1))− χ(1)
S′,S′′(Z,W

(1))
)

Tr(W (2))

+
∑
α

[
1

c1 − cα
1

c2 − c1

√
1− 1

(c1 − c2)2χ
(2)
S′,S′′′α

(Z,W (1), ZW (2)) (5.5)

+
1

c2 − cα

√
1− 1

(c1 − c2)2

√
1− 1

(cα − c1)2χ
(2)
S′→S′′′α W ′′′

α
(Z,W (1), ZW (2))

+
1

c1 − c2
1

c1 − cα

√
1− 1

(c1 − c2)2χ
(2)
R′,R′′′α

(Z,W (1), ZW (2))

] ∣∣∣
1

∣∣∣
2
,

χ
(2)
R→S′′R′′( Z ,W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2χ
(1)
R′,R′′(Z,W

(1)W (2))

+
1

c1 − c2

√
1− 1

(c1 − c2)2
(
χ

(1)
R′,R′′(Z,W

(1))− χ(1)
S′,S′′(Z,W

(1))
)

Tr(W (2))

+
∑
α

[
1

c2 − cα
1

c1 − c2

√
1− 1

(c1 − c2)2χ
(2)
R′,R′′′α

(Z,W (1), ZW (2)) (5.6)

+
1

c1 − cα

√
1− 1

(c1 − c2)2

√
1− 1

(cα − c2)2χ
(2)
R′→R′′′α T

′′′
α

(Z,W (1), ZW (2))

+
1

c2 − c1
1

c2 − cα

√
1− 1

(c1 − c2)2χ
(2)
S′,S′′′α

(Z,W (1), ZW (2))

] ∣∣∣
1

∣∣∣
2
,

corresponds to two open strings joining to form one long open string. The

order of the open string words in these terms again looks natural given

that it is the first site of string 2 that is interacting. They will again not

contribute in the leading order of the large N expansion. It is satisfying
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that the content of the large distance limit of (5.5)

χ
(2)
R→R′′S′′(Z,W

(1),W (2))
∣∣∣
1

∣∣∣
2
≈ χ

(1)
S′,S′′(Z,W

(1)W (2))

+
∑
α

1
c2 − cαχ

(2)
S′→S′′′α W ′′′

α
(Z,W (1), ZW (2)),

is in complete agreement with the large distance limit of (5.2).

5.3 Identities Relevant to Hopping off the last site of the

string

In this subsection, impurities hop between the last site of the strings and the

threebrane. There are again six possible identities that we could consider.

The first three identities describe an interaction between the last site of

string 1 and the threebrane. The first identity

χ
(2)
R,R′′( Z ,W (1),W (2))

∣∣∣
1

∣∣∣
2

= χ
(1)
R′,R′′(Z,W

(2))Tr(W (1)) +
1

c1 − c2χ
(1)
R′,R′′(Z,W

(1)W (2))

+
∑
α

[
1

c1 − cα

(
1− 1

(c2 − cα)2

)
χ

(2)
R′,T ′′′α

(Z,W (1)Z,W (2))

+
1

c1 − c2
1

(c2 − cα)2
χ

(2)
R′,R′′′α

(Z,W (1)Z,W (2)) (5.7)

+
1

c1 − c2
1

c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→R′′′α T

′′′
α

(Z,W (1)Z,W (2))

+
1

c1 − cα
1

c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′α R′′′α

(Z,W (1)Z,W (2))

] ∣∣∣
1

∣∣∣
2

can be obtained from (5.1) by (i) swapping the labels on the twisted string

states on the right hand side and (ii) swapping the order of the open string

words in the second term on the right hand side. This is exactly what we

would expect - it is now the last site of the string that is interacting; to swap

the first and last sites, we must swap Chan-Paton indices i.e. we must swap

the labels on the twisted string states. The discussion of this identity now
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parallels the discussion of (5.1) and is not repeated.

Consider next the stretched string identities

χ
(2)
R→S′′R′′( Z ,W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2χ
(1)
R′,R′′(Z,W

(1)W (2))

+
∑
α

[
1

c1 − cα
1

c2 − cα

√
1− 1

(c1 − c2)2χ
(2)
R′,R′′′α

(Z,W (1)Z,W (2)) (5.8)

+
1

c1 − cα

√
1− 1

(c2 − cα)2

√
1− 1

(c1 − c2)2χ
(2)
R′→R′′′α T

′′′
α

(Z,W (1)Z,W (2))

] ∣∣∣
1

∣∣∣
2
,

χ
(2)
R→R′′S′′( Z ,W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2χ
(1)
S′,S′′(Z,W

(1)W (2))

+
∑
α

[
1

c1 − cα
1

c2 − cα

√
1− 1

(c1 − c2)2χ
(2)
S′,S′′′α

(Z,W (1)Z,W (2)) (5.9)

+
1

c2 − cα

√
1− 1

(c1 − cα)2

√
1− 1

(c1 − c2)2χ
(2)
S′→S′′′α W ′′′

α
(Z,W (1)Z,W (2))

] ∣∣∣
1

∣∣∣
2
.

It is satisfying that identity (5.8) can be obtained from (5.2) and (5.9) from

(5.3) by swapping the labels for stretched string states on both sides, and

reversing the order of the open string words in the first term on the right

hand side. The discussion of these identities now parallel the discussion of

(5.2) and (5.3) and is not repeated.

The remaining three identities describe an interaction between the last
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site of string 2 and the threebrane. The identity

χ
(2)
R,R′′( Z ,W (1),W (2))

∣∣∣
1

∣∣∣
2

=
(

1− 1
(c1 − c2)2

)
χ

(1)
S′,S′′(Z,W

(1))Tr(W (2))

+
1

(c1 − c2)2χ
(1)
R′,R′′(Z,W

(1))Tr(W (2)) +
1

c1 − c2χ
(1)
R′,R′′(Z,W

(2)W (1))

+
∑
α

[
1

c2 − cα

(
1− 1

(c1 − c2)2
)
χ

(2)
S′,S′′′α

(Z,W (1),W (2)Z)

+
1

c2 − cα
1

(c1 − c2)2χ
(2)
R′,R′′′α

(Z,W (1),W (2)Z) (5.10)

+
1

c1 − c2
1

c1 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′α R′′′α

(Z,W (1),W (2)Z)

] ∣∣∣
1

∣∣∣
2

can be obtained from (5.4) by (i) swapping the labels on the twisted string

states on the right hand side and (ii) swapping the order of the open string

words in the second term on the right hand side. Finally, the stretched

string identities

χ
(2)
R→R′′S′′( Z ,W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2χ
(1)
R′,R′′(Z,W

(2)W (1))

+
1

c1 − c2

√
1− 1

(c1 − c2)2
(
χ

(1)
R′,R′′(Z,W

(1))− χ(1)
S′,S′′(Z,W

(1))
)

Tr(W (2))

+
∑
α

[
1

c2 − cα
1

c1 − c2

√
1− 1

(c1 − c2)2χ
(2)
R′,R′′′α

(Z,W (1),W (2)Z) (5.11)

+
1

c1 − cα

√
1− 1

(c1 − c2)2

√
1− 1

(cα − c2)2χ
(2)
R′→T ′′′α R′′′α

(Z,W (1),W (2)Z)

− 1
c1 − c2

1
c2 − cα

√
1− 1

(c1 − c2)2χ
(2)
S′,S′′′α

(Z,W (1),W (2)Z)

] ∣∣∣
1

∣∣∣
2
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χ
(2)
R→S′′R′′( Z ,W (1),W (2))

∣∣∣
1

∣∣∣
2

=

√
1− 1

(c1 − c2)2χ
(1)
S′,S′′(Z,W

(2)W (1))

− 1
c1 − c2

√
1− 1

(c1 − c2)2
(
χ

(1)
S′,S′′(Z,W

(1))− χ(1)
R′,R′′(Z,W

(1))
)

Tr(W (2))

+
∑
α

[
1

c1 − cα
1

c2 − c1

√
1− 1

(c1 − c2)2χ
(2)
S′,S′′′α

(Z,W (1),W (2)Z) (5.12)

+
1

c2 − cα

√
1− 1

(c1 − c2)2

√
1− 1

(cα − c1)2χ
(2)
S′→W ′′′

α S′′′α
(Z,W (1),W (2)Z)

+
1

c1 − c2
1

c1 − cα

√
1− 1

(c1 − c2)2χ
(2)
R′,R′′′α

(Z,W (1),W (2)Z)

] ∣∣∣
1

∣∣∣
2

can be obtained from (5.4) and (5.5) by swapping the labels for stretched

string states on both sides, and reversing the order of the open string words

in the first term on the right hand side.

5.4 Numerical Test

An important result of this dissertation are the identities presented in the

previous two subsections, since they determine the hop off interaction. The

hop on interaction follows from the hop off interaction by Hermitian conju-

gation and the kissing interaction by composing the hop on and the hop off

interactions. Thus, the complete boundary interaction and the correspond-

ing back reaction on the brane are determined by these identities. For this

reason, we have tested the identities numerically. In this subsection we will

explain the check we have performed.

Our formulas are identities between restricted Schur polynomials. They

must hold if we evaluate them for any12 numerical value of the matrices

Z and W . Our check entails evaluating our identities for randomly gen-
12In particular, not necessarily Hermitian.
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erated matrices W (1), W (2) and Z, to check their validity. Evaluating a

restricted Schur polynomial entails evaluating a restricted character as well

as a product of traces of a product of the matrices W (1), W (2) and Z.

The restricted character TrR′′,S′′
(
ΓR

[
σ
])

or TrR′′
(
ΓR

[
σ
])

was computed

by explicitly constructing the matrices ΓR
[
σ
]
. Each representation used

was obtained by induction. One induces a reducible representation; the

irreducible representation that participates was isolated using projection

operators built from the Casimir obtained by summing over all two cycles.

See appendix B.2 of [30] for more details. The resulting irreducible rep-

resentations were tested by verifying the multiplication table of Sn. The

restricted trace is then evaluated with the help of a projection operator or

an intertwiner. The intertwiner was computed using the results of section

4.

The trace Tr(σZ⊗n−1W (1)W (2)) = Zi1iσ(1)
Zi2iσ(2)

· · ·Zin−2

iσ(n−2)
(W (2))in−1

iσ(n−1)
(W (1))iniσ(n)

for any given σ ∈ Sn is easily expressed as a product of traces of powers of

Z, W (1) and W (2).

In total we verified over 50 specific instances of our identities, which

provides a significant check of each identity.

5.5 Identities in terms of Cuntz Chain States

The state-operator correspondence is available for any conformal field theory.

Using this correspondence, we can trade our (local) operators for a set of

states. Concretely, this involves quantizing with respect to radial time.

Considering a fixed “radial time” slice we obtain a round sphere. The states

dual to the restricted Schur polynomial operators are the states of our Cuntz

chain. Thus, we need to rewrite the identities obtained in this section as

statements in terms of the states of the Cuntz oscillator chain. The states
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of the Cuntz oscillator chain are normalized. Normalized states correspond

to operators whose two point function is normalized. Using the technology

of [30] it is a simple task to compute the free equal time correlators of the

restricted Schur polynomials. After making use of the free field correlators

to write our identities in terms operators with unit two point functions,

we find that not all terms are of the same order in N . We drop all terms

which are subleading in N . These terms are naturally interpreted in terms

of string splitting and joining processes, so that they will be important when

interactions that change the number of open strings are considered.

The discussion for all of the identities above is rather similar, so we will

be content to discuss a specific example which illustrates the general features.

Consider the right hand side of (5.1). From the equal time correlator (there

are a total of hi fields in open string word W (i); fR is the product of the

weights of the Young diagram R; dR is the dimension of R as an irrep of the

symmetric group; nR is the number of boxes in Young diagram R)

〈χ(1)
R′,R′′(Z,W

(2))Tr(W (1))χ(1)
R′,R′′(Z,W

(2))†Tr(W (1))†〉

=
(

4πλ
N

)h1+h2+nR′′
h1N

h1+h2−1nR′′fR′
dR′′

dR′
(5.13)

we know that the operator χ(1)
R′,R′′(Z,W

(2))Tr(W (1)) corresponds to the state

(all Cuntz chain states are normalized to 1)

√(
4πλ
N

)h1+h2+nR′′
h1Nh1+h2−1nR′′fR′

dR′′

dR′
|R′, R′′,W (2);W (1)〉.

The result (5.13) is not exact. When computing

〈Tr(W (1))Tr(W (1))†〉
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we have only summed the leading planar contribution. When computing

〈χ(1)
R′,R′′(Z,W

(2))χ(1)
R′,R′′(Z,W

(2))†〉

we have only kept the F0 contribution in the language of [30]. We have also

factorized

〈χ(1)
R′,R′′(Z,W

(2))Tr(W (1))χ(1)
R′,R′′(Z,W

(2))†Tr(W (1))†〉

as

〈χ(1)
R′,R′′(Z,W

(2))χ(1)
R′,R′′(Z,W

(2))†〉〈Tr(W (1))Tr(W (1))†〉

which is valid at large N . Similarly, (again we sum only the leading order

at large N)

〈χ(1)
R′,R′′(Z,W

(2)W (1))χ(1)
R′,R′′(Z,W

(2)W (1))†〉 =
(

4πλ
N

)h1+h2+nR′′
Nh1+h2−1nR′′fR′

dR′′

dR′

implies that χ(1)
R′,R′′(Z,W

(2)W (1)) corresponds to the state

√(
4πλ
N

)h1+h2+nR′′
Nh1+h2−1nR′′fR′

dR′′

dR′
|R′, R′′,W (2)W (1))〉.

Finally, the correlators (again we sum only the leading order at large N)

〈χ(2)
R′,T ′′′α

(Z,ZW (1),W (2))χ(2)
R′,T ′′′α

(Z,ZW (1),W (2))†〉 =
(

4πλ
N

)h1+h2+1+nT ′′′α

Nh1+h2−1n2
R′
dT ′′′α

dR′
fR′ ,

〈χ(2)
R′,R′′′α

(Z,ZW (1),W (2))χ(2)
R′,R′′′α

(Z,ZW (1),W (2))†〉 =
(

4πλ
N

)h1+h2+1+nT ′′′α

Nh1+h2−1n2
R′
dR′′′α

dR′
fR′ ,

〈χ(2)
R′→T ′′′α R′′′α

(Z,ZW (1),W (2))χ(2)
R′→T ′′′α R′′′α

(Z,ZW (1),W (2))†〉
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=
(

4πλ
N

)h1+h2+1+nT ′′′α

Nh1+h2−1n2
R′
dT ′′′α

dR′
fR′ ,

〈χ(2)
R′→R′′′α T

′′′
α

(Z,ZW (1),W (2))χ(2)
R′→R′′′α T

′′′
α

(Z,ZW (1),W (2))†〉

=
(

4πλ
N

)h1+h2+1+nT ′′′α

Nh1+h2−1n2
R′
dT ′′′α

dR′
fR′

imply the correspondences

χ
(2)
R′,T ′′′α

(Z,ZW (1),W (2))←→
√(

4πλ
N

)h1+h2+1+nT ′′′α

Nh1+h2−1n2
R′
dT ′′′α

dR′
fR′ |R′, T ′′′α , ZW (1),W (2)〉,

χ
(2)
R′,R′′′α

(Z,ZW (1),W (2))←→
√(

4πλ
N

)h1+h2+1+nT ′′′α

Nh1+h2−1n2
R′
dR′′′α

dR′
fR′ |R′, R′′′α , ZW (1),W (2)〉,

χ
(2)
R′→T ′′′α R′′′α

(Z,ZW (1),W (2)) ←→
√(

4πλ
N

)h1+h2+1+nT ′′′α

Nh1+h2−1n2
R′
dT ′′′α

dR′
fR′

× |R′, T ′′′α R′′′α , ZW (1),W (2)〉,

χ
(2)
R′→R′′′α T

′′′
α

(Z,ZW (1),W (2)) ←→
√(

4πλ
N

)h1+h2+1+nT ′′′α

Nh1+h2−1n2
R′
dT ′′′α

dR′
fR′

× |R′, R′′′α T ′′′α , ZW (1),W (2)〉.

Consider the factor

n2
R′
dR′′′α

dR′
=

(hooks)R′
(hooks)R′′′α

,

where (hooks)R is the product of the hook lengths of Young diagram R. It is

straight forward to compute this ratio of hook lengths, which is generically

of order N2 implying that
dR′′′α
dR′

is of order 1. Using this observation, it is

equally easy to verify that
dT ′′′α
dR′

and dR′′
dR′

are also both O(1). Given these
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results, it is simple to see that the sum of operators

χ
(1)
R′,R′′( Z ,W (2))Tr(W (1)) +

1
c1 − c2χ

(1)
R′,R′′(Z,W

(2)W (1))

+
∑
α

[
1

c1 − cα

(
1− 1

(c2 − cα)2

)
χ

(2)
R′,T ′′′α

(Z,ZW (1),W (2))

+
1

c1 − c2
1

(c2 − cα)2
χ

(2)
R′,R′′′α

(Z,ZW (1),W (2))

+
1

c1 − c2
1

c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′α R′′′α

(Z,ZW (1),W (2))

+
1

c1 − cα
1

c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→R′′′α T

′′′
α

(Z,ZW (1),W (2))

] ∣∣∣
1

∣∣∣
2

corresponds to the following sum of normalized states

√(
4πλ
N

)h1+h2+nR′′
Nh1+h2−1n2

R′fR′

[√
h1dR′′

nR′dR′
|R′, R′′,W (2);W (1)〉

+
1

c1 − c2

√
dR′′

nR′dR′
|R′, R′′,W (2)W (1)〉

+
∑
α


 1
c1 − cα

(
1− 1

(c2 − cα)2

) √
dT ′′′α

dR′
|R′, T ′′′α , ZW (1),W (2)〉

+
1

c1 − c2
1

(c2 − cα)2

√
dR′′′α

dR′
|R′, R′′′α , ZW (1),W (2)〉

+
1

c1 − c2
1

c2 − cα

√
1− 1

(c2 − cα)2

√
dT ′′′α

dR′
|R′, T ′′′α R′′′α , ZW (1),W (2)〉

+
1

c1 − cα
1

c2 − cα

√
1− 1

(c2 − cα)2

√
dT ′′′α

dR′
|R′, R′′′α T ′′′α , ZW (1),W (2)〉





 .

Recalling that h1 = O(
√
N) and nR′ = O(N), it is clear that the first

two terms are subleading. These two terms correspond to gravitational

radiation (first term) and string joining (second term); they are the only

terms that correspond to an interaction that changes the number of open
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strings attached to the excited giant system. Although we have illustrated

things with an example, this conclusion is general - for all of the identities

obtained in this section, terms that do not correspond to two strings attached

to the giant system can be dropped in the leading large N limit.
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6 State/Operator Map

In this section we will simply quote the six normalization factors that enter

the relation between the restricted Schur polynomials and the normalized

Cuntz chain states relevant for the excited two giant graviton bound state13.

The normalization factors are not exact - we simply quote the leading large

N value of these normalizations. These factors are determined completely

by the F (1)
0 F

(2)
0 contribution in the language of [30]. The factor fR is the

product of weights of the Young diagram R. The open string word W (1) con-

tains a total number of h1 Higgs fields; the open string word W (2) contains

a total number of h2 Higgs fields.

State Normalization

|b0 − 1, b1, 11, 22〉 (
4πλ
N

) 2b0+b1+h1+h2−2
2 b0

√
fR
√
Nh1+h2−2

|b0 − 1, b1, 22, 11〉 (
4πλ
N

) 2b0+b1+h1+h2−2
2 b0

√
fR
√
Nh1+h2−2

|b0 − 1, b1, 12, 21〉 (
4πλ
N

) 2b0+b1+h1+h2−2
2 b0

√
fR
√
Nh1+h2−2

|b0 − 1, b1, 21, 12〉 (
4πλ
N

) 2b0+b1+h1+h2−2
2 b0

√
fR
√
Nh1+h2−2

|b0 − 2, b1 + 2, 22, 22〉 (
4πλ
N

) 2b0+b1+h1+h2−2
2 b0

√
fR
√
Nh1+h2−2

√
b1+3
b1+1

|b0, b1 − 2, 11, 11〉 (
4πλ
N

) 2b0+b1+h1+h2−2
2 b0

√
fR
√
Nh1+h2−2

√
b1−1
b1+1

13See section 7 for the restricted Schur polynomials corresponding to these states.
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7 Cuntz Chain Hamiltonian

In this section we will derive the form of the terms in the Hamiltonian

describing the string boundary interactions. This will allow us to compute

the complete Cuntz chain Hamiltonian. The bulk Hamiltonian which is

know from [17] is given in equation (7.1).

7.1 Background and Definitions

To make our discussion concrete, we mostly consider the specific example of

two strings attached to a bound state of two sphere giants. Note however,

that most of the formulas we derive (and certainly the techniques we develop)

are applicable to the general problem. Both the strings and the branes that

we consider are distinguishable. In this case there are a total of six possible

states. For a bound state of two sphere giant gravitons, we need to consider

restricted Schur polynomials labelled by Young diagrams with two columns

each with O(N) boxes14. Denote the number of boxes in the first column

by b0 + b1 and the number of boxes in the second column by b0. It is natural

to interpret the number of boxes in each column as the momentum of each

giant. We can use the state operator correspondence (see sections 5.5 and 6

for further discussion) to associate a Cuntz chain state with each restricted

Schur polynomial. The Cuntz chain states have six labels in total: the first

two labels are b0 and b1 which determine the momenta of the two giants;

the next two labels are the branes on which the endpoints of string one are

attached and the final two labels are the branes on which the endpoints of

string two are attached. We label the strings by ‘1’ and ‘2’. The brane

corresponding to column 1 of the Young diagram is labelled ‘b’ (for big

brane) and the brane corresponding to column 2 of the Young diagram is
14See section 2.2 for a brief review of Schur Polynomials
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labelled ‘l’ (for little brane). Since the second column of a Young diagram

can never contain more boxes that the first column, and since the radius of

the giant graviton is determined by the square root of its angular momentum,

these are accurate labels. Consider a state with string 1 on big brane and

string 2 on little brane. The restricted Schur polynomial (written using the

graphical notation of [30],[32]) together with the corresponding Cuntz chain

state are (in this case, b0 = 3 and b1 = 4)

2

1 ←→ |3, 4, bb, ll〉.

We will call states with strings stretching between branes “stretched string

states”. When labelling the Cuntz chain state corresponding to a stretched

string state, we will write the end point label corresponding to the upper

index first. Thus,

1
2

2
1 ←→ |3, 4, lb, bl〉.
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The remaining four states are

1

2 ←→ |3, 4, ll, bb〉

2
1

1
2 ←→ |3, 4, bl, lb〉,

2
1

←→ |2, 6, ll, ll〉
2
1 ←→ |4, 2, bb, bb〉.

To obtain operators dual to giant gravitons, we take b0 to be O(N) and b1

to be O(1). We want to compute the matrix of anomalous dimensions to

one loop and at large N . To compute this matrix, we need to compute the

two point functions of restricted Schur polynomials. This is a hard problem:

since the number of fields in the giant graviton is O(N), huge combinatoric

factors pile up as the coefficient of non-planar diagrams and the usual the

planar approximation fails. We need to contract all of the fields in the giant

gravitons exactly. The two open strings are described by the words W (1)

and W (2). The six Higgs fields φi i = 1, ..., 6, of the N = 4 super Yang-Mills

theory can be grouped into the following complex combinations

Z = φ1 + iφ2, Y = φ3 + iφ4, X = φ5 + iφ6.

The giant gravitons are built out of the Z field; the open string words out

of the Z and Y fields. Thus, the open strings carry a component of angular
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momentum on the S3 that the giant wraps, as well a component parallel to

the giant’s angular momentum. We will normalize things so that the action

of N = 4 super Yang-Mills theory on R× S3 is (we consider the Lorentzian

theory and have set the radius of the S3 to 1)

S =
N

4πλ

∫
dt

∫

S3

dΩ3

2π2

(
1
2
(Dφi)(Dφi) +

1
4
([
φi, φj

])2 − 1
2
φiφi + . . .

)
.

With these conventions,

〈Z†ij(t)Zkl(t)〉 =
4πλ
N

δilδjk = 〈Y †ij(t)Ykl(t)〉.

The open string words can be labelled as

(W ({n1, n2, · · · , nL−1}))ij = (Y Zn1Y Zn2Y · · ·Y ZnL−1Y )ij ,

where {n1, n2, · · · , nL−1} are the Cuntz lattice occupation numbers. The

giant is built out of Zs; the first and last letters of the open string word W

are not Zs. We will always use L to denote the number of Y fields in the open

string word and J = n1 + n2 + · · ·+ nL−1 to denote the number of Z fields

in the open string word. The number of fields in each word is J +L ≈ L in

the case that J ¿ L which we will assume in this discussion. For the words

W (1),W (2) to be dual to open strings, we need to take L ∼ O(
√
N). We do

not know how to contract the open strings words exactly; when contracting

the open string words, only the planar diagrams are summed. To suppress

the non-planar contributions we take L2

N ¿ 1. To do this we consider a

double scaling limit in which the first limit takes N → ∞ holding L2

N fixed

and the second limit takes the effective genus counting parameter L2

N to

zero. Taking the limits in this way corresponds, in the dual string theory,
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to taking the string coupling to zero, in the string theory constructed in a

fixed giant graviton background. Since the two strings are distinguishable

they are represented by distinct words and hence, in the large N limit, we

have

〈W (i)(W (j))†〉 ∝ δij .

When computing a correlator of two restricted Schur polynomials, the fields

belonging to the giants in the two systems of excited giant gravitons are

contracted amongst each other, the fields in the first open string of each

are contracted amongst each other and the fields in the second open string

are contracted amongst each other. We drop the contributions coming from

contractions between Zs in the open strings and Zs associated to the brane

system, as well as contractions between Zs in different open string words.

When computing two point functions in free field theory, if the number of

boxes in the representation R is less than15 O(N2) and the numbers of Z’s

in the open string is O(1), the contractions between any Zs in the open

string and the rest of the operator are suppressed in the large N limit[34].

Contractions between Zs in different open string words are non planar and

are hence subleading (clearly there are no large combinatoric factors that

modify this).

An important parameter of our excited giant graviton system is N − b0.
This parameter can scale as O(N), O(

√
N) or O(1). We will see that when

N − b0 is O(1) the sphere giant boundary interaction is O( 1
N ), when N − b0

is O(
√
N) the boundary interaction is O( 1√

N
) and when N−b0 is O(N), the

boundary interaction is O(1). Since we want to explore the dynamics arising

from the boundary interaction, we will assume that N − b0 is O(N). The
15When the number of operators in the Young diagram is O(N2), the operator is dual

to an LLM geometry[33].

69



subspace of states reached by attaching two open strings to a giant graviton

boundstate system is dynamically decoupled (from subspaces obtained by

attaching a different number of open strings) at large N . It is possible to

move out of this subspace by the process in which the word W “fragments”

thereby allowing Y s to populate more than a single box in R. In the dual

string theory this corresponds to a splitting of the original string into smaller

strings, which are still attached to the giant. This process was considered in

[30] and from that result we know that it does not contribute in the large N

limit. One could also consider the process in which the open string detaches

from the brane boundstate and is emitted as a closed string state, so that

it no longer occupies any box in R. This process (decay of the excited giant

boundstate by gravitational radiation) also does not contribute in the large

N limit[16; 30].

Since the giant boundstate and the open string can exchange momentum,

the value of J is not a parameter that we can choose, but rather, it is

determined by the dynamics of the problem. Cases in which J becomes

large correspond to the situation in which a lot of momentum is transferred

from the giant to the open string, presumably signaling an instability. See

[17] for a good physical discussion of this instability. In cases where J is

large, back reaction is important and the approximations we are employing

are no longer valid. This will happen when J becomes O(
√
N) since the

assumption that we can drop non-planar contributions when contracting

the open string words breaks down. Essentially this is because as more

and more Zs hop onto the open string, it is starting to grow into a state

which is eventually best described as a giant graviton itself. One can also no

longer neglect the contractions between any Zs in the open string and the

rest of the operator, presumably because the composite system no longer
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looks like a string plus giant (which can be separated nicely) but rather, it

starts to look like one large deformed threebrane. Thus, the fact that our

approximation breaks down has a straight forward interpretation: We have

set up our description by assuming that the operator we study is dual to

a threebrane with an open string attached. This implies that our operator

can be decomposed into a “threebrane piece” and a “string piece”. These

two pieces are treated very differently: when contracting the threebrane

piece, all contractions are summed; when contracting the string piece, only

planar contractions are summed. Contractions between the two pieces are

dropped. When a large number of Zs hop onto the open string our operator

is simply not dual to a state that looks like a threebrane with an open string

attached and our approximations are not valid. We are not claiming that

this operator can not be studied using large N techniques - it may still be

possible to set up a systematic 1/N expansion. We are claiming that the

diagrams we have summed do not give this approximation.

It is useful to decompose the potential for the scalars into D terms and F

terms. The advantage of this decomposition is that it is known that at one

loop, the D term contributions cancel with the gauge boson exchange and

the scalar self energies[35]. Consequently we will only consider the planar

interactions arising from the F term. The F term interaction preserves the

number of Y ’s (the lattice is not dynamical) and allows impurities (the Zs)

to hop between neighboring sites. The bulk interactions are described by

the Hamiltonian

Hbulk = 2λ
L∑

l=1

â†l âl − λ
L−1∑

l=1

(â†l âl+1 + âlâ
†
l+1), (7.1)
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where

âiâ
†
i = I, â†i âi = I − |0〉〈0|.

The interested reader is referred to [17] for the derivation of this result. To

obtain the full Hamiltonian, we need to include the boundary interactions

arising from the string/brane system interaction. This interaction introduces

sources and sinks for the impurities at the boundaries of the lattice. The

boundary interaction allows Zs to hop from the string onto the giant, or

from the giant onto the string. Since the number of Zs gives the angular

momentum of the system in the plane that the giant is orbiting in, the

boundary interaction allows the string and the brane to exchange angular

momentum.

7.2 Hop Off Interaction

We start by deriving the hop off interaction. The F term vertex allows

a Z and a Y to change position within a word. The hopping interaction

corresponds to the situation in which a Z hops past the Y marking the

end point of the string, i.e. a Z hops off the string and onto the giant.

Concretely, when acting on either open string, this hop takes

W ({n1, n2, · · · , nL−1})→ ZW ({n1 − 1, n2, · · · , nL−1}) or

W ({n1, n2, · · · , nL−1})→W ({n1, n2, · · · , nL−1 − 1})Z.

To determine the corresponding term in the interaction Hamiltonian, we

need to be able to express objects like χ(2)
R,R′′(Z,ZW

(1),W (2)) in terms of

χ
(2)
S,S′′(Z,W

(1),W (2)) where S is a Young diagram with one more box than
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R16. This is easily achieved by inverting the identities derived in section 5.

To get the hop off interaction in the Hamiltonian, we rewrite the identities

in terms of normalized Cuntz chain states.

+1 → 1 Hop off Interaction: This term in the Hamiltonian describes the

hop off process in which a Z hops out of the first site of string 1. We write

+1 → 1 to indicate that the string before the hop has one extra Z in its

first site.

H+1→1




|b0 − 1, b1, bb, ll〉
|b0 − 1, b1, ll, bb〉
|b0 − 1, b1, bl, lb〉
|b0 − 1, b1, lb, bl〉
|b0 − 2, b1 + 2, ll, ll〉
|b0, b1 − 2, bb, bb〉




= −λ
√

1− b0
N
M1




|b0 − 1, b1 + 1, bb, ll〉
|b0, b1 − 1, ll, bb〉
|b0 − 1, b1 + 1, bl, lb〉
|b0, b1 − 1, lb, bl〉
|b0 − 1, b1 + 1, ll, ll〉
|b0, b1 − 1, bb, bb〉




,

where

M1 =




−(b1)21
1

b1(b1+1)2
0 (b1)0

b1+1
(b1)1
b1+1 − (b1)1

b1(b1+1)

− 1
(b1+2)(b1+1)2

−(b1)21 − (b1)2
b1+1 0 − (b1)1

(b1+1)(b1+2) − (b1)1
b1+1

− (b1)1
(b1+1)(b1+2)

(b1)1
b1+1 −(b1)1(b1)2 0 − b1

(b1+1)2
1

(b1+1)2

− (b1)1
b1+1 − (b1)1

b1(b1+1) 0 −(b1)0(b1)1 1
(b1+1)2

b1+2
(b1+1)2

− (b1)2
b1+1 0 1

b1+2 0 −(b1)1(b1)2 0

0 (b1)0
b1+1 0 − 1

b1
0 −(b1)0(b1)1




,

and

(b1)n =
√
b1 + n− 1

√
b1 + n+ 1

b1 + n
.

16The number of primes on the label of the restricted Schur polynomial indicates how
many boxes are dropped, i.e. R′′ is obtained by dropping two boxes from R.
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The term in the Hamiltonian describing the process in which the Z hops

out of the last site of string 1 is described by swapping the labels of the

endpoints of the open strings. Concretely, it is given by

H1+→1




|b0 − 1, b1, bb, ll〉
|b0 − 1, b1, ll, bb〉
|b0 − 1, b1, lb, bl〉
|b0 − 1, b1, bl, lb〉
|b0 − 2, b1 + 2, ll, ll〉
|b0, b1 − 2, bb, bb〉




= −λ
√

1− b0
N
M1




|b0 − 1, b1 + 1, bb, ll〉
|b0, b1 − 1, ll, bb〉
|b0 − 1, b1 + 1, lb, bl〉
|b0, b1 − 1, bl, lb〉
|b0 − 1, b1 + 1, ll, ll〉
|b0, b1 − 1, bb, bb〉




,

where M1 is the matrix given above. We write 1+→ 1 to indicate that the

string before the hop has one extra Z in its last site.

+2 → 2 Hop off Interaction: This term in the Hamiltonian describes the

hop off process in which a Z hops out of the first site of string 2.

H+2→2




|b0 − 2, b1 + 1, bb, ll〉
|b0 − 1, b1 − 1, ll, bb〉
|b0 − 2, b1 + 1, bl, lb〉
|b0 − 1, b1 − 1, lb, bl〉
|b0 − 2, b1 + 1, ll, ll〉
|b0 − 1, b1 − 1, bb, bb〉




= −λ
√

1− b0
N
M2




|b0 − 1, b1, bb, ll〉
|b0 − 1, b1, ll, bb〉
|b0 − 1, b1, bl, lb〉
|b0 − 1, b1, lb, bl〉
|b0 − 1, b1, ll, ll〉
|b0 − 1, b1, bb, bb〉




,
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where

M2 =




−(b1)21 − 1
(b1+2)(b1+1)2

− (b1)1
(b1+1)(b1+2) − (b1)1

b1+1 0 − (b1)2
b1+1

1
b1(b1+1)2

−(b1)21
(b1)1
b1+1 − (b1)1

(b1+1)b1

(b1)0
b1+1 0

0 − (b1)2
b1+1 −(b1)1(b1)2 0 0 1

b1+2

(b1)0
b1+1 0 0 −(b1)0(b1)1 − 1

b1
0

− (b1)1
b1(b1+1) − (b1)1

b1+1
1

(b1+1)2
b1+2

(b1+1)2
−(b1)1(b1)0 0

(b1)1
b1+1 − (b1)1

(b1+1)(b1+2) − b1
(b1+1)2

1
(b1+1)2

0 −(b1)2(b1)1




,

Notice that these interactions (as is the case for all of the boundary inter-

actions) are highly suppressed for a maximal giant[24]. The term in the

Hamiltonian describing the process in which the Z hops out of the last site

of string 2 is described by swapping the labels of the endpoints of the open

strings.

The function (b1)n also appears in the Hamiltonian relevant for a single

string attached to a giant[32]. Notice that (b1)n vanishes when b1 = 1 − n,

but tends to 1 very rapidly as b1 is increased from this value. The diagonal

terms in the Hamiltonian with a (b1)1 factor will thus vanish when b1 = 0.

The radius of each giant is determined by their momentum. Since b1 is the

difference in momentum of the two giants, b1 = 0 corresponds to coincident

giants. Thus, (b1)n is switching off short distance interactions. The hop

off Hamiltonian does not generate illegal Young diagrams from legal ones

precisely because these interactions are switched off.

Finally, note that the structure of the hop on and hop off interactions,

clearly reflect the fact that the open strings attached to the giants are ori-

entable.
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7.3 Hop On Interaction

Since N = 4 super Yang-Mills theory is a unitary conformal field theory, we

know that the spectrum of anomalous dimensions of the theory is real. This

implies that the energy spectrum of our Cuntz chain Hamiltonian must be

real and hence the Hamiltonian must be Hermitian. Thus, the hop on term

in the Hamiltonian is given by the Hermitian conjugate of the hop off term.

To give an example, we will now derive the term in the Hamiltonian

describing the process in which a Z from the brane hops into the first site of

string 1. Let |ψ〉 denote the state with a brane of momentum Pbrane = P and

a string of momentum Pstring = p and |φ〉 denote the state with Pbrane = P+1

and Pstring = p− 1. Then,

H+1→1|ψ〉 = −λ
√

1− b0
N
M1|φ〉,

and

〈φ′|H+1→1|ψ〉 = −λ
√

1− b0
N
〈φ′|M1|φ〉 = −λ

√
1− b0

N
(M1)φ′φ.

Daggering we find (keep in mind that M1 is real)

〈ψ|H1→+1|φ′〉 = (〈φ′|H+1→1|ψ〉)†

= −λ
√

1− b0
N
〈φ|(M1)T |φ′〉

= −λ
√

1− b0
N

(
(M1)T

)
φφ′ .

Thus we obtain

H1→+1|φ〉 = −λ
√

1− b0
N
N1|ψ〉,

with N1 = (M1)T .
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7.4 Kissing Interaction

Figure 10: The Feynman diagram on the left shows the kissing interaction.
The white ribbons are Z fields, the black ribbons are Y fields. The interact-
ing black ribbon shown marks the beginning of the string; there are 3 Zs in
the first site of the string. The Feynman diagram on the right shows a hop
on interaction followed by a hop off interaction. If you shrink the composite
hop on/hop off interaction to a point, you recover the kissing interaction.

The kissing interaction corresponds to the Feynman diagram shown on

the left in Figure 10. Notice that the number of Z fields in the giant is

unchanged by this process so that the string and brane do not exchange

momentum by this process. As far as the combinatorics goes, we can model

the kissing interaction as a hop on (the string) followed by a hop off. We

know both the hop on and hop off terms so the kissing interaction follows.

This is illustrated by the Feynman diagram shown on the right in Figure 10.

The kissing interaction must be included for both endpoints of both strings.

A straight forward computation easily gives

Hkissing = λ

(
1− b0

N

)
1,
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for each endpoint of either string. In this formula 1 is the identity operator.

The fact that the kissing interaction comes out proportional to the iden-

tity operator is a non-trivial check of our hop on and hop off interactions.

Indeed, the contraction of the F term vertex which leads to the kissing in-

teraction removes an adjacent Z and Y and then replaces them in the same

order. Thus, the kissing interaction had to come out proportional to the

identity. The careful reader may worry that this is not in fact true - indeed,

the restricted Schur polynomial includes terms in which the open string word

is traced and terms in which the two open string words are multiplied. For

these terms there is no Z next to the word to “do the kissing”. Precisely

these terms were considered in section 5.5. They do not contribute at large

N .
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8 Interpretation

The operators we are studying are dual to giant gravitons with open strings

attached. Since the giant gravitons have finite volume, the Gauss Law im-

plies that the total charge on each giant must vanish - there must be the

same number of strings leaving each brane as there are arriving on each

brane. These operators do indeed satisfy these non-trivial constraints[20],

providing convincing evidence for the proposed duality. The low energy dy-

namics of the open strings attached to the giant gravitons is a Yang-Mills

theory. This new emergent 3 + 1 dimensional Yang-Mills theory is not de-

scribed as a local field theory on the S3 on which the original Yang-Mills

theory is defined - it is local on a new space, the world volume of the giant

gravitons[20],[37]. This new space emerges from the matrix degrees of free-

dom participating in the Yang-Mills theory. Reconstructing this emergent

gauge theory may provide a simpler toy model that will give us important

clues into reconstructing the full AdS5×S5 quantum gravity. In this section,

our goal is to make contact with this emergent Yang-Mills dynamics.

8.1 Dynamical Emergence of Chan-Paton Factors

Return to the H+1→1 hop off interaction obtained in section 7.2. Recall that

this corresponds to the interaction in which a Z hops out of the first site of

string 1. If we expand the matrix M1 for large b1, we find

M1 =
∞∑

n=0

M1(n)b−n1 .

The leading order M1(0) is simply −1 with 1 the 6×6 identity matrix. The

Z simply hops off the string and onto the brane without much rearranging

of the system. This is the dominant process. Next, consider the term of
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order b−1
1 . It is simple to compute

M1(1) =




0 0 0 1 1 0

0 0 −1 0 0 −1

0 1 0 0 −1 0

−1 0 0 0 0 1

−1 0 1 0 0 0

0 1 0 −1 0 0




.

The radius of the giant graviton Rg is related to its momentum P by

Rg =
√

P
N . The giant orbits with a radius R =

√
1−R2

g (see [10]). For

the two giants in the bound state we are considering we have P1 = b0 and

P2 = b0 + b1. Using the fact that b0 = O(N) and b1 = O(1) it is sim-

ple to verify that both the difference in the radii of the two giants and the

difference in the radii of their orbits is proportional to b1. Thus, a b−1
1 de-

pendence indicates a potential with an inverse distance dependence which is

the correct dependence for massless particles moving in 3+1 dimensions. In

Figure 11 we have represented the transitions implied by M1(1) graphically.

Transitions between any two adjacent Young diagrams are allowed.

As an example, consider the transition

1

2 →

2
1

1
2 .

The upper label of string 1 has moved. In all of the transitions shown, the
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Figure 11: The order b−1
1 terms in the hop off interaction. This interaction

allows a transition between the operators described by any two adjacent
Young diagrams. The figures between the Young diagram show the open
string diagram relevant for the clockwise transition. The kets are associated
to the open string states before the transition; the bras to the states after
the transition. The end point labels ‘b’ and ‘l’ are for big brane and little
brane.

upper index of string 1 always moves, so that it is natural to associate the

upper index of string 1 with the first site of string one, and to look for

an interpretation of this interaction in terms of open string processes that

involve the upper index of string 1. The figures between the Young diagram

show that there is indeed a natural interpretation for these transitions. It

is clear that our Cuntz oscillator dynamics illustrates how the Chan-Paton

factors for open strings propagating on multiple branes arise dynamically.

Drawing all possible ribbon diagrams correctly accounts for both M1(0) and

M1(1).

81



8.2 Physical Basis

Although the interpretation of the b−1
1 terms is encouraging, there are ex-

tra higher order corrections (M1(2)b−2
1 , M1(3)b−3

1 and higher orders) that

do not seem to have a natural open string interpretation. In addition to

this, the interaction we have obtained depends on the open string words

describing each open string, the Young diagram describing the brane bound

state system as well as the order in which the strings were attached. This

dependence on the order in which the strings are attached is not physically

sensible.

It is natural to expect that the resolution to these two puzzles is con-

nected. Recall that when constructing the restricted Schur polynomial we

have assumed that when computing reductions, string 1 is removed first and

string 2 second. This arbitrary choice defines a basis for the Cuntz oscillator

chain. We interpret the unphysical features of our interactions, described in

the previous paragraph, as reflecting a property of the basis it is written in

and not as an inherent problem with the interaction. In this section we will

define a new physical basis, singled out by the requirement that the bound-

ary interaction does not depend on the order in which the open strings are

attached.

A few comments are in order. A basis for the 1
2 BPS states (giants with

no open strings attached) is provided by the taking traces of Z or by taking

subdeterminants or by the Schur polynomials. These are three perfectly

acceptable bases, since using any single one of these bases we can generate,

by taking linear combinations of the elements of the basis considered, a

member from every 1
2 BPS multiplet[14]. From a physical point of view,

these different bases are not on an equal footing: the Schur polynomial is

the most useful. Indeed, the Schur polynomials diagonalize the matrix of
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two point correlators (Zamolodchikov metric) so that they can be put into

correspondence with the (orthogonal) states of a Fock space. In the same

way, the basis for excited giants gravitons we have been considering is a

perfectly acceptable basis. However, it is the operators in the physical basis

(defined below) that have a good physical interpretation.

Denote our two strings by string A and string B. The state obtained

by attaching string A first will be denoted by |b0, b1, xAyA, xByB〉, where

xAyA are the endpoints of string A and xByB are the endpoints of string

B. The state obtained by attaching string B first will be denoted by

|b0, b1, xByB, xAyA〉〉. In each subspace of sharp giant graviton momentum

(definite b0 and b1), we can write the following relation between these two

sets of states 


|b0, b1, bb, ll〉
|b0, b1, ll, bb〉
|b0, b1, bl, lb〉
|b0, b1, lb, bl〉
|b0, b1, ll, ll〉
|b0, b1, bb, bb〉




= PT




|b0, b1, bb, ll〉〉
|b0, b1, ll, bb〉〉
|b0, b1, bl, lb〉〉
|b0, b1, lb, bl〉〉
|b0, b1, ll, ll〉〉
|b0, b1, bb, bb〉〉




,

where

P =




0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




and
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T =




(
1− 1

(b1+1)2

)
1

(b1+1)2 − 1
(b1+1)

√
1− 1

(b1+1)2 − 1
(b1+1)

√
1− 1

(b1+1)2 0 0

1
(b1+1)2

(
1− 1

(b1+1)2

)
1

(b1+1)

√
1− 1

(b1+1)2
1

(b1+1)

√
1− 1

(b1+1)2 0 0

1
(b1+1)

√
1− 1

(b1+1)2 − 1
(b1+1)

√
1− 1

(b1+1)2

(
1− 1

(b1+1)2

)
− 1

(b1+1)2 0 0

1
(b1+1)

√
1− 1

(b1+1)2 − 1
(b1+1)

√
1− 1

(b1+1)2 − 1
(b1+1)2

(
1− 1

(b1+1)2

)
0 0

0 0 0 0 1 0

0 0 0 0 0 1




.

The matrix T is determined by the subgroup swap rule of [30]. It is satis-

fying that PT × PT = 1. It is straight forward to check that

H+1→1 = A2→1 PT H+2→2A1→2 PT,

where




|b0 − 2, b1 + 2, bb, ll〉
|b0 − 1, b1, ll, bb〉
|b0 − 2, b1 + 2, bl, lb〉
|b0 − 1, b1, lb, bl〉
|b0 − 2, b1 + 2, ll, ll〉
|b0 − 1, b1, bb, bb〉




= A2→1




|b0 − 1, b1, bb, ll〉
|b0 − 1, b1, ll, bb〉
|b0 − 1, b1, bl, lb〉
|b0 − 1, b1, lb, bl〉
|b0 − 1, b1, ll, ll〉
|b0 − 1, b1, bb, bb〉




, and




|b0 − 2, b1 + 1, bb, ll〉
|b0 − 1, b1 − 1, ll, bb〉
|b0 − 2, b1 + 1, bl, lb〉
|b0 − 1, b1 − 1, lb, bl〉
|b0 − 2, b1 + 1, ll, ll〉
|b0 − 1, b1 − 1, bb, bb〉




= A1→2




|b0 − 2, b1 + 1, bb, ll〉
|b0 − 2, b1 + 1, ll, bb〉
|b0 − 2, b1 + 1, bl, lb〉
|b0 − 2, b1 + 1, lb, bl〉
|b0 − 3, b1 + 3, ll, ll〉
|b0 − 1, b1 − 1, bb, bb〉




.

Denote the similarity transformation which takes us to the physical basis

by S. In this basis, we denote H+1→1 by Ĥ+1→1 and H+2→2 by Ĥ+2→2.
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Clearly

Ĥ+1→1 = SH+1→1S
−1, Ĥ+2→2 = SH+2→2S

−1.

The transformation S is now determined by the requirement

Ĥ+1→1 = PĤ+2→2P.

We have not yet been able to solve this equation for S. Due to the presence

of A1→2 and A2→1 in the relation between H+1→1 and H+2→2, it seems that

S must mix subspaces of different giant momenta (b0, b1). In this case the

physical basis will not have sharp giant momentum and hence the resulting

states will not have a definite radius. This is not too surprising: the open

strings will pull “dimples” out of the giant graviton’s world volume so that

the giant with an open string attached does not have a definite radius. We

leave the interesting question of determining the transformation S for the

future.
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9 Discussion

A bound state of giant gravitons can be excited by attaching open strings.

The problem of computing the anomalous dimensions of these operators can

be replaced with the problem of diagonalizing a Cuntz oscillator Hamilto-

nian. In this dissertation we have developed the technology needed to con-

struct this Cuntz oscillator Hamiltonian to one loop. Firstly, we have given

an algorithmic construction of the operators dual to excitations described by

open strings which stretch between the branes. This involved giving an ex-

plicit construction of the intertwiner which is used to construct the relevant

restricted Schur polynomial. Secondly, we have developed methods that al-

low an efficient evaluation of any restricted character. Our method expresses

the restricted character graphically as a sum of strand diagrams. Finally,

we have explained how to derive the boundary interaction terms from iden-

tities satisfied by the restricted Schur polynomials. Since the excited giant

graviton operators are small excitations of BPS states, we expect that our

results can be extrapolated to strong coupling and hence can be compared

with results from the dual string theory. The form of our Cuntz oscillator

Hamiltonian provides evidence that the excitations of the giant gravitons

have the detailed interactions of an emergent gauge theory. In particular,

we have demonstrated the dynamical emergence of the Chan-Paton factors

of the open strings. We have also started to clarify the dictionary relating

the states of the Cuntz oscillator chain to the states of string field theory

on D-branes in AdS5×S5. Although we have mainly considered a bound

state of two sphere giants with two open strings attached, our methods are

applicable to an arbitrary bound state of giant gravitons with any number

of open strings attached.

Our result is a generalization of the spin chains considered so far in
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the literature: usually the spin chain gives a description of closed strings.

Our Cuntz oscillator Hamiltonian describes the dynamics of an open string

interacting with a giant graviton. Both the state of the string (described by

the Cuntz chain occupation numbers) and the state of the giant graviton

(the shape of the Young diagram) are dynamical in our approach.

It is worth emphasizing that the new emergent gauge symmetry is dis-

tinct from the original gauge symmetry of the theory[20]. The excited giant

graviton operators[20] are obtained by taking a trace over the indices of the

symmetric group matrix ΓR(σ) appearing in the sum

1
(n− k)!

∑

σ∈Sn

ΓR(σ)Tr(σZ⊗n−kW (1) · · ·W (k)), where

Tr(σZ⊗n−kW (1) · · ·W (k)) = Zi1iσ(1)
Zi2iσ(2)

· · ·Zin−k

iσ(n−k)
(W (1))in−k+1

iσ(n−k+1)
· · · (W (k))iniσ(n)

.

The color indices of the original super Yang-Mills theory are all traced: every

term in the above sum is a color singlet with respect to the gauge symmetry

of the original Yang-Mills theory. The color indices of the new gauge theory

arise from the labelling of the partial trace over ΓR(σ). In some sense we

are “substituting” symmetric group indices for the original gauge theory

indices. We call this mechanism “color substitution”.

There are a number of directions in which this work can be extended.

For Young diagrams with m columns we expect an emergent Yang-Mills

theory with gauge group U(m). It would be nice to repeat the calculations

we performed here in that setting. Another interesting calculation would

involve studying the dynamics of two giant gravitons with strings stretched

between them. In general, the boundary terms will certainly have different

values at each boundary (as anticipated in [17]) in which case there will be

a net flow of Zs from one brane to the other. This flow of Z’s will produce
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a force between the two giants, conjectured to be an attractive force in[17].

A very concrete application of our methods is the construction of the

gauge theory operator dual to the fat magnon[38]17. The fat magnon is a

bound state of a giant graviton and giant magnons (fundamental strings).

Essentially, due to the background five form flux, the giant magnon be-

comes fat by the Myers effect[39]. The fat magnon has the same anomalous

dimension as the giant magnon. It would be nice to explicitly recover this

anomalous dimension using our technology.

Finally, there is now a proposal for gauge theory operators dual to

brane-anti-brane states[40]. This proposal was made, at the level of the

free field theory, by identifying the operators that diagonalize the two point

functions of operators built from Z and Z†. Since these states are non-

supersymmetric, corrections when the coupling is turned on are expected to

be important for the physics. It would be interesting to extend the tech-

nology developed in this dissertation to this non-supersymmetric setting.

17The fat magnon in the plane wave background is the hedgehog of [19]
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A Young diagrams

Young diagrams label the Schur polynomials which we study. The Young

diagrams are in a one to one correspondence with the irreducible represen-

tations of the symmetric group. Hence, a Young diagram with n boxes is a

representation of Sn. When constructing a Young diagram, two rules need

to be followed:

• In every row, the number of boxes must equal, or decrease, from left

to right

• In every column, the number of boxes must equal, or decrease, from

top to bottom

The following is a valid Young diagram

R =

whereas this Young diagram, is clearly not valid

R =

We now define the weight of a box in a Young diagram. The box in column

i and row j will has weight N + i− j. As an example, consider the following
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Young diagrams

R1 = , R2 =

We define fR to be the product of weights in the Young diagram. So for the

above diagrams we have

fR1 = N(N + 1)(N + 2)(N + 3)(N − 1)(N)(N + 1)(N − 2)(N − 1),

fR2 = N(N + 1)(N + 2)(N + 3)(N + 4)(N − 1).

The hook length for a box is defined as the number of boxes immediately

below a box plus the number of boxes immediately to the right of the box

plus the box itself. This is best seen in Figure 12, where the arrow indicate

the boxes which are to be counted in order to find the weight of the top,

left-most box. This box has a weight of 7. Consider the example used in

Figure 12: This figure shows how the hook length for a Young tableau is
calculated.

Figure 12. The Young diagram, R, is an irrep of S10. The dimension of R

is given by

dimR =
n!

Πhooks
(A.1)
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So for the example we are examining

dimR =
10!

7 · 5 · 5 · 3 · 3 · 3 · 1 · 1 · 1 · 1
= 768.

B Calculating Characters

Tracing over a diagonal element of ΓR(σ) is not difficult, and is best seen

with a simple example. It is hoped that this example will illustrate some

important ideas which will help the reader when she comes to the more

difficult case of intertwiners, which are discussed in section 4. Consider the

following Schur polynomial with one string attached

χ 1 (σ) ≡ Tr (Γ (σ)) (B.1)

where Γ (σ) is a 2 by 2 matrix shown in Figure 13.

Figure 13: Matrix representing ΓR(σ).

We define an operator, Ô = (12), which is the sum of all 2 cycles in S2.
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The result of this operator acting on a state is

Ô

∣∣∣∣∣∣

〉
= −

∣∣∣∣∣∣

〉

Ô
∣∣∣

〉
=

∣∣∣
〉
.

We can now build a projection operator that will only trace over the

required block in Γ . The operator must select out the block we need,

setting everything else to zero. The obvious projection operators are

1
2
(1 + Ô)

∣∣∣∣∣∣

〉
= 0 (B.2)

1
2
(1 + Ô)

∣∣∣
〉

=
∣∣∣

〉
(B.3)

so in this case P

,

= 1/2(1 + (12)).

Similarly, it is easy to verify that P

,

= 1/2(1− (12)).

Now,

Tr (Γ (σ)) = Tr(P

,

· Γ ).

And looking at Figure 14 we can see that we have now selected out the

required block in Γ.

C Subgroup Swap Rule

In this appendix, we review the subgroup swap rule. The reader requiring

a more detailed explanation can consult Appendix D of [30]. Consider the

definition of a restricted Schur polynomial given in section 2.2. We need to
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Figure 14: Projection operator selecting out a block on the diagonal.

specify the sequence of subgroups used to perform the restrictions. Consider

the restricted Schur polynomial used in section 5.1

χ
(2)
R,R′′

∣∣∣
1

∣∣∣
2

=
1

(n− 2)!

∑

σ∈Sn

TrR′′ (ΓR(σ))Zi1iσ(1)
· · ·Zin−2

iσ(n−2)
(W (2))in−1

iσ(n−1)
(W (1))iniσ(n)

.

The labelling on the left hand side tells us to first restrict with respect to

the subgroup that leaves the index of W (1) inert, and then with respect to

the subgroup that leaves the index of W (2) inert. In general, we will get a

different polynomial if we were to restrict first with respect to the subgroup

that leaves the index of W (2) inert, and then with respect to the subgroup

that leaves the index of W (1) inert.

There is a relation between these two sets of polynomials, which is known

as the “subgroup swap rule”. This rule is especially important in the calcu-

lation of two point functions. The subgroup swap rule can be used to swap

any two strings, but they must be next to each other. For example, we can

swap strings n and n−1, but we cannot swap strings n and n−2. We would

first have to swap strings n and n− 1, then we would be able to swap n and

n− 2.

We will be using the weights of the boxes of the Young diagrams in the

subgroup swap rule. All weights are defined by the Young diagram before

the swap. The weight of the box labelled with upper index 1 is denoted by

93



cU1 and the weight of the box labelled with lower index 1 is denoted by cL1 .

Similarly for index 2. We can now define “swap” and “no-swap” factors, the

meaning of which will become clear with an example.

The upper and lower no-swap factors are given by

NU =

√
1− 1

(cU1 − cU2 )2
, NL =

√
1− 1

(cL1 − cL2 )2
.

The upper and lower swap factors are given by

SU =
1

cU1 − cU2
, SL =

1
cL1 − cL2

.

To understand how these factors are used, let us consider the following

example. For two strings, the subgroup swap rule is

χ

1
2

(n, n− 1)
∣∣∣
1

∣∣∣
2

=



NLNUχ

1
2

(n, n− 1) + SUNLχ

2
1

1
2

(n, n− 1)




∣∣∣
2

∣∣∣
1

+



SLNUχ

1
2

2
1

(n, n− 1) + SUSLχ

2
1

(n, n− 1)




∣∣∣
2

∣∣∣
1

where the factors are given by the weights on the Young diagram as follows

c1
c2

then

SU = SL =
1

c1 − c2 ,
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NU = NL =

√
1− 1

(c1 − c2)2 .

From the example it is now clear that whenever an index is swapped, we

include a swap factor, and whenever there is no swap, we include a no-swap

factor. When we review the reduction rule, and the two point function

in the next appendix, we will see how the subgroup swap rule is used in

computations.

We will conclude this appendix with an example which uses three strings.

We will swap strings 2 and 3. For this case, the subgroup swap rule is

χ 1
2

2
3

3
1

(n, n− 1)
∣∣∣
1

∣∣∣
2

∣∣∣
3

=



NLNUχ 1

2
2
3

3
1

(n, n− 1) + SUNLχ 1
2

3
2
1

(n, n− 1)




∣∣∣
1

∣∣∣
3

∣∣∣
2

+



SLNUχ 1

2
2
1

3

(n, n− 1) + SUSLχ 1
2

3
1

2
3

(n, n− 1)




∣∣∣
1

∣∣∣
3

∣∣∣
2

where

NU =

√
1− 1

(cU2 − cU3 )2
, NL =

√
1− 1

(cL2 − cL3 )2
.

The upper and lower swap factors are given by

SU =
1

cU2 − cU3
, SL =

1
cL2 − cL3

.

D A Two Point Function Example

In this appendix we show how one calculates a two point function in or-

der to illustrate the subgroup swap rule, and the reduction rule for Schur
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polynomials. For a complete description, consult [30].

Consider the following two point function

〈χ(2)
R,R′′(Z,W

(1),W (2)χ
(2)†
R,R′′(Z,W

(1),W (2)〉 = αF 1
0F

2
0 +βF 1

0F
2
1 +γF 1

1F
2
0 +δF 1

1F
2
1 ,

(D.1)

where we use the language of [30].

D.1 Coefficient of F 1
0 F 2

0

This coefficient is simply given by

n!
(n− 2)!

dimR′′

dimR
fR.

D.2 Coefficient of F 1
1 F 2

0

This coefficient is given by 〈D1χR,R′′(D1χR,R′′)
†〉 where D1 indicates reduc-

tion with respect to the box labelled by string 1. At this point, we will

simply state what the reduction rule is, the reader requiring more details

can examine [30]. The reduction of a Schur polynomial sums all possible

Schur polynomials that can be obtained by removing a single box that still

leaves a valid Young diagram. The weight of the the removed box multiplies

the reduced Schur polynomial.

Dχ(λ1,λ2,...,λr) = (N+λ1−1)χ(λ1−1,λ2,...,λr)+ · · ·+(N+λr−r)χ(λ1,λ2,...,λr−1).

(D.2)

So for the coefficient of F 1
1F

2
0 , the operator D1 is an instruction to remove

the box with string 1 attached

〈D1χR,R′′(D1χR,R′′)
†〉 = 〈c1χR′,R′′c1χ†R′,R′′〉
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= c21
(n− 1)!
(n− 2)!

dimR′′

dimR′
fR′

= c21(n− 1)
dimR′′

dimR′
fR′ .

D.3 Coefficient of F 1
0 F 2

1

This coefficient is given by 〈D2χR,R′′(D2χR,R′′)
†〉 where D2 indicates reduc-

tion with respect to the box labelled by string 2. In this case, we have to

make use of the subgroup swap rule, as we cannot remove the box labelled

by string 2 before removing the box labelled by string 1. Therefore, before

calculating the coefficient, we need to calculate

D2χR,R′′
∣∣∣
1

∣∣∣
2

= D2(NUNLχR,S′′ + SUSLχR,S′′)
∣∣∣
2

∣∣∣
1

= D2

((
1− 1

(c1 − c2)2
)
χR,S′′ +

1
(c1 − c2)2χR,R

′′

) ∣∣∣
2

∣∣∣
1

=
(

1− 1
(c1 − c2)2

)
c2χS′,S′′ +

1
(c1 − c2)2 c1χR

′,R′′ .

We have neglected stretched string states since we will be removing a box,

which will cause those states to disappear due to the Gauss law. Now, we

can calculate the coefficient of F 1
0F

2
1

〈D2χR,R′′D2χ
†
R,R′′〉 =

〈[
1− 1

(c1 − c2)2 c2χS
′,S′′ +

1
(c1 − c2)2 c1χR

′,R′′

]

×
[(

1− 1
(c1 − c2)2

)
c2χS′,S′′ +

1
(c1 − c2)2 c1χR

′,R′′

]† 〉

=
(

1− 1
(c1 − c2)2

)2

c22〈χS′,S′′χ†S′,S′′〉+
1

(c1 − c2)4 c
2
1〈χR′,R′′χ†R′,R′′〉

=
(

1− 1
(c1 − c2)2

)
c22

[
n

dimS′′

dimS′
fS′F0 + c1fS′F1

]

+
1

(c1 − c2)4 c
2
1

[
n

dimR′′

dimR′
fR′F0 + c2fR′F1

]
.
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D.4 Coefficient of F 1
1 F 2

1

For this coefficient we can simply use the reduction rule given in (D.2)

〈D1D2χR,R′′(D1D2χR,R′′)
†〉 = 〈(c1c2)2χR′′c1χ†R′′〉

= (c1c2)2fR′′ .

D.5 Determination of Subleading Terms

To determine which terms are subleading, we can make use of the identity

given in section 5.1,

χ
(2)
R,R′′(Z,W

(1),W (2))
∣∣∣
1

∣∣∣
2

= χ
(1)
R′,R′′(Z,W

(2))Tr(W (1)) +
1

c1 − c2χ
(1)
R′,R′′(Z,W

(1)W (2))

+
∑
α

[
1

c1 − cα

(
1− 1

(c2 − cα)2

)
χ

(2)
R′,T ′′′α

(Z,W (1)Z,W (2))

+
1

c1 − c2
1

(c2 − cα)2
χ

(2)
R′,R′′′α

(Z,W (1)Z,W (2))

+
1

c1 − c2
1

c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→R′′′α T

′′′
α

(Z,W (1)Z,W (2))

+
1

c1 − cα
1

c2 − cα

√
1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′α R′′′α

(Z,W (1)Z,W (2))

] ∣∣∣
1

∣∣∣
2
.

By using the definition, (W (1))ij ≡ (Y J)ij , we find

〈tr(W (1))tr(W (1))†〉 = 〈tr(Y J)tr(Y †J)〉
=

N

J + 1

(
(N + J)!

N !
− (N − 1)!

(N − J − 1)!

)
.

The other two point functions will use the same methods given above. This

is a simple, but tedious, calculation, so we do not give the full derivation

here, we simply state the result. Comparing the terms on the left hand side

with the terms on the right hand side, we find that the first two terms on
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the right hand side of the identity are subleading.

This analysis overestimates the size of the subleading terms when the

open string includes impurities (by a factor of O(J)).
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