

THE DEVELOPMENT OF A STRUCTURED
APPROACH TO SERVICE PROVISIONING
IN A PARLAY ENVIRONMENT

Barry Fricke

A research report submitted to the Faculty of Engineering and the Built Environment,

University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements

for the degree of Master of Science in Engineering.

Johannesburg, 2007

 i

DECLARATION

I declare that this project report is my own, unaided work. It is being submitted for the

degree of Master of Science in Engineering in the University of the Witwatersrand,

Johannesburg. It has not been submitted before for any degree or examination in any

other university.

Barry Fricke

 day of

 ii

ABSTRACT

The environment in which services are provisioned in existing networks has a number of

shortcomings. Neither the service domain nor the services therein have a standardised

structure. Signalling between terminals and services uses network protocols that are

inappropriately oriented towards bearer management. The control of bearer connections,

and the view of call states, is maintained in the network layer, making bearer

management difficult and limited.

A service-centric service provisioning environment is proposed, which advocates a

structured service domain, and a structured approach to service development and

provisioning. A direct communication path between terminals and services at the

application layer, that utilises high-level, service-oriented protocols, is proposed. Control

of the call / session layer and the bearer network, and view of connection states is

relocated to the application layer, facilitating bearer manipulation by services located in

the service domain.

It is shown that the capabilities and features of services provisioned in the proposed

service provisioning environment are of a greater range, more advanced and more

complex. It is also shown that the proposed service provisioning environment brings

about potential efficiency gains for the initiation of 2-party calls, and significant

efficiency gains for the initiation of multiparty calls.

 iii

ACKNOWLEDGEMENTS

This work was performed under the Centre for Telecoms Access and Services at the

University of the Witwatersrand. The centre is funded by Telkom SA Limited, Siemens

Telecoms and the Department of Trade and Industry’s THRIP programme. This financial

support is much appreciated.

I would like to thank my supervisor, Prof. H.E. Hanrahan for his guidance and support

throughout the duration of the research project. Special thanks go to the Telkom Center of

Excellence (CoE) program for providing me with this exciting opportunity.

 iv

CONTENTS

DECLARATION i

ABSTRACT ii

ACKNOWLEDGEMENTS iii

CONTENTS iv

LIST OF FIGURES vii

LIST OF TABLES ix

NOMENCLATURE x

CHAPTER 1: INTRODUCTION 1
1.1. Overview of communications networks 1
1.2. Telecoms networks 2

1.2.1. Telecoms services 2
1.2.2. The development of the service domain 3
1.2.3. Overview of OSA / Parlay 6
1.2.4. Limitations of the existing approach to service provisioning 8

1.3. Formal problem statement 10

CHAPTER 2: THE IDEAL SERVICE PROVISIONING ENVIRONMENT 12
2.1. Distinguishing features of the ideal service provisioning environment 12

2.1.1. Ideal features of the telco environment 13
2.1.2. Ideal features of the service domain 14
2.1.3. Service logic and the intelligent terminal 16

2.2. The ideal service provisioning environment advantage 17

CHAPTER 3: PRINCIPAL CONCEPTS OF THE PROPOSED SERVICE
PROVISIONING ENVIRONMENT 19

3.1. Important definitions 19
3.1.1. General definitions 19
3.1.2. Definitions for signals 22
3.1.3. Definitions for call, service and invocation categories 25

3.2. The proposed approach to service signalling 28
3.2.1. Service signalling for service invocation 29
3.2.2. Service signalling for service execution and management 33

 v

3.2.3. A comparison of service signalling approaches 34
3.3. The proposed approach to BCS management 37

3.3.1. Relocation of the primary view and control of the BCS 38
3.3.2. Different approaches to BCS invocation 41
3.3.3. Integrating the proposed approaches to BCS control and service signalling 42
3.3.4. Practical considerations of BCS control relocation 44

3.4. The proposed service domain architecture 46
3.4.1. An overview of the proposed service domain architecture 46
3.4.2. Integrating the proposed approaches to BCS control, service signalling and

service domain architecture 51
3.5. A comparison of the existing and proposed service provisioning environments 53

CHAPTER 4: A STATIC VIEW OF THE PROPOSED SERVICE DOMAIN
ARCHITECTURE 54

4.1. Architectural overview 54
4.2. Services 56
4.3. Aids to services 56

4.3.1. Reusable Building-Blocks (RBBs) 56
4.3.2. Generic Service Modules (GSMs) 57

4.4. API interfaces 59
4.4.1. Application layer API set 59
4.4.2. GSM and RBB API sets 61
4.4.3. The Parlay APIs 61

4.5. Service infrastructure components 62
4.5.1. Service Manager 62
4.5.2. Contact Agent 65

4.6. Databases 67
4.6.1. User Profile database 67
4.6.2. Service databases and the Central repository 68

4.7. Functional context of architectural components 68

CHAPTER 5: CRITICAL IMPLEMENTATION ISSUES 71
5.1. Service infrastructure components and the Application layer API set 71

5.1.1. Overview 71
5.1.2. Interface diagrams 73
5.1.3. Methods of the Application layer API set 77
5.1.4. A comparison of the Application layer API set and the Parlay APIs 78

5.2. The Generic Service Modules and the GSM API set 80
5.2.1. Overview 80
5.2.2. Generic Service Module implementation 81
5.2.3. Examples of GSMs 84
5.2.4. Methods of the GSM API set 98

5.3. The Reusable Building-Blocks and the RBB API set 99
5.3.1. Overview 99
5.3.2. Examples of RBBs 99
5.3.3. Methods of the RBB API set 101

 vi

CHAPTER 6: A DYNAMIC VIEW OF THE SERVICE DOMAIN ARCHITECTURE 102
6.1. Service session routines 103

6.1.1. Initiating service session routine 103
6.1.2. Terminating service session routine 113

6.2. Fundamental interactions 114
6.2.1. Fundamental interaction 1: Service invocation 115
6.2.2. Fundamental interaction 2: Terminal Service communication 116
6.2.3. Fundamental interaction 3: Network resource control 119

CHAPTER 7: EXAMPLES OF SERVICES IMPLEMENTED IN THE PROPOSED
SERVICE PROVISIONING ENVIRONMENT 122

7.1. Service session life-cycles 122
7.2. Service example 1: Abbreviated Dialling service 124
7.3. Service example 2: Call Completion service 129
7.4. Service example 3: Call Manipulation service 133

CHAPTER 8: DEMONSTRATION OF CONCEPT 138
8.1. Service capabilities and complexity 138
8.2. Efficiency of service invocation and execution 143

8.2.1. Connectivity between 2 parties 144
8.2.2. Multiparty connectivity without a bridge 151
8.2.3. Multiparty connectivity with a bridge 162

CHAPTER 9: IN CLOSING 170
9.1. The proposed service provisioning environment: A contribution to the Next Generation
Network 170
9.2. Summary of work 171
9.3. Conclusions 172
9.4. Recommendations for future work 173

 vii

LIST OF FIGURES

Figure 1-1: The service and network domains 4
Figure 1-2: The service domain, using the softswitch and OSA principles 5
Figure 1-3: The Parlay architecture 7
Figure 1-4: The existing approach to service signalling and invocation 9
Figure 2-1: The ideal service provisioning environment advocates a structured
 service domain 14
Figure 2-2: The use of a generic invocation interface to mediate service invocations 15
Figure 3-1: The introduction of service adaptors and multiple networks 20
Figure 3-2: Service signalling framework 22
Figure 3-3: A network’s signalling transport and bearer transport functions 24
Figure 3-4: The signalling plane 25
Figure 3-5: Categories of call initiation 26
Figure 3-6: Categories of services 26
Figure 3-7: Categories of service invocation 27
Figure 3-8: Triggered invocation for network initiated services 29
Figure 3-9: The existing approach: Triggered invocation for terminal initiated services 31
Figure 3-10: The proposed approach: Application layer invocation to invoke terminal
 initiated services 32
Figure 3-11: 3G approach to service signalling and invocation 36
Figure 3-12: Proposed approach to service signalling 36
Figure 3-13: Web services approach to service signalling 37
Figure 3-14: The existing approach to BCS control and management 39
Figure 3-15: The relocation of BCS control and management 40
Figure 3-16: BCS invocation using triggered and application layer invocation 41
Figure 3-17: An example illustrating BCS control relocation and application layer
 signalling 42
Figure 3-18: The service architecture implied by the Parlay standards 47
Figure 3-19: The proposed (simplified) service domain architecture 48
Figure 3-20: A consolidated example highlighting all major concepts 51
Figure 4-1: Basic architectural features of the proposed service domain architecture 54
Figure 4-2: The proposed service provisioning inserted in a neutral framework 69
Figure 5-1: The Application layer API set: 3 categories of signals 72
Figure 5-2: Interface diagram for the Contact Agent 73
Figure 5-3: Interface diagram for the terminal’s callback interface 74
Figure 5-4: Interface diagram for a Service Manager 75
Figure 5-5: The methods of the Application layer API set 77
Figure 5-6: The static structure of the GSM layer in detail 81
Figure 5-7: ID showing the behaviour of a generic GSM 83
Figure 5-8: MSC showing the behaviour of a generic GSM 84
Figure 5-9: Interface diagram for the FW GSM 86
Figure 5-10: MSC for FW GSM createService() method 87
Figure 5-11: MSC for various FW GSM methods 88
Figure 5-12: MSC for FW GSM selectService() method 89
Figure 5-13: Interface diagram for the MPCC GSM 90
Figure 5-14: MSC for MPCC GSM initiateSessionMembers() method 91
Figure 5-15: MSC for MPCC GSM release() method 92
Figure 5-16: MSC for MPCC GSM getMembers() method 93
Figure 5-17: MSC for MPCC GSM getSession() method 93
Figure 5-18: MSC for MPCC GSM for suspend() and resume() methods 94
Figure 5-19: Interface diagram for the SI GSM 95
Figure 5-20: MSC for SI GSM for createNotification() method 95
Figure 5-21: MSC for SI GSM for startTerminal() method 98

 viii

Figure 5-22: The methods of the GSM API set 99
Figure 5-23: ID for "NumSearch RBB" 100
Figure 5-24: MSC for "NumSearch RBB" 100
Figure 6-1: ID for terminal-initiated initiating service session routine 105
Figure 6-2: MSC for terminal-initiated initiating service session routine 107
Figure 6-3: ID for network-initiated initiating service session routine 109
Figure 6-4: MSC for network-initiated initiating service session routine 111
Figure 6-5: The common messages in the two initial service session routines 111
Figure 6-6: Abstracted initiating service session routine for terminal initiation 112
Figure 6-7: Abstracted initiating service session routine for network initiation 112
Figure 6-8: MSC for terminating service session routine 113
Figure 6-9: ID showing service invocation using a Service Manager 115
Figure 6-10: MSC showing application layer invocation of terminal initiated services 115
Figure 6-11: MSC showing triggered invocation of network initiated services 116
Figure 6-12: ID showing the proposed approach to terminal service communication 117
Figure 6-13: MSC showing terminal service communication using application
 layer signalling 118
Figure 6-14: Network resource control with and without GSMs 120
Figure 6-15: Network resource control using a GSM 120
Figure 7-1: Typical service session life-cycles 123
Figure 7-2: Service management ID for the Abbreviated Dialling service 125
Figure 7-3: Service management MSC for the Abbreviated Dialling service 126
Figure 7-4: Service execution ID for the Abbreviated Dialling service 127
Figure 7-5: Service execution MSC for the Abbreviated Dialling service 128
Figure 7-6: Service execution ID for the Call Completion service 130
Figure 7-7: Service execution MSC for the Call Completion Service 132
Figure 7-8: Service execution ID for the Call Manipulation service 134
Figure 7-9: Service execution MSC for Call Manipulation service 137
Figure 8-1: Simple 1st party call initiation between 2 parties 145
Figure 8-2: Simple 3rd party call initiation between 2 parties 146
Figure 8-3: Complex 1st party call initiation between 2 parties 148
Figure 8-4: Complex 3rd party call initiation between 2 parties 149
Figure 8-5: Full-mesh conference topology 152
Figure 8-6: The creation of a 3-party call using 1st party call initiation 153
Figure 8-7: The creation of a 4-party call using 1st party call initiation 153
Figure 8-8: 3rd party call initiation between 3 parties 155
Figure 8-9: The creation of a 3-party call using 3rd party call initiation 156
Figure 8-10: The creation of a 4-party call using 3rd party call initiation 158
Figure 8-11: Number of SIP messages required in a multiparty call 158
Figure 8-12: Processing gains for 3rd party call initiation 159
Figure 8-13: Setup time for a 3-party call over the internet 162
Figure 8-14: Bridge conference topology 163
Figure 8-15: Existing approach to 4-party conference initiation using a bridge 163
Figure 8-16: MSC showing single party joining a bridge conference 165
Figure 8-17: MSC showing the referral of a party to a bridge conference 166
Figure 8-18: Proposed approach to 4-party conference initiation using a bridge 167

 ix

LIST OF TABLES

Table 3.1: A comparison of the existing and proposed service provisioning environments 53
Table 5.1: A comparison of Parlay and the proposed architecture 79

 x

NOMENCLATURE

Acronym Definition
API Application Programming Interface
AS Application Signalling
BCS Basic Connectivity Service
CC Call Control
CCF Call Control Function
CSCF Call Session Control Function
CSN Circuit Switched Network
DTMF Dual Tone Multi Frequency
GSM Generic Service Module
HSS Home Subscriber Server
I-CSCF Interrogating - CSCF
IMS IP Multimedia Subsystem
ID Interaction Diagram
IN Intelligent Network
INAP Intelligent Network Application Protocol
ISDN Integrated Services Digital Nework
IT Information Technology
LAN Local Area Network
MMS Multimedia Message Service
MPCC Multi Party Call Control
MPLS Multi Protocol Label Switching
MSC Message Sequence Chart
NS Network Signalling
OSA Open Services Architecture
P-CSCF Proxy - CSCF
PSN Packet Switched Network
PSTN Public Switched Telephone Network
QoS Quality of Service
R&A Reuse and Abstraction
RBB Reusable Building-Block
RC Resource Control
S-CSCF Serving - CSCF
SCF Service Capability Feature
SIP Session Initiation Protocol
SMS Short Message Service
VPN Virtual Private Network
WAN Wide Area Network

 1

Chapter 1

INTRODUCTION

1.1. Overview of communications networks

A communications network is an organisation of stations capable of interconnection [1].

Many different types of communications networks exist, each interfacing with its users in

a different way, and providing a different service to its users. The following are examples

of different types of communications networks [2]:

• Fixed-line telecoms networks

o PSTN (Public Switched Telephone Network)

o ISDN (Integrated Services Digital Network)

• Packet switched networks

o IMS (IP Multimedia Subsystem) networks

o MPLS (Multiprotocol Label Switching) networks

• Mobile telecoms networks

o Cellular (2G, 2.5G, 3G) networks

o Radio networks

• Enterprise networks

o LAN (Local Area Network), WAN (Wide Area Network)

o VPN (Virtual Private Network)

• Internet

Since each of these networks has different objectives, their architectures differ

significantly. However, all communications networks have a few, common, fundamental

elements. All communications networks have a transport mechanism, terminals which

interface with the network’s users, services which the network offers to its users, and

network management systems. In their essence, communications are more similar than

they are different.

 2

This research project is primarily centred on telecoms networks. However, due to the

stated similarities between communications networks of all kinds, many of the results

presented in this report apply equally to networks other than telecoms networks.

This fact is especially true due to the primary focus of the project: the service domain. As

will be shown later in this chapter, softswitch technologies and the Open Service Access

(OSA) principle allow the separation of application services from the underlying network.

Therefore, many of the developments made to the service domain in this project are

independent of the underlying network which it serves.

1.2. Telecoms networks

The generic description of communications networks are specialised to the case of

telecoms networks in the following ways:

• Telecoms network end users are people, who interface with the network using a

small, portable terminal (a telephone with a growing set of features).

• Telecoms network users predominantly communicate with other network users in

real time, using a combination of voice and video. Additionally, network users

are able to communicate using data, e.g. Short Message Service (SMS),

Multimedia Message Service (MMS) etc.

The telecoms network has undergone significant changes since its inception, and

continues to evolve. These changes have been necessitated by the continual advancement

of the services the network aims to support, and this project report aims to further the

network’s metamorphosis to this same end.

1.2.1. Telecoms services

The historical approach used to provision services for fixed-line telecoms networks is to

have the services distributed throughout the network domain in various network elements.

 3

This approach is currently being phased out in telecoms networks due to the following

problems:

• Service implementation and alteration is a significant logistical exercise since the

services are duplicated in various elements throughout the network, making

service deployment and modification necessary in a number of different

locations.

• Services are not easily transportable to different networks since they are highly

dependent on the network technology and are thus inextricably tied to the

underlying network.

• Since services are so dependent on the technology of their underlying network,

service programmers are required to have a detailed understanding of both

application development and telecoms networks operations and protocols.

1.2.2. The development of the service domain

The increasing complexity of services rendered the ad hoc approach of implementing

services in a distributed manner throughout the network domain prohibitively difficult, as

well as clumsy. Additionally, the requirement that service developers have a good

understanding of telecoms networks, and their myriad protocols, precluded many

application developers from telecoms service development. A new approach to service

implementation was thus required.

In the approach presently being pursued by network operators, which developed from the

recognition of these problems, services are physically removed from their multiple

locations throughout the network domain, and relocated to a logically and physically

distinct element. This element became known as the ‘service domain’, and is thought of

as occupying a completely different domain to the network, as shown in figure 1.1.

Figure 1-1: The service and network domains

 4

The service domain contains the services in a centralised location; these services were

distributed throughout the network domain before the advent of the service domain. Note

that, despite the relocation of services from the network domain to the service domain,

the control and management of the fundamental and original service of providing end-to-

end connections between users is still maintained in the network domain in current

network architectures. (Specifically, the service is located in a layer of the network

domain referred to as the “call / session layer”, which is responsible for the control of

media connections and streams in the bearer network. The call / session layer is more

fully defined in chapter 3.) The service of providing end-to-end connections between

users is referred to as the Basic Connectivity Service (BCS) in this report.

The introduction of the service domain to the telecoms network, and the relocation of the

services to the service domain, requires an adjustment to the way services are invoked.

When services were distributed throughout the network domain, terminals signalled to the

call / session layer of the network for the required service. With the relocation of services

to the service domain, this approach is no longer adequate.

Telecoms networks allow the new approach of having services located in the service

domain through an ad hoc adjustment: the call / session layer of the network forwards the

service signalling to the new location of the services- the service domain. The result of

this ad hoc modification is that even though the services have been removed from the

network domain, terminals still signal to the services via the network domain, due the

historical network architecture.

Having the services located in a single location solved some of the problems outlined

previously. However, the introduction of the service domain alone does not solve the

problem of services being dependent on the technology of the underlying network, and

thus the requirement that service developers have knowledge of the network’s operation

and protocols.

It is through the introduction of two principles that these problems are solved. Firstly, the

softswitch principle separates the call / session control from the media transport

mechanism. Secondly, the OSA principle separates application services from call /

session control. The combination of these two principles provides an abstraction layer

between the service domain and the network domain in the form of an Application

 5

Programming Interface (API). This API provides services a generic and standard set of

methods with which they can control various network elements, freeing them from the

requirement of having knowledge of the specific protocols used by the network elements.

The differentiation of the service domain and the network domain in figure 1.1 is now

extended to show the introduction of the softswitch and OSA API, shown in figure 1.2.

Figure 1-2: The service domain, using the softswitch and OSA principles

When the service domain is coupled with the softswitch and OSA approaches, the

services are abstracted from the network domain by the API. The abstraction layer

introduced by the API thus allows services to be independent of their underlying

networks, and allows a far broader range of programmers to develop telecoms services.

It is the softswitch software and hardware that convert the generic methods offered to the

service domain by the API to the specific signals and messages required by the protocols

of the underlying network.

Various APIs have been developed, which follow the generic OSA principle, namely

JAIN and OSA / Parlay. This project assumes the use of the OSA / Parlay APIs; however,

many of the developments proposed and conclusions drawn are independent on the APIs

which the service domain utilises and apply equally to other standards that follow the

OSA principle.

 6

1.2.3. Overview of OSA / Parlay

The objective of The Parlay Group it to intimately link Information Technology (IT)

applications with the capabilities of the telecoms world, by specifying and promoting

APIs that are secure, easy to use, rich in functionality, and based on open standards [3].

The OSA / Parlay specifications define an architecture that enables service application

developers to make use of network functionality through an open standardised interface,

i.e. the OSA / Parlay APIs. The network functionality is described as Service Capability

Features (SCFs). See the Parlay standards [4] for more information concerning SCFs.

Parlay integrates telecom network capabilities with IT applications via a secure,

measured, and billable interface. Parlay's open APIs release developers from having to

write code for specific networks and environments, reducing risks and costs, and allowing

for innovative new services to be delivered via the telco network-operator channel [3].

The Parlay APIs allow third-party applications to be hosted within a telecom operator's

own network, and allow applications running on external application servers to offer their

services to the operator's subscriber base via a secure gateway [3].

Figure 1.2 showed the generic service provisioning approach using the softswitch and

OSA principles. In figure 1.3 this generic approach is specialised to show the Parlay

architecture.

Figure 1-3: The Parlay architecture

 7

The SCFs, within the Parlay gateway, convert the network independent methods offered

by the Parlay APIs to the specific protocols and messages supported in the underlying

network. Parlay presently specifies 14 SCFs, each of which provides a different set of

API methods pertaining to different sets of network capabilities. The most frequently

used SCFs include the Multi-Party Call Control SCF [5], which provides methods

allowing applications to establish and manipulate multi-party connections, and the

Generic Messaging SCF [6], which allows applications to send and receive voice and

electronic messages.

The benefits of the Parlay APIs are numerous. Parlay APIs [3]:

• Are open and technology-independent, allowing the widest range of market

players to develop and offer advanced telecom services.

• Eliminate the need for programmers to learn onerous telecom protocols, lowering

costs and raising the programming abstraction level to the point where telecom

capabilities become just "normal" IT APIs.

• Make it possible for external application servers to interact with telecom network

capabilities.

• Bring the highly successful Internet development model to the telecom domain

with the full participation of telco operators.

• Reduce business risk for all parties involved via the open API model.

• Enable the new business model: "Network Operator As Retailer of Services."

• Allow the creation of applications that function across multiple networks.

• Support 2G, 2.5G, and 3G networks with the same APIs, providing a future-proof

evolution path for network services.

• Make it possible to introduce a wide variety of services and applications quickly,

with faster development cycles and greater sensitivity to the needs of specific

markets.

More information on the OSA / Parlay standard, and the full OSA / Parlay specifications,

can be found at the Parlay website at http://www.parlay.org.

 8

1.2.4. Limitations of the existing approach to service provisioning

Two aspects of the existing approach to service provisioning can be analysed: the

approach to the telecoms environment in which the service domain operates, and the

approach used for implementation of the service domain (using Parlay).

Limitations of the existing approach to the telecoms environment in which the

service domain operates

Service signalling refers to the signalling that is used between services (provisioned as

applications) and terminals to invoke and control the execution of services. The existing

approach to service signalling is shown in figure 1.4. In figure 1.4, the invocation of

services in the service domain can be achieved in either of two ways: services can be

invoked by third party applications, e.g. a web service (5), or by the underlying network

(1-4). The case where services are invoked by third party applications is not relevant to

the analysis at present, and attention is focused on the invocation of services by the

underlying network

In the existing approach, services are invoked by the underlying network as follows.

Using network layer call / session signalling, a terminal signals to the call / session layer

in the network domain (1). Having met a trigger condition (2), an event is sent to the

Parlay gateway (3). The Parlay gateway then causes a notification to be sent to the service

domain (4), and the appropriate service is invoked. (Call / session signalling is the

signalling that is used in the call / session layer in the network domain, and is concerned

with setting up media, bearer streams etc.)

 9

Parlay APIs

Service domainService1 ServiceX

Network domain

Parlay gatewaySCF1 SCF2 SCF14

1

3

4

2

Web
service

5

Figure 1-4: The existing approach to service signalling and invocation

This is the only way that intelligence in the terminal can interact with intelligence in the

application domain, since OSA / Parlay assumes that all user to network signalling is

intended for call / session signalling. Requiring that terminals signal to the application

domain using protocols that are oriented towards call / session signalling places a

limitation on the signalling complexity that can be achieved, since all signalling from

terminals to the application domain relies on triggering mechanisms in the network.

The existing approach is adequate if services are simple, and the terminal is oblivious to

the execution of the service (i.e. no further service-terminal interaction is required, other

than requiring the user to respond to simple announcements, etc.). The existing approach

using call / session signalling is inadequate for advanced services, which require complex

interaction with the terminal.

The second point regarding the limitations of the existing approach to the telecoms

environment in which the service domain operates concerns the locus of call / session

control and management. The Parlay standards imply that the primary view and control of

the basic telecoms service of providing end-to-end user connectivity (the BCS) is still

located in the network domain (in the call / session layer). Terminals that wish to

establish end-to-end connections signal to the network domain (specifically, the call /

session layer) to establish the connection, and management of the connection is

maintained in the network domain (in the call / session layer). A service-centric approach

would allow for the control of the BCS in a centralised location, alongside other services

 10

provided to customers, enabling easy handling and manipulation of connections by other

services.

Limitations of the existing approach used for implementation of the service

domain (using Parlay)

The obvious strength of Parlay is its well defined set of APIs. Thus, the way that Parlay

applications (telecoms services) should interface with the underlying network (via the

Parlay gateway) has been well defined in the Parlay specifications. However, besides the

specification of the use of callback interfaces, the Parlay specifications do not define any

structure for either the applications themselves, or for the service domain (which hosts the

Parlay applications) as a whole. For example, no explicit provision has been made for the

implementation of a software reuse methodology.

A second area which is as yet undefined is how applications should deal with various

sources of invocation. Whereas, in the existing approach, 1st party services are invoked

through the receipt of a notification from the Parlay gateway, 3rd party services are

invoked through the receipt of an invocation message originating from elsewhere, e.g. a

web service (signal 5 in figure 1.4). How services should deal with invocation from

various sources, each using different protocols, is not covered in the Parlay specification.

The potential for various types of sources to invoke telecoms services imposes a burden

on each and every telecoms service, since each has to be equipped with the ability to

process invocation requests of various forms, unless a standardised approach is

developed.

1.3. Formal problem statement

The type and complexity of services that can be supported in existing networks are

restricted by the following limitations of the service provisioning environment:

• The service domain is poorly developed;

• The telecoms environment in which the service domain operates is inefficient,

from the perspective of service provisioning.

 11

In the absence of a standardised service domain architecture, network operators need to

either develop proprietary service domain architectures, or the operators’ service domains

remain devoid of structure altogether. This results in service developers needing to

employ non-standardised and ad hoc approaches to service development and deployment.

Left unattended, the second part of the problem increases the effort required to develop

services, and places a cap on the variety and complexity of services that can be

successfully provisioned.

Each of the problem parts has a number of sub-problems:

• The service domain is poorly developed:

o The service domain has no defined architecture;

o The services have no defined structure;

o No software reuse methodology has been defined;

o No guideline exists concerning how services should handle invocations from

multiple sources.

• The telecoms environment in which the service domain operates is sub-optimal:

o Service signalling is required to call / session signalling protocols, which are

designed for setting up connections, and are inappropriate for advanced service-

oriented interactions;

o The primary view and control of the BCS is maintained in the call / session

layer of the network domain, and has no centralised point of monitoring and

management.

By addressing these problems, this research project attempts to circumvent the limitations

in existing service provisioning environments, and in so doing, redefines the environment

in which services operate.

Looking ahead

Chapter 2 identifies broad characteristics of an ideal service provisioning environment,

which attempts to overcome the problems and limitations identified above.

 12

Chapter 2

THE IDEAL SERVICE PROVISIONING
ENVIRONMENT

The OSA approach to the provisioning of services (e.g. using Parlay) offers networks

significant advantages, as described in section 1.2.3. However, existing networks that

subscribe to this service provisioning philosophy still have numerous shortcomings and

limitations, some of which were identified in section 1.2.4. The ideal service provisioning

environment would also employ the OSA approach; however, this environment requires

aspects of the existing approach to the service domain to undergo significant

modification.

The characteristics of the ideal service provisioning environment presented here reflect

the goal of creating an environment conducive to the development, provisioning,

invocation and execution of services.

2.1. Distinguishing features of the ideal service provisioning

environment

All of the characteristics of the ideal service provisioning environment presented next

have services as their focal point: their development, provisioning, invocation and

execution. The characteristics and features can be divided into two distinct categories:

• Features that deal with the environment in which the service domain operates;

• Features concerning the service domain.

The service domain determines the environment in which services are implemented and

executed, and thus has an obvious impact on service provisioning. The environment in

which the service domain operates (i.e. the telco network as a whole) also has an impact

on service provisioning since the environment dictates how services are invoked, how

 13

they conduct their resulting actions, and thus the complexity of services that can be

supported.

2.1.1. Ideal features of the telco environment

The telco network as a whole determines the environment in which services, and the

service domain, operate. The network dictates both the possibilities and the constraints of

services. For example, the telco network determines how terminals, and other network

elements, communicate with services. That is, the network determines the nature and

complexity of service signalling. This, in turn, dictates the variety and complexity of the

services that can be provisioned.

Service signalling

Section 1.2.4 described how requiring service signalling to be diverted through the call /

session layer of the network domain, and thus use network layer call / session signalling

(which is oriented towards the setup and management of media streams and not service

interaction) limits the capabilities of services that can be provisioned. Also, network layer

signalling is, by its very nature, dependent on the network it serves. The use of network

layer signalling thus places a requirement on terminals that they are able to send and

receive communication using various network layer protocols.

The ideal service provisioning environment would use a service signalling protocol that is

more powerful and appropriate to service signalling, and thus allow terminals and service

logic to communicate with each other directly, without dependence on the network or

specific network layer protocols.

Location of BCS primary control and view

In the existing approach, the primary control and view of the BCS is maintained in the

(call / session layer of the) network domain. For reasons which are made apparent in

section 2.2, the ideal service provisioning environment provides the control, view and

management of the BCS in the service domain, along with the various other services

offered to the network users.

 14

2.1.2. Ideal features of the service domain

Since services reside in the service domain, the service domain determines how services

should be structured and operate, and has a significant impact on service provisioning.

Service domain structure

Section 1.2.4 identified that in the existing approach, neither the service domain nor the

services have any defined structure. The Parlay standards specify the use of callback

interfaces, but provide no further guidance. The ideal service provisioning environment

would remedy this problem, by employing a structured service domain, which contains

appropriately structured services. Specifically, a software reuse methodology should be

advocated.

The left side of figure 2.1 shows the existing approach to the service domain, which is

devoid of any structure. The right side shows a well-defined service domain, advocating

software reuse and a layered, hierarchical approach, conducive to the provisioning of

advanced services.

Figure 2-1: The ideal service provisioning environment advocates a structured service

domain

 15

Invocation mechanism

Section 1.2.4 stated that, in the absence of a standardised approach, each service would

have to deal with application layer and triggered invocations, originating from various

sources (e.g. terminals, web services), with proprietary approaches. The requirement that

each and every service implement its own approach in such an ad hoc manner is

inefficient, and burdensome on application developers.

The ideal service provisioning environment should implement a generic invocation

interface. The generic invocation interface would serve two purposes:

• It would introduce a standardised approach for services to deal with application

layer and triggered invocations, from various sources (e.g. terminals, web

services). This standardised approach would hide the protocols used to achieve

service signalling (e.g. Q.931, SIP) from the services.

• It would abstract the services from low-level technology dependent protocols,

and allow services to communicate with the invocation interface using

appropriately oriented high-level messages.

Figure 2.2 presents the existing approach used for service invocation (on the left), and the

approach to service invocation using a generic invocation interface (on the right). In both

sides of the diagram, service invocations from 3 different sources are shown: from the

network (a), from the terminal (b), and from a web service (c).

Figure 2-2: The use of a generic invocation interface to mediate service invocations

In the existing approach (on the left), there is no guidance as to how services should

handle invocations originating from different technological domains. Services are

 16

required to communicate with sources external to the service domain using various types

of signalling protocols.

The generic invocation interface, used in the ideal service provisioning approach (on the

right) relieves services from having to deal with varied signalling protocols from outside

the service domain. The generic invocation interface adapts the diverse protocols used to

signal to the service domain into methods of a single protocol that be easily assimilated

by the service. In this approach, services only have to deal with a single source of

signalling, i.e. the invocation interface.

2.1.3. Service logic and the intelligent terminal

The ideal service provisioning environment advocates the use of powerful and advanced

service signalling oriented towards service communication. The signalling capabilities of

traditional, “dumb terminals” (e.g. touch-tone or DTMF terminals) would be prohibitively

rudimentary, and, as such, more advanced “intelligent terminals” are required by the ideal

service provisioning environment.

Certain basic requirements of the intelligent terminal, as required by the ideal service

provisioning environment, are described next. These assumptions concerning the

intelligent terminal formed the premise for the research in this research project.

The intelligent terminal is assumed to have the following characteristics:

• The intelligent terminal should have an advanced user interface, and user-

interaction ability. The intelligent terminal is thought of as being capable of

presenting the user with various options in a menu-type format. The user should

be able to select among the various options presented in a simple way, using a

mouse / pointer, keypad etc.

• The intelligent terminal should have the ability to process the user’s request, and

take subsequent actions based on the results of the processing.

The requirements of the intelligent terminal would be satisfied be any modern digital

terminal equipment, e.g. cellular telephone, PDA etc.

 17

Whereas dumb terminals preclude any logic from being located within the terminal, and

require that all service logic be contained within the service domain, intelligent terminals

introduce the potential of distributing the service logic between the service domain and

the intelligent terminal. Thus, the decision of whether to distribute some service domain

logic to the intelligent terminals arose in the project.

A major thrust of the ideal service provisioning environment proposed here is the move

toward centralised service logic: all services should be located in the service domain.

Centralised logic permits maximal software reuse and efficiency, among other things.

Thus, the ideal service provisioning environment would minimise the service logic

contained in the intelligent terminal, and therefore maintain the centralised location of the

service logic, in the service domain. The only logic that would be contained in the

terminal is the logic that drives the user interface, and permits advanced user interaction.

The role of the intelligent terminal is limited to the following 2 functions:

• Allow the user to select a service and associated parameters using an advanced

menu-system.

• Process the service selection into an invocation request, and send the invocation

request to the service domain.

2.2. The ideal service provisioning environment advantage

With the changes proposed in the previous section, the service provisioning environment

would benefit in numerous ways.

A properly developed service domain architecture, coupled with a well-defined approach

to application structure and an advocated software reuse methodology would afford

software developers greater ease in developing telecoms services, and allow services

increased simplicity and efficiency.

A generic invocation interface, would relieve services from having to implement

proprietary approaches to deal with varied signalling protocols from outside the service

domain, and abstracts the service from the underlying network. This decreases the

demands required of the service, decreases the demands placed on the service developer,

 18

and increases the number of application developers with the skill and ability to develop

telecom services.

If terminals could signal directly to the service domain, and not require the use of the

network domain, an appropriately designed, high-level signalling protocol could be used

in lieu of call / session oriented signalling used in the network domain, and thus allow

more advanced services to be implemented. Using a service oriented protocol that is not

dependent on the underlying network also relieves terminals of having to communicate

using network-specific protocols, making terminals network independent.

Finally, if the BCS is invoked, controlled and managed in a centralised location (the

service domain) in the application layer, it would allow other services increased ease in

connection control and manipulation, increasing the complexity of services that can be

supported.

A network implementing the ideal service provisioning environment would be able to

introduce more advanced services, in a simpler and quicker way, reaping economic

benefits.

Looking ahead

The remaining chapters describe the proposed service provisioning environment, using

the theoretical foundation developed in chapters 1 and 2. Chapter 3 describes the

principal characteristics of the proposed service provisioning environment in rigour and

detail, which integrate the concepts introduced in this chapter into a practicable solution.

 19

Chapter 3

PRINCIPAL CONCEPTS OF THE PROPOSED
SERVICE PROVISIONING ENVIRONMENT

This chapter presents the principal concepts of the proposed service provisioning

environment. Since many aspects throughout a telecoms network influence the service

provisioning environment, including (but not limited to) the service domain, concepts

concerning the service domain and the rest of the telecoms network (which defines the

operational environment of the service domain) are introduced. These concepts form the

theoretical underpinnings of the proposed service provisioning environment upon which

subsequent chapters build.

3.1. Important definitions

The description of the principal concepts of the proposed approach to service

provisioning presented in this chapter requires the definition and clarification of various

terms. For certain concepts, traditional terminology does suffice for their accurate

description, and is used wherever possible. However, since the report presents a new

service provisioning environment, and because of the theoretical nature of the work,

traditional terminology is often inadequate to properly describe the concepts proposed. In

this case, the definitions presented in this section are more appropriate for their

description.

3.1.1. General definitions

Throughout this research report, reference is made to the proposed service provisioning

environment and the proposed service domain architecture. Referring to figure 3.1, the

service domain is seen to be a single element in the context of an multi-element

environment. The environment as a whole, which is designed for the provisioning of

 20

services, is called the service provisioning environment. All elements in figure 3.1

constitute the service provisioning environment. The service domain is only a single

element in the service provisioning environment. This report proposes changes to the

service provisioning environment, as a whole, as well as to the architecture of the service

domain, resulting in the proposed service provisioning environment and the proposed

service domain architecture, respectively.

Se
rv

ic
e

do
m

ai
n

N
et

w
or

k
do

m
ai

n

Figure 3-1: The introduction of service adaptors and multiple networks

Figure 3.1 differs from previously presented diagrams in two primary ways. Firstly,

where the network domain was represented by a generic cloud, it is now shown in more

detail. Secondly, 3 signalling adaptors have been added (the rectangles in bold): labelled

NS, RC (in a horizontal layer, at the bottom of the Parlay gateway) and AS (on the left of

the service domain, in an upright position).

In the network domain, two layers are shown: the call / session signalling layer, and the

transport layer. The call / session signalling layer contains those elements which manage

the use of the resources contained in the transport layer. The transport layer is responsible

for the provisioning of bearer connections and the transport of data, as controlled by the

call / session signalling layer elements. The transport layer also transports the signalling

messages, using a suitable distribution mechanism, which allows the service domain,

gateway and call / session signalling elements to communicate.

 21

Also, in the network domain, both circuit-switched networks and packet-switched

networks are represented. Specifically, the network domain includes (from the left) a

PSTN, IMS network, GPRS network and an MPLS network.

The 3 adaptors shown in bold in figure 3.1 are central to service signalling, and are

briefly discussed. At the bottom of the Parlay gateway are the Resource Control (RC) and

Network Signalling (NS) adaptors. Both of these adaptors provide an interface between

the service domain and the underlying network (through the Parlay gateway). These

adaptors are not standardised, but their implementation, in some form, is required by the

Parlay gateway for successful operation. On the left of the service domain is the

Application layer Signalling (AS) adaptor.

The NS adaptor adapts signals directed from the network to the service domain. The RC

adaptor adapts signals directed from the service domain to the network. The resources

referred to in RC are those contained within the network, which affect low-level control

over bearer connections.

For example, if a service wishes to influence how a bearer connection is handled, it

signals to the resources in the network through the RC adaptor. For example, the RC

adaptor will be used if a service wishes to add a media stream, play an announcement etc.

On the network side, the RC adaptor primarily deals with the INAP (Intelligent Network

Application Protocol) and SIP (Session Initiation Protocol) protocols.

The RC and NS adaptors are the only adaptors required in the existing service

provisioning environment. The AS adaptor is introduced in the proposed service

signalling provisioning environment, and provides an interface between the service

domain and the terminals. This interface is required for the introduction of application

layer signalling (which is described in section 3.1.2), which is used extensively in the

proposed service provisioning environment.

The objectives of the NS and AS adaptors are functionally similar: both allow elements

residing outside of the service domain to communicate with the services in the service

domain. Whereas the NS adaptor allows network elements to communicate with the

service domain (via the Parlay gateway) the AS adaptor allows terminals to communicate

with the service domain.

 22

Although the objectives of the NS and AS adaptors are similar, they have markedly

different operations. The NS adaptor receives low-level network layer protocols, and

adapts these network protocols into high-level event notifications to be sent from the

gateway to the service domain. The NS adaptor is therefore dependent on the protocols

used in the network.

The AS adaptor is network independent, since high-level service-oriented signals are used

on both its service domain and network sides. The AS adaptor provides more of an

interfacing role, as it is not required to adapt signals from one type to another, and thus

performs a less complex task than the NS adaptor.

3.1.2. Definitions for signals

With the introduction of application layer signalling in the proposed service provisioning

environment, the need arises to properly define all of the signals which can be found.

Figure 3.2 presents a signalling framework, which is independent of any particular

service or network. This neutral service signalling framework allows the various types of

signals to be defined in their operational context.

Se
rv

ic
e

do
m

ai
n

N
et

w
or

k
do

m
ai

n

Figure 3-2: Service signalling framework

 23

Four classes of signals are identified:

a. Application layer signalling

b. Call / session signalling

c. Breakout signalling

d. Parlay signalling

The terminal is shown in an elongated fashion to illustrate its functionality in the

application layer, resource control layer and the network layer. Both call / session

signalling and application layer signalling are shown as signals operating in a single,

horizontal layer. Call / session signalling exists only in the call / session layer or network

layer, and application layer signalling exists only in the application layer.

Breakout signalling and Parlay signalling involve vertical communication, and allow

signalling between layers: breakout signalling allows signalling between the network and

the Parlay gateway, and Parlay signalling encompasses all signalling between the service

domain and the Parlay gateway.

Practical considerations of service signalling

The network underlying the service domain (the transport network) has two functions:

• Transport user streams (its bearer function)

• Transport signalling

Many pictures in this report depict the service domain to be ‘above’ the bearer network.

This is to illustrate that the service domain is largely independent of the bearer function of

the transport network. However, both network and application layer signals are shown to

travel to (and from) the service domain, and these signals obviously require a distribution

mechanism to achieve this. While the service domain is independent of the transport

network’s bearer function, it is dependent on the transport network to transport signalling

to and from the service domain.

Figure 3.3 shows that, although the service domain is independent of the bearer network

(the bearer function of the transport network), the transport network (and its signalling

transport function) actually envelopes the whole service provisioning environment.

 24

Se
rv

ic
e

do
m

ai
n

Be
ar

er
 n

et
w

or
k

Figure 3-3: A network’s signalling transport and bearer transport functions

When application layer signalling is used for service signalling (a), the signalling

transport function of the transport network is still used to locate and contact either the AS

adaptor on the service domain (for signalling to the service domain) or the terminal (for

signalling from the service domain). Similarly, when breakout (c) and Parlay signalling

(d) are used for service signalling, the transport network is used to find and contact the

NS adaptor on the Parlay gateway (for signalling to the service domain) or the

appropriate network element (for signalling from the service domain).

The critical difference between network layer signalling and application layer signalling

is the node that the signalling messages are addressed to. For the purposes of this project,

it is imagined that a service plane envelopes the network, service domain, and the

terminals, and manages the implementation of the communication between all elements.

This idea is conveyed in figure 3.4.

 25

Figure 3-4: The signalling plane

3.1.3. Definitions for call, service and invocation categories

A telecoms concept or construct can be divided into multiple categories, based on

fundamental characteristics, to aid in its convenient description and classification. For

example, calls can be described as being 1st or 3rd party initiated, a service can be invoked

using call / session signalling or application layer signalling, etc. Clarification of the

categorisation of certain concepts is made in this section to ensure that the reader

understands its implications when used in the report.

Categories of call initiation

Figure 3.5 depicts two scenarios of initiating a call or a session.

Figure 3-5: Categories of call initiation

 26

A call can be initiated in one of two ways:

• 1st party call initiation. Shown by the call / session signal a, a terminal initiates

the call. This is the more common case.

• 3rd party call initiation. Shown by the call / session signal b, a service initiates the

call.

In both cases, a call is established between terminals I and II. This naming designation is

the same as that used traditionally, and is appropriate for this report.

Categories of services

Figure 3.6 depicts the two types of services.

Se
rv

ic
e

do
m

ai
n

N
et

w
or

k
do

m
ai

n

Figure 3-6: Categories of services

All services can be categorised into two categories, determined by the origin of their

invocation:

• Terminal initiated services. The service invocation originates in the terminal. An

example of this variety of service is the Call Hold service, where the service is

explicitly invoked by the terminal.

• Network initiated services. The service invocation originates in the network. In

this case, the terminal is oblivious to the invocation and execution of the service.

These types of services are often triggered by a particular network event, e.g. call

not answered.

 27

Categories of service invocation

Figure 3.7 shows the two ways in which service invocation can be achieved.

S
er

vi
ce

 d
om

ai
n

N
et

w
or

k
do

m
ai

n

Figure 3-7: Categories of service invocation

There are two ways in which services can be invoked:

• Application layer invocation. This is shown by signal a. Application layer

invocation is achieved using application layer signalling. With application layer

invocation, services receive the invocation request directly from the terminal.

This approach is not available in existing networks.

• Triggered invocation. This is shown by signals b and c. Triggered invocation is

achieved using breakout and Parlay signalling. With triggered invocation,

services receive the invocation request from the network, as a result of an event

being triggered in the network. In the absence of application layer signalling, all

services are invoked using triggered invocation.

In existing networks (in the absence of application layer signalling), services in the

service domain can only be invoked in one way: using triggered invocation. With the

introduction of application layer signalling in the proposed service provisioning

environment, services can be invoked by the underlying network, with triggered

invocation, or directly by a terminal, with application layer invocation (using application

layer signalling). The type of invocation that is used to invoke a service depends on the

service-type (network initiated service or terminal initiated service), as is explained in the

next section.

 28

3.2. The proposed approach to service signalling

Service signalling is the general name given to any signalling that is required by a service

for its operation. Service signalling is used in two distinct ways:

• Service operation. During service operation, two different phases have been

identified:

o Service invocation. The initial invocation of a service requires service

signalling, originating from either the network of a terminal;

o Service execution. Service signalling may be used during the execution

of a service to obtain additional information.

• Service management. The setup and configuration of certain services requires the

use of service signalling.

The two phases of service operation are separated due to the different demands they place

on service signalling: signalling for service invocation typically involves only

communication directed towards a service, whereas signalling used during service

execution often requires the use of additional signalling directed from a service to a

terminal.

Service signalling includes communication between:

• The network and the service;

• The terminal and the service.

The proposed approach to service signalling deals with communication between the

service and the terminal.

The path used by the service signalling between the terminal and the service determines

the signalling protocol that is required to be used, which, in turn, determines the

complexity of the communication and the capabilities of any potential service.

The existing approach to service signalling between the service and a terminal requires

signals to use call / session signalling protocols that are not oriented towards service

signalling. The proposed approach to service signalling provides a direct communication

path between the service domain and the terminals, thereby offering a more powerful and

appropriately designed service signalling protocol.

 29

3.2.1. Service signalling for service invocation

Service invocation requires elements outside the service domain to initiate a service

invocation request, and signal the request to the service domain. As was explained in

section 3.1.3, if the underlying network originated the invocation request, the service is

called; if a terminal originated the invocation request, the service is called a terminal

initiated service. The analysis of the signalling and invocation for terminal initiated and

network initiated services is presented separately.

Signalling and invocation for network initiated services

Both the existing and the proposed approaches to service signalling handle the invocation

of network initiated services in the same way: using triggered invocation. This approach

is shown in figure 3.8. Note that the labelling of the signals (a, b, c or d) follows the

convention defined in section 3.1.2.

Parlay gateway

Parlay APIs

NS RC

GPRSSCN
IMS

Transport

GGSN SGSN
MGCF

S-CSCF I-CSCF P-CSCF

Terminal initiated
service

Network initiated
service

CCF
SCF

CCF
SCF

III

c

d

INAP
ISUP

Figure 3-8: Triggered invocation for network initiated services

Network initiated services are invoked using triggered invocation as follows: Due to the

triggering of a network event, a breakout signal is sent from the call / session layer of the

network domain to the Parlay gateway (c). The Parlay gateway then sends a notification

to the service domain using Parlay signalling (d).

 30

The invocation of network initiated services does not require any interaction with the

terminal, and it is appropriate that the invocation request travel directly from the network

to the service domain, using triggered invocation. This approach is efficient, and is used

in both the existing and proposed service provisioning environments.

Signalling and invocation for terminal initiated services

The proposed approach to handling the signalling and invocation of terminal initiated

services is significantly different from the existing approach. In the existing approach,

terminal initiated services require the use of triggered invocation, whereas the proposed

approach uses application layer invocation to invoke terminal initiated services.

Since, in the past, the only service provided by a telecoms network was basic bearer

connectivity, and since this service was located in the call / session layer, all service

signalling was sent to and from the call / session layer. The signalling protocols used in

the call / session layer are thus tailored for the requirements of the BCS, and are oriented

towards call / session signalling. However, with the proliferation of services in the

modern network, the use call / session signalling to achieve service signalling is

restrictive.

Also, with the relocation of services to the service domain, signals should no longer be

directed to the call / session layer for processing. Due to the origins of the telecoms

network, all service signalling is still sent via the call / session layer, even if it is intended

for the ultimate receipt by the service domain.

In the existing approach to service signalling, all signalling between a terminal and the

service domain is forced to travel through the call / session signalling layer. That is,

signals from the terminal are sent to the call / session layer by default, and the call /

session layer redirects these signals to the service domain (using breakout and Parlay

signalling). Thus, independent of whether the service is a terminal initiated or network

initiated service, triggered invocation using call / session layer protocols has to be used.

Figure 3.9 illustrates the existing approach to the invocation of terminal initiated services

with triggered invocation, using the Call Hold service as an example. Call Hold is

 31

classified as a terminal initiated service, since all instructions for the operation of the

service originate in the terminal.

Parlay gateway

Parlay APIs

NS RC

GPRSSCN
IMS

Transport

GGSN SGSN
MGCF

S-CSCF I-CSCF P-CSCF

Call Hold
(Terminal initiated

service)

Network initiated
service

CCF
SCF

CCF
SCF

III

d

c

b
INAP

ISUP

Figure 3-9: The existing approach: Triggered invocation for terminal initiated services

Assume that an end-to-end bearer connection is set up between two terminals. Now,

assume terminal I wishes to place the call on hold (using the Call Hold service, which is

provisioned as an application). In the existing approach, the following events would

occur:

• Terminal I uses call / session signalling to request, from the call / session layer,

that the call be placed on hold (b). For example, an ISDN terminal would use a

Facility message.

• A trigger is set-off in the call / session layer, and call / session layer forwards this

request to the Parlay gateway (using breakout signalling, c), and then to the

service domain (using Parlay signalling, d), which processes the request. This

process constitutes triggered invocation.

Since both terminal initiated and network initiated services are invoked using triggered

invocation in the existing approach, the AS adaptor is not required; only the NS and RC

adaptors are required.

This approach is rooted in the past, when service(s) resided in the network domain, could

be completely processed by the network and were connection oriented. In this case, call /

session oriented protocols were appropriate. However, services are now significantly

 32

more complex than the original connection oriented services, and exert greater demands

on the capabilities of service signalling.

With the relocation of services to the application layer in the service domain, a potential

solution to this problem arises. Service signalling for terminal initiated services no longer

has to traverse the call / session layer and use call / session oriented signalling protocols.

A direct communication path between the terminals and the service domain, which

bypasses the call / session layer, can be used. Such a signalling path does not have the

same constraints and limitations as call / session layer signalling does, and allows the

introduction of an appropriate signalling protocol, oriented towards service signalling and

not call / session signalling. A signalling protocol that is oriented towards service

signalling in the application layer enhances the range of services that can be

implemented, and the complexity of these services.

Thus, signalling between services and terminals for terminal initiated services should

travel directly between the service domain and the terminals, and not need to be

redirected by the call / session layer. That is, terminals and services should communicate

using application layer signalling. Application layer signalling is used in the proposed

service provisioning environment. Figure 3.10 shows the invocation of terminal initiated

services with application layer invocation.

Parlay gateway

Parlay APIs

NS RC

GPRSSCN
IMS

Transport

GGSN SGSN
MGCF

S-CSCF I-CSCF P-CSCF

Call Hold
(Terminal initiated

service)

Network initiated
service

CCF
SCF

CCF
SCF

III

a

A
S

INAP
ISUP

Figure 3-10: The proposed approach: Application layer invocation to invoke terminal

initiated services

 33

In the proposed approach, communication between terminals and services takes place

using application layer signalling, and doesn’t require processing by the network domain.

Application layer signalling enables the use of a service oriented signalling protocol,

which overcomes the limitations of the call / session oriented signalling protocol used in

the network.

Now, the terminal invokes the Call Hold service directly, with application layer

invocation (using application layer signalling (a)), as opposed to using triggered

invocation (using call / session signalling, breakout and Parlay signalling). Since

application layer invocation, using application layer signalling, uses a direct

communication channel between the service domain and the terminal, the AS adaptor is

used for the invocation of terminal initiated services.

Note that, in the proposed approach to service provisioning, both an AS and an NS

adaptor are required. The conventional NS adaptor allows triggered invocation for

network initiated services, and the TS adaptor allows application layer invocation for

terminal initiated services.

To summarise: The use of triggered invocation for network initiated services is suitable,

and used in both the existing and proposed service provisioning approaches. However,

the existing and proposed approaches differ in how they handle service invocation for

terminal initiated services. Whereas the existing approach to service provisioning requires

terminal initiated services to be invoked with triggered invocation (using call / session

signalling), the proposed approach allows terminal initiated services to be invoked with

application layer invocation.

3.2.2. Service signalling for service execution and management

In addition to service invocation, service signalling can be used during service execution

and for service management. Often, terminal initiated services require additional

information from the terminal for the successful execution of the service. Also, both

terminal initiated and network initiated services may require certain parameters to be

configured, or user data to be setup, using communication between the terminal and the

service domain.

 34

Whereas service invocation requires signalling in one direction only (from the invocation

initiator (i.e. the terminal or network) to the service domain), service signalling used

during service execution and service management often requires communication in both

directions.

Just as for the invocation of terminal initiated services, service signalling that is required

during the execution of terminal initiated services in the existing approach is required to

travel through the call / session layer, and use inappropriately oriented call / session

signalling protocols. Similarly, in the existing approach, communication between

terminals and the service domain for service management is required to use low-level

network layer protocols that are designed for the control of bearer streams.

In the proposed approach, application layer signalling is used for all communication

between terminals and the service domain (in either direction), and provides a signalling

protocol designed for the signalling requirements of service execution and service

management.

3.2.3. A comparison of service signalling approaches

The value of application layer signalling is most apparent when its characteristics are

compared to those of other signalling approaches. In the first part if this section, an

explicit comparison between application layer signalling and call / session signalling is

made. Then, the proposed approach to service provisioning, using application layer

signalling, is compared to other commercial approaches to service signalling, such as the

3G approach and the web services approach.

Application layer signalling compared to call / session signalling

In the existing approach to service signalling, signals between terminals and the service

domain are required to traverse the call / session layer of the network domain, and use

network layer protocols. Network layer protocols are oriented towards call / session

signalling, and the control and maintenance of bearer streams. For service signalling to be

achieved using the call / session oriented signalling protocols, an ad hoc approach is

needed that adapts the service signalling information to the network layer protocols. The

ad hoc manipulation of the network layer protocols to achieve service signalling limits the

 35

amount, nature and complexity of information that can be transferred. By its very nature,

network layer call / session signalling is thus network dependent.

For example, consider the case of a PSTN network. Call / session signalling is achieved

using simple DTMF (Dual Tone Multi Frequency) tones, and end-exchanges of PSTN

networks are often only capable of processing such signals. Thus, to achieve service

signalling in this scenario, the terminal must signal to the service domain using DTMF

tones, allowing only very simple signals can be transmitted between the terminal and the

service in the service domain. The service is therefore solely responsible for controlling

all complex interactions between it and the terminal, and the complexity of services that

can be implemented is further limited.

In contrast, when application layer signalling is used, service signalling is not required to

adapt and manipulate network layer signalling. Neither the type nor complexity of the

service signalling is now constrained. Whereas low-level protocols such as Q.931, DTMF

etc. were used for service signalling in the existing approach, high-level, abstracted

communication can be employed with application layer signalling, using web services

etc. For example, a method call such as sendMessage(MMS, number, body, media) could

be made by a terminal directly on the service domain. Application layer signalling

therefore allows far more complex services to be implemented.

Application layer signalling is not network dependent. This allows the terminals that

utilise the network to be network independent. In contrast, terminals that operate in

existing networks are required to use network layer call / session signalling, and are thus

network dependent. The network independent method calls that can be made between the

terminals and the service domain constitute a well-defined, standardised interface, or API.

This API is called the “Application layer API set”. The Application layer API set defines

the complexity of the application layer signalling, and the range and type of services that

can be implemented. The Application layer API set is discussed further in chapter 4.

The proposed approach to service signalling compared to other commercial

approaches

The proposed approach to service signalling and invocation is now compared to the 3G

approach and the web service approach to service signalling and invocation. The precise

 36

nature of the proposed service signalling approach can be more easily seen when it is

compared to other service provisioning environments.

Figure 3.11 illustrates the approach used to achieve service signalling and invocation in

the 3G environment.

Figure 3-11: 3G approach to service signalling and invocation

In the 3G environment, signalling to the service domain is sent via the underlying

network; the signal ‘breaks out’ of the network to reach the service domain (signals 1,2

and 3) if a trigger condition is satisfied. In this approach, the application layer in the

terminal is kept isolated from the application layer in the service domain.

In contrast to the approach used in the current 3G network, the proposed service

provisioning environment advocates the use of application layer signalling. The use of

application layer signalling in the proposed service provisioning environment is shown in

figure 3.12.

Figure 3-12: Proposed approach to service signalling

 37

Whereas the application layer in the service domain and the application layer in the

terminal were previously isolated, application layer signalling joins them and makes the

application layer span the entire service provisioning environment in a continuum.

In the web services approach to service signalling and invocation, method calls and

service invocation requests are thought to have originated from above the service domain

(from a logical perspective). This approach can be seen on the left side of figure 3.13.

Parlay APIs

Intelligent
terminal

6

Parlay gateway

Call/ session signalling

Transport

Application layer

Service

Parlay APIs

Intelligent
terminal

5

Parlay gateway

Call/ session signalling

Transport

Application layer

Service

App

WS approach Proposed approach, in WS context
Figure 3-13: Web services approach to service signalling

On the right side of the figure, the proposed approach to service signalling and invocation

is shown in the context of the web services approach. Note that the only difference

between the two sides of the figure is that the invoking application has been logically

relocated from above the service domain to the side of the service domain (inside the

terminal). The right side of figure 3.13 is the same as the proposed approach to service

signalling shown in figure 3.12.

Application layer signalling in the proposed approach is therefore logically similar to the

signalling approach adopted by web services.

3.3. The proposed approach to BCS management

Almost all services that are offered to the users of a telecoms network require the use of

bearer connections in their execution. Since the BCS is responsible for establishing and

maintaining all bearer connections, it plays a major role in the service provisioning

 38

environment. The ease with which the BCS controls, manipulates and manages bearer

connections, and the ease with which services interact with the BCS, determine the range

and complexity of services that can be implemented.

3.3.1. Relocation of the primary view and control of the BCS

The Basic Connectivity Service is defined as the service offered by a telecoms network to

its users of providing end-to-end bearer connectivity. In this report, the distinction is

made between the control of the BCS, and to the actual service itself: although the

infrastructure required to provision the BCS is inextricably tied to the network, the

control of the BCS is thought to be a separate functional entity. This distinction, and other

similar considerations, is further discussed in section 3.3.4.

BCS control and management in the call / session layer

The principal objective of telecoms networks, traditionally, is to allow users of the

network to communicate, usually in real time. Before the advent of value-added and

supplementary services, this was indeed the sole goal of telecoms networks. The focus of

the design of the network is to handle this very requirement: end-to-end bearer

connectivity, and the BCS is thus the most fundamental of all services.

Since bearer connectivity was the only major focus of legacy telecoms networks, the

logic and intelligence required to achieve this end, i.e. the BCS, was deeply entrenched

and integrated into the call / session layer of the network. Various elements in the

network maintained the view of the connection, and were responsible for the control of

the service.

With the recent proliferation of services in telecoms, most of which supplement the BCS,

services have been relocated to the service domain. However, in existing telecoms

networks, the primary view and control of the BCS still maintained in the call / session

layer of the network, despite the control of other services being maintained in the service

domain.

Figure 3.14 depicts the existing approach to the management and control of the BCS.

 39

Se
rv

ic
e

do
m

ai
n

N
et

w
or

k
do

m
ai

n

Figure 3-14: The existing approach to BCS control and management

In the existing approach, all processing, control and management of the bearer connection

is maintained in the call / session layer of the network domain.

An example of how the BCS is invoked, and operates, illustrates the existing approach.

When a basic bearer connection is required, the terminal signals to the BCS controller in

the call / session signalling layer of the network that it requires an end-to-end, bearer

connection to be established. This signalling is represented by the line numbered ‘1’,

between the terminal and the call / session signalling layer, in the network. The BCS

controller in the call / session layer then executes, and sets up the end-to-end connection

in the bearer network (2). All subsequent manipulation that is required of the basic

connection will also be performed from the call / session signalling layer by the BCS.

The existing approach to services differentiates between the BCS and all other additional

services: the view and control of the BCS is located in the network, and the control of all

other services is located in the service domain.

Relocation of BCS control and management to the application layer

With the provisioning of myriad services as applications in the service domain, there is

increasing need to maintain the primary view and control of the BCS in the application

layer, alongside these services. Relocation of the control of the BCS to the service

domain allows control of the BCS (and associated resources) to be maintained by objects

in the application layer, as opposed to being maintained by objects in the call / session

 40

layer in the network domain. With the relocation of the control of the BCS to the

application layer, the primary view of the BCS is also then maintained in the application

layer.

The relocation of the primary view and control of the BCS from the call / session layer in

the network to the service domain is shown in figure 3.15.

N
et

w
or

k
do

m
ai

n
S

er
vi

ce
 d

om
ai

n

Figure 3-15: The relocation of BCS control and management

Having the primary view and control of the BCS in the service domain, and not

distributed across numerous network elements, allows a more holistic, centralised

approach to connectivity management, and a more homogeneous approach to service

management. Services can communicate with other objects in the application layer to

monitor and manipulate bearer connections, rather than communicating with multiple

objects in the network domain. This approach allows the bearer network to be seen as

more of a simple underlying transport mechanism.

With the primary view and control of the BCS in the service domain, services can control

bearer connectivity more easily and effectively, minimising service development times

and enhancing service complexity. The proposed approach to service provisioning

advocates the relocation of the primary view and control of the BCS to the service

domain.

 41

3.3.2. Different approaches to BCS invocation

Since the initiation of the invocation request for a new call or connection always

originates in a terminal, the BCS is classified as a terminal initiated service. As discussed

in section 3.2.1, the approach used to invoke terminal initiated services is different in the

existing and proposed approaches to service signalling, due to the introduction of

application layer signalling in the proposed approach. Figure 3.16 shows the two potential

approaches to the invocation of the relocated BCS controller.

Figure 3-16: BCS invocation using triggered and application layer invocation

On the left, triggered invocation is used to achieve BCS invocation. On the right,

application layer invocation is used to achieve BCS invocation.

Without application layer signalling, the invocation signal is required to travel through

the call / session layer, requiring the use of call / session, breakout and Parlay signalling

(signals 1, 2 and 3). In contrast, with application layer signalling, only signal 4 is required

to achieve BCS invocation.

Using application layer signalling to control bearer connectivity enables simpler setup

and manipulation of connections by terminals. For example, using application layer

signalling, a conference call could be initiated using a single, high-level method call such

as ConferenceCall(parties[], mediaType). Without application layer signalling, multiple

call / session layer signals would have to be manipulated and adapted to achieve the same

result.

 42

In addition to the invocation of the BCS controller, figure 3.16 also depicts the

subsequent actions taken by the BCS controller to establish the call. In both cases (on the

left and the right), the actions are identical. That is, independent of whether application

layer invocation (using application layer signalling) is used to invoke the BCS controller

in the service domain, 3rd party call initiation is used. In contrast, 1st party call initiation is

used exclusively in the existing approach, since the primary view and control of the BCS

is located in the network. (Refer to section 3.1.3 for the difference between 1st and 3rd

party call initiation.)

3.3.3. Integrating the proposed approaches to BCS control and

service signalling

A final example is now presented, which highlights the two primary conceptual

differences between the existing and proposed service provisioning environments

discussed in this chapter thus far: application layer signalling, and the relocation of the

BCS controller. The example, depicted in figure 3.17, makes use of both terminal

initiated and network initiated services, using application layer and triggered invocation,

respectively.

Se

rv
ic

e
do

m
ai

n
N

et
w

or
k

do
m

ai
n

Figure 3-17: An example illustrating BCS control relocation and application layer signalling

 43

Firstly, observe that the primary view and control of the BCS is located in the service

domain, alongside the other services. Secondly, all communication between the service

domain and the terminal is shown to use application layer signalling. Note that, although

terminals I, II and III are shown to be served by the same gateway and application server,

they would most likely be served by physically separate units in practice, possibly located

on entirely different networks.

Before all of the signals in the example are discussed in detail, a qualitative overview is

provided. The broad progression of the example is as follows:

• Party I successfully establishes a connection with party II.

Variant #1: Terminating side uses Call Forwarding

• Party I tries to establish a connection with party II, but party II uses Call

Forwarding.

• The call is redirected, and a connection is established between party I and party

III.

Variant #2: Originating side uses Call Hold

• During the connection between parties I and III, party I places party III on hold.

All of the signals are now discussed in detail.

1. Terminal I signals to the BCS controller (in the service domain) to set up a new

call. The BCS controller is a terminal initiated service, and is appropriately

invoked with application layer invocation, using application layer signalling.

2. The BCS controller instructs the Parlay gateway to set the end-to-end bearer

connection up. The call is initiated using 3rd party call initiation.

3. An end-to-end bearer connection is cut through between terminals I and II.

Variant #1: Terminating side uses Call Forwarding

3. An end-to-end bearer connection is attempted to be cut through between

terminals I and II. However, at the exchange serving terminal II, a network event

is detected.

4. Intelligence in the terminating exchange, in the call / session layer of the

network domain, processes the trigger, and notifies the Parlay gateway of the

network event. The Parlay gateway then signals to the Call Forward service (in

the service domain) to execute. The Call Forward service is a network initiated

service, and is appropriately invoked using triggered invocation.

 44

5. The Call Forward service performs the necessary interactions with the Parlay

gateway to get the terminating exchange at terminal II to terminate the call on

terminal III.

6. An end-to-end, bearer connection is cut through between terminals I and III.

Variant #2: Originating side uses Call Hold

7. Terminal I signals to the Call Hold service that it wishes to place the active call

on hold. The Call Hold service is a terminal initiated service, and is appropriately

invoked with application layer invocation, using application layer signalling.

8. The Call Hold service instructs the Parlay gateway to perform the appropriate

call manipulations.

3.3.4. Practical considerations of BCS control relocation

The Basic Connectivity Service is defined as the service, offered by a telecoms network

to its users, of providing end-to-end bearer connectivity. The BCS is implemented by all

of the elements in a particular network that are responsible for the correct operation of

media streams, bearer connections etc., and includes both hardware and software

elements.

The relocation of the primary view and control of the BCS to the service domain is made

possible by viewing the control of the BCS as being a functionally separate entity from

the elements that physically implement the service. The meaning and implication of the

relocation of the primary view and control of the BCS from the network layer to the

application layer is clarified in this section.

In existing networks which don’t employ Parlay (or a similar OSA approach) for service

implementation, the control of the BCS is maintained exclusively within the network.

With the introduction of Parlay to existing networks, some measure of control of the BCS

is available at the application layer: the call and call leg objects in the Parlay SCFs do

have their own state machines, and together contain a representation of the call and

media, and thus a view of the connection. However, the main function of these objects is

to receive method calls from the application and to initiate network actions. Also, the API

only gives limited ability to interrogate the SCFs. Therefore, the connection view

contained by the Parlay SCFs is neither complete nor particularly useful, and the control

 45

of the BCS provided in the Parlay gateway is inadequate. The relocation of the control of

the BCS to the application layer in the proposed service provisioning is both complete

and useful.

The relocation of the BCS to the service domain, depicted in figure 3.15, is shown for all

of the networks represented in the network domain, including packet-switched and

circuit-switched networks. Specific practical considerations and implications of the

relocation of the primary view and control of the BCS to the application layer for circuit-

switched and packet-switched networks follow.

Relocation of BCS control in circuit-switched networks

Representing circuit-switched networks, consider the PSTN. The primary element of the

BCS is the Call Controller (CC), which is represented by the Call Control Function (CCF)

and physically resides in monolithic switches throughout the network. The function of the

CCF is twofold:

• Keep the call state

• Routing / directing signalling

The CCF is the locus of primary control of bearer connections, and maintains a view of

call states. The relocation of the primary view and control of the BCS to the application

layer does not imply the relocation of the all of the CCF’s functions. The role of the CCF

in the directing of signalling to its destination is essential to the correct functioning of the

network, and relocation of the control of the BCS does not concern this function.

However, the second of the CCF’s two tasks, viz. keeping the call state, is subject to

relocation in the proposed approach. After relocation of the primary view and control of

the BCS, the CCF still physically resides in the monolithic switches of the network

domain (in the call / session layer), but its function of controlling the call and maintaining

the call view is secondary to the view and control maintained in the application layer. The

application layer is seen as the home for the primary view, and the highest level of

control.

In the proposed approach just as in the existing approach, terminals still signal to the

primary controller of the BCS. In the proposed environment, however, the primary

controller resides in the application layer, and not in the network domain.

 46

Relocation of BCS control in packet-switched networks

In packet-switched networks, the term ‘relocation’ is applied slightly differently to the

case of relocation in circuit-switched networks. Representing packet-switched networks,

consider an IMS network. The primary BCS element in IMS networks is the CSCF (Call

Session Control Function). The function of the CSCF is primarily to concentrate on

directing signalling to its destination, and, unlike the CCF in circuit-switched networks,

the CSCF does not keep the call state. Thus, a primary view of the call state still needs to

be introduced.

Whereas the primary control and view of the BCS is logically relocated in circuit-

switched networks, there is no such logical relocation in IMS networks. Instead,

implementation of the primary control and view of the BCS in the application layer is an

additional feature that is missing in IMS networks.

3.4. The proposed service domain architecture

Two fundamental concepts of the proposed service provisioning environment have been

presented in this chapter thus far, namely application layer signalling and the relocated

control and view of the BCS. The third and final fundamental concept is presented here,

and, unlike the previous two concepts, concerns the service domain exclusively.

3.4.1. An overview of the proposed service domain architecture

The proposed service domain architecture concerns the structuring of the service domain;

the service domain architecture provides an architectural framework in which services are

provisioned, invoked and executed. The architecture provides the context and setting for

services residing in the service domain. In this section, an overview of the proposed

service domain architecture is provided. The full specification of the architecture is

presented in chapter 4.

A new service domain architecture is proposed in this report for two reasons:

• At present, no service domain architecture has been defined. The service

domain, and the services therein, lack formal structure.

 47

• The proposed approaches to service signalling (using application layer

signalling), and BCS control in the application layer increase the capabilities and

complexity of services that telecoms networks can potentially support. A new

service domain architecture is needed to exploit these changes.

The existing service domain architecture

The Parlay standards provide extensive specification on how Parlay applications

(telecoms services) should use the Parlay APIs. However, beyond the specification of

callback interfaces, the standards do not go so far as to describe how such applications are

typically structured, how software reuse can be achieved, or how the service domain as a

whole should be structured. The service domain architecture implied by the Parlay

standards is depicted in figure 3.18.

Figure 3-18: The service architecture implied by the Parlay standards

Shown in the diagram are the two types of signalling of relevance in the service domain

architecture implied by the Parlay standards. These signals are explicitly identified and

shown to facilitate a comparison between the existing architecture and the proposed

architecture (which is introduced shortly).

The thicker arrows, collectively labelled ‘1’, represent the signals used for the invocation

of services. The thinner arrows, labelled ‘2’, represent the signals sent from the service

domain to the call / session layer of the network domain to control network resources

(e.g. play announcements).

 48

The service domain architecture implied by the Parlay standards is a very simple

structure. Several observations, based on figure 3.18, follow:

• Since application layer signalling is not available, all services receive their

invocation requests from the underlying network (signal 1), regardless of whether

the invocation request originated in the network or by the terminals. Therefore,

both terminal initiated and network initiated services are invoked using triggered

invocation.

• Services affect their control by acting on the Parlay gateway directly (signal 2),

using the Parlay API. Thus, services (and their developers) are exposed to the full

complexity of the Parlay API.

• The service domain has a basic single-tier structure, and no methodology

advocating software reuse has been adopted. No standardised approach is

advocated for inter-component / inter-application communication in the service

domain, and all services are required to be completely self-sufficient.

The proposed service domain architecture

The proposed service domain architecture attempts to solve the problems identified

above. The proposed service architecture, shown in figure 3.19, is simplified to highlight

its important features. The complete architecture, with a comprehensive description of its

functionality, is provided in chapter 4.

Figure 3-19: The proposed (simplified) service domain architecture

 49

The proposed service domain architecture has a layered structure. Three layers are

identified: a Service Infrastructure layer, Specific Services layer, and a Reuse and

Abstraction layer.

The Service Infrastructure layer provides exactly what its name implies: infrastructure. It

provides a framework for a more holistic approach to service provisioning: services don’t

simply respond to network invocations, and act on the network, in isolation of each other.

The Service Manager ensures that services are invoked and managed by in a collaborative

fashion, and with a single, common point of control and management.

The Specific Services layer contains the telecoms services, which are provisioned as

applications. The Service Infrastructure layer and the Reuse and Abstraction layer both

exist to serve the Specific Services layer, by either easing the task of service development

or increasing the range of services that can be supported. The Specific Services layer is

therefore the focal point of the service domain architecture.

Generic, reusable software components are found in the Reuse and Abstraction layer.

This layer allows for software reuse, and provides a layer of abstraction between the

services and the Parlay gateway, simplifying the task of service provisioning. The layered

structure is further elucidated in the next chapter.

The specific signals in figure 3.19 are now discussed, and compared with those in the

existing service domain structure, shown in figure 3.18.

Signal 1: Similar to the case in figure 3.18, the signals numbered 1 represent service

invocations. These signals differ to the signals “1” in figure 3.18 in two ways.

• The service invocation signals can be received directly from where they were

originated; from either the call / session layer (using triggered invocation, shown

by “1 (i)”), or from the terminals (using application layer invocation, shown by

“1 (ii)”). With the introduction of application layer signalling, terminal initiated

services are appropriately invoked: using application layer invocation. In

allowing service invocation using both application layer and triggered invocation,

the proposed service domain architecture includes both the NS and AS adaptors.

 50

• Services are no longer directly invoked directly by an invocation from outside the

service domain: all invocations are managed by the Service Manager, which

holistically controls the invocation of services.

Signal 2: In both figures 3.18 and 3.19, the signals labelled “2” represent the signals used

to carry out the actions of the services to ultimately affect resource control in the

underlying network. In the proposed service domain architecture, a layer of Reuse and

Abstraction (R&A) modules are shown to separate the services from the Parlay gateway.

Whereas the existing approach requires that services interact directly with the Parlay

gateway, the proposed approach separates the services and the Parlay gateway with an

abstraction layer. By using R&A modules, services need not have any knowledge of

Parlay APIs, or telecoms at all, and only need to interface with other service domain

applications. For services to affect the changes they desire on the underlying network,

they call high-level methods on the R&A modules, and it is the R&A modules that are

responsible for interacting with the Parlay gateway to carry out the requests of the

services.

The high-level methods made available to services by the R&As encapsulate sequences

of commonly used Parlay messages. The R&As have well-defined northbound interfaces,

offering services a standardised set of high-level APIs.

In figure 3.19, the service action signals (2) are shown to pass through the R&A layer,

and then to the Parlay gateway. Note that certain R&A modules do not interface with the

Parlay gateway at all; these modules simply offer services commonly required software

building-blocks, and thus ease the task of service development by providing software

reuse facilities thereby relieving developers of having to re-implement commonly

required functions.

The R&As allow services to be highly abstracted, and allows their development to be far

simpler, and within the skills of a greater number of software programmers. This

approach removes unnecessary, redundant code, from services. Services no longer have

to fully implement all of the functions they require; instead, they can utilise the R&As as

desired. Also, since the R&As relieve the developer and the service from having deal

with the Parlay APIs, unnecessary detail is hidden from the service implementation.

 51

Signal 3: This signal is unique to the proposed service domain architecture. The proper

execution of a service will sometimes require that the services signal back to the

terminals, if more information is required for its successful execution. In the existing

approach, the signalling from the services back to the terminals is required to be diverted

through the call / session layer (along the same path service invocation was achieved in

the first place, using signal 1), and use call / session signalling. In the proposed approach,

services are able to signal directly to terminals, using application layer signalling (signal

3). Note that signal 3 is shown to extend through and out of the service domain to the

right: this indicates the possibility for a service to communicate with another party (e.g. to

invite party B to join a conference, at the application layer).

3.4.2. Integrating the proposed approaches to BCS control, service

signalling and service domain architecture

The service example in section 3.3.3 highlighted two of the primary conceptual

differences between the existing and proposed service provisioning environments:

application layer signalling, and the relocation of the BCS controller. This example is

now amended to show the additional effects of the proposed service domain architecture.

Figure 3.18 depicts the consolidated example.

Figure 3-20: A consolidated example highlighting all major concepts

 52

All of the signals are now discussed in detail. The main differences between this example

and the example in section 3.3.3, brought about by the inclusion of the proposed service

domain architecture, are highlighted.

1. Terminal I signals (using application layer signalling) to the Service

Manager, and not to the BCS controller directly, to set up a new call.

The Service Manager then forwards this signal to the BCS controller. The BCS

controller executes, making use R&A2 as a building-block.

2. The BCS controller instructs an R&A, and not the Parlay gateway

directly, to set the end-to-end bearer connection up. R&A1 carries out this

instruction by performing the necessary interactions on the Parlay gateway. The

call is initiated using 3rd party call initiation.

3. An end-to-end bearer connection is cut through between terminals I and II.

Variant #1: Terminating side uses Call Forwarding

3. An end-to-end bearer connection is attempted to be cut through between

terminals I and II. However, at the side of terminal II, a network event is

detected.

4. Intelligence in the terminating exchange (in the call / session layer of the

network domain) notifies the Parlay gateway of the network event, and the Parlay

gateway signals to the Service Manager, and not to the Call Forward service

directly, to process the network event. The Service Manager forwards this signal

to the Call Forward service. Note that the Parlay gateways and the application

servers serving terminals I and II are most probably physically distinct entities.

5. The Call Forward service instructs an R&A, and not the Parlay gateway

directly, to complete the call. The R&A module then carries out this instruction,

performing the necessary interactions with the Parlay gateway to get the

terminating exchange at terminal II to terminate the call on terminal III.

6. An end-to-end, bearer connection is cut through between terminals I and III.

Variant #2: Originating side uses Call Hold

7. Terminal I signals to the Service Manager, and not to the Call Hold

service directly, that it wishes to place the active call on hold. The Service

Manager then forwards this request to the Call Hold service. The Call Hold

service executes, making use of R&A7 as a building-block.

 53

8. The Call Hold service instructs an R&A, and not the Parlay gateway

directly, to perform the necessary call manipulations. The R&A module then

carries out this instruction, performing the necessary interactions with the Parlay

gateway.

3.5. A comparison of the existing and proposed service

provisioning environments

The proposed service provisioning environment is fundamentally different from the

existing service provisioning environment in the ways described in this chapter. In

addition to these fundamental differences, many subtler differences result and permeate

throughout the service provisioning environment as a consequence. Table 3.1 shows a

comparison of the characteristic features of the existing and proposed service

provisioning environments.

Table 3.1: A comparison of the existing and proposed service provisioning environments
Existing service domain architecture Proposed service domain architecture

BCS view and control
Location Bearer network Service domain

Locus of control Distributed Centralised
Nature of control Fragmented, isolated Integrative, holistic

Terminal-service comms
Path Indirect Direct

1st party service 3rd party invoked 1st party invoked
Protocol Low-level, call / session oriented High-level, service oriented

Service domain architecture
Component hierarchy Not layered Layered

Reusability Not specified Supported
Service management None Centralised, holistic

Service (application) characteristics
Source of invocation Network Service Manager
Destination of action Network (Parlay gateway) Generic service modules

Technological abstraction Medium High
Software reuse None Extensive

Looking ahead

Section 3.4 provided an overview of the proposed service domain architecture, and a brief

description of its layers and components. Chapter 4 provides a comprehensive description

of the proposed service domain architecture, and describes its various features in detail.

 54

Chapter 4

A STATIC VIEW OF THE PROPOSED SERVICE
DOMAIN ARCHITECTURE

In section 3.4.1 a simplified service domain architecture was presented, which

highlighted the major architectural features of the design. This chapter presents a

complete description of the service domain architecture, and describes the function of

every component. The view provided in this chapter is a static one; the physical and

logical structure of the architecture is discussed without considering its dynamic

behaviour. After the presentation of certain critical implementation issues (chapter 5), a

dynamic view of the architecture is provided in chapter 6, illustrating its active operation

and the dynamic interaction among components.

4.1. Architectural overview

Figure 4.1 shows the proposed service domain architecture, within its operational

environment, which includes the Parlay gateway, a terminal and a transport network.

Figure 4-1: Basic architectural features of the proposed service domain architecture

 55

In the top right of the diagram is the service domain, employing the proposed service

domain architecture. The service domain is the focal point of the service provisioning

environment, and the subject of this chapter. On the left of the diagram is a (large)

intelligent terminal, with its large size emphasising that its functionality spans all three

layers. Within each horizontal layer, elements in the terminal are able to communicate

with corresponding elements in the service domain or network. This idea will become

clearer in chapter 6, when the dynamic view of the architecture is presented.

The overview of the layered structure of the service domain provided in section 3.4.1 is

now expanded. As previously stated, the service domain is divided into three horizontal

layers, in which the various components of the service domain architecture are found. The

top layer, named the Service Infrastructure layer, provides the structural framework

under which the components of the other two layers operate. The Service Infrastructure

layer is the architecture’s nerve centre, and provides the architecture with management

and control capabilities. The Service Infrastructure layer is central to the dynamic

operation and behaviour of the architecture, as will be shown in chapter 6. The contents

of the Service Infrastructure layer are provided by the operator of the service domain

architecture.

The second layer from the top, named the Specific Services layer, contains the various

telecoms services (provisioned as applications). It is ultimately for this layer that the other

two layers, and the service domain architecture as a whole, exist. The contents of the

Specific Services layer are provided by service developers.

The lowest layer is named the Reuse and Abstraction layer. In section 3.4.1, the Reuse

and Abstraction layer was shown to be populated by Reuse and Abstraction (R&A)

modules. The stated functions of the R&A modules was to provide an abstraction layer

between the services and the Parlay gateway, and to simplify service development by

implementing commonly required functions as reusable building-blocks. In figure 4.1, the

generic R&As have been differentiated into two sets of more specific modules. The

Service Infrastructure layer is now shown to contain Generic Service Modules (GSMs)

and Reusable Building-Blocks (RBBs), both of which are direct aids to the services.

The objective of the GSMs is to provide an abstraction layer between the Parlay gateway

and the Specific Services layer. The GSMs are responsible for all the interfacing with the

 56

Parlay gateway, using the Parlay APIs, and relieve the services from this task. The RBBs

allow the services in the Specific Services layer to implement only those functions which

are unique to that specific service, and ‘outsource’ all common functions to the RBBs.

The contents of the Reuse and Abstraction layer are provided by the operator of the

service domain architecture.

In the following sections, the various components of the service domain architecture are

discussed.

4.2. Services

The various services are shown in the Specific Services layer. These services represent

the focal point of the service domain architecture, since it is the services that justify the

existence and the need for the architecture in the first place. The service domain

architecture is the means to the end of providing the most expedient environment possible

for these services; for their provisioning, invocation and execution.

The objectives of the services are the same as those described in the Parlay standards; the

difference is how the services’ objectives are achieved, which is determined by the

service domain architecture. Examples of typical services include the “Conference Call”,

“Abbreviated dialling”, and “Call Hold” services.

4.3. Aids to services

There are two primary aids to services shown in figure 4.1, both of which are located in

the Reuse and Abstraction layer: RBBs and GSMs. The objective of both of these

components is to simplify the development and implementation of services, through reuse

and abstraction.

4.3.1. Reusable Building-Blocks (RBBs)

In the present Parlay standards, no provision is made for software reuse. Thus, even if

two services are similar in nature and function, each service has to implement all of its

required objects and methods for itself. This approach is unnecessary, and inefficient.

 57

Both the RBBs and the GSMs assist in software reuse, each through different

mechanisms: RBBs are free-standing building-blocks that offer services commonly

required functions, and GSMs simplify interaction between the services and the Parlay

gateway by encapsulating sequences of commonly used Parlay messages into high-level

methods.

RBBs are small building-blocks of commonly required functions and logic that are found

to be frequently required by services. Having commonly used software components

located in the RBBs allows numerous services to utilise these pre-packaged building-

blocks, relieving each service from having to re-implement standard functionality. Instead

of the services having to implement all of the methods they require, they are able to make

calls to methods already implemented in the RBBs. This renders the services simpler, and

through reuse, makes the services more efficient.

RBBs can provide telecoms specific services, such as number translation and service

management support, or non-telecom services, such as database look-up functions,

allowing services to outsource all of their database interfacing and manipulation tasks to

an RBB. Other RBB examples are presented in section 5.3. Note that RBBs are by no

means central or integral to the proposed service provisioning environment or its core

operation. Their presence is proposed and discussed to illustrate the extensibility of the

proposed service provisioning environment, and to illustrate where such modules could

be logically thought to reside, if required.

All RBBs provide a standardised, well-defined northbound interface. The set of all the

methods offered by all of the RBBs comprise the RBB API set, discussed in section 4.4.2.

4.3.2. Generic Service Modules (GSMs)

GSMs serve two purposes. The first purpose of GSMs is to provide an abstraction layer

between services and the Parlay gateway, relieving services of having to use the Parlay

APIs. The second, much like RBBs, is to enable software reuse by providing services

with reusable functions and logic.

 58

The present Parlay standards describe services which interface with the Parlay gateway

directly, utilising the Parlay APIs. The number of SCFs and the richness of methods of

each SCF make the Parlay API very powerful. [8] For example, if a service needs to

check the status of a terminal, it has to perform all of the signal interactions with the

appropriate SCF in the Parlay gateway itself to achieve this. This requirement places a

burden on the services, as they will have to implement many detailed and complex Parlay

message sequences to accomplish simple tasks, and requires that service developers have

the necessary skills and knowledge to use the Parlay APIs effectively. GSMs solve this

problem.

GSMs enable software reuse by encapsulating commonly required Parlay message

patterns into pre-packaged modules. This functional encapsulation and abstraction is

possible due to the recognition of recurring patterns of messages to and from the Parlay

gateway needed to achieve simple, generic operations. The use of GSMs allows

abstraction on two levels [8]:

• Identity abstraction. This is an abstraction brought about by hiding the identity of

the Parlay computational objects.

• Logical abstraction. This abstraction is brought about by grouping Parlay

methods, to provide a new simpler method.

Using GSMs, services are not required to communicate with the Parlay gateway directly.

Instead, high-level, abstracted method calls can be made by the services on the GSMs,

and these modules execute the required interactions with the Parlay gateway, using the

Parlay APIs. A single GSM method often results in the exchange of multiple messages

between the GSM and the Parlay gateway, which the service would have to implement

otherwise. By relieving the service developer from requiring detailed knowledge of the

Parlay gateway, the skills required of service developers are reduced, which increases the

size of the set of developers technically able to develop services for telecoms networks.

For example, a “Conference Call” GSM would offer services commonly required

functions used to establish and control a multimedia conference, and would

predominantly interface with the Parlay MPCC SCF. Other GSM examples are presented

in section 5.2.

 59

All GSMs provide a standardised, well-defined northbound interface. The set of all the

methods offered by all of the GSMs comprise the GSM API set, discussed in section

4.4.2.

4.4. API interfaces

Figure 4.1 identifies four API sets:

• The Application layer API set

• The GSM API set

• The RBB API set

• The Parlay APIs

Whereas the GSM and RBB API sets offer interfaces internal to the service domain, the

Application layer API set and the Parlay APIs provide interfaces that operate between the

service domain and other objects external to the service domain. The Application layer

API set, GSM API set and the RBB API set are unique to the proposed service

provisioning environment.

This section provides a qualitative overview of the four API sets identified in figure 4.1.

Chapter 5 is used exclusively to further describe the API sets, focusing on aspects of a

technical nature.

4.4.1. Application layer API set

The Application layer API set defines and standardises all communication that uses the

application layer signalling channel.

In section 2.1.3, it was stated that proposed service provisioning environment would have

all service logic located centrally, in the service domain, and no service logic would

reside in the terminals. The terminals are only required to perform user interaction, and,

based on the user’s service request, construct and execute the appropriate method call

corresponding to the user’s service selection. The execution of the service occurs entirely

in the service domain, remote of the terminal.

 60

Locating all service logic centrally, in the service domain, determines the nature of the

communication application layer signalling is required to support. While application layer

signalling is required for the interaction between the terminal and service logic (e.g. for

service invocation), it is not used for the execution of the service logic itself, since this

takes place in the service domain exclusively. The type of communication application

layer signalling supports has consequences for the nature of the Application layer API set.

The signals in the Application layer API set can be divided into two categories:

• Signals sent from terminals to the service domain. Terminals signal to:

o The Service Manager for service invocation

o Specific services either for service management, or to provide additional

information during service execution.

• Signals sent from the service domain to terminals. Specific services signal to the

terminals if additional information is required during service execution.

The Application layer API set consists of all methods offered by the terminals to the

service domain, and all methods offered by objects on the service domain to the

terminals. The standardisation of the application layer signalling channel through the

Application layer API set has the following consequences:

• Terminals are independent of proprietary and unique implementations of services

in the service domain, since the interface provided by the service domain is

standardised. The Application layer API set dictates to terminals how to construct

all method calls to the service domain by fully specifying the arguments,

parameters, data types etc. that should be used.

• Services are independent of proprietary and unique implementations of specific

terminal logic, since the interface provided by the terminal is standardised. The

Application layer API set dictates to relevant objects in the service domain how

to construct all method calls to terminals by fully specifying the arguments,

parameters, data types etc. that should be used.

• Terminals, services and the service domain are made network-independent, since

the Application layer API set is independent of the technological characteristics

and protocols used in the underlying network.

Since the Application layer API set fully defines all communication that is permitted on

application layer signalling channel, it plays a significant role in determining the

 61

capabilities of the services that can be successfully provisioned, and the success of the

service provisioning environment as a whole.

The Application layer API set is further described in section 5.1.

4.4.2. GSM and RBB API sets

Every GSM or RBB has numerous functions that it offers to services, where each

function has an associated method call. The set of all method calls offered by the GSMs

and RBBs to services is thus large. If proprietary interfaces were used by each GSM or

RBB, service developers would be required to have knowledge of the implementation of

every GSM or RBB that could potentially be utilised, which would prohibit effective and

efficient use of the full range of GSMs and RBBs. The GSM and RBB API sets solve this

problem.

The interfaces offered by all GSMs and RBBs are well-defined and standardised. The set

of methods offered by all of the GSMs constitute the GSM API set, and the set of

methods offered by all of the RBBs constitute the RBB API set.

The GSM and RBB API sets are further described in section 5.2 and 5.3.

4.4.3. The Parlay APIs

The Parlay APIs provide the service domain with a set of well-defined, standardised

methods that can be used to affect control on the underlying network, and were described

in chapter 2. The Parlay APIs are standardised by The Parlay Group.

The use of the Parlay APIs is a premise of this research project, although the proposed

service provisioning environment is applicable to most OSA approaches to service

provisioning, including the Parlay approach.

 62

4.5. Service infrastructure components

4.5.1. Service Manager

The Service Manager is a defining feature of the proposed service domain architecture,

and is the most influential of all the components on its dynamic character.

The Service Manager has a number of functions. The Service Manager:

• Handles service invocation

o Prepares for the invocation of all services to which the user

subscribes.

o Receives all service invocation requests, for both terminal initiated

and network initiated services.

o Processes the service invocation request.

o Invokes the appropriate service.

• Shields the services from the protocols used in the invocation signal.

• Provides a single point of holistic service control and management.

Each of these functions, and how the Service Manager implements them, is explained in

the paragraphs that follow.

Service Manager instantiation

A new Service Manager is instantiated for a user at the beginning of every service

session, and lasts for only the duration of the service session. A service session is defined

as the period in which a terminal actively engages the resources of the network. For

example, a conference call, or an electronic message transfer, requires the use of a service

session. The Service Manager is initially instantiated, and ultimately destroyed, by the

Contact Agent, described in section 4.5.2.

Each and every user has a user profile, stored in the User Profile database, which

contains the details of which services the user is subscribed to. When the Service

Manager is instantiated, it is loaded with the profile of the user the Service Manager is

 63

serving. The Service Manager that serves a user is unique to that particular user, and

distinct from all other Service Managers.

Trigger setup

After instantiation, the Service Manager prepares to receive invocation requests for any of

the services to which the user is subscribed, based on the user’s subscription profile: this

is referred to as setting up the service ‘triggers’. Only services for which triggers have

been set can be invoked by the Service Manager. The services a user subscribes to could

include both terminal initiated and network initiated services. Trigger setup for terminal

initiated and network initiated services differs.

The arming of triggers for network initiated services (where the invocation request

originates in the network) is the same as that used in the present Parlay standards, using

event notifications. All that is required of the Service Manager to setup the service

triggers for network initiated services is to instruct the Parlay gateway to setup the

necessary event notifications.

The arming of triggers for terminal initiated services (where the invocation request uses

application layer signalling) requires the development of a new approach, since

application layer signalling is unique to the proposed service provisioning environment.

application layer service invocations do not pass through the Parlay gateway, so the well

developed network notification mechanism employed by Parlay can not be used. A

similar mechanism is required for the invocation of terminal initiated services, which

responds to application layer signalling.

The Service Manager itself provides this mechanism. The Service Manager makes the

decision of whether the user should be allowed to have the requested service invoked,

based on the user’s subscription profile. Thus, the triggers for terminal initiated services

are automatically setup when the Service Manager is instantiated with the user’s

subscription profile.

 64

Service invocation

All service invocation requests are sent to the Service Manager, and never directly to the

service. It is the function of the Service Manager is to process the service invocation

request, and invoke the appropriate service. The tasks that the Service Manager performs

in processing the request depend on whether the invocation was a application layer

invocation request for a terminal initiated service, or a triggered invocation request for a

network initiated service.

For terminal initiated services, the terminal explicitly requests the specific service that

should be invoked. Based on the user’s selection, the terminal constructs the appropriate

service invocation request, and requests that the Service Manager invoke that particular

service specified by the request. If, upon receiving a application layer invocation request

for a terminal initiated service, the Service Manager determines that the user does not

subscribe to the service, it will not honour the request, and the service will not be

invoked. If it is determined that the service is subscribed to, the Service Manager will

then invoke the requested service.

For network initiated services, it is the Service Manager determines the appropriate

service to invoke. The event notification sent to the Service Manager from the Parlay

gateway specifies only the network event that occurred. The Service Manager has to

determine which service should be invoked, based on the type of network event (and

other information contained in the notification). For network initiated services, the

Service Manager does not have to check whether the service requested by an invocation

is actually subscribed to. A notification from the Parlay gateway of a network event

automatically implies that the service is subscribed to, since the Service Manager

purposely established that network notification upon instantiation.

Thus, the processing the Service Manager performs between receiving an invocation

signal and invoking the appropriate service is different for terminal initiated and network

initiated services.

• For application layer service invocation requests (from a terminal), the Service

Manager needs to determine whether the service is subscribed to, but does not

need to determine the appropriate service to invoke.

 65

• For triggered service invocation requests (from the network), the Service

Manager does not need to determine whether the service is subscribed to, but

does not need to determine the appropriate service to invoke.

Since services are abstracted from their original invocation request by the Service

Manager, both terminal initiated and network initiated services utilise the service domain

architecture in exactly the same manner. Thus, the invocation and execution of all

services is identical.

Service shielding, control and management

Service invocation requests can originate from a number of different technological

domains, e.g. the call / session layer of the network domain, web services etc., and

invocation requests from each of these domains use a different signalling protocol. Since

all service invocation requests are handled by the Service Manager, services are shielded

from the technical characteristics of the invoking method, which simplifies the

development and implementation of services. The Service Manager provides an adapting

function; invocations from different domains, using different protocols, are converted to a

common and standard format, which is used to invoke the appropriate service.

In the existing approach, services operate completely independently of each other, since

they each respond to service invocations from independent sources. This approach is ad

hoc, with no central point of service control and management, and allows the undesirable

possibility of service interaction. By invoking all services using the Service Manager, all

services are controlled and managed by a centralised point of control.

4.5.2. Contact Agent

The Contact Agent plays a very simple, yet essential, role at the beginning and the end of

every service session. The Contact Agent instantiates the user’s Service Manager at the

beginning of every service session, and destroys is at the end of every session.

 66

Initiation of a service session

Before a service session can start, a Service Manager, incorporating the user’s

subscription profile, needs to be instantiated. This is performed by the Contact Agent.

Consider ‘user X’. The Contact Agent instantiates the Service Manager for a user X in

either of two scenarios, depending on whether user X elects to use a service, or is invited

to use a service by another party:

• User X wishes to use a service, and user X’s terminal contacts the Contact Agent,

indicating that a service session is required. For example, user X might start a

video conference (and subsequently invite other parties to join the conference).

• The network notifies the Contact Agent that user X has been invited to use a

service by another party, indicating that a service session is required. For

example, another party might attempt to establish a video conference with user X.

Each and every user that requires the use of the network’s resources requires the setup of

their own service session and Service Manager. For example, every user in a multiparty

call has a distinct service session and Service Manager.

Upon receiving notification that a service session is required (from either the terminal or

the network), the Contact Agent retrieves the user’s profile from the User Profile

database, and instantiates the user’s Service Manager. The Contact Agent then returns the

reference of the Service Manager to the user’s terminal, independent of whether the user

initiated the service session, or was invited to join a service session. The service session

for the user is now deemed to have begun.

Prior to the initiation of a service session, the only object in the service domain a terminal

has (or can obtain) a reference to is the Contact Agent, and can thus only signal to the

Contact Agent. During a service session, a terminal only signals to the Service Manager.

The Contact Agent is independent of any user, and is always instantiated, ready to be

contacted to set up Service Managers appropriately.

Termination of a service session

The second and final function of the Contact Agent is to terminate the service session,

which entails destroying the user’s Service Manager. The Service Manager notifies the

 67

Contact Agent when the service session has been completed, and the Contact Agent

terminates the session.

The Service Manager, the User Profile database, and the Contact Agent, constitute the

Service Infrastructure layer. The name of the layer is apt: the Contact Agent and the

Service Manager provide the framework for the deployment, invocation and execution of

the services, and form the logical infrastructure of the service domain architecture.

The Service Manager and Contact Agent are further discussed in section 5.3, with

reference to the Application layer API set.

4.6. Databases

Two general categories of databases are identified in figure 4.1:

o The User Profile database

o Service databases

The databases are shown as many discrete structures to aid the logical understanding of

the diagram. In reality, many database requirements could be consolidated, and reside on

only a few databases; additionally, a network may have database functionality repeated

on multiple databases throughout the network.

4.6.1. User Profile database

The User Profile database is a repository containing the user profiles of all subscribers

under the jurisdiction of the service domain architecture. The User Profile database plays

a simple role at the beginning of every service session, providing a user profile for the

instantiation of a Service Manager. The Contact Agent is the only component that

communicates with the User Profile database. The User Profile database is updated if a

user changes the services to which he/ she is subscribed, in an offline process.

The User Profile database is shown to logically lie within the service domain; physically,

however, it is located in a physical database external to the application server.

 68

4.6.2. Service databases and the Central repository

Services often require a repository for the storage of service-specific information. For

example, the “Abbreviated dialling” service needs to store the subscribers’ number pairs,

which map the abbreviated number to a routable number. Figure 4.1 shows these service

databases residing in the Central repository.

Service databases are updated whenever the service settings or parameters of a subscriber

are changed. The configuration of service settings is referred to as “service management”,

and is further discussed in section 7.1. For example, a subscriber may add a new number

pair for the Abbreviated dialling service. Service databases are updated in a real-time,

online process. Service management for the Abbreviated dialling service is demonstrated

in section 7.2.

4.7. Functional context of architectural components

Figure 4.1 showed a logical view of the service domain architecture, highlighting the

client – peer layering structure employed in the service domain. In this section, the

service domain architecture is presented using a different approach, which highlights the

functional and spatial structure of the service domain architecture, and the service

provisioning environment as a whole. The alternate approaches to the decomposition of

the service provisioning environment emphasise important aspects in different ways.

The functional and spatial perspective of the service provisioning environment forwarded

in this section utilises a network-neutral framework for its presentation. The network-

neutral framework that is used is that proposed by Hanrahan [7].

The framework consists of horizontal layers and vertical domains. Each layer has

characteristic functionality that is not generally found in another layer. Functional entities

do not straddle layers, while physical entities may do so. Vertically, technical functional

domains are found. A functional domain has a related set of distinctive technical

functions, which are performed in one or more layers. [7]

 69

For more information on the definition of the neutral framework, the horizontal layers or

the vertical domains, refer to [7].

Figure 4.2 shows the proposed service provisioning environment inserted in the network-

neutral framework. The graphical representation of the service provisioning environment

shown in figure 4.2 illustrates the same architecture that was presented in figure 4.1, but

from a functional and spatial perspective.

Figure 4-2: The proposed service provisioning inserted in a neutral framework

A discussion of the salient features of figure 4.2 follows. The first, most striking (and

easily overlooked) observation, concerns the designations of what constitutes the Access

domain and what constitutes the Core domain. While, ordinarily, the bearer network

would be shown to be located in the Core domain, it is now shown to be the exclusive

element in the Access network.

Instead, the Parlay gateway and the service domain are located in the Core domain. In

existing service environments, these elements would typically be thought of as being

peripheral and supplementary in nature. The reason for this classification is that the

proposed service provisioning environment is service-centric. That is, the service

provisioning environment’s primary objective is to provide services to users, and thus

places the elements associated with service provisioning at its heart, in the Core domain.

In contrast, existing approaches consider the bearer network to be the primary focus of

the telecoms environment, and place the bearer network in the Core domain.

 70

Since the service domain and the Parlay gateway are shown as Core domain elements,

and the bearer network as an Access domain element, the signalling adaptors are shown

in the Edge domain, and provide the link between the Access and Core domains.

The NS adaptor, which adapts signals originating in the network for processing by the

Parlay gateway, is shown in the Resource control and management layer because the

intention of signalling to the service domain elements is to achieve bearer network

resource control. The AS adaptor, which adapts the signals originated by terminals for

assimilation by the service domain, is shown in the Application layer due to the high-

level nature of the communications processed by the AS adaptor.

The service infrastructure components of the service domain, viz. the Service Manager

and the Contact Agent, are shown in the Application layer and the Service capability

functionality layer, since they receive signalling from the Parlay gateway (located in the

Service capability functionality layer), and from the terminal, using application layer

signalling.

The services, found in the service domain, are shown in the Application layer. According

to [7], the Service capability functionality layer contains functionality that is generic to a

number of services and applications; since the objectives of the RBBs and the GSMs are

to serve the services, they are shown in this layer.

Figure 4.2 also identifies the four categories of service signalling. Application layer

signalling is shown in the Application layer, between the terminal equipment and the AS

adaptor, call / session signalling is shown between the terminal and the network, bridge

signalling is shown between the bearer network and the NS adaptor, and Parlay signalling

is shown between the Parlay gateway and the service domain.

Looking ahead

This chapter provided a qualitative understanding of the components and API sets in the

proposed service domain architecture. Before the dynamic operation and behaviour of the

architecture can be presented (chapter 6), additional technical detail of certain

components is required. Chapter 5 provides detailed specifications of critical components,

showing their physical implementation and use of the API sets.

 71

Chapter 5

CRITICAL IMPLEMENTATION ISSUES

All of the components in the Service Infrastructure layer (i.e. the Service Manager and

Contact Agent) and in the Reuse and Abstraction layer (i.e. the GSMs and RBBs) are

unique to the proposed service domain architecture. These components need to be

provided by the service domain operator (or the network operator) in a typical

deployment. The implementation detail and technical characteristics of these critical

components provides the setting in which third party application developers develop

services.

In this chapter, basic implementations of various critical components are presented. In

chapter 6, their dynamic operation is illustrated. Examples of services developed in the

proposed service provisioning environment, which rely on the technical specifications of

the critical components presented in this chapter, are presented in chapter 7.

5.1. Service infrastructure components and the Application

layer API set

The service infrastructure components are those components residing in the Service

Infrastructure layer, namely the Service Manager and the Contact Agent. This section

provides a full definition of the Application layer API set, and the implementations for all

objects that use application layer signalling.

5.1.1. Overview

The Application layer API set defines all permitted communication on the application

layer signalling channel, between the terminal and various objects in the service domain.

There are three categories of signalling that make up the Application layer API set, shown

in figure 5.1.

 72

R
eu

se
 a

nd

ab
st

ra
ct

io
n

la
ye

r

S
pe

ci
fic

se

rv
ic

es

la
ye

r

S
er

vi
ce

in

fra
st

ru
ct

ur
e

la
ye

r

Figure 5-1: The Application layer API set: 3 categories of signals

Terminals Contact Agent signalling. This signalling is only required at the

beginning of every service session, and is used instantiate the appropriate Service

Manager for the user.

Terminal Service Manager signalling. This signalling is required throughout the

service session. This signalling is used for the management of services, and for the

invocation of services.

Terminal Service signalling. This signalling is used during the execution of services,

when services require additional information from the user for the successful execution of

the service.

Signalling at the application layer is achieved through method calls on other objects.

Thus, in provisioning application layer signalling, every object involved in application

layer signalling provides a set of public methods on its interface, which can be called by

other objects over the application layer signalling channel. It is the set of methods offered

by all of the objects involved in application layer signalling that defines the Application

layer API set.

The full specification of the Application layer API set is thus achieved through the

specification of the interfaces offered by the terminal, the Service Manager and Contact

Agent.

 73

5.1.2. Interface diagrams

Since the terminal, Service Manager and Contact Agent only communicate with other

objects over the application layer signalling channel, the specification of the public

methods that these objects offer to the Application layer API set in fact provides the

complete specification of their public interfaces. Therefore, defining the complete

Application layer API set and defining the public interfaces of the terminal, Service

Manager and Contact Agent is achieved concurrently.

Interface diagram for the Contact Agent

The interface diagram for the Contact Agent is shown in figure 5.2.

Figure 5-2: Interface diagram for the Contact Agent

The Contact Agent has two public methods. Both are offered on the Application layer

API set, and are used at service session initiation.

• authenticate() is called by the terminal before it requests for the instantiation of a

Service Manager. This method instructs the service domain (as represented by the

Contact Agent) to authenticate itself to the terminal. The Contact Agent then

requests the terminal to authenticate itself. (The exact authentication procedure is

an implementation issue, and is not specified in this report. The method

authenticate() represents a generic authentication process.)

• instantiateServiceManager() is called by the terminal when a service session is

required, after authentication has taken place. The terminal sends its userNum

(e.g. a unique E.164 number) and a reference to its callback interface. The

Contact Agent instantiates the user’s Service Manager, and returns the reference

of the Service Manager to the terminal.

The Contact Agent instantiates the Service Manager using the user’s subscription profile,

which is retrieved from the User Profile database using the userNum, and with a reference

 74

to the terminal’s callback interface. (The initiation of a service session is fully described

section 6.1.1.)

Interface diagram for the terminal’s callback interface

The interface diagram for the callback interface of the terminal is shown in figure 5.3.

Figure 5-3: Interface diagram for the terminal’s callback interface

The callback interface has three public methods, all of which are offered on the

Application layer API set:

• authenticate() is called by the Contact Agent after the terminal calls a similar

method on the Contact Agent. This method instructs the terminal to authenticate

itself to the Contact Agent. (The exact authentication procedure is an

implementation issue, and is not specified in this report. The method

authenticate() represents a generic authentication process.)

• notify() and getMoreData() are methods used by services to either notify the user

of an event, or obtain additional information from the user for the completion of

the service. Note that both notify() and getMoreData() are independent of any

particular service. (See section 6.2.2 for more details.)

Interface diagram for the Service Manager

The interface diagram for a Service Manager is shown in figure 5.4.

 75

Figure 5-4: Interface diagram for a Service Manager

The methods offered by any user’s Service Manager can be classified into two categories:

methods that are used for controlling the service session (which are independent of any

particular service), and methods that correspond directly to specific services. The only

method shown that does not correspond to a specific service is destroyServiceSession(),

which is used for service session control.

The methods that correspond directly to specific services are implemented to allow

application layer service invocation, using application layer signalling. The invocation of

terminal initiated services requires that the terminal explicitly request the service that the

user selects on the Service Manager. Therefore, the Service Manager must be instantiated

with a set of methods, each corresponding to a particular service to which the user

subscribes. Thus, every user’s Service Manager is different: each user’s Service Manager

contains the methods of only those services to which the user subscribes (in addition to

those methods that are independent of any particular service, used to control the service

session).

By offering methods corresponding only to those services that a user subscribes, a user

will not be able to invoke a service that has not been subscribed to, since the Service

Manager will not recognise the method call made by the terminal.

The Application layer API set thus includes a method for every service offered on the

service domain. A Service Manager could potentially have as many methods as the

service domain has services (in addition to the methods used to affect service session

control), if the user subscribes to every service. This would most likely not be the case,

and only a subset of the full Application layer API set would be relevant to any particular

user.

 76

The addition of a new service to the service domain requires that a new method be

offered on the Application layer API set, representing that service, which could

potentially introduce a scaling problem. However, the alternative of offering a single

method on the Service Manager representing every service negates the potential power of

application layer signalling. For example, assume a single generic invocation message of

the following form is used:

serviceInvocationRequest(whichService, argument1, argument2)

The generic service invocation message would have a predetermined number of

arguments (one of which being the specific service which is being requested). This

reduces the flexibility inherent in application layer signalling, and places a limit on the

capabilities of services that can be deployed. Therefore, the approach of allowing each

service the flexibility to define the number and type of arguments it specifically needs in

its own method is used in this report.

The Service Manager in figure 5.4 indicates that that user has subscribed to three

services: the BCS, Abbreviated dialling, and a call manipulation service. These particular

services were chosen because they provide a good representation of other services which

could be offered, and because they are used in the examples presented in chapter 7.

The particular Service Manager shown in figure 5.4 has six public methods, all of which

are offered on the Application layer API set:

• makeCall(), abbDiallingCall(), completeCall() and manipulateCall() are methods

that correspond directly to the specific services the user has subscribed to. These

would be called by the terminal when the user requires the corresponding service

to be invoked.

• abbDiallingManagement() would be called by the terminal to perform service

management on the Abbreviated dialling service. For example, if the user wishes

to add an additional number pair, this method would be called. Of those services

to which the user subscribes, the Abbreviated Dialling service is the only service

for which service management is shown to be possible.

• destroyServiceSession() is the method called by the terminal for the termination

of the service session. (The termination of a service session is fully described

section 6.1.2.)

 77

5.1.3. Methods of the Application layer API set

The interface diagrams presented in the previous section introduce the methods that are

offered on the Application layer API set by each of the relevant objects that communicate

over the application layer signalling channel. In this section, the methods are re-classified

into the three categories of signals identified in section 5.1.1, namely:

• Terminal Contact Agent signalling

• Terminal Service Manager signalling

• Terminal service signalling.

Figure 5.5 shows the breakdown of the Application layer API set methods into their

respective categories.

Terminal
(callback
interface)

Contact Agent

Service Manager

Service

authenticate()

notify()

getMoreData()

destroyServiceSession()

MakeCall()

AbbDiallingManagement()

AbbDiallingCall()

CompleteCall()

authenticate()

instantiateServiceManager()

Application
layer API set

ManipulateCall()

Figure 5-5: The methods of the Application layer API set

Terminal Contact Agent signalling

Terminals Contact Agent signalling is only required at the beginning of every

service session. Further details of the interaction between the terminal and the Contact

Agent for the initiation of a service session can be found in section 6.1.1.

 78

Terminal Service Manager signalling

Terminal Service Manager signalling is required throughout the service session.

This signalling is used for either the invocation of services, or for the management of

services.

Terminal service signalling

Terminal service communications are sometimes during service execution, but most

often used for service management.

Whereas services can make method calls on terminals (using their callback interfaces),

terminals can never make direct calls on services. This allows terminals to be independent

of the implementation of any particular service.

Terminals communicate with services either through the Service Manager, or using the

return parameter of methods that services call on terminals. This is the reason why no

interface diagram for any service was shown in section 5.1.2.

5.1.4. A comparison of the Application layer API set and the Parlay

APIs

From the discussion of the Application layer API set and the service infrastructure

components, many similarities can be seen between the structure of the Parlay gateway

and the structure of the service domain. Similarly, there are many parallels between the

Application layer API set and the Parlay APIs.

The table below makes a number of comparisons between the Parlay gateway (and the

Parlay APIs) and the service infrastructure components (and the Application layer API

set). Note that SIC (seen in the proposed architecture column) stands for Service

Infrastructure Components.

 79

Table 5.1: A comparison of Parlay and the proposed architecture
Parlay Proposed architecture

Initial access
Point of first contact IpInitial (Framework) Contact agent (SIC)

Authentication IpAPILevelAuthentication (Framework) Contact agent (SIC)
Session management

Initiation of relationship IpAccess (Framework) Service manager (SIC)
Termination of relationship IpAccess (Framework) Service manager (SIC)

Service invocation and execution
Service invocation IpAccess (Framework) Service manager (SIC)
Service execution IpServiceXManager ServiceX

Environment independence
Interface Service domain<>Network Service domain<> Terminals

In the Parlay context, the client is the service application, which is served by the Parlay

gateway using the Parlay APIs. In the proposed architecture, the client is the telecoms

user’s terminal, which is served by the proposed architecture using the Application layer

API set.

In both the Parlay and the proposed architecture contexts, the client initially has only

access to a single object in the domain of the server, which is its point of first contact

(Framework vs. Contact Agent). Also, in both cases, authentication is required between

the client and the server before access to more objects in the server’s domain is granted.

In both cases, the client does not initially have direct access to the service it wishes to use

(Parlay SCF vs. application layer service). Finally, in both cases, service execution occurs

outside of the point of first contact (Framework SCF vs. SIC).

The standardisation of the Application layer API set allows application layer signalling

between terminals and the service domain to be independent of any network-specific

protocols. This allows both the terminals and the services to be implemented without

requiring knowledge of the technological attributes of the underlying network. Thus, the

Application layer API set and the Parlay APIs provide similar functions: both provide the

service domain with a network independent view of its operational environment. The

difference is that the Parlay APIs standardise the interface between the service domain

and the network, whereas the Application layer API set standardises the interface between

the service domain and the terminals.

There are thus many parallels between the Framework SCF in the Parlay gateway and the

service infrastructure components in the proposed architecture, and between the Parlay

APIs and the Application layer API set.

 80

5.2. The Generic Service Modules and the GSM API set

This section presents the general structure of GSMs, shows how they are implemented in

the proposed service domain architecture, and illustrates how services take advantage of

the GSMs using the GSM API set. Specific examples of GSMs are also provided,

highlighting points of a more specific nature.

5.2.1. Overview

The GSMs were developed for the following two reasons:

• Abstraction: GSMs provide an additional level of abstraction to the service,

removing the need for the service to implement low-level Parlay APIs.

• Software reuse: GSMs encapsulate commonly required Parlay messages into

reusable building-blocks.

GSMs reduce the method calls and instructions that the service needs to execute to

achieve the required actions. Single, high-level calls on GSMs accomplish extensive and

complex Parlay functionality.

Encapsulation of Parlay functionality into reusable building-blocks is possible due to the

recognition of recurring patterns of messages to and from the Parlay gateway needed to

achieve simple, generic operations. For example, in the case of creating a simple 3rd party

call, 15 Parlay messages are exchanged between the Parlay gateway and the application

providing the 3rd party call service [5]. If the service itself was responsible for directly

interacting with the Parlay gateway, it would be responsible for the processing of these 16

messages. However, if a GSM offered a simple method to services called “MakeACall”,

the service would only be required to implement a single method call. The 16 Parlay

messages necessary to achieve this task in the underlying network would then be carried

out by the GSM, freeing the service of its implementation. In addition to the

computational relief GSMs offer, the method “MakeACall” is also intuitive and logical

due to its high-level nature.

Parlay categorises the network functionality it offers to service developers into many

distinct groupings, broadly corresponding to each of the Parlay SCFs. Following in this

vein, multiple GSMs are proposed, each implementing a group of related operations. For

 81

example, the “MakeACall” method in the above example would be offered by a GSM

whose task is to control call setup, modification, take down and other call manipulations.

Such a GSM is proposed in section 5.2.3, and is named the MPCC (Multi Party Call

Control) GSM. Other methods the MPCC GSM offers to services include “EndCall” and

“AddParty”, both of which perform operations related to the broad function of (multi

party) call control.

5.2.2. Generic Service Module implementation

The practical implementation of the GSMs, and the examples presented in the next

section, are largely based on the work of [8].

The architectural features of the proposed service domain architecture shown in figure 5.1

provides only sufficient detail of the Reuse and Abstraction layer for the architecture, as a

whole, to be understood. The Reuse and Abstraction layer is slightly more complicated

than figure 5.1 suggests, and an understanding of the operation and behaviour of the

GSMs requires a more comprehensive diagram as a reference.

Figure 5.6 shows the Reuse and Abstraction layer in more detail, and other elements of

the service domain that are relevant to the operational environment of the GSMs are also

shown. Since the service infrastructure components (in the Service Infrastructure layer)

and the RBBs have no impact on the implementation or operation of the GSMs, they are

excluded from the diagram.

Reuse and
abstraction layer

Specific
services layer

GSM1 GSM2 GSM3 GSM4

BCS control Call Hold Call Forward

Parlay APIs

Service4

SCF1 SCF2 SCF3 SCF4 SCF14

GSMy

CBIFCBIFCBIFCBIFCBIF

Parlay gateway

GSM API set

Service
infrastructure layer

ServiceX

RBB API set

Figure 5-6: The static structure of the GSM layer in detail

 82

The major different between the GSMs shown in figures 5.1 and 5.6 is that figure 5.6

depicts each and every GSM coupled with a callback interface. Callback interfaces serve

to provide a means for the SCFs in the Parlay gateway to contact the applications in the

service domain, and are a convention used throughout the Parlay standards. Whereas the

GSMs are able to contact the SCFs directly, the SCFs contact the GSMs using their

callback interfaces.

Each GSM is shown to be associated to a particular SCF: the grouping of functions

employed by Parlay in compiling the SCFs is loosely followed by the GSMs. For

example, all of the Parlay methods required by the MPCC GSM are offered by the MPCC

SCF. There is thus a strong relationship between these two components. However, the

MPCC GSM (and GSMs in general) is able to make use of any of the Parlay SCFs.

As will be shown by the GSM examples in section 5.2.3, the dynamic behaviour of all the

GSMs follows a basic pattern, or template. Before the specific GSMs are presented in full

detail, operational behaviour for a generic GSM is shown. The Interaction Diagram (ID)

and the Message Sequence Chart (MSC) are two illustrative conventions that are highly

effective means for depicting operational behaviour and object interaction, and are used

throughout the rest of this report. To illustrate any specific object interaction, the ID is

given first, which shows the interaction of the objects in the context of their logical and

spatial structure, and then the MSC is shown, which provides additional detail using a

more abstracted view. Figures 5.7 and 5.8 show the ID and MSC, respectively, for a

generic GSM.

Figure 5-7: ID showing the behaviour of a generic GSM

 83

The specific messages in the diagrams are now discussed. Although specific services,

GSMs and SCFs are referred to (corresponding to those used in the diagram), the

scenarios presented are generic and represent any particular service / GSM / SCF

interaction.

1. Service2 calls a specific method on GSMx, requesting that it “Perform task”.

After this first message, service2 is free to continue with other operations,

oblivious to the operations that GSMx is required to perform on the Parlay

gateway to achieve this task. Thus, the involvement of service2 in the execution

of the task ends after the initiating method call (although further interaction

between service2 and GSMx can be supported if required).

2. In preparation for its interaction with the Parlay gateway, GSMx instantiates a

callback interface. The callback interface is used to receive communication from

the Parlay SCFs.

3,4,5. In message 3, GSMx signals to an object associated with SCFx. (Each SCF

can have multiple objects associated with it at any time, depending on the method

calls made on it.) Message 4 shows signalling within the Parlay gateway, and

message 5 shows a signal from GSMx to a different object of SCFx.

6,7. Messages 6 and 7 show communication in the reverse direction, from SCFx

to GSMx. Message 6 is labelled “result”, and it represents the result of an

operation performed by GSMx on SCFx (using either message 3 or 5). Note that

SCFx signals to the callback interface of GSMx, and the callback interface

forwards the message to the actual GSMx object.

8. Message 8 may or may not be required. The function offered by a GSMx may

not return any information to service2 at all; in this case, message 8 will not be

required. In other cases, GSMx may pass information back to service2 in the

form of a return parameter of the method that was originally called (message 1).

(In a third, more improbable case, GSMx may explicitly call a method offered by

service2.)

 84

“Perform task”

Object 1
Service2

Generic
service

modules

GSMx1

Parlay APIsGSM API set

new()

CallBack IF

Object 2 Object 3

Parlay gateway: SCFx

operation
operation

result“forward”

operation

2

3
4

67

5

result 8

Figure 5-8: MSC showing the behaviour of a generic GSM

To summarise the key points of the generic use of a GSM by a service: the service makes

a single, high-level call on a GSM for a specific operation. Following this request, the

service plays no further role in the execution of this operation (besides possibly receiving

the return parameter of the called method). To execute the operation, the GSM

instantiates a callback interface, and proceeds to interact with the Parlay gateway, making

the necessary calls to implement the operation it was called to execute. At no point is the

service required to interact with the Parlay gateway.

5.2.3. Examples of GSMs

Three examples of GSMs are provided: the Framework GSM (FW GSM), MPCC GSM

and the Service Infrastructure GSM (SI GSM). The FW GSM and the MPCC GSM are

taken from [8], while the SI GSM is developed especially for the proposed service

domain architecture.

The FW GSM was developed to provide reuse and abstraction of the functionality offered

by the Framework SCF. The FW GSM was chosen for two reasons. Firstly, since it

represents the functionality of the Framework SCF, it would be used by every service.

Secondly, since the nature of the typical interactions with the Framework SCF allows

extensive Parlay message patterns to be easily encapsulated into simple GSM methods,

services using the FW GSM would be significantly simpler.

The MPCC GSM was developed to provide reuse and abstraction of the functionality

offered by the MPCC SCF. The MPCC SCF is perhaps the most frequently needed Parlay

 85

SCF, and thus the functionality offered by the MPCC GSM would potentially be the most

useful and widely used.

The SI GSM is developed to facilitate interaction between the service infrastructure

components (viz. the Contact Agent and the Service Manager) and the Parlay gateway,

and is not intended for use by any service.

In the MSCs, the callback interfaces corresponding to the GSMs are not explicitly shown.

For illustrative simplicity, they are imagined to be logically integrated into the GSM

objects.

FW (Framework) GSM

The Parlay standards specify the use of a Framework SCF, which provides applications

with basic mechanisms that enable them to make use of the service capabilities of the

network [4]. Examples of the functions provided by the framework include

authentication, authorisation, and service discovery. A detailed description of the

framework can be found at [9].

The FW GSM has been developed to handle the interaction with the Framework SCF, and

is thus responsible for performing tasks such as service discovery, authorisation etc. The

FW GSM is especially useful since all services would utilise it, and because great

computational efficiency can be realised with its use.

The FW GSM manages the creation and deletion of services:

1. Service creation. The FW GSM provides services with service lists, service

descriptions, and references to new SCF managers.

2. Service deletion. The FW GSM controls the disposition of SCF managers and

resources.

The interface diagram for the FW GSM is shown in figure 5.9.

 86

Figure 5-9: Interface diagram for the FW GSM

A discussion of the purpose of each of the FW GSM methods follows, accompanied by

MSCs showing how the methods are implemented.

• createService()

This method performs the necessary steps with the Parlay gateway when a service is

accessing the Parlay gateway for the first time. The MSC, showing the actions taken by

the FW GSM to execute the createService() method, is shown in figure 5.10.

Before being authorised to use the Parlay SCFs, the GSM must first authenticate itself

with the Framework SCF. For this purpose, the GSM needs a reference to the Initial

Contact interfaces for the Framework SCF. Once the GSM has been authenticated by the

Framework SCF, it can gain access to other Parlay interfaces and SCFs. This is done by

invoking the requestAccess() method, by which the GSM requests a certain type of access

SCF. [9]

Figure 5-10: MSC for FW GSM createService() method

 87

The messages in the MSC shown in figure 5.10 are now discussed.

 1. The service executes createService() on the FW GSM.

Messages 2-10 constitute the standard sequence of messages used to create a

service, as presented in the Parlay standards, and are taken directly from [9].

2. The FW GSM triggers initiateAuthenticationWithVersion(), which initiates

authentication with a publicly available framework by passing the client domain's

identifier, the authentication type, the framework version number and returns the

Framework identifier.

3. selectAutheticationMechanism() is then invoked, which provides the

framework with a list of authentication mechanisms the FW GSM supports. The

framework selects one from the list and passes it back as the return parameter.

4. Depending on the authentication mechanism, a number of challenges are

invoked on the FW GSM, which it must respond correctly to using the return

parameter.

5. The authenticationSucceeded() is then invoked to inform the FW GSM of its

success.

6, 7. Thereafter, depending on the FW GSM’s policy, it might authenticate the

framework with a similar process.

8. The FW GSM invokes the requestAccess(), which returns the reference to the

framework access interface. The framework access interface provides access to

other framework interfaces.

9. Before the FW GSM can use the access interface, it must provide a list of all

signing algorithms it supports for use in cases where digital signature is required

through the operation selectSigningAlgorithm(). The framework selects one from

the list and passes it back as a return parameter.

10. The FW GSM invokes obtainInterface(), which returns a reference to the

required framework interface (service discovery, in this case).

11. The FW GSM notifies the service that the operation was carried out

successfully.

The FW GSM encapsulates messages 2-10 into a single method, createService(). Without

the use of the FW GSM, the service would need to implement every message; with the

introduction of the FW GSM, it now only needs to make a simple call on the FW GSM to

accomplish the same result.

 88

• listService(), describeService() and discoverService()

The Service Discovery interface of the Framework SCF is used to obtain a serviceID for

the SCF of interest, as shown in the MSC in figure 5.11.

listService()

IpService
DiscoveryService FW GSM

Parlay APIsGSM API set

listServiceTypes()
1

2

describeService()

discoverService()

4

7

describeServiceType()

discoverService()

5

8

result

result

result

3

6

9

Figure 5-11: MSC for various FW GSM methods

This serviceID is obtained by performing a number of operations, which might include

obtaining a list of available SCFs through listServices() (messages 1-3) and asking the

Framework SCF to describe the service types through describeService() (messages 4-6),

which returns properties of the services of interest. Thereafter, the application fine-tunes

these properties to reflect its requirements, and passes it to the Framework SCF through

discoverService() (messages 7-9). The Framework SCF then returns a list of serviceID

matching the needs put forward by the service.

Because of the one-to-one mapping between the message calls on the FW GSM and the

message calls on the Framework SCF, no additional abstraction is achieved.

• selectService()

The MSC showing the implementation of service selection is shown in figure 5.12.

 89

Figure 5-12: MSC for FW GSM selectService() method

The messages in the MSC shown in figure 5.12 are now discussed.

1. The service selects the required service by passing the serviceID (e.g. for the

MPCC SCF) to the FW GSM.

Messages 2-6 constitute the standard sequence of messages used to select a

service, as presented in the Parlay standards, and are taken directly from [9].

2-5. The FW GSM handles the service agreement signing between the application

domain and the framework. A reference to the SCF manager (e.g. MPCC SCF

manager) in the Parlay gateway is returned to the FW GSM.

6. FW GSM creates a corresponding SCF manager, on the application side, for

the particular service it selected for use (e.g. MPCC GSM manager). A manager

ID is assigned to the newly created SCF manager. The reference to the manager

and the manager ID is returned to the service.

7. The FW GSM notifies the service that the operation was carried out

successfully.

The FW GSM encapsulates messages 2-6 into a single method, selectService(). Without

the use of the FW GSM, the service would need to implement every message; with the

introduction of the FW GSM, it now only needs to make a simple call on the FW GSM to

accomplish the same result.

MPCC (Multi Party Call Control) GSM

The MPCC GSM offers methods to services to initiate, control, manage and terminate

calls with a number of parties. The interface diagram for the MPCC GSM is shown in

figure 5.13.

 90

Figure 5-13: Interface diagram for the MPCC GSM

The methods initiateSession() and endSession() are offered by every GSM (besides the

FW GSM), and are thus inherited from a common, parent GSM. Since no other examples

of GSMs are presented in this report, initiateSession() and endSession() are shown to be

implemented by the MPCC GSM.

A discussion of those methods that are unique to the MPCC GSM follows, accompanied

by the MSCs showing how the methods are implemented

• initiateSessionMember() and addReq()

Figure 5-14: MSC for MPCC GSM initiateSessionMembers() method

In the MSC shown in figure 5.14, two logical blocks of messages are shown, each

initiated by a method call by the service on MPCC GSM:

 91

Block 1. initiateSessionMembers() (message 1) begins the first logical block.

initiateSessionMember() is used to create one or more call legs, each represented

by an IpAppCallLeg object. initiateSessionMembers() has as input parameters the

target address(es) in an array and the call ID (for the call to add the users to,

using addReq()).

Block 2. addReq() (message 5), begins the second logical block. This logical

block that allows the addition of one or more parties to the call. The user invokes

addReq() on MPCC GSM, which then executes messages 6 and 7 one or more

times depending on the number of User IDs in the array given as the input

parameter to addReq(). If an error occurs during the routing of a leg, it is

forwarded to the service.

• release()

In the existing approach to service provisioning, a call can be terminated in one of two

ways. Firstly, either party to the call could end the call, e.g. by hanging up. Secondly, a

Parlay service could terminate the call from the application layer. Figure 5.15 shows both

of these scenarios.

Figure 5-15: MSC for MPCC GSM release() method

Messages 1-7 show the series of messages that occur when a party to the call hangs up.

IpMultiPartycall and IpMultiPartyCallLeg trigger callEnded() and callLegEnded()

respectively on the GSM interfaces, which signals that the call has been terminated by a

party. The MPCC GSM then issues a release on the associated call objects to free

resources used for the call.

 92

Messages 8-11 show the messages that occur when the call is terminated using a service

in the application layer. release() is called by the service on the MPCC GSM (message 8)

indicating that the call should be terminated, and the MPCC GSM then terminates the call

by releasing the associated call objects to free resources with the call (messages 9 and

10).

The second scenario to call termination, where an application layer service initiates the

termination of the call, has special significance in the proposed service provisioning

environment. Since the proposed service provisioning environment advocates the control

of the BCS in the application layer, a party terminates its involvement in a call / session

by signalling to the BCS controller in the service domain that the call / session should be

terminated. The call termination is then controlled by the BCS controller (which is an

application layer service), and proceed using messages 8-11. In the proposed service

provisioning environment, call termination using messages 1-7 would not occur.

• getMembers()

Figure 5-16: MSC for MPCC GSM getMembers() method

Figure 5.16 shows the use of getMemebers() to obtain the members participating in a

specific call session, which returns a list of the call members.

 93

• getSession()

IpMP
CallLegService MPCC

GSM

Parlay APIsGSM API set

1
2getSession()

4
5

obtainAll
ActiveSession()

getSession(userID[])
getCall(sessionLegID)

result 3

result 6

Figure 5-17: MSC for MPCC GSM getSession() method

Figure 5.17 shows the use of the getSession() MPCC GSM method. getSession() returns

the callID for all active sessions on MPCC SCF. Alternatively, if an argument is

provided, getSession(userID[]) returns a callID array, matching the sequence of userIDs

in userID[]. Message 4 may be performed a number of times depending on the number of

user IDs supplied.

• suspend() and resume()

resume(suspend).Req(callID
)

IpAppCall
LegService MPCC

GSM

Parlay APIsGSM API set

IpCallLeg

1

4

5

IpMPCall

getCallLeg(sessionID)

forward event

2

3

resume(suspend).Req(userI
D[])

AttachMedia(DetachMedia).Req(sessionlegID)

AttachMedia(DetachMedia).Req(sessionlegID)

AttachMedia(DetachMedia).Res(err)

forward event

6

7

8

9

10

11forward event

AttachMedia(DetachMedia).(Res)Err()

forward event

12

13

In case of an error it forwards
it to the service, else it
forwards a single success
message to all attached legs

In case of an error it forwards
it to the service, else it
forwards a single success
message to all attached legs

Figure 5-18: MSC for MPCC GSM for suspend() and resume() methods

 94

Figure 5.18 shows how a service can suspend (resume) the participation of a member(s)

from the call. There are two way to accomplish this. The user can invoke

suspend(resume).Req() with the callID (which implies suspension (resumption) of the call

as a whole), or userID[] (which suspends the users specified in the array).

The former scenario is accomplished by obtaining all the call legs related to the call and

detaching (attaching) them, which implies message 3 is invoked a number of times (equal

to the number call legs). In the latter scenario, the MPCC GSM performs the translation

of user IDs to sessionLegIDs and the rest of the sequence (9-13) is the same as in the

former scenario (3-7).

SI (Service Infrastructure) GSM

The SI GSM is designed to abstract the service infrastructure components (viz. the

Contact Agent and the Service Manager) from the Parlay gateway, thereby relieving them

from having to implement Parlay API methods, callback interfaces etc. The interface

diagram for the SI GSM is shown in figure 5.19.

Figure 5-19: Interface diagram for the SI GSM

None of the methods shown in figure 5.19 is used during service execution; they are used

in either the creation or termination of a service session. The initiation of a service

session is presented in section 6.1.1, and the use of the SI GSM is described in further

detail. A discussion of each of the methods follows.

• createNotification() and destroyNotification()

createNotification() creates a notification in the Parlay gateway for a network event

(specified by the argument event) involving any of the stated users (specified by

userNums). If the specified event occurs in the network, involving any of the specified

 95

users, the Parlay gateway notifies the SI GSM of the event, and the SI GSM forwards the

notification to the object (either the Contact Agent or the Service Manager) that originally

called the method.

The notification that is created in the gateway by the SI GSM is always made in the

interrupt mode. With the notification set to the interrupt mode, when a network event is

triggered in the gateway, all processing of the session in the underlying network is

paused, and full control is handed over to the service domain for further processing. Refer

to [5] for further information on Parlay notifications.

The MSC showing the use of the createNotification() method is shown in figure 5.20.

Figure 5-20: MSC for SI GSM for createNotification() method

createNotification() is used by both the Contact Agent and the Service Manager, and its

use in each case is discussed separately.

The Contact Agent calls createNotification() on the SI GSM only once, when the service

domain architecture is first provisioned. This method is never used by the Contact Agent

ever again. Thus, it is never required during the instantiation or execution of any service

session.

Recall that a service session can be initiated under either of two scenarios: either a user

elects to use a telecoms service, or the user is invited to use a service by another party. In

the former case, the terminal initiates the service session, and in the latter case the

network initiates the service session.

When the terminal initiates the service session, the Contact Agent is contacted by the

terminal directly. In this case, the Contact Agent explicitly is made aware of the need for

a service session. However, when events in the network indicate that a service session in

 96

the service domain is required, the Contact Agent needs a way of being notified of this.

To accomplish this, the Contact Agent instructs the Parlay gateway to notify it if any

subscriber is invited to use any service in the underlying network. It achieves this by

calling createNotification() on the SI GSM.

The Contact Agent calls createNotification() on the SI GSM only once, when the service

domain architecture is first provisioned. The event and userNums arguments of the

method are set such that the Contact Agent is notified of any attempt to invite any user to

use any service.

With the notification appropriately set up, any attempt by another party to invite a user to

use any service triggers the network event. The Parlay gateway notifies the SI GSM of

the event, and the user it concerns, and the SI GSM forwards this notification to the

Contact Agent. Since the notification is set to the interrupt mode, the Contact Agent is

able to control the further processing of the situation. (The Contact Agent then proceeds

to establish the service session for the user by calling the startTerminal() method on the

SI GSM, as explained later.)

The Service Manager calls createNotification() when it is first instantiated, at the

beginning of every service session, to establish the appropriate notifications in the Parlay

gateway corresponding to the network initiated services to which a user subscribes.

Recall that network initiated services are those services whose invocations originate in

the underlying network; thus, the notifications created by the Service Manager in the

Parlay gateway ensure that it is notified if any network initiated service to which the user

subscribes requires invocation. These notifications are also set to the interrupt mode,

allowing the control of the processing of the service to be maintained in the service

domain.

The Service Manager calls destroyNotification() on the SI GSM at the end of every

service session, to destroy all of the notifications it created at the beginning of the service

session corresponding to the network initiated services to which the user subscribes. The

practical use of the destroyNotification() method is the same as the use of the

createNotification() method, as shown in figure 5.20.

 97

• startTerminal()

As described previously, the Contact Agent uses createNotification() to ensure that it is

notified whenever an event in the underlying network indicates that a new service session

is required. startTerminal() is another method that is used by the Contact Agent to

instantiate a service session that is initiated in the underlying network.

A requirement for the instantiation of any service session (whether it is initiated by the

terminal or a network event) is that the service domain and the terminal are be able to

communicate at the application layer. While the terminal always has a reference to the

Contact Agent (in the service domain), the service domain only maintains a reference to

the terminal during a given service session. Thus, the service domain has no way of

signalling to the terminal at the application layer outside of a service session.

If the terminal initiates the service session by contacting the Contact Agent directly, the

service domain immediately obtains a reference to the terminal, and the service session

can commence since the terminal and the service domain are able to communicate, in

both directions, at the application layer. However, if the Contact Agent is notified of the

need for a service session through a network event, the Contact Agent has no way of

contacting the terminal at the application layer to notify the terminal of the need for a

service session.

The startTerminal() method, offered by the SI GSM, enables the Contact Agent to contact

a terminal at the network level. A terminal can always be contacted at the network level

using its unique network identifier (e.g. an E.164 number). If the terminal can be

contacted at the network level, it can be notified of the need for a service session, and can

then initiate the service session by contacting the Contact Agent.

The MSC showing the use of the startTerminal() method is shown in figure 5.21.

Figure 5-21: MSC for SI GSM for startTerminal() method

 98

Messages 1-3 show the operation of the startTerminal() method. Messages 4 and 5 are not

strictly part of the startTerminal() method, but illustrate the subsequent effects the method

has: message 4 shows the Parlay gateway contacting the terminal at the network level;

message 5 shows the terminal contacting the Contact Agent at the application layer level,

requesting the initiation of a new service session.

5.2.4. Methods of the GSM API set

The GSM API set is comprised of all of the methods offered by every GSM. The GSM

API set offers a well-defined interface to service developers by providing a

comprehensive definition of all of the arguments, parameters, data types etc. of all of its

methods.

The size of the GSM API set is determined by the range of GSMs that are implemented.

Figure 5.22 shows the GSM API set where only the FW GSM, MPCC GSM and the SI

GSM are implemented. Excluding the SI GSM, the GSM API set shown consists mainly

of ‘signals’ directed from services to the GSMs; thus, components that use the GSMs do

not need to offer the GSMs any public methods. The fourth, unnamed GSM, represents

the set of all other GSMs which haven’t been specified in this report, whose methods will

also contribute to the GSM API set.

cr
ea

te
Se

rv
ic

e(
)

lis
tS

er
vi

ce
()

de
sc

rib
eS

er
vi

ce
()

di
sc

ov
er

Se
rv

ic
e(

)

se
le

ct
Se

rv
ic

e

in
iti

at
eS

es
si

on
M

em
be

r()

re
le

as
e(

)

ge
tM

em
be

rs
()

ge
tS

es
si

on
()

su
sp

en
d(

)

re
su

m
e(

)

ad
dR

eq
()

m
et

ho
d1

()

m
et

ho
d2

()

st
ar

tT
er

m
in

al
()

cr
ea

te
N

ot
ifi

ca
tio

n(
)

re
po

rtN
ot

ifi
ca

tio
n(

)

de
st

ro
yN

ot
ifi

ca
tio

n(
)

cr
ea

te
N

ot
ifi

ca
tio

n(
)

re
po

rtN
ot

ifi
ca

tio
n(

)

Figure 5-22: The methods of the GSM API set

 99

5.3. The Reusable Building-Blocks and the RBB API set

This section describes the implementation of RBBs and use of the RBB API set by means

of a representative example.

5.3.1. Overview

RBBs encapsulate commonly required functionality into reusable building-blocks,

allowing services to implement only the functionality that is unique to that specific

service, and outsource all other operations to RBBs.

Whereas GSMs interface with the Parlay gateway, offering software reuse and abstraction

specifically related to the Parlay SCFs, RBBs do not interface with the Parlay gateway at

all. The functionality offered by RBBs does not necessarily even have to be oriented

towards telecoms; many RBBs provide generic software functionality, such as database

manipulation.

5.3.2. Examples of RBBs

The “NumSearch RBB” is used to illustrate and exemplify the function of a typical RBB.

The NumSearch RBB is designed to be used for all number translation services. Its use is

illustrated here through its application to the Abbreviated Dialling service, which is one

of many possible services that would require number translation. Its operation in this case

is as follows. It receives a subscriber’s number and an abbreviated number as its inputs.

Using this data, it searches a database for the subscriber’s profile, and matches the

abbreviated number with a routable E.164 number. The NumSearch RBB then returns

this routable E.164 number to the service that called it (the Abbreviated Dialling service).

Figure 5.23 depicts the ID, showing the NumSearch RBB operating in the service

domain, and figure 5.24 shows the associated MSC.

 100

1

2

Figure 5-23: ID for "NumSearch RBB"

Message 1 shows the Abbreviated Dialling service invoking the NumSearch RBB, and

message 2 shows the RBB performing the subsequent interactions with the appropriate

database.

E.164num
getUserNum(userNum,

abbNum)

Reusable
Building-
Blocks

NumSearch
RBB

1

RBB API set

“retrieve
routable number”
2

AbbDialling
service

AbbDialling
DB

Central repository

result 3

Figure 5-24: MSC for "NumSearch RBB"

5.3.3. Methods of the RBB API set

The RBB API set is comprised of all of the methods offered by every RBB. The RBB

API set offers a well-defined interface to service developers by providing a

comprehensive definition of all of the arguments, parameters, data types etc. of all of its

methods.

The size of the RBB API set is determined by the range of RBBs that are implemented.

With only the NumSearch RBB defined in this section, the RBB API set would only

contain the single method offered by the NumSearch RBB: getUserNum().

 101

Looking ahead

Chapter 6 presents a dynamic view of the service domain architecture, showing the

interaction between critical components in a variety of common scenarios. The dynamic

view of the architecture presented in chapter 6 builds on the static view of the service

domain architecture from chapter 5 and the critical implementation issues from this

chapter.

 102

Chapter 6

A DYNAMIC VIEW OF THE SERVICE DOMAIN
ARCHITECTURE

Many of the tasks required for the invocation and execution of different services in the

proposed service domain architecture are the same, despite the different objectives of the

services themselves. For example, the structure of the service domain architecture

prescribes that all services are invoked in the same manner, communicate with terminals

in the same way, and affect their control on the resources of the network using the same

approach.

In this chapter, these generic operations are identified. Through the recognition of these

generic operations, the task of developing services for the proposed service domain

architecture is simplified. The examples of services developed for the proposed service

domain architecture presented in chapter 7 make frequent reference to these generic

operations, highlighting and isolating only those operations that are unique to that service.

Through the explanation and understanding of the generic operations shown in this

chapter, the operational inter-relationships and the dynamic behaviour of the service

domain components, introduced statically in the previous two chapters, is made clearer.

From these dynamic illustrations, the reasons for the structure of the service domain

architecture become apparent, and the architecture justified.

The generic operations identified in this chapter are separated and presented in two

categories: service session routines, and fundamental interactions.

Service session routines concern the generic operations related to the initiation and

termination of service sessions, and are independent of the execution of any service.

Service session routines involve the service infrastructure components in the Service

 103

Infrastructure layer, and their presentation aids in the understanding of the role the key

role service infrastructure components play in the proposed architecture.

The fundamental interactions concern the generic operations related to the functioning of

services. Fundamental interactions identify the standard approaches used in the proposed

architecture for service invocation, communication between services and terminals, and

for the control of network resources.

IDs and MSCs are used to illustrate the dynamic nature of both the service session

routines and the fundamental interactions. While the MSCs show detailed technical

interactions in an abstracted view, it is through the depiction of the interactions on the

architecture’s logical structure, using IDs, that the relations between the horizontal layers

and between the various components become clear.

6.1. Service session routines

Service session routines are the sequences of messages that are required for the

management of service sessions. There are two service session routines: the “Initial

sequence” service session routine is used for the initiation of every service session, and

the “Terminating sequence” service session routine is used for the subsequent termination

of every service session.

6.1.1. Initiating service session routine

The description of the initiating service session routine requires the understanding of the

service infrastructure components. Although the functions of the Contact Agent and the

Service Manager were described in chapter 4, their roles at the beginning of a service

session are briefly reviewed.

A Service Manager is required to be instantiated throughout the entire duration of any

user’s service session. A Service Manager is required before any service can be executed,

since it is to the Service Manager that all service requests are sent, and it is only the

Service Manager that can invoke services.

 104

Before any service session is set up, the user’s terminal has only reference to one

component on the service domain: the Contact Agent. Before the terminal can attempt to

invoke any service, it needs a reference to its Service Manager. The Contact Agent is the

only component that can instantiate a Service Manager.

The Contact Agent only instantiates a Service Manager after it is requested to do so by a

terminal. If this request is made, it retrieves the user’s profile from the User Profile

database, instantiates a Service Manager, and returns the reference of the Service

Manager to the terminal.

The objective of the initiating service session routine is twofold: first, the Service

Manager must first be instantiated; then, the Service Manager must prepare for service

invocation requests for both terminal initiated and network initiated services, since the

Service Manager is responsible for controlling the invocation for all services in the

service domain architecture.

Recall from chapter 4 that the service session can be started by one of two events.

Consider ‘user X’. The Contact Agent instantiates the Service Manager for a user X in

either of two scenarios, depending on whether user X elects to use a service, or is invited

to use a service by another party:

• User X wishes to use a service, and user X’s terminal contacts the Contact Agent,

indicating that a service session is required. For example, user X might start a

video conference (and subsequently invite other parties to join the conference).

The service session in this scenario is referred to as being initiated by a terminal.

• The network notifies the Contact Agent that user X has been invited to use a

service by another party, indicating that a service session is required. For

example, another party might attempt to establish a video conference with user X.

The service session in this scenario is referred to as being initiated by the

network.

There are therefore two variations of the initiating service session routine, depending on

whether the service session is initiated by a terminal or the network, and the two

possibilities are presented separately. However, after the initial service session setup, the

execution of the service session is the same regardless of whether it was initiated by a

 105

terminal or the network. Therefore, besides for the initiation of the service session, no

further variations are required to be presented.

Initiating service session routine: for terminal initiation

When a user selects the use of a service on a terminal, the service session is initiated by

the user’s terminal contacting the Contact Agent. Since terminals always maintain a

reference to the Contact Agent, even when they are not involved in any service session,

the initiating service session routine for terminal initiation is a simple process.

The ID and the MSC for the initiating service session routine, which is initiated by a

terminal, is shown in figures 6.1 and 6.2, respectively.

A
S

Application
layer API set

Service domain

Contact
Agent

UP
DB

Service ManagerService ManagerService Manager

4

Intelligent Terminal

Specific
Services Layer

comms
(callBackIF)

Service
Infrastructure
Layer comms

U
S
E
R

I
N
T
E
R
F
A
C
E

Terminal
logic

3
2

Parlay gateway

Parlay APIs

GSM API set

SI GSM

Figure 6-1: ID for terminal-initiated initiating service session routine

The description of each of the messages shown in figures 6.1 and 6.2 for the initiation of

a service session by a terminal follows:

1. In preparation for the impending service session, the terminal creates a

callback interface. The ID shows that the callback interface resides within the

 106

terminal. It is using this callback interface that services contact the terminal, and

potentially request additional information or notify the terminal of an event, etc.

2. This ‘signal’ represents the authentication sequence between the terminal and

the service domain (as represented by the Contact Agent). The authentication can

be performed on one or both objects. Since the authentication is between the

terminal equipment and the service domain, the user is oblivious to its execution.

The precise authentication sequence is an implementation detail, and is not

shown here for reasons of clarity.

3. After authentication has been successfully completed, the terminal contacts the

Contact Agent, requesting a new service session to be started. From the ID, this

request is seen to utilise application layer signalling. From the MSC, the terminal

is shown to call the instantiateServiceManager() method on the Contact Agent.

Requesting the start of a new service session is therefore achieved by requesting

the instantiation of a new Service Manager. As arguments to the method, the

terminal provides the Contact Agent with a reference to its callback interface, and

its unique network level address (e.g. E.164 number).

The return parameter of instantiateServiceManager() is the reference to the

Service Manager, which is passed to the terminal after the Service Manager has

been instantiated. Messages 4 and 5 show the steps taken by the

instantiateServiceManager() method to instantiate the Service Manager.

4. Using the terminal’s unique network level address, the Contact Agent retrieves

the user’s subscription profile from the User Profile database.

5. The Contact Agent instantiates a new Service Manager, with methods and data

dictated by the user’s user subscription profile. (The methods that the Service

Manager is instantiated with are determined by the terminal initiated services to

which the user subscribes. Thus, the Service Manager implicitly prepares for the

potential invocation of any subscribed terminal initiated services through the very

methods it is instantiated with. See section 5.1 for more details.) The Contact

Agent also passes the reference to the terminal’s callback interface to the Service

Manager.

 107

Now that the Service Manager has been instantiated, the

instantiateServiceManager() method has completed, and the Contact Agent is

returns the reference of the Service Manager to the terminal (using the terminal’s

callback interface). For all subsequent dealings with the service domain, the

terminal contacts its Service Manager directly.

6. The final step in the instantiation of a service session is for the Service

Manager prepare for the potential invocation of any network initiated services to

which the user subscribes. To do this, it needs to establish the appropriate triggers

in the Parlay gateway corresponding to those network events which should cause

the invocation of the subscribed network initiated services. However, the Service

Manager does not interact with the Parlay gateway directly. Instead, it instructs

the SI GSM to create the notification in the Parlay gateway.

7. The SI GSM interacts with the Parlay gateway, and creates all of the requested

notifications.

Figure 6-2: MSC for terminal-initiated initiating service session routine

Note the different approaches the Service Manager uses to prepare for the invocation of

terminal initiated and network initiated services. The preparation for terminal initiated

services is implicitly achieved when the Service Manager is instantiated, since it is

instantiated with only those methods corresponding terminal initiated services to which

the user subscribes (see message 5).

 108

The preparation for network initiated services is achieved explicitly through the creation

of notifications in the Parlay gateway, shown by messages 6 and 7. Notifications are

created for the various network events required for the invocation of those network

initiated services to which the user subscribes.

Note that, traditionally, the individual services themselves set up the required

notifications in the Parlay gateway, and it is to these services that the notifications from

the Parlay gateway are directly sent. In the proposed approach, the Service Manager

establishes all of the Parlay gateway notifications for every subscribed network initiated

service, and the reporting of the notifications for all subscribed network initiated services

is always made to the Service Manager.

Initiating service session routine: for network initiation

When another party invites a user to use a specific service, the service session is said to

be initiated by the network. However, a requirement for the successful initiation of a new

service session is that the terminal and the service domain are able to communicate, in

both directions, in the application layer. Since the network initiated the service session,

the terminal is oblivious to the impending service session; and, since the service domain

has no way of contacting the terminal in the application layer (since it does not maintain a

reference to the terminal outside of a service session), no application layer signalling can

be established (which is a requirement for the successful initiation of a service session).

To get around this problem, the terminal is notified of the impending service session at

the network level. After the Contact Agent receives notification from the Parlay gateway

that a user has been invited to use a service by another party, e.g. join a video conference,

the Contact Agent uses the Parlay gateway to contact the user’s terminal at the network

level, notifying it of the impending service session. The terminal then contacts the

Contact Agent in the application layer, which brings the process to the exact starting point

of the initiating service session routine for terminal initiation.

The initiating service session routine for network initiation is therefore similar to the

initiating service session routine for terminal initiation; it just requires an additional

sequence of messages to occur at the beginning of the service session initiation process.

 109

After this initial sequence of messages, the initiating service session routines in both

cases use the same sequence of messages.

The ID and the MSC for the initiating service session routine, which is initiated by the

network, is shown in figures 6.3 and 6.4, respectively. The ID in figure 6.3 shows only

those messages which are unique to the case where the service session is initiated by the

network, and hides the subsequent message sequence that is common to both.

Sp
ec

ifi
c

se
rv

ic
es

la

ye
r

S
er

vi
ce

in

fra
st

ru
ct

ur
e

la
ye

r

A
S

Application
layer API set

Service domain

Contact
Agent

UP
DB

Service ManagerService ManagerService Manager

Intelligent Terminal

Specific
Services Layer

comms
(callBackIF)

Service
Infrastructure
Layer comms

U
S
E
R

I
N
T
E
R
F
A
C
E

Terminal
logic

Parlay gateway

Parlay APIs

R
eu

se
 a

nd

ab
st

ra
ct

io
n

la
ye

r

GSM API set

SI GSM

p2

Network
Network Layer

comms

p1

N
I1

N
I2

N
I4

N
I3

NI5

Figure 6-3: ID for network-initiated initiating service session routine

All signals that are labelled with names beginning with a “NI” (NI1 – NI5) indicate those

signals that are unique to the network-initiated case.

Signals “p1” and “p2” identify those signals that are use “pre” service session, and are not

used during the initiation of any specific service session. Recall that, to allow for the

initiation of a service session caused by a user being invited to use a service by another

party, the Contact Agent needs a mechanism of detecting such events in the underlying

network.

 110

Signals p1 and p2 provide just that mechanism. Signals p1 and p2 establish the

notification in the Parlay gateway for any network event involving any party, ensuring

that if a user is invited to use a service in the network, the Parlay gateway will detect the

event and notify the Contact Agent of the need for a new service session. This

notification is established only once, when the service domain architecture when it is first

provisioned, and never again.

Note that, in establishing the notification in the Parlay gateway, the Contact Agent makes

use of the SI GSM, and does not have to interact with the Parlay gateway directly.

Similarly, when a user is invited to use a service in the network and the Parlay gateway

detects the event, the SI GSM is sent the notification, which is forwarded to the Contact

Agent.

A discussion of the messages that are unique to the network-initiated case of service

session initiation in figure 6.3 and 6.4 follows:

NI1: The Parlay gateway detects that a user has been invited to use a service in

the underlying network, and sends the notification to the SI GSM, with the user’s

network level address as a parameter.

NI2: The SI GSM forwards this notification to the Contact Agent, notifying it of

the need for a new service session.

NI3: The Contact Agent instructs the SI GSM to contact the terminal, using the

network level address provided.

NI4: The SI GSM performs the necessary interactions with the Parlay gateway to

execute this task.

NI5: The terminal is contacted via the underlying network, and is informed of the

need for a new service session. (Note that the user of the terminal is oblivious to

the terminals receipt of this signal, and to its subsequent actions.)

The sequence of messages that then follows are exactly the same as in the initiating

service session routine for terminal initiation, given by messages 1-7 in the MSC (but

excluded in the ID).

 111

reportNotification
(E.164 number)

User
profile

DB

retrieve UPData

new(callBackRef, UPData)

new()

objref instantiateServiceManager
(userNum, callbackRef)

Contact
agent

Generic authentication sequence.
One-way or two-way. API level or other.

Service
manager

Parlay
gatewayTerminal

CallBack IF

1

3

4

5

Parlay APIs

UPData
retrieveUserProfile
(userNum)

objref for Service Manager

2

6

R&A APIs

SI GSM

Reuse and
abstraction

components

createNotification()
for all 3rd party

services
createNotification()

for all 3rd party services
7

SI GSM

createNotification()
(for a call attempt on any subs number) createNotification()

(for a call attempt on
any subs number)

reportNotification
(E.164 number)

startTerminal()
“notify terminal”

NetworkNetwork

p1
p2

NI1
NI2

NI3
NI4 NI5

NI5

Figure 6-4: MSC for network-initiated initiating service session routine

Initiating service session routines: commonalities

The only difference between the MSCs shown in figures 6.2 and 6.4 are the additional

messages shown at the beginning of the sequence in figure 6.4. Thus, the initiating

service session routine for network initiation uses the initiating service session routine for

terminal initiation, and adds a sequence of messages at the beginning. The MSC in figure

6.5 shows the messages that the two variations have in common.

Figure 6-5: The common messages in the two initial service session routines

 112

Figure 6.5 effectively shows that entire initiating service session routine for terminal

initiation, and the latter half of the initiating service session routine for network initiation.

The sequence of messages shown in figure 6.5 is referred to as the “common sequence”.

The former half of the initiating service session routine for network initiation (that is not

included in figure 6.5) effectively instructs the terminal to contact the Contact Agent

when relevant events in the underlying network have been detected. After this has been

performed, the common sequence can commence.

With the recognition of the common sequence, the initiating service session routine for

terminal initiation is shown in an abstracted view, in figure 6.6.

Figure 6-6: Abstracted initiating service session routine for terminal initiation

The common sequence comprises the entire initiating service session routine for terminal

initiation. The callback interface for the terminal and the Service Manager are shown to

lie within the “Common sequence” block because they are only instantiated in the

Common sequence, and do not exist prior to its execution.

The initiating service session routine for network initiation is shown in an abstracted

view in figure 6.7.

Figure 6-7: Abstracted initiating service session routine for network initiation

 113

Figure 6.7 shows that the initiating service session routine for network initiation requires

a sequence of messages before the common sequence can commence, which is used to

inform the terminal of the need for it to contact the Contact Agent. The common

sequence that follows, which is illustrated in figure 6.5, is also the initiating service

session routine for terminal initiation.

While the initiating service session routine message sequence is dependent on whether it

is network or terminal initiated, it is independent of any particular user or service. For this

reason, the examples of services implemented in the proposed service provisioning

environment (in chapter 7) will not show the individual messages, but will refer to the

initiating sequence abstractly as either the initiating service session routine for network

initiation or the initiating service session routine for terminal initiation, whichever is

appropriate.

6.1.2. Terminating service session routine

Two actions are required to terminate a service session. Firstly, the notifications in the

Parlay gateway that were established for the particular network initiated services that the

user subscribes to must be destroyed. Secondly, the user’s Service Manager must be

destroyed. By destroying the Service Manager, the means of achieving service invocation

for terminal initiated services is also destroyed.

The MSC for the terminating service session routine is shown in figure 6.8.

Contact
agent

Service
manager

void destroyMe()

Destroy Service Manager object

void terminateServiceSession()

Terminal
Parlay

gateway

Parlay APIsR&A APIs

SI GSM

Reuse and
abstraction
components

destroyNotification()
for all network initiated

services

3
destroyNotification()

for all network initiated
services

1

2

4

5

Figure 6-8: MSC for terminating service session routine

All service sessions are terminated using this same sequence.

 114

A discussion of the specific messages follows:

1. Using application layer signalling, the terminal calls terminateServiceSession()

on the Service Manager, indicating that a service session is no longer required.

The end of a service session is always signalled by the terminal.

2. The Service Manager instructs the SI GSM to destroy all notifications in the

Parlay gateway that were specifically created for the network initiated services of

that user.

3. The SI GSM interacts with the Parlay gateway, and destroys all of the

requested notifications.

4. Once the network notifications have been cancelled, the Service Manager

instructs the Contact Agent, which was responsible for the original instantiation

of the Service Manager, to destroy it. The Contact Agent destroys the Service

Manager, and with it, the service session.

Since the message sequence is independent of any particular user or service, the examples

of services implemented in the proposed service provisioning environment (in chapter 7)

will not show the individual messages, but will refer to the sequence abstractly as the

terminating service session routine.

6.2. Fundamental interactions

The prescribed structure of the service domain architecture defines how objects within the

service domain interact, and how objects in the service domain interact with objects

external to the service domain. For example, the way services control the resources of the

network is partly determined by the inclusion of GSMs in the proposed service domain

architecture. Also, the way terminals communicate with services is partly determined by

the existence of the Service Manager, and the introduction of application layer signalling

in the proposed service provisioning environment. Thus, the environment in which

services are provisioned has a marked impact on how services accomplish commonly

required tasks.

Fundamental interactions are those interactions that occur between objects in the service

provisioning environment to accomplish simple, yet fundamental, operations. The

fundamental interactions presented in this section essentially provide a demonstration of

how key tasks are accomplished in the proposed service provisioning environment. These

 115

fundamental interactions are used by most services, no matter how diverse or unique their

objectives, as the examples in chapter 7 will demonstrate.

Three fundamental interactions are shown, illustrating how the proposed service

provisioning environment achieves service invocation, communication between the

service domain and the terminals, and network resource control.

6.2.1. Fundamental interaction 1: Service invocation

Recall that, in the proposed service provisioning environment, the invocation of all

services is controlled by the Service Manager. Figure 6.9 shows the invocation of both

terminal and network initiated services, using application layer and triggered invocation,

respectively, through the use of a Service Manager.

Figure 6-9: ID showing service invocation using a Service Manager

The MSCs for the invocation of terminal and network initiated services are shown in

figure 6.10 and 6.11, respectively.

Figure 6-10: MSC showing application layer invocation of terminal initiated services

 116

The signals labelled “a” in figure 6.9, showing the invocation of terminal initiated

services, are shown in figure 6.10. Similarly, the signals labelled “b” in figure 6.9,

showing the invocation of network initiated services, are shown in figure 6.11.

Figure 6-11: MSC showing triggered invocation of network initiated services

Note that in both figures 6.10 and 6.11, the service invocation requests are sent to the

Service Manager, and the Service Manager invokes the appropriate service. For terminal

initiated services (figure 6.10), the invocation request originates in the terminal, and the

Service Manager is contacted using application layer signalling. For network initiated

services (figure 6.11), the invocation request originates in the network, and the Service

Manager is informed of the invocation request from the network, via the SI GSM.

The method call made by the terminal on the Service Manager in figure 6.10 called

“toServiceManager” is not a specific method, but is a generic name representing all

possible methods that a terminal could call on the Service Manager. Similarly, the method

call made by the Service Manager on a service in figures 6.10 and 6.11 called

“toServiceX” is not a specific method, but is a generic name representing all possible

method calls that the Service Manager could make on services.

The fundamental interaction shown in figure 6.10 is always used to invoke terminal

initiated services, and the fundamental interaction shown in figure 6.11 is always used to

invoke network initiated services.

6.2.2. Fundamental interaction 2: Terminal Service

communication

Terminal service communication refers to all communication between a terminal

and a service, excluding the signalling that is used for service invocation. Specifically,

 117

terminal service communication is used for service management (e.g. to set up the

abbreviated dialling number pairs for the Abbreviated Dialling service), and is sometimes

required during the execution of a service (if, for example, the service requires additional

information from the terminal for the successful execution of the service).

Figure 6.12 shows the proposed approach to terminal service communication.

Figure 6-12: ID showing the proposed approach to terminal service communication

In the proposed approach to terminal service communication, terminals and services

communicate directly, using application layer signalling. However, there is a slight

difference as to how terminals signal to services, and how services signal to terminals.

Services do not have references to services, and signal only to a single object in the

service domain during any given service session: the Service Manager. The Service

Manager then forwards this signal to the appropriate service. Signal (a) shows the

terminal signalling to a service in the service domain via the Service Manager. In

contrast, services can signal to the terminal without the mediation of the Service Manager

during service execution (b), since they received a reference to the terminal’s callback

interface when they were invoked.

However, whether or not the Service Manager plays an intermediary role, all

communication between the terminals and the service domain in the proposed approach

uses application layer signalling (using high-level, service oriented signalling protocols).

 118

The MSC in figure 6.13 illustrates the proposed approach to terminal service

communications, corresponding to the ID shown in figure 6.12. Again, note that the

method calls shown in the MSC are not specific, but are generic methods representing all

possible method calls between any two objects.

Figure 6-13: MSC showing terminal service communication using application layer

signalling

Typical signalling from a terminal to a service (represented by signal (a) in figure 6.12),

is shown in messages 1 and 2:

1. In response to the user’s instruction, message 1 shows the terminal’s signal to

the Service Manager, requesting that the information be forwarded to service X.

2. The Service Manager performs this task.

Terminal service communications is thus achieved using application layer signalling.

Two variations of signalling from a service to a terminal (represented by signal (b) in

figure 6.12), are shown by messages 3 and 4.

3. This message shows the service requesting additional information from the

terminal. The service requests (via the terminal’s callback interface) that the

terminal provide it with more information that is required for the successful

execution of the service. The terminal prompts the user for this information,

which it returns to the service.

4. This message shows the service providing a notification to the terminal, and

not requiring any further information. The service notifies the terminal (via the

callback interface) of some event, and the terminal notifies the user.

 119

Service terminal comms is thus achieved using application layer signalling.

The fundamental interactions shown in figure 6.13, for communications between the

terminal and the service in either direction, are used regularly by terminals services to

achieve terminal service communications.

6.2.3. Fundamental interaction 3: Network resource control

The execution of any typical service requires the use of the underlying network.

Fundamental interaction 3 concerns the way that services control and manipulate network

resources. In the OSA approach to service provisioning (such as with Parlay), the

approach used for network resource control essentially reduces to the way the services

interact with the Parlay gateway.

GSMs play a major role in determining how services achieve network functionality in the

proposed approach. The proposed service provisioning environment introduced GSMs to

the service domain to provide a layer of abstraction between the services and the Parlay

gateway. The abstraction layer provided by GSMs offers two advantages:

• GSMs relieve services from having to interact with the Parlay gateway, and are

thus shielded from the relatively complex Parlay APIs.

• GSMs offer services simple, high-level methods, which encapsulate sequences of

Parlay messages, to achieve commonly required network functionality.

To highlight the impact GSMs have on the way services interact with the Parlay gateway,

the proposed approach is contrasted to the approach implied in the Parlay standards,

where services are required to interact directly with the Parlay gateway. The approach

implied in the Parlay standards is shown on the left of figure 6.14, and the proposed

approach, which uses GSMs, is shown on the right.

 120

Existing approach to network resource control Proposed approach to network resource control

Parlay gateway

Parlay APIs

NS RC

Service1 Service2

Parlay gateway

Parlay APIs

NS RC

Transport

Call / Session signalling

Transport

Call / Session signalling

A
S

Service1 Service2

Service
Manager
Service

Manager
Service

Manager
Service

Manager

GSM1 GSM2 GSM3

GSM API set

Figure 6-14: Network resource control with and without GSMs

The left side of figure 6.14 shows that without the use of GSMs, services are required to

communicate directly with the Parlay gateway, using the Parlay APIs. When GSMs are

used, the service communicates with the GSM, and the GSM performs the necessary

interaction with the Parlay gateway.

Also note that, to accomplish a certain goal, the GSM requires the service to make only a

single method call, whereas many messages are required when no GSM is available.

Figure 6.15 shows the MSC of the proposed approach to achieving network resource

control, corresponding to the right side of figure 6.14.

Figure 6-15: Network resource control using a GSM

The method call “toGenericServiceModuleX” is the generic method name used to

represent all method calls made by a service on a GSM. The various method calls

represented by “toGenericServiceModuleX” constitute the GSM API set.

 121

As depicted by the right side of figure 6.14, the MSC shows how the GSM shields the

service from the Parlay APIs, and from the onerous implementation detail that is required

to carry out the operation. This fundamental interaction, showing the approach that

services follow to control and manipulate network resources, is used in the

implementation of almost every telecoms service.

An understanding of the service session routines and the fundamental interactions

presented in this chapter greatly simplifies the development of services for the proposed

service provisioning environment.

Looking ahead

Chapters 3, 4, 5 and 6 provided a complete description of the proposed service

provisioning environment. Chapter 3 discussed the principal concepts underlying the

proposed service provisioning environment; chapter 4 presented a static view of the

proposed service domain architecture; chapter 5 discussed critical implementation issues

of the architecture; and this chapter looked at the dynamic nature of the proposed

environment.

The practical feasibility of the theoretical framework laid-out in chapters 3 to 6 is tested

in chapter 7, where the implementation of various services in the proposed service

provisioning environment is presented.

 122

Chapter 7

EXAMPLES OF SERVICES IMPLEMENTED IN
THE PROPOSED SERVICE PROVISIONING
ENVIRONMENT

In this chapter, the implementation of three services in the proposed service provisioning

environment is presented: the Abbreviated Dialling service, the Call Completion service,

and the Call Manipulation service. These services were chosen because they include

many of the features commonly found in other services, and because they utilise most

aspects of the service provisioning environment, thus aptly demonstrating the nature of

the service provisioning environment.

In the description of these services, extensive use will be made of the service session

routines and the fundamental interactions of the previous chapter to simply the

presentation of the examples, and to show how specific services can be decomposed into

repetitive patterns.

7.1. Service session life-cycles

Before the service examples are presented, service session life-cycles are described.

Certain services require service management, which is the configuration of service data

and other parameters by a subscriber. For example, the Abbreviated Dialling service

(discussed in section 7.2) requires subscribers to setup their personalised number pairs,

which map the abbreviated numbers onto routable numbers. As has been previously

discussed, a service session is required to be created for service management to occur.

The reason a service session is established for the configuration of services is that the user

requires a Service Manager in order to communicate with the services he/ she wishes to

 123

configure, and the services to be configured require the user’s Service Manager to

provide them with a reference to the callback interface of the user’s terminal, so that the

service can communicate with the user.

There are therefore two instances when a service session needs to be established: for

service management (for certain services), and for service execution (for all services).

Service sessions used for service management would be used far less frequently than

service sessions for service execution. For example, a subscriber of the Abbreviated

Dialling service might only update her abbreviated number pairs (perform service

management) once a month, whereas she might require the execution of the Abbreviated

Dialling service a number of times a day.

Figure 7.1 shows the two possible service session life-cycles, depending on whether the

service session is created for the purpose of service management or service execution.

The service session life-cycles depicted in figure 7.1 do not show any specific life-cycle,

but represent the general phases through which the service session progresses. The

initiating and terminating service session routines, which are required at the beginning

and end of every service session, are shown in the context of the service session life-

cycles.

Figure 7-1: Typical service session life-cycles

On the left of figure 7.1 is the typical service session life-cycle for service management,

and the life-cycle for the invocation and execution of a number of services is shown on

the right. The middle of the diagram represents the state where the user is not actively

using any telecoms service, and no service session is required.

 124

Within the service session used for the invocation and execution of services, a bearer

connection is usually in existence, and a small number of services may be required.

7.2. Service example 1: Abbreviated Dialling service

The Abbreviated Dialling service allows a user to dial another user by means of a short

(abbreviated) number. The Abbreviated Dialling service requires user data to be set up

before the service can operate, and thus uses both the service management and service

execution life-cycles identified in figure 7.1.

Service management for the Abbreviated Dialling service is discussed first, followed by a

discussion on service execution.

Service management for the Abbreviated Dialling service

Service management for the Abbreviated Dialling service allows subscribers to add,

remove and edit personalised number pairs, which link abbreviated numbers with the

routable numbers. For example, a user might use service management to associate a

routable E.164 number with the abbreviated number ‘05’.

The ID and the MSC illustrating Abbreviated Dialling service management are shown in

figures 7.2 and 7.3, respectively.

Service management for the Abbreviated Dialling service is always initiated by a

terminal. The service session that is established for the management of the Abbreviated

Dialling service is thus instantiated using a terminal-initiated initiating service session

routine (assuming that a service session isn’t already in existence). For clarity, the

initiating service session routine omitted entirely in the ID, and is shown only abstractly

in the MSC. (After the initiating service session routine, the service session has been

initiated, and the terminal has a reference to its Service Manager.)

 125

2

8

4,
6,

10
,1

2

Figure 7-2: Service management ID for the Abbreviated Dialling service

The messages shown in figures 7.2 and 7.3, which are used for Abbreviated Dialling

service management specifically, are now described.

1. Based on the instruction by the user, the terminal requests that the Service

Manager set up the Abbreviated Dialling service (to which the user is

subscribed). This method call is a standardised method contained in the

Application layer API set.

2. The Service Manager informs the Abbreviated Dialling service that a user

wishes to configure his / her profile. The Service Manager gives the service the

user’s identity and the reference of the terminal’s callback interface.

Messages 1 and 2 constitute fundamental interaction 1: Service invocation.

3-12. Using the callback interface of the user’s terminal, the service strikes up

communication with the terminal. A dialogue between the service and the

terminal then ensues, making the appropriate additions / changes, and the service

records the changes to its database. Messages 3, 5, 9 and 11 are standardised

methods contained in the Application layer API set.

Messages 3 to 12 (excl. 7 and 8), constitute fundamental interaction 2: Terminal

 service communication.

Once the terminal has completed the service management process (and assuming that no

further use of the service session is required), it initiates the terminating service session

routine (shown abstractly in figure 7.3), and the service session is ended.

 126

abbDiallingManagement()

AbbDialling
(addPair,

userNum,data)

ABDserviceManagement(callBackRef,
userNum)

Service
manager

Abb
Dialling
service

Initiating service session routine (terminal initiated)

data getMoreData(1field, whatToDo?:add,delete,change,finished)

data getMoreData(2fields, enterAbbNumAndFullNum)

data getMoreData(1field, whatToDo?:add,delete,change,finished)

notify(updateComplete)

Terminal

CallBack IF

1
2

34

56
7

910

1112

Application
layer API set

“Manage Abbreviated
Dialling service”

Prompt… Response

Prompt… Response

Prompt… Response

Notify

AbbDialling
DB

“DB
update”

8

R&A APIs

DB manager
RBB

Terminating service session routine

Reuse and
abstraction

components

Figure 7-3: Service management MSC for the Abbreviated Dialling service

Service execution for the Abbreviated Dialling service

The Abbreviated Dialling service is requested by a terminal when a user attempts to

establish a call using an abbreviated number. The ID and the MSC illustrating

Abbreviated Dialling service execution are shown in figures 7.4 and 7.5, respectively.

Since the invocation request for the Abbreviated Dialling service originates in the

terminal, it is classified as a terminal initiated service, and, through the use of application

layer signalling, is invoked using application layer service invocation. The service session

that is established for execution of the service (assuming that a service session isn’t

already in existence) is thus instantiated using a terminal-initiated initiating service

session routine. Again, for clarity, the initiating service session routine omitted entirely in

the ID, and is shown only abstractly in the MSC.

 127

2

46

Figure 7-4: Service execution ID for the Abbreviated Dialling service

The messages shown in figures 7.4 and 7.5, which are used for Abbreviated Dialling

service execution specifically, are now described.

1. Based on the instruction by the user, the terminal requests that the Service

Manager invoke the Abbreviated Dialling service. This method call is a

standardised method contained in the Application layer API set.

2. If the user is subscribed to the Abbreviated Dialling service, the Service

Manager recognises the method that the terminal called, and invokes the

Abbreviated Dialling service. The MSC shows that, as arguments in the

invocation method called on the Abbreviated Dialling service, the Service

Manager passes the subscriber’s number (userNum), the abbreviated number

(abbNum), and the reference to the callback interface of the subscriber’s terminal

(callbackRef).

Messages 1 and 2 constitute fundamental interaction 1: Service invocation.

3. The Abbreviated Dialling service requests that the NumSearch RBB determine

the routable E.164 number corresponding to the abbreviated number (abbNum)

for that user (userNum).

4. The NumSearch RBB searches the database used by the Abbreviated Dialling

service for the routable number, and then returns routable number to the service.

 128

5. The service has now determined the routable number of the terminating user,

and requires the call to be routed. The Abbreviated Dialling service makes a

single, high-level call to the MPCC GSM, to route the call. (Refer to section 5.2.2

for a complete description of the MPCC GSM.) This method call is a

standardised method contained in the GSM API set.

6. The MPCC GSM establishes the call by performing the necessary interactions

with the appropriate SCF in the Parlay gateway. The exact interactions between

the MPCC GSM and the Parlay gateway used to establish a call were shown in

figure 5.14 of section 5.2.2.

Messages 5 and 6 constitute fundamental interaction 3: Network resource

control.

7. The call between the subscriber (served by the service session in question) and

the terminating user (specified by the abbreviated number) is then established.

The Abbreviated Dialling service has now executed to completion. On completion of the

call, and assuming that no further use of the service session is required, the terminal

instructs the Service Manager to proceed with the terminating service session routine, as

shown in the MSC.

Figure 7-5: Service execution MSC for the Abbreviated Dialling service

 129

7.3. Service example 2: Call Completion service

The Call Completion service enables a calling user, encountering a busy destination, to

have the call completed when the busy destination becomes not busy, without having to

make a new call attempt [10]. Unlike the Abbreviated Dialling service discussed

previously, the Call Completion service does not require service any management;

accordingly, only the execution of the Call Completion service is demonstrated.

Before the execution of the Call Completion service is illustrated and discussed in full

detail, a qualitative overview of the general operation of the service is provided. The

typical operation of the Call Completion service is as follows:

• If the subscriber to the Call Completion service wants to ensure that an end-to-

end connection is established as soon as possible, the subscriber instructs his

terminal to establish a call with a specified terminating party using the Call

Completion service. (If the subscriber is in no particular need to have the call

established in as little time as possible, he would not use the Call Completion

service, and simply instruct the terminal to establish a regular call.)

• The terminal requests that the Service Manager invoke the Call Completion

service. If the service is subscribed to, the Service Manager invokes the Call

Completion service, passing it the number of the subscriber and the terminating

party.

• The Call Completion service attempts to establish the call. If the call is

successfully established, the Call Completion service has executed to completion.

However, if the terminating party is busy, the Call Completion service performs

the following actions:

o The current call attempt is aborted, but the subscriber’s service session

remains in existence.

o The Call Completion service constantly checks the terminating terminal

to ascertain whether it is still busy.

o On determining that the terminating terminal is no longer busy, the Call

Completion service establishes the call between the service subscriber

and the terminating party, and the Call Completion service has executed

to completion.

 130

The operation of the Call Completion service described above assumed that the user

consciously decided to utilise the Call Completion service, and explicitly instructed the

terminal to request that the service be invoked from the start. Using this approach, the

user would still be able to make “regular” calls, and would not be forced to use the Call

Completion service on every call attempt. That is, the user would be able to abandon a

call completely on encountering a busy signal.

The ID and the MSC illustrating the execution of the Call Completion service are shown

in figures 7.6 and 7.7, respectively. Similar to the Abbreviated Dialling service, the Call

Completion service is classified as a terminal initiated service, and is invoked using

application layer signalling. The service session that is established for execution of the

service (assuming that a service session isn’t already in existence) is thus instantiated

using a terminal-initiated initiating service session routine.

2

3,5
,11 8

4,
6,

1 2 97 10

Figure 7-6: Service execution ID for the Call Completion service

 131

The messages shown in figures 7.6 and 7.7, which are used for the execution of the Call

Completion service specifically, are now described.

1. Based on the instruction by the user, the terminal requests that the Service

Manager invoke the Call Completion service. This method call is a standardised

method contained in the Application layer API set.

2. If the user is subscribed to the Call Completion service, the Service Manager

recognises the method that the terminal called, and invokes the Call Completion

service. The MSC shows that, as arguments in the invocation method called on

the Call Completion service, the Service Manager passes the subscriber’s number

(userNum), the terminating party’s number (termNum).

Messages 1 and 2 constitute fundamental interaction 1: Service invocation.

The remaining messages (5-12) illustrate the steps used in the execution of the

Call Completion service, and constitute fundamental interaction 3: Network

resource control.

3,4. The Call Completion service requests that the MPCC GSM set up a

notification in the network, requesting that it be informed if the call that it is

about to establish encounters a busy signal on the terminating side. Signal 3 is a

standardised method contained in the GSM API set. The MPCC GSM performs

the required action(s) on the Parlay gateway.

5,6. The Call Completion service requests that the MPCC GSM set the bearer

connection up. Signal 5 is a standardised method contained in the GSM API set.

The GSM performs the required action(s) on the Parlay gateway. The exact

interactions between the MPCC GSM and the Parlay gateway used to establish a

call were shown in figure 5.14 of section 5.2.2.

If the call is successfully established, the notification that was created in

messages 3 and 4 will not be reported, and the Call Completion service will have

executed to completion. However, if the terminating party is busy, the following

sequence of events occurs.

7. The Parlay gateway informs the Call Completion service that the call could not

be completed due to the terminating party being busy.

 132

8,9. The Call Completion service requests that the TS (Terminal Status) GSM

create a notification on the Parlay gateway requesting that it be informed when

the terminating party goes on-hook. Signal 8 is a standardised method contained

in the GSM API set. The TS GSM performs the required action(s) on the Parlay

gateway.

10. After some period of time (once the terminating party has completed the

existing call), the Parlay gateway informs the Call Completion service that the

terminating party is now on-hook.

11,12. Similar to messages 5 and 6, the Call Completion service attempts to

establish a bearer connection, using the MPCC GSM.

13. The call is successfully established, and the call proceeds.

The Call Completion service has now executed to completion. On completion of the call,

and assuming that no further use of the service session is required, the terminal instructs

the Service Manager to proceed with the terminating service session routine, as shown in

the MSC.

Figure 7-7: Service execution MSC for the Call Completion Service

 133

7.4. Service example 3: Call Manipulation service

The Call Manipulation service is an ‘umbrella service’, comprised of a number of smaller

services that are offered in existing service deployments (all of which involve the

manipulation of the states of various parties in a call). The services incorporated in the

Call Completion service are taken form the IN CS2 (IN Capability Set 2) specifications

[10], and include the following services:

• Call Hold. Call Hold allows a user to interrupt his / her connection to an existing

call, without releasing that call.

• Call Retrieve. Call Retrieve allows a user to re-establish his / her connection to a

call previously placed on hold.

• Call Toggle. Call Toggle is applicable to a user who has one active call, and one

on hold. It allows him / her repeatedly to select the currently held party as the

new connection, with the previously connected party being put on hold.

Since the Call Manipulation service does not require service any service management,

only the execution of the Call Manipulation service is demonstrated. There are a vast

number of possible ways a subscriber could use the service; thus, the operation of the Call

Manipulation service presented in this section is only intended to provide an example of

some ways the service can be utilised.

Before the execution of the Call Manipulation service is illustrated and discussed in full

detail, a qualitative overview of the general operation of the service is provided. The

operation of the Call Manipulation service, as illustrated later in this section, is as

follows:

• (The Call Manipulation service requires that a call, and thus a service session, be

in existence before it can operate.)

• The subscriber requests the use of the Call Manipulation service. The terminal

signals to the Service Manager, and the Service Manager invokes the Call

Manipulation service. The subscriber uses the Call Manipulation service as

follows:

o The subscriber requests that the current call be placed on hold. The Call

Manipulation service places the current call on hold, and prompts the

user (via the terminal’s callback interface) for the number of the new

terminating party.

 134

o The subscriber provides the Call Manipulation service with the number

of the new terminating party, and the Call Manipulation service

establishes the new call (while maintaining the original terminating party

on hold).

o During the new call, the subscriber requests that the original and new

terminating parties be toggled. The Call Manipulation service places the

terminating party in the current call on hold, retrieves the terminating

party of the original call (who was put on hold), and reinstates the

original call.

Since the Call Manipulation service is controlled using application layer signalling, it is

classified as a terminal initiated service. The ID and the MSC illustrating the execution of

the Call Manipulation service are shown in figures 7.8 and 7.9, respectively.

3 , 12
4 ,

8,
1 3

5,
9,

14

7

Figure 7-8: Service execution ID for the Call Manipulation service

 135

The messages shown in figures 7.8 and 7.9, which are used for the execution of the Call

Manipulation service specifically, are now described.

1. A service session is inexistence, and the terminal has a reference to its Service

Manager. A call is in progress between the subscriber and user ‘A’.

2. Based on the instruction by the user, the terminal requests that the Service

Manager invoke the Call Manipulation service. This method call is a standardised

method contained in the Application layer API set.

3. If the user is subscribed to the Call Manipulation service, the Service Manager

recognises the method that the terminal called, and invokes the Call Manipulation

service, requesting that it place the current call on hold. The MSC shows that, as

arguments in the invocation method called on the Call Manipulation service, the

Service Manager passes the subscriber’s number (userNum), the terminating

party’s number (termNum), the reference to the terminal’s callback interface

(callbackRef), and the type of call manipulation that is required (putOnHold).

Messages 2 and 3 constitute fundamental interaction 1: Service invocation.

4,5. The Call Manipulation service instructs the MPCC GSM to perform the

necessary object manipulations to place the terminating party on hold, which the

GSM does. Signal 4 is a standardised method contained in the GSM API set.

Messages 4 and 5 constitute fundamental interaction 3: Network resource

control.

6,7. The Call Manipulation service prompts the terminal for the number of the

new party with whom a connection is to be established. The terminal prompts the

user for the number, and the new terminating number (user ‘B’) is returned to the

Call Manipulation service. Message 6 is a standardised method contained in the

Application layer API set.

Messages 6 and 7 constitute fundamental interaction 2: Terminal service

communication.

8,9. The Call Manipulation service requests that the MPCC GSM establish the

new call between the subscriber and user B. Signal 8 is a standardised method

contained in the GSM API set. The GSM performs the required action(s) on the

 136

Parlay gateway. The exact interactions between the MPCC GSM and the Parlay

gateway used to establish a call were shown in figure 5.14 of section 5.2.2.

Messages 8 and 9 constitute fundamental interaction 3: Network resource

control.

10. The new call between the subscriber and user ‘B’ is established.

11. The user now requests that the terminal instruct the Call Manipulation service

to toggle between the existing terminating party (user ‘B’) and the original

terminating party (user ‘A’). This method call is a standardised method contained

in the Application layer API set.

12. The Service Manager passes the request to the Call Manipulation service. The

MSC shows that, as an argument in the method called on the Call Manipulation

service, the Service Manager indicates that the Call Manipulation service needs

to toggle the parties (toggleParty).

Messages 11 and 12 constitute fundamental interaction 1: Service invocation.

13,14. The Call Manipulation service requests that the MPCC GSM toggle users

A and B. Signal 13 is a standardised method contained in the GSM API set. The

MPCC GSM performs the necessary object manipulations on the Parlay gateway

to toggle the users.

Messages 13 and 14 constitute fundamental interaction 3: Network resource

control.

15. The original call (between the subscriber and user A) is re-established.

 137

Figure 7-9: Service execution MSC for Call Manipulation service

Looking ahead

In chapter 8, the practical value and efficacy of certain aspects of the proposed service

provisioning environment is investigated. By determining the practical value of the core

principles, the contribution that the proposed service provisioning environment makes to

telecoms can be assessed.

 138

Chapter 8

DEMONSTRATION OF CONCEPT

This chapter sets out to demonstrate and critically evaluate the purported benefits of the

proposed service provisioning environment. Due to the broad scope of the research

project, only those concepts that are the most central and fundamental to the success of

the proposed service provisioning environment are examined; the verification of the more

elementary aspects is not explicitly performed.

Use of the proposed service provisioning environment gives rise to gains in two ways:

• Increased capabilities and complexity of services

• Increased efficiency for service invocation and service execution

Each of these types of gains is substantiated independently in the following sections.

8.1. Service capabilities and complexity

The primary determinant of the difference in the capabilities of services that can be

offered in the existing and proposed service provisioning environments is the signalling

channel between the terminals and the service domain. In this section, practical issues of

the different signalling channels used in the existing and proposed approaches are

analysed, and their impact on the capabilities of services that can be offered is evaluated.

The existing approach to service signalling, and its impact on service

capabilities

The problem with communication between terminals and the service domain, in either

direction, is that the signalling path used is not intended for service signalling; thus, the

various parts of the signalling path need to be manipulated to allow service signalling.

 139

Signalling from the terminal to the service domain (e.g. for the invocation of terminal

initiated services) requires that the signal, which originates in the terminal, reach the

service domain by travelling through the network and the Parlay gateway. Specifically,

any message originating in the terminal reaches the service domain by being transported

using call / session layer protocols in the network, and then using Parlay API messages

between the Parlay gateway and the service domain.

In the opposite direction, services signal to terminals using a similar path; using the

Parlay APIs first, and then the network to contact the terminal. Specifically, for a service

to communicate with a terminal, it effectively needs to cause the network to perform

certain actions which somehow impact on the target terminal, thereby allowing (some

degree of) communication.

Each part of the communication path linking the terminals to the service domain in the

existing approach introduces unique problems.

Network signalling

The signalling protocols that are used in the network layer are intended for call / session

signalling, and are designed for the establishment, management and tear-down of bearer

connections. Call / session layer protocols and are not oriented towards service signalling,

and when using call / session layer signalling to invoke and control applications, the call /

session signalling protocol, and the rules for interpreting messages, becomes complex.

To achieve the flow of service-related information through the network, any flexibility in

the call / session layer protocols needs to be manipulated. For example, the header and

message content in a SIP message can be manipulated to permit service signalling.

However, having to exploit the limited amount of flexibility in the call / session layer

protocols (e.g. SIP) to achieve service signalling is restrictive, and only basic information

transfer can be achieved.

 140

Network service domain signalling

Of the complete communication path between the terminals and the service domain,

network layer signalling governs the section of the path between the terminals and the

switches in the network. The remaining part of the communication path, between the

network switches and the service domain, is analysed here. This section of the

communication path, between the network and the service domain, poses the greatest

constraint to service signalling in the existing approach. The reasons for this follow.

The channel between the network and the service domain is governed by the Parlay

gateway, and the Parlay APIs. Parlay was developed to detect activity in the underlying

network, and, based on this activity, generate and transmit messages to the service

domain. It was not developed to ‘relay’ message flows from the underlying network to

the service domain. The Parlay APIs actually dictate the message set that it can pass, and

do not contain any flexibility that can be manipulated for ad hoc purposes.

The message set that can be passed by the Parlay gateway is determined by the

notification Parlay APIs. For example, the Parlay method reportNotification() reports to

the service when a specified user performs specified operations in the network, e.g.

attempts to make a call, receives a call, is engaged, or terminates a call. With the

communication channel between the network and the service domain quantised to such a

limited set of possibilities, the information that can be passed between the network and

the service domain is limited to the most basic of signals.

The complete communication path

Combining the analyses on network signalling, and network service domain

signalling, the following conclusions can be made.

Achieving terminal service signalling: For a terminal to make a request to a service,

trigger information must be present in the call / session layer signalling methods, and the

event relating to that trigger must be enabled in the Parlay gateway. That is, with the

knowledge of the events that a network switch is set to detect, the terminal creates the

appropriate network conditions / events that will trigger the switch to notify the Parlay

 141

gateway of the network event. The Parlay gateway then notifies the service, and the

communication path between the terminal and the service is completed.

Achieving service terminal signalling: with the knowledge of how certain network

conditions affect certain terminals, the service uses the Parlay APIs to manipulate the

network resources. By manipulating network resources involving the target terminal in

certain ways, the service is able to signal to the terminal. Note that once an event is

triggered, any dialogue must be controlled by the service.

Note that a service can still obtain information from a user (as opposed to a terminal) by

using the UI (User Interaction) Parlay SCF. For example, a service could request that a

user enter a username and a password. However, it is communication between the service

and the terminal (for control signals, etc.) which is more severely impeded.

The consequence for service capabilities and complexity

Obviously, in both of these cases, the ‘information’ that can be passed between the

terminals and the service domain is severely constrained to the most basic signalling. This

has marked consequences on the services that can be successfully deployed in this

environment.

• Since terminals invoke terminal initiated services by creating the necessary

network condition that triggers a network event in a switch (which results in a

Parlay notification being sent to the service), only very simple services, which

don’t require extensive user data, can be deployed.

• Since services communicate with terminals by manipulating bearer network

states (which involve the target terminal in certain ways), all services that require

message exchange with the terminal during service execution have severe

limitations.

The proposed approach to service signalling, and its impact on service

capabilities

In the proposed service provisioning environment, the communication channel between

the terminals and the service domain is maintained in the application layer. Application

layer signalling completely bypasses the network and the Parlay gateway, negating all of

 142

the problems outlined above. Specifically, in the proposed approach, communication does

not rely on having to manipulate bearer network resources, or rely on network event

detections and network notifications, to allow contact between terminals and the service

domain.

Using application layer signalling, terminals and services can make high-level, explicit

calls on each other, requesting and providing all information in a simple and effective

way. For example, a terminal can explicitly request that a conference call be established

by calling the following method on a hypothetical Conference Call service:

establishConferenceCall(mediaType, parties[], billingInfo)

In a single method call, the terminal is able to completely specify all of the required

details of the conference call.

Also, services which require the exchange of signals between the terminal and the service

during service execution can be easily provisioned. For example, a service can request

that a terminal provide it with a unique identifier by using the following method:

data getMoreData(fromTerminal, “Provide equipment identity number”)

The communication path in the existing approach completely precludes information

transfer between a service and a terminal of this sort. That is, no complex control or data

signals can flow between a terminal and a service without application layer signalling.

Application layer signalling also allows communication between a service and a user (as

opposed to a terminal) more easily. Whereas, in the existing approach, a service would

use the UI SCF to communicate with a user (and would suffer from all the limitations of

the service / switch / network / terminal signalling path), application layer signalling

allows a service to request information from a user in a simple and direct manner, such

as:

data getMoreData(fromUser, “Provide username and password”)

Services often use call state information, such as calling party, called party, reason for

forward, etc., to infer service context [11]. In the proposed approach, call state

information is maintained by the user’s Service Manager, and services can thus easily

obtain this information. However, if other call state information is required by a service,

 143

terminals are able to explicitly state any relevant call state information using application

layer signaling.

In contrast, in the existing approach, no call state information is maintained in the service

domain. Therefore, all call state information required by a service needs to be obtained

through its invocation; however, only limited call state information implying the service-

context can be transferred without the use of application layer signaling.

Using application layer signalling for communication between terminals and the service

domain allows services with advanced capabilities to be deployed, and used, effectively.

Application layer signalling also permits the introduction of certain services which are

simply not possible without the use of application layer signalling.

8.2. Efficiency of service invocation and execution

The proposed service provisioning environment gives rise to gains in the efficiency of

service invocation and execution. By gains in efficiency, it is meant that the same task

can be achieved in a simpler way, with fewer messages, fewer processing stages, and in

less time.

The increased efficiency of service invocation and execution offered by the proposed

service provisioning environment is made possible through two of its fundamental

principles:

• The use of application layer signalling between the terminals and the service

domain. This brings about efficiency gains in service invocation (of terminal

initiated services).

• The relocation of the primary view and control of the BCS to the application

layer. This brings about efficiency gains in service execution.

The compound effects that application layer signalling and the relocation of the primary

view and control of the BCS have on efficiency are examined by looking at the process

required to establish a simple bearer call. A call between two parties is examined first,

after which multiparty calls (consisting of 3 or more parties) are examined. In each case,

the proposed approach (3rd party call initiation) is compared with the existing approach

(1st party call initiation).

 144

In all of the scenarios presented in this section, the degree of efficiency achieved in the

scenario is quantified by the time it takes to carry out a specific task. Since the time taken

to carry out a task is determined by the number of messages that are required to be

exchanged in the execution of that task, the number of messages is used as a proxy for the

degree of inefficiency.

As will be shown, the execution of a task often requires the use of both application layer

messages and network layer messages. However, since it is assumed that the application

layer messages are exchanged between software objects using CORBA as a distribution

mechanism, the time taken for their distribution and processing would be negligibly

small. In contrast, the contribution to the time taken for the distribution and processing of

network layer signals is far greater. Therefore, the number of network layer messages

used in any scenario is used as the proxy for efficiency.

SIP (as it is applied to IMS) is assumed to be used for all network layer signalling. Refer

to [12] for more information on SIP.

8.2.1. Connectivity between 2 parties

Two variants of call initiation between 2 users are shown in this section, each

incorporating different levels of complexity. In simple call initiation between 2 parties, it

is assumed that both parties share the same S-CSCF (Serving – Call Session Control

Function). The assumption that both parties use the same S-CSCF is dropped in complex

call initiation between 2 parties. Refer to [13] for more information on the S-CSCF.

Simple call initiation between 2 parties

Simple call initiation between 2 parties involves the creation of a call between 2 parties

that share the same S-CSCF. Figure 8.1 presents the MSC showing simple call initiation

between 2 parties, using 1st party call initiation (as used in the existing approach). This

MSC is taken from the 3GPP standards. For a full description of all of the messages, refer

to [14].

 145

Calling
party (A) P-CSCF S-CSCF

(Party A & B)
P-CSCF Called

party (B)

1. INVITE

3. INVITE
2. 100 (Trying)

4. 100 (Trying)

10. 183 (Session
Progress)

5. Evaluation of Initial
Filter Criteria

6. INVITE

7. 100 (Trying)
8. INVITE

9. 100 (Trying)

11. Authorise QoS
resources

12. 183 (Session
Progress)13. 183 (Session

Progress)
14. Authorise QoS

resources
15. 183 (Session

Progress)
16. PRACK

18. PRACK
19. PRACK

20. PRACK

21. 200 (OK)
23. 200 (OK)

24. 200 (OK)
25. 200 (OK)

17. Resource
reservation

26. UPDATE
27. UPDATE

28. UPDATE
29. UPDATE

30. 200 (OK)
31. 200 (OK)

32. 200 (OK)
33. 200 (OK)

22. Resource
reservation

34. 180 (Ringing)
35. 180 (Ringing)

36. 180 (Ringing)
37. 180 (Ringing)

38. PRACK
39. PRACK

40. PRACK
41. PRACK

42. 200 (OK)
43. 200 (OK)

44. 200 (OK)
45. 200 (OK)

46. 200 (OK)
47. 200 (OK)

48. 200 (OK)

49. Approval of QoS
commit

50. 200 (OK)

51. ACK
52. ACK

53. ACK
54. ACK

Figure 8-1: Simple 1st party call initiation between 2 parties

The 2-party call initiated using 1st party call initiation, shown in figure 8.1, requires 48

SIP messages (and 6 other actions, shown in boxes).

Figure 8.2 presents the MSC showing simple call initiation between 2 parties, using 3rd

party call initiation (as used in the proposed approach). The mapping of Parlay API

methods to SIP messages is taken from [15], and the SIP messages exchanged between

 146

the CSCFs and parties A and B are taken from [14]. Please refer to these documents for a

full description of the various messages.

Service

Manager
MPCC GSM

S
C
F

SIP
UAo

SIP
UAo

UAo1 UAo2

S-CSCF
(Party A & B)

P-CSCF
(Party A or B)

Party A
(subscriber) Party B

3. “Get terminal
capabilities” 4. “Get terminal

capabilities” 5. “Get terminal capabilities”

6. “Terminal capabilities”
7. “Terminal capabilities”8. “Terminal

capabilities”

1. MakeCall(partyB)

9. createCall

10. createCallLeg

11. eventReportReq

12. routeReq
13. ISC: INVITE

15. INVITE

16. 100 (Trying)
17. INVITE

18. 100 (Trying)

19. 180 (Ringing)
20. 180 (Ringing)

21. ISC: 180 (Ringing)

22. ISC: PRACK
23. PRACK

24. PRACK

25. 200 (OK)
26. 200 (OK)

27. ISC: 200 (OK)

28. 200 (OK)
29. 200 (OK)

30. ISC: 200 (OK)

31. ISC: ACK (SDP held)
33. ACK (SDP held)

34. ACK (SDP held)

14. ISC: 100 (Trying)

32. eventReportRes

35. createCallLeg

36. eventReportReq

37. routeReq
38. ISC: INVITE

40. INVITE

41. 100 (Trying)
42. INVITE

43. 100 (Trying)

39. ISC: 100 (Trying)

44. 180 (Ringing)
45. 180 (Ringing)46. ISC: 180

(Ringing)
47. ISC: PRACK

48. PRACK
49. PRACK

50. 200 (OK)
51. 200 (OK)

52. ISC: 200 (OK)

53. 200 (OK)

54. 200 (OK)

55. ISC: 200 (OK)

56. ISC: ACK
58. ACK

59. ACK
60. ISC: ACK

61. ACK
62. ACK

57. eventReportRes

RTP

2.
getTerminalCapabilities

(partyB)

Figure 8-2: Simple 3rd party call initiation between 2 parties

A broad overview of the major parts of the MSC in figure 8.2 follows:

• Message 1: Party A requests that a call be made to Party B.

• Messages 2-8: The MPCC GSM determines the terminal capabilities of Party B.

• Message 9: The framework for the new call is created.

• Messages 10-34: The call leg relating to Party A is established.

 147

• Messages 35-59: The call leg relating to Party B is established.

• Messages 60-62: The call between Party A and Party B is successfully created.

Note that the MPCC GSM is able to determine the Quality of Service (QoS) for the call in

a simple and straightforward manner, using the terminal capabilities of both parties. (It is

assumed that the Service Manager, and thus the MPCC GSM, knows the terminal

capabilities of the subscriber (Party A) and thus does not have to query Party A’s

terminal.)

In figure 8.2, the 2-party call initiated using 3rd party call initiation is shown to require 51

SIP messages. (Figure 8.2 also shows that the 3rd party call requires 11 application layer

messages. However, unlike for the SIP messages, it is assumed that the majority of these

messages use CORBA as a distribution mechanism, and thus occur almost

instantaneously.)

Complex call initiation between 2 parties

Simple call initiation between 2 parties, shown in figures 8.1 and 8.2, assumed that both

parties used the same S-CSCF. Complex call initiation between 2 parties extends these

examples and provides a more realistic scenario by dropping this assumption.

Figure 8.3 presents the MSC showing call initiation between 2 parties, using 1st party call

initiation (as used in the existing approach). This MSC is taken from [14]. Notice that

each party uses a different S-CSCF, and that an I-CSCF (Interrogating – Call Session

Control Function) and an HSS (Home Subscriber Server) are used by Party A’s S-CSCF

to locate the S-CSCF of Party B.

 148

Calling
party (A) P-CSCF S-CSCF

(party B) P-CSCF Called
party (B)

1. INVITE

3. INVITE
2. 100 (Trying)

4. 100 (Trying)

16. 183 (Session
Progress)

5. Evaluation of Initial
Filter Criteria

12. INVITE

13. 100 (Trying)
14. INVITE

15. 100 (Trying)

17. Authorise QoS
resources

18. 183 (Session
Progress)

21. 183 (Session
Progress)

22. Authorise QoS
resources

23. 183 (Session
Progress)

24. PRACK
26. PRACK

28. PRACK
29. PRACK

30. 200 (OK)
31. 200 (OK)

33. 200 (OK)
34. 200 (OK)

25. Resource
reservation

35. UPDATE
36. UPDATE

38. UPDATE
39. UPDATE

40. 200 (OK)
41. 200 (OK)

43. 200 (OK)
44. 200 (OK) 45. 180 (Ringing)

46. 180 (Ringing)

49. 180 (Ringing)
50. 180 (Ringing)

51. PRACK
52. PRACK

54. PRACK
55. PRACK

56. 200 (OK)
57. 200 (OK)

59. 200 (OK)
60. 200 (OK) 61. 200 (OK)

62. 200 (OK)

65. 200 (OK)

66. Approval of QoS
commit

67. 200 (OK)

68. ACK
69. ACK

71. ACK
72. ACK

S-CSCF
(party A) I-CSCF

HSS

6. INVITE

7. 100 (Trying) 8. Cx: “User
location query”

9. INVITE

10. 100 (Trying)
11. Evaluation of Initial

Filter Criteria

19. 183 (Session Progress)20. 183 (Session
Progress)

27. PRACK

32. 200 (OK)

37. UPDATE

42. 200 (OK)

47. 180 (Ringing)
48. 180 (Ringing)

53. PRACK

58. 200 (OK)

63. 200 (OK)
64. 200 (OK)

70. ACK

Figure 8-3: Complex 1st party call initiation between 2 parties

Figure 8.3 shows that 65 SIP messages are required (and 6 other actions, shown in

boxes). Thus, when the assumption that both parties use the same S-CSCF is dropped, 17

extra SIP messages are required.

Figure 8.4 presents the MSC showing complex call initiation between 2 parties, using 3rd

party call initiation (as used in the proposed approach). As with figure 8.2, the mapping

of Parlay API methods to SIP messages is taken from [15], and the SIP messages

exchanged between the CSCFs and parties A and B are taken from [14].

 149

S
C
F

SIP
UAo

SIP
UAo

UAo1 UAo2

S-CSCF
(Party A or B)

P-CSCF
(Party A or B)

Party A
(subscriber) Party B

2.
getTerminalCapabilities

(partyB)

4. “Get terminal
capabilities” 5. “Get terminal

capabilities” 6. “Get terminal capabilities”

7. “Terminal capabilities”8. “Terminal
capabilities”9. “Terminal

capabilities”
10. createCall

11. createCallLeg

12. eventReportReq

13. routeReq
14. ISC: INVITE

16. INVITE

17. 100 (Trying)
18. INVITE

19. 100 (Trying)

20. 180 (Ringing)
21. 180 (Ringing)

22. ISC: 180 (Ringing)

23. ISC: PRACK
24. PRACK

25. PRACK

26. 200 (OK)
27. 200 (OK)

28. ISC: 200 (OK)

29. 200 (OK)
30. 200 (OK)

31. ISC: 200 (OK)

32. ISC: ACK (SDP held)
34. ACK (SDP held)

35. ACK (SDP held)

15. ISC: 100 (Trying)

33. eventReportRes

36. createCallLeg

37. eventReportReq

38. routeReq
39. ISC: INVITE

41. INVITE

42. 100 (Trying)
43. INVITE

44. 100 (Trying)

40. ISC: 100
(Trying)

45. 180 (Ringing)
46. 180 (Ringing)47. ISC: 180

(Ringing)
48. ISC: PRACK 49. PRACK

50. PRACK

51. 200 (OK)
52. 200 (OK)

53. ISC: 200 (OK)

54. 200 (OK)

55. 200 (OK)

56. ISC: 200 (OK)

57. ISC: ACK
59. ACK

60. ACK
61. ISC: ACK

62. ACK
63. ACK

58. eventReportRes

RTP

HSS
3. Sh: “User
location
query”

B B

A A

B B

A A

Service
Manager

MPCC GSM

1. MakeCall(partyB)

Figure 8-4: Complex 3rd party call initiation between 2 parties

The MSC in figure 8.4 follows the same pattern described for figure 8.2, with only a

single exception: Message number 3 in figure 8.4 shows the Parlay gateway querying the

HSS for the location of Party B. This message is necessary since the assumption that both

parties are served by the same S-CSCF has been dropped. Besides this single addition, the

MSCs are the same. Note again how the MPCC GSM determines the QoS for the call

using knowledge of the terminal capabilities of both parties.

 150

The 2-party call initiated using 3rd party call initiation requires only 51 SIP messages.

Therefore, in setting up a 2-party call, 3rd party call initiation reduces the amount of

processing by a factor of 65/51 = 1.275 (referred to hereafter as the 2-party gain).

Note that, when it was assumed that both parties use the same S-CSCF, 51 SIP messages

were also required. Dropping the assumption that both parties are served by the same S-

CSCF does not affect the number of SIP messages required when the call is initiated

using 3rd party call initiation.

2-party connections: A comparison between the existing and proposed

approaches

When it is assumed that both parties use the same S-CSCF, 1st and 3rd party call initiation

use approximately the same number of SIP messages (48 and 51, respectively). Thus, in

the unlikely case that these restrictive assumptions hold, the proposed approach, using 3rd

party call initiation, does not lead to any efficiency gains. (However, various other gains,

such as increased control and added flexibility, are still afforded to the environment

implementing 3rd party call initiation.)

When the assumption that both parties use the same S-CSCF is dropped, the proposed

approach (using 3rd party call initiation) does realise efficiency gains over 1st party call

initiation. In this case, 3rd party call initiation requires 14 fewer SIP messages than does

1st party call initiation.

More importantly, dropping the assumption that both parties use the same S-CSCF does

not increase the number of SIP messages required in the proposed approach at all.

Continuing this trend, as further complexities are introduced which complicate the call

initiation process, the efficiency gains provided by the proposed approach over the

existing approach continue to increase.

How the number of SIP messages required to initiate a call ultimately affects the post-dial

delay is a function of numerous practical considerations, including network congestion. In

practical experiments on call initiation using SIP over the internet, it was found that the

post-dial delay is increased by approximately 200ms for every hop, and that two

terminals would be an average of 6 hops apart from each other [16]. Therefore, the

 151

average 2-party call that is established using 1st party call initiation over the internet has a

post-dial delay of approximately 1.2 seconds.

However, since 3rd party call initiation ensures that the number of hops in any 2-party call

is limited to 2 (one for each party, where each hop is from the Parlay gateway to the S-

CSCF serving that party), the average call that is established using 3rd party call initiation

over the internet has a post-dial delay of approximately 400ms.

Although the estimate of 200ms per hop is a function of various network conditions, the

number of hops required to initiate a call is only a function of network topology. Since 3rd

party call initiation requires only 2 hops, and 1st party call initiation of a 2-party call

requires approximately 6 hops, 3rd party call initiation requires about a third of the time

required for 1st party call initiation to establish a 2-party call over the internet

(independent of the delay per hop).

Note that, in figure 8.4, two major blocks of messages can be identified:

• Messages 11-35: Setup of Party A

• Messages 36-60: Setup of Party B

Reference to these blocks is made in the next section.

This section analysed the relative performance of 1st and 3rd party call initiation under

different sets of assumptions, where the number of parties participating in the call was

maintained at 2. In sections 8.2.2 and 8.2.3, the relative performance of 1st and 3rd party

call initiation is analysed again; however, this time, the assumptions used for call

initiation are kept constant, and the number of parties participating in the call is varied.

(The assumptions that are used are the same as those used in the complex call initiation

scenario, shown in figures 8.3 and 8.4: the parties to the call are not presumed to be

served by the same S-CSCF.)

8.2.2. Multiparty connectivity without a bridge

Multiparty conferences can generally be structured in one of two topologies; namely in a

mesh topology, or a bridge topology. This section and the following section both look at

the case of multiparty conferences, and each section considers multiparty conferences

from a different perspective, based on the assumption of the conference topology. This

 152

section analyses multiparty conferences with the assumption that the conference uses a

full-mesh topology. The creation of a full-mesh multiparty call requires 2-party calls to be

setup between every possible combination of users [17], as shown in figure 8.5.

Party B

Party C

Party D

Party A

call

ca
llcall

ca
ll

call

ca
ll

Figure 8-5: Full-mesh conference topology

Multiparty connections in the existing approach (using 1st party call initiation)

Figure 8.3 illustrated the message sequence required to establish a connection between 2

parties in the existing approach (using 1st party call initiation). This case is extended to

include additional parties to the call. For full-mesh conferences, the existing approach

effectively requires that each and every party in the multiparty call establish a regular 2-

party connection with every other party.

Consider the initiation of a 3-party call (a multiparty call with 3 parties) in the existing

approach, as shown in figure 8.6. For a full-mesh 3-party call to be established, the

following 2-party calls need to be established:

• Party A Party B

• Party A Party C

• Party B Party C

 153

Figure 8-6: The creation of a 3-party call using 1st party call initiation

Since, in the existing approach, the creation of a 3-party call requires the three 2-party

calls to be established, a 3-party call requires 3 times the number of messages and 3 times

the amount of processing that would be required to set up a single, regular, 2-party call.

In figure 8.7, the 3-party call example is extended to show the process required to set up a

4-party conference (multiparty call) in the existing approach.

Figure 8-7: The creation of a 4-party call using 1st party call initiation

Again, when 1st party call initiation is used, 2-party calls need to be established between

every possible combination of users to effectively create a 4-party conference. Whereas

the setup of a 3-party call requires the use of three 2-party calls, a 4-party call requires six

2-party calls.

As more parties are added to the conference call, this exponential trend in the processing

requirements continues, and can be explained by the following equation:

Processing X party call = xC2 * Processing 2 party call (1)

 154

Equation (1) describes the amount of processing that is required to initiate a multiparty

call with X parties as a function of the number of 2-party calls that need to be established.

At the margin, the processing required to add a single additional party to the multiparty

call in the existing approach is described by the following equation:

Marginal processing to include user # X = (X-1) * Processing 2 party call (2)

Equation (2) describes the amount of additional processing that is required to add a single

party to a multiparty call, consisting of (X-1) parties, as a function of the additional

number of 2-party calls that need to be established.

From this marginal equation, the following equation can be deduced:

Processing X party call = Processing (X-1) party call + (X-1) * Processing 2 party call (3)

Equation (3) implies that, in the existing approach, the total amount of processing

required to establish a multiparty conference increases exponentially with a linear

increase in the number of parties to the call.

Translating the number of SIP messages that are required to initiate a (multiparty) call to

a post-dial delay (or setup time) is highly dependent on various practical considerations;

specifically, the setup time is determined by the number of hops between terminals

(which is a function of network topology), and by the average delay per hop (which is a

mainly a function of network congestion). Assuming the multiparty call is a full-mesh

call (where every party has a 2-party connection with every other party), and assuming all

parties in the multiparty call are added at the same time, the time taken to establish the

multiparty call is given by the following equation:

Setup time X party call = xC2 (2-party calls) * (Hops betw. terminals) * (time/hop) (4)

Multiparty connections in the proposed approach (using 3rd party call initiation)

Figure 8.4 illustrated the message sequence required in the proposed approach to establish

a connection between 2 parties, using 3rd party call initiation. Figure 8.8 extends the 2-

party case to show the inclusion of an additional party in the call.

 155

S
C
F

SIP
UAo

SIP
UAo

UAo2 UAo3

S-CSCF
(Party A,B or C)

P-CSCF
(Party A,B or C)

Party A
(subscriber) Party B

2.
getTerminalCapabilities

(partyB)

4. “Get terminal capabilities” 5. “Get terminal
capabilities” 6. “Get terminal capabilities”

7. “Terminal capabilities”8. “Terminal
capabilities”9. “Terminal capabilities”

18. createCall

19. createCallLeg

20. eventReportReq

21. routeReq
22. ISC: INVITE

24. INVITE

25. 100 (Trying)
26. INVITE

27. 100 (Trying)

28. 180 (Ringing)
29. 180 (Ringing)

30. ISC: 180 (Ringing)

31. ISC: PRACK
32. PRACK

33. PRACK

34. 200 (OK)
35. 200 (OK)

36. ISC: 200 (OK)

37. 200 (OK)
38. 200 (OK)

39. ISC: 200 (OK)

40. ISC: ACK (SDP held)
42. ACK (SDP held)

43. ACK (SDP held)

23. ISC: 100 (Trying)

41. eventReportRes

44. createCallLeg

45. eventReportReq

46. routeReq
47. ISC: INVITE

49. INVITE

50. 100 (Trying)
51. INVITE

52. 100 (Trying)

48. ISC: 100 (Trying)

53. 180 (Ringing)
54. 180 (Ringing)

55. ISC: 180 (Ringing)

56. ISC: PRACK
57. PRACK

58. PRACK

59. 200 (OK)
60. 200 (OK)

61. ISC: 200 (OK)

62. 200 (OK)

63. 200 (OK)

64. ISC: 200 (OK)

65. ISC: ACK (SDP held)
67. ACK (SDP held)

68. ACK (SDP held)

94. ISC: ACK
95. ACK

96. ACK

66. eventReportRes

RTP

HSS

3. Sh: “User
location query”

B B

A A

B B

A A

Service
Manager

MPCC GSM

1. MakeCall(parties[B,C])

Party C
SIP
UAo

UAo1

69. createCallLeg

70. eventReportReq

71. routeReq
72. ISC: INVITE

74. INVITE

75. 100 (Trying)
76. INVITE

77. 100 (Trying)

78. 180 (Ringing)
79. 180 (Ringing)80. ISC: 180

(Ringing)
81. ISC: PRACK

82. PRACK
83. PRACK

84. 200 (OK)
85. 200 (OK)

86. ISC: 200 (OK)

87. 200 (OK)
88. 200 (OK)

89. ISC: 200 (OK)

90. ISC: ACK
92. ACK

93. ACK

73. ISC: 100
(Trying)

91. eventReportRes

C C

10.
getTerminalCapabilities

(partyC)

12. “Get terminal
capabilities” 13. “Get terminal

capabilities”

16. “Terminal
capabilities”17. “Terminal

capabilities”

C C

11. Sh: “User
location query”

14. “Get terminal capabilities”

15. “Terminal capabilities”

97. ISC: ACK
98. ACK

99. ACK
B B

RTP
RTP

Figure 8-8: 3rd party call initiation between 3 parties

 156

In figure 8.7, three major blocks of messages can be identified:

• Messages 19-43: Setup of Party A

• Messages 44-68: Setup of Party B

• Messages 69-93: Setup of Party C

Recall that in figure 8.4, where a 2-party call was established using 3rd party call

initiation, 2 blocks of messages were required; one block per party. In figure 8.8, where a

3-party call is established using 3rd party call initiation, 3 blocks of messages are required;

again, one block per party.

Figure 8.9 shows the creation of a 3-party call using 3rd party call initiation, where the

message blocks used to setup each party to the call are shown abstractly.

Service
Manager

MPCC GSM
OSA SCS Party A

(subscriber) Party B Party C

Setup with party B

Setup with party A

Setup with party C

Figure 8-9: The creation of a 3-party call using 3rd party call initiation

In figure 8.10, the 3-party call is extended to show the process required to set up a 4-party

conference, using 3rd party call initiation. Note that the call setup depicted in both figures

8.9 and 8.10 effectively utilise a centralised bridge.

Service
Manager

MPCC GSM
OSA SCS Party A

(subscriber) Party B

Setup with party B

Setup with party A

Setup with party C

Party DParty C

Setup with party D

Figure 8-10: The creation of a 4-party call using 3rd party call initiation

 157

Notice that the trend continues: as additional parties are added to the multiparty call, the

processing required increases linearly. This is in contrast to the existing approach, where

a linear increase in the number of parties in a multiparty call resulted in an exponential

increase in the amount of processing required.

To quantify this relationship in a way which is conducive to comparison with the

relationships derived for the existing approach, the amount of processing that is required

to establish a multiparty call in the proposed approach is also described as a function of

an equivalent number of 2-party calls. Using 3rd party call initiation, the following

equation holds:

Processing X party call = X/2 * Processing 2 party call (5)

At the margin, the processing required to add a single additional party to the multiparty

call in the proposed approach is described by the following equation:

Marginal processing to include user # X = 0.5 * Processing 2 party call (6)

From this marginal equation, the following equation can be deduced:

Processing X party call = Processing (X-1) party call + 0.5 * Processing 2 party call (7)

Equation (7) implies that, in the proposed approach, the processing required to add an

additional user to a conference increases linearly as the conference grows in size.

In estimating the setup time for a multiparty call established using 3rd party call initiation,

recall that each party requires only a single hop for its setup. Therefore, the setup time for

a multiparty call consisting of X parties is given by:

Setup time X party call = X * (time/hop) (8)

Multiparty connections: A comparison between the existing and proposed

approaches

The existing and proposed approaches are compared under 3 categories: total processing

required to establish a multiparty call, marginal processing required for the addition of

one more party to the call, and total time required to establish a multiparty call. The first

two categories, viz. total and marginal processing, are based on theoretical relationships

 158

developed in this report. The third category, total setup time, is based on practical

measurements made in [16].

Total processing required to establish a multiparty call

At the beginning of this section, it was stated that the number of SIP messages required to

carry out a task would be used as a proxy for efficiency, where fewer SIP messages

translate into greater efficiency. In section 8.2.1, it was determined that, for a 2-party call,

using 1st party call initiation requires 65 SIP messages, and that 3rd party call initiation

requires 51 SIP messages. Using these values in equations 1 and 5, respectively, an

estimate can be made for the number of SIP messages required to establish a multiparty

call, with a varying number of parties.

Figure 8.10 compares the total number of SIP messages required to establish a multiparty

call of various sizes in the existing and proposed approaches. (It is assumed that the

initiating party uses a different S-CSCF to the other parties to the call.)

0

500

1000

1500

2000

2500

3000

2 3 4 5 6 7 8 9 10

Size of multiparty call

N
um

be
r

of
 S

IP
 m

es
sa

ge
s

Existing approach
Proposed approach

Figure 8-11: Number of SIP messages required in a multiparty call

Although similar efficiency is achieved using either 1st or 3rd party call initiation for a 2-

party call, the use of 3rd party call initiation (in the proposed approach) results in

 159

increasingly larger efficiency gains as the number of parties in the multiparty call

increases, as compared to using 1st party call initiation (in the existing approach).

Figure 8.11 provides absolute estimates of the processing required to establish multiparty

calls using 1st and 3rd party call initiation. The relative performance of the two approaches

is now determined. Comparing equations 1 and 5, the proposed approach, using 3rd party

call initiation, reduces the total amount of processing required to establish an X-party call

by a factor of

(2-party gain) * (2 * xC2)/X = (2.55 * xC2)/X (9)

For example, as compared with the existing approach, the following processing

reductions are realised by using the proposed approach:

• For a 3-party call: 2.6x less processing

• For a 4-party call: 3.8x less processing

• For a 5-party call: 5.1x less processing

In figure 8.12, the bottom line provides a graphical depiction of this relationship, where

the x-axis shows the number of parties in the multiparty call, and the y-axis shows the

factor reduction in total processing.

0

5

10

15

20

25

30

3 4 5 6 7 8 9 10
Number of parties

R
ed

uc
tio

n
in

 p
ro

ce
ss

in
g

Reduction in total time
Reduction in marginal processing
Reduction in total processing

Figure 8-12: Processing gains for 3rd party call initiation

 160

Marginal processing required for the addition of one more party to a multiparty call

Comparing equations 2 and 6, the proposed approach, using 3rd party call initiation,

reduces the marginal processing required to include an additional party to an existing (X-

1)-party call by a factor of

(2-party gain) * 2 * (X-1) = 2.55 * (X-1) (10)

For example, as compared with the existing approach, the following processing

reductions are realised by using the proposed approach:

• For the addition of a 3rd party: 5.1x less processing

• For the addition of a 4th party: 7.7x less processing

• For the addition of a 5th party: 10.2x less processing

The middle line of figure 8.12 provides a graphical depiction of this relationship, where

the x-axis shows the number of parties in the multiparty call, and the y-axis shows the

percentage reduction in the marginal processing required to add the last party to the

conference.

Total time required to establish a multiparty call

Comparing equations 4 and 8, the proposed approach, using 3rd party call initiation,

reduces the total time required to establish a multiparty call by a factor of

(Hops between terminals) * xC2 / X (11)

Using the assumption given in [16] that the average number of hops between terminals in

the internet is 6, 3rd party call initiation reduces the total time required to establish a

multiparty call by a factor of

6 * xC2 / X (12)

For example, the following setup time reductions are realised by using the proposed

approach (assuming the number of hops between terminals is 6):

• For a 2-party call: 3x less time

• For a 3-party call: 6x less time

• For a 4-party call: 9x less time

 161

The top line of figure 8.12 provides a graphical depiction of this relationship, where the

x-axis shows the number of parties in the multiparty call, and the y-axis shows the

percentage reduction in the total time required in the setup of the multiparty call.

The analysis above is based on relation number 12, and removed one of the variables

from relation number 11 by assuming that the number of hops between terminals

remained constant (and equal to 6). From relation 12, the resulting gains from using 3rd

party call initiation was calculated as a function of the number of parties in the call.

Relation number 11 is now analysed from a different perspective: it is assumed that the

number of parties in the call remains constant, and the resulting gains by using 3rd party

call initiation is calculated as a function of the number of hops between terminals.

Specifically, 3rd party call initiation of a 3-party call reduces the total time required to

establish a multiparty call by a factor of

(Hops between terminals) * 3C2 / 3 = (Hops between terminals) (13)

For example, the following setup time reductions are realised by using the proposed

approach (assuming the number of parties in the call is 3):

• For 3 hops between terminals: 3x less time

• For 4 hops between terminals: 4x less time

• For 5 hops between terminals: 5x less time

Therefore, as the number of hops between terminals increases, the reduction in the setup

time of a 3-party call realised by using 3rd party signalling increases (proportionally).

Note that, although the reductions in the total time achieved by using 3rd party signalling

are dependent on the prevailing network conditions, the relationship between the relative

performance of 1st and 3rd party call initiation remains the same. Therefore, the setup time

reductions, implied by relations 11, 12 and 13, will hold, irrespective of prevailing

network conditions.

To make absolute time estimates of the post-dial delay (or setup time), assumptions need

to be made of the number of hops between terminals, and the amount of delay incurred

per hop. Both of these estimates are dependent on the network that is used for the call.

Figure 8.13 depicts the setup time for the initiation of a 3-party call for both 1st and 3rd

 162

party call initiation, using the estimates made in [16] for call initiation over the internet

(hops between terminals = 6, delay per hop = 200ms).

0

1

2

3

4

5

6

7

3 4 5 6 7 8 9 10

Hops between terminals

S
et

up
 ti

m
e

(s
ec

on
ds

)

Existing approach
Proposed approach

Figure 8-13: Setup time for a 3-party call over the internet

Note that the setup time for 3rd party call initiation is independent of the number of hops

between terminals.

Assuming there are approximately 6 hops between terminals over the internet, it would

take approximately 3.6 seconds to set up a typical 3-party call using 1st party call

initiation (vs. 0.6 seconds using 3rd party call initiation). To set up a 4-party call using 1st

party call initiation, it would take approximately 7.2 seconds (again, vs. 0.6 seconds using

3rd party call initiation). It appears that full-mesh conferences over the internet with more

than 3 parties become an increasingly impracticable approach when 1st party call

initiation is used.

8.2.3. Multiparty connectivity with a bridge

Multiparty conferences are now analysed from the viewpoint that the conference uses a

bridge topology, as shown in figure 8.14. In a conference set up as with a bridge

topology, each party maintains only a single connection: to the bridge.

 163

Party B

Party C

Party D

Party A Bridgecall

ca
ll

ca
ll

call

Figure 8-14: Bridge conference topology

A comparison between figure 8.5 and figure 8.14 shows that, while a full-mesh

conference between X parties requires X(X-1)/2 connections, an equal sized conference

using the bridge topology requires only X connections.

Multiparty connections in the existing approach (using 1st party call initiation)

To illustrate the existing approach used to establish a multiparty conference with a bridge

topology, consider the example shown in figure 8.15.

jo
in

jo
in

ref
er

refer

Figure 8-15: Existing approach to 4-party conference initiation using a bridge

 164

In this example, Party A wishes to establish a 4-party conference. The steps needed to

establish the conference are as follows:

 1,2. Party A creates and joins the conference

3,4. Party A sends a refer message to Party B, inviting Party B to join the

specified conference which has been created. Party B joins the conference.

5,6. Party A sends a refer message to Party C, inviting Party C to join the

specified conference which has been created. Party C joins the conference.

7,8. Party A sends a refer message to Party D, inviting Party D to join the

specified conference which has been created. Party D joins the conference.

The process can be easily generalised to allow for an X-party conference call, where each

additional party needs be referred to the conference by Party A, and then subsequently

join the conference.

To facilitate a comparison between the relative efficiencies of the existing and proposed

approaches to conference setup, a measure needs to be made of the total amount of

processing that is required to establish the conference in any given approach. Equation

(14) quantifies the total amount of processing required to establish an X-party call in the

existing approach (using 1st party call initiation):

Processing X party call =

(Conf. creation) + (Referral process)*(X-1) + (Joining process)*X (14)

Equation (14) describes the amount of processing that is required to initiate a multiparty

call with X parties as a function of the number of referrals between parties and the

number of joining processes that are required.

As in the previous section, the number of SIP messages required to perform the

conference setup is used as a proxy for the degree of inefficiency of the approach. The

dependent variable of equation (14), Processing, provides a measure of the number of SIP

messages required for the conference setup. The number of SIP messages required for the

joining process and for the referral process are now determined.

Figure 8.16 presents the MSC showing the process that is required for a party to join a

bridge-topology conference call (the joining process).

 165

Party X P-CSCF MRFC / AS MRFP

1. INVITE

3. INVITE
2. 100 (Trying)

4. 100 (Trying)

5. Evaluation of Initial
Filter Criteria

14. 183 (Session
Progress)

15. Authorise QoS
resources

16. 183 (Session
Progress)

17. PRACK
19. PRACK

21. PRACK

22. 200 (OK)

25. 200 (OK)
26. 200 (OK)

18. Resource
reservation

27. UPDATE
28. UPDATE

30. UPDATE

31. 200 (OK)

34. 200 (OK)
35. 200 (OK)

38. 200 (OK)

39. Approval of QoS
commit

40. 200 (OK)

41. ACK
42. ACK

44. ACK

S-CSCF
(Party X) I-CSCF

HSS

6. INVITE

7. 100 (Trying) 8. Cx: “User
location query”

9. INVITE

10. 100 (Trying)

11. H.248 interaction to create
conference connection resources

for Party A

12. 183 (Session Progress)13. 183 (Session
Progress)

20. PRACK

24. 200 (OK)

29. UPDATE

33. 200 (OK)

36. 200 (OK)
37. 200 (OK)

43. ACK

23. H.248 interaction to modify
conference connection resources

for Party A

32. H.248 interaction to connect
through conference connection

resources for Party A

Figure 8-16: MSC showing single party joining a bridge conference

Figure 8.16 is taken directly from [18]. Please refer to this document for a full description

of any of the messages. Figure 8.16 shows that 36 SIP messages (and a number of other

operations) are required to be exchanged to allow a party to join a conference that uses a

bridge topology.

Figure 8.17 presents the MSC showing the process that is required for a party to refer

another party to an existing conference (the referral process) that uses a bridge topology.

As with figure 8.16, figure 8.17 is taken directly from [18], which provides a full

description of each of the messages.

 166

Figure 8-17: MSC showing the referral of a party to a bridge conference

Figure 8.17 shows that 32 SIP messages (and a number of other operations) are required

to be exchanged to allow a party to refer another party to an existing conference (that uses

a bridge topology).

Reference is made in a later subsection to the number of SIP messages required for the

joining process and the referral process, when the existing approach to conference

creation (discussed in this section) is compared to the proposed approach, using the

relevant equations.

Multiparty connections in the proposed approach (using 3rd party call initiation)

The proposed approach to establishing multiparty conferences using a bridge topology is

illustrated by the example shown in figure 8.18.

 167

jo
in

jo
in

Ser
vic

e d
om

ain

Parl
ay

 G
W

AS

cr
ea

te
C

on
f()

create

refer

Netw
or

k d
om

ain

Figure 8-18: Proposed approach to 4-party conference initiation using a bridge

Similar to the example shown in figure 8.15, Party A wishes to establish a 4-party

conference. The steps needed to establish the conference, in the proposed approach, are as

follows:

1. Using application layer signalling, Party A signals to a conferencing service

(provisioned as an application) in the service domain.

2. Using the Parlay APIs and the Parlay gateway, the conference service signals

to the conference bridge in the network to create the conference. The conference

service obtains the conference URI for the newly created conference, and returns

the URI to Party A.

3. Using the conference URI, Party A joins the conference (using SIP signalling).

4. Using application layer signalling, the conference service invites Party B to

join the conference, and provides Party B with the conference URI.

5. Using the conference URI, Party B joins the conference (using SIP signalling).

6,7; 8,9. Similar to messages 5 and 5 (for Party B), Parties C and D receive an

invite message from the conference service (at the application layer), and then

proceed to join the conference (at the network layer).

This process can be easily generalised to allow for an X-party conference call. To

compare the existing approach used to establish a conference call (using a bridge

topology) to the proposed approach, the number of SIP messages that are required to be

exchanged to establish the conference needs to be quantified. Note that, in the proposed

 168

approach (shown in figure 8.18), all referrals are made in the application layer, and are

thus assumed to require negligible time for their processing. The only tasks which require

the exchange of SIP messages are the initial conference creation and the joining

procedures. Equation (15) quantifies the total amount of processing required to establish

an X-party call in the proposed approach (using 3rd party call initiation):

Processing X party call = (Conf. creation) + (Joining process)*X (15)

Multiparty connections: A comparison between the existing and proposed

approaches

The primary difference between the existing and proposed approaches to conference

creation (using a bridge topology) is that the proposed approach (using 3rd party call

initiation) performs the referral processes in the application layer, as opposed to the

network layer. Since messages in the application layer are exchanged far more efficiently

and quickly than SIP messages in the network layer, the proposed approach to

establishing multiparty conferences (based on a bridge topology), using 3rd party call

initiation, offers greater efficiency than the existing approach.

When the actual number of SIP messages that are required to be exchanged for the

joining process and the referral process (as determined in figures 8.16 and 8.17) is

substituted into equations 14 and 15, the difference in the efficiency of the existing and

proposed approaches can be quantified. (In the comparison presented next, it is assumed

that the number of SIP messages required for conference creation in each approach is

comparable, and insignificant in the context of the conference setup as a whole.)

Comparing equations 14 and 15, with the appropriate number of SIP messages substituted

for the joining process and the referral process, the proposed approach, using 3rd party

call initiation, reduces the total amount of SIP messages required to establish an X-party

call by a factor of

(68*X – 32) / (36*X) (16)

For example, as compared with the existing approach, the following processing

reductions are realised by using the proposed approach:

• For a 3-party call: 1.6x less processing

• For a 4-party call: 1.67x less processing

 169

• For a 5-party call: 1.71x less processing

• For conference call of a larger size, the efficiency gain provided by the proposed

approach tends to a factor 1.81.

The proposed approach to the setup of a conference (that uses a bridge topology) using 3rd

party call initiation therefore offers a significant efficiency gain over the existing

approach, but, in contrast to full-mesh conferences, is not highly dependent on the size of

the conference call.

Looking ahead

Chapter 9, next, is the final chapter of this project report, and concludes the report by

providing a brief summary of the work performed, and highlights the major results and

conclusions.

 170

Chapter 9

IN CLOSING

9.1. The proposed service provisioning environment: A

contribution to the Next Generation Network

The objective of any communications network is to offer its users valuable services. The

value of any service is measured by the contribution it makes to the users’ lives, and the

contribution a service can make is dependent on its capabilities. Additionally, the

existence of value-added services is a function of their ease of implementation, and the

number of service developers possessing the skills to develop these services.

The operational environment of services determines both the capabilities of services and

the ease of service implementation.

The changes proposed in this research report go beyond defining a new platform for the

implementation and execution of services: the entire operational environment of services

is modified. The service-centric approach of the proposed service provisioning

environment advocates changes to both the architectural and logical structure of existing

telecoms networks in many areas, orienting their focal-point towards service

provisioning.

If the ultimate objective of telecoms networks is to offer its users a set of value-added

services, then the proposed service provisioning environment, advocated in this research

report, constitutes a major contribution to any NGN (Next Generation Network). An

NGN that employs the proposed service provisioning environment will be able to deploy

more complex services, faster, and in an easier way, thus maximising the value it creates

for users.

 171

9.2. Summary of work

The primary objective of this research project was to create an operational environment

for services which ultimately creates the most value for the end user. This was attempted

through two efforts:

• Design the services’ operational environment so that services can be developed

and deployed in the simplest way. This ensures that the skills that are required to

develop services for communications networks are possessed by the maximum

number of service developers.

• Design the services’ operational environment to maximally exploit the

capabilities of the underlying network. This maximises the range of features and

complexity of services that can be supported.

These two objectives were attempted to be met by:

• Redesigning the service domain architecture

o Instituting structure in the service domain through the use of a layered

approach

o Implementing centralised service control and management

o Implementing a generic invocation interface for services

o Advocating software reuse, using RBBs and GSMs

• Modifying the operational environment of the service domain, in the context of

the rest of the network

o Relocation of the primary view and control of the BCS to the application

layer

o Introducing application layer signalling

Each of the areas of work conducted in this research project, which are outlined above,

are summarised in the paragraphs that follow.

Redesigning the service domain architecture

This research report presented a well-defined service domain architecture, comprising 3

layers. The Reuse and Abstraction layer contains RBBs and GSMs, which offer services

(in the Specific Services layer) simple, generic and commonly used functionality.

 172

Whereas RBBs offer services reusable blocks of logic that may or may not contain typical

telecoms functionality, GSMs provide services with functionality to specifically control

network resources in a simple and abstracted way, alleviating services from implementing

onerous Parlay message sequences. Together, the GSMs and the RBBs constitute the

software reuse framework advocated by the proposed service domain architecture.

The Service Manager, located in the Service Infrastructure layer, is responsible for the

invocation of all services and maintains a single point of control for services, enabling

holistic service management. By ensuring that services have only a single source of

possible invocation, the Service Manager provides services with a generic invocation

interface, shielding the services from the technical attributes of the invoking domains and

methods.

Modifying the service provisioning environment

Application layer signalling provides a direct communication path between the terminals

and the service domain, and, by negating the need for the signals to be processed in the

network, offers the use of a more powerful, and service-oriented, signalling protocol. The

application layer signalling channel, between the terminals and the service domain, is

defined by the Application layer API set. The Application layer API set offers services a

standardised, network-independent interface, freeing them from the specific technology

of the underlying network.

Finally, it was proposed that the primary view and control of the BCS be relocated from

the network to the service domain, in the application layer. Having the view and control

of the BCS located in the service domain allows a centralised point for connectivity

management, facilitating the manipulation and control of bearer connectivity.

9.3. Conclusions

The proposed service provisioning environment allows telecoms services that incorporate

a wide range of advanced capabilities and complex features to be developed in a fast and

simple way by application developers without detailed telecoms knowledge.

 173

The application layer communication channel provides a high-level, powerful and

flexible signalling path between terminals and services. The network-independent nature

of application layer signalling renders terminals increasingly network-independent, and

promotes the support of multiple types of terminals on any underlying network.

The use of 3rd party call initiation in the proposed service provisioning environment

compounds the benefits accorded by application layer signalling and the relocation of the

control of the BCS: 3rd party call initiation provides additional control and flexibility to

the management of bearer connections, and realises significant performance

enhancements in the setup of multiparty calls, as compared with 1st party call initiation

used in existing networks.

9.4. Recommendations for future work

The scope of this project was fairly large, as evidenced by the summary of work provided

in section 9.2. The stated objectives of the project centred on the development of a

structured service domain, and the modification of the service domain’s operational

environment to the end of creating an environment that is more conducive for the

implementation and deployment of services.

In attempting these goals, many new features were proposed. Often, descriptions of

certain features were only provided in broad, qualitative terms, sufficient for the

understanding of their function. It is considered beyond the scope of this project to fully

and definitively define and specify each of these features in detail.

Many of the ideas advanced in this project therefore provide fertile areas for further

research and work. In the following paragraphs, certain specific aspects warranting

further study have been identified, and are the present author’s recommendations for

future work.

Work concerning the service domain architecture:

• The structure of the proposed service domain architecture indicates two areas that

can be exploited for software reuse: RBBs and GSMs. This project has fully

defined their general objectives of and their contexts of operation, and provided

some examples. However, a more complete set of RBBs and GSMs was not

 174

provided. The development of a more comprehensive set of RBBs and GSMs

would contribute to the practical applicability of the theoretical framework

developed in this project.

Work concerning the operational environment of the service domain:

• A major development proposed by the project is the use of application layer

signalling. The technical details and actual implementation of application layer

signalling were not dealt with, and were thought to be handled by a theoretical

“signalling plane”. Thus, a technical specification of application layer signalling

is needed for the practical implementation of the proposed service provisioning

environment.

Work concerning the terminal service domain interface

• The Application layer API set, and the application layer interface between the

service domain and the terminals in general, was designed first and foremost for

the expedience of service invocation and execution. The interface was not

specifically designed for service management. As the Abbreviated Dialling

service example in chapter 8 demonstrated, the interface is able to handle service

management. However, for advanced service management requirements, the

definition of the interface may require modification.

• At the outset of the project, certain assumptions were made regarding the

capabilities of the generic “intelligent terminal”. These assumptions led to the

Application layer API set, as it has been presented. Different assumptions

concerning the intelligent terminal, and concerning the distribution of the service

logic between the terminal and the service domain, allow other approaches for

achieving application layer communications to be implemented. For example,

application layer signalling could be implemented using web-forms containing

multiple data fields, Java applets etc. The feasibility and efficacy of such

approaches could be the focus of further study.

 175

REFERENCES

[1] Atis Telecom Glossary. http://www.atis.org/tg2k/_communications_network.html,

Last accessed 12 February 2006.

[2] Berinato B., History of telecommunications and data networks.

http://williamstallings.com/Extras/Telecom.html, Last accessed 12 February 2006.

[3] Aepona. http://www.aepona.com/learn_about/questions2.html, Last accessed 12

February 2006.

[4] ETSI ES 203 915-1, Open Service Access (OSA); Application Programming Interface

(API); Part 1: Overview (Parlay 5), April 2005.

[5] ETSI ES 203 915-1, Open Service Access (OSA); Application Programming Interface

(API); Part 4: Call Control; Sub-part 3: Multi-Party Call Control SCF (Parlay 5),

April 2005.

[6] ETSI ES 203 915-1, Open Service Access (OSA); Application Programming Interface

(API); Part 9: Generic Messaging SCF (Parlay 5), April 2005.

[7] Hanrahan H., Convergence: Networks, Services and Applications. School of Electrical

and Information Engineering, University of the Witwatersrand, 2005.

[8] Oni O., Reusable Block Provisioning for Application Service Providers with

Parlay/OSA, MSc(Eng) Project Report, University of the Witwatersrand,

Johannesburg, 2006.

[9] ETSI ES 203 915-1, Open Service Access (OSA); Application Programming Interface

(API); Part 3: Framework (Parlay 5), April 2005.

[10] ITU-T Q.1221, Introduction to Intelligent Network Capability Set, September 1997.

[11] IEFT RFC 3087, Control of Service Context using Request-URI, April 2001.

[12] IETF RFC 3261, SIP: Session Initiation Protocol, June 2002.

[13] 3GPP TS 23.228, IP Multimedia Subsystem (IMS); Stage 2 V. 7.3.0, March 2006.

[14] 3GPP TS 24.228, Signalling flows for the IP multimedia call control based on

Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3

V.5.14.0, December 2005.

[15] 3GPP TS 29.998, Open Service Access (OSA); Application Programming Interface

(API) Mapping for Open Service Access; Part 4: Call Control Service Mapping;

Subpart 4: Multiparty Call Control ISC V.6.0.4, December 2004.

 176

[16] Singh K., Schulzrinne H., Peer-to-Peer Internet Telephony using SIP. Department of

Computer Science, Columbia University.

[17] Miladinovic I., Stadler J., Multiparty Conference Signalling using the Session

Initiation Protocol (SIP). Institute of Communication Networks, Vienna University

of Technology.

[18] 3GPP TR 29.847, Conferencing based on SIP, SDP and other protocols; Functional

models, information flows and protocol details, June 2004.

