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EXECUTIVE SUMMARY 

 

The Grassland biome of South Africa has been identified as critically endangered and the 

biome in South Africa most requiring conservation attention through the implementation 

of efficient, sustainable systematic conservation plans. The ability to predict where land-

cover transformation as well as information on the occurrence and severity of current 

land cover transformation activities, as threats to biodiversity, is required as part of the 

systematic conservation planning process. Neke & du Plessis (2004) predicted land cover 

transformation and the severity of the impact on biodiversity in the Grassland biome. 

This model was based on potential land use suitability models and land cover information 

for the 1994/5 season extracted from the National Land Cover database (NLC1994). 

These predictions were tested by assessing actual land cover change in the Grassland 

biome using observed differences in grassland land cover between the NLC1994 and 

NLC2000 databases.  

 

Methodology 

Because of differences in format and land-cover classification between the original 

datasets, both NLC1994 and NLC2000 had to be modified before any analyses could be 

carried out. These differences exist because different techniques were used to collate the 

respective datasets, thus introducing the potential for significant mapping error in the 

original datasets and more significantly erroneous results with respect to landcover 

change detection. The implications of this were presented in the discussion.  Both 

datasets were spatially resampled and class-standardised and it was felt that this would 

significantly reduce any the impact of any such existing errords in the original datasets. 

Thereafter landcover information for the Grassland biome was be extracted and the 

comparative landcover analyses executed. The analyses carried out included: 

• Landcover change per landcover class within the Grassland biome with emphasis 

on the Grassland landclass losses and gains 

• An assessment and comparison of the relative fragmentation of the remaining 

grassland patches in both datasets 

• An assessment of current grassland habitat degradation 



• The comparison of the predicted land cover change as given by Neke & du Plessis 

(2004) against the observed grassland changes  

• The creation of a new Grassland Transformation threat map reflecting current 

land cover change threats, and including information pertaining to the threats to 

Grassland biodiversity posed by invasive alien plants, road effects, urban areas 

and soil erosion hazards. 

 

Results and Discussion 

25% of the remaining grassland patches underwent transformation to other land classes. 

Grassland clearing for cultivation, bush encroachment and bushland vegetation 

regeneration were the main causal factors behind the observed grassland losses. 

However, grassland vegetation regeneration on formerly cultivated land, bush clearing 

and reclassification of degraded lands as grasslands in the NLC2000 dataset contributed 

to a net 2% gain in area of the grassland land class. The remaining grassland patches are 

more fragmented than they were in NLC1994, the average patch size (NLC2000) is three 

times smaller and the total number of grassland patches has increased (also by a factor of 

3) and the remaining grassland patches are more isolated. The largest, least fragmented 

grassland patches occur along and to the west of the Great Escarpment as it traverses the 

Grassland biome. Most of the predictions of grassland transformation were realised, 

however the model used by Neke & du Plessis (2004) consistently underestimated and in 

some cases failed to predict the occurrence of grassland transformation in the central 

interior of the Grassland biome. Current, measurable human activities that act as 

grassland transformation agents were incorporated to create a threat map showing the 

extent and severity of land-cover transformation activities within the biome; grassland 

bird species richness information was then incorporated into this map to create 

biodiversity transformation threat map. This map was used to show the location and 

severity of the impacts of human transformation activities on grassland biodiversity. Both 

transformation threat map reflect the current situation across the biome today and were 

compared against the Potential transformation threat map produced by Neke & du Plessis 

(2004). The human transformation threat map confirmed the inability of the Neke & du 

Plessis model to make correct predictions of land cover change away from the eastern, 
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high altitude boundary of the biome. Given that the biome is defined by its climatic 

characteristics, the incorporation of global climate change effects would further refine the 

results gained, and perhaps provide more accurate predictions.  

 

As aforementioned, there are however factors existing within the original datasets used in 

this analysis that may have affected the accuracy of the landcover change analyses. These 

factors are centred on the potential effects of mapping errors within either of the NLC 

datasets. The delineation of landclass boundaries in the NLC1994 dataset is one such 

factor- placing a line over what is in reality a gradient of changing vegetation, is a 

subjective exercise and depends entirely on the technician involved this in itself may 

have introduced a fair amount of error in the mapping process. When coupled with the 

automated classification techniques used, for the most part, for the NLC2000 dataset, it 

becomes apparent that it is highly unlikely that even in the absence of actual landcover 

change the same boundaries would be drawn between two landclasses in the same area. 

This would provide false positive results for landcover change where in fact this is as a 

result of mapping errors. This is acknowledged and included in the interpretation of the 

results and it is felt that in spite of this, all possible steps were taken to minimize the 

impact of these effects on the reslults. 

 

The analysis allowed the identification of the current land cover transformations leading 

to grassland loss. However, land-cover change is only the physical expression of the 

complex interactions between socio-economic factors. To create effective and sustainable 

conservation plan for the Grassland biome, with an aim to reducing habitat loss requires 

an action plan to address these factors as the ultimate drivers of land cover change. 
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INTRODUCTION 
 

1.1 Why the Grassland biome? 

The grasslands of the world are facing a major conservation crisis (Hoekstra  et al., 2005) 

with the grassland terrestrial ecosystem type being shown to display the largest degree of 

habitat loss worldwide (Scholes & Biggs, 2005). This land-cover transformation results 

in a landscape that is fragmented, in which the ecosystem composition, structure and 

function are compromised due to the interference with ecological processes (With 1996). 

While this situation is by no means unique to the grasslands of the world, it has been 

predicted by Sala et al., (2000) that together with Mediterranean vegetation, the 

grasslands will experience the most biodiversity change in the next 100 years since these 

ecosystems are sensitive to all global change drivers. The major driver of this expected 

biodiversity change will be human-driven land use/ cover change (Sala et al., 2000 also 

Soule 1991, Dale et al., 1994; Scholes et al., 2005). 

 

In the past, conservation areas were created in an ad hoc manner (Pressey 1994, Margules 

& Pressey 2000). It is likely that most of these do not effectively represent biodiversity 

and conservation needs as they stand today (Pressey 1994, Lombard 1995). The IUCN 

recommends that a minimum of 10% of any landscape should be conserved in order to 

save 50% of the biodiversity it contains (Shafer 1990). Yet less than 7% of the 

Grasslands have been conserved worldwide (White et al., 2000). In South Africa, the area 

covered by the Grassland biome is of great importance in terms of aquatic and terrestrial 

biodiversity (Reyers et al., 2005) but only 2.8% of the total surface area of the biome has 

been placed under formal protection (DEAT, 1997), a total that falls far below the 

recommended figure.   

 

The Grassland Biome of South Africa is critically endangered (Olsen & Dinerstein 1998; 

Reyers et al., 2001) and it is the biome in South Africa most urgently requiring 

conservation attention (Rebelo, 1997). Human land use activities have had a high impact 

upon the available natural resource base resulting in widespread land-cover 

transformation (Neke & du Plessis, 2004, Reyers et al., 2005). This biome is resource 
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rich and provides a wide range of ecosystem services that facilitated human settlement in 

the area in the past (O’Conner & Bredenkamp 1997; Reyers et al.,., 2005). These services 

include water and nutrient cycling, soil stabilisation, carbon sequestration, energy supply, 

provision of food through current agricultural activities and forage for livestock (Reyers 

et al., 2005). At least 29.2% of its entire area has been transformed by human land use 

(Fairbanks et al., 2000; Neke & du Plessis 2004) and it is the second most threatened 

biome in South Africa, after the fynbos biome. In light of the valuable services provided 

by this biome and the fact that it houses a large portion of the South African populace and 

economic activities it is evident that there is high pressure on the remaining, available 

ecosystem resources. Efficient conservation plans are required to ensure the sustainability 

of these remaining ecological communities into the future. Habitat loss through land 

cover and land-use changes is expected to be the leading threat to biodiversity in the 

Grassland biome (Sala et al., 2000) and more information about this phenomenon is 

required. Understanding the processes behind and the ecological consequences of land-

cover change should be a conservation planning priority for the biome (Rouget et al., 

2003; Williams, 2007).   

 

1.2. Human land use: presenting the threats to biodiversity 

It is well established that those land-cover types with variety of potential land-uses are 

especially vulnerable to future transformations because of the opportunity they present to 

a variety of development options (Fairbanks & Benn 2000). These development activities 

lead to habitat destruction and have been linked to the extremely high current species 

extinction rates that are being experienced worldwide, far exceeding historical global 

extinction rates by a factor as much as 10 000 (Wilson 1988, UNEP 1995)- a dire 

situation for the Grassland Biome of South Africa to face. Clarifying the extent to which 

any potential conflicts between development potential and conservation importance may 

occur would allow for more efficient and effective conservation planning by focusing the 

allocation of limited resources available – both monetary and spatial, for conservation 

planning on the areas most at risk (Margules and Pressey 2000). The threats in the 

Grassland Biome of South Africa have arisen from anthropogenically-induced habitat 

transformation because of its development potential. This biome contains a wealth of 
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resources that have potential to be and most of which are currently being exploited for 

economic benefit in any number of ways. These include large coal and diamond deposits, 

gold fields and agriculturally productive land (SANBI 2005). The Grassland Biome 

supports the largest urban centre in South Africa consisting of the Johannesburg-

Midrand-Pretoria urban complex (Rutherford & Westfall 1994) and several other large 

metropolitan areas such as Bloemfontein. There is rapid urbanization and urban sprawl 

and this is associated with localized depletion of natural resources and unprecedented 

pollution of the local environment1.  It is important to be able to predict not only the 

effects of extractive uses, urban sprawl and alien species invasion on biodiversity 

(Margules and Pressey 2000) but also where these threats are likely to arise that we may 

plan means to combat their effects. The human activities behind these observed grassland 

habitat losses present threats to biodiversity in these areas. Iinformation about the 

character and location of these threats in the Grassland biome is required. 

 

1.3. Threat prediction at the landscape level 

There has been a recent surge in research focusing on the systematic and quantitative 

assessment of current and future risks to biodiversity at the landscape level (White et al., 

1997, Margules & Pressey 2000; Fairbanks & Benn, 2000; Wessels et al., 2000; Reyers 

et al., 2001, Cowling et al., 2003, Lombard et al., 2003; Rouget et al., 2003; Neke & du 

Plessis 2004; Reyers, 2004; Rouget et al., 2004; Reyers et al., 2005). Given that the 

biodiversity of an area cannot be fully quantified, surrogate measures are often used and 

when one works at the landscape level one assumes that all finer aspects of biodiversity 

are adequately represented too (Noss 1987, 1990; Pressey 1994; Fairbanks & Benn 2000; 

Wessels et al., 2000). It can be argued though that when using this “coarse-filter” 

approach (Noss 1987, 1990) rare species with very restricted distributions will not be 

represented (Noss 1983) or included in conservation plans and that in fact working at this 

level may not allow for inclusion of all necessary elements for biodiversity retention 

(Lambeck 1997). Use of purely species-based approaches for conservation planning also 

has its disadvantages (van Jaarsveld et al., 1998, Maddock & du Plessis 1999, Fairbanks 

& Benn 2000, Reyers et al., 2001) and as such it has been suggested that the best 

                                                 
1 http://www.unep.org/aeo/213.htm.  Accessed on-line on 20/01/2007 
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techniques will use a combination of the two approaches. However, for one to 

successfully implement conservation plans it is important to have information on those 

land uses that pose both current and future threats to conservation interests, as well as the 

techniques to identify them (Faith & Walker 1996, Reyers et al., 2001, Ricketts & Imhoff 

2003) especially when working at the landscape level (Rouget et al., 2003, Rouget et al., 

2006).  

 

Neke & du Plessis (2004) equated threat with any land-use resulting in land-cover 

conversion from grassland to any other land-cover class and produced a threat map for 

the grasslands biome. This was achieved by developing land-use suitability maps for 

afforestation, agriculture, urban expansion, mining and stock farming and then 

developing a framework for scoring the relative severity of these land-uses on grassland 

biodiversity. Assessing the areas according to the likelihood of transformation and the 

severity of this land-cover change on biodiversity produced the threat map. They found 

that at least 44.7% of the grasslands had been transformed and the remaining semi-

pristine areas were highly fragmented. In terms of transformation threat- the highest 

levels of threat occurred in the species rich, high rainfall eastern areas of the grassland 

biome- and that those areas with the highest threat levels had all been transformed by 

human land-uses- predominantly afforestation. This was to be expected since there is 

often a high positive correlation between species richness and human land-use and the 

threat exists where the two coincide (Ricketts & Imhoff 2003). This reinforces the notion 

that ecosystems must therefore be managed in such a way as to allow for both optimum 

human productivity and development, and biodiversity (Pimental et al., 1992, Daily et 

al., 2001). Bush encroachment and invasive alien plants were a root cause of land cover 

transformation (8.9%). This was associated with urban centres and the perimeter of the 

biome itself and this was suggested to be worth monitoring. Invasive alien plants (IAP) 

cause land cover transformation- they disrupt ecosystem structure and function and are a 

threat to biodiversity where they occur (Richardson et al., 1997). Invasive plants have 

been ranked alongside deforestation, urbanisation, pollution and cultivation as “major 

agents” of land cover change (Cronk & Fuller 1995). Neke & du Plessis (2004) also 

found that the large expanses of the area that had been transformed by agriculture were in 
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actual fact unsuitable for this land-use and were most probably sustained by government 

subsidised irrigation and supplementary fertilisation. The South African Agricultural 

policy was changed in the mid-1990s and with the removal of subsidies it will be of great 

interest to see whether there has been any change with respect to the occurrence of 

agriculture in these marginal areas.   

 

The inclusion of the effects of the road network on biodiversity within the Grasslands 

biome by Neke & du Plessis (2004) might have added an extra dimension to the analysis 

of threat, especially considering that the construction and maintenance of roads has been 

a major source of land-cover change. Road effects on biodiversity include the habitat 

transformation occurring as a result of their construction, fragmentation, increased 

mortality through road kill incidences, barriers to movement, conduits of exotic plant 

species invasion (Forman & Alexander, 1998),  chemical pollution by vehicles, 

modification of animal behaviour (Trombulak & Frissell 2000) to list a few. Their 

presence and utilisation pose a serious threat to biodiversity (Trombulak & Frissell 2000, 

Stoms 2000, Reyers et al., 2001, Theobald 2003). Furthermore, the effects of roads on 

biodiversity extend for some distance away from the actual road itself and the width of 

this road effect zone depends on the nature and utilisation of that road (Forman & 

Alexander, 1998; Stoms 2000; Reyers et al., 2001). Reyers et al., (2001) used a method 

similar to that used by Stoms (2000) to determine the road-effect zone for the South 

African road network as a threat to biodiversity in the country. This method has since 

been incorporated into threat assessments for conservation planning purposes in South 

Africa by Reyers (2004), Rouget et al., (2004) and Reyers et al., (2005). 

 

Theobald (2003) developed a method to assess the level of potential threat to biodiversity 

in Colorado (USA) to help guide conservation planning. This method used two indicators 

of threat- roaded areas and housing density (as a measure of development). Together they 

provide useful indicators of the intensity of human land-use activities. He then assessed 

which land-cover types would most likely be at risk from future development and came 

up with status and threat categories- land was classified as threatened depending on it 

meeting certain criteria. Thereafter the “conservation potential” of each threatened patch 
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of land was also computed- this potential was defined by the spatial characteristics 

(shape, degree of fragmentation) of that identified area. In so doing he was able to grade 

the landscape into four levels of existing conservation effort- from those not currently 

protected and requiring maximum effort to those needing little conservation effort in 

relation to their risk to future developments. Such a method could be used to avoid 

prioritising areas that will likely be too compromised by anthropogenic transformation 

and development pressure in the future, regardless of what protective measures are 

currently instituted (Myers 1979). 

 

As part of the Grasslands Biodiversity Assessment by the South African National 

Biodiversity Institute (SANBI), Reyers et al., (2005) carried out a spatial assessment of 

the Grassland biome in terms of biome boundaries, ecosystem services, existing 

conservation efforts and land cover impacts. Through which they identified priority areas 

for conservation within the biome. An assessment of land-cover change in the Grassland 

biome was incorporated into the identification of priority areas. The assessment was an 

extension of the National Spatial Biodiversity Assessment- NSBPA, (Rouget et al., 2004) 

and made use of the same datasets as proposed for this project, that is, the National Land 

Cover Datasets for 1994 and 2000. They merged the different land cover types to give 

aggregate land cover classes and then assessed per centage land cover change per class. 

There was no attempt to further analyse the observed land-cover change as it was felt that 

differences in resolution and methods used to compile the two datasets made this 

difficult. The report touched lightly on fragmentation of the grassland patches together 

with land cover diversity and physiognomy, as descriptors of landscape structure. The 

report concluded that the differences in land-cover change were not significant. However 

regardless of whether or not the observed figures of land cover change are statistically 

significant, the nature of the resultant fragmentation, especially with regards to the 

grassland vegetation type has major implications for biodiversity within that landscape. 

These changes signify the realisation of threats to biodiversity in the Grasslands Biome. 

 

Landscape level ecological and evolutionary processes have been successfully integrated 

(as biodiversity surrogates) into conservation planning processes in several instances in 
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South Africa (Rouget et al., 2003, Cowling et al., 2003, Reyers, 2004; Reyers et al., 2005; 

Rouget et al., 2006). The shift from species-based approaches to ecosystem approaches in 

conservation planning may be made possible through identification of spatial components 

of landscape processes that may be used as biodiversity surrogates (Cowling et al., 2003, 

Reyers 2004) including land cover transformations (Fairbanks &Benn, 2000; Rouget et 

al., 2003, Rouget et al., 2004, Reyers et al., 2005) and setting conservation targets for 

these components through expert assessment and spatial analyses (Margules & Pressey 

2000, Cowling et al., 2003, Rouget et al., 2003). Incorporating extant patterns of habitat 

transformation over a given landscape allows the identification of those areas in need of 

urgent conservation attention based on the severity of observed habitat degradation 

(Rouget et al., 2003). 

 

1.4. Land-cover Change Detection 

Land-cover change is defined as an alteration in the surface components of the vegetation 

cover (Milne 1988) or as the “spectral or spatial movement of a vegetation entity over 

time” (Lund 1983) and change detection involves the identification of the differences in 

the vegetation entity by observing it at different times (Singh 1989) Worldwide, land-

cover change has occurred mostly as a result of human activities and is a major cause of 

biodiversity loss (Soule 1991). The ability to accurately describe rates and location of 

land-cover conversion is important for a number of reasons including understanding the 

carbon budget, the drivers of land-use change, efficient and effective biodiversity 

conservation and land management practices (Defries & Townshend 1999, Fairbanks et 

al., 2000, Wessels et al., 2000). Most methods used to identify land-cover change using 

remotely sensed data require human analysis to identify clusters produced during 

unsupervised classification, to create training data in supervised methods or to visually 

interpret satellite images (Townshend et al., 1995). However there are numerous 

automated software-based methods that carry out post-classification change detection 

analysis (Lu et al., 2003; Coppin et al., 2004) 

 

There are four possible types of land-cover change on a landscape, land class entities may 

become a different category, expand or shrink, alter shape, shift position or become more 
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fragmented (Khorram et al., 1999). Furthermore change detection depends on the ability 

of the analysis system to adequately assess the baseline situation and to account for 

differences in seasonal and directional variability (Hobbs 1990).  It is also important, 

where possible, to determine whether the changes are associated with shifts in spatial 

alignment of the land-cover entities with respect to environmental or climatic gradients 

(Lu et al., 2003) as well as to relate them to the extant land-uses. Land-cover changes 

caused by human activities are generally more permanent fixtures on the landscape 

(Coppin et al., 2004) and in longitudinal studies this aids in their identification.  

 

A very important aspect that should be considered when looking at land-cover change 

detection is the length of time between the datasets. Aldrich (1975) suggested that a 

minimum of three years was required to detect non-forest to forest changes. Parks et al., 

(1983) used Landsat MSS data and suggested a minimum one year interval to detect 

urban or agricultural development. Using Landsat TM images Coppin and Bauer (1995) 

found that four- and six- year intervals provided good results in the detection of human-

caused canopy cover changes. Given these figures one could safely assume that a period 

of 5 years would be adequate to detect land cover change within the Grassland biome of 

South Africa using the National Land-cover databases for 1994/5 and 2000/1. This would 

of course be in the context of detecting the causal human land uses that could be used as 

proxy indicators of threats to biodiversity.  

 

1.5. Biodiversity and habitat degradation: loss and fragmentation 

Habitat loss and fragmentation are mainly responsible for the current biodiversity loss or 

species extinctions occurring worldwide (Hastings 1980, Ehrlich & Ehrlich 1981, Wilcox 

& Murphy 1985, Wilcove et al.,. 1986, Groombridge 1992, Hassell et al., 1993, Tilman 

et al., 1994, Fahrig 1997, Bender et al., 1998; Fahrig 2003, Reyers et al., 2005). 

Although the terms habitat loss and fragmentation are used almost synonymously in the 

literature (Fahrig 2002), they refer to different processes and have different impacts on 

biodiversity (Bender et al., 1998; Fahrig 2003). Habitat loss is the more noticeable of the 

two and its impacts are obvious and always negative (Fahrig, 2003). Habitat loss alone 

results in a decrease in species richness (Findlay & Houlahan 1997, Bender et al., 1998), 
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genetic diversity (Gibbs 2001) and population abundance and distribution across the 

entire landscape (Best et al., 2001.,Gibbs 1998; Donovan & Flather 2002).  

 

Many studies have been carried out on different landscapes to characterise the nature of 

habitat fragmentation, how best to describe this process in a scientifically robust manner 

(Krummel et al., 1987, Milne 1988, McGarigal & McComb 1995, Cain et al., 1997, 

Tinker et al., 1998, Griffith et al., 2000, Jaeger 2000, McGarigal 2000, Cumming & 

Vernier 2002, Southworth et al., 2002, Neel et al., 2004, Kamusoko & Aniya 2006) and 

to define the link between fragmentation and biodiversity loss (Gaston 1997, Brooks et 

al., 1997, Bender et al., 1998, Harrison & Bruna 1999, Gaston et al., 2003, Fahrig 2003)  

It is characterised by an initial decrease in the focal habitat area (patch size) and a 

corresponding increase in edge influenced habitat (Neel et al., 2004), a situation may 

arise whereby the focal habitat type or land cover class may still be connected but will 

show increasing perforation (Jaeger 2000). Neel et al., (2004) illustrated that as the 

process continues, isolated patches of the focal habitat type will continue to fragment 

until finally a peak in the number of patches is experienced when that land cover class 

comprises 15-30% of the total landscape.  

 

Fragmentation is a phenomenon that may occur as a result of habitat loss but it is also a 

complex naturally occurring landscape scale “process in and of itself” (McGarigal & 

McComb 1995, Bender et al., 1998; Fahrig 2003). It involves the transformation of large, 

contiguous habitats into a number of smaller, increasingly isolated patches that are 

separated from each other by a matrix of habitats different to the original, with a decrease 

in the total area of the original habitat (Wilcove et al., 1986, Bender et al., 1998, 

McGarigal et al., 2002; Fahrig 2003). Fragmentation changes the spatial configuration of 

that landscape (Fahrig 2003) and therefore alters the specific properties of that ecosystem 

that make it suitable for the associated floral and faunal species to persist. Increased edge 

effects, decreased patch areas and therefore smaller available home ranges (Bender et al., 

1998), decreased connectivity and increased isolation between the remaining patches are 

all associated with habitat fragmentation (Fahrig 2003). The implications of on-going 

fragmentation are not the same for all species- initially the changes in the landscape 
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create artificial selective pressures that are hostile to specialist, large-bodied species, and 

favourable to smaller, edge-specialist or habitat generalist species (Bender et al., 1998, 

Harrison & Bruna, 1999; Gibbs & Stanton, 2001, Fahrig 2003). With time however, as 

the amount of habitat lessens and average patch sizes decrease, fewer species can be 

supported on a given patch (Lawton 1993) and the size of the populations of those 

species will decrease (Gaston et al., 2003). This increases the risk of local extirpation of 

these species through meta-population processes (Lawton 1993, Brooks et al., 1997, 

Gaston 1997, Gaston et al., 2003) as habitat decreases and isolation increases. The risk of 

species extinction increases as their abundance and occupancy across a landscape 

decrease (Lawton 1993, Gaston 1997); this double jeopardy (Gaston 1997) will be in 

effect in the Grassland biome if both habitat loss and fragmentation continue. It is hoped 

that timely intervention on the part of conservation planners will prevent such a situation 

from arising. 

 

Huxel and Hastings (1999) showed that habitat fragmentation in terms of patch size and 

connectivity or isolation has a definite bearing on the efficacy of species restoration and 

management plans. Bender et al., (1998) found that the effect of fragmentation on the 

organisms occupying a landscape differs depending on their responses to the resultant 

edge effects and decreasing core habitat areas. It is apparent that both habitat loss and 

fragmentation should be taken into consideration when devising species conservation 

plans (Huxel & Hastings, 1999) and this applies equally to landscape management. 

 

However, it is difficult to describe fragmentation and there is no universally accepted 

measurement, as a result literally hundreds of landscape fragmentation metrics (referred 

to as fragmetrics by McGarigal 2000) have been developed (McGarigal & McComb 1995 

Tinker et al., 1998, Griffith et al., 2000, Jaeger 2000, McGarigal 2000). The use of which 

depends upon whether one wishes to describe landscape composition (“the features 

associated with the variety and abundance of patch types without reference to spatial 

characteristics” McGarigal 2000) or landscape configuration (the “spatial character and 

arrangement of patches” McGarigal 2000). Furthermore, the use of these fragmetrics is 

determined on whether one is looking to describe structural (physical composition of the 
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fragments) or functional (from the perspective of a particular organism or ecological 

process) aspects of the fragmented landscape (McGarigal 2000).  

 

The use of wildlife corridors and/or stepping stones as linkages between remaining 

habitat patches to counteract the effects on species of fragmentation has been debated in 

the literature (Simberloff et al., 1993) and advocated as a means of improving 

connectance and therefore species dispersal & migration between patches in a landscape 

(Bennet 2003). However, ecological landscape processes mould the environments within 

which current biodiversity and these species interactions exist. With the recognition that 

many large scale, ecological processes are aligned along environmental gradients 

(Laurance & Laurance 1999, Cowling & Pressey 2001; Midgley et al., 2003), the value 

of the inclusion of corridors, aligned along these environmental gradients, to conserve 

these landscape processes in conservation planning has become apparent (Rouget et al., 

2005) and should be considered for use in the Grassland biome.  

 

1.6. The aim of the project 

In order to effectively apply conservation plans it is necessary to find a means of 

balancing the notion of conservation value with transformation threat (Faith & Walker 

1996) but to achieve this, robust techniques to predict threats (manifested at the landscape 

level by land-cover change or habitat transformation) need to be developed (Ferrier 2002, 

Neke & du Plessis 2004). This project seeks to contribute to the effort to fill this gap in 

knowledge by looking at the land-use practices that were identified as potential threats to 

biodiversity in the Grasslands Biome by Neke and du Plessis (2004), and verify whether 

they pose such a threat as shown by actual land-cover change between 1994 and 2000 

National Land-cover Databases. The main idea is that land-cover change will serve as a 

proxy for biodiversity loss, using the coarse filter approach (Noss 1987, 1990, Fairbanks 

& Benn 2000 Reyers et al., 2000) through changes in ecosystem function, composition 

and systems (Margules and Pressey 2000). Thus any land-use practice, current or recent 

past, that causes said land-cover change will be considered as non “biodiversity-friendly” 

and therefore a threat. Distributional data for threatened endemic Grassland bird species 

shall be used to represent biodiversity within the biome as is often done for conservation 
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planning purposes (Noss 1990, Humphries et al., 1995, Ferrier 1997, Margules & Pressey 

2000, Ferrier 2002).  

 

Therefore the aim of this project is to test the realisation of potential threats to the 

grassland biome between 1994 and 2000 as they were predicted by Neke & du 

Plessis (2004).  The specific objectives are: 

1. To describe the spatial configuration of any observed land-cover change on 

biodiversity friendly land-cover change in the Grasslands Biome  

 

2. To test the realization of potential threats to biodiversity as predicted by 

Neke & du Plessis (2004) 

 

3. To evaluate the outcome of the land-cover change detection and devise a new 

threat map based on the rate and extent of transformation. 

 

This analysis is not a quantitative assessment of land cover change within the Grassland 

Biome and as such, conventional Gaussian statistical methods of analysis shall not be 

carried out. It is not the intention of this research project to comment on the statistical 

significance of any of the observed land cover changes. Rather, this report will offer a 

description of the observed land cover changes and provide valuable information on the 

general state of the Grassland Biome in terms of the remaining semi-pristine grassland 

patches and the influence of human biodiversity-unfriendly land use practices.  

 

Given this, what are referred to as “general hypotheses” below, should be viewed as 

guidelines around which the descriptions of the results were carried out.  

 

1.6.1 General Hypotheses  

Objective 1 

1.1 There will be land-cover changes for those classes that are characterised by 

anthropogenic use and those immediately surrounding them.  
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1.2 There will be outward expansion of urban/ built up areas into surrounding land-cover 

classes.  

1.3 Protected areas will show no significant land-cover change that can be attributed to 

anthropogenic causes  

1.4 There will be increased fragmentation of areas of high conservation value that are not 

formally protected 

1.5 The remaining grassland fragments will have shrunk in size 

Objective 2 

2.1 The potential threats to biodiversity as predicted by Neke & du Plessis (2004) will be 

realised, that is, all areas that were predicted to be high threat areas will have been 

transformed to non-biodiversity friendly land-use practices 

Objective 3 

3.1 Incorporating actual land-cover changes as threats to biodiversity, as well as the 

influence of the road network, invasive alien plant species & human demography data 

in the Grasslands Biome will produce a new threat map similar to that of Neke & du 

Plessis (2004) 
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MATERIALS & METHODS 

 

2.1. Study Area 

2.1.1.Grasslands Biome of South Africa 

The Grassland Biome is one of seven biomes that make up the South African landscape. 

It is centrally located and it shares boundaries with the Savanna, Thicket, Nama Karoo 

and Forest biomes (figure 1). The largest portion of it boundary is shared with the 

Savanna biome and in recent years there has been observable bush encroachment from 

the Savanna biome into the Grassland biome (Bews 1917, Dyer 1937, Acocks 1953, 

Comins 1962, Morris 1976, Bredenkamp & Bezuidenhout 1990 in O’Conner & 

Bredenkamp 1997). The interaction at the interface between the Grassland biome and the 

other biomes is a major contributing factor to the high animal and plant species diversity 

found here as well as its role as the most agriculturally productive biome in South 

Africa2. The reported areal extent of the Grasslands Biome differs in the literature due to 

variations in the definition of the biome itself and therefore the location of its boundaries 

(Reyers et al 2005). Figures vary from 334 001 km2 (Low & Rebelo 1996) to 373 984 

km2 (Driver et al 2005). In terms of political boundaries, the Grassland Biome covers an 

area ranging from the interior of the Eastern Cape and KwaZulu/Natal provinces over the 

escarpment and into the central plateau as shown in figure 2. Thus the biome makes up 

the greater portion of six provinces in South Africa and approximately 24,6% of South 

Africa (Low & Rebelo 1996) Lesotho and a portion of Swaziland also lie within the 

Grassland Biome as shown in figure 1. The spatial extent of the biome is mostly defined 

by climatic variables such as frost, rainfall and temperature as well as soil moisture 

(Rutherford & Westerfall 1994, Rutherford 1997, O’Conner & Bredenkamp 1997). 

However, the area of the biome that is realized as such is determined by the interplay 

between these climatic factors, topography, fire, soil and human landuse such as grazing 

practices (O’Conner & Bredenkamp 1997, Rutherford 1997).  

                                                 
2 (http://www.fao.org/docrep/008/y8344e/y8344e08.htm. Accessed on-line on 04/02/2007 
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Figure 1. The biomes of South Africa in relation to the provincial boundaries; adapted 

from Low & Rebelo (1996). 
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Figure 2. Provincial composition of the Grassland biome as defined by Low & Rebelo 

(1996); with reference towns and location of the Great Escarpment across the biome3

                                                 
3 Http://bgis.sanbi.org accessed on-line on 24/02/2007 
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2.1.2. Topography & Geology 

The topography of the Biome shows a fair amount of variation- it is mainly flat, open 

expanses of grassland with rolling hills and valleys (O’Conner & Bredenkamp 1997) 

becoming mountainous towards the Drakensburg escarpment (Rutherford & Westfall 

1994). Consequently there are large variations in altitude, ranging from 300m above sea 

level over the Eastern coastal lowlands to over 2800m above sea level in the Drakensberg 

Mountains (Rutherford & Westfall 1994).  Soil cover in the Grassland Biome is 

dominated by the red-yellow-grey latosol plinthic catena- which constitutes almost half 

of the Grassland biome (Rutherford & Westfall 1994). Other soil types include black and 

red clays and well drained sandy soils (Rutherford & Westfall 1994, O’Conner & 

Bredenkamp 1997). Soil erosion is limited where there is high vegetation cover but can 

be severe where vegetation has been reduced due to poor land management practices 

(Rutherford & Westfall 1994). 

 

2.1.3. Climate 

The biome exhibits a highly variable climate, as a result of the large surface area it 

covers, as well as the varying topography of the landscape. The mean annual rainfall 

gradient ranges from 400mm to more than 1200mm per year (O’Conner & Bredenkamp 

1997) although Rutherford & Westfall (1994) give an upper range limit of 2000mm per 

year. The mean annual rainfall follows a gradient across the landscape that decreases as 

one moves westwards4. Rainfall occurs mostly in the summer months (October to 

March/April) with a Summer Aridity Index (SAI) between 2.0 and 3.9 (Rutherford & 

Westfall 1994). SAI is an aridity index showing average moisture conditions over the 

four wettest months of the year, where higher values indicate increasing aridity to a 

maximum of 9 (Rutherford & Westfall 1994).  The temperatures experienced range from 

“frost-free to snowbound, sub-zero temperatures in winter” (O’Conner & Bredenkamp 

1997). The occurrence of frost and sub-zero minimum winter temperatures increases with 

increasing aridity and/ or altitude (Rutherford & Westfall 1994, O’Conner & 

Bredenkamp 1997)  

 

                                                 
4 http://www.fao.org/docrep/008/y8344e/y8344e08.htm. Accessed on-line on 04/02/2007 
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2.1.4. Biodiversity: Flora 

Although the vegetation structure is generally uniform across the biome, the plant 

species, vegetation dynamics and ecosystem functions all show a high degree of variation 

(O’Conner & Bredenkamp1997) in accordance with the rainfall gradient (Rutherford & 

Westfall 1994). O’Conner & Bredenkamp (1997) identified six major regions of 

vegetation within the Grassland Biome. These and the biophysical characteristics of the 

terrain they are associated with are described in the table below. 

 

Name Dominant taxa Geology Soil type Altitude(m) 

Mean 
annual 
rainfall 
Range (mm/ 
year) 

Central 
inland 
plateau 

Themeda 
triandra   
Eragrostis 
curvula 

sandstone, 
shale, lava, 
mudstone 

deep red, 
yellow 
eutrophic, 
clay 

1400-1600 600-700 

Dry western 
region 

Eragrostis 
lehmanniana 
E. obtusa   
Stipagrostis 
obtusa 

mudstone, 
shale, dolomite, 
dolerite 

shallow 
sands 

1200-1450 450-600 

Northern 
areas 

Trachypogon 
spicatus  
Diheteropogon 
amplectans 

quartizites, 
shale, andesitic 
lava, sandy 
loams 

shallow, 
lithosols 

1500-1600 650-750 

Eastern 
inland 
plateau 

Themeda 
triandra   
Aristida 
junciformis 
Eragrostis plana 

sandstones and 
shales 

deep sandy 
loam, black 
clay 

1500-1800 650-950 
(frost) 

Eastern 
mountains 
and 
escarpment 

Hyparrhenia 
hirta  
Aristida diffusa 

Drakensberg 
complex 

Leached, 
shallow, 
rocky soils 

1650-3480 900- 1500 

Eastern 
lowlands 

Hyparrhenia 
hirta  
Sporobolus 
pyramidalis 

Drakensberg 
foothills- 
dolerite 

Shallow, 
rocky soils 

1200-1400 850 

Table 1. Vegetation types of the Grassland biome (Adapted from O’Conner & 

Bredenkamp 1997) described in terms of the dominant vegetation, geology, edaphic and 

climatic characteristics. 
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Only one in six plant species within the biome is actually a grass (SANBI 2004). The 

vegetation generally consists of grasses and bulbous plants such as arum lilies, orchids 

and aloes, as well as some dicotyledonous plants (SANBI 2004). Canopy cover is rare 

and its occurrence is influenced by mean annual rainfall as the likelihood of canopy cover 

decreases with rainfall (Rutherford & Westfall 1994). There is high plant species 

diversity; the biome shows higher plant species richness at the 1000m2 scale than the 

Fynbos Biome (Cowling et al 1991). There are at least 3 788 plant species (Gibbs Russel 

1987) of which 78% are located in areas under formal protection (Siegfried 1991).  

 

2.1.5. Biodiversity: Fauna 

Of the 34 mammal species that are endemic to South Africa, 15 are found within the 

Grassland Biome, including some threatened species (SANBI 2004) like the Rough-

haired golden mole (Chrysospalax villous), Gunning’s golden mole (Neamblysomus 

gunningi), Robust golden mole (Amblysomus robustus). Historically this area was part of 

the natural range of large grassland antelope (Rutherford & Westfall 1994). The biome 

has been designated an Endemic Bird Area, EBA (Bibby et al 1992, Stattersfield et al 

1998) and 52 of the 122 Important Bird Areas of South Africa are located here (SANBI 

2004). In order for an area to be designated EBA status it must support at least 2 endemic 

bird species with distribution range of less than 50 000 km². There are three such species 

found within this area- Rudd’s Lark (Heteromirafra ruddi), Botha’s Lark (Spizocorys 

fringillaris) and Yellowbreasted Pipit (Hemimacronyx chloris) - all of which are 

considered threatened on a global scale (Stattersfield, et al., 1998 from the grasslands 

facts website). Furthermore- of the 14 globally threatened bird species found in South 

Africa 10 are found in the Grassland Biome (SANBI 2004). There are 24 endemic reptile 

species found within the biome (Branch 1998). 31 of the 107 threatened South African 

butterfly species are also found within this area (Henning & Henning, 1989) and at least 

half of these are endemic to the Grassland Biome (McAllister 1998a). The Grassland 

Biome also contains 5 of the 17 designated RAMSAR wetlands of South Africa (DEAT, 

1997). 
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2.2. Methods 

2.2.1. Background 

The South African National Land Cover (NLC) databases for 1994/5 and 2000 were the 

principal raw datasets for the analyses to assess threats as posed by observed grassland 

vegetation cover loss over the Grassland biome. Other datasets were used and these are 

described in the order of the analyses for which they were used. Both NLC datasets were 

derived from seasonal Landsat imagery (Thompson 1996, Thompson et al 2000) 

compiled over the 1994/5 and 2000/1 rainfall seasons respectively. Land cover 

classification for both datasets was based on the same hierarchical framework so that the 

classification categories could be merged or split up depending on the needs of the 

researcher (Fairbanks & Thompson, 1996). The minimum mapping unit (MMU) for the 

NLC1994 dataset was set as 25 ha (Fairbanks & Thompson 1996, Fairbanks et al. 2000). 

This translates to a pixel resolution of 500m * 500m as the lowest spatial denominator 

that one can use and still extract meaningful information from this dataset (Mark 

Thompson pers comm.); therefore all datasets were converted to raster grids of this 

resolution. After resampling, each 25 ha pixel was allocated landcover class code 

according to maximum area represented within that cell. All spatial datasets were 

transformed to WGS 1984 geo-reference system and then projected in the Universal 

Transverse Mercator (UTM) projection to UTM zone 35S- the zone which projects the 

extent of the Grassland biome with minimum distortion. All datasets were clipped to the 

extent of the Grassland Biome since this is the area of interest. The shapefile used for this 

purpose is based on the biome boundary definition as given by Low & Rebelo (1996) - 

thus the total area of the biome for this project by default is 334 001 km2.  

 

Spatial analyses were executed in either ArcGIS v9.1 (Esri software) or IDRISI Andes 

(Clarke labs) depending on the analysis and functionality required. The IDRISI 

Geographic Information System (GIS) was used primarily to assess the land cover change 

using the Land Cover Change Modeler. All other spatial analyses were executed in 

ArcGIS. FRAGSTATS v3.3 (McGarigal et al., 2002) was also used to assess spatial 

distribution and fragmentation of the remaining grassland patches.  
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2.2.2. Data Analysis: Objective 1 

“To describe the spatial configuration of any observed land cover change on 

“biodiversity friendly” land-cover (semi-pristine grassland vegetation) in the 

Grasslands biome” 

 

Table 2 below describes the raw spatial datasets that were used for this analysis. 

 
Data  Description Geographic 

coordinate 

system  

Projected coordinate 

system 

South African National 

Land-cover Database 

(1994/95) – NLC1994 

70 individual mapsheets 

Scale= 1:250 000) 

ArcGIS shapefiles 

Minimum Mapping  

Unit, MMU is 25ha- pixel 

size would be 500m*500m 

Classified to 31 land cover 

classes 

Clarke 1880 

(Cape Datum) 

 

- 

South African National 

Land-cover Database 

(2000) – NLC2000 

ERDAS IMAGINE raster 

image  

Scale 1:50 000 (Thompson et 

al 2000) 

Resolution:30m*30m 

Classified to 49 land cover 

classes 

WGS 1984 - 

Grassland Biome outline ArcGIS shapefile WGS 1984 Albers Equal Area  

South African National 

Parks 

ArcGIS shapefile 

Downloaded off SANBI 

website bgis.sanbi.org 

WGS 1984  

Table 2. Raw Data that was used in the analyses of Objective 1 

 

2.2.2.1. Assessment of Land-cover change 

The NLC1994 vector tiles (spacemaps) were merged to a single vector shape file 

displaying land cover for all of South Africa. This was transformed to WGS84 

geographic co-ordinate system and then projected to zone UTM35S. The NLC1994 
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image was then clipped to the extent of the Grassland biome using the Grassland biome 

outline. The output from this was a shapefile, hereafter referred to as the Grassland Land 

Cover 1994- GLC1994. This was then converted to a raster grid, at a resolution of 500m 

* 500m (25ha pixel size). The output (GLC1994) was a raster grid showing land cover in 

31 land cover classes over the Grassland Biome. 

 

The NLC2000 raster image was received in WGS84 and projected to UTM35S (table 2); 

thereafter the Grasslands Biome area was extracted using a mask specified to the extent 

of the Grasslands Biome shapefile. This image was then resampled from the original 

resolution of 30m * 30m to a resolution of 500m * 500m. The output (Grassland Land 

Cover-GLC2000) showed land cover over the Grassland biome described in 49 land 

cover classes. 

 

These operations were carried out in ArcGIS v9.1 using standard GIS techniques. 

 

Thereafter both GLC1994 and GLC2000 were imported into IDRISI Andes as GeoTIFF 

images and reclassified to the same land cover classification scheme as shown in table 3 

below.  These are the same land cover classes used by Neke & du Plessis (2004). 

 

AGGREGATE 

CLASS 
code 1994/5 LAND-COVER CLASS code 2000 LAND-COVER CLASS 

1 Forest and Woodland 1 Woodland 
Forest & woodland 

2 Forest 2 Forest 

3 Thicket and bushland (etc) 3 Thicket and Bushland 
Thicket & bushland 

4 Shrubland and low Fynbos 4 Shrubland and low Fynbos 

5 Herbland 5 Herbland 

6 Unimproved grassland 6 Natural grassland 
Grassland 

 
7 Improved grassland 7 Planted grassland 

8 Forest plantations 8 Forest plantations: Eucalypt spp 

  9 Forest plantations: Pine spp 

  10 Forest plantations: Acacia spp 

  11 Forest plantations: other/mixed spp 

Forest plantations 

  12 Forest plantations: clearfelled 
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Waterbodies 9 Waterbodies 13 Waterbodies 

Wetlands 10 Wetlands 14 Wetlands 

11 Barren rock 15 Barren rock & soil (natural) 

12 Dongas and sheet erosion scars 16 Barren rock & soil (erosion:dongas & 

gullies) 

  17 Barren rock & soil (erosion:sheet) 

13 Degraded: forest and woodland 18 Degraded: forest and woodland 

14 Degraded: thicket and bushland 

(etc) 

19 Degraded: thicket and bushland 

15 Degraded: unimproved grassland 20 Degraded: unimproved grassland 

16 Degraded: shrubland and low 

fynbos 

21 Degraded: shrubland and low Fynbos 

Degraded 

17 Degraded: herbland 22 Degraded: herbland 

18 Cultivated: permanent - 

commercial irrigated 

23 Cultivated: permanent- commercial 

irrigated 

19 Cultivated: permanent - 

commercial dryland 

24 Cultivated: permanent - commercial 

dryland 

20 Cultivated: permanent - 

commercial sugarcane 

25 Cultivated: permanent - commercial 

sugarcane 

21 Cultivated: temporary - 

commercial irrigated 

26 Cultivated: temporary - commercial 

irrigated 

22 Cultivated: temporary - 

commercial dryland 

27 Cultivated: temporary - commercial 

dryland 

23 Cultivated: temporary - semi-

commercial / subsistence dryland 

28 Cultivated: temporary - subsistence 

dryland 

Cultivated land 

  29 Cultivated: temporary - subsistence 

irrigated 

24 Urban / built-up land: residential 30 Urban / built up land: residential 

  31 Urban / built up land: rural cluster 

  32 Urban / built up land: residential formal 

suburbs 

  33 Urban / built up land: residential – flatland 

  34 Urban / built up land: residential – mixed 

  35 Urban / built up land: residential – hostels 

  36 Urban / built up land: residential - formal 

t/ships 

  37 Urban / built up land: residential - 

informal t/ships 

Urban / built up 

land 

  38 Urban / built up land: residential - 

informal squatter camps 
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25 Urban / built-up land: residential 

(small holdings: woodland) 

39 Urban / built-up land: residential (small 

holdings: woodland) 

26 Urban / built-up land: residential 

(small holdings: bushland) 

40 Urban / built-up land: residential (small 

holdings: bushland) 

27 Urban / built-up land: residential 

(small holdings: shrubland) 

41 Urban / built-up land: residential (small 

holdings: shrubland) 

28 Urban / built-up land: residential 

(small holdings: grassland) 

42 Urban / built-up land: residential (small 

holdings: grassland) 

29 Urban / built-up land: commercial 43 Urban / built-up land: commercial – 

mercantile 

  44 Urban / built up land: commercial - 

education, health, IT 

30 Urban / built-up land: industrial / 

transport 

45 Urban / built-up land: industrial / transport 

– heavy 

  46 Urban / built up land: industrial / transport 

– light 

31 Mines & quarries 47 Mines & quarries: underground and 

subsurface 

  48 Mines & quarries: surface Mines & quarries 

  49 Mines & quarries: mine tailings & waste 

dump 

Table 3. Aggregate classes that were used to standardize land cover classes in NLC1994 
& NLC2000 based on a hierarchical landcover classification framework (Thompson 
1996) 
 

Once both raster images had been reclassified (figures 3, 4), they were input into the 

Land Cover Change Modeler in IDRISI and were assessed for differences in land cover 

with a focus on the grassland land cover class.  

 

A change matrix was constructed to summarise all potential changes between different 

land cover types. In this matrix, highly unlikely conversions such as forest to water body, 

were defined a priori to identify potential mapping errors as well as to facilitate 

interpretation of the results. However, as is discussed in the results, since the focus was 

on the natural grassland vegetation, this was only to be applied to land cover change of 

the grassland land cover class to the other land cover types. 
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Figure 3. Land cover in the Grassland biome in 1994/5 (GLC1994) 
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Figure 2. Landcover in the Grassland biome in 2000/1 (GLC2000) 
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2.2.2.2. Assessment of Grassland fragmentation 

This study will require an evaluation of fragmentation of the remaining semi-pristine 

“natural” grassland without particular reference to specific organisms or ecological 

processes- as such the focus will be on structural metrics.  A perusal of the extensive 

literature available on this topic resulted in a list of common metrics most often used to 

describe habitat fragmentation from the structural perspective (Table 4) but all reflect 

possible threats to biodiversity. GLC1994 and GLC2000 were run through FRAGSTATS 

to assess and describe the nature of the remaining fragments or patches of grassland 

vegetation in the Grasslands Biome in terms of the spatial configuration and degree of 

fragmentation relative to the GLC1994. Analysis was carried out at the class level and the 

metrics that were used described all aspects of fragmentation with respect to patch area, 

shape complexity and isolation (Table 4). Each metric was chosen based on the 

implications of what it measures to grassland biodiversity. The total number of patches, 

average patch size and inter-patch distances will affect species richness and density and 

population dynamics (Lawton 1993, Gaston 1997) as will edge effects and patch shape. 

The metrics that were chosen are those that were the simplest to interpret. 

 
Fragmetrics 

 

Description Units Range 

Number of 

patches (NP) 

Total number of patches of the focal land cover class 

Simplest measure of fragmentation but not easily interpreted 

on its own  

none NP> =1, with 

no limit 

Patch area 

distribution 

(Mean patch 

area) 

Simplest measure of spatial configuration 

 

 

ha Statistical 

measures 

Mean Perimeter 

Area Ratio 

Describes patch shape complexity   

Perimeter Area 

Fractal 

Dimension 

A measure of shape complexity that is not affected by 

varying patch sizes of the focal class 

A fractal dimension greater than 1 for a 2-dimensional 

landscape mosaic indicates an increase in patch shape 

complexity.  

None 1 ≤ PAFRAC 

≤ 2 
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PAFRAC approaches 1 for shapes with very simple 

perimeters such as squares, and approaches 2 for shapes with 

highly convoluted, plane-filling perimeters 

Euclidean 

Nearest 

Neighbour  

(mean) 

Mean measurement of nearest distance to the nearest 

neighboring patch of the same type, measured from patch 

edge to patch edge (cell centre at patch edge to cell centre on 

nearest patch edge) 

describes patch isolation and land cover class sub division 

Also used to assess dispersion: 

Where ENN_Variance>= ENN_mean then focal class shows 

more clumped than random distribution & vice-versa  

 

metres ENN > 0, 

without limit 

 

Mean Shape 

Index 

Simplest measure of shape complexity of focal class patches 

SHAPE = 1 when the patch is maximally compact (i.e., 

square or almost square) and increases without limit as the 

patch shape becomes more irregular. 

 

None SHAPE ≥ 1, 

without limit 

Clumpiness 

Index 

Measures focal class aggregation  

CLUMPY equals -1 when the focal patch type is maximally 

disaggregated; CLUMPY equals 0 when the focal patch type 

is distributed randomly, and approaches 1 when the patch 

type is maximally aggregated.  

 

None 1 ≤ CLUMPY 

≤ 1 

 

Landscape 

Shape Index 

Measure of class aggregation 

Quantifies the amount of edge present in the focal class 

relative to what it would be if the focal class was maximally 

compact. 

LSI = 1 when the landscape consists of a single square or 

maximally compact (i.e., almost square) patch of the 

corresponding type; LSI increases without limit as the patch 

type becomes more disaggregated (i.e., the length of edge 

within the landscape of the corresponding patch type 

increases). 

 

None LSI ≥ 1, 

without limit 

 
Table 4. Selected fragmentation metrics used in FRAGSTATS to describe grassland 
fragmentation, Descriptions are taken from McGarigal & Marks (1995) 
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Both standard and moving window analyses were carried out on the datasets. When the 

standard analysis is chosen, the input images are evaluated per selected metric. The 

output is a file produced for each organizational level- patch, class and landscape, giving 

the calculated values per metric. For the latter a moving window, of user-specified shape 

and dimensions is passed over every cell in the landscape of interest, evaluating each 

selected metric. The results are colour-graded raster images of areas with high/low values 

of the fragmentation index of choice across the input landscape of interest (McGarigal 

2000). The moving window analysis provides a spatially explicit evaluation for the 

fragmentation indices. This provides visualization of the results of the standard analysis 

which may be difficult to understand in the context of the entire landscape of interest 

when the output is a single number.  

 

A 10000m * 10000m square moving window was used for the moving window analysis, 

this was based on the maximum remaining grassland patch area class ( >100km2) 

described in Neke & du Plessis (2004). The 8-cell neighbour rule was applied for 

standard analyses. 

 

2.2.2.3. Assessment of Grassland degradation 

A simple assessment of whether or not there has been loss of grassland vegetation does 

not provide sufficient information for input into conservation planning activities. 

Information referring to the condition of the remaining grassland patches in terms of a 

holistic description would be more useful. Such a description should capture information 

about the presence or absence of non biodiversity-friendly” land uses, as signified by 

grassland loss, the average patch size within that area, the relative isolation of these 

patches as well as the associated average patch size complexity (which provided a simple, 

non-scale dependant indicator of edge effects). These are all descriptors of fragmentation. 

This assessment was used to capture the information captured by the separate 

fragmentation analysis of habitat loss and fragmentation onto a single image. That gives 

spatially explicit information about the location and occurrence of grassland degradation. 
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This information given by the combination of actual grassland vegetation loss (an 

indicator of activities or processes, human induced or otherwise, that pose threats to 

biodiversity) and degree of fragmentation of the remaining patches was therefore 

required for the creation of the composite threat map of observed or extant threats to 

Grassland biome biodiversity. The output from the FRAGSTATS moving window 

analyses for Average patch size (AREA_MN), Mean Euclidean Nearest Neighbour 

distance (ENN_MN) and Mean Shape Complexity (SHAPE_MN) on the GLC2000 

dataset were used in conjunction with the Grassland transformation map (showing where 

gains and losses in the Grassland land cover class had occurred). These metrics were 

chosen for input over the others produced in the FRAGSTATS analysis because they 

were the simplest and easiest to translate to indicators of threat.   

 

Because of the differences in units of measure, amongst the four input images it was 

necessary to classify the data to impact classes. Classification in terms of assigning 

“Impact scores” was carried out as shown in table 5 below. The images were assigned the 

same weighting in the Raster calculator (Spatial Analyst) and then added together in a 

standard overlay operation in ArcGIS to create an image showing Grassland degradation. 

The output showed the relative condition in terms of degradation severity of the 

remaining grassland patches in terms of occurrence of non biodiversity-friendly activities 

or processes and fragmentation, with higher scores suggesting poorer condition and 

therefore a more negative impact on the associated biodiversity. 

 

Grassland 
land cover 
loss 

Impact 
Score 

patch 
size 
(ha) 

Impact 
score 

inter-
patch 
distance 
(m) 

Impact 
score 

patch 
shape 
complexity 
(no units) 

Impact 
Score 

 

Yes 1 < 867 4 > 4251 4 > 5 3 Maximum 
Score= 12 

No 0 867 -
2192 

3 2141 - 
4252 

3 3 – 5 2 Minimum 
Score= 1 

  2192 - 
4750 

2 1300 – 
2141 

2 >3 1  

  >4750 1 < 1300 1    
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Table 5. Classification scheme used to incorporate score the individual datasets to assess 
Grassland degradation,  
  

This output in itself gives valuable information- that should red flag areas of concern 

when considering the remaining semi-pristine grassland patches.  

 

2.2.2.4. Grassland degradation over high conservation value areas  

There are over 250 nature reserves within the biome (Category 1 – 3 as defined by the 

IUCN categories), as shown in the map of grassland degradation- figure 6 - so an 

exhaustive assessment of the occurrence of grassland change per protected area was 

beyond the scope of this investigation. There are seven identified biodiversity hotspots in 

Southern Africa (DEAT 2003). The names and the area under protection are listed in 

table 6 below. 

 

Southern African Hot-spot Area conserved (%)

Wolkberg 13.3 

Maputaland 10.0 

Eastern Mountain 5.5 

Pondoland 7.0 

Albany 6.5 

Succulent Karoo 2.0 

Cape: lowlands 

mountains 

3.0 

50.0 

Kaokoveld (Namibia) 7.0 

Table 6. Identified biodiversity hotspots of Southern Africa and conserved area (Adapted 
from DEAT, 2003). 
 

Only the Eastern Mountain hot-spot lies completely within the Grassland biome. It 

contains the Maloti-Drakensberg Transfrontier Protected area between Lesotho and South 

Africa which was established in 2001. The transfrontier protected area extends over the 

Ukahlamba-Drakensberg World Heritage Site5 (National Park) and the Golden Gate 

                                                 
5 http://www.maloti.org Accessed on-line on 12/04/2007 
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Highlands National Park on the South African side6. The corresponding area on the 

Lesotho side includes the Sehlabathebe National Park, Ts’ehlanyane Nature Reserve and 

Bokong Nature Reserve6. The shapefiles of the protected areas were downloaded from 

the on-line SANBI mapping resource- http://www.bgis.sanbi.org. The Lesotho 

component of the protected area is represented by the proposed boundaries of the Lesotho 

National Park (as shown in the results).The entire area encompasses the water catchments 

along the Lesotho escarpment and the Maloti Mountains in the Free State and the 

Drakensberg range through the KwaZulu/Natal, Eastern Cape and Northern Cape 

provinces7. Before 2001, during the period of interest, there were no conservation 

activities focusing on the mountain ecosystems of Lesotho6 which is in direct contrast 

with the situation directly on the other side of the border where the area is well protected 

by the Ukahlamba-Drakensberg National Park.  Therefore it was of particular interest to 

assess the Grassland degradation, with respect to the protected area network over this 

particular conservation area. The location of the Eastern Mountains hotspot is shown in 

figure 5 below. Visual inspections of the grassland degradation over each conservation 

area were carried out and described.  

                                                 
6 http://www.tbpa.net/case_08.htm Accessed on-line on 12/04/2007 
7 http://www.sanbi.org/biodiversity/umthombo2.pdf  Accessed on-line on 12/04/2007 
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Figure 5. The location of biodiversity hotspots in South Africa8 to illustrate the location 
of the Eastern Mountains hotspot 
 

2.2.3. Data Analysis: Objective 2 

“To “test” the realization of potential threats to biodiversity as predicted by Neke & 

du Plessis (2004)” 

 

The data sets used in the analysis of Objective 2 are briefly described in table 5 below. 

The map of grassland land class changes displayed the occurrence of persistence, gains 

and losses in spatial extent of the grassland class. The occurrence and location of 

grassland losses was interpreted as an indicator of activities that pose threats to grassland 

biodiversity in those areas, referred to as non “biodiversity-friendly” land uses. The map 

of grassland degradation summarises the location and relative of severity grassland loss 

and fragmentation. It is a more complete assessment of the occurrence of grassland 

                                                 
8 http://www.ngo.grida/no/soesa/nsoer/ Accessed on-line on 12/04/2007 
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transformation caused by non “biodiversity- friendly” landuses within the biome. Where 

possible the associated land uses were identified using the NLC2000 database and 

therefore red-flagged as representing current threats to grassland biodiversity. I was 

unable to secure the original potential transformation threat maps produced by Neke & du 

Plessis. Therefore the analysis was restricted to a visual comparison of the maps (table 7), 

and a qualitative evaluation of the written predictions of threat published in Neke & du 

Plessis (2004). 

 
Source Format/ description 

“The threat of Transformation: Quantifying the 

Vulnerability of Grasslands in South Africa”- 

Neke & du Plessis (2004) 

 

Description of transformation threats and transformation 

threat intensity map  

Transformation threat map 

Grassland Land cover change map (1994 – 

2000) of grassland land cover  gains and losses 

 

IDRISI raster grids 

Output from Objective 1- Land cover Change Modeler 

Map of Grassland degradation  IDRISI raster grid 

Output from Objective 1 

Table 7. Raw data that was used in the analysis of Objective 2.  

 

Furthermore, because explicit reference was made as to the patch size distribution 

characteristics of the remaining semi-pristine grassland areas, the status of the remaining 

grassland vegetation patches, average area and location relative to the predicted threats 

were also considered using the output from the FRAGSTATS moving window analysis 

of mean grassland patch size (for GLC2000). 

 

2.2.4. Data Analysis: Objective 3 

“To evaluate the outcome of the land-cover change detection and devise a new 

threat map based on the rate and extent of transformation.” 

 

The new threat map was created using a method similar to that used by Neke & du 

Plessis (2004) in that several factors posing threats to biodiversity through land cover loss 
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were identified and spatially overlayed in a GIS using a scoring system to come up with 

impact scores. However, the threat map created by Neke & du Plessis (2004) used a 

combination of potential land use information and actual land cover information (from 

NLC1994) to create a potential transformation threat map. Fairbanks & Benn (2000) state 

that mixing such datasets may make “results & conclusions drawn questionable” 

therefore the new threat map was created using only actual land cover information to 

show occurrence of extant land cover threats to biodiversity in the Grassland biome. It 

incorporates layers showing observed land-cover transformation, road effects, soil 

erosion hazard, invasive alien plants and the impact of urbanisation in the Grassland 

Biome. Where applicable the same classification schemes as those of Neke & du Plessis 

were used. In this way, the method used to create the transformation threat map of Neke 

& du Plessis can be assessed against that reflecting existing transformation threats. The 

list of inputs is described in detail in table 8 below. The map of Grassland degradation 

had already been created as part of the analysis of Objective 1. 

 
Description Source Format 

Grassland land cover 

degradation map 

Output from Objective 1 IDRISI raster grids 

Invasive alien plant species 

richness  

within biome 

SAPIA raw database Dbf files-  

Number of alien invasive plants recorded 

at QDS displayed on QDS grid 

Road effects Coverage of entire roads 

network in South Africa  

Coverage  (vector) 

WGS84 

Urban threats in Grassland 

biome 

Extracted from GLC2000   

WGS84 UTM35S 

Soil Erosion Hazard Provided by Jay le Roux 

(unpubl thesis, ARC-ISCW 

Raster grid  

Resolution (100m*100m) 

WGS84 

Threatened endemic grassland 

bird species richness 

 Dbf files 

Species richness at QDS displayed on 

QDS grid 

Table 8. Input data layers used to create the composite transformation maps of observed 
threats to biodiversity 
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The new threat map was related to current land-cover classes and land-use types, the 

protected areas network, “high conservation value” areas and species distribution 

coverages for threatened endemic Grassland biome bird species- these were used as a 

surrogate to illustrate the biodiversity impacted by these observed threats.  

 

2.2.4.1. Invasive Alien Plants 

The South African Plant Invaders Atlas, SAPIA raw database was provided by the ARC-

Plant Protection Research Institute, Weeds division. The data provided information on 

the species richness of detected invasive alien plants (IAP) per quarter degree square, 

QDS, for all of South Africa from which species richness information for the Grassland 

biome was extracted. This grid was converted to a raster grid at the same resolution as all 

other datasets (25 ha pixels) and clipped to the same extent (figure 6). 

 

The QDS species richness values ranged from 0 – 329 species/QDS. For input into the 

composite threat map- the data were split into four classification groups using natural 

breaks (table 9). The severity of the threat posed by alien plants to grassland biodiversity 

is by no means equal across all invasive species- some species have more deleterious 

effects than others. However, invasion of the grassland landscape by alien plant species 

causes changes in ecosystem composition and thus alters ecosystem function and 

structure (Higgins & Richardson 1996, With 2002) and presents a threat to natural 

biodiversity at all hierarchical levels (van Wilgen et al., 2001). The presence of Invasive 

Alien Plants indicates replacement and therefore loss of the “natural” grassland 

vegetation and species richness was used as an indicator of the relative replacement threat 

to grassland biodiversity; higher species richness infers higher threat to biodiversity.  

 

Species richness/ QDS Impact score 

97 – 329 4 

47 – 97 3 

19 – 47 2 

0 – 19 1 
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Table 9. Impact scores used to classify the threat posed by species richness of invasive 
alien plants 

 
Figure 6. Invasive Alien Plant species richness across the Grassland biome 
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2.2.4.2. Road effects 

The spatial extent of the road effect zone is used as an ecological indicator representing 

potential impacts or threats to biodiversity presented by the presence and utilization of 

the road. If looked at in conjunction with actual threats (as shown by those land-uses 

resulting in land-cover change) and identified biodiversity hotspots as well as the 

protected areas network, this may enhance the new grassland threat map and 

identification of areas within the Grassland biome of high conservation value. 

 

The areal extent of the roads was calculated for roads within the Grasslands Biome using 

similar methods to those used by Stoms (2000); Reyers et al. (2001); Rouget et al.,(2004) 

and Reyers et al. (2005). A shapefile of all roads in South Africa was clipped to the 

extent of the Grassland Biome. The road network information did not extend over the 

borders into Lesotho or the portion of Swaziland that lies in the biome. These areas were 

therefore not assessed for road effects. Given that the value of the buffer width extends to 

either side from the road, and from the information given by Reyers et al (2001), it was 

determined beforehand that road types lower than Main roads would be lost during the 

conversion to raster format at the pixel size of 500m * 500m. Therefore only the road 

types presented in Table 10 were extracted from the road network. Each road type was 

then buffered to the extent of the affected distance as shown in Table 10 below, based on 

the method used by Reyers et al, 2001. Thereafter each road was assigned the appropriate 

threat score; the road effect zones thus created were converted to raster format, with the 

same resolution as the land transformation map (500m * 500m). 

 

South African Surveyor General 
Description 

 
Buffer width (m) 

Threat/ Biodiversity 
Impact Score 

National route 
1000 3 

Freeway 1000 3 

Arterial   500 2 
Main  250 1 

Table 10. Buffer width for each road type for calculating road effect zone applied on 

either side of the road (Reyers et al 2001) 
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2.2.4.3. Urban Impact 

The method used was based on that of Neke & du Plessis (2004). The urban areas within 

the Grassland biome were extracted from the GLC2000 dataset. Areas were calculated 

and grouped according to the classification scheme used by Neke & du Plessis (2004) as 

shown in table 11 below. 

 

 
Urban area size (km2) Impact Score 

> 100  4 

> 30  & < 100 3 

> 1  & < 30  2 

<1 1 

Table 11. Threat scores assigned to urban areas according to size, as in Neke & du Plessis 
(2004) 
 

2.2.4.4. Soil Erosion Hazard 

This was used as an indicator of unsustainable land-use practices such as deforestation or 

overgrazing, however, soil erosion is also a naturally occurring phenomenon (le Roux 

2006 unpubl) and as such can not be solely used to indicate the presence of unsustainable 

land use practices. This layer was provided by Jay leRoux (ARC-ISCW) and was created 

through the use of the Revised Universal Soil loss Equation (RUSLE) with a GIS. The 

map (Figure 7) provides information about the erosion potential over a given area 

described in tons/ha/year. The soil erosion hazard over the Grassland biome was 

extracted in the standard manner, classified and a threat score assigned to each category 

appropriate to its erosion hazard level (table 11).The classification classes were adapted 

from Bergsma et al. (1996). The erosion map as it was provided did not include soil 

erosion information for Lesotho and Swaziland. 
Erosion hazard Soil loss tons/ ha/ year Impact/threat score 

Very high >60 4 

High 25 – 60 3 

Moderate 12 – 25 2 

Low < 12 1 
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Table 11. Erosion hazard classes and threat scores as adapted from Bergsma et al. 1996) 

 

 

 
 

Figure 7. Erosion hazard over the Grassland biome (South Africa only) provided by Jay 
le Roux (ARC-ISCW) 
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2.2.4.5. Species richness of threatened grassland birds 

The distribution of threatened grassland endemic bird species was extracted from the 

South African Birds Atlas bird distribution (van Rensburg et al., 2002) and displayed as 

species richness per Quarter Degree Square (QDS) for input into the transformation threat 

map as shown in figure 8 below. This was converted to a raster of the same dimensions as 

all the other datasets. The species richness numbers were divided into four groups using 

and ranked with a potential impact score, ranked from lowest to highest species richness 

(1 – 4). The higher the species richness, the higher the severity of the impact of threats 

(non biodiversity friendly land-uses) will be.  

 
Figure 8. Species richness map of threatened and endemic birds in the Grassland biome 
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2.2.4.6. Creation of the Composite Grassland Transformation Threat Maps 

The use of land classes as surrogates for biodiversity has been widely advocated as an 

acceptable and better alternative to species distribution data in conservation planning 

(Noss 1990, Faith & Walker 1996, Reyers et al., 2001; Lombard et al 2003). Often, it is 

the only viable option over areas where species distribution data may be deficient (Faith 

& Walker 1996). Such an approach also allows the incorporation of landscape level 

ecosystem processes into biodiversity assessments (Noss, 1996; Rouget et al., 2003; 

Cowling et al., 2003; Lombard et al., 2003). There are some problems associated with the 

conventional use of species-based approaches in conservation planning including those of 

data incompleteness (Ferrier 2002) and spatial biases of more observable and known taxa 

(Haila & Margules 1996). Furthermore purely species-based approaches may miss entire 

habitat types (Lombard et al., 2003). Fairbanks & Benn (2000) highlighted that the 

hierarchical nature of biodiversity (Noss, 1993) means that in order to achieve more 

representative measures of biodiversity, such assessments should aim to incorporate data 

layers for more than one level of biodiversity. Integrating land-cover change data with 

spatial distribution data of biodiversity and protected areas may provide information on 

the location of biodiversity vulnerability to habitat loss (Menon & Bawa, 1997). This was 

integrated together with the threats posed by road effects, urban areas, invasive alien 

plants and soil erosion to create the map showing the extent of current grassland 

biodiversity threats. 

 

Therefore, two versions of the composite grassland threat map were created. The first 

map hereafter referred to as the Human transformation threat map shows only 

transformation threats that are occurring with respect to extant human land use activities. 

The threats to biodiversity are implicit in the occurrence and severity of grassland land 

class degradation (habitat loss and fragmentation). The input layers were the Grassland 

degradation, alien invasive plant species richness, road effects, urban impact and soil 

erosion hazard maps of the Grassland biome (table 6). 
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The second version, referred to as the Biodiversity threat map captures exactly the same 

information but with the inclusion of the endemic, threatened grassland bird species 

richness layer (table 6). Reasons for carrying this out were twofold. This version of the 

grassland threat map displayed where and to what degree biodiversity and human non 

“biodiversity-friendly” land uses coincide. Furthermore, it has been suggested in the 

literature that species information combined with land class-biodiversity surrogates gives 

more effective and representative information with regards to biodiversity (Pressey 1994, 

Lombard et al 1997, Noss et al 1999, Reyers et al., 2002, Cowling et al., 2003).  

 

The general method used to create either version of the grassland threat map were the 

same and were standard GIS operations carried out in ArcGIS v9.1. 

The input layers were combined in a standard overlay procedure using the raster 

calculator in Spatial Analyst. The biodiversity threat scores were tallied for each grid cell 

for all the input layers. The grid cells were classified according to their threat scores as 

high, intermediate and low and from this a threat map was created. Table 12 shows the 

classification used to create the human transformation map, which reflects only the 

occurrence and severity of transformation threats within the Grassland biome. 

 

Threat Score Threat category 

12 – 19 High 

  6 – 11 Intermediate 

  0 – 5 Low 

Table 12. Classification of threat score used to assign threat levels across the biome 

 

This threat map was compared to that produced by Neke & du Plessis (2004). It was also 

described in terms of location of zones of threat and the associated land uses. 

 

The surrogate biodiversity data was incorporated into this human transformation threat 

map using the same method as above to create the biodiversity transformation threat map. 

This provides information on the where the transformation threats coincide with the 

threatened grassland endemic birds and also the relative severity of that threat on them.   
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3. RESULTS

 

The results are presented in the same order as the analysis was conducted: land cover 

change analysis, the evaluation of these results against the predictions of change (Neke & 

du Plessis 2004) and finally, the transformation threat maps incorporating the results of 

the land cover change analysis. 

 

3.1. Results for Land-cover change analysis 

The differences between all 10 land-cover classes were quantified in the Land-cover 

Change Modeler in IDRISI. All the results pertaining to the analyses of land class 

transformations were calculated by the Land-cover Change Modeler. The results include 

data on the total extent of each land cover class in NLC1994 and NLC2000. Figure 9 

below shows the percentage of the total area of the Grassland biome that each land cover 

class contributes in each data set. The differences between the bars correspond to the total 

land cover change experienced per land class. 
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Figure 9. Percentage that each land class contributed to the total area of the Grassland 
biome in both NLC1994 & NLC2000. 
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The most noticeable increases have occurred over the grassland, thicket/bushland and 

urban settlements land classes, whilst the other classes have experienced a decrease in 

area. IDRISI Land-cover Change Modeler allowed for a further breakdown of these 

observed land class changes. The figures of change per land class are presented in tables 

3.1 and 3.2 below. 

 

In most instances, land-cover change for a given land class occurs as a “swapping” 

process- gains in area through conversions to that land class are accompanied by losses, 

at other locales, to other land classes (Pontius et al., 2004). Each land class experienced 

both gains and losses in area from conversions to and from the other land classes. The 

total land cover change experienced by each land class, in terms of gains and losses in 

area, is also shown in table 3.1. It is the difference between the gains and losses- net 

change, which determines whether a land class is said to have contracted or expanded in 

area. Table 3.2 shows the net figures of change experienced by each land class after gains 

and losses have been accounted for. 

 

The largest total land class conversions were experienced by the cultivated land, 

thicket/bushlands, grassland, degraded land and wetlands classes respectively (table 3.1, 

3.2). Cultivated and degraded lands experienced a relatively large net decrease in area 

and from table 2 one can see that this is mostly as a result of their transformation to the 

grassland land class. Most of the increase in bushland area can be attributed to grassland 

conversion to bushland as a result of bush encroachment. Finally, although the grassland 

land class experienced large losses in total area, the observed gains as a result of 

transformation of the other land classes were large enough that there has been an overall 

increase in grassland area (figure 9, table 3.2).  The grassland land class transformations 

area were further analysed and the results are presented below. 

 

 



 

 

Table 3.1. Land cover class conversions experienced per land cover class in km2 (1994 – 2000).  

 

 

 

 Bushland 
2000 

Cultivated  
2000 

Degraded 
2000 

Forest & 
Woodland 
2000 

F plantation 
2000 

Grassland 
2000 

Mines & 
Quarries 
2000 

Urban/ 
Built up 
2000 

Waterbodies 
2000 
 

Wetlands 
2000 

TOTAL AREA 
LOST (KM2) 

Bushland 94 √ 872.50 809.25 380.50 292.00 11494.25 35.25 176.75 111.00 285.75 14 457.25 

Cultivated 94 2377.50 √ 3959.25 156.00 514.75 25218.75 92.25 1011.00 216.00 630.00 34 175.50 

Degraded94 1463.00 2777.50 √ 62.00 57.50 10241.75 3.00 710.75 102.50 57.00 15 475 

Forest 
&Woodland94 

1585.75 85.75 66.00 √ 148.50 1068.00 1.50 33.00 9.00 15.00 3012.50 

Forest 
plantation94 

1000.00 329.25 85.25 235.25 √ 2197.50 18.00 66.00 16.50 43.75 3 991.50 

Grassland94 15580.00 16711 5809.75 544.25 2579.00 √ 291.75 1306.75 646.50 1648.00 45 117 

Mines & 
Quarries94 

39.00 79.50 2.25 0.75 6.25 368.00 √ 68.75 23.75 20.25 608.50 

Urban/ Built up 94 340.25 347.50 232.75 47.00 43.00 1254.50 75.25 √ 20.50 43.75 2404.50 

Waterbodies 
94 

31.25 53.25 11.75 2.00 9.50 227.50 4.75 10.50 √ 102.75 453.25 

Wetlands94 54.75 136.50 17.75 0 10.00 450.00 4.25 4.25 114.00 √ 791.50 

TOTAL AREA 
GAINED (KM2) 

22 471.50 21 392.75 10 994 1 427.75 3 660.50 52 520.25 526.00 3 387.75 1 259.75 2 846.25  
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Table 3.2. Net land cover change experienced per land cover class in km2 (gains – losses, taken from table 3.1)

LAND COVER CLASS CHANGE  IN KM2 (1994 – 2000)  

Bushland Cultivated  Degraded Forest & 
Woodland 

F plantation Grassland Mines & 
Quarries 

Urban W/bodies Wetlands 

NET LAND 
COVER 
CHANGE (KM2) 
 
(1994 – 2000) 

Bushland  √ 1505.00 653.75 1205.25 708.00 4085.75 3.75 163.5 -79.75 -231.00 8014.25 

Cultivated  -1505.00 √ -1181.75 -70.25 -185.50 -8507.75 -12.75 -663.50 -162.75 -493.50 -12782.75 

Degraded -653.75 1181.75 √ 4.00 27.75 -4432.00 -0.75 -478.00 -90.75 -30.25 -4481.00 

Forest &Woodland -1205.25 70.25 -4.00 √ 86.75 -523.75 0.75 14.00 -7.00 -15.00 -1584.75 

Forest plantation -708.00 185.50 -27.75 -86.75 √ 381.50 -11.75 -23.00 -7.00 -33.75 -331.00 

Grassland -4085.75 8507.75 4432.00 523.75 -381.50 √ 76.25 -52.25 -419.00 -1198.00 7403.25 

Mines & Quarries -3.75 12.75 0.75 0.75 11.75 -76.25 √ 6.50 -19.00 -16.00 -82.50 

Urban/ Built up  -163.50 663.50 478.00 -14.00 23.00 52.25 -6.50 √ -10.00 -39.50 983.25 

Waterbodies 79.75 162.75 90.75 7.00 7.00 419.00 19.00 10.00 √ 11.25 806.50 

Wetlands 231.00 493.50 30.25 15.00 33.75 1198.00 16.00 39.50 -11.25 √ 2054.75 
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NET LAND COVER 
CHANGE (KM2) 

-8 014.25 12 782.75 4 481.00 1584.75 331.00 -7 403.25 82.50 -983.25 -806.50 -2054.75  

 



3.1.1. Grassland land class transformation 

The figures of change that are of interest in this project are those specifically pertaining to 

land cover conversion of the grassland habitat land cover class. However, it is important 

to set the context within which this change is occurring. Thus all land cover 

transformations are described and discussed only in reference to the contribution that they 

may have had on the observed grassland land cover gains or losses. Considering only net 

figures of change does not provide a complete picture of the land cover change processes 

in action across the landscape (Mertens & Lambin 2000, Pontius et al., 2004). In order to 

have a comprehensive description of grassland transformation during the area of interest 

the gains and losses in area that ultimately result in a net increase in area were further 

analysed. The grassland transformations were extracted and are displayed in figure 10 

below, with the actual figures of grassland change presented in table 3.3. 

 

Transformation type Area (Km2) 

Losses    45 117.00 

Persistence 133 622.75 

Gains   52 520.25 

Grasslands Area 2000 = persistence+gains  186 143.00  

Grasslands Area 1994 = persistence +losses 178 739.75 

7403.25 Net area gained=  lArea2000 – Area1994l 

 

Table 3.3. Grassland land class areas that have undergone transformation between 
NLC1994 & NLC2000 
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Figure  10. Land-cover conversion of the grassland land class (1994 – 2000) 
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Figure 10 shows the spatial occurrence of the grassland land class transformations. Only 

the grassland land class was analysed for gains and losses, therefore blank spaces in 

figure 10 represent the area consisting of the other land classes. The grassland area that 

has not undergone any transformation detectable by the imagery that was used is labeled 

persistence. It can be seen from this map (figure 10) that persistence of grassland 

vegetation has occurred throughout the biome. Grassland cover transformations (losses 

and gains) have also occurred throughout the extent of the biome but they are especially 

noticeable along the biome boundary and in the central region of Lesotho. It appears that 

the spatial extent of the grassland land cover class has contracted away from biome 

boundary, this is especially noticeable along the eastern boundary. The grassland 

transformations, gains and losses are discussed in detail further on. It should be noted that 

the occurrence of gains does not negate the impacts of the losses that have been detected. 

 

It is apparent that the gain in grassland land cover was sufficiently large enough to off-set 

the incidences of grassland transformation- there has been a net increase of 7403.25 km2 

in the total area of the grassland class (table 3.2,3.3). The remaining grassland patches 

now make up 55.7% of the total area of the Grassland biome, an increase of  2.3% over 

the grassland extent as it was in 1994. The grassland land cover that has been lost 

between 1994 and 2000 constitutes 25.2% of the grassland area as it was in 1994, that is, 

over a period of 6 years, 25.2% of the grassland habitat land-cover class was lost to 

alternate land uses.  

 

The three land classes exhibiting the largest land cover changes, relative to the other 

classes (table 3.2) and excluding the grassland class are cultivated, thicket/bushland, and 

degraded. These are also the same three classes that have contributed the most to the 

grassland habitat land cover conversion (Table 3.2).  Their total contribution to grassland 

land cover change, relative to the other land classes are illustrated in figure 11 below. 
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Figure 11. Net contribution of each land-cover class to total grassland land cover change 
between 1994-2000. Negative values denote land class conversions causing loss of 
grassland area 
 

The positive values in figure 11 show the area and land cover class contributing to the 

total observed gains in grassland area, conversely negative values denote that the land 

class contributes to the losses in grassland land class area and by how much. Therefore 

the cultivated and degraded land classes contributed the most to the total gains in 

grassland area whereas the bushland (and wetlands) experienced net increases in area and 

thus contributed the most to the observed grassland losses. 

 

There are some land cover transformations that are highly improbable- such as a change 

from an urban area to forest plantation, these are obvious and easy to identify. It is very 

difficult to identify these unlikely changes where conversion from a natural state is 

concerned, as the land cover change is most likely due to changing human land use of 

that site. Therefore, all land cover conversions pertaining to the grassland habitat were 

assessed, including the highly unlikely transformations back to grassland cover as these 

contributed to gains. These included the apparent gains in grassland cover by conversion 

from urban areas and mines and quarries (Table 3.1). The unlikely transformations were 

not removed from the total figures of change because their effects were small compared 
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to the more extensive class conversions, accounting for only 3% of the observed gains in

the grassland class. Even highly unlikely conversions such as mines transforming to 

waterbodies could occur where quarries and old mine shafts and tunnels fill with 

underground water upon cessation of mining activities. This may have been an iss

the quality of the NLC2000 dataset since it had not been assessed for accuracy and error

of land cover classification; this is addressed in greater depth in the discussion. 
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The spatial distribution of the obser

land cover classes are shown in figure 12 below. Thereafter the contributions of each l

cover class to the “gains” in grassland cover are presented as a bar graph in figure 13. 

Were one to consider this alone, then the largest contributing factor to these apparent 

gains would be the regeneration of grassland vegetation on land that was formerly und

cultivation. This, together with clearing of large tracts of thicket/bushland areas and 

reclassification of degraded land cover to grassland respectively contributed the most

the observed gains (89.35%). The other land class conversions to grassland cover were 

marginal in comparison and are not treated in greater detail. The clearing of tree stands, 

in commercial plantations and indigenous woodlands due to clearcutting and/or fire, 

contributed less than 7% to the overall gains. From figure 10 one can see that bush 

encroachment is actually the main net cause of grassland losses. The areas that have

invaded by bushland vegetation are greater than the areas that have been cleared and thus 

gains detected. Conversely the transformations of the cultivated and degraded lands to 

grassland areas are therefore significant enough to supercede the observed losses to thes

classes, since they are largely responsible for the observed gains (figure 10).   
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Figure12. Spatial distribution of the observed gains in the grassland class from all other 
land cover classes 
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Figure 13. Percentage contributed by each land cover class to the observed gains in 
grassland cover. Percent values are derived from table 1. 
 

3.1.1.1.1. Grassland vegetation regeneration on cultivated land 

The largest overall net change is shown by the cultivated land cover class (table 3.2). This 

class showed a net decrease of 12 782.75 km2 in areal extent- over 60% of which was 

converted to grassland. Furthermore, in all other incidences of land cover conversion of 

the cultivated land class there is a net loss to other land cover with no net gain detected. 

So there was a general decrease in the land under cultivation between 1994 and 2001as a 

result of conversion to other land classes. The observed grassland gains from cultivated 

lands mostly occurred in areas conventionally associated with intensive farming activities 

in the Free State, North-West and Mpumalanga provinces (figure 12).  The graph in 

figure 5 shows that in fact regeneration of grassland vegetation on cultivated lands 

contributed the most to grassland gains. 
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3.1.1.1.2. Thicket/Bushland  clearing 

Thicket/Bushland clearing in the biome is the second largest contributing factor to the 

observed gains in grassland cover (figure 13). This has occurred across every province in 

the Grassland biome (figure 12). However, there is a very noticeable band of bush 

clearing along the eastern, mountainous border of Lesotho with South Africa 

(KwaZulu/Natal). There were also extensive gains in grassland cover across the Free 

State, Eastern Cape and Northern Cape provinces, especially in the areas along the 

interface with the Nama-Karoo biome. 

 

3.1.1.1.3. Reclassification of degraded lands 

The reclassification of degraded lands to grassland cover has occurred through out the 

biome but this is most noticeable across the Lesotho central plateau and in the Eastern 

Cape (figure 12). These observed gains may actually be an artifact of the different 

classification methods used to collate the two NLC databases and therefore data quality 

(Mark Thompson, pers.comm). The classification of degraded land cover for the NLC 

1994 was based on the loss of above ground cover and this may have resulted in the 

misclassification of large tracts of grassland patches depending on the season the satellite 

images used were taken (Mark Thompson, pers.comm). 

 

Although there may have been an overall gain in grassland cover (2% increase), the loss 

of patches of the natural grassland vegetation is still alarming because it represents loss of 

suitable habitat for the many floral and faunal species that are endemic to this biome and 

are specially adapted to this vegetation. Where a patch of habitat is lost completely 

through conversion, there is a corresponding loss of whatever biodiversity was supported 

by that patch; even if the loss of the habitat is not complete removal of that patch but 

reduction in its area. The fact that there has been “gain” of the detected grassland habitat 

type elsewhere does not mitigate this loss. 

 

 

 

 63



3.1.1.2. Grassland land class losses 

The spatial distribution of the land cover conversions from the grassland land cover class 

(losses) are presented in the map below (Figure 14). 

 
Figure 14. Spatial occurrence of grassland losses described with respect to the grassland 
cover conversion per land cover class 
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From figure 15 below it can be seen that land use change from grassland to cultivation 

and increasing bush encroachment respectively are almost equally responsible for 

grassland habitat loss- together they account for 71% of the grassland conversion. The 

other land cover conversions are marginal in comparison- transformation to a degraded 

state and commercial forestry activities are the next largest contributors to change at 13% 

and 6% respectively. It has been suggested that the bush encroachment into the biome be 

used as a proxy indicator of invasive alien plant spread into the biome (Neke & du Plessis 

2004), where it is established that spread of Invasive Alien Plants is linked to human 

activities (Richardson et al, 1997). If one takes this into account and considers the nature 

of the next most relevant contributors to grassland cover change, it is clear that human 

land use activities are without a doubt causing extensive grassland habitat loss within this 

biome.  
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Figure 15. Percentage contributed by each land cover class to the observed losses in 
grassland cover. Percent values are derived from table 1 
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As aforementioned, the land cover conversions that experienced the most change within 

the biome have also contributed the most to the observed grassland land class 

transformations. This has been manifested especially through grassland losses to 

thicket/bushland, cultivated areas and degraded areas. These are further described below. 

 

3.1.1.2.1. Increasing Bush Encroachment  

Bush encroachment is a major cause for concern because it is the most significant net 

contributor to grassland habitat loss- over 4,000 km 2 of semi-pristine grassland 

vegetation has been lost to bush encroachment and presumably the increasing spread of 

invasive alien plant species (Neke & du Plessis 2004). The Thicket/ Bushland cover class 

has experienced the largest gain- an overall increase of over 8000 km2. More than half of 

the observed net increase is due to conversion from grassland vegetation.  Bush 

encroachment into the remaining grasslands is responsible for the largest overall loss of 

this habitat type. This indicates an increasing presence of invasive alien plants, 

transforming the structure of the landscape from grassland cover. From the map above 

showing the spatial distribution of grassland cover loss transformation (figure 14) it can 

be seen that most of the conversion of grassland to thicket/bush is occurring at the 

boundaries of the biome where there is interaction with the other biomes. There are very 

noticeable patches of conversion in the North-Western province- an area that is important 

for agriculture the top-most section of the biome that lies in the Northern province and 

Swaziland– these areas are bounded by the Savanna biome, KwaZulu/Natal- where the 

biome interfaces with the Thicket biome and in the Northern Cape portion of the biome 

that intrudes into the Nama-Karoo biome. The occurrence of bush encroachment and 

perhaps in the case of the Northern Cape desertification, are known phenomena and have 

been well described in the literature (Bews 1917, Dyer 1937, Acocks 1953, Comins 1962, 

Morris 1976, Bredenkamp & Bezuidenhout 1990, O’Conner & Bredenkamp 1997). It is 

not possible to identify the factors that could be driving this bush encroachment into the 

biome at this scale and from the available information.  According to van Wilgen et al 

(2001) the grasslands of the Drakensberg escarpment have also been highly impacted by 

conversion to thickets of alien plant species and this is apparent in figure 4. Furthermore, 

there is also conversion from grassland to bushland in central Lesotho- at the very core of 
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the Grassland biome itself thus it is difficult to make sweeping statements about the 

possible causal factors although these could include the aforementioned bush 

encroachment, desertification, human disturbance of the landscape.  

 

Conversion of bushland to grassland has been detected but this may largely be as a result 

of human bush clearing activities (perhaps manual clearing or fire, natural or otherwise) 

causin regeneration of grassland not as a natural event but as a result of human 

interference, a similar phenomenon may be the cause of the apparent conversions of 

woodlands and forest plantation areas to grassland 

 

3.1.1.2.2. Waterbodies & Wetlands 

Particular care was taken in the interpretation of the conversions to Waterbodies and 

Wetlands given that 2000/1 was a particularly high rainfall season in Southern Africa and 

seasonal phenomena such as the surface extent of waterbodies and wetlands could have 

been affected by this. This is a likely explanation for the net  increase in wetlands land 

cover by over 2000 km2, especially considering that most of the change was observed in 

the grasslands and cultivated areas. It is likely that this observed increase from converting 

over a 1000 km2 of grassland habitat was not as a result of the creation of new wetlands 

but the increased surface extent of pre-existing wetlands due to the high rainfalls at this 

time.  

 

3.1.1.2.3. Urban Expansion 

The grassland habitat lost to urban expansion is small when compared with the other land 

cover classes (1306.75 km2 ), however for this land cover class in particular, the area of 

land that has been converted to grassland habitat (1254.50 km2) must be viewed with 

suspicion as a potential case of misclassification or mapping error and an artifact of the 

different methods used to carry out the classification of the respective datasets.  

Considering the results for growth of the Urban/ Built up areas one could assume that 

there has been urban expansion within the Grassland biome and at a superficial level one 

would assume that this expansion would be associated with known urban centres- since 

urban expansion usually denotes increasing urban sprawl. However this would be an 
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erroneous assumption in this case because although there was a net increase in the Urban/ 

Built up class extent, further analysis showed that the increase could not be perfectly 

related or traced to the growth of identifiable urban areas from the original dataset. 

Instead this increase was linked to an increased number of smaller urban areas from the 

grassland biome extraction from the NLC2000 dataset, mostly located in the interior of 

the Grassland biome, rather than expansion of the larger complexes such as 

Johannesburg-Pretoria and Bloemfontein in Gauteng and Free State provinces 

respectively. So urban expansion has occurred and this is mostly associated with smaller 

urban centres and small holdings that may not have been large enough to detect in the 

initial survey (NLC1994). Such outward expansion is usually associated with increasing 

human populations and therefore an increased demand for space and resources.  

 

3.1.2. Grassland Fragmentation 

The results of the fragmentation analysis of the remaining semi-pristine grassland patches 

carried out in FRAGSTATS are presented in table 3.4 below. 

 

Fragstats metrics GLC1994 GLC2000 

Total area 

(km2) 

178,739.75 186,143.00 

Proportion  

of landscape (%) 
53.5 55.7 

Number of  

Patches 
4,017 13,503 

Mean patch 

 Area (km2) 
44.50 13.79 

Area_range 148,421.25 162,755.25 

Area_coefficient of variation 5264.38 10160.90 

Total Edge 

(m) 
242,578,000 360,229,000 

LSI 143.37 208.71 

Mean Shape  

Index 
1.44 1.25 
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ENN_MN 

 (m) 
1,282.27 1,144.12 

ENN_variance 

(m) 

520,418 123, 974 

CLUMPY 0.8187 0.7402 

PARA 56.76 69.19 

CONNECT 0.0223 0.008 

Table 3.4.  Fragstats results of landscape metrics run on grassland patches (NLC1994 & 

NLC2000) 

 

The grassland habitat land cover class has become more fragmented between 1994 and 

2000. The number of patches has trebled and the average patch size is three times less 

than what it was in 1994. The corresponding increase in total edge implies more severe 

edge effects as the core area of the remaining patches has decreased and the perimeter: 

area ratio (PARA) has increased. On average the remaining patches have become more 

isolated from each other even though the distance between patches appears to have 

decreased (ENN_MN) this is best interpreted taking the decrease in patch size and higher 

patch numbers into account as shown in figure 16 below. That there is increasing patch 

isolation is also suggested by the decrease in connectivity- again by a factor of 

approximately 3 (CONNECT). 
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FIGURE 16. Illustrating patch isolation of the remaining grassland, where ENN_MN is Euclidean Mean 
Nearest Neighbour distance between patches 
 

The remaining grassland patches show an aggregated or clumped dispersion (ENN_MN< 

ENN_variance, CLUMPY) across the biome landscape, although the grasslands have 
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become marginally disaggregated over time, the CLUMPY for the NLC2000 dataset is 

still close to 1, indicating that the remaining patches are aggregated in clumps. This is not 

surprising and is a function of spatial auto-correlation- fragmentation of larger patches 

will result in smaller patches, aggregated in clumps, in the area that was formerly the full 

extent of the parent grassland patch. From figure 10 we can see that this pattern extends 

throughout the biome area, such that the overall shape of the grasslands biome, as it 

would be without transformation, is maintained. As the remaining grassland patches have 

become smaller- reduced by a factor of 3, there has been a corresponding increase in the 

number of grassland patches. This must be taken into consideration for the interpretation 

of the shape metrics. Overall, grassland patch shape has not become more complex in 

spite of the higher PARA value- in fact, the Mean Shape Index values suggest that the 

patches have not only become more compact but the shape has become less convoluted. 

Although the literature suggests that an increasing perimeter to area ratio is usually 

related to increasing patch shape complexity this is a scale dependant relationship, and 

the same effect will be produced by a decreasing patch size (McGarigal 2000) as is the 

case in this situation. Similarly the increase in total edge of the grassland vegetation class 

is better explained by the increasing number of grassland patches than by the notion of 

more convoluted patch shapes.  

 

The Fragstats indices provide information on the average trends of fragmentation- they 

do not give spatially explicit information- to this end, the results of the FRAGSTATS 

moving window analysis on mean patch size are presented below (figures 17, 18). Both 

images (for NLC1994 and NLC2000) provide visual information about grassland patch 

size distribution across the biome.  
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Figure 17. Results of fragstats moving window analysis showing mean patch size 

distribution in the Grassland biome (1994). Areas are given in hectares
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Figure 18. Results of fragstats moving window analysis showing mean patch size 

distribution in the Grassland biome (2000). Areas are given in hectares
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There may have been an overall decrease in patch size but this does not occur uniformly 

across the landscape. The average decrease in patch size is most detectable where there 

has been identified grassland cover loss. The increased range for area values, when 

considered together with the results of the moving window analyses tells us that the 

larger patch sizes have been well conserved or rather the least transformed by human 

activities thus habitat transformation in terms of loss and decreasing patch sizes is 

associated with the smaller grassland patches. This would suggest that there has been a 

change in the lower limits of area ranges and this supports the suggestion that most of the 

habitat loss has occurred in association with the smaller patch size classes. This is 

supported by the higher value for the coefficient of variation for mean patch size- this, 

when interpreted together with the higher patch numbers and decreasing patch size 

suggests that the size of the remaining grassland patches is greatly varying, with smaller 

patches where they were previously more uniform in area and larger (McGarigal 2000).  

 

There is a clearly identifiable band that runs through the biome along the escarpment and 

mountain ranges, and large areas across the Free State that consists of the largest 

grassland patches. These areas are the least susceptible to patch area contraction and 

splitting as they are clearly identifiable in both datasets. These large patches form the 

areas of grassland habitat persistence (figure 10) and thus form a core area within the 

biome that is not highly affected by transformation processes. These zones of persistance 

run across the highest part of the Grassland biome which is traditionally sparsely 

populated by humans and difficult to exploit. The large grassland patches that have 

persisted across the Free State do not coincide with any obvious geographical features 

that could possibly explain their persistence. According to Neke & du Plessis (2004) 

these areas show low suitability for cultivation and forest plantations- these land use 

activities were associated with large scale land cover conversion for NLC1994. These 

areas may in fact be associated with rangelands and livestock ranching (www.sanbi.org) 

that may not necessarily bring about land cover changes per se but may result in land 

cover modification which will still have an impact on biodiversity as the structure of the 

grasslands may be affected by livestock grazing- although this may not be apparent at the 
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large scale at which the analysis was carried out. The occurrence of these aspects of 

fragmentation- depends on the nature of the land use practices over that piece of land. 

Non-biodiversity friendly land uses require surface cover conversion and are therefore 

associated with intense fragmentation.   

 

3.1.3. Assessing Grassland habitat degradation 

Grassland degradation can not be considered solely in the context of habitat loss, 

decreasing grassland patch area sizes, decreasing patch isolation and the shape of the 

remaining fragments- all have an effect on the remaining biodiversity. Mean patch area, 

number of patches, patch shape complexity and inter-patch distances are amongst the best 

descriptors of landscape fragmentation (Neel et al 2004). The occurrence of habitat loss 

was incorporated into these results to provide grassland degradation map (figure 19). 

From which information on the degree of actual grassland degradation or transformation 

within the biome was drawn.  
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Figure 19.  Map showing Grassland Degradation a visual representation the combined 
effects of grassland loss and fragmentation 
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Grassland degradation Km2 % 

Low 49 700.18 26.7 

Moderate 109265.94 58.7 

High  27 176.88 14.6 

Table 3.5. Area in km2 and percentage of grassland degradation areas in the Grassland 
biome  
 

Only 26.7% of the grassland vegetation remains untransformed or in a semi-pristine state 

these areas of low transformation add up to a total extent of 49 700.18 km2. Considering 

the full extent of the biome- what would be classified as grassland land cover were it not 

for the observed transformation, it can be seen that the remaining patches of grassland 

that have been the least impacted upon by habitat loss and transformation represent only 

14.8% of this former extent. The least degraded grasslands form a belt that runs across 

the biome along and to the west of the escarpment and mountainous areas in the east and 

then up into the interior Free State Province, stretching into the North-West province. 

This is the same zone that has shown grassland cover persistence and has the largest 

remaining intact grassland patches.  

 

The majority of the Grassland biome area (58%) is experiencing moderate degradation. 

This includes most of the interior grassland biome and urban areas. The grassland areas 

that are in the worst condition (high degradation) are the same areas that have undergone 

extensive grassland losses, that have most probably resulted in either complete loss of 

grassland patches or shrinkage giving rise to relatively smaller grassland patches and 

larger inter-patch distances. Where these areas may not have been clearly visible in the 

map showing grassland gains and losses (figure 10) they are now clearly visible. There is 

some association of severely degraded grassland habitat with the larger urban complexes 

such as Johannesburg-Pretoria and Maseru but it is not as pronounced as one would have 

thought. For the most part, the areas of high degradation are associated with cultivated, - 

most noticeably in the North-West province, along the western Lesotho border with the 

Free State province and in the Free State province itself, and with the commercial forestry 

plantations in the  KwaZulu/Natal and Mpumalanga provinces. 
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3.1.3.1. Grassland degradation over the Eastern Mountains hotspot 

There is an obvious difference in the degree of grassland degradation in the areas of high 

conservation value on either side of the Lesotho-South Africa border. The Ukahlamba 

Drakensberg Park shows mostly low grassland degradation whereas the proposed area to 

be covered by the Lesotho National Park shows moderate degradation with some 

instances of high grassland degradation. The observed degradation on the Lesotho side is 

associated with thicket/bushland clearing and observed gains from degraded lands. This 

may have caused an increase in the number of small grassland patches observed over the 

area and thus inflated the observed degree of fragmentation. 
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Figure 20. Grassland degradation over the Eastern Mountains biodiversity hotspot 
showing differences in grassland degradation between Lesotho National Park (proposed 
area) and the Ukahlamba-Drakensburg Park. These make up the larger proportion of the 
Maloti-Drakensburg Transfrontier Protected area. Extracted from the Grassland 
degradation map (figure 19). 
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3.2.1. Assessing predictions of transformation 

3.2. Results for testing predictions of threat- Neke & du Plessis (2004) 

 80

The map of grassland degradation (figure 19) was used to assess if and where predictions 

of grassland transformation (Neke & du Plessis, 2004) held true in reality, to “test” their 

predictions as it were. This map was used because it offers a holistic visualisation and 

description of the actual incidences of grassland transformation- providing not only 

affirmation as to whether transformation did occur but also the relative severity of that 

transformation as a function of the intensity of fragmentation and habitat loss experienced 

at a given site. The predictions of threat made by Neke & du Plessis (2004) as they are 

described in the paper (Box 1) and shown in the published map of threat- figure 21 are 

summarized below.  

 

There were unanticipated difficulties in obtaining the original electronic images of the 

transformation threat map from the authors. As such, all “testing” was carried out in a 

qualitative manner, as described in the methods. The results therefore took the form of a 

discussion, describing where the predictions held true and where the predictions fell short 

and are presented below.  

Box 1 Summary of the Transformation Threat predictions by Neke & du Plessis (2004) 

 

• Low incidence of transformation over Lesotho 

• Intermediate transformation over large portion of Swaziland 

• High transformation especially in high rainfall, species rich areas along the escarpment- 

associated with commercial forestry plantations- especially in KwaZulu/Natal and west 

of Swaziland 

• Relatively small, isolated incidences of transformation scattered across the interior 

Grassland biome- most noticeably around Bloemfontein and portion of biome falling 

within the Northern Cape- adjacent and intruding into the Nama Karoo biome. 

• Transformation (intermediate and high threat) likely to occur in a concentrated band 

running along the eastern edge of the biome, extending west to encompass most of 

Gauteng, across northern Mpumalanga and westward to Swaziland. 
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Figure 21. Transformation threat map (Neke & du Plessis, 2004) compared against the Grassland degradation map

 



 

Overall the predictions of transformation and the general spatial predictions of where 

they will occur have been realized. There has indeed been grassland transformation along 

the eastern edge of the biome, over the south-west tip and in the Bloemfontein area. This 

affirmation of transformation should be interpreted carefully given that the areas that 

were predicted to have high transformation threat (from a pristine state) had already been 

transformed when the predictions of transformation were made. Therefore, taking the 

“testing” of these predictions on the basis of presence/absence of actual change one could 

say that the majority of the predictions of transformation were upheld, except for the 

predicted high intensity transformation over northern KwaZulu/Natal along the provincial 

boundary with the Free State. However, the model of Neke & du Plessis (2004) 

underestimated the occurrence of grassland cover transformation in the interior of the 

biome, especially the incidences of high land cover transformation or degradation, as it 

has been labeled here, in the North-Western and Free State provinces as well as along the 

western Lesotho border. The proportions of land that show grassland transformation also 

differ from the predicted area displayed in figure 21. 

 

The area stretching from the band of transformation threat along the eastern edge of the 

biome across the interior to the western boundary that was predicted to have low 

probability of transformation has in fact experienced substantial change. The loss in 

grassland cover has not occurred evenly across the biome- rather the incidences of loss 

are clumped together so much so that they can be delineated for descriptive purposes. Of 

particular interest are the incidences of grassland loss and high fragmentation in the 

North Western province, upper Free State, central Free State (around Bethlehem) and in 

Lesotho along the Western border and in and around the Lesotho National Park. 

(highlighted in the map of fragmentation and grassland condition) 

 

The prediction of high transformation occurring along the escarpment does not in fact 

hold true. This is the band that is associated with the largest, intact semi-pristine 

grassland patches that have actually undergone very little transformation (figures 10, 18, 

19). It is thought that this persistence may be attributed to the terrain which may be 
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difficult to exploit or transform even though the biophysical and climatic attributes of this 

region such as high rainfall, cool climate and good soils would have made it theoretically 

highly attractive for human exploitation. Since the predictions of transformation were 

based on human land use suitability information, it is clear that these did not consistently 

reflect the actual occurrence of land cover change caused by human land use across the 

entire biome. 

 

Of concern is the inability of the map to predict the land cover loss in the interior of the 

biome- the clumped distrinbution of these areas of high intensity fragmentation suggests 

that this is associated with a common land use activity over each area. For instance, the 

dominant land use over the area in the North Western province that shows high 

fragmentation is agriculture. Similarly the areas of high fragmentation in Gauteng are 

associated with the Johannesburg-Pretoria urban complex, the Ekhuruleni metropolitan 

area and the many industrial sites within this area where the dominant land use is human 

urban settlement and industry.   

 

3.3. Results for the assessment of current threats to Grassland Biodiversity (Current 

threat maps) 

The threat map shows the extent of current human transformation threats in the South 

African portion of the Grassland biome. Two of the input datasets, road effects and soil 

erosion hazard, did not have information extending into Lesotho and Swaziland. An 

assessment of current transformation threats including these countries would have given 

inaccurate information. These transformation threat maps (figures 22, 23) illustrate the 

current extent and relative severity of observed and measurable landscape-transforming 

activities. The grassland biodiversity within these areas has already been impacted upon; 

it is the biodiversity in the immediate surrounds that is then facing future threat. 

 

 Figure 22 below provides a human transformation threat assessment for the Grassland 

biome contained within South Africa. This map provides information as to the location of 

extant non biodiversity-friendly land uses and the severity of the associated impacts 

within the biome. It provides a visualization of where grassland habitat transformation, as 
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it is induced by human, non-biodiversity friendly land use is occurring. Table 3.5 

provides information about the areas within the Grassland biome that are currently facing 

high, medium and low transformation threats respectively. 

 

The highest human transformation threats are currently associated with urban/ built up 

areas, most noticeably the Johannesburg-Pretoria complex and Bloemfontein. There are 

also high transformation threat zones in the Northern Cape, Eastern Cape, Limpopo and 

Mpumalanga provinces. The influence of the roads can be seen clearly in this map. The 

National routes and freeways are clearly identifiable as tracts of high impact threat 

cutting across what would otherwise be large continuous tracts of low threat grassland 

vegetation land-cover. When one considers this, the severity of the road effects becomes 

apparent and the action of roads as agents of fragmentation is clarified in this threat map. 

Although the actual traffic and frequency of use of the roads has a bearing on the actual 

severity of the threat they pose, the effect of roads in biodiversity threat assessments 

should still be taken into account.  Furthermore, in some transformed land cover types, 

such as cultivated lands, the road verges and hedges may actually act as refugia for 

natural species (Witkowski, Thompson pers comm.).  

 

The intermediate human transformation threat zones occur across the biome. The blocky 

appearance is as a result of the coarser resolution data from the invasive alien plant 

species richness layer. 
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Figure 22. The location and relative severity of current human transformation threat 
activities across the South African Grassland biome 
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Threat Km2 % of SA Grassland biome 

Low 164 784.95 55.9 

Intermediate   92 267.78 31.3 

High    37 732.51 12.8 

Table 3.5. Surface area of Grassland biome under each human transformation threat class 
as shown in figure 22 
 

3.3.1. Current transformation VS Predicted transformation threats 

The map of current human transformation threats (figure 8) shows a different pattern 

from that suggested by Neke & du Plessis (2004) (figure 7). The greatest threat is 

associated mostly with the larger urban areas of the biome most noticeably Johannesburg-

Pretoria, Bloemfontein and Potchefstroom and the northern and south-western tips of the 

biome, rather than the high rainfall band in the eastern area of the biome. Not only has 

the areal extent of the high impact transformation threat zone been underestimated, the 

prediction of its spatial occurrence is also inaccurate. There is a large zone of 

intermediate grassland transformation threat running along the western edge of the 

Lesotho border, extending down into the Northern and Eastern Cape and up into the Free 

State that should not be there; similarly the model used by Neke & du Plessis fails to 

account for the intermediate threat area in the North Western Province- according to the 

predictions made both zones are located in low transformation threat areas. Generally the 

predictions of transformation in the eastern high rainfall areas have actually been 

observed but there the similarity between the predictions and the occurrence of the actual 

transformation threats ends.  

 

3.3.2. Threats to biodiversity: Potential VS Actual  

Incorporating the biodiversity information from the species distributions of threatened 

endemic grassland birds into the human transformation threat map (figure 8) provides 

information about where human threats coincide with biodiversity. This output is referred 

to as the Biodiversity threat map and is presented as figure 10 below. Table 6 below that 

accompanies this table and provides information about the surface area experiencing the 

respective level of threat to the biodiversity it holds. 
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Figure 23. Biodiversity transformation threat map for Endemic threatened grassland 
birds. Provides information on where human non-biodiversity friendly activities coincide 
with biodiversity and the severity of their impact  
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Threat  Km2 % of SA Grassland biome 

Low 147 982.2 50.2 

Intermediate 139 433.4 47.3 

High     7 369.6   2.5 

Table 3.6. Areas of transformation threat intensity for biodiversity per threat class in the 
South African Grassland biome 
 

With the incorporation of the biodiversity information the current transformation threat 

map resembles the predicted threat map of Neke & du Plessis (2004). If one merged the 

transformation threat classes of High and Intermediate threat instances, to simplify the 

occurrence of transformation threat to high/low format- then the overall distribution of 

actual transformation threat has occurred as it was predicted. However, again, the 

intensity or severity of the threats posed by the grassland transformation does not follow 

the patterns that were predicted, the trends follow the same descriptions as for the human 

transformation threat map (figure 9) without the species distribution information. The 

occurrence of high impact transformation was overestimated by Neke & du Plessis 

(2004) especially along the eastern edge of the biome. Less than 3% of the South African 

Grassland biome has high intensity transformation threats to biodiversity (Table 6)- these 

are the areas where threatened, endemic grassland bird species are facing the most threats 

as posed by human activities and habitat loss. These birds are facing the most threats in 

and around urban areas, especially in Gauteng where the land is under intensive use for 

industrial, manufacture and service provision activities.   

 

Again, similar to the human transformation threat map (figure 9) there is an 

underestimation of intermediate grassland transformation impact across the biome’s 

interior, particularly the area running along the western edge of the Lesotho border. 

Almost half of the biome within South Africa has been classified as having ongoing 

activities that pose an intermediate threat to biodiversity.  
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DISCUSSION 

 

4.1. Methodological Critique 

4.1.1. Sources of error in the Land-cover Change Analysis 

There were numerous sources of error that may have affected the accuracy of the land 

cover change detection results. The sources of error include the differences in data 

compilation and classification methods, land cover misclassification and human error 

(Reyers et al., 2005; Mark Thompson pers comm.). These errors could have occurred at 

any stage in the compilation of the NLC1994 and NLC2000 datasets and may be 

confounded with the results of the land cover change analysis. Quantifying how much of 

the observed land cover change is actually as a result of error in the change detection 

process would require information on the accuracy of the individual datasets. This could 

not be carried out in this case because where the NLC1994 dataset has undergone 

rigorous accuracy assessment (Fairbanks & Thompson 1996), the NLC2000 accuracy 

assessment results are not in the public domain. Until the NLC2000 database metadata 

are available, it will be difficult to determine the error component in these results. 

However, at the centre of this analysis is the assumption that appropriate actions were 

implemented to minimize or remove the influence of the identified sources of error.  

 

NLC1994 and NLC2000 were compiled using different classification methods. The 

NLC1994 was compiled through manual digitization of 1:250 000 space maps into vector 

tiles with a minimum mapping unit of 25ha  (Fairbanks & Thompson 1996). In contrast, 

the NLC2000 database was compiled using an unsupervised classification technique 

(Mark Thompson pers comm.) at a finer resolution of 30m*30m pixel size. Thus each 

dataset would have incorporated different classification errors; human misclassification 

errors for the NLC1994 and spectral misclassification errors for the NLC2000 database. 

However since both databases were compiled along the same hierarchical land-cover 

classification framework (Thompson 1996) the classes could be merged and in this way 

the majority of the misclassification errors would have been filtered out (Mark Thompson 

pers comm.). Furthermore, the resampling of the NLC2000 dataset to a coarser resolution 

of 500m*500m (25 ha) using a majority proportion rule would have also contributed to 
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the filtering out of the finer-scale mapping errors. Because the NLC2000 dataset had not 

undergone any accuracy assessment or ground-truthing, there was no correction for 

mapping error and therefore no way to verify that observed changes were as a result of 

actual changes or misclassification during the NLC2000 classification process.  

 

Human error would have been introduced through two main pathways. Different groups 

of people were involved in the NLC1994 database compilation from those in the 

NLC2000 database compilation and also, a larger number of people were directly 

involved in the NLC2000 mapping process than were involved in the NLC1994 process. 

These human errors would have been manifested through land cover misclassification. 

The methods used to reduce the influence of these misclassification errors have been 

previously discussed. 

 

Seasonality of images used to derive the two datasets means that some of the observed 

changes- especially as they pertained to the gains and losses in the grassland, cultivated 

and degraded land cover classes could have been seasonal and therefore not indicative of 

a real change in land cover. For example- the degraded land cover class in the NLC1994 

was defined as loss of above ground cover (Thompson 1996) but depending on the time 

of the year (as influenced by human activities, rainfall, temperature and fire) any of the 

three land cover classes could experience conversion to the degraded land cover class as 

it was given. 

 

4.1.2. Use and interpretation of Fragstats metrics 

The use of FRAGSTATS metrics requires one to apply a single conceptual model to 

describe the landscape of interest (either island biogeography or habitat matrix-corridor 

model) (McGarigal & Marks 1995, McGarigal et al., 2002). The conceptual model one 

chooses to apply may influence the choice and interpretation of the landscape metrics 

chosen to describe fragmentation on that landscape (McGarigal 2000). However, it is 

difficult to describe a large landscape in terms of a single conceptual model (McGarigal 

& Marks 1995). 
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Most landscape metrics provide a suite of indices describing landscape patterns and 

structure without explicitly focusing on functional characteristics of the landscape 

(McGarigal 2000). This makes it difficult to describe the fragmentation index values in 

terms of effects on landscape ecosystems. These fragmentation metrics can only describe 

patterns, they cannot determine cause and effect of the observed patterns and they are 

scale dependant (Getis 2002). Essentially this means that the value of the grassland 

fragmentation metrics and consequently their interpretation, would change if the analysis 

was carried out over the entire South African extent rather than only the Grassland 

biome. This makes it difficult to assess the degree and nature of fragmentation over the 

South African grasslands and compare it with other grasslands worldwide; for example, if 

one wanted to assess the standing of the biome in terms of global grassland fragmentation 

trends. One of the difficulties faced when working at the landscape level is that the 

effects of land cover fragmentation will vary across spatial scales depending on the 

organisms under consideration (Olff & Ritchie 2000, McGarigal 2000) and this created 

difficulties in describing the severity of the observed grassland fragmentation to 

biodiversity. However, since this analysis was carried out without particular focus on a 

specific organism, the fragmentation metrics could only be interpreted in terms of the 

landscape units (grassland patches) under consideration.  

 

Some of the metrics are difficult to compare- for example those indices that have no 

upper limit, the absence of a ceiling makes it difficult to relate those values in terms of 

the significance of the observed differences between NLC1994 & NLC2000. 

 

4.1.3. Testing predictions of land-cover change 

Due to difficulties faced securing the original data used by Neke & du Plessis (2004) for 

comparative purposes, the actual “testing” of the predictions made was carried out as a 

visual inspection of the occurrence of landcover change and the differences and 

similarities with the threat map. Ideally this should have been carried out via the use of 

Spatial Analyst in ArcGIS to compare loss of grassland cover with possible 

transformation threat. Given the definition of threat for this analysis, relating grassland 

cover loss to the potential transformations as they were provided by Neke & du Plessis 
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(2004), as well as from the actual descriptions that were provided in the text of this paper 

were adequate to fulfill the second objective, The word “test” is in quotation marks to 

highlight the fact that it was not the intention of this study to provide quantitative values 

of how well the predictions upheld the situation on the ground but rather to describe 

whether the trends and patterns they described have come to pass.  

 

4.1.3.1. Assumptions of negative impact 

There were two threat factors whose presence, for the purposes of this project, were 

assumed to impact negatively on grassland biodiversity- Invasive Alien Plants and road 

effects. The inability to distinguish between positive and negative effects of some 

components of the composite threat map is an issue that should be addressed in future 

assessments of their impact on biodiversity. Roads can have positive and negative effects 

depending on the land cover around it, so roads may need to be sectioned in good/bad 

areas, that is, verges and hedges in agricultural landscapes may harbour natural species. 

This depends on the dominant on-going land cover/ land use activities within that area 

(Mark Thompson, pers comm.)  Furthermore, the use of SAPI A species richness data for 

invasive alien plants per Quarter Degree Square (QDS)- may not actually be a good 

indicator of threat because not all invasive plants have the same impact on biodiversity; 

there are differences in the nature and severity of their invasion across a landscape. In 

future analyses an alternative could be use of the spatial sedistributions of the 10 most 

invasive and high impact alien plant species in the Grassland biome- then threat would 

have been scored on the basis of species richness of the 10 plants.  

 

4.1.3.2. Urban threat evaluation 

An alternative and perhaps more meaningful method to assess this would have been to 

base the biodiversity impact score of urban areas not on the current spatial extent of the 

urban areas but rather on the either the rate or magnitude of urban expansion between the 

1994 and 2000 data. This would have given information on the actual or observed 

transformation threat posed by each urban or built-up area. Although spatial extent is still 

a good measure of threat- in this case it provides information on potential threat. The 

assumption upon which this scoring of urban areas according to size being that the larger 
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urban areas presumably pose a larger threat because they signify a higher potential for 

human activities that could cause land cover conversion such as urban sprawl, 

industrialisation and service provision. However, in this case this proved difficult. 

Although there was a net increase in the urban area land cover class, (table 2) further 

querying of the data showed that this was as a result of the detection of new urban areas 

in the GLC2000 dataset, mostly across the interior region of the grasslands rather than 

sizeable expansion of identifiable urban areas. It is not clear whether the detection of the 

“new” urban areas is due to new human settlements and built-up areas cropping up 

(which would be an example of urban sprawl) or due to misclassification in either or both 

data sets. Especially since the level of accuracy of the NLC2000 dataset has not been 

evaluated. 

 

4.1.3.3. The effect of incorporating different resolution data sets 

In the creation of the threat maps, the biodiversity distribution data (endemic grassland 

birds and invasive alien plant distributions) were provided at a much coarser resolution 

than the rest of the input datasets. As a result there was dilution of the spatial accuracy of 

the identified areas of threat- especially with reference to the high threat zones. It is 

highly likely that there would have been some loss of information. However, the patterns 

of the occurrence of threats to biodiversity are still detectable and still provide valuable 

information as to the status of the Grassland biome in South Africa today.  

 

4.2. Testing Predictions of Land-cover Transformation Threat 

For the purposes of this project, confirmation of the predictions of transformation threat 

(Neke & du Plessis 2004) was realized by observed grassland class loss or transformation 

(degradation in figure 19). The predictions of grassland transformation held true but the 

model used by Neke & du Plessis (2004) underestimated the extent to which the 

grasslands have been transformed, as well as the spatial distribution of the land cover 

transformations. The results show that there are two major causes of grassland 

transformation within the Grassland biome; cultivation and bush encroachment are 

mostly responsible for grassland habitat loss. However, the areas that show the highest 

grassland degradation in the Free State and North West provinces, as well as in Lesotho, 
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are areas that were predicted to have low transformation threat potential. This is 

surprising considering that the predictions incorporated information about cultivation 

suitability for the main crops commonly grown in the Grassland biome and these are 

areas that are associated with agriculture. As the predictions of threat are held up against 

the reality of observed transformation, it must be remembered that all areas that were 

classified as having high potential transformation threat (and impact on biodiversity) had 

already been transformed at the time of the first analysis, this means that in all 

probabilities an intensification of the transformation already present was to be expected 

between the datasets. Unfortunately this could not be discerned from the data available. 

 

If one considered only the information garnered from an analysis of the relative 

degradation of the remaining grassland patches in terms of loss and fragmentation- a very 

disturbing picture becomes clear, an alarmingly small proportion, less than 27% of the 

remaining grassland patches are in a relatively good condition, having low incidences of 

transformation and fragmentation. This proportion actually comes up to little less than 

50,000 km2, which accounts for about 15% of the total extent of the Grassland biome.  

From the data available it is not possible to quantitatively assess and therefore validate 

the observations of grassland degradation and what this translates to in terms of the 

implications for the biodiversity within the remaining grassland patches but a prediction 

of the possible impacts on biodiversity can be made from the literature.  

 

4.2.1. Transformation between Cultivated land and Grassland habitat 

It would appear from the results that regeneration of grassland vegetation from formerly 

cultivated land is the leading contributor to the observed gains or increase in the 

grassland land cover class extent. This suggests that land which was once under intense 

cultivation is now either lying fallow and re-colonisation or regeneration of grassland 

vegetation is occurring, or that there has been a change in the type of cultivated crops, at 

a very large scale such that these crops have a similar enough to grassland vegetation to 

give the same spectral signature as the semi-pristine grasslands, and thus 

misclassification has occurred. However, it is highly unlikely that the latter has occurred 

to such a great extent and it is more probable that it is a combination of the two 
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suggestions. There was a net conversion of cultivated lands to other land cover classes 

and this decrease has been detected in similar studies of the Grassland biome over the 

same time frame (Reyers et al 2005, Murray 2005). Taking mapping errors into 

consideration, this still suggests that there is less land under cultivation within the 

Grassland biome than there was in 1994. Such a pattern of land cover conversion 

suggests that there may have been a shift in land tenure policies in these areas, as this 

could have a possible bearing on the remaining grassland patches it would be of interest 

to investigate whether this is indeed the case. It was predicted that there would be a 

decrease in cultivation in the grasslands after the South African government stopped 

subsidizing agricultural activities in the mid-1990s (Neke & du Plessis, 2004) since most 

of these agricultural activities were mostly maintained through costly irrigation 

programmes and it would appear that this has indeed occurred but the drivers of this 

change can not be verified or investigated at the coarse scale at which this investigation 

was carried out.  

 

However, herein lies an interesting state of affairs, there seems to be a contradiction in 

the results- whilst the conversion from cultivated land is the largest contributor to the net 

gain in grassland habitat extent (figure 4), the transformation of natural grassland 

vegetation to cultivation by humans is also the leading reason behind grassland habitat 

loss (figure 6). This would seem to suggest that perhaps the observed “gains” from 

cultivated lands may be a misrepresentation of the current state of the grasslands that in 

fact, the detected gains are as a result of seasonality- land lying fallow as part of a 

management plan or at a particular stage in the growth of the cultivar that produces a 

spectral signature similar to the grassland land cover class. There was an increase over 

the period of interest in the area of land within the Grassland biome used to cultivate 

sugar cane, sunflowers, soya beans, fodder crops such as Lucerne (Murray 2005) which 

may or may not have contributed to the misclassification of such large tracts of cultivated 

land as grassland. Even the other studies that detected the same decrease in cultivated 

lands state that these results should be interpreted carefully due to the inherent 

differences between the two datasets (Reyers et al, 2005). 
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We must also remember that patterns of land use/ land cover change are shaped by the 

interaction of economic, environmental, social, political and technological forces 

(Lambin et al 2001). Using satellite imagery and GIS analyses allows us only to detect 

the incidences of change, we cannot identify the drivers of this change within the 

Grassland biome. These observations are therefore for the most part simply that- 

descriptors of the ground situation. We can only comment on the land cover conversions 

that are associated with the observed changes and make suggestions at to the possible 

consequences and effects on biodiversity but cannot delve deeper into the causal factors 

or comment on process. This is of particular interest in this case since changing 

Government agriculture policies (removal of subsidies and dropping maize prices over 

the period of interest) may have confounded the realization of the predicted 

transformation threats.  

 

4.2.2. Bush encroachment and invasion by alien plant species 

The spread of invasive alien plants across a landscape is facilitated by fragmentation and 

habitat loss (Harrison & Bruna 1999, With 2002), especially with the increase in edge 

effect, given that it is known that aggressive alien species attain particularly large 

concentrations at the edges of the natural vegetation of an area (Harrison & Bruna 1999). 

Given the condition of the grasslands, it therefore does not come as a surprise that bush 

encroachment and the establishment of thickets has contributed the most to degradation 

of the grassland habitat land cover class as a whole. It is unfortunate that the species 

composition of the newly established thickets could not be confirmed as this would give a 

better indication of the threat posed by the observed bush encroachment. Although their 

impact as agents of land cover transformation (resulting in disruption of ecosystem 

functioning) does indeed classify them as threats, alien plants do not all have the same 

impact on ecosystems (Richardson et al, 1997). Previous studies have identified a subset 

of plant species that are particularly invasive and pose threats to biodiversity in the 

Grassland biome, these include Prunus persica, Solanium mauritianium, Acacia 

mearnsii, A. dealbata, triffid weed,Chromolaena odorata, , Rubus species Melia 

azedarach and Jacaranda mimosifolia, Eucalyptus spp, Lantana camara (Richardson et 

al 1997, van Wilgen et al., 2001, Richardson & van Wilgen 2004). It would have been of 
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interest to see whether these are in fact the same species that are behind the observed 

bush encroachment. The impacts of these invasions are well documented- and include 

increased water consumption, out-competing and replacing indigenous grassland species, 

decreasing the diversity of ground-dwelling invertebrates, decrease landscape diversity 

(overall decrease in biodiversity), increasing soil erosion, decrease productivity, poison 

livestock and game, alter nutrient cycles and therefore impair ecosystem functioning 

(Richardson et al 1997, Baars and Neser 1999, van Wilgen et al 2001, le Maitre et al 

2002). Invasion by alien plants is a very real threat to biodiversity in the Grassland 

biome, one that requires urgent action now. There are various projects, most noticeably 

the Working for Water and Working for Wetlands projects that are currently in place in 

an attempt to combat this phenomenon, that have been running since 19959. Since the 

period between the data collection includes the time at which these programmes were 

begun it is difficult to comment on the effectiveness of these initiatives as information on 

the rate of spread before then is not readily available. However, even with active 

programmes fighting this threat the establishment of thickets in the biome is still the main 

contributor to grassland habitat loss. Either more resources need to be given over to this 

fight or the mode of combat needs to be reconsidered, or the drivers of this conversion 

are beyond the reach of direct, physical human interference to stop. In any case, this 

needs to be red-flagged as a real concern for any and all conservation activities, plans or 

policies within the Grassland biome, now and in the future. 

 

4.2.3. Biodiversity hotspots, National Parks and Grassland Degradation 

The Eastern Mountains biodiversity hotspot over the Lesotho highlands and the 

Drakensberg Mountain range is an area of high conservation value10 but it is also divided 

by the Lesotho-South Africa border. Of particular interest is the differing land uses on 

either side of the border during the period of interest (1994-2000/1). The Lesotho 

highlands are under cultivation and human settlement and the grasslands here are 

impacted upon by bush encroachment, cultivation activities and land degradation. In 

direct contrast to this, the land within the hotspot on the South African side is under 

                                                 
9 http://www.dwaf.gov.za/wfw/ Accessed on-line on 20/01/2007 
10 http://www.maloti.org Accessed on-line on 12/04/2007 
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formal protection, specifically through the Ukuhlamba Drakensberg Park. The impacts of 

the differences in land use are very obvious (figure 10)- the Ukuhlamba Drakensberg 

Park exhibits low grassland degradation and the corresponding area in Lesotho exhibits 

medium to high grassland degradation. However, the Maloti-Drakensberg Transfrontier 

conservation area was established in 200111,12. This joint project between the 

governments South Africa and Lesotho seeks to improve conservation activities within 

the biodiversity hotspot, especially on the Lesotho side of the border where there had 

been no formal protection of the Lesotho highlands13. The region in Lesotho that is to be 

included in the Maloti-Drakensberg Transfrontier conservation area is encapsulated by 

the proposed boundaries of the Lesotho National Park14. This particular transfrontier 

project presents a unique opportunity to measure the effectiveness of the grassland 

conservation programmes that are and have been implemented in this region since its 

inception in 2001, using the Ukuhlamba Drakensberg Park as a control. It would be of 

great interest to continue to monitor grassland degradation over this area into the future. 

 

There are degraded areas whose extent begins immediately outside the boundaries of the 

Qwaqwa and Golden Gate Highland National parks. This suggests that there are 

processes in this area that are bringing about such transformation. The fact that there is an 

observable difference in grassland condition on either side of the artificial boundary 

imposed by the national park limits suggests that these processes are as a result of human 

non-biodiversity friendly land use activities. These two National parks are specifically 

mentioned because this phenomenon is most noticeable over this locale and this is not to 

imply that it is not occurring elsewhere. A plausible interpretation is that in these areas 

the protected areas are serving their purpose - to maintain biodiversity by excluding 

threats (Soule 1991, Faith & Walker 1996, Margules & Pressey 2000). However, the 

association with areas of degradation and the implication of non-biodiversity friendly 

human uses beginning at their very fences brings the future sustainability of some nature 

reserves into question. In the event that local human-exploited grassland resources were 

                                                 
11 http://www.sanbi.org/biodiversity/umthombo2.pdf  Accessed on-line on 12/04/2007  
12 http://www.maloti.org Accessed on-line on 12/04/2007 
13 http://www.tbpa.net/case_08.htm Accessed on-line on 12/04/2007 
14 http://bgis.sanbi.org Accessed on-line on 24/02/2007 
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to become exhausted or scarce, it is possible that local rural communities may begin to 

look to these protected areas as resource bases, including space for settlement. If and 

when such a situation occurs there may be increased incidences of conflict between the 

people living in and around these nature reserves and the conservation priorities of land 

and wildlife management policies. Such a scenario may seem to be a far-fetched 

extraction from the observed incidence of high grassland degradation near these protected 

areas but it is not. Most detrimental impacts on conserved habitats come from the 

surrounding landscapes and communities (Saunders et al 1991, Fox et al 1996). It is an 

aspect that should be taken into due consideration as it does have implications for 

maintaining biodiversity and the role of reserve areas. In fact such a scenario is addressed 

in South Africa’s policy for biodiversity and conservation, one of the objectives of which 

is to “promote socially and ecologically sustainable development in areas adjacent to or 

within protected areas” (DEAT, 1996). It is recognized that for protected areas to be 

viable and sustainable entities within the social context in which they exist they must be 

socially, economically, and ecologically integrated into their immediate environment 

(Hobbs & Saunders 1991, DEAT, 1996). Striking the balance between conservation and 

local economic development in such rural settings is a challenge for many nature reserve 

managers requiring widespread consultation and co-operation between conservation and 

protected area management teams and the surrounding communities (Saunders et al 1991, 

Fox et al 1996). Given that such incidences of grassland degradation are evident in such 

close proximity to some of the larger protected areas, this may indicate that this is 

something that had not been adequately addressed before since it is not clear how many 

years of human exploitation by the surrounding communities would have produced the 

observed impact. It remains to be seen whether the new policy and plants, specifically 

addressing such issues as they are described in the South African policy paper will bring 

about a change in this regard or indeed, have any impact at all. 

 

4.3. Human influences in grassland transformation 

The transformation threat maps assess and illustrate the impact of current human 

activities across the grassland biome, yet no direct measure of human presence such as 

human population density within the Grassland biome was used. This was because it 
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would have been difficult to prove the relationship between human densities and 

grassland degradation in a robust manner (Ed Witkowski pers. comm.) Instead indicators 

of human land use activity, such as urban settlements and roads were used to assess the 

threats posed by humans. However, the actual change (increase or decrease) in areal 

extent of urban areas is not central to land cover change issues (Lambin et al 2001) as it 

does not adequately capture the indirect human activities emanating from that expansion 

that will cause grassland transformation within the biome. So although there was a 

relatively small increase in urban extent, this should not be taken as an indicator of low 

threat posed by these urban settlements. The very fact that high threat areas are mostly 

centred about large urban complexes disputes this interpretation. The ecological 

footprints of these expanding urban areas extend further than the extent of the built up 

areas, in terms of provision of imported goods and services for the inhabitants of these 

areas, peri-urban agriculture, demand on water resources and electricity, intensification of 

agricultural practices as demand increases- resulting in increased use of chemical 

pollutants etc (UNEP 2006, Lambin et al 2001) to name a few. However, these indirect 

transformation threats that altogether constitute the ecological footprint of a given urban 

area are difficult to define in a spatially explicit manner (UNEP, 2006). Thus, in the case 

of this analysis of transformation threats, using the methods described, it is possible that 

the spatial extent and magnitude of urban/built up areas has been under-represented.  

 

Concentrated human settlement in a given area also influences land cover changes in 

other areas within the biome through urban-rural linkages such as roads and railway lines 

(Lambin et al 2001).  Thus the inclusion of roaded areas to assess transformation threats 

to grassland biodiversity was vindicated in that they are clearly identified as strips of high 

threat areas cutting across swathes of low threat grassland habitat. The actual impact of 

roads in terms of increased mortality and disturbance is influenced by other factors such 

as traffic volumes, road use and season etc (Stoms 2000, Reyers et al 2001). Thus in 

reality, of the roads that were included in the analysis some will have greater impact on 

biodiversity than others depending on these factors. However, their action as agents of 

fragmentation is clearly illustrated (figures 22, 23) and it is felt that this alone warrants 

their classification as high transformation threat zones. The possible repercussions of 
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urban expansion and perhaps higher densities of humans in some areas, all bring about 

grassland habitat loss and fragmentation, directly through need for space for physical 

urban expansion or indirectly as previously described. The impacts on biodiversity of this 

degradation are further described below. 

 

4.4. Grassland Habitat transformation 

4.4.1. Loss and fragmentation: implications for biodiversity 

The endemic grassland bird threat map shows the areas where high levels of human 

threats and biodiversity coincide. Depending on the needs of the conservationist, the 

biodiversity surrogate could have been replaced by the distribution data of pre-identified 

vulnerable species and used to identify where they are most at risk from transformation 

and habitat loss (With & King 1999, Fahrig 2001). Biodiversity within the Grassland 

biome is under severe threat from land cover transformation. Only 56% of the entire 

extent of the Grassland biome is still under the natural grassland habitat land cover class. 

The remaining grassland patches show the impacts of habitat degradation as exhibited 

through habitat loss and fragmentation. Further analysis of these patches showed that the 

grassland patches that show low habitat loss and fragmentation make up 26.7% of the 

grassland habitat extent- a figure of less than 50, 000 km2, almost the same area of 

grassland habitat that was lost due to land cover conversion between 1994 and 2000. 

These low degradation areas are concentrated in the interior of the biome, along and to 

the west of the escarpment and mountainous regions. There have been gains and losses in 

the grassland land cover class. The area of grassland losses totals to 25 % of the 

grasslands as they stood in the NLC1994 database, where the main agents of loss were 

conversion to cultivated and thicket/bushland land cover classes.  

 

The observed trend of grassland habitat loss primarily through conversion to cultivation 

is familiar and a recognized global phenomenon (Meyer & Turner 1992, Lambin et al 

2001, Theobald 2003), as is the increasing threat that is posed by invasive alien plants 

(Cronk & Fuller 1995, Richardson et al 1997, Harrison & Bruna 1999). Therefore it 

would appear that the unsuitability of the terrain for human exploitation over the 

escarpment is a likely explanation for the band of least degraded grassland patches that 
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occurs here. However, there is a question mark hanging over the grassland patches that 

are located in areas where livestock ranching is the primary land use that have also been 

classed as having low degradation. The biodiversity encompassed in these patches may 

still be facing substantial threat as a result not of habitat loss per se but from habitat 

modification as a result of grazing and browsing activities of the supported livestock. 

This may create a situation whereby the land cover is still classified as grassland but the 

species composition may be altered to such an extent as to impair the functioning and 

ability of those patches to support the native biodiversity.  

 

 Habitat loss will result in population decline proportional to the amount of habitat lost 

(Fahrig 1997, Bender et al 1998), considering this, we can estimate that since 1994 there 

may have been a decline of 25 % of Grassland biodiversity, proportional to the total 

amount of grassland habitat that was lost. For the most part this habitat loss is associated 

with the smaller grassland patches along the edges of the biome, where either the patches 

themselves are lost, in which case the biodiversity within is also lost but the patches 

themselves are also shrinking, such that the core area is decreasing creating a situation 

where the patch may consist almost entirely of edge. With respect to the remaining 

biodiversity this means that there is a strong selection pressure in favour of grassland 

patch edge specialists species, and a selective pressure against the resident, endemic 

interior specialist species in these areas in particular (Bender et al, 1997).  

 

However, it is not only the loss of habitat that determines the effect of transformation on 

biodiversity but the associated degree of fragmentation in terms of patch size and edge 

effects (Bender et al 1997). Fragmentation effects compound the impacts of habitat loss 

resulting in more severe habitat degradation (Fahrig 1997) and therefore worse 

transformation threats to biodiversity. It has been shown that the remaining grassland 

vegetation has become more fragmented, on average the grassland patches are becoming 

smaller in size, more numerous with a corresponding increase in edge and therefore edge 

effects. As a result, grassland patch interior specialist species should be the most heavily 

impacted upon by current fragmentation trends. The observed increase in total edge 

makes the remaining grassland habitat ideal for edge specialists that are able to exploit 
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these conditions as well as for generalist grassland species that are able to thrive in most 

conditions. The decreasing patch sizes do not favour the survival of large-bodied 

specialist animal species and top-predators that of ten require large habitats (Harrison & 

Bruna 1999,), so there should be bias towards the survival of smaller, patch interior 

specialist species. So the observed pattern of fragmentation also has an impact on the 

food webs and pyramids in the Grassland biome.  

 

The increasing isolation of the remaining patches and the observed decrease in 

connectivity between them, may lead to the creation of metapopulations that will be 

subject to local extirpations as these populations go into decline and are not replaced. A 

means of getting around this would be to improve connectivity between the patches so 

that there is better dispersion between the patches (Harrison & Bruna 1999, Kareiva & 

Wennergren 1995, Rosenberg et al 1997) but there is great debate over the effectiveness 

of wildlife corridors as conduits in the literature (Simberloff et al 1992, Hanson 1994, 

Fahrig 1997, Rosenberg et al 1997). There is little conclusive support with regards to the 

use of wildlife corridors by faunal species as conduits between patches (Forman & 

Alexander 1999) but without proof that they do not have an effect and are in fact utterly 

useless, it would be wise to maintain and use movement corridors as means of mitigating 

the effects of the grassland patch isolation observed in the Grassland biome. The use of 

roadside verges or corridors as “roadside reserves” between grassland patches, as done in 

Australia (Forman & Alexander 1999) could be considered as a means of increasing 

connectivity between patches, especially where the roads run across heavily transformed 

cultivated landscapes in the biome. “Roadside reserves” refer to strips of natural 

vegetation receiving little maintenance running adjacent to roads. Considering that 

cultivation is the leading cause of grassland land cover loss, these strips could also act as 

refugia for the last remnants of native grassland biodiversity (Cale & Hobbs 1991, 

Lamont & Blythe 1995). The proximity of these “reserves” to the roads could prove to be 

a challenge with regards to the effectiveness of these corridors. 

 

The observed distribution of the remaining grassland patches whereby there is an 

apparent aggregation of large, relatively undisturbed grassland patches in the central 
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interior, coincident with the highest areas of the biome should have an influence on 

distributions of the remaining biodiversity with respect to habitat requirements. Those 

species that are associated with the areas that are severely degraded (figure 6) are likely 

to be lost should this trend continue and the composition of the remaining biodiversity is 

likely to show a high degree of alteration from the pristine state as a result of these 

processes of habitat loss and fragmentation and their impacts on species composition. If it 

were possible to compare the biodiversity within the grassland biome between the two 

datasets, it is most likely that not only would we find an overall decrease in the number 

and distribution of endemic grassland species, the variety of species and inter-specific 

interactions would also be much diminished with an increased abundance of smaller-

bodied, widespread generalist and edge specialists (Taylor & Merriam 1995, Harrison & 

Bruna 1999, Gibbs & Stanton 2005, Hoekstra et al 2005 

 

The literature tells us that habitat loss and fragmentation will cause an ultimate decrease 

in population abundance and occupancy and species richness and distribution. Contrarily, 

there have been observed instances whereby heavily fragmented landscapes have shown 

increased species richness in spite of intense human activity (Fairbanks 2004). This may 

be attributed to the creation of new, more diverse habitats as a result of fragmentation 

processes, thereby attracting a wider array of generalist and edge specialist species to 

colonise these habitats (McKinney & Lockwood 2002, Fairbanks 2004). Fairbanks 

(2004) found that this increase in species richness is correlated with agriculture, 

commercial forestry, water impoundments and urbanization. Agriculture is the major 

human land use causing grassland cover change across the Grassland biome today. It 

would be of great interest to carry out species inventories to test this assertion by 

Fairbanks (2004). Even if this is the current state of affairs across the biome today, Fahrig 

(2003) forecasts that these increases in biodiversity may occur in the short term but are 

not sustainable. Eventually if habitat loss and fragmentation processes continue 

unchecked then eventually the remaining grassland patches will be so degraded as to be 

severely compromised in their ability to support biodiversity and the previously 

mentioned effects will come into play. 
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Relevance of grassland land-cover gains  

The apparent “gains” in grassland cover are not as easily interpreted. Globally most gains 

in grassland land cover can be attributed to clearing of wooded lands (Meyer & Turner 

1992, Sala et al 2000) and this has occurred to some extent in South Africa through 

clearing of thickets, however the regeneration of grassland vegetation from cultivated 

lands and what were formerly classed as degraded lands also contribute to the gains 

observed in the results. There has been a decrease in land under active cultivation in the 

Grassland biome over the period of interest, 1994 – 2001 (SANBI 2004) and thus the 

contradiction arises- cultivation is at the same time the leading cause for grassland habitat 

loss and regeneration. However, these so-called gains in grassland cover do not represent 

a repository of the natural grassland floral and/ or faunal biodiversity and should not be 

interpreted as such. They are as a result of conversion from other land cover classes and 

will give rise to altered grassland patches that contain different species composition from 

the remaining semi-pristine patches, at best they will most probably contain a subset of 

indigenous grassland organisms that are able to colonise disturbed landscapes. Such 

disturbed landscapes are also prime areas for the establishment of invasive alien plants 

(Hobbs and Huenneke 1992, Richardson et al 1997, With 2002). In a landscape that is 

already at threat from spreading bush plant species, such conditions do not bode well for 

the future propagation of the remaining grassland biodiversity. 

 

These apparent gains in grassland cover may have inflated the figures of the number of 

grassland patches, especially where they occur as a result of conversion from cultivated 

lands. These relatively small formerly cultivated fields, if they were left fallow to 

regenerate grassland vegetation would have been reclassified under the grassland land 

class. However, their reclassification as grassland patches does not give them the same 

value as representative grassland biodiversity units as virgin grassland patches that have 

undergone minimal human interference. 

 

The terms land cover and land use are not synonymous, although they are often used 

interchangeably (Thompson, 1996). Land cover refers to the biophysical attributes over 

the earth’s surface, whereas land use refers to the human purposes applied to these 
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attributes and a given land cover class may be put to numerous land uses (Thompson 

1996, Fairbanks et al 1996, Lambin et al, 2001).For the most part, land cover change 

occurs as a direct consequence of changing land use activities (Thompson 1996, 

Theobald 2003). There has been grassland cover change in the biome but we are not able 

to elucidate the actual changes in land use aside from their impact on the land cover that 

results in grassland conversion. This means that some of the tracts of grassland that have 

been classified as such (grassland) may not be optimally functioning ecosystem units as 

they may be under human landuse that impairs their ability to function thus.  

 

“Improved grasslands” were included in aggregate land cover class. As such, it is 

possible that there may have been an over-estimation of the actual area of semi-pristine 

grassland patches. So that in fact, there is less available grassland that can act  as viable, 

ecosystem units that contribute to the maintenance and survival of threatened grassland 

biodiversity. This, together with the possibly misleading “gains” in land cover change 

suggests that the remaining biodiversity is at greater threat from habitat loss than it would 

appear on the surface.  

 

4.4. Mapping Transformation threat  

4.4.1. Techniques of transformation assessment & prediction 

The transformation threat maps serve the purpose of identifying areas on the Grassland 

biome landscape that are threatened by current land use activities that are associated with 

human development activities (Theobald 2003). Both the Human transformation threat 

map and the map showing the threats in relation to biodiversity were compared against 

the map showing predictions to qualitatively assess the robustness of the methods used to 

calculate the risks of transformation by Neke & du Plessis (2004). Overall the methods 

used correctly predicted the incidents of grassland transformation but beyond the high 

rainfall areas, the predictions of the distribution of low and intermediate threat were not 

realised. In fact, the main discrepancies between the predictions and the representations 

of reality herein produced are first, the consistent over estimation of the amount of high 

impact degradation that was meant to occur and second the failure to provide correct 

descriptions of the spatial distribution and pattern of the degradation.  
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 The fact that both maps confirmed the predictions of transformation along the eastern 

boundary of the biome shows that the methods used were relatively valid but there was a 

vital source of information that was not included that led to the restricted forecasts. 

However, the inability of the Neke & du Plessis model to account for grassland 

conversion within the biome interior suggests that not enough information about 

biodiversity unfriendly human land use activities in those areas. Perhaps the use of the 

actual spatial extent of the occurrence of those land use/cover classes extracted from 

NLC1994 database rather than land use suitability data would have given a more accurate 

reflection of transformation threats across the Grassland biome in the future. Particularly 

because the land use suitability models refer to the ideal pattern of exploitation as it is 

defined by “perfect” characteristics that would make land use of a particular type logical, 

As such it is hard to compare and quantitatively assess the accuracy of predictions that 

were extracted from the ideal state against the reality that is. Even with the incorporation 

of biodiversity species richness, there is not enough overlap between the areas that are 

under the most threat from human activities and the most species rich areas to give a 

distribution of high transformation threat similar to that of Neke & du Plessis (2004).  

It was difficult to interpret some of the grassland changes that have been observed 

because there was no data available on the current land uses in those areas to give 

credence to the interpretations and assumptions used.  

 

It was also difficult to interpret the composite threat scores because most of the 

Grasslands have undergone transformation of some degree, and perhaps this refers to 

comparison with a pristine state that does not exist. There was an observed difference in 

the proportions of the grasslands that were classed as being under threat between the 

maps of predicted threat and actual transformation threat. This brings forth another aspect 

of the model by Neke & du Plessis (2004) that may have impaired its ability to predict 

transformation threat accurately- it is based on the assumption that the habitat was in a 

pristine, undisturbed state and the reflections of transformation threat are actually based 

on likelihood that those areas would be chosen for non-biodiversity friendly land-uses. 

Although there was incorporation of some land use data accurate at the time it did not 
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completely account for the land cover transformation that had occurred before the 

NLC1994 dataset was created. This information is inherently incorporated into the 

Grassland change map; it only reflects change from what was Grassland in 1994. It 

follows therefore that one of the reasons there isn’t a strict adherence to the patterns 

predicted grassland cover is that perhaps this pattern of change may have already 

occurred with the initial settlements and use of these landscapes. 

 

A conceptual flaw with both models is that they both fail to incorporate a phenomenon 

that can not be ignored when one is investigating land cover transformation- global 

climate change, especially in light of the fact that the biome is defined by the climatic 

characteristics of the area (Rutherford & Westfall 1994, O’Conner & Bredenkamp 1997). 

Any changes in climate will exacerbate the impacts of human-induced land cover 

transformation and habitat loss (Noss & Cooperrider 1994, UNEP 2006). Noss & 

Cooperrider (1994) presented a model showing the interaction between several factors 

that eventually lead to land cover change; these included direct and indirect exploitation 

of natural resources through activities such as agriculture, mining, roads etc, disturbances 

through the spread of invasive alien plants, pollution and global climate change. All of 

which are present in the Grassland biome and all, with the exception of climate change 

can be observed and described with a high degree of certainty.  Such information would 

be invaluable in identifying the actual drivers of the observed grassland land cover 

changes; it has been predicted that with global warming, there may be decreasing rainfall 

in southern Africa and this would lead to an overall contraction of the grassland biome15. 

Without such knowledge it becomes difficult to separate the causes of the observed loss 

of grassland cover in certain areas as either desertification or range contraction as a result 

of climate change or from direct impact of human activities. The ability to clearly 

identify the drivers causing land cover change would have major implications for land 

management planning in that pre-emptive courses of action to minimize the influence of 

these factors could be put incorporated into management plans.  

 

                                                 
15 http://www.unep.org/aeo Accessed on-line on 20/01/2007 
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The decision to weight all input data in the assessment of transformation threat equally 

was made arbitrarily, as it would have been difficult to score or weight them in terms of 

the relative severity of their individual impacts on biodiversity. Thus road zone effects 

were given the same weighting as the impact of habitat loss in terms of threats posed to 

biodiversity. It is possible that a method of weighting the relative impacts on biodiversity 

of each input factor against the others would have produced a different threat map, 

showing transformation threat distributions closer to those that were predicted by Neke & 

du Plessis (2004) 

 

4.4.2. Land cover change or Land cover modification? 

As one speaks of land cover change one must consider that this occurs in two ways- 

through land cover conversion from one land cover class to another and through the 

modification of the land cover class (Meyer & Turner 1992). Land cover modification is 

not easily monitored and is more insidious. Conversion alters the structure, composition 

and function of that ecosystem over time but there is no outright loss of habitat. We see 

land cover modification in areas that are used for livestock ranching activities- where 

overgrazing and excessive land use pressure occur, resulting in degradation and 

desertification (Meyer & Turner 1992) but this is not necessarily reflected in the 

landcover classification, as it was reported to be difficult to identify and map degradation 

from the available satellite imagery used to create both NLC1994 and NLC2000. This 

may be the case in the Grassland biome assessment of grassland change, especially over 

the large grassland patches observed in the Free State plains where ranching and 

livestock grazing are widespread (SANBI, 2004). So in fact, there may be an over-

estimation of what has been classified as grassland and the degree of degradation over 

this area and this is a shortcoming of the use of satellite imagery alone- the NLC database 

since we cannot now account for land cover modification. The degraded land cover class 

to some extent does try to account for this- there obviously has to be some threshold point 

at which the land cover is classified as degraded but not quite transformed to another land 

cover class. So what we may have is an overestimation of the healthy land available for 

conservation planning purposes that is available as viable habitat for biodiversity. Reyers 

et al (2004- Grassland biodiversity assessment) also picked up on the apparent 
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underestimation of the “degraded” land cover class in the biome as a whole. Even with 

the question marks hanging over the accuracy of the later NLC database, the results of 

this analysis still provide valid information as to the current state of the Grassland biome, 

especially as regards the status of the remaining grassland habitat land cover.   

 

4.4.3. The Implications of land cover change for grassland conservation 

It is not enough on our part as conservation practitioners to merely identify the presence 

or absence of grassland degradation or to confirm or refute predictions of transformation 

within the biome; it is also our part to fit this new information into the context of 

conservation planning. Granted, a conservation plan for the Grassland biome is beyond 

the scope of this project but the information that has been gathered herein may be viewed 

as a starting point. Indeed, as we start to talk of conservation planning the questions that 

need answering are, “where, and when, to start with which species”? (Bomhard et al 

2005). The output from these analyses, the grassland degradation map and the 

biodiversity transformation threat map enable us to provide tentative answers to these 

questions. The time is now. There should be no further delay- over 70% of the remaining 

grassland patches exhibit signs of at least moderate habitat degradation. The grassland 

biome is already considered to be endangered (Olson & Dinerstein 1998, Rouget at al, 

2004). There is no need to wait until what is left of the grassland land cover is a few 

patches scattered across the grassland biome, preserved in a few national parks and nature 

reserves. In the space of time between the collection of the two datasets, NLC1994 and 

NLC2000, a portion of the grassland land cover class a little smaller than the portion of 

“healthy” grassland that remains today was lost as a result of human-caused land cover 

transformations. Let us consider that there has been a lapse of approximately seven years 

between the collection of the last National Landcover dataset in 2000- if conservation 

initiatives and activities have not improved in this time period, and the developing habitat 

transformation trends were upheld, then it is a distinct possibility that another 25% of the 

remaining grassland patches has been lost. Granted, the total amount of land that could 

ever be assigned to conservation purposes is limited by various socio-economic and 

political factors (Ferrier 2002) but this only strengthens the argument for the 
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implementation of systematic conservation planning now, while there are still sufficient 

remaining untransformed grassland patches to warrant such action. 

 

The whole idea behind collecting and analyzing all this data is to initiate a paradigm shift 

in conservation planning circles towards a more proactive methodology (Pressey and 

Margules 2000). As such, conservation efforts should aim to capture the full diversity of 

species within the remaining grassland patches in the Grassland biome and not just those 

areas that have been tagged as threatened or at risk due to heavy habitat degradation and 

human land use activities. In light of this, the answers to the questions of “where” and 

“with which species” are urgently required. The grassland degradation and 

transformation threat maps, showing human transformation and its relative impact on the 

endemic, threatened grassland bird species as a proxy for biodiversity can begin to point 

out the areas in need of dire conservation attention. Make no mistake, South African 

conservationists should realize that the Grassland biome is experiencing the symptoms of 

the global “biome crisis” (Hoekstra et al 2005) that is resulting in widespread species 

extinctions and declining population numbers. Before we can even begin to suggest 

means of grappling with this we require the means to identify the location where 

biodiversity and ecological function are most at risk from and in conflict with human land 

use activities (Rebelo 1997, Margules & Pressey 2000, Hoekstra et al 2005). These threat 

maps reflect actual transformations occurring within the Grassland biome and where they 

present threats to biodiversity, the usefulness of the human transformation threat map 

should become apparent. The surrogate biodiversity distribution map (threatened endemic 

grassland birds) that was used in this case could be replaced by individual species 

distribution information for any organism, and the output would indicate where the 

species is coming into direct conflict for spatial resources with anthropogenic land use 

activities, as well as the relative severity of the impacts of the human threats. Such 

information should be used to red-flag particular areas of concern where such conflict is 

detected and indicate where resources should be channeled. Granted, because the 

information is at such a coarse scale further investigations would no doubt be required 

before efficient and effective conservation activities are put in place in these areas but it 
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is a step in the right direction- a base or platform from which further investigations can be 

sprung.  

 

The value of threat identification at the landscape level is that it can aid in the 

identification of “spatial biases in action” (Margules & Pressey 2000) by conservation 

agencies when incorporated into GAP analyses for conservation planning purposese 

(Scott et al 1998, Margules & Pressey 2000, Stoms 2000, Theobald 2003) and could be 

used to identify those areas in the grasslands that have been neglected in terms of 

conservation attention. High conservation value land is defined as “areas of outstanding 

and critical importance due to their environmental, socio-economic, biodiversity and/ or 

landscape values”  (WWF, 2007). The identification of such areas of land has been 

carried out extensively for forests, there has been research into the how and a tool kit has 

been produced that allows for this identification process. This has not been carried out at 

the same scale for grasslands. This is surprising considering that the grasslands of the 

world contain the world’s largest populations and have the highest incidences of conflict 

between conservation and development activities because of the many land uses that they 

can be put to- specifically because they are so resource-rich.  For our purposes this was 

indicated by the areas that have high land use suitability for a broad array of activities and 

therefore were heavily impacted by human use (high threat areas) that also coincide with 

high biodiversity presence, particularly the high biodiversity areas in the high rainfall, 

mountainous regions along the eastern edge of the Grassland biome that are classed as 

having intermediate threat. Granted there has been widespread transformation of these 

areas to highly profitable, commercial forest plantations but it would be possible to create 

integrated management plans for such land uses so as to minimize the impacts on the 

regional biodiversity. High conservation value land is often the most heavily impacted 

upon by habitat transformation (Flather 1996, Fairbanks et al., 2002) and this is 

especially well illustrated in Lesotho within the Eastern Mountains biodiversity hotspot. 

The tendency for human settlements to coincide with areas of high species richness has 

been well documented in the literature (Fairbanks & Benn 2000; Balmford et al., 2001; 

Fairbanks et al., 2002). These areas should be considered as areas of vulnerability that 

should be red flagged for conservation action (Ricketts and Imhoff 2003). In the 
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Grassland biome these high impact areas are mostly located in the vicinity of the larger 

urban complexes- the tendency for human settlements to occur in areas of high 

biodiversity is well documented in the literature (Huston 1993, Imhoff 2000, Balmford et 

al 2001). In the context of the threat maps, it is true that the areas of high human threats 

have for the most part been so degraded that it may not be of any use to concentrate 

conservation actions in these zones even though they are classed as being under severe 

stress from human transformation activities. The sustainability of any of the remaining 

semi-pristine grassland ecosystems in these risk areas comes into question. However, this 

by no means condones the continuing, unchecked exploitation of these highly degraded 

grassland habitats without thought of conservation and environmental management. 

Furthermore conservation initiatives should seek to capture the full spectra of threatened 

biodiversity, at all scales, and should not necessarily concentrate their efforts on heavily 

impacted areas that have been given critical threat status, they should look to less 

threatened grassland patches to ensure their longevity and sustainability (Hoekstra et al 

2005). 

 

4.4.4. Identifying Land-cover threats: Refining the methods 

The information provided by this analysis is very important in that it provides 

information pertaining to where the transformation threats are occurring within the 

grassland biome today. This data can be viewed as baseline information for many other 

studies including those looking at climate change. Once one has a baseline description of 

any phenomena, the next step from there is tracing changes and trends over time. This 

data will also be invaluable to conservation planning, allowing for the channeling of 

available resources for more effective and more efficient conservation activities to areas 

where they will be most effective. Rouget et al., (2003) state that those areas showing less 

fragmentation should not be given very high priority because they have inherent 

protection through extreme environmental conditions that prevented transformation 

initially. In the Grassland biome, the grassland patches associated with the Great 

Escarpment exhibit this trait. On the other hand, it is more desirable to have larger, 

relatively contiguous grassland patches for conservation planning purposes (Pressey 

1994, Margules & Pressey 2000), of which the largest remaining patches are associated 
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with the same area. Thus it is necessary to have a means of prioritizing the remaining 

patches in terms of their desirability for conservation activities. It may be better to 

conserve a highly fragmented area because it is facing high threat to biodiversity than to 

consider a more intact patch of grassland vegetation even though it is under low human 

threat as it will be more sustainable in the future.  

  

One of the major short-comings of this analysis was the inability to trace the 

anthropogenic socio-economic drivers of the observed land cover transitions. It is highly 

unsatisfying to have the ability to observe change but have insufficient information to 

adequately explain it. This was partly due to the coarse scale at which the investigations 

were carried out, the specific human demands on the available resources causing these 

land cover transitions, especially of the remaining grassland patches, could not be 

discerned at this scale and to carry out a detailed analysis of said drivers for each 

incidence of observed change was beyond the scope of this project. Identifying and 

understanding the process behind the observed patterns of change ensures certainty that 

those factors are adequately considered and where possible mitigated in the conservation 

planning process so that those action plans and policies will be sustainable (McNeely et   

al 1997). Furthermore, the maps that were created in the process of this analysis need to 

undergo a process of ground truthing. The classifications of threat have been made 

strictly on the basis of the available spatial information and there is no description of the 

bio-physical characteristics associated with each threat classification, if at all this is 

possible. Such an exercise would be useful to validate these results, especially for the 

assessment of Grassland habitat degradation.  

 

The human element can never be removed from analyses of land cover change because it 

is mostly human demand for ecosystem goods and services that drives it.  It is 

acknowledged that the inability to identify and describe only patterns and not processes 

of change is a handicap of the land cover change analysis, as this is a major consideration 

in systematic conservation planning (Smith et al., 1993; Cowling et al., 1999; Margules 

& Pressey 2000). The proximate causes of biodiversity loss are biological but the 

ultimate causes are social, economic and political (Skole et al 1992, Forrester & Machlis 
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1996). The grasslands of South Africa they contain and support the economic heartland 

of this country and although the main contributors to grassland biodiversity loss have 

been identified (cultivation, bush encroachment, spread of invasive alien plant species 

and grassland degradation) it is clear that the reasons for this are solely anthropogenic. 

The solution to the problem of grassland habitat loss is to be found by embracing a multi-

disciplinary approach to land cover change analyses and threat identification. Looking 

beyond the physical expression of change through grassland conversion but also at 

changes within the social systems associated with those areas of land cover conversion. 

Once all aspects of change are understood, then more efficient and pro-active 

conservation planning processes can be created and implemented. In terms of 

conservation planning action for the remaining semi-pristine grassland patches, using the 

information collected through this analysis of grassland habitat loss and fragmentation, 

we are able to answer the questions of “where and when?” (Bomhard et al, 2005). To 

plan appropriately for the future, there is a need to better understand the human system 

and economies driving those changes within the biome.  It is hoped that through this 

project many areas of grassland degradation facing threats from human “biodiversity-

unfriendly” land use practices have been red-flagged for further investigation and 

conservation attention. 
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	Neke & du Plessis (2004) equated threat with any land-use resulting in land-cover conversion from grassland to any other land-cover class and produced a threat map for the grasslands biome. This was achieved by developing land-use suitability maps for afforestation, agriculture, urban expansion, mining and stock farming and then developing a framework for scoring the relative severity of these land-uses on grassland biodiversity. Assessing the areas according to the likelihood of transformation and the severity of this land-cover change on biodiversity produced the threat map. They found that at least 44.7% of the grasslands had been transformed and the remaining semi-pristine areas were highly fragmented. In terms of transformation threat- the highest levels of threat occurred in the species rich, high rainfall eastern areas of the grassland biome- and that those areas with the highest threat levels had all been transformed by human land-uses- predominantly afforestation. This was to be expected since there is often a high positive correlation between species richness and human land-use and the threat exists where the two coincide (Ricketts & Imhoff 2003). This reinforces the notion that ecosystems must therefore be managed in such a way as to allow for both optimum human productivity and development, and biodiversity (Pimental et al., 1992, Daily et al., 2001). Bush encroachment and invasive alien plants were a root cause of land cover transformation (8.9%). This was associated with urban centres and the perimeter of the biome itself and this was suggested to be worth monitoring. Invasive alien plants (IAP) cause land cover transformation- they disrupt ecosystem structure and function and are a threat to biodiversity where they occur (Richardson et al., 1997). Invasive plants have been ranked alongside deforestation, urbanisation, pollution and cultivation as “major agents” of land cover change (Cronk & Fuller 1995). Neke & du Plessis (2004) also found that the large expanses of the area that had been transformed by agriculture were in actual fact unsuitable for this land-use and were most probably sustained by government subsidised irrigation and supplementary fertilisation. The South African Agricultural policy was changed in the mid-1990s and with the removal of subsidies it will be of great interest to see whether there has been any change with respect to the occurrence of agriculture in these marginal areas.   
	 
	The inclusion of the effects of the road network on biodiversity within the Grasslands biome by Neke & du Plessis (2004) might have added an extra dimension to the analysis of threat, especially considering that the construction and maintenance of roads has been a major source of land-cover change. Road effects on biodiversity include the habitat transformation occurring as a result of their construction, fragmentation, increased mortality through road kill incidences, barriers to movement, conduits of exotic plant species invasion (Forman & Alexander, 1998),  chemical pollution by vehicles, modification of animal behaviour (Trombulak & Frissell 2000) to list a few. Their presence and utilisation pose a serious threat to biodiversity (Trombulak & Frissell 2000, Stoms 2000, Reyers et al., 2001, Theobald 2003). Furthermore, the effects of roads on biodiversity extend for some distance away from the actual road itself and the width of this road effect zone depends on the nature and utilisation of that road (Forman & Alexander, 1998; Stoms 2000; Reyers et al., 2001). Reyers et al., (2001) used a method similar to that used by Stoms (2000) to determine the road-effect zone for the South African road network as a threat to biodiversity in the country. This method has since been incorporated into threat assessments for conservation planning purposes in South Africa by Reyers (2004), Rouget et al., (2004) and Reyers et al., (2005). 
	Theobald (2003) developed a method to assess the level of potential threat to biodiversity in Colorado (USA) to help guide conservation planning. This method used two indicators of threat- roaded areas and housing density (as a measure of development). Together they provide useful indicators of the intensity of human land-use activities. He then assessed which land-cover types would most likely be at risk from future development and came up with status and threat categories- land was classified as threatened depending on it meeting certain criteria. Thereafter the “conservation potential” of each threatened patch of land was also computed- this potential was defined by the spatial characteristics (shape, degree of fragmentation) of that identified area. In so doing he was able to grade the landscape into four levels of existing conservation effort- from those not currently protected and requiring maximum effort to those needing little conservation effort in relation to their risk to future developments. Such a method could be used to avoid prioritising areas that will likely be too compromised by anthropogenic transformation and development pressure in the future, regardless of what protective measures are currently instituted (Myers 1979). 
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