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Abstract

In this thesis we propose four new methods for solving constrained global optimization prob-

lems. The first proposed algorithm is a differential evolution (DE) algorithm using penalty

functions for constraint handling. The second algorithm is based on the first DE algorithm

but also incorporates a filter set as a diversification mechanism. The third algorithm is also

based on DE but includes an additional local refinement process in the form of the pattern

search (PS) technique. The last algorithm incorporates both the filter set and PS into the DE

algorithm for constrained global optimization. The superiority of feasible points (SFP) and

the parameter free penalty (PFP) schemes are used as constraint handling mechanisms.

The new algorithms were numerically tested using two sets of test problems and the

results where compared with those of the genetic algorithm (GA). The comparison shows

that the new algorithms outperformed GA. When the new methods are compared to each

other, the last three methods performed better than the first method i.e. the DE algorithm.

The new algorithms show promising results with potential for further research.

Keywords: constrained global optimization, differential evolution, pattern search, filter

method, penalty function, superiority of feasible points, parameter free penalty.
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Chapter 1

Introduction

The field of optimization has been the focus of much attention in recent years. Optimiza-

tion techniques and concepts are not limited to any particular discipline and are playing an

increasingly important role in the solution and modeling of engineering, economic, design

and scientific systems. Optimization is viewed as a decision problem that involves finding

the best values of the decision variables over all possibilities. The best values would give the

smallest objective function value for a minimization problem or the largest objective function

value for a maximization problem. In terms of real world applications, the objective function

is often a representation of some physically significant measure such as profit, loss, utility,

risk or error. Hence optimizing the system or design to make it as effective or functional as

possible is an important part of the overall application.

1.1 Problem description

The general optimization problem can be mathematically represented as:

minimize f(x) subject to x ∈ Ω. (1.1)
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The function f : Ω ⊂ Rn → R is a real valued objective function. Without loss of gener-

ality, we can confine ourselves to minimization problems only since minimizing f is equiv-

alent to maximizing −f . The vector x is composed of n independent variables such that

x = [x1, x2, . . . , xn] ∈ Rn. These variables are the decisions variables and the set Ω ∈ Rn is

the feasible set. The vector x that results in the smallest objective function value is referred

to as the minimizer. Minimizers are further classified according to the following definitions.

Local minimizer: A point x∗ ∈ Ω is a local minimizer of f if there exist some ε > 0

such that,

f(x) ≥ f(x∗), ∀x ∈ Ω\ {x∗} and ||x− x∗|| < ε,

where f(x∗) is known as the local minimum.

Global minimizer: A point x∗ ∈ Ω is a global minimizer of f if

f(x) ≥ f(x∗), ∀x ∈ Ω\ {x∗} ,

where f(x∗) is known as the global minimum. The difference between a local and the global

minimum is presented in Figure 1.1.

Figure 1.1: Global vs local minima
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Given a function that contains multiple minima on its feasible set only the smallest mini-

mum will be the global minimum and all others will be classified as local minima. In general,

global minimizers are difficult to locate and verify. The task of locating the global optimum

is referred to as global optimization.

Optimization problems can be categorically differentiated according to the various prop-

erties of the objective function, constraints and decision variables. The objective function

can either be linear or nonlinear and the constraints, if any are present, are also classified as

being either linear or nonlinear. The decision variables can be continuous or discrete or a

combination of both. If a problem has a linear objective function and linear constraints it is

considered to be a linear optimization problem, whereas if a problem has either a nonlinear

objection function or constraints or both, it is classified as a nonlinear optimization problem.

These definitions apply to problems with continuous decision variables. If however the de-

cision variable is discrete the problem is classified as a discrete optimization problem and

problems containing both discrete and continuous variables are called mixed-integer prob-

lems. For the purpose of this thesis we limit ourselves to continuous variables only.

Nonlinear optimization problems arise frequently in many applications. Hence finding

methods to effectively solve these problems is important. Also, if the problems are charac-

terized by multi modal objective functions then finding solutions for this type of problem

requires global as opposed to local solution techniques. Hence we will focus ourselves on

the solution of nonlinear global optimization problems.

The solution of non-linear optimization problems is highly dependent on the underly-

ing mathematical structure of the problem. In addition attributes such as differentiability,

Lipschitz continuity and continuity are extremely influential on the selection of a solution

method. There are two possible approaches to solving optimization problems, namely: de-

terministic and stochastic. In the context of global optimization, some stochastic methods

are often referred to as heuristics. We will briefly discuss some deterministic and stochastic

methods for non-linear optimization problems.

3



1.2 Deterministic methods

Deterministic methods exploit the underlying mathematical structure of the problem for solv-

ing specific problem types. These methods are mathematically concrete and extremely ef-

fective within their scope.

The majority of deterministic methods are focused on local optimization. For uncon-

strained problems various methods such as Trust Region methods, Newton and Quasi-Newton

methods and Conjugate Direction methods are used [41]. On the other hand, the Sequential

Quadratic Programming methods, Projected Gradient methods and Interior Point methods

are designed for constrained local optimization [41].

Deterministic methods that deal specifically with global optimization problems are fairly

limited. The most successful are branch and bound methods [32]. These methods work

by systematically dividing the feasible region into successively smaller subregions. Locally

optimal solutions are found for each of these subregions and the best amongst the local solu-

tions is assumed to be the global optimum. Another similar successful method is the Interval

Arithmetic Method [24] that operates on intervals as opposed to points. The Interval Arith-

metic Method uses interval arithmetic techniques to isolate stationary points. Other methods

include multi-dimensional bi-section method [61] and Lipschtiz Global Optimization devel-

oped by Janos Pinter [43].

Deterministic methods, unfortunately, have certain shortcomings which are greatly em-

phasized in practical applications. Problems that are characterized by features such as:

• a non differentiable (non-smooth) objective function and/or constraints,

• computationally expensive objective function values or exact gradients,

• noisy objective functions or constraints, and

• discontinuous objective functions
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are stumbling blocks for deterministic methods. If a problem is multi modal then using a

local optimization method for finding the global minimum becomes extremely dependent

on choosing a good starting point that is sufficiently close to the global optimum. In most

instances the location of the minimizer and number of local minima or saddle points are not

known a priori. This makes choosing a good starting point impossible. Also if the number

of minima is fairly large, deterministic methods that require computing all these minima are

very impractical.

Another important issue is that in order to calculate the derivatives and Lipschitz con-

stant, an explicit mathematical expression of the problem is required. This is not always

available, as is the case with ‘black box’ functions. These involve simulation models or the

solution of a set of partial differential equations which are usually only represented implicitly

in the optimization problem. Many deterministic methods such as the multi-dimensional bi-

section and Interval Arithmetic are mathematically involved and computationally inefficient.

These features make them unpopular with many practitioners. Although some progress

has been made on deterministic methods for global optimization, the problem remains in-

tractable.

1.3 Heuristic methods

Heuristic methods represent a broad class of computational global optimization strategies

that use novel approaches to intelligent search for optimal values. They are often inspired by

physical processes, natural evolution and stochastic events. Some of the salient features of

these methods as opposed to their deterministic counterparts include that they are completely

problem independent, do not require adherence to any mathematical requirements and are

fairly easy to implement. Differentiability, linearity, convexity or Lipschitz continuity are

irrelevant as the search is guided by different mechanisms. Even though these methods

are unorthodox and have a minimal mathematical basis or convergence guarantee, they have

nonetheless proven themselves as effective and practical global optimization strategies hence
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increasing the range of solvable optimization problems.

The lack of deterministic global optimization methods is what originally spurned the

development of heuristic methods. Not surprisingly, most of these methods are aimed at

solving global optimization problems. During the 1970’s and 1980’s much research was

focused of ‘two-phase’ methods. These are population based iterative schemes that have

two distinctive phases, a global phase that identifies a set of points and a local phase that

searches the neighborhood of potential points for improving solutions. Examples of these

methods include multi-start methods, clustering methods, multilevel single linkage [48, 49]

and topographical multi-level single linkage [3]. Other population based methods that do

not use ‘two-phase’ strategies include the genetic algorithm (GA) [22], differential evolution

(DE) [55], particle swarm optimization [58], controlled random search [4] and ant colony

[17] . These methods use sophisticated mechanisms to manipulate the population set at

each step to create an improved population. The main difference between population based

methods that do not include ‘two-phase ’ strategies is how new members are created for the

population. Stochastic methods are not only limited to population based methods but also

include single solution or point based methods such as simulated annealing [50], tabu search

[21] and hit-and-run based methods [60]. Another example of a single solution method is

the DIRECT method [27].

The nature of stochastic methods also lends them to be easily hybridized. Attractive

features from different algorithms can easily be incorporated to produce new improved al-

gorithms. A common hybridization technique is to combine local search techniques with

global strategies [1]. The local search quickly locates local minima while the global strategy

ensures that the search does not get trapped in local minima.

1.4 Thesis outline

The focus of this thesis is the solution of constrained global optimization problems using the

differential evolution algorithm [55] as an underlying global solver. Although some research

6



has been done on the use of heuristic methods for constrained global problems, most has

been focused around the use of the genetic algorithm [15, 38, 46, 53]. Our first goal is to

provide a DE algorithm for constrained global optimization that uses penalty functions for

constraint handling. We will then carry out numerical testing on this new algorithm and

compare our results with those obtained by GA [38]. We also wish to explore the use of the

filter [19] and pattern search [8, 34, 35, 56] methods to improve the differential evolution

algorithm. The filter method will be used to provide a diversification mechanism while the

pattern search method will be used for local exploration. Overall we will present the DE

algorithm for constrain optimization along with 3 additional hybrid methods based on the

DE algorithm.

The thesis is organized as follows: Chapter 2 outlines the differential evolution algorithm

as it is implemented for unconstrained optimization. We also briefly present GA [38] in

this section as this will facilitate a more complete understanding of the differences between

DE and GA. In chapter 3 we formally introduce the constrained optimization problem and

discuss penalty methods for constraint handling. The filter method is discussed in Chapter 4

and Chapter 5 centers around the pattern search method. In Chapter 6 we provide a detailed

description of our proposed DE based new approaches. Chapter 7 contains the numerical

results obtained together with an analysis and comparison of these results. In Chapter 8 we

make some concluding remarks.
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Chapter 2

Differential evolution

In this chapter we present the DE algorithm for unconstrained global optimization. Before

we give a detailed description of the DE algorithm we look at a few general requirements of

a global optimization solver and state how the DE algorithm can fulfill these requirements.

Depending on the intended use of a global optimization solver, there are many aspects that

need to be considered before an appropriate solver is selected. We have imposed the follow-

ing requirements on the solver:

• Generality: The solver should be insensitive to the underlying problem structure. This

will allow it to be applicable to a larger problem set.

• Reliability: The global optimum should be found with a reasonable degree of accuracy.

• Efficiency: The computational complexity of the algorithm should ensure that the al-

gorithm is viable for small to moderate problems e.g. problems with dimensions of up

to 100.

• Ease of use: The algorithm should be inherently simple to understand and implement.

The number of parameters should also be limited so that too much fine tuning is not

required for the algorithm to perform well.
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By considering all the above requirements the DE algorithm appears to be one of the

most appealing choices as an underlying global optimizer. Initially introduced by Storn and

Price [55], the algorithm has undergone substantial testing and modification to improve its

performance and applicability [31, 2]. The DE algorithm has proven itself to be an extremely

robust and efficient evolutionary type algorithm. What follows is a description of the algo-

rithm.

2.1 Description of the DE algorithm

The DE algorithm can be described as an evolutionary type, stochastic optimization al-

gorithm. As with all evolutionary algorithms, it operates using a set or population S =

{x1, x2, . . . , xN} of potential solutions or points to explore the solution space. The size of

the population, given by the value N , remains constant throughout. At each generation the

algorithm aims to create a new population by replacing points in the current population S

with better points. In essence the population is simply a set of points xi,g, where i is the

index of the member in the population and g indicates the generation or iteration to which

the population belongs. Each xi,g consists of n components, where n is the dimension of the

problem. Through a repeated process of reproduction (mutation and crossover) and selec-

tion, the population S is guided toward the global minimum. We will now take a detailed

look at the different processes involved in the DE algorithm:

INITIALIZATION

The first step is to initialize the population. In general, every member of the population

is seeded uniformly within a given hyber box. Most problems are considered to be box

constrained since the variables are subject to boundary constraints. This leaves us with the

following simple initialization formula for each component:

xj
i,0 = lj + rand× (uj − lj) , j = 1, 2, . . . , n, ∀ i, (2.1)
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where rand ∈ [0, 1] is a uniformly distributed random value generated for each j and uj and

lj are the respective upper and lower limits for the jth variable or component. For certain

problems, information might be available that would favor exploration in certain areas. In

this cases the population can be seeded around these areas of interest.

MUTATION

The defining characteristic of the DE algorithm is the method via which the new trial points

are generated. At every generation g, each member of S is targeted to be replaced with a

better trial point. Considering xi,g as the target point, the corresponding trial point yi,g is

created using the target point and a mutated point x̂i,g. For the simplest case, a mutated point

is created by adding the weighted difference of two population members to a third. However

there are various other possible schemes for generating the mutated points. Some possible

mutation schemes for the ith target point are given below:

x̂i,g = xp(1) + F × (xp(2) − xp(3)), (2.2)

x̂i,g = xb + F × (xp(2) − xp(3)), (2.3)

x̂i,g = xp(1) + λ× (xb − xp(1)) + F × (xp(2) − xp(3)), (2.4)

where F and λ are scaling parameters and xb is the best point in the current population. xp(1),

xp(2) and xp(3) are randomly chosen points such that p(1) 6= p(2) 6= p(3) 6= i i.e. all points

are unique and none of these points corresponds to the target point xi,g. Figure 2.1 illustrates

the location of x̂i,g as would be given by equation (2.2).

There are other variants to the schemes described by equations (2.2) to (2.4). In order

to distinguish between different schemes a standard notation is used to indicate the scheme

type: DE/a/b/c. The variable a specifies the base vector used that will be perturb is chosen.

It can which can either be random e.g. xp(1), as is the case for equation (2.2) and (2.4) or the

best vector is the population, xb, as in equation (2.3). The second variable b indicates how

many vector pairs form the difference vectors. For equations (2.2) and (2.3) the value for b

10



Figure 2.1: Mutation using equation (2.2)

is 1 while for equation (2.4) b is 2. The variable c indicates what type of crossover method is

used. Binomial crossover is represented by the abbreviation bin and exponential crossover

by exp. We will discuss the crossover process below.

CROSSOVER

The target or parent point xi,g together with the new mutated point x̂i,g are recombined to

create the trial point yi,g. There are two popular types of crossover methods used with the

DE algorithm, namely binomial and exponential. For the purpose of this thesis we only use

the binomial method which will be discussed below.

Binomial recombination starts at the first component of the vector and generates a ran-

dom number rj ∈ [0, 1] for each component. If rj ≤ cr then the jth component of yi,g is

taken from xj
i,g, otherwise if rj > cr then the component is taken from x̂i,g. This process con-

tinues until all components from xi,g have been considered. In order to ensure that at least

one component in yi,g is from xi,g, a random integer Ii ∈ {1, 2, . . . , n} is generated. The

component in yi,g corresponding to Ii is taken from x̂i,g. The trial vector can contain compo-

nents from x̂i,g at multiple, separated points. We refer to Figure 2.2 for an illustration of this,
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where yi,g =
(
x1

i,g, x̂
2
i,g, x

3
i,g, x̂

4
i,g, x̂

5
i,g, x

6
i,g

)
. Binomial recombination can be mathematically

formulated as:

yj
i,g =

 x̂j
i,g if rj ≤ cr or j = Ii,

xj
i,g otherwise.

(2.5)

Figure 2.2: Binomial Crossover

ACCEPTANCE

At each iteration the DE algorithm attempts to replace each point in S with a better point.

Therefore at each generation g, N competitions are held to determine the members of S

for the next iteration. The ith competition is held to replace xi,g in S. This is done by

comparing the function values of the trial points yi,g to those of xi,g, the target points. If

f(yi,g) < f(xi,g) then yi,g replaces xi,g in S, otherwise S retains the original xi,g. This can

be written mathematically as:

xi,g+1 =

 yi,g if f(yi,g) < f(xi,g),

xi,g otherwise.
(2.6)

The DE algorithm maintains a greedy selection scheme that ensures that the current gen-

eration is equal to or better than the previous generation.
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STOPPING CRITERIA

An important aspect for a stochastic algorithm is deciding when to stop the algorithm. We

know that stochastic methods converge with a probability of 1 to an optimal value as time

goes to infinity [57]. However upholding such a convergence guarantee is impractical.

Therefore the user will need to decide on some preset conditions that will terminate the

algorithm. Deciding on what stopping criteria to use is dependent on many factors such as

the application of the algorithm, accuracy required, cost and time constraints. Some of the

most common stopping criteria used for the DE algorithm include:

• a preset number of maximum generations,

• the difference between the best and worst function values in the population is very

small,

• the best function value has not improved beyond some tolerance value for a predefined

number of generations,

• the distance between solution vectors in the population is small.

We have thus far described the basic steps involved. Algorithm 1 gives the elementary

pseudo code for the DE algorithm for bound constrained optimization only.

2.2 Parameter selection

The parameters N , cr and F are central to the overall performance of the DE algorithm.

For different problems, simply varying the parameters can greatly improve or hinder the

performance of DE. In the original paper that introduces the DE algorithm, the suggested

value for the scaling parameter F was in the range [0, 2] [55]. However empirical testing has

shown that for most problems the optimal value for F is in the range [0.4, 1] [5, 42]. Further

suggestions regarding F have been to randomize F for each mutation point and increase

exploration by having F in [−1,−0.4] ∪ [0.4, 1] [2].
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Algorithm 1 The DE algorithm for unconstrained optimization

1. Set control parameters N , cr, F and g = 0

2. Initialize Population, S = {x1,0, x2,0, . . . , xN,0} using (2.1)

3. Evaluate objective function f for each member in the population

4. IF Stopping Criteria not met

(a) FOR i = 1 TO N ,

i. generate trial point yi,g via:
• Mutation using (2.2), (2.3) or (2.4)
• Crossover using (2.5)

ii. Evaluate f(yi,g)

END

5. Update population using (2.6)

6. Set g = g + 1 , calculate stopping criteria and go to 4.

The crossover parameter cr ∈ [0, 1] is used to control the diversity of the trial vector.

Higher values of cr results in faster convergence. In general cr = 0.5 is suggested as a good

choice for most unconstrained problems [2, 6]. The population size, N , is often determined

by the dimension of the problem. A popular setting for N is N = 10 × n, where n is

the dimension of the problem. However values smaller than 10 × n may be used when the

dimension of the problem is very high.

All the suggested parameter values have been found by empirically testing the DE algo-

rithm on unconstrained problems only. However it is intuitive that the choice of parameter

values will be affected by the presence of constraints. If the DE algorithm was to be applied

to a single problem only, the obvious choice would be to empirically find the best combina-

tion of parameter values. However, our aim is to create a general purpose solver, hence we

wish to obtain a set of parameter values that performs efficiently on most problems. Indeed it

will be shown in Chapter 7 that good parameter values for the DE algorithm for constrained

global optimization are different than for unconstrained global optimization. The pseudo

code and implementation of the DE algorithm for constrained global optimization will be

discussed in Chapter 6, with numerical results presented in Chapter 7.
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2.3 Genetic algorithm (GA)

The GA method is one of the most popular and successful stochastic search methods. It

falls into the broad class of evolutionary algorithms. Since we will be comparing the results

for our proposed DE based algorithms to the results obtained by GA [38], we will give a

very brief description of the GA algorithm and highlight some difference between both these

evolutionary algorithms. GA algorithm presented here is in the form implemented in [38].

Just as with DE, the real coded GA involves maintaining a population S of N points.

At each generation GA replaces a portion of points in S with better points that have been

obtained via the process of selection, crossover and mutation. The basic steps involved are

outlined below.

Initialization An initial population is created by generating N random points from the

search space. This initialization process is similar to the one described for the DE

algorithm by equation (2.1).

Selection This process involves choosing the best individuals as parents for the crossover

operator. Different techniques such as tournament selection or roulette-wheel selection

can be used to achieve this. The tournament selection method was used in [38]. In this

process a preset number of individuals, determine by the tournament size parameter,

are compared. The best individual amongst them is selected as the parent.

Crossover This involves the recombination or cross breeding of information between 2 par-

ents to create offspring(s) for the next generation. The crossover rate is the parameter

that controls this process. The heuristic crossover method was used in [38].

Mutation Mutation means that the new offspring are modified with some probability deter-

mined by a parameter, called a mutation rate. The reader is referred to [38] for full

details of the mutation process as well as the mutation exponent parameter p.

Elitism To ensure that the population contains the best solution produced so far the best

individual(s) is (are) copied to the next generation. This is referred to as elitism and

15



the the number of best individuals copied to the next generation is determined by the

elitism size parameter.

The basic real coded GA algorithm is presented below:

Algorithm 2 The real coded GA

1. Set control parameters N , tournament size, crossover rate, mutation rate, mutation
exponent, elitism size and g = 0

2. Initialize Population, S = {x1,0, x2,0, . . . , xN,0}

3. Evaluate objective function f for each member in the population

4. IF Stopping Criteria not met

(a) Generate Offspring via:

• Selection
• Crossover
• Mutation

(b) Carry out elitism and update the population by replacing the parents by offspring.

END

5. Set g = g + 1 , calculate stopping criteria and go to 4.

The real coded GA [38] incorporates constraint handling techniques, such as penalty

functions when applied to constrained global optimization problems. Despite both GA and

DE belonging to the class of evolutionary stochastic algorithms there are many differences

between them. Next we outline some of these differences.

• GA selects two parents for crossover and the child is a recombination of the parents.

The child is then mutated with some probability. In the DE algorithm, at least three

parents are selected and a mutated point is created that is a perturbation of one of them

e.g. as in (2.2) to (2.4). The child is a recombination of the parent and the mutated

point.

• The DE algorithm aims to replace all points in the current population at each genera-

tion, where as GA only replaces a subset of the population at each generation.
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• The DE algorithm relies on a point to point comparison. If a trial point is worst than the

target but is better than the rest of the current population, it is still rejected regardless

of its comparative superiority. GA on the other hand targets the worst points in the

population and replaces them with children.

• The DE algorithms has 3 parameters: the population size, crossover rate and a scaling

parameter. GA has 6 parameters that include the population size, tournament size,

crossover rate, mutation rate, mutation exponent and elitism size.
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Chapter 3

Constrained global optimization

Most real systems are often subject to constraints. These are manifestations of physical,

mathematical or design restrictions placed on the system e.g. gravity, stress, cost etc. These

are interpreted as constraints on the resulting mathematical model. The imposition of con-

straints often causes the location of the minimum of a problem to change as has been illus-

trated in Figure 3.1. We extend on the general optimization problem given by equation (1.1)

to facilitate the imposition of constraints:

minimize f(x)

subject to

gk(x) ≤ 0, k = 1, . . . , K,

hl(x) = 0, l = 1, . . . , L, L < n,

lj ≤ xj ≤ uj, j = 1, . . . , n. (3.1)

In the above equation gk(x) is the kth inequality constraint and hl(x) is the lth equality

constraints. Each variable lies within its respective range [lj, uj]. The feasible region is
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therefore given by:

Ω =
{
x = [x1, x2, . . . , xn] ∈ Rn | gk(x) ≤ 0 , hl(x) = 0 , lj ≤ xj ≤ uj , ∀j

}

Figure 3.1: Location of optima in constrained vs unconstrained optimization

Since this thesis focuses on the DE algorithm, which is an evolutionary algorithm we

will only look at constraint handling techniques that are compatible with evolutionary algo-

rithms. Michalewicz and Schoenauer [37] have classified constraint handing techniques for

evolutionary algorithms into four categories:

• techniques based on preserving the feasibility of solutions,

• techniques based on penalty functions,

• techniques that distinguish between feasible and infeasible solutions, and

• other hybrid techniques [47, 59] .

The first two approaches are undoubtedly more popular than the last two and we will only

discuss these. Here we briefly present the first approach. Techniques based on preserving the
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feasibility of solutions fall into two groups. The first group involves the use of specialized

operators to transform infeasible individuals to feasible individuals. The Genocop system

[37] is an example of a method from this group. It is however restricted to problems with

linear constraints. The second group operates by restricting the search process to the bound-

ary of the feasible space. This is because often the solutions to constrained problems lie

on the boundary of the feasible space. A major drawback of both these groups is that they

require a feasible starting point or population to begin with. In constrained optimization the

feasible region for many problems is extremely small, often comprising a very small portion

of the entire search space. Hence finding a feasible starting point is a difficult problem in

itself [37].

The second popular approach to constraint handling is the use of penalty functions.

Penalty functions avoid the pitfalls of feasibility preserving methods but have their own

setbacks. The introduction of a penalty results in new parameters that need to be determine

for each problem. This is in itself a difficult problem since users rarely have the required

problem specific information available a priori to help select the best or even acceptable

penalty parameters. These then have to be determined empirically. Penalty parameters are

also known to directly influence the convergence properties of the underlying algorithm [37].

In evolutionary algorithms ‘over penalization’ of constraints results in poor exploration of

the search region and premature convergence to solutions that are usually suboptimal. On the

other hand, ‘under penalization’ results in very slow convergence toward feasible solutions.

There is also no guarantee that a feasible solution will be found [12].

Despite the above mentioned shortcomings of penalty functions, they are still the most

popular methods for solving constrained optimization problems. This in part can be at-

tributed to their simplicity and the ease with which they can be incorporated into an existing

algorithm. For the purpose of this thesis we will be using the penalty function approach for

dealing with constraints. Next, we will look at a general problem reformulation to include

penalty functions.
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3.1 Penalty functions

In order to accommodate the penalty function, the objective function that is to be minimized

is reformulated as follows:

f̂(x) = f(x) + R

(
K∑

k=1

〈gk(x)〉q +
L∑

l=1

〈hl(x)〉q
)

, (3.2)

where

〈gk(x)〉 = max {0, gk(x)} .

〈hl(x)〉 = |hl(x)| .

In this formulation, the fitness function f̂(x) combines the objective function value with

a term that penalizes any constraint violation. The parameter R is the penalty parameter.

For some implementations R can be iteration dependent and will take on different values

at each iteration. The parameter q takes on the value of 1 for an exact penalty or 2 for a

quadratic penalty. The function given in equation (3.2) can also be re-written by converting

each equality constraint into two inequality constraints. This is done by including a small

tolerance value δ to the inequality. The lth equality constraint can be converted into the

following two inequalities:

gl(x) = hl(x)− δ ≤ 0 and (3.3)

gl+1(x) = −hl(x)− δ ≤ 0 (3.4)

where δ is a small positive value. This transformation will increase the total number of

inequality constraints to d = K + 2L and simplify the fitness function (3.2) to:

f̂(x) = f(x) + R×G(x), (3.5)
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where

G(x) =
d∑

k=1

〈gk(x)〉q . (3.6)

For the purpose of this thesis we limit ourselves to an exact penalty given by q = 1 for

all our implementations and we will therefore be using (3.5) and (3.6) as our fitness function

and constraint violation function respectively.

Often penalty functions vary on how the penalty coefficient, R, is calculated. Properties

such as the number of violated constraints, level of violation, distance from feasible region

etc. are used to determine penalties. Some of the most well known approaches to penalty

functions include:

Static penalties: For each constraint several levels of violation are defined. Each level of

violation has a value of R associated with it.

Dynamic penalties: These are time dependent penalties. As the number of iteration in-

creases so does the penalty value.

Annealing penalties: A cooling scheme is used to determine the penalty value at each iter-

ation.

Adaptive penalties: These have penalty function components that adjust depending on the

search process.

Death penalties: This is a barrier method that simply rejects all infeasible individuals.

In this research we will focus on two specific adaptive penalty schemes that are explored

in Miettinen et al [38]. They are the superiority of feasible points (SFP) scheme and the

parameter free penalty (PFP) scheme.
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3.1.1 The superiority of feasible points scheme

The superiority of feasible points (SFP) scheme was developed by Powell and Skolnik [46]

and is based on the static penalty method but includes an additional term in the fitness func-

tion. The purpose of this additional function is to ensure that infeasible points always have

worst fitness values than feasible points. Hence each infeasible individual is evaluated not

only by its objective function, f , and penalty, G, but also by an additional iteration dependent

function. At generation g, for population Sg = {x1,g, x2,g, . . . , xN,g} the new fitness function

is given by:

f̂(xi,g) = f(xi,g) + R×G(xi,g) + Θg(xi,g), xi,g ∈ Sg (3.7)

where

Θg(xi,g) =

 0 if Sg ∩ Ω = ∅ or xi,g ∈ Ω,

α if Sg ∩ Ω 6= ∅ and xi,g /∈ Ω.
(3.8)

The value α is calculated by:

α = max

[
0, max

y∈Sg∩Ω
f(y)− min

z∈Sg\Ω
[f(z) + R× (G(z))]

]
. (3.9)

The function Θg is used to penalize infeasible points only when the population already con-

tains feasible points. This is given by the second term in (3.8). Hence when the population

contains feasible members, the infeasible members will always be worst than the worst fea-

sible member. This will ensure that infeasible points are never ‘under penalized’. Clearly

f(xi,g) and G(xi,g) ∀ xi,g ∈ Sg must be known before α can be calculated.

To illustrate the SFP scheme we will look at an example using Problem 7 of Appendix A.

Table 3.1 is a sample population of 5 points where all points are infeasible. Using a penalty

coefficient of R = 100, the fitness value f̂(x) calculated by SFP for each point is simply:

f̂(x) = f(x) + 100×G(x). (3.10)
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This is because when Sg does not contain any feasible points i.e. Sg ∩ Ω = ∅ , then Θg =

0, ∀x ∈ Sg. Using (3.10) we give the data for the infeasible population in Table 3.1.

i xi f(xi) G(xi) f̂(xi)
1 (1.316 , 1.9932) -3.3092 0.8605 82.740
2 (0.9601 , 3.8404) -4.8005 3.8139 376.591
3 (1.8216 , 2.5196) -4.3412 0.3084 26.497
4 (0.7853 , 2.3894) -3.1747 1.4851 145.336
5 (1.0809 , 2.1941) -3.2750 2.0977 206.493

Table 3.1: Example of SFP scheme: population with no feasible points

The objective of the SFP scheme is to ensures that points with the higher constraint

violations have the worst fitness values irrespective of the objective function value. This

can be seen in Table 3.1 for x2 which has the worst constraint violation in the population.

The third point, x3, in Table 3.1 becomes the best point since it has the lowest constraint

violation. This shows that the scheme gives preference to obtaining feasibility over good

objective function values.

Next we illustrate the SFP scheme where the population is composed of both feasible

and infeasible points. Using the same problem as above we present an example in Table

3.2. In this case, calculating the fitness function becomes slightly more complex. For each

infeasible point xi,g ∈ Sg, Θg(xi,g) = α and for each feasible point xi,g ∈ Sg, Θg(xi,g) = 0.

Once the values for the objective function and the constraint violation are calculated, the

value for the additional penalty term, Θg, can be calculated.

From equation (3.9) we see that the value for α is dependent on the largest feasible

objective function value and the smallest f(z) + R × G(z) for an infeasible point z. In

this example the maximum objective function value obtained by a feasible point is f(x3) =

−0.566. The minimum value of f(x) + R × G(x) for the two infeasible points x2 and

x5 is for the point x5 as has been calculated in Table 3.1 as f̂(x5) = 206.493. Thus α =

max[0,−0.566− 206.493] = 0, results in the following population:

Table 3.2 shows that all the feasible points have better fitness values than the infeasible

points. Also the infeasible point with the largest constraint violation has the worst fitness
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i xi f(xi) G(xi) f̂(xi)
1 (1.5663 , 0.4682) -2.0345 0 -2.0345
2 (0.9601 , 3.8404) -4.8005 3.8139 376.591
3 (0.3048 , 0.2613) -0.5660 0 -0.5660
4 (2.3295 , 3.1785) -5.5079 0 -5.5079
5 (1.0809 , 2.1941) -3.2750 2.0977 206.493

Table 3.2: Example of SFP scheme: population with feasible and infeasible points

value in the population i.e. the point x2. This again shows that for infeasible points the SFP

scheme shows a preference toward obtaining feasibility. Next we look at the parameter free

penalty scheme.

3.1.2 The parameter free penalty scheme

The method of parameter free penalty (PFP) scheme was introduced by Deb [15]. The

scheme presented here is a modification of the SFP scheme as suggest by Miettinen et al

[38]. The most significant feature is the lack of a penalty coefficient R. Therefore the user

does not need to supply any parameter values for the scheme. Here, just as with the SFP

scheme an additional penalty term, Θg, is added to the fitness function. This term ensures

that infeasible points are always worst than feasible ones but without the need of a penalty

parameter. The fitness function in the PFP scheme is as follows:

f̂(xi,g) = f(xi,g) + G(xi,g) + Θg(xi,g), xi,g ∈ Sg (3.11)

where,

Θg(xi,g) =


0 if xi,g ∈ Ω,

−f(xi,g) if Sg ∩ Ω = ∅,

−f(xi,g) + maxy∈Sg∩Ω f(y) if Sg ∩ Ω 6= ∅ and xi,g /∈ Ω.

(3.12)

We note that just as with the SFP scheme, f(xi,g) and G(xi,g) ∀ xi,g ∈ Sg must be known

before Θ can be calculated. Looking at the first term in (3.12) we can see that if a point is
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feasible i.e. G(x) = 0, then the fitness value is equal to the objective function value. From

the second term, when all members of the population are infeasible i.e. Sg ∩ Ω = ∅, the fit-

ness value to be minimized consists of only the constraint violation. This directs the search

toward a feasible region. However this might adversely affect the convergence because the

objective function value is completely neglected in this case. Finally, when the population

contains both infeasible and feasible points the PFP scheme ensures that infeasible points are

always worst than the worst feasible point. This is done by adding the object function value

of the worst feasible point to the constraint violation of each infeasible point. This value is

the resulting fitness value. Computationally this method also provides an advantage in that

if a point is infeasible only the constraint violation has to be calculated and not the objective

function value.

Using the same example as with the SFP scheme we will illustrate the PFP scheme. For

this scheme, if a point is infeasible the objective function value does not need to be calcu-

lated, however we have included them in the table below. Table 3.3 gives a population of

infeasible points for Problem 7. The fitness function value is simply equal to the value of the

constraint violation. This will ensure that when all points are still infeasible in the population

the main objective will be to find feasible points.

i xi f(xi) G(xi) f̂(xi)
1 (1.316 , 1.9932 ) -3.3092 0.8605 0.8605
2 (0.9601 , 3.8404) -4.8005 3.8139 3.8139
3 (1.8216 , 2.5196) -4.3412 0.3084 0.3084
4 (0.7853 , 2.3894) -3.1747 1.4851 1.4851
5 (1.0809 , 2.1941) -3.2750 2.0977 2.0977

Table 3.3: Example of PFP scheme: population with no feasible points

When the population contains both feasible and infeasible points, the fitness function

calculations for any infeasible points can be simplified as:

f̂(x) = G(x) + max
y∈Sg∩Ω

f(y) (3.13)
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Hence the fitness value for all infeasible points will be worst than the worst feasible point. In

Table 3.4 the largest f(x) value for any feasible point in this population is given by f(x3) =

−0.566. Using (3.13) the fitness value for x2 will be calculated as f̂(x2) = G(x2)+f(x3) =

3.8139− 0.566 = 3.2479. The resulting fitness values are given in Table 3.4.

i xi f(xi) G(xi) f̂(xi)
1 (1.5663 , 0.4682) -2.0345 0 -2.0345
2 (0.9601 , 3.8404) -4.8005 3.8139 3.2479
3 (0.3048 , 0.2613) -0.5660 0 -0.5660
4 (2.3295, 3.1785) -5.5079 0 -5.5079
5 (1.0809 , 2.1941) -3.2750 2.0977 1.5317

Table 3.4: Example of PFP scheme: population with feasible and infeasible points

The implementation of these penalty methods in conjunction with the differential evolu-

tion algorithm will be fully discussed in Chapter 6.
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Chapter 4

The filter algorithm for constrained

optimization

The concept of filters was first introduced as a globalization strategy for sequential linear

programming (SLP) and sequential quadratic programming techniques (SQP) [19]. The fil-

ter algorithm attempts to avoid the shortcomings of penalty functions by decomposing the

constrained optimization problem into a bi-objective problem. In essence, instead of combin-

ing the objective function and constraint function, the filter method tries to simultaneously

minimizes both the functions separately. This can be formalized as:

minimize [f(x),G(x)] , (4.1)

where G(x) =
d∑

k=1

〈gk(x)〉 .

The filter algorithm is based on a concept used in multi objective optimization known as

dominance. A filter set consisting of a list of pairs [f(x), G(x)] is created such that no pair

dominates another. We can define dominance as follows:

Dominance: For a pair of vectors x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , yn], with

finite components, x dominates y, written as x ≺ y, if and only if ∀ i = 1, . . . , n, xi ≤ yi,
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and x 6= y. The notation x � y is used to indicate that either x ≺ y or that x = y.

Using the above definition and (4.1), a point x ∈ Rn is said to dominate y ∈ Rn i.e. x ≺ y,

if and only if [f(x), G(x)] ≺ [f(y), G(y)]. Hence f(x) ≤ f(y) and G(x) ≤ G(y). If two

pairs have the same f and G values the points are considered equivalent. A filter F is a finite

set of points such that no pair of points x, y in the set have the relation x ≺ y. A point y is

called a filtered point if any one of the following holds :

• y � x for some x ∈ F .

• G(y) ≥ Gmax , where Gmax > 0 is a maximum allowed value on the constraint

violation function G(x).

• G(y) = 0, and f(y) ≥ fF , where fF = f(xF ) is the current minimum feasible

function value.

Consequently, the set F̄ of all filtered points y is:

F̄ =
⋃
x∈F

{y : y � x} ∪ {y : y ≥ Gmax} ∪
{
y : G(y) = 0, and f(y) ≥ fF

}
. (4.2)

In order to illustrate how a filter set would operate we can plot f against G in Figure

4.1. In this figure the filter set is given by F = {x1, x2, x3, x4}. Any infeasible point that

is generated that lies in the shaded region would be filtered. All infeasible points generated

in the unshaded region would be included in F and would possibly eliminate some points

already in F . For example if the point x5 were to be added to the filter it would eliminate

x4 from the filter set resulting in F = {x1, x2, x3, x5}. This is because f(x5) < f(x4) and

G(x5) < G(x4) giving the relation x5 ≺ x4. For feasible points, any point with an objective

function value greater than x1 such as x6 will be filtered. However if a feasible point is found

with a lower objective function value it will be added to the filter and x1 will be removed.

The filter set contains two important points, namely the feasible and infeasible incum-

bents. fF
k represents the feasible incumbent and is defined as the smallest objective function
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Figure 4.1: Example of Filter Set

value for a feasible point found up until iteration k. Let gI
k be the least positive constraint

violation function value found up to iteration k of a filter algorithm. Then f I
k is the smallest

objective function value for a point with its constraint violation equal to gI
k. In Figure 4.1 the

point x1 would be the feasible incumbent and point x2 would be the infeasible incumbent.

The superscripts F and I signify feasibility and infeasiblity, respectively.

4.1 The filter method for constrained optimization

The use of the filter method in conjunction with evolutionary algorithms has been fairly

limited [10, 25]. Next we will discuss two evolutionary methods that employ filters.

In [10] a general evolutionary algorithm is used in conjunction with a filter set. The pop-

ulation is divided into two subsets. One containing feasible points and the other consisting of

nondominated infeasible points and the feasible incumbent. The filter is employed implicitly

in order to eliminate dominated trial points generated during the search process. The filter

concept is used principally as a constraint handling strategy and as an acceptance criteria for
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new points. The reader is referred to [10] for further insight. Unfortunately no numerical

testing was done for this method, so it would be difficult to judge the accuracy, efficiency or

reliability of this method.

Another filter-based global optimization method is the filter simulated annealing (FSA)

approach as suggested in [25]. Initially a diverse solution set is generated. The points in

the set are then ranked. The ranking procedure used is reliant on a filter set to determine

the ranking of points. Based on this ranking process the best point in the set is chosen

as a starting point for the annealing process and subsequently when required the annealing

process is restarted from this same set. The acceptance criterion is also affected by the filter.

All unfiltered points are accepted with a probability of 1. Numerical results are presented in

[25] for the FSA algorithm. We have included most of these results in Chapter 7.

Our aim is to take a slightly different approach to the use of the filter set. The filter

set will be used in two of the algorithms that will be presented later. We will present our

motivation for the proposed use of the filter set below.

Our proposal involves using the mutation process of the DE to explore unfiltered points

encountered during the search process. The filter set gives a number of points that have very

unique features. These can be considered to be points of interest, since either their objective

function value f(x) or constraint value G(x) compares favorably to other infeasible points.

When using penalty schemes to handle constraints the schemes focus of minimizing the

constraint violation only. The function values are often disregarded completely as is the case

for PFP penalty scheme or the penalized constraints overshadow the objective function e.g.

in the SFP scheme. By using the filter we want to explore a wider spectrum of points with

both high and low objective functions values. We propose using unfiltered points as base

vectors during the mutation phase of the DE algorithm. This will allow these points to be

better explored, leading to a potentially unexplored feasible region. The mutated vector in

DE will thus be generated as follows:

x̂i,g = xundominated + F × (xp(2) − xp(3)) (4.3)
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where xundominated is an undominated point such that xundominated is selected randomly from

F for each infeasible target point xi,g. Trial points generated by the DE algorithm in each

generation aim to replace their corresponding target points from the current population.

However not all trial points will succeed in replacing their target points. In building our

filter set we will consider all trial points irrespective of whether they successfully enter the

new population or are rejected. This will create a filter with a substantial number of varying

points.

The DE algorithm employs a point to point acceptance rule. This is important since if

the target point is feasible the SFP and PFP penalty schemes will ensure that it will only

be replaced by a feasible point with a better function value. Hence it is logical to only use

the suggested mutation scheme (4.3) when the target points are infeasible. We will further

discuss the proposed algorithm in Chapter 6.
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Chapter 5

The pattern search method

The pattern search (PS) method falls into the wide class of generalized pattern search (GPS)

algorithms. These are derivative free, direct search algorithms for unconstrained optimiza-

tion. In 1997, Torczon [56] showed that all the existing pattern search algorithms are simply

specific implementations of an abstract pattern search scheme. The general scheme involves

the construction of a mesh of points, around the current solution. These points are then

explored according to some criteria. If the current solution remains unimproved the mesh

is refined and the process repeated. Aside from PS other instances of this class include the

Hooke and Jeeves method [26], the basic coordinate search method [44] and multidirectional

search method [16].

The GPS framework has since been extended to include bound constrained optimization

problems [34] and problems with linear inequalities [35]. For problems where f is contin-

uously differentiable, Torzan [56] proved that GPS produces some limit point for which the

gradient of the objective function value is zero. It is further proven that for bound constrained

[34] and linearly constrained problems [35], the GPS adaptation produces a Karush-Kuhn-

Tucker point. For further discussions of these and other similar results refer to [8, 34, 35, 56].
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5.1 Description of the PS algorithm

The PS algorithm is an iterative process that aims to generate a sequence of iterates {xk} in

Rn with non-increasing objective function values. This is done by evaluating a finite number

of points on a mesh in order to find an improved point. The exploration of the mesh is carried

out in either one or two phases. The phases being the SEARCH and POLL steps. In order

to better understand these phases we need to formally define important concepts such as

positive combination and span [14] and mesh generation [45].

Definition 5.1: Positive combination, Positive Span

1. A positive combination of vectors {vi}p
i=1 is a linear combination

∑p
i=1 λivi where

λi ≥ 0,∀ i ∈ {1, 2, . . . , p} , n + 1 ≤ p ≤ 2n.

2. A positive span for a subspace B ⊂ Rn is a set of vectors {vi}p
i=1 such that every

x ∈ B can be expressed as a positive combination of the vectors {vi}p
i=1. The matrix

defined by V = [v1, . . . , vp] is said to be a positive spanning matrix.

3. Let the subspace B ⊂ Rn be of dimension m and V ∈ Rn×p be a positive spanning

matrix for B. If p = n+1, then V is said to be a minimal positive spanning matrix for

B.

If, for example, B ⊂ R2 then V = [e1, e2,−e1,−e2] , where e1 and e2 are unit vectors, is

a positive spanning matrix. However V = [e1, e2,−(e1 + e2)] would be a minimal positive

spanning matrix for B.

Definition 5.2: Base Direction Matrix

Let B be the set of all matrices whose columns positively span Rn. Then, the base

direction matrix D is any positive spanning matrix satisfying

D ∈ Qn×p ∩ B. (5.1)
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The fact that Qn×p is a rational matrix ensures that the matrix D has only rational elements

and makes it very easy to establish the minimal distance between distinct mesh points [45].

Definition 5.3: Mesh

M(xk, ∆k) = {xk + ∆kDm : m ∈ Np} (5.2)

where xk is the current iterate and ∆k ∈ R+ is the mesh size parameter. We note that the

mesh is not explicitly constructed but is rather a conceptual entity.

SEARCH STEP

A finite subset of mesh points, possibly none, are selected. These points are evaluated to find

an improving point. If any of these points improves the current iterate, then xk is replaced

by the improving point. However if this search fails to find an improving point, the next step

i.e. the POLL step is invoked. Any strategy such as a heuristic rule may be used to select

these candidate mesh points. Consequently, due to the lack of mathematical foundation the

SEARCH step does not contribute to the convergence properties of the PS method and is

considered by some researchers to be a liability [7, 8]. Most implementations of the PS

algorithm do not use this step.

POLL STEP

The POLL step consists of evaluating the function on the set of mesh points neighboring the

current iterate xk. These neighboring points are referred to as the poll set and denoted as

follows:

Pk = {xk + ∆kdi : di ∈ D, i = 1, . . . , p} . (5.3)

Each point in the POLL step is evaluated until an improved mesh point is found. If this step

is successful, the iterate is updated to the new improved mesh point.

MESH UPDATE

At each iteration, the SEARCH or POLL steps will either give an improved mesh point or
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both will fail. This presents two possible end scenarios. If an iteration fails one can conclude

that the current point is locally optimal for the current mesh. Hence the mesh is refined using

the following rule:

∆k+1 = θk∆k (5.4)

with 0 < θk < 1. If however the algorithm succeeds in finding an improved mesh point, the

mesh is either kept the same or increased via the following rule:

∆k+1 = θk∆k (5.5)

with θk > 1.

Typical values for the mesh parameter update are ∆k+1 = 1
2
∆k for when the mesh needs

to be refined and ∆k+1 = 2∆k when the mesh needs to be coarsened [8]. Both these pro-

cesses are implicit. The PS algorithm based on the POLL step is given below.

Algorithm 3 The PS algorithm

1. Set parameters ∆0, counter k = 0, stopping tolerance ∆tol > 0 and x0, where x0 is an
initial solution

2. POLL STEP : Evaluate objective function f at trial points in poll set, xi
k = (xk +

∆kdi).

• IF a point say xi
k in the poll set is found such that f(xi

k) ≤ f(xk) THEN
* xk+1 = xi

k

* Either increase the mesh size parameter ∆k or keep it the same using (5.5) and
then go to step 3.

• IF f(xi
k) ≥ f(xk) for all xi

k ∈ Pk THEN
* xk+1 = xk

* Decrease the mesh size parameter ∆k using (5.4) and then go to step 3.

3. IF ∆k < ∆tol THEN STOP, ELSE k = k + 1 and go to step 2.

For illustrative purposes we present a hypothetical example using only the POLL step in

Figure 5.1. The current iterate is indicated by a shaded circle, an unsuccessful trial point is

indicated by an unshaded circle and a successful trial point is given by a semi shaded circle.

We present the trial points in open brackets e.g. x1 = (x1
1, x

2
1) and its corresponding function
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Figure 5.1: Example of PS

value in square brackets e.g. [f(x1)].

In Figure 5.1 A) x1 = (1, 1) is the current iterate with a function value of 10 and we let

∆1 = 1. If we poll around x1 using the spanning matrix D = {e1, e2,−e1,−e2} our first

trial point will be the point x1 + ∆1 × e1 = (1, 1) + (1, 0) = (2, 1), where the function

value is 13. This trial point will therefore not provide an improvement and we proceed to

the next trial point, (1, 2). Similarly we are unsuccessful at this trial point, (1, 2), as well as

(0,1) where the function values are 17 and 14 respectively. The last trial point (1, 0) however

has the a function value of 7 which is lower than that of x1. Therefore we let x2 = (1, 0) be

our new iterate and poll center. The poll step is successful and so the mesh is kept the same.

The order in which the trial points are generated does not matter.

In Figure 5.1 B) once again we poll around x2 however none of the trial points provides a

decrease in the objective function value. Hence for the next iteration the poll center is kept

the same and the mesh is refined with ∆3 = 1
2
.
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Figure 5.1 C) shows how the process is repeated again with x3 = (1, 0) as our current iterate

and ∆3 = 1
2
. The second trial point (1, 0.5) provides an improvement and will be set as the

new iterate x4. The POLL process is restarted using x4 = (1, 0.5) as the new iterate. This

process will continue until ∆k < ∆tol.

5.2 PS for constrained optimization

The applicability of the PS method to constrained local optimization problems is fairly lim-

ited. This is because in order to uphold the convergence guarantees of the PS method, it

can only be used on a specific set of problems. Audet and Dennis [8] have proposed a PS

filter method that does not require any derivatives. We will provide a brief overview of this

method. For the purpose of their algorithm the definitions for a mesh and poll center were

extended. The method uses an initial set of solutions, say S0. The definition of a mesh is

thus extending to include the mesh for each initial solution. Hence at any iteration k:

M(Sk, ∆k) =
⋃

x∈Sk

M(x, ∆k) (5.6)

where M(x, ∆k) is defined as in equation (5.2). This allows the SEARCH step to select

mesh points around any of the trials points, x ∈ Sk. A filter set is created using the initial set

of solutions.

The poll center is chosen from either the feasible or infeasible incumbents. The resulting

poll set needs to include the selected poll center {pk} and is thus defined as:

Pk = {pk} ∪ {xk + ∆kdi : d ∈ D, i = 1, . . . , p} (5.7)

For this algorithm, the purpose of the exploration is not just to find a decrease in the objective

function value but to find unfiltered mesh points. Therefore the SEARCH and POLL steps

are considered successful if an unfiltered mesh point is found.
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The algorithm generates and evaluates an initial set, S0, of points. The filter and in-

cumbents are extracted from this set. The SEARCH and POLL steps are carried out until

an unfiltered mesh point is found or it is shown that all mesh points are filtered. The filter

set, mesh size parameter, ∆k and trial point are updated accordingly. The process is then

repeated. Algorithm 4 fully describes this process. For more details and insight the reader is

referred to [8].

Algorithm 4 A pattern search filter algorithm

Initialization: Let x0 be an undominated point from the initial set of solutions. Include all
initial solutions in the filter F and set Gmax > G(x0). Fix ∆0 > 0 and set k = 0.

Definition of Incumbents: Define (if possible) the following:

• fF
k : Feasible incumbent i.e. smallest feasible objective function found

• GI
k: Least positive constraint violation found thus far

• f I
k : Infeasible incumbent i.e. the smallest objective function value for points

found thus far whose constraint violation is equal to GI
k

SEARCH and POLL Steps: Perform SEARCH and possible POLL step until an unfiltered
trial point xk+1 is found or until it is found that all trial points are filtered.

• SEARCH: Evaluate G and f on a set of trial points on a mesh Mk.

• POLL: Evaluate G and f on the poll set Pk, where pk ∈ Pk satisfies either
((G(pk), f(pk)) = (0, fF

k ) or ((G(pk), f(pk)) = ((GI
k, f

I
k ))

Parameter Update: If the SEARCH or POLL step resulted in an unfiltered mesh point
xk+1 ∈ F k+1 then declare the iteration successful and and update ∆k+1 ≥ ∆k.
Otherwise set xk+1 = xk, declare the iteration unsuccessful and set ∆k+1 < ∆k.
Increment k = k + 1 and go back to definition of incumbents.

Unlike in the PS filter algorithm discussed above our aim is not to use the PS method as

our underlying optimizer. We will rely on DE as a primary exploration tool since it is a global

solver. The PS method is ideal for local exploration. We want to exploit this characteristic

of the PS by incorporating it into the DE algorithm as a local search mechanism. This will

allow us to have a hybrid global method with additional local search properties.

If we look at the mutation process of the DE algorithm, we see that the trial point is a

perturbation of one of the parents in a single direction. This direction is not necessarily the

descent direction. However the PS will enable us to search in multiple directions until an
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improving point is found. With PS, our objective is not to do a complete local search but

to simply explore the immediate neighborhood of a particular point. We will incorporate

the PS method into two of our proposed approaches. The first will be the DE algorithm for

constrained global optimization together with PS for local exploration. The second will be

the DE algorithm with PS and filter set combined. We will fully discuss these methods in

Chapter 6.
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Chapter 6

Differential evolution algorithms for

constrained global optimization

The aim of this chapter is to provide a description of algorithms that are proposed for con-

strained global optimization. Our research objective is to find a constrained global optimiza-

tion algorithm that can successfully be applied to a wide range of problems without imposing

any prerequisites on the problems. We wish to use the DE algorithm as an underlying global

optimizer. In this chapter we present four different algorithms based on the DE algorithm

and other techniques.

Our first goal would be to provide a modified DE algorithm that can be used for con-

strained global optimization. We will refer to it as the DE algorithm for constrained global

optimization and denote it by DEC. The second algorithm is a filter based DEC algorithm

which will be abbreviated as FDEC. It is established on the DEC algorithm but includes a

filter set that is used to create a diversification mechanism in the search process. The third

algorithm is a PS based DEC or PSDEC. This algorithm is also structured on the DEC al-

gorithm but has an additional localization strategy that is founded on the PS method. The

last algorithm presented includes both the diversification process provided by the filter set as

well as the local search mechanism provided by the PS method. It is denoted by PSFDEC.

Detailed descriptions of all the algorithms are given below.

41



6.1 Differential evolution for constrained global optimiza-

tion (DEC)

The DE algorithm for unconstrained optimization has been fully discussed in Chapter 2.

The elementary pseudo-code for the DE algorithm has also been presented in Chapter 2

along with a full description of all the steps involved. Here, we briefly summarize the DE

algorithm: Firstly the population is initialized as described by equation (2.1). Then a trial

population is generated via the process of mutation and crossover. Any of the mutation

schemes, such as the examples given in equations (2.2) to (2.4) and the crossover scheme

represented by (2.5) can be used. Then the two populations are compared point to point and

a new population is formed depending on the acceptance rule as given in (2.6). This process

of mutation, crossover and acceptance is repeated until some stopping condition is met.

We now present the changes made in going from the unconstrained to the constrained

version of the DE algorithm. Firstly, changes are made to the parameter values of DE.

Instead of the fixed scaling parameter in the original algorithm we will use an iteration based

scaling parameter F for the mutation process. Since F will be different for each generation

we use the notation Fg, where Fg ∈ [−1,−0.4] ∪ [0.4, 1]. At each generation a random

number rg ∈ (0, 1) will be generated. If rg ≤ 0.5 then Fg is drawn uniformly from [0.4, 1]

else Fg is drawn uniformly from [−1,−0.4].

In order to adapt the DE algorithm for constrained optimization, there are certain changes

that need to be made to the algorithm. Since we are using penalty functions as our constraint

handling mechanism, the fundamental structure of the DE algorithm remains mostly un-

changed. The main differences between DE and DEC center around the evaluation of the

fitness function and the acceptance rule.

Secondly, the DEC algorithm has to accommodate the inclusion of the constraint viola-

tion. For each member, xi,g, in the population two additional values namely the constraint

violation G(xi,g) and the resulting fitness function value f̂(xi,g) for each point need to be

stored.
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In general, to calculate the fitness value for the ith member of the population, the ob-

jective function values f(xi,g) and constraint violation G(xi,g) for all points in the current

population, Sg, needs to be known first. This is because firstly the term Θg (see (3.8) and

(3.12)) in the penalty function is dependent on the feasibility of the point being evaluated

and whether the population has only infeasible points or a combination of both infeasible

and feasible points. Secondly the worst feasible and (or) best infeasible point in the popula-

tion is needed in order to determine the penalty function. We briefly describe how Θg and f̂

are evaluated using both the SFP and PFP below.

For the SFP scheme the fitness function and constraints are calculated as given by equa-

tions (3.7) to (3.9) in Chapter 3. The additional penalty term Θg is added to infeasible points

if the population has both infeasible and feasible points. Also Θg is calculated based on the

worst feasible point and best infeasible point. The reader is referred to Chapter 3 for a more

detailed look at this scheme.

Equations (3.11) and (3.12) describe the calculation Θg and f̂ using the PFP scheme.

Unlike SFP, here the additional penalty term Θg applies to all infeasible points irrespective of

the makeup of the population. The worst feasible point in the population is used to calculate

the value of Θg. For further reading please refer to Chapter 3.

All the above mentioned issues related to the evaluation of f̂ becomes relevant from a

computational perspective as they will affect the implementation of the DEC algorithm. Any

point in the population can only be fully evaluated (i.e. fitness value calculated) after all

points have been generated and their relevant objective function value f(x) and constraint

violation value G(x) have been determined. Then only can the value for Θg in the penalty

function for the SFP and PFP schemes be calculated. The DEC algorithm needs to facilitate

this.

Finally, the last difference is in the acceptance rule. For the unconstrained optimization

trial points are accepted based on the objective function value, f(x), whereas for constrained

optimization the acceptance rule is structured on the fitness value, f̂(x). Therefore, the new

acceptance rule can be given mathematically as:
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xi,g+1 =

 yi,g if f̂(yi,g) < f̂(xi,g),

xi,g otherwise.
(6.1)

The DEC algorithm is summarized in the next few lines. Firstly the population

S = {x1,0, x2,0, . . . , xN,0} is initialized as described by equation (2.1). Then the objective

function f(xi,0) and constraint G(xi,g) for each point are obtained. The penalty Θ0 is eval-

uated and the fitness values f̂(xi,g) for each point is determined. Next a trial population is

generated via the process of mutation and crossover. Any of the mutation schemes such as

those given in equations (2.2) to (2.4) and the binomial crossover scheme represented by

(2.5) can be used. The trial population is evaluated to obtain the objective function value

f(yi,1) and constraint value G(yi,1). Θ1 is obtained and the fitness value f̂(yi,1) for all trial

points is finally calculated. Then the two populations are compared point to point and a new

population is formed depending on the acceptance rule as given in (6.1). This process of

mutation, crossover, evaluation and acceptance is repeated until some stopping criterion is

met. We now present the DEC algorithm below:
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Algorithm 5 The DEC algorithm

1. Set control parameters N , cr and g = 0 as well as penalty parameter R for the SFP
method.

2. Initialize population S0 = {x1,0, x2,0, . . . , xN,0} uniformly using (2.1)

3. Evaluate objective function value and constraint violation of each member in the pop-
ulation

4. Determine penalty function Θ0 and evaluate fitness of initial population using (3.7)-
(3.9) for SFP method or (3.11) and (3.12) for PFP method

5. IF Stopping Criteria not met

(a) Generate Fg ∈ [−1,−0.4] ∪ [0.4, 1] uniformly

(b) FOR i = 1 TO N ,

i. generate trial point yi,g via:
• Mutation using (2.2), (2.3) or (2.4)
• Crossover using (2.5)

ii. Evaluate f(yi,g) and G(yi,g)

6. Determine penalty function Θg and evaluate fitness of trial population using (3.7)-(3.9)
for SFP method or (3.11) and (3.12) for PFP method

7. Update population using (6.1)

8. Set g = g + 1, calculate stopping criteria and go to 5.
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6.1.1 Possible pitfalls of the acceptance rule in DEC

An important aspect to consider when dealing with the DEC algorithm is that during the

acceptance phase two different populations are being compared. The value of the additional

term Θg in the penalty function is totally dependent on the composition of the population.

We will discuss this further.

If we consider the case of unconstrained optimization we compare the objective function

values of two points, which is straight forward. However for constrained optimization we

are comparing the fitness function values of two points from two different populations. This

is significant since the additional penalty term in the fitness function is determined by the

composition of the population. We will provide an example below to describe this.

If we were to consider two populations e.g. the current population and the trial population

at the gth generation. For the sake of explanation, let us consider that the current population

contains only infeasible points with the constraint violation in the range of say 0 < G(x) <

10. While the trial population contains feasible and infeasible points and objective function

values of the feasible points are large positive numbers. Table 6.1 and 6.2 present examples

of these two populations. We use Problem 1 from Appendix A and the PFP penalty scheme

to evaluate the populations. If we were to compare these two populations the acceptance rule,

as given by (6.1), will select the infeasible points with small f̂(x) values as given in Table

6.1 over the feasible points with large f̂(x) values as given by x3 and x4 in Table 6.2. Also

the infeasible points in the trial population will carry an additional penalty while those in the

current population will not carry any added penalty since all points are infeasible. So even

though the actual constraint violation may be less the resulting fitness value will be higher

e.g. x1 and x2 in Table 6.2 as compared to x1 and x2 in Table 6.1. This can be seen with

the infeasible points in the current population where the fitness value is simply the constraint

violation and are therefore small values. Whereas in the trial population the infeasible points

carry an additional penalty so even though both infeasible points in the trial population have

smaller violations their actual fitness value is higher.
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i xi f(xi) G(xi) f̂(xi)
1 (1422.3 ,4301.4, 7781.5,319.3,361.97, 248.43, 612.76, 624.18) 13505 2.68 2.68
2 (6815.8 , 8448.7, 8654.4 , 133.88 , 234.31 ,7 645.76 , 886.06 , 781.17) 23919 6.8839 6.8839
3 (4216.2 , 2042.3 , 7348.6 , 886.02 , 369.85 , 384.46 , 934.54 , 830.31) 13607 5.8267 5.8267
4 (5227.7 , 2225 , 9401.5 , 302.82, 156.38, 581.87, 617.91, 869.35 ) 16854 7.5201 7.5201

Table 6.1: Example: current population with infeasible points only

i xi f(xi) G(xi) f̂(xi)
1 (6518.4 , 6405.3 , 8989.4, 27.369 , 483.64 , 590.42, 265.17 , 609.15) 1.6032 1.6032 18056.6032
2 (5244.4 , 3398.3 , 4072.5 , 281.06 , 252.03 , 331.99 , 553.75 , 459.47 ) 1.9188 1.9188 18056.9188
3 (4768.1 , 4482.6 , 8784.6 , 209.68 , 266.59 , 148.32 , 317.27, 353.27) 18035 0 18035
4 (5875.5 , 3822.4 , 8357, 173.29 , 253.29 , 130.09 , 312.43 , 342.13) 18055 0 18055

Table 6.2: Example: trial population with feasible and infeasible points

This scenario is rare and usually occurs when using the PFP method with problems that

have positive function values for feasible points. An easy way to overcome this, as we have

chosen to do, is to always select feasible points over infeasible points irrespective of the

fitness values. Next we look at the DEC implementation utilizing the filter method.

6.2 A filter based DE method for constrained optimization

(FDEC)

Our approach for the filter based DE is to maintain the underlying structure of the DEC

algorithm but include the filter method as an additional means to explore the infeasible search

space. Since we are using penalty schemes as our constraint handling mechanism, the DEC

algorithm will in most instances be biased toward feasible points. This is because as soon

as a feasible point enters the population, the search will be directed toward that particular

feasible region. This could compromise the full exploration of the infeasible search space

and possible discovery of additional feasible regions. When using penalty schemes to handle

constraints the schemes focus of minimizing the the constraint violation only. The function

values are often disregarding or de-emphasized. By using the filter we want to explore a

wider spectrum of points with both high and low objective functions values. This is the main
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motivation of the FDEC algorithm.

We now use two figures to motivate our use of the filter set. Figures 6.1 and 6.2 give an

example of the evolution of population set of DEC and FDEC respectively. The algorithms

were applied to problem 20 in Appendix A. Using a population size of N = 10 we ran

both algorithms for 10 generations. Each figure was drawn using the data from a single run.

The points in the figure were taken from the 1st, 5th and 10th generations, i.e. S1, S5 and

S10. From Figure 6.1 and 6.2 we can see that when compared to DEC, the population set of

FDEC maintains a greater diversity amongst its points.

Figure 6.1: Distribution of points in Sg, g = 1, 5, 10, DEC

Figure 6.2: Distribution of points in Sg, g = 1, 5, 10, FDEC
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Having motivated the use of the filter set, we now present the differences between DEC

and FDEC. There are two principal differences between the FDEC algorithm and the DEC

algorithm. Firstly the FDEC algorithm will keep an updated filter set. The filter set is

basically a list of pairs [f(x), G(x)] where no pair dominates another. The reader is referred

to Chapter 4 for full details on the filter set. All new trial points generated during the search

will be checked against the current filter set. If a new point is found to dominate any point(s)

in the filter it will be added to the filter and the dominated point(s) will be removed.

The second difference is in the mutation scheme. If the target point is infeasible then the

filter mutation scheme given by:

x̂i,g = xundominated + Fg × (xp(2) − xp(3)) (6.2)

is used to generate a trial point where Fg ∈ [−1,−0.4] ∪ [0.4, 1]. When the target point is

feasible, the mutated point is calculated as in DEC. Note that (4.3) and (6.2) are equivalent

except that the scaling parameter Fg has been randomized in (6.2). The point xundominated

is randomly selected from the filter set for each mutation point. This mutation scheme will

allow for any regions represented by undominated points encountered during the search to be

better explored. Our aim is to explore different regions and locate better infeasible points and

possibly also feasible points. If the target point is feasible the penalty function will ensure

that any infeasible trial point generated will be discarded. If the target point is feasible then

the preselected mutation schemes such as those given by (2.2), (2.3) or (2.4) are used.

The FDEC algorithm will now be described. Once the initial population is generated and

evaluated as described for the DEC algorithm, all nondominated pairs [f(xi,0), G(xi,0)] will

then be used to create a filter F . At the gth generation if the target point xi,g is infeasible

a point xundominated is randomly selected from F . Using xundominated as the base point,

x̂i,g is generated using the filter mutation scheme described by (6.2). If the target point is

feasible the mutation phase is carried as in DEC. The trial point yi,g is then obtained once the

crossover is carried out using (2.5). The function value and constraint violation of yi,g is then

calculated and the pair [f(yi,g), G(yi,g)] is checked for dominance against the current filterF .
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If yi,g is dominated by any pair in F , then we proceed to the calculation of the next trial point

yi+1,g. However if yi,g is undominated, it is added to F and all pairs that it dominates are

removed from F . It is important to note that the objective function value and not the fitness

value is used in the filter set. The fitness value for all trial points, yi,g, i = 1, 2, . . . , N , are

then calculated once the penalty functions G and Θg are evaluated. Then the two populations

are compared point to point and a new population is formed depending on the acceptance rule

as given in (6.1). This process of mutation, crossover, evaluation and acceptance is repeated

until some stopping criteria is met. The FDEC algorithm is given in algorithm 4.

Algorithm 6 The FDEC algorithm

1. Set control parameters N , cr and g = 0 as well as penalty parameter R for SFP method.

2. Initialize population S0 = {x1,0, x2,0, . . . , xN,0} uniformly using (2.1)

3. Evaluate objective function value and constraint violation of each member in the pop-
ulation

4. Determine penalty function Θ0 and evaluate fitness of initial population using (3.7)-
(3.9) for SFP method or (3.11) and (3.12) for PFP method

5. Generate filter set using initial population

6. WHILE Stopping Criteria not met

(a) Generate Fg ∈ [−1,−0.4] ∪ [0.4, 1] uniformly

(b) FOR i = 1 TO N ,

i. generate trial point yi,g:
• IF xi,g is infeasible then use filter mutation scheme (6.2) ELSE use

mutation scheme (2.2),(2.3) or (2.4)
• Crossover using (2.5)

ii. Evaluate f(yi,g) and G(yi,g)

iii. Evaluate yi,g against filter and update filter set as necessary

7. Determine penalty function Θg and evaluate fitness of trial population using (3.7)-(3.9)
for SFP method or (3.11) and (3.12) for PFP method

8. Update population using (6.1)

9. Set g = g + 1, calculate stopping criteria and go to 6.
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6.2.1 Implementational issues

In most of the previous use of the filter set, the filter is simply used to check for dominance

[10, 25]. However the FDEC algorithm uses the actual points related to the filter pairs. These

points are used for the filter mutation scheme as given in (6.2). Therefore it becomes nec-

essary to store these points separately. Simply indexing these pairs to the actual population

is not possible since occasionally points that are in the filter are not present in the current

population. This could become an important factor to consider for problems of very high di-

mensions where the filter could be of a significant computational size. Also since the FDEC

algorithm is based on the DEC algorithm all other implementational issues that were relevant

for the DEC algorithm apply to it as well.
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6.3 A PS based DE method for constrained global opti-

mization (PSDEC)

The aim of the PS based DEC method is to provide a local search mechanism within the

scope of the DEC algorithm. This hybrid will have the global properties of the DEC algo-

rithm while the PS method will allow for quicker convergence to local minima.

6.3.1 The PS based local exploration algorithm

We first look at the PS method that will be used for the PSDEC algorithm. Our aim is not

to carry out a full local search but just a simple limited local exploration. Hence we will

not implement the full PS method but a limited version of it. We denote this method by

PPS or partial pattern search. A detailed description of the general PS algorithm is presented

in Chapter 5 and by algorithm 3. Here we briefly describe the method: A single point xk

referred to as the current iterate is evaluated, k being the iteration number. Then a set of

points that lie on a mesh neighboring the current iterate are considered. These points are

referred to as the poll set. The mesh size is dependent on a parameter ∆k. If an improving

point is found in the poll set then the mesh is either coarsened or kept the same. If no

improving point is found the current iterate is considered to be locally optimal for that mesh

and hence the mesh is refined. The parameter ∆k is used to either coarsen or refine the mesh.

Equations (5.2) to (5.5) give the mathematically formulation for the mesh, poll set and mesh

update.

What we propose for the PPS method is a non-iterative process using a single iterate.

Hence the PPS method uses a single value for ∆ to produce one poll set around the current

iterate. If an improving point is found the algorithm is stopped and considered successful. A

point will be considered to be improved if a lower fitness function value is found. If none of

the points in the poll set improve the current poll center is considered to be a minimum for

the current poll set and the PPS algorithm is ended. This will allow us to have a partial local

52



search within our DEC algorithm. We will fully describe the PPS algorithm below.

Firstly five points are selected randomly from the best α% of the population1. One of

the five points is randomly selected to be the current iterate xk and the poll centre. The most

important feature of PPS is the calculation of ∆. The average distance (AvgDis) between

the five points that have been selected is calculated. ∆ will be set as a fraction of the AvgDis

i.e. ∆ = β × AvgDis, where β < 1 2. Since atleast one of the directions in the poll set is a

descent direction, we set ∆ as a small value in order to find a better point than xk. The value

for ∆ will vary depending on the distance between the points. At early stages the population

will be diverse and this will result in larger values for ∆. As the population converges the

distance between points will decrease and so will the value for ∆. Clearly, ∆ will no longer

be a user defined parameter and will adapt with the population. Since the algorithm is to

be tested on a wide range of problems whose search areas vary dramatically in size, using a

fixed value such as ∆ = 1 will results in poor performance. The PPS algorithm is presented

below by algorithm 5.

Algorithm 7 The PPS algorithm

1. Randomly select five point within best 10 % of the population.

2. Calculate the average distance, AvgDis, between the five points and set ∆ = 0.1 ×
AvgDis

3. Uniformly select one point say xr,g amongst the five points be the current iterate xk =
xr,g

4. POLL STEP: Evaluate objective function value at trial points in poll set, xi
k = (xk +

∆kdi).

• IF a point say xi
k in the poll set is found such that f̂(xi

k) ≤ f̂(xk) THEN
- xk+1 = xi

k

- STOP

• IF f̂(xi
k) ≥ f̂(xk) for all xi

k ∈ Pk THEN
- xk+1 = xk

- STOP

1For our problem set this percentage was determined empirically. We tested a range of values between 5%
and 15% and found 10% to be most optimal.

2Empirical testing showed that β = 0.1 is a good choice for the problem sets.
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6.3.2 The PSDEC algorithm

To implement the PPS method in DEC, the underlying DEC algorithm need not change. The

reader is referred to section 6.1 for a full description of the DEC algorithm. The only change

would be to call PPS after the population is updated at the end of an iteration. One of the

drawbacks of the PS method is that its efficiency is extremely dependent on the dimension of

the problem. Higher dimensions imply larger poll sets and thus a larger number of function

evaluations. In order to limit the number of function evaluations for the PPS method we only

invoke the method after every 10 iterations. The PPS method will be carried out using a

random point selected as the poll center. The poll center is therefore a point within the best

10% of the current population. If the PPS method finds an improving point it will replace the

original point with the improved point in the population, otherwise the population remains

unchanged.

The most noteworthy feature of this algorithm is that it does not require any additional

parameters. The only parameters are those of the DEC algorithm, while the PPS algorithm is

self contained and requires no user defined input. The PSDEC algorithm is presented below:
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Algorithm 8 The PSDEC algorithm

1. Set control parameters N , cr and g = 0 as well as penalty parameter R for the SFP
method.

2. Initialize population S0 = {x1,0, x2,0, . . . , xN,0} uniformly using (2.1)

3. Evaluate objective function value and constraint violation of each member in the pop-
ulation

4. Determine penalty function Θ0 and evaluate fitness of initial population using (3.7)-
(3.9) for SFP method or (3.11) and (3.12) for PFP method

5. IF Stopping Criteria not met

(a) Generate Fg ∈ [−1,−0.4] ∪ [0.4, 1] uniformly

(b) FOR i = 1 TO N ,

i. generate trial point yi,g via:
• Mutation using (2.2),(2.3) or (2.4)
• Crossover using (2.5)

ii. Evaluate f(yi,g) and
∑m

j=1 〈gj(yi,g)〉

6. Determine penalty function Θg and evaluate fitness of trial population using (3.7)-(3.9)
for SFP method or (3.11) and (3.12) for PFP method

7. Update population using (6.1)

8. If (g mod 10 = 0), then call PPS and update population if required

9. Set g = g + 1, calculate stopping criteria and go to 5.
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6.3.3 Implementational issues

The only implementational issue to consider for this method is that the PPS method requires

additional fitness function evaluations. These must be considered and they should contribute

to the total number of fitness function evaluations for the algorithm. The implementational

issues of the DEC algorithm are also applicable for the PSDEC algorithm.

6.4 A PS filter-based DE method for constrained global op-

timization (PSFDEC)

The PSFDEC algorithm is in essence a combination of the previous two algorithms. The

objective is to create a hybrid that will include both the local search aspect given by the PPS

algorithm as well as the diversification mechanism from the filter mutation scheme.

The PSFDEC algorithm will be based on the FDEC algorithm presented in section 6.2.

This will ensure that the filter will be maintained and the filter mutation scheme will be used.

The reader is referred back for full details of the FDEC algorithm. The only change will be

that the PPS method will be invoked just as in the PSDEC algorithm. Hence at the end of

every 10th iteration after the population is updated the PPS algorithm will be called.

The PSFDEC algorithm will now be described. Once the initial population is generated

and evaluated as described for the DEC algorithm, all nondominated pairs [f(xi,0), G(xi,0)]

will then be used to create a filter F . At the gth iteration if the target point xi,g is infeasible

a point xundominated is randomly selected from F . Using this point, x̂i,g is generated by the

filter mutation scheme described by (6.2). If the target point is feasible the mutation phase

is carried as normal i.e. using (2.2), (2.3) or (2.4). The trial point yi,g is then obtained once

binomial crossover is carried out using (2.5). The function value and constraint violation of

yi,g is then calculated and the pair, [f(xi,g), G(xi,g)], is checked for dominance against the

current filter F . If yi,g is dominated by any pair in F , then we proceed to the calculation of
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the next trial point yi+1,g. However if yi,g is undominated, it is added to F and all pairs that it

dominates are removed fromF . The fitness value for all trial points, yi,g, i = 1, 2, . . . , N , are

then calculated once the penalty functions G and Θg are evaluated. Then the two populations

are compared point to point and a new population is formed depending on the acceptance rule

as given in (6.1). If the current iteration g is a multiple of 10 then the PPS method is called.

If the PPS method finds an improved point in the poll set, then the improved point will

replace the current iterate in the population, otherwise the population remains unchanged.

This process of mutation, crossover, evaluation, acceptance and PPS is repeated until some

stopping criteria is met.The algorithm is presented below:

Algorithm 9 The PSFDEC algorithm

1. Set control parameters N , cr and g = 0 as well as penalty parameter R for SFP method.

2. Initialize population S0 = {x1,0, x2,0, . . . , xN,0} uniformly using (2.1)

3. Evaluate objective function value and constraint violation of each member in the pop-
ulation

4. Determine penalty function Θ0 and evaluate fitness of initial population using (3.7)-
(3.9) for SFP method or (3.11) and (3.12) for PFP method

5. Generate filter set using initial population

6. WHILE Stopping Criteria not met

(a) Generate Fg ∈ [−1,−0.4] ∪ [0.4, 1] uniformly

(b) FOR i = 1 TO N ,

i. generate trial point yi,g:
• IF xi,g is infeasible then use filter mutation scheme (6.2) ELSE use

mutation scheme (2.2),(2.3) or (2.4)
• Crossover using (2.5)

ii. Evaluate f(yi,g) and G(yi,g)

iii. Evaluate yi,g against filter and update filter set as necessary

7. Determine penalty function Θg and evaluate fitness of trial population using (3.7)-(3.9)
for SFP method or (3.11) and (3.12) for PFP method

8. Update population using (6.1)

9. If (g mod 10 = 0) then call PPS method and update population if required

10. Set g = g + 1, calculate stopping criteria and go to 6.
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6.4.1 Implementational issues

The implementational issues for this algorithm are simply a combination of all the issues that

have been previously mentioned for the DEC, FDEC and PSDEC.
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Chapter 7

Numerical results

In order to evaluate the performance of DEC, FDEC, PSDEC and PSFDEC introduced in

the previous Chapter, we have carried out extensive numerical testing on two sets of test

problems. This Chapter presents these results together with comparisons and analysis. The

first set of test problems was taken from [20, 28, 36, 37]. We will compare the performance

of all the proposed algorithms with GA presented in [38].

The first set, henceforth is referred to as set A, consists of 33 test problems and is sum-

marized in Table 7.1. The table contains all the attributes mentioned below. We denote the

problem number by np as has been done in [38]. The dimension, given by n, of each prob-

lem is included. The objective function is classified as either linear (lin), nonlinear (nonl) or

quadratic (quad). The number of linear equality (LE), linear inequality (LI), nonlinear equal-

ity (NE) and nonlinear inequality (NI) constraints are also indicated. The value ρ, expressed

as a percentage, is the ratio of the feasible region to the given box constrained area as has

been given in [38]. The problem references as well as the best known minimum value for

each problem are given. This set of problems contains 21 nonlinear problems, 11 quadratic

and a single linear problem. Of the 21 nonlinear problems only 3 contain trigonometric ob-

jective functions or constraint functions. A full description of the problem set A is given in

Appendix A.
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The second set, referred to as set B, of 12 test problems is presented in Table 7.2. It

includes problems that are also commonly used to test the performance of constrained global

optimization algorithms. Just as with problem set A all the relevant details regarding each

problem including their references are presented in Table 7.2. The problems in set B are

numbered from 34 to 45. We calculated the value for ρ by generating 1 million random

points in the box-constrained area of a given problem. The overall percentage of feasible

points generated will determine the value for ρ. We have included the values for ρ in Table

7.2. Of the 12 problems 10 are nonlinear with 4 containing trigonometric objective functions

and/or constraints. The problems are fully described in Appendix B.

The algorithms were implemented in Matlab and were tested on a Pentium 4, 2.8 GHz

computer. For each problem, 100 independent test runs were carried out. For all the algo-

rithms a run was stopped if a preset stopping condition was met. If a run resulted in any

feasible points in the population then the best fitness function value found was recorded and

the run was considered successful. We refer to this as feasibility success. The best values

from the successful runs were then used to summarize the results for each problem. The

following values were extracted for comparison:

mean: The mean value of the best solutions found for all feasible runs of a problem.

min: The best fitness value found amongst all the feasible runs of a problem.

dev: The standard deviation of all the best values found from all feasible runs of a problem.

feas: The percentage of runs that produced feasible points for a problem.

iter: The average number of iterations, where the average is taken over all runs that achieved

feasibility success for a problem.

feval: The average number of fitness function evaluations, where the average is taken over

all runs that achieved feasibility success for a problem.

The above values will be used to represent the results based on 100 independent runs

on each problem. It is also important to note that these results are based on the feasibility

success of each problem.
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We also present the summarized results of an algorithm on an entire set of test problems.

However these summarized results are obtained on problems that are solved at least once out

of the 100 runs. Hence we define a second set of criteria to provide a measure of the overall

performance of an algorithm on an entire problem set. The following values will be used as

the criteria for comparison:

SR: The success rate (SR) will indicate the number of problems for which the algorithm

succeeded in finding the best known minimum function value for a problem. For

example in problem set A, SR = 33 will imply that an algorithm successfully located

the global minimum for each problem at least once in its 100 independent runs i.e. all

33 problems were solved by the algorithm.

TFeas: The total feasible (TFeas) value will give the total number of runs resulting in feasi-

ble solutions. This will be used as an indication of the reliability of the algorithm. The

TFeas value is a reflection of the feasibility success of an algorithm. In problem set A

there are 33 problems and each problem had 100 independent runs. Hence if all runs

for all 33 problem resulted in feasible points then TFeas = 3300.

AvgIter: The efficiency will be measured by the average number of iterations (AvgIter)

calculated using the iter value for all problems for which the algorithm was successful

in locating the best known minimum function value, i.e. the iter average taken over all

successful problems.

AvgFe: Another measure of efficiency will be the average number of fitness function evalua-

tions (AvgFe) calculated using the feval value for all problems for which the algorithm

was successful in locating the best known function value, i.e. the feval average taken

over all successful problems.

AvgSD: We also give the average of the standard deviation (dev) values for problems where

the best known function value was successfully located. This value will give a measure

as to how accurately the algorithm is able to locate the best known solution. If the

AvgSD is high, this will show that the best solutions found for a problem varied widely
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over the feasible runs. Conversely, a low AvgSD indicates that the best solutions found

had very similar fitness values for each feasible successful run.

The reason there are two measures for efficiency, namely AvgIter and AvgFe, is because

the algorithms that have the PPS algorithm incorporated into them will have additional fitness

function evaluations for those iterations where the PPS algorithm is invoked. Therefore the

AvgIter will not provide an accurate measure of the efficiency. For GA, only the average

iteration values have been given in [38]. However it is simple to extract the average number

of fitness function evaluations from the average number of iterations. If the population size

is N then the AvgFe value is given by:

AvgFe = N + AvgIter ×N (7.1)

This equation applies to GA, DEC and FDEC.

PARAMETER SELECTION

The following parameters were common amongst all four new algorithms. The popu-

lation was fixed at N = 101. The algorithms were stopped if either one of two stopping

criteria were met. The first was a maximum of 500 iterations for each run. The second

stopping criteria was set such that if the difference between the best individuals for the last

100 iterations was less than 0.01, the algorithm was stopped. Binomial crossover (2.5) was

used for all algorithms. For the SFP scheme a penalty coefficient of R = 10000 was used.

Equality constraints were transformed into inequality constraints with a tolerance value of

0.01 i.e. δ = 0.01 in (3.3) and (3.4).

The number of independent runs, population size, penalty coefficient, equality constraint

transformation tolerance and stopping criteria are the same as were used for the numerical

tests by Miettinen et al [38]. By doing this it will allow us to make a fair comparison between

GA and the DE based algorithms without creating a bias toward either algorithm. Any other

parameters that are specific to a particular algorithm will be discussed in the relevant section.
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If an algorithm was successful in finding the best known solution we indicated this by

printed the minimum value in bold. However if the problem contained equality constraints

the results are often better than the best known solution. This can be attributed to the tol-

erance value, δ, introduced during the transformation to inequality constraints. These min-

imum values are therefore underlined. If the algorithm failed in finding any feasible results

for all 100 runs of that problem this was indicated by a ‘-’.

Using these settings we tested all four algorithms with the SFP and PFP constraint

handling schemes. When referring to a particular algorithm implemented with one of the

schemes we denote it by appending the scheme to the name of the algorithm e.g. DEC-SFP

implies the DEC algorithm implemented with the SFP constraint handling scheme. The re-

sults for each algorithm are given in separate subsections. The first set of results presented

will be those of GA in the next section.
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np n Obj Func ρ LE LI NE NI Ref. Best Known
1 8 lin .000578 0 6 0 0 [20] 7049.25
2 5 quad 26.960078 0 0 0 6 [20] -30665.5387
3 6 quad 11.312849 0 4 0 2 [20] -310.0
4 4 nonl .043394 1 2 0 0 [20] -4.5142
5 4 nonl .013552 1 2 0 0 [20] -2.07
6 6 nonl .000000 3 3 0 0 [20] -11.96
7 2 lin 44.200537 0 0 0 2 [20] -5.5079
8 2 quad .332226 0 0 1 0 [20] -16.68
9 4 nonl .00000 0 2 3 0 [37] 5126.4981

10 50 nonl 100.0 0 0 0 2 [37] -0.8331937
11 5 nonl .00001 0 0 3 0 [28] 0.0539498
12 2 nonl 24.99898 0 2 0 0 [36] -1.0
13 2 nonl .861168 0 0 0 2 [37] -0.095825
14 23 nonl .00000 0 0 1 0 [37] -1.0
15 10 nonl .00000 3 0 0 0 [36] -47.760765
16 2 nonl 7.32900 0 0 0 2 [28] 0.25
17 2 quad 96.644521 0 0 0 2 [28] 5.0
18 7 nonl .524944 0 0 0 4 [37] 680.6300573
19 13 quad .00244 0 9 0 0 [37] -15.0
20 2 nonl .006711 0 0 0 2 [37] -6961.81381
21 10 quad .000110 0 3 0 5 [37] 24.3062091
22 2 quad 37.492715 0 1 0 1 [28] 1.0
23 5 quad 95.256165 0 1 0 0 [20] -17.0
24 6 quad 23.404995 0 2 0 0 [20] -213.0
25 13 quad .237391 0 9 0 0 [20] -15
26 6 quad 1.827590 0 5 0 0 [20] -11.005
27 10 quad .004728 0 11 0 0 [20] -268.01
28 10 quad .007350 0 5 0 0 [20] -39.0
29 20 quad .00000 0 10 0 0 [20] -394.7506
30 20 quad .00000 0 10 0 0 [20] -884.75058
31 20 quad .00000 0 10 0 0 [20] -8695.01193
32 30 nonl 99.999947 0 0 0 2 [37] -0.8331937
33 70 nonl 100.0 0 0 0 2 [37] -0.8331937

Table 7.1: Test Problems - Set A
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np n Obj Func ρ LE LI NE NI Ref. Best Known
34 6 nonl 0.14 0 0 0 2 [50] -316.27
35 2 nonl 27.55 0 1 0 2 [50] 0.18
36 2 nonl 18.05 0 1 0 1 [50] 0
37 2 quad 37.23 0 1 0 1 [50] -195.37
38 2 nonl 73.04 0 2 0 0 [50] -2.21
39 2 quad 49.93 0 1 0 0 [50] 0.125
40 3 nonl 0.23 0 0 0 5 [11] 0.6164
41 2 nonl 0.63 0 0 1 0 [11] 0.0821
42 2 nonl 62.73 0 0 0 2 [11] 1.5087
43 6 nonl 2.75 0 4 0 2 [11] 0.7593
44 11 nonl 0.00 2 4 0 0 [11] 8827.5977
45 6 nonl 0.00 0 0 4 1 [11] -0.388811

Table 7.2: Test Problems - Set B

65



7.1 Genetic algorithm

This section will present and summarize the results for GA as have been given in [38].

The implementation of GA requires a number of associated parameter values to be pro-

vided. Miettinen et al [38] used the following parameter values: crossover rate = 0.8,

elitism size = 1, tournament size = 3, mutation rate = 0.1 and p = 4, where

p is the mutation exponent. We consider the results for the SFP and PFP constraint handling

schemes. The results are given in Table 7.3.

S F P P F P
np mean min dev iter fea mean min dev iter fea

1 7893.74 7116.64 1285.08 416.5 68 8464.55 7292.1 1294.91 101.0 100
2 -30665.53 -30665.54 0.06 296.3 100 -30665.53 -30665.54 0.01 296.3 100
3 -309.84 -310.0 1.6 217.6 100 -308.58 -310.0 12.69 224.5 100
4 -4.52 -4.53 0.15 145.8 100 -4.41 -4.53 0.4 148.4 100
5 -3.13 -3.14 0.02 128.9 100 -3.14 -3.14 0.0 129.7 100
6 -13.32 -13.41 0.26 298.8 100 -13.38 -13.41 0.15 300 100
7 -5.51 -5.51 0.0 110.6 100 -5.51 -5.51 0.0 110.9 100
8 -16.78 -16.78 0.0 115.5 100 -16.78 -16.78 0.0 116.5 100
9 4239.21 4221.83 62.14 404.6 100 4755.32 4221.83 531.2 102.7 100

10 -0.56 -0.64 0.03 394.7 100 -0.56 -0.64 0.03 394.7 100
11 0.38 0.05 0.29 304.5 100 0.58 0.05 0.35 108.2 100
12 -1.0 -1.0 0.0 102.8 100 -1.0 -1.0 0.0 102.7 100
13 -0.1 -0.10 0.01 106.4 100 -0.1 -0.1 0.0 106.7 100
14 - - - - - -0.78 -1.01 0.09 461.4 100
15 -47.01 -48.11 0.77 467.2 100 -47.03 -47.97 0.77 446.7 100
16 0.25 0.25 0.00 106 100 0.25 0.25 0.0 106.0 100
17 5.0 5.0 0.0 110.5 100 5.0 5.0 0.0 110.0 100
18 681.56 680.81 0.0 143.7 100 682.75 680.75 2.17 225.3 100
19 -14.94 -15.0 0.34 323.9 100 -14.98 -15.0 0.2 327.1 100
20 -6961.81 -6961.81 0.0 143.7 100 -6961.81 -6961.81 0.0 143.4 100
21 26.87 24.77 1.37 459.4 100 32.63 25.76 5.64 107.6 100
22 1.0 1.0 0.0 106.7 100 1.0 1.0 0.0 106.6 100
23 15.98 -17.00 1.16 154.4 100 -15.81 -17.0 1.54 155.1 100
24 -212.98 -213.0 0.08 213.3 100 -212.98 -213.0 0.09 216.6 100
25 -15.00 -15.0 0.0 313.0 100 -15.0 -15.0 0.0 313.4 100
26 -11.00 -11.0 0.0 204.3 100 -10.99 -11.0 0.05 212.7 100
27 -265.81 -268.01 3.21 469.2 100 -265.06 -268.00 3.42 468.6 100
28 -36.66 -39.0 5.19 259.4 100 -37.05 -39.0 4.73 251.2 100
29 -135.08 -221.11 38.63 494.3 100 -132.02 -247.72 40.54 498.2 100
30 -593.81 -696.76 34.34 463.6 100 -586.45 -698.08 29.27 458.1 100
31 -3043.37 -5374.88 682.9 486.6 100 -3106.12 -5424.69 695.63 490.1 100
32 -0.66 -0.74 0.04 350.1 100 -0.66 -0.74 0.04 350.1 100
33 -0.5 -0.57 0.03 408.3 100 -0.5 -0.57 0.03 408.3 100

Table 7.3: Results for GA on set A
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If we look at Table 7.3 we see that both schemes managed to successfully locate the best

known minimum for 23 out of the 33 problems. GA-PFP successful located feasible points

for all runs of all problems, whereas GA-SFP failed completely on problem 14 and for some

runs of problem 1. For those problems that the methods where successful in locating the

known minimum the standard deviation was fairly low except for problem 9. We also note

that for some of the problems (i.e. problems 7, 8, 12, 16-18, 20, 22 and 25) the mean and

min values are equal and the standard dev is 0. We can conclude that for these problems the

best known solution was found for all 100 runs.

We now summarize the results for GA in Table 7.4 using the second set of evaluation

criteria described at the beginning of this Chapter. We also include the AvgFe as calculated

using (7.1).

SR TFeas AvgIter AvgFe AvgSD
GA-SFP 23 3168 221.89 22 511.9 3.27
GA-PFP 23 3300 199.86 20 286.9 24.01

Table 7.4: Summary of results for GA on set A

From the summary we can see that both algorithms failed to find the best known solution

for 10 out of the 33 test problems giving SR=23. GA-PFP method has a greater feasibility

success with 132 more feasible runs. This is partially due to the fact that GA-SFP method

failed completely on all runs of problem 14. In terms of computational cost GA-SFP required

more iterations and had a small average standard deviation amongst the successful problems.

This indicates that the accuracy of the method is fairly good but with an added computational

cost. GA-PFP method was less accurate but also required fewer iterations.

Next we present the results of GA on test set B. For this we have implemented GA with

the same parameters as those used in [38] i.e.

crossover rate = 0.8, elitism size = 1, tournament size = 3, mutation rate = 0.1

and p = 4, where p is the mutation exponent. We tested GA on problem set B using both

the SFP and PFP schemes. We have presented the results in Table 7.5.
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S F P P F P
np mean min dev feas iter mean min dev feas iter
34 -295.43 -314.03 13.41 100 313.1 -295.65 -314.39 12.12 100 319.3
35 0.18 0.18 0.00 100 101.3 0.18 0.18 0.00 100 101.3
36 0 0 0.00 100 101.8 0 0 0.00 100 101.6
37 -195.37 -195.37 0.01 100 123 -195.37 -195.37 0.00 100 121.6
38 -2.21 -2.21 0.00 100 100.9 -2.21 -2.21 0.00 100 101
39 0.13 0.13 0.00 100 101.1 0.13 0.13 0.00 100 101.1
40 0.64 0.62 0.02 100 170.5 0.63 0.62 0.02 100 173.3
41 0.08 0.08 0.00 100 103.86 0.08 0.08 0.00 100 104.75
42 1.51 1.51 0.00 100 102.97 1.51 1.51 0.00 100 103.10
43 0.97 0.79 0.13 100 216.9 0.97 0.79 0.11 100 201
44 - - - - - - - - - -
45 -0.41 -0.41 0.01 100 134.3 -0.41 -0.41 0 100 136

Table 7.5: Results for GA on set B

Table 7.5 shows that both GA-SFP and GA-PFP located the best known solution for 9

out of the 12 problems. Both schemes failed to find any feasible points for problem 44

but located feasible points for all runs of all other problems. The standard deviation for all

problems except for problem 34 is very low. The min and mean values, for many of the

successful problems, are equal and the standard deviation is 0. This shows that the best

known minimum was located for all 100 runs for each problem. We have summarized the

results in Table 7.6.

SR TFeas AvgIter AvgFe AvgSD
GA-SFP 9 1100 115.53 11 769.53 0.0
GA-PFP 9 1100 115.97 11 813.97 0.0

Table 7.6: Summary of results for GA on set B

Table 7.6 shows that SR and TFeas values for both schemes are the same. Both schemes

failed on two problems i.e. on problems 34 and 44, neither scheme was able to find any

feasible points for problem 44. The AvgSD for both methods was zero however GA-PFP

had a slightly higher AvgIter value. This indicates that GA-SFP performed slightly better

than GA-PFP.

In the sections that follow we present the results for the four algorithms introduced in

Chapter 6 on both problem sets. We will provide a comparisons of these algorithms with GA
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[38] using both sets of test problems.
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7.2 Results for the DEC algorithm

In this section we present the results for the DEC algorithm. We firstly study the effects

of two different mutation schemes on the DEC algorithm. We set the crossover parameter

cr equal to 0.5 and implement the mutation schemes given by equations (2.2) and (2.3).

Equation (2.2) gives a mutation scheme where the base vector is randomly selected while

for (2.3) the base vector is the point with the lowest fitness value in the current population.

These two settings can be denoted by rand/1/bin and best/1/bin respectively. The results for

the DEC-SFP algorithm on test set A are presented in Table 7.7.

rand/1/bin best/1/bin
np mean min dev feas iter mean min dev feas iter

1 8741.89 7467.11 1011.20 100 366.86 7298.59 7114.99 130.47 100 455.20
2 -30665.39 -30665.48 0.05 100 500.00 -30665.53 -30665.54 0.01 100 458.64
3 -310.00 -310.00 0.00 100 386.89 -310.00 -310.00 0.00 100 261.44
4 -4.53 -4.53 0.00 100 324.43 -4.53 -4.53 0.00 100 217.68
5 -3.13 -3.14 0.00 100 238.60 -3.14 -3.14 0.00 100 170.15
6 -10.05 -12.45 1.72 88 363.45 -13.10 -13.40 0.41 100 432.12
7 -5.51 -5.51 0.00 100 131.31 -5.51 -5.51 0.00 100 116.85
8 -16.78 -16.78 0.00 100 144.04 -16.78 -16.78 0.00 100 112.52
9 - - - - - 5225.38 5126.48 151.80 100 481.03

10 -0.25 -0.32 0.02 100 218.55 -0.54 -0.71 0.11 100 454.52
11 0.94 0.59 0.12 11 448.73 0.53 0.10 0.33 99 415.28
12 -1.00 -1.00 0.00 100 104.91 -1.00 -1.00 0.00 100 102.51
13 -0.10 -0.10 0.00 100 109.19 -0.10 -0.10 0.00 100 105.55
14 - - - - - - - - - -
15 -42.75 -45.36 1.51 39 278.69 -44.50 -47.41 1.47 100 361.34
16 0.25 0.25 0.00 100 117.15 0.25 0.25 0.00 100 109.04
17 5.00 5.00 0.00 100 130.55 5.00 5.00 0.00 100 116.26
18 680.74 680.66 0.07 100 462.37 680.65 680.63 0.02 100 350.88
19 -14.90 -14.94 0.02 100 500.00 -14.99 -15.00 0.00 100 364.48
20 -6961.81 -6961.81 0.00 100 267.73 -6961.81 -6961.81 0.00 100 186.07
21 25.74 25.07 0.38 100 481.64 24.62 24.39 0.19 100 467.06
22 1.00 1.00 0.00 100 123.84 1.00 1.00 0.00 100 111.85
23 -16.85 -17.00 0.60 100 405.79 -16.38 -17.00 0.57 100 197.39
24 -213.00 -213.00 0.00 100 354.80 -213.00 -213.00 0.00 100 244.50
25 -14.92 -14.96 0.02 100 500.00 -14.99 -15.00 0.00 100 354.08
26 -10.99 -11.00 0.00 100 323.02 -11.00 -11.00 0.00 100 207.43
27 -262.52 -265.17 1.71 100 495.90 -267.17 -267.69 0.42 100 494.96
28 -38.99 -39.00 0.00 100 491.77 -38.82 -39.00 0.72 100 310.19
29 -27.38 -47.88 7.11 88 500.00 -163.50 -275.05 40.88 100 490.08
30 -513.46 -537.94 9.65 89 500.00 -604.20 -701.19 35.57 100 476.57
31 -1323.32 -1744.87 164.46 79 499.97 -3419.02 -4949.56 626.20 100 481.26
32 -0.40 -0.47 0.04 100 342.12 -0.76 -0.82 0.04 100 416.94
33 -0.20 -0.23 0.01 100 152.90 -0.33 -0.56 0.10 100 315.83

Table 7.7: Results for DEC-SFP on set A, cr = 0.5
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Looking at Table 7.7 we see that firstly both settings successful located the best known

minimum for 15 common problems and the setting best/1/bin was successful on an additional

6 problems. Both the settings failed to locate any feasible points for problem 14 and the

setting rand/1/bin failed to locate feasible points for problem 9 as well. We also note that the

setting rand/1/bin had far more runs where it failed to locate any feasible solutions than the

setting best/1/bin. For those problems where both the settings were successful in locating

the known minimum the standard deviation was fairly low except the setting rand/1/bin on

problem 9. We also note that for problems 10, 29, 30 and 32 the minimum values found by

the setting rand/1/bin were even better than those found by GA in Table 7.3. However the

minimum value found by GA for problem 31 and 33 are slightly better. Aside from problem

14, these problems have the highest dimensions in the problem set. We summarize these

results in Table 7.8.

SR TFeas AvgIter AvgFe AvgSD
rand/1/bin 15 2894 243.6 24 704.6 0.04
best/1/bin 21 3199 238.6 24 199.6 7.31

Table 7.8: Summary of results for DEC-SFP on Set A, cr = 0.5

Table 7.8 shows that the setting best/1/bin performed better than the setting rand/1/bin on

all aspects except the standard deviation. The rand/1/bin setting was successful in locating

the minimum for only 15 of the problems while the setting best/1/bin was successful on 21

problems. What is notable about the setting rand/1/bin is that the AvgIter value is slighter

higher than the setting best/1/bin however the AvgSD value is very small. We can conclude

that for those problems where the setting rand/1/bin successfully locates the best known

minimum value, the best values found for each run vary fairly little from the best known

minimum. With regard to the total number of feasible runs the setting best/1/bin leads the

setting rand/1/bin. This can be partially attributed to problem 9 and 14 where the setting

rand/1/bin failed to locate any feasible solutions. For some other problems such as 6, 11 and

15 the setting rand/1/bin had far fewer feasible runs. All these factors indicate that the setting

best/1/bin is better than the setting rand/1/bin. Hence the rest of our numerical results are

based on the implementation of best/1/bin.
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For constrained global optimization we would like to study the effects of cr on the perfor-

mance of the DEC algorithm, as to the best of our knowledge, this has not been done before.

For unconstrained optimization cr = 0.5 is recommended for most problems and is the best

value for using on a large set of test problems [2, 6]. However for constrained optimization

we have found some interesting results. We carried out a number of test runs on problem

set A using various values such as cr = 0.7 , 0.9 and 0.95 . The DEC algorithm produced

superior results with cr = 0.9 for both penalty schemes. We present the results in Table 7.9

for best/1/bin with cr = 0.9 using both the SFP and PFP constraint handling schemes.
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S F P P F P
np mean min dev feas iter mean min dev feas iter

1 7049.29 7049.25 0.06 100 472.82 7049.39 7049.25 0.82 100 484.96
2 -30665.54 -30665.54 0.00 100 245.87 -30665.54 -30665.54 0.00 100 250.75
3 -310.00 -310.00 0.00 100 230.61 -310.00 -310.00 0.00 100 233.33
4 -4.53 -4.53 0.00 100 145.80 -4.53 -4.53 0.00 100 156.30
5 -3.14 -3.14 0.00 100 137.47 -3.14 -3.14 0.00 100 149.50
6 -13.41 -13.41 0.00 100 176.47 -13.41 -13.41 0.00 100 190.77
7 -5.51 -5.51 0.00 100 113.05 -5.51 -5.51 0.00 100 113.82
8 -16.78 -16.78 0.00 100 110.62 -16.78 -16.78 0.00 100 117.53
9 5210.17 5126.48 142.27 100 388.35 5201.06 5126.48 138.03 100 397.56

10 -0.38 -0.49 0.04 100 201.97 -0.38 -0.48 0.05 100 194.17
11 0.33 0.05 0.23 100 186.56 0.34 0.05 0.24 100 188.01
12 -1.00 -1.00 0.00 100 102.43 -1.00 -1.00 0.00 100 102.31
13 -0.10 -0.10 0.00 100 104.94 -0.10 -0.10 0.00 100 104.91
14 - - - - - -1.11 -1.12 0.00 100 240.59
15 -48.07 -48.14 0.24 100 296.08 -48.07 -48.14 0.21 100 336.41
16 0.25 0.25 0.00 100 107.56 0.25 0.25 0.00 100 108.13
17 5.00 5.00 0.00 100 113.97 5.00 5.00 0.00 100 113.24
18 680.63 680.63 0.00 100 181.07 680.63 680.63 0.00 100 189.19
19 -14.64 -15.00 0.59 100 309.70 -14.48 -15.00 0.73 100 315.46
20 -6961.81 -6961.81 0.00 100 161.44 -6961.81 -6961.81 0.00 100 193.27
21 24.31 24.31 0.01 100 281.93 24.31 24.31 0.01 100 297.10
22 1.00 1.00 0.00 100 109.96 1.00 1.00 0.00 100 109.57
23 -16.04 -17.00 1.21 100 193.53 -16.03 -17.00 1.29 100 191.41
24 -213.00 -213.00 0.00 100 192.45 -213.00 -213.00 0.00 100 193.36
25 -14.70 -15.00 0.54 100 300.64 -14.60 -15.00 0.63 100 297.71
26 -11.00 -11.00 0.00 100 169.93 -11.00 -11.00 0.00 100 168.35
27 -268.01 -268.01 0.03 100 374.81 -268.01 -268.01 0.00 100 396.37
28 -36.94 -39.00 4.94 100 304.24 -36.70 -39.00 5.92 100 316.92
29 -216.62 -383.13 75.40 100 500.00 -204.69 -364.69 60.62 100 500.00
30 -688.27 -869.20 74.32 100 500.00 -678.76 -841.80 69.48 100 500.00
31 -5228.99 -8534.11 1519.82 100 500.00 -5021.31 -8101.83 1454.09 100 494.06
32 -0.46 -0.70 0.07 100 194.53 -0.46 -0.70 0.07 100 193.27
33 -0.34 -0.43 0.04 100 190.87 -0.33 -0.41 0.06 100 187.59

Table 7.9: Results for DEC on set A: cr = 0.9, setting best/1/bin.
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Table 7.9 shows that DEC-SFP and DEC-PFP located the known global minimum for 26

common problems. The DEC-PFP method also located the minimum for problem 14 but the

DEC-SFP method failed to locate any feasible points for this problem. For both methods

the standard deviation is fairly low for all problems that were successful except problem 9.

We also note that for many of the problems (i.e. problems 2-8, 12,13, 16-18, 20-22, 24,

26 and 27) the mean and min values are equal and the standard dev is 0. We can conclude

that for these problems the best known solution was found for all 100 runs. With regard to

feasibility, DEC-SFP had all feasible runs except for problem 14 while DEC-PFP managed

to find feasible points for all runs on all problems. For problems 29 and 30 we note that

the average number of iterations for both methods are equal to 500. The same is true for

DEC-SFP on problem 31. This is important since we set a maximum of 500 iterations as

one of our stopping criterion. This indicates that for all runs on these problems the methods

did not get trapped in any local minima but the search process was stopped due to the preset

stopping criterion.

Using the second set of evaluation criteria, as discussed previously, we now summarize

the results for Table 7.9 in Table 7.10. We have included the summarized results in Table

7.10 for the best/1/bin setting with cr = 0.5, as given in Table 7.8, as well as the results for

GA as summarized in Table 7.4 in the previous section for comparison.

SR TFeas AvgIter AvgFe AvgSD
DEC-SFP cr = 0.5 21 3199 238.6 24 199.6 7.31
DEC-SFP cr = 0.9 26 3200 212.01 21 514.0 5.77
DEC-PFP cr = 0.9 27 3300 220.6 22 381.6 5.48
GA-SFP 23 3168 221.89 22 511.9 3.27
GA-PFP 23 3300 199.86 20 286.9 24.01

Table 7.10: Summary of results for DEC on set A

To see the effect of cr in DEC we firstly compare DEC-SFP for cr = 0.5 and cr = 0.9.

Table 7.10 shows that the overall performance of the DEC-SFP algorithm has improved with

a higher crossover rate i.e. cr = 0.9. For instance, the total number of problems for which the

best known solutions were found increased from 21 for cr = 0.5 to 26 for cr = 0.9. We also
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note that the average number of iterations as well as the average standard deviation is lower

for the DEC-SFP algorithm using cr = 0.9. There is also one additional feasible run for the

DEC-SFP algorithm with cr = 0.9. All these factors indicate that the accuracy, efficiency,

reliability and success rate of the DEC method is much better with the higher crossover rate.

Next we compare DEC-SFP and DEC-PFP for cr = 0.9 using the summarized results

in Table 7.10. Table 7.10 shows firstly that the DEC-PFP has a higher success rate than

DEC-SFP. Secondly since DEC-SFP fails to find any feasible points for problem 14 its total

number of feasible runs is less than that for the DEC-PFP method. Lastly, the DEC-PFP

method does prove to be more expensive in terms of the average number of iterations. On

the other hand, the average standard deviation on successful problems is also slightly lower

for DEC-PFP.

From the above discussion it is clear that the DEC algorithm produced superior results

using cr = 0.9. Therefore, next we compare our results of the DEC algorithm where cr = 0.9

with those of GA. Firstly, Table 7.10 shows that both DEC-SFP and DEC-PFP attained a

higher SR than GA. The DEC-SFP algorithm was successful in locating the global minimum

for 26 problems out of a total of 33 problems. On the other hand, GA failed on a total of

10 problems. This difference in the success rate is very significant as it shows the most

important improvement of DEC over GA.

A look at the TFeas values in Table 7.10 reveals that, DEC-SFP has more feasible runs

than GA-SFP. Both DEC-PFP and GA-PFP found feasible points for all 100 runs for all 33

problems. This shows that for both DEC and GA the PFP scheme is more reliable than the

SFP scheme. Furthermore GA-SFP proved to be the least reliable with respect to TFeas.

Finally, we compare DEC and GA with respect to accuracy (AvgSD) and efficiency

(AvgIter). Table 7.10 shows that GA-SFP is the best performer with respect to AvgSD and

DEC-PFP is the runner-up with 3.27 and 5.48 respectively. A similar comparison using

AvgIter shows that GA-PFP is the best performer followed by DEC-SFP. For all these meth-

ods the accuracy seems to share an inversely proportional relationship with the efficiency of

the method. For instance, GA-SFP method which has the smallest standard deviation is also

75



the most expensive whereas GA-PFP method is the least accurate requires the fewest number

of average iterations.

Next we present the results for the DEC algorithm using the setting best/1/bin and cr =

0.9 for the second set of test problems. These results are presented in Table 7.11.

S F P P F P
np mean min dev feas iter mean min dev feas iter
34 -307.80 -316.27 20.26 100 251.51 -309.49 -316.27 18.44 100 266.08
35 0.18 0.18 0.00 100 101.49 0.18 0.18 0.00 100 101.46
36 0.00 0.00 0.00 100 102.66 0.00 0.00 0.00 100 102.51
37 -195.37 -195.37 0.00 100 129.31 -195.37 -195.37 0.00 100 129.57
38 -2.21 -2.21 0.00 100 100.83 -2.21 -2.21 0.00 100 100.85
39 0.13 0.13 0.00 100 101.16 0.13 0.13 0.00 100 101.40
40 0.62 0.62 0.00 100 136.99 0.62 0.62 0.00 100 135.93
41 0.08 0.08 0.00 100 107.46 0.08 0.08 0.00 100 109.06
42 1.51 1.51 0.00 100 104.15 1.51 1.51 0.00 100 104.33
43 0.76 0.76 0.00 100 163.80 0.76 0.76 0.00 100 164.00
44 8900.70 8840.31 42.30 100 500.00 8909.57 8828.20 46.09 100 498.70
45 -0.41 -0.42 0.00 100 124.60 -0.41 -0.42 0.00 100 125.80

Table 7.11: Results for DEC on set B

Table 7.11 shows that both schemes were successful in locating the global minimum for

all problems except number 44. DEC-SFP and DEC-PFP show good reliability with all runs

resulting in feasible points. For the successful problems the standard deviation is low for

all problems except problem 1. In fact for problems 35 to 43 and problem 45 the standard

deviation is 0 and the min and mean values are equal. This indicates that the best known

minimum was found in all runs for these problems. We summarize the results for set B in

Table 7.12 where we have also included the summarized results of GA from Table 7.6.

SR TFeas AvgIter AvgFe AvgSD
DEC-SFP 11 1200 129.45 13 175.45 1.84
DEC-PFP 11 1200 131.0 13 332.0 1.68
GA-SFP 9 1100 115.53 11 769.53 0.0
GA-PFP 9 1100 115.97 11 813.97 0.0

Table 7.12: Summary of results for DEC on set B

The summarized results in Table 7.12 show that when compared to GA the DEC algo-

rithm has a higher success rate. DEC-SFP, with a lower AvgIter value, has a better effi-
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ciency when compared to DEC-PFP but with respect to AvgSD, DEC-SFP is slightly supe-

rior. When compared to GA both DEC-SFP and DEC-PFP have a higher AvgIter and AvgSD

value. This is because the results of DEC are based on 11 problems while those of GA are

based on 9 problems only. We therefore compare DEC and GA on the 9 common problems

i.e. 35-42 and 45, and present the summarized results in Table 7.13.

SR TFeas AvgIter AvgFe AvgSD
DEC-SFP 9 900 112.07 11 420.07 0.0
DEC-PFP 9 900 112.32 11 445.32 0.0
GA-SFP 9 900 115.53 11 769.53 0.0
GA-PFP 9 900 115.97 11 813.97 0.0

Table 7.13: Summary of results for DEC for 9 common problems on set B

Table 7.13 shows that DEC and GA performed equally well on the 9 problems with

respect to SR, TFeas and AvgSD. However, DEC is superior to GA with respect to AvgIter.

This shows that for the 9 common problems the performance of DEC is better than GA.

To sum up, DEC is superior to GA with respect to SR on problem set A and B (see

Tables 7.10 and 7.12). The TFeas values for GA-PFP and DEC-PFP are equal for set A but

DEC-SFP was superior to GA-SFP. DEC performed better on feasibility on set B. DEC is

comparable to GA-SFP with regard to AvgSD on both A and B. However DEC is superior

to GA-PFP with respect to AvgSD. For problem set A, the AvgIter values for DEC-SFP and

DEC-PFP are comparable to GA-SFP but are slightly inferior to GA-PFP. For problem set B

the AvgIter values for DEC are superior than GA (see Tables 7.13). It is therefore clear that

DEC performs better than GA on most criteria.
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7.3 Results for the FDEC algorithm

This section contains the results for the FDEC algorithm using both the SFP and PFP penalty

schemes. We use the best parameter values as found in the previous section e.g. cr = 0.9

and the setting best/1/bin. The FDEC algorithm does not require any additional parameters

when compared to the DEC algorithm. The results for the algorithm are given in Table 7.14.

S F P P F P
np mean min dev feas iter mean min dev feas iter

1 7049.33 7049.25 0.30 100 485.77 7049.38 7049.25 0.49 100 484.65
2 -30665.54 -30665.54 0.00 100 250.09 -30665.54 -30665.54 0.00 100 248.14
3 -310.00 -310.00 0.00 100 234.55 -310.00 -310.00 0.00 100 236.67
4 -4.53 -4.53 0.00 100 147.14 -4.52 -4.53 0.15 100 151.49
5 -3.14 -3.14 0.00 100 142.09 -3.14 -3.14 0.00 100 145.93
6 -13.41 -13.41 0.00 100 178.99 -13.40 -13.41 0.09 100 190.05
7 -5.51 -5.51 0.00 100 113.26 -5.51 -5.51 0.00 100 114.12
8 -16.78 -16.78 0.00 100 110.56 -16.78 -16.78 0.00 100 115.78
9 5143.65 5126.48 39.50 100 390.23 5191.18 5126.48 107.53 100 396.73

10 -0.38 -0.46 0.04 100 199.46 -0.38 -0.45 0.03 100 200.36
11 0.36 0.05 0.24 100 181.56 0.33 0.05 0.22 100 193.03
12 -1.00 -1.00 0.00 100 102.71 -1.00 -1.00 0.00 100 102.26
13 -0.10 -0.10 0.00 100 104.81 -0.10 -0.10 0.00 100 104.81
14 - - - - - -1.11 -1.12 0.00 100 241.35
15 -48.08 -48.14 0.17 100 295.18 -48.08 -48.14 0.14 100 307.81
16 0.25 0.25 0.00 100 107.72 0.25 0.25 0.00 100 108.77
17 5.00 5.00 0.00 100 113.74 5.00 5.00 0.00 100 113.69
18 680.63 680.63 0.00 100 185.19 680.63 680.63 0.00 100 186.24
19 -14.46 -15.00 0.75 100 319.67 -14.74 -15.00 0.50 100 319.70
20 -6961.81 -6961.81 0.00 100 169.53 -6961.81 -6961.81 0.00 100 178.29
21 24.31 24.31 0.01 100 284.93 24.31 24.31 0.01 100 289.19
22 1.00 1.00 0.00 100 110.40 1.00 1.00 0.00 100 110.19
23 -15.94 -17.00 1.46 100 188.87 -16.03 -17.00 1.34 100 187.75
24 -213.00 -213.00 0.00 100 190.52 -213.00 -213.00 0.00 100 195.43
25 -14.68 -15.00 0.63 100 300.82 -14.83 -15.00 0.47 100 308.98
26 -11.00 -11.00 0.00 100 169.43 -11.00 -11.00 0.00 100 170.90
27 -268.01 -268.01 0.01 100 380.93 -268.01 -268.01 0.01 100 389.09
28 -36.31 -39.00 6.24 100 311.33 -37.25 -39.00 5.13 100 316.04
29 -216.54 -383.17 66.52 100 500.00 -216.26 -380.89 70.97 100 500.00
30 -691.29 -831.76 53.39 100 500.00 -699.63 -868.69 78.69 100 500.00
31 -5190.01 -8333.66 1417.70 100 500.00 -5071.04 -8162.21 1324.25 100 500.00
32 -0.46 -0.59 0.06 100 194.54 -0.46 -0.66 0.06 100 188.34
33 -0.33 -0.41 0.05 100 186.59 -0.33 -0.41 0.05 100 189.72

Table 7.14: Results for FDEC on set A
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The results given in Table 7.14 show that FDEC-SFP and FDEC-PFP located the best

known global minimum for 26 and 27 problems respectively. Both were successful on 26

common problems. The FDEC-PFP method was successful on problem 14 where FDEC-

SFP failed. Aside from problem 9, the standard deviations for the successful problems are

relatively low for both schemes. For many of the problems (i.e. problems 2-8, 12,13, 16-18,

20-22, 24, 26 and 27) the mean and min values are equal and the standard deviation is 0. We

can conclude for these problems the best known solution was found for all 100 runs. The

FDEC-PFP method had feasible runs for all 33 problems while FDEC-SFP had feasible runs

for all problems except problem 14 where it failed completely.

Just as with the DEC algorithm discussed in the previous section we summarize the

results for FDEC-SFP and FDEC-PFP in Table 7.15 where we have included the summary

of GA results as has been given in Table 7.4.

SR TFeas AvgIter AvgFe AvgSD
FDEC-SFP 26 3200 214.23 21 738.2 1.9
FDEC-PFP 27 3300 218.78 22 197.8 4.3
GA-SFP 23 3168 221.89 22 511.9 3.27
GA-PFP 23 3300 199.86 20 286.9 24.01

Table 7.15: Summary of results for FDEC on set A

The summary in Table 7.15 shows that (when compared to GA) FDEC-SFP is successful

for 3 more problems than GA-SFP. Also the FDEC-PFP method is successful on 4 more

problems than GA-PFP method. Hence FDEC has a better success rate than GA for both

schemes.

The TFeas values for both GA-PFP and FDEC-PFP indicate that all 100 runs for the 33

problems were successful in locating feasible points. Both GA-SFP and FDEC-SFP failed

to locate any feasible points for problem 14. However FDEC-SFP found feasible points for

all the remaining 32 problems.

We now compare FDEC and GA with respect to accuracy and efficiency. GA-PFP has

the highest AvgSD and the lowest AvgFe value and is not comparable to the other methods.
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From the remaining methods FDEC-SFP clearly performed the best with the lowest AvgFe

and lowest AvgSD values. FDEC-PFP and GA-SFP are comparable with regard to both

AvgIter and AvgSD values.

We now present the results for FDEC on problem set B in Table 7.16.

S F P P F P
np mean min dev feas iter mean min dev feas iter
34 -308.36 -316.27 19.69 100 258.28 -306.1 -316.27 21.8 100 262.18
35 0.18 0.18 0.00 100 101.39 0.18 0.18 0.00 100 101.42
36 0 0 0.00 100 102.47 0 0 0.00 100 102.53
37 -195.37 -195.37 0.00 100 129.32 -195.37 -195.37 0.00 100 129.81
38 -2.21 -2.21 0.00 100 100.84 -2.21 -2.21 0.00 100 100.84
39 0.13 0.13 0.00 100 101.09 0.13 0.13 0.00 100 101.19
40 0.62 0.62 0.00 100 135.63 0.62 0.62 0.00 100 139.42
41 0.08 0.08 0.00 100 107.05 0.08 0.08 0.00 100 109.10
42 1.51 1.51 0.00 100 104.30 1.51 1.51 0.00 100 104.81
43 0.77 0.76 0.04 100 174.00 0.76 0.76 0.00 100 168.00
44 8903.02 8832.96 47.64 100 499.70 8915.20 8827.23 50.33 100 500.00
45 -0.41 -0.42 0.00 100 127.90 -0.41 -0.42 0.00 100 127.60

Table 7.16: Results for FDEC on set B

Looking at Table 7.16 we can see that FDEC-PFP successfully located the global mini-

mum for all 12 problems whereas FDEC-SFP located the global minimum for 11 problems.

Both have feasible runs for all problems. With regard to the standard deviation for the com-

mon successful problems, both FDEC-SFP and FDEC-PFP have low values for all problems

except problem 34. FDEC-PFP also has a high standard deviation for problem 44. For many

of the problems in this set, the min and mean values are equal and the standard deviation is

zero. This indicates that the best known value was found in all runs. We have summarized

the results in Table 7.17 where we have included the summary of GA as given in Table 7.6.

We now compare FDEC and GA using the results in Table 7.17. The table shows that

FDEC has a higher SR than GA. In addition it is interesting to note that FDEC-PFP is the

only method thus far to find the best known solution for problem 44. FDEC-SFP and FDEC-

PFP were both successful in locating feasible points for all 100 runs of all 12 problems.

GA however has 100 less feasible runs. The AvgIter and AvgSD values for FDEC-SFP is
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SR TFeas AvgIter AvgFe AvgSD
FDEC-SFP 11 1200 131.12 13 344.12 1.79
FDEC-PFP 12 1200 162.24 16 487.24 6.01
GA-SFP 9 1100 115.53 11 769.53 0.0
GA-PFP 9 1100 115.97 11 813.97 0.0

Table 7.17: Summary of FDEC on set B

much lower than those for FDEC-PFP. This can mainly be attributed to problem 44 where

the FDEC-PFP was successful but the average number of iterations required and the standard

deviation were both high. When compared to GA, we can see that the FDEC schemes have

a much higher AvgIter and AvgSD value. This is due to the additional problems where the

FDEC method was successful. Therefore for a fair comparison, we now present the summary

using only the 9 problems (i.e. problems 35-42 and 45) that were solved by all methods. The

summarized results are presented in Table 7.18.

SR TFeas AvgIter AvgFe AvgSD
FDEC-SFP 9 900 112.22 11 435.22 0.0
FDEC-PFP 9 900 112.97 11 510.97 0.0
GA-SFP 9 900 115.53 11 769.53 0.0
GA-PFP 9 900 115.97 11 813.97 0.0

Table 7.18: Summary of results for FDEC on 9 common problems from set B

Table 7.18 shows that FDEC and GA performed equally well on the 9 problems with

respect to SR, TFeas and AvgSD. The AvgIter values for FDEC however are lower than

those for GA. We can conclude that the performance of FDEC is better than GA.

In conclusion, FDEC is better than GA with respect to SR on problem set A and B (see

Table 7.15 and 7.17). Also the FDEC-PFP method has the highest SR for both problem set A

and B. FDEC-PFP and GA-PFP are comparable with respect to TFeas for problem set A but

FDEC-SFP is superior to GA-SFP. On set B FDEC is superior to GA on TFeas. FDEC-SFP

and FDEC-PFP are comparable to GA-SFP with regard to AvgSD on set A and B. However

both methods are superior to GA-PFP with respect to AvgSD on set A. For problem set A,

the AvgIter values for FDEC-SFP and FDEC-PFP are comparable to those for GA-SFP but
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are slightly inferior to GA-PFP. For problem set B the AvgIter values for DEC are superior

than GA (see Table 7.18). Overall we can conclude that the FDEC method performed better

than GA and that FDEC-PFP was the best overall performer.

7.3.1 A study on the filter set

We now make some observations about the size of the filter and the variations it experiences

during a single independent run. We selected 3 problems whose ρ values vary. We then

carried out a single run with the FDEC-SFP algorithm on each problem. We use all the

settings and parameter values mentioned previously. We store the size of the filter at every

10 generations. We now plot the the filter size against the number of iterations. The graphs

are presented in Figures 7.1 to 7.3, where the x axis gives the number of iterations and the y

axis the size of the filter.

Figure 7.1: Example of filter size, Problem 1, ρ = 0.0006
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Figure 7.2: Example of filter size, Problem 24, ρ = 23.405

Figure 7.3: Example of filter size, Problem 17, ρ = 96.645
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The most important distinction between these three problems is the amount of variation

the filter experiences. We note for problem 1 the filter set is most active. This is because the

feasible region is very small, i.e. ρ is small, and there will naturally be more infeasible points

in the populations. For problem 24 where the feasible region is larger than problem 1, the

filter set varies less and the maximum number of points in the filter is lower than problem 1.

Problem 17 has the largest feasible region and hence has the least active and smallest filter

set. We can conclude that for problems where the feasible region is small, the filter is more

active. A larger filter set with varied points will certainly provide an advantage in terms of

exploration for problems with small feasible regions. It is therefore clear that the filter set

has an important role to play for constrained global optimization.
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7.4 Results for the PSDEC algorithm

In this section we present the numerical results for the PSDEC algorithm. The PSDEC algo-

rithm is based on the DEC algorithm except that it performs a local technique periodically

using PPS. Hence the number of fitness calls in each iteration is not fixed i.e. the number

of fitness evaluations for the iteration where PPS is invoked is greater than the population

size. Therefore we have ignored the average iterations for each problem since they do not

accurately reflect the efficiency of the method. Instead we use the average number of fitness

evaluations. The parameters for PSDEC are the same as for DEC. We note that cr = 0.9

and the setting best/1/bin are used. The PPS technique has been fully discussed in Chapter

6. PPS does not have any additional parameters. The results for PSDEC on test set A are

presented in Table 7.19.
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S F P P F P
np mean min dev feas feval mean min dev feas feval

1 7049.29 7049.25 0.16 100 48519.14 7049.41 7049.25 0.62 100 49996.45
2 -30665.54 -30665.54 0.00 100 25128.58 -30665.54 -30665.54 0.00 100 25412.16
3 -310.00 -310.00 0.00 100 23413.34 -310.00 -310.00 0.00 100 24002.27
4 -4.52 -4.53 0.15 100 14874.54 -4.50 -4.53 0.21 100 16045.68
5 -3.14 -3.14 0.00 100 14410.21 -3.14 -3.14 0.00 100 15206.35
6 -13.40 -13.41 0.09 100 18178.26 -13.41 -13.41 0.00 100 20042.75
7 -5.51 -5.51 0.00 100 11614.40 -5.51 -5.51 0.00 100 11593.45
8 -16.78 -16.78 0.00 100 11294.08 -16.78 -16.78 0.00 100 11767.87
9 5193.77 5126.48 133.46 100 39462.19 5191.61 5126.48 111.52 100 41200.79

10 -0.38 -0.53 0.05 100 20886.46 -0.37 -0.47 0.04 100 19831.61
11 0.36 0.05 0.21 100 19124.77 0.37 0.05 0.23 100 19243.74
12 -1.00 -1.00 0.00 100 10474.91 -1.00 -1.00 0.00 100 10499.32
13 -0.10 -0.10 0.00 100 10725.76 -0.10 -0.10 0.00 100 10727.77
14 - - - - - -1.11 -1.12 0.00 100 25282.51
15 -48.09 -48.14 0.12 100 29907.30 -48.03 -48.14 0.39 100 32689.79
16 0.25 0.25 0.00 100 10961.82 0.25 0.25 0.00 100 11087.29
17 5.00 5.00 0.00 100 11643.63 5.00 5.00 0.00 100 11612.17
18 680.63 680.63 0.00 100 18699.87 680.63 680.63 0.00 100 19289.99
19 -14.55 -15.00 0.60 100 31455.83 -14.49 -15.00 0.77 100 31989.23
20 -6961.81 -6961.81 0.00 100 16534.48 -6961.81 -6961.81 0.00 100 19450.32
21 24.31 24.31 0.01 100 29197.20 24.31 24.31 0.00 100 30158.60
22 1.00 1.00 0.00 100 11155.53 1.00 1.00 0.00 100 11179.70
23 -16.00 -17.00 1.29 100 19220.89 -15.78 -17.00 1.54 100 19462.46
24 -213.00 -213.00 0.00 100 19695.99 -213.00 -213.00 0.00 100 19662.66
25 -14.72 -15.00 0.58 100 30480.10 -14.72 -15.00 0.55 100 31043.53
26 -11.00 -11.00 0.00 100 17368.44 -11.00 -11.00 0.00 100 17213.75
27 -268.01 -268.01 0.01 100 37950.09 -268.01 -268.01 0.01 100 40301.44
28 -37.66 -39.00 4.47 100 31137.22 -37.38 -39.00 4.88 100 31651.00
29 -218.30 -365.16 67.11 100 51106.84 -217.70 -385.35 72.32 100 51137.89
30 -693.02 -853.97 69.27 100 51316.80 -678.21 -866.61 64.40 100 51377.30
31 -5201.58 -8207.83 1286.38 100 51147.41 -5147.22 -8379.78 1560.19 100 49947.02
32 -0.46 -0.62 0.06 100 19442.54 -0.47 -0.67 0.06 100 20079.24
33 -0.32 -0.43 0.06 100 18278.86 -0.34 -0.41 0.04 100 19212.46

Table 7.19: Results for PSDEC on set A

86



Table 7.19 shows that PSDEC-SFP and PSDEC-PFP were successful in finding the best

known minimum for 26 and 27 problems respectively. PSDEC-PFP located feasible points

for all runs of all problems but PSDEC-SFP failed completely on problem 14 where no

feasible points were located for any of the runs. The standard deviation for PSDEC was

low for all successful problems except problem 9. Some of the problems (i.e. problems

2,3,5,7,8,12,13,16-18,20, 24 and 26) the mean and min values are equal and the standard

deviation is 0. We can conclude for these problems the best known solution was found for

all 100 runs. Table 7.20 presents a summary of the results for PSDEC as given in Table 7.19.

We have also included the results for GA as has been summarized in Table 7.4.

SR TFeas AvgFe AvgSD
PSDEC-SFP 26 3200 21 639.6 5.42
PSDEC-PFP 27 3300 22 511.6 4.47
GA-SFP 23 3168 22 511.9 3.27
GA-PFP 23 3300 20 286.9 24.01

Table 7.20: Summary of results for PSDEC on set A

A comparison of PSDEC and GA shows that PSDEC-SFP is successful on 3 more prob-

lems than GA while PSDEC-PFP is successful on 4 more problems than GA. Clearly, PS-

DEC performed better than GA with respect to SR. Table 7.20 shows that PSDEC-PFP is

comparable to GA-PFP with respect to TFeas but PSDEC-SFP is superior to GA-SFP.

We now compare GA and PSDEC with respect to AvgSD and AvgFe. Table 7.20 shows

us that GA-PFP has the best AvgFe and worst AvgSD. From the remaining three methods

PSDEC is better with respect to AvgFe and GA-SFP is better with regard to AvgSD.

Next we present the results for the PSDEC method on problem set B. The results are

presented in Table 7.21.

Table 7.21 shows that PSDEC located the global minimum for 11 common problems.

For all the problems the schemes, SFP and PFP, managed to locate feasible points on all

runs. The standard deviation for all successful problems except problem 34 are very low. We

have summarized the results in Table 7.22 where we have also included the summary of GA

87



Superiority of Feasible Points Parameter Free Penalties
np mean min dev feas func eval mean min dev feas func eval
34 -310.05 -316.27 17.76 100 26029.7 -307.8 -316.27 20.26 100 27137.01
35 0.18 0.18 0 100 10377.07 0.18 0.18 0 100 10404.72
36 0 0 0 100 10481.89 0 0 0 100 10504.99
37 -195.37 -195.37 0 100 13157.11 -195.37 -195.37 0 100 13252.96
38 -2.21 -2.21 0 100 10331.63 -2.21 -2.21 0 100 10314.72
39 0.13 0.13 0 100 10357.18 0.13 0.13 0 100 10350.12
40 0.62 0.62 0 100 13835.87 0.62 0.62 0 100 13949.85
41 0.08 0.08 0.00 100 10958.83 0.08 0.08 0.00 100 11033.13
42 1.51 1.51 0.00 100 10700.91 1.51 1.51 0.00 100 10687.70
43 0.76 0.76 0.00 100 16771.55 0.76 0.76 0.00 100 16986.55
44 8828.75 8894.81 43.66 100 51626.63 8839.64 8905.88 47.31 100 51612.49
45 -0.41 -0.42 0.00 100 12922.71 -0.41 -0.42 0.00 100 12941.93

Table 7.21: Results for PSDEC on set B

results on set B from Table 7.6.

SR TFeas AvgFe AvgSD
PSDEC-SFP 11 1200 13 265.86 1.65
PSDEC-PFP 11 1200 13 414.88 1.84
GA-SFP 9 1100 11 769.53 0.0
GA-PFP 9 1100 11 813.97 0.0

Table 7.22: Summary of results for PSDEC on set B

From Table 7.22 we see that when compared to GA the SR of the PSDEC algorithm is

much better. Both PSDEC-SFP and PSDEC-PFP were successful in finding feasible points

for all runs of all 12 problems wheres GA was successful for only 11 problems. PSDEC-SFP

has lower AvgSD and AvgIter values than PSDEC-PFP. Both PSDEC-SFP and PSDEC-PFP

have higher AvgIter and AvgSD values than GA. This is due to problems 34 and 43 where

the dev and iter values are high. For a fair comparison, we now compare GA and PSDEC on

9 common problems that were solved by both methods. The results are presented in Table

7.23.

Table 7.23 shows that PSDEC and GA performed equally well on the 9 problems with

respect to SR, TFeas and AvgSD. The AvgIter values for PSDEC however are lower than

those for GA. We can conclude that the overall performance of PSDEC is better than GA.

To sum up, PSDEC-SFP and PSDEC-PFP are better than GA with respect to SR on
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SR TFeas AvgFe AvgSD
PSDEC-SFP 9 900 11 458.13 0.0
PSDEC-PFP 9 900 11 493.35 0.0
GA-SFP 9 900 11 769.53 0.0
GA-PFP 9 900 11 813.97 0.0

Table 7.23: Summary of results for PSDEC on 9 common problems from set B

problem set A and B (see Table 7.20 and 7.22). Both PFP schemes for PSDEC and GA

perform equally with respect to TFeas for problem set A but PSDEC-SFP was superior to

GA-SFP. On problem set B PSDEC was better than GA with respect to TFeas. PSDEC

is comparable to GA-SFP with regard to AvgSD on both problem set A and B. However

PSDEC is superior to GA-PFP on set A with respect to AvgSD. For problem set A, the

AvgIter values for PSDEC are better than GA-SFP but are slightly inferior to GA-PFP. For

problem set B the AvgIter values for PSDEC are superior than GA (see Table 7.23). Overall

we can conclude that PSDEC performed better than GA.
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7.5 Results for the PSFDEC algorithm

In this section we present the results for the PSFDEC algorithm. The PSFDEC algorithm is

implemented using cr = 0.9 and the setting best/1/bin. Also as with the PSDEC algorithm,

we present the average number of function evaluations, feval, instead of the average number

of iterations, iter. The results for problem set A are presented in Table 7.24.

S F P S F P
np mean min dev feas feval mean min dev feas feval

1 7049.32 7049.25 0.17 100 49618.16 7049.29 7049.25 0.07 100 50121.48
2 -30665.54 -30665.54 0.00 100 25619.79 -30665.54 -30665.54 0.00 100 25613.25
3 -310.00 -310.00 0.00 100 23653.67 -310.00 -310.00 0.00 100 23996.65
4 -4.52 -4.53 0.15 100 14989.61 -4.53 -4.53 0.00 100 15563.60
5 -3.14 -3.14 0.00 100 14403.05 -3.14 -3.14 0.00 100 14946.62
6 -13.41 -13.41 0.00 100 18453.86 -13.41 -13.41 0.00 100 19100.10
7 -5.51 -5.51 0.00 100 11583.18 -5.51 -5.51 0.00 100 11569.12
8 -16.78 -16.78 0.00 100 11303.81 -16.78 -16.78 0.00 100 11582.60
9 5148.52 5126.48 43.88 100 39665.95 5196.02 5126.48 113.53 100 42023.24

10 -0.38 -0.48 0.05 100 20283.30 -0.38 -0.45 0.04 100 20427.70
11 0.35 0.05 0.24 100 18427.04 0.36 0.05 0.25 100 19381.10
12 -1.00 -1.00 0.00 100 10484.97 -1.00 -1.00 0.00 100 10478.32
13 -0.10 -0.10 0.00 100 10721.84 -0.10 -0.10 0.00 100 10732.13
14 - - - - - -1.11 -1.12 0.00 100 25511.55
15 -48.09 -48.14 0.11 100 31413.38 -48.09 -48.14 0.11 100 30983.37
16 0.25 0.25 0.00 100 10973.25 0.25 0.25 0.00 100 11165.48
17 5.00 5.00 0.00 100 11604.03 5.00 5.00 0.00 100 11578.70
18 680.63 680.63 0.00 100 18954.71 680.63 680.63 0.00 100 19227.43
19 -14.60 -15.00 0.64 100 31627.53 -14.74 -15.00 0.52 100 32748.47
20 -6961.81 -6961.81 0.00 100 17337.83 -6961.81 -6961.81 0.00 100 18497.09
21 24.31 24.31 0.00 100 29362.44 24.31 24.31 0.01 100 29621.18
22 1.00 1.00 0.00 100 11217.33 1.00 1.00 0.00 100 11194.87
23 -16.22 -17.00 1.05 100 19514.40 -16.01 -17.00 1.12 100 19284.90
24 -213.00 -213.00 0.00 100 19514.24 -213.00 -213.00 0.00 100 19856.68
25 -14.69 -15.00 0.57 100 30852.66 -14.80 -15.00 0.49 100 31360.86
26 -11.00 -11.00 0.00 100 17302.24 -11.00 -11.00 0.00 100 17588.81
27 -268.01 -268.01 0.01 100 38826.12 -268.01 -268.01 0.02 100 39852.48
28 -36.61 -39.00 5.41 100 31828.79 -36.65 -39.00 5.55 100 32144.37
29 -224.47 -384.69 74.08 100 51102.93 -216.85 -378.93 67.73 100 51138.93
30 -687.49 -867.93 68.65 100 51303.64 -695.85 -858.73 74.84 100 51344.88
31 -4942.59 -8435.19 1452.69 100 51132.15 -5051.79 -8115.77 1374.30 100 51148.04
32 -0.45 -0.61 0.06 100 19664.79 -0.45 -0.73 0.07 100 19454.87
33 -0.31 -0.38 0.06 100 17789.10 -0.34 -0.41 0.04 100 19331.30

Table 7.24: Results for PSFDEC on set A
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Tables 7.24 show that PSFDEC-SFP and PSFDEC-PFP successful located the best known

local minimum for 26 and 27 problems respectively. PSFDEC-PFP found feasible points for

all runs while PSFDEC-SFP only failed to find any feasible points for problem 14. The

standard deviation for both methods was low for successful problems except for problem 9.

Some of the problems (i.e. problems 2,3,5-8,12,13,16-18,20-22,24 and 26) the mean and

min values are equal and the standard dev is 0. We can conclude for these problems the best

known solution was found for all 100 runs. We now summarize the results for the PSFDEC

algorithms in Table 7.25 where we have also included the summary for GA as given in Table

7.4.

SR TFeas AvgFe AvgSD
PSFDEC-SFP 26 3200 21 894.4 2.01
PSFDEC-PFP 27 3300 22 434.2 4.51
GA-SFP 23 3168 22 511.9 3.27
GA-PFP 23 3300 20 286.9 24.01

Table 7.25: Summary of results for PSFDEC on set A

From Table 7.25 we see that PSFDEC-SFP is successful for 3 more problems than

GA-SFP and PSFDEC-PFP is successful on 4 more problems than GA-PFP . Hence both

PSFDEC-SFP and PSFDEC-PFP have a better SR than GA.

Next we compare TFeas for GA and PSFDEC. The TFeas values for both GA-PFP and

PSFDEC-PFP indicate that all 100 runs for the 33 problems were successful in locating

feasible points. Both GA-SFP and PSFDEC-SFP failed to locate any feasible points for

problem 14.

Finally, we compare GA and PSFDEC with respect to AvgSD and AvgFe. GA-PFP

method again has the lowest AvgFe and highest AvgFe. From the remaining three methods

PSFDEC-SFP has the lowest AvgFe and AvgSD values. We can say that the results for the

PSFDEC-SFP are superior. PSFDEC-PFP and GA-SFP are comparable.

We now present results for PSFDEC on set B in Table 7.26.

From Table 7.26 we see that both schemes, SFP and PFP, fail to find the best known
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S F P P F P
np mean min dev feas feval mean min dev feas feval
34 -308.93 -316.27 19.08 100 26174.26 -306.1 -316.27 21.8 100 26842.56
35 0.18 0.18 0.00 100 10402.5 0.18 0.18 0.00 100 10382.38
36 0 0 0.00 100 10466.78 0 0 0.00 100 10487.01
37 -195.37 -195.37 0.00 100 13175.25 -195.37 -195.37 0.00 100 13242.92
38 -2.21 -2.21 0.00 100 10333.72 -2.21 -2.21 0.00 100 10313.9
39 0.13 0.13 0.00 100 10358.33 0.13 0.13 0.00 100 10336.98
40 0.62 0.62 0.00 100 13921.01 0.62 0.62 0.00 100 14288.91
41 0.08 0.08 0.00 100 11033.71 0.08 0.08 0.00 100 11064.98
42 1.51 1.51 0.00 100 10714.13 1.51 1.51 0.00 100 10702.80
43 0.77 0.76 0.04 100 18513.29 0.76 0.76 0.00 100 17210.56
44 8904.02 8839.28 42.36 100 51624.75 8906.09 8836.32 43.79 100 51599.30
45 -0.41 -0.42 0.00 100 12920.13 -0.41 -0.42 0.01 100 18256.78

Table 7.26: Results for PSFDEC on set B

minimum for a single problem only i.e. problem 44. All runs for both schemes managed to

locate feasible points for all the problems. Aside from problem 34, the standard deviation

for the successful problems is very low. Also for many problems the mean and min values

are equal indicating that the best known solution was located for all runs. We summarize

the results for PSFDEC on set B in Table 7.27 and include the summarized results of GA as

given in Table 7.6.

SR TFeas AvgFe AvgSD
PSFDEC-SFP 11 1200 13 455.74 1.74
PSFDEC-PFP 11 1200 13 920.89 1.99
GA-SFP 9 1100 11 769.53 0.0
GA-PFP 9 1100 11 813.97 0.0

Table 7.27: Summary of results for PSFDEC on set B

Table 7.27 shows that PSFDEC performed better than GA with respect to SR. The TFeas

value indicates that PSFDEC located feasible points for all 100 runs of all 12 problems while

GA also failed on 100 runs. When we compare AvgSD and AvgIter of GA to PSFDEC we

find that PSFDEC is inferior with regard to both criteria. This is due to problems 34 and

43 where the PSFDEC methods were successful and GA was unsuccessful. We therefore

compare the results of GA and PSFDEC on the 9 successful problems that are common. The

results are presented in Table 7.28
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SR TFeas AvgFe AvgSD
PSFDEC-SFP 9 900 11 480.62 0.0
PSFDEC-PFP 9 900 12 119.63 0.0
GA-SFP 9 900 11 769.53 0.0
GA-PFP 9 900 11 813.97 0.0

Table 7.28: Summary of results for PSFDEC on 9 common problems from set B

From Table 7.28 we see that SR, TFeas and AvgSD are equal for PSDEC and GA. The

AvgIter values of PSDEC-SFP are lower than those of GA. The AvgIter values of PSFDEC-

PFP however are higher than GA. We can conclude that the performance of the PSDEC-SFP

is slightly better than GA while PSFDEC-PFP is slightly worst.

To sum up, PSFDEC is better than GA with respect to SR on problem set A and B (see

Table 7.25 and 7.26). PSFDEC-PFP and GA-PFP are comparable with respect to TFeas for

problem set A but PSFDEC-SFP is superior to GA-SFP. On set B PSFDEC is superior to

GA on TFeas. PSFDEC is comparable to GA-SFP with regard to AvgSD on both A and B.

However PSFDEC is superior to GA-PFP on set A. For problem set A, the AvgIter values

for PSFDEC are comparable to GA-SFP but are slightly inferior to GA-PFP. For problem set

B the AvgIter values for PSFDEC-SFP are superior than GA while those of PSFDEC-PFP

are inferior (see Table 7.28). Overall we can conclude that PSFDEC performed better than

GA in most regards.
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7.6 Comparisons with other methods

Thus far we have compared the new algorithms with GA presented in [38]. In this section we

compare the new algorithms with some other algorithms presented in literature. In particular,

we look at results presented in [23], [25], [30], [39] and [51]. The results for the algorithms

are presented in Table 7.29 and the algorithms considered are:

• Homomorphous Mappings (HM) method [30],

• Stochastic Ranking (SRA) method [51],

• Adaptive Segregational Constraint Handling Evolutionary Algorithm (ASCHEA) [23],

• Simple Multimember Evolutionary Strategy (SMES) method [39], and

• Filter Simulated Annealing (FSA) method [25].

The results we present are from a set of 13 benchmark problems. We have only included

the results for those problems that are also a part of our set of test problems. For example, in

Table 7.29 G1 corresponds to problem 19, G4 to 2, G5 to 9, G6 to 20 , G7 to 21 , G8 to 13,

G9 to 18, G10 to 1 and G13 corresponds to 11. This gives us a total of 9 problems. Since

the above algorithms are all implemented differently with different accuracies, termination

criteria and parameter values, it would be unfair and difficult to draw any conclusions from a

direct comparisons of these results. However we wish to highlight and comment on certain

aspects.

Table 7.29 shows that none of the algorithms was successful in locating the minimum for

all the above mentioned problems. However all four of our algorithms presented were suc-

cessful for all these problems. This indicates that the proposed algorithms are more reliable

than some recent algorithms presented in literature.

Next we consider the efficiency of these methods. The computation cost for HM, SRA,

ASCHEA and SMES are fixed for each algorithm. The respective algorithms were termi-

nated after 1400000, 350000, 1500000 and 250000 fitness function evaluations. A fitness
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np HM SRA ASCHEA SMES FSA

19 (G1)
Best -14.79 -15.00 -15.00 -15.00 -15.00
Av. -14.71 -15.00 -14.84 -15.00 -14.99

2 (G4)
Best -30664.50 -30665.54 -30665.50 -30665.54 -30665.54
Av. -30655.30 -30665.54 -30665.50 -30665.54 -30665.47

9 (G5)
Best - 5126.50 5126.50 5126.60 5126.50
Av. - 5128.88 5141.65 5174.49 5126.50

20 (G6)
Best -6952.10 -6961.81 -6961.81 -6961.81 -6961.81
Av. -6342.60 -6875.94 -6961.81 -6961.28 -6961.81

21 (G7)
Best 24.62 24.31 24.33 24.33 24.31
Av. 24.83 24.37 24.66 24.47 24.38

13 (G8)
Best 0.10 0.10 0.10 0.10 0.10
Av. 0.09 0.10 0.10 0.10 0.10

18 (G9)
Best 680.91 680.63 680.63 680.63 680.63
Av. 681.16 680.66 680.64 680.64 680.64

1 (G10)
Best 7147.90 7054.32 7061.13 7051.90 7059.86
Av. 8163.60 7559.19 7497.43 7253.05 7509.32

11 (G13)
Best N.A. 0.05 N.A. 0.05 0.05
Av. N.A. 0.06 N.A. 0.17 0.3

Table 7.29: Miscellaneous results

function evaluation includes the evaluation of the objective function and evaluation of the

constraints. This is the case for the new algorithms as well. For the FSA method the func-

tion evaluations and constraint evaluations are considered separately. For this algorithm, the

function evaluations range from 44538 to 324569, while the constraint evaluation range from

15817 to 171299. For all of the new algorithms we limited the number of iterations to 500.

This would result in a maximum of 50601 fitness function evaluations. From all the results

we presented the most expensive algorithm was the DEC algorithm with a random mutation

scheme. The PSDEC-PFP method required an average of 22511.6 fitness function evalua-

tions for a successful run. This value is an average for those problems where the best known

minimum was located. Even though this is the most expensive of all the algorithms pre-

sented, the average number of fitness evaluations required is significantly lower than all the

values given for the above algorithms listed in Table 7.29. We can surmise that the new al-

gorithms have a better success rate and are also more efficient than the algorithms presented

in Table 7.29.
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7.7 Overall comparison of the new algorithms with GA

In this section we provide a summary of all the results for both problem sets presented in

the previous sections. We first summarize all the results for each problem set into four

tables. Each table will give the results of all five algorithms. The first table will give the

best minimum values found by each algorithm for each problem. The next table will give

the mean values for each problem. The third table will give the standard deviation values

and the last table will give the average fitness function evaluations for each problem. In each

table we indicate the best results found amongst all the algorithms in bold. We present the

results for problem set A first.

7.7.1 Results on problem set A

GA DEC FDEC PSDEC PSFDEC
np SFP PFP SFP PFP SFP PFP SFP PFP SFP PFP

1 7116.64 7292.1 7049.25 7049.25 7049.25 7049.25 7049.25 7049.25 7049.25 7049.25
2 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54
3 -310 -310 -310 -310 -310 -310 -310 -310 -310 -310
4 -4.53 -4.53 -4.53 -4.53 -4.53 -4.53 -4.53 -4.53 -4.53 -4.53
5 -3.14 -3.14 -3.14 -3.14 -3.14 -3.14 -3.14 -3.14 -3.14 -3.14
6 -13.41 -13.41 -13.41 -13.41 -13.41 -13.41 -13.41 -13.41 -13.41 -13.41
7 -5.51 -5.51 -5.51 -5.51 -5.51 -5.51 -5.51 -5.51 -5.51 -5.51
8 -16.78 -16.78 -16.78 -16.78 -16.78 -16.78 -16.78 -16.78 -16.78 -16.78
9 4221.83 4221.83 5126.48 5126.48 5126.48 5126.48 5126.48 5126.48 5126.48 5126.48

10 -0.64 -0.64 -0.49 -0.48 -0.46 -0.45 -0.53 -0.47 -0.48 -0.45
11 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
13 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
14 - -1.01 - -1.12 - -1.12 - -1.12 - -1.12
15 -48.11 -47.97 -48.14 -48.14 -48.14 -48.14 -48.14 -48.14 -48.14 -48.14
16 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
17 5 5 5 5 5 5 5 5 5 5
18 680.81 680.75 680.63 680.63 680.63 680.63 680.63 680.63 680.63 680.63
19 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15
20 -6961.81 -6961.81 -6961.81 -6961.81 -6961.81 -6961.81 -6961.81 -6961.81 -6961.81 -6961.81
21 24.77 25.76 24.31 24.31 24.31 24.31 24.31 24.31 24.31 24.31
22 1 1 1 1 1 1 1 1 1 1
23 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17
24 -213 -213 -213 -213 -213 -213 -213 -213 -213 -213
25 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15
26 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11
27 -268.01 -268 -268.01 -268.01 -268.01 -268.01 -268.01 -268.01 -268.01 -268.01
28 -39 -39 -39 -39 -39 -39 -39 -39 -39 -39
29 -221.11 -247.72 -383.13 -364.69 -383.17 -380.89 -365.16 -385.35 -384.69 -378.93
30 -696.76 -698.08 -869.2 -841.8 -831.76 -868.69 -853.97 -866.61 -867.93 -858.73
31 -5374.88 -5424.69 -8534.11 -8101.83 -8333.66 -8162.21 -8207.83 -8379.78 -8435.19 -8115.77
32 -0.74 -0.74 -0.7 -0.7 -0.59 -0.66 -0.62 -0.67 -0.61 -0.73
33 -0.57 -0.57 -0.43 -0.41 -0.41 -0.41 -0.43 -0.41 -0.38 -0.41

Table 7.30: Set A: Best minimum values (min)

96



GA DEC FDEC PSDEC PSFDEC
np SFP PFP SFP PFP SFP PFP SFP PFP SFP PFP

1 7893.74 8464.55 7049.29 7049.39 7049.33 7049.38 7049.29 7049.41 7049.32 7049.29
2 -30665.53 -30665.53 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54 -30665.54
3 -309.84 -308.58 -310 -310 -310 -310 -310 -310 -310 -310
4 -4.52 -4.41 -4.53 -4.53 -4.53 -4.52 -4.52 -4.5 -4.52 -4.53
5 -3.13 -3.14 -3.14 -3.14 -3.14 -3.14 -3.14 -3.14 -3.14 -3.14
6 -13.32 -13.38 -3.14 -3.14 -3.14 -3.14 -3.14 -3.14 -3.14 -3.14
7 -5.51 -5.51 -5.51 -5.51 -5.51 -5.51 -5.51 -5.51 -5.51 -5.51
8 -16.78 -16.78 -16.78 -16.78 -16.78 -16.78 -16.78 -16.78 -16.78 -16.78
9 4239.21 4755.32 5210.17 5201.06 5143.65 5191.18 5193.77 5191.61 5148.52 5196.02

10 -0.56 -0.56 -0.38 -0.38 -0.38 -0.38 -0.38 -0.37 -0.38 -0.38
11 0.38 0.58 0.33 0.34 0.36 0.33 0.36 0.37 0.35 0.36
12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
13 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
14 - -0.78 - -1.11 - -1.11 - -1.11 - -1.11
15 -47.01 -47.03 -48.07 -48.07 -48.08 -48.08 -48.09 -48.03 -48.09 -48.09
16 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
17 5 5 5 5 5 5 5 5 5 5
18 681.56 682.75 680.63 680.63 680.63 680.63 680.63 680.63 680.63 680.63
19 -14.94 -14.98 -14.64 -14.48 -14.46 -14.74 -14.55 -14.49 -14.6 -14.74
20 -6961.81 -6961.81 -6961.81 -6961.81 -6961.81 -6961.81 -6961.81 -6961.81 -6961.81 -6961.81
21 26.87 32.63 24.31 24.31 24.31 24.31 24.31 24.31 24.31
22 1 1 1 1 1 1 1 1 1 1
23 15.98 -15.81 -16.04 -16.03 -15.94 -16.03 -16 -15.78 -16.22 -16.01
24 -212.98 -212.98 -213 -213 -213 -213 -213 -213 -213 -213
25 -15 -15 -14.7 -14.6 -14.68 -14.83 -14.72 -14.72 -14.69 -14.8
26 -11 -10.99 -11 -11 -11 -11 -11 -11 -11 -11
27 -265.81 -265.06 -268.01 -268.01 -268.01 -268.01 -268.01 -268.01 -268.01 -268.01
28 -36.66 -37.05 -36.94 -36.7 -36.31 -37.25 -37.66 -37.38 -36.61 -36.65
29 -135.08 -132.02 -216.62 -204.69 -216.54 -216.26 -218.3 -217.7 -224.47 -216.85
30 -593.81 -586.45 -688.27 -678.76 -691.29 -699.63 -693.02 -678.21 -687.49 -695.85
31 -3043.37 -3106.12 -5228.99 -5021.31 -5190.01 -5071.04 -5201.58 -5147.22 -4942.59 -5051.79
32 -0.66 -0.66 -0.46 -0.46 -0.46 -0.46 -0.46 -0.47 -0.45 -0.45
33 -0.5 -0.5 -0.34 -0.33 -0.33 -0.33 -0.32 -0.34 -0.31 -0.34

Table 7.31: Set A: Mean values (mean)
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GA DEC FDEC PSDEC PSFDEC
np SFP PFP SFP PFP SFP PFP SFP PFP SFP PFP
1 1285.08 1294.91 0.06 0.82 0.3 0.49 0.16 0.62 0.17 0.07
2 0.06 0.01 0 0 0 0 0 0 0 0
3 1.6 12.69 0 0 0 0 0 0 0 0
4 0.15 0.4 0 0 0 0.15 0.15 0.21 0.15 0
5 0.02 0 0 0 0 0 0 0 0 0
6 0.26 0.15 0 0 0 0.09 0.09 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 62.14 531.2 142.27 138.03 39.5 107.53 133.46 111.52 43.88 113.53

10 0.03 0.03 0.04 0.05 0.04 0.03 0.05 0.04 0.05 0.04
11 0.29 0.35 0.23 0.24 0.24 0.22 0.21 0.23 0.24 0.25
12 0 0 0 0 0 0 0 0 0 0
13 0.01 0 0 0 0 0 0 0 0 0
14 - 0.09 - 0 - 0 - 0 - 0
15 0.77 0.77 0.24 0.21 0.17 0.14 0.12 0.39 0.11 0.11
16 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0
18 0 2.17 0 0 0 0 0 0 0 0
19 0.34 0.2 0.59 0.73 0.75 0.5 0.6 0.77 0.64 0.52
20 0 0 0 0 0 0 0 0 0 0
21 1.37 5.64 0.01 0.01 0.01 0.01 0.01 0 0 0.01
22 0 0 0 0 0 0 0 0 0 0
23 1.16 1.54 1.21 1.29 1.46 1.34 1.29 1.54 1.05 1.12
24 0.08 0.09 0 0 0 0 0 0 0 0
25 0 0 0.54 0.63 0.63 0.47 0.58 0.55 0.57 0.49
26 0 0.05 0 0 0 0 0 0 0 0
27 3.21 3.42 0.03 0 0.01 0.01 0.01 0.01 0.01 0.02
28 5.19 4.73 4.94 5.92 6.24 5.13 4.47 4.88 5.41 5.55
29 38.63 40.54 75.4 60.62 66.52 70.97 67.11 72.32 74.08 67.73
30 34.34 29.27 74.32 69.48 53.39 78.69 69.27 64.4 68.65 74.84
31 682.9 695.63 1519.82 1454.09 1417.7 1324.25 1286.38 1560.19 1452.69 1374.3
32 0.04 0.04 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.07
33 0.03 0.03 0.04 0.06 0.05 0.05 0.06 0.04 0.06 0.04

Table 7.32: Set A: Standard deviation values (dev)
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GA DEC FDEC PSDEC PSFDEC
np SFP PFP SFP PFP SFP PFP SFP PFP SFP PFP

1 42167.5 10302 47855.82 49081.96 49163.77 49050.65 48519.14 49996.45 49618.16 50121.48
2 30027.3 30027.3 24933.87 25426.75 25360.09 25163.14 25128.58 25412.16 25619.79 25613.25
3 22078.6 22775.5 23392.61 23667.33 23790.55 24004.67 23413.34 24002.27 23653.67 23996.65
4 14826.8 15089.4 14826.8 15887.3 14962.14 15401.49 14874.54 16045.68 14989.61 15563.6
5 13119.9 13200.7 13985.47 15200.5 14452.09 14839.93 14410.21 15206.35 14403.05 14946.62
6 30279.8 30401 17924.47 19368.77 18178.99 19296.05 18178.26 20042.75 18453.86 19100.1
7 11271.6 11301.9 11519.05 11596.82 11540.26 11627.12 11614.4 11593.45 11583.18 11569.12
8 11766.5 11867.5 11273.62 11971.53 11267.56 11794.78 11294.08 11767.87 11303.81 11582.6
9 40965.6 10473.7 39324.35 40254.56 39514.23 40170.73 39462.19 41200.79 39665.95 42023.24

10 39965.7 39965.7 20499.97 19712.17 20246.46 20337.36 20886.46 19831.61 20283.3 20427.7
11 30855.5 11029.2 18943.56 19090.01 18438.56 19597.03 19124.77 19243.74 18427.04 19381.1
12 10483.8 10473.7 10446.43 10434.31 10474.71 10429.26 10474.91 10499.32 10484.97 10478.32
13 10847.4 10877.7 10699.94 10696.91 10686.81 10686.81 10725.76 10727.77 10721.84 10732.13
14 - 46702.4 - 24400.59 - 24477.35 - 25282.51 - 25511.55
15 47288.2 45217.7 30005.08 34078.41 29914.18 31189.81 29907.3 32689.79 31413.38 30983.37
16 10807 10807 10964.56 11022.13 10980.72 11086.77 10961.82 11087.29 10973.25 11165.48
17 11261.5 11211 11611.97 11538.24 11588.74 11583.69 11643.63 11612.17 11604.03 11578.7
18 14614.7 22856.3 18389.07 19209.19 18805.19 18911.24 18699.87 19289.99 18954.71 19227.43
19 32814.9 33138.1 31380.7 31962.46 32387.67 32390.7 31455.83 31989.23 31627.53 32748.47
20 14614.7 14584.4 16406.44 19621.27 17223.53 18108.29 16534.48 19450.32 17337.83 18497.09
21 46500.4 10968.6 28575.93 30108.1 28878.93 29309.19 29197.2 30158.6 29362.44 29621.18
22 10877.7 10867.6 11206.96 11167.57 11251.4 11230.19 11155.53 11179.7 11217.33 11194.87
23 15695.4 15766.1 19647.53 19433.41 19176.87 19063.75 19220.89 19462.46 19514.4 19284.9
24 21644.3 21977.6 19538.45 19630.36 19343.52 19839.43 19695.99 19662.66 19514.24 19856.68
25 31714 31754.4 30465.64 30169.71 30483.82 31307.98 30480.1 31043.53 30852.66 31360.86
26 20735.3 21583.7 17263.93 17104.35 17213.43 17361.9 17368.44 17213.75 17302.24 17588.81
27 47490.2 47429.6 37956.81 40134.37 38574.93 39399.09 37950.09 40301.44 38826.12 39852.48
28 26300.4 25472.2 30829.24 32109.92 31545.33 32021.04 31137.22 31651 31828.79 32144.37
29 50025.3 50419.2 50601 50601 50601 50601 51106.84 51137.89 51102.93 51138.93
30 46924.6 46369.1 50601 50601 50601 50601 51316.8 51377.3 51303.64 51344.88
31 49247.6 49601.1 50601 50001.06 50601 50601 51147.41 49947.02 51132.15 51148.04
32 35461.1 35461.1 19748.53 19621.27 19749.54 19123.34 19442.54 20079.24 19664.79 19454.87
33 41339.3 41339.3 19378.87 19047.59 18946.59 19262.72 18278.86 19212.46 17789.1 19331.3

Table 7.33: Set A: Fitness function evaluation values (feval)
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We now summarize the results for problem set A in Table 7.34. We have also included a

graphical representation of the results in Figure 7.4.

Figure 7.4: Summary of Results for set A

SR TFeas AvgFe AvgSD
GA-SFP 23 3168 22 511.9 3.27
GA-PFP 23 3300 20 286.9 24.01
DEC-SFP 26 3200 21 514.0 5.77
DEC-PFP 27 3300 22 381.6 5.48
FDEC-SFP 26 3200 21 738.2 1.9
FDEC-PFP 27 3300 22 197.8 4.3
PSDEC-SFP 26 3200 21 639.6 5.42
PSDEC-PFP 27 3300 22 511.6 4.47
PSFDEC-SFP 26 3200 21 894.4 2.01
PSFDEC-PFP 27 3300 22 434.2 4.51

Table 7.34: Summary of all results for problem set A

A comparison of the algorithms using Table 7.34 will now be presented. Firstly, when

we consider the success rate of the methods, the DEC based methods using the PFP scheme

prove to be the most successful. They only fail on 6 out of the 33 problems. The DEC based

methods using the SFP scheme are the next most successful with a total of 26 problems for

which the best known minimum was located. GA-SFP and GA-PFP methods only succeed

in locating the minimum for 23 problems and thus have the lowest overall success rate. On
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this criterion the DEC based methods performed better than GA.

The TFeas value for the all methods using the PFP scheme is 3300,indicating that all runs

for all 33 problems located feasible points. On the other hand the methods using the SFP

scheme are slightly inferior. We can conclude that the PFP scheme performed the best and

was the most reliable for all methods. The DEC and GA methods were evenly rated for the

PFP scheme but for the SFP scheme all new methods performed better than GA.

Next we consider the average number of fitness function evaluations. For the new meth-

ods, the SFP scheme prove to be computationally less expensive than their respective PFP

counterparts. GA-PFP method however requires the least number of average fitness function

evaluations while GA-SFP is the most costly with the highest average.

If we look at the accuracy (AvgSD) of the methods, the FDEC-SFP method is the most

accurate followed by PSFDEC-SFP and then GA-SFP. GA-PFP method proves to be the

least accurate with an AvgSD value much higher than all the other methods. Overall, the

new methods again show much better performance than GA on this criterion.

An important aspect to consider is that the DEC based methods using the SFP scheme

are successful on 3 additional problems (i.e problems 1, 18 and 21) than GA-SFP. If we only

consider the results for problems where all methods, using SFP, were successful in locating

the best known minimum we will have a total of 23 common problems (i.e. 2-9, 11-13,

15-17, 19, 20, 22-28). Similarly, the new methods using PFP where successful on 4 more

problems than GA-PFP. Those problems being problem 1,18, 21 and 27. Again if we only

consider the results for problems where all methods, using PFP, were successful in locating

the best known minimum we will have a total of 23 common problems (i.e. 2-9, 11-17, 19,

20, 22-26, 28). It is important to note that the 23 common problems for SFP and PFP are not

the same.

Using only these 23 common problems we provide a summary of the results for GA and

DEC based methods. Table 7.35 gives the results for all methods using the SFP scheme on

the 23 common problems and Table 7.36 gives the results for the 23 problems common for
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all methods using the PFP scheme.

TFeas AvgFe AvgSD
GA-SFP 2300 22 511.9 3.27
DEC-SFP 2300 20 197.98 6.52
FDEC-SFP 2300 20 362.6 2.13
PSDEC-SFP 2300 20 270.1 6.13
PSFDEC-SFP 2300 20 492.11 2.18

Table 7.35: Summary of results for 23 common problems on set A, SFP scheme

TFeas AvgFe AvgSD
GA-PFP 2300 20 286.9 24.01
DEC-PFP 2300 20 253.53 6.39
FDEC-PFP 2300 20 116.17 5.02
PSDEC-PFP 2300 20 350.72 5.22
PSFDEC-PFP 2300 20 300.08 5.29

Table 7.36: Summary of results for 23 common problems on set B, PFP scheme

From Table 7.35 above we see that for the 23 common problems GA and the new methods

have the same TFeas values. All new methods have lower AvgFe values than GA. Also if we

compare AvgFe for these 23 problems to those of the full problem set as given in Table 7.34

we can see a significant decrease in the average number of fitness function evaluations. This

shows that the 3 additional problems that the new methods were successful on resulted in a

much higher AvgFe value. If we consider the AvgSD values in Table 7.35 we see that FDEC

has the lowest value followed by PSFDEC and then GA. We also note that AvgSD for the

DEC based methods is slightly higher for the 23 common problems than for the full problem

set (see Table 7.34).

Next we look at the results for the methods using the PFP scheme. From Table 7.36

we firstly see that all algorithms have the same TFeas value. Secondly, DEC and FDEC

have AvgFe values that are lower than GA while the AvgFe values for PSDEC and PSFDEC

are higher than GA. All new methods have lower AvgFe values when compared to the full

problem set (see Table 7.34). The same behaviour is exhibted by the methods using SFP. We

do however note that the difference in the AvgFe values for all methods is fairly small. Lastly
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when we look at the AvgSD values, all new methods have lower values than GA. We also

note that AvgSD for the DEC based methods is slightly higher for the 23 common problems

than for the full problem set (see Table 7.34).

This exercise has shown us that the DEC methods have performed better in most regards

when compared to GA. We can also see that amongst the DEC based methods the overall

performance of FDEC seems to be slightly superior to the other methods. Next we look at

problem set B.
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7.7.2 Results on problem set B

GA DEC FDEC PSDEC PSFDEC
np SFP PFP SFP PFP SFP PFP SFP PFP SFP PFP
34 -314.03 -314.39 -316.27 -316.27 -316.27 -316.27 -316.27 -316.27 -316.27 -316.27
35 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
36 0 0 0 0 0 0 0 0 0 0
37 -195.37 -195.37 -195.37 -195.37 -195.37 -195.37 -195.37 -195.37 -195.37 -195.37
38 -2.21 -2.21 -2.21 -2.21 -2.21 -2.21 -2.21 -2.21 -2.21 -2.21
39 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
40 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62
41 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
42 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51
43 0.79 0.79 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
44 - - 8840.31 8828.2 8832.96 8827.23 8894.81 8905.88 8839.28 8836.32
45 -0.41 -0.41 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42

Table 7.37: Set B: Minimum values (min)

GA DEC FDEC PSDEC PSFDEC
np SFP PFP SFP PFP SFP PFP SFP PFP SFP PFP
34 -295.43 -295.65 -307.8 -309.49 -308.36 -306.1 -310.05 -307.8 -308.93 -306.1
35 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
36 0 0 0 0 0 0 0 0 0 0
37 -195.37 -195.37 -195.37 -195.37 -195.37 -195.37 -195.37 -195.37 -195.37 -195.37
38 -2.21 -2.21 -2.21 -2.21 -2.21 -2.21 -2.21 -2.21 -2.21 -2.21
39 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
40 0.64 0.63 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62
41 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
42 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51
43 0.97 0.97 0.76 0.76 0.77 0.76 0.76 0.76 0.77 0.76
44 - - 8900.7 8909.57 8903.02 8915.2 8828.75 8839.64 8904.02 8906.09
45 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41

Table 7.38: Set B: Mean values (mean)
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GA DEC FDEC PSDEC PSFDEC
np SFP PFP SFP PFP SFP PFP SFP PFP SFP PFP
34 13.41 12.12 20.26 18.44 19.69 21.8 17.76 20.26 19.08 21.8
35 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0
37 0.01 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0
40 0.02 0.02 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0 0
43 0.13 0.11 0 0 0.04 0 0 0 0.04 0
44 - - 42.3 46.09 47.64 50.33 43.66 47.31 42.36 43.79
45 0.01 0 0 0 0 0 0 0 0 0.01

Table 7.39: Set B: Standard Deviation values (dev)

GA DEC FDEC PSDEC PSFDEC
np SFP PFP SFP PFP SFP PFP SFP PFP SFP PFP
34 31724.1 32350.3 25503.51 26975.08 26187.28 26581.18 26029.7 27137.01 26174.26 26842.56
35 10332.3 10332.3 10351.49 10348.46 10341.39 10344.42 10377.07 10404.72 10402.5 10382.38
36 10382.8 10362.6 10469.66 10454.51 10450.47 10456.53 10481.89 10504.99 10466.78 10487.01
37 12524 12382.6 13161.31 13187.57 13162.32 13211.81 13157.11 13252.96 13175.25 13242.92
38 10291.9 10302 10284.83 10286.85 10285.84 10285.84 10331.63 10314.72 10333.72 10313.9
39 10312.1 10312.1 10318.16 10342.4 10311.09 10321.19 10357.18 10350.12 10358.33 10336.98
40 17321.5 17604.3 13936.99 13829.93 13799.63 14182.42 13835.87 13949.85 13921.01 14288.91
41 10590.86 10680.75 10954.46 11116.06 10913.05 11120.1 10958.83 11033.13 11033.71 11064.98
42 10500.97 10514.1 10620.15 10638.33 10635.3 10686.81 10700.91 10687.7 10714.13 10702.8
43 22007.9 20402 16644.8 16665 17675 17069 16771.55 16986.55 18513.29 17210.56
44 101 101 50601 50469.7 50570.7 50601 51626.63 51612.49 51624.75 51599.3
45 13665.3 13837 12685.6 12806.8 13018.9 12988.6 12922.71 12941.93 12920.13 18256.78

Table 7.40: Set B: Fitness Function Evaluation values (feval)
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Next we summarize the results for problem set B in Table 7.41 and present a graphical

representation of the results in Figure 7.5.

SR TFeas AvgFe AvgSD
GA-SFP 9 1100 11 769.53 0.0
GA-PFP 9 1100 11 813.97 0.0
DEC-SFP 11 1200 13 175.45 1.84
DEC-PFP 11 1200 13 332.0 1.68
FDEC-SFP 11 1200 13 344.12 1.79
FDEC-PFP 12 1200 16 487.24 6.01
PSDEC-SFP 11 1200 13 265.86 1.65
PSDEC-PFP 11 1200 13 414.88 1.84
PSFDEC-SFP 11 1200 13 455.74 1.74
PSFDEC-PFP 11 1200 13 920.89 1.99

Table 7.41: Summary of results on set B

Figure 7.5: Summary of Results for set B

Table 7.41 shows that the FDEC-PFP method is the only method successful on all 12

problems in this set. Also other new methods still performed better than GA which was only

successful on 9 out of the 12 problems. Hence the new methods have again shown their

superior performance on this criterion.

The TFeas value shows that the DEC methods found feasible points for all runs, whereas

GA methods had fewer feasible runs. Clearly the DEC methods performed better than GA.
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We know from the results on problem set A that the AvgSD and AvgFe values for the

new methods are inflated due to the additional problems the methods were successful on.

Therefore we will now present the summary of results for all methods on the 9 problems that

were solved by all methods. The results are presented in Table 7.42.

SR TFeas AvgFe AvgSD
GA-SFP 9 900 11 769.53 0.0
GA-PFP 9 900 11 813.97 0.0
DEC-SFP 9 900 11 420.07 0.0
DEC-PFP 9 900 11 445.32 0.0
FDEC-SFP 9 900 11 435.22 0.0
FDEC-PFP 9 900 11 510.97 0.0
PSDEC-SFP 9 900 11 458.13 0.0
PSDEC-PFP 9 900 11 493.35 0.0
PSFDEC-SFP 9 900 11 480.62 0.0
PSFDEC-PFP 9 900 12 119.63 0.0

Table 7.42: Summary of results for set B on 9 common problems

Table 7.42 shows that for these 9 problems all methods were equally matched with

respect to SR, TFeas and AvgSD. The AvgFe values for all DEC based methods, except

PSFDEC-PFP, are lower than GA. This shows that the performance of the DEC-based method

is superior to GA on set B.
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Chapter 8

Conclusion

Our objective in this thesis was to design a general purpose algorithm for solving constrained

global optimization problems. We wanted to create a solver that could easily and effectively

deal with a wide array of problems without imposing any restrictions on the problems. To

achieve our objective we propose four new algorithms for constrained global optimization

and conducted extensive numerical testing using two sets of test problems.

We firstly proposed the DEC algorithm, that is based on the differential evolution algo-

rithm and reliant on the penalty function approach for constraint handling. The SFP and

PFP penalty schemes were employed. We also proposed three additional algorithms that

are based on DEC, namely FDEC, PSDEC and PSFDEC. These algorithms include features

such as a filter set for diversification and a local technique based on PS. One of the salient

features of all these algorithms is that aside from the standard parameters required for DE

and the penalty coefficient in the SFP scheme no additional user input is required.

Our first phase of the testing process was to obtain suitable parameter values for the new

algorithms by empirical testing. In the second phase, we tested all algorithms on two sets of

test problems. The first set contains 33 test problems and the second set contains 12 problems

giving a total of 45 test problems. Each algorithm was tested with both the SFP and PFP

constraint handling schemes. The results for all algorithms were extremely promising with
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the filter based DEC, FDEC, showing a slight dominance over the other proposed algorithms.

We compared the results of the new algorithms with those of GA. Results have shown that,

on average, GA is worse than even the worst performing DEC algorithm on both test sets.

When compared the new methods with other methods including GA. The comparisons

have shown that the new methods are extremely reliable and efficient solvers for constrained

optimization problems. The most important finding was that the DE based methods found

the best known solution for more problems than GA. We hope that more research will be

done to fully expose the potential of the DE algorithm in solving diverse problems.

The new algorithms introduced provide promising results. The approach we adopted

in designing the algorithms is relatively new and will possibly provide new research inter-

ests. The use of filter sets and the PS algorithm for evolutionary algorithms provide many

possibilities for further exploration.
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Appendix A

Test Problems A

Problem 1

minx f(x) = x1 + x2 + x3, subject to

−1 + 0.0025(x4 + x6) ≤ 0

−1 + 0.0025(−x4 + x5 + x7) ≤ 0

−1 + 0.01(−x5 + x8) ≤ 0

100x1 − x1x6 + 833.33252x4 − 83333.333 ≤ 0

x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0

x3x5 − x3x8 − 2500x5 + 1250000 ≤ 0

100 ≤ x1 ≤ 10000

1000 ≤ x2 ≤ 10000

1000 ≤ x3 ≤ 10000

10 ≤ x4 ≤ 1000

10 ≤ x5 ≤ 1000

10 ≤ x6 ≤ 1000

10 ≤ x7 ≤ 1000

10 ≤ x8 ≤ 1000
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Global Solution:

• Objective Function: 7049.25

• Continuous variables: x=

(580.595, 1359.178, 5109.477, 182.125,

295.621, 217.875, 286.504, 395.621)T

Problem 2

minx f(x) = 37.293239x1+0.8356891x1x5+5.3578547x3
2−40792.141, subject to

−0.0022053x3x5 + 0.0056858x2x5 + 0.0006262x1x4 − 6.665593 ≤ 0

0.0022053x3x5 − 0.0056858x2x5 − 0.0006262x1x4 − 85.334407 ≤ 0

0.0071317x2x5 + 0.0021813x3
2 + 0.0029955x1x2 − 29.48751 ≤ 0

−0.0071317x2x5 + 0.0021813x3
2 − 0.0029955x1x2 + 9.48751 ≤ 0

0.0047026x3x5 + 0.0019085x3x4 + 0.0012547x1x3 − 15.699039 ≤ 0

−0.0047026x3x5 − 0.0019085x3x4 − 0.0012547x1x3 + 10.699039 ≤ 0

78 ≤ x1 ≤ 102

33 ≤ x2 ≤ 45

27 ≤ x3 ≤ 45

27 ≤ x4 ≤ 45

27 ≤ x5 ≤ 45

Global Solution:

• Objective Function: -30665.5387

• Continuous variables: x = (78, 33, 29.9953, 45, 36.7758)T
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Problem 3

minx f(x) = −25(x1−2)2−(x2−2)2−(x3−1)2−(x4−4)2−(x5−1)2−(x6−4)2, subject to

(x3 − 3)2 + x4 ≥ 4

(x5 − 3)2 + x6 ≥ 4

x1 − 3x2 ≤ 2

−x1 + x2 ≤ 2

x1 + x2 ≤ 6

x1 + x2 ≥ 2

0 ≤ x1 ≤ 6

0 ≤ x2 ≤ 6

1 ≤ x3 ≤ 5

0 ≤ x4 ≤ 6

1 ≤ x5 ≤ 5

0 ≤ x6 ≤ 10

Global Solution:

• Objective Function: -310

• Continuous variables: x = (5, 1, 5, 0, 5, 10)T

Problem 4

minx f(x) = x0.6
1 + x0.6

2 − 6x1 − 4x3 + 3x4, subject to

x2 − 3x1 − 3x3 = 0

x1 + 2x3 − 4 ≤ 0

x2 + 2x4 − 4 ≤ 0
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0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 4

0 ≤ x3 ≤ 2

0 ≤ x4 ≤ 1

Global Solution:

• Objective Function: -4.5142

• Continuous variables: x = (1.333333, 4.0, 0.0, 0.0)T

Problem 5

minx f(x) = x0.6
1 + 2x0.6

2 + 2x3 − 2x2 − x4, subject to

x2 − 3x1 − 3x3 = 0

x1 + 2x3 − 4 ≤ 0

x2 + 2x4 − 4 ≤ 0

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 4

0 ≤ x3 ≤ 2

0 ≤ x4 ≤ 2

Global Solution:

• Objective Function: -3.13

• Continuous variables: x = (0, 3, 0, 1)T
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Problem 6

minx f(x) = x0.6
1 + x0.6

2 + x0.4
3 + 2x4 + 5x5 − 4x3 − x6, subject to

x2 − 3x1 − 3x4 = 0

x3 − 2x2 − 3x5 = 0

4x4 − x6 = 0

x1 + 2x4 − 4 ≤ 0

x2 + x5 − 4 ≤ 0

x3 + x6 − 6 ≤ 0

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 4

0 ≤ x3 ≤ 4

0 ≤ x4 ≤ 2

0 ≤ x5 ≤ 2

0 ≤ x6 ≤ 6

Global Solution:

• Objective Function: -11.96

• Continuous variables: x = (0.67, 2.0, 4.0, 0.0, 0.0, 0.0)T

Problem 7

minx f(x) = −x1 − x2, subject to

x2 ≤ 2 + 2x1
4 − 8x1

3 + 8x1
2

x2 ≤ 4x1
4 − 32x1

3 + 88x1
2 − 96x1 + 36
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0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 4

Global Solution:

• Objective Function: -5.50796

• Continuous variables: x = (2.3295, 3.17846)T

Problem 8

minx f(x) = −12x1 − 7x2 + x2
2, subject to

−2x4
1 − x2 + 2 = 0

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 3

Global Solution:

• Objective Function: -16.78

• Continuous variables: x = (0.7175, 1.4787)T

Problem 9

minx f(x) = 3x1 + 0.000001x1
3 + 2x2 + (0.000002/3)x2

3, subject to

x4 − x3 + 0.55 ≥ 0

x3 − x4 + 0.55 ≥ 0

1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8− x1 = 0

1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8− x2 = 0

1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0
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0 ≤ xi ≤ 1200, i = 1, 2

−0.55 ≤ xi ≤ 0.55, i = 3, 4

Global Solution:

• Objective Function: 5126.4981

• Continuous variables: x = (679.9453, 1026.067, 0.1188764,−0.3962336)T

Problem 10,32,33

maxx f(x) =

∣∣∣∣∣∣
∑n

i=1 cos4xi − 2
∏n

i=1 cos2xi√∑n
i=1 ixi

2

∣∣∣∣∣∣ , subject to

n∏
i=1

xi ≥ 0.75

n∑
i=1

xi ≤ 7.5n

0 ≤ xi ≤ 10, i = 1, . . . , n

Global Solution:

• Objective Function: 0.8331937

Problem 11

minx f(x) = expx1x2x3x4x5 , subject to

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

x2x3 − 5x4x5 = 0

x3
1 + x3

2 + 1 = 0
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−2.3 ≤ x1 ≤ 2.3

−2.3 ≤ x2 ≤ 2.3

−3.2 ≤ x3 ≤ 3.2

−3.2 ≤ x4 ≤ 3.2

−3.2 ≤ x5 ≤ 3.2

Global Solution:

• Objective Function: 0.0539498473

• Continuous variables: x = (−1.717143, 1.595709, 1.827247,−0.7636413,−0.7636450)T

Problem 12

minx f(x) =


f1 = x2 + 10−5(x2 − x1)

2 − 1 if 0 ≤ x1 < 2

f2 = 1
27
√

3
((x1 − 3)2 − 9)x3

2 if 2 ≤ x1 < 4

f3 = 1
3
(x1 − 2)3 + x2 − 11

3
if 4 ≤ x1 ≤ 6


subject to ,

x1√
3
− x2 ≥ 0

−x1 −
√

3x2 + 6 ≥ 0

0 ≤ x1 ≤ 6

x2 ≥ 0

Global Solution:

• Objective Function: -1.0
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• Continuous variables: x = (0, 0) or (4, 0) or (3,
√

3)

Problem 13

maxx f(x) =
sin32πx1 sin 2πx2

x3
1(x1 + x2)

, subject to

x2
1 − x2 + 10 ≤ 0

1− x1 + (x2 − 4)2 ≤ 0

0 ≤ x1 ≤ 10

0 ≤ x2 ≤ 10

Global Solution:

• Objective Function: 0.1

• Continuous variables: x = (1.228, 4.245)T

Problem 14

maxx f(x) = (
√

n)n

n∏
i=1

xi, subject to

n∏
i=1

x2
i = 1

0 ≤ xi ≤ 1, i = 1, . . . , n

Global Solution:

• Objective Function: 1.0

• Continuous variables: x1, . . . , xn = ( 1√
n
, . . . , 1√

n
)T

Problem 15

minx f(x) =
10∑
i=1

xj(ci + ln
xj

x1 + . . . + x10

), subject to
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x1 + 2x2 + 2x3 + x6 + x10 − 2 = 0

x4 + 2x5 + x6 + x7 − 1 = 0

x3 + x7 + x8 + 2x9 + x10 − 1 = 0

0.000001 ≤ xi ≤ 2, i = 1, . . . , 10

c = (−6.089,−17.164,−34.054,−5.519,−24.721,−14.986,−24.1,−10.708,−26.662,−22.179)T

Global Solution:

• Objective Function: -47.760765

• Continuous variables: x=

(.04034785, .15386976, .77497089, .00167479, .48468539,

0.00068965, 0.2826479, 0.1849179, 0.03849563, .10128126)T

Problem 16

minx f(x) = 100(x2 − x2
1)

2 + (1− x1)
2, subject to

−x1 − x2
2 ≤ 0

−x2
1 − x2 ≤ 0

−0.5 ≤ x1 ≤ 0.5

−10 ≤ x2 ≤ 1

Global Solution:
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• Objective Function: 0.25

• Continuous variables: x = (0.5, 0.25)T

Problem 17

minx f(x) = 0.01x2
1 + x2

2, subject to

−x1x2 + 25 ≤ 0

−x2
1 − x2

2 + 25 ≤ 0

2 ≤ x1 ≤ 50

0 ≤ x2 ≤ 50

Global Solution:

• Objective Function: 5.0

• Continuous variables: x = (15.8114, 1.58114)T

Problem 18

minx f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5

+7x2
6 + x4

7 − 4x6x7 − 10x6 − 8x7, subject to

127− 2x2
1 − 3x4

2 − x3 − 4x2
4 − 5x5 ≥ 0

282− 7x1 − 3x2 − 10x2
3 − x4 + x5 ≥ 0

196− 23x1 − x2
2 − 6x2

6 + 8x7 ≥ 0

−4x2
1 − x2

2 + 3x1x2 − 2x2
3 − 5x6 − 11x7 ≥ 0

−10 ≤ xi ≤ 10, i = 1, . . . , 7
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Global Solution:

• Objective Function: 680.6300573

• Continuous variables:

x = (2.330499, 1.951372,−0.4775414, 4.365726,−0.624487, 1.038131, 1.594227)T

Problem 19

minx f(x) = 5x1 + 5x2 + 5x3 + 5x4 − 5
4∑

i=1

xi
2 −

13∑
i=5

xi, subject to

2x1 + 2x2 + x10 + x11 ≤ 10

2x1 + 2x3 + x10 + x12 ≤ 10

2x2 + 2x3 + x11 + x12 ≤ 10

−8x1 + x10 ≤ 0

−8x2 + x11 ≤ 0

−8x3 + x12 ≤ 0

−2x4 − x5 + x10 ≤ 0

−2x6 − x7 + x11 ≤ 0

−2x8 − x9 + x12 ≤ 0

0 ≤ xi ≤ 1, i = 1, . . . , 9

0 ≤ xi ≤ 100, i = 10, 11, 12

0 ≤ x13 ≤ 1

Global Solution:

• Objective Function: -15

• Continuous variables: x = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)T
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Problem 20

minx f(x) = (x1 − 10)3 + (x2 − 20)3, subject to

(x1 − 5)2 + (x2 − 5)2 − 100 ≥ 0

−(x1 − 6)2 − (x2 − 5)2 + 82.82 ≥ 0

13 ≤ x1 ≤ 100

0 ≤ x2 ≤ 100

Global Solution:

• Objective Function: -6961.81381

• Continuous variables: x = (14.095, 0.84296)T

Problem 21

minx f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,

subject to:

105− 4x1 − 5x2 + 3x7 − 9x8 ≥ 0

−3(x1 − 2)2 − 4(x2 − 3)2 − 2x2
3 + 7x4 + 120 ≥ 0

−10x1 + 8x2 + 17x7 − 2x8 ≥ 0

−x2
1 − 2(x2 − 2)2 + 2x1x2 − 14x5 + 6x6 ≥ 0

8x1 − 2x2 − 5x9 + 2x10 + 12 ≥ 0

−5x2
1 − 8x2 − (x3 − 6)2 + 2x4 + 40 ≥ 0
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3x1 − 6x2 − 12(x9 − 8)2 + 7x10 ≥ 0

−0.5(x1 − 8)2 − 2(x2 − 4)2 − 3x2
5 + x6 + 30 ≥ 0

−10 ≤ xi ≤ 10, i = 1, . . . , 10

Global Solution:

• Objective Function: 24.3062091

• Continuous variables: x=

(2.171996, 2.363683, 8.773926, 5.095984, 0.9906548,

1.430574, 1.321644, 9.828726, 8.280092, 8.375927)T

Problem 22

minx f(x) = (x1 − 2)2 + (x2 − 1)2, subject to

x2
1 − x2 ≤ 0

x1 + x2 − 2 ≤ 0

−2 ≤ x1 ≤ 1

0 ≤ x2 ≤ 4

Global Solution:

• Objective Function: 1

• Continuous variables: x = (1, 1)T

Problem 23

minx f(x) = cT x− 0.5xT Qx, subject to
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20x1 + 12x2 + 11x3 + 7x4 + 4x5 ≤ 40

0 ≤ x ≤ 1

c = (42, 44, 45, 47, 47.5)T

Q = 100I

Global Solution:

• Objective Function: -17

• Continuous variables: x = (1, 1, 0, 1, 0)T

Problem 24

minx f(x) = −10.5x1 − 7.5x2 − 3.5x3 − 2.5x4 − 1.5x5

−0.5(x2
1 + x2

2 + x2
3 + x2

4 + x2
5)− 10x6

subject to:

6x1 + 3x2 + 3x3 + 2x4 + x5 − 6.5 ≤ 0

10x1 + 10x3 + x6 − 20 ≤ 0

0 ≤ xi ≤ 1, i = 1, . . . , 5

0 ≤ x6 ≤ 20

Global Solution:

• Objective Function: -213

• Continuous variables: x = (0, 1, 0, 1, 1, 20)T
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Problem 25

minx f(x) = 5x1 + 5x2 + 5x3 + 5x4 − 5
4∑

i=1

x2
i −

13∑
i=5

xi, subject to

2x1 + 2x2 + x10 + x11 − 10 ≤ 0

2x1 + 2x3 + x10 + x12 − 10 ≤ 0

2x2 + 2x3 + x11 + x12 − 10 ≤ 0

−8x1 + x10 ≤ 0

−8x2 + x11 ≤ 0

−8x3 + x12 ≤ 0

−2x4 − x5 + x10 ≤ 0

−2x6 − x7 + x11 ≤ 0

−2x8 − x9 + x12 ≤ 0

0 ≤ xi ≤ 1, i = 1, . . . , 9

0 ≤ xi ≤ 100, i = 10, 11, 12

0 ≤ x13 ≤ 1

Global Solution:

• Objective Function: -15

• Continuous variables: x = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)T

Problem 26

min
x,y f(x, y) = 6.5x− 0.5x2 − y1 − 2y2 − 3y3 − 2y4 − y5, subject to

Az ≤ b
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z = (x, y)T

0 ≤ x ≤ 1

0 ≤ y1 ≤ 6

0 ≤ y2 ≤ 8

0 ≤ yi ≤ 1, i = 3, 4

0 ≤ y5 ≤ 2

A =



1 2 8 1 3 5

−8 −4 −2 2 4 −1

2 0.5 0.2 −3 −1 −4

0.2 2 0.1 −4 2 2

−0.1 −0.5 2 5 −5 3



b = (16,−1, 24, 12, 3)T

Global Solution:

• Objective Function: -11.005

• Continuous variables: x = 0, y = (6, 0, 1, 1, 0)T

Problem 27

minx,y f(x,y) = cT x− 0.5xT Qx + dT y, subject to

Az ≤ b

z = (x, y)T
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0 ≤ z ≤ 1

A =



−2 −6 −1 0 −3 −3 −2 −6 −2 −2

6 −5 8 −3 0 1 3 8 9 −3

−5 6 5 3 8 −8 9 2 0 −9

9 5 0 −9 1 −8 3 −9 −9 −3

−8 7 −4 −5 −9 1 −7 −1 3 −2

−7 −5 −2 0 −6 −6 −7 −6 7 7

1 −3 −3 −4 −1 0 −4 1 6 0

1 −2 6 9 0 −7 9 −9 −6 4

−4 6 7 2 2 0 6 6 −7 4

1 1 1 1 1 1 1 1 1 1

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1



b = (−4, 22,−6,−23,−12,−3, 1, 12, 15, 9,−1)T

d = (10, 10, 10)T

c = (−20,−80,−20,−50,−60,−90, 0)T

Q = 10I

where I is an identity matrix.

Global Solution:

• Objective Function: -268.0164

• Continuous variables: x = (1, 0.90755, 0, 1, 0.71509, 1, 0)T , y = (0.9168, 1, 1)T
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Problem 28

minx f(x) = cT x− 0.5xT Qx, subject to

Az ≤ b

x ∈ R10

0 ≤ x ≤ 1

A =



−2 −6 −1 0 −3 −3 −2 −6 −2 −2

6 −5 8 −3 0 1 3 8 9 −3

−5 6 5 3 8 −8 9 2 0 −9

9 5 0 −9 1 −8 3 −9 −9 −3

−8 7 −4 −5 −9 1 −7 −1 3 −2



b = (−4, 22,−6,−23,−12)T

c = (48, 42, 48, 45, 44, 41, 47, 42, 45, 46)T

Q = 100I

where I is an identity matrix.

Global Solution:

• Objective Function: -39

• Continuous variables: x = (1, 0, 0, 1, 1, 1, 0, 1, 1, 1)T
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Problem 29,30,31

minx f(x) = −0.5
∑

i

λi(xi − αi)
2, subject to

Ax ≤ b

x ∈ R20

0 ≤ xi ≤ 40, i = 1, . . . , 20
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AT =



−3 7 0 −5 1 1 0 2 −1 1

7 0 −5 1 1 0 2 −1 −1 1

0 −5 1 1 0 2 −1 −1 −9 1

−5 1 1 0 2 −1 −1 −9 3 1

1 1 0 2 −1 −1 −9 3 5 1

1 0 2 −1 −1 −9 3 5 0 1

0 2 −1 −1 −9 3 5 0 0 1

2 −1 −1 −9 3 5 0 0 1 1

−1 −1 −9 3 5 0 0 1 7 1

−1 −9 3 5 0 0 1 7 −7 1

−9 3 5 0 0 1 7 −7 −4 1

3 5 0 0 1 7 −7 −4 −6 1

5 0 0 1 7 −7 −4 −6 −3 1

0 0 1 7 −7 −4 −6 −3 7 1

0 1 7 −7 −4 −6 −3 7 0 1

1 7 −7 −4 −6 −3 7 0 −5 1

7 −7 −4 −6 −3 7 0 −5 1 1

−7 −4 −6 −3 7 0 −5 1 1 1

−4 −6 −3 7 0 −5 1 1 0 1

−6 −3 7 0 −5 1 1 0 2 1



b = (−5, 2,−1,−3, 5, 4,−1, 0, 9, 40)T

Global Solution:

Problem 29: λi = 1, αi = 1

• Objective Function: -394.7506

• Continuous variables:

x = (0, 0, 28.8024, 0, 0, 4.1792, 0, 0, 0, 0, 0, 0, 0, 0, 0.6188, 4.0933, 0, 2.3064, 0, 0)T
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Problem 30: λi = 1, αi = −5

• Objective Function: -884.75058

• Continuous variables:

x = (0, 0, 28.8024, 0, 0, 4.1792, 0, 0, 0, 0, 0, 0, 0, 0, 0.6188, 4.0933, 0, 2.3064, 0, 0)T

Problem 31: λi = 20, αi = 0

• Objective Function: -8695.01193

• Continuous variables:

x = (0, 0, 28.8024, 0, 0, 4.1792, 0, 0, 0, 0, 0, 0, 0, 0, 0.6188, 4.0933, 0, 2.3064, 0, 0)T
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Appendix B

Test Problems B

Problem 34

minx f(x) = −(0.0204 + 0.0607x2
5)x1x4(x1 + x2 + x3)−

(0.0187 + 0.0437x2
6)x2x3(x1 + 1.57x2 + x4),

subject to:

2070

x1x2x3x4x5x6

− 1 ≤ 0

0.00062x1x4x
2
5(x1 + x2 + x3) + 0.00058x2x3x

2
6(x1 + 1.57x2 + x4)− 1 ≤ 0

0 ≤ x1 ≤ 10

0 ≤ x2 ≤ 10

0 ≤ x3 ≤ 15

0 ≤ x4 ≤ 15

0 ≤ x5 ≤ 1

0 ≤ x6 ≤ 1
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Global Solution:

• Objective Function: -316.27

• Continuous variables: x = (10, 10, 15, 4.609, 0.78511, 0.3814)T

Problem 35

minx f(x) =
5∑

i=1

1

ai(x− pi)(x− pi) + ci

, subject to

x1 + x2 − 5 ≤ 0

x1 − x2
2 ≤ 0

5x3
1 −

8

5
x2

2 ≤ 0

−3 ≤ x1 ≤ 10

−4 ≤ x2 ≤ 7

i ai pi ci

1 0.5 0 5 0.125
2 0.25 2 5 0.25
3 1 3 2 0.1
4 1

12
4 4 0.2

5 2 5 1 1
12

Global Solution:

• Objective Function: 0.18301

• Continuous variables: x = (−3,−4)T

Problem 36

minx f(x) = x2
1 + x2

2, subject to

x1 + x2 − 2 ≤ 0

x2
1 − x2 ≤ 0

−3 ≤ x1 ≤ 2
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0 ≤ x2 ≤ 5

Global Solution:

• Objective Function: 0.0

• Continuous variables: x = (0, 0)T

Problem 37

minx f(x) = −(x2− 1.275x2
1 + 5x1− 6)2− 10(1− 1

8π
) cos(πx1)− 10, subject to

−πx1 − x2 ≤ 0

−π2x2
1 + 4x2 ≤ 0

−1.5 ≤ x1 ≤ 3.5

0 ≤ x2 ≤ 15

Global Solution:

• Objective Function: -195.37

• Continuous variables: x = (2.4656, 15)T

Problem 38

minx f(x) = −2x1 − 6x2 + x3
1 + 8x2

2, subject to

x1 + 6x2 − 6 ≤ 0

5x1 + 4x2 − 10 ≤ 0

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 1
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Global Solution:

• Objective Function: -2.2137

• Continuous variables: x = (0.8165, 0.375)T

Problem 39

minx f(x) = (x1 − 0.75)2 + (0.5x2 − 0.75)2, subject to

x1 + 0.5x2 − 1 ≤ 0

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 2

Global Solution:

• Objective Function: 0.125

• Continuous variables: x = (0.5, 1)T

Problem 40 (madsen)

minx f(x) = x3, subject to

− cos x2 + x3 ≤ 0

x2
1 + x2

2 + x1x2 − x3 ≤ 0

− sin x1 − x3 ≤ 0

−(x3 + x2
1 + x2

2 + x1x2) ≤ 0

sin x1 − x3 ≤ 0

−100 ≤ xi ≤ 100, i = 1, . . . , 3

Global Solution:
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• Objective Function: 0.6164

• Continuous variables: x = (0.453275,−0.906592, 0.616432)T

Problem 41 (alsotame)

minx f(x) = exp(x1 − 2x2), subject to

sin(−x1 + x2 − 1) = 0

−2 ≤ x1 ≤ 2

−1.5 ≤ x2 ≤ 1.5

Global Solution:

• Objective Function: 0.0821

• Continuous variables: x = (0.5, 1.5)T

Problem 42 (twobars)

minx f(x) = x1
2

√
1 + x2

2, subject to

0.124 2

√
(1 + x2

2)× (
8

x1

+
1

x1x2

)− 1 ≤ 0

0.124 2

√
(1 + x2

2)× (
8

x1

− 1

x1x2

)− 1 ≤ 0

0.2 ≤ x1 ≤ 4

0.1 ≤ x2 ≤ 1.6
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Global Solution:

• Objective Function: 1.5087

• Continuous variables: x = (1.41163, 0.377072)T

Problem 43 (synthes1)

minx f(x) = −18 log(x2+1)−19.2 log(x1−x2+1)+5x4+6x5+8x6+10x1−7x3+10, subject to

−(0.8 log(x2 + 1) + 0.96 log(x1 − x2 + 1)− 0.8x3) ≤ 0

−(log(x2 + 1) + 1.2 log(x1 − x2 + 1)− x3 − 2x6 + 2) ≤ 0

x2 − x1 ≤ 0

x2 − 2x4 ≤ 0

−x2 + x1 − 2x5 ≤ 0

x4 + x5 − 1 ≤ 0

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 2

0 ≤ x3 ≤ 1

0 ≤ x4 ≤ 1

0 ≤ x5 ≤ 1

0 ≤ x6 ≤ 1

Global Solution:

• Objective Function: 0.7593
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• Continuous variables: x = (1.1465150499, 0.5465962726, 10, 0.2732981363, 0.2999593887, 0)T

Problem 44 (hs087)

minx f(x) = 30x7 + 31x8 + 28x9 + 29x10 + 30x11, subject to

x5 − x9 − x10 − x11 = 0

x4 − x7 − x8 = 0

−0.007629 sin(−x3 + 1.4847699)x1x2 + 0.006895843x2
1 + 200 = 0

0.007629 sin(x3 + 1.4847699)x1x2 + x6 − 0.00689584× x2
2 = 0

0.007629 cos(−x3 + 1.4847699)x1x2 + x4 − 0.0006565× x2
1 − 300 = 0

0.007629 cos(x3 + 1.4847699)× x1x2 + x5 − 0.0006565x2
2 = 0

340 ≤ x1 ≤ 420

340 ≤ x2 ≤ 420

0 ≤ x3 ≤ 0.52359999999999995

0 ≤ x4 ≤ 400

0 ≤ x5 ≤ 1000

−1000 ≤ x6 ≤ 1000

−300 ≤ x7 ≤ 300

0 ≤ x8 ≤ 1000

−100 ≤ x9 ≤ 100

0 ≤ x10 ≤ 100

−100 ≤ x11 ≤ 1000
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Global Solution:

• Objective Function: 8827.5977

• Continuous variables: x=

(373.830727085, 420, 0.1532919640, 107.8119257491, 196.3186193947,

21.3071347941, 107.8119257491, 0, 100, 96.3186193947, 0)T

Problem 45 (ex 8.1.1.)

minx f(x) = −x4, subject to

0.09755988x1x5 + x1 − 1 ≤ 0

0.0965842812x2x6 + x2 − x1 ≤ 0

0.0391908x3x5 + x3 + x1 − 1 ≤ 0

0.03527172x4x6 + x4 − x1 + x2 − x3 ≤ 0

2
√

x5 + 2
√

x6 − 4 ≤ 0

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

0 ≤ x3 ≤ 1

0 ≤ x4 ≤ 1

0.00001 ≤ x5 ≤ 16

0.00001 ≤ x6 ≤ 16

Global Solution:
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• Objective Function: -0.388811

• Continuous variables: x = (0.771516, 0.516992, 0.204192, 0.388811, 3.03557, 5.09726)T
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