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ABSTRACT 

 

The magnitude of the AIDS epidemic is well documented. It has been shown that 

Africa constitutes about 70 % of people infected with HIV worldwide. Efforts to 

control the AIDS epidemic have focused heavily on studies pertaining to the biology, 

biochemistry and structural biology of HIV and on the interactions between HIV 

proteins and new drugs. One of the most challenging problems in AIDS therapy is that 

HIV develops drug-resistant variants rapidly. Extensive research has been dedicated 

to designing resistance-evading drugs for HIV-1 protease (predominantly subtype B), 

which is crucial for the maturation of viral, structural and enzymatic proteins. There 

are 10 subtypes of HIV-1 within the major group of the virus, with subtype C 

accounting for about 95 % of infections in South Africa. Since HIV-1 antiretroviral 

treatment has been developed and tested against the B subtype, which is prevalent in 

North America, Western Europe and Australia, an important question relates to the 

effectiveness of these drugs against the C subtype. At this point, however, little is 

known about inhibitor-resistant mutations in the subtype C. The study, therefore, 

looked at the two active site mutations (V82A and V82F/I84V) in the South African 

HIV-1 subtype C protease (C-SA) emerging from the viral population circulating in 

patients. These mutations are well-characterized within the framework of the subtype 

B and are known to cause cross-resistance to most of inhibitors currently in clinical 

use. Protein engineering techniques were used to generate the V82A and the 

V82F/I84V variants. Comparative studies with the wild-type HIV-1 C-SA protease 

were performed. The spectral properties of the V82A and the V82F/I84V variants 

indicated no changes in the secondary structure in the respective variant proteins. 

Tryptophan and tyrosine fluorescence indicated a major difference in the intensities at 

the emission maxima for all three proteins. The fluorescence intensity of the 

V82F/I84V variant, in particular, was significantly enhanced indicating the 

occurrence of tertiary structural changes at/near the flap region. Both mutations did 

not impact significantly upon catalytic function. Both variants also had the same Km 

values comparable to that of the wild-type enzyme. The catalytic efficiencies and the 

kinetic constants were lowered 3.6-fold for the V82A mutation and 6-fold for the 

V82F/I84V mutation relative to the wild-type C-SA protease. Inhibition studies were 

performed using four inhibitors in clinical use (saquinavir, ritonavir, indinavir and 

nelfinavir). For the V82A variant, IC50 and Ki values for saquinavir and nelfinavir 
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were not affected, whilst those for ritonavir and indinavir were 5- and 9-fold higher 

than the wild-type C-SA protease, respectively. Against the V82F/I84V variant, 

however, the inhibition constants were drastically weaker and characterized by IC50 

and Ki ratios ranging from 50 to 450. Isothermal titration calorimetry (ITC) was also 

used to determine the binding energetics of saquinavir, ritonavir, indinavir and 

nelfinavir to the wild-type C-SA, V82A and V82F/I84V HIV-1 protease. The V82A 

mutation lowered the Gibbs energy of binding for the respective four clinical 

inhibitors by 0.4 kcal/mol, 1.3 kcal/mol, 1.5 kcal/mol and 0.6 kcal/mol, respectively, 

relative to the wild-type C-SA HIV-1 protease. The affinity of V82A HIV-1 protease 

for saquinavir, ritonavir, indinavir and nelfinavir (Kd = 1.85 nM, 2.00 nM, 12.70 nM 

and 0.66 nM, respectively, at 25 °C) was in the range of 2- to 13-fold of magnitude 

weaker than that of the wild-type C-SA protein. The clinical inhibitors exhibited the 

highest binding affinity to both the wild-type and the V82A enzymes, but were 

extremely sensitive to the V82F/I84V mutation. The V82F/I84V mutant reduced the 

binding of saquinavir, ritonavir, indinavir and nelfinavir 117-, 1095-, 474- and 367-

fold, respectively. A drop in Kd values obtained for the V82F/I84V in association with 

saquinavir, ritonavir, indinavir and nelfinavir was consistent with a decrease of 

between 2.8 - 4.2 kcal/mol in ∆G, which is equivalent to at least 2 to 3 orders of 

magnitude in binding affinity. Taken together, thermodynamic data indicated that the 

V82A and V82F/I84V active site mutations in the C-SA subtype lower the affinity of 

the first-generation inhibitors by making the binding entropy less positive 

(unfavorable) and making the enthalpy change slightly less favorable.  
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