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Abstract

One of the major problems in computational biology is the inability of existing

classification models to incorporate expanding and new domain knowledge. This

problem of static classification models is addressed in this thesis by the introduction

of incremental learning for problems in bioinformatics. The tools which have been

developed are applied to the problem of classifying proteins into a number of primary

and putative families. The importance of this type of classification is of particular

relevance due to its role in drug discovery programs and the benefit it lends to this

process in terms of cost and time saving. As a secondary problem, multi–class clas-

sification is also addressed. The standard approach to protein family classification

is based on the creation of committees of binary classifiers. This one-vs-all approach

is not ideal, and the classification systems presented here consists of classifiers that

are able to do all-vs-all classification.

Two incremental learning techniques are presented. The first is a novel algorithm

based on the fuzzy ARTMAP classifier and an evolutionary strategy. The second

technique applies the incremental learning algorithm Learn++. The two systems

are tested using three datasets: data from the Structural Classification of Proteins

(SCOP) database, G-Protein Coupled Receptors (GPCR) database and Enzymes

from the Protein Data Bank. The results show that both techniques are comparable

with each other, giving classification abilities which are comparable to that of the

single batch trained classifiers, with the added ability of incremental learning. Both

the techniques are shown to be useful to the problem of protein family classification,

but these techniques are applicable to problems outside this area, with applications

in proteomics including the predictions of functions, secondary and tertiary struc-

tures, and applications in genomics such as promoter and splice site predictions and

classification of gene microarrays.
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Chapter 1

Modelling and Classification in

Proteomics

1.1 Introduction

Proteomics, the science of studying proteins and protein interactions [1] plays a

vital role in modern biology. An area of great importance in proteomics is the clas-

sification of proteins into families or other biologically significant groupings. This

science allows us to classify known proteins, to predict the families of new proteins

and allows the structural and functional properties of proteins to be inferred, giving

us a deeper understanding of how proteins function in making up the living cell.

More practically, this science is a driving agent in the discovery of new drugs and

drug therapies for the treatment of various diseases [2]. Bioinformatics is the area

of research that has developed many of the tools which allow for this classification

of proteins into families as well as the development of a wide range of other com-

putational tools for modelling of DNA, RNA, interaction pathways between various

molecules, and the effect these compounds and interactions may have in the body.

The benefits of a computational analysis of biological systems is most clear when

analysing the process of drug design. The development of new drugs often takes

up to 15 years and costs up to $700 million per drug under investigation [1]. This

drug design consists of two phases: a discovery phase and testing phase. The drug

discovery phase is further broken up into the target identification, lead discovery and
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1.2. PROTEIN CLASSIFICATION AND CURRENT METHODS

optimisation, toxicology and pharmacokinetic phases [3]. It is in the drug discov-

ery phase that computational tools have had the most impact. In pharmaceutical

drug discovery programs it is often useful to classify the sequences of proteins into

a number of known families. In mathematical notation, if it is known that a protein

sequence S is obtained for some disease X , and that S belongs to family F , treat-

ment for the disease is initially determined using a combination of drugs that are

known to apply to F [4].

Consider the example of the HIV protease, a protein produced by the human im-

munodeficiency virus. The target identification stage involves the discovery of this

HIV protease and the identification of this protein as a disease causing agent. The

objective of drug design is to design a molecule that will bind to and inhibit the

drug target. A great deal of time and money can be saved if the effect of molecules

can be determined before these molecules are actually synthesised in a laboratory.

Bioinformatics tools are used to predict the family to which a newly designed drug

belongs, and hence allows the structure and function of the drug to be inferred, and

to determine if it will have any effect on the drug target.

This dissertation focuses on the problem of protein sequence classification. The

usefulness of this classification, if not applied for drug discovery processes, at least

allows proteomics data to become more organised, being more valuable in this form

for use by the greater research community. Incremental learning will be introduced

as a key tool in the classification of proteins sequences into families.

1.2 Protein Classification and Current Methods

The problem of protein family classification remains a core problem in computa-

tional biology, due mainly to the complex nature of interactions between the amino

acids residues which form the protein primary structure. The completion of the

sequencing of the human genome and other sequencing projects, has resulted in the

accumulation of a large volume of sequence data. This data cannot be fully utilised

until an understanding of the function and structure of the sequences is obtained

and their role in biological processes is understood. An important step in this regard

2



1.3. PROBLEM STATEMENT

has been the introduction of many protein databases that organise protein data into

a number of families and super-families based on structure such as SCOP [5] and

CATH [6], among others.

The classification of protein sequences into sets of known families is thus impor-

tant as a means of probable function or structure assignment to hypothetical or

uncharacterised proteins [7], and as mentioned, this family classification is also used

widely in pharmaceutical drug discovery programs. A number of advantages of fam-

ily classification have been identified [8] as a basic approach to large scale genomic

annotation:

1. It improves the identification of proteins that are difficult to characterise based

on pairwise alignments;

2. It provides an effective means of attaining relevant biological information from

vast amounts of data;

3. It reflects the underlying gene families, which is essential for comparative ge-

nomics and phylogenetics.

Two broad approaches to the classification of proteins into families can be considered.

The first approach is based on analysing protein sequences using “stringology” [9],

the science of analysing strings. This approach is involved with the comparison and

alignment of strings, the analysis of protein sequences using regular expressions, the

creation of grammars and the development of phylogenetic trees, and has been the

subject of considerable research. Many of the now standard tools used for protein or

nucleotide sequence analysis are based on these systems, the Basic Local Alignment

and Search Tool (BLAST), being the most common among them [10].

1.3 Problem Statement

Evolutionary science has now given us a deep understanding of the evolution and

development of proteins and has highlighted some deficiencies of the string based

approache to structure and function annotation. The major concern being the as-

sumption of a particular order in which characters of the string should appear,

3



1.4. AN APPROACH USING COMPUTATIONAL INTELLIGENCE

which goes against common evolutionary knowledge. In light of this problem, this

dissertation aims to explore a number of problems, which are:

1. To consider the applicability of various machine learning tools to the solve

the problem of protein family classification, which do not make assumptions

regarding the order of amino acids in a protein sequence;

2. To consider parallels between biological and machine learning strategies, apply

considerations based on this understanding in the design of learning architec-

tures and to provide a mathematical and empirical context to these learning

paradigms;

3. To introduce the fuzzy ARTMAP as an alternate machine learning tool for the

classification of protein primary structures into families; and

4. To introduce the area of incremental learning to the protein bio-sequence anal-

ysis community, an area which up to this point has not been considered.

The approach followed comes as a result of the increased realisation and penetration

of the science of machine intelligence in computational biology. This approach is

based on the methodologies and tools from the science of Computational Intelligence.

1.4 An Approach using Computational Intelligence

Computational intelligence is a term which has become synonymous with many

terms including artificial intelligence, machine learning and pattern recognition.

This term includes these areas of research as well as other fields such as data mining

and evolutionary optimisation. Computational intelligence is simply the develop-

ment and use of tools which simulate in some way, learning and development similar

to that exhibited by the human brain. This research uses a computational intelli-

gence approach to the classification of protein sequences into families. In general, a

system of this nature follows the steps that are outlined in figure 1.1.

The data acquisition, feature generation, pattern classification and performance

4



1.5. OUTLINE OF THE DISSERTATION

Figure 1.1: General approach to the design and implementation of a pattern recog-
nition system.

analysis stages shown in this figure are followed in this research. This process de-

scribes the process of obtaining data from a number of sequence repositories, the

processing of these sequences in some appropriate manner, the design of a system

that will classify the extracted and processed sequences, and an analysis of how this

system performs in the classification task. Each of these stages will be discussed in

detail with specific focus on the design of a classification system, which is able to

classify proteins into a large number of families. The classification system will also

have the ability to include new data into the classification model. This ability of a

classification system to learn new data is generally known as incremental learning.

Incremental learning is a difficult computational problem and is the major focus of

this dissertation.

1.5 Outline of the Dissertation

Having sketched a brief introduction to the problem being analysed, the remainder

of this dissertation is structured as follows:

Chapter 2: Provides the necessary biological understanding relating to protein sci-

ence. This section describes proteins from the fundamental building blocks and

describes the approaches to sequencing proteins and the current techniques for

classifying proteins.

Chapter 3: Discusses the fundamentals of machine learning and various popular

machine learning tools such as Neural Networks and Support Vector Machines.

This chapter also provides a formal definition of incremental learning and

discusses the properties of incremental learning.

5



1.5. OUTLINE OF THE DISSERTATION

Chapter 4: Discusses two approaches to incremental learning of protein data. The

first algorithm is based on an evolutionary strategy and combines aspects

of evolution and diversity to form an incremental system based on the fuzzy

ARTMAP. The second approach uses a recently introduced technique, Learn++,

and looks at the suitability of this technique for the analysis of protein data.

Chapter 5: This concluding chapter compares the two different approaches dis-

cussed in chapter 4, and the merits and drawbacks of each. Concluding remarks

concerning incremental learning of protein data are made and suggestions for

further research are presented.

Appendix A: This appendix provides some additional properties of proteins that

were mentioned in the main body, but did not warrant detailed discussion

there. These aspects are included here for completeness and to give additional

understanding of those concepts that were touched on.

Appendix B: This appendix presents in detail the principles and operation on

which the fuzzy ARTMAP is built upon. It discusses the mathematical for-

mulation of the Fuzzy ARTMAP and how this system is able to perform in-

cremental learning and classification.

Appendix C: This section discusses in detail the underlying algorithm of Learn++.

Appendix : This appendix provides references to the two papers that were pub-

lished in relation to this thesis.

Glossary: This section gives definitions for many of the terms which are used in

this thesis.

The main contributions of this thesis are the introduction of incremental algorithms

to protein analysis, presented in chapter 4. A review of the literature currently

available has shown that this work is the first use of the fuzzy ARTMAP for protein

analysis and the consideration of how it can be extended and applied to the problem

of incremental learning of protein families. The Learn++ algorithm is also applied

for the first time in this type of research. This work is also important as it considers

the case of multi–class classification using all-vs-all methods as opposed to the more

6



1.5. OUTLINE OF THE DISSERTATION

common one-vs-all multi–class problem, which is usually considered in protein anal-

ysis using machine learning. Chapter 2 provides the reader not familiar with protein

science, with a brief introduction to the key concepts of molecular biology, which

must be kept in mind when designing and analysing protein classification systems.

Chapter 3 has its value as a concise overview of biological and machine learning al-

gorithms. The biological interpretations have been aggregated from multiple sources

and presents a thorough overview of learning in biological systems and the equivalent

representation in machine systems. It is the intention of the author to present the

research such that it is understandable and useful by researchers from many diverse

fields such as information engineering, molecular biology and computer science.

7



Chapter 2

Protein Sequencing and Approaches to

Classification

2.1 Introduction

This chapter aims to introduce the reader not familiar with aspects of protein science

to the fundamentals of molecular biology. The chapter discusses the basic chemical

and biological aspects of proteins, their role in biological systems and how these pro-

teins are sequenced and represented. The rapid development in protein discovery is

also presented and helps us understand the need for incremental learning in bioin-

formatics problems. The current techniques for the problem of protein classification

are also discussed to allow contextualisation of our approach to the existing tools

and techniques.

The “central dogma of molecular biology” shown in figure 2.1 was introduced by

Crick in 1958, and is a philosophy that describes the transformation of DNA into

RNA and then into proteins [11]. The process of transforming DNA into RNA

is known as transcription, and that of transforming RNA into a protein is known

as translation. This dogma describes a flow of information in biological systems.

Bioinformatics gives an understanding of the principles behind this dogma, and is

an area of science that focuses on using computational tools to understand the for-

mation and interaction of DNA, RNA and proteins with each other and with other

8



2.2. MOLECULAR BIOLOGY PRIMER

biological systems. The fundamentals of DNA and RNA are similar to proteins and

the books by Clote and Backofen [11] and Baxevanis and Oulette [7], are excellent

references for background in these areas. This research focuses on proteins, which

will be described in more detail.

Figure 2.1: The central dogma of molecular biology. Information passes from DNA
to RNA to Proteins. RNA polymerases and ribosomes aid in the transformation of
information from one form to another.

2.2 Molecular Biology Primer

Proteins are the compounds in the biological system which do the work of changing

cell chemistry and acting as catalysts. The structural proteins provide structural

support and infrastructure for cells, as well bones and connective tissue, such as

collagen. Enzymes act as biological catalysts making the chemical reactions neces-

sary for life possible. In general, proteins are the sensors that allows us to see (like

Rhodopsin) and smell, the detectors that allow us to form an immune response to

invading cells, and the signals for intercellular communication (like Insulin) [12]. A

proteins structure is described on four different levels:

Primary Structure The protein is described by its fundamental building blocks

called Amino Acids.

Secondary Structure Describes the regions in the primary structure where sec-

ondary structure elements such as helices and flat planes or sheets ( α helices

and β sheets) occur.

Tertiary Structure The 3-dimensional structure of a protein domain, i.e. if a pro-

tein consists of several protein subunits, then the tertiary structure describes

the structure of a subunit.

9



2.2. MOLECULAR BIOLOGY PRIMER

Quaternary Structure The 3-dimensional, native structure of the fully functional

protein.

The four descriptions of the protein structure are shown diagramatically in the fig-

ure 2.2.

Figure 2.2: Description of a protein in primary, secondary, tertiary and quatenary
structures [13].

All proteins are comprised of a set of about 20 naturally occurring building blocks

known as amino acids 1. All amino acids have the same base chemical structure

which consists of a central carbon atom with a R-group, which is different for each

of the 20 amino acids. The chemical structure of the general amino acid is shown in

figure 2.3 with the COOH part of the amino acid known as the carboxy terminus and

the NH2 part known as the amino terminus [3].

The International Union of Pure and Applied Chemistry (IUPAC) three-letter and

single-letter abbreviations for each of the 20 possible R-groups are given in table A.1
1There are actually now 22 known amino acids. Refer to appendix A for more details.
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Figure 2.3: Chemical structure of the generic amino acid. The Amino Group, the
Carboxy Group and the alpha carbon are identical for all 20 amino acids while each
has its own distinctive R group. Redrawn from [3]

in Appendix A [14]. The letters B and Z in the table are ambiguous characters and

are sometimes included by computers programs to indicate the end of the protein

sequence [11].

Given this notation for amino acids, a protein is represented by a string consist-

ing of letters of the amino acid alphabet. A typical example of a protein primary

structure is shown in figure 2.4 [5]. This is the amino acid sequence representation

of a part of haemoglobin, specifically the alpha chain.

SLTKTERTIIVSMWAKISTQADTIGTETLERLFLSHPQTKTYFPHFDLHPGSAQLRAHGSKVVAAVGDAVK
SIDDIGGALSKLSELHAYILRVDPVNFKLLSHCLLVTLAARFPADFTAEAHAAWDKFLSVVSSVLTEKYR

Figure 2.4: Amino acid sequence of α-chain Haemoglobin

After translation, the protein does not remain in the form of a simple linear chain.

The protein undergoes post-translational modifications and folding and forms a com-

plex structure. The final 3-dimensional structure is determined largely by the order

in which the amino acids are assembled in a protein [3]. Many proteins may also

have the same final quatenary structure with a different primary structure.

It is common to find a large number of proteins with slightly different primary

structures, but which perform the same function. These changes in the primary

structure are the result of molecular evolutionary processes such as selection and in-

heritance. The similarities and differences between protein primary structures gives

an indication as to the structure and function of these proteins. Proteins which are

related to each other are said to be homologous, but this is not always true, as in
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the case of divergent evolution of proteins [12]. Many proteins that have similar

structures evolve from a common ancestor and then undergo changes which result

in different primary structures, but with similarity to the original structure. This

is known as divergent evolution. Point mutation is the best known mechanism of

molecular evolution and implies either the addition, deletion or substitution of an

amino acid.

The scientific process used in molecular biology begins with the identification of

tissue which is to be analysed. This could be human tissue from the kidney or the

liver for example. The proteins which are active in these areas are then isolated and

identified using a number of sequencing techniques, to obtain the protein primary or

secondary structure. The protein primary structure could then be compared with

a number of other well known proteins to detect any sequence similarity, which if

found could allow the biologist to infer the final structure or function of the protein.

This structure or function is used to aid in the analysis of bio-molecular and sig-

nalling pathways in the body, in understanding the operation of organs and proteins

in the body, and can also be used in drug discovery processes to discover active

and binding sites of the proteins to inhibit the action of diseases. This scientific

processes will be discussed in more detail in the sections that follow, giving a brief

insight into molecular biology and the applications in bioinformatics.

2.3 Sequencing and Protein Databases

2.3.1 Protein Sequencing

The raw data that is used in the computational analysis of proteins are generated

using a small set of techniques. In gel electrophoresis, fragments of protein (or

DNA or RNA) are placed in a gel-like matrix, and thereafter an electric field is ap-

plied across the ends of the gel. The field causes the molecules to accelerate resulting

in positively charged molecules moving toward the negative electrode and vice versa

for negatively charged molecules [12]. The time it takes the molecules to move across

the gel depends on the size and the charge of the molecule. The movement of the
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molecules in the gel matrix creates bands which, when appropriately stained allows a

protein to be compared with other proteins or to sort proteins according to chemical

properties such as their isoelectric point (pI) [15]. Figure 2.5 shows a typical image

of the result of a gel electrophoresis. A process known as blotting is then usually

applied to further process individual bands in the gel matrix. Mass spectrometry

is also applied to the protein electrophoresis and allows unique identification of pro-

teins by accelerating individual spots in the electrophoresis through a charged tube

and then analysing the resulting peptide mass fingerprint [3].

Figure 2.5: Example of a gel electrophoresis run. The mixtures in each column are
separated vertically according to their charge. The dark bands indicate the presence
of a particular sized or charged molecule in the mixture [12].

The structural characteristics of proteins are primarily gathered by x-ray crystal-

lography. This process essentially grows a pure crystal of the protein, and uses the

diffraction pattern of x-rays applied to the crystal to indirectly determine the posi-

tion of the molecules in the protein. This process, which may take years to complete,

may not be possible for certain proteins. This is one of the major driving forces be-

hind computational 3-dimensional modelling techniques. An alternate approach to

x-ray crystallography is multidimensional nuclear magnetic resonance (NMR),

which does not require crystallisation, but which also has difficulties associated with

imaging large molecules such as proteins. Details concerning these techniques as

well as others can be found in [3, 12, 15, 16].
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2.3.2 Representation and Storage of Protein Data

The data obtained for proteins after sequencing is stored in a number of different

formats for use with a computer. In general the files are stored as ASCII format

text files. These files are interoperable across all operating systems and platforms

and there are many inexpensive and free editors to create these files. The ASCII

files though may have a unique formatting, with the structure of the text files such

as spacings between values and individual lines having different meanings depending

on the formatting convention used. Some of the more common formatting conven-

tions include the European Molecular Biology Laboratory Library format (EMBL),

SwissProt format, FASTA format or Extensible Markup Language (XML) format

[16]. Each format is associated with a particular repository of protein sequences

and data. The XML format is the latest format which allows data to be stored in

ASCII format but with self describing fields in the text file, so that one need not

have prior knowledge of a particular file structure before using it. This format will

become popular as molecular biologist who actually create these files become more

aware of the benefits of this technology, which is already prevalent in other fields of

software and network engineering.

Many publicly available databases exist where molecular biologists and informa-

tion engineers may gain access to up-to-date protein data. Some of the databases

associated with protein data in particular are listed in table 2.1.

Table 2.1: Various publicly available protein databases on the Internet. Database
names in bold are used in this research.

Database Name URL
RefSeq http://www.ncbi.nlm.nih.gov/refSeq
UniProt http://www.uniprot.org
Protein Information Resource (PIR) http://pir.georgetown.edu
Protein Data Bank (PDB) http://rcsb.org/pdb
SwissProt (ExPASy) http://www.expasy.org/sprot
SwissProt (EBI) http://www.ebi.ac.uk/swissprot
Structural Classification (SCOP) http://scop.mrc-lmb.cam.ac.uk/scop
Class Architecture (CATH) http://www.biochem.ucl.ac.uk/bsm/cath
Dali Domain Dictionary (DALI) http://www.ebi.ac.uk/dali
G-Protein CR Database (GPCR) http://www.gpcr.org/7tm/
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Each of the databases listed are arranged differently. Some are universal protein

databases and cover proteins from all species, whereas others concentrate on a par-

ticular protein family, organism or group of proteins [7]. For both types of database,

the data can be either fully automated when stored, or stored only after manual

intervention and curation to enhance the information that is stored about a protein.

Three protein databases are used in this research, with each using a different format

for the text file that is used. The three file formats are the FASTA, EMBL and PDB

formats, used for data obtained from the SCOP, GPCR and PDB databases respec-

tively. The FASTA format is a minimalist format giving the amino acid sequence

along with some basic information such as version numbers and IDs for the same

protein in other databases. The EMBL format is a more detailed format which,

apart from supplying the amino acid sequence gives information such as the jour-

nal where the protein discovery was first reported, PUBMED IDs, date submitted,

protein family and other comments. The PDB file structure is also very simple,

and contains the amino acids and the relative position in three-dimensional space

of each molecule in the protein. Examples of these file formats will be given in the

discussion that follows.

2.3.3 Overview of SCOP

One database that is used in this research is the Structural Classification of Proteins

(SCOP) Database [5]. This database hierarchically organises proteins according to

their structure and evolutionary origin. It is a database which undergoes manual

curation and allows us to understand the structure of many proteins and the rela-

tionship of these proteins to other proteins. This ultimately allows us to gain insight

into the function of a protein in general and specific terms relating to it, in order to

understand its evolutionary history [17].

SCOP is a hierarchically structured database with classifications for Class, Fold,

Superfamily, Family and Domain. The unit of categorisation is the protein domain

with protein domains typically representing the units of protein evolution, structure,

and function.
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SCOP families consist of clear common evolutionary origin as evidenced by ex-

tremely similar structure and function. Superfamilies consist of families whose pro-

teins share very common structure and function and give reason to believe that

they are evolutionarily related. Folds consist of superfamilies that have similar core

structural topologies. Folds are grouped into one of four classes depending on the

type of secondary structure elements which are prevalent [17]. An example of the

structural arrangement from the SCOP database is shown below indicating the hi-

erarchy of classifications.

Figure 2.6: SCOP hierarchy showing the different levels of classification in the
database with some representative groupings of each level in the database. Redrawn
from [17].

The SCOP database is accessible as a set of text files (ASCII format). These files

only consist of the protein classifications, but do not contain the actual protein se-

quences themselves. A sample of the SCOP database file name dir.des.scop.txt

is given in figure 2.7, and shows the hierarchical labelling of proteins for each of the

SCOP groupings, identified by the SCOP ID.

Each of the IDs given in the file can be matched against the same ID which appears

in an associated database of protein sequences, the ASTRAL database [18]. This

database is partially derived from the SCOP database. A short listing of the se-

quences in this database is shown in figure 2.8.
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46456 cl a -All alpha proteins
46457 cf a.1 -Globin-like
46458 sf a.1.1 -Globin-like
46459 fa a.1.1.1 -Truncated hemoglobin
46460 dm a.1.1.1 -Protozoan/bacterial hemoglobin
46461 sp a.1.1.1 -Ciliate (Paramecium caudatum)
14982 px a.1.1.1 d1dlwa_ 1dlw A:
100068 px a.1.1.1 d1uvya_ 1uvy A:
46462 sp a.1.1.1 -Green alga (Chlamydomonas eugametos)
14983 px a.1.1.1 d1dlya_ 1dly A:
100067 px a.1.1.1 d1uvxa_ 1uvx A:
81667 sp a.1.1.1 -Cyanobacteria (Synechocystis sp.), pcc 6803
...

Figure 2.7: Example of text file showing the SCOP classification.

>d1dlwa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ...
slfeqlggqaavqavtaqfyaniqadatvatffngidmpnqtnktaaflcaalggpnawt
grnlkevhanmgvsnaqfttvighlrsaltgagvaaalveqtvavaetvrgdvvtv
>d1dlya_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ...
slfaklggreaveaavdkfynkivadptvstyfsntdmkvqrskqfaflayalggasewk
gkdmrtahkdlvphlsdvhfqavarhlsdtltelgvppeditdamavvastrtevlnmpq
q
>d1s69a_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ...
stlyeklggttavdlavdkfyervlqddrikhffadvdmakqrahqkafltyafggtdky
dgrymreahkelvenhglngehfdavaedllatlkemgvpedliaevaavagapahkrdv
lnq

Figure 2.8: Sample FASTA file format extracted from the ASTRAL database.

This data is in the FASTA format, with the first line as a header line and the re-

maining lines being the actual protein sequence. For example, given the protein

ID a.1.1.1, it is a simple procedure to map the first sequence in the ASTRAL

database to the SCOP classification as belonging to the Truncated Haemoglobin

family shown in figure 2.7.

Sequence databases are continually in a state of change. With rapid technologi-

cal development, it is becoming easier to sequence newly discovered and synthesized

proteins. This rapid discovery is represented in the continual change in the size of

the many protein databases. The graph of figure 2.9 [19] shows the growth of a

number of well established protein and genome sequence databases over the past 26
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years. The graphs show that there is a steady increase in the number of sequences

year–on–year. Looking at the Protein Data Bank (PDB), the number of sequences

in the database per year has changed from in the order of 102 in 1980 to a number

of entries in the order of 104 in 2006 – a 100% increase in the size of the database

in 26 years.

Figure 2.9: Growth in the number of entries in various protein sequence databases
[19].

Figure 2.10 shows the daily growth of a number of sequence databases. The growth

is the number of sequences submitted daily and is averaged over a 6 month period,

up to August 2006. The graph shows that protein databases such as SwissProt and

PIR have a slow increase in the number of sequences which are submitted, and which

contributes to the yearly growth in database size that appears in figure 2.9. Both

these graphs highlight the dynamic nature of protein discoveries and the importance

of any system which deals with this data to react to this increase in the amount of

data. This dissertation presents tools to deal with this inherent nature of protein

science.
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Figure 2.10: Average daily growths experienced by sequence databases, sampled
over 6 month intervals [20].

2.3.4 Overview of GPCRDB

The G-Protein Coupled Receptors (GPCRs) are a superfamily of proteins and forms

the largest superfamily found in the human body. The GPCRDB is a database ded-

icated to the storage and annotation of G-Coupled proteins and at present consists

of 16764 entries [21]. GPCRs play important roles in cellular signalling networks

in processes such as neurotransmission, cellular metabolism, secretion, cellular dif-

ferentiation and growth and inflammatory and immune responses [22]. Because of

these properties, the GPCRs are the targets of approximately 60% – 70% of drugs

in development today [23], 50% of current drugs on the market and approximately

20% of the top 50 best selling drugs target GPCRs. This results in greater than

US$23.5 billion in pharmaceutical sales revenue from drugs which target this super-

family [23]. GPCRs are associated with almost every major therapeutic category

or disease class, including pain, asthma, inflammation, obesity, cancer, as well as

cardiovascular, metabolic, gastrointestinal and CNS diseases [24]. This obvious im-

portance of the GPCRs is the reason they are used in this research.

The key features of the GPCRs are that they share no overall sequence homol-
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ogy and have only one structural feature in common [22]. The GPCR superfamily

consists of five major families and several putative families, of which each family is

further divided into level I and then into level II subfamilies. The extreme diver-

gence among GPCR sequences is the primary reason for the difficulty of classifying

these sequences [25], and another important reason as to why they are used in this

research.

In this research eight GPCR families are considered from the number of families

available in the GPCRDB. The GPCR sequences are stored in the EMBL format,

which consists of a number of labelled fields considering aspects of a sequence such

as identifiers in a number of databases, the date of discovery and relevant publica-

tions dealing with the protein sequence. The database itself is updated every three

to four months. A sample of a file from this database is shown in figure 2.11 showing

the fields such as journal and author that are included in the file.

D 5HT1A_FUGRU STANDARD; PRT; 423 AA.
DT 01-MAY-2005 (Rel. 47, Last annotation update)
DE 5-hydroxytryptamine 1A-alpha receptor (5-HT-1A-alpha) (Serotonin
DE receptor 1A-alpha) (5-HT1A-alpha) (F1A).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
RX MEDLINE=97361762; PubMed=9218723; DOI=10.1016/S0378-1119(97)00064-4;
RA Yamaguchi F., Brenner S.;
RT "Molecular cloning of 5-hydroxytryptamine (5-HT) type 1 receptor genes
RT from the Japanese puffer fish, Fugu rubripes.";
RL Gene 191:219-223(1997).
CC -!- SIMILARITY: Belongs to the G-protein coupled receptor 1 family.
DR EMBL; X95936; CAA65175.1; -.
...
SQ SEQUENCE 423 AA; 47001 MW; 7B1308626B40190F CRC64;

MDLRATSSND SNATSGYSDT AAVDWDEGEN ATGSGSLPDP ELSYQIITSL FLGALILCSI
FGNSCVVAAI ALERSLQNVA NYLIGSLAVT DLMVSVLVLP MAALYQVLNK WTLGQDICDL
FIALDVLCCT SSILHLCAIA LDRYWAITDP IDYVNKRTPR RAAVLISVTW LIGFSISIPP
MLGWRSAEDR ANPDACIISQ DPGYTIYSTF GAFYIPLILM LVLYGRIFKA ARFRIRKTVK
KTEKAKASDM CLTLSPAVFH KRANGDAVSA EWKRGYKFKP SSPCANGAVR HGEEMESLEI
IEVNSNSKTH LPLPNTPQSS SHENINEKTT GTRRKIALAR ERKTVKTLGI IMGTFIFCWL
PFFIVALVLP FCAENCYMPE WLGAVINWLG YSNSLLNPII YAYFNKDFQS AFKKILRCKF
HRH

//

Figure 2.11: Sample EMBL file format extracted from the GPCR database.
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2.3.5 Overview of PDB

The Protein Data Bank (PDB) is the international repository of information about

the three dimensional structures of biological macromolecules [26] and the contents

of the database are obtained via X-ray crystallography and Nuclear Magnetic Res-

onance (NMR) imaging. This database was used to obtain amino acid sequences

of enzymes. Enzymes are also biologically important macromolecules, which are re-

sponsible for catalysis in biochemical reactions. These biochemical reactions include

several vital functions such as metabolic processes that convert nutrients into energy,

biosynthesis for the creation of new molecules, removal of toxic foreign chemicals by

detoxification, and information storage by the processing of DNA [27].

Enzymes are grouped into six classes based on the types of reaction that they catal-

yse. These six classes are the Oxidoreductases, Transferases, Hydrolases, Lysases,

Isomerases, and Ligases [3] and these enzymes are named and grouped according to

the Enzyme Classification (EC) system, EC1.*.*.*, . . ., EC6.*.*.* [7]. This data

is extracted in the PDB format, and as for the previous two databases discussed,

the primary structures were extracted.

2.3.6 Sequence Extraction and Preprocessing

The current version of the SCOP database 1.69 [5] and the corresponding ASTRAL

database [18] with less than 95% sequence identity is used in this work. This choice

of sequence identity is used commonly by researchers in this field, and for this reason

has been used. Here, as a result of removing the highly redundant sequences from

the ASTRAL database, the corresponding SCOP entries had to be extracted and

matched against the sequence ID in the ASTRAL database. The SCOP database

has just over 70,000 entries, while the ASTRAL file has about 12,000 entries, result-

ing in the matching process between the two databases being a lengthy procedure.

Once this matching is completed, “outlier” sequences must be removed. Two types

of outliers were observed from the available databases. The first is that there exists

certain ASTRAL sequences for which there is no corresponding SCOP entry, which

21



2.3. SEQUENCING AND PROTEIN DATABASES

is due to the fact that the ASTRAL database is only partially derived from the

SCOP database. There were a total of 345 such sequences and these were removed

from the sequence list. The second type of outlier consists of sequences which have

characters which are not part of the standard 20-letter amino acid alphabet — the

letters are B, Z and X. The letter B is used as either Aspartate or Asparagine, if

the specific amino acid not determined during the sequencing process. Similarly the

letter Z is either Glutamate or Glutamine if not determined [14]. The letter X is is

used to represent an unknown amino acid. As mentioned, these characters are also

used by some computer programs to indicate the start and end of a protein sequence

[11]. From the data, 120 such sequences were observed and since they are a small

number of sequences, they are removed from the sequence list.

The remaining sequences form the final database of sequences that is available for

use in the classification system. The sequences consist of 2784 families. These fami-

lies each consist of varying numbers of sequences per family. The histogram of figure

2.12 shows the distribution of the number of sequences per family in the database.

The histogram shows that most of the families have a very small number of sequences

per families. The lower graph shows the distribution of the first 2700 families of the

database, which have been sorted in ascending order. This graph shows that most

families have less than 20 sequences per family. This small amount of data limits

the use of these families in later stages of the work that will be described, and will

influence which families are selected for use in the classification system, which gen-

erally requires large amounts of training data.

Unlike the data obtained from the ASTRAL database which has many sequences

in one text file, the GPCR EMBL formatted data consists of only one protein per

EMBL file. The sequences from these many files are extracted and stored together,

grouped by their GPCR families. Similar preprocessing involving the removal of

sequences with non-standard characters was performed. The enzyme data obtained

from the Protein Data Bank is stored in the PDB format. The data in these files

also consists of a single protein per PDB file. Again, the sequences were extracted

from these files and stored together according to enzyme family.
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Figure 2.12: Distribution of the number of sequences per family. The distribution
is skewed to a low number of sequences per family, with most families having less
than 20 sequences per family.

2.4 Sequence Alignment Techniques for Classification

Sequence alignment is the procedure of comparing two (pair-wise alignment) or more

(multiple alignment) DNA or protein sequences by searching for a match between

characters or groups of characters in each sequence [16]. The degree of similarity

is described by a fractional value and there exits three categories of computational

methods to perform these alignments.

The simple or pairwise alignments determine similarity by aligning a query se-

quence with every other sequence in a sequence database using an amino acid sim-

ilarity matrix. Smith–Waterman [28] and Needleman–Wunsch algorithms [29] are

dynamic programming techniques that find optimal local and global alignments re-

spectively. Once an optimal alignment is determined, a scoring matrix is used which

allows us to determine the degree of similarity between the aligned sequences. While

the algorithms are efficient in determining the optimal alignment between two se-

quences, it becomes computationally infeasible for use in a database-wide search.

This problem though has been overcome by a number of heuristic database search

techniques such as BLAST [10] and FASTA [30], which have become more prevalent
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and efficient for database-wide searches.

The multiple alignments search against a database of known sequences by first

aligning a set of sequences from the same protein superfamily, family or subfamily

and creating a consensus sequence to represent the particular group. The query

sequence is then compared against each of the consensus sequences using a pairwise

alignment. The query sequence is classified as belonging to the group with which

it has the highest similarity score [25]. Some popular techniques for performing

multiple sequence alignments are Position Specific Scoring Matrices (PSSM) [31]

and ClustalW [32]. The third category uses profile Hidden Markov Models

(HMMs) as an alternative to the consensus sequences, but is otherwise identical to

the multiple alignment technique. The focus of this research is not on alignment

based techniques and thus they are not described in detail here. The alignment

based techniques are described in detail in [1, 3, 7, 16].

2.5 Problems with Alignment Based Techniques

Many shortcomings have been identified with respect to the effectiveness of sequence

alignments, which is the reason why these techniques are not considered here. The

principle argument against sequence alignment is the assumption that the order

of homologous segments is conserved [33]. This assumption contradicts accepted

understanding that evolution causes genetic recombination and reshuffling of nu-

cleotides and amino acids [34]. The other argument lies in the lack of computational

efficiency of the approaches.

This has led to the development of so called “alignment–free” techniques. These

techniques rely mainly on machine learning approaches [35] and the application of

Information theory, Kolmogorov complexity and Chaos theory [33]. Popular ma-

chine learning tools that have been applied to problems in protein classification

include the Multi–layer Perceptron neural networks [36, 37], Support Vector Ma-

chines [38, 39], k -Nearest Neighbour Classifiers [40] and Näıve Bayes Classifiers [25],

among others.
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A pattern recognition approach is adopted in this research to classify protein primary

structures into a number of primary and putative families. The pattern recognition

approach allows the time complexity to be limited to the initial training procedure

and does not make any assumptions as to the order of homologous segments of a

protein. The theoretical foundations of the pattern recognition approach and the

machine learning tools that form the basis of the work presented will be described

in detail in the next chapter.
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Chapter 3

Biological and Machine Learning

Systems

3.1 Introduction

The use of machine learning tools have become central to the application of the

alignment free classification techniques that were described in the previous chapter.

This chapter aims to provide a brief description of some of the key machine learning

tools that are used in this research and the principles of operation behind these

computational techniques.

Machine learning is initially contextualised by reviewing concepts from neurobi-

ology and the principles of human learning. Specific focus is given to the principles

and types of incremental learning, which is the continuous learning that humans use

everyday. The major machine learning tools, viz. Artificial Neural Networks, Sup-

port Vector Machines and the k–Nearest Neighbour Classifiers will be reviewed. The

incorporation of incremental learning into these learning systems is then reviewed

with a focus on the tools and techniques that are used in this research.
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3.2 An Overview of Biological Evolution and Learning

The human Central Nervous System (CNS) is the key component of learning in man.

The analysis of the development of the human CNS gives insight into the develop-

ment of artificial learning systems and how biological learning can be mimicked.

This understanding is obtained by analysing three phases of development [41]:

Evolution The development of the human cognitive system which has taken place

over thousands of years due to to evolutionary processes such as inheritance

and natural selection.

Neuro-development The establishment of individual brain structures during pre-

natal and the immediate post-natal phases.

Learning Adaptation of established neural systems and the adjustment of param-

eters such as the number of neurons and synaptic connections in response to

environmental changes.

Each of these three phases gives designers valuable ideas for the development of arti-

ficial learning systems. The evolutionary stage occurs over a much larger time scale

than the other two phases of development, and has been successfully implemented

as optimisation strategies and applied to many engineering problems. Research in

neurobiology has shown an evolutionary increase in the size of the isocortex which

has resulted in the modularisation of functions associated with the isocortex. This

modular structure which has been observed in the brain can easily be imitated in

an artificial system, where we have ensembles of networks. Each network in this

ensemble or committee is trained with the same data and the combination of their

separate decisions is used to come to some final output decision. Alternatively, it

is possible to have a number of artificial networks with each network focusing on a

specialised subset of the available knowledge.

The neuro–developmental phase consists of the prenatal stage and the immediate

postnatal stages, which consists of the the first few months after birth. During this

phase, the human brain undergoes rapid development, with the creation of a large

number of neurons and synaptic connections, which allows the newborn to survive
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the initial phases of life. This stage is followed by a stage of rapid neuron death

and a decrease in the number of synaptic connections, a process known as apop-

tosis. In artificial systems, this is implemented by creating learning models which

are over–specified or over–designed, a technique commonly used in engineering de-

sign problems. The design of the learning system is then adapted using pruning

techniques where extra artificial neurons are removed and the number of synaptic

connections is decreased [42].

In terms of neurobiology, the learning phase sees the refinement of the existing

neural structure, which was created during the neuro–developmental phase. This

refinement and learning allows us to consider three types of learning which could be

implemented in artificial systems. They are either [43]:

• Supervised Learning — where the learning system is taught or guided to the

correct relationships between input and output data.

• Reinforcement Learning — where a reinforcement signal or reward is provided

to the learning system when it correctly learns relationships between data, but

it is not shown these relationships directly.

• Unsupervised Learning — where there is no external signal guiding the learn-

ing system and learning is achieved using clustering techniques. These can

range from k-means clustering to more advance techniques such as hierarchi-

cal clustering.

In all three cases though, this learning can be represented mathematically, where

for some input signal x(t) ∈ Rn and an output y(t) ∈ Rm for some time step t ∈ N,

the system learns a mapping F : Rn ⊃ X → Y ⊂ Rm or simply x 7−→ y is learned.

The mapping F is usually some matrix of weight values in artificial learning systems.

Humans, through each of the three phases of development, adapt to the chang-

ing environment or the changing nature of the inputs which it receives. This type of

learning is called incremental learning, which leads to the following definition:
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Definition 1 (Incremental Learning) An incremental learning systems consists

of a standard learning scheme combined with a mechanism to allow for adjustments

either in the structure of the learning system or its parameters or to changes in the

presentation or constitution of its input signals [41].

A standard learning scheme in the context of the human brain consists of the exis-

tence of neurons, synaptic connections and distinctive cortical regions in the brain

which allow for the storage of information. The definition is very broad and allows

a number of types of incremental learning to be explored, again brought about by

the phases of human central nervous system development that have been discussed.

Three types of incremental learning have been identified [41] :

Structural Incremental: Has been developed by considering both evolution and

neuro–development, and implies a change in the structural or functional ca-

pacity of a learning system during learning.

Learning Parameter Incremental: A set of learning parameters are adapted

during the learning phase.

Data Incremental: Developed from the learning phase, where data sets or its

complexity is increased in steps during the learning.

A mixture of these cases usually exists, and will be demonstrated in later chapters

of this dissertation. In general, this incremental learning system can be represented

mathematically as the adaptation of a system characterised by a state λ1, consisting

of a configuration of neurons, synaptic connections and a set of information which it

recognises, to a new state λ2. The mapping which the system learns in each case is

represented by a conditional probability distribution, where ωi represent the classes

or groupings of data that the learning system is initially trained to recognise and

x represents the input data to the learning system, and ωj represents the increased

number of classes that the classifier is able to recognise after incremental learning.

P (ωi|x) |λ1

incremental−−−−−−−→ P (ωj |x) |λ2 (3.1)

i = 1, . . . ,m; j = 1, . . . , n; n > m.
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Further insight into the comparisons between biological and machine learning can

be found in the work by Chalup [41] and Carrier [44].

3.3 Machine Learning

Just as biological systems gain knowledge from their environment, machine learning

systems gain knowledge in the form of a feature vector or pattern. A pattern is a

vector x = {x1, x2, . . . , xn}, with each xi representing particular knowledge of the

system or domain being analysed. In protein systems, this domain knowledge usually

represents some properties of the amino acid sequence under analysis. This feature

vector is characterised as belonging to one of M classes, ω = {ω1, ω2, . . . , ωM}, in

a classification problem. If we consider the problem of protein primary structure

analysis, then the available families which exist are the classes of the system, and

the protein primary structure or some transformed representation of this structure

will be the features. The generation of the features is an important step, and many

techniques exist for feature generation, each dependant on the problem area which

is being analysed. The key aspect is that the features which are generated have

discriminative ability: feature vectors from each class must be sufficiently different

in the n-dimensional feature space to allow, for example, differentiation of patterns

belonging to class ω1 from class ω2.

In general the problem of classifying patterns can be viewed as a probabilistic one,

where patterns will be classified into particular classes depending on the probability

of the pattern belonging to the class. We form M conditional probabilities P (ωi|x),

i = 1, 2, . . . ,M , which are known as a posteriori probabilities. The classification of

a pattern into a particular class then follows the application of the following rule:

consider an unknown input pattern Z, which could belong to one of the M classes

[45].

Assign Z −→ ωj if

P (ωj |x) = max
k

P (ωk|x) (3.2)
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That is, a pattern belongs to a particular class j if class j has the maximum a pos-

teriori probability of all k classes in the system.

The neural network is a machine learning system that simulates the brain’s struc-

tures and operations through the use of fundamental processing units or perceptrons

analogous to neurons, and weighted connections analogous to synapses. Many other

machine learning systems also exist that do not simulate the brain structure, but

achieve the same goals. What ties the different techniques together is the objective

of the learning strategy. Each in some form attempts to infer a posteriori probabil-

ities from a set of given training data, and bases the classification result on these a

posteriori probabilities. A large number of machine learning tools have been used

in this research, and each will be briefly discussed in the next section, providing the

necessary background required for the analysis of the algorithms to be presented in

later chapters.

3.4 Common Machine Learning Tools

3.4.1 Artificial Neural Networks

Neural networks are used in applications ranging from pattern recognition to regres-

sion analysis, due to their ability to learn the underlying structure of data. The

simplest of these networks are the Generalised Linear Models (GLM) [46], which are

single layer networks which consist of an input and an output layer. These networks

implement well known statistical techniques such as linear regression and find use in

the initial analysis of data when implementing a neural network system. A system

of this type is shown in figure 3.1a.

A more common neural network architecture is the multilayer perceptron (MLP)

[47]. The multi-layer perceptron network is a two–layer feed-forward network of the

type shown in figure 3.1b and in this application is trained using a supervised learn-

ing algorithm. The supervised learning algorithm supplies both the inputs x, and

the target outputs y, to the network and by using the back–propagation algorithm,
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Figure 3.1: Common neural network architectures. a) Generalised Linear Model
neural network; b) Multi-Layer Perceptron neural network. Black circles represent
the biases and the greyed circles represent the individual neurons. The connecting
lines are weights between the neurons.

the weights between each of the neurons in the network are adjusted [47].

The mapping between the inputs and the outputs is given by equation 3.3:

yk = fouter

 M∑
j=1

w
(2)
kj

(
d∑

i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

 (3.3)

In equation 3.3, w
(1)
ji and w

(2)
jk indicate the weights in the first and second layers,

respectively, going from input i to hidden unit j, M is the number of hidden units,

d is the number of output units while w
(1)
j0 indicates the bias for the hidden unit j

and w
(2)
k0 indicates the bias for the output unit k.

The weights of the neural network are optimised via backpropagation training using,

most commonly, scaled conjugate gradient algorithm [48]. For classification prob-

lems, the output activation function is the sigmoid function, and for a training set

D = {xk,yk}Nk=1 with N being the total number of training patterns, the cost func-

tion E, which is minimised, may be written using the cross-entropy error as follows

[46]:

E = −β
N∑
n

K∑
k

ζ ln(ynk) + (1− tnk) ln(1− ynk) +
w∑
j

αj

2
w2

j (3.4)
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In this equation, n is the index for the training pattern, hyperparameter β is the

data contribution to the error, k is the index for the output units, tnk is the target

output corresponding to the nth training pattern and kth output unit and ynk is the

corresponding predicted output. The second term in the expression is the regular-

isation parameter which penalises weights of large magnitudes. The regularisation

parameter coefficient, α, determines the relative contribution of the regularisation

term on the training error. The presence of the regularisation parameter gives sig-

nificant improvements in the generalisation ability of the network [47].

The key property of the MLP architecture, according to the universal approxima-

tion theorem [49], is that a model of this form is able to approximate any continuous

function of arbitrary complexity, given that the number of hidden layer neurons is

sufficiently large. Another common type of Neural Network known as the Radial

Basis Function (RBF) is popular in pattern recognition. These networks are based

on a distance measure between an input vector and a prototype vector and exhibit

faster training times than the MLP. Details will not be given, but the RBF networks

are discussed in detail by Bishop [47].

3.4.2 Support Vector Machines

Support Vector Machine (SVM) methods for classification were originally developed

by Vapnik et al, and based on statistical learning theory [50]. The SVM was ini-

tially conceived for a two class classification problem, but algorithms have now been

developed for regression and multi–class problems [51]. SVM has become popular

in protein science because of its good generalisation ability and has been used by

authors such as Huang et al [35], Ding and Dubchak [36] and Zhao et al [52]. For

simplicity, the two class problem will be briefly described.

Consider a set of labelled training patterns (xi, yi), i = 1, . . . , N , where xi ∈ Rn

and yi ∈ {−1,+1}. SVM is a margin classifier which draws an optimal hyperplane

in a high–dimensional feature space, Rnh. The mapping of the data into the higher

dimensional space is achieved by using a mapping function Φ(·). This hyperplane is

a decision boundary that maximises the distance between the hyperplane and near-
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est data points of each class in the space Rnh. The decision function is implemented

as

f(x) = sgn (w · x + b)

The vector w is a function of a kernel function K. The kernel function takes into

account the mapping of x into the higher dimensional space, and the determination

of w is an optimisation problem to determine the best hyperplane separating the

classes. The major consideration when using SVM is the choice of the Kernel func-

tion. Any function can be used as long as it satisfies Mercers condition [53], but

standard kernel functions have become widely used. The kernel functions which are

common include the Gaussian, RBF, polynomial, and exponential RBF kernels.

In the problem considered in this work, two options exist. The first is to view

the problem as a set of M two–class problems as has been considered by Ding and

Dubchak [36], where M is the number of classes to consider. This method is not com-

putationally feasible for problems with a large number of classes, since the number

of classifiers that must be created is at least quadratic with respect to the number

of classes [54]. The second approach is to extend the mathematical formulation of

SVM to the multi–class case, and this is the case that is considered here. Details of

this extension can be found in Vapnik [50], and comparisons of these two approaches

can be found in Hsu and Lin [55] and Rifkiy and Klatau [56].

3.4.3 k-Nearest Neighbour Classification

The k-Nearest Neighbour (kNN) algorithm or Rule, is one of the simplest algorithms

for classification. Given an unknown feature vector x and a distance measure [53]:

• Out of N training vectors, identify the k nearest neighbours, irrespective of

class label. k is chosen to be odd for a two class problem, and in general not

to be a multiple of the number of classes M .

• Out of these k samples, identify the number of vectors, ki, that belong to class

ωi, i = 1, 2, . . . ,M . Obviously,
∑

i ki = k.

• Assign x to the class ωi with the maximum number of ki samples.
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Various distance measures can be used, including the Euclidean and Mahalanobis

distance. The only serious drawback of the kNN algorithm is the complexity of the

search for the nearest neighbour(s) among the N available training samples [43].

That said, the kNN is still a good algorithm to be used for comparative analysis of

performance among various classification algorithms.

3.5 Multiple Classifier Systems

Multiple classifier systems are seen as a suitable design technique to improve the

classification performance of a system by combining the results of various classifica-

tion systems in order to obtain a final result that is better than using each of them

separately [53]. These systems are motivated by the need for modular structures as

exhibited by the brain. These are generally known as ensemble methods and have

been proven to have the following advantages [57]:

• They efficiently use all the networks of a population,

• They efficiently use all the available data for training without over–fitting,

• They inherently perform regularisation by “smoothing in the functional space”

which helps to avoid over–fitting.

• They utilise local minima to construct improved estimates.

• They are ideally suited for parallel computation.

In this case, we assume that we are given a set of L classifiers, which have already

been trained to provide outputs of the class a posteriori probabilities. For a classi-

fication task of M classes, we require some combining function C(·) that fuses the

outputs of each of the individual classifiers. Here, each classifier produces an esti-

mate of the a posterior probability Pj(ωi|x), i = 1, 2, . . . ,M,where j = 1, 2, . . . , L

for an unknown input vector x. It is assumed that Pj(ωi|x) are mutually exclusive.

A number of different combining functions have been proposed over the years and

these include the product rule, the sum rule, the min rule, max rule, median rule

and the majority voting rule. These techniques are each reviewed in detail by Kittler
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et al [45].

In this work we have made use of the majority voting rule. The majority vot-

ing rule considers each of the output decisions of each of the classifiers as a vote for

a particular class. The output decision is made according to the class that receives

the maximum number of votes. In order to allow counting of votes, the posterior

probabilities must be hardened to obtain discrete outcomes. The hardened vector

is given by equation 3.5, where k is an index of the number of classes and i is an

index of the number of classifiers.

∆ki =

 1 if P (ωk|xi) = maxM
j=1 P (ωj |xi)

0 otherwise.
(3.5)

Given the hardened vector, the majority voting rule [53] is given by equation 3.6:

Assign Z −→ ωj if
L∑

l=1

∆jl =
M

max
k=1

L∑
i=1

∆ki (3.6)

Note that for each class ωk, the sum on the right hand side of equation 3.6 simply

counts the votes received for this hypothesis from the individual classifiers. The

class which receives the largest number of votes is then selected as the consensus

(majority) decision [45].

The key consideration when using this type of combining scheme is to ensure diver-

sity in the ensemble of classifiers. A number of approaches to introducing diversity

exist. One method is to train the networks of the ensemble using different subsets

of the available training data using either the same sets of features or using differ-

ent feature sets [53]. This aspect of diversity will be looked at in more detail in a

subsequent chapter.
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3.6 Machine Incremental Learning

3.6.1 Aspects of Incremental Learning

A number of aspects must be considered when implementing a learning system that

operates incrementally. Some of the main issues in the design of incremental learners

are [44]:

• Ordering Effects: The order in which knowledge is acquired is an inherently

important aspect of incremental learning. This order may be of importance in

certain cases where the chronology represents some properties of the system

under analysis, such as non-stationary time series data. This is not the case

in the analysis of protein data

• Learning Curve: The system may in some cases begin from zero domain knowl-

edge, and thus experience a learning curve as it acquires knowledge of the

problem domain. The quality of predictions will improve slowly over time as

the classifier acquires more domain knowledge. In general it is difficult to say

when the system has learnt “enough” to make accurate predictions.

• Open World View : The standard batch trained methodologies assume a closed

view of the world and the knowledge domain which is being analysed. In other

words, the classifier is trained on all possible classes or groups of outcomes

that could occur. If all the data relevant to the problem domain is available

a priori, then this closed world view can be accepted. In the case of protein

science where we are aware of the changing nature of classes and available

proteins, the closed view cannot be accepted. In this case classifiers must

have an open world view, where new data is able to be added to the existing

knowledge allowing the classifier to accommodate a wider set of classes and

data examples.

The so called “catastrophic interference” or forgetting phenomenon is also an im-

portant aspect which must be considered when dealing with incremental learning

systems. Catastrophic forgetting occurs when new information added to a learning

system causes previously learned knowledge to be forgotten, and is closely related
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to the stability–plasticity dilemma introduced by Carpenter el al [58]. A completely

stable classifier will preserve all exiting knowledge but will not accommodate any

new knowledge. In the reverse case, a completely plastic classifier will accommodate

all new data and forget all data that was previously learnt.

The approach to training a MLP or RBF neural network, after allowing sufficient

time for data to be accumulated is a typical example of a stable classifier approach

to learning new data. This approach is not suitable in many instances since all the

data must be stored and the training times increases dramatically as more data is

added to the training database. One problem with this approach is that it becomes

problematic if any original data is lost. Similarly, may plastic classifiers exist [59, 60]

that can learn data as it is received. These systems also prove problematic since

they may require access to the old data, may forget what has previously been learnt

or will not allow data of new classes to be added to the classification system. These

aspects of stability and plasticity must be taken into account when designing an

incremental learning system and deciding on the trade-off between the two.

A second type of interference known as “retroactive interference” occurs when a

system is trained with data which is similar to data which it has been previously

trained with and causes interference in the recall of this old data. In this case, mem-

ory items are shared in the model, so the interference of old data is desirable since

it gives a greater degree of memory management. Therefore retroactive interference

is a desirable property of learning systems. Wang and Yuwono provide a good dis-

cussion of both catastrophic and retroactive interference [61].

Ideally, an incremental learning system is one that has both a high degree of plas-

ticity and stability, hence the stability–plasticity dilemma. A trade-off between the

two must be made in any learning system and this concept must be carefully consid-

ered when analysing the performance of any classifier. From the above discussion,

a desirable incremental learning system is one that exhibits retroactive interference

without catastrophic forgetting, has no bias to the order in which training patterns

are received and which has an open world view of the system that is being modelled.
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Incremental learning algorithms can be tested in two ways: either new data can

be introduced without any new classes, or new classes can be introduced to the

learning system. Both of these approaches to testing are demonstrated in this re-

search. Specifically, the GPCR and Enzyme data are used to test the addition of

new data without new classes and the SCOP data is used to test the ability of the

learning system when new classes are introduced.

3.6.2 Algorithms for Incremental Learning

A number of incremental algorithms have been reported in the literature, which

meet the criteria for an incremental learning system. The fuzzy ARTMAP is one

of the few classifiers which have shown to have incremental learning ability. The

fuzzy ARTMAP will be described in detail, and is considered above others due

to the detailed and established theory of the classifier, its ability for multi–class

classification and its widespread use in other classification problems ranging from

electric load forecasting, classification of prehensile EMG patterns, classification of

handwriting, and the learning of mathematical functions, among others [58, 62,

63, 64, 65]. Other incremental classifiers have also been developed such as the

incremental SVM and the incremental fuzzy decision tree.

Fuzzy ARTMAP Classifier

The application of the fuzzy ARTMAP to protein classification is one of the major

contributions of this work, and will be described in detail. The fuzzy ARTMAP

(FAM) was introduced by Carpenter et al [58], and is a supervised neural network,

similar to the multi–layer perceptron. The key features of this type of network

architecture is that it is capable of fast, online, supervised, incremental learning,

classification and prediction [58].

Figure 3.2 shows a conceptual model of the fuzzy ARTMAP. This system takes

n-dimensional input patterns and maps them into the n-dimensional feature space.

The system divides this input space into a number of hyperboxes of varying size,
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and maps these hyperboxes to a category in the output space, i.e to the class la-

bel. The network learns and adjusts its parameters on a per–pattern basis, rather

than after entire cycles as in the standard neural network model. This is known as

instance-based learning and thus as each individual input pattern is mapped into the

feature space, existing hyperboxes are increased to accommodate the new pattern

or a new hyperbox is created. If a new hyperbox is created, this hyperbox is also

related to the output class. This entire process is controlled through a set of internal

weights and a process known as match tracking. It is this instance–based learning

that gives the fuzzy ARTMAP its incremental learning ability. This instance–based

learning also makes the order in which training patterns are received an important

factor, one which is not often considered in the use of fuzzy ARTMAP networks [62].

Figure 3.2: Representation of the Fuzzy ARTMAP Architecture

The fuzzy ARTMAP is controlled by three parameters: the vigilance ρ, the learning

rate β and the choice parameter α. The choice parameter is a constant and is kept

small, generally 0.001 [66], as used in this application. The learning rate adjusts the

factor by which the hyperboxes are increased each time a new training pattern is

received, and can be any value between zero and one. For β < 1, the network is said

to be in fast–commit slow–recode mode, resulting in the hyperboxes increasing in a

size proportional to the value of β. If β = 1, the system is in fast learning mode and

the hyperboxes will be enlarged just enough to include the point represented by the

input vector. The vigilance controls how large any hyperbox can become, and will

result in new hyperboxes being formed, if the measured degree to which an input

pattern belongs to a hyperbox is less than the vigilance. From this it is observed

that the larger the vigilance (higher expected degree of belonging) the smaller the
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hyperboxes created in the input space. This is a key factor to consider in the ap-

plication of fuzzy ARTMAP systems, since large values of ρ will result in what is

known as category proliferation, which will be observed as over–training in the sys-

tem [62]. Details of the principles and operation of the FAM is given in Appendix B.

The fuzzy ARTMAP has been shown to be comparable to other classifiers. In the

original work on the FAM presented by Carpenter et al, they have shown a compar-

ison between the FAM and the neural network trained using various optimisation

strategies. Their results in classifying two spirals from each other, showed that the

FAM requires fewer training epochs and thus has faster training times than the neu-

ral network on this task [58]. The FAM has also demonstrated these properties and

its popularity as a classifier in numerous other tasks, ranging from applications in

character recognition [66], medical imaging [67], electronic nose [68], multi-spectral

remotely-sensed images [69] and classification of multivariate chemical data [70].

Other Incremental Algorithms

As mentioned, a number of other incremental algorithms have been developed. Since

these are not the focus of this dissertation they will only be mentioned briefly:

Incremental Fuzzy Decision Tree This system, described by Guetova et al [71]

combines non-incremental algorithms for top down induction in decision trees

with fuzzy logic and a measure of information gain, to realise an incremental

learning system. The system is reported to be a fast classifier producing results

which are equivalent to the non-incremental learning case.

Incremental SVM Many versions of an Incremental Support Vector Machine have

been developed. This includes the Incremental and Decremental SVM of

Cauwenbergs and Poggio [72], SVM for incremental learning of non stationary

data described by Syed et al [73], incremental training using hot–start methods

described by Shilton et al [74], and incremental training described by Ruping

[75]. In these cases the authors have identified that the generation of the opti-

mal hyperplane or the support vectors are an efficient way of representing large

amounts of data. These support vectors are also all that is needed to recreate
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a SVM for classification of data. Authors then examine and describe various

ways of changing these support vectors to accommodate a wider range of data.

None of the methods described though are applicable to the multi-class case,

as all the algorithms consider the binary classification problem.

Incremental Common Sense Models This system has been developed by Giraud-

Carrier and Martinez [76] describes a self organising learning model that com-

bines inductive learning with rule–based and similarity based reasoning to give

incremental learning.

There are many other systems based on Information theoretic measures and fuzzy

propositions which are available in the literature such as incremental construction of

support vector machine classifiers with provable performance guarantees [77], incre-

mental learning based on reproducible kernel Hilbert spaces [78], or incrementally

adding new IF-THEN (antecedent–consequent) rules to an existing fuzzy inference

system [79], but these will not be discussed here. The reason why these are not

considered is because unlike the fuzzy ARTMAP, these classifiers do not support

multi-class classification and since they are binary classifiers, do not meet the re-

quirement for an open world view.

3.7 Evolutionary Optimisation via Genetic Algorithm

Genetic algorithms (GA) find approximate solutions to problems by applying the

principles of evolutionary biology, such as crossover, mutation, reproduction and

natural selection [80]. The GA search process consists of the following steps:

1. Generation of a population (pool) of candidate solutions (chromosomes) si, i =

1, . . . , n, where n is the number of chromosomes in the population.

2. Evaluation of the fitness f(si) for each chromosome in the gene pool. Chro-

mosomes with the lowest fitness are discarded and make way for a new set of

chromosomes. Replacement sets of chromosomes are created by the genetic

operations of crossover and mutation on the fittest individuals.
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3. Steps 1 and 2 are repeated for a given number of generations until a specified

fitness level is attained or the maximum number of generations is exceeded

[81].

The genetic algorithms represent input data from the problem by an encoding such

as binary or floating point and use the genetic operations to iteratively evaluate so-

lutions from the population of potential solutions to determine the global optimum

[81]. The GA evaluates candidate solutions through a fitness function. By max-

imising this fitness function, the fittest individuals are propagated throughout the

generations allowing the global maximum to be determined after a specified number

of generations. The fitness function contains information from the problem space

and is the mechanism by which properties of the problem space is transferred to the

GA, which is independent of the problem. The genetic operations are important

since they add an element of randomness to the search process, allowing a wider

range of the solution space to be explored.

In the application of the GA to this work, the floating point representation is always

used. The floating point representation has proven to be more stable from run to

run and has a lower standard deviation on the best answers than the binary repre-

sentation [80]. Detailed aspects of the operation of the Genetic Algorithm can be

found in the books by Michalewicz [80], Goldberg [81] and Haupt and Haupt [82].
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Chapter 4

Incremental Learning of Protein Data

4.1 Introduction

This chapter presents the major work which has been conducted in this research.

The general pattern recognition approach is followed and thus the chapter begins

with a description of the transformation of the alphabetic sequences described in

Chapter 2 into numerical features. Two approaches to classifying proteins in an

incremental setting are then presented. The first presents a detailed algorithm for

incremental learning based on the fuzzy ARTMAP and aspects of ensemble networks.

The second technique is based on an ensemble technique known as Learn++. We

implement Learn++ and present design strategies for the use of Learn++ in incre-

mental settings.

A current review of the available literature has shown that incremental learning

has not been considered before in the area of protein primary structure classifica-

tion. Vijaya et al [83] have considered the problem of incremental clustering of

protein sequences, to help discover superfamily–family–subfamily relationships in

protein data, but this is a different problem. The problem considered by Vijaya et

al, is to find natural groupings by clustering data from similarity scores, and the

families which will be discovered may not have any biological significance. In this

study, established, structurally significant families of proteins are used and protein

sequences are classified into these families. These sequences may be generated in
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a laboratory as part of a drug discovery process, and the classification will allow

biologists to infer structures and functions of the protein under design, to determine

if it will have any effect on the drug target.

4.2 Vectorisation of Protein Sequences

Three protein databases have been used for the testing of algorithms that are pre-

sented in this chapter. The datasets include data from the SCOP database, the

GPCRDB as well as the PDB, that was discussed in Chapter 2. The raw data ob-

tained from these databases consists of the protein sequences from various protein

families. These protein sequences are first converted into numerical feature values

before any of the tools which have been developed can be applied.

The transformation of these sequences into numerical values is commonly known

as sequence vectorisation. Two types of features have been identified in the litera-

ture, these being global and local features, both of which are used in this work. The

definitions used by Huang et al [84] are used, and are defined as:

Global Features Represent the nature of the entire protein sequence and must

capture global similarity between related features allowing for comparison.

The amino acid composition is an example of a global descriptor.

Local Features These features capture local interactions between amino acids and

groups of amino acids in a protein sequence. The n-gram methods is a common

example of a local descriptor.

4.2.1 Global Feature Generation

First consider the amino-acid composition of the protein sequences. The composition

is simply the presence frequency of each of the 20-possible amino acids in the given

sequence. Thus the composition is calculated by [52]:

νi =
si∑20

j=1 sj

, for i = 1, 2, . . . , 20. (4.1)
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where νi is the value for the ith feature and si is the number of times the ith amino

acid appears in the sequence. This results in 20 features: a frequency of appearance

for each of the twenty possible amino acids. If a particular amino acid does not

appear at all in the sequence, the corresponding feature value is zero.

A further set of features based on the hydropathy of amino acids in a given pro-

tein sequence is also calculated. The hydropathy of an amino acid in a protein

sequence is the attractive property of an amino acid to a water molecule. Amino

acids are thus hydrophobic, hydrophilic (polar) or neutral. We use the Chothia and

Finkelstein hydropathy classification as used by Dubchak et al [85], and which is

given in Appendix A. We calculate three descriptors, the hydropathy composition

(πC), the hydropathy distribution (πD) and the Hydropathy transmission (πT ) for

the sequences [85]. The composition πC , is calculated similarly to the amino acid

composition described previously in equation 4.1. In this case we calculate the pres-

ence frequency of hydrophobic, hydrophilic and neutral amino acids in the sequence.

This results in three features being generated.

The transmission πT , is defined by three values. The first is the number of times a

polar residue is followed by a neutral residue or vice versa. Similarly the other two

are the number of times a neutral residue is followed by a hydrophobic residue or

vice versa and the number of times the polar residue is followed by a hydrophobic

residue or vice versa.

By definition, the distribution πD, looks at intervals of 25%, 50%, 75% and 100%

along the sequence length. For each interval the presence frequency of hydrophobic,

hydrophilic and neutral molecules for each percentage interval is calculated. Thus

this results in 12 features, 4 features for each of the three hydropathy groups. In

total 38 features (20+3+3+12) are generated based on global sequence descriptors.

4.2.2 Local Feature Generation

The n-gram method is established as a good descriptor when performing text doc-

ument classification and document authorship attribution [86], and has also been
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demonstrated to be a good descriptor of local similarities in a sequence by many

authors such as Cheng et al [25] and Tomovic et al [39]. Essentially the n-gram

method considers the presence frequency of consecutive n-letter combinations in the

protein sequence, for integer n. More formally, n-grams can be defined as:

Definition 2 (n-gram) Given a sequence of characters S = (s1, s2, . . . , sN ), over

a defined alphabet A with n and the sequence length N being positive integers, an

n-gram of the sequence S is any n-long subsequence of consecutive characters. The

ith n-gram of S is the sequence (si, si+1, . . . , si+n−1) [39].

For example, consider the short sequence SLTKTERTIIVSM, the 2-grams of this se-

quence, following from the definition are: SL, LT, TK, KT, etc. Similarly 3-grams and

higher n-grams can be determined from a given sequence. The use of n-grams have

been used in many diverse areas, and the key properties of n-grams are [39, 87]:

• Robustness: Relatively insensitive to sequence variations and errors. They are

also length invariant;

• Completeness: The sequence alphabet is known in advance;

• Domain Independence: The n-grams can be determined for any defined alpha-

bet and any area of analysis.

• Efficiency : Only one pass processing is required;

• Simplicity : No detailed knowledge of the rules of the arrangement of the char-

acters in the sequence is needed.

The only major drawback of the use of n-grams is the effect known as exponential

explosion [39]. This simply implies that the larger n-grams such as 4- and 5-grams

result in an extremely high dimensionality and computational expense in terms of

memory. As an example, consider the 20 amino acid protein alphabet. The total

number of n-grams produced increases from 202 = 400 for 2-grams, to 203 = 8000

for 3-grams to 204 = 160000 for 4-grams.

Two letter combinations (2-grams) are known as digrams or bigrams. While higher
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n-grams such as 3-grams and 4-grams have been considered in the available litera-

ture, only digrams are considered in this work since it has been shown [25, 35] to

work well in protein classification systems. Given a sequence, features are gener-

ated by calculating the presence frequency of all possible 2-grams for the amino acid

alphabet, which can be calculated using equation 4.1. This results in 400 features

representing the local properties of the amino acids.

4.2.3 Data Normalisation

The combined set of features results in a feature vector with a dimensionality of 438.

This feature vector is now used in the design of the protein family classifiers. Table

4.1 is a summary of the features that have been used in the system.

Table 4.1: Summary of features used for classifier designed

Symbol Parameter Dimension
ν Composition 20
πC Hydropathy Composition 3
πD Hydropathy Distribution 3
πT Hydropathy Transition 12
η n-gram Composition 400

Total 438

The generated features undergo min-max normalisation. The normalisation is a

requirement for using the FAM, since the FAMs complement coding scheme assumes

normalised data [58]. This normalisation is also important when training classifiers

such as the multi–layer perceptron, since it prevents the weights for any single feature

from becoming too large [47]. The equation for the min–max normalisation for a

single feature xi in a data set is [43]:

xi,norm =
x− xmin

xmax − xmin
(4.2)

where xmin and xmax are the minimum and maximum values respectively for that

feature observed from the training data.
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The performance of the trained classifiers are evaluated using the standard clas-

sification error rate ε on a validation set V for a classifier trained on data set T,

and is given by:

ε (V,T) =
nc

N
(4.3)

where nc is the number of incorrect predictions and N is the total number of patterns

in the validation data set.

4.2.4 Exploratory Data Analysis

Exploratory Data Analysis (EDA) is the process of “delving” into the data, allowing

interesting properties of the data to be examined and an initial understanding of the

data to be obtained [43]. Protein data sets are sometimes referred to as “extreme

datasets” [88] since they generally exhibit high dimensionality as is the case with the

data under investigation; or skewed data distributions or both. A class separability

measure and an analysis of data distributions will be used to explore the available

data giving an indication of the problems that may be experienced in the system

analysis at later stages.

In order to gain an initial understanding of the data, a cluster–scatter analysis [53]

is performed. This cluster–scatter analysis is a mathematical formulation described

below allowing the degree of overlap or scatter between each of the various classes in

the data set to be measured. The within–class scatter matrix is defined by equation

4.4 as:

Sw =
M∑
i=1

PiSi (4.4)

where Si is the covariance matrix for class ωi given by equation 4.5 as:

Si = E[(x− µi)(x− µi)T ] (4.5)

and Pi is the a priori probability of class ωi, i.e. Pi
∼= ni/N , where ni is the number

of samples in class ωi out of the total of N samples. E [·] is the mathematical

expectation of the argument and µi = E[xi].
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The between–class scatter matrix is defined by equation 4.7 as:

Sb =
M∑
i=1

Pi(µi − µ0)(µi − µ0)T (4.6)

µ0 =
M∑
i

Piµi (4.7)

The mixture–scatter matrix is then simply defined by equation 4.8

Sm = Sw + Sb (4.8)

Using the above formulations, the J3 measure is used to determine the degree of

inter-class–extra-class spread of data and is defined by equation (4.9) as:

J3 = trace{S−1
w Sm} (4.9)

In equation 4.9, trace implies the standard trace of a matrix from algebra, i.e the

sum of the diagonal elements. The value of J3 takes on high values for data sets that

are well clustered around their mean and separated from other classes. This value

can be used beforehand to give an initial indication of the class separability and the

difficulty that might be experienced in training a classifier using a given data set.

A detailed discussion of the J3 measure can be found in the book by Theodoridis

and Koutroumbas [53]. Table 4.2 is a comparison of the J3 measures that have been

calculated for the protein data sets used in this research as well as a number of other

easily accessible data obtained from the UCI Machine Learning Repository [89].

Table 4.2: Comparison of J3 measures for some well known data sets

Data Set # Classes J3

SCOP Data 12 1.48
GPCR Data 8 16.22
Enzyme Data 6 28.11
Iris Data 3 42.39
5-Class Linearly Separable Data 5 82.52
Glass Data 6 20.8951
Vowel Data 10 7.2309

This table suggests that the classification using the SCOP data might pose a prob-

lem due to a high degree of class overlap and the selection of the type of classification
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systems must be chosen carefully. The GPCR data has a higher J3 measure than

that for the SCOP data, indicating that it has a suitable degree of class separability,

and similarly for the enzyme data.

The distribution of the sequence lengths in the data that is used is an important

factor to consider. Figures 4.1 and 4.2 show histograms of the sequence length dis-

tribution for the data that is used. The figures show that the the data is a unimodal

distribution, with most sequences having a length of about 100 amino acids for the

SCOP data and a length of about 350 amino acids for the GPCR data. The distri-

butions also show that the data does include data of lengths both longer and shorter

than those indicated at the modes. We can use this as an indication that the data

used is sufficiently representative of the protein data in general and that results from

experiments that are conducted can be used to show that the algorithms are not

highly dependant on sequence lengths for classification.

Figure 4.1: Sequence length distribution for SCOP dataset
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Figure 4.2: Sequence length distribution for GPCR data

4.3 Fuzzy ARTMAP and Incremental Learning

4.3.1 System Overview

Based on the biological evolutionary concepts and neuro-developmental stages that

were discussed previously in Chapter 2, an incremental learning system based upon

an evolutionary strategy is designed and implemented. A schematic representation

of the system is shown in figure 4.3.

Input sequences are extracted from a protein database and then converted into

a numerical feature vector. We then create a population of classifiers to introduce

classification diversity, with a selection function based on kappa analysis, to choose

the best classifiers from this population. An ensemble of classifiers is used as a means

of introducing modularity in the learning system. This system is implemented using

the fuzzy ARTMAP (FAM) and a series of experiments are conducted to evaluate

the performance of this system. Pseudocode for the creation and operation of the

system is shown in algorithm listing 4.3.1. The ability of the FAM as an alternative

classifier to many of the other more popular classifiers is demonstrated by compar-

ing the classification ability of these systems on the SCOP, GPCR and enzyme data
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Figure 4.3: Overview of system architecture

sets. The incremental learning system described by algorithm listing 4.3.1 is then

demonstrated on the three datasets showing that the system is able to learn new

data without forgetting previously learned data.

4.3.2 Ensemble Diversity and System Training

Apart from the biological motivation for the use of a committee to simulate levels

of modularity in the learning systems, the committee approach has been shown to

provide an error which is less than that of the single best classifier in the system,

with authors such as Perrone and Cooper [57] and Merz [90] having done extensive

research, and having proven mathematically that this is true. This fact can be used

to improve the classification ability of the system.

The creation of a committee of classifiers is based on a novel approach, imple-

menting an evolutionary strategy which was summarised in algorithm listing 4.3.1.

An initial population of j classifiers is trained, each classifier having been trained

with a different permutation of the input training data, {X1,Y1}, where X is the

feature vector and Y the corresponding output class. This permutation is needed in

order to add diversity to the classifiers being created. As mentioned, the fact that
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Algorithm 4.3.1: Fuzzy Ensemble(D)

Training Phase

comment: Create population j of classifiers each trained with

a different permutation of the input data X1

Each classifier is a hypothesis ht : X1 7→ Y1

ε = 1
N

∑
n|ht(xi) 6=yi

comment: Sort the classifiers based on increasing error on a validation data set.

SORT(ε)
comment: Select the lowest error classifier as the elite classifier helite

comment: Calculate the agreement κ, of the 15 best classifiers

(based on error) with respect to the elite classifier

κ = N
∑N

i=1 xii−
∑N

i=1 xi+�x+i

N2−
∑N

i=1 xi+�x+i

comment: Genetic Algorithm selection of p classifiers based

on a trade–off between error ε and agreement κ
GAfitness(κ, ε) =

∑p
i=1 κi +

∑p
i=1 εi

Create ensemble classification system using the elite classifier helite

and the p selected classifiers ht, t = 1, . . . , p
comment: Fusion of individual classifier predictions using majority voting strategy

Operation Phase

If predicting sequence family, convert to feature representation and classify using
the fuzzy ARTMAP based system created during this previous training phase
comment: If incrementing system knowledge, increment each of the classifiers

in the Fuzzy ARTMAP based system independently, using the
training data for new sequences

hincr
t = T (ht,Xk 7→ Yk) ,
where the transformation T is the incremental training process and k
is the dataset to be added to the system
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the fuzzy ARTMAP learns in an instance–based fashion, makes the order in which

the training patterns are received an important factor [62]. In the experiments per-

formed, the initial population consists of 30 classifiers.

The classification error ε of each of these classifiers is then evaluated against a

validation data set. The classifiers are then ranked in terms of increasing error. The

lowest error classifier from this population is the elite classifier and is the classifier

that automatically becomes a member of the ensemble system. The inclusion of this

elite classifier ensures that at least one high accuracy classifier is selected for the

committee.

The next step is to select the remaining p classifiers. In this application we select a

further 4 classifiers, as this is thought to add sufficient diversity to the final solution.

This value can be increased as necessary. The selection of the other members of the

committee is important and requires a number of factors to be considered:

• It is not desirable to select classifiers that perform exactly as the elite classifier,

since this gives no diversity to the predictions that are generated, and thus

there is no room for improvement.

• Low accuracy classifiers should not be selected, since these will confuse the

predictions obtained and thus result in final outcomes that are more erroneous

than a single classifier.

It would appear that these two conditions are contradictory, since high accuracy

classifiers would tend to agree on the same predictions, against what we require

for point 1. A trade-off between the classifier accuracy and the level of agreement

between classifiers is then ideally what is required. This introduces the need for a

formal definition of agreement between classifiers.

We use the definition of agreement considered by Petrakos et al [91]. We define

the agreement between any two classifiers κ based on the error matrix of the two

classifiers [92]. The error matrix shows the number, and for which classes the two

classifiers agree on a prediction. Table 4.3 shows the format for an error matrix
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between two classifiers.

Table 4.3: Data format for error matrix between classifiers

Classifier 2
Classifier 1 C1 C2 . . . CN Totals

C1 x11 x12 . . . x1N x1+

C2 x21 x22 . . . x2N x2+
...

...
...

. . .
...

...
CN xN1 xN2 . . . xNN xN+

Totals x+1 x+2 . . . x+N

x11 in the table is the number of test patterns that both classifier 1 and 2 agreed

belonged to class C1. x21 is the number of test patterns that classifier 1 predicted

belonging to class C2, but that classifier 2 predicted belonged to class C1. Simi-

larly, the entire error matrix can be generated using the prediction made by any two

classifiers. We determine the error matrices for 15 of the best classifiers in terms

of predictions with respect to the elite classifier. The agreement is calculated using

the following set of equations, where N is the number of training patterns used in

generating the error matrix [92]. This formulation is known as kappa analysis.

θ1 =
N∑

i=1

xii (4.10)

θ2 =
N∑

i=1

xi+ � x+i (4.11)

κ =
Nθ1 − θ2

N2 − θ2
(4.12)

The selection of classifiers from this population, which must essentially minimise

both the error of the individual classifiers and the agreement of the classifiers with

the elite classifier is an optimisation problem. The Genetic Algorithm has been

chosen as the optimisation tool for this system. The Genetic Algorithm (GA) is a

stochastic optimisation tool that borrows concepts from evolutionary biology such

as selection, crossover and mutation [82]. The GA minimises a cost function that

is defined for a particular problem by stochastically exploring the space of available

solutions. The GA implemented for the selection of classifiers, is designed to select

four classifiers and minimises both the agreement and the error of the selected com-

bination of classifiers.
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The GA will select 4 classifiers apart from the elite classifier, resulting in two vectors,

εGA = {ε1; ε2; ε3; ε4}

κGA = {κ1;κ2;κ3;κ4}

A linear combination of these two matrices is used to define the cost value of a

particular selection of classifiers. It is this cost that the GA will attempt to minimise.

The cost function is defined by equation 4.13. λ is introduced as a scalar constant

to allow the relative importance of the agreement in the system to be adjusted. In

this application λ1 = λ2, which gives equal importance to both the error and the

agreement.

f(ε, κ) = λ1

4∑
i=1

κi + λ2

4∑
i=1

εi (4.13)

The GA selects the four best classifiers that minimises the cost function of equation

4.13. The Genetic Algorithm was designed to produce 50 generations of solutions

with each generation being a population of 30 possible solutions. The crossover

rate was set to a high value of 0.8 and a mutation rate of 0.4, and were empirically

determined to be the best values for the experiment. The high crossover rate was se-

lected to ensure that there is a larger degree of exploitation of the space of available

solutions, especially considering that in many cases the values of the error and the

agreement calculated are the same for many classifiers. The crossover functions are

modified from the standard crossover functions in this case, to ensure that unique

classifiers are selected during each generation, that is, preventing the same classifier

from being selected twice in a particular generation.

In all cases the solutions are represented in floating point form. For the Genetic

Algorithm, the floating point operation has been shown to be better than the bi-

nary representation since it has shown to be faster in searching the space of possible

solutions, providing higher precision and being more consistent from run-to-run [80].

Using this representation, the arithmetic crossover and non-uniform mutation opera-

tors have been used. The arithmetic crossover provides better stability in generating

solutions, with lower standard deviation of the best solutions as compared to other
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types of crossover such as simple crossover. The non-uniform mutation also aids in

the search of an optimal solution by allowing faster convergence and greater accu-

racy [80].

These selected classifiers are then used in parallel, with each of the five classifiers

in the system producing an independent set of predictions. These predictions must

then be fused together to form the final decision. A number of decision fusion tech-

niques exist. Some of these include the majority and weighted majority voting,

trained combiner fusion, median, min and max combining rules that were discussed

in Chapter 3. We adopt the majority voting decision fusion scheme, which simply

considers each of the predictions produced by the five classifiers as a vote, with

the final prediction for any pattern given by the prediction that receives the largest

number of votes.

4.3.3 Incremental Learning of Protein Data

The ensemble system is not a useful system if it is not able to accommodate newly

discovered sequences that are produced daily, as was shown in figure 2.9 and figure

2.10. The fuzzy ARTMAP through its instance–based learning is able to incremen-

tally learn new data. This incremental learning can consider two types of data:

1. It is possible to add new sequence information for families which the classifier

has already been trained with.

2. Data of completely new classes can be added to the system, increasing the

knowledge that the system has of the general protein domain. Since this is

a supervised system, new classes will be identified by class labels which are

different from those seen previously.

The base system will in general be trained with data of a number of classes. Once

new data becomes available, incremental learning of the system is based on incre-

mentally training each of the 5 FAM classifiers in the system with the new data.

The system can now be tested with data from all classes it has been trained with,
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including classes which have been incrementally added to the system. The incre-

mental learning demonstrated by the fuzzy ARTMAP system is a mixture of the

learning parameter and data incremental learning types that were discussed in sec-

tion 3.2 (page 29). During incremental learning, the fuzzy ARTMAP will adjust

its internal parameters such as the vigilance and the map field, which is learning

parameter incremental learning discussed in section 3.2, and since new classes may

be added to the system, this is data incremental learning, also discussed in section

3.2.

Each of the classifiers in the final ensemble is independent during its learning process

and the results are combined by majority voting to reach the final decision. Majority

voting is used as opposed to the weighted majority voting scheme, due to the com-

plexity that will arise in determining voting weights, which must change for every

incremental round for the weighted version. At this stage in the research, the sim-

ple majority voting is used to prove the applicability of incremental learning to the

analysis of protein primary structures. This weighted voting may be implemented

at a later stage after developing an adaptive voting–weight estimation algorithm.

4.4 Ensemble System Testing and Experimental Results

The ensemble system described, based on the FAM has been tested using the data

described previously. The organisation of this data is described for each of the

databases being used. The same data and data partitioning will be used in testing

the algorithm to be described in the next section.

4.4.1 Testing of SCOP Data

Data Organisation

The training of this system requires the creation of a training, validation and testing

dataset. The available data will be separated into three databases. Database D1

will consist of data of classes 1 to 8 and database D2 will consist of data of classes 1
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to 10, adding two new classes to the data. Finally, database D3 will consist of data

of classes 1 to 12, adding a further two classes to the system. The validation data

set Dval described, is required only for the database that is used to create the base

classifier system, i.e. Database 1. A Further testing dataset consisting of all classes

is kept to test the performance of the system on unseen data. The separation of

data is listed in table 4.4.

Table 4.4: SCOP 1.69 protein families considered in this work, and the separation
of the data into training, validation and testing data sets

# SCOP Family PDB ID D1 Dval D2 D3 Dtest

1 Phycocyanin-like Phy-
cobilisome Proteins

46532 9 2 4 4 4

2 Monodomain Cy-
tochrome C

46627 19 5 7 7 10

3 Glutathione S-
transferase (GST),
N-terminal domain

52862 17 4 8 7 9

4 Calmodulin-like 47502 20 5 8 9 11
5 Crystallins/Ca-

binding development
proteins

49696 9 2 3 3 4

6 MHC antigen recogni-
tion domain

54453 24 6 11 11 13

7 Eukaryotic Proteases 50514 23 6 9 9 12
8 Alcohol

Dehydrogenase–like,
N-terminal domain

50136 11 3 5 5 5

9 Nucleosome Core His-
tones

47114 – – 15 3 5

10 Thioltransferase 52834 – – 18 5 6
11 Cytochrome B5 55857 – – – 19 5
12 Proteasome Subunits 56251 – – – 40 10

Comparative Performance

The fuzzy ARTMAP is shown in this section to be an alternate classifier to other

common classifiers discussed in the literature. Specifically, the fuzzy ARTMAP [93]

is compared to the multi-layer perceptron (MLP) neural network , the k- Nearest

neighbours classifier , the Generalised Linear Model Classifiers (GLM) [46] as well

as the Support Vector Machines (SVM) [94].
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The training dataset for this comparative test consists of databases D1,D2,D3,Dval

combined into a single set, with the testing set being left for independent assessment

of the classifier. Each of these classifiers is trained on the training dataset, using all

the generated features. The fuzzy ARTMAP is trained with a vigilance of ρ = 0.75,

in fast learning mode. The MLP is trained for 100 cycles with 15 nodes in the

hidden layer. These values are empirically determined. The k-nearest neighbours

classifier is trained and tested for different values of k. Similarly, the SVM is tested

with various kernel functions, specifically the polynomial and radial basis function

kernels. The error reported is the error for the independent validation data set as

well as the test dataset and is shown in Table 4.5.

Table 4.5: Comparative performance of FAM versus other classifiers on the SCOP
dataset.

Classifier Test Error (%)
Generalised Linear Model 35.11
5-Nearest Neighbours 31.91
3-Nearest Neighbours 27.66
1-Nearest Neighbours 20.21
Multi–layer Perceptron, nhid = 25, cyc = 200 13.83
Fuzzy ARTMAP ρ = 0.75 15.80
SVM - RBF γ = 5 12.77
SVM-Polynomial 2.27 degree 11.70

Base Classifier Training and Incremental Performance

Training the base classifier involves using the dataset D1 as the training database,

and evaluating the performance of this initial set of classifiers using the validation

data set Dval. Table 4.6 shows the agreements and the errors calculated for the top

15 classifiers in the population. The table shows that the minimum error classifiers

do not necessarily have the highest agreement with the elite classifier.

The Genetic Algorithm [95] selected classifiers 2, 4, 6 and 7 to form the ensemble,

in addition to the elite classifier. This final system was then incrementally trained

on databases D2 and D3 and tested on the testing data Dtest. Table 4.7, shows the

performance of the system after each incremental training session – Train 1, 2 and
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Table 4.6: Error and agreement values for 15 classifiers of the population

Classifier Val Error ε (%) Agreement κ

1 6.0606 Elite
2 6.0606 1.000
3 9.0909 0.8952
4 9.0909 0.8943
5 9.0909 0.9292
6 9.0909 0.8952
7 9.0909 0.9292
8 12.1212 0.9290
9 12.1212 0.9292
10 12.1212 0.8952
11 12.1212 0.8619
12 12.1212 0.8272
13 12.1212 0.9290
14 12.1212 0.8605
15 15.1515 0.9290

3. The format of this table is the same as that used by Polikar et al [96]. The

performance on the training data sets is also shown, to evaluate the performance of

the algorithm on previously seen instances, to make sure that previously acquired

knowledge was not lost.

Table 4.7: Training and generalisation performance of system on SCOP data

Dataset Train 1 Train 2 Train 3
D1 0 0 0
D2 — 0 0
D3 — — 0
Dval 6.0606 6.0606 12.1212
Dtest 34.0426 27.6596 15.9574

From this table it can be seen that the performance of the overall system on the test-

ing data improves as more data is added. Also, the errors of the training databases

do not change and remains at 0%. The performance of the validation dataset shows

a decrease in the classification accuracy. This increase in error, can be tolerated and

is expected since there is a tradeoff that must be made between the stability and

plasticity of the overall classification system. This validation data is not required for

further development of the system once the initial base classifiers have been trained

and should be incrementally added to the knownledge of the system.
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The incremental learning of the system on the 12th class was analysed instance-

by-instance to observe the performance of the individual classifiers and the overall

ensemble as more data of this class is added to the system. The result is shown in fig-

ure 4.4. The graph shows that as more training patterns are added, the ability of the

system to correctly predict the family of a given protein sequence increases, as shown

by the decreasing error. This demonstrates the initial learning curve (discussed in

Chapter 3) that the system must overcome, and that the system is responsive to

new data, quickly overcoming this learning curve.

Figure 4.4: Incremental performance of each classifier in the system as training data
of class 12 is increased. The combined incremental ability of all classifiers is shown
in the final graph.

Analysis of the graph of figure 4.4, shows that 8 sequences must be added to the sys-

tem, before the classifier is able to recognise any of the testing data. This suggests

that there is some minimum number of sequences that is needed to be added, or that

a threshold exists that must be passed before any improvement in prediction perfor-

mance is obtained during incremental learning. This minimum is clearly dependant

on the family being added, since some families have a high degree of sequence simi-

larity, thus requiring only a few training instances, while other families having high

degrees of dissimilarity require more training instances before any improvement is

63



4.4. ENSEMBLE SYSTEM TESTING AND EXPERIMENTAL RESULTS

observed. The implications of the results presented here will be discussed in the

next chapter.

4.4.2 Testing of GPCR Data

Data Organisation

The GPCR data is also divided into 6 separate databases D1, . . . ,D6, with a valida-

tion set for database D1. In this case, the datasets have data of all 8 classes which

are available. The separation of data into these databases is shown in table 4.8.

Table 4.8: Separation of data into individual databases for testing using GPCR data.

GPCR Family D1 Dval D2 D3 D4 D5 D6 Dtest

GPCR type 1 32 10 43 43 43 43 43 43
GPCR type 2 23 8 30 30 30 30 30 30
GPCR type 3 16 6 22 22 22 22 22 22
GPCR type 4 6 2 9 9 8 8 8 8
GPCR Fz/Smo 12 4 16 15 16 16 16 16
MLO family 3 1 4 5 5 5 5 4
Class H 32 11 43 43 43 43 43 43
Pheromone Receptor 2 20 6 26 26 26 26 27 27

Comparative Performance

As before, we compare the fuzzy ARTMAP with other more common machine learn-

ing tools such as the Support Vector Machines and Multi-layer perceptron. Table

4.9 shows the performance of the classifiers that were considered in the experiment

with the SCOP data. The parameters that are used for each of the classifiers is

included in the table. The classifiers are trained with all the training data com-

bined into a single training set and tested on the test set Dtest. The table shows

that the FAM, is consistent in its classification performance, again proving to have

comparable accuracy to many other classification systems.
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Table 4.9: Comparative performance of FAM versus other classifiers on the GPCR
dataset.

Classifier Test Error (%)
Generalised Linear Model 25.91
Multi–layer Perceptron, nhid = 15, cyc = 200 15.03
Fuzzy ARTMAP ρ = 0.75 11.90
SVM - RBF γ = 2.3 17.10
SVM-Polynomial 2.23 degree 10.36

Base Classifier Training and Incremental Performance

As before, the base classification system was trained using database D1. Table 4.10

shows the error of the first 15 classifiers of the population and agreement with the

elite classifier. The performance measure is the error of the system on the validation

data set.

Table 4.10: Error and agreement values for 15 classifiers of the population

Classifier Val Error ε (%) Agreement κ

1 27.0833 Elite
2 29.1667 0.8940
3 29.1667 0.9730
4 29.1667 0.8438
5 31.2500 0.8929
6 31.2500 0.8929
7 31.2500 0.8929
8 31.2500 0.8455
9 31.2500 0.8683
10 31.2500 0.8929
11 31.2500 0.8929
12 31.2500 0.8929
13 31.2500 0.8929
14 31.2500 0.8430
15 33.3333 0.8430

The GA, for this data set selected classifiers 2, 3, 4 and 12 to form the final

ensemble system. Again, the system consisting of the elite classifier and the four

classifiers selected by the GA are incrementally trained using databases D2, . . . ,D6,

with the ensemble being tested after each increment with the testing database Dtest.

The performance of the system is shown in table 4.11, with the format of the table
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the same as the format described for the testing with the SCOP data. This data

Table 4.11: Training and generalisation performance of system on GPCR data

Dataset Train 1 Train 2 Train 3 Train 4 Train 5 Train 6
D1 0 0 0 0 0 0
D2 — 0 0 0 0 0
D3 — — 0 0 0 0
D4 — — — 0 0 0
D5 — — — — 0 0
D6 — — — — — 0
Dval 25.0000 22.9167 22.9167 27.0833 25.0000 27.0833
Dtest 22.7979 18.6528 19.1710 19.6891 18.6528 16.5803

shows that the system is extremely capable of remembering data that it has been

previously trained with, as shown by the many occurences of 0% which appear in

the table for the training databases. The system also shows that the perfromance

does increase as more data of each of the classes is added to the system.

4.4.3 Testing on Enzyme Data

Data Organisation

The enzyme data is divided into 5 separate databases D1, . . . ,D5, with a valida-

tion set for database D1. Each database consists of data of all 6 classes which are

available. The separation of data into these databases is shown in table 4.12.

Table 4.12: Separation into individual databases for training and testing using en-
zyme data.

Enzyme Class D1 Dval D2 D3 D4 D5 Dtest

Oxidorectases 210 29 230 231 231 231 230
Transferases 243 35 278 278 278 278 278
Hydrolases 544 77 621 620 620 620 621
Lyases 83 12 95 96 96 96 96
Isomerases 41 6 47 47 47 47 47
Ligases 16 2 18 18 18 18 18
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Table 4.13: Comparative performance of FAM versus other classifiers on the enzyme
dataset.

Classifier Test Error (%)
Generalised Linear Model 42.64
Multi–layer Perceptron, nhid = 15, cyc = 200 10.00
Fuzzy ARTMAP ρ = 0.85 11.40
SVM - RBF γ = 2.3 9.76
SVM-Polynomial 2.23 degree 10.52

Comparative Performance

As before, we compare the fuzzy ARTMAP with other more common machine learn-

ing tools such as the Support Vector Machines and Multi-layer perceptron. Table

4.13 shows the performance of the classifiers that were considered in the experiment

with the enzyme data. The parameters that are used for each of the classifiers is

included in the table. The classifiers are trained with all the training data combined

into a single training set and tested on the test set Dtest. The table shows that the

FAM has comparable accuracy to many other classification systems.

Base Classifier Training and Incremental Performance

As for the previous two datasets, the base classification system was trained using

database D1. Table 4.14 shows the error of the first 15 classifiers of the population

and agreement with the elite classifier. The error that of the system on the validation

data set.

The GA, for this data set selected classifiers 2, 3, 5 and 7 to form the final ensemble

system. Again, the system consisting of the elite classifier and the four classifiers

selected by the GA are incrementally trained using databases D2, . . . ,D5, with the

ensemble being tested after each increment with the testing database Dtest. The

performance of the system is shown in table 4.15, with the format of the table the

same as the format described for testing with the previous two datasets. These

results confirm what has been previously observed. The data shows that the system

is extremely capable of remembering data that is has been trained upon. The system

also shows that the performance does increase as more data of each of the classes is
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Table 4.14: Error and agreement values for 15 classifiers of the population

Classifier Val Error ε (%) Agreement κ

1 22.9814 Elite
2 22.9814 0.7261
3 26.0870 0.6486
4 26.7081 0.5901
5 26.7081 0.5754
6 26.7081 0.5925
7 26.7081 0.5638
8 26.7081 0.6559
9 27.3292 0.7138
10 27.9503 0.6407
11 29.1925 0.6260
12 29.1925 0.5823
13 29.8137 0.5720
14 30.4348 0.5720
15 30.4348 0.6746

Table 4.15: Training and generalisation error of system on Enzyme data

Dataset Train 1 Train 2 Train 3 Train 4 Train 5
D1 0 1.9395 2.2498 1.8619 1.7067
D2 — 0 0 0 0
D3 — — 0 0.0775 0.0775
D4 — — — 0 0.1550
D5 — — — — 0
Dval 19.8758 15.5280 18.0124 14.9068 13.0435
Dtest 21.0853 15.0388 15.1938 13.9535 11.1628

added to the system.

4.5 Learn++ for Protein Classification

4.5.1 Overview of Learn++

Learn++ is the most recent incremental learning system and was introduced by

Polikar et al [96]. Learn++ is based on the well known AdaBoost, and exploits the

power of multiple classifier systems to give incremental learning ability. The algo-

rithm pseudocode for Learn++ is given in algorithm listing 4.5.1. Consider that
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there exist a number of different databases Dj for j = 1, . . . , J and a classification

system, like MLP that will be called weakLearn.

Learn++ generates multiple ‘weak’ base classifiers each trained with different sub-

Algorithm 4.5.1: Learn++(D)

for j ← 1 to J

do



Initialise w1(i) = D(i) = 1/m ∀i

for t← 1 to Tk



comment: Create sampling distribution

Dt = wt/
∑m

i=1 wt(i)
Randomly choose training set TRt

and testing set TEt from distribution Dt

comment: Use training set obtaining a hypothesis

ht ← weakLearn(TRt, TEt) (1)
comment: Determine hypothesis error

εt =
∑

ht(xi) 6=yi
Dt(i)

if εt > 0.5
then Discard hypothesis and go to step 1
else Calculate β = ε/(1− ε)

Get composite hypothesis Ht

Ht ← weightedMajorityVoting(ht)
and determine composite error

Et =
∑

Ht(xi) 6=yi
Dt(i)

if Et > 0.5

then
{

Go to step (1)
Otherwise calculate Bt = Et/(1− Et)

comment: Update Weights

wt+1(i) =
{

Bt if Ht(xi) = yi

1 otherwise
wt+1(i) = wt(i)×B

1−[|Ht(xi) 6=yi|]
t

Call weighted Majority Voting on combined hypotheses Ht

sets of the training data. A weak learner is simply a classifier which is not optimised

for maximum performance. In the case of Learn++, a weak learner is specifically a

classifier with the ability to classify data with an accuracy of 50%. Each database

Dj , which is an independent set of data that is to be added to the system consists

of training instances xi, and corresponding labels yi. The algorithm specifies a base

classifier and an integer Tk, which is the number of classifiers to add to the system

for a given database Dj . The system trains each of the Tk classifiers with a different
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subset of the training data, effectively creating multiple hypotheses for the training

data. These multiple hypotheses are combined using a weighted majority voting

scheme, where the voting weights for each classifier in the system is determined

using the performance of that particular classifier on the entire set of training data

used for the current increment. Figure 4.5 is a representation of how the many weak

learners combine their individual hypotheses to form the combined hypothesis that

approximates the true hypothesis. Newer hypotheses (classifiers) which are added

have knowledge of new areas of the broader knowledge domain and thus allow for

incremental learning.

Figure 4.5: Combining the hypotheses of individual classifiers to allow for incremen-
tal learning. Redrawn from [96]

Each new database that is appended to the system adds an additional Tk classifiers

to the system. If a new database has data of a new class, then the new classifiers

in the system will have the knowledge of the new data while the overall system

still maintains the knowledge that was acquired in previous training increments.

This avoids the problem of catastrophic forgetting. This system, due to the ensem-

ble of classifiers approach that is used, inherits the performance boosting ability of

Adaboost. This incremental learning algorithm is also not sensitive to the order

in which training patterns are received. This property has been demonstrated by

Polikar et al [96] on the benchmark databases that were used in testing Learn++.

This architecture thus meets all the requirements for incremental learning that were

discussed previously: avoiding catastrophic forgetting, retroactive interference, an

open–world view by allowing new classes to be added to the system, and unbiased

performance with respect to order of the training data. A more detailed description

of the Learn++ system is given in Appendix C.
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4.5.2 System Overview

The Learn++ system which is implemented here uses the same datasets as described

previously, i.e. SCOP, GPCR and enzyme datasets. The base classifier used for

Learn++ is the multi–layer perceptron. As with the data for the incremental system

using fuzzy ARTMAP, the data undergoes a min–max normalisation using equation

4.2. The min–max normalisation is of particular importance since a MLP is used

as the base classifier and we wish to prevent any single feature of the data set from

causing unbiased weights in the neural network model [47]. The performance of

the system is also measured using the classification rate given by equation 4.3. An

overview of the system and its operation is shown in Figure 4.6.

Figure 4.6: Overview of Learn++ based incremental learning system

4.5.3 Application of Learn++

Learn++ is applied to this problem using the MLP as the weak learning algorithm.

The MLP allows one to set the number of training cycles and the number of hidden

units in the system, and an under-design of the MLP will allow the MLP to work

as a weak classifier allowing the error of 50% to be achieved. The MLP was trained

in all cases described here, with 8 nodes in the hidden layer for 150 training epochs.

The number of classifers that is added at each stage has been decided empirically.

The single factor that is considered in this selection is that when incremeting the

system with database 2 say, the number of classifiers that is added should be greater

than the number of classifiers that was added for the previous database training.
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The incremental learning demonstrated by Learn++, is a mixture of the struc-

tural and data incremental learning types that were discussed in section 3.2 on page

29. During incremental learning, Learn++ will add new classifiers to its ensemble,

changing its internal structure, which is structural incremental learning, and since

new classes may be added to the system, this is data incremental learning.

4.6 Learn++ Testing and Experimental Results

4.6.1 Testing of SCOP Data

Data Organisation

The data used in this section is the same as the data that was used in the SCOP

database testing for the ensemble system. A validation set is not required in this case

and is thus combined with the training database 1. The comparative performance

of the MLP which is used as the base classifier in this system was listed in table 4.5.

Incremental Performance

As before each database is incrementally added to the system and the performance

of the system for the training data and the testing data is shown in the table, so

that the performance of the system in remembering data that it has been previously

trained with can be evaluated. The system was initially trained with 10 classifiers in

the ensemble. Thereafter, 15 classifiers were added to the system for database D2,

and finally 19 classifiers were added for incremental training of database D3. The

performance of this system is shown in table 4.16.

This table demonstrates the applicability of Learn++ to the problem of incremental

learning of protein data. Issues of stability and plasticity are also evident from the

data, but as for the testing of the previous system, this is not unexpected.
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Table 4.16: Comparison of errors for Learn++ as the number of training databases
in increased.

Dataset Train 1 Train 2 Train 3
D1 0 5.45 9.09
D2 — 0 10.23
D3 — — 12.30
Dtest 31.91 22.34 15.96

4.6.2 Testing of GPCR Data

Data Organisation

The same organisation of the the GPCR data that was used for testing in the pre-

vious experiments is used here. Again, the validation set is combined with database

1 since it is not required for this incremental system. As before, the comparative

performance of the MLP when using this data is given in table 4.9.

Incremental Performance

The system is systematically incremented using data from databases D1, . . . ,D6, and

the performance of the system is reported in table 4.17. For the training of this sys-

tem, the number of classifiers that was added to the system is Tk = {5, 10, 18, 23, 28, 34}

for each database that is incrementally added to the classification system. The ta-

ble shows the desirable property of incremental learning where the performance of

Learn++ on D1 increases as more training data is added. This row is not zero as in

the case of the fuzzy ARTMAP system, since the training of the MLP stops after a

specified number of training epochs, not when the error reaches zero as in the case

of the FAM.
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Table 4.17: Training and generalisation performance of system on GPCR data

Dataset Train 1 Train 2 Train 3 Train 4 Train 5 Train 6
D1 27.60 21.35 17.71 17.71 17.71 16.15
D2 — 18.65 14.51 13.99 11.92 11.40
D3 — — 18.13 17.10 16.06 16.58
D4 — — — 17.10 17.10 17.62
D5 — — — — 16.06 16.06
D6 — — — — — 20.73
Dtest 29.02 23.32 20.21 20.73 20.21 18.65

4.6.3 Testing of Enzyme Data

Data Organisation

The same organisation of data that was described by table 4.12 is used here and

as before, the validation set was combined with the dataset for D1 since it is not

needed for this system. The comparative performance of the MLP was also given in

Table 4.13.

Incremental Performance

As before, the system is systematically incremented using data from databases

D1, . . . ,D5, and the performance of the system is reported in table 4.18. For the

training of this system, the number of classifiers that was added to the system for

each training database is Tk = {5, 7, 10, 13, 15}. This dataset serves to confirm the

Table 4.18: Training and generalisation performance of system on Enzyme data

Dataset Train 1 Train 2 Train 3 Train 4 Train 5
D1 13.96 18.54 17.46 16.40 14.90
D2 — 5.04 9.30 11.55 12.09
D3 — — 11.09 12.48 0.12.79
D4 — — — 9.38 11.09
D5 — — — — 7.44
Dtest 25.58 20.47 17.60 16.05 13.95

previous conclusions that the system learns new data that is presented to it, while
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not suffering from catastrophic forgetting.

4.6.4 Design Strategies for use of Learn++

From the experimental results, the following strategies were decided on. In designing

a system based upon Learn++, a base classifier such as MLP or SVM should be

used, since these are well established and are known to give good results, especially

in the context of protein classification. Fast optimisation algorithms should be used

such as the scaled conjugate gradient algorithm for the MLP [47], to reduce the com-

putational load of incrementally adding new data to the system. When incrementing

the system with new classes, it is best to ensure that the number of classifiers that

are added to the system is greater than the number of classifiers added during a

previous system increment. It is also better to include some data from classes that

have previously been seen. This will ensure that if any pattern is classified into

one of the new classes, the votes from the previous classifiers do not ‘outvote’ votes

received from new classifiers.

Learn++ has the advantage that it allows any supervised classifier to be used in

an incremental manner. This is a great benefit, especially if there exists a large

infrastructure, tool-set and expertise based upon a particular supervised classifier,

thus allowing existing knowledge and tools to be used.

While the standard batch trained classifiers showed roughly the same accuracy as

the final accuracy of the incremental system for both datasets, the incremental sys-

tem would save a great deal of time and effort in training classification systems. In

the batch learning approach to classifier creation, if a new family is identified and is

to be added to the system, an entirely new classifier must be created which includes

this new family. This training includes optimising the classifier parameters and ar-

chitecture again, which involves a considerable amount of effort. In the incremental

strategy, the system can learn on-line, gaining new knowledge and may demonstrate

immediate results if used. It also has the advantage of not requiring previously used

data, which is essential if this data is no longer available.
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Comparisons of the two algorithms presented in this section will be made along

with concluding remarks in the next chapter.
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Chapter 5

Conclusion

5.1 Discussion and Comparison of Techniques

The previous four chapters have sketched in detail the tools and techniques that

are currently used in the classification of protein primary structures into families

and the introduction of two algorithms for incremental learning of this protein data.

There has been a great deal of work in the classification of these proteins using

a wide range of computational intelligence techniques ranging from the k-Nearest

Neighbours classifiers and Naive Bayes classifiers to more complex tools such as the

Multi–layer perceptron and the Support Vector Machines. While these systems have

allowed a wider set of evolutionary mechanisms involving proteins to be included in

the design of classification systems, such as invariance to the order of amino acid

motifs in a sequence, they remain static structures which cannot incorporate newly

discovered proteins into their models.

With this in mind, Incremental Learning was proposed as a machine learning ap-

proach to the classification of proteins. Two incremental systems were presented,

the first based on an evolutionary strategy and the fuzzy ARTMAP classifier, while

the second was based on the boosting algorithm Learn++. These are similar, but

at the same time different approaches to incremental learning, in the sense that

both systems use a committee based approach, but the fuzzy ARTMAP system uses

the ensemble for performance enhancement whereas Learn++ uses the ensemble to

provide the incremental learning ability.
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The results presented indicate that the fuzzy ARTMAP is a suitable machine learn-

ing tool for the classification of protein sequences into structural families, which is

comparable to many of the more established tools. An analysis of the sequences

also shows that the system is able to classify proteins of varying lengths, and thus

the length of the protein sequences used are not important. The J3 measures fur-

ther suggest that the accuracy of the classification could be improved if some form

of dimensionality reduction or feature selection is applied. These techniques have

been applied by many authors using numerous approaches. Principal Component

Analysis is used as a technique for dimensionality reduction by Zhao et al [52] and

Cheng et al [25] uses the chi-squared test as a means of feature selection. Feature

selection can also be applied using various sub-optimal feature selection techniques

such as the floating forward selection search using the J3 measure as the distance

function [53] or the Genetic Algorithm can be used as demonstrated by Mohamed

et al [97].

For the fuzzy ARTMAP based system, the agreement κ was used to measure diver-

sity of the system. The use of the correlation coefficient, or the use of a disagreement

[92] should also be explored, to determine if these alternate measure gives some de-

gree of refinement in the selection of the classifiers. The genetic algorithm is also

important in the committee. Due to the stochastic nature of the GA, it is possible

that different GA optimisations produce a different selection of classifier members.

This though is not as likely in the case of the data presented here, since many of

the classifiers had the same agreement or error, resulting in the GA converging to

the same selection choice. That said, the optimisation of the GA is efficient and

runs very fast due to the fact that it uses pre-calculated results such as the error

matrix and agreement values. It might seem that the contribution of the GA is not

significant if the case of the testing using the GPCR data is considered. This might

be the case for this data, but the algorithm is designed to be generally applicable,

and thus this might not be the case for another set of data, which also need not

necessarily be protein data.

The incremental learning using Learn++ was also demonstrated as a suitable clas-

sification system. This approach had the advantage that it allows any supervised
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classifier to be used in an incremental manner. This is desirable especially if the

software infrastructure for the use of MLP say, is already in place. This property

allows this infrastructure to be used, saving a great deal of development time and

cost. Learn++ is also not sensitive to the order in which training examples are

received and has been proven by Polikar et al on numerous benchmark databases

that were used [96].

The major disadvantage is the computational cost associated with Learn++. To

allow incremental learning of the data, 35 and 118 classifiers had to be generated

for the system using the SCOP and GPCR data respectively, while the same per-

formance was obtained from the single classifier trained in batch mode. While all

incremental problems can be made batch problems, given that enough time is allowed

to accumulate the required data, Learn++ presents a trade-off between time-to-use

of the available data and the computational cost. This single property emphasises

the need for further research into limiting the number of classifiers needed to achieve

incremental learning, which would result in minimising the computational cost.

Learn++ also suffers from a problem of “out-voting” [98]. Consider the situation

where database D1 has data of classes 1-10, and database D2 has data of classes 11-15

only. If a Learn++ system were trained with this data arrangement, the classifiers

would have large voting weights with respect to their own data. If data from say

class 15 is classified, the situation can easily occur where the votes from classifiers

trained with D1 outvote the classifiers who vote for class 15. It is for this reason

that the data used in the testing was ordered in such a way that it contained data

of classes which had previously been added to the system. The use of a Learn++

variant, Learn++.MT, should be considered, since it has been reported to address

this problem [98].

Both systems that have been described meet the criteria for an incremental clas-

sification system. They both do not suffer from catastrophic interference. While

some forgetting has been observed, this has been limited and is expected due to the

tradeoff between stability and plasticity of classifiers in the system. The systems

also exhibit retroactive interference, where it was observed that the classification
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performance on training data did not change and even improved in some cases as

more data of the same class was added, as shown in tables 4.7, 4.11 and 4.17. Both

systems do not have a bias to the order in which training examples are received

and since they allow new classes to be added to the system, they demonstrate an

open–world view.

5.2 Suggestions for Future Research

While incremental learning for biological data analysis has been shown to be suitable

for the problem, a great deal of further work must be done:

• Alternate features from protein sequences should be explored that maximise

the J3 measure, allowing for easier classification.

• Testing of these systems on further sets of data such as nucleotide data should

be conducted to show the applicability of these tools to problems outside pro-

teomics.

• Feature selection is required. This will reduce the computational load of these

system and possibly enhance the classification performance.

• The possible parallelisation of the system should also be investigated to allow

for improved speed, which is especially needed as more data is added to the

system.

• Alternate incremental classifiers should also be researched, such as incremental

decision trees or completely new classifiers specifically designed and optimised

for the problem of incremental learning.

• The fuzzy ARTMAP during incremental learning is sensitive to the vigilance

parameter used [96], and thus it may be necessary to examine the effect of an

adaptive vigilance in the incremental learning of the system [99].

• Also, in keeping with biological tendencies towards increasing modularity, it

may be necessary to create modular classification architectures that focus on
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small subsets of families, since classifiers trained on fewer classes can be op-

timised more efficiently due to the smaller degree of class overlap with fewer

classes.

• In the comparative testing phases, it was found that the SVM performed bet-

ter at the classification task. Future work must then consider the problem of

incremental SVM for the multi-class case and the development of the mathe-

matics for this system.

5.3 Concluding Remarks

Initial researchers into incremental learning such as Elman [100] claimed that incre-

mental learning is always superior to batch learning. A softer approach is adopted

in this research, rather emphasising that this approach is more appropriate for the

case where a large number of classes exist from differing families and with different

numbers of sequences per family. Many researchers have specifically looked at the

classification of a single structural superfamily, such as the Nuclear Receptor Super-

family, and in this case both the batch and the incremental approaches to learning

seem appropriate. A great deal of research has been conducted into the proteins

which are members of this superfamily, and the addition of new sequences could

add little value to the classification ability of the system. Where this is not the case,

the incremental approach would be better.

The techniques presented here are also not limited to the problem of structural

family classification, and can be easily extended to secondary and tertiary structure

prediction, functional annotations and the prediction of protein–protein interaction

sites. Apart from systems in proteomics, genomic applications also exist, such as the

classification of promoter, and splice sites. Each classification task benefits from the

improvements which can be gained from using an ensemble system and incremental

learning. These results show great promise for the future of computational biol-

ogy, where newly discovered data needs to be accurately incorporated into existing

models, allowing for highly agile discovery processes.
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Appendix A

Additional Properties of Amino Acids

The following table lists internationally approved three letter and single letter ab-

breviations for the standard amino acids. In the text of chapter 2, it was mentioned

Table A.1: International notations for amino acid R-groups

Amino Acid Code (1 ch) Code (3 ch)
Alanine A Ala
Arginine R Arg
Asparagine N Asn
Aspartic Acid D Asp
Aspartate or Asparagine† B Asx
Cysteine C Cys
Glutamine Q Gln
Glutamic Acid E Glu
Glutamate or Glutamine† Z Glx
Glycine G Gly
Histidine H His
Isoleucine I Ile
Leucine L Leu
Lysine K Lys
Methionine M Met
Phenylalanine F Phe
Proline P Pro
Serine S Ser
Threonine T Thr
Trytophan W Trp
Tyrosine Y Tyr
Valine V Val
†

Ambiguous symbols which are ignored in this work

that there are 20 known amino acids. This statement is in fact not correct, as there
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5.3. CONCLUDING REMARKS

are now 22 known amino acids. The two new amino acids are rare, and it is for this

reason that the reference to 20 amino acids is made.

The 21st amino acid was discovered in 1985 and is known as Selenocysteine .

It is structurally similar to Cysteine, but contains a selenium atom in place of the

usual Sulfur atom [101]. The 22nd amino acid was discovered more recently in 2001,

and is known as Pyrrolysine and is a derivative of Lysine [102]. Since the discov-

ery of the amino acids are relatively new, there appearance in any current sequence

databases is not expected, but it would be a simple task to expand the methods

that have been presented to accommodate this expanded amino acid alphabet.

The hydropathy was used as a key feature in representing the amino acid sequences

in numerical form. The Chothia and Finkelstein hydropathy classification was used

and is given by the following sets, with the members of the sets represented using

the single character amino acid notation.

Polar = {K, R,E,D, Q, N} (A.1)

Hydrphobic = {C, V, L, I,M,F,W} (A.2)

Neutral = {G, A, S, T, P,H, Y } (A.3)
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Appendix B

Theory and Principles of Fuzzy

ARTMAP

B.1 Introduction

The description of the fuzzy ARTMAP presented in this appendix is a summary of

the Fuzzy ARTMAP architecture described in detail by Carpenter et al [58], which

was introduced in 1992. The FAM has been established as one of the few learn-

ing architectures that has fast training times, has good accuracy and incremental

ability. These properties make the Fuzzy ARTMAP a unique and useful learning

architecture, which has been applied to various problems in engineering such as elec-

tric load forecasting [63], prehensile EMG pattern analysis [64] and fault diagnosis

of navigation systems [65], among others.

B.2 Fuzzy ARTMAP

The fuzzy ARTMAP is based on Adaptive Resonance Theory (ART). The fuzzy

ARTMAP (FAM) neural network consists of two fuzzy ART modules, designated

ARTa and ARTb, as well an an inter-ART module, shown in figure B.1. Inputs are

presented at the ARTa module, while their corresponding outputs are presented at

the ARTb module. The inter-ART module includes a MAP field whose purpose is to
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B.2. FUZZY ARTMAP

determine whether the correct mapping has been established from inputs to outputs.

Figure B.1: Detailed structure of the fuzzy ARTMAP. Redrawn from [58].

Some pre-processing of input patterns of the pattern classification task takes place

before they are presented to the ARTa module of the FAM. The first pre-processing

stage takes as an input Ma–dimensional input pattern from the pattern classifica-

tion task and transforms it onto an output vector a = (a1, . . . , aMa), whose every

component lies in the interval [0, 1], i.e. a min–max normalisation is applied. The

second preprocessing stage accepts as an input the vector a of the first preprocessing

stage and produces a vector I such that

I = (a,ac) = (a1, . . . , aMa , a
c
1, . . . , a

c
Ma

)

where

ac
i = 1− ai; 1 ≤ i ≤Ma

The above transformation is known as complement coding. Complement coding is

performed in the ARTa at a preprocessor field designated by F a
0 (see figure B.1).

From this point forward, the vector I will be referred to as the input vector. The

output pattern O is also produced by complement coding the class labels that are

applied to the ARTb module.

85



B.2. FUZZY ARTMAP

FAM frequently operates in two distinct phases: the training phase and the op-

eration phase. The training phase of FAM works as follows: given a list of training

input/output pairs, such as {I1,O1}, . . . , {Ir,Or}, . . . , {INT ,ONT }, we want to train

FAM to map every input pattern of the training list to its own corresponding output

pattern. In order to achieve the aforementioned goal, we present the training list

repeatedly to the FAM architecture. That is, present I1 to ARTa and O1 to ARTb,

then I2 to ARTa and O2 to ARTb, and finally INT to ARTa and ONT to ARTb; this

corresponds to one list presentation. We present the training list as many times as

necessary for FAM to correctly classify all the input patterns. The task is considered

accomplished (i.e. learning is complete) when the weights do not change during a

list presentation. This scenario is called off–line learning.

The operation phase of the FAM works as follows: given a list of test input patterns,

such as Ĩ1, . . . , Ĩr, . . . , ĨNS , we want to find the FAM output produced when each

one of the test patterns is presented at its F a
1 field. In order to achieve this goal, we

present the test list once to the trained FAM architecture.

For pattern classification problems, FAM creates clusters of input data in the input

pattern space. These clusters are hyperboxes that enclose within their boundaries

all the input patterns that choose them as their representative clusters. At the end

of the training, the clusters (hyperboxes) created define appropriate decision regions

that split the input space into subspaces that are mapped to a single output cate-

gory (class). It is possible that more than one subspace of the input pattern space

is mapped to the same output class.

There are a number of parameters that affect the performance of the FAM in clas-

sification problems. These are the choice parameter βa, and the baseline vigilance

parameter ρa. The choice parameter assumes a value in the interval [0, 1], and the

baseline vigilance parameter also assumes values in the interval [0, 1]. The FAM

equations in which the choice parameter ρa appear are:

T 1
j (I) =

∣∣∣I ∧wa
j

∣∣∣
βa +

∣∣∣wa
j

∣∣∣
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B.2. FUZZY ARTMAP

∣∣∣I ∧wa
j

∣∣∣
I

≥ ρa

The first equation above calculates the bottom–up input applied at node j of F a
2

(choice function) due to the presentation of pattern I at the field F a
1 of the FAM

architecture. The node in F a
2 that receives the maximum bottom–up input is cho-

sen to represent the input pattern I. The node thus chosen in F a
2 is considered

appropriate to represent the input pattern I if and only if it satisfies the inequality,

which is referred to as the vigilance criterion. The right hand side of the inequality

is set equal to the baseline vigilance. During FAM training, the vigilance parameter

value is allowed to increase above the baseline vigilance value, with the range of

the vigilance parameter in the interval [ρa, 1]. Small values of the baseline vigilance

parameter result in coarser clustering of the input patterns, while large values of

the baseline vigilance result in finer clustering of the input pattern of the pattern

classification task. The choice parameter βa has an effect in the order according

to which nodes in F a
2 will be accessed due to the presentation of an input pattern

applied at F a
1 field of the FAM [62].

Another FAM parameter that is not often referred to in the literature as a parameter

is the order of training pattern presentation. It has already been established that the

FAM performance depends on the order in which data is presented to the FAM dur-

ing the training process. As a result, FAMs performance is frequently evaluated by

averaging the performance of FAM for different orders of training data presentation

[62] and this is achieved in this work by training classifiers with different orderings

of the input data, as described in chapter 4.
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Appendix C

Learn++ Incremental Algorithm

C.1 Introduction

Learn++ was described in chapter 4, along with the pseudocode for the implementa-

tion of the Learn++ algorithm. As mentioned, Learn++ uses the ensemble system

to give the incremental learning property. This appendix provides a more detailed

description of the algorithm for completeness.

C.2 Details of Learn++

Learn++ is an incremental learning algorithm that uses an ensemble of classifiers

that are combined using weighted majority voting. Learn++ was developed by Po-

likar et al [96], and was inspired by the adaptive boosting algorithm, AdaBoost.

Each classifier is trained using a training subset that is drawn according to a distri-

bution. The classifiers are trained using a weak learning algorithm. The requirement

for the weak learning algorithm is that it must be able to give a classification rate

of less than 50% initially. For each database Dk that contains training sequences, S,

where S contains the pattern vector and the corresponding output class. Learn++

starts by intialising weights w according to the distribution DT , where T is the

number of hypotheses. Initially the weights are initialised according to a uniform

distribution, which gives equal probability for all instances to be selected to the first
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C.2. DETAILS OF LEARN++

training subset. This initial distribution is given by:

D =
1
m

where m is the number of training samples in Dk. The training data is then divided

into training subset TR and testing subset TE and are chosen according to the

distribution. After the training and testing subset have been chosen, the weakLearn

algorithm is called and trained using the testing subset TR. A Hypothesis ht is

obtained from weakLearn, and is tested using both the training and testing subsets

to obtain the error ε, given by

εt =
∑

t:ht(x) 6=y

Dt(i)

This error must be less than 1
2 . A normalised error β is computed using

βt =
εt

1− εt

If the error is greater than 1
2 , the hypothesis is discarded and a new training and

testing subset is chosen according to DT and a new hypothesis is created using weak-

Learn. All classifiers generated thus far are combined using the weighted majority

voting to obtain a composite hypothesis Ht:

Ht = arg max
y∈Y

∑
t:Ht(xi) 6=yi

Dt(i)

If the error is greater than 1
2 , then the current hypothesis is discarded and new

training and testing subsets are chosen according to the distribution. If the error is

less than 1
2 , the normalised error of the composite hypothesis is computed

Bt =
Et

1− Et

The error is used in the distribution update rule where the weights of the correctly

classified instances are reduced, consequently increasing the weights of the instances

that were misclassified by the current hypothesis. This ensures that instances that
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were misclassified by the current hypothesis have a higher probability of being se-

lected for the subsequent training set. The distribution update rule is given by:

wt+1(i) = wt(i)×B
1−[|Ht(xi) 6=yi|]
t

Once the Tk hypotheses are created for each database, the final hypothesis is com-

puted by combining the composite hypotheses using the weighted majority voting

given by

Ht = arg max
y∈Y

K∑
k−1

∑
t:Ht(x)=y

log
(

1
Bt

)
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Glossary

Alignment A pairing of two homologous nucleotide or protein sequences for the

purpose of identifying the location of accumulated changes since they last

shared a common ancestor.

Blotting and Hybridisation The transfer of molecules from a gel onto a mem-

brane followed by washing with a labelled probe that binds specifically to a

molecule of interest.

Central Dogma of Molecular Biology Process by which information is extracted

from the nucleotide sequence of a gene and then used to make a protein (DNA

→ RNA → Protein).

Curation The process of checking and manually updating the information concern-

ing proteins stored within a protein database.

Enzyme A biological catalyst (usually a protein) that causes a specific chemical

reaction to proceed more quickly by lowering its activation energy.

Family Consists of proteins that are more than 50% identical in amino acid se-

quence across their entire length.

Fuzzy ARTMAP (FAM) Classifier based on a fuzzy measure that allows multi–

class classification, incremental learning and quick classification times.

Gel Electrophoresis Process in which an electric field is used to pull charged

molecules (proteins) through a polyacrylamide, starch or agarose gel to sepa-

rate and compare them by size and or charge.

Genetic Algorithm (GA) Evolutionary optimisation tool which allows stochastic

search for global optimal solution.
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Homologous Proteins These are proteins which come from a single evolutionary

ancestor. These proteins tend to have similar structures and functions.

Hydrophobic Having limited interaction with water molecules; literally, “afraid of

water”.

Isocortex Also known as the neocortex and and is involved in higher functions

such as sensory perception, generation of motor commands, spatial reasoning,

conscious thought, and in humans, language.

Labelled Feature Vector A representation for the examples used to train a pat-

tern recognition algorithm. a labelled feature vector consists of a list of feature

values for the example, along with a label indicating the correct classification

of the example.

Multilayer Perceptron (MLP) The most common neural network architecture

that consists of an input layer, a number of hidden layers and an output layer.

The classifier is trained using the popular backpropagation algorithm or its

many variants.

Nearest Neighbour Classifier A statistical method that classifies objects or con-

cepts according to similarity of their features.

Pathogen A disease causing agent.

Primary Structure Sequence in which the various amino acids are assembled into

a protein.

Proteome The sum total of an organism’s proteins.

Sequence (1) The linear order of nucleotides in a DNA or RNA molecule or the

order of amino acids in a protein. (2) The act of determining the linear order

of nucleotides or amino acids in a molecule.

Structural Protein A term used to describe proteins generally involved in main-

taining a cell or tissue’s shape such a those that provide rigidity and support

in bones and connective tissues.

Support Vector Machine (SVM) A classifier based on statistical learning the-

ory and the principle of finding the optimal separating hyperplane in a higher

dimensional space, which is obtained by using a kernel function.
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Multi-class Protein Sequence Classification Using Fuzzy ARTMAP

Shakir Mohamed, David Rubin and Tshilidzi Marwala

Abstract— The classification of protein sequences into fam-
ilies is an important tool in the annotation of structural and
functional properties to newly discovered proteins. We present
a classification system using pattern recognition techniques to
create a numerical vector representation of a protein sequence
and then classify the sequence into a number of given families.
We introduce the use of fuzzy ARTMAP classifiers and show
that coupled with the genetic algorithm based feature subset
selection, the system is able to classify protein sequences
with an accuracy of 93 %. This accuracy is compared with
numerous other classification tools and demonstrates that the
fuzzy ARTMAP is suitable due to its high accuracy, quick
training times and ability for incremental learning.

I. INTRODUCTION

Biosequence analysis has received increased attention in
recent years since the completion of the human genome
project. As a subfield, protein sequence analysis has also
become important due to its application in drug discovery
programs [1] and in the analysis of prion diseases. Proteins
are linear polymers or chains of amino acids and the repre-
sentation of this amino acid sequence is known as the protein
primary structure. All proteins are constructed from a 20-
letter amino acid alphabet AA = {A, C, D, E, F, G, H, I, K,
L, M, N, P, Q, R, S, T, V, W, Y}. Each amino acid has spe-
cific properties such as charge and polarizability, isoelectric
properties and hydropathy properties. These properties allow
a protein to be represented by a measure of these properties.

In light of recent advances in computational intelligence
tools and an understanding that contiguity between amino
acid sequences between proteins cannot be assumed, this
paper aims to add to the set of available tools for the
classification of protein sequences into families. The paper
demonstrates the use of fuzzy ARTMAP’s as an alternative
machine learning tool that provides improved classification
ability, but also improved training and classification times.

Section II provides a background as to the large number
of available protein databases and the approaches to pro-
tein sequence classification. Section III, then provides an
overview of the classification system with section IV, VI
and VII discussing the feature generation and the testing of
the system. Finally, section VIII provides a discussion of the
results and conclusions are made in section IX.
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II. BACKGROUND

A. Protein Databases

The protein community has over the years estab-
lished many publicly available protein–information related
databases. Some of these include the well known Protein
Data Bank (PDB) and UniProt among others, with each of
these databases serving a particular segment of the protein
analysis community. The protein database used in this work
is the Structural Classification of Proteins (SCOP) [2] version
1.69. This database organises protein sequences according
to a hierarchy of protein classes, folds, superfamilies and
families; with each level of the hierarchy showing a different
type of structural relationship between individual protein
sequences.

The SCOP database only consists of classifications of
proteins according to a protein sequence ID, but does not
supply any of the sequences. The sequences are obtained
from the ASTRAL Database 1.69. The database with no
more than 95% sequence identity was selected for use in
this work.

B. Alignment–Based Sequence Comparison

The problem of classifying protein sequences is not new,
and major work in this area applies the use of sequence align-
ment techniques. These techniques operate on the principle
of detecting sequence homologies or conserved regions of
protein sequences in a set of available protein sequences.
Essentially what these techniques do is align a sequence
under test, either pairwise or by multiple alignment with a set
of known protein sequences. A distance measure between the
sequence under test and each of the alignments is calculated
and the sequence to which the given sequence has the
smallest distance is the closest matching protein sequence.
Thus the sequence belongs to the family of the closest
matching sequence. Many alignment–based techniques have
been developed, most notably are the Basic Local Alignment
and Search Tool – BLAST, FASTA and position specific
weight matrices. A comprehensive review of these techniques
is given by Durbin [3].

While these techniques have proven a degree of success,
they are limited by the high computational load when the
number of sequences in the database against which the search
is applied is large, and is also dependent on the length of
individual sequences which may vary considerably between
proteins [4]. Another drawback of the alignment based
approach is the assumption that the order of amino acids
in a sequence is conserved between homologous segments
[4], which is not in line with the genetic recombination and
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divergent evolution which may occur during the evolution of
a protein. These problems have given rise to the alignment–
free techniques.

C. Alignment Free Sequence Comparison

The alignment–free techniques consist of representing in-
dividual protein sequences by a vector of numerical measures
that capture the essence of the sequence. These measures
can be used in conjunction with a wide range of pattern
recognition and data mining tools in order to generate
models of sequence relationships and to classify the protein
sequences into a wide range of groupings. A review of these
techniques is provided by Vigna and Almeida [4].

III. SYSTEM OVERVIEW

The question being addressed here is: given an unknown
protein sequence S and a set of known protein families F ,
we must classify this sequence into one of the families in
F . In general, sequences from the same family have similar
structural and functional properties. Thus if an unlabeled
sequence S is found to belong to some family Fi, we can
infer the structure and function of S. An overview of the
pattern recognition process is shown in figure 1.

Fig. 1. Overview of Sequence Classification System

This figure shows the well known pattern recognition
process, which begins with the data acquisition stage. This
process involves extracting all the sequence classification
information in the SCOP database for which we have the
sequences in the ASTRAL database. This set of sequences is
then converted to a vector based representation. The resulting
vector has a large dimensionality which is reduced by using
the genetic algorithm to stochastically search for the best sub-
set of features. The resulting feature subset is then classified
using a wide range of techniques. In this paper we introduce
the Fuzzy-ARTMAP classifier and demonstrate the benefits
of using the classifier over other established classifiers in the
current literature. To the best of our knowledge, the fuzzy
ARTMAP has not been considered before in the context of
protein sequence family classification and could prove useful
in other areas of computational biology.

IV. PROTEIN DATA ANALYSIS

A. Sequence Extraction and Preprocessing

As mentioned, the SCOP database 1.69 and the corre-
sponding ASTRAL database with less than 95% sequence
identity is used. As a result of removing the highly redundant
sequences from the Astral database, the corresponding SCOP
entries had to be extracted and matched against the sequence
ID in the Astral database. The SCOP database has just over
70,000 entries, while the Astral file has about 12,000 entries,
resulting in the matching process between the two databases
being a lengthy procedure.

Once this matching is completed, “outlier” sequences must
be removed. Two types of outliers were observed from the
available databases. The first is that there exists certain Astral
sequences for which there is no corresponding SCOP entry.
There were a total of 345 such sequences and these were
removed from the sequence list. The second type of outlier
consists of sequences which have characters which are not
part of the standard 20-letter amino acid alphabet — the
letters are B and Z and have ambiguous meanings. From
the data, 120 such sequences were observed and were also
removed from the sequence list.

For this work, only a subset of the available families
were considered for the experimental work. Table I shows
the table of protein families considered and the number
of sequences in each family that were extracted from the
Astral Database. A total of 8 protein families or classes

TABLE I

SCOP 1.69 PROTEIN FAMILIES CONSIDERED IN THIS WORK

# SCOP Family PDB ID # Seq.

1 Phycocyanin-like phycobilisome
proteins

46532 23

2 monodomain cytochrome c 46627 48
3 Glutathione S-transferase (GST),

N-terminal domain
52862 45

4 Calmodulin-like 47502 53
5 Nucleosome core histones 47114 23
6 Tyrosine-dependent oxidoreduc-

tases
51751 68

7 Crystallins/Ca-binding
development proteins

49696 21

8 Alcohol dehydrogenase-like, N-
terminal domain

50136 29

will be used in this work. These protein sequences must be
transformed into numerical features. Two types of features
have been identified in the literature, these being global and
local features. Huang et al [5] provide a good description
of the difference between global and local features and this
distinction is used in this work.

B. Global Feature Generation

Global features represent the nature of the entire protein
sequence. These features must capture the global similarity
between related sequences allowing for comparison. We
consider two types of global features in this work. The
first type are physico-chemical properties of the sequences
which are known from biology. We specifically consider the
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molecular weight (W) and the isoelectric point (pI) of the
proteins sequences.

Apart from these two features, we also consider the
amino-acid composition of the sequence. The composition
is simply the presence frequency of each of the 20-possible
amino acids in the given sequence. Thus the composition is
calculated by [6]:

νi =
si

∑20
j=1 sj

, for i = 1, 2, . . . , 20. (1)

where νi is the value for the ith feature and si is the number
of times the ith amino acid appears in the sequence. This
results in 20 features: a frequency of appearance for each
of the possible amino acids. If a particular amino acid does
not appear at all in the sequence, the corresponding feature
value is zero.

A third set of features based on the hydropathy of amino
acids in a given protein sequence is also calculated. The
hydropathy of a protein sequence is the attractive property
of an amino acid to a water molecule. Amino acids are
thus Hydrophobic, Hydrophilic (polar) or neutral. We use
the Chothia and Finkelstein [7] hydropathy classification.
We calculate three descriptors, the hydropathy composition
(C), the hydropathy distribution (D) and the Hydropathy
transmission (T ) for the sequences as described by Dubchak
[7].

The composition C is calculated similarly to the amino
acid composition described previously. In this case we cal-
culate the presence frequency of hydrophobic, hydrophilic
and neutral amino acids in the sequence. This results in
three features being generated. The transmission is defined
by three values. The first is the number of times a polar
molecule is followed by a neutral molecule or vice versa.
Similarly the other two are the number of times a neutral
molecule is followed by a hydrophobic molecule or vice
versa and the number of times the polar molecule is followed
by a hydrophobic molecule or vise versa.

The distribution looks at intervals of 25%, 50%, 75%
and 100% along the sequence length. For each interval the
presence frequency of hydrophobic, hydrophilic and neutral
molecules for each percentage interval is calculated. Thus
this results in 12 features, 4 features for each of the three
hydropathy groups. A more detailed description of these
features can be found in Dubchak [7]. In total 40 features
(2+20+3+3+12) are generated based on global sequence
descriptors.

C. Local Feature Generation

The local features capture local interactions between
amino acids and groups of amino acids in a protein sequence.
The n-gram method is well established as a good descriptor
of local similarities in a sequence and has been used by
many authors such as Tomovic et al [8] and Cheng et al
[1]. Essentially the n-gram method considers the presence
frequency of consecutive n-letter combinations in the protein
sequence, for integer n. For example, consider the short se-
quence SLTKTERTIIVSM, the 2-grams of this sequence are:

SL, LT, TK, KT, etc. Given a sequence, features are generated
by calculating the presence frequency of all possible n-grams
for the amino acid alphabet. Two letter combinations are
known as digrams or bigrams. While higher n-grams such as
3-grams and 4-grams have been considered in the available
literature, only digrams are considered in this work since
it has been proven by numerous authors [1], [9] to work
well in protein classification systems. This results in 400
features representing the local properties of the amino acids.
The combined set of features results in a feature vector with
a dimensionality of 440. This feature vector is now used in
the design of the protein family classifiers.

V. PROTEIN FAMILY CLASSIFICATION

A. Current Classification Tools in Use

The feature based approach to protein sequence classifica-
tion makes possible the use of a wide range of classification
tools. Most protein databases supply Hidden Markov Models
(HMM) for each of the families in the database, and the
HMM’s can be used to determine which family an unknown
sequence belongs to. More recently, the use of Multi–Layer
Perceptron (MLP) Neural Networks has been introduced to
the problem of classification. Neural networks have been
applied by authors such as Dubchak [7], Nagarajan et al [10]
and Weinert and Lopes [11]. Each has shown success in the
areas of domain detection or protein folding prediction. Other
types of classifiers have also been used. Zhao et al [6] have
made use of the Support Vector Machines while Radial Basis
Function (RBF) Neural Networks and k–Nearest Neighbour
(k-NN) classifiers have also been used [12].

B. Fuzzy ARTMAP’s for Classification

This paper introduces the Fuzzy ARTMAP as a classifier
for the protein classification task. The fuzzy ARTMAP is
based on adaptive resonance theory and was introduced by
Carpenter et al [13]. This learning system is built upon
two fuzzy ART modules and employs calculus based fuzzy
operations in the learning procedure. A diagram showing the
structure of a fuzzy ARTMAP system is shown in figure 2.

Fig. 2. Representation of the Fuzzy ARTMAP Architecture

The fuzzy ARTMAP, divides the input feature space into a
number of hyperboxes in the n-dimensional space. It contains
a map field which maps the individual hyperboxes to the
output classes of the classification system. As a result, the
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fuzzy ARTMAP is able to model complex input spaces well.
It requires two variables, where the vigilance parameter ρ,
represents the tradeoff between classification accuracy and
incremental learning ability. The learning rate β, is a factor
by which the hyperboxes are adjusted with each training
pattern during the training phase. In this system, β = 1,
which is known as fast learning. Further details on the Fuzzy
ARTMAP and its training can be found in [13].

C. Experimental Procedure

In testing the system, two experiments are conducted.
The first experiment considers comparing the classification
ability of the fuzzy ARTMAP against a wide range of other
classifiers. In this experiment all the features which have
been generated are used as inputs to the system.

In the second experiment, wrapper based feature selection
is employed. It is well known that large dimensional feature
vectors may contain many redundant features which may
‘confuse’ a classifier and result in reduced classifier accuracy,
increased training time and increased number of required
training patterns [14]. To observe the performance benefits
of feature subset selection, the approach is applied and
compared using fuzzy ARTMAP’s, MLP neural networks
and the k-Nearest Neigbour classifiers.

VI. FAMILY CLASSIFICATION WITHOUT FEATURE

SELECTION

A. Overview of Experiment

This experiment involves using the entire set of generated
features and comparing the performance of a wide range
of classifiers to determine the effectiveness of the fuzzy
ARTMAP in relation to these well known classifiers. This
initial performance is a good benchmark of the viability of
fuzzy ARTMAP.

B. Results

In this experiment, the fuzzy ARTMAP is compared with
five other classifiers. The classifiers are the Generalised Lin-
ear Model, the k–Nearest Neighbour Classifier, the Multi–
Layer Perceptron Neural Network and the Radial Basis
Function Neural Network.

The Generalised Linear Models (GLM) are single layer
neural network models which implement well known statis-
tical functions such as regression. They are trained using the
Iterated Reweighted Least Squares Algorithm (IRLS), and
is used here to demonstrate the lack of linear relationships
between the input features and the poor performance if
such an assumption is made. The k–Nearest Neighbour
classifier is used with the number of neighbours, k = 1.
The MLP networks are trained with 25 nodes in the hidden
layer. The network is trained using the scaled conjugate
gradient algorithm with weight decay. The weight decay
hyperparameter α was set to 0.01. The Radial Basis Function
neural networks were tested using three different kernel func-
tions, viz. Gaussian, Thin Plate Spline and the logarithmic
kernel functions. The fuzzy ARTMAP’s were trained with

a vigilance parameter of ρ = 0.5. Details of the alternative
machine learning tools discussed here can be found in [15].

Table II shows the classification performance of each of
the classifiers described above. Each was tested using 10-
fold cross validation. The performance measure is the error
rate ε, which is defined as:

ε =
Number of Misclassifications

Total Number of Patterns
(2)

TABLE II

COMPARISON OF PERFORMANCE OF DIFFERENT CLASSIFIERS USING ALL

GENERATED FEATURES

Classifier Error Rate

GLM 0.9000
RBF – Gaussian Kernel 0.1692
RBF – Thin Plate Spline 0.1762
RBF – r4logr 0.1577
MLP 0.1458
k-Nearest Neighbour 0.1516
fuzzy ARTMAP 0.1290

VII. GENETIC ALGORITHM BASED FEATURE SELECTION

A. Selection Process Overview

As mentioned, high dimensional feature vectors increase
the costs in terms of computation times, number of patterns
required and in the accuracy of classification systems. In
order to avoid these problems, adequate feature selection
techniques are required that will reduce the dimensionality
of the feature vectors, but still retain the class discriminative
ability of the features.

Feature selection techniques can be grouped into two
classes – filter or wrapper approaches [14]. The wrapper
based approach is used in this work The wrapper based
approaches incorporate a learning algorithm in the feature
selection process and generally exhibit high classification
accuracies due to the selection of features which maximise
the performance of a chosen classifier. The genetic algorithm
is used here as the search tool.

The genetic algorithm (GA) is a tool that mimics con-
cepts from evolutionary biology such as natural selection,
crossover and mutation. The stochastic nature of the GA
makes it a good tool for feature selection, since it can quickly
explore the possible search space and determine the global
maximum of a fitness function. We compare this feature
selection process between the fuzzy ARTMAP, the k-Nearest
Neighbour classifier and a Multi-Layer Perceptron Neural
network to explore the performance increase in using a subset
of features. The desired number of features to be selected
from the original feature vector is used as the number of
genes in a chromosome. Each gene in this chromosome is an
integer between 1 and 440, and represents the feature number
which is selected for a particular generation. Points along the
chromosomes are selected for crossover and mutation. The
genes selected at each of the points are altered using floating
point operations, effectively causing a different set of features
to be chosen. This process is repeated for a fixed number of
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generations resulting in the determination of the best feature
subset for the required number of features.

B. Experimental Results

The feature selection process was performed using the
multi–layer perceptron (MLP) neural network, the k-Nearest
Neighbour Classifier and the fuzzy ARTMAP as the learning
algorithm. The required number of features was varied from
10 features to 100 features. The error rate was used as the GA
fitness function to be minimised and was calculated using 10-
fold cross-validation. Each of the selection procedures was
repeated 5 times, and the resulting mean accuracy of the
selected features and the standard deviation are shown in
figure 3.

Fig. 3. Feature selection Results Fuzzy ARTMAP and MLP

From the graph it is clear that 90 features is the optimal
feature set that is chosen by both the fuzzy ARTMAP system
and the MLP system, while the k-NN has selected 50 features
as the optimal. A separate MLP, k-NN and fuzzy ARTMAP
network was trained using this selected feature subset using
10–fold cross-validation. It was found that the MLP has an
error rate of 0.1084, the k-NN an error rate of 0.1097 and the
fuzzy ARTMAP an error rate of 0.0654 over the 10–folds.

VIII. DISCUSSION AND FUTURE WORK

The results presented show in both that the fuzzy
ARTMAP provides improvement over many other classifi-
cation systems. This clear benefit is due to the way in which
the fuzzy ARTMAP creates a mapping of the input feature
space, by the division of the input space into hyperboxes.

Furthermore, the fuzzy ARTMAP is also preferred since
it has very quick training times, and this is due to the fact
that a number of hyperboxes are created in the space and
related to each other by the mapping field. In the experiments
conducted here, the average training and testing time for the
10-fold cross validation was 5.77s for the fuzzy ARTMAP
and the k-NN has a time of 0.984s, as opposed to the training
and learning time of 95.953s for the MLP networks. This fast
training time of the fuzzy ARTMAP is desired especially for
a system where a much larger set of data is used than that
used here.

Another advantage of the fuzzy ARTMAP over other
learning systems is its ability for incremental learning. Incre-
mental learning is the addition of knowledge to a previously
trained system. This property is desired since new protein
sequences are being discovered every day, and whose knowl-
edge can be added to the system as it becomes available.
This would allow more accurate protein classifications and
is work which has been identified for future exploration.
Further work also includes a further analysis and comparison
of the system to a wider range of classifiers and the use of
alternate features such as sequence entropy for classification.

IX. CONCLUSION

The successful classification of a protein sequence into a
number of known protein families has been demonstrated
using the fuzzy ARTMAP. This system has been used with
a Genetic Algorithm Based Feature selection to obtain a
subset of features that improves the classification ability of
the classifier. This system has been compared to MLP and
a number of other classification systems, and has proven
that the fuzzy ARTMAP provides classification improvement
over these systems. The fuzzy ARTMAP is desirable as a
classifier because of its fast training times and its incremental
learning ability, an area which will be explored in future.
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Abstract
The problem of protein structural family classification remains a
core problem in computational biology, with application of this
technology applicable to problems in drug discovery programs
and hypothetical protein annotation. Many machine learning
tools have been applied to this problem using static machine
learning structures such as neural networks or support vector
machines that are unable to accommodate new information into
their existing models. We utilize the fuzzy ARTMAP as an al-
ternate machine learning system that has the ability of incre-
mentally learning new data as it becomes available. The fuzzy
ARTMAP is found to be comparable to many of the widespread
machine learning systems. The use of an evolutionary strategy
in the selection and combination of individual classifiers into an
ensemble system, coupled with the incremental learning abil-
ity of the fuzzy ARTMAP is proven to be suitable as a pattern
classifier. The algorithm presented is tested using data from the
G-Coupled Protein Receptors Database and shows good accu-
racy of 83%. The system presented is also generally applicable,
and can be used in problems in genomics and proteomics.
Keywords: Bioinformatics, GPCR, Incremental Learning, Fuzzy
ARTMAP

1. Introduction
Biosequence analysis has received increased attention in recent
years since the completion of the human genome project. As
a sub-field, protein sequence analysis has also become impor-
tant due to its application in drug discovery programs [1] and in
the analysis of prion diseases. The benefits of a computational
analysis of biological systems is most clear when analysing the
process of drug design. The development of new drugs often
takes up to 15 years and costing up to $700 million per drug un-
der investigation [1]. This drug design consists of two phases: a
discovery phase and testing phase [2]. It is in this drug discov-
ery phase that computational tools have had the most impact.
In pharmaceutical drug discovery programs it is often useful to
classify the sequences of proteins into a number of known fam-
ilies. In a mathematical notation, if it is known that a sequence
S is obtained for some diseaseX , and thatS belongs to fam-
ily F , treatment for the disease is initially determined using a
combination of drugs that are known to apply toF [3].

Consider the example of the HIV protease, a protein pro-
duced by the human immunodeficiency virus. The target iden-
tification stage involves the discovery of this HIV protease and
the identification of this protein as a disease causing agent. The
objective of drug design is to design a molecule that will bind
to and inhibit the drug target . A great deal of time and money
can be saved if the effect of molecules can be determined before
these molecules are actually synthesised in a laboratory. Bioin-
formatics tools are used to predict the structures and hence the

functions of the molecules under design and to determine if they
will have any effect on the drug target.

The G-Protein Coupled Receptors (GPCRs) are the most
important superfamily of proteins found in the human body.
Many classification systems have been developed over the years
based on machine learning to classify sequences as belonging
to one of the GPCR families, and have shown great success in
this task. These classification systems produce static classifiers
which cannot accommodate any new sequences that may be dis-
covered, and do not aid in solving any of these grand problems.

This paper introduces the use of a classification system
based upon an evolutionary strategy, incremental learning and
the Fuzzy ARTMAP to realise a protein classification system
for the GPCR protein superfamily that allows all-vs-all com-
parison of these proteins. Being an incremental system, the
classifier is dynamic and has the ability to incorporate new in-
formation into the classification model.

2. Importance of the GPCRs

The G-Protein Coupled Receptors (GPCRs) are a superfamily
of proteins and forms the largest superfamily of proteins found
in the human body. The GPCRDB is a database dedicated to
the storage and annotation of G-Coupled proteins and at present
consists of 16764 entries [4]. GPCRs play important roles in
cellular signalling networks in processes such as neurotrans-
mission, cellular metabolism, secretion, cellular differentiation
and growth and inflammatory and immune responses.Because
of these properties, the GPCRs are the targets of approximately
60% – 70% of drugs in development today [5] and results
in more than US$23.5 billion in pharmaceutical sales revenue
from drugs which target this superfamily.

The GPCR superfamily consists of five major families and
several putative families, of which each family is further divided
into level I and then into level II subfamilies. The extreme di-
vergence among GPCR sequences is the primary reason for the
difficulty of classifying these sequences [1].

In this research eight GPCR families are considered from
the number of families available at the GPCRDB. The GPCR
sequences are stored in the EMBL format, which consists of
a number of labelled fields considering aspects of a sequence
such as identifiers in a number of databases, the date of discov-
ery and relevant publications dealing with the protein sequence.
The database itself is updated every three to four months.

3. Review of Important Tools

A number of tools are used in the system to be presented, these
include the fuzzy ARTMAP (FAM) classifier and the Genetic
Algorithm, both of which are reviewed here.
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3.1. Overview of Fuzzy ARTMAP

The fuzzy ARTMAP was introduced by Carpenteret al [6] and
is based on Adaptive Resonance Theory (ART) and a fuzzy
learning algorithm. A diagram showing the structure of a fuzzy
ARTMAP system is shown in figure 1. Fuzzy ARTMAP has

Figure 1: Representation of the Fuzzy ARTMAP Architecture

two free variables. The vigilance parameterρ represents the
tradeoff between classification accuracy and incremental learn-
ing ability. The learning rateβ is a factor by which the hyper-
boxes are adjusted with each training pattern during the training
phase. In this work,β = 1, which is known as fast learning.
For further details on the Fuzzy ARTMAP and its training, the
reader is referred to [6].

3.2. Overview of the Genetic Algorithm

Genetic algorithms (GA) find approximate solutions to prob-
lems by applying the principles of evolutionary biology, such as
crossover, mutation, reproduction and natural selection [7]. The
GA search process consists of the following steps: 1) Generat-
ing a pool of candidate solutions (chromosomes) and encoding
all values in a binary or floating point representation. 2) Evalu-
ation of the fitness for each chromosome in the gene pool. The
fitness is determined via a fitness function defined for the prob-
lem being solved, and chromosomes with the lowest fitness are
discarded and make way for a new set of chromosomes. Re-
placement sets of chromosomes are created by the genetic op-
erations of crossover and mutation on the most fit individuals.
These genetic operations add an element of randomness to the
search process allowing a wider range of the solution space to
be explored. 3) Steps 1 and 2 are repeated until a specified fit-
ness level is attained or the maximum number of generations is
exceeded [7].

4. Prior Work
The problem of incremental learning has not been considered
before as it is presented here. Vijaya et al [8] consider the in-
cremental clustering of protein sequences, but that is a different
problem from that considered here. The fuzzy ARTMAP has
been chosen as the incremental classifier and as mentioned, has
been shown to be an effective incremental classifier [6]. The
Support Vector Machine (SVM) is widely used in protein classi-
fication and it would appear that the use of an incremental SVM
would be more suitable. While some algorithms for incremen-
tal SVM [9] exist, the problem with many of these systems is
that they cater to the binary-classification problem only and are
not applicable to multi–class classification problems, which is
the case for the classification of proteins into families. Other in-
cremental classification systems also exist, such as incremental

common-sense models and incremental fuzzy decision trees. Of
these incremental classification systems, the fuzzy ARTMAP is
the most established and well known and is thus used.

5. System Overview

A schematic representation of the system is shown in figure 2.
Input sequences are extracted from a protein database and then

Figure 2: Overview of System Architecture

converted into a numerical feature vector. We then create a pop-
ulation of classifiers to introduce classification diversity, with
the selection of suitably diverse classifiers from this population
using the Genetic Algorithm coupled with kappa analysis. An
ensemble of classifiers is used as a means of introducing modu-
larity in the learning system. This system is implemented using
the fuzzy ARTMAP (FAM) and a series of experiments are con-
ducted to evaluate the performance of this system. Pseudocode
for the creation and operation of the system is shown in algo-
rithm listing 5. The ability of the FAM as an alternative clas-
sifier to many of the other more popular classifiers is demon-
strated by comparing the classification ability of these systems
using the GPCR data set. The incremental learning system de-
scribed by algorithm listing 5 is then tested using the GPCR
data and shown to be able to learn new data as well as maintain
existing data.

6. Protein Vectorisation

The data obtained from the GPCRDB is in the form of amino
acid sequences. In order for these sequences to be used in classi-
fication systems, they must be converted into a numerical form.
Before this conversion though, preprocessing in the form of out-
lier removal must be completed. Outlier removal consists of
removing sequences which have characters which are not part
of the standard 20-letter amino acid alphabet — the letters are
B and Z and have ambiguous meanings. Once this process is
complete, these protein sequences must be transformed into nu-
merical features. Two types of features have been identified in
the literature, these being global and local features. Huanget al
[10] provide a good description of the difference between global
and local features and this distinction is used in this work.



Algorithm 5.1: FUZZY ENSEMBLE(D)

Training Phase

comment:Create populationj of FAM classifiers each trained with

a different permutation of the input dataX1

Each classifier is a hypothesisht : X1 7→ Y1

ε = 1
N

∑
n|ht(xi) 6=yi

comment:Sort classifiers based on incr. error on validation set.

SORT(ε)
comment:Select lowest error classifier as elite classifierhelite

comment:Calculate the agreementκ, of the 15 best classifiers

(based on error) with respect to the elite classifier

κ =
N

∑N
i=1 xii−

∑N
i=1 xi+�x+i

N2−
∑N

i=1 xi+�x+i

comment:Genetic Algorithm selection ofp classifiers based

on a trade–off between errorε and agreementκ
GAfitness(κ, ε) = λ

∑p
i=1 κi +

∑p
i=1 εi

Create ensemble classifier using the elite classifierhelite

and thep selected classifiersht, t = 1, . . . , p
comment:Fusion of individual predictions using majority voting.

Operation Phase

If predicting sequence family, convert to feature representation
and classify using the Fuzzy ARTMAP based system created
during this previous training phase
comment: If incrementing system knowledge, increment each

classifiers in the Fuzzy ARTMAP base system independently,
using the training data for new sequences
hincr

t = T (ht,Xk 7→ Yk) ,
where the transformationT is the incremental training
process andk is the dataset to be added to the system

6.1. Global Feature Generation

Global features represent the nature of the entire protein se-
quence. These features must capture the global similarity be-
tween related sequences allowing for comparison. Consider the
amino-acid composition of the sequence. The composition is
simply the presence frequency of each of the 20-possible amino
acids in the given sequence. Thus the composition is calculated
by [11]:

νi =
si∑20

j=1 sj

, for i = 1, 2, . . . , 20. (1)

whereνi is the value for the ith feature andsi is the number of
times the ith amino acid appears in the sequence. This results in
20 features: a frequency of appearance for each of the possible
amino acids. If a particular amino acid does not appear at all in
the sequence, the corresponding feature value is zero.

A second set of features based on the hydropathy of amino
acids in a given protein sequence is also calculated. Amino
acids are either hydrophobic, hydrophilic (polar) or neutral. We
use the Chothia and Finkelstein [12] hydropathy classification.
We calculate three descriptors, the hydropathy composition (C),
the hydropathy distribution (D) and the Hydropathy transmis-
sion (T ) for the sequences as described by Dubchak [12].

The compositionC is calculated similarly to the amino acid
composition described previously. In this case we calculate

the presence frequency of hydrophobic, hydrophilic and neu-
tral amino acids in the sequence. This results in three features
being generated. The transmission is defined by three values.
The first is the number of times a polar molecule is followed by
a neutral molecule or vice versa. Similarly the other two are the
number of times a neutral molecule is followed by a hydropho-
bic molecule or vice versa and the number of times the polar
molecule is followed by a hydrophobic molecule or vice versa.

The distribution looks at intervals of 25%, 50%, 75% and
100% along the sequence length. For each interval the presence
frequency of hydrophobic, hydrophilic and neutral molecules
for each percentage interval is calculated. This results in 12
features, 4 features for each of the three hydropathy groups.
A more detailed description of these features can be found in
Dubchak [12]. In total 38 features (20+3+3+12) are generated
based on global sequence descriptors.

6.2. Local Feature Generation

The local features capture local interactions between amino
acids and groups of amino acids in a protein sequence. The
n-gram method is well established as a good descriptor of lo-
cal similarities in a sequence and has been used by many au-
thors such as Chenget al [1], Tomovic et al [13] and Zhaoet
al [14]. Essentially then-gram method considers the presence
frequency of consecutiven-letter combinations in the protein
sequence, for integern. For example, consider the short se-
quenceSLTKTERTIIVSM, the 2-grams of this sequence are:
SL, LT, TK, KT, etc. Given a sequence, features are generated
by calculating the presence frequency of all possiblen-grams
for the amino acid alphabet.

A total of 438 features have been generated and as a final
post-processing step undergo min-max normalisation. The nor-
malisation is a requirement for using the FAM, since the FAMs
complement coding scheme assumes normalised data.

7. Incremental Algorithm and Diversity
The creation of the committee–based sytem is based on a novel
approach, implementing an evolutionary strategy which was
summarised in algorithm listing 5. We first train an initial pop-
ulation ofj classifiers, each classifier having been trained with
a different permutation of the input training data. This permu-
tation is needed in order to add diversity to the classifiers be-
ing created. As mentioned, the fact that the fuzzy ARTMAP
learns in an instance–based fashion, makes the order in which
the training patterns are received an important factor [15]. In
the experiments performed, the initial population consists of 30
classifiers.

The classification errorε of each of these classifiers is then
evaluated against a validation data set. The classifiers are then
ranked in terms of increasing error. The lowest error classifier
from this population is theelite classifierand is the classifier
that automatically becomes a member of the ensemble system.
The inclusion of this elite classifier ensures that at least one high
accuracy classifier is selected for the committee.

The next step is to select the remainingn classifiers. In this
application we select a further 4 classifiers. The selection of
the other members of the committee is important and requires a
number of factors to be considered:

• We do not wish to select classifiers that perform exactly
as the elite classifier, since this gives no diversity to the
predictions that are generated, and thus there is no room
for improvement.



• We do not wish to select low accuracy classifiers that will
confuse the prediction obtained and thus result in predic-
tions that are more erroneous than a single classifier.

It would appear that these two conditions oppose each other,
since high accuracy classifiers would tend to agree on the same
predictions, against what we require for point 1. A trade-off
between the classifier accuracy and the level of agreement be-
tween classifiers is then ideally what is required. This intro-
duces the need for a formal definition of agreement between
classifiers.

We use the definition of agreement considered by Petrakos
et al [16], and the mathematical description that follows is gen-
erally known as kappa analysis. We define the agreement be-
tween any two classifiersκ based on the error matrix of the two
classifiers [17]. The error matrix shows the number, and for
which classes the two classifiers agree on a prediction. Table 1
shows the format for an error matrix between two classifiers.

Table 1: Data Format for Error Matrix Between Classifiers
Classifier 2

Classifier 1 C1 C2 . . . CQ Totals
C1 x11 x12 . . . x1Q x1+

C2 x21 x22 . . . x2Q x2+

...
...

...
. . .

...
...

CQ xQ1 xQ2 . . . xQQ xQ+

Totals x+1 x+2 . . . x+Q

In the ablove table,Q is the number of classes in the data.x11 in
the table is the number of test patterns that both classifier 1 and
2 agreed belonged to classC1. x21 is the number of test pat-
terns that classifier 1 predicted belonging to classC2, but that
classifier 2 predicted belonged to classC1. Similarly, the entire
error matrix can be generated using the prediction made by any
two classifiers. We determine the error matrices for 15 of the
best classifiers in terms of predictions with respect to the elite
classifier. The agreement is calculated using the following set
of equations, whereN is the number of training patterns used
in generating the error matrix [17].

θ1 =

N∑
i=1

xii (2)

θ2 =

N∑
i=1

xi+ � x+i (3)

κ =
Nθ1 − θ2

N2 − θ2
(4)

The selection of classifiers from this population, which must
essentially minimise both the error of the individual classifiers
and the agreement of the classifiers with the elite classifier, is
an optimisation problem. We have chosen to implement a Ge-
netic Algorithm as the optimisation tool for this system. The
Genetic Algorithm (GA) is a stochastic optimisation tool that
borrows concepts from evolutionary biology such as selection,
crossover and mutation [18]. The GA minimises a cost function
that is defined for a particular problem by stochastically explor-
ing the space of available solutions. The GA implemented for
the selection of classifiers is designed to select 4 classifiers and
minimises both the agreement and the error of the selected com-
bination of classifiers.

The GA will select 4 classifiers, resulting in two vectors

εGA = {ε1; ε2; ε3; ε4}
κGA = {κ1; κ2; κ3; κ4}

We use a linear combination of these two matrices to define
the cost value of a particular selection of classifiers. It is this
cost that the GA will attempt to minimise. The cost function is
defined by equation 5.λ is introduced as a scalar constant to
allow the relative importance of the agreement in the system to
be adjusted. In this studyλ = 1, which gives equal importance
to both the error and the agreement.

f(ε, κ) = λ

4∑
i=1

κi +

4∑
i=1

εi (5)

The GA selects the 4 best classifiers that minimises the cost
function of equation 5. The Genetic Algorithm was designed to
produce 50 generations of solutions with each generation being
a population 30 possible solutions. The crossover rate was set to
a high value of 0.8 and a mutation rate of 0.4, and were empir-
ically determined to be the best values for the experiment. The
crossover functions are modified from the standard crossover
functions in this case, to ensure that unique classifiers are se-
lected during each generation, that is, preventing the same clas-
sifier from being selected twice in a particular generation.

These selected classifiers are then used in parallel, with
each of the five classifiers in the system producing an indepen-
dent set of predictions. These predictions must then be fused
together to form the final decision. A number of decision fu-
sion techniques exist. Some of these include the majority and
weighted majority voting, trained combiner fusion, median, min
and max combiner rules [19]. We adopt the majority voting de-
cision fusion scheme, which simply considers each of the pre-
dictions produced by the five classifiers as a vote, with the final
prediction for any given pattern given by the prediction that re-
ceives the largest number of votes.

7.1. Incremental Learning of Protein Data

The ensemble system is not a useful system if it is not able
to accommodate newly discovered sequences that are produced
daily. The ability of a classifier to allow this type of knowledge
update was also defined as incremental learning. The fuzzy
ARTMAP through its instance–based learning is able to incre-
mentally learn new data. This incremental learning can consider
two types of data:

1. It is possible to add new sequence information for fami-
lies which the classifier has already been trained with.

2. Data of completely new classes can be added to the sys-
tem, increasing the knowledge that the system has of the
general protein domain.

The base system will in general be trained with data of a num-
ber of classes. Once new data becomes available, incremental
learning of the system is based on incrementally training each
of the 5 FAM classifiers in the system with the new data. The
system can now be tested with data from all classes it has been
trained with, including classes which have been incrementally
added to the system.

8. System Testing and Experimental Results
8.1. Testing Using GPCR Data

The GPCR data is also divided into 6 separate databases
D1, . . . ,D6, with a validation set for databaseD1. In this



case, the datasets have data of all 8 classes which are available.
This specific partioning is used to demonstrate data incremen-
tal learning, where new data of classes which the system has
already been trained with is added to the system. This case is
more appropriate for use with GPCR data where the families
are established. The separation of data into these databases is
shown in table 2.

Table 2: Separation of data into individual databases for testing
using GPCR data.Dv andDt are the validation and testing
datasets respectively.

Family D1 Dv D2 D3 D4 D5 D6 Dt

Type 1 32 10 43 43 43 43 43 43
Type 2 23 8 30 30 30 30 30 30
Type 3 16 6 22 22 22 22 22 22
Type 4 6 2 9 9 8 8 8 8
Fz/Smo 12 4 16 15 16 16 16 16
MLO 3 1 4 5 5 5 5 4
Class H 32 11 43 43 43 43 43 43
Pheromone 2 20 6 26 26 26 26 27 27

8.2. Comparative Performance

We compare the Fuzzy ARTMAP with other more common ma-
chine learning tools such as the Support Vector (SVM) Ma-
chines and Multi-layer perceptron (MLP). These have been
chosen since they have found widespread use in the literature
[1, 3, 14]. Table 3 shows the performance of the classifiers
that were considered in the experiment. The parameters that
are used for each of the classifiers is included in the table. The
classifiers are trained with all the training data combined into a
single training set and tested on the test setDt, using the fea-
tures that were described in section 5. The table shows that the

Table 3: Comparative performance of FAM versus other classi-
fiers on the GPCR dataset.

Classifier Error (%)

Generalised Linear Model 25.91
Multi–layer Perceptron,nhid = 15, cyc = 200 15.03
Fuzzy ARTMAPρ = 0.75 11.90
SVM - RBFγ = 2.3 17.10
SVM-Polynomial 2.23 degree 10.36

FAM has comparable accuracy when compared to many other
classification systems.

8.3. Base Classifier Training and Incremental Performance

The base classification system was trained using databaseD1.
Table 4 shows the error of the first 15 classifiers of the popula-
tion and agreement with the elite classifier. The error is the error
of the system on the validation data set. The GA for this data
set selected classifiers2, 3, 4, 12 to form the final ensem-
ble system. Again, the system consisting of the elite classifier
and the four classifiers selected by the GA are incrementally
trained using databasesD2, . . . ,D6, with the ensemble being
tested after each increment with the testing databaseDt. The
performance of the system is shown in table 5. This data shows

Table 4: Error and Agreement values for 15 classifiers of the
population

Classifier Val Error ε (%) Agreementκ

1 27.0833 Elite
2 29.1667 0.8940
3 29.1667 0.9730
4 29.1667 0.8438
5 31.2500 0.8929
6 31.2500 0.8929
7 31.2500 0.8929
8 31.2500 0.8455
9 31.2500 0.8683
10 31.2500 0.8929
11 31.2500 0.8929
12 31.2500 0.8929
13 31.2500 0.8929
14 31.2500 0.8430
15 33.3333 0.8430

Table 5: Training and generalisation performance of system on
GPCR data

Set Train 1 Train 2 Train 3 Train 4 Train 5 Train 6

D1 0 0 0 0 0 0
D2 — 0 0 0 0 0
D3 — — 0 0 0 0
D4 — — — 0 0 0
D5 — — — — 0 0
D6 — — — — — 0
Dv 25.00 22.92 22.92 27.08 25.00 27.08
Dt 22.79 18.65 19.17 19.69 18.65 16.58

that the system is extremely capable of remembering data that
has been trained upon, as shown by the many 0% which appear
in the table for the training databases. The many zeros are not an
indication of overtraining. The FAM is trained so that it learns
all its training data with a 0% error. What the results show is
that after it has learnt its initial training data, the memory is not
degraded by the addition of additional data. The system also
shows that the perfromance does increase as more data of each
of the classes is added to the system.

9. Analysis of Results
The results presented indicate that the Fuzzy ARTMAP is a suit-
able machine learning tool for the classification of protein se-
quences into structural families, which is comparable to many
of the more established tools. An analysis of the sequences
also shows that the system is able to classify proteins of vary-
ing lengths from 32 to 350 amino acids in length, and thus the
length of the protein sequences used are not important. The ac-
curacy of the classification could be improved if some form of
dimensionality reduction or feature selection is applied. These
techniques have been applied by many authors using numerous
techniques. Principal Component Analysis has been used as a
technique of dimensionality reduction and Cheng et al [1] uses
the chi-squared test as a means of feature selection. Feature se-
lection can also be applied using various sub-optimal feature se-
lection techniques such as the floating forward selection search



or the Genetic Algorithm can be used as demonstrated by Mo-
hamedet al [20].

The agreementκ was used to measure diversity of the sys-
tem. This might not be the best measure of the relationship
between predictions of classifiers to the elite classifier. The use
of the correlation coefficient could be explored or the use of a
disagreement [17] should also be explored, to determine if this
measure gives some degree of refinement in the selection of the
classifiers. The genetic algorithm is also important in the com-
mittee. Due to the stochastic nature of the GA, it is possible that
different GA optimisations produce a different selection of clas-
sifier members. This though is not as likely in the case of the
data presented here, since many of the classifiers had the same
agreement or error, resulting in the GA converging to the same
selection choice. That said, the optimisation of the GA is effi-
cient and runs very fast due to the fact that it uses pre-calculated
results such as the error matrix and agreement values.

10. Conclusion
The algorithm presented is applicable in general to all classifica-
tion problems. Where the case exists that any new information
that may be obtained will not significantly improve the classi-
fication ability of the system, then the batch training approach
may be more suitable. Where this is not the case such as fam-
ilies whose sequences have low sequence similarity, then the
incremental approach may be better and will be more desirable,
especially if prior training data is no longer available.

The techniques presented here are also not limited to the
problem of structural family classification, and can be easily
extended to secondary and tertiary structure prediction, func-
tional annotations and the prediction of protein–protein inter-
action sites. Apart from systems in proteomics, genomic ap-
plications also exist, such as the classification of promoter, and
splice sites. Each classification task benefits from the improve-
ments which can be gained from using an ensemble system and
incremental learning. These results show great promise for the
future of computational biology, where newly discovered data
needs to be accurately incorporated into existing models, allow-
ing for highly agile discovery processes.
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Multi-class Protein Sequence Classification Using Fuzzy ARTMAP


Shakir Mohamed, David Rubin and Tshilidzi Marwala


Abstract— The classification of protein sequences into fam-
ilies is an important tool in the annotation of structural and
functional properties to newly discovered proteins. We present
a classification system using pattern recognition techniques to
create a numerical vector representation of a protein sequence
and then classify the sequence into a number of given families.
We introduce the use of fuzzy ARTMAP classifiers and show
that coupled with the genetic algorithm based feature subset
selection, the system is able to classify protein sequences
with an accuracy of 93 %. This accuracy is compared with
numerous other classification tools and demonstrates that the
fuzzy ARTMAP is suitable due to its high accuracy, quick
training times and ability for incremental learning.


I. INTRODUCTION


Biosequence analysis has received increased attention in
recent years since the completion of the human genome
project. As a subfield, protein sequence analysis has also
become important due to its application in drug discovery
programs [1] and in the analysis of prion diseases. Proteins
are linear polymers or chains of amino acids and the repre-
sentation of this amino acid sequence is known as the protein
primary structure. All proteins are constructed from a 20-
letter amino acid alphabet AA = {A, C, D, E, F, G, H, I, K,
L, M, N, P, Q, R, S, T, V, W, Y}. Each amino acid has spe-
cific properties such as charge and polarizability, isoelectric
properties and hydropathy properties. These properties allow
a protein to be represented by a measure of these properties.


In light of recent advances in computational intelligence
tools and an understanding that contiguity between amino
acid sequences between proteins cannot be assumed, this
paper aims to add to the set of available tools for the
classification of protein sequences into families. The paper
demonstrates the use of fuzzy ARTMAP’s as an alternative
machine learning tool that provides improved classification
ability, but also improved training and classification times.


Section II provides a background as to the large number
of available protein databases and the approaches to pro-
tein sequence classification. Section III, then provides an
overview of the classification system with section IV, VI
and VII discussing the feature generation and the testing of
the system. Finally, section VIII provides a discussion of the
results and conclusions are made in section IX.
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II. BACKGROUND


A. Protein Databases


The protein community has over the years estab-
lished many publicly available protein–information related
databases. Some of these include the well known Protein
Data Bank (PDB) and UniProt among others, with each of
these databases serving a particular segment of the protein
analysis community. The protein database used in this work
is the Structural Classification of Proteins (SCOP) [2] version
1.69. This database organises protein sequences according
to a hierarchy of protein classes, folds, superfamilies and
families; with each level of the hierarchy showing a different
type of structural relationship between individual protein
sequences.


The SCOP database only consists of classifications of
proteins according to a protein sequence ID, but does not
supply any of the sequences. The sequences are obtained
from the ASTRAL Database 1.69. The database with no
more than 95% sequence identity was selected for use in
this work.


B. Alignment–Based Sequence Comparison


The problem of classifying protein sequences is not new,
and major work in this area applies the use of sequence align-
ment techniques. These techniques operate on the principle
of detecting sequence homologies or conserved regions of
protein sequences in a set of available protein sequences.
Essentially what these techniques do is align a sequence
under test, either pairwise or by multiple alignment with a set
of known protein sequences. A distance measure between the
sequence under test and each of the alignments is calculated
and the sequence to which the given sequence has the
smallest distance is the closest matching protein sequence.
Thus the sequence belongs to the family of the closest
matching sequence. Many alignment–based techniques have
been developed, most notably are the Basic Local Alignment
and Search Tool – BLAST, FASTA and position specific
weight matrices. A comprehensive review of these techniques
is given by Durbin [3].


While these techniques have proven a degree of success,
they are limited by the high computational load when the
number of sequences in the database against which the search
is applied is large, and is also dependent on the length of
individual sequences which may vary considerably between
proteins [4]. Another drawback of the alignment based
approach is the assumption that the order of amino acids
in a sequence is conserved between homologous segments
[4], which is not in line with the genetic recombination and
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divergent evolution which may occur during the evolution of
a protein. These problems have given rise to the alignment–
free techniques.


C. Alignment Free Sequence Comparison


The alignment–free techniques consist of representing in-
dividual protein sequences by a vector of numerical measures
that capture the essence of the sequence. These measures
can be used in conjunction with a wide range of pattern
recognition and data mining tools in order to generate
models of sequence relationships and to classify the protein
sequences into a wide range of groupings. A review of these
techniques is provided by Vigna and Almeida [4].


III. SYSTEM OVERVIEW


The question being addressed here is: given an unknown
protein sequence S and a set of known protein families F ,
we must classify this sequence into one of the families in
F . In general, sequences from the same family have similar
structural and functional properties. Thus if an unlabeled
sequence S is found to belong to some family Fi, we can
infer the structure and function of S. An overview of the
pattern recognition process is shown in figure 1.


Fig. 1. Overview of Sequence Classification System


This figure shows the well known pattern recognition
process, which begins with the data acquisition stage. This
process involves extracting all the sequence classification
information in the SCOP database for which we have the
sequences in the ASTRAL database. This set of sequences is
then converted to a vector based representation. The resulting
vector has a large dimensionality which is reduced by using
the genetic algorithm to stochastically search for the best sub-
set of features. The resulting feature subset is then classified
using a wide range of techniques. In this paper we introduce
the Fuzzy-ARTMAP classifier and demonstrate the benefits
of using the classifier over other established classifiers in the
current literature. To the best of our knowledge, the fuzzy
ARTMAP has not been considered before in the context of
protein sequence family classification and could prove useful
in other areas of computational biology.


IV. PROTEIN DATA ANALYSIS


A. Sequence Extraction and Preprocessing


As mentioned, the SCOP database 1.69 and the corre-
sponding ASTRAL database with less than 95% sequence
identity is used. As a result of removing the highly redundant
sequences from the Astral database, the corresponding SCOP
entries had to be extracted and matched against the sequence
ID in the Astral database. The SCOP database has just over
70,000 entries, while the Astral file has about 12,000 entries,
resulting in the matching process between the two databases
being a lengthy procedure.


Once this matching is completed, “outlier” sequences must
be removed. Two types of outliers were observed from the
available databases. The first is that there exists certain Astral
sequences for which there is no corresponding SCOP entry.
There were a total of 345 such sequences and these were
removed from the sequence list. The second type of outlier
consists of sequences which have characters which are not
part of the standard 20-letter amino acid alphabet — the
letters are B and Z and have ambiguous meanings. From
the data, 120 such sequences were observed and were also
removed from the sequence list.


For this work, only a subset of the available families
were considered for the experimental work. Table I shows
the table of protein families considered and the number
of sequences in each family that were extracted from the
Astral Database. A total of 8 protein families or classes


TABLE I


SCOP 1.69 PROTEIN FAMILIES CONSIDERED IN THIS WORK


# SCOP Family PDB ID # Seq.


1 Phycocyanin-like phycobilisome
proteins


46532 23


2 monodomain cytochrome c 46627 48
3 Glutathione S-transferase (GST),


N-terminal domain
52862 45


4 Calmodulin-like 47502 53
5 Nucleosome core histones 47114 23
6 Tyrosine-dependent oxidoreduc-


tases
51751 68


7 Crystallins/Ca-binding
development proteins


49696 21


8 Alcohol dehydrogenase-like, N-
terminal domain


50136 29


will be used in this work. These protein sequences must be
transformed into numerical features. Two types of features
have been identified in the literature, these being global and
local features. Huang et al [5] provide a good description
of the difference between global and local features and this
distinction is used in this work.


B. Global Feature Generation


Global features represent the nature of the entire protein
sequence. These features must capture the global similarity
between related sequences allowing for comparison. We
consider two types of global features in this work. The
first type are physico-chemical properties of the sequences
which are known from biology. We specifically consider the
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molecular weight (W) and the isoelectric point (pI) of the
proteins sequences.


Apart from these two features, we also consider the
amino-acid composition of the sequence. The composition
is simply the presence frequency of each of the 20-possible
amino acids in the given sequence. Thus the composition is
calculated by [6]:


νi =
si


∑20
j=1 sj


, for i = 1, 2, . . . , 20. (1)


where νi is the value for the ith feature and si is the number
of times the ith amino acid appears in the sequence. This
results in 20 features: a frequency of appearance for each
of the possible amino acids. If a particular amino acid does
not appear at all in the sequence, the corresponding feature
value is zero.


A third set of features based on the hydropathy of amino
acids in a given protein sequence is also calculated. The
hydropathy of a protein sequence is the attractive property
of an amino acid to a water molecule. Amino acids are
thus Hydrophobic, Hydrophilic (polar) or neutral. We use
the Chothia and Finkelstein [7] hydropathy classification.
We calculate three descriptors, the hydropathy composition
(C), the hydropathy distribution (D) and the Hydropathy
transmission (T ) for the sequences as described by Dubchak
[7].


The composition C is calculated similarly to the amino
acid composition described previously. In this case we cal-
culate the presence frequency of hydrophobic, hydrophilic
and neutral amino acids in the sequence. This results in
three features being generated. The transmission is defined
by three values. The first is the number of times a polar
molecule is followed by a neutral molecule or vice versa.
Similarly the other two are the number of times a neutral
molecule is followed by a hydrophobic molecule or vice
versa and the number of times the polar molecule is followed
by a hydrophobic molecule or vise versa.


The distribution looks at intervals of 25%, 50%, 75%
and 100% along the sequence length. For each interval the
presence frequency of hydrophobic, hydrophilic and neutral
molecules for each percentage interval is calculated. Thus
this results in 12 features, 4 features for each of the three
hydropathy groups. A more detailed description of these
features can be found in Dubchak [7]. In total 40 features
(2+20+3+3+12) are generated based on global sequence
descriptors.


C. Local Feature Generation


The local features capture local interactions between
amino acids and groups of amino acids in a protein sequence.
The n-gram method is well established as a good descriptor
of local similarities in a sequence and has been used by
many authors such as Tomovic et al [8] and Cheng et al
[1]. Essentially the n-gram method considers the presence
frequency of consecutive n-letter combinations in the protein
sequence, for integer n. For example, consider the short se-
quence SLTKTERTIIVSM, the 2-grams of this sequence are:


SL, LT, TK, KT, etc. Given a sequence, features are generated
by calculating the presence frequency of all possible n-grams
for the amino acid alphabet. Two letter combinations are
known as digrams or bigrams. While higher n-grams such as
3-grams and 4-grams have been considered in the available
literature, only digrams are considered in this work since
it has been proven by numerous authors [1], [9] to work
well in protein classification systems. This results in 400
features representing the local properties of the amino acids.
The combined set of features results in a feature vector with
a dimensionality of 440. This feature vector is now used in
the design of the protein family classifiers.


V. PROTEIN FAMILY CLASSIFICATION


A. Current Classification Tools in Use


The feature based approach to protein sequence classifica-
tion makes possible the use of a wide range of classification
tools. Most protein databases supply Hidden Markov Models
(HMM) for each of the families in the database, and the
HMM’s can be used to determine which family an unknown
sequence belongs to. More recently, the use of Multi–Layer
Perceptron (MLP) Neural Networks has been introduced to
the problem of classification. Neural networks have been
applied by authors such as Dubchak [7], Nagarajan et al [10]
and Weinert and Lopes [11]. Each has shown success in the
areas of domain detection or protein folding prediction. Other
types of classifiers have also been used. Zhao et al [6] have
made use of the Support Vector Machines while Radial Basis
Function (RBF) Neural Networks and k–Nearest Neighbour
(k-NN) classifiers have also been used [12].


B. Fuzzy ARTMAP’s for Classification


This paper introduces the Fuzzy ARTMAP as a classifier
for the protein classification task. The fuzzy ARTMAP is
based on adaptive resonance theory and was introduced by
Carpenter et al [13]. This learning system is built upon
two fuzzy ART modules and employs calculus based fuzzy
operations in the learning procedure. A diagram showing the
structure of a fuzzy ARTMAP system is shown in figure 2.


Fig. 2. Representation of the Fuzzy ARTMAP Architecture


The fuzzy ARTMAP, divides the input feature space into a
number of hyperboxes in the n-dimensional space. It contains
a map field which maps the individual hyperboxes to the
output classes of the classification system. As a result, the
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fuzzy ARTMAP is able to model complex input spaces well.
It requires two variables, where the vigilance parameter ρ,
represents the tradeoff between classification accuracy and
incremental learning ability. The learning rate β, is a factor
by which the hyperboxes are adjusted with each training
pattern during the training phase. In this system, β = 1,
which is known as fast learning. Further details on the Fuzzy
ARTMAP and its training can be found in [13].


C. Experimental Procedure


In testing the system, two experiments are conducted.
The first experiment considers comparing the classification
ability of the fuzzy ARTMAP against a wide range of other
classifiers. In this experiment all the features which have
been generated are used as inputs to the system.


In the second experiment, wrapper based feature selection
is employed. It is well known that large dimensional feature
vectors may contain many redundant features which may
‘confuse’ a classifier and result in reduced classifier accuracy,
increased training time and increased number of required
training patterns [14]. To observe the performance benefits
of feature subset selection, the approach is applied and
compared using fuzzy ARTMAP’s, MLP neural networks
and the k-Nearest Neigbour classifiers.


VI. FAMILY CLASSIFICATION WITHOUT FEATURE


SELECTION


A. Overview of Experiment


This experiment involves using the entire set of generated
features and comparing the performance of a wide range
of classifiers to determine the effectiveness of the fuzzy
ARTMAP in relation to these well known classifiers. This
initial performance is a good benchmark of the viability of
fuzzy ARTMAP.


B. Results


In this experiment, the fuzzy ARTMAP is compared with
five other classifiers. The classifiers are the Generalised Lin-
ear Model, the k–Nearest Neighbour Classifier, the Multi–
Layer Perceptron Neural Network and the Radial Basis
Function Neural Network.


The Generalised Linear Models (GLM) are single layer
neural network models which implement well known statis-
tical functions such as regression. They are trained using the
Iterated Reweighted Least Squares Algorithm (IRLS), and
is used here to demonstrate the lack of linear relationships
between the input features and the poor performance if
such an assumption is made. The k–Nearest Neighbour
classifier is used with the number of neighbours, k = 1.
The MLP networks are trained with 25 nodes in the hidden
layer. The network is trained using the scaled conjugate
gradient algorithm with weight decay. The weight decay
hyperparameter α was set to 0.01. The Radial Basis Function
neural networks were tested using three different kernel func-
tions, viz. Gaussian, Thin Plate Spline and the logarithmic
kernel functions. The fuzzy ARTMAP’s were trained with


a vigilance parameter of ρ = 0.5. Details of the alternative
machine learning tools discussed here can be found in [15].


Table II shows the classification performance of each of
the classifiers described above. Each was tested using 10-
fold cross validation. The performance measure is the error
rate ε, which is defined as:


ε =
Number of Misclassifications


Total Number of Patterns
(2)


TABLE II


COMPARISON OF PERFORMANCE OF DIFFERENT CLASSIFIERS USING ALL


GENERATED FEATURES


Classifier Error Rate


GLM 0.9000
RBF – Gaussian Kernel 0.1692
RBF – Thin Plate Spline 0.1762
RBF – r4logr 0.1577
MLP 0.1458
k-Nearest Neighbour 0.1516
fuzzy ARTMAP 0.1290


VII. GENETIC ALGORITHM BASED FEATURE SELECTION


A. Selection Process Overview


As mentioned, high dimensional feature vectors increase
the costs in terms of computation times, number of patterns
required and in the accuracy of classification systems. In
order to avoid these problems, adequate feature selection
techniques are required that will reduce the dimensionality
of the feature vectors, but still retain the class discriminative
ability of the features.


Feature selection techniques can be grouped into two
classes – filter or wrapper approaches [14]. The wrapper
based approach is used in this work The wrapper based
approaches incorporate a learning algorithm in the feature
selection process and generally exhibit high classification
accuracies due to the selection of features which maximise
the performance of a chosen classifier. The genetic algorithm
is used here as the search tool.


The genetic algorithm (GA) is a tool that mimics con-
cepts from evolutionary biology such as natural selection,
crossover and mutation. The stochastic nature of the GA
makes it a good tool for feature selection, since it can quickly
explore the possible search space and determine the global
maximum of a fitness function. We compare this feature
selection process between the fuzzy ARTMAP, the k-Nearest
Neighbour classifier and a Multi-Layer Perceptron Neural
network to explore the performance increase in using a subset
of features. The desired number of features to be selected
from the original feature vector is used as the number of
genes in a chromosome. Each gene in this chromosome is an
integer between 1 and 440, and represents the feature number
which is selected for a particular generation. Points along the
chromosomes are selected for crossover and mutation. The
genes selected at each of the points are altered using floating
point operations, effectively causing a different set of features
to be chosen. This process is repeated for a fixed number of
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generations resulting in the determination of the best feature
subset for the required number of features.


B. Experimental Results


The feature selection process was performed using the
multi–layer perceptron (MLP) neural network, the k-Nearest
Neighbour Classifier and the fuzzy ARTMAP as the learning
algorithm. The required number of features was varied from
10 features to 100 features. The error rate was used as the GA
fitness function to be minimised and was calculated using 10-
fold cross-validation. Each of the selection procedures was
repeated 5 times, and the resulting mean accuracy of the
selected features and the standard deviation are shown in
figure 3.


Fig. 3. Feature selection Results Fuzzy ARTMAP and MLP


From the graph it is clear that 90 features is the optimal
feature set that is chosen by both the fuzzy ARTMAP system
and the MLP system, while the k-NN has selected 50 features
as the optimal. A separate MLP, k-NN and fuzzy ARTMAP
network was trained using this selected feature subset using
10–fold cross-validation. It was found that the MLP has an
error rate of 0.1084, the k-NN an error rate of 0.1097 and the
fuzzy ARTMAP an error rate of 0.0654 over the 10–folds.


VIII. DISCUSSION AND FUTURE WORK


The results presented show in both that the fuzzy
ARTMAP provides improvement over many other classifi-
cation systems. This clear benefit is due to the way in which
the fuzzy ARTMAP creates a mapping of the input feature
space, by the division of the input space into hyperboxes.


Furthermore, the fuzzy ARTMAP is also preferred since
it has very quick training times, and this is due to the fact
that a number of hyperboxes are created in the space and
related to each other by the mapping field. In the experiments
conducted here, the average training and testing time for the
10-fold cross validation was 5.77s for the fuzzy ARTMAP
and the k-NN has a time of 0.984s, as opposed to the training
and learning time of 95.953s for the MLP networks. This fast
training time of the fuzzy ARTMAP is desired especially for
a system where a much larger set of data is used than that
used here.


Another advantage of the fuzzy ARTMAP over other
learning systems is its ability for incremental learning. Incre-
mental learning is the addition of knowledge to a previously
trained system. This property is desired since new protein
sequences are being discovered every day, and whose knowl-
edge can be added to the system as it becomes available.
This would allow more accurate protein classifications and
is work which has been identified for future exploration.
Further work also includes a further analysis and comparison
of the system to a wider range of classifiers and the use of
alternate features such as sequence entropy for classification.


IX. CONCLUSION


The successful classification of a protein sequence into a
number of known protein families has been demonstrated
using the fuzzy ARTMAP. This system has been used with
a Genetic Algorithm Based Feature selection to obtain a
subset of features that improves the classification ability of
the classifier. This system has been compared to MLP and
a number of other classification systems, and has proven
that the fuzzy ARTMAP provides classification improvement
over these systems. The fuzzy ARTMAP is desirable as a
classifier because of its fast training times and its incremental
learning ability, an area which will be explored in future.
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