
Algorithmic Correspondence and
Completeness in Modal Logic

by

Willem Ernst Conradie

School of Mathematics
University of the Witwatersrand

Johannesburg
South Africa

Under the supervision of
Prof. V. F. Goranko

A thesis submitted to the Faculty of Science, University of the Witwatersrand,
Johannesburg, in fulfillment of the requirements for the degree Doctor of Philosophy.

Johannesburg, 2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/39664853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I declare that this thesis is my own, unaided work. It is being submitted for the degree
of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has
not been submitted before for any degree or examination in any other university.

Willem Ernst Conradie

This day of , at Johannesburg, South Africa.

Acknowledgements

In the first place I want to thank my supervisor Valentin Goranko, with whom it was truly
a privilege to work. I have learnt inestimably much from him over the past four years — ev-
erything from writing canonicity proofs, to organizing workshops, to making Bulgarian style
yogurt.

For their stimulating conversation and ideas I am grateful to André Croucamp, Renate
Schmidt, Balder ten Cate, Clint van Alten, Govert van Drimmelen and Dimiter Vakarelov.

I wish to thank Heinrich Raubenheimer and Betsie Jonck for being most understanding and
accommodating (in their capacity as heads of department) when it came to negotiating the
distribution of my teaching load.

Some of the initial work on the SQEMA-algorithm was done while Valentin Goranko and
I were visiting the Department of Computer Science at the University of Manchester. This
visit was organized by Renate Schmidt and funded by the UK EPSRC.

I further gratefully acknowledge the financial support of the National Research Foundation
of South Africa and of the University of Johannesburg.

Thanks are due to my examiners — Valentin Goranko, Renate Schmidt and Michael Za-
kharyaschev — for their meticulous reading of the thesis and for their insightful comments
and constructive criticism.

Lastly, I would like to thank my family and friends for their continued interest, encour-
agement, support and patience.

The results reported in this thesis were obtained while I was employed by the University
of Johannesburg (former Rand Afrikaans University).

Abstract

This thesis takes an algorithmic perspective on the correspondence between modal and hybrid
logics on the one hand, and first-order logic on the other. The canonicity of formulae, and by
implication the completeness of logics, is simultaneously treated.

Modal formulae define second-order conditions on frames which, in some cases, are equiv-
alently reducible to first-order conditions. Modal formulae for which the latter is possible
are called elementary. As is well known, it is algorithmically undecidable whether a given
modal formula defines a first-order frame condition or not. Hence, any attempt at delineating
the class of elementary modal formulae by means of a decidable criterium can only consti-
tute an approximation of this class. Syntactically specified such approximations include the
classes of Sahlqvist and inductive formulae. The approximations we consider take the form
of algorithms.

We develop an algorithm called SQEMA, which computes first-order frame equivalents for
modal formulae, by first transforming them into pure formulae in a reversive hybrid language.
It is shown that this algorithm subsumes the classes of Sahlqvist and inductive formulae, and
that all formulae on which it succeeds are d-persistent (canonical), and hence axiomatize
complete normal modal logics.

SQEMA is extended to polyadic languages, and it is shown that this extension succeeds
on all polyadic inductive formulae. The canonicity result is also transferred.

SQEMA is next extended to hybrid languages. Persistence results with respect to discrete
general frames are obtained for certain of these extensions. The notion of persistence with
respect to strongly descriptive general frames is investigated, and some syntactic sufficient
conditions for such persistence are obtained. SQEMA is adapted to guarantee the persistence
with respect to strongly descriptive frames of the hybrid formulae on which it succeeds, and
hence the completeness of the hybrid logics axiomatized with these formulae. New syntactic
classes of elementary and canonical hybrid formulae are obtained.

Semantic extensions of SQEMA are obtained by replacing the syntactic criterium of nega-
tive/positive polarity, used to determine the applicability of a certain transformation rule, by
its semantic correlate — monotonicity. In order to guarantee the canonicity of the formulae on
which the thus extended algorithm succeeds, syntactically correct equivalents for monotone
formulae are needed. Different version of Lyndon’s monotonicity theorem, which guarantee
the existence of these equivalents, are proved. Constructive versions of these theorems are
also obtained by means of techniques based on bisimulation quantifiers.

Via the standard second-order translation, the modal elementarity problem can be at-
tacked with any second-order quantifier elimination algorithm. Our treatment of this ap-
proach takes the form of a study of the DLS-algorithm. We partially characterize the for-
mulae on which DLS succeeds in terms of syntactic criteria. It is shown that DLS succeeds
in reducing all Sahlqvist and inductive formulae, and that all modal formulae in a single
propositional variable on which it succeeds are canonical.

Contents

Introduction 1

0 Preliminaries 7

0.1 Modal logic . 7

0.1.1 Syntax . 8

0.1.2 Semantics . 9

0.1.3 Logics . 13

0.2 Hybrid logic . 14

0.2.1 Syntax and semantics . 14

0.2.2 Logics . 16

1 Correspondence and Canonicity 19

1.1 Correspondence with first-order logic . 19

1.2 Canonicity . 21

1.2.1 Canonical models . 21

1.2.2 Canonicity and elementarity . 23

1.3 Syntactic classes . 25

1.3.1 Shallow formulae . 25

1.3.2 Sahlqvist formulae and Sahlqvist–van Benthem formulae 26

1.3.3 Inductive formulae . 28

1.3.4 Van Benthem-formulae . 30

1.3.5 Modal reduction principles over transitive frames 31

1.3.6 Complex formulae . 32

1.4 Algorithmic classes . 33

1.4.1 Second-order quantifier elimination . 33

1.4.2 SCAN . 34

1.4.3 DLS . 35

1.5 On the closure of syntactic classes under equivalence 36

1.5.1 Some undecidable cases . 36

1.5.2 Semantic equivalence . 38

v

vi Contents

2 The SQEMA-algorithm 43

2.1 Ackermann’s lemma . 44

2.2 The Algorithm SQEMA . 45

2.2.1 The transformation rules of SQEMA 45

2.2.2 Specification of the algorithm . 47

2.3 Examples . 49

2.4 Correctness . 57

2.5 Canonicity . 59

2.5.1 Descriptive frames — a topological view 59

2.5.2 Augmented models . 60

2.5.3 Lnr -formulae as operators on descriptive frames 61

2.5.4 Proving canonicity . 66

2.6 Some completeness results for syntactic classes 67

2.6.1 Sahlqvist and Sahlqvist–van Benthem formulae 67

2.6.2 Monadic inductive formulae . 69

2.7 Computing pure equivalents with SQEMA . 71

2.8 SQEMA and van Benthem-formulae . 74

3 The DLS-Algorithm 77

3.1 Deskolemization . 78

3.2 The DLS algorithm . 82

3.2.1 Phase 1: preprocessing . 82

3.2.2 Phase 2: preparation for Ackermann’s lemma 83

3.2.3 Phase 3: application of Ackermann’s lemma 85

3.2.4 Phase 4: simplification . 85

3.2.5 Examples . 85

3.3 Characterizing the success of DLS . 86

3.3.1 A necessary and sufficient condition for success 86

3.3.2 A sufficient condition for success . 88

3.4 DLS on modal formulae . 90

3.5 Conclusion and open questions . 94

4 Polyadic Languages 95

4.1 Reversive polyadic languages and logics . 95

4.1.1 Polyadic similarity types . 95

4.1.2 Semantics . 97

4.1.3 Permutations versus inverses . 98

4.2 Polyadic inductive formulae . 99

4.3 Extending SQEMA . 100

4.4 Examples . 101

4.5 Correctness and canonicity . 103

4.5.1 The topology of polyadic descriptive frames 104

4.5.2 Ln
r(τ)-formulae as operators on descriptive τ -frame 105

4.5.3 Proving canonicity: the polyadic and reversive Cases 112

4.6 Completeness for polyadic inductive formulae 113

5 Hybrid Languages 115
5.1 The languages Ln, Lnr and di-persistence . 115

5.1.1 The reversive case — Lnr . 116
5.1.2 The non-reversive case — Ln . 116
5.1.3 Syntactic classes . 118

5.2 The languages Ln, Lnr and sd-persistence . 120
5.2.1 Strongly descriptive frames . 120
5.2.2 Adapting SQEMA to prove sd-persistence 126
5.2.3 Syntactic classes . 130

5.3 The universal modality and satisfaction operator 133
5.3.1 The language Ln,u . 134
5.3.2 Extending SQEMA for the universal modality 136
5.3.3 Two syntactic classes . 138
5.3.4 The satisfaction operator . 142

6 Semantic Extensions of SQEMA 145
6.1 Two semantic extensions of SQEMA . 146

6.1.1 An extension without replacement . 146
6.1.2 An extension with replacement . 148

6.2 On the Existence of Syntactically Correct Equivalents 151
6.3 Negative equivalents for separately monotone formulae 155

6.3.1 Disjunctive forms . 156
6.3.2 Simulation quantifiers and biased simulations 158

6.4 Negative equivalents for propositionally monotone formulae 162
6.4.1 Disjunctive forms for syntactically closed Lr-formulae 162
6.4.2 Coherent formulae and standard models 166
6.4.3 A Lyndon-theorem for syntactically closed Lr-formulae 175

6.5 Conclusion . 177

Conclusion 179

Introduction

Correspondence and completeness theory are classical and well-developed areas of modal logic.
In this introduction we will briefly sketch a perspective on certain questions from these areas
and thus attempt to indicate where the contribution of this thesis lies.

The correspondence between modal languages and predicate logic depends on where one
focusses in the multi-layered hierarchy of Kripkean semantics notions. At the bottom of this
hierarchy lies the Kripke model. At this level the question of correspondence, at least when
approached from the modal side, is trivial: all modal formulae define first-order conditions
on these structures.

At the top of the hierarchy, the interpretation of modal languages over Kripke frames
turns them into fragments of monadic second-order logic, and rather expressive fragments at
that. Indeed, as Thomason ([Tho75]) has shown, second-order consequence may be effectively
reduced to the modal consequence over Kripke frames. As is well known, second-order logic
is not even recursively axiomatizable.

An intermediate level is offered by general frames. When interpreted on these structures,
modal formulae become equivalent to formulae in a two-sorted first-order langauge.

If the question of correspondence being asked, is a question of correspondence with first-
order logic, then the interesting level in the hierarchy we have outlined is clearly that of Kripke
frames. This is where our efforts are needed in order to try and rescue as much of modal
logic as we can from the disadvantages of second-order logic. And indeed, there is much that
can be salvaged, for many modal formulae define simple first-order properties of frames. For
example, as is well known, the formula 2p→ 22p is valid on precisely the transitive Kripke
frames.

By identifying a first-order frame equivalent for a modal formula, we buy for that formula
all the advantages that first-order logic has over second-order logic. Specifically, first-order
logic is finitely axiomatizable, semi-decidable, compact and admits the Skolem-Löwenheim
theorems. In general first-order logic is much better studied than second-order logic and
many automated proof tools exist for it.

Hence the question becomes ‘which modal formulae define first-order properties of frames?’,
or more succinctly, ‘which modal formulae are elementary?’. There are different forms that
an answer to this question can take. From a model theoretic standpoint, a characterization of
these formulae might take the form of a list of operations on semantic structures under which
their truth is invariant. Elegant such characterizations have been provided by van Benthem
([vB83, vB84]). From a syntactic point of view, descriptions of the shape of formulae that
guarantee their first-order definability may be given. As an instance of this type of answer,

1

2 Introduction

the class of Sahlqvist formulae ([Sah75]) is probably best known.

But what type of answer will we be satisfied with? Since the computational difficulties
associated with second-order logic could be one of our motivations for asking the question of
first-order correspondence in the first place, we might like to specify that the answer should
offer an effective, i.e. algorithmically verifiable, criterion. Is this a reasonable demand? If
we are willing to settle for sufficient conditions this is indeed quite reasonable, but as far as
characterizations are concerned, all hopes are dashed by what is known as Chagrova’s theorem
([Cha91, CC06]), which states that it is algorithmically undecidable whether a given modal
formula defines a first-order condition on Kripke frames.

Hence, if we make decidability a prerequisite, then we will have to be content with ap-
proximations of the class of elementary modal formulae. The Sahlqvist formulae and other
syntactically specified classes mentioned above are examples of such approximations. Now, the
standard proof of the elementarity of the Sahlqvist formulae takes the form of an algorithm,
known as the Sahlqvist-van Benthem algorithm, which computes first-order correspondents
for the members of this class. However, the syntactic definition of the Sahlqvist formulae is
taken as primary. The content of this thesis is an attempt to answer the question: ‘What
happens if we take the algorithm as primary?’ As long as decidability is our goal, this would
seem to be the reasonable approach. Approximations of the class of elementary modal for-
mulae would then take the form of classes of formulae for which an algorithm returns the
answer ‘yes, it is elementary!’. Similarly, semi-algorithms (i.e. procedures not guaranteed to
terminate) would define semi-decidable approximations and recursively enumerable sets of
elementary modal formulae.

Apart from being elementary, the Sahlqvist formulae have the added virtue of being
canonical (i.e., of being valid in the canonical, or Henkin, models of the logics axiomatized
by them), and hence, of axiomatizing complete normal modal logics. In other words, putting
the two properties together, logics axiomatized using Sahlqvist formulae are sound and com-
plete with respect to elementary frame classes. Various results, most notably Fine’s theorem
([Fin75b]), the converse of which was recently disproved in [GHV03], link the elementarity and
canonicity of modal formulae. It therefore makes sense, when approximating the elementary
modal formulae, to simultaneously consider the canonicity of the formulae in the approximat-
ing classes. Indeed, canonicity itself is an undecidable property of modal formulae (see e.g.
[CZ95] or [Kra99]), and one may therefore wish to make separate decidable approximations
of the class of formulae with this property. In so doing one would obtain decidable classes of
formulae, the members of which are guaranteed to axiomatize complete logics. Or phrased
another way, one would obtain effectively decidable sufficient conditions for the completeness
of modal logics. Since completeness is one of the most important question that can be asked
about any logic, this might indeed be very useful.

Over the last decade and a half, hybrid logics have become increasingly popular. Hybrid
languages enrich traditional modal languages with nominals — a type of propositional variable
which acts as a name for a state in a Kripke model — as well as various mechanisms to exploit
the naming power of the nominals. The questions of elementarity and canonicity can also
be asked of hybrid formulae, and since the undecidability of these properties transfer from
the modal case, the program of decidable approximations extends to hybrid languages in a
natural way.

3

Certain fragments of hybrid languages admit of very natural correspondence and canon-
icity results. These are the fragments consisting of those formulae which contain no propo-
sitional variables but, perhaps, nominals — the so-called pure formulae. The second-order
quantification involved in the interpretation of these formulae on frames, only involves quan-
tification over singleton subsets, and is hence essentially first-order.

An indirect approach to modal (and hybrid) first-order correspondence results thus sug-
gests itself — first try to find a pure equivalent in a, possibly extended, hybrid language, and
then rely on the first-order definability of the latter formula. This strategy will be extensively
exploited in the ensuing chapters. Incidentally, an application of this approach in the opposite
direction, i.e. from first-order to modal formulae via pure hybrid formulae, can be found in
[Hod07], where a method for obtaining a (infinite) canonical axiomatization for every modal
logic of an elementary frame class is given.

Organization and origins of the content of the thesis

Parts of this thesis are based on (co-authored) papers which have already appeared or have
been accepted for publication. Specifically, sections 2.1. up to and including section 2.6. are
based upon [CGV06a], a paper co-authored with V. Goranko and D. Vakarelov. Chapter 3 is
based on [Con06] (written by the author alone) while Chapter 4 in its entirety is again based
upon a paper co-authored with V. Goranko and D. Vakarelov, namely [CGV06b]. The results
in chapters 5 and 6 have not appeared elsewhere.

In chapter 0 some essential background on modal and hybrid logic is provided.

Chapter 1 introduces and discusses the notions of the first-order definability and canonic-
ity of modal formulae. Some key results from modal correspondence theory are recalled, and
the well known syntactically specified classes of elementary and/or canonical modal formulae
are discussed and compared.

Chapter 2 introduces an algorithm, called SQEMA, which computes first-order equivalents
for modal formulae by transforming input formulae equivalently into pure hybrid formulae,
thus implementing the ‘indirect’ strategy mentioned above. It is proved that the algorithm is
sound, and it is illustrated with a number of examples. It is further shown that all formulae
on which the algorithm succeeds have the property which we will take as our definition of
canonicity in the modal case, namely d-persistence. The correspondence between modal and
pure hybrid formulae which SQEMA exploits is scrutinized more closely. Lastly the algorithm
is placed in a broader context by showing that the formulae which are reducible by it are
included in the class of van Benthem formulae — a very general, recursively enumerable, but
undecidable, class of elementary but not necessarily canonical modal formulae.

Chapter 3 investigates the second-order quantifier elimination algorithm DLS, due to Do-
herty, Lukaszewicz and Szalas ([D LS97]). Via the standard second-order translation, the
elementarity problem for modal formulae reduces to a second-order quantifier elimination

4 Introduction

problem. We obtain some partial characterizations of the second-order (and hence modal)
formulae on which DLS succeeds. It is shown that all modal formulae in a single propositional
variable on (the translation of) which DLS succeeds are canonical.

Chapter 4 extends the SQEMA-algorithm to reversive and polyadic languages. It is shown
that the thus extended algorithm successfully computes first-order equivalents for all polyadic
inductive formulae.

Chapter 5 extends SQEMA to some hybrid languages. The extended algorithms are de-
signed to guarantee certain persistence (or canonicity) properties of the formulae on which
they succeed, which in turn guarantee the completeness of the respective hybrid logics ax-
iomatized with these. Some new syntactically specified classes of elementary and canonical
hybrid formulae are introduced.

Chapter 6 explores so-called semantic extensions of SQEMA. Certain operations employed by
SQEMA exploit the monotonicity of formulae in given propositional variables. However, the
algorithm recognizes the monotonicity (a semantic property) of these formulae, by looking
for the stronger, syntactic properties of positivity and negativity. Here we wish to extend
the applicability of the algorithm by enabling it to look for monotonicity proper. Methods
are developed for computing equivalents, with certain desirable syntactic characteristics, for
monotone formulae.

Analysis of results obtained

Elementarity and canonicity are important and interesting properties of modal and hybrid
formulae, for reasons outline above. Since both these properties are algorithmically undecid-
able, one might be interested in decidable approximations of the classes of elementary and/or
canonical formulae. The known decidable approximations of the intersection of these classes
take the form of syntactically specified classes of formulae, e.g. Sahlqvist formulae, while,
in the case of the elementary formulae, second-order quantifier elimination algorithms also
provide such approximations.

This thesis develops approximations of (the intersection of) these classes in terms of
semi-algorithms, specifically in terms of an algorithm called SQEMA and its extensions and
adaptations. The main results and contributions of this thesis can be summed up in terms of
the following points:

1. Very general elementarity and completeness results for modal and hybrid formulae,
which are shown to subsume many know such results, e.g. those of [Sah75], [GV01],
[GV02] and [tCMV05]. Moreover, the classes of formulae for which these results hold are
characterized, not in terms of complicated syntactic definitions, but as those formulae
that are reducible to pure formulae using a few simple rewrite rules.

2. Algorithmic methods for proving canonicity / completeness of logics.

5

3. Extensions of these results to reversive and non-reversive polyadic and hybrid languages.
Hybrid languages considered include those with and without the universal modality and
the satisfaction operator.

4. A partial characterization of the modal formulae and second-order formulae for which
the second-order quantifier elimination algorithm DLS ([D LS97]) succeeds, as well as a
limited canonicity result for these formulae. As part of this analysis rigourous proofs
that DLS succeeds on all Sahlqvist ([Sah75]) and inductive ([GV01]) formulae are given.

5. Contributions to the completeness theory for hybrid logics:

(a) Algorithmic and syntactic classes of formulae which axiomatize complete hybrid
logics are obtained. These classes subsume different previous such classes (e.g.
[GPT87], [GG93], [BT99] and [tCMV05]) and, unlike these classes, allow a more
liberal combination of propositional variables and nominals within formulae.

(b) A study of the notion of sd-persistence (introduced by Ten Cate in [tC05b]) and
the development of new classes of sd-persistence formulae.

6. More robust extensions of the SQEMA algorithm which are less dependent on the syn-
tactic shape of input formulae, by using decidable semantic conditions. Results obtained
relating to these extension include:

(a) New versions of Lyndon’s theorem ([Lyn59b]) for syntactically open/closed formu-
lae.

(b) Constructive versions of the above theorems using adaptations of bisimulation
quantifiers.

(c) Extension of the method of (bi)simulation quantifiers (see e.g. [Pit92], [DL02],
[Vis96] and [Ghi95]) for constructively obtaining syntactically correct equivalents
in reversive languages.

In the light of the above, it may be concluded that algorithmic approaches to questions cor-
respondence and completeness in modal and hybrid logic can indeed be feasible and fruitful.

Chapter 0

Preliminaries

In this chapter we review some essential background knowledge. We focus on the modal and
hybrid logics that will be the main players in what is to follow, and also on their relation to
first and second-order logic. The interrelationships between these logics will constitute one
of the main themes of this thesis. This chapter makes no original contribution, nor does it
contain anything unusual or surprising, it merely aims to collect some pertinent facts and
to fix some terminology and notation. The reader familiar with these logics might best skip
over this chapter entirely, only referring back to it should (s)he ever, in later sections, find
him(her)self in doubt as to the meaning of some notation or the precise way in which some
term is used.

0.1 Modal logic

Propositional modal languages are obtained by enriching propositional logic with modal op-
erators — in the most basic case, with the dual pair of unary operators 3 and 2. These
operators can be interpreted in various ways. Modal logic has its origins in philosophy, where
modal languages are used to formalize statements involving possibility and necessity (3p =
‘possibly p’ and 2p = ‘necessarily p’). Interpreting 3 and 2 as ‘permissible’ and ‘obligatory’
we obtain the language of deontic logic. The language of tense (or temporal) logic enriches
propositional logic with F , P and their duals G and H, and interprets Fp as ‘sometime in the
future p’, Gp as ‘always in the future p’, Pp as ‘sometime in the past p’ and Hp as ‘always
in the past p’. Yet another interpretation uses modal languages to talk about knowledge and
belief (epistemic logic). Description logics use modal knowledge representation languages for
describing the terminological knowledge of varying application domains. The list goes on.

For this thesis, however, the appropriate perspective is to follow [BdRV01] and regard
modal languages, rather generically, as ‘simple yet expressive languages for talking about
relational structures.’

But so much for the vague and general. In what follows we fix some basic notions of modal
logic. For thoroughgoing and up to date treatments of the subject the reader is referred to
any one of the standard references [BdRV01], [CZ97] or [Kra99].

7

8 Chapter 0. Preliminaries

0.1.1 Syntax

A modal similarity type τ is a pair (O, ρ), where O is a non-empty set of basic modal terms
and ρ : O → ω is an arity function assigning to each modal term α ∈ O a natural number
ρ(α), which is the arity of α.

Given a modal similarity type τ = (O, ρ) and a set of propositional variables Φ, the modal
language Lτ (Φ) is given by the following recursion:

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | 〈α〉(ϕ1, . . . , ϕn) | [α](ϕ1, . . . , ϕn)

where p ∈ Φ and α ∈ O with ρ(α) = n. The boolean connectives → and ↔ are defined in
terms of ¬ and ∨ in the usual way, while ⊤ is defined as ¬⊥. [α] and 〈α〉 are called modalities
or modal operators. Specifically, for every α ∈ O, [α] is called a box modality (or simply a
box) and 〈α〉 is called a diamond modality (or simply a diamond). 〈α〉 is the dual [α], and
vice versa. Note that we take more connectives a primitive than strictly necessary — this will
be of technical convenience subsequently.

We will often omit reference to a particular set of propositional variables Φ, and simply
write Lτ , and assume that the language is constructed using some denumerably infinite set
of propositional variables. We will write PROP(ϕ) for the set of all propositional variables
that occur in the formula ϕ. The notation PROP will also sometimes be used to refer to the
set of propositional variables over which a language is built.

Modal similarity types τ containing modal terms of arity 1 only called monadic, as is any
language in such a similarity type. The symbol κ will usually be used to denote an arbitrary
monadic similarity type. When dealing with monadic languages, we will often write 3α and
2α in stead of 〈α〉 and [α], respectively.

Similarity types and languages with terms of higher arity are called polyadic. Throughout
this thesis we will mostly be working with monadic languages. Polyadic languages have
some peculiarities of their own, and are treated (with one or two small exceptions) only in
chapter 4. When treating polyadic languages, we will close the set of basic modal terms under
composition. This explains the terminology ‘basic modal terms’, which otherwise might better
have been called ‘modal indices’.

The basic modal similarity type contains only one, unary modal term. The box and dia-
mond modalities corresponding to this term will usually be denoted by 2 and 3, respectively.
The modal langauge in the basic modal similarity type is called the basic modal language and
will be denoted simply by L, or by L(Φ) when a particular set of propositional variables Φ
over which the langauge is built is of importance.

A monadic similarity type κ is called reversive, if for every modal term α ∈ κ, it is
also the case that κ contains the inverse, α−1, of α. In closing a monadic similarity type κ
under inverses, we obtain its reversive extension, denoted r(κ). We will use the notation 3

−1
α

interchangeably with 3α−1 , and similarly with 2
−1
α and 2α−1 . In the case of the basic modal

langauge L, we will write 3
−1 and 2

−1 for the inverses of 3 and 2, respectively. A language
over a reversive similarity type is also referred to as a reversive language. The basic reversive
langauge will be denoted by Lr.

For the remainder of this section we will only treat the basic modal similarity type and
language. All notions that we will introduce generalize in a straightforward way to arbitrary

0.1. Modal logic 9

monadic similarity types. As already remarked, polyadic languages are treated in chapter 4.

0.1.2 Semantics

Modal languages can be interpreted over various, related structures. We will be concerned
with frames, models, general frames, and pointed versions of these.

Kripke frames and models

A (Kripke) frame is a structure F = (W,R), consisting of a non-empty set W of possible
worlds and, a binary accessibility relation between possible worlds R ⊆ W 2. Possible worlds
are also called states or points of the frame.

A Kripke model based on a frame F = (W,R) is a pair M = (F, V) (equivalently, a
triple (W,R, V)) where V : PROP −→ 2W is a valuation which assigns to every propositional
variable the set of possible worlds where it is true. Given two valuations V and V ′ over the
same Kripke frame, we will write V ∼p V

′ if V ′ and V ′ are identical except, possibly, in the
assignment they make to propositional variable p. Valuations V and V ′ such that V ∼p V

′

will be called p-variants of each other.
A pointed frame (F, w) is a pair consisting a frame F together with a distinguished point

w ∈W . A pointed model (M, w) is defined similarly.
The truth of a formula ϕ ∈ L in a pointed model (M, w) = ((W,R, V), w), denoted

(M, w) ϕ, is defined recursively as follows:

• (M, w) 6 ⊥;

• (M, w) p iff w ∈ V (p);

• (M, w) ¬ϕ iff (M, w) 6 ϕ;

• (M, w) ϕ ∨ ψ iff (M, w) ϕ or (M, w) ψ;

• (M, w) ϕ ∧ ψ iff (M, w) ϕ and (M, w) ψ;

• (M, w) 3ϕ iff there exists a world u ∈W such that Rwu and (M, u) ϕ;

• (M, w) 2ϕ iff, for all u ∈W such that Rwu, it is the case that (M, u) ϕ.

In the case of the basic reversive language Lr, the semantics is extended with the clauses:

• (M, w) 3
−1ψ iff there exists a world u ∈W such that Ruw and (M, u) ψ, and

• (M, w) 2
−1ϕ iff, for all u ∈W such that Ruw, it is the case that (M, u) ϕ.

In other words, 3
−1 and 2

−1 are interpreted using the inverse of the accessibility relation R.
A formula ϕ in is valid in a model M, denoted M ϕ, if (M, w) ϕ for every w ∈ M;

valid in a pointed frame (F, w), denoted (F, w) ϕ, if (M, w) ϕ for every model M based
on F; valid on a frame F, denoted F ϕ, if it is valid in every model based on F; valid ,
denoted ϕ, if it is valid on every frame; globally satisfiable on a frame F, if there exists a
valuation V such that (F, V) ϕ.

The following notation will often be useful. For a ϕ ∈ Lr and a model M we write
[[ϕ]]M = {w ∈ M | (M, w) ϕ} for the extension (or truth-set) of ϕ in M.

10 Chapter 0. Preliminaries

General frames

A general frame is a structure g = (W,R,W) where (W,R) is a frame, and W is a Boolean
algebra of subsets of 2W , called the admissible sets in g, also closed under the modal operator
3, defined as follows:

3X = {y ∈W | Ryx for some x ∈ X}.

Clearly, W is also closed under the dual operators 2, defined accordingly:

2X = {y ∈W | Ryx implies x ∈ X}.

The alternative notation mR and lR for 3 and 2, respectively, is sometimes preferable, if we
wish to distinguish between the modal syntax and the operators on algebras more explicitly.

General reversive frames are defined analogously, adding the additional requirement that
the algebra of admissible sets also be closed under the 3

−1 and 2
−1-operators.

Extending the correlation between the modal box and diamond and operators on the
algebras of admissible sets of general frames, we can regard any modal formula as such an
operator. Specifically, given a general frame g = (F,W), admissible sets A1, . . . , An ∈ W and
a formula ϕ with PROP(ϕ) = {p1, . . . , pn}, we write ϕ(A1, . . . , An) for the set [[ϕ]](F,V) where
V is any valuation assigning Ai to pi, 1 ≤ i ≤ n.

The underlying Kripke frame of a general frame g = (W,R,W) is the frame (W,R),
denoted g♯, i.e. the underlying Kripke frame is obtained by forgetting about the algebra of
admissible sets. A model over g is a model over g♯ with the valuation of the variables ranging
over W. All notions of local and global truth, validity and satisfiability of formulae are
accordingly relativized with respect to general frames and models based on them.

Here are a few types of general frames that will be encountered further on. A general
frame g = (W,R,W) is said to be:

differentiated if for every x, y ∈W , x 6= y, there exists X ∈ W such that x ∈ X and y 6∈ X;

tight if for all x, y ∈W it is the case that Rxy iff x ∈
⋂

{〈R〉(Y) | Y ∈ W and y ∈ Y };

compact if every family of admissible sets from W with the finite intersection property
(FIP) has non empty intersection (recall that a family of sets has the finite intersection
property if every finite subfamily has non-empty intersection);

refined if it is differentiated and tight;

descriptive it is refined and compact;

discrete if every singleton subset of W is in W.

Definition 0.1.1 Given a class of general frames C, a formula ϕ is locally C-persistent if
(g, w) ϕ implies (g♯, w) ϕ for every pointed general frame (g, w) in C. A formula ϕ is
(globally) C-persistent if g ϕ implies g♯ ϕ for every general frame g in C. Clearly local
C-persistence implies global C-persistence.

0.1. Modal logic 11

Specifically, a formula is (locally) r-persistent of it is (locally) persistent with respect to
the class of all refined general frames, (locally) d-persistent of it is (locally) persistent with
respect to the class of all descriptive general frames, and (locally) di-persistent of it is (locally)
persistent with respect to the class of discrete general frames.

Consequence relations and equivalence notions

The semantic structures defined above give rise to various notions of consequence. Let C be a
class of models, frames or general frames. We say a formula ϕ is a local consequence of a set
of formulae Γ over C if (M,m) Γ implies (M,m) ϕ, for every member M of C and every
point m ∈M . We write Γ loc

C ϕ. When C is the class of all models, general frames or frames
we write Γ loc

mod ϕ, Γ loc
gf ϕ and Γ loc

fr ϕ, respectively. We will usually simply write Γ ϕ

for Γ loc
mod ϕ. Similarly ϕ is a global consequence of Γ over C if M Γ implies M ϕ, for

every member M of C. Local consequence clearly implies global consequence. Again we write
Γ

gl
mod ϕ, Γ

gl
gf ϕ and Γ

gl
fr ϕ in the cases when C is the class of all models, general frames

and frames, respectively.

In all the cases above we will write ϕ ψ for {ϕ} ψ and ϕ ⊣ ψ when ϕ ψ and
ψ ϕ. Accompanying these consequence relations are a number of equivalence notions, for
which we introduce the following, more convenient terminology. Formulae ϕ and ψ are:

semantically equivalent, denoted ϕ ≡sem ψ, if ϕ and ψ are true at exactly the same points
in the same models, i.e. when ϕ ⊣loc

mod ψ;

model-equivalent, denoted ϕ ≡mod ψ, if ϕ and ψ are valid on exactly the same models, i.e
when ϕ ⊣

glo
mod ψ;

locally equivalent, denoted ϕ ≡loc ψ, if ϕ and ψ are valid at exactly the same points in the
same general frames, i.e. when ϕ ⊣loc

gf ψ;

axiomatically equivalent, denoted ϕ ≡ax ψ, if ϕ and ψ are valid in the same general
frames, i.e when ϕ ⊣

gl
gf ψ. (The reason for this terminology will become apparent

later.);

locally frame-equivalent, , denoted ϕ ≡lfr ψ, if ϕ and ψ are valid at exactly the same
points in the same frames, i.e. when ϕ ⊣loc

fr ψ;

frame-equivalent, denoted ϕ ≡fr ψ, if ϕ and ψ are valid on exactly the same frames, i.e.
when ϕ ⊣

gl
fr ψ.

The following relationships hold between these equivalence notions.

(ϕ ≡sem ψ) =⇒ (ϕ ≡mod ψ) and (ϕ ≡loc ψ) =⇒ (ϕ ≡ax ψ) and (ϕ ≡lfr ψ) =⇒ (ϕ ≡fr ψ),

(ϕ ≡mod ψ) =⇒ (ϕ ≡ax ψ) =⇒ (ϕ ≡fr ψ),

and

(ϕ ≡sem ψ) =⇒ (ϕ ≡loc ψ) =⇒ (ϕ ≡lfr ψ).

12 Chapter 0. Preliminaries

In other words, for each type of structure, the local equivalence notion implies the accom-
panying global one. Also, for both the local and global equivalence notions, equivalence on
models implies equivalence on general frames, which in turn implies equivalence on frames.
Moreover, none of the converses of these implications hold, as illustrated by the following
counterexamples:

• The formulae p→ 3p and (p→ 3p) ∧2(p→ 3p) are model, axiomatically and frame-
equivalent, yet they are not locally frame-equivalent, and hence neither semantically
nor locally equivalent.

• The formulas p→ 3p and q → 3q are axiomatically equivalent (both axiomatizing the
logic T), but are clearly not modal-equivalent.

• This example is due to van Benthem [vB84], and can also be found in [BdRV01]. Let
ϕ = 23⊤ → 2(2(2p → p) → p) and ψ = 23⊤ → 2⊥. It can be shown that ϕ and
ψ are frame equivalent. However, there is a general frame validating ϕ but on which ψ
can be refuted.

• The formulas p and q are obviously not semantically equivalent, yet they are locally
equivalent, as neither is valid at any point in any general frame.

• The formulae 2(2p↔ p) → 2p and 2(2p→ p) → 2p are locally frame equivalent but
not locally equivalent. This example is from [BS85].

Standard translation

Define L0 to be the first-order language with =, a binary relation symbol R, and individ-
ual variables VAR = {x0, x1, . . .}. Also, let L1 be the extension of L0 with a set of unary
predicates {P0, P1, . . .} corresponding to the propositional variables {p0, p1, . . .}. L-formulae
are translated into L1 by means of the following standard translation function ST(·, ·) which
takes as arguments an L-formula together with a variable from VAR:

• ST(⊥, x) := x 6= x

• ST(pi, x) := Pi(x) for every propositional variable pi;

• ST(¬ϕ, x) := ¬ST(ϕ, x);

• ST(ϕ ∨ ψ, x) := ST(ϕ, x) ∨ ST(ψ, x);

• ST(ϕ ∧ ψ, x) := ST(ϕ, x) ∧ ST(ψ, x);

• ST(3ϕ, x) := ∃y(Rxy ∧ ST(ϕ, y)), where y is the first variable in VAR not appearing in
ST(ϕ, x);

• ST(2ϕ, x) := ∀y(¬Rxy ∨ ST(ϕ, y)), where y is as in the previous item.

0.1. Modal logic 13

We extend ST(·, ·) to Lr by adding the clauses

ST(3−1ϕ, x) := ∃y(Ryx ∧ ST(ϕ, y)),

and
ST(2−1ϕ, x) := ∀y(¬Ryx ∨ ST(ϕ, y)),

where y is again the first variable in VAR not appearing in ST(ϕ, x).

Of course, a (modal) model is nothing but an L1-structure and a Kripke frame nothing
but a L0-structure. In fact we have:

Proposition 0.1.2 For any pointed model M and formula ϕ ∈ L

(M,m) ϕ iff M |= ST(ϕ, x)[x := w].

Hence, for all pointed frames (F, w) and formulae ϕ ∈ L, we have that (F, w) ϕ iff F |=
∀PST(ϕ, x)[x := w], and F ϕ iff F |= ∀x∀PST(ϕ, x) where P is the vector of all predicate
symbols corresponding to propositional variables occurring in ϕ.

0.1.3 Logics

Definition 0.1.3 A normal modal logic (in the basic modal languages) is a set of L-formulae
Λ, such that

1. Λ contains all propositional tautologies,

2. Λ contains the axiom 2(p → q) → (2p → 2q) (known as K) and 3p ↔ ¬2¬p (the
dual axiom),

3. Λ is closed under uniform substitution (if ϕ ∈ Λ than all substitution instances of ϕ
are in Λ), under modus ponens (ϕ→ ψ,ϕ ∈ Λ implies ψ ∈ Λ), and under necessitation
(ϕ ∈ Λ implies 2ϕ ∈ Λ.)

For any set of formulas Γ, there is a smallest normal modal logic containing it. The minimal
normal modal logic is called K, in honour of Kripke. We will not deal with non-normal logics,
so henceforth ‘logic’ will mean ‘normal modal logic’.

When working in Lr we have to add the additional axioms 2
−1(p→ q) → (2−1p→ 2

−1q)
(the K-axiom for the inverse modality), 3

−1p ↔ ¬2
−1¬p (the dual-axiom for 3

−1) as well
as the converse axioms p→ 23

−1p and p→ 2
−1

3p, as well as a version of the necessitation
rule for 2

−1. The minimal logic so obtained, which we will denote by Kr, is called the
minimal tense logic. The minimal logics corresponding to languages in other, multi-modal
and polyadic similarity types are the obvious generalizations of K and Kr.

Given a logic Λ and a formula ϕ ∈ Λ, we write ⊢Λ ϕ and call ϕ a theorem of Λ . For a set
of formulae Γ we write Γ ⊢Λ ϕ if there are ϕ1, . . . , ϕn ∈ Γ such that ⊢Λ (ϕ1 ∧ · · · ∧ ϕn) → ψ.
A set of formulae Γ is Λ-consistent if Γ 6⊢Λ ⊥ and Λ-inconsistent otherwise.

Given a logic Λ and a set of formula Γ we will denote the minimal logic containing Λ ∪ Γ
by Λ ⊕ Γ.

14 Chapter 0. Preliminaries

Given a class C of frames or of general frames, the set of all formulae valid in all members
of C forms a logic, namely the logic of C, which we will denote ΛC. The class of all Kripke
frames (respectively, general frames) which validate all formulae in a logic Λ, is called the
class of Kripke frames (respectively, general frames) of Λ.

Definition 0.1.4 A logic Λ is sound with respect to a class of structures C is Λ ⊆ ΛC. Λ
is complete with respect to C if ΛC ⊆ Λ. Λ is strongly complete with respect to C if Γ ⊢Λ ϕ
whenever Γ loc

mod(C) ϕ, where mod(C) is the class of models based on structures in C. We

will say a logic is (strongly) complete if it is (strongly) complete with respect to its class of
Kripke frames.

As will be shown in chapter 1, we have the following general completeness result with respect
to general frames.

Theorem 0.1.5 Every logic is sound and strongly complete with respect to its class of general
frames.

0.2 Hybrid logic

The possible world, or state, is central to the semantics of modal logic. Yet, the syntax
of the languages in the previous section contain no mechanism by which one can refer to
states directly. Hybrid logic addresses this situation by adding to the language a special
sort of propositional variable, called a nominals, together with the semantic condition that
valuations are always to assign singleton subsets of the domain to nominals. A nominal is
thus a type of constant, and hence acts as a name for a state in a model.

0.2.1 Syntax and semantics

Let PROP and NOM be disjoint sets, respectively of propositional variables and nominals.
We will denote nominals with boldface letters i, j,k, . . ., possibly indexed. The basic hybrid
language Ln(PROP,NOM) extends the basic modal language L(PROP) with the clause that
every nominal from NOM is a formula. As with L, we usually omit reference to PROP and
NOM and write simply Ln for Ln(PROP,NOM). This language is interpreted over the same
structures as L, with the additional requirement that valuations now also assign subsets of
the domain to nominals, specifically, singleton subsets. Let M = (W,R, V) be a model. The
truth definition is extended with the clause

• (M,m) i iff V (i) = {m}.

All notions of local and global truth, validity and consequence are the obvious generalizations
of those for L. The language Lnr is obtained by similarly enriching Lr with nominals.

Hybrid languages are usually further equipped with either the universal modality [u], or
with satisfaction operators @i,@j, · · · . The language obtained in the first case is called Ln,u

while the second is denoted Ln,@. A hybrid formula is pure if it contains no propositional
variables. Pure formulae are allowed to contain nominals.

0.2. Hybrid logic 15

The universal modality [u] and its dual 〈u〉 behave syntactically just like an ordinary box-
diamond pair, but we specify that the accessibility relation used to interpret it must always
be the universal relation. That is to say,

• (M,m) [u]ϕ iff (M, w) ϕ for all w ∈ M.

The idea behind the satisfaction operators is that @iϕ should express the fact that ϕ holds
at the world named by i. Formally, if M = (W,R, V) is a model, then

• (M,m) @iϕ iff (M, w) ϕ where V (i) = {w}.

The language Ln,u is at least as expressive as Ln,@, for note that

(M,m) @iϕ iff (M,m) [u](i → ϕ) iff (M,m) 〈u〉(i ∧ ϕ).

Both the universal modality and the satisfaction operator import a global flavour into our
otherwise essentially local semantics. Indeed,

(M,m) [u]ϕ iff M [u]ϕ

and

(M,m) @iϕ iff M @iϕ.

Given a frame F = (W,R), points w,w1, . . . , wn ∈ W and subsets A1, . . . Am ⊆ W , we say
that a formula ϕ ∈ Lnr is [p1 := A1, . . . , pm := Am, i1 := w1, . . . , in := wn]-satisfiable at
(F, w) if there exists a valuation V on F such that V (pi) = Ai, 1 ≤ i ≤ m, V (ii) = {wi},
1 ≤ i ≤ n and ((F, V), w) ϕ. This type of satisfiability will be refereed to as parameterized
satisfiability . Global parameterized satisfiability is defined analogously. In practice, however,
this notation will be much more compact, as we will usually parameterize with only one or
at most two propositional variables or nominals.

The standard translation function ST(·, ·) is extended to (the sublanguages of) Ln,ur and

Ln,@r by the addition of the clauses

• ST(i, x) := yi = x where yi is a reserved variable associated with the nominal i,

• ST(〈u〉ϕ, x) := ∃yST(ϕ, y) where y is the first variable not occurring in ST(ϕ, x),

• ST([u]ϕ, x) := ∀yST(ϕ, y) where y is in the previous item, and

• ST(@iϕ, x) := ∀y(y 6= yi ∨ ST(ϕ, y)) where y and yi are as before.

Another, perhaps more natural, option is to translate nominals using individual constants,
but because this would take us (at least syntactically) outside L0, we prefer to use variables.

16 Chapter 0. Preliminaries

0.2.2 Logics

We now recall axiomatizations of the minimal logics in the languages Ln, Ln,u and L@. The
systems given here are based on those in [BdRV01] and [tC05b]. The original, equivalent
axiomatizations of Ln and Ln,u were first given in [GPT87] and [GG93], respectively. Instead
on the Name and Paste-rules below, these axiomatizations use a rule based on so-called
necessity forms. We will use the notation 3

n with n ∈ ω to denote a string of n consecutive
3’s. The notation 2

n is defined similarly.

Definition 0.2.1 The logic Kn is the smallest set of Ln-formulae containing all propositional
tautologies as well as the common axioms in table 1, and which is closed under the common
rules of inference in table 2.

The logic Kn,u is the smallest set of Ln,u-formulae containing all propositional tautologies,
the common axioms and axioms for [u] in table 1, and which is closed under the common
rules of inference as well as the rules for [u] in table 2.

The logic Kn,@ is the smallest set of Ln,@-formulae containing all propositional tautologies,
the common axioms and axioms for @ in table 1, and which is closed under the common rules
of inference as well as the rules for @ in table 2.

The Name and Paste-rules and their [u] and @ versions are known as called ‘non-orthodox’
rules, because of their syntactic side-conditions. It is well known that these rules are ad-
missible in the minimal hybrid logics obtained by omitting them. However, they are needed
in order to obtain the following well-known general completeness result regarding extensions
with pure axioms.

Theorem 0.2.2 ([GPT87, GG93, BT99]) Let Γ be a set of pure Ln-formulae (Ln,u-formulae,
respectively Ln,@-formulae). Then the logic Kn⊕Γ (Kn,u⊕Γ, respectively Kn,@⊕Γ) is strongly
sound and complete with respect to its class of Kripke frames.

For Ln this result was first-proved in [GPT87]. The case for Ln,u was dealt with in [GG93]
and adapted to Ln,@ in [BT99].

0.2. Hybrid logic 17

Common axioms

(Taut) All propositional tautologies
(K) 2(p→ q) → (2p→ 2q)
(Dual) 3p↔ ¬2¬p
(Nom) 3

n(i ∧ p) → 2
m(i → p) for all 0 ≤ n,m

Axioms for [u]

(KU) [u](p→ q) → ([u]p→ [u]q)
(DualU) 〈u〉p↔ ¬[u]¬p
(RefU) [u]p→ p
(SymU) p→ [u]〈u〉p
(TransU) [u]p→ [u][u]p
(InclU) [u]p→ 2p
(Incli) 〈u〉i
(Nomi) 〈u〉(i ∧ p) → [u](i → p)

Axioms for @

(K@) @i(p→ q) → (@ip→ @iq)
(Self-dual) @ip↔ ¬@i¬p
(Introduction) i ∧ p→ @ip
(Ref) @ii
(Sym) @ij ↔ @ji
(Nom@) @ij ∧ @jp→ @ip
(Agree) @j@ip↔ @ip
(Back) 3@ip→ @ip

Table 1: Axioms for Hybrid Logics

Common rules

(Modus ponens) If ⊢ ϕ→ ψ and ⊢ ϕ then ⊢ ψ
(Sorted substitution) ⊢ ϕ′ whenever and ⊢ ϕ and ϕ′ is obtained from ϕ

by uniform substitution of formulas for
propositional variables and nominals for nominals.

(Necessitation) If ⊢ ϕ then ⊢ 2ϕ.
(Name) If ⊢ i → ϕ then ⊢ ϕ, for i 6∈ NOM(ϕ).
(Paste) If ⊢ 3

n(i ∧ 3(j ∧ ϕ)) → ψ then ⊢ 3
n(i ∧ 3ϕ) → ψ where

0 ≤ n, i 6= j and j 6∈ NOM(ϕ) ∪ NOM(ψ).

Rules for [u]

([u]-necessitation) If ⊢ ϕ then ⊢ [u]ϕ.
(PasteU) If ⊢ 〈u〉(i ∧ 3j) ∧ 〈u〉(j ∧ ϕ) → ψ then ⊢ 〈u〉(i ∧ 3ψ) → ψ

where i 6= j and j 6∈ NOM(ϕ) ∪ NOM(ψ).

Rules for @

(@-necessitation) If ⊢ ϕ then ⊢ @iϕ for any nominal i.
(Name@) If ⊢ @iϕ, then ⊢ ϕ, for i 6∈ NOM(ϕ).
(Paste@) If ⊢ @i3j ∧ @jϕ→ ψ then ⊢ @i3ϕ→ ψ

where i 6= j and j 6∈ NOM(ϕ) ∪ NOM(ψ).

Table 2: Rules of deduction for hybrid logics

Chapter 1

Correspondence and Canonicity

In this chapter we take whirlwind tour through some aspects of modal correspondence and
completeness theory. There is a vast literature on these topics — we will not even try to
mention all of the highlights. It will be like one of those package tours that ‘does Europe’ in
five days: we will make ten minute stops at the Colosseum, the Eiffel tower and Big Ben. We
will only drive past the Louvre and the Vatican in the bus. We will probably skip Switzerland
and half a dozen other countries altogether.

In section 1.1 we start with the idea that modal formulae correspond to second and
sometimes first-order conditions on frames. We recall that the class of elementary modal
formulae is undecidable, but also quote an elegant model-theoretic characterization of this
class. In section 1.2 we recall the general method for proving completeness for modal logics
which uses the canonical model construction, and also what is meant by a canonical logic /
formula. In section 1.3 we slacken the pase and take some time to consider the best know
syntactically specified classes of elementary and canonical modal formulae in some detail. In
section 1.4 we discuss two second-order quantifier elimination algorithms which can be used to
obtain first-order equivalents for modal formulae. We conclude in section 1.5 by considering
the closure of some syntactically specified classes of elementary and canonical formulae under
different notions of equivalence.

1.1 Correspondence with first-order logic

When we introduced the semantics of modal logic in chapter 0, we saw that any modal for-
mula ϕ defines a first-order condition on models, viz. M ϕ if and only if M |= ∀xST(ϕ, x).
However, changing perspective to the frames upon which our models are built, we find
that the notion of frame validity involves quantification over valuations, i.e. over subsets
of the domain, yielding second-order conditions. That is to say, F ϕ if and only if
F |= ∀P1 . . .∀Pn∀xST(ϕ, x), where P1, . . . , Pn are the predicate variables corresponding to
the propositional variables occurring in ϕ.

In this way, the formula 2p→ p is valid on a frame F if and only of F |= ∀P∀x(∀y(Rxy →
P (y)) → P (x)), imposing, what seems to be, a second-order condition on the accessibility
relation R of F. But it turns out that we can show that F 2p → p iff the accessibility

19

20 Chapter 1. Correspondence and Canonicity

relation R of F is reflexive — a simple first-order condition! To see why this is so, but also
to illustrate some typical arguments used to establish such first-order correspondences, we
enshrine this fact as a proposition and give a proof.

Proposition 1.1.1 A frame F validates the formula 2p→ p if and only if it is reflexive.

Proof. Suppose that F = (W,R) contains a point w such that F |= ¬Rww. Let S be the set
of all successors of w. Let V be a valuation on F such that V (p) = S. Then ((F, V), w) 2p
but, since w 6∈ S, ((F, V), w) ¬p. Hence F 6 2p→ p.

Conversely, suppose that R is reflexive. Then for any point w ∈ F, any valuation V
making 2p true at w will have to be such that S ⊆ V (p), where S is the set of successors of
w. But then w ∈ V (p) since w ∈ S, and hence ((F, V), w) p. qed

Note that the proof actually gives us something stronger, namely that (F, w) 2p → p iff
F |= Rxx[x := w]. In other words, even when taking a local perspective, there is a first-order
formula corresponding to 2p→ p. We formalize these ideas in the following definition.

Definition 1.1.2 An L0-formula α(x) in one free variable is a local frame correspondent of
a modal formula ϕ if, for all frames F and points w ∈ F,

(F, w) ϕ iff F |= α(x)[x := w].

Similarly, an L0-sentence α is a (global) frame correspondent of a modal formula ϕ if

F ϕ iff F |= α.

A modal formula ϕ is locally first-order definable or locally elementary if has a local first-order
frame correspondent. Similarly, formulae with (global) first-order frame correspondents are
called (globally) first-order definable or (globally) elementary .

If α(x) is a local first-order frame correspondent for ϕ, then ∀xα(x) is a global correspondent
for it. So local elementarity implies global elementarity. The converse does not hold: it is
easy to see, using reasoning similar to that employed in the proof of proposition 1.1.1, that
2322p → 3323p globally corresponds on frames to ∀x∃yRxy. However, in [vB83] van
Benthem shows that when interpreted locally, this formula violates the Löwenheim-Skolem
theorem, and that hence is can have no local first-order frame correspondent.

This result also provides a negative answer to the question as to whether all modal formulae
are locally elementary. So are all modal formulae perhaps globally elementary? Once again
the answer is ‘no’ — neither the McKinsey axiom 23p → 32p nor the Löb axiom 2(2p →
p) → 2p is globally elementary. The first case follows again by a violation of the Skolem-
Löwenheim theorem ([vB76] or [vB84], see also [Gol75]). The Löb axiom defines the class of
transitive frames containing no infinite R-paths. A compactness argument suffices to show
that this class is not first-order definable.

The task entailed by the forgoing discussion is now clear: Try to characterize the classes
of locally and globally elementary modal formulae. Whereas second-order logic poses insur-
mountable computational difficulties, there are well developed algorithmic tools for first-order

1.2. Canonicity 21

logic, and it is generally very well studied. This makes it eminently worth while to try and
identify (as large as possible) elementary fragments of modal logic.

One model theoretic characterization is the following:

Theorem 1.1.3 ([vB84]) For any modal formula ϕ, the following are equivalent:1

1. ϕ is globally elementary

2. ϕ is preserved under ultrapowers

3. ϕ is preserved under elementary equivalence.

This is a very neat characterization, but the constructions involved are complicated and have
infinitely many instances. If possible, we would prefer a theorem that gives us a simple way
to check whether a formula is elementary. This would, of course, be much too good to be
true, and indeed, our skepticism is confirmed by Chagrova’s theorem:

Theorem 1.1.4 ([Cha91], [CC06]) It is algorithmically undecidable whether a given modal
formula is elementary.

An effective characterization is therefore impossible, but if we are willing to be satisfied with
approximations, all is not lost. Various large and interesting, syntactically defined classes
of (locally) elementary formulae are known. These are presented in section 1.3. But first
we discuss another desirable property of modal formulae, often accompanying elementarity,
namely that of canonicity.

1.2 Canonicity

Together with the elementarity of modal formulae, we will be concerned with the related
property of their canonicity. We begin by quickly reviewing the canonical model construction
— a general method for proving completeness of modal logics from which this property takes
its name.

1.2.1 Canonical models

Definition 1.2.1 Given a modal logic Λ, a set of formulae Γ is a Λ-maximal consistent set
(Λ-MCS) if it is Λ-consistent but every proper superset of Γ is Λ-inconsistent.

A modal version of Lindenbaum’s lemma holds, saying that every Λ-consistent set of formulae
is contained in a Λ-MCS.

Definition 1.2.2 The canonical model of a modal logic Λ is the model MΛ = (WΛ, RΛ, VΛ)
where

1. WΛ is the set of all Λ-MCS’s,

1The reader unfamiliar with these constructions is referred to any standard text on model theory, e.g.
[Hod93] or [CK90].

22 Chapter 1. Correspondence and Canonicity

2. for all Λ-MCS’s u, v ∈WΛ, let RΛuv iff ψ ∈ v implies 3ψ ∈ u for all formulae ϕ,

3. for every propositional variable p, let VΛ(p) = {w ∈WΛ | p ∈ w}.

The central fact about the canonical model is that in it “truth = membership”, i.e.

Lemma 1.2.3 For any modal logic Λ, any Λ-MCS w, and any formula ϕ,

(MΛ, w) ϕ iff ϕ ∈ w.

In other words, every set of Λ-consistent formulae is satisfied at some point in the canonical
model. This fact is sufficient for the strong completeness of Λ, provided that MΛ is based
on a frame for Λ. In other words, to conclude that Λ is strongly complete with respect to its
Kripke frames, we will first have to show that the canonical frame FΛ = (WΛ, RΛ) validates
Λ. For example, since the minimal logic K is valid in every Krikpe frame, we immediately
have:

Proposition 1.2.4 K is sound and strongly complete with respect to the class of all Kripke
frames.

We will call a logic Λ canonical if FΛ Λ. A formula ϕ is called canonical if K ⊕ ϕ is a
canonical logic. Not every logic is canonical, particularly, by the above no incomplete logic
can be canonical. (For examples of incomplete logics see [BdRV01] or [CZ97].) An example of
a complete but non-canonical logic is provided by the logic obtained by adding the McKinsey
axiom 23p → 32p to K. That this logic is complete was proved by Fine in [Fin75a].
Whether or not the McKinsey axiom is canonical was an open question for quite a number
of years. It was finally shown to be non-canonical by Goldblatt in [Gol91].

The usual method of proving that a logic is canonical, considers a structure halfway
between the canonical model and canonical frame, namely the canonical general frame gΛ.
gΛ augments the canonical frame with an algebra of admissible sets WΛ, consisting of all
subsets of WΛ of the form {w ∈ WΛ | ϕ ∈ w} for formulae ϕ ∈ L. Using the fact that logics
are closed under substitution it is easy to see that:

Proposition 1.2.5 gΛ Λ, for any normal modal logic Λ, that is, every logic is valid on its
canonical general frame.

This yields the general completeness result with respect to general frames mentioned in chap-
ter 0, namely:

Theorem 1.2.6 Every normal modal logic is strongly complete with respect to its class of
general frames.

To prove that a logic Λ is canonical, we can try to transfer its validity in gΛ to FΛ. In other
words, we can try to show that the theorems of the logic exhibit a suitable kind of persistence,
formally:

1.2. Canonicity 23

Proposition 1.2.7 If a logic Λ is (strongly) complete with respect to a class of general frames
C, then the C-persistence of Λ implies its (strong) completeness with respect to its class of
Kripke frames.

It can be shown that the canonical general frame of any normal modal logic is descriptive
(see e.g. [BdRV01]) and hence that any d-persistent logic is canonical. Particularly, to show
that a logic is canonical, it is enough to show that its axioms are d-persistent. This gives rise
to the idea of a canonical formula:

Definition 1.2.8 A formula ϕ is called canonical if it is d-persistent.

Of course we could simply have defined a canonical formula as a formula ϕ such that the logic
K ⊕ ϕ is valid on its canonical frame. Such a definition would be problematic, however. For
example, the canonical model varies depending on the cardinality of the set of propositional
variables over which the language is built, or with enrichments of the language with e.g.
nominals.

The canonical models associated with hybrid logics need not be descriptive, hence d-
persistence is not the correct notion of canonicity for these logics. Appropriate canonicity
notions for hybrid logics are treated in chapter 5.

We concluded the previous section by quoting Chagrova’s theorem (theorem 1.1.4) which
states the algorithmic undecidability of the elementarity problem for modal formulae. Indeed,
an analogue of this theorem also holds for canonicity:

Theorem 1.2.9 It is algorithmically undecidable whether a given modal formula is canonical.

As will be seen in section 1.5, the above theorem can be obtained as a corollary of a theorem
from [CZ93].

1.2.2 Canonicity and elementarity

Elementarity and canonicity are properties that often (but not always!) go hand-in-hand for
modal formulae. A logic is determined by a class of frames if it is sound and complete with
respect to that class. Note that this need not be the class of all its Kripke frames.

Theorem 1.2.10 ([Fin75b]) If a modal logic Λ is determined by some elementary class of
frames then it is canonical.

For formulae the theorem can be rephrased as follows: If a modal formula ϕ is globally
elementary, then K ⊕ ϕ is complete (with respect to its class of Kripke frames) iff ϕ is
canonical.

It was recently shown by Goldblatt, Hodkinson and Venema ([GHV03]) that the converse
of theorem 1.2.10 does not hold.

24
C

h
a
p
ter

1
.

C
o
rresp

o
n
d
en

ce
a
n
d

C
a
n
o
n
icity

Modal formula Local first-order frame correspondent

Reflexivity 2p→ p Rxx
Transitivity 2p→ 22p ∀y∀z(Rxy ∧Ryz → Rxz)
Symmetry p→ 23p ∀y(Rxy → Ryx)
Partial functionality 3p→ 2p Rxy ∧Rxz → y = z.
Seriality 2p→ 3p ∃yRxy
Church-Rosser 32p→ 23p ∀y∀z(Rxy ∧Rxz → ∃u(Ryu ∧Rzu))
McKinsey + Transitivity (23p→ 32p) ∧ (2p→ 22p) ∀y∀z(Rxy ∧Ryz → Rxz) ∧ ∃y(Rxy ∧ ∀z(Ryz → z = y))

Table 1.1: Some well known correspondences

Formula Globally Canonical Strongly Weakly
Elementary Complete Complete

2p→ p Yes, [Sah75] Yes[Sah75] Yes Yes
23⊤ → 2(2(2p→ p) → p) Yes No No No [vB83]
32p→ (32(p ∧ q) ∨ 32(p ∧ ¬q)) No, [Fin75b] Yes, [Fin75b] Yes Yes
2(2p→ p) → 2p (Löb-axiom) No No No [BdRV01] Yes (Segerberg, see [BdRV01])
23p→ 32p No [vB83] No [Gol91] ? Yes [Fin75a]
2(2p↔ p) → 2p No[BS85] No No No[BS85]

Table 1.2: Elementarity, completeness and canonicity

1.3. Syntactic classes 25

1.3 Syntactic classes

We concluded section 1.1 by remarking that, in the light of Chagrova’s theorem, we will have
to content ourselves with decidable approximations of the class of elementary modal formulae.
In section 1.2 we introduced the notion of canonicity for formulae and logics. As will be seen
in subsection 1.5.1, both the class of canonical formulae and the class of elementary and
canonical formulae are also undecidable. So here too decidable approximations will have to
suffice.

The best known such approximations take the form of syntactically specified classes of
formulae with accompanying correspondence and canonicity results. In this section we review
the most famous among these classes and establish some relationships between them.

1.3.1 Shallow formulae

The modal depth of a formula is the maximum depth of nesting of modal operators in the
formula. More formally:

Definition 1.3.1 Given a formula ϕ ∈ Lτ , we define the modal depth of ϕ, denoted depth(ϕ),
inductively:

• depth(p) = depth(⊥) = depth(⊤) = 0;

• depth(¬ϕ) = depth(ϕ);

• depth(ϕ∧ψ) = depth(ϕ∨ψ) = depth(ϕ→ ψ) = depth(ϕ↔ ψ) = max{depth(ϕ), depth(ψ)};

• depth(〈ϕ〉) = depth(2ϕ) = 1 + depth(ϕ).

The following proposition from [vB83] captures what is probably the simplest class of ele-
mentary and canonical formulae:

Proposition 1.3.2 ([vB83], lemma 9.7) Every modal formula of depth at most 1 is locally
elementary.

Ten Cate ([tC05b]) defines a slightly more general class, viz. the shallow formulae are those
formulae in which every occurrence of a propositional variable is in the scope of at most one
modal operator. He goes on to show that all shallow formulae are locally persistent with
respect to the class of refined frames. Now (local) persistence with respect to refined frames
implies (local) elementarity. This can be seen from the fact that all elementary general frames
are refined, and hence that formulae persistent with respect to these general frames are an
Benthem formulae (see subsection 1.3.4, below). Moreover, every descriptive frames is refined,
and hence formulae persistent with respect to refined frames are canonical. Combining this
fact we have:

Proposition 1.3.3 All shallow formulae are locally elementary and canonical.

26 Chapter 1. Correspondence and Canonicity

1.3.2 Sahlqvist formulae and Sahlqvist–van Benthem formulae

The Sahlqvist formulae undoubtedly form the best known syntactically specified class of
elementary and canonical formulae. They were first introduced in [Sah75], in a slightly more
restricted form that the present definition. Fix an arbitrary monadic similarity type κ for the
rest of this subsection. All definitions in this section may be extended to reversive languages
by simply treating inverse diamonds and boxes exactly like their non-inverted counterparts.

Definition 1.3.4 An occurrence of a propositional variable or nominal in a formula ϕ is
positive (negative) if it is in the scope of an even (odd) number of negation signs. A formula
ϕ is positive (negative) in propositional variable p if all occurrences of p in ϕ are positive
(negative). A formula is positive (negative) if it is positive (negative) in all propositional
variables. The positivity or negativity of a formula in a propositional variable will be referred
to its polarity in that propositional variable.

Definition 1.3.5 A boxed atom is a propositional variable, prefixed with finitely many (pos-
sibly none) boxes, i.e., a formula of the form 2α1 . . .2αnp for some n ∈ ω and α1, . . . , αn ∈ κ.
A Sahlqvist antecedent is a formula built up from ⊤, ⊥, boxed atoms, and negative formulae,
using ∧, ∨ and diamonds. A Sahlqvist implication is a formula of the form ϕ→ Pos where ϕ
is a Sahlqvist antecedent and Pos is a positive formula. In particular, note that any negative
formula is a Sahlqvist antecedent. A Sahlqvist formula is built up from Sahlqvist implications
by applying conjunctions, disjunctions, and boxes.

[BdRV01] define subclasses of the Sahlqvist formulae, called the very simple and the simple
Sahlqvist formulae, as follows.

Definition 1.3.6 A very simple Sahlqvist antecedent is any formula constructed from ⊤, ⊥,
and propositional variables by applying ∧ and diamonds. A very simple Sahlqvist formula is
an implication with a very simple Sahlqvist antecedent as antecedent, and a positive formula
as consequent.

A simple Sahlqvist antecedent is any formula constructed from ⊤, ⊥, and boxed atoms
by applying ∧ and diamonds. A simple Sahlqvist formula is an implication with a simple
Sahlqvist antecedent as antecedent, and a positive formula as consequent.

Many well known formulae fall within the class of Sahlqvist formulae, for example: the
axioms for reflexivity (p → 3p), transitivity (33p → 3p or 2p → 22p), symmetry (p →
23p), seriality (2p → 3p), and the Geach-formula (32p → 23p, defining the Church-
Rosser property). Among these formulae, the reflexivity and symmetry axioms as well as the
diamond-version of the transitivity axiom are moreover very simple Sahlqvist formulae. The
McKinsey axiom3 (23p → 32p) is not a Sahlqvist formula — the diamond in the scope of
a box in the antecedent rules it out — nor, being not first-order definable (see [vB76]), can it
be frame equivalent to a Sahlqvist formula. Examples of elementary and canonical formulae
which are not equivalent to any Sahlqvist formula, will be discussed later in this section.

Lemma 1.3.7 Let ϕ be a Sahlqvist formula, and ϕ′ the formula obtained from ¬ϕ by import-
ing the negation over all connectives. Then ϕ′ is a Sahlqvist antecedent.

1.3. Syntactic classes 27

Proof. By induction on the construction of ϕ from Sahlqvist implications. If ϕ is a Sahlqvist
implication α → Pos, negating and rewriting it as α ∧ ¬Pos already turns it into a Sahlqvist
antecedent. If ϕ = 2ψ, where ψ satisfies the claim, then ¬ϕ ≡ 3¬ψ hence the claim follows
for ϕ, because Sahlqvist antecedents are closed under diamonds. Likewise, if ϕ = ψ1 ∧ ψ2,
where ψ1 and ψ2 satisfy the claim, then ¬ϕ ≡ ¬ψ1∨¬ψ2 hence the claim follows for ϕ, because
Sahlqvist antecedents are closed under disjunctions. The case of ϕ = ψ1 ∨ ψ2 is completely
analogous. qed

We now have the following proposition:

Proposition 1.3.8 Every Sahlqvist formula is semantically equivalent to a negated Sahlqvist
antecedent, and hence to a Sahlqvist implication.

The usual definition of the Sahlqvist formulae (see for example [BdRV01]) differs from defini-
tion 1.3.5 in that disjunctions are only allowed between formula that share no propositional
variables. This would exclude a formula like (33p→ 3p) ∨ (32p→ 23p), which would be
admitted by our definition.

In the light of proposition 1.3.8 it is clear that this restriction on the occurrence of disjunc-
tions is unnecessary as far as the elementarity and canonicity of the members of the obtained
classes are concerned.

However, this requirement is indeed essential for the usual proof of elementarity to succeed
(see once again e.g. [BdRV01]), which treats the main disjuncts of the formula separately,
finding a frame correspondent for each, and then taking the disjunction of these as a frame
correspondent for the formula as a whole. Now in general, if A and B are frame correspondents
for ϕ and ψ, respectively, A∨B need not be a frame correspondent for ϕ∨ψ unless PROP(ϕ)∩
PROP(ψ) = ∅. Indeed, x 6= x is a local frame correspondent for both ¬p and 3p, while
(x 6= x) ∨ (x 6= x) does not correspond to ¬p ∨ 3p, which corresponds to reflexivity.

In [dRV95] de Rijke and Venema define an extended class of Sahlqvist formulae which
allow for the unrestricted use polyadic diamonds in the antecedents. We will not discuss
this class further here. It is subsumed by the polyadic inductive formulae of Goranko and
Vakarelov, to be introduced in section 4.2.

Another natural syntactic generalization of the class of Sahlqvist formulae is provided in
[vB83]. Following [Kra99] we will refer to this extended class as the class of Sahlqvist–van
Benthem formulae. It is defined as follows:

Definition 1.3.9 A Sahlqvist–van Benthem formula is an Lκ-formula in negation normal
form, such that for every propositional variable p, either

(SvB-Pos) there is no positive occurrence of p in a subformula ψ∧χ or 2αψ which is in the
scope of a 3β, or

(SvB-Neg) there is no negative occurrence of p in a subformula ψ ∧ χ or 2αψ which is in
the scope of a 3β .

Below we will need the following dual version of this definition.

28 Chapter 1. Correspondence and Canonicity

Definition 1.3.10 A formula ϕ written in negation normal form is a dual Sahlqvist–van
Benthem formula if, for every propositional variable p, it satisfies either

(DSvB-Pos) there is no positive occurrence of p in a subformula ψ ∨ χ or 3αψ which is in
the scope of a 2β , or

(DSvB-Neg) there is no negative occurrence of p in a subformula ψ ∨χ or 3αψ which is in
the scope of a 2β .

Hence, a formula ϕ is the negation of a Sahlqvist–van Benthem formula rewritten in negation
normal form, if and only if it is a dual Sahlqvist–van Benthem formula.

It should be clear that all Sahlqvist formulae, after being rewritten in negation normal
form, are Sahlqvist–van Benthem. In particular, condition (SvB-Neg) is satisfied with respect
to every propositional variable in a Sahlqvist formula.

The example 3(p ∧ 23¬p) → (32p ∨ 22¬p) is used in [Kra99] to show that not every
Sahlqvist–van Benthem formula is Sahlqvist. It is however not difficult to rewrite this formula
as a Sahlqvist formula whilst maintaining semantic equivalence, namely as the formula [3(p∧
23¬p) ∧ 23¬p ∧ 33p] → ⊥. Had the polarity of p been reversed, this would not have
succeeded however — to obtain a Sahlqvist formula we would have had to switch the polarity.
We have the following proposition:

Proposition 1.3.11 Every Sahlqvist–van Benthem formula is locally equivalent to a Sahlqvist
implication.

Proof. Let ϕ be a Sahlqvist–van Benthem formula. Obtain ϕ1 from ϕ by switching the
polarity of each occurring variable which does not satisfy condition (SvB-Neg) of definition
1.3.9. This maintains local equivalence. Let ϕ2 be obtained by rewriting ¬ϕ1 in negation
normal form. Hence ϕ2 is a dual Sahlqvist–van Benthem formula in which each occurring
propositional variable satisfies condition (DSvB-Pos) of definition 1.3.10. It follows that in
ϕ2, whenever a positive variable occurrence is in the scope of a box occurrence, the only
other connectives in the scope of that box occurrence are conjunctions and boxes. Let ϕ3 be
obtained from ϕ2 by distributing boxes over conjunctions as much as possible. Then ϕ3 is a
Sahlqvist antecedent. Hence ϕ3 → ⊥ is a Sahlqvist implication, locally equivalent to ϕ. qed

1.3.3 Inductive formulae

The inductive formulae were introduced and studied by Goranko and Vakarelov in [GV01],
[GV02] and [GV06]. In the first two of these papers, these formulae were referred to as
polyadic Sahlqvist formulae. We will use the terminology of the third paper, i.e., inductive
formulae. Here we will only define the so-called monadic inductive formulae, postponing the
definition of the full fragment until chapter 4, where polyadic languages are treated in detail.
Fix a monadic modal similarity type κ for the rest of this subsection.

Definition 1.3.12 Let ♯ be a symbol not belonging to Lκ. Then a box-form of ♯ in Lκ is
defined recursively as follows:

1.3. Syntactic classes 29

1. ♯ is a box-form of ♯;

2. If B(♯) is a box-form of ♯ and α ∈ κ, then 2αB(♯) is a box-form of ♯.

3. If B(♯) is a box-form of ♯ and A is a positive formula, then A→ B(♯) is a box-form of ♯.

Thus, box-forms of ♯ are, up to semantic equivalence, of the type

A0 → �1(A1 → . . .�n(An → ♯) . . .)

where �1, . . . ,�n are sequences of boxes in Lκ and A1, . . . , An are positive formulae (possibly,
just ⊤).

Definition 1.3.13 By substituting a propositional variable p for ♯ in a box-form B(♯) we
obtain a box-formula of p, namely B(p). The last occurrence of the variable p is the head of
B(p) and every other occurrence of a variable in B(p) is inessential there.

Definition 1.3.14 A monadic regular formula is a modal formula built up from ⊤, ⊥, posi-
tive formulae and negated box-formulae by applying conjunctions, disjunctions, and boxes.

Definition 1.3.15 The dependency digraph of a set of box-formulae B = {B1(p1), . . . ,Bn(pn)}
is a digraph GB = 〈V,E〉 where V = {p1, . . . , pn} is the set of heads in B, and the edge set
E is such that piEpj iff pi occurs as an inessential variable in a box-formula from B with a
head pj . A digraph is acyclic if it does not contain oriented cycles or loops.

We will also talk about the dependency digraph of a formula, when we mean the depen-
dency digraph of the set of box-formulae that occur as subformulae of the formula.

Definition 1.3.16 A monadic inductive formula (MIF) is a monadic regular formula with
an acyclic dependency digraph.

Example 1.3.17 An example of a monadic inductive formula, which is not a Sahlqvist or
Sahlqvist–van Benthem formula, is the formula

D = p ∧ �(3p→ �q) → 3��q ≡sem ¬p ∨ ¬�(3p→ �q) ∨ 3��q,

obtained as a disjunction of the negated box-formulae ¬p and ¬�(3p→ �q), and the positive
formula 3��q. The dependency digraph of D over the set of heads {p, q} has only one edge,
from p to q.

An example of a regular, but non-inductive formula is 2((¬2p ∨ q) ∨ (¬q ∨ 2p)) ∨ ¬p,
because the heads p and q depend on each other. �

So we have yet another syntactically defined class of elementary and canonical formulae. The
question is now, how does this class compare to the previously defined classes? Has this
more complicated definition gained us any ground? The following propositions provide some
answers.

Proposition 1.3.18 Every Sahlqvist formula is semantically equivalent to a monadic induc-
tive formula.

30 Chapter 1. Correspondence and Canonicity

Proof. We note that, up to semantic equivalence, we could have equivalently defined the
Sahlqvist formulae as the class of all formulae built up from negated boxed atoms and positive
formulae, using conjunction, disjunction, and boxes. But this is exactly the definition of the
regular formulae with ‘box formulae’ replaced with ‘boxed atoms’. Since every boxed atom
is a box formula, we see that every Sahlqvist formula is semantically equivalent to a regular
formula. Moreover, the dependency digraph of any Sahlqvist formula, seen thus as a regular
formula, contains no edges. The proposition follows. qed

From propositions 1.3.11 and 1.3.18 we have the following corollary:

Corollary 1.3.19 Every Sahlqvist–van Benthem formula is locally equivalent to a monadic
inductive formula.

What about the converse? The following proposition is proved in [GV06]. The proof makes
use of special general frames called ample, and of the accompanying notion of persistence with
respect to these general frames, viz. a-persistence. It is shown that every Sahlqvist formula
is locally a-persistent, but that the formula D form example 1.3.17 fails to be a-persistent.

Proposition 1.3.20 ([GV06]) The formula D = p ∧ �(3p → �q) → 3��q is not frame
equivalent to any Sahlqvist formula.

Corollary 1.3.21 The formula D is not frame equivalent, and hence not locally frame equiv-
alent, to any Sahlqvist–van Benthem formula.

To summarize — every (local) property of Kripke frames definable by a Sahlqvist or Sahlqvist–
van Benthem formulae is definable by a monadic inductive formula. Moreover there are
monadic inductive formulae which define (local) properties of Kripke frames which are not
definable by any Sahlqvist or Sahlqvist–van Benthem formula. In other words, the class of
monadic inductive formulae is indeed a strict superclass of the Sahlqvist and Sahlqvist–van
Benthem formulae, even when considered modulo frame equivalence.

1.3.4 Van Benthem-formulae

In the preceding subsections we have introduced a hierarchy of three classes, starting with
the Sahlqvist formulae, moving up to the Sahlqvist–van Benthem formulae and then on to
the monadic inductive formulae. Each class subsumed its predecessor. We now place the
cappingstone on this hierarchy. The following class, which has been dubbed ‘van Benthem-
formulae’ in [CGV05], was introduced in [vB83].

Definition 1.3.22 The class of van Benthem-formulae consists of all L-formulae ϕ such that
ST(ϕ, x) is logically implied by (and hence logically equivalent to) the set of L0 substitution
instances2 of L1-formulae logically equivalent to ST(ϕ, x). The global van Benthem-formulae
are defined similarly by considering ∀xST(ϕ, x).

2There are some technicalities regarding the handling of the variables involved in this substitution which
are irrelevant for our purposes and which we omit for the sake of brevity. The interested reader may consult
definition 9.11 in [vB83].

1.3. Syntactic classes 31

That the classes of Sahlqvist, Sahlqvist–van Benthem and inductive formulae are subsumed
by this definition is seen by inspecting the respective proofs of the elementarity of the mem-
bers of these classes. Indeed, each proceeds by computing the first-order definable ‘minimal
valuations’ of the propositional variables and substituting these. To use the terminology of
[vB83], each of these classes is amenable to the method of substitutions. The van Benthem-
formulae constitute exactly the class of formulae for which first-order correspondences may
be established by this method. Here is a simple example.

Example 1.3.23 We consider again the transitivity axiom 2p→ 22p. The standard trans-
lation yields ∀y(Rxy → P (y)) → ∀u(Rxu → ∀v(Ruv → P (v))). The smallest valuation /
interpretation of P that will make the antecedent true consists of the set of all successors of
x, viz. λw.Rxw. Substituting this for P we obtain ∀y(Rxy → Rxy) → ∀u(Rxu→ ∀v(Ruv →
Rxv)). The antecedent becomes valid yielding ∀u(Rxu → ∀v(Ruv → Rxv)), defining the
‘local transitivity’ of the current state, as expected. �

By their very definition all van Benthem-formulae are locally elementary. However, not all of
them are canonical, as is witnessed by the formula 23⊤ → 2(2(2p→ p) → p) from [vB83],
which in locally equivalent to its substitution instance 23⊤ → 2(2(2⊥ → ⊥) → ⊥) which
reduces to 23⊤ → 2⊥, but which axiomatizes an incomplete logic.

An alternative characterization of the van Benthem-formulae can be given in terms of
persistence.

Definition 1.3.24 A general frame g = (F,W) is elementary if, for every L0-formula
α(x, x1, . . . , xn) and all points w1, . . . , wn the set

{w ∈ F | F |= α[x := w, x1 := w1, . . . , xn := wn]}

is admissible. In other words, a general frame is elementary if all subsets of its domain
definable with parameterized L0-formulae are admissible.

A formula is called (locally) e-persistent if it is (locally) persistent with respect to the class of
all elementary general frames. In [vB83] it is shown that the locally e-persistent formulae are
exactly the van Benthem-formulae. (Strictly speaking, only the inclusion of the e-persistent
formulae in the van Benthem-formulae is shown in [vB83]. A proof of the other inclusion can
be found in [GO06].) Formulated as a proposition:

Proposition 1.3.25 A formula ϕ ∈ L is a van Benthem-formula iff it is locally e-persistent.

The van Benthem-formulae form a recursively enumerable ([vB83]) but, as we will see below
in subsection 1.5.1, undecidable set.

1.3.5 Modal reduction principles over transitive frames

A modal reduction principle is an L-formula of the form Q1Q2 . . . Qnp→ Qn+1Qn+2 . . . Qn+mp
where 0 ≤ n,m and Qi ∈ {2,3} for 1 ≤ i ≤ n + m. Many well known modal axioms
take this form, e.g. 2p → p (reflexivity), 2p → 22p (transitivity), p → 23p (symmetry),

32 Chapter 1. Correspondence and Canonicity

32p → 23p (the Geach axiom) and the 23p → 32p (the McKinsey axiom). In [vB76]
van Benthem provides a complete classification of the modal reduction principles that define
first-order properties on frames. For example, as we have already seen, 32p → 23p defines
such a property and 23p→ 32p does not.

It is also shown that, however, when we restrict attention to transitive frames, all modal
reduction principles define first-order properties. Or formulated differently, every formula of
the form (2p → 22p) ∧ ψ with ψ a modal reduction principle has a first-order global frame
correspondent.

What about canonicity? That (2p → 22p) ∧ (23p → 32p), i.e. the McKinsey axiom
together with transitivity, is canonical was already proven by Lemmon in [Lem77]. In [Jón94]
Jónsson gives an algebraic proof of this fact.

In [Zak97a] Zakharyaschev proves that any extension of K43 axiomatized with modal
reduction principles has the finite model property, that is to say, any non-theorem of such a
logic is refuted on a finite model based on a frame for that logic. Combining this fact with
the elementarity of the reduction principles over transitive frames, the next proposition now
follows by theorem 1.2.10.

Proposition 1.3.26 Every L-formula of the form (2p→ 22p)∧ψ with ψ a modal reduction
principle is globally elementary and canonical.

This result is interesting in that it does not fit into the Sahlqvist-Inductive hierarchy above,
and not only because of syntactic considerations. It is shown in [vB83] that

Proposition 1.3.27 ([vB83]) The formula (2p→ 22p)∧23p→ 32p is not a global van
Benthem formula, nor is (2p→ 22p)∧2(2p→ 22p)∧23p→ 32p a (local) van Benthem
formula.

The formulae mentioned in proposition 1.3.27 also prove to be the nemesis of all currently
known algorithmic approaches to correspondence and canonicity, which approaches are the
main concern of this thesis. That these formulae would be such hard nuts to crack could
perhaps be anticipated form the fact that the proofs of their elementarity require a version
of the axiom of choice.

1.3.6 Complex formulae

To conclude our list of syntactic classes of elementary and canonical formulae, we briefly
mention Vakarelov’s complex Sahlqvist formulae, introduced in [Vak03a]. See also [Vak03b]
and [Vak05].

These formulae can be seen as substitution instances of Sahlqvist formulae obtained
through the substitution of certain elementary disjunctions for propositional variables. The
resulting formulae violate the Sahlqvist definition, as the antecedents contain disjunctions of
propositional variables and their negations in the scope of boxes.

Every complex formula is locally equivalent to a Sahlqvist formulae which may be ob-
tained from it through a suitable substitution. This substitution is effectively computable,

3
K4 is the logic K ⊕ 2p → 22p, which is determined by the class of all transitive frames.

1.4. Algorithmic classes 33

but involves some non-trivial combinatorics, and often requires the introduction of a strictly
greater number of propositional variables. It follows that every complex formula is locally
elementary and canonical.

Example 1.3.28 This example is taken from [Vak03a]. The formula

32(p ∨ q) ∧ 32(p ∨ ¬q) ∧ 32(¬p ∨ q) → 23(p ∧ q)

is a complex formula, but not a Sahlqvist formula. �

1.4 Algorithmic classes

The proof of the elementarity of the Sahlqvist formulae may be given in the form of an
algorithm based upon the method of substitutions — the so-called Sahlqvist–van Benthem
algorithm (see e.g. [BdRV01]). However, the syntactic definition is taken as primary as far
as this class (and all other syntactically specified classes) is concerned. But there are good
reasons why one might like to turn the tables and rather take the algorithm as primary.

It has often been remarked that the syntactic approach to the delineation of classes of ele-
mentary and canonical formulae has reached is practical limits. In [Gol91] Glodblatt remarks
that

“the main result of the present paper [viz. the non-canonicity of the McKinsey
axiom] indicates that there is no natural way to extend Sahlqvist’s scheme to
obtain a larger class of canonical formulae”.

Weighing the advantages of syntactic extensions of the Sahlqvist class, Blackburn et. al. say
([BdRV01], p. 169):

“By adding further restrictions it is possible to extend it [the Sahlqvist class]
further, but it is not obvious that the resulting loss of simplicity is really worth
it.”

Now, depending on what one considers to be ‘simple’ and ‘natural’, the inductive formulae
might be construed as either justifying these misgiving or as proving them incorrect, or at
least premature. However that may be, the point is still well taken — syntactically, things
can probably become only increasingly convoluted from here onwards.

These consideration serve as motivation for what we term the algorithmic approach to
the delineation of classes of elementary and canonical formulae. Since we are interested in
decidable classes of elementary and canonical formulae, why not define such classes in terms
of the algorithms (decision procedures) which justify their decidability? This is exactly what
we will do in this thesis.

1.4.1 Second-order quantifier elimination

The second-order quantifier elimination problem asks the question whether a given a second-
order formula is equivalent to a formula containing no second-order quantifiers, i.e. whether

34 Chapter 1. Correspondence and Canonicity

it is equivalent to a first-order formula. A classical reference on this problem is [Ack35]. For
the current state of the art, the reader is referred to [GSS06].

By considering the standard second-order translations ∀PST(ϕ, x) of a modal formula
ϕ, it is clear that the elementarity problem for modal formulae can be seen as essentially a
second-order quantifier elimination problem. With the help of theorem 1.1.4, this is one way
of seeing that second-order quantifier elimination is undecidable.

Some approaches to the second-order quantifier elimination problem take the form of
(partial) algorithms, which attempt to reduce second-order input-formulae to equivalent first-
order formulae. The best-known such algorithms are probably SCAN and DLS, which we will
discuss below.

Our interest in these algorithms of course lies in the fact that, by the above remarks, any
second-order quantifier elimination algorithm may be employed to try and find first-order
(local) frame correspondents for modal formulae.

1.4.2 SCAN

The algorithm SCAN was introduced in [GO92]. SCAN accepts existential second-order
formulae as input which it attempts to reduce equivalently to first-order formulae as follows:

Clausal form The input is transformed into clausal form. All existential individual quanti-
fiers are skolemized.

Constraint resolution The algorithm now tries to deduce an equivalent of the (clausified)
input, containing no second-order variables. This is done by generating sufficiently
many logical consequences of the input, and keeping only those that contain no second-
order variables. To accomplish this task, a special resolution calculus called constraint
resolution, or c-resolution, is used. The most significant rules of the c-resolution calculus
are:

C-resolution:
C ∨Q(s1, . . . , sn) D ∨ ¬Q(t1, . . . , tn)

C ∨D ∨ s1 6≈ t1 ∨ . . . ∨ sn 6≈ tn
provided the two premises have no variables in common and C ∨ Q(s1, . . . , sn) and
D ∨ ¬Q(t1, . . . , tn) are distinct clauses. The conclusion is called a C-resolvent with
respect to Q.

C-factoring:
C ∨Q(s1, . . . , sn) ∨Q(t1, . . . , tn)

C ∨Q(s1, . . . , sn) ∨ s1 6≈ t1 ∨ . . . ∨ sn 6≈ tn
The conclusion is called a C-factor with respect to Q.

Purity deletion:
N ⊎ {C ∨Q(s1, . . . , sn)}

N

if all inferences with respect to Q with C ∨ Q(s1, . . . , sn) as a premise have been per-
formed.

Unskolemization Attempt to remove the introduced Skolem functions, if possible. If this
fails, the algorithm might still be able to compute an equivalent without second-order
quantification, but which contains Henkin-quantifiers (see e.g. [Wal70]).

1.4. Algorithmic classes 35

The algorithm might fail for one of two reasons. Firstly, it is possible that the constraint
resolution stage does not terminate due to looping. Secondly, the unskolemization might
fail. Of course we should expect the algorithm to fail in some cases — some second-order
formulae simply do not have first-order equivalents, even with Henkin-quantifiers. But, as
one should also expect (due to undecidability, e.g. Chagrova’s theorem), the algorithm also
sometimes fails on formulae that have first-order correspondents, e.g. on (the translation
of) the conjunction of the McKinsey and transitivity axioms from example 1.3.27. It does,
however, succeed in returning an equivalent with Henkin-quantifiers for this formula! It has
been shown that SCAN is powerful enough to handle all Sahlqvist formulae:

Theorem 1.4.1 ([GHSV04]) SCAN successfully computes a first-order frame correspon-
dent for every Sahlqvist formula.

SCAN has been implemented and is available online. For more details on the algorithm and
on the implementation see [Eng96].

1.4.3 DLS

The DLS-algorithm was formally introduced in [D LS97]. Like SCAN, this algorithm accepts
existential second-order formulae as input. It attempts to eliminate the predicate variables
through the application of the equivalences of Ackermann’s lemma:

Lemma 1.4.2 (Ackermann’s Lemma, [Ack35]) Let P be an n-ary predicate variable and
A(z, x) a first-order formula not containing P . Then, if, B(P) is negative in P , the equiva-
lence

∃P∀x((¬A(z, x) ∨ P (x)) ∧B(P)) ≡ B[A(z, x)/P]

holds, with B[A(z, x)/P] the formula obtained by substituting A(z, x) for all occurrences P in
B, the actual arguments of each occurrence of P being substituted for x in A(z, x) every time.
If B(P) is positive in P , then the following equivalence holds:

∃P∀x((¬P (x) ∨A(z, x)) ∧B(P)) ≡ B[A(z, x)/P].

The algorithm consists of the following four phases

Phase 1: Preprocessing This phase attempts to separate positive and negative occur-
rences of the predicate variable P , chosen for elimination, by transforming the input
formula ∃PA into the form

∃x∃P [(A1(P) ∧B1(P)) ∨ · · · ∨ (An(P) ∧Bn(P))],

where each Ai(P) (respectively, Bi(P)) is positive (respectively, negative) in P . It is
not always possible to obtain this form, and the algorithm may terminate and report
failure at this stage.

Phase 2: Preparation for Ackermann’s lemma Now the formula obtained in phase 1 is
transformed into one of the forms suitable for the application of Ackermann’s lemma,
above. Both forms can always be obtained, but may require the introduction of Skolem
functions.

36 Chapter 1. Correspondence and Canonicity

Phase 3: Application of Ackermann’s lemma Ackermann’s lemma is applied and P is
eliminated, but the resulting formula may contain Skolem functions. If these cannot be
eliminated, the algorithm terminates with failure.

Phase 4: Simplification This stage applies some simplifying equivalences.

In order to eliminate multiple predicate variables, the algorithm is iterated. For varied exam-
ples of the execution of DLS on the translations of modal formulae see [Sza93] and [Sza02].
This is similar to the SQEMA-algorithm which will be introduced and studied in subsequent
chapters, in that both are based on (versions of) Ackermann’s lemma. We undertake a de-
tailed investigation of DLS in chapter 3. DLS has been implemented and is available online,
for details see [Gus96].

1.5 On the closure of syntactic classes under equivalence

As already indicated, the whole endeavour we call ‘algorithmic correspondence and com-
pleteness’ can be seen as a response to Chagrova’s theorem ([Cha91], [CC06]), stating the
undecidability of the elementarity problem for modal formulae.

If one aims at enlarging the decidable approximations of the class of elementary and/or
canonical modal formulae, one route immediately suggests itself: what if we close the known
syntactic classes under equivalences that preserve their desirable properties? Will the obtained
closure classes be decidable? Some answers to this question are given in this section.

In chapter 0 we introduced a hierarchy of six equivalence notions, namely semantic, model,
local, axiomatic, local frame, and frame equivalence. The class of locally elementary modal
formulae is closed under each of the three local equivalence notions, while the class of globally
elementary modal formulae is closed under all six equivalences. The class of canonical formulae
is closed under the first four equivalences.

We will see that closure under axiomatic and frame equivalence leads to undecidability.
On the positive side we show that we may close the classes of Sahlqvist and inductive formulae
under semantic equivalence, whilst maintaining decidability.

1.5.1 Some undecidable cases

As it turns out, the actual picture is even darker than that painted by Chagrova’s theorem.
In [CZ95] Chagrov and Zakharyaschev construct a certain Sahlqvist formula F and, using the
method of simulating Minsky machines with modal formulae presented in [CZ93], prove the
following theorem:

Theorem 1.5.1 ([CZ93]) The class of Kripke incomplete and non-elementary calculi above
S4 and the class of calculi equivalent to S4 ⊕ F are recursively inseparable.

Recall that a calculus is a finitely axiomatizable logic, represented by finite set of axioms for
it. Two calculi are equivalent if they have the same theorems. Recall also that S4 is the logic
axiomatizable with the Sahlqvist axioms p→ 3p and 33p→ 3p, and is the logic of the class
of all reflexive and transitive frames. A logic (or calculus) above S4 is a logic containing, as

1.5. On the closure of syntactic classes under equivalence 37

theorems, all theorems of S4. A logic (or calculus) is elementary if the class of all frames
for it is elementary. Lastly, two sets X and Y are recursively inseparable if there exists no
recursive (i.e., decidable) set U such that X ⊆ U and U ∩ Y = ∅, or vice versa. Theorem
1.5.1 is a very strong result — witness the following corollaries:

Corollary 1.5.2 The classes obtained by closing the class of Sahlqvist formulae (respectively,
Sahlqvist–van Benthem formulae, respectively monadic inductive formulae) under frame equiv-
alence or axiomatic equivalence, are undecidable.

Proof. We treat the case of the class of formulae obtained by closing the inductive formulae
under frame equivalence. The other cases are similar. Suppose, by way of contradiction,
that this class were decidable. Let Ax be the conjunction of the axioms of a calculus above
S4. Then, by assumption, we can effectively decide whether Ax is frame equivalent to an
inductive formula or not. It follows that the class of calculi above S4 with axioms which are
frame equivalent to inductive formulae is decidable. But this is a class of elementary calculi
containing those calculi equivalent to S4 ⊕ F , yielding a contradiction with theorem 1.5.1.
qed

Corollary 1.5.3 It is undecidable whether a given L-formula is d-persistent (canonical) or
not.

Proof. If we suppose the contrary, it would follow that the class of all calculi above S4 which
have d-persistent axioms is decidable, yielding a contradiction with theorem 1.5.1 qed

Yet another corollary shows that the class of van Benthem-formulae which, as we have seen,
is recursively enumerable, is not decidable:

Corollary 1.5.4 The class of van-Benthem formulae is undecidable.

Proof. Suppose, to the contrary, that the question whether a given formulae ϕ ∈ L is a
van-Benthem formula is decidable. We begin by noting that, for any two formulae ϕ,ψ ∈ L,
if ϕ ≡ax ψ, then ϕ is a van Benthem-formula iff ψ is such a formula. (This easiest way to see
this is by considering the characterization of the van Benthem-formulae as the e-persistent
formulae.)

Let Ax be the conjunction of the axioms of a calculus above S4. Then, by the above, we
can effectively decide whether Ax is axiomatically equivalent to a van Benthem-formula or
not. It follows that the class of calculi above S4 which are axiomatizable with van Benthem
formulae is decidable. But this is a class of elementary calculi containing those equivalent to
S4 ⊕ F , once again yielding a contradiction with theorem 1.5.1. qed

Similar results on the undecidability of properties of logics can be obtained using what is
known as Thomason’s Trick (see e.g. section 9.6 in [Kra99]). This trick uses the fusion of
logics to reduce the undecidable consistency problem for bi-modal logics to the problem under
consideration. The drawback of this method is that it does not work for mono-modal logics.
In [tC05b], ten Cate uses a similar method to show that the elementarity problem for formulae

38 Chapter 1. Correspondence and Canonicity

in multi-modal languages with at least three different modalities is not even semi-decidable.
It is not clear, however, if this can be generalized to mono-modal languages.

So, as corollary 1.5.2 shows, our plan for obtaining larger decidable approximations by
closing under equivalence, is blocked in at least the two directions corresponding to frame
and axiomatic equivalence.

In the rest of this section, we will provide a contrasting, positive answer as regards the
decidability of classes obtained by closing under semantic equivalence. One caveat before
we proceed — our purpose here is to show decidability, which, given the contrast with the
undecidability result above, is already in itself of some significance. The efficiency of the al-
gorithms we provide are not our primary concern here. (More efficient and elegant algorithms
for deriving correspondence and canonicity are the subject matter of later chapters.) We will
simply show that we can effectively look for an equivalent in the desired class, by providing
an upper bound on the search space and then relying on the decidability of the equivalence
in question and brute enumerations of the formulae in the space so bounded.

1.5.2 Semantic equivalence

In this section we will work in the basic modal language L. Here we consider the closure of
classes of formula (e.g. the Sahlqvist, Sahlqvist–van Benthem and monadic inductive formulae)
under semantic equivalence. The strategy we will use to show that the obtained classes are
decidable, will hinge on our being able to show that a formula is equivalent to some Sahlqvist
formula if and only if it is equivalent to one with modal depth no greater than its own. We
then argue that we can exhaustively check all candidates using the decidability of K.

Impervious formulae

Given a model M = (W,R, V), point w ∈ W , and a natural number k ∈ ω, the k-hull of M
around w is the submodel of M induced by the set of points in W which are reachable from
w in no more that k R-steps. We will denote this by M ↾k w.

Definition 1.5.5 Let k ∈ ω. We say a formula ϕ is k-impervious if for all pointed models
(M,m) it is the case that

(M,m) ϕ iff ((M ↾k m),m) ϕ

Here are a few simple but useful observations regarding k-imperviousness:

• Obviously all formulas of depth at most k are k-impervious. The converse does not hold
— the formula 23⊥ is 1-impervious.

• A formula is k-impervious if and only if it is l-impervious for all l ≥ k.

• A formula ϕ is k-impervious if and only if ¬ϕ is k-impervious.

• If ϕ and ψ are k-impervious formulae then so are ϕ ∧ ψ and ϕ ∨ ψ. The converse does
not hold, take for example any instance of the tautology p ∨ ¬p or the contradiction
p ∧ ¬p. These are all 0-impervious. Or consider the formula p ∧ (p ∨ 3q) which is of
depth 1 but 0-impervious.

1.5. On the closure of syntactic classes under equivalence 39

• The truth of a k-impervious formula at a point in a model in not affected by any change
(in the valuation, the domain or the accessibility relation) in the model beyond the
k-hull.

Next we recall the definition of an n-bisimulation (see e.g. [BdRV01]).

Definition 1.5.6 Let n ∈ ω, and (M,m) = ((W,R, V),m) and (M′,m′) = ((W ′, R′, V ′),m′)
be pointed models. We say (M,m) and (M′,m′) are n-bisimilar if there exists a sequence
Zn ⊆ · · · ⊆ Z0 ⊆ W ×W ′ of binary relations between the domains of (M,m) and (M′,m′),
satisfying, for i < n, the following

link mZnm
′,

local harmony if uZ0v then u and v agree on the valuation of all proposition letters,

forth if uZi+1u
′ and Ruv, then there exists a v′ ∈W ′ such that R′u′v′ and vZiv

′,

back if uZi+1u
′ and Ru′v′, then there exists a v ∈W such that Ruv and vZiv

′.

We write (M,m) ⇄n (M′,m′) if (M,m) and (M′,m′) are n-bisimilar, or (M,m) ⇄n
Φ

(M′,m′) if the local harmony clause has been relativized with a set of propositional vari-
ables Φ.

We obtain the notion of bisimulation by replacing the sequence Zn ⊆ · · · ⊆ Z0 in the
above with a single relation Z ⊆W ×W ′. A bisimulation can be seen as the limiting case of
an n-bisimulation. We write (M,m) ⇄ (M′,m′) if (M,m) and (M′,m′) are bisimilar.

The following proposition is standard:

Proposition 1.5.7 Let Φ be a finite set of proposition letters. Then for all models M and
M′ and all points m ∈ M and m′ ∈ M′, the following are equivalent:

1. (M,m) ⇄n
Φ (M′,m′)

2. (M,m) and (M′,m′) agree on all formulas of L(Φ) of modal depth at most n.

Definition 1.5.8 The depth of an occurrence of a subformula θ in a formula ϕ is the num-
ber of occurrences of modalities in the scope of which θ occurs. Formally, we may define
depth(θ, ϕ) by structural induction on ϕ as follows:

• depth(θ, θ) = 0;

• depth(θ,¬ψ) = depth(θ, ψ);

• depth(θ, ψ1 ∧ ψ2) = depth(θ, ψ1 ∨ ψ2) = depth(θ, ψ1) when the occurrence of θ un-
der consideration is in ψ1, and depth(θ, ψ1 ∧ ψ2) = depth(θ, ψ1 ∨ ψ2) = depth(θ, ψ2),
otherwise;

• depth(θ,3ψ) = depth(θ,2ψ) = 1 + depth(θ, ψ).

40 Chapter 1. Correspondence and Canonicity

Recall the definition of the modal depth, depth(ϕ), of a formula ϕ (definition 1.3.1). Note
that this is a special case of definition 1.5.8 — indeed, depth(ϕ) = depth(ϕ,ϕ).

The operation on formulae which we now define will be used in reducing k-impervious
formula to equivalent formula of corresponding modal depth.

Definition 1.5.9 For ϕ ∈ L and k ∈ ω define CUTk(ϕ) to be the formula obtained from ϕ
by

1. replacing every occurrence of a subformula of the form 3ψ such that depth(3ψ,ϕ) = k
with ⊥, and

2. replacing every occurrence of a subformula of the form 2ψ such that depth(2ψ,ϕ) = k
with ⊤.

Note that depth(CUTk(ϕ)) ≤ k. We will write CUTk(L) for the set {CUTk(ϕ) | ϕ ∈ L}.
Equivalently, CUTk(L) is the set of all L-formulae with modal depth at most k.

The next definition and lemma are standard:

Definition 1.5.10 Let M = (W,R, V) be a model and w ∈ W . The unravelling of M

around w is the model
−→
M = (

−→
W,

−→
R,

−→
V) where

1.
−→
W is the set of all finite sequences (v0, v1, . . . , vn) of elements of W such that v0 = w
and Rvi−1vi for all 1 ≤ i ≤ n,

2. for all sequences u, v ∈
−→
W , it is the case that

−→
Ruv if and only if u and v are of the

form (s0, s1, . . . , sn) and (s0, s1, . . . , sn, sn+1) respectively, for some n ∈ ω (and, hence,
Rsnsn+1),

3. for all sequences u ∈
−→
W , it is the case that u ∈

−→
V (p) if and only if u is of the form

(s0, s1, . . . , sn) for some n ∈ ω with sn ∈ V (p).

The unravelling of a frame F = (W,R) around a point w ∈W is obtained by simply dropping

any reference to
−→
V in the above.

Lemma 1.5.11 For any model M = (W,R, V) and w ∈W (M, w) ⇄ (
−→
M, (w)).

Lemma 1.5.12 Any k-impervious formula ϕ, is semantically equivalent to CUTk(ϕ).

Proof. Suppose ϕ ∈ L is k-impervious. Let M be any model and w ∈ M. We show that

(M, w) ϕ if and only if (M, w) CUTk(ϕ). Let
−→
M be the unravelling of M around w.

Then (M, w) ϕ iff (by lemma 1.5.11) (
−→
M, (w)) ϕ iff (by the k-imperviousness of ϕ)

(
−→
M ↾k (w), (w)) ϕ.

Now, when ϕ is evaluated at (
−→
M ↾k (w), (w)), any occurrence of a subformula of ϕ at

depth k in ϕ is evaluated at a point which is k steps from the root (w). But every such point
is a dead-end (i.e. has no successors). Now, at dead-end points, any formula of the form 3ψ

is false, while any formula of the form 2ψ, is true. We conclude that (
−→
M ↾k (w), (w)) ϕ iff

and only if (
−→
M ↾k (w), (w)) CUTk(ϕ). The conclusion follows. qed

1.5. On the closure of syntactic classes under equivalence 41

Lemma 1.5.12 will be used to restrict the search space in terms of the depth of formulae
considered as possible equivalents. The next lemma, which is needed to help make the search
space finite, is an immediate consequence of the fact that semantic equivalence is preserved
under uniform substitution of formulae for propositional variables.

Lemma 1.5.13 Suppose ϕ,ψ ∈ L and ϕ ≡sem ψ. Then ϕ ≡sem ψ(⊥/p) and ϕ ≡sem ψ(⊤/p),
whenever p ∈ PROP(ψ) − PROP(ϕ).

Decidability of closure under semantic equivalence

We now apply lemmas 1.5.12 and 1.5.13 to show that it is decidable whether a given formula
is a semantically equivalent to a Sahlqvist formula, or to an inductive formula.

Theorem 1.5.14 Let C be a class of L-formulae such that:

1. if ϕ ∈ C then ϕ(⊤/p) ∈ C or ϕ(⊥/p) ∈ C,

2. if ϕ ∈ C then CUTk(ϕ) ∈ C for all k ∈ ω, and

3. given any finite set of proposition letters Φ and k ∈ ω, we can effectively obtain a finite
subset C ⊆ C, such that

(a) C ⊆ CUTk(L(Φ)),

(b) every formula ϕ ∈ C with PROP(ϕ) ⊆ Φ and depth(ϕ) ≤ k, is semantically equiv-
alent to a formula in C.

Then the class of formulae Csem, obtained by closing C under semantic equivalence, is a
decidable class of formulae.

Proof. Let C be as in the formulation of the theorem. Let ϕ ∈ L, and suppose depth(ϕ) = k
and PROP(ϕ) = Φ. Then we can determine whether or not ϕ ∈ Csem as follows: We first
obtain a finite subset C of C such that C ⊆ CUTk(L(Φ)), and every formula in C∩CUTk(L(Φ))
is semantically equivalent to a formula in C.

By lemmas 1.5.12 and 1.5.13 and the assumption that C is closed under the CUTk-
operation and under the substitution of either ⊥ or ⊤ for propositional variables, it follows
that if ϕ ∈ Csem if and only if ϕ is semantically equivalent to a formula in CUTk(L(ϕ)) ∩ C.
Hence ϕ ∈ Csem if and only if ϕ is semantically equivalent to a formula in C.

Now given any two formulae ψ1, ψ2 ∈ L, we can effectively decide whether ψ1 ≡sem ψ2 by
checking whether K ⊢ ψ1 ↔ ψ2. The theorem follows. qed

Corollary 1.5.15 The classes of formulae obtained by closing the classes of Sahlqvist, Sahlqvist–
van Benthem and monadic inductive formulae under semantic equivalence, are decidable.

Proof. The corollary follows from the fact that the classes of Sahlqvist, Sahlqvist–van Ben-
them and monadic inductive formulae satisfy the conditions imposed by theorem 1.5.14.
Indeed, these classes are closed under the CUTk-operation and under arbitrary substitutions

42 Chapter 1. Correspondence and Canonicity

of ⊤ and/or ⊥ for propositional variables. Moreover, it is not difficult to set up a proce-
dure which, given any finite set of propositional variables Φ and k ∈ ω, constructs a finite
set of Sahlqvist (respectively, Sahlqvist–van Benthem, respectively, monadic inductive) for-
mulae containing, modulo semantic equivalence, every Sahlqvist (respectively, Sahlqvist–van
Benthem, respectively, monadic inductive) formula in CUTk(L(Φ)).

We sketch one possible way of constructing this set in the case of the Sahlqvist formulae:
First construct all positive L(Φ)-formulae of depth at most k, by forming all conjunctions
of elements of Φ, and then taking all disjunctions of these. By bearing the associativity,
commutativity or idempotency-laws in mind, there are only finitely many (22|Φ|

, to be precise)
formulae that we can construct in this way. Call the set so obtained S0. Form the set S′

1,
consisting of all elements of S0, all elements of S0 prefixed with 3, and all elements of S0

prefixed with 2. Now again form all conjunctions of elements of S′
1 and all disjunctions

of these, as before, yielding the set S1, containing, up to semantic equivalence, all L(Φ)-

formulae of depth at most 1. Note that |S1| = 22|S0| . Continuing in this way up to stage
k, we obtain, modulo semantic equivalence, all positive L(Φ)-formulae of depth at most k.
The negative formulae and box formula can be similarly generated, as can the Sahlqvist
antecedents, implications, and lastly the Sahlqvist formulae. Note that the sizes of the sets
generated in this process form an exponential tower of height 2(k + 1) + 1. qed

Chapter 2

The SQEMA-algorithm

In this chapter we introduce and study the SQEMA-algorithm, first introduced in [CGV06a].
SQEMA is an acronym for Second-Order Quantifier Elimination for Modal Formulae using
Ackermann’s Lemma. This algorithm attempts the reduction of modal input formulae to
equivalent Lnr , and hence L0-formulae, through the application of a set of transformation
rules. Most important amongst these transformation rules is the so-called Ackermann-rule,
which allows for the elimination of propositional variables. This rule is based on a well-
known lemma due to Ackermann. The other rules are based on simple modal and hybrid
equivalences.

We illustrate the reach and limitations of the algorithm with several examples. It is shown
that the algorithm is correct, and that all L-formulae on which it succeeds are canonical.
Next we investigate SQEMA’s performance of well known syntactically specified classes of
elementary and canonical formulae. Here it is shown that SQEMA successfully computes
equivalents for all Sahlqvist, Sahlqvist–van Benthem and monadic inductive formulae. The
elementarity and canonicity of the members of these classes then follows as a corollary.

SQEMA may be viewed as dealing primarily with the correspondence between L and Lnr ,
and only consequently with that between L and L0. However, the equivalence between input
formulae and the pure formulae which SQEMA obtains before translation into L0, is rather
subtle. In the concluding section we show how SQEMA can be extended and adapted to
produce pure Lrn-formulae which are locally equivalent on frames to input formulae.

SQEMA will form the basis of our study of algorithmic correspondence and completeness
in the chapters to come, where it will be extended and modified to produce correspondence
and completeness results in richer languages as well as for ever larger classes of L-formulae.

SQEMA has been implemented by Dimiter Georgiev ([Geo06]), and is available online.

43

44 Chapter 2. The SQEMA-algorithm

2.1 Ackermann’s lemma

The following is a well known lemma due to Ackermann ([Ack35]), here phrased for unary
predicate variables P :

Lemma 2.1.1 (Ackermann’s lemma) Let P be a predicate variable and A(z, x) a first-
order formula not containing P . Then, if B(P) is negative in P , the equivalence

∃P∀x((¬A(z, x) ∨ P (x)) ∧B(P)) ≡ B[A(z, x)/P] (2.1)

holds, with B[A(z, x)/P] the formula obtained by substituting A(z, x) for all occurrences P in
B, the actual argument of each occurrence of P being substituted for x in A(z, x) every time.
If B(P) is positive in P , then the following equivalence holds:

∃P∀x((¬P (x) ∨A(z, x)) ∧B(P)) ≡ B[A(z, x)/P]. (2.2)

The truth of the lemma rests on the idea of monotonicity:

Definition 2.1.2 A formula ϕ ∈ Lnr is said to be upward monotone (respectively, downward
monotone) in a propositional variable p, if [[ϕ]]M ⊆ [[ϕ]]M′ whenever M = (F, V) and M′ =
(F, V ′) are such that V (p) ⊆ V ′(p) (respectively, V ′(p) ⊆ V (p)) and V (q) = V ′(q) for all
propositional variables and nominals q other than p.

The following proposition, giving a syntactic sufficient condition for monotonicity, is easy to
prove.

Proposition 2.1.3 If a formula ϕ is positive (negative) in a propositional variable p, then
is upward (downward) monotone in p.

We can now formulate and prove a modal version of Ackermann’s lemma:

Lemma 2.1.4 (Modal Ackermann lemma) Let A,B(p) be Lnr -formulae such that the propo-
sitional variable p does not occur in A and B(p) is negative in p. Then for any model M,
it is the case that M B(A) iff M′ (A → p) ∧ B(p) for some model M′ which may only
differ from M on the valuation of p.

Proof. If M B(A), then M′ (A→ p) ∧B(p) for a model M′ such that [[p]]M′ = [[A]]M.
Conversely, if M′ (A → p) ∧ B(p) for some model M′ then M′ B(A/p) since B(p) is
downwards monotone in p. Therefore, M B(A/p). qed

As in lemma 2.1.1, this lemma can be formulated for positive formulae B, too. This lemma
is the core around which the SQEMA-algorithm is built.

We note that a somewhat different version of Ackermann’s lemma has been proved for
modal first-order formulae in [Sza02], where it is also applied to some modal formulae.

2.2. The Algorithm SQEMA 45

2.2 The Algorithm SQEMA

An expression of the form ϕ ⇒ ψ with ϕ,ψ ∈ Lnr is called a SQEMA-sequent. In a SQEMA-
sequent ϕ ⇒ ψ, the formulae ϕ and ψ will be referred to as the antecedent and consequent
of the sequent, respectively. A finite set of SQEMA-sequents is called a SQEMA-system. A
sequent is normalized if both antecedent and consequent are in negation normal form. A
system is normalized if every sequent in it is normalized.

Given a SQEMA-sequent ϕ ⇒ ψ, let Form(ϕ ⇒ ψ) be the formula ϕ′ ∨ ψ′, where ϕ′

and ψ′ are the formulae obtained by rewriting ¬ϕ and ψ, respectively, into negation normal
form. For a system of SQEMA-sequents Sys = {ϕ1 ⇒ ψ1, . . . , ϕn ⇒ ψn}, we define Form(Sys)
to be the formula Form(ϕ1 ⇒ ψ1) ∧ · · · ∧ Form(ϕn ⇒ ψn). We will often write a system
Sys = {ϕ1 ⇒ ψ1, . . . , ϕn ⇒ ψn} in the form

∥

∥

∥

∥

∥

∥

∥

ϕ1 ⇒ ψ1
...
ϕn ⇒ ψn

.

A system Sys is positive (negative) in a propositional variable p if Form(Sys) is positive
(negative) in p. A system Sys is called pure if Form(Sys) is a pure hybrid formula. In
general, whenever we attribute a property, usually predicated of formulae, to a system Sys,
we will mean that Form(Sys) has that property.1

A sequent of the form j ⇒ 3k with j and k nominals, will be called a diamond-link
sequent. All other sequents will be referred to as non-diamond-link sequents.

2.2.1 The transformation rules of SQEMA

The transformation rules used by the algorithm SQEMA are listed below. Concerning these
rules, we note the following:

1. Among the rules for propositional connectives, the only rule that could yield a sequent
which is not normalized, when applied to a normalized sequent, is the ∨-rule.

2. Apart from the polarity switching-rule, no transformation rule changes the polarity of
any occurrence of a propositional variable within a system.

Rules for the logical connectives

These are the rules used to bring a system into the form to which the Ackermann-rule (see
below) is applicable. Note that these rules are applied to individual sequents within systems.
Moreover they are rewriting rules, i.e., the sequent above the line is replaced in the system
by the sequent(s) listed below the line.

1
SQEMA-sequents are called SQEMA-equations in [CGV06a]. This name was used because of a ceratin

resemblance between the execution of SQEMA on formula and the procedure of solving systems of linear
equations by Gaussian elimination.

46 Chapter 2. The SQEMA-algorithm

C ⇒ (A ∧B)

C ⇒ A,C ⇒ B
(∧-rule)

C ⇒ (A ∨B)

(C ∧ ¬A) ⇒ B
(Left-shift ∨-rule)

(C ∧A) ⇒ B

C ⇒ (¬A ∨B)
(Right-shift ∨-rule)

A⇒ 2B

3−1A⇒ B
(2-rule)

3
−1A⇒ B

A⇒ 2B
(Inverse 3-rule)

Lastly, the diamond-rule,

j ⇒ 3A

j ⇒ 3k, k ⇒ A
(3-rule)

where the antecedent j is a nominal, and k is a new nominal not occurring in the system.

Ackermann-rule

This rule is based on the equivalence given in Ackermann’s lemma. It works not on a single
equation, but an entire system, as follows:

The system

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

A1 ⇒ p,
...
An ⇒ p,
B1(p),
...
Bm(p),

is replaced by

∥

∥

∥

∥

∥

∥

∥

B1((A1 ∨ . . . ∨An)/p),
...
Bm((A1 ∨ . . . ∨An)/p).

where:

1. p does not occur in A1, . . . , An;

2. Each of B1, . . . , Bm is negative in p, or does not contain p at all.

Polarity switching rule

This rule is applied to a normalized system as a whole: Substitute ¬p for every occurrence of
p in the system.

2.2. The Algorithm SQEMA 47

Normalization rules

These rules are applied only within antecedents and consequents of sequents, and are used,
by their exhaustive application, to bring antecedents and consequents into negation normal
form:

1. Replace ¬3ϕ with 2¬ϕ, and ¬3
−1ϕ with 2

−1¬ϕ;

2. Replace ¬2ϕ with 3¬ϕ, and ¬2
−1ϕ with 3

−1¬ϕ;

3. Replace ¬(ϕ ∧ ψ) with (¬ϕ ∨ ¬ψ);

4. Replace ¬(ϕ ∨ ψ) with (¬ϕ ∧ ¬ψ).

Auxiliary rules

These rules are intended to provide the algorithm with some (extremely basic) propositional
reasoning capabilities. Like normalization rules, they are applied within antecedents and
consequents of sequents. Of course more rules can be added, or one could even introduce a
complete deductive system for propositional logic. See for example the richer set of rules in
chapter 16 of [GSS06]. For the illustrative purposes we have in mind however, these three
rules will suffice.

1. Replace γ ∨ ¬γ with ⊤, and γ ∧ ¬γ with ⊥.

2. Replace γ ∨ ⊤ with ⊤, and γ ∨ ⊥ with γ.

3. Replace γ ∧ ⊤ with γ, and γ ∧ ⊥ with ⊥.

2.2.2 Specification of the algorithm

Here follows a pseudo code specification of the SQEMA-algorithm. We provide slightly more
detail than is strictly necessary for our purposes, which include the proving of correctness
(section 2.4), completeness (section 2.6) and canonicity (section 2.5) results. Even so, this
level of detail is still probably quite insufficient for implementation purposes, with which
we will not be concerned. A modified version of SQEMA, called SQEMA+, providing more
structure (e.g. with built in preference ordering on the application of transformation rules) is
introduced in chapter 16 of [GSS06].

Algorithm SQEMA(ϕ). This is the main body of the algorithm. It takes an Lnr -formula
as an input and either returns a first-order local equivalent for the input formula, or
reports failure.

Phase 1: Preprocessing. Call subroutine Preprocess(ϕ), to be introduced below. It
returns a modal formula

∨

αk semantically equivalent to ¬ϕ.

Phase 2: Elimination of Propositional Variables.

48 Chapter 2. The SQEMA-algorithm

2.1 For each disjunct αk of the formula
∨

αk returned by Preprocess, form the
initial system ‖i ⇒ αk, where i is a fixed, reserved nominal, not allowed to
occur in any input formula. Then call subroutine Transform(‖i ⇒ αk).

2.2 If Transform(‖i ⇒ αk) returns FAIL for any αk, return FAIL and terminate,
else, proceed to phase 3.

Phase 3: Postprocessing and Translation. If this phase it reached it means that,
for every k, the subroutine Transform(‖i ⇒ αk) has succeeded and has returned a
pure system Sysk. Continue as follows:

3.1: Form the set {Sys1, . . . ,Sysn} of all pure systems returned by the subroutine
Transform(‖i ⇒ αk).

3.2: Call Postprocess({Sys1, . . . ,Sysn}).

3.3: The subroutine Postprocess({Sys1, . . . ,Sysn}) produces a first-order formula.
Return this formula and terminate.

Preprocess(ϕ). This subroutine preprocesses the formula ϕ by negating it, transforming it
into negation normal form, and ‘bubbling up’ the disjunctions.

Preprocess.1: Negation and Normal Form. Negate ϕ and rewrite ¬ϕ in negation
normal form by eliminating the connectives ‘→’ and ‘↔’, and by driving all nega-
tion signs inwards until they appear only directly in front of propositional variables
and/or nominals.

Preprocess.2: Bubbling up Disjunctions. Distribute diamonds and conjunctions
over disjunctions as much as possible, using the equivalences 3(ψ ∨ θ) ≡ 3ψ ∨3θ
and (ϕ∨ψ)∧ θ ≡ (ϕ∧ θ)∨ (ψ ∧ θ), in order to obtain a formula of the form

∨

αk,
where no further distribution of diamonds and conjunctions over disjunctions is
possible in any αk.

Transform(Sys) The aim of this procedure is to eliminate all occurring propositional vari-
ables from the input system Sys, if possible, and to return a pure system.

Transform.1: Eliminate every propositional variable in which the system is positive
or negative, by substituting it with ⊤ or ⊥, respectively.

Transform.2: While the system Sys is not pure (i.e., it contains equations that contain
propositional variables), choose a propositional variable, say p, to eliminate, and
call Eliminate(Sys, p).

Transform.3: If Eliminate(Sys, p) has returned FAIL for every variable p remaining in
the Sys, return FAIL

else, if Eliminate(Sys, p) returns a system Sys′ (in which p has been eliminated),

Transform.3.1: Call Transform(Sys′)

Transform.3.2: if Transform(Sys′) returns FAIL, return FAIL

else, if Transform(Sys′) returns a pure system, Sys′′, return Sys′′.

2.3. Examples 49

Eliminate(Sys, p) This procedure takes as input a SQEMA-system Sys together with a
propositional variable. The goal is, by applying the transformation rules for the proposi-
tional connectives (subsection 2.2.1), to rewrite the system so that the Ackermann-rule
becomes applicable with respect to the chosen variable p in order to eliminate it. Thus,
the current goal is to transform the system into one in which every sequent is either
negative in p, or of the form α ⇒ p, with p not occurring in α, i.e., to ‘extract’ p or
‘solve’ for it. If this can be achieved, the Ackermann-rule is applied, eliminating the
variable p.

After the application of the Ackermann-rule, the system is re-normalized by applying
the normalization rules (subsection 2.2.1). The application of these normalization rules
is interleaved with that of the auxiliary rules (subsection 2.2.1). Specifically, after each
application of a normalization rule, the auxiliary rules are applied to simplify the system,
if possible.

If the this process succeeds in eliminating the designated propositional variable, Elimi-

nate returns the transformed system Sys′ from which p has been eliminated; else, Elim-

inate returns FAIL.

Postprocessing({Sys1, . . . ,Sysn}) This procedure receives a set of pure systems from which
it computes and returns a first-order formula.

Postprocessing.1: For each Sysk ∈ {Sys1, . . . ,Sysn}, let purek be the pure formula
Form(Sysk).

Postprocessing.2: Form the formula pure(ϕ) by taking the disjunction of the formulae
purek, obtained in step Postprocessing.1

Postprocessing.3: Form the formula ∀y∃xST(¬pure(ϕ), x), where y is the tuple of all
occurring variables corresponding to nominals, but with yi (corresponding to the
designated current state nominal i) left free, since a local correspondent is being
computed. Return this first-order formula.

Remark 2.2.1 Some comments are in order:

1. Propositional variables are eliminated from systems of SQEMA-equations one at a time.
The choice of the next variable to be eliminated (in Transform.2) depends on the strategy
being followed. We will not discuss such ordering-strategies here, but assume that the
choice is made nondeterministically. Notice that the way in which subroutine Transform

calls itself recursively ensures that all possible orders of elimination are explored until
either an order that succeeds is found, or all orders have failed.

2. Although we concentrate on input formulae from the basic modal langauge L in this
chapter, the algorithm, as described, accepts any Lnr formula as input.

2.3 Examples

In this section we illustrate the algorithm by giving examples of its execution on various input
formulae, and discus some of its features. In order to enhance the readability, we will not be

50 Chapter 2. The SQEMA-algorithm

over scrupulous in showing each and every step of the algorithm, as given in section 2.2.2.

Example 2.3.1 Consider the Geach formula, 32p→ 23p.

Phase 1 Preprocessing yields the formula: 32p ∧ 32¬p.

Phase 2 The execution does not branch due to disjunctions, hence there is only one initial
system, namely

‖i ⇒ (32p ∧ 32¬p) .

The system is neither positive nor negative in p, the only occurring propositional vari-
able. We choose p to eliminate — our only option. We will try to transform the system,
using the rules, so that the Ackermann-rule becomes applicable. Applying the ∧-rule
gives

∥

∥

∥

∥

i ⇒ 32p
i ⇒ 32¬p

,

Applying first the 3-rule and then the 2-rule to the first sequent yields:

∥

∥

∥

∥

∥

∥

i ⇒ 3j
j ⇒ 2p
i ⇒ 32¬p

,

and then
∥

∥

∥

∥

∥

∥

i ⇒ 3j
3

−1j ⇒ p
i ⇒ 32¬p

.

The Ackermann-rule is now applicable, yielding the system

∥

∥

∥

∥

i ⇒ 3j
i ⇒ 32¬(3−1j)

,

which the application of the normalization (and auxiliary) rules simplifies to

∥

∥

∥

∥

i ⇒ 3j
i ⇒ 322

−1¬j
.

As all propositional variables have now been eliminated, phase 2 terminates successfully,
and the algorithm proceeds to phase 3.

Phase 3 With Sys the above pure system, Form(Sys) is the formula

(¬i ∨ 3j) ∧ (¬i ∨ 322
−1¬j).

Negating (and applying the definition of → to enhance readability) we obtain

(i → 3j) → (i ∧ 233
−1j),

2.3. Examples 51

which, translated, becomes

∀yj∃x0[Ryiyj → (x0 = yi) ∧ ∀y(Rx0y → ∃u(Ryu ∧ ∃v(Rvu ∧ v = yj)))],

and simplifies to

∀yj[Ryiyj → ∀y(Ryiy → ∃u(Ryu ∧Ryju))],

defining the Church-Rosser property, as expected. Note that the variable yi occurs free
and corresponds to the nominal i, which we interpret as the current state. Hence we
obtain a local property. Also, we directly translate i → 3j as Ryiyj, since ST(i → 3j, x0)
is x0 = yi → ∃z(Rx0z ∧ z = yj), which clearly simplifies.

�

Example 2.3.2 Consider the formula p ∧ 2(3p → 2q) → 322q, from example 1.3.20.
Recall that this formula is not equivalent to any Sahlqvist formula.

Phase 1 Preprocessing yields p ∧ 2(2¬p ∨ 2q) ∧ 233¬q.

Phase 2 We have one initial system, namely ‖i ⇒ [p∧2(2¬p∨2q)∧233¬q]. This system
is neither positive nor negative in p or q. Choose p to eliminate. Applying the ∧-rule
twice, we get

∥

∥

∥

∥

∥

∥

i ⇒ p
i ⇒ 2(2¬p ∨ 2q)
i ⇒ 233¬q

.

The system is now ready for the application of the Ackermann-rule, as p has been
successfully isolated, and i ⇒ 2(2¬p ∨ 2q) and i ⇒ 233¬q are negative in p. This
yields

∥

∥

∥

∥

i ⇒ 2(2¬i ∨ 2q)
i ⇒ 233¬q

.

No normalization or auxiliary rules are applicable. The only remaining variable to be
eliminated is q. Successively applying the 2-rule, left-shift ∨-rule and 2-rule again, we
get

∥

∥

∥

∥

3
−1(3−1i ∧ ¬2¬i) ⇒ q

i ⇒ 233¬q
.

Applying the Ackermann-rule to eliminate q, yields:

∥

∥ i ⇒ 233¬[3−1(3−1i ∧ ¬2¬i)] ,

which the application of the normalization rules turns into

∥

∥ i ⇒ 233[2−1(2−1¬i ∨ 2¬i)] .

As all propositional variables have been eliminated, we proceed to phase 3.

52 Chapter 2. The SQEMA-algorithm

Phase 3 We see that, with ϕ the input formula under consideration in this example, (¬i ∨
2332

−1(2−1¬i∨2¬i)) is the formulae pure(ϕ), obtained in Postprocessing.2. Negated
this becomes i ∧ 322[3−1(3−1i ∧ 3i). Translating into first-order logic we obtain

∃x0[x0 = yi ∧ ∃z1(Rx0z1 ∧ ∀z2(Rz1z2 → ∀z3(Rz2z3 → ∃u1[Ru1z3
∧∃u2(Ru2u1 ∧ u2 = yi) ∧ ∃u3(Ru1u3 ∧ u3 = yi)])))].

Note that, in this example, the order of elimination of the propositional variables is inessential,
as eliminating q first and then p works equally well. �

Example 2.3.3 Consider the formula 2(2p ↔ q) → p. The current implementations of
both SCAN and DLS fail on this formula. Let’s see what SQEMA does with it:

Phase 1 Preprocessing yields 2((3¬p ∨ q) ∧ (¬q ∨ 2p)) ∧ ¬p.

Phase 2 Again we have only one initial system:

∥

∥ i ⇒ 2((3¬p ∨ q) ∧ (¬q ∨ 2p)) ∧ ¬p .

All variables occur both positively and negatively. Choose q to eliminate. Applying the
∧-rule and the 2-rule we transform the system into

∥

∥

∥

∥

∥

∥

3
−1i ⇒ (3¬p ∨ q)

3
−1i ⇒ (¬q ∨ 2p)

i ⇒ ¬p
.

Applying the left-shift ∨-rule to the first sequent yields
∥

∥

∥

∥

∥

∥

(3−1i ∧ ¬3¬p) ⇒ q
3

−1i ⇒ (¬q ∨ 2p)
i ⇒ ¬p

,

to which the Ackermann-rule is applicable with respect to q. This gives
∥

∥

∥

∥

3
−1i ⇒ (¬(3−1i ∧ ¬3¬p) ∨ 2p)

i ⇒ ¬p
.

Now, during the application of the normalization rules to the system, working outwards
from subformulae to superformulae, the system

∥

∥

∥

∥

3
−1i ⇒ (¬3

−1i ∨ ¬2p ∨ 2p)
i ⇒ ¬p

is obtained. Recall that the application of auxiliary rules is interleaved with that of the
normalization rules. In this case the auxiliary rules γ ∨ ¬γ ≡ ⊤ and γ ∨ ⊤ ≡ ⊤ now
transform the above system into

∥

∥

∥

∥

3
−1i ⇒ ⊤

i ⇒ ¬p

2.3. Examples 53

The only remaining propositional variable to be eliminated is p. But the system is
negative in p. Hence ⊥ is substituted for all occurrences of p, yielding the system

∥

∥

∥

∥

3
−1i ⇒ ⊤

i ⇒ ¬⊥
,

which is pure.

Phase 3 We obtain (¬3
−1i∨⊤)∧ (¬i∨¬⊥) for pure(ϕ), which becomes (3−1i∧⊥)∨ (i∧⊥)

after negation. After translation and simplification we obtain the first-order equivalent
⊥.

Some remarks are in order here. Firstly, note that the success of the algorithm may depend
essentially upon the ability to do some propositional reasoning, as supplied by the auxiliary
rules in conjunction with the normalization rules. Particularly, from the sequent 3

−1i ⇒
(¬(3−1i ∧ ¬3¬p) ∨ 2p) we had to obtain 3

−1i ⇒ (¬3
−1i ∨ ¬2p ∨ 2p). This was possible

by applying the normalization rules from inside outwards. It is easy to check that, had these
rules been applied inwards, i.e. working from superformulae to subformulae, this form would
not have been obtained, and the tautological status of the consequent of the sequent would
not have been captured by the auxiliary rules. Particularly, the obtained system would have
been

∥

∥

∥

∥

3
−1i ⇒ (2−1¬i ∨ 3¬p ∨ 2p)

i ⇒ ¬p
.

It is clear that the further application of SQEMA-transformation rules will fail transform
system into one to which the Ackermann-rule is applicable.

A much more robust approach would be to replace the Ackermann-rule with a stronger
version, which involves testing for monotonicity, rather than polarity (this option is explored
in chapter 6). Indeed, testing the consequent of the sequent for (upward) monotonicity would
give the answer ‘yes’ — this is, post hoc, easy to see, since we already know that the consequent
is a tautology. This would allow us, after changing the polarity of p, to apply the stronger,
monotonicity based, version of the Ackermann-rule to the system

∥

∥

∥

∥

3
−1i ⇒ (2−1¬i ∨ 3p ∨ 2¬p)

i ⇒ p
,

and hence to obtain
∥

∥ 3
−1i ⇒ (2−1¬i ∨ 3i ∨ 2¬i) ,

which, after negation and translation, is equivalent to ⊥, as before.

Now a second point to take note of. Suppose that we had tried to eliminate p first. Note that
we will gain nothing by changing the polarity of p for we cannot get the occurrence of p ‘out’
under the diamond in the sequent 3

−1i ⇒ (3p∨ q). Indeed, the system may be transformed
to become

∥

∥

∥

∥

∥

∥

3
−1i ⇒ (3¬p ∨ q)

3
−1(3−1i ∧ ¬¬q) ⇒ p

i ⇒ ¬p
,

54 Chapter 2. The SQEMA-algorithm

to which we may apply the Ackermann-rule with respect to p and obtain

∥

∥

∥

∥

3
−1i ⇒ (3¬3

−1(3−1i ∧ ¬¬q) ∨ q)
i ⇒ ¬3

−1(3−1i ∧ ¬¬q)
.

It is clear that this system cannot be solved for q by the application of SQEMA-transformation
rules — the positive and negative occurrences of q separated by a disjunction in the consequent
of the first sequent make this impossible. Moral: the order of elimination does matter some-
times, that is why the algorithm incorporates the ability to backtrack and explore different,
and eventually all, orders of elimination. �

Example 2.3.4 Consider the conjunction of the formula (2p→ 22p)∧2(2p→ 22p) with
the McKinsey formula 23p→ 32p. Recall that, according to proposition 1.3.27, this formula
is not a van Benthem-formula. This formula defines a first-order property on frames ([vB76])
and also happens to be canonical but, as we will now see, SQEMA fails is.

Phase 1 Preprocessing yields (2p ∧ 33¬p) ∨ 3(2p ∧ 33¬p) ∨ (23p ∧ 23¬p).

Phase 2 We obtain three initial systems, namely ‖i ⇒ (2p ∧ 33¬p), ‖i ⇒ 3(2p ∧ 33¬p)
and ‖i ⇒ (23p∧23¬p). It is easy to see that p will be successfully eliminated from the
first two systems. In the third system, the only applicable rules are the ∧ and 2-rules,
the application of which yields a system

∥

∥

∥

∥

3
−1i ⇒ 3p

3
−1i ⇒ 3¬p

.

The only rules that are applicable to this system are the inverse 3-rule and the polarity
switching rule, and no combination of these will transform the system into one to which
the Ackermann-rule is applicable. The algorithm therefore reports failure.

Note that the system on which the algorithm fails is identical to the system on which it would
fail if we had given it as input the McKinsey formula alone. Indeed, we should expect failure
in that case, since the McKinsey formula does not have a first-order frame correspondent. The
point we wish to emphasize is that the separate processing of the disjuncts of the preprocessed
formula seems to preclude SQEMA’s success in this, and similar, cases. �

Example 2.3.5 The logic axiomatized with the formula (2p→ 22p)∧ (23p→ 32p) from
example 2.3.4, also known as K4.1 = K4 ⊕ (23p → 32p), is an example of what is known
as a co-final subframe logic. That is to say the class of Kripke frames for this logic is closed
under taking co-final subframes (a certain type of not necessarily generated subframes). If
the class of frames for a logic is closed under taking arbitrary subframes, then it is called a
subframe logic. Thus the subframe logics form a subclass of the co-final subframe logics.

Many well known logics are in fact co-final subframe logics, and those above K4 turn out
to be particularly well behaved (see [Fin85], [Zak96], and [Zak97b]). Specifically, for these
logics the properties of elementarity, canonicity, strong Kripke completeness and compactness
coincide.

2.3. Examples 55

Some examples are S4 = K4 ⊕ p → 3p, GL = K4 ⊕ 2(2p → p) → 2p, S4.2 =
S4 ⊕ 32p → 23p. For many more examples see [Zak97b]. Now the axioms of GL are non-
elementary, and one can easily check that SQEMA will fail on their conjunction, as indeed it
should. SQEMA also fails on the conjunction of the axioms of K4.1, as seen above in example
2.3.4, which, as mentioned, is in fact elementary and canonical.

On the other hand it is easy to check that SQEMA will succeed on the conjunctions of
the axioms of S4 and S4.2, respectively, as well as on those of the majority the well-know
(co-final) subframe logics as listed e.g. in [Zak97b].

It has been shown in [Zak96] (see also [Zak97b]) that every (co-final) subframe logic above
K4 is axiomatizable with certain types of canonical formulas in the sense of [Zak92] (not to
be confused with formulae which are canonical in the sense in which we employ the term),
known as (co-final) subframe formulas. The subrame formulae have the form

α(F) =
∧

aiRaj

αij ∧
n
∧

i=0

αi → p0,

while the co-final subrame formulae have the form

α(F,⊥) =
∧

aiRaj

αij ∧
n
∧

i=0

αi ∧ α⊥ → p0,

where

αij = 2
+(2pj → pi),

αi = 2
+((

∧

¬aiRak

2pk ∧
∧

j 6=i

pj → pi) → pi),

α⊥ = 2
+(

n
∧

i=0

2
+pi → ⊥),

F = (W,R) is a finite frame with W = {a0, . . . , an}, and 2
+ϕ is shorthand for ϕ ∧ 2ϕ.

Now every subframe logic L (respectively, co-final subframe logic L) above K4 can be
given as L = K4⊕{α(Fi) | i ∈ I} (respectively, L = K4⊕{α(Fi,⊥) | i ∈ I}), for some family
of finite frames {Fi | i ∈ I}. For example S4 = K4⊕ α(F) where F is the frame consisting of
a single, irreflexive point. In other words

S4 = K4 ⊕ 2
+((2p0 → p0) → p0) → p0.

Let us see what SQEMA will do with the conjunction of these axioms. Negating and rewriting
in negation normal form we obtain

[2p ∧ 33¬p] ∨ [((2p0 ∧ ¬p0) ∨ p0) ∧ 2((2p0 ∧ ¬p0) ∨ p0) ∧ ¬p0],

which becomes

[2p ∧ 33¬p] ∨ [(2p0 ∧ ¬p0) ∧ 2((2p0 ∧ ¬p0) ∨ p0) ∧ ¬p0] ∨ [p0 ∧ 2((2p0 ∧ ¬p0) ∨ p0) ∧ ¬p0]

56 Chapter 2. The SQEMA-algorithm

after bubbling up disjunctions. The execution will thus proceed along three disjunctive
branches. Let us consider the branch corresponding to the second disjunct above. After
the application of the ∧ and 2-rules the system on that branch has the form

∥

∥

∥

∥

∥

∥

i ⇒ 2p0 ∧ ¬p0

3
−1i ⇒ (2p0 ∧ ¬p0) ∨ p0

i ⇒ ¬p0

.

It should be clear that the algorithm will fail, since the negative and positive occurrences of
p0 in the second sequent cannot be separated by the application of transformation rules. This
type of failure can sometimes be avoided be distributing disjunctions in the scope of boxes
over conjunctions, during the preprocessing stage. But in the present case this would yield a
system

∥

∥

∥

∥

∥

∥

i ⇒ 2p0 ∧ ¬p0

i ⇒ 2((2p0 ∨ p0) ∧ (¬p0 ∨ p0))
i ⇒ ¬p0

on which the algorithm would also fail.

Inspecting the definition of the formulae α(F) and α(F,⊥) a bit closer one sees that
SQEMA will always fail on them. Indeed if F contains a reflexive point ai then the negation
of α(F) (and of α(F,⊥)) will contain a subformula 2(3¬pi ∨ pi) (origination from αii) and if
it contains an irreflexive point we will be in a situation similar to the one illustrated above.
This is rather a pity considering that the (co-final) subframe logics have so many desirable
properties and also that SQEMA would succeed on the standard axiomatizations of many
well known (co-final) subframe logics. It would be interesting to see if either (i) the (co-final)
subframe formulae could be redefined in an equivalent way which would allow SQEMA to
succeed on them more often, or (ii) alternatively an algorithm could be developed to compute
first-order equivalents for elementary (co-final) subframe formulae. �

Remark 2.3.6 We conclude this section with some informal remarks about the computa-
tional complexity of the SQEMA. The algorithm as it stands is rather loosely specified — no
mechanism for determining which rules to apply when or in what order to try and eliminate
propositional variables is specified — hence we will content ourselves with sketching a rough
upper bound.

Let us consider the execution of the algorithm on an input formula ϕ. Suppose that
ϕ contains n symbols. During preprocessing this formula is negated and disjunctions are
‘bubbled up’. The latter can in general lead to an at most single exponential blowup in the
size of the formula, and can be completed in no more than 2n steps.

Each disjunct of the preprocessed input formula gives rise to a system from which the
propositional variables are to be eliminated. We may assume that every transformation rule
takes constant time to apply. Moreover, since each transformation rule corresponds to the
occurrence in the system of a connective, the number of transformation rule-applications
during the process of solving for a specific variable p is bounded by the number of connectives
occurring in the system (unless we are to go in circles). Hence, solving for the first variable to
be eliminated can be done in 2n steps. Now the system has the correct form for the application

2.4. Correctness 57

of the Ackermann-rule. Application of this rule can increase the size of the system, for there
may be multiple negative occurrences of p being substituted for. This substitution can result
in no more than a squaring of the size of the system. The next variable is solved for in the
system so obtained, and eliminated, leading to yet another possible increase in the size of
the system, and so on. It follows that, given the right ordering of variables, each system
can transformed into a pure one in 2n2n

steps. There are at most n! possible orderings of
the variables, that is less than 2n logn, and hence the total execution time of the algorithm
bounded above by 2n + 2n

2.2n. logn.

It follows that the time it takes SQEMA to reduce an input formula (or report failure) is
bound above by a double exponential function of the size of the original input formula.

2.4 Correctness

In the previous two sections we respectively introduced the basic SQEMA-algorithm and gave
some examples of how it can be used to compute (local) first-order frame correspondents for
L-formulae. We have, however, not yet shown that the algorithm is sound, viz. that the results
produced by it are indeed (locally) equivalent on frames to the input formulae. This is what
we do in this section. To that aim, we make the following definitions. Note that throughout
this section the term model will be used to refer to models suitable for the interpretation of
Lnr , i.e. models (W,R, V) where the valuation V also interprets nominals.

Definition 2.4.1 Let M = (F, V) and M′ = (F, V ′) be two models over the same Kripke
frame, and let PROP and NOM be sets of propositional variables and nominals, respectively.
We say that M and M′ are (PROP,NOM)-related if

1. V ′(p) = V (p) or V ′(p) = W − V (p) for all p ∈ PROP, and

2. V ′(j) = V (j) for all j ∈ NOM.

The next definition is intended to capture the type of equivalence which is preserved by the
SQEMA-transformation rules.

Definition 2.4.2 Formulae ϕ,ψ ∈ Lnr are transformation equivalent if, for every model M =
(F, V) such that M ϕ there exists a (PROP(ϕ) ∩ PROP(ψ),NOM(ϕ) ∩ NOM(ψ))-related
model M = (F, V ′) such that M′ ψ, and vice versa. We will write ϕ ≡trans ψ to indicate
that ϕ and ψ are transformation equivalent.

Remark 2.4.3 Note that transformation equivalence is not a proper equivalence relation,
since, in general, it need not be transitive. For example, p ∨ 2⊥ ≡trans q ∨ 33⊤ and q ∨
33⊤ ≡trans p∨33⊤, but p∨2⊥ 6≡trans p∨33⊤. However, we have the following version of
transitivity: if ϕ1 ≡trans ϕ2, ϕ2 ≡trans ϕ3, and AT(ϕ1) ∩ AT(ϕ3) ⊆ AT(ϕ2), then ϕ1 ≡trans ϕ3.

The following proposition lists two useful properties of transformation equivalence:

Proposition 2.4.4 Let ϕ,ψ ∈ Lnr . Then

58 Chapter 2. The SQEMA-algorithm

1. ϕ ≡trans ψ whenever ϕ ≡sem ψ or ϕ ≡mod ψ;

Moreover, for any frame F = (W,R), points w1, . . . , wn ∈ W and nominals i1, . . . , in ∈
NOM(ϕ) ∩ NOM(ψ),

2. if ϕ ≡trans ψ, then ϕ is [i1 := w1, . . . , in := wn]-satisfiable on F if and only if ψ is
[i1 := w1, . . . , in := wn]-satisfiable on F.

The relationship of transformation equivalence with equivalence over general frames, specifi-
cally descriptive fames, will be considered in more detail in the next section.

Proposition 2.4.5 If Sys′ is a SQEMA-system obtained from a system Sys by application of
SQEMA-transformation rules, then Form(Sys) and Form(Sys′) are transformation equivalent.

Proof. Firstly, it is easy to see that each transformation rule preserves transformation
equivalence. The case for the Ackermann-rule is justified by lemma 2.1.4. Secondly, the
sequence of systems obtained satisfies the requirements for the limited version of transitivity
(remark 2.4.3), since no eliminated variable ever reappears, nor does any nominal which is
eliminated (e.g. by auxiliary rules), since the 3-rule requires new nominals. qed

Theorem 2.4.6 (Correctness of SQEMA) If SQEMA succeeds on an input formula ϕ ∈
L, then the first-order formula returned is a local frame correspondent of ϕ.

Proof. Suppose that SQEMA succeeds on ϕ ∈ L. For simplicity, and without loss of gener-
ality, assume that the execution does not branch because of disjunctions. We may make this
assumption since the conjunction of local first-order correspondents of modal formulae is a
local first-order correspondent for the conjunction of those formulae.

Let F = (W,R) be a Kripke frame and w ∈W . Let Sys0, . . . ,Sysr be the sequence of sys-
tems of equations produced by SQEMA when executed on ϕ. We define the second-order trans-
lation of a system Sysj , TR(Sysj), to be the second-order formula ∃P∃y∀x0ST(Form(Sysj), x0),

where P is the tuple of all predicate variables and y the tuple of all variables corresponding
to nominals other than i, occurring in ST(Form(Sysj), x0). Note that yi, corresponding to i,
is the only free variable in TR(Sysj), and that TR(Sysr) is ∃y∀x0ST(pure(ϕ), x0). Then

F, w ϕ iff

F |= ∀PST (ϕ, x0)[x0 := w] iff

F |= ∀P∃x0ST (i ∧ ϕ, x0)[yi := w] iff

F 6|= ∃P∀x0ST (¬i ∨ ¬ϕ, x0)[yi := w], i.e. iff

F 6|= TR(Sys0)[yi := w].
Now, by propositions 2.4.4(2) and 2.4.5, we have that F 6|= TR(Sys0)[yi := w] if and only if
F 6|= TR(Sysr)[yi := w].

Hence we get that (F, w) ϕ iff F 6|= ∃y∀x0ST(pure(ϕ), x0)[yi := w], i.e that (F, w) ϕ
iff F |= ∀y∃x0¬ST(pure(ϕ), x0)[yi := w].

Hence ∀y∃x0¬ST(pure(ϕ), x0) is a local first-order correspondent for ϕ, and exactly what
SQEMA returns. Accordingly, ∀yi∀y∃x0¬ST(pure(ϕ), x0) is a global first-order correspondent
of ϕ. qed

2.5. Canonicity 59

Corollary 2.4.7 If SQEMA succeeds on an input formula ϕ ∈ L, then, for any pointed frame
(F, w), it is the case that (F, w) ϕ if and only if F ¬pure(ϕ)[i := w].

Remark 2.4.8 The proof of theorem 2.4.6 is a good illustration of the strategy employed by
SQEMA, of simulating local conditions with global ones, via the use of nominals. Specifically,
it exploits the simple observation that a formula ϕ is satisfiable at a point w in a frame F, if and
only if i → ϕ is globally satisfiable on F with i denoting w. Working with global rather than
local satisfiability is essential — not only is it needed for the correct application of (the modal
version of) Ackermann’s lemma, but it also allows the ‘change of perspective’ formalized in
the 3 and 2-rules. For example, the 2-rule allows us to take the claim M j → 2ψ (which
can be seen as a claim about the state of affairs relative to the point named by j), and replace
it by the statement M 3

−1j → ψ, which changes the perspective to the successors of the
point named by j.

2.5 Canonicity

As already mentioned in chapter 1, first-order definability and canonicity are properties that
often go hand in hand for modal formulae. In this section we show that the formulae for
which SQEMA computes first-order equivalents are no exception to this rule, viz. that they
are all canonical.

This will be done by showing that the L-input formulae on which SQEMA succeeds are
d-persistent (recall definitions 0.1.1 and 1.2.8). We will therefore have to work with arbitrary
(i.e. not necessarily reversive (subsection 0.1.2)) descriptive general frames, but since SQEMA

introduces inverse modalities and nominals, it will be necessary to interpret Lnr -formulae over
these frames. The details of this way of interpreting Lnr -formulae are spelled out in subsection
2.5.2. It is therefore important to bear in mind that, throughout this section, whenever the
term ‘descriptive general frame’ is used, the general frame referred to need not be reversive.

2.5.1 Descriptive frames — a topological view

We will work in the basic modal language L, but all definitions generalize to arbitrary simi-
larity types. Our approach will be topological and similar to that of [SV89]. The topological
notions used will be quite basic, and can be found in any standard topology text, e.g. [Wil04].

With every general frame F = (W,R,W), we associate a topological space (W,T (F)),
where W is taken as a base of clopen sets for the topology T (F). Let C(W) denote the set of
sets closed with respect to T (F), i.e. C(W) is the set all intersections of members of W. Once
again we use the notations 3, mR and 〈R〉 (respectively 2, lR and [R]) interchangeably.

Let us reiterate the definition of a descriptive frame, now adding topological equivalents
for the various clauses.

Definition 2.5.1 A general frame F = (W,R,W) is said to be:

differentiated if for every x, y ∈W , x 6= y, there exists X ∈ W such that x ∈ X and y 6∈ X
(equivalently, if T (F) is Hausdorff);

60 Chapter 2. The SQEMA-algorithm

ω + 1 ω 3 2 11 0

transitive

Figure 2.1: Example 2.5.2

tight if for all x, y ∈ W it is the case that Rxy iff x ∈
⋂

{〈R〉(Y) | Y ∈ W and y ∈ Y }
(equivalently, if R is point-closed, i.e. R({x}) is closed for every x ∈W);

compact if every family of admissible sets from W with the finite intersection property (FIP)
has non empty intersection (equivalently, if T (F) is compact);

refined if it is differentiated and tight;

descriptive it is refined and compact.

Note that for such frames the algebra of admissible sets W need not be closed under the mR−1-
operator (usually written simply as 3

−1), as illustrated in example 2.5.2, below. However, the
algebras of descriptive frames for the reversive langauge Lr will be closed under this operator.
For the remainder of this section, whenever talking about a descriptive frame we will always
mean a descriptive frame for the basic modal language.

Example 2.5.2 Let F = (W,R,W) be the general frame with underlying Kripke frame
pictured in figure 2.5.1. Note that ω is reflexive while all other points are irreflexive. Further,
the only successor of ω+1 is ω, while the relation in the submodel generated by ω is transitive.
Let W = {X1 ∪X2 ∪X3 | Xi ∈ Xi, i = 1, 2, 3}, where X1 contains all finite (possibly empty)
sets of natural numbers, X2 contains ∅ and all sets of the form {x ∈ W | n ≤ x ≤ ω} for all
n ∈ ω, and X3 = {∅, {ω + 1}}. It is not difficult to check that F is descriptive. (This general
frame is given in example 8.52 in [CZ97].)

Now, {ω + 1} is an admissible set, but 3
−1({ω + 1}) = {ω}, which is not admissible.

Hence the algebra of admissible sets is not closed under the 3
−1 operator. �

2.5.2 Augmented models

When wishing to interpret Lnr formulae on descriptive frames2, we have to specify how nom-
inals are to be interpreted: will their valuations range over all singletons, only admissible
singletons, or some other subset of the domain of F? In this section we opt to let them range
over all singletons, and to formalize this we make the following definition.

2Recall that these frames need not be reversive.

2.5. Canonicity 61

Definition 2.5.3 Let F = (W,R,W) be a descriptive frame. An augmented valuation on F

is a function V : AT → 2W such that V (p) ∈ W for every propositional variable p and, for
every nominal j, V (j) = {w} for some w ∈ W . An augmented model based on F is a model
(F, V) with V an augmented valuation on F. A Lnr -formula ϕ is augmentedly satisfiable at a
point w in F if there exists an augmented model (F, V) based on F such that ((F, V), w) ϕ.
Local and global augmented satisfiability and validity are defined analogously. We will write
(F, w) aug ϕ if ϕ is augmentedly valid at w in F.

Definition 2.5.4 An Lnr -formula is locally locally ad-persistent if, for all descriptive frames
F = (W,R,W) and points w ∈ W , it is the case that (F, w) aug ϕ only if (F♯, w) ϕ.
Similarly, a Lnr -formula is ad-persistent if, for all descriptive frames F = (W,R,W), it is the
case that F aug ϕ only if F♯ ϕ.

The next two propositions are direct consequences of the above definitions.

Proposition 2.5.5 Every L-formula is (locally) ad-persistent if and only if it is (locally)
d-persistent.

Proposition 2.5.6 Every pure Lnr -formula is (locally) ad-persistent.

Adapting definition 2.4.2 to the case of Lnr -formulae interpreted in augmented models, we
obtain:

Definition 2.5.7 Formulae ϕ,ψ ∈ Lnr are ad-transformation equivalent if, for every aug-
mented model M = (F, V) based on a descriptive frame F, such that M ϕ there exists a
(PROP(ϕ)∩PROP(ψ),NOM(ϕ)∩NOM(ψ))-related augmented model M = (F, V ′) based on F

such that M′ ψ, and vice versa. We will write ϕ ≡ad
trans ϕ if ϕ and ψ are ad-transformation

equivalent.

Analogously to clause 2 of proposition 2.4.4 we have:

Proposition 2.5.8 Let ϕ,ψ ∈ Lnr . Then, for any descriptive frame F = (W,R,W), points
w1, . . . , wn ∈ W and nominals i1, . . . , in ∈ PROP(ϕ) ∩ PROP(ψ), if ϕ ≡ad

trans ψ, then ϕ is
globally [i1 := w1, . . . , in := wn]-satisfiable in some augmented model based on F if and only
if ψ is so satisfiable.

The desired canonicity result will follow easily, once we have established an analogue of
proposition 2.4.5 for ad-transformation equivalence. Most of the work in the rest of this
section is done for the sake of establishing such a result.

2.5.3 Lnr -formulae as operators on descriptive frames

In this section we prove some topological properties of Lnr -formulae, regarded as operators
on descriptive frames (as explained in subsection 0.1.2). These properties will enables us to
prove lemma 2.5.20, a version of Ackermann’s lemma for descriptive frames.

62 Chapter 2. The SQEMA-algorithm

Definition 2.5.9 Let γ = γ(p1, . . . , pn, i1, . . . , im) be a Lnr -formula, with PROP(γ) = {p1, . . . , pn}
and NOM(γ) = {i1, . . . , im}. We say γ is a closed operator on descriptive frames if, for every
descriptive frame F = (W,R,W), any P1, . . . , Pn ∈ C(W) and any x1, . . . , xm ∈ W , it is the
case that

γ(P1, . . . , Pn, {x1}, . . . , {xm}) ∈ C(W),

i.e. when applied to closed sets in a descriptive frame it produces a closed set.

We say γ is a closed formula on descriptive frames if, for every descriptive frame F =
(W,R,W), any P1, . . . , Pn ∈ W and any x1, . . . , xm ∈W , it is the case that

γ(P1, . . . , Pn, {x1}, . . . , {xm}) ∈ C(W),

i.e. whenever applied to admissible sets in any descriptive frame, and with nominals allowed
to range over arbitrary singletons, it produces a closed set.

Thus, if a formula is a closed operator, then it is a closed formula, but not necessarily vice
versa.

Similarly, a Lnr -formula is an open operator on descriptive frames if whenever applied to
open sets in a descriptive frame (with nominals ranging over singletons) it produces an open
set. It is an open formula on descriptive frames if, whenever applied to admissible sets (and
with nominals ranging over singletons), it produces an open set.

Note that the operators 3 and 3
−1 distribute over arbitrary unions, while 2 and 2

−1 dis-
tribute over arbitrary intersections. Since every closed set can be obtained as the intersection
of admissible sets and each open set as the union of admissible sets, and 3 and 2 applied to
admissible sets yield admissible sets, it follows that 3p is an open operator and 2p is a closed
operator, and this holds even for arbitrary general frames. The proof of the next lemma,
originally from [Esa74], can also be found in [SV89] or [BdRV01].

Lemma 2.5.10 (Esakia’s lemma for 3) Let F be a descriptive frame. Then for any down-
ward directed family of nonempty closed sets {Ci | i ∈ I} from C(F), it is the case that
3

⋂

i∈I Ci =
⋂

i∈I 3Ci.

Once again using the fact that closed set can be obtained as the intersection of admissible
sets, we obtain the following corollary.

Corollary 2.5.11 3p is both a closed and an open operator on descriptive frames.

By the duality of 2 and 3 we also immediately have:

Corollary 2.5.12 2p is both a closed and an open operator on descriptive frames.

Lemma 2.5.13 (Esakia’s lemma for 3
−1 on descriptive frames) Let F be a descrip-

tive frame. Then 3
−1

⋂

i∈I Ci =
⋂

i∈I 3
−1Ci for any downwards directed family of nonempty

closed sets {Ci | i ∈ I} from C(F).

2.5. Canonicity 63

Proof. The inclusion 3
−1

⋂

i∈I Ci ⊆
⋂

i∈I 3
−1Ci is trivial, so suppose that x0 6∈ 3

−1
⋂

i∈I Ci,
i.e. 〈R〉(x0) ∩

⋂

i∈I Ci = ∅. Now 〈R〉(x0) is closed by corollary 2.5.11 and the fact that
singletons are closed in descriptive frames. Hence {〈R〉(x0)}∪{Ci | i ∈ I} is a family of closed
subsets with empty intersection which, by compactness, cannot have the FIP. Thus there is
a finite subfamily {C1, . . . , Cn} ⊆ {Ci | i ∈ I} such that 〈R〉(x0) ∩ C1 ∩ · · · ∩ Cn = ∅. Since
{Ci | i ∈ I} is downwards directed, it follows that there that there exists a C ∈ {Ci | i ∈ I}
such that C ⊆

⋂

{C1, . . . , Cn} and 〈R〉(x0) ∩ C = ∅. But then x0 6∈ 3
−1C, and hence

x0 6∈
⋂

i∈I 3
−1Ci. qed

Note that, because 3
−1 need nor produce an admissible sets when applied to one, we cannot

obtain the closedness of 3
−1p as an operator on descriptive frames from lemma 2.5.13 in the

same way that we obtained corollary 2.5.11 from lemma 2.5.10. The proof of the following
lemma is adapted from [GV06].

Lemma 2.5.14 3
−1p is a closed operator on descriptive frames.

Proof. Let F = 〈W,R,W〉 be a descriptive frame. We will show that for any closed subset
A ⊆ W it is the case that 3

−1(A) =
⋂

{B ∈ W | 3
−1A ⊆ B}. Note that 3

−1(A) = R(A),
where R(A) denotes the set of all R-successors of elements of A. The inclusion from left
to right is trivial. In order to prove the right-to-left inclusion, suppose that x0 6∈ 3

−1(A),
i.e. for all y ∈ A it is not the case that Ryx0. By the point-closedness of R we have that
R(y) =

⋂

{B ∈ W | y ∈ 2B}. Then for each y ∈ A there must exist a By ∈ W such that
y ∈ 2By and x0 6∈ By, and hence A ⊆

⋃

{2By | y ∈ A}. Therefore {2By | y ∈ A} is an open
cover of the closed set A, so by compactness there exists a finite subcover 2B1, . . . ,2Bn. Then
A ⊆ 2B1 ∪ · · · ∪ 2Bn and x0 6∈ Bi, 1 ≤ i ≤ n. Since 3

−1 distributes over arbitrary unions,
we then have 3

−1A ⊆ 3
−1

2B1 ∪ · · · ∪ 3
−1

2Bn. And, since for any X ⊆ W , 3
−1

2X ⊆ X,
we have 3

−1A ⊆ B1 ∪ · · · ∪ Bn. So we have found an admissible set containing 3
−1A, not

containing x0, and hence x0 6∈
⋂

{B ∈ W | 3
−1A ⊆ B}, proving the inclusion and the lemma.

qed

Corollary 2.5.15 2
−1p is an open operator on descriptive frames.

Proof. By the duality of 3
−1 and 2

−1. qed

Definition 2.5.16 A formula ϕ ∈ Lnr is syntactically closed if all occurrences of nominals
and 3

−1 in ϕ are positive, and all occurrences of 2
−1 in ϕ are negative or, equivalently, when

written in negation normal form, ϕ is positive in all nominals and contains no occurrences of
2

−1.
A formula ϕ ∈ Lnr is syntactically open if all occurrences of 3

−1 and nominals in ϕ
are negative, and all occurrences of 2

−1 in ϕ are positive or, equivalently, when written in
negation normal form, ϕ is negative in all nominals and contains no occurrences of 3

−1.
Clearly ¬ maps syntactically open formulae to syntactically closed formulae, and vice

versa.

Lemma 2.5.17 Every syntactically closed Lnr -formula is a closed formula on descriptive
frames, and every syntactically open Lnr -formula is an open formula on descriptive frames.

64 Chapter 2. The SQEMA-algorithm

Proof. By structural induction on syntactically open and closed formulae, written in negation
normal form, using corollaries 2.5.11, 2.5.12 and 2.5.15 and lemma 2.5.14, as well as the fact
that all singletons are closed in descriptive frames. qed

The next lemma will be used in the proof of Esakia’s lemma for syntactically closed formulae:

Lemma 2.5.18 Let ϕ(q1, . . . , qn, p, i1, . . . im) ∈ Lnr be a syntactically closed formula which is
positive in p and with PROP(ϕ) = {q1, . . . , qn, p} and NOM(ϕ) = {i1, . . . im}. Then for all
descriptive fames F = (W,R,W), and all Q1, . . . , Qn ∈ W, x1, . . . , xm ∈ W , and C ∈ C(W),
it is the case that ϕ(Q1, . . . , Qn, C, {x1}, . . . , {xm}) is closed in T (F).

Proof. We assume that ϕ is written in negation-normal form, and hence that 2
−1 does not

occur. We proceed by induction on ϕ. If ϕ is ⊤, ⊥ or one of q1, . . . , qn, p, i1, . . . im it is clear
that ϕ(Q1, . . . , Qn, {x1}, . . . , {xm}, C) is a closed set. This is also the case if ϕ is the negation
of a propositional variable from q1, . . . , qn. The cases when ϕ is ¬p or ¬ij do not occur.

The inductive cases for ∧ and ∨ follow since the finite unions and intersections of closed
sets are closed. The cases for 3 and 3

−1 follow from corollary 2.5.11 and 2.5.14, respectively.
Lastly, the case for 2 follows from corollary 2.5.12. qed

Lemma 2.5.19 (Esakia’s lemma for Syntactically Closed Formulae) Let
ϕ(q1, . . . , qn, p, i1, . . . im) ∈ Lnr be a syntactically closed formula with PROP(ϕ) = {q1, . . . , qn, p}
and NOM(ϕ) = {i1, . . . im} which is positive in p. Then for every descriptive frame F =
(W,R,W), all Q1, . . . , Qn ∈ W, x1, . . . , xm ∈W and any downwards directed family of closed
sets {Ci | i ∈ I} from C(F), it is the case that

ϕ(Q1, . . . , Qn,
⋂

i∈I

Ci, {x1}, . . . , {xm}) =
⋂

i∈I

ϕ(Q1, . . . , Qn, Ci, {x1}, . . . , {xm}).

Proof. The proof is by induction on ϕ. For brevity we will omit the parameters Q1, . . . , Qn,
{x1}, . . . , {xm} when writing (sub)formulae. We assume that formulae are written in negation-
normal form, and hence that 2

−1 does not occur. The cases when ϕ is ⊥, ⊤ or among
q1, . . . , qn, p, i1, . . . im are trivial, as are the cases when ϕ is the negation of a propositional
variable among q1, . . . , qn. The cases when ϕ is ¬p or ¬ij do not occur. The inductive step
in the case when ϕ is of the form γ1 ∧ γ2 is also trivial.

Suppose ϕ is of the form γ1 ∨ γ2. We have to show that γ1(
⋂

i∈I Ci) ∪ γ2(
⋂

i∈I Ci) =
⋂

i∈I(γ1(Ci) ∪ γ2(Ci)). The interesting inclusion is from right to left, so assume that x0 6∈
γ1(

⋂

i∈I Ci) ∪ γ2(
⋂

i∈I Ci), i.e x0 6∈
⋂

i∈I γ1(Ci) ∪
⋂

i∈I γ2(Ci), by the induction hypothesis.
Thus there exists C1, C2 ∈ {Ci | i ∈ I} such that x0 6∈ γ1(C1) and x0 6∈ γ2(C2). By the
downward directedness of {Ci | i ∈ I} there is a C ∈ {Ci | i ∈ I} such that C ⊆ C1 ∩ C2.
Thus, since γ1 and γ2 are positive and hence upwards monotone in p, it follows that x0 6∈ γ1(C)
and x0 6∈ γ2(C), and hence that x0 6∈

⋂

i∈I(γ1(Ci) ∪ γ2(Ci)).
Suppose ϕ is of the form 3γ. We have to show that 3γ(

⋂

i∈I Ci) =
⋂

i∈I 3γ(Ci). By the
inductive hypothesis we have 3γ(

⋂

i∈I Ci) = 3
⋂

i∈I γ(Ci). If γ(Ci) = ∅ for some Ci, then
3

⋂

i∈I γ(Ci) = ∅ =
⋂

i∈I 3γ(Ci), so we may assume that γ(Ci) 6= ∅ for all i ∈ I. Then, by

2.5. Canonicity 65

lemma 2.5.18, {γ(Ci) | i ∈ I} is a family of non-empty closed sets. Moreover, {γ(Ci) | i ∈ I}
is downwards directed. For, consider any finite number of members of {γ(Ci) | i ∈ I},
γ(C1), . . . , γ(Cn), say. Then there is a C ∈ {Ci | i ∈ I} such that C ⊆

⋂n
i=1Ci. But then

γ(C) ∈ {γ(Ci) | i ∈ I} and γ(C) ⊆
⋂n
i=1 γ(Ci) by the upwards monotonicity of γ in p. Now

we may apply lemma 2.5.10 and conclude that 3
⋂

i∈I γ(Ci) =
⋂

i∈I 3γCi).
The case when ϕ is of the form 3

−1γ is verbatim the same the previous case, except that
we appeal to lemma 2.5.13 rather than lemma 2.5.10 in the last step.

Lastly consider the case when ϕ is of the form 2γ. This follows by the inductive hypothesis
and the fact that 2 distributes over arbitrary intersections of subsets of W . qed

The next lemma is needed for the following reason: in order to show that SQEMA preserves
ad-transformation equivalence, we will need a version of Ackermann’s lemma that is true
of Lnr -formulae when interpreted over descriptive frames (for the basic modal language L).
As already noted, the extension of an Lnr -formula in an augmented model based on such a
general frame need not be an admissible set in that general frame. This creates and obvious
impediment for the proof of one direction of the equivalence in the modal Ackermann’s lemma,
as the interpretations of propositional variables must be admissible sets. We can push it
through, however, at the price of additional restrictions on formulae in terms of syntactic
openness and closedness.

Lemma 2.5.20 (Restricted Version of Ackermann’s lemma for Descriptive Frames)
Suppose A ∈ Lnr is a syntactically closed formula and B(p) ∈ Lnr is a syntactically open for-
mula which is negative in p. Then

((A→ p) ∧B(p)) ≡ad
trans B(A/p).

Proof. Let A(q1, . . . , qn, i1, . . . , im) and B(q1, . . . , qn, p, i1, . . . , im) be as in the formulation
of the lemma, with PROP(A) ⊆ {q1, . . . , qn}, PROP(B) ⊆ {q1, . . . , qn, p} and NOM(A),
NOM(B) ⊆ {i1, . . . , im}. Let F = (W,R,W) be a descriptive frame, and Q1, . . . , Qn ∈ W

and x1, . . . , xm ∈W . We will that

B(Q1, . . . , Qn, A(Q1, . . . , Qn, {x1}, . . . , {xm}), {x1}, . . . , {xm}) = W

if and only if there is a P ∈ W such that

A(Q1, . . . , Qn, {x1}, . . . , {xm}) ⊆ P and B(Q1, . . . , Qn, P, {x1}, . . . , {xm}) = W,

which is sufficient for the ad-transformation equivalence of (A → B(p)) and B(A/p).
For the sake of brevity we will omit the parameters Q1, . . . , Qn, {x1}, . . . , {xm} in the rest

of the proof, and simply write A, B(P), etc. The implication from bottom to top follows by
the downwards monotonicity of B in p.

For the converse, assume that B(A) = W . Let B′(p) be the negation of B(p) written
in negation normal form. Then B′(p) is a syntactically closed formula, positive in p, and
B′(A) = ∅. We need to find an admissible set P ∈ W such that A ⊆ P and B′(P) = ∅.
Since A is a syntactically closed formula, it follows by lemma 2.5.17 that A is a closed subset
of W and hence that A =

⋂

{C ∈ W | A ⊆ C}. Hence ∅ = B′(A) = B′(
⋂

{C ∈ W |

66 Chapter 2. The SQEMA-algorithm

A ⊆ C}) =
⋂

{B′(C) | C ∈ W and A ⊆ C}, by lemma 2.5.19. Again by lemma 2.5.17,
{B′(C) | C ∈ W, A ⊆ C} is a family of closed sets with empty intersection. Hence, by
compactness, there must be a finite subfamily, C1, . . . , Cn say, such that

⋂n
i=1B

′(Ci) = ∅.
But then C =

⋂n
i=1Ci is an admissible set containing A, and B′(C) = ∅, i.e B(C) = W .

Hence we can choose P = C. qed

2.5.4 Proving canonicity

Equipped with lemma 2.5.20, we are now almost ready to prove theorem 2.5.23, which asserts
the canonicity of all L-formulae on which SQEMA succeeds. First, however, we need two
preliminary lemmas. Diamond-link sequents were defined on page 45.

Lemma 2.5.21 During the entire (successful or unsuccessful) execution of SQEMA on any
L input formula, all antecedents of all non-diamond-link sequents are syntactically closed
formulae, while all consequents of all non-diamond-link sequents are syntactically open.

Proof. We follow any one disjunctive branch of the execution, proceeding by induction on
the application of transformation rules. The initial system is of the form ‖i ⇒ ψ , where
ψ ∈ L. For this system the conditions of the lemma hold, since i is syntactically closed
and all L-formulae are both syntactically closed and open. Now suppose that in the process
of the execution we have reached a system satisfying the conditions of the lemma, viz. all
antecedents of all non-diamond-link sequents in the system are syntactically closed, while
all consequents of all non-diamond-link sequents in the system are syntactically open. It is
straightforward to check that the application of any transformation rule to this system will
preserve these conditions. In the particular case when the Ackermann-rule is applied, we note
the following: (i) the diamond-link sequents in the system contain no propositional variables,
and are hence essentially disregarded by in any application of the Ackermann-rule; (ii) by
the inductive hypothesis the disjunction of antecedents which is substituted for the variable
being eliminated is syntactically closed; (iii) substituting a syntactically closed formula for
negative occurrences of a variable in a syntactically open formula yields a syntactically open
formula. qed

We are now able to prove the next, crucial proposition. It is an analogue of proposition 2.4.5
for ad-transformation equivalence.

Proposition 2.5.22 Let Sys be a system obtained during the execution of SQEMA on an L-
formula, and let Sys′ be obtained from Sys by the application of SQEMA-transformation rules.
Then Form(Sys) ≡ad

trans Form(Sys′).

Proof. If we can verify that each transformation rule preserves ad-transformation equiva-
lence, the result will follow from the limited version of transitivity satisfied by transformation
equivalence (remark 2.4.3). We only verify that the Ackermann-rule — the cases for the other
rules are trivial. To that end, suppose that Sys2 is obtained from Sys1 by the application of

2.6. Some completeness results for syntactic classes 67

the Ackermann-rule. Then, by lemma 2.5.21, Form(Sys1) is of the form

l
∧

j=1

(¬αj ∨ p) ∧
m
∧

j=1

(βj) ∧
n
∧

j=1

γj

for some propositional variable p, syntactically closed formulae α1, . . . , αl, syntactically open
formulae β1, . . . , βm negative in p, and pure formulae γ1, . . . , γn corresponding to diamond-link
sequents. Hence Form(Sys2) is of the form

m
∧

j=1

(β′j) ∧
n
∧

j=1

γj ,

where each β′j is obtained from βj by substituting
∨l
j=1 αj for all occurrences of p. The proof

is complete once we appeal to lemma 2.5.20. qed

Theorem 2.5.23 If SQEMA succeeds on a formula ϕ ∈ L, then ϕ is locally d-persistent and
hence canonical.

Proof. Suppose that SQEMA succeeds on ϕ ∈ L. Further, for simplicity and without loss of
generality, assume that the execution does not branch because of disjunctions. We may make
this assumption since a conjunction of d-persistent formulae is d-persistent.

Let F = (W,R,W) be a descriptive frame and w ∈W . Then (F, w) ϕ iff (i → ¬ϕ) is not
globally [i := w]-satisfiable on F iff (by propositions 2.5.22 and 2.5.8) pure(ϕ) is not globally
[i := w]-satisfiable on F.

By proposition 2.5.6, the latter is the case iff pure(ϕ) is not globally [i := w]-satisfiable on
F♯, which in turn, by corollary 2.4.7 is the case if and only if (F♯, w) ϕ.

Hence we have established that (F, w) ϕ iff (F♯, w) ϕ, whence the local d-persistence
of ϕ. qed

2.6 Some completeness results for syntactic classes

In this section we establish completeness results for SQEMA with respect to some syntactically
specified classes of elementary and canonical formulae. By ‘completeness’ we mean that
SQEMA succeeds in computing first-order equivalents for (and simultaneously proving the
canonicity of) all members of these classes.

2.6.1 Sahlqvist and Sahlqvist–van Benthem formulae

We show that SQEMA succeeds in computing first-order equivalents for all Sahlqvist–van
Benthem formulae, from which its completeness for the subclass of Sahlqvist formulae imme-
diately follows. In the light of theorem 2.5.23, the canonicity of the members of theses two
syntactic classes then follows as a corollary. First, a few preliminary notions.

68 Chapter 2. The SQEMA-algorithm

Definition 2.6.1 Call a system Sys a simple dual Sahlqvist–van Benthem system, or an
SDSBS for short, if each sequent in Sys has the from j ⇒ ψ, where j is a nominal, and
ψ is an Lnr -formula such that, in ψ:

(SDSBS1) no positive occurrence of a propositional variable is in a subformula of the form
3γ, which is in the scope of a 2,

(SDSBS2) no positive occurrence of a propositional variable is in the scope of a disjunction,
and

(SDSBS3) no occurrence of a propositional variable is in the scope of an inverse box or an
inverse diamond.

The sequents in an SDSBS will be refereed to as SDSBS-sequents.

Lemma 2.6.2 Let p be a be a propositional variable occurring both positively and negatively
in an SDSBS Sys. Then p may be eliminated from Sys by the application of the 3-rule, 2-rule,
∧-rule, and Ackermann-rule, yielding an SDSBS Sys′.

Proof. Let Sys be as in the formulation of the lemma. This means that the positive occur-
rences of p in the sequents of Sys are at most in the scope of 3’s, 2’s and ∧’s with, moreover,
no positive occurrence of p in the scope of a 3 which is in the scope of a 2. Note that applica-
tion of the 3 and ∧-rules to an SDSBS again yields an SDSBS. Hence the 3 and ∧-rules can
be applied to Sys until it has been transformed into an SDSBS Sys1, in which every sequent in
which p appears positively is has the form j ⇒ γ, where j is a nominal and, in γ, all positive
occurrences of p are at most in the scope of 2’s and ∧’s. Further application of 2 and ∧-rules
yield a system Sys2, where every sequent is either an SDBS-sequent or one of the form δ ⇒ p
with δ a pure Lnr -formula. So Sys2 need not in general be an SDSBS. Call the system obtained
by applying to Sys2 the Ackermann-rule with respect to p, Sys3. Now Sys3 is an SDSBS not
containing any occurrence of the variable p. Indeed, when the Ackermann rule is applied to
Sys2, all non-SDSBS-sequents are eliminated, and a pure Lnr -formula is substituted for the
(negative) occurrences of p in the SDSBS-sequents of Sys2, yielding SDSBS-sequents. Sys3 is
then the desired system Sys′. qed

Theorem 2.6.3 SQEMA succeeds on every Sahlqvist–van Benthem formula.

Proof. Let ϕ be a Sahlqvist–van Benthem formula. Preprocessing negates ϕ and transforms
it, by importing negation and bubbling up disjunctions, into a formula

∨n
i=1 ϕi, where in each

ϕi each disjunction occurrence is in the scope of 2. It is easy to see that, moreover, for each
ϕi, the system ‖i ⇒ ϕi, if not already an SDSBS, may be transformed into an SDSBS by
applying the polarity switching rule. The theorem now follows by induction on the number
of occurring propositional variables, and appealing to lemma 2.6.2. qed

Corollary 2.6.4 SQEMA succeeds on every Sahlqvist formula.

Corollary 2.6.5 Every Sahlqvist–van Benthem formula and every Sahlqvist formula is locally
elementary, locally d-persistent, and hence canonical.

2.6. Some completeness results for syntactic classes 69

2.6.2 Monadic inductive formulae

Now we extend the results of the previous section to monadic inductive formulae (recall
definition 1.3.16). We now introduce a slight liberalization of this definition which allows for
the restricted use of 2

−1, 3
−1 and nominals. Recall that a monadic box formula in L with

head p is any formula of the form

A0 → �1(A1 → . . .�n(An → p) . . .),

where �1, . . . ,�n are finite, possibly empty, sequences of 2’s, and A1, . . . , An are positive
formulae. For the purposes of this subsection we will mean by an Lnr -liberalized box formula
a formula of the form

A0 ∨ �1(A1 ∨ . . .�n(An ∨ p) . . .),

where �1, . . . ,�n are as before, and A1, . . . , An are any negative Lnr -formulae.
The Lnr -liberalized monadic inductive formulae, are then formulae built up from ⊥, ⊤,

negated Lnr -liberalized box formula and positive Lnr -formulae, using ∧, ∨ and 3, and which
have acyclic dependency digraphs.

The abbreviation NegMIF will be used for the negation of an Lnr -liberalized monadic
inductive formula in negation normal form. Note that the class of NegMIF’s consists precisely
of those formulae built from ⊤, ⊥, negative Lnr -formulae and Lnr -liberalized box-formulae
using ∧, ∨, and 3, which have acyclic dependency digraphs. The abbreviation NegMIF∗ will
be used for NegMIF’s built up without the use of disjunction, i.e. the class of all formulae of
the language built from ⊤, ⊥, negative Lnr -formulae and Lnr -liberalized box-formulae using ∧
and 3, which have acyclic dependency digraphs. Note that in NegMIF’s and NegMIF∗’s no
positive occurrences of propositional variables are in the scope of 3

−1 or 2
−1.

Definition 2.6.6 Call a SQEMA-system a NegMIF-system (NegMIF∗-system) if it has the
form

∥

∥

∥

∥

∥

∥

∥

i1 ⇒ α1
...
in ⇒ αn

,

where

(NMS1) each ii is a nominal,

(NMS2) the formula α1 ∧ . . .∧αn, obtained by taking the conjunction of all consequents of
sequents in the system, is a NegMIF (NegMIF∗).

Lemma 2.6.7 Let Sys be a NegMIF∗-system, and p any propositional variable occurring both
positively and negatively in Sys. Then p can be eliminated from Sys by the application of the
SQEMA-transformation rules. Moreover, the system obtained after the elimination of p will
again be a NegMIF∗-system.

Proof. Let Sys and p satisfy the conditions of the lemma. We will separate out all positive
occurrences of p to prepare for the application of the Ackermann-rule. The only positive

70 Chapter 2. The SQEMA-algorithm

occurrences of p are heads of (possibly trivial) box-formulae in the consequents of the sequents
of the system. Let ii ⇒ α be such a sequent, where α contains positive occurrences of p.
Exhaustive application of the ∧-rule and the 3-rule splits ii ⇒ α into sequents of the forms
j ⇒ 3k, l ⇒ Box and m ⇒ Neg, with j,k, l,m nominals, Box a box-formula, and Neg

a negative formula. As all box-formulae have been left intact, the dependency digraph is
unchanged. Hence, after the application of these rules we still have a NegMIF∗-system.

Now it remains to separate the positive occurrences of p out of the equations of the
form l ⇒ Box, where Box is of the form 21(A1 ∨ 22(. . .2n(An ∨ p) . . .)) where each Ai is a
negative formula and each 2i a finite, possibly empty, sequence of 2’s. Successive alternative
applications of the Left-shift ∨-rule and Left-shift 2-rule transforms the sequent

l ⇒ A0 ∨ 21(A1 ∨ . . .2n(An ∨ p) . . .))

into

¬An ∧ 3
−1
n (. . .3−1

1 (l ∧ ¬A0) . . .) ⇒ p.

The antecedent in the above sequent is a positive formula, not containing p, because the
dependency graph is loopless. Hence all positive occurrences of p in the system now occur
as the consequents in sequents of the form Pos ⇒ p, where Pos is a positive formula not
containing p. Let ρ be the disjunction of all the antecedents of the sequents of the form
Pos → p. Then, by applying the Ackermann-rule, all equations of this form are deleted and
p is eliminated by substitution of the positive formula ρ for every negative occurrence of p.
Thus, the resulting system does not contain p, all antecedents of equations are nominals, and
all consequents of equations are built up from negative formulae and box-formulae, by using
only conjunctions and diamonds. Moreover, no positive occurrence of a propositional variable
occurs in the scope of an inverse diamond or box.

To show that the resulting system is again NegMIF∗, it remains to show that the de-
pendency digraph is acyclic. We will do so by showing that whenever a new arc (q, u) was
introduced by the application of the Ackermann-rule, there was already a directed path from
vertex q to vertex u in the digraph before the substitution. Indeed, the only way (q, u) could
have been introduced was by the substitution of ρ for an inessential occurrence of p in some
box-formula with u as head. But then q must occur in ρ, hence, by the construction of ρ, it
must have occurred inessentially in some box-formula headed by p. But then (q, p) and (p, u)
were arcs in the dependency digraph before the application of the Ackermann-rule, giving
the desired path. Thus, the application of the Ackermann-rule cannot introduce cycles in a
previously acyclic dependency graph, which completes the argument. qed

Theorem 2.6.8 SQEMA succeeds on all conjunctions of monadic inductive formulae.

Proof. An easy inductive argument, noting that the initial SQEMA-systems for every con-
junction of monadic inductive formulae are NegMIF∗-systems, and using lemma 2.6.7. qed

Corollary 2.6.9 (Sahlqvist theorem for inductive formulae) All monadic inductive for-
mulae are elementary and canonical.

2.7. Computing pure equivalents with SQEMA 71

2.7 Computing pure equivalents with SQEMA

Readers might have remarked upon the strangeness of the translation prescribed by step
Postprocessing.3 of the SQEMA-algorithm, viz. ∀y∃xST(¬pure(ϕ), x). After all, why don’t
we just take the ordinary standard translation of ¬pure(ϕ)? The reason is of course to be
found in SQEMA’s simulation of local conditions with global statements. This is essential if
we are to be able to ‘change perspective’, as happens in the application of the 3 and 2-rules.
A plain application of the ordinary standard translation function fails to take this simulation
into account, as the following examples illustrate:

Example 2.7.1 In example 2.3.1 we ran SQEMA on the Geach formula ϕ = 32p → 23p,
and obtained pure(ϕ) = (¬i∨3j)∧(¬i∨322

−1¬j). Hence ¬pure(ϕ) = (i∧2¬j)∨(i∧233
−1j).

Far from defining the Church-Rosser property, this pure formula is locally valid only on those
frames consisting of a single (reflexive or irreflexive) point. It is only modulo the interpretation
of i as the current state, and the concomitant special translation, that this formula defines
the Church-Rosser property. �

Example 2.7.2 The formula ϕ = 2(2p → p) is valid at a point in a frame iff it has only
reflexive successors. If we run SQEMA on this input, we obtain

¬pure(ϕ) = (i ∧ 2¬j) ∨ (j ∧ 3
−1j).

Once again, if we impose no constraints on the interpretation of nominals this formula is
locally frame equivalent to ⊥. Even if we insist that i be interpreted as the current state,
this formula is still falsifiable at points validating ϕ = 2(2p → p). But let us see how our
idiosyncratic translation gets us out of this mess:

∀yj∃xST((i ∧ 2¬j) ∨ (j ∧ 3
−1j), x)

=∀yj∃x((x = yi ∧ ∀z1(Rxz1 → z1 6= yj) ∨ (x = yj ∧ ∃z2(Rz2x ∧ z2 = yj))

This formula is a local first-order correspondent of the input formula. Indeed, simplifying it
a bit, without any assumptions on interpretations (of variables), we see that it defines the
correct local frame condition:

∀yj(∀z1(Ryiz1 → z1 6= yj) ∨ (∃z2(Rz2yj ∧ z2 = yj))

≡∀yj(Ryiyj → Ryjyj)

�

As will be seen, any formula ϕ ∈ L reducible by SQEMA is locally equivalent on frames to a
pure Lnr -formula but, as the above examples illustrate, ¬pure(ϕ) need evidently not be that
pure formula. Via the translation ∀y∃xST(¬pure(ϕ), x) we do establish a local correspondence
between ϕ and a first-order formula, but we would also like to use SQEMA to establish
correspondences with pure hybrid formulae. This is what we pursue in the remainder of this
section. We will call a pure Lnr -formula α a pure local frame equivalent of a L-formula ϕ, if α
and ϕ are locally equivalent on frames.

The following lemmas are used in justifying the correctness of the procedure that will be
proposed further for computing pure local frame equivalents.

72 Chapter 2. The SQEMA-algorithm

Lemma 2.7.3 Let ϕ be a Lnr -formula and j a nominal, possibly occurring in ϕ. For any
pointed frame (F, w), the formula j → ϕ is globally [j := w]-satisfiable on F iff (F, w) 6 j →
¬ϕ.

Lemma 2.7.4 Any system obtained during the (successful or unsuccessful) execution of SQEMA

on any L-input formula, can be transformed, via the application of SQEMA transformation
rules, into one in which the antecedent of each sequent is either ⊥ or a nominal.

Proof. By an unproblematic induction on the application of transformation rules, we can
establish the following:

Claim 1 During the entire (successful or unsuccessful) execution of SQEMA on any L-input
formula, every sequent α ⇒ β in every system obtained is such that, after re-normalization,
either

1. the antecedent α contains an occurrence either of ⊥ or of a nominal, which is in the
scope of at most 3

−1 and ∧, or

2. the consequent β contains an occurrence either of ⊤ or of a negated nominal, which is
in the scope of at most 2 and ∨.

Now, any sequent satisfying the first item of claim 1 can be transformed into the desired
form through the application of the right-shift ∨ and inverse 3-rules. Similarly, a sequent
satisfying the second item can be transformed into the desired from through the application
of the left-shift ∨ and 2-rules, as well as the right-shift ∨-rule. qed

We now define a procedure that may be added on to SQEMA to produce the desired pure
equivalents:

Procedure Pure Equivalent({Sys1, . . . ,Sysn}) This procedure receives a set of pure sys-
tems as input, from which it computes and returns a pure Lnr -formula.

Pure Equivalent.1: Call Unify(Sysi) for each system Sysi in {Sys1, . . . ,Sysn}.

Pure Equivalent.2: Form each 1 ≤ i ≤ n, the system Unify(Sysi) consists of a single
sequent of the form i ⇒ γi. Form the formula (i → ¬γ1) ∧ · · · (i → ¬γn). Call this
formula pure.equiv({Sys1, . . . ,Sysn}).

Pure Equivalent.3: Return pure.equiv({Sys1, . . . ,Sysn}).

Sub-procedure Unify(Sys) This procedure receives a system Sys as input and returns a
system consisting of a single sequent of the form i ⇒ γ.

Unify.1: By applying SQEMA transformation rules, transform Sys into a system in
which the antecedent of each sequent α⇒ β is either a nominal or ⊥. (By lemma
2.7.4 this is always possible.)

Unify.2: Remove every sequent with antecedent ⊥.

2.7. Computing pure equivalents with SQEMA 73

Unify.3: The diamond-link sequents in the system define a tree with the occurring
nominals as vertices, rooted at the reserved nominal i. Starting from the leaves
of this tree (i.e. nominals k such that there is no diamond-link sequent k ⇒ 3l
in the system), remove all sequents k ⇒ β1, . . .k ⇒ βm with k as antecedent and
replace the diamond-link sequent j ⇒ 3k (i.e. the diamond-link sequent with k
in the consequent) with j ⇒ 3(k ∧ β1 ∧ · · ·βn). Now j is a leaf in the tree so
‘trimmed’. Proceed in this way down the tree towards the root until the only
sequents remaining in the system are of the form i ⇒ γi. Replace these with a
single sequent i ⇒

∧

γi. Return this system.

By replacing procedure Postprocessing in SQEMA with procedure Pure Equivalent we obtain
an algorithm that returns a pure Lnr -formula rather than a first-order formula. To see that
this pure formula will be locally frame equivalent to the input formula we note the following:

1. By proposition 2.4.5 all SQEMA-transformation rules maintain transformation equiva-
lence. Hence step Unify.1 also preserves this equivalence.

2. Step Unify.2 is based on the propositional equivalence of ⊥ → β and ⊤ and the fact that
systems are interpreted conjunctively.

3. The transformations in step Unify.2 clearly preserve global equivalence on models.

4. For any input formula ϕ ∈ L and pointed frame (F, w), it follows that (F, w) ϕ iff
i → ¬ϕ is not globally [i := w]-satisfiable on F iff (Unify(Sys1) ∨ · · · ∨ Unify(Sysn)) is
not globally [i := w]-satisfiable on F, where Sys1, . . .Sysn are the systems obtained at
the end of phase 2 of a successful execution of SQEMA on ϕ. Hence (F, w) ϕ iff
((i → γ1) ∨ · · · ∨ (i → γn)) is not globally [i := w]-satisfiable on F, with γ1, . . . , γn as in
Pure Equivalent.2. Hence, by lemma 2.7.3, (F, w) ϕ iff (F, w) ((i → ¬γ1)∧· · ·∧ (i →
¬γn)).

We illustrate this procedure for obtaining pure equivalents with a few examples:

Example 2.7.5 Consider again the Geach formula 32p→ 23p of examples 2.3.1 and 2.7.1.
The pure system obtained was

∥

∥

∥

∥

i ⇒ 3j
i ⇒ 322

−1¬j
.

Unify changes this into the system
∥

∥ i ⇒ 3j ∧ 322
−1¬j ,

and the pure formula returned is i → 2¬j∨233
−1j which locally defines the Church-Rosser

property. �

Example 2.7.6 Let us return to the formula 2(2p → p) of example 2.7.2. The final, pure
system obtained when SQEMA is executed on it is

∥

∥

∥

∥

i ⇒ 3j
j ⇒ 2

−1¬j
.

74 Chapter 2. The SQEMA-algorithm

Unify transforms this into the system

∥

∥ i ⇒ 3(j ∧ 2
−1¬j) ,

and the pure equivalent returned is i → 2(¬j ∨ 3
−1j) which, as expected, is valid at exactly

those points in frames that have only reflexive successors. �

Theorem 2.7.7 SQEMA together with Pure Equivalent computes pure local frame equivalents
for all Sahlqvist, Sahlqvist–van Benthem, and monadic inductive formulae.

2.8 SQEMA and van Benthem-formulae

Recall that the van Benthem formulae are those modal formulae that follow locally on frames
from L0 substitution instances of formulae equivalent to their standard translations (definition
1.3.22). In this section we show that SQEMA does not take us beyond that class. The easiest
way to see this is via the alternative characterization of the van Benthem-formulae in terms
of e-persistence (proposition 1.3.25). We will show that all SQEMA-formulae are e-persistent.
With this aim, we adapt the notion of transformation equivalence to elementary frames to
obtain:

Definition 2.8.1 Formulae ϕ,ψ ∈ Lnr are e-transformation equivalent if, for every model
M = (g, V) based on an elementary general frame g such that M |= ϕ, there exists a
(PROP(ϕ)∩PROP(ψ),NOM(ϕ)∩NOM(ψ))-related model based on g such that M′ |= ψ, and
vice versa.

The following proposition, an analog of proposition 2.4.5, is easy to prove.

Proposition 2.8.2 If Sys′ is a SQEMA-system obtained from a system Sys by application of
SQEMA-transformation rules, then Form(Sys) and Form(Sys′) are e-transformation equivalent.

Theorem 2.8.3 All SQEMA-formulae are locally e-persistent, and hence are van Benthem-
formulae.

Proof. Let g = (F,W) be an elementary general frame (for the basic modal language L).
We note that, apart from the booleans and 3, the algebra W is also closed under 3

−1 and
2

−1. Furthermore, all singletons are admissible. Hence all Lnr -formulae can be properly
interpreted in g — no need to consider augmented models here. Moreover, it follows that all
pure Lnr -formulae are e-persistent.

Now suppose ψ ∈ L is a SQEMA-formula, and that pure(ϕ) is the pure Lnr -formulae
obtained in step Postprocessing.2. Now (g, w) ϕ iff i → ϕ is not globally [i := w]-satisfiable
on g iff, by proposition 2.8.2, pure(ϕ) is not globally [i := w]-satisfiable of g. By the persistence
of pure formulae with respect to elementary frames, the latter is the case iff pure(ϕ) is not
globally [i := w]-satisfiable of F which, by proposition 2.4.5, is the case iff (F, w) ϕ. Hence,
we have shown that ϕ is locally e-persistent. qed

2.8. SQEMA and van Benthem-formulae 75

This theorem sheds a sharper light on SQEMA’s inability to reduce the formula (2p →
22p) ∧ 2(2p→ 22p) ∧ (23p→ 32p) as illustrated in example 2.3.4. According to propo-
sition 1.3.27 this formula is not a van Benthem formula, and hence its reduction will require
and algorithm transcending this class. This theorem also suggests that no algorithm based
on equivalence preserving transformations (to be precise, transformations preserving logical
equivalence between the standard first-order translations of formulae) and substitution (i.e.
Ackermann’s lemma) will succeed in computing a first-order correspondent for this formula.

Or to be more explicit, suppose that the semantic meaning of the system or formula
obtained during any stage of the execution of our hypothetical algorithm can be represented as
a monadic existential second-order formula ∃Pϕ, with ϕ first-order. If (1) the transformations
(apart from the substitution-rule, e.g. Ackermann-rule) performed by the algorithm can be
represented by replacing ϕ with equivalent (in the first-order sense) formulae, and (2) the
action of the substitution-rule through which a second-order variables Q is eliminated can
be captured by substituting in ∃Q∃Pϕ all occurrences of Q with a first-order formula, then
the algorithm maintains equivalence over elementary general frames. Hence, if the algorithm
succeeds in reducing an input formula, which we can represent as a second order-formula ∀Pϕ,
to a first-order formula ψ, then ∀Pϕ and ψ are equivalent over elementary general frames,
and since first-order formulae are e-persistent it follows that ∀Pϕ must also be e-persistent.
Hence all formulae on which such an algorithm succeeds will be van Benthem–formulae.

Chapter 3

The DLS-Algorithm

As discussed in subsection 1.4.1, the elementarity problem for modal formulae may be seen
as a second-order quantifier elimination problem. Particularly, the elementarity question for
a modal formula ϕ is equivalent to the question whether ∀PST(ϕ, x) is logically equivalent
to a formula not containing second-order quantification.

Second-order quantifier elimination is an important problem with a rich diversity of appli-
cations (see e.g. [GSS06]). In this chapter we take a closer look at the second-order quantifier
elimination algorithm DLS, due to Doherty, Lukaszewicz and Szalas ([D LS97]). This algo-
rithm has already been introduced briefly in subsection 1.4.3. DLS and SQEMA are related,
since both are based on Ackermann’s lemma.

Our approach in this chapter can be seen as taking the form of a comparison between
instances of the algoritmic and syntactic approaches to specifying classes of elementary (and
canonical modal) formulae, as outlined in sections 1.3 and 1.4, respectively. On the one hand
we apply the methods of the syntactic approach to the class of formulae defined by DLS, i.e.
the class of formulae which it succeeds in reducing, by delineating it partially in terms of
its syntactic characteristics. On the other hand we investigate the performance of DLS on
two well known syntactically specified classes of modal formulae, namely the Sahlqvist and
inductive formulae.

The chapter, which is based on [Con06], is structured as follows: Section 1 provides a
characterization of the formulae (of certain syntactic shapes) that are deskolemizable via
specified syntactic manipulations. Section 2 recalls and analyses the details of the DLS
algorithm. Some examples are also provided. In section 3 we obtain a partial syntactic
characterization (in terms of forbidden quantifier-connective patterns) of the second-order
formulae in one predicate variable which DLS successfully reduces to first-order formulae.
Sufficient conditions for DLS’s success on formulae containing multiple existential second-
order quantifiers are next provided. Next, in section 4, some consequences of these results for
modal correspondence theory are considered. It is shown that DLS succeeds in computing
the first-order frame correspondents of all Sahlqvist and inductive formulae. It is proven
that all modal formulae in one propositional variable for which DLS computes first-order
equivalents are canonical. We conclude in section 5 by mentioning some further directions
and conjectures.

77

78 Chapter 3. The DLS-Algorithm

3.1 Deskolemization

As will be seen below, the success of the DLS algorithm may depend crucially on the ability
to remove Skolem function, i.e., on the ability to deskolemize. In the broadest sense deskolem-
ization1 may be regarded as the problem of eliminating existentially quantified function vari-
ables from second-order formulae whilst maintaining equivalence. As the term suggests, the
function variables to be eliminated are typically introduced through Skolemization, i.e. the
application of the equivalence

∀x∃yA(x, y) ≡ ∃f∀xA(x, y)[f(x)/y] (3.1)

from left to right in order to eliminate existential quantifiers. Note that the equivalence
assumes the axiom of choice. Some methods for deskolemizing clause sets are provided in
[Eng96] and [McC88]. Here, however, we are interested in deskolemizing a rather particular
kind of formulae, viz. those produced by DLS after the application of Ackermann’s lemma in
phase 3 (see section 3.3). With this in mind we consider a slightly more general situation and
introduce the following definitions.

We define the following transformations on predicate formulae, based on well known equiv-
alences. The arrows indicate in which directions the transformations are applied. (Certain
asymmetries in the list, e.g. the separation of clause (Q2) and (Q3) unlike clause (Q1), are
motivated by the combinations in which these transformations will be applied, which in turn
is dictated by the specification of the DLS-algorithm.)

(Q1) Qx(A ∗ B(x)) =⇒ A ∗ QxB(x), and Qx(B(x) ∗ A) =⇒ QxB(x) ∗ A, for Q ∈ {∃,∀},
∗ ∈ {∧,∨} and where A contains no free occurrence of the variable x.

(Q2) A ∗ ∃xB(x) =⇒ ∃x(A ∗ B(x)) and ∃xB(x) ∗ A =⇒ ∃x(B(x) ∗ A), for ∗ ∈ {∧,∨}, and
where A contains no free occurrence of the variable x.

(Q3) A ∗ ∀xB(x) =⇒ ∀x(A ∗ B(x)) and ∀xB(x) ∗ A =⇒ ∀x(B(x) ∗ A), for ∗ ∈ {∧,∨}, and
where A contains no free occurrence of the variable x.

(Q4) ∀x(A ∧B) =⇒ ∀xA ∧ ∀xB, where A and B are any formulae.

(Q5) ∀xA ∧ ∀xB =⇒ ∀x(A ∧B), where A and B are any formulae.

(Q6) ∃x(A ∨B) =⇒ ∃xA ∨ ∃xB, where A and B are any formulae.

(Q7) ∃xA ∨ ∃xB =⇒ ∃x(A ∨B), where A and B are any formulae.

(Q8) ∃x∃yA =⇒ ∃y∃xA and ∀x∀yA =⇒ ∀y∀xA for any formula A.

A first-order formula is in negation normal form if it contains no occurrences of ‘→’ and ‘↔’
and all negation signs occur only directly in front of atomic formulae. A first-order formula is
said to be clean if no variable occurs both bound and free, and no two quantifier occurrences

1The term unskolemization is probably more widely used. However, because of the possible ambiguity of
certain forms like ‘unskolemizable’, we prefer deskolemization and deskolemizable.

3.1. Deskolemization 79

bind the same variable. Clearly every first-order formula may be equivalently rewritten as a
clean formula by a suitable renaming of bound variables. The scope of an occurrence of a
quantifier Q ∈ {∀,∃} is minimal (respectively, strongly minimal) in a first-order formula if
that occurrence can not be moved to the right (i.e. if its scope cannot be made smaller) by
the application of (Q1) (respectively, of (Q1) and (Q4)).

Definition 3.1.1 A first-order formula A is (strongly) standardized with respect to a predi-
cate symbol P if it is clean, in negation normal form, and the scope of all quantifiers in the
scope of which P occurs, is (strongly) minimal.

Definition 3.1.2 A formula is in deskolemizable form with respect to f1, . . . , fn if it is clean
and has the form

∃f1 . . .∃fn∀xA

where for each fi,

(i) all arguments of each occurrence of fi are variables among x,

(ii) each occurrence of fi is applied to the same vector of variable arguments, i.e to the same
variables in the same order, and

(iii) the ordering of the arguments of the fi’s by set inclusion is linear (but not necessarily
strict).

Definition 3.1.3 A formula is in general deskolemizable form with respect to f1, . . . , fn, if it is
built up from formulae not containing any occurrences of function variables among f1, . . . , fn
and formulae in deskolemizable form with respect to function variables among f1, . . . , fn, by
applying the boolean connectives and individual quantifiers.

Note that the function variables f1, . . . , fn may be eliminated from any formula in deskolem-
izable form with respect to f1, . . . , fn, via the application of (3.1) from right to left, slotting
in the new existential individual quantifiers into the prefix ∀x appropriately so as to get the
variable dependencies right. This observation readily extends to yield the following proposi-
tion:

Proposition 3.1.4 The function variables f1, . . . , fn can be eliminated from any formula in
general deskolemizable form with respect to f1, . . . , fn, via the application of (3.1).

Incidentally, every formula satisfying all conditions of definition 3.1.2, except perhaps con-
dition (iii), can be equivalently rewritten as a first-order formula with Henkin-quantifiers
([Wal70]).

Or approach to deskolemization will be to try and transform formulae into general deskolem-
izable form via equivalence preserving syntactic manipulations.

By quantifier shifting we will mean the application of the rules (Q1) to (Q8). By a top level
existential quantifier in a formula A we mean any occurrence of an existential quantifier in A
which is not in the scope of any universal quantifier. Similarly, a top level universal quantifier

80 Chapter 3. The DLS-Algorithm

is a universal quantifier not in the scope of any existential quantifier. An occurrence of a
conjunction or disjunction which is not in the scope of any universal quantifier is called a top
level conjunction / disjunction.

Definition 3.1.5 Let A be a formula in negation normal form and P a predicate variable.
A conjunction (disjunction) occurrence in A is called:

1. benign with respect to P , if it is the main connective of a subformula of the form C ∧D
(C ∨D) where at least one of C and D contains no occurrences of P . We will write ∧′

P

(∨′
P) for conjunctions (disjunctions) benign with respect to P , or simply ∧′ (∨′) if P is

understood;

2. malignant with respect to P if it is the main connective of a subformula of the form
C ∧D (C ∨D) where C and D contains occurrences of P of opposite polarity. We will
write conjunctions (disjunctions) malignant with respect to P as ∧∗

P (∨∗
P), or simply as

∧∗ (∨∗) when P is understood;

3. non-malignant with respect to P , if it is not malignant with respect to P . Clearly
benign connectives are non-malignant, but not conversely. We will write ∧◦

P (∨◦
P) for

conjunctions (disjunctions) non-malignant with respect to P , or simply ∧◦ (∨◦) if P is
understood;

4. non-benign with respect to P , if it is not benign with respect to P . We will not associate
a special notation with non-benign conjunctions and disjunctions.

Example 3.1.6 In the formula

∀x(¬Q(x) ∨′ P (x)) ∧∗ ∃u((P (u) ∧′ Q(u)) ∧◦ ∀y(¬R(u, y) ∨′ ∃z(R(y, z) ∧′ Q(z)))),

we have indicated for all conjunctions and disjunctions whether they are benign, malignant
or non-malignant with respect to Q. �

The following lemma is easy to prove:

Lemma 3.1.7 Let A be a formula, P a predicate symbol, and suppose that A′ is obtained
from A by (i) distributions of ∧ over ∨, and/or (ii) distribution of ∨ over ∧, and/or (iii)
the application of the associativity laws ((A ∧B) ∧ C) ≡ (A ∧ (B ∧ C)) and ((A ∨B) ∨ C) ≡
(A∨(B∨C)). Then A contains a conjunction (disjunction) malignant/non-benign with respect
to P only if A′ contains a conjunction (disjunction) malignant/non-benign with respect to P .

Definition 3.1.8 A predicate P , is in ∃∀-scope in a formula A, if no occurrence of P in A is
in the scope of

(i) an existential quantifier which is in the scope of a universal quantifier, or

(ii) a non-benign (w.r.t. P) disjunction which is in the scope of a universal quantifier, or

(iii) a malignant (w.r.t. P) conjunction which is in the scope of a universal quantifier.

3.1. Deskolemization 81

Example 3.1.9 In the formula

∀x[¬Q(x) ∨ P (x)] ∧ ∃u[P (u) ∧ ∀y(¬R(u, y) ∨ ∃z(R(y, z) ∧Q(z)))],

which is clean and in negation normal form, P is in ∃∀-scope, while Q is not in ∃∀-scope. �

Lemma 3.1.10 Let ∃f1 . . .∃fn∀xA(x, y) be a formula in deskolemizable form with respect to
f1 . . . fn, in which the variable y is free and does not occur as an argument of any f1 . . . fn.
Let B(P) be a formula standardized with respect to the unary predicate P , positive (negative)
in P , in which the variables x, y do not occur. Let B(∀xA/P) be the result of substituting
all occurrences of P (¬P) in B with ∀xA(x, y), the actual argument of each occurrence of P
every time being substituted for y in A. Then the formula

∃f1 . . .∃fnB(∀xA/P)

can be transformed into general deskolemizable form by quantifier shifting and the distribution
of conjunction over disjunction, if and only of P is in ∃∀-scope in B(P).

Proof. Suppose P is in ∃∀-scope in B(P). Note that, since B is positive (negative) in
P , it contains no occurrences of ∧ or ∨ which are malignant with respect to P . We show
how ∃f1 . . .∃fnB(∀xA/P) may be brought into general deskolemizable form by means of
quantifier shifting and the distribution of conjunctions over disjunctions. First pull out all
top level existential quantifiers (by applying (Q2)), and then distribute top-level conjunctions
over top-level disjunctions as much as possible, to obtain

∃z∃f1 . . .∃fnB
′(∀xA/P). (3.2)

Note that, in B′(P), P is still in ∃∀-scope, and that no non-benign disjunction occurs in the
scope a conjunction. Now, in (3.2), the prefix ∃f1 . . .∃fn may be shifted to the right across all
occurrences of ∨ and ∧′

P , using (Q6) and (Q1), respectively. On the other hand, occurrences
of the prefix ∀x may be shifted to the left across all occurrences of ∧ and ∀ using (Q3), (Q5)
and (Q8), as well as occurrences of ∨′

P , using (Q3). This may be done until each occurrence
of ∀x stands directly to the right of an occurrence of ∃f1 . . .∃fn, and vice versa. Moreover,
within the scope of each occurrence of ∃f1 . . .∃fn, conditions (i) to (iii) of definition 3.1.2 will
be satisfied with respect to f1 . . . fn, since the process described does not affect the arguments
of occurrences of the f1 . . . fn. Hence, the resulting formula will be in general deskolemizable
form with respect to f1 . . . fn.

Conversely, if P is out of ∃∀-scope in B(P), it means that condition (i) or (ii) of definition
3.1.8 is violated inB(P) — condition (iii) will not be violated, sinceB(P) is positive (negative)
in P . Note that these situations may not be removed by distribution and/or quantifier shifting,
as, by assumption, all quantifiers in B(P) with P in their scope already have minimal scope.
Hence quantifier shifting and distribution of ∧ over ∨ will fail here to bring the formula
into general deskolemizable form, as it will fail to make each occurrence of ∃f1 . . .∃fn stand
directly to the left of some occurrence of ∀x, or to make every occurrence of ∀x stand directly
to the right of some occurrence of ∃f1 . . .∃fn. qed

82 Chapter 3. The DLS-Algorithm

Example 3.1.11 Consider the formula ∃f∀wA(w, y), where A is (y 6= f(w) ∨ ¬Rxw),
which is in deskolemizable form. If B is the formula ∀u(¬Rxu ∨ ∃v(Ruv ∧ ¬P (v))) or
∀u∀v(¬Rxu∨¬P (u)∨(Ruv∧¬P (v))), then the formula ∃fB(∀wA/P) cannot be transformed
into deskolemizable form, since, in both cases, P is not in ∃∀-scope in B. However, if B is
∀u(¬Rxu ∨ ∀v(¬Ruv ∨ ¬P (v))), then ∃fB(∀wA/P) can be transformed into deskolemizable
form. �

3.2 The DLS algorithm

In this section we recount the full details of the DLS algorithm as presented in [D LS97],
interpolating remarks, relevant to the purposes of this chapter, into the exposition. We spell
out the assumptions we make regarding certain aspects of the algorithm, left unspecified in
[D LS97], but crucial to some results in the subsequent sections. For some fully worked-out
examples of the (successful and unsuccessful) execution of DLS on various input formulae,
the reader is referred to [D LS97] and, for modal examples, to [Sza93] and [Sza02].

DLS is centered around the equivalences given in Ackermann’s Lemma ([Ack35]), already
introduced in chapter 2, but restated here for easy reference:

Lemma 3.2.1 (Ackermann’s Lemma) Let A(z, x) be a formula not containing P . Then,
if, B(P) is negative in P , the equivalence

∃P∀x((¬A(z, x) ∨ P (x)) ∧B(P)) ≡ B[A(z, x)/P] (3.3)

holds, with B[A(z, x)/P] the formula obtained by substituting A(z, x) for all occurrences P in
B, the actual argument of each occurrence of P being substituted for x in A(z, x) every time.
If B(P) is positive in P , a similar equivalence holds:

∃P∀x((¬P (x) ∨A(z, x)) ∧B(P)) ≡ B[A(z, x)/P]. (3.4)

The algorithm takes as input a formula ∃PA where no second order quantification occurs
in A. To eliminate multiple existentially quantified predicate variables, the algorithm may
be iterated, and to eliminate universally quantified predicate variables, the negation of the
formula can be considered. For simplicity we assume that all predicate variables are unary,
which is sufficient for modal applications. The execution of algorithm consists of the following
four phases. (Examples 3.2.9 and 3.2.10 at the end of this section illustrate these phases of
algorithm.)

3.2.1 Phase 1: preprocessing

The purpose of this phase is to separate positive and negative occurrences of P by transforming
the input formula ∃PA into the form

∃x∃P [(A1(P) ∧B1(P)) ∨ · · · ∨ (An(P) ∧Bn(P))], (3.5)

where each Ai(P) (respectively, Bi(P)) is positive (respectively, negative) in P . If this cannot
be achieved, the algorithm reports failure and terminates.

3.2. The DLS algorithm 83

1. Make the formula clean by renaming bound variables, and transform it into negation
normal form.

2. Universal quantifiers are moved to the right as far as possible by applying (Q1), and
then existential quantifiers are moved to the left as far as possible using (Q2).

3. Move existential quantifiers in the scope of universal quantifiers to the right, using (Q1).

4. Steps (2) and (3) are repeated as long as new existential quantifiers can be moved into
the prefix.

Remark 3.2.2 Note that, if A is standardized with respect to P , then the only effect
of steps (2) to (4) on quantifiers with P in their scope, will be to pull out into the prefix
the top level ∃’s among them. For strongly standardized A, this will even be the case
if, in step 2, the application of (Q4) is moreover allowed.

5. In the matrix of the formula obtained thus far, distribute conjunctions over disjunctions
that contain both positive and negative occurrences of P , i.e. replace A∧ (B ∨C) with
(A∧B)∨ (A∧C) whenever (B ∨C) contains both positive and negative occurrences of
P .

If after these 5 steps the desired separated form (3.5) has not been obtained, the algorithm
reports failure. Otherwise, transform the obtained formula into its equivalent

∃x[∃P (A1(P) ∧B1(P)) ∨ · · · ∨ ∃P (An(P) ∧Bn(P))]. (3.6)

Phase 2 then proceed separately on each main disjunct ∃P (Ai(P) ∧Bi(P)).

Remark 3.2.3 We assume that the algorithm has some mechanism built in to deal with the
associativity and commutativity of ∧ and ∨. This is reasonable, for it is clear that without
such a mechanism phase 1 will fail to solve such clearly solvable input as ∃P∃x∃y∃z((P (x) ∧
Q(x)∧¬P (y))∧ (P (z))). Moreover this mechanism should be optimizable to minimize either
negative or positive conjuncts. For example, in the above formula, should Q(x) be included
in the conjunct negative or positive with respect to P? Minimization with respect to positive
conjuncts would yield a formula ∃P∃x∃y∃z((P (x)∧P (z))∧ (Q(x)∧¬P (y))), while minimiza-
tion with respect to negative conjuncts will give ∃P∃x∃y∃z((P (x) ∧Q(x) ∧ P (z)) ∧ ¬P (y)).

3.2.2 Phase 2: preparation for Ackermann’s lemma

For this phase to be reached, it is necessary that the input formula has been successfully
transformed into the form (3.6). This phase transforms a formula of the form ∃P (A ∧ B),
with A and B respectively positive and negative in P , into one of the two forms, (3.3) or
(3.4), suitable for the application of Ackermann’s lemma. Both forms are always obtainable.
However, it is possible that one form may lead to failure of the deskolemization in phase
3, while the other does not. Accordingly both forms are obtained, in order to increase the
chances of success. We outline the transformation procedure used to obtain the first form —
the other is symmetric.

84 Chapter 3. The DLS-Algorithm

1. Transform A into prenex conjunctive normal form, using the usual method. We obtain
a formula of the form

pref [(P (t11) ∨ · · · ∨ P (tm1) ∨ C1) ∧ · · · ∧ (P (t1k
) ∨ · · · ∨ P (tmk

) ∨ Ck) ∧D], (3.7)

where pref is a quantifier prefix and P does not occur in C1, . . . , Ck, D.

Remark 3.2.4 In preparing for the application of Ackermann’s lemma, the goal of
phase 2 is to ‘extract’ the occurrences of P . In order to do this, subformulae not con-
taining occurrences of P need not be transformed in any way. Accordingly, step 1 of
this phase may be optimized as follows: rather than obtaining a full prenex conjunc-
tive normal form, pull into the prefix only quantifiers that have P in their scope; then
distribute disjunctions over conjunctions which do not occur in the scope of quantifiers
other than those in the prefix. Note that the obtained formula (3.7) will be the same,
except that the Ci and D need not be quantifier free. Proceeding in this way minimizes
the introduction of (existential) quantifiers into the prefix pref , and hence the introduc-
tion of Skolem functions in step 4, below. In the implementation of DLS (see [Gus96])
similar strategies are used. It is not difficult to construct formulae on which DLS would
fail if a full prenex conjunctive form were obtained, but on which it succeeds if the
described strategy is followed, and indeed on which the implementation also succeeds.

2. Transform each conjunct of (3.7) of the form (P (t1i
) ∨ · · · ∨ P (tmi

) ∨ Ci) (i.e. each
conjunct with multiple P -disjuncts) equivalently into

∃xi(∀y(P (y) ∨ xi 6= y ∨ Ci) ∧ (xi = t1i
∨ · · · ∨ xi = tmi

∨ Ci)).

Move each new existential quantifier ∃xi into the prefix pref , and move each of the
conjuncts (xi = t1i

∨ · · · ∨ xi = tmi
∨ Ci) into D in (3.7), renaming D to D′.

Remark 3.2.5 The new existential quantifiers being introduced into pref will have to
be skolemized in step 4 below.

3. Transform each conjunct of (3.7) of the form P (t1i
) ∨ Ci (i.e. each conjunct with only

one P -disjunct) equivalently into the form ∀y(P (y) ∨ y 6= t1i
∨ Ci).

4. Skolemize all existential quantifiers in the prefix of the formula obtained so far. The
input to this phase has now been transformed into the form

∃f∃Ppref ′[∀y(P (y) ∨ x1 6= y ∨ C1) ∧ · · · ∧ ∀y(P (y) ∨ xk 6= y ∨ Ck) ∧ E], (3.8)

where E is D′∧B. Note that this may cause some of the xi to be replaced with Skolem
functions, and that Skolem functions may be introduced into the Ci and also into D′.

5. Lastly transform (3.8) into the form

∃f∃P∀y[P (y) ∨ pref ′((x1 6= y ∨ C1) ∧ · · · ∧ (xk 6= y ∨ Ck)) ∧ pref ′E]. (3.9)

3.2. The DLS algorithm 85

Remark 3.2.6 We note that the formula ∃f [pref ′((x1 6= y ∨ C1) ∧ · · · ∧ (xk 6= y ∨ Ck))] is
in deskolemizable form. Indeed, the arguments of all occurrences of the introduced Skolem
functions f are variables among those bound in pref ′, and are not changed from those inserted
during the skolemization step.

3.2.3 Phase 3: application of Ackermann’s lemma

The formula (3.9) obtained in the last step of the previous phase is of the right shape to permit
the application of Ackermann’s lemma. Accordingly the algorithm proceeds as follows:

1. Apply Ackermann’s lemma to (3.9), eliminating P and obtaining the formula

∃fpref ′E[pref ′((x1 6= y ∨ C1) ∧ · · · ∧ (xk 6= y ∨ Ck))/¬P]. (3.10)

Remark 3.2.7 Recall that E is the formula D′∧B. Since the formula was made clean
in step 1 of phase 1, no variable bound by a quantifier in pref ′ occurs in B. Moreover,
by the construction of D′ it contains no occurrences of P .

2. Deskolemize if possible, by applying the equivalence (3.1). If this is not possible the
algorithm reports failure and terminates.

Remark 3.2.8 The deskolemization step is rather underspecified. It should be clear
that the formula obtained in step 1 of this phase will rarely be in a form to which (3.1) is
directly applicable. For these reasons we make the assumption that the deskolemization
further involves quantifier shifting and distribution ∧ over ∨ (as in the proof of lemma
3.1.10) to try and bring the formula into general deskolemizable form, from which the
Skolem functions may then be eliminated by the application of (3.1).

3.2.4 Phase 4: simplification

In this phase the following simplifying substitutions are performed on the formula obtain in
phase 3: subformulae of the form ∀x(A(x) ∨ x 6= t) are replaced by A(t), and subformulae of
the form ∀x((x 6= t1 ∧ · · · ∧ x 6= tn) ∨A(x)) are replaced with A(t1) ∧ · · · ∧A(tn).

3.2.5 Examples

Here are two examples of the execution of DLS on the negations of translations of modal
formulae.

Example 3.2.9 In example 2.3.1 we saw how SQEMA succeeds in computing a first-order
equivalent for the Geach formula, 32p→ 23p. This is how DLS deals with the negation of
its translation ∃P (∃y(Rxy ∧ ∀z(Ryz → P (z))) ∧ ∃u(Rxu ∧ ∀v(Ruv → ¬P (v)))):

∃P (∃y(Rxy ∧ ∀z(Ryz → P (z))) ∧ ∃u(Rxu ∧ ∀v(Ruv → ¬P (v))))

≡ ∃y∃u∃P ((Rxy ∧ ∀z(¬Ryz ∨ P (z))) ∧ (Rxu ∧ ∀v(¬Ruv ∨ ¬P (v))))

86 Chapter 3. The DLS-Algorithm

Phase 1 completed. Phase 2, step 1:

≡ ∃y∃u∃P (∀z((¬Ryz ∨ P (z)) ∧Rxy) ∧ (Rxu ∧ ∀v(¬Ruv ∨ ¬P (v))))

Phase 2, step 3:

≡ ∃y∃u∃P (∀z(∀w(P (w) ∨ w 6= z ∨ ¬Ryz) ∧Rxy) ∧ (Rxu ∧ ∀v(¬Ruv ∨ ¬P (v))))

Phase 2, step 3:

≡ ∃y∃u∃P∀w((P (w) ∨ ∀z(w 6= z ∨ ¬Ryz)) ∧ ∀z(Rxy ∧ (Rxu ∧ ∀v(¬Ruv ∨ ¬P (v)))))

Phase 3, step 1:

≡ ∃y∃u∀z(Rxy ∧ (Rxu ∧ ∀v(¬Ruv ∨ ¬∀z(v 6= z ∨ ¬Ryz))))

After negation this formula simplifies to

∀y∀u(Rxy ∧Rxu→ ∃v(Ruv ∧Ryv))

as expected. �

Example 3.2.10 Consider the negated translation of the formula 2(2p ↔ q) → p from
example 2.3.3. Phase 1 of DLS begins by making this formula clean and transforming it into
negation normal form, yielding

∀z(¬Rxz ∨ ((¬Q(z) ∨ ∀u(¬Rzu ∨ P (u))) ∧ (Q(z) ∨ ∃v(Rzv ∧ ¬P (v))))) ∨ ¬Q(x)

By remark 3.2.2, phase 1 of DLS will fail to bring this formula into the desired form (3.5).
Hence the algorithm reports failure. �

3.3 Characterizing the success of DLS

In this section we attempt to gain a better understanding of the input formulae on which DLS
will succeed. Given our assumptions about the deskolemization process (see remark 3.2.8),
we are in fact able to give a precise syntactic characterization of the formulae ∃PA, with A
standardized with respect to P , from which DLS will succeed in eliminating the predicate
variable P . However, when it comes to the iterated elimination of multiple predicate variables,
the situation is significantly more complicated, and in this case we content ourselves with
providing sufficient syntactic conditions for the success of the algorithm.

3.3.1 A necessary and sufficient condition for success

Definition 3.3.1 A predicate variable P is in good scope in a formula A in negation normal
form if

(i) no conjunction or disjunction malignant with respect to P occurs in the scope of a
universal quantifier in A, and

3.3. Characterizing the success of DLS 87

(ii) A contains no subformula of the form B1∧B2 where P is out of ∃∀-scope in both B1 and
B2, and B1 contains a positive (negative) occurrence of P , and B2 contains a negative
(positive) occurrence of P .

A predicate symbol P is in bad scope in a formula A, if it is not in good scope in A.

Example 3.3.2 In the formulae

∀x[∃y(R(x, y) ∧ ¬P (y)) ∧ ∀y(¬R(x, y) ∨ P (y))]

and
[∀z∃y(R(z, y) ∧ P (y))] ∧ [∀z∃y(R(z, y) ∧ ¬P (y))]

the predicate symbol P is in bad scope. However, it is in good scope in the formulae

∃x[∃y(R(x, y) ∧ ¬P (y)) ∧ ∀y(¬R(x, y) ∨ P (y))]

and
[∀z∀y(R(z, y) ∧ P (y))] ∧ [∀z∃y(R(z, y) ∧ ¬P (y))].

P is in good scope in any formula that is positive (negative) in P . �

Theorem 3.3.3 Let A be a formula, standardized with respect to P . Then DLS succeeds in
eliminating P from ∃PA if and only if P is in good scope in A.

Proof. We prove a number of subclaims. The first claim is easy to see.

Claim 1 Let C be a formula and P a predicate symbol. Let C ′ be obtained from C by (i)
pulling out top level ∃, and/or (ii) distributions of top-level ∧’s over top-level ∨’s. Then P is
in good scope in C if and only if P is in good scope in C ′. Moreover, disregarding top level
∃’s, C ′ is standardized w.r.t. P whenever C is.

Claim 2 If P is in good scope in A, then ∃PA may be transformed into the shape given by
(3.5) by pulling out into the prefix all top level ∃’s, and by distributing conjunctions over
malignant disjunctions. Moreover, P will still be in good scope in the resulting formula.

Proof of Claim If P is in good scope in A, then all ∧∗
P ’s and ∨∗

P ’s are top-level. Hence,
after pulling top level ∃’s into the prefix and distributing top level conjunctions over malignant
disjunctions, the formula will be in the desired shape, modulo associativity and commutativity
of ∧ and ∨ (see remark 3.2.3). By claim 1, this procedure preserves the good scope of P . ◭

Combining claim 2 with remark 3.2.2, and noting step 5 in Phase 1, it follows that Phase 1
of DLS will succeed on any formula ∃PA with A standardized, whenever P is in good scope
in A.

Claim 3 Suppose P is in bad scope in A, and that phase 1 of the algorithm succeeds in
transforming ∃PA into the desired shape (3.5). Then P will be in bad scope in at least one
of the main disjuncts ∃P (Ai(P) ∧Bi(P)) of formula (3.6).

88 Chapter 3. The DLS-Algorithm

Proof of Claim We show that the obtained formula (3.6) will contain a main disjunct
∃P (Ai(P) ∧ Bi(P)) such that neither in Ai(P) nor in Bi(P) the predicates symbol P is in
∃∀-scope. By claim 1, P will be in bad scope in the matrix of the formula (3.6). It cannot be
the case that the first condition of definition 3.3.1 is violated, since then negative and positive
occurrences of P could not be separated in the formula as per assumption. Hence it must
be the second condition which is violated, i.e. there is a subformula of the form (B1 ∧ B2)
with a positive (negative) occurrence of P not in ∃∀-scope in B1 and a negative (positive)
occurrence of P not in ∃∀-scope in B2. Then, since the only malignant conjunctions in our
formula are those between the Ai-Bi-pairs, the claim follows. ◭

Claim 4 Given as input to phase 2 a formula ∃P (A(P) ∧ B(P)), standardized with respect
to P and with A(P) positive and B(P) negative in P , DLS will terminate successfully if and
only if P is in good scope in (A(P) ∧B(P)).

Proof of Claim Phase 2 transforms ∃P (A(P) ∧ B(P)) into the form (3.9), which step 1
of phase 3 transforms into ∃fpref ′E[pref ′((x1 6= y ∨ C1) ∧ · · · ∧ (xk 6= y ∨ Ck))/¬P], where
E is D′ ∧ B(P) and D′ contains no occurrences of P . By remark 3.2.7, this formula can be
transformed by quantifier shifting into the form ∃f(pref ′D′∧B[pref ′((x1 6= y∨C1)∧· · ·∧(xk 6=
y∨Ck))/¬P]). By remark 3.2.6, ∃f [pref ′((x1 6= y∨C1)∧· · ·∧(xk 6= y∨Ck))] is in deskolemizable
form. If then follows from lemma 3.1.10 and our assumptions on the deskolemization process
(see remark 3.2.8), that the next step of the algorithm will succeed in deskolemizing this
formula if and only if P is in ∃∀-scope in B.

Now, suppose P is in bad scope in (A(P) ∧ B(P)), and hence P is in ∃∀-scope neither
in A(P) nor in B(P). Then skolem functions will be introduced during phase 2 and, by the
above, the deskolemization and the algorithm will fail, and this will also be the case if, rather
than version (3.3) of Ackermann’s lemma, version (3.4) is prepared for and applied.

Conversely, if P is in good scope in (A(P) ∧B(P)), then it is in ∃∀-scope in at least one
of A(P) or B(P). Hence the algorithm will succeed, either when version (3.3) Ackerman’s
lemma is prepared for and applied (as illustrated above), or when version (3.4) is used. ◭

Theorem 3.3.3 now follows by combining claims 2 through 4. qed

Remark 3.3.4 If (Q4) is also used in phase 1 (see remark 3.2.2) theorem 3.3.3 will hold for
strongly standardized, rather than standardized, formulae. Note that the theorem does not
extend to the elimination of multiple predicate variables: both P and Q are in good scope in
∃P∃Q∃x[∀y(¬Rxy ∨ (P (y) ∨ ∀z(¬Ryz ∨Q(z)))) ∧ ∀u(¬Rxu ∨ ∃v(Ruv ∧ (¬P (v) ∨ ¬Q(v))))],
but one can easily check that DLS will fail to reduce this formula.

3.3.2 A sufficient condition for success

Definition 3.3.5 A formula A is restricted with respect to predicate variables P1, . . . , Pn if
it is standardized with respect P1, . . . , Pn, and, in A,

(i) no two positive occurrences of predicate variables among P1, . . . , Pn are in the scope of
the same universal quantifier, and

3.3. Characterizing the success of DLS 89

(ii) all positive occurrences of P1, . . . , Pn are in ∃∀-scope.

The next definition is inspired by that of the inductive formulae (definition 4.2.3).

Definition 3.3.6 Let A be a restricted formula with respect to P1, . . . , Pn. The dependency
digraph of A over P1, . . . , Pn is the digraph DA = 〈VA, EA〉 with vertex set VA = {P1, . . . , Pn}
and edge set EA such that (Pi, Pj) ∈ EA iff there is a subformula ∀xC of A such that Pi
occurs negatively in C and Pj occurs positively in C. The dependency digraph of A is acyclic
if it contains no directed cycles or loops. A formula A, restricted with respect to P1, . . . , Pn,
is independent with respect to P1, . . . , Pn if its dependency digraph over P1, . . . , Pn is acyclic.

Example 3.3.7 Consider the formulae ∀x(P (x) ∨ ∀z(R(x, z) ∧Q(z))) and
∀x(P (x) ∨ ∀z(R(x, z) ∧ ¬Q(z))) ∧ ∀x(∀y(¬R(x, y) ∨ Q(y)) ∨ ∃z(R(x, z) ∧ ¬P (z))). The first
is not restricted with respect to P and Q. The second is restricted with respect to P and Q
but not independent with respect to these predicate variables. It can be made independent
by replacing the subformula ¬Q(z) with z 6= z, for instance. �

Lemma 3.3.8 Suppose A is independent with respect to P1, . . . , Pn, and that P1 is minimal
with respect to the ordering induced on P1, . . . , Pn by the dependency digraph. Then DLS
succeeds in eliminating P1 from ∃P1A. Moreover, the returned formula will be independent
with respect to P2, . . . , Pn.

Proof. We assume that A has been preprocessed by distributing all ∧’s and ∃’s over ∨ as
much as possible.

Claim 1 Stage 1 terminates successfully, returning a formula ∃x[∃P (A1(P1)∧B1(P1))∧· · ·∧
∃P (An(P1)∧Bn(P1))] in which each (Ai(P)∧Bi(P)) is independent with respect to P1, . . . , Pn,
and such that in each Ai(P1) the only occurrences of predicate variables among P1, . . . , Pn
are P1’s. Moreover, no Ai(P1) has a subformula of the form C ∨D with P1 occurring both in
C and D.

Proof of Claim We note that P1 is in good scope in A, and hence that, by theorem
3.3.3, phase 1 succeeds. By the minimality of P1, no occurrence of a predicate variable
among P2, . . . , Pn occurs together with P1 in the scope of a universal quantifier. Hence, apart
from top level ∃’s, the only occurrences of connectives in the scope of which P1 occurs in A
together with other predicate variables among P2, . . . , Pn, are conjunctions and disjunctions.
Moreover, among these conjunctions and disjunctions, no disjunction occurs in the scope of
a conjunction, due to the preprocessing. It follows that, if we minimize positive conjuncts
(see remark 3.2.3), in the formula (3.6) no conjunct Ai(P1) will contain any occurrence of
predicate symbol among P2, . . . , Pn, nor will it contain a subformula of the form C ∨D with
P1 occurring both in C and D. Moreover, each main disjunct ∃P1(Ai(P1) ∧ Bi(P1)) of (3.6)
will be independent with respect to P1, . . . , Pn, as the formula clearly remains restricted and
the dependency digraph remains unchanged. ◭

90 Chapter 3. The DLS-Algorithm

Claim 2 Given a formula (Ai(P1) ∧ Bi(P1)), satisfying the conditions of claim 1, phase 2
returns a formula ∃P1∀y[P1(y)∨ pref ((x1 6= y∨C1)∧ · · · ∧ (xk 6= y∨Ck))∧ prefE] containing
no Skolem functions, and with pref ((x1 6= y∨C1)∧· · ·∧(xk 6= y∨Ck)) containing no predicate
variables among P1, . . . , Pn.

Proof of Claim Recall that E is the formula D′∧Bi(P1). Since Ai(P1) contains no predicate
variables among P2, . . . , Pn, it is clear that pref ((x1 6= y ∨ C1) ∧ · · · ∧ (xk 6= y ∨ Ck)) (and
also D′) will contain no predicate variables among P1, . . . , Pn. Recall that all top level ∃’s
were pulled out in phase 1. Hence, in Ai(P1), P1 does not occur in the scope of any ∃’s,
since all positive occurrences are in ∃∀-scope. It follows that, if quantifiers are pulled out as
described in remark 3.2.4, then pref will contain only universal quantifiers. Nor are there
any subformulae of the form C ∨D, with P1 occurring both in C and D, in the conjunctive
normal form obtained in step 1 (since this property is invariant under distribution of ∨ over
∧). Hence no existential quantifiers will be introduced by step 2. It follows that no Skolem
functions will be introduced in step 4. ◭

Combining claims 1 and 2, we see that prefE remains independent with respect to P2, . . . , Pn
when pref ((x1 6= y ∨C1) ∧ · · · ∧ (xk 6= y ∨Ck)) is substituted for ¬P in it, since no predicate
variable is introduced into the scope of a universal quantifier. Lastly, since no Skolem functions
occur, the deskolemization step is vacuous. qed

Theorem 3.3.9 DLS succeeds in computing first-order equivalents for all formulae of the
form ∃P1 . . .∃PnA where A is independent with respect to P1, . . . , Pn.

Proof. By induction along any linear order extending the partial order induced on the
predicate variables P1, . . . , Pn by the dependency digraph of A over P1, . . . , Pn, using lemma
3.3.8. qed

3.4 DLS on modal formulae

In this section we apply the results of the preceding sections to modal logic. Since DLS only
eliminates existentially quantified predicate variables, the standard second-order translations
of modal formulae have to be negated before they are given as input to the algorithm. Ac-
cordingly the negated results of successful executions will be (local) first-order equivalents for
the original modal formulae. Hence, when we say that DLS succeeds on a modal formula ϕ,
we mean that it succeeds on the input formula ∃P¬ST(ϕ, x). [Sza93] contains many examples
of such executions of DLS on modal formulae. The following lemma is easy to prove.

Lemma 3.4.1 Let ϕ ∈ Lτ be in negation normal form. Then

1. ST(ϕ, x) is standardized (modulo associativity) with respect to all predicate symbols in
ST(PROP(ϕ)),

2. ST(ϕ, x) is independent with respect to ST(PROP(ϕ)) whenever ϕ is the negation of a
Sahlqvist or inductive formula written in negation normal form.

3.4. DLS on modal formulae 91

The next theorem is now an immediate consequence of lemma 3.4.1 and theorem 3.3.9.

Theorem 3.4.2 DLS succeeds in computing the first-order frame correspondent of all Sahlqvist
and Inductive formulae.

Next we turn to the question of the canonicity of the modal formulae reducible by DLS. We
fix for the rest of this section a modal language Lπ, with π a unary modal similarity type. The
notions of benign, malignant and non-malignant occurrences (with respect to propositional
variables) of conjunctions and disjunctions in Lπ-formulae, are the obvious modal analogues
of these definitions for predicate logic formulae.

Definition 3.4.3 An occurrence of a propositional variable p, is in 23-scope in an Lπ-
formula ϕ if, in ϕ, it is not in the scope any

(i) box which is in the scope of a diamond, or

(ii) non-benign (w.r.t. p) conjunction within the scope of a diamond, or

(iii) malignant disjunction (w.r.t. p) within the scope of a diamond.

Definition 3.4.4 A propositional variable p is in good scope in an Lπ-formula ϕ, if

(i) no disjunction or conjunction malignant with respect p occurs within the scope of a
diamond in ϕ, and

(ii) ϕ contains no subformula of the form ψ1 ∨ ψ2 where ψ1 and ψ2 contain occurrences of
p out of 23-scope of opposite polarities.

Lemma 3.4.5 Let ϕ ∈ Lπ, and let ϕ′ be the result of rewriting ¬ϕ in negation normal form.
Then P , corresponding to p, is in good scope in ST(ϕ′, x) if and only if p is in good scope in
ϕ.

The next theorem is a direct consequence of lemma 3.4.5 and theorem 3.3.3.

Theorem 3.4.6 Suppose ϕ ∈ Lπ contains exactly one propositional variable, say p. Then
DLS will succeed in computing a first-order correspondent for ϕ iff p is in good scope in ϕ.

Using a strategy similar to that used to prove theorem 2.6.3, it is not difficult to show that
SQEMA succeeds on all Lπ-formulae in which the only occurring propositional variable is in
good scope. Combining this fact with theorem 3.4.6 and the canonicity theorem for SQEMA

(theorem 2.5.23) we obtain:

Theorem 3.4.7 Suppose ϕ ∈ Lπ contains exactly one propositional variable. Then DLS
succeeds in computing a first-order correspondent for ϕ only if ϕ is canonical.

We conclude this section with an example illustrating some aspects of the execution of DLS
on modal formulae.

92 Chapter 3. The DLS-Algorithm

Example 3.4.8 Consider the Sahlqvist formula 3((p ∧ ¬q) ∨ 2p) ∧ q → p. Negated this
becomes 3((p ∧ ¬q) ∨ 2p) ∧ q ∧ ¬p. Translated the latter becomes

∃P∃Q(∃z1(Rx0z1 ∧ ((P (z1) ∧ ¬Q(z1)) ∨ ∀z2(¬Rz1z2 ∨ P (z2)))) ∧Q(x0) ∧ ¬P (x0)). (3.11)

Suppose we eliminate P first. All that happens in phase 1 is that the top level existential
quantifier is pulled out, yielding

∃z1∃P∃Q((Rx0z1 ∧ ((P (z1) ∧ ¬Q(z1)) ∨ ∀z2(¬Rz1z2 ∨ P (z2)))) ∧Q(x0) ∧ ¬P (x0)). (3.12)

Fase 1 succeeds, as the matrix of (3.12) has the form A(P) ∧ B(P) with A(P) positive and
B(P) negative in P . Specifically A(P) is (Rx0z1 ∧ ((P (z1)∧¬Q(z1))∨∀z2(¬Rz1z2 ∨P (z2))))
while B(P) is Q(x0) ∧ ¬P (x0). Step 1 of phase 2 transforms A(P) into

∀z2(Rx0z1 ∧ (P (z1) ∨ ¬Rz1z2 ∨ P (z2)) ∧ (¬Q(z1) ∨ ¬Rz1z2 ∨ P (z2))). (3.13)

Steps 2 and 3 of phase 2 transform the second two conjuncts of the matrix of (3.13) respectively
into:

∃x1(∀y(P (y) ∨ x1 6= y ∨ C1) ∧ (x1 = z1 ∨ x1 = z2))

with C1 the formula ¬Rz1z2, and

∀y(P (y) ∨ y 6= z2 ∨ C2)

with C2 the formula ¬Q(z1) ∨ ¬Rz1z2. Step 4 of phase 2 now yields the formula

∃z1∃f∃P∀z2(∀y(P (y) ∨ f(z2) 6= y ∨ C1) ∧ ∀y(P (y) ∨ y 6= z2 ∨ C2) ∧ E) (3.14)

where E is the formula Rx0z1 ∧ (f(z2) = z1 ∨ f(z2) = z2)∧ (Q(x0)∧¬P (x0)). Step 5 of phase
2 transforms (3.14) into

∃z1∃f∃P∀y((P (y) ∨ ∀z2((f(z2) 6= y ∨ C1) ∧ (y 6= z2 ∨ C2)) ∧ ∀z2E) (3.15)

In step 1 of phase 3 we apply Ackermann’s lemma to obtain from (3.15)

∃z1∃f∀z2(Rx0z1∧(f(z2) = z1∨f(z2) = z2)∧(Q(x0)∧∀z2((f(z2) 6= x0∨C1)∧(x0 6= z2∨C2))))
(3.16)

Deskolemization yields

∃z1∀z2∃u(Rx0z1 ∧ (u = z1 ∨ u = z2) ∧ (Q(x0) ∧ ∀z2((u 6= x0 ∨C1) ∧ (x0 6= z2 ∨C2)))) (3.17)

i.e.

∃z1∀z2∃u(Rx0z1 ∧ (u = z1 ∨ u = z2)

∧ (Q(x0) ∧ ∀z2((u 6= x0 ∨ ¬Rz1z2) ∧ (x0 6= z2 ∨ ¬Q(z1) ∨ ¬Rz1z2))))(3.18)

No simplification rules are applicable. Now to eliminate Q we return to phase 1. It is should be
clear that this will fail to achieve the desired form separated for Q — this is made impossible
by the presence of the ∀z2∃u in the quantifier prefix.

3.4. DLS on modal formulae 93

Notice how the modal structure of the formula is lost in the of the forgoing computation
— we start of with the translation of a modal formula in (3.11) and end up with a formula
(3.18) which is very difficult to see as (being equivalent to) the translation of a modal or
hybrid formula.

However, had we started by ‘bubbling up disjunctions’, as is done in the strategy employed
in the proof of lemma 3.3.8, the picture would have looked very different, as we will briefly
outline: (3(p ∧ ¬q) ∧ q ∧ ¬p) ∨ (32p ∧ q ∧ ¬p) translates into two disjunctions

∃P∃Q[∃z1(Rx0z1 ∧ P (z1) ∧ ¬Q(z1)) ∧Q(x0) ∧ ¬P (x0)] (3.19)

and

∃P∃Q[∃z3(Rx0z3 ∧ ∀z4(¬Rz3z4 ∨ P (z4))) ∧Q(x0) ∧ ¬P (x0)] (3.20)

on which DLS proceeds separately. We will only consider the execution on the first disjunct:

Phase 1:

∃z1∃P∃Q[(Rx0z1 ∧ P (z1) ∧ ¬Q(z1)) ∧Q(x0) ∧ ¬P (x0)]

Phase 2:

∃z1∃P∃Q∀y((P (y) ∨ (y 6= z1)) ∧ (¬Q(z1) ∧Rx0z1 ∧Q(x0) ∧ ¬P (x0)))

Phase 3:

∃z1∃Q((¬Q(z1) ∧Rx0z1 ∧Q(x0) ∧ x0 6= z1))

Note that we can still encode the resulting second-order statement, à la SQEMA, as the global
satisfiability of the hybrid formula

(i → 3j ∧ q) ∧ (j → (¬i ∧ ¬q))

subject to the constraint that i be interpreted as x0. Now eliminating Q, phase 1 is vacuous,
while phase 2 yields

∃z1∃Q∀y((Q(y) ∨ y 6= x0) ∧ (¬Q(z1) ∧Rx0z1 ∧ x0 6= z1)).

Phase 3 yields

∃z1(z1 6= x0 ∧Rx0z1 ∧ x0 6= z1),

which is again expressible as the global satisfiability of the pure hybrid formula

i → 3(j ∧ ¬i)

with i interpreted as x0. �

94 Chapter 3. The DLS-Algorithm

3.5 Conclusion and open questions

We have delineated, within certain limits and given certain assumptions, the second-order and
modal formulae on which DLS succeeds. We were able to obtain a syntactic characterization
theorem only in the case of formulae in a single predicate or propositional variable. This is
not surprising, as DLS is almost certainly too powerful for the full class of formulae which it
can reduce to admit of a convenient syntactic characterization.

Applying these results to the translations of modal formulae, we saw that DLS is powerful
enough to reduce all Sahlqvist and Inductive formulae. Moreover, all modal formulae in a
single propositional variable on which DLS succeeds are canonical. In closing we mention
some further directions and conjectures.

A more thoroughgoing comparison between DLS and SQEMA must be made. It seems
possible, under certain circumstances, to rewrite the formulae obtained during the execution
of DLS as formulae in the modal language extended with inverse modalities and nominals.
This is the language in which SQEMA works. In so doing one might be able to simulate each
algorithm with the other. An example of a formula on which SQEMA succeeds, but on which
DLS fails, was given in examples 2.3.3 and 3.2.10. However, SQEMA’s success on this formula
depends crucially on its ability to perform some basic propositional reasoning. Suppose the
algorithm SQEMA− were obtained by removing SQEMA’s auxiliary rules, then we make the
following conjecture:

Conjecture 3.5.1 DLS and SQEMA− are equivalent in terms of the modal formulae reducible
by them.

This strategy of translation and simulation also seems the most plausible route to a general
canonicity theorem for DLS, the chief difficulty with which seems to be caused by the pro-
gressive loss of the (modal) structure of the original input formula which sometimes occurs
(as illustrated in example 3.4.8) as DLS is iterated on it. In example 3.4.8 it was seen that
this loss of structure might be forestalled by some suitable preprocessing, but it is not clear
whether this is always achievable.

Conjecture 3.5.2 All modal formulae on which DLS succeeds are canonical.

Chapter 4

Polyadic Languages

In this chapter we extend the algorithm SQEMA, introduced in the previous chapter, to
polyadic and reversive languages. The adaptation of the algorithm itself could not be more
straight-forward. The proof that all formulae on which the adapted algorithm now succeeds
are canonical, however, involves some non-trivial complications. We are also now able to
introduce the full class of inductive formulae, and to show how SQEMA succeeds in finding
first-order equivalents for these, as well as in proving their canonicity. This chapter is adapted
from sections of [CGV06b].

4.1 Reversive polyadic languages and logics

Until now we have only dealt with monadic modal languages. In this section we properly
introduce polyadic languages and some of the technicalities that accompany them. This
section is based on the exposition of these matters given in [GV06]. The motivation for
the way we treat polyadic languages here, is a need for a more complete, interrelated set
of modalities. For example, instead of having to write 〈α〉(p, 〈β〉(q,¬p ∧ q)) we would like
to be able to write 〈α(ι1, β(ι1, ι2))〉(p, q,¬p, q)). In other words, not only would we like to
be able to compose modalities, but we also want to be able to do away with conjunction
and disjunction in favour of modalities. We further want to be able to take the inverses of
the resulting modalities, which again have to be composable in their turn. Having such a
rich store of modal operators at our disposal will allow us, amongst other things, to define
syntactic classes very simply and succinctly.

4.1.1 Polyadic similarity types

As before modal similarity type τ = (O, ρ0) consists of a nonempty set O of basic modal terms,
together with an arity function ρ0 : O → ω assigning to each modal term α ∈ O a natural
number ρ0(α). We will assume that τ contains a 0-ary modal term ⊥, a unary one ι1, and a
binary one ι2. As will become clear from the semantics below, the special modal term ⊥ will
be interpreted as falsum, ι1 as the self-dual identity, ι2 as ∧, and its dual as ∨. Treating these
connectives as modalities will enable us to define a more general class of polyadic inductive
formulae (see e.g. [GV06]).

95

96 Chapter 4. Polyadic Languages

Definition 4.1.1 Given a modal similarity type τ and a (fixed) set of proposition letters Θ,
we define by simultaneous mutual induction the set of polyadic modal terms MTτ and their
arity function ρ extending ρ0, and the set of polyadic modal formulae of the language Lτ (Θ)
as follows:

(MT1) Every basic modal term from O is a modal term of the predefined arity.

(MT2) Every Lτ -formula containing no variables (variable-free or constant formula) is a
0-ary modal term.

(MT3) If n > 0, α, β1, . . . , βn ∈ MTτ and ρ(α) = n, then α(β1, . . . , βn) ∈ MTτ and
ρ(α(β1, . . . , βn)) = ρ(β1) + · · · + ρ(βn).

Modal terms of arity 0 will be called modal constants.

(MF1) Every propositional variable is a formula of Lτ (Θ).

(MF2) Every 0-ary modal term in MTτ is a formula of Lτ (Θ).

(MF3) If ϕ is a formula of Lτ (Θ) then ¬ϕ is a formula of Lτ (Θ).

(MF4) If ϕ and ψ are formulae of Lτ (Θ) then ϕ ∨ ψ is a formula of Lτ (Θ).

(MF5) If ϕ and ψ are formulae of Lτ (Θ) then ϕ ∧ ψ is a formula of Lτ (Θ).

(MF6) If A1, . . . , An are formulae of Lτ (Θ), α a modal term and ρ(α) = n > 0, then
〈α〉(A1, . . . , An) is a formula of Lτ (Θ).

(MF7) If A1, . . . , An are formulae of Lτ (Θ), α a modal term and ρ(α) = n > 0, then
[α](A1, . . . , An) is a formula of Lτ (Θ).

As will be seen further in subsection 4.1.2, ∧ and ∨ may be eliminated in favour of 〈ι2〉 and [ι2],
respectively, making clauses (MF4) and (MF5) redundant. However, for technical convenience
we choose to retain ∧ and ∨ as primitive connectives of the language. The connectives →
and ↔ are defined in the usual. Adding the clause

(MT6) If α is a modal term of arity n > 0 then α−1, . . . , α−n are modal terms of arity n.

to definition 4.1.1, we obtain the set of terms MTr(τ), called the complete reversive extension
of MTτ . Similarly, the corresponding language Lr(τ) is called the complete reversive extension
of Lτ . A set of modal terms MTτ will be called completely reversive, or simply reversive, if
MTr(τ) = MTτ . Accordingly, languages over a completely reversive sets of terms will be
called completely reversive, or simply reversive. If one were to opt for the following, weaker
version of (MT6)

(MT6′) If α is a modal term from MTτ of arity n > 0 then α−1, . . . , α−n are modal terms
of arity n.

4.1. Reversive polyadic languages and logics 97

one would obtain the set of modal terms MTτr, which we will call the partial reversive
extension of MTτ . Accordingly the language Lτr is the partial reversive extension of Lτ .1

Hence MTτr is not necessarily closed under inverses, but only under inverses of terms in
MTτ . So Lτr is a sublanguage of Lτr, yet, modulo the permutation of arguments of modal
operators, they are equally expressive, e.g.

〈(α−i)−j〉(A1, . . . , An) ≡sem 〈α−j〉(A1, . . . , Ai−1, Aj , Ai+1, . . . , Aj−1, Ai, Aj+1, . . . , An)

when i < j. Even though we will not be concerned with partial reversive extensions further
in this chapter, it is important to take note of them for the sake of comparison with other
results in the literature.

For technical purposes we extend the series of ι’s with n-ary modalities ιn inductively as
follows: ιn+1 = ι2(ι1, ιn) for n > 1.

4.1.2 Semantics

As far the semantics of Lτ and Lτ is concerned, there are no surprises. We therefore only
specify the Kripke structures upon which the models used for interpreting the langauge are
based. Given a modal similarity type τ , a (Kripke) τ -frame is, as usual, a structure F =
(W, {Rα}α∈τ), consisting of a non-empty set W of possible worlds and, for each modal term
α ∈ τ , a (ρ(α) + 1)-ary accessibility relation between possible worlds Rα ⊆ W ρ(α)+1. The
relations associated with special modal terms are fixed: Rι1 = {(w,w) | w ∈ W}, Rι2 =
{(w,w,w) | w ∈ W}. The (unary) relation associated with a variable-free formula is simply
the set of states where that formula is true, given by the standard semantics.

The relation associated with a composite modal term is defined as follows: Suppose ρ(α) =
n and ρ(βi) = bi, for 1 ≤ i ≤ n. Then Rα(β1,...,βn) consists of all tuples of elements of W of
the from (w,w11, . . . , w1b1 , . . . , wn1, . . . , wnbn), for which there exist u1 . . . un ∈ W such that
Rαwu1 . . . un and Rβi

uiwi1 . . . wibi for each 1 ≤ i ≤ n.
The relations for inverses are given as expected: For any α ∈ MTr(τ), 1 ≤ j ≤ ρ(α), and

w, v1, . . . , . . . , vρ(α) ∈W , we declare that

R−j
α (w, v1, . . . , . . . , vρ(α)) iff Rα(vj , v1, . . . , vj−1, w, vj+1, . . . , vρ(α)).

Note that, by our definition, a Kripke τ -frame only contains relations associated with the
basic modal terms α ∈ τ . However, these relations completely determine the relations that
are to be associated with the terms in the full set MTr(τ). Notions of model, truth, validity
and the like are defined as usual.

Given the fixed relations associated with the special modal terms ι1, ι2, . . ., we have that

〈ι1〉ϕ ≡sem [ι1]ϕ ≡ ϕ,

〈ιn〉(ϕ1, . . . , ϕn) ≡sem ϕ1 ∧ · · · ∧ ϕn and [ιn](ϕ1, . . . , ϕn) ≡sem ϕ1 ∨ · · · ∨ ϕn.

This makes it possible, when writing Lτ and Lr(τ)-formulae, to do away with all boolean
connectives other than negation — a fact that will be exploited subsequently.

1In [GV06] and [CGV06b] MTτr and Lτr are called the reversive extensions of MTτ and Lτ .

98 Chapter 4. Polyadic Languages

With each similarity type τ we associate a first-order language Lτ0 containing = and a
(ρ(α) + 1)-ary relation symbol Rα for each basic modal term α ∈ τ , other that ⊥, ι1 and
ι2. The language Lτ1 extends Lτ0 with unary predicate symbols P1, P2, . . . corresponding to
the propositional variables p1, p2, The standard translation function ST(·, ·) is extended
in the obvious way to translate every Lr(τ)-formula into an Lτ1-formula such (M,m) ϕ iff
M |= ST(ϕ, x)[x := m] for every pointed τ -model (M,m) and Lr(τ)-formula ϕ.

4.1.3 Permutations versus inverses

To facilitate some proofs below, we introduce the following syntactic shorthand: Let α ∈ MTτ

with ρ(α) = n, and let σ be a permutation of {0, 1, . . . , n}, i.e. a bijection from {0, 1, . . . , n}
onto itself. Then we admit ασ as a modal term. Let

Rσα = {(x0, x1, . . . , xn) | Rαxσ(0), xσ(1), . . . , xσ(n)}.

Given a permutation σ, its inverse will be denoted by σ. We will identify modal terms ασ and
α without further ado. Note that Rαy0, y1, . . . , yn iff Rσαyσ(0), yσ(1), . . . , yσ(n). The semantics
of the corresponding language is what is to be expected, i.e. (M,m) 〈ασ〉(ϕ1, . . . , ϕn) iff
there are m1, . . . ,mn ∈ M such that Rσαm,m1, . . . ,mn and (M,mi) ϕi for all 1 ≤ i ≤ n.
Since every permutation is obtainable by the repeated swapping of positions, the language so
obtained and Lr(τ) will be equally expressive. To be precise, let a transposition be a permu-
tation σ such that, for some 0 ≤ i < j ≤ n we have σ(i) = j and σ(j) = i and σ(k) = k for all
i 6= k 6= j. An easy induction on n shows that every permutation of {0, 1, . . . , n} can be ob-
tained as a composition of such transpositions. Now suppose σ is a transposition which swaps i
and j, and that Rσαx0x1 . . . xn. This is the case iff Rαx0x1 . . . xi−1xjxi+1 . . . xj−1xixj+1 . . . xn
iff ((R−i

α)−j)−ix0x1 . . . xi−1xixi+1 . . . xj−1xjxj+1 . . . xn. It follows that for any n-ary modal
term α and permutation σ of {0, 1 . . . , n}, the term ασ is equivalent to a term which can be
obtained from α by applying inverses and compositions.

The next lemma generalizes the fact enshrined as axiom R1 in [GV06].

Lemma 4.1.2 Let α be a modal term with ρ(α) = n, A,B1, . . . , An any formulae, and σ a
permutation of {0, 1, . . . , n} with σ(0) = k 6= 0 and σ(0) = j 6= 0. Then

 A→ [ασ](¬Bσ(1), . . . ,¬Bσ(k−1), C,¬Bσ(k+1), . . . ,¬Bσ(n))

where C is the formula
〈α〉(B1, . . . , Bj−1, A,Bj+1, . . . , Bn).

Proof. Let (M,m0) be any pointed model such that (M,m0) A and suppose, for the sake
of contradiction, that

(M,m) 6 [ασ](¬Bσ(1), . . . ,¬Bσ(k−1), C,¬Bσ(k+1), . . . ,¬Bσ(n)),

i.e. there are m1, . . . ,mn ∈ M be such that Rσαm0,m1, . . .mn and, for all i 6= 0 and i 6= k
we have (M,mi) Bσ(i) (or, equivalently, for all i 6= 0 and i 6= j we have (M,mσ(i)) Bi),
while and (M,mk) ¬C. That is, (M,mk) [α](¬B1, . . . ,¬Bj−1,¬A,¬Bj+1, . . . ,¬Bn).

4.2. Polyadic inductive formulae 99

But then Rαmσ(0),mσ(1), . . . ,mσ(j−1),mσ(j),mσ(j+1), . . .mσ(n),
i.e. Rαmk,mσ(1), . . . ,mσ(j−1),m0,mσ(j+1), . . .mσ(n). As we have already remarked, for all
i 6= 0 and i 6= j we have (M,mσ(i)) Bi, hence we are forced to conclude that (M,m0) ¬A,
contradicting our original assumption that (M,m0) A. qed

Having introduced polyadic languages properly, we are now able to define the polyadic induc-
tive formulae of [GV02] and [GV06]. For the rest of this section we fix an arbitrary (polyadic)
modal similarity type τ , and work in the language Lr(τ) — when speaking of formulae, we
will always mean Lr(τ)-formulae, unless otherwise indicated.

4.2 Polyadic inductive formulae

A formula [β](N1, . . . , Nm), where β is any m-ary modal term from MTr(τ) and N1, . . . , Nm

are negative formulae, will be called a headless box formula (or simply a headless box). A
formula of the form [β](p,N1, . . . , Nm), where β ∈ MTr(τ) is an (m + 1)-ary modal term, p
is a propositional variable, and N1, . . . , Nm are negative formulae, will be called a headed box
formula (or headed box) with head p. (The head of a headed box need in fact not occur as
the first argument of the box-operator — we merely write it as such for the sake of simplicity
and uniformity. As the reader can readily verify, nothing that follows changes in any essential
way if we drop this convention.) The occurrence of a variable as the head of a box formula
is called an essential occurrence, while all other variable occurrences in (headed or headless)
box formulae are called inessential. A box formula is either a headed or headless box formula.

Definition 4.2.1 A regular formula is a formula of the form [α](¬B1, . . . ,¬Bn), where α is
an n-ary modal term and B1, . . . , Bn are box formulae.

Definition 4.2.2 The dependency digraph of a regular formula A = [α](¬B1, . . . ,¬Bn) is
the digraph GA = 〈VA, EA〉. The vertex set VA is the set {p1, . . . , pm} of all heads of headed
boxes among B1, . . . , Bn. The edge set EA ⊆ VA × VA is such that (pi, pj) ∈ EA iff pi occurs
inessentially in some B1, . . . , Bn with head pj . A digraph is acyclic when it contains no
directed cycles or loops.

Definition 4.2.3 An inductive formula is any regular formula with an acyclic dependency
digraph.

Inductive formulae were originally referred to as ‘polyadic Sahlqvist formulae’ in [GV02],
where their elementarity and local d-persistence were also proved.

For a formula to be inductive then, it has to be of a very specific syntactic shape. However,
the definition is not as restrictive as it may seem at first. By composing modalities and using
the special ι-modalities, many formulae may be equivalently rewritten as inductive formulae.
For example, we may rewrite any monadic box formula

A1 → [α1](· · · [αk](Ak+1 → p) · · ·),

100 Chapter 4. Polyadic Languages

with ρ(α1) = · · · = ρ(αk) = 1, as

[ι2(ι1, α1(· · ·αk(ι2) · · ·))](¬A1, . . . ,¬Ak+1, p).

Using this fact, the following proposition is easily proven:

Proposition 4.2.4 Every monadic inductive formula is semantically equivalent to a con-
junction of inductive formula which may be effectively obtained from it.

So, modulo semantic equivalence, or even modulo preprocessing, the polyadic inductive for-
mulae subsume the monadic inductive, and hence the Sahlqvist, formulae. Hence, in the light
of corollary 1.3.19, the inductive formulae also subsume the Sahlqvist–van Benthem formulae,
modulo local equivalence.

Example 4.2.5 Let α be a monadic modal term, then

p ∧ [α](〈α〉p→ [α]q) → 〈α〉[α][α]q

is the monadic inductive formula D from example 1.3.17. First rewriting as

¬p ∨ ¬[α]([α]¬p ∨ [α]q) ∨ ¬[α]〈α〉〈α〉q,

and then composing modalities and replacing disjunctions we can rewrite this formula equiv-
alently as the inductive formula

[ι3](¬[ι1]p,¬[α(ι2(α, α))](q,¬p),¬[α](〈α〉〈α〉¬q)).

�

4.3 Extending SQEMA

To enable SQEMA to deal with polyadic languages, we have to add some new transformation
rules to its repertoire. The only new rules that are needed fall in the categories rules for logical
connectives and normalization rules. Apart from these additions the algorithm itself as well
as the Ackermann, polarity switching and auxiliary rules remain unchanged. Specifically, the
set of rules for the logical connectives is adapted as follows:

1. The ∧-rule and the left and right-shift ∨-rules remain unchanged.

2. The 2-rule is subsumed by the following polyadic box rule:

A⇒ [α](B1, . . . , Bn)

〈α−k〉(¬B1, . . . ,¬Bk−1, A,¬Bk+1, . . .¬Bn) ⇒ Bk
(Polyadic 2-rule)

for α ∈ MTr(τ) any modal term of arity n, and any 1 ≤ k ≤ n.

4.4. Examples 101

3. The inverse 3-rule is subsumed by the following polyadic inverse diamond rule:

〈α−k〉(B1, . . . , Bn) ⇒ A

Bk ⇒ [α](¬B1, . . . ,¬Bk−1, A,¬Bk+1, . . . ,¬Bn)
(Polyadic inverse 3-rule)

for α ∈ MTr(τ) any modal term of arity n, and any 1 ≤ k ≤ n.

4. The 3-rule is subsumed by the following polyadic diamond rule:

j ⇒ 〈α〉(B1, . . . , Bn)

j ⇒ 〈α〉(k1, . . . ,kn),k1 ⇒ B1, . . . ,kn ⇒ Bn
(Polyadic 3-rule)

for α ∈ MTr(τ) any modal term of arity n, and any new nominals, k1, . . . ,kn not
appearing in the system.

As far as the normalization rules are concerned, the rules for the duality of boxes and diamonds
are subsumed by the obvious polyadic analogues:

1. Replace ¬〈α〉(ϕ1, . . . , ϕn) with [α](¬ϕ1, . . . ,¬ϕn), for any term α ∈ MTr(τ);

2. Replace ¬[α](ϕ1, . . . , ϕn) with 〈α〉(¬ϕ1, . . . ,¬ϕn), for any term α ∈ MTr(τ).

We note that, whereas in the monadic case the only rule for logical connectives that could lead
from a normalized to a non-normalized sequent was the ∨-rule, in the polyadic case normality
can also be lost by the application of the 2 and inverse 3-rules.

4.4 Examples

In this section we illustrate the newly extended algorithm by means of a few examples.

Example 4.4.1 Consider the formula

D = [ι3](¬[ι1]p,¬[α(ι2(α, α))](q,¬p),¬[α](〈α〉〈α〉¬q)),

of example 4.2.5. Here is how SQEMA computes it local first-order frame equivalent:

Phase 1 Preprocessing yields 〈ι3〉([ι1]p, [α(ι2(α, α))](q,¬p), [α](〈α〉〈α〉¬q)).

Phase 2 There is only one initial system, namely

‖i ⇒ 〈ι3〉([ι1]p, [α(ι2(α, α))](q,¬p), [α](〈α〉〈α〉¬q)) .

Applying the 3-rule yields:

∥

∥

∥

∥

∥

∥

∥

∥

i ⇒ 〈ι3〉(j1, j2, j3)
j1 ⇒ [ι1]p
j2 ⇒ [α(ι2(α, α))](q,¬p)
j3 ⇒ [α](〈α〉〈α〉¬q)

.

102 Chapter 4. Polyadic Languages

We choose to eliminate p first, and apply the 2-rule to the second sequent:

∥

∥

∥

∥

∥

∥

∥

∥

i ⇒ 〈ι3〉(j1, j2, j3)

〈ι−1
1 〉j1 ⇒ p

j2 ⇒ [α(ι2(α, α))](q,¬p)
j3 ⇒ [α](〈α〉〈α〉¬q)

.

The system is now ready for the application of the Ackermann-rule, to eliminate p:

∥

∥

∥

∥

∥

∥

i ⇒ 〈ι3〉(j1, j2, j3)

j2 ⇒ [α(ι2(α, α))](q,¬〈ι−1
1 〉j1)

j3 ⇒ [α](〈α〉〈α〉¬q)
,

which, after re-normalization, becomes

∥

∥

∥

∥

∥

∥

i ⇒ 〈ι3〉(j1, j2, j3)

j2 ⇒ [α(ι2(α, α))](q, [ι−1
1]¬j1)

j3 ⇒ [α](〈α〉〈α〉¬q)
.

Only q remains to be eliminated. To that aim, we apply the 2-rule to the second
sequent, obtaining

∥

∥

∥

∥

∥

∥

i ⇒ 〈ι3〉(j1, j2, j3)

〈(α(ι2(α, α)))−1〉(j2,¬[ι−1
1]¬j1) ⇒ q

j3 ⇒ [α](〈α〉〈α〉¬q)
.

Applying Ackermann-rule again eliminates q and yields

∥

∥

∥

∥

i ⇒ 〈ι3〉(j1, j2, j3)

j3 ⇒ [α](〈α〉〈α〉¬〈(α(ι2(α, α)))−1〉(j2,¬[ι−1
1]¬j1))

,

which re-normalization turns into

∥

∥

∥

∥

i ⇒ 〈ι3〉(j1, j2, j3)

j3 ⇒ [α](〈α〉〈α〉[(α(ι2(α, α)))−1](¬j2, [ι
−1
1]¬j1))

.

Phase 3 We thus obtain

pure(D) = (¬i ∨ 〈ι3〉(j1, j2, j3)) ∧ (¬j3 ∨ [α](〈α〉〈α〉[(α(ι2(α, α)))−1](¬j2, [ι
−1
1]¬j1))).

Negating, translating into first-order logic, and simplifying, bearing in mind the fixed
relations used for the interpretation of the ι’s, we obtain as local first-order equivalent:

∃y(Rαxy ∧ ∀z(R2
αyz → ∃u(Rαxu ∧Rαux ∧Rαuz)).

�

4.5. Correctness and canonicity 103

Example 4.4.2 Let 1 be a unary and 2 a binary modal term. Consider the formula

ϕ2 = [2](¬[1](¬[1]p ∨ p), p ∧ [1]⊥).

This formula has local first-order correspondent ∀u1∀u2(R2xu1u2 → R1u1u2 ∧ ∀z(¬R1u2z)).
In fact, it is locally frame equivalent to the inductive formula [2](¬[1]p, p ∧ [1]⊥). Here is an
attempt to execute SQEMA on it:

Pase 1 Preprocessing yields
〈2〉([1](〈1〉¬p ∨ p),¬p ∨ 〈1〉⊤).

Phase 2 The only initial system is

‖i ⇒ 〈2〉([1](〈1〉¬p ∨ p),¬p ∨ 〈1〉⊤) .

Applying the 3-rule yields

∥

∥

∥

∥

∥

∥

i ⇒ 〈2〉(j1, j2)
j1 ⇒ [1](〈1〉¬p ∨ p)
j2 ⇒ ¬p ∨ 〈1〉⊤

.

We can now apply the 2-rule to the second equation giving a system

∥

∥

∥

∥

∥

∥

i ⇒ 〈2〉(j1, j2)
〈1−1〉j1 ⇒ 〈1〉¬p ∨ p
j2 ⇒ ¬p ∨ 〈1〉⊤

but it is clear that we cannot separate the positive and negative occurrences of p in the
second sequent. The algorithm terminates with failure.

�

4.5 Correctness and canonicity

We have to show that the extended algorithm is still correct, and that moreover all formulae
on which it succeeds exhibit the desired type of persistence. We will not be detained long
by the proof of correctness — proposition 2.4.5 extends in a straight-forward way to the
generalized transformation rules, and then the proof of the next theorem is verbatim the
same as that of theorem 2.4.6.

Theorem 4.5.1 (Correctness of Polyadic SQEMA) Let τ be a (polyadic) modal similar-
ity type. If SQEMA succeeds on an input formula ϕ ∈ Lτ or ϕ ∈ Lr(τ), then the first-order
formula returned is a local frame correspondent of ϕ.

The proof of the corresponding analogue of theorem 2.5.23 however, involves some non-trivial
complications, relating to the proof of a suitable analogue of Esakia’s lemma for diamonds
〈α〉 for arbitrary α ∈ MTr(τ).

104 Chapter 4. Polyadic Languages

4.5.1 The topology of polyadic descriptive frames

The notion of a general frame extends to the polyadic case in the expected way. To be precise,
a general τ -frame is a structure F = (W, {Rα}α∈τ ,W) where (W, {Rα}α∈τ) is a τ -frame, and
W is a Boolean algebra of admissible subsets of W , closed under the modal operators 〈α〉,
α ∈ τ , defined as

〈α〉(X1, . . . , Xρ(α)) = {y ∈W | Rα(y, x1, . . . , xρ(α)) for some x1 ∈ X1, . . . , xρ(α) ∈ Xρ(α)}.

Clearly, W is also closed under the dual operators [α], given by

[α](X1, . . . , Xρ(α)) = {y ∈W | Rα(y, x1, . . . , xρ(α)) implies x1 ∈ X1 or . . . or xρ(α) ∈ Xρ(α)}.

Note that we only demand closure under 〈α〉 for α ∈ τ , i.e. for basic modal terms α. However,
a straightforward inductive argument suffices to see that this is, in fact, enough to guarantee
closure under 〈α〉 for all α ∈ MTτ . Of course, as illustrated by example 2.5.2, this need not
be the case for inverse diamond operators. This, as in the monadic case, precludes a direct
adaptation of Ackermann’s lemma to the case of languages containing inverse modalities
interpreted over arbitrary descriptive frames. In order to prove the desired analogue, we have
to undertake a closer analysis of the topology of Ln

r(τ)-formulae when regarded as operators
on descriptive τ -frames. This is what we do in the rest of this section.

A reversive general τ -frame, also called a general r(τ)-frame, is a general τ -frame F =
(W, {Rα}α∈τ ,W) where the algebra of admissible sets W is closed under 〈α〉, for all α ∈
MTτ(r).

The notions of differentiatedness and compactness are the same for polyadic general frames
as for monadic general frames, but the definition of tightness has to be extended. A relationRα
in F = (W, {Rα}α∈τ ,W) is tight in F if the following condition holds: for any x, x1, . . . , xn ∈
W ,

Rαx, x1, . . . , xn iff ∀X1, . . . , Xn ∈ W(x1 ∈ X1, . . . , xn ∈ Xn ⇒ x ∈ 〈α〉(X1, . . . , Xn)).

Equivalently, Rα is tight if for all x, x1, x2, . . . , xn ∈W ,

Rαx, x1, . . . , xn iff x ∈
⋂

{〈α〉(X1, . . . , Xn) | X1, . . . , Xn ∈ W & x1 ∈ X1, . . . , xn ∈ Xn}.

Definition 4.5.2 A general τ -frame or r(τ)-frame F is tight if the relation Rα is tight in
F for every basic modal term α ∈ τ . A general τ -frame or r(τ)-frame is descriptive if it
differentiated, tight, and compact.

Given a descriptive τ -frame F = (W, {Rα}α∈τ ,W), a subset of Wn, n ∈ N
+, is said to be

closed if it is closed in the respective product (or Tychonoff) topology on Wn. Here are some
facts about this topology that we will need. Each item is either well-known from topology
(see e.g. [Wil04]) or easy to see.

• We can take as a base for the product topology on Wn all sets of the from A1×· · ·×An
where A1, . . . , An ∈ W.

4.5. Correctness and canonicity 105

• In particular, for any C1, . . . , Cn ∈ C(W) it will be the case that C1 × · · ·×Cn is closed
in the product topology on Wn.

• Any set C ⊆Wn which is closed in Wn can be written as C =
⋂

i∈I −(A1i
×· · ·×Ani

) for
some index set I and Aji ∈ W, 1 ≤ j ≤ n, i ∈ I and as C =

⋂

i∈I −(−A1i
× · · · ×−Ani

)
for some index set I and Aji ∈ W, 1 ≤ j ≤ n, i ∈ I.

• If Rα, α ∈ MTr(τ) is tight, then Rα(x) = {(y1, . . . yn) ∈Wn | Rαxy1 . . . yn} is closed in
the product topology on Wn, i.e. Rα is point-closed (cf. also [GV06], lemma 50).

• If By Tychonoff’s theorem, if T (F) is compact, then product topology on Wn will be
compact.

The notions of augmented valuations, augmented models and augmented satisfiability (defi-
nition 2.5.3) and ad-persistence (definition 2.5.4) are extended to descriptive τ -frames and
descriptive r(τ)-frames in the obvious way. We will write ϕ ≡ad τ

trans ψ if ϕ and ψ are ad-

transformation equivalent on descriptive τ -frames, and ϕ ≡
ad r(τ)
trans ψ to indicate that they are

ad-transformation equivalent on descriptive r(τ)-frames.

4.5.2 Lnr(τ)-formulae as operators on descriptive τ-frame

The notions of closed (open) formulae and closed (open) operators (definition 2.5.9) generalize
to Ln

r(τ)-formulae interpreted over descriptive τ -frames and descriptive r(τ)-frames. The

proofs of the results in this section are essentially the same as those in [CGV06b].

Lemma 4.5.3 The formulae 〈α〉(p1, . . . , pn) and [α](p1, . . . , pn) are, respectively, open and
closed operators on arbitrary τ -frames, for any α ∈ MTτ with ρ(α) = n. Similarly, for any
α ∈ MTr(τ) with ρ(α) = n, the formulae 〈α〉(p1, . . . , pn) and [α](p1, . . . , pn) are, respectively,
open and closed operators on arbitrary r(τ)-frames.

Proof. We prove the case for α ∈ MTτ , the other is similar. Let F = (W, {Rα}α∈τ) be any
τ -frame and α ∈ MTτ . Let A1, . . . , An ∈ C(F) be closed sets in F. Then there are families
of admissible sets {A1

i }i∈I1 , . . . , {A
n
i }i∈In such that A1 =

⋂

i∈I1
{A1

i }, . . ., An =
⋂

i∈In
{Ani }.

Hence [α](A1, . . . , An) = [α](
⋂

i∈I1
A1
i , . . . ,

⋂

i∈In
Ani). But

[α](
⋂

i∈I1

A1
i , . . . ,

⋂

i∈In

Ani) =
⋂

i∈I1

· · ·
⋂

i∈In

[α](A1
i , . . . , A

n
i).

The latter is an intersection of admissible sets, and hence closed. The case for 〈α〉 is similar,
using the fact that diamonds distribute over arbitrary unions. qed

The following polyadic version of lemma 2.5.10 was proven in [GV06].

Lemma 4.5.4 (Esakia’s Lemma for Diamonds, [GV06]) Let F be a descriptive τ -frame
and α ∈ MTr(τ) and n-ary modal term, such that either,

1. α ∈ MTτ , or

106 Chapter 4. Polyadic Languages

2. F is reversive,

then, for any downward directed family {X1i
× · · · ×Xni

| i ∈ I} of nonempty closed subsets
of Wn, and any n-ary α ∈ MTτ , it is the case that

⋂

i∈I

〈α〉(X1i
, . . . , Xni

) = 〈α〉(
⋂

i∈I

X1i
, . . . ,

⋂

i∈I

Xni
).

Using the fact that

Corollary 4.5.5 For any n-ary α ∈ MTτ , (respectively, α ∈ MTr(τ)), 〈α〉(p1, . . . , pn) is both
a closed and open operator on descriptive τ -frames (respectively, descriptive r(τ)-frames).

By the duality of 〈α〉 and [α] we have:

Corollary 4.5.6 For any n-ary α ∈ MTτ , (respectively, α ∈ MTr(τ)), [α](p1, . . . , pn) is both
a closed and open operator on descriptive τ -frames (respectively, descriptive r(τ)-frames).

We will need results analogous to lemma 4.5.4 and corollaries 4.5.5 and 4.5.6 for the inverse
diamonds from MTr(τ) in descriptive but not necessarily reversive general frames.

Recall that the definition of a descriptive τ -frame only requires tightness for relations
Rα for basic modal terms α ∈ τ . The next lemma shows that this is enough to guarantee
tightness of Rα for all α ∈ MTr(τ). It also simultaneously lifts corollary 4.5.5 to 〈α〉 for
arbitrary α ∈ MTr(τ).

Lemma 4.5.7 For any n-ary α ∈ MTr(τ),

1. 〈α〉(p1, . . . , pn) is a closed operator on descriptive τ -frames, and

2. Rα is tight in any descriptive τ -frame.

Proof. Let F = (W,R,W) be a (not necessarily reversive) descriptive τ -frame. The proof
proceeds by induction on α ∈ MTr(τ). The base case is for basic modal terms α ∈ τ , and
holds by corollary 4.5.5 and the definition of descriptive τ -frames.

Now suppose that α, β1, . . . , βn ∈ MTτ with ρ(α) = n, ρ(β1) = m1, . . . , ρ(βn) = mn,
such that 〈α〉(p1, . . . , pn), . . . , 〈β1〉(p1, . . . , pm1), . . . , 〈βn〉(p1, . . . , pmn) are closed operators on
descriptive frames and such that Rα, Rβ1 , . . . , Rβn

are tight in F. It is trivial to see that
〈α(β1, . . . , βn)〉(p11 , . . . , pm1 , . . . , p1n , . . . , pmn) is a closed operator.

We have to show that Rα(β1,...,βn) is tight in F. To keep the notation manageable we treat
only binary terms, i.e. suppose that n = m1 = m2 = 2. We have to show that Rα(β1,β2) is
tight in F. To that end, suppose that ¬Rα(β1,β2)y0u1u2v1v2. It is sufficient to show that y0 6∈
⋂

{〈α(β1, β2)〉(U1, U2, V1, V2) | U1, U2, V1, V2 ∈ W & u1 ∈ U1, u2 ∈ U2, v1 ∈ V1, v2 ∈ V2}. For
every pair z1, z2 ∈W such that Rαy0z1z2 it is the case that ¬Rβ1z1u1u2 or ¬Rβ2z2v1v2. Hence,
by the tightness of Rβ1 and Rβ2 , for every pair z1, z2 ∈ W such that Rαy0z1z2 there exist
U1, U2 ∈ W such that u1 ∈ U1, u2 ∈ U2, and z1 6∈ 〈β1〉(U1, U2), or there exist V1, V2 ∈ W such
that v1 ∈ V1, v2 ∈ V2, and z2 6∈ 〈β2〉(V1, V2). Hence Rα(y0) ∩

⋂

{〈β1〉(U1, U2) × 〈β2〉(V1, V2) |
U1, U2, V1, V2 ∈ W & u1 ∈ U1, u2 ∈ U2, v1 ∈ V1, v2 ∈ V2} = ∅. Now Rα(y0) is closed by the

4.5. Correctness and canonicity 107

tightness of Rα, and by the inductive hypothesis 〈β1〉 and 〈β2〉 are closed operators. Hence
we have a family of closed sets with empty intersection. By appealing to compactness and the
monotonicity of 〈β1〉 and 〈β2〉 we conclude that there exist sets U ′

1, U
′
2, V

′
1 , V

′
2 ∈ W such that

u1 ∈ U ′
1, u2 ∈ U ′

2, v1 ∈ V ′
1 , v2 ∈ V ′

2 and Rα(y0)∩〈β1〉(U
′
1, U

′
2)×〈β2〉(V

′
1 , V

′
2) = ∅. It follows that

y0 6∈
⋂

{〈α(β1, β2)〉(U1, U2, V1, V2) | U1, U2, V1, V2 ∈ W & u1 ∈ U1, u2 ∈ U2, v1 ∈ V1, v2 ∈ V2}
as desired. This concludes the inductive step for compositions of modal terms.

Instead of a inductive step for inverses, we do an inductive step for permutations. Let σ
be any permutation of {0, 1, . . . , n}.

First we show that Rσα is tight in F. To that end assume that ¬Rσαy0, y1, . . . yn. We
have to show that y0 6∈

⋂

{〈ασ〉(X1, . . . , Xn) | X1, . . . , Xn ∈ W & y1 ∈ X1, . . . , yn ∈ Xn}.
We have that ¬Rαyσ(0), yσ(1), . . . , yσ(n), and hence, by the tightness of Rα, that yσ(0) 6∈
⋂

{〈α〉(X1, . . . , Xn) | X1, . . . , Xn ∈ W & yσ(1) ∈ X1, . . . , yσ(n) ∈ Xn}. Hence there exist
U1, . . . , Un ∈ W such that yσ(1) ∈ U1, . . . , yσ(n) ∈ Un but such that yσ(0) 6∈ 〈α〉(U1, . . . , Un),
i.e. {yσ(0)} ∩ 〈α〉(U1, . . . , Un) = ∅. But F is differentiated, hence {yσ(0)} =

⋂

{A ∈ W | yσ(0) ∈
A}. Furthermore, since 〈α〉 is a closed operator, 〈α〉(U1, . . . , Un) is a closed set. Hence, by
compactness, it follows that there exists a single admissible set U0 ∈ W such that yσ(0) ∈ U0

and U0 ∩ 〈α〉(U1, . . . , Un) = ∅. Hence Uσ(0) ∩ 〈ασ〉(Uσ(1), . . . , Uσ(n)) = ∅. But yi ∈ Uσ(i), for
all 0 ≤ i ≤ n. Hence y0 6∈

⋂

{〈ασ〉(X1, . . . , Xn) | X1, . . . , Xn ∈ W & y1 ∈ X1, . . . , yn ∈ Xn}.

Next we show that 〈ασ〉(p1, . . . , pn) is a closed operator. To that end let (A1, . . . , An) be
a tuple of closed sets in T (F). We have to show that 〈ασ〉(A1, . . . , An) is a closed set in T (F).
We will split the proof into two cases, according to whether σ(0) = 0 or σ(0) 6= 0.

Case 1: Suppose σ(0) = 0. We claim that

〈ασ〉(A1, . . . , An) = 〈α〉(Aσ(1), . . . , Aσ(n)).

The closedness of 〈ασ〉(A1, . . . , An) then follows from the fact that 〈α〉 is a closed operator. In-
deed, if x0 ∈ 〈ασ〉(A1, . . . , An) then there exist x1 ∈ A1, . . . , xn ∈ An such that Rσαx0x1 . . . xn.
Then Rαxσ(0)xσ(1) . . . xσ(n), i.e. Rαx0xσ(1) . . . xσ(n). Hence x0 ∈ 〈α〉(Aσ(1), . . . , Aσ(n)).

Conversely, if x0 ∈ 〈α〉(Aσ(1), . . ., Aσ(n)) then there exist x1 ∈ Aσ(1), . . . , xn ∈ Aσ(n)

(i.e. xσ(1) ∈ A1, . . . , xσ(n) ∈ An) such that Rαx0x1 . . . xn. Then Rσαxσ(0)xσ(1) . . . xσ(n), i.e.
Rσαx0xσ(1) . . . xσ(n). Hence x0 ∈ 〈ασ〉(A1, . . . , An). Thus the proof of case 1 is concluded.

Case 2:2 Suppose σ(0) = k 6= 0. Hence also σ(0) 6= 0, say σ(0) = j. To show that
〈ασ〉(A1, . . . , An) is a closed set in T (F) it is enough to prove the equality

〈ασ〉(A1, . . . , An) =
⋂

{B ∈ W | 〈ασ〉(A1, . . . , An) ⊆ B}. (4.1)

The left-to-right inclusion is trivial. For the sake of the right-to-left inclusion suppose that
y0 6∈ 〈ασ〉(A1, . . . , An). Hence we have

Rσα(y0) ∩ (A1 × . . .×An) = ∅. (4.2)

2The proof of this case generalizes, and closely follows, that of theorem 72 in [GV06], where the current
theorem is proved for the more restricted case of modal terms in MTτr rather than MTr(τ).

108 Chapter 4. Polyadic Languages

This means that

∀y1 . . .∀yn((y1, . . . , yn) ∈ A1 × · · · ×An → (y1, . . . , yn) 6∈ Rσα(y0)) (4.3)

i.e.,

∀y1 . . .∀yn((y1, . . . , yn) ∈ A1 × · · · ×An → ¬Rσαy0y1, . . . , yn), (4.4)

i.e.

∀y1 . . .∀yn((y1, . . . , yn) ∈ A1 × · · · ×An → ¬Rαyσ(0), yσ(1) . . . , yσ(n)). (4.5)

Note that in (4.5) y0 appears as the σ(0)-th, i.e. j-th argument of Rα. Now by the tightness
of Rα, Rα(yσ(0)) is a closed set, i.e.

Rα(yσ(0)) =
⋂

{−(−B1 × . . .×−Bn) | Rα(yσ(0)) ⊆ −(−B1 × . . .×−Bn), Bi ∈ W} (4.6)

i.e.,

Rα(yσ(0)) =
⋂

{−(−B1 × . . .×−Bn) | yσ(0) ∈ [α](B1, . . . , Bn), Bi ∈ W}. (4.7)

From (4.7) and (4.5) it follows that for each y = (y1, . . . , yn) ∈ A1 × · · · ×An there exist sets
By

1 , . . . , B
y
n ∈ W such that yσ(0) ∈ [α](By

1 , . . . , B
y
n) and (yσ(1), . . . , yσ(n)) 6∈ −(−By

1×. . .×−By
n),

i.e. yσ(0) ∈ [α](By
1 , . . . , B

y
n) and (yσ(1), . . . , yσ(n)) ∈ (−By

1×. . .×−By
n). For the rest of the proof

fix such By
1 , . . . , B

y
n for each y ∈ A1×· · ·×An. Specifically note that for each y ∈ A1×· · ·×An

we have y0 = yσ(j) 6∈ By
j . Hence we have

A1×· · ·×An ⊆
⋃

{(−By
σ(1))×· · ·×[α](By

1 , . . . , B
y
n)×· · ·×(−By

σ(n)) | y ∈ A1×· · ·×An} (4.8)

where [α](By
1 , . . . , B

y
n) is the in the σ(0)-th,. i.e. k-th, coordinate of the product. Note that

A1 × · · · × An, being a product of closed sets, is closed in the product topology, and that
⋃

{(−By
σ(1))× · · ·× [α](By

1 , . . . , B
y
n)× · · ·× (−By

σ(n)) | y ∈ A1 × · · ·×An} forms an open cover

of A1 × · · · × An. It follows by compactness that there are finite sets A′
1, . . . , A

′
n such that

A′
1 ⊆ A1, . . . , A

′
n ⊆ An and

A1×· · ·×An ⊆
⋃

{(−By
σ(1))×· · ·×[α](By

1 , . . . , B
y
n)×· · ·×(−By

σ(n)) | y ∈ A′
1×· · ·×A′

n} (4.9)

By the monotonicity of 〈ασ〉 and its distributivity over arbitrary unions we have

〈ασ〉(A1, . . . , An) ⊆
⋃

{〈ασ〉(−By
σ(1), . . . , [α](By

1 , . . . , B
y
n), . . . ,−By

σ(n)) | y ∈ A′
1 × · · · ×A′

n}.

(4.10)
By the contrapositive of the implication proved in lemma 4.1.2 we have, for each y ∈ A′

1 ×
· · · ×A′

n,

〈ασ〉(−By
σ(1), . . . , [α](By

1 , . . . , B
y
n), . . . ,−By

σ(n)) ⊆ By
j . (4.11)

Hence we have

〈ασ〉(A1, . . . , An) ⊆
⋃

{By
j | y ∈ A′

1 × · · · ×A′
n} = B0 (4.12)

But then B0 ∈ W and y0 6∈ B0, and we are done. qed

4.5. Correctness and canonicity 109

By the duality of 〈α〉 and [α], we obtain:

Corollary 4.5.8 For any n-ary modal term α ∈ MTr(τ), it is the case that [α](p1, . . . , pn) is
an open operator on descriptive τ -frames.

Now, we are ready to prove the version of Esakia’s Lemma for inverses of diamonds from
MTr(τ) on any descriptive τ -frame.

Lemma 4.5.9 (Esakia’s Lemma for inverse diamonds from MTr(τ)) Let α ∈ MTr(τ)

be an n-ary modal term, and F any descriptive τ -frame. Then

〈α〉(
⋂

i∈I

X1i
, . . . ,

⋂

i∈I

Xni
) =

⋂

i∈I

〈α〉(X1i
, . . . , Xni

)

whenever {X1i
× · · · ×Xni

}i∈I is a family of downwards directed sets such that Xji is closed
in T (F) for all 1 ≤ j ≤ n and i ∈ I.

Proof. The inclusion from left to right is immediate by the monotonicity of 〈α〉. For the
other direction, suppose that x0 6∈ 〈α〉(

⋂

i∈I X1i
, . . . ,

⋂

i∈I Xni
), i.e.

{x0} ∩ 〈α〉(
⋂

i∈I

X1i
, . . . ,

⋂

i∈I

Xni
) = ∅.

Hence
⋂

i∈I

X1i
∩ 〈α−1〉({x0},

⋂

i∈I

X2i
, . . . ,

⋂

i∈I

Xni
) = ∅.

Now, since {x0} is closed in T (F), by lemma 4.5.7 we have here a family of closed sets with
empty intersection. By compactness, there is a finite subfamily with empty intersection, say

X1i1
∩ · · · ∩X1im

∩ 〈α−1〉({x0},
⋂

i∈I

X2i
, . . . ,

⋂

i∈I

Xni
) = ∅.

Furthermore, since {X1i
×· · ·×Xni

}i∈I is downward directed, then so is every family {X1i
}i∈I ,

· · · , {Xni
}i∈I . Therefore, we can find a X1 ∈ {X1i

}i∈I such that X1 ⊆ X1i1
∩ · · · ∩X1im

, and
hence

X1 ∩ 〈α−1〉({x0},
⋂

i∈I

X2i
, . . . ,

⋂

i∈I

Xni
) = ∅.

Equivalently, it must be the case that

⋂

i∈I

X2i
∩ 〈α−2〉(X1, {x0},

⋂

i∈I

X3i
, . . . ,

⋂

i∈I

Xni
) = ∅.

In the same way as above, we find a X2 ∈ {X2i
}i∈I such that

X2 ∩ 〈α−2〉(X1, {x0},
⋂

i∈I

X3i
, . . . ,

⋂

i∈I

Xni
) = ∅.

110 Chapter 4. Polyadic Languages

Proceeding likewise, we find X3 ∈ {X3i
}i∈I , . . ., Xn ∈ {Xni

}i∈I such that

{x0} ∩ 〈α〉(X1, . . . , Xj , . . . , Xn) = ∅.

Therefore,

x0 6∈
⋂

i1,...,in∈I

〈α〉(X1i1
, . . . , Xnin

).

The result follows once we note that, by the downward directedness of {X1i
× · · · ×Xni

}i∈I ,
⋂

i1,...,in∈I

〈α−j〉(X1i1
, . . . , Xnin

) =
⋂

i∈I

〈α−j〉(X1i
, . . . , Xni

).

qed

The the next definition generalizes the notions of syntactic openness and closedness to polyadic
languages, and also introduces a weaker version of these notions appropriate for reversive τ -
frames.

Definition 4.5.10 By an inverse τ -diamond (τ -box) we mean a diamond (box) 〈α〉 ([α])
with α ∈ MTr(τ) − MTτ .

1. A formula ϕ ∈ Ln
r(τ) is syntactically closed if all occurrences of nominals and inverse

τ -diamonds in ϕ are positive, and all occurrences of inverse τ -boxes in ϕ are negative;
if the formula is in negation normal form, the latter simply means that it contains no
inverse τ -boxes. Likewise, ϕ is syntactically open if all occurrences of nominals and
inverse τ -diamonds in ϕ are negative, and all occurrences of inverse τ -boxes in ϕ are
positive. Clearly, ¬ maps syntactically open formulae to syntactically closed formulae,
and vice versa.

2. An Ln
r(τ)-formula is called nominal-negative (respectively, nominal-positive) if all occur-

rences of nominals in it are negative (respectively, positive), i.e., within the scope of an
odd (respectively, even) number of negations. Clearly, negation maps nominal-positive
formulae to nominal-negative ones, and vice versa.

Lemma 4.5.11

1. On any reversive descriptive τ -frame every nominal-negative Ln
r(τ)-formula is an open

formula and every nominal-positive Ln
r(τ)-formula is a closed formula.

2. On any descriptive τ -frame every syntactically closed Ln
r(τ)-formula is a closed formula

and every syntactically open Ln
r(τ)-formula is an open formula.

Proof. In both cases, by straightforward structural induction on the respective type of
formulae, written in negation normal form, using the facts that singletons are closed sets, and
that, according to corollaries 4.5.5 and 4.5.6, 〈α〉 and [α] are both open and closed operators on
descriptive frames (respectively, reversive descriptive frames), for any α ∈ MTτ , (respectively,
any α ∈ MTr(τ)). In the second case we also have to appeal to lemma 4.5.7 and corollary
4.5.8. qed

4.5. Correctness and canonicity 111

Lemma 4.5.12 Let the formula ϕ(q1, . . . , qn, p, i1, . . . im) ∈ Ln
r(τ) be positive in p and F =

(W, {Rα}α∈MTτ ,W) be a descriptive τ -frame, such that one of the following holds:

1. ϕ is syntactically closed, or

2. ϕ is nominal-positive and F is reversive.

Then ϕ is a closed operator with respect to p, i.e., for all Q1, . . . , Qn ∈ W, x1, . . . , xm ∈ W ,
if C ∈ C(W), then ϕ(Q1, . . . , Qn, C, {x1}, . . . , {xm}) ∈ C(W).

Proof. By structural induction on ϕ written in negation normal form. Consider the first
case. Then no subformula of ϕ can be of the form [α](γ1, . . . , γn), with α ∈ MTr(τ) − MTτ .
The inductive step for 〈α〉, α ∈ MTr(τ), follows by lemma 4.5.7. The inductive step for [α]
α ∈ MTτ , follows from lemma 4.5.3.

The proof for the second case is essentially the same, the inductive step for [α], α ∈ MTr(τ),
now follows by lemma 4.5.3 and that for 〈α〉, α ∈ MTr(τ), by corollary 4.5.5. qed

Lemma 4.5.13 (Esakia’s lemma: syntactically closed / nominal positive-formulae)
Let ϕ(q1, . . . , qn, p, i1, . . . im) ∈ Ln

r(τ) be positive in p and let F = (W, {Rα}α∈MTτ ,W) be a de-
scriptive τ -frame, such that one of the following holds:

1. ϕ is syntactically closed, or

2. ϕ is nominal-positive and F is reversive.

Then for all Q1, . . . , Qn ∈ W, x1, . . . , xm ∈ W and any downwards directed family of closed
sets {Ci | i ∈ I} it is the case that

ϕ(Q1, . . . , Qn,
⋂

i∈I

Ci, {x1}, . . . , {xm}) =
⋂

i∈I

ϕ(Q1, . . . , Qn, Ci, {x1}, . . . , {xm}).

Proof. For brevity we will omit the parameters Q1, . . . , Qn, {x1}, . . . , {xm} when writing
(sub) formulae. Consider the first case. The proof is by induction on ϕ, written in negation
normal form. The base cases when ϕ is ⊥, a propositional variable or a nominal are trivial,
and the inductive steps for the boolean connectives are the same as in the monadic case, given
by lemma 2.5.19.

Suppose ϕ of the form 〈α〉(γ1, . . . , γn), for α ∈ MTr(τ), where γ1, . . . , γn are syntactically
closed and positive in p. We have to show that

〈α〉(γ1(
⋂

i∈I

Ci), . . . , γn(
⋂

i∈I

Ci)) =
⋂

i∈I

〈α〉(γ1(Ci), . . . , γn(Ci)).

By the inductive hypothesis we have

〈α〉(γ1(
⋂

i∈I

Ci), . . . , γn(
⋂

i∈I

Ci)) = 〈α〉(
⋂

i∈I

γ1(Ci), . . . ,
⋂

i∈I

γn(Ci))

112 Chapter 4. Polyadic Languages

If γk(Ci) = ∅ for some i ∈ I and 1 ≤ k ≤ n, then, by the monotonicity of the γk in p,

〈α〉(γ1(
⋂

i∈I

Ci), . . . , γn(
⋂

i∈I

Ci)) = ∅ =
⋂

i∈I

〈α〉(γ1(Ci), . . . , γn(Ci)),

so we may assume that γk(Ci) 6= ∅ for all i ∈ I and 1 ≤ k ≤ n. Then, by lemma 4.5.12,
{γ1(Ci) × · · · × γn(Ci) | i ∈ I} is a family of non-empty closed sets. Moreover, this family
is downwards directed. For, consider any finite subset {γ1(Ci) × · · · × γn(Ci)}i=1,2,...,m of
{γ1(Ci) × · · · × γn(Ci) | i ∈ I}. By the downwards directedness of {Ci | i ∈ I}, there
is a C ∈ {Ci | i ∈ I} such that C ⊆

⋂m
i=1Ci. But then γk(C) ∈ {γk(Ci) | i ∈ I} and

γk(C) ⊆
⋂m
i=1 γk(Ci) by the upwards monotonicity of γk in p, and hence γ1(C)×· · ·×γn(C) ⊆

⋂

{γ1(Ci) × · · · × γn(Ci)}i=1,2,...,m. Now we may apply lemma 4.5.9 and conclude that

〈α〉(γ1(
⋂

i∈I

Ci), . . . , γn(
⋂

i∈I

Ci)) =
⋂

i∈I

〈α〉(γ1(Ci), . . . , γn(Ci)).

Lastly, the inductive step for ϕ = [α](γ1, . . . , γn), for α ∈ MTτ follows by the inductive
hypothesis and the fact that [α] distributes over arbitrary intersections of subsets of W .

The proof for the second case, when the formula is nominal-positive and F is reversive, is
almost the same, except that we also treat an inductive step for [α] for arbitrary α ∈ MTr(τ).
This case follows by the distributivity of [α] over arbitrary unions and lemma 4.5.3. qed

Lemma 4.5.14 (Ackermann’s lemma for descriptive frames) Let A,B(p) ∈ Ln
r(τ) such

that p does not occur in A and B(p) is negative in p. Then

1. ((A→ p)∧B(p)) ≡ad τ
trans B(A/p) whenever A is syntactically closed and B is syntactically

open, and

2. ((A → p) ∧ B(p)) ≡
ad r(τ)
trans B(A/p) whenever A is nominal-positive and B is nominal-

negative.

Proof. The proof is essentially the same as that of lemma 2.5.20, appealing to lemmas 4.5.12
and 4.5.13 where the latter appeals to lemmas 2.5.17 and 2.5.19, respectively. qed

4.5.3 Proving canonicity: the polyadic and reversive Cases

Having obtained a suitable version of Ackermann’s lemma (lemma 4.5.14), we are now ready to
prove the pesistence/canonicity results we set out to prove at the beginning of this section. For
the most part we proceed along the lines of the monadic case. To begin with, a straightforward
inductive argument, parallelling that of lemma 2.5.21, establishes the following lemma:

Lemma 4.5.15

1. During the entire (successful or unsuccessful) execution of SQEMA on any input for-
mula from Lτ , all antecedents of all non-diamond-link sequents are syntactically closed
formulae, while all consequents of all non-diamond-link sequents are syntactically open.

4.6. Completeness for polyadic inductive formulae 113

2. During the entire (successful or unsuccessful) execution of SQEMA on any input for-
mula from Lr(τ), all antecedents of all non-diamond-link sequents are nominal-positive
formulae, while all consequents of all non-diamond-link sequents are nominal-negative
formulae.

Lemma 4.5.16 Let Sys be a system obtained during the execution of SQEMA on an Lτ -
formula, and let Sys′ be obtained from Sys by the application of SQEMA-transformation rules.
Then Form(Sys) ≡ad tau

trans Form(Sys′). Similarly, if Sys′ was obtained from Sys′ during the

executing of SQEMA on an Lr(τ)-formula, then Form(Sys) ≡
ad r(tau)
trans Form(Sys′).

Proof. The proof is analogous to that of lemma 2.5.22, appealing to lemmas 4.5.14 and
4.5.15, where the latter appeals to lemmas 2.5.20 and 2.5.21, respectively. qed

Theorem 4.5.17

1. If SQEMA succeeds on a Lτ -formula ϕ, then ϕ is locally persistent with respect to the
class of all descriptive τ -frames.

2. If SQEMA succeeds on a Lr(τ)-formula ϕ, then ϕ is locally persistent with respect to the
class of all reversive descriptive τ -frames.

Proof. The proof is completely analogous to that of theorem 2.5.23, appealing to lemma
4.5.16 where the latter appeals to lemma 2.5.22. qed

4.6 Completeness for polyadic inductive formulae

In this section we show that SQEMA succeeds on all polyadic inductive formulae, obtaining
as corollaries the local first-order definability and canonicity of these formulae.

Definition 4.6.1 Call a system of SQEMA-equations an inductive system, if it has the form

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

i1 ⇒ [β1](p1, N11 , . . . , N1m)
...
in ⇒ [βn](pn, Nn1 , . . . , Nnm)
j1 ⇒ Neg1
...
jk ⇒ Negk

,

where

(IS1) either n or k, but obviously not both, may possibly be 0,

(IS2) each [βi](pi, Ni1 , . . . , Nim) is a headed box with head pi such that the dependency
digraph of this set of boxes is acyclic,

114 Chapter 4. Polyadic Languages

(IS3) every propositional variable occurring in the system occurs at least once as the head
of some [βi](pi, Ni1 , . . . , Nim), and

(IS4) each Negi is negative in all occurring propositional variables.

For technical convenience we assume that in inductive systems all heads of boxes occur as the
first arguments. Nothing essential in the ensuing changes if we drop this assumption, as the
reader can easily verify.

Lemma 4.6.2 Any inductive system may be transformed into a pure system by application
of SQEMA-transformation rules.

Proof. We proceed by induction on the number n of sequents of the form

ii ⇒ [βi](pi, Ni1 , . . . , Nim)

occurring in the system. In any inductive system, every occurring variable must have at least
one occurrence as the head of a headed box, so if n = 0 the system must be pure.

Assume n > 1. Assume further, w.l.o.g., that the variable q is minimal with respect to
some fixed linear extension of the partial order induced by the dependency digraph. We can
then apply the 2-rule to every sequent ii ⇒ [βi](pi, Ni1 , . . . , Nim) which has pi = q, replacing
it in the system with 〈β−1

i 〉(ii,¬Ni1 , . . . ,¬Nim) ⇒ pi, where 〈β−1
i 〉(ii,¬Ni1 , . . . ,¬Nim) is a

pure formula, by the minimality of q = pi. In this way all positive occurrences of q are
separated. Thus the Ackermann-rule now becomes applicable to the system, i.e., we may
substitute

∨

{〈β−1
i 〉(ii,¬Ni1 , . . . ,¬Nim) | pi = q} for all negative occurrences of q, and remove

the sequents 〈β−1
i 〉(ii,¬Ni1 , . . . ,¬Nim) ⇒ pi, pi = q. It is not difficult to see that the system

obtained in this way is still an inductive system, now containing at most n−1 sequents of the
form ij ⇒ [βj](pj , Nj1 , . . . , Njm). Finally, we appeal to the inductive hypothesis to conclude
that all remaining variables can be eliminated by the application of SQEMA-transformation
rules. qed

Theorem 4.6.3 SQEMA succeeds on all conjunctions of polyadic inductive formulae.

Proof: We simply note that, when SQEMA is run on a conjunction of inductive formu-
lae, each initial system of equations (Phase 2.1) is of the type ‖i ⇒ 〈α〉(B1, . . . , Bn) with
〈α〉(B1, . . . , Bn) the negation of an inductive formula, which, after application of the 3-rule,
becomes an inductive system. Now, we appeal to lemma 4.6.2. 2

Corollary 4.6.4 All inductive formulae are locally first-order definable and d-persistent.

Chapter 5

Hybrid Languages

In this chapter we consider algorithmic correspondence and completeness theory for hybrid
languages. Specifically, we adapt SQEMA to deal appropriately with input formulae from
the languages Ln, Lnr , Ln,u, Ln,ur , Ln,@, and Ln,@r . The rules and strategies that are needed
to deal with the additional operators of these languages are usually not surprising. Most of
our work will therefore be concerned with showing that the algorithm guarantees suitable
types of persistence to the input formulae which it reduces. In the course of this chapter we
obtain correspondence and completeness results for several new syntactically specified classes
of hybrid formulae.

5.1 The languages Ln, Lnr and di-persistence

In this section we consider basic modal and tense languages with the addition of nominals.
It is clear that the basic SQEMA-algorithm can be applied to input formulae from these
languages without requiring any adaptation. Moreover, the correctness of the algorithm on
Kripke frames is unaffected by such an enlargement of its domain of application. However, if
we want a concomitant completeness result we will have to prove that all reducible formulae
are persistent with respect to some suitable class of general frames. One such class is the class
of discrete general frames: The rules of deduction for hybrid logics are designed in such a way
that they alow one to build discrete canonical general frames, and hence di-persistence may be
seen as a suitable canonicity-notion for hybrid formulae. The following result is well-known,
see [GPT87], [GG93] and [BT99].

Theorem 5.1.1 ([GPT87], [GG93], [BT99]) For any set of Ln-formulae Σ (respectively
Ln,u, respectively Ln,@-formulae) the logic Kn⊕Σ (respectively Kn,u⊕Σ, respectively Kn,@⊕Σ)
is strongly sound and complete with respect to its class of discrete general frames. This also
holds for the reversive versions of the respective languages and logics.

We would like to show that SQEMA preserves equivalence on discrete general frames. To that
end we adapt the notion of transformation equivalence to (reversive) discrete frames:

115

116 Chapter 5. Hybrid Languages

Definition 5.1.2 Formulae ϕ,ψ ∈ Lnr are transformation equivalent on discrete frames (or
di-equivalent, for short) if, for every model M = (F, V) based on a discrete frame F, such that
M ϕ, there exists a (PROP(ϕ)∩PROP(ψ),NOM(ϕ)∩NOM(ψ))-related model M = (F, V ′)
based on F, such that M′ ψ, and vice versa. We will write ϕ ≡di

trans ϕ if ϕ and ψ
are transformation equivalent on discrete frames. We will write ϕ ≡rdi

trans ϕ if ϕ and ψ are
transformation equivalent on reversive discrete frames.

Note that, since all singletons are admissible in discrete frames, we can now interpret Lnr -
formulae in the standard way, unlike the case for the basic modal language and d-persistence
where we had to make use of augmented valuations (section 2.5.2). (Of course the extension
of an Lnr -formula may still produce an inadmissible set in a non-reversive discrete frame.)

5.1.1 The reversive case — Lnr

The case for Lnr is unproblematic, and is facilitated by the following version of Ackermann’s
lemma. The proof is the same as that of lemma 2.1.4 for the basic modal language, using the
fact that the extensions of all Lnr -formulae are admissible in reversive discrete frames.

Lemma 5.1.3 (Ackermann’s lemma for reversive discrete frames) Let F = (W,R,W)
be a reversive discrete frame, and let A,B(p) ∈ Lnr be such that A does not contain p and
B(p) is negative in p. Then, for any model M based on F,

M B(A/p)

if and only if there exists a model, M′, based on F and differing form M′ at most in the
valuation of p, such that

M′ (A→ p) ∧B(p).

Using lemma 5.1.3, all SQEMA-transformation rules are easily shown to preserve transfor-
mation equivalence on reversive discrete frames. Combined with the fact that all pure Lnr -
formulae are persistent with respect to reversive discrete frames, this yields the following
analogue of theorem 2.5.23.

Theorem 5.1.4 All formulae from Lnr on which SQEMA succeeds are locally persistent with
respect to all reversive discrete frames.

Corollary 5.1.5 Suppose SQEMA succeeds on every formula in Σ ⊆ Lnr . Then the logics
Kn
r ⊕Σ, Kn,u

r ⊕Σ and Kn,@
r ⊕Σ are strongly sound and complete with respect to their classes

of Kripke frames.

5.1.2 The non-reversive case — Ln

The non-reversive case is less direct. Indeed, since the extensions of Lnr -formulae interpreted
on (not necessarily reversive) discrete frames need not be admissible sets in those general
frames, we cannot guarantee the soundness of the Ackermann-rule on discrete frames. In
fact, it is easy to check that SQEMA succeeds on a formula (provided in [tCMV05]) which

5.1. The languages Ln, Lnr and di-persistence 117

axiomatizes an incomplete hybrid logic. It follows, by theorem 5.1.1, that this formula can
not be di-persistent, and hence that SQEMA does not preserve transformation equivalence
on discrete frames. In this subsection we will show how SQEMA can be modified by means
of a simple restriction on the application of the Ackermann-rule, to guarantee the local di-
persistence of the Ln-formulae it reduces.

Lemma 5.1.6 (Ackermann’s lemma for discrete frames) Let F = (W,R,W) be a (not
necessarily reversive) discrete frame and let A ∈ Ln and B(p) ∈ Lnr be such that A does not
contain p and B(p) is negative in p. Then, for any model M based on F,

M B(A/p)

if and only if there exists a model M′, based on F and differing form M at most in the
valuation of p, such that

M′ (A→ p) ∧B(p).

Proof. The bottom-to-top direction follows immediately from the downward monotonicity
of B(p) in p and the fact that p does not occur in B(A/p). For the top-to-bottom direction
we note that [[A]]M ∈ W, since A ∈ Lnτ , hence we can construct M′ from M simply by letting
the valuation of p be equal to [[A]]M. qed

We now modify SQEMA to obtain SQEMAn by restricting the scope of applications of the
Ackermann-rule as follows, in accordance with lemma 5.1.6:

Ackermann-Rule on Discrete Frames: This rule is based on the equivalence given in
Ackermann’s lemma for discrete frames.

The system

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

A1 ⇒ p
...
An ⇒ p
B1(p)
...
Bm(p)

is replaced by

∥

∥

∥

∥

∥

∥

∥

B1[(A1 ∨ . . . ∨An)/p]
...
Bm[(A1 ∨ . . . ∨An)/p]

,

where:

1. p does not occur in A1, . . . , An,

2. A1, . . . , An ∈ Ln, i.e., these formulae contain no inverse modalities, and

3. each of B1, . . . , Bm is negative in p.

Lemma 5.1.7 Let Sys be a system of SQEMA equations, Sys′ be a system obtained from Sys

by the application of a transformation rule of SQEMAn. Then Form(Sys) ≡di
trans Form(Sys′).

118 Chapter 5. Hybrid Languages

Proof. It suffices to note that all transformation rules of SQEMAn maintain transformation
equivalence on discrete frames. The case for the Ackermann-rule for discrete frames being
justified by lemma 5.1.6. The lemma then follows by appealing to the limited version of
transitivity satisfied by transformation equivalence (remark 2.4.3). qed

The proof of the next theorem is directly analogous to that of theorem 2.5.23, appealing to
lemma 5.1.7 where the latter appeals to lemma 2.5.8.

Theorem 5.1.8 Every input formula ϕ ∈ Ln on which SQEMAn succeeds is (locally) di-
persistent.

Corollary 5.1.9 If SQEMAn succeeds on all members of a set Σ of Ln-formulae, then the
logics Kn ⊕ Σ, Kn,@ ⊕ Σ and Kn,u ⊕ Σ are strongly complete with respect to their classes of
Kripke frames.

5.1.3 Syntactic classes

We now demonstrate the scope of SQEMAn by establishing some completeness results.

Definition 5.1.10 A formula ϕ ∈ Ln is diamond-uniform if for every propositional variable
p occurring in ϕ, the occurrences of p in ϕ which are in the scope of a positive diamond
or negative box are either all positive, or all negative. Respectively, a formula ϕ ∈ Ln is
box-uniform if, for every propositional variable p occurring in ϕ, either all occurrences of p in
ϕ in the scope of a negative diamond or positive box are positive, or they are all negative.

Equivalently, a formula ϕ ∈ Ln is diamond-uniform if, after transforming ϕ into negation
normal form, for every propositional variable p occurring in ϕ, either all occurrences of p in
ϕ in the scope of a diamond are positive, or they are all negative. Likewise, the definition of
a box-uniform formula in a negation normal form can be simplified.

Clearly, negating a diamond-uniform formula yields a box-uniform formula, and vice versa.

Example 5.1.11 3p → �3p, and 3p → 3�p,3p → 33p are diamond-uniform, while
�p→ 3p and �p→ 3�p,�p→ �3p are not. �

Recall the definition of the very simple Sahlqvist formulae (definition 1.3.6). The very simple
Sahlqvist formulae are probably the best known class of non-pure di-persistent formulae. Note
that, in any very simple Sahlqvist formula, every negative occurrence of a variable comes from
the antecedent, and is hence not in the scope of any positive diamond. This observation yields
the following proposition:

Proposition 5.1.12 Every very simple Sahlqvist formula is diamond-uniform.

Diamond uniform-formulae in fact represent a generalization (modulo local equivalence) of
the very simple Sahlqvist formulae. Indeed, the formula 2p→ 22p is both box and diamond-
uniform, but is not a very simple Sahlqvist formula, although it is locally equivalent to the
very simple Sahlqvist formula 3p→ 33p.

5.1. The languages Ln, Lnr and di-persistence 119

Theorem 5.1.13 SQEMAn succeeds on all diamond-uniform formulae.

Proof. We will refer to a system as a box-uniform system, if it has the form

∥

∥

∥

∥

∥

∥

∥

i1 ⇒ ψ1
...
in ⇒ ψn

,

where ψ1 ∧ . . .∧ψn is a box-uniform formula, in which, moreover, every occurring disjunction
occurs in the scope of a box.

Claim 1 Any propositional variable occurring in a box-uniform system, Sys, can be elimi-
nated from the system by application of transformation rules of SQEMAn, yielding a system
Sys′ which is again box-uniform.

Proof of Claim If Sys is box-uniform, then either no positive or no negative occurrence
of p in Form(Sys) is in the scope of any box. Let us consider the first case: It follows that
each positive occurrence of p is at most in the scope of diamonds and conjunctions, and
hence that the system may be solved for p by the application of the 3 and ∧-rules. Observe
that applications of the latter rules to box-uniform systems again yield box-uniform systems.
When the system is solved for p, all equations containing p positively will be of the form
ii ⇒ p. Applying the Ackermann-rule for discrete frames will result in a pure formula being
substituted for each negative occurrence of p, thus again yielding a box-uniform system.

In the second case, when no negative occurrence of p in Form(Sys) is in the scope of any
box, we use the polarity switching rule to change the polarity of p and proceed as in the first
case. ◭

Note that, when SQEMAn is run on a diamond-uniform formula ϕ, the initial system of
equation on each disjunctive branch of the execution is a box-uniform system. For, the
negation of a diamond-uniform formulae is box-uniform, and, in such a formula, distribution
of conjunctions and diamonds over disjunctions ensures that, within the main disjuncts, each
disjunction occurs in the scope of a box. A simple inductive argument, appealing to the above
claim, now proves the theorem. qed

Corollary 5.1.14 SQEMAn succeeds on all very simple Sahlqvist formulae.

Corollary 5.1.15 All diamond-uniform formulae are locally di-persistent.

Example 5.1.16 Consider the Sahlqvist formulae

ϕ1 = 3p→ 32p, ϕ2 = 3p→ 23p, ψ1 = 2p→ 32p, ψ2 = 2p→ 23p.

1. SQEMAn succeeds on ϕ1 and ϕ2 (which are very simple Sahlqvist formulae), but neither
on ψ1 nor on ψ2.

120 Chapter 5. Hybrid Languages

2. Therefore, both ϕ1 and ϕ2 are di-persistent. On the other hand, neither ψ1 nor ψ2 is
di-persistent. That can be seen by checking that both ψ1 and ψ2 are valid on the general
frame of finite and co-finite subsets of the countably branching tree (where every node
has countably many successors)1, while both fail on the tree itself, taken as a Kripke
frame.

�

5.2 The languages Ln, Lnr and sd-persistence

As we saw in section 5.1, the restrictions that have to be imposed on the Ackermann-rule
in order to guarantee di-persistence were quite severe, if fact so severe that the resulting
algorithm SQEMAn will fail even on most Sahlqvist formulae. This is with good reason of
course, since most Sahlqvist formulae indeed fail to be di-persistent.

However, it has been shown by Ten Cate in [tC05b] (see also [tCMV05]) that every logic
Kn⊕Σ, Kn,@⊕Σ and Kn,u⊕Σ with Σ a set of Sahlqvist formulae (from L) is strongly sound
and complete with respect to its class of Kripke frames. In this section we will capture this
fact algorithmically via a suitable modification of SQEMA.

It is thus known that hybrid logics axiomatized with pure axioms or with Sahlqvist axioms
are complete. However, as [tCMV05] show, we cannot, in general, combine these facts.
Specifically, they show that there exists a pure formula ϕ ∈ Ln and a Sahlqvist formula
ψ ∈ L such that Kn ⊕ {ϕ,ψ} is incomplete with respect to its class of Kripke frames. Of
course, any combination of very simple Sahlqvist formulae and pure formulae axiomatizes a
complete hybrid logic, since these formulae are di-persistent.

With the aid of the adaptations of SQEMA that are introduced in this section, we will
be able to prove general completeness results for logics axiomatized with Ln-formulae from
syntactically specified classes that allow for much more liberal combinations of nominals and
propositional variables.

5.2.1 Strongly descriptive frames

The notion of a strongly descriptive frame (or sd-frame, for short) is introduced in [tC05b].
Intuitively, a strongly descriptive frame is a descriptive frame that contains ‘enough’ admis-
sible singletons to allow for the meaningful interpretation of formulae containing nominals.
The definition is as follows:

Definition 5.2.1 A general frame F = (W,R,W) is strongly descriptive if

1. it is descriptive,

2. for all ∅ 6= A ∈ W, there is some singleton {a} ∈ W such that {a} ⊆ A, and

3. for all A ∈ W and singletons {a} ∈ W, if {v ∈ A | aRv} 6= ∅, then there is a singleton
{b} ∈ W, such that b ∈ A and aRb.

1This general frame was used in [tCMV05] to show the incompleteness of a certain hybrid logic involving
the Church-Rosser formula 32p → 23p.

5.2. The languages Ln, Lnr and sd-persistence 121

ω + 1 ω 3 2 11 0

transitive

Figure 5.1: A strongly descriptive frame

We will write Nom(W) for the set of all singleton sets in W, the notation being suggestive
of the fact that, in F, valuations for nominals have to come from Nom(W). The elements of
⋃

Nom(W) will be referred to as the admissible points of F.

A general frame is a reversive strongly descriptive frame if it is reversive and strongly
descriptive and satisfies clause (3) above, also with respect to the inverse relation, R−1.

A formula is (locally) sd-persistent if it is (locally) persistent with respect to the class of all
strongly descriptive frames.

Example 5.2.2 Here is an example of a strongly descriptive frame, adapted from example
2.5.2. Let F = (W,R,W) be the general frame with underlying Kripke frame pictured in figure
5.1. Note that ω is reflexive while all other points are irreflexive, and that the accessibility
relation is transitive. Let, as in example 2.5.2, W = {X1 ∪ X2 ∪ X3 | Xi ∈ Xi, i = 1, 2, 3},
where X1 contains all finite (possibly empty) sets of natural numbers, X2 contains ∅ and all
sets of the form {x ∈W | n ≤ x ≤ ω} for all n ∈ ω, and X3 = {∅, {ω + 1}}. It is not difficult
to check that F is descriptive. Further, note that every point other than ω is admissible and
that, in fact, F is strongly descriptive.

So the only difference between F and the general frame in example 2.5.2 is that there ω
is the only successor of ω + 1, the accessibility relation being not wholly transitive. That
frame is descriptive but not strongly descriptive, since there ω + 1, an admissible point, has
no admissible successor in N ∪ {ω}. �

Ten Cate ([tC05b]) gives the following general completeness result for strongly descriptive
frames.

Theorem 5.2.3 ([tC05b]) Kn
⊕

Σ, Kn,u
⊕

Σ and Kn,@
⊕

Σ are strongly sound and com-
plete with respect to the class of all strongly descriptive general frames for Σ, where Σ is any
set of Ln, Ln,u or Ln,@-formulae, respectively.

Corollary 5.2.4 Kn
⊕

Σ is strongly sound and complete with respect to the class of all
Kripke frames for Σ, where Σ is any set of sd-persistent Ln-formulae.

122 Chapter 5. Hybrid Languages

An obvious question now arises, namely, which Ln-formulae are sd-persistent? As it happens,
not all pure formulae are sd-persistent. For example, the irreflexivity axiom, j → ¬3j, is
not locally or globally sd-persistent. Indeed, if F is the strongly descriptive frame in example
5.2.2, we have F j → ¬3j but F♯ 6 j → ¬3j.

Lemma 5.2.5 Let ϕ(q1, . . . , qm, j, i1, . . . , in) ∈ Lnr be a syntactically closed formula, with
PROP(ϕ) = {q1, . . . , qm} and NOM(ϕ) = {j, i1, . . . in}. Let F = (W,R,W) be a strongly
descriptive frame, and let w ∈W , Q1, . . . Qm ⊆W and {x1}, . . . , {xm} ⊆W . For the sake of
brevity we will omit the parameters Q1, . . . Qm, {x1}, . . . , {xm}, and simply write ϕ({v}) for
ϕ(Q1, . . . , Qm, {v}, {x1}, . . . , {xm}). Then

1. w ∈ ϕ({v}) for all {v} ∈ Nom(W) iff w ∈ ϕ({v}) for all v ∈W ;

2. for any fixed {u} ∈ Nom(W), it holds that w ∈ ϕ({v}) for all v ∈ {x ∈ W | Rux, {x} ∈
Nom(W)} iff w ∈ ϕ({v}) for all v ∈ {x ∈W | Rux};

3. for any fixed {u} ∈ Nom(W), it holds that w ∈ ϕ({v}) for all {v} ∈ Nom(W), v 6= u iff
w ∈ ϕ({v}) for all v ∈W , v 6= u.

Proof. We proceed case by case.

1. Suppose that for all {v} ∈ Nom(W), w ∈ ϕ({v}). Now for any admissible set B ∈ W,
it is the case that w ∈ ϕ(B). For, since F is strongly descriptive, there must be some
singleton {b} ∈ Nom(W) such that {b} ⊆ B. Hence, since ϕ is positive in j, we will
have w ∈ ϕ(B). Now let x ∈ W arbitrarily. We will show that w ∈ ϕ({x}). Since F

is descriptive all singletons are closed in T (F), i.e. {x} =
⋂

{B ∈ W | x ∈ B}. Hence
ϕ({x}) = ϕ(

⋂

{B ∈ W | x ∈ B}) =
⋂

({ϕ(B) | x ∈ B,B ∈ W}), where the last equality
holds by lemma 2.5.19. The claim follows.

2. Let {u} ∈ Nom(W), and suppose that, for all v ∈ {v ∈ W | Ruv, {v} ∈ Nom(W)} it
is the case that w ∈ ϕ({v}). Let x be an arbitrary successor of u. We have to show
that w ∈ ϕ({x}). Consider any admissible set B ∈ W such that x ∈ B. By the strong
descriptiveness of F, there must be a {v} ∈ Nom(W) such that Ruv and v ∈ B. But
then, by assumption, w ∈ ϕ({v}), and hence, since ϕ is positive in j, we have that
w ∈ ϕ(B). The proof of this case can now be completed as in case 1, above.

3. Let {u} ∈ Nom(W), and suppose that w ∈ ϕ({v}), for all {v} ∈ Nom(W), v 6= u. We
have to show that w ∈ ϕ({x}) for all x ∈ W , x 6= u. Let x ∈ W , x 6= u, arbitrarily. As
before, consider any admissible set B ∈ W such that x ∈ B. But then B−{u} ∈ W, and
hence, by the strong descriptiveness of F there must be a {b} ∈ W such that b ∈ B−{u}.
Hence, since ϕ is positive in j, we have that w ∈ ϕ(B). Again the proof can now be
completed as in case 1, above.

qed

Proposition 5.2.6 Any positive, syntactically closed Lnr -formula is locally sd-persistent.

5.2. The languages Ln, Lnr and sd-persistence 123

Proof. Let ϕ(p1, . . . , pm, i1, . . . , in) ∈ Lnr be syntactically closed and positive in all proposi-
tional variables, with PROP(ϕ) = {p1, . . . , pm} and NOM(ϕ) = {i1, . . . in}. Let F = (W,R,W)
be a strongly descriptive frame for Lnτ , and w ∈ W a point in F. Note that, by the upward
monotonicity of ϕ in p1, . . . , pm,

(F, w) ϕ(p1, . . . , pm, i1, . . . , in) iff (F, w) ϕ(⊥/p1, . . . ,⊥/pm, i1, . . . , in).

So assume that F ϕ(⊥/p1, . . . ,⊥/pm, i1, . . . , in). We have to show that

(F♯, w) ϕ(⊥/p1, . . . ,⊥/pm, i1, . . . , in),

where F♯ = (W,R) is the underlying Kripke frame of F. We will henceforth omit the param-
eters ‘⊥/pi’ and merely write ϕ(i1, . . . , in).

By assumption, it is the case that w ∈ ϕ({a1}, . . . , {an}) for all admissible singletons
{a1}, . . . {an} ∈ W. By applying lemma 5.2.5 to the first coordinate, we find that w ∈
ϕ({x1}, . . . , {an}) for all x1 ∈W and all {a2}, . . . {an} ∈ W. Now, by proceeding inductively
and applying lemma 5.2.5 to each coordinate, we see that w ∈ ϕ({x1}, . . . , {xn}) for all
x1, . . . , xn ∈W . It follows that

(F♯, w) ϕ(⊥/p1, . . . ,⊥/pm, i1, . . . , in),

and hence that

(F♯, w) ϕ(p1, . . . , pm, i1, . . . , in).

qed

Corollary 5.2.7 Any pure, syntactically closed formula from Lnr is locally sd-persistent.

Proposition 5.2.6 and corollary 5.2.7 are too restrictive for our purposes — we have to be able
to guarantee sd-persistence of formulae with ceratin negative nominal occurrences as well. To
that aim we make the some definitions and prove some lemmas:

Definition 5.2.8 A formula of the form j → 3k or ¬j ∨ 3k is called diamond-link formula,
i.e. diamond-link formulae are the translations of diamond-link sequents. A general diamond-
link formula is any conjunction of diamond-link formulae.

Given a general diamond-link formula ϕ, the dependency digraph of ϕ is the directed graph
〈Vϕ, Eϕ〉, with vertex set Vϕ consisting of all nominals occurring in ϕ, and edge set Eϕ, such
that (j,k) ∈ Eϕ iff j → 3k (or ¬j ∨ 3k) is a conjunct of ϕ. The dependency digraph of a
general diamond-link formula is tree-like, if it is a tree, in other words, if it has a root, i.e.
a vertex from which every other vertex is accessible along a directed path, and every vertex
other than the root is reachable from the root along exactly one directed path. A dependency
digraph is called forest-like if its is the disjoint union of tree-like dependency digraphs. A
general diamond link-formula is tree-like (forest-like) if its dependency digraph is tree-like
(forest-like).

124 Chapter 5. Hybrid Languages

Lemma 5.2.9 Let F = (W,R,W) be a strongly descriptive general frame, and ϕ a forest-like
general diamond-link formula. Suppose NOM(ϕ) = {j1, . . . , jn}. Then for all x1, . . . , xn ∈W
and X1, . . . , Xn ∈ W with xi ∈ Xi, 1 ≤ i ≤ n such that

F♯ ϕ[j1 := x1, . . . , jn := xn],

there exist admissible singletons {a1}, . . . , {an} ∈ Nom(W) such that ai ∈ Xi, 1 ≤ i ≤ n and

F ϕ[j1 := a1, . . . , jn := an].

Proof. We illustrate the proof-idea with an example. The general proof, which is made
extremely tedious by the technical overhead of keeping track of the tree structures, should
then be clear. Consider the formula

[(j1 → 3j2) ∧ (j1 → 3j3) ∧ (j2 → 3j4) ∧ (j3 → 3j5) ∧ (j3 → 3j6) ∧ (j3 → 3j7)]

∧ [(k1 → 3k2) ∧ (k1 → 3k3) ∧ (k3 → 3k4)].

The dependency digraph of this formula is illustrated in figure 5.2. Suppose

F♯ ϕ[j1 := x1, . . . , j7 := x7,k1 := y1, . . . ,k4 := y4],

hence Rx1x2, Rx1x3, Rx2x4, Rx3x5, Rx3x6, and Rx3x7, and Ry1y2, Ry1y3, and Ry3x4. Let
X1, . . . , X7, Y1, . . . , Y7 ∈ W such that xi ∈ Xi, 1 ≤ i ≤ 7 and yi ∈ Yi, 1 ≤ i ≤ 4. But then

X1 ∩ 3(X2 ∩ 3(X4)) ∩ 3(X3 ∩ 3(X5) ∩ 3(X6) ∩ 3(X7)) 6= ∅,

and

Y1 ∩ 3(Y2) ∩ 3(Y3 ∩ 3Y4) 6= ∅.

Appealing to the strong descriptiveness of F, there exists an admissible {a1} ⊆ X1 ∩ 3(X2 ∩
3(X4)) ∩ 3(X3 ∩ 3(X5) ∩ 3(X6) ∩ 3(X7)), and hence admissible {a2} ⊆ X2 ∩ 3(X4) and
{a3} ⊆ X3 ∩ 3(X5) ∩ 3(X6) ∩ 3(X7) such that Ra1a2 and Ra1a3. Again by the strong
descriptiveness of F, there are admissible {ai} ⊆ Xi, i = 4, 5, 6, 7, such that Ra2a4, Ra3a5,
Ra3a6 and Ra3a7. Similarly we find admissible singletons {bi} ⊆ Yi, 1 ≤ i ≤ 4, such that
Rb1b2, Rb1b3, and Rb3b4. Hence

F ϕ[j1 := a1, . . . , j7 := a7,k1 := b1, . . . ,k4 := b4].

qed

The next proposition will be used in proving the sd-persistence of formulae on which the
modified version of SQEMA, introduced in the next subsection, succeeds.

Proposition 5.2.10 Let F = (W,R,W) be a strongly descriptive frame. Any formula of the
form ϕ∧ψ ∈ Lnr with ψ pure and syntactically open, and ϕ a forest-like general diamond-link
formula, is globally satisfiable on F iff it is globally satisfiable on F♯.

5.2. The languages Ln, Lnr and sd-persistence 125

j1

j2

j3

j4

j5

j6

j7

k1

k2

k3

k4

Figure 5.2: The dependency digraph of the general diamond-link formula in lemma 5.2.9

Proof. Suppose that NOM(ϕ) ⊆ {j1, . . . , jn} and that NOM(ψ) − NOM(ϕ) ⊆ {k1, . . . ,km}.
The implication from left to right is trivial. For the sake of the other direction, suppose that
there are x1, . . . xn, y1, . . . , ym ∈W such that

ϕ({x1}, . . . , {xn}) = W and ψ({x1}, . . . , {xn}, {y1}, . . . , {ym}) = W.

Hence ¬ψ({x1}, . . . , {xn}, {y1}, . . . , {ym}) = ∅. But then, since singletons are closed in de-
scriptive frames,

¬ψ(
⋂

X1, . . . ,
⋂

Xn,
⋂

Y1, . . . ,
⋂

Ym) = ∅,

where, Xi = {X ∈ W | xi ∈ X}, 1 ≤ i ≤ n, and Yi = {Y ∈ W | yi ∈ Y }, 1 ≤ i ≤ m. Hence,
by lemma 2.5.19 and the fact that ¬ψ is syntactically closed, we have

⋂

X1∈X1

· · ·
⋂

Xn∈Xn

⋂

Y1∈Y1

· · ·
⋂

Ym∈Ym

¬ψ(X1, . . . , Xn, Y1, . . . , Ym) = ∅.

By compactness there exists X1, . . . , Xn ∈ W and Y1, . . . , Ym ∈ W with xi ∈ Xi, 1 ≤ i ≤ n,
and yi ∈ Yi, 1 ≤ i ≤ m, such that

¬ψ(X1, . . . , Xn, Y1, . . . , Ym) = ∅.

By lemma 5.2.9 there are a1, . . . , an,∈
⋃

Nom(W) such that ai ∈ Xi, 1 ≤ i ≤ n and

ϕ({a1}, . . . , {an}) = W.

Since ¬ψ is positive in all nominals, we can choose arbitrary b1, . . . , bn ∈
⋃

Nom(W) such
that bi ∈ Yi, 1 ≤ i ≤ m and ¬ψ({a1}, . . . , {an}, {b1}, . . . , {bm}) = ∅. Hence

ϕ({a1}, . . . , {an}) ∩ ψ({a1}, . . . , {an}, {b1}, . . . , {bm}) = W.

In other words, ϕ ∧ ψ is globally satisfiable on F. qed

126 Chapter 5. Hybrid Languages

The following corollary, for parameterized satisfiability, is easy to prove:

Corollary 5.2.11 Let F = (W,R,W) be a strongly descriptive frame. Any formula of the
form ϕ∧ψ ∈ Lnr with ψ pure and syntactically open, and ϕ a forest-like general diamond-link
formula, is globally satisfiable with parameters from

⋃

Nom(W) on F iff it is globally satisfiable
on F♯ with the same parameters.

5.2.2 Adapting SQEMA to prove sd-persistence

In this section we develop a variant of SQEMA, called SQEMAsd, which is specifically adapted
to work on strongly descriptive frames. Our aim is to adapt SQEMA in such a way that
it would transform input formulae into pure formulae of the form described in proposition
5.2.10. This will enable us to prove the sd-persistence of the Lnr -formulae on which the adapted
version succeeds. Since proposition 5.2.10 does not allow for arbitrary nominal occurrences,
the adapted algorithm will have to be able to eliminate not only propositional variables,
but also ‘bad’ nominal occurrences. We begin by providing an Ackermann-type lemma —
essentially a triviality — that will facilitate the elimination of such nominal occurrences.

Lemma 5.2.12 (Ackermann’s Lemma for Nominals) Let B ∈ Lnr , and let j and k be
nominals. Then for any model M = (F, V) based on a strongly descriptive frame F =
(W,R,W), it holds that

(F, V) B(j/k)

if and only if there exists an admissible valuation V ′, differing from V at most in the valuation
of k, such that

(F, V ′) (j → k) ∧B(k).

The following transformation rule can now be formulated:

Ackermann-Rule for Nominals:

The system

∥

∥

∥

∥

∥

∥

∥

∥

∥

j ⇒ k,
B1(k),
...
Bm(k),

is replaced by

∥

∥

∥

∥

∥

∥

∥

B1[j/k],
...
Bm[j/k].

where each of B1, . . . , Bm is negative in k.

We note that, for the rule to be applicable there can be only one positive occurrence of
k in the system, and that the soundness of the rule on strongly descriptive frames follows
from lemma 5.2.12. Of course, lemma 5.2.12 would guarantee the soundness of a stronger
rule, viz. a rule that does not require the Bi to be negative in k. Such a rule would be too
general for our purposes, however.

Given an execution of SQEMA on an Ln input formula ϕ, we will refer to the elements
of NOM(ϕ) as the input nominals of the execution, and to all other nominals appearing in

5.2. The languages Ln, Lnr and sd-persistence 127

the systems during the execution (i.e. the reserved nominal i as well as all nominals introduced
by the 3-rule) as the introduced nominals of the execution.

The algorithm SQEMAsd is obtained from the basic algorithm SQEMA, by

1. adding the Ackermann-rule for nominals to the set of transformation rules, and

2. requiring that, apart from the elimination of all occurring propositional variables, all
input-nominals with positive occurrences in the system are to be eliminated as well.

Definition 5.2.13 An Lnr -formula is inverse existential if all occurrences of 3
−1 in it are

positive and all occurrences of 2
−1 are negative. Equivalently, when rewritten in negation

normal form, there are no occurrences of 2
−1 in the formula. A Lnr -formula is inverse uni-

versal if all occurrences of 2
−1 in it are positive and all occurrences of 3

−1 are negative.
Equivalently, when rewritten in negation normal form, there are no occurrences of 3

−1 in
the formula. Clearly, negation maps inverse existential formulae to inverse universal formulae
and vice versa.

Observe that, if ϕ(p1, . . . , pn, j1, . . . , jm) ∈ Lnr is inverse existential then, for any fresh proposi-
tional variables q1, . . . , qm, the formula ϕ(p1, . . . , pn, q1/j1, . . . , qm/jm) is syntactically closed.
Hence, given any strongly descriptive frame F = (W,R,W) and sets X1, . . . , Xn ∈ W,
{x1}, . . . , {xm} ∈ Nom(W), we have, by lemma 2.5.17, that ϕ(X1, . . . , Xn, {x1}, . . . , {xm})
will be a closed set with respect to T (F) . Taking this observation further, it is not difficult
to see that the following analogues of lemmas 2.5.19 and 2.5.20 hold.

Lemma 5.2.14 (Esakia’s lemma for inverse existential formulae on sd-frames) Let
ϕ(q, p, j) ∈ Lnr be an inverse existential formula, positive in p, F = (W,R,W) a strongly de-
scriptive frame, and {Ci}i∈I a downwards directed family of closed sets from C(F). Then, for
any Q ∈ W and a ∈ Nom(W),

ϕ(Q,
⋂

i∈I

Ci, a) =
⋂

i∈I

ϕ(Q,Ci, a).

Lemma 5.2.15 (Restricted version of Ackermann’s lemma for sd-frames) Let F =
〈W,R,W〉 be a strongly descriptive frame, and A(q, j) and B(q, p, j) inverse existential and
universal Lnr -formulae, respectively, with p not occurring in A and B negative in p. Then,
for all Q ∈ W, a ∈ Nom(W), it holds that

B(Q,A(Q, a), a) = W

if and only if there is a P ∈ W such that

A(Q, a) ⊆ P and B(Q,P, a) = W.

Adapting definition 2.5.7, whilst bearing in mind that strongly descriptive frames contain
sufficiently many singletons for the proper interpretation of Ln, we obtain the following version
of transformation equivalence:

128 Chapter 5. Hybrid Languages

Definition 5.2.16 Formulae ϕ,ψ ∈ Lnr are transformation equivalent on strongly descriptive
frames if, for every model M = (F, V) based on a strongly descriptive frame F, such that
M ϕ there exists a (PROP(ϕ)∩PROP(ψ),NOM(ϕ)∩NOM(ψ))-related model M = (F, V ′)
based on F, such that M′ ψ, and vice versa. We will write ϕ ≡sd

trans ϕ if ϕ and ψ are
transformation equivalent on strongly descriptive frames.

Lemma 5.2.17 (Soundness for Strongly Descriptive Frames) Let Sys′ be a system ob-
tained from a system Sys by the application of a transformation rule of SQEMAsd. Then
Form(Sys) ≡sd

trans Form(Sys′).

Proof. We have to show that the transformation rules of SQEMAsd preserve transformation
equivalence on strongly descriptive frames. This is easily justified. In particular, the case for
the (ordinary) Ackermann-rule follows from lemma 5.2.15 with the help of claim 1, below.

Claim 1 During the entire (successful or unsuccessful) execution of SQEMAsd on an Ln

input formula, the antecedents of all sequents are inversely existential Lnr -formulae, while the
consequents of all sequents are inversely universal Lnr -formulae.

Proof of Claim This follows from the proof of lemma 2.5.21. ◭

The Ackermann-rule for nominals is justified by lemma 5.2.12. We also check the 3-rule.
Indeed, suppose that Form(Sys) is of the form (¬j ∨ 3ϕ) ∧ ψ. Let F = (W,R,W) be any
strongly descriptive frame. Then (F, V) ((¬j ∨ 3ϕ) ∧ ψ)[i := w] iff [[ψ]](F,V) = W and
{a} = [[j]](F,V) ⊆ [[3ϕ]](F,V), where V (j) = {a} ∈ Nom(W). By claim 1, 3ϕ (and hence ϕ) is
inversely universal. Hence [[ϕ]](F,V) is an open set with respect to T (F), i.e. [[ϕ]](F,V) =

⋃

{C ∈
W | [[ϕ]](F,V) ⊆ C}. Hence, by the strong descriptiveness of F, there exists a {b} ∈ Nom(W)
such that b ∈ [[ϕ]](F,V) and such that Rab. It follows that (F, V) ((¬j ∨ 3ϕ) ∧ ψ)[i := w]
iff the valuation of V may be changed, at most in its assignment to the fresh nominal k, to
obtain V ′ such that V ′(k) = b and hence (F, V ′) ((¬j ∨ 3k) ∧ (¬k ∨ ϕ) ∧ ψ)[i := w]. qed

Example 5.2.18 Consider the execution of SQEMAsd on the formula 3(j ∧ 2p) → (3k ∨
2(j ∨ 3p)). After negating and applying the ∧-rule, the system

∥

∥

∥

∥

i ⇒ 3(j ∧ 2p)
i ⇒ (2¬k ∧ 3(¬j ∧ 2¬p))

is obtained. Applying the 3 and ∧-rules followed by the 2-rule and then the Ackermann-rule
(with respect to p) produces

∥

∥

∥

∥

∥

∥

i ⇒ 3l
l ⇒ j
i ⇒ (2¬k ∧ 3(¬j ∧ 22

−1¬l))
.

Although the system obtained is now pure, it still contains a positive occurrence of the input
nominal j. The Ackermann-rule for nominals is now applied to obtain the system

∥

∥

∥

∥

i ⇒ 3l
i ⇒ (2¬k ∧ 3(¬l ∧ 22

−1¬l))
.

5.2. The languages Ln, Lnr and sd-persistence 129

After negation we obtain the formula (i ∧ 2¬l) ∨ (i ∧ (3k ∨ 2(l ∨ 33
−1l))), which, we

note, is of the form prescribed by proposition 5.2.10. This formula can be rewritten as
i ∧ (3k ∨ [2¬l ∨ 2(l ∨ 33

−1l)]. After translation and simplification this becomes

(∀yRxy) ∨ (∀y∀z(Rxy ∧Rxz → (y 6= z → ∃u(Ryu ∧Rzu)))).

Hence a point in a Kripke (or strongly descriptive) frame validates the input formula 3(j ∧
2p) → (3k∨2(j∨3p)), iff it is either a spy point (i.e. a point from which all points in the frame
are accessible) or satisfies (locally) a weakened version of the Church-Rosser property. This
property is definable (on Kripke frames) neither by an L-formula nor by a pure Ln-formula.
Indeed, the property is undefinable by a modal formula since it is not invariant under disjoint
unions. The undefinability by pure formulae may be seen by considering the frames used in
[GG93] (see also [tC05b]) to show that the Church-Rosser property is undefinability by pure
formulae, even with the help of the universal modality. �

The next useful proposition shows that a formula ϕ ∈ Ln is valid in a strongly descriptive
frame whenever it is valid at every admissible point in that frame.

Proposition 5.2.19 Let F = (W,R,W) be a strongly descriptive frame and ϕ ∈ Lnr an
inversely existential formula. Then F ϕ whenever (F, w) ϕ for all w ∈

⋃

Nom(W).

Proof. Suppose that (F, w) ϕ(p,k) for all w ∈
⋃

Nom(W). Suppose further, by way
of contradiction, that for some v ∈ W , some P ∈ W and some a ∈ Nom(W), we have
v 6∈ ϕ(P , a), i.e. {v} ∩ ϕ(P , a) = ∅. But, since singletons are closed in descriptive frames,
{v} =

⋂

{C ∈ W | v ∈ C}. Moreover, as remarked above, since ϕ is inversely existential,
ϕ(P , a) is also closed with respect to T (F), so ϕ(P , a) =

⋂

{D ∈ W | ϕ(P , a) ⊆ D}. So we
have

⋂

{C ∈ W | v ∈ C} ∩
⋂

{D ∈ W | ϕ(P , a) ⊆ D} = ∅. Hence, by compactness, there
exist admissible sets C,D ∈ W with v ∈ C and ϕ(P , a) ⊆ D, such that C ∩D = ∅. But then
C ∩ ϕ(P , a) = ∅. But there is at least once admissible point, say c, such that c ∈ C, and
hence c 6∈ ϕ(P , a), which contradicts our assumption that (F, w) ϕ for all w ∈

⋃

Nom(W).
qed

Theorem 5.2.20 Every formula ϕ ∈ Ln on which SQEMAsd succeeds is globally sd-persistent.

Proof. Suppose SQEMAsd succeeds on ϕ ∈ Ln. We use the following claim:

Claim 1 The formula pure(ϕ) (obtained in step Postprocessing.2 of the execution) is of the
form

∨n
i=1 ψi for some n ∈ N

+ and with the each ψi either

1. a syntactically open formula,

2. a forest-like general diamond-link formula, or

3. a conjunction of a syntactically open formula and a forest-like general diamond-link
formula.

130 Chapter 5. Hybrid Languages

Proof of Claim The ψi are the formulae Form(Sysi) for the final systems Sysi on the
n disjunctive branches of the execution. It is easy to verify that in each Form(Sysi), (i)
each introduced nominal has exactly one positive occurrence, namely in the translation of
the diamond-link formula introduced at its introduction (by induction on the application of
transformation rules); (ii) no input nominal occurs positively in pure (by the assumption of
success); (iii) Form(Sysi) is inversely universal (see the proof of lemma 5.2.17). We deduce
that each ψi is indeed either a syntactically open formula, a general diamond-link formula,
or a conjunction of such formulae.

It only remains to verify that in each ψi that contains a general diamond-link formula as a
conjunct, that general diamond-link formula is forest-like. But this follows once we note that
every nominal occurring positively in a diamond link-formula is introduced by the 3-rule,
and that this rule only introduces new nominals, not occurring in the system yet. ◭

Let F = (W,R,W) be a strongly descriptive frame. Proceeding exactly as in the proof
of 2.5.23 and using lemma 5.2.17, we see that, for all w ∈

⋃

Nom(W) it is the case that
(F, w) ϕ iff pure(ϕ) is not globally [i := w]-satisfiable on F. Similarly, for all w ∈ W it
holds that (F♯, w) ϕ iff pure(ϕ) is not globally [i := w]-satisfiable on F♯.(In the case of the
general frame F, we have to restrict to w ∈

⋃

Nom(W), for we cannot assign non-admissible
singletons to i.)

Hence F ϕ iff (by lemma 5.2.19) (F, w) ϕ for all w ∈
⋃

Nom(W), iff pure(ϕ) is not
globally satisfiable on F iff (by lemma 5.2.10 and claim 1) pure(ϕ) is not globally satisfiable
on F♯ iff pure(ϕ) is not globally [i := w]-satisfiable on F♯ for any w ∈W iff F♯ ϕ. qed

Corollary 5.2.21 Kn⊕ϕ is strongly sound and complete (with respect to its class of Kripke
frames) whenever SQEMAsd succeeds on ϕ ∈ Ln.

5.2.3 Syntactic classes

In the previous subsection we have seen that, apart from computing first-order local frame
equivalents, SQEMAsd also guarantees the sd-persistence of the Ln-formulae on which it suc-
ceeds, and hence the completeness of the extensions of Kn axiomatized by these formulae.
In this subsection we evaluate SQEMAsd’s performance on syntactically specified classes of
elementary and/or persistent Ln-formulae.

The basic modal language

First let us consider the familiar syntactically specified classes of L-formulae. SQEMAsd is an
extension of SQEMA with a new rule, plus the requirement that positive occurrences of input
nominals have to be eliminated. Since there are no input nominals in the case of L-input
formulae, it follows that SQEMAsd succeeds on all L-formulae on which SQEMA succeeds. In
particular, we have the following theorem.

Theorem 5.2.22 SQEMAsd succeeds on all L-formulae on which SQEMA succeeds.

5.2. The languages Ln, Lnr and sd-persistence 131

The next proposition could be seen as a corollary of theorem 5.2.22, but it in fact follows
immediately form the d-persistence of the members of these classes and the fact that all
d-persistent formulae are sd-persistent.

Proposition 5.2.23 All Sahlqvist, Sahlqvist–van Benthem and monadic inductive L-formulae
are sd-persistent.

Combining this with theorem 5.2.3 we obtain the following theorem, subsuming the result
from [tCMV05, tC05b], which holds for Sahlqvist formulae.

Theorem 5.2.24 Kn ⊕ Σ is strongly sound and complete with respect to its class of Kripke
frames whenever Σ is a set of Sahlqvist, Sahlqvist–van Benthem and/or monadic inductive
L-formulae.

Adding nominals

From [GPT87] it is know that all extensions of Kn with pure Ln-formulae are strongly com-
plete (theorem 0.2.2). In [tCMV05, tC05b] it is proved that all extensions of Kn with Sahlqvist
axioms from the basic language L are complete. It is also shown in [tCMV05, tC05b] that
these two results cannot be combined — the logic obtained by adding the axiom ϕ = (32p→
23p) ∧ (3(i ∧ 3j) → 2(3j → i)) to Kn is incomplete. As far as the author is aware, this
sums up everything concerning general completeness results for syntactically specified classes
of Ln-formulae that is available in the literature.

In the rest of this section we define a new class of Ln-formulae on which SQEMAsd succeeds.
It then follows that the members of this class axiomatize complete extensions of Kn. It will
be seen that this class subsumes and extends the known results.

Definition 5.2.25 An Ln-formula ϕ in negation normal form is a nominalized Sahlqvist–van
Benthem formula if it satisfies the following conditions:

(NSB1) For every occurring propositional variable p, either

(NSB1.1) there is no positive occurrence of p in a subformula ψ ∧χ or 2ψ which is in
the scope of a 3, or

(NSB1.2) there is no negative occurrence of p in a subformula ψ ∧ χ or 2ψ which is
in the scope of a 3.

(NSB2) No negative nominal occurrence in ϕ is in the scope of a 3.

(NSB3) Every two negative occurrence of a given nominal j, are in a subformula of the form
ψ ∧ χ, such that one occurrence is in ψ and the other is in χ.

In other words, a nominalized Sahlqvist–van Benthem formula is a formula in negation nor-
mal form which satisfies all constraints on propositional variables imposed on Sahlqvist–van
Benthem formulae, and in which positive nominals are allowed to occur arbitrarily, while neg-
ative nominals may not occur in the scope of diamonds and every two have to be separated
by a conjunction.

132 Chapter 5. Hybrid Languages

Example 5.2.26 The formula ϕ = (32p→ 23p)∧(3(i∧3j) → 2(3j → i)) from [tCMV05,
tC05b] becomes

(23¬p ∨ 23p) ∧ (2(¬i ∨ 2¬j) ∨ 2(2¬j ∨ i)),

after being rewritten in negation normal form. Although its satisfies conditions (NSB1) and
(NSB2), this formula fails to be a nominalized Sahlqvist–van Benthem formula since the two
negative occurrences of j are not separated by a conjunction.

The formula 3(j ∧ 2p) → (3k ∨ 2(j ∨ 3p)) from example 5.2.18 becomes

2(¬j ∨ 3¬p) ∨ (3k ∨ 2(j ∨ 3p))

when rewritten in negation normal form. This is a nominalized Sahlqvist–van Benthem
formula. Note that it contains only one negative nominal occurrence, and that this occurrence
is not in the scope of a diamond.

The irreflexivity axiom, j → ¬3j is not a nominalized Sahlqvist–van Benthem formula,
since in ¬j∨2¬j the two negative occurrences of j are not separated by a conjunction. Recall
that it was shown above that this axiom is not sd-persistent. �

We will show that SQEMAsd succeeds on every nominalized Sahlqvist–van Benthem formula,
and hence that every such formula is sd-persistent. To that purpose we formulate a definition
which can be viewed as a (smoothed out) analogue of the definition of a simple dual Sahlqvist–
van Benthem system (definition 2.6.1).

Definition 5.2.27 Call a system Sys a simple dual nominalized Sahlqvist–van Benthem sys-
tem, or an SDNS for short, if each sequent in Sys has the from j ⇒ ψ, where j is a nominal,
and the following conditions are satisfied:

(SDNS1) In Form(Sys) no nominal has more than one positive occurrence.

(SDNS2) In every consequent ψ of a sequent j ⇒ ψ of Sys, every positive occurrence of a
nominal is at most in the scope of ∧ and 3 (i.e. not in the scope of any ∨, 2, 3

−1 or
2

−1).

(SDNS3) In every consequent ψ of a sequent j ⇒ ψ of Sys,

(SDNS3.1) every positive occurrence of a propositional variable is at most in the scope
of ∧, 3 and 2 (i.e. not in the scope of any ∨, 3

−1 or 2
−1), and

(SDNS3.2) no positive occurrence of a propositional variable is in the scope of a 3

which is in the scope of a 2.

Lemma 5.2.28 Let Sys be a SDNS. Then

1. any propositional variable which has a positive occurrence in Sys, can be eliminated from
Sys by the application of the 3, 2, ∧, and Ackermann-rules, yielding an SDNS Sys′,
and

2. any nominal k which has a positive occurrence in Sys, can be eliminated from Sys by the
application of the 3 and ∧-rules as well as the Ackermann-rule for nominals, yielding
an SDNS Sys′.

5.3. The universal modality and satisfaction operator 133

Proof. The proof of (1) is essentially the same as that of lemma 2.6.2, except that we now also
have to verify that conditions (SDNS1) and (SDNS2) are preserved. For the sake of (SDNS1),
it is sufficient to show that the application of the 3, 2, ∧, and Ackermann-rules does not
increase the number of positive occurrences of a nominal in an SDNS. This is clear, even in
arbitrary systems, for the ∧ and 2-rules, and also for the 3-rule, as the positive nominal
occurrences introduced by it are always new in the system. As far as the Ackermann-rule
is concerned, we note the following: In an SDNS, even after the application of the ∧,2 and
3-rules, all nominal occurrences in antecedents are positive (hence negative in Form(Sys)).
Hence application of the Ackermann-rule introduces no new positive nominal occurrences in
the system. From this fact the preservation of (SDNS2) also follows.

As for (2), since the single positive occurrence of k in Sys is at most in the scope 3 and ∧,
we can apply the 3 and ∧-rules until the only sequent containing k positively is of the form
l ⇒ k, for some nominal l. From this system k is then eliminated by an application of the
Ackermann-rule for nominals. That the application of the 3 and ∧-rules preserves (SDNS1),
(SDNS2) and (SDNS3) follows as in the case for (1). Lastly it is clear that these properties
are also preserved under the application of the Ackermann-rule for nominals. qed

Theorem 5.2.29 SQEMAsd succeeds on all nominalized Sahlqvist–van Benthem formulae.

Proof. Let ϕ ∈ Ln be a nominalized Sahlqvist–van Benthem formula, and let ϕ1 be the
formula obtained by rewriting ¬ϕ in negation normal form. In ϕ1, no positive occurrence of a
nominal is in the scope of a 2, and moreover every two positive occurrence of a given nominal
j, are in a subformula of the form ψ ∨ χ, such that one occurrence is in ψ and the other is
in χ. The formulae retains these properties also after the exhaustive distribution of 3 and
∧ over ∨. The resulting formula (i.e. the formula resulting from the preprocessing phase) is
of the form

∨n
i=1 ϕi, where in each ϕi each disjunction occurrence is in the scope of 2, and

hence every nominal has at most one positive occurrence in any ϕi.
Now, for each ϕi, the system ‖i ⇒ ϕi, if not already an SDNS, may be transformed into

an SDNS by applying the polarity switching rule. The theorem now follows by induction on
the number of occurring propositional variables and input nominals with positive occurrences,
using lemma 5.2.28. qed

Corollary 5.2.30 All nominalized Sahlqvist–van Benthem formulae are sd-persistent.

Corollary 5.2.31 For any set Σ of nominalized Sahlqvist–van Benthem formulae, the logic
Kn ⊕ Σ is strongly sound and complete with respect to its class of Kripke frames.

In subsection 5.3.3 we will introduce a more general class, which generalizes the monadic
inductive formulae (definition 1.3.16) to Ln,u, and hence also to Ln.

5.3 The universal modality and satisfaction operator

Hybrid languages usually include, apart from nominals, either the universal modality or
satisfaction operators (@i) to empower the nominals. In this section we consider the hybrid
language Ln,u, which extends the basic modal language L with nominals and the universal

134 Chapter 5. Hybrid Languages

modality [u]. The universal modality is systematically studied in [GP92]. As already noted,
the @-operator can be encoded with the universal modality in two ways, viz. @jϕ ≡ [u][j → ϕ]
or @jϕ ≡ 〈u〉[j ∧ ϕ].

In this section we wish to extend the algorithmic correspondence and completeness results
of the previous section to Ln,u. This will done by adding an additional preprocessing phase
to SQEMAsd, in which Ln,u-formulae are ‘flattened’, by bringing all universal diamonds and
boxes out under the scope of any other modal operators. The so extended algorithm will then
enable us to obtain a new class of elementary and sd-persistent Ln,u-formulae.

5.3.1 The language Ln,u

Before introducing extensions of the algorithmic correspondence and completeness results of
the previous, we consider a normal form for the language Ln,u and make some observations
regarding correspondence result for this language.

We will refer to 〈u〉 and [u] as universal modal operators or simply universal modalities,
while 〈u〉 will be called the universal diamond and [u] will be called the universal box. To
distinguish them from the universal modal operators, 3 and 2 will sometimes be referred to
as basic modal operators or basic modalities.

In [GP92] it is shown that every Lu-formula is equivalent to formulae in certain conjunctive
and disjunctive normal forms, in which no 〈u〉 or [u] occurs in the scope of any other modality,
universal or otherwise. This latter property is of importance for our purposes. If ϕ,ψ ∈ Ln,u,
and (u) ∈ {〈u〉, [u]}, then the following equivalences are easy to verify:

(UM1) 2(ϕ ∧ (u)ψ) ≡sem 2ϕ ∧ (2⊥ ∨ (u)ψ).

(UM2) 2(ϕ ∨ (u)ψ) ≡sem 2ϕ ∨ (u)ψ.

(UM3) 3(ϕ ∨ (u)ψ) ≡sem 3ϕ ∨ (3⊤ ∧ (u)ψ).

(UM4) 3(ϕ ∧ (u)ψ) ≡sem 3ϕ ∧ (u)ψ.

Also, for any (u)1, (u)2 ∈ {〈u〉, [u]}, we have

(UM5) (u)1(ϕ ∧ (u)2ψ) ≡sem (u)1ϕ ∧ (u)2ψ, and

(UM6) (u)1(ϕ ∨ (u)2ψ) ≡sem (u)1ϕ ∨ (u)2ψ.

A special cases of both (UM1) and (UM2) is 2(u)ψ ≡sem 2⊥ ∨ (u)ψ. Similarly, as a special
case of both (UM3) and (UM4) we have 3(u)ψ ≡sem 3⊤ ∧ (u)ψ.

Definition 5.3.1 A Ln,u-formula ϕ is a flattened formula if it contains no occurrence of
universal modal operator which is in the scope of another modal operator, whether basic or
universal.

We can flatten any Ln,u-formula by the exhaustive application of the equivalences (UM1) to
(UM6). We will refer to this procedure as flattening.

5.3. The universal modality and satisfaction operator 135

Proposition 5.3.2 ([GP92]) Any Ln,u-formula is semantically equivalent to a flattened for-
mula.

It [vB06], van Benthem considers so called scattered versions of modal formulae, which are
obtained by assigning different indices for accessibility relations to occurrences of modal
operators in a formula. It is pointed out that the formulae in the well known syntactic
classes (e.g. Sahlqvist formulae) maintain their first-order definability under (partial) scatter-
ing. It is also shown that first-order definability may be lost under scattering, particularly,
(2p → 22p) ∧ (23 → 32p) is first order-definable ([vB76]) but the partially scattered ver-
sion (21p → 2121p) ∧ (2232 → 3222p) is not. Now these remarks on scattering of course
remain true if, rather than inserting indices, we replace some occurrences of 3 and 2 with 〈u〉
and [u], respectively. The next example illustrates that first-order definability and persistence
may sometimes, but certainly not always, be gained by the replacement of some basic modal
operators with universal ones.

Example 5.3.3 Consider the formula 32¬p∨32p, which is the McKinsey formula rewritten
in negation normal form, which we know to be neither first-order definable ([vB83]) nor
canonical ([Gol91]). Replacing the basic boxes with universal ones, we obtain 3[u]¬p∨3[u]p.
This formula is true at a point w in a Kripke frame F if and only if F |= Rxx ∧ ∀y∀z(y =
z)[x := w], i.e. it is true only in the Kripke frame that consist of a single, reflexive point.
Since this is also the case for differentiated general frames, it follows that this formula is also
(locally) d-persistent.

What happens when we replace the diamonds rather than the boxes, and obtain the
formula 〈u〉2¬p ∨ 〈u〉2p? This formula is not globally (and hence not locally) first-order
definable. To see this, we use a method similar to that used by van Benthem in [vB83] to
show that the McKinsey axiom is not first-order definable. Consider the Kripke frame F

containing, for each i ∈ ω, a pair of points v0
i and v1

i such that Rv0
i v

0
i , Rv

1
i v

1
i , Rv

0
i v

1
i and

Rv1
i v

0
i . Further, for each function ρ : ω → {0, 1} there is an irreflexive point zρ such that, for

each i ∈ ω, Rzρv
ρ(i)
i . Now every point in F validates 〈u〉2¬p ∨ 〈u〉2p.

Note that F is uncountable. Now, by the downwards Skolem-Löwenheim theorem, there
exists a countable, elementary substructure F′ of F containing the subframe generated by the
points in {vji | i ∈ ω, j = 0, 1}. Since there are uncountably many functions ρ : ω{0, 1},
there is a function ρ0 : ω{0, 1} such that zρ0 6∈ F′. Call two functions ρ1, ρ2 : ω → {0, 1}
complementary if ρ1(i) 6= ρ2(i) for all i ∈ ω. Complements are unique. We also call points
zρ1 and zρ2 complementary if ρ1 and ρ2 are complementary. We can express the existence
of a point complimentary to a point z in the frame using the first-order formula ∃y(¬Ryy ∧
∀u(Ryu ↔ ¬Rzu)). Hence, since F′ is an elementary substructure of F, it follows that F′ is
closed under complementary points, i.e. zρ1 ∈ F′ if and only if zρ2 ∈ F′ where ρ1 and ρ2 are
complementary. So, neither zρ0 nor its complementary point are in F. Evaluating p to the

subset {v
ρ0(i)
i | i ∈ ω} refutes 〈u〉2¬p ∨ 〈u〉2p of F, as under this valuation every point has

both a p and a non-p successor.

This example may also be construed as showing that we may not close the set of elementary
Ln,u-formulae under 〈u〉, just like the set of elementary L-formulae is not closed under 3 (see
[vB83]). �

136 Chapter 5. Hybrid Languages

5.3.2 Extending SQEMA for the universal modality

How shall we handle the universal modality algorithmically? Of course, there is no impedi-
ment to feeding SQEMAsd formulae from Ln,u as input, as 〈u〉 and [u] are, after all, a diamond
and a box satisfying everything satisfied by 3 and 2, respectively. In other words all rules
of SQEMAsd may be applied to Ln,u and the algorithm will remain sound. By theorem 5.2.3
the accompanying completeness-via-persistence result will even hold.

But, of course, merely treating 〈u〉 and [u] like ordinary modalities ignores the special
characteristics of a modality which must always be interpreted using the universal relation.
Indeed, as we saw in example 5.3.3, the formula 3[u]¬p ∨ 3[u]p is first-order definable. Yet
SQEMAsd will fail on it, since the algorithm will tret it exactly like the McKinsey formula.
We would like our algorithm to at least be able to reduce such formulae.

We propose to incorporate all special treatment of the universal modality in an additional
preprocessing phase, which will convert the (unnegated) input formula into negation normal
form and then flatten it using (UM1) to (UM6). This formula, is then fed further through the
algorithm, which need not be changed in any way, as usual. Universal diamonds and boxes
are further treated like basic diamonds and boxes. Formally:

Definition 5.3.4 Let SQEMAu be the algorithm obtained by prefixing SQEMAsd with a
flattening procedure, which applies equivalences (UM1) to (UM6) to flatten Ln,u input for-
mulae after conversion into negation normal form. The resulting formulae are then passed to
SQEMAsd where 〈u〉 and [u] are treated like ordinary diamonds and boxes.

One might wish to have an extension of SQEMA which handles input formulae from Lu,
i.e., the basic modal language enriched with the universal modality but without nominals.
However, notice that SQEMA and SQEMAsd are equivalent as far as L-input formulae are
concerned. Hence whether we prefix SQEMA or SQEMAsd with a flattening procedure for the
universal modality, the resulting algorithm will treat Lu-formulae in the same way.

Example 5.3.5 Consider the formula 3[u]¬p ∨ 3[u]p form example 5.3.3. SQEMAu first
flattens this formula to become (3⊤ ∧ [u]¬p) ∨ (3⊤ ∧ [u]p). Next this is given to SQEMAsd

as input.

Phase 1: Negation yields (2⊥ ∨ 〈u〉p) ∧ (2⊥ ∨ 〈u〉¬p), which after distribution becomes

(2⊥ ∧ 2⊥) ∨ (2⊥ ∧ 〈u〉¬p) ∨ (〈u〉p ∧ 2⊥) ∨ (〈u〉p ∧ 〈u〉¬p).

Phase 2: There are four initial systems, namely ‖i ⇒ (2⊥ ∧ 2⊥), ‖i ⇒ (2⊥ ∧ 〈u〉¬p),
‖i ⇒ (〈u〉p ∧ 2⊥) and i ⇒ (〈u〉p ∧ 〈u〉¬p). The first system contains no propositional
variables, while the second and third are negative and positive in p, and hence p is
eliminated by the substitution of ⊥ and ⊤, respectively. In the case of the fourth
system the ∧-rule is applied to obtain

∥

∥

∥

∥

i ⇒ 〈u〉p
i ⇒ 〈u〉¬p

,

5.3. The universal modality and satisfaction operator 137

which the 3-rule transforms into
∥

∥

∥

∥

∥

∥

i ⇒ 〈u〉j
j ⇒ p
i ⇒ 〈u〉¬p

.

The Ackermann-rule is now applicable yielding the pure system

∥

∥

∥

∥

i ⇒ 〈u〉j
i ⇒ 〈u〉¬j

.

We obtain the formula

(¬i∨ (2⊥∧2⊥))∨ (¬i∨ (2⊥∧〈u〉⊤))∨ (¬i∨ (〈u〉⊤∧2⊥))∨ ((¬i∨〈u〉j)∧ (¬i∨〈u〉¬j)).

as pure(ϕ). Negating and simplifying somewhat yields

i ∧ (3⊤ ∧ ([u]¬j ∨ [u]j))

which locally defines the property |= Rxx ∧ ∀y∀z(y = z), as expected.

�

SQEMAu is clearly sound with respect to Kripke frames. Indeed, this follows from the sound-
ness of SQEMAsd and the validity of the equivalences (UM1) to (UM6). Moreover SQEMAu

is sound with respect to strongly descriptive frames. For, notice that the presence of the
universal modality in the language makes no additional demands on the algebras of admis-
sible sets of general frames over which this language is interpreted. Indeed, in any model
M = (W,R, V), the extension of any formula of the form 〈u〉ϕ or [u]ϕ is either W or ∅. Hence
both [u] and 〈u〉 are both open and closed operators on strongly descriptive frames. Using
this fact, it is not difficult to verify (we leave this to the patient reader) that theorem 5.2.20
can be generalized to SQEMAu. Hence we have

Theorem 5.3.6 Every Ln,u-formula on which SQEMAu succeeds is locally elementary and
globally sd-persistent.

Corollary 5.3.7 The logic Kn,u⊕Σ is strongly sound and complete with respect to its Kripke
frames whenever SQEMAu succeeds on all members of Σ.

In closing this subsection, we remark that it is possible to add some auxiliary rules to SQEMAsd

which are tailored for the universal modality. For example, axiomatizations of logics with the
universal modality usually contain the so-called inclusion axiom, [u]p → 2p. Indeed, it is
clear that [u]p ∧ 2p ≡sem [u]p. This latter equivalence can be useful for the simplification of
formulae, and such equivalences are in fact employed in an extension2 of the implementation
of SQEMA by Dimiter Georgiev ([Geo06]).

2Not yet available online at the time of writing.

138 Chapter 5. Hybrid Languages

5.3.3 Two syntactic classes

In this subsection we use SQEMAu to prove the elementarity and sd-persistence of extended
classes of Sahlqvist–van Benthem and inductive formulae.

The universalized Sahlqvist–van Benthem formulae

Extend the definition of the nominalized Sahlqvist–van Benthem formulae as follows:

Definition 5.3.8 An Ln,u-formula is a universalized Sahlqvist–van Benthem formula if it is
in negation normal form and satisfies the conditions:

(USB1) For every occurring propositional variable p, either

(USB1.1) there is no positive occurrence of p in a subformula ψ ∧χ or 2ψ which is in
the scope of a 3 or 〈u〉, or

(USB1.2) there is no negative occurrence of p in a subformula ψ ∧ χ or 2ψ which is
in the scope of a 3 or 〈u〉.

(USB2) No negative nominal occurrence in ϕ is in the scope of a 3 or 〈u〉.

(USB3) Every two negative occurrences of a given nominal j are in a subformula of the form
ψ ∧ χ such that one occurrence is in ψ and the other is in χ.

Note that the definition imposes the same constraints on 〈u〉 as on 3, but that it makes no
restrictions whatsoever on the occurrences of [u].

Example 5.3.9 The formula 3[u]¬p∨3[u]p from examples 5.3.3 and 5.3.5 is a universalized
Sahlqvist–van Benthem formula. The formula 〈u〉2¬p∨〈u〉2p, also from example 5.3.3, is not
a universalized Sahlqvist–van Benthem formula, as it violates condition (USB1). Similarly,
the formula 〈u〉2¬j ∨ 〈u〉2j violates condition (USB2). �

Theorem 5.3.10 SQEMAu succeeds on every universalized Sahlqvist–van Benthem formula.

Proof. (Sketch) The class of universalized Sahlqvist–van Benthem formulae is closed under
the application (from left to right) of the equivalences (UM1) to (UM6) used to flatten for-
mulae. In flattened universalized Sahlqvist–van Benthem formulae all constraints imposed by
definition 5.3.8 on occurrences of 2 are also satisfied by all occurrences of [u]. Hence these
formulae may be seen as bi-modal nominalized Sahlqvist–van Benthem formulae (definition
5.2.25), for which the proofs of lemma 5.2.28 and theorem 5.2.29 also go through. qed

Corollary 5.3.11 All universalized Sahlqvist–van Benthem formulae are locally elementary
and globally sd-persistent, and hence axiomatize extensions of Kn,u which are strongly sound
and complete with respect to elementary classes of Kripke frames.

5.3. The universal modality and satisfaction operator 139

The universalized inductive formulae

We now introduce a more general class, subsuming the universalized Sahlqvist–van Benthem-
formulae, by generalizing the monadic inductive formulae (definition 1.3.16) to Ln,u. In
[GV01], Goranko and Vakarelov extend the definition of the inductive formulae to Ln, essen-
tially by allowing arbitrary occurrences of nominals. Although the members of this class are
(locally) elementary, the definition is too liberal to ensure a suitable persistence property. Our
aim is to obtain a class of elementary and sd-persistent formulae, and we will thus have to be
more circumspect in the occurrences of nominals which we allow. As regards the universal
modality, one could opt to treat 〈u〉 and [u] like 3 and 2, respectively. However, taking the
special properties of the universal modality into account, we are able to alow some additional
occurrences which do not correspond to occurrences of 3 and 2.

Recall that proposition variables and nominals together are referred to as atoms. We say
an Ln-formula is absolutely positive (absolutely negative) if all occurrences of atoms in it are
positive (negative).

Definition 5.3.12 Let ♯ be a symbol not belonging to Ln,u. Then a universalized box-form
of ♯ in Ln,u is defined recursively as follows:

1. ♯ is a universalized box-form of ♯;

2. If B(♯) is a universalized box-form of ♯, then 2B(♯), [u]B(♯) and 〈u〉B(♯) are universalized
box-forms of ♯;

3. If B(♯) is a universalized box-form of ♯ and A is an absolutely positive Ln,u-formula,
then A→ B(♯) is a universalized box-form of ♯.

Definition 5.3.13 By substituting a propositional variable p for ♯ in a universalized box-
form B(♯) we obtain a universalized box-formula of p, namely B(p). The last occurrence of
the propositional variable p is the head of B(p). Every occurrence of a propositional variable
in a universalized box formula other than the head is called inessential there.

Definition 5.3.14 A universalized pre-regular formula is an Ln,u-formula built up from ab-
solutely positive formulae, negated nominals and negated universalized box-formulae by ap-
plying conjunctions, disjunctions, 2’s and [u]’s, in such a way that no nominal has more than
one negative occurrence.

Definition 5.3.15 The dependency digraph of a set B = {B1(p1), . . . ,Bn(pn)} of universal-
ized box-formulae is a digraph GB = 〈V,E〉 where V = {p1, . . . , pn} is the set of heads in B,
and the edge set E is such that piEpj iff pi occurs inessentially in a universalized box-formula
from B with a head pj . A digraph is acyclic if it does not contain oriented cycles or loops.
We will also talk about the dependency digraph of a formula, when we mean the dependency
digraph of the set of universalized box-formulae that occur as subformulae of that formula.

Definition 5.3.16 A universalized pre-inductive formula (UPIF) is a universalized pre-regular
formula with an acyclic dependency digraph. A universalized inductive formula (UIF) is any
formula built up from UPIF’s by applying conjunctions, 2’s and [u]’s.

140 Chapter 5. Hybrid Languages

Example 5.3.17 The formula

¬p ∨ ¬�[u](3(p ∧ 3j) → 〈u〉q) ∨ [u](3��(q ∨ j) ∨ [u]¬j),

is a universalized inductive formula, while the formulae

¬p ∨ ¬�[u](3(p ∧ 3j) → 〈u〉q) ∨ [u](3��(q ∨ j) ∨ 〈u〉¬j),

and

¬p ∨ ¬j ∨ ¬�(3(p ∧ 3j) → �q) ∨ 3��(q ∨ j) ∨ [u]¬j,

are not. Indeed, it is impossible to construct the latter two formulae in accordance with
definition 5.3.16, as the first contains a negative occurrence of j in the scope of a 〈u〉, while
the second contains two occurrences of ¬j not separated by any conjunction. �

Proposition 5.3.18 Every universalized Sahlqvist–van Benthem-formula is locally equivalent
to a universalized inductive formula.

Proof. Let ϕ be a universalized Sahlqvist–van Benthem-formula, and let ϕ1 be obtained from
ϕ by switching the polarity of propositional variables in such a way that condition (USB1.2)
holds with respect to every occurring propositional variable. Let ϕ2 be the formula obtained
from ϕ1 by distributing boxes and disjunctions over conjunctions not in the scope of any 3

or 〈u〉, as much as possible. Hence ϕ2 is of the form
∧

ψi where in each ψi is a universalized
Sahlqvist–van Benthem-formula, such that, in it:

1. each nominal has at most one negative occurrence,

2. no negative occurrence of a propositional variable is in the scope of a 2 or ∧ which is
in the scope of a 3 or 〈u〉.

In each conjunct ψi of ϕ2, distribute 3’s and 〈u〉’s over disjunctions as much as possible to
obtain ϕ′

i. Call a negated propositional variable preceded by finitely (possibly 0) many [u]’s,
3’s and/or 〈u〉’s a prefixed negative propositional variable. Now, each ψ′

i is built up from
absolutely positive formulae, prefixed negative propositional variables, and negated nominals
using ∨, 2 and [u]. But, by pulling out the negation in a diamonded negative propositional
variable ◦1 · · · ◦n ¬p, with ◦1, . . . , ◦n ∈ {3, 〈u〉, [u]}, we obtain a formula ¬ ◦′1 · · · ◦′n p, with
◦′1, . . . , ◦

′
n ∈ {2, 〈u〉, [u]}, which is a negated universalized box formula of p. Hence every ψ′

i

is a universalized pre-inductive formula with empty dependency digraph. We conclude that
ϕ is locally equivalent to a universalized inductive formula. qed

Now we will show that SQEMAu succeeds on all universalized inductive formulae, thus prov-
ing the elementarity and sd-persistence of these formulae. To this aim we will exploit the
resemblance of these formulae to monadic inductive formulae (from L). The feature which
distinguishes the universalized inductive formulae most sharply from the inductive formu-
lae, is probably the use of 〈u〉 in the construction of box-formulae. The following definition
removes this feature:

5.3. The universal modality and satisfaction operator 141

Definition 5.3.19 We shall call a box form constructed without using the clause for 〈u〉
in definition 5.3.12 a semi-universalized box form. By substituting a propositional variable
p for ♯ in a semi-universalized box form B(♯) we obtain a semi-universalized box formula
B(p) of p. The class of semi-universalized pre-regular formulae is obtained by replacing
‘universalized box formulae’ with ‘semi-universalized box formulae’ in definition 5.3.14. The
semi-universalized pre-inductive (SUPIF) and semi-universalized inductive formulae (SUIF)
are defined similarly.

Example 5.3.20 2((p ∧ q ∧ 〈u〉j) → [u](j → p)) is a semi-universalized box formula, but
2((p ∧ q ∧ 〈u〉j) → 〈u〉(j → p)) and 2〈u〉((p ∧ q ∧ 〈u〉j) → [u](j → p)) are not, as both contain
occurrences of 〈u〉 which are not within absolutely positive subformulae. �

Remark 5.3.21 By a trivial (universalized or semi-universalized) box formula we mean a
(universalized or semi-universalized) box formula obtained as an instance of the basic box
form ♯. Note that, if we were to allow nominals as the heads of box-formulae, then the
negative nominal occurrences in a universalized inductive formula could be regarded as the
negations of trivial box formulae with those nominals as heads. Thus, a semi-universalized
pre-inductive formula can be regarded as a inductive formula (in the sense of definition 1.3.16)
in which

1. 〈u〉 and [u] are also allowed to occur, and are treated in the same way as 3 and 2,
respectively;

2. nominals are also allowed to occur, and are treated in the same way as propositional
variables, except for the fact that

(a) the only box-formulae that may have nominals as heads are trivial box formulae,
and

(b) for every nominal j, at most one occurring box formula may have j as head.

Theorem 5.3.22 SQEMAu succeeds on all universalized inductive formulae.

Proof.(Sketch) We will use the following claim:

Claim 1 Applying the flattening rules (UM1) to (UM6) to a UIF rewritten in negation
normal form, yields the negation normal form of a SUIF.

Proof of Claim It sufficed to consider the effect of the rules (UM1) to (UM6) on negated
universalized box-formulae. Note that the negation of a universalized box formula, rewritten
in negation normal form, has the form ◦1(A1∧◦2(A2∧· · · ◦n(An∧¬p) · · ·)) where each Ai is an
absolutely positive Ln,u-formula, and each ◦i is a finite sequence of elements from {3, [u], 〈u〉}.
Exhaustive application of the rules (UM1) to (UM6) transforms this formula into one of the
form

∧

ψi, where each ψi is either

1. an absolutely positive Ln,u-formula,

142 Chapter 5. Hybrid Languages

2. a formula of the form ◦031(B1 ∧ 32(B2 ∧ · · ·3m(Bm ∧ ¬p) · · ·)), or

3. a formula of the form 31(B1 ∧ 32(B2 ∧ · · ·3m(Bm ∧ ¬p) · · ·))

where each Bi is an absolutely positive Ln,u-formula, ◦0 ∈ {〈u〉, [u]} and each 3i is finite
sequence of 3’s. This formula is of the desired shape. ◭

It follows from claim 1, that the flattening phase of SQEMAu transforms a universalized
inductive formula ϕ into (the negation normal forms of) a SUIF. Hence, the preprocessing
phase (by negating and distributing ∧, 3 and 〈u〉 over ∨) transforms this formula into one of
the form

∨

ϕi where each ϕi is the negation normal form of a negated SUPIF.
Now, by remark 5.3.21, a SUPIF can be regarded essentially as an inductive formula.

Hence, if we extend the dependency digraph to include nominals as vertices, the proofs of
lemma 2.6.7 and theorem 2.6.8 can now be readily generalized, by noting the following: Since
the only ‘box formulae’ with nominals as heads are trivial, all nominals will be isolated points
in the dependency digraph, and may hence be inserted at the beginning of some linear order
extending the order induced by this digraph. Moreover, the positive nominal occurrences
corresponding to these heads are unique in each initial system (corresponding to a SUPIF),
and occur at most in the scope of 3, 〈u〉 and ∧. It follows that these occurrences can be
eliminated by the application of the ∧ and 3-rules as well as the Ackermann-rule for nominals.
Propositional variables are next eliminated as in the proof of lemma 2.6.7. qed

5.3.4 The satisfaction operator

As we have already remarked, every Ln,@-formula can be translated into a semantically equiv-
alent Ln,u formula. Via this translation we can handle any Ln,@-input formula with SQEMAu.
Accordingly we will not introduce a version SQEMA specifically for Ln,@, but confine ourselves
to some remarks on the use of SQEMAu for finding first-order correspondents for Ln,@-formulae
and proving their sd-persistence. Recall that, by theorem 5.2.3, we may deduce the complete-
ness of logics axiomatized with sd-persistent formulae also in the case of Ln,@-formulae.

Since we can translate @jϕ either as [u](j → ϕ) or as 〈u〉(j ∧ ϕ), the question arises — is
one form preferable to the other when our aim is to feed the result to SQEMAu? Would one
form be more likely to lead to a successful execution? The answer is not clear cut. If we regard
the universalized Sahlqvist–van Benthem formulae (definition 5.3.8) as typical of the formulae
on which SQEMAu succeeds, we see that we are presented with two competing constraints.
Translating @jϕ as [u](j → ϕ) introduces a negative nominal occurrence. These occurrences
are limited by (USB2) and (USB3). On the other hand, translating @jϕ as 〈u〉(j ∧ ϕ) places
ϕ in the scope of a ∧ and a 〈u〉 — a combination which could very likely cause the resulting
formula to violate condition (USB1). So no blanket policy can be formulated here.

Example 5.3.23 Consider the formula @j3k∨@jk∨@k3j. This is a weaker (non-exclusive)
version of trichotomy which is not L-definable. Translating this formula as [u](j → 3k) ∨
[u](j → k) ∨ [u](k → 3j), and feeding it to SQEMAu yields an in initial system

∥

∥

∥

∥

∥

∥

i ⇒ 〈u〉(j ∧ 2¬k)
i ⇒ 〈u〉(j ∧ ¬k)
i ⇒ 〈u〉(k ∧ 2¬j)

.

5.3. The universal modality and satisfaction operator 143

This system contains two positive occurrences of the input nominal j. Hence SQEMAu will
fail to eliminate this nominal. Had we translated the original formula as 〈u〉(j∧3k)∨ 〈u〉(j∧
k) ∨ 〈u〉(k ∧ 3j), this would have yielded an initial system

∥

∥

∥

∥

∥

∥

i ⇒ [u](¬j ∨ 2¬k)
i ⇒ [u](¬j ∨ ¬k)
i ⇒ [u](¬k ∨ 2¬j)

,

containing no propositional variables or positive occurrences of input nominals. Hence there
is noting for SQEMAu to do in this case, and the algorithm succeeds trivially. We can also
conclude that @j3k ∨ @jk ∨ @k3j is sd-persistent. �

Chapter 6

Semantic Extensions of SQEMA

Glancing over the proof of Ackermann’s Lemma (lemma 2.1.4), one notices than something
somewhat stronger is actually being proven. To be precise, instead of the negativity of the
formula B w.r.t. the propositional variable p, the weaker, derivative property of B’s downward
monotonicity is actually used. Hence we immediately have the following, stronger result.

Lemma 6.0.1 Let A,B(p) be Ln
r(τ)-formulae such that the propositional variable p does not

occur in A and B(p) is downwards monotone in p. Then for any model M, M B(A) iff
M′ (A→ p)∧B(p) for some model M′ which may only differ from M on the valuation of
p.

This immediately suggests a stronger version of the Ackermann rule, viz. one that requires
monotonicity rather than negativity in the propositional variable under consideration. But
can we still effectively determine the applicability of such a rule? The answer is yes, for we
have:

Lemma 6.0.2 An Ln
r(τ)-formula ϕ(p) is downwards monotone in p iff

 ϕ(p) → ϕ(p ∧ q)

where q is any variable not occurring in ϕ(p).

Hence the question of the monotonicity of an Lrn-formula in a propositional variable can be
effectively reduced to the question of the validity of a related Lrn-formula, a problem which is
decidable and EXPTIME-complete (see [ABM00]). (By the way, note that testing validity is
effectively reducible to testing monotonicity: ϕ iff q → ϕ is upwards monotone in q, where
q is a variable not occurring in ϕ.)

In this chapter we explore some repercussions of this simple insight. In particular we
develop ‘semantic’ versions of SQEMA. The word semantic is intended to be suggestive
of the fact that we have exchanged the syntactic property of negative/positive polarity for
its semantic correlate — monotonicity. Several results relating polarity monotonicity and
polarity in (fragments of) the languages we are interested in will be proven further. These are
so called ‘Lyndon-type’ theorems, in honour of Lyndon’s famous theorem, proved in [Lyn59b],

145

146 Chapter 6. Semantic Extensions of SQEMA

stating that a first-order formula is preserved under surjective homomorphisms if and only if
it is equivalent to a positive formula. Lyndon interpolation theorems ([Lyn59a]) are closely
related.

6.1 Two semantic extensions of SQEMA

When basing a transformation rule on lemma 6.0.1 we are faced with two choices, namely
whether to substitute A directly for p in B(p), or first to replace B with a ‘syntactically
correct’ equivalent, viz. an equivalent which is negative in p and syntactically open. The first
option is sometimes more efficient, but may cause the algorithm to fail later on. Moreover, it
is not clear whether the formulae reducible by the algorithm when this option is chosen are
always d-persistent. The second option, although computationally less efficient, allows us to
prove the desired d-persistence result. We introduce two extensions of SQEMA, corresponding
to these two options. Both versions of the algorithm are illustrated with some examples.

6.1.1 An extension without replacement

The most straightforward extension of the SQEMA-algorithm which takes advantage of this
fact of the decidability of monotonicity, simply replaces the Ackermann rule with the follow-
ing ‘semantic’ version. We will refer to this rule as the Semantic Ackermann-rule without
replacement.

The system

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

A1 ⇒ p,
...
An ⇒ p,
B1(p),
...
Bm(p),

is replaced by

∥

∥

∥

∥

∥

∥

∥

B1((A1 ∨ . . . ∨An)/p),
...
Bm((A1 ∨ . . . ∨An)/p).

where:

1. p does not occur in A1, . . . , An;

2. Form(B1) ∧ · · ·Form(∧Bm) is downwards monotone in p.

Two comments are in order:

1. Notice the requirement that the conjunction B1 ∧ · · · ∧Bm, rather than the individual
sequents be downwards monotone. Since monotonicity as a property is generally not
preserved under taking subformulae, this ensures a wider applicability of the rule.

2. We also note that the sequents A1 ⇒ p, . . . , An ⇒ p still have to have the right syntactic
shape, so the rule in fact mixes syntactic and sematic requirements in its conditions of
applicability.

6.1. Two semantic extensions of SQEMA 147

The version of SQEMA obtained by replacing the ordinary Ackermann-rule with the semantic
Ackermann-rule without replacement will be referred to as SSQEMA (for Semantic SQEMA).
We illustrate SSQEMA with some examples:

Example 6.1.1 Consider the formula ϕ = ¬(2(23p ∨ 33¬p ∨ q) ∧ 2p ∧ 23¬q). As the
reader can check, SQEMA will fail on this formula. Applying the ∧-rule to the resulting initial
system we obtain:

∥

∥

∥

∥

∥

∥

i ⇒ 2(23p ∨ 33¬p ∨ q)
i ⇒ 2p
i ⇒ 23¬q

.

Note that this system, although it can be solved for q, cannot be solved for p, since neither the
positive nor the negative occurrence of p in the first sequent can be isolated by the application
of transformation rules. However, the first sequent is downwards monotone in p. Indeed, the
formula 23p∨33¬p is easily seen to be semantically equivalent to 23⊤∨33¬p. Hence, if
we apply the 2-rule to obtain the system

∥

∥

∥

∥

∥

∥

i ⇒ 2(23p ∨ 33¬p ∨ q)
3

−1i ⇒ p
i ⇒ 23¬q

,

we can apply the semantic Ackermann-rule to eliminate p:
∥

∥

∥

∥

i ⇒ 2(233
−1i ∨ 332

−1¬i ∨ q)
i ⇒ 23¬q

.

Notice that the consequent of the first sequent is not syntactically open, since it contains both
a positive occurrence of 3

−1 and a positive nominal occurrence. Solving for q we obtain
∥

∥

∥

∥

3
−1i ∧ ¬(233

−1i ∨ 332
−1¬i) ⇒ q

i ⇒ 23¬q
.

Now applying the Ackermann-rule we get

∥

∥ i ⇒ 23(2−1¬i ∨ (233
−1i ∨ 332

−1¬i)) .

In this application of the Ackermann-rule the formula A in the Akcermann-equivalence
(A → p) ∧ B(p) is not syntactically closed. This means that lemma 2.5.21 is not true for
SSQEMA, and hence that we may not appeal directly to proposition 2.5.22 to conclude that
this transformation preserves equivalence on descriptive frames. Of course, by noting the
equivalence 23p ∨ 33¬p ≡sem 23⊤ ∨ 33¬p, one sees that, in this case, A is semantically
equivalent to a syntactically open formula, and hence equivalence on descriptive frames is
indeed preserved. �

Example 6.1.2 In the previous example, although the criteria of syntactic closedness and
openness were violated in the last application of the Ackermann-rule, we were yet able to claim
that, modulo semantic equivalence, these criteria were actually met. Here is an example which
illustrates that this is not always the case.

148 Chapter 6. Semantic Extensions of SQEMA

Consider the input formula ¬(2(2(p ∨ q) ∧ 2¬p) ∧ 2p ∧ 23¬q). As it happens, SQEMA

will succeed on this input formula, but some interesting things happen when SSQEMA is run
on it: Applying the ∧ and 2-rules to the corresponding initial system we obtain

∥

∥

∥

∥

∥

∥

i ⇒ 2(2(p ∨ q) ∧ 2¬p)
3

−1i ⇒ p
i ⇒ 23¬q

.

The first sequent is downwards-monotone in p, as 2(2(p ∨ q) ∧ 2¬p) ≡sem 22(q ∧ ¬p).
Applying the semantic Ackermann-rule yields

∥

∥

∥

∥

i ⇒ 2(2(3−1i ∨ q) ∧ 22
−1¬i)

i ⇒ 23¬q
.

The variable q still remains to be eliminated. Applying the 2, ∧ and left-shift ∨-rules to the
first sequent transforms the system into

∥

∥

∥

∥

∥

∥

3
−1

3
−1i ∧ 2

−1¬i ⇒ q
3

−1i ⇒ 22
−1¬i

i ⇒ 23¬q
.

We may now apply the Ackermann-rule to eliminate q, but notice that 3
−1

3
−1i ∧ 2

−1¬i
is not syntactically closed, nor is it equivalent to a syntactically closed formula (this can
easily be seen by constructing a suitable syntactically closed simulation, as introduced in
section 6.2). So the argument used in example 6.1.1 to show the maintenance of equivalence
on descriptive frames does not work. Of course, had we replaced 2(2(p ∨ q) ∧ 2¬p) with its
equivalent 22(q∧¬p) to begin with, the algorithm would still have succeeded and this problem
would not have arisen. What happens here is that 2(2(p ∨ q) ∧ 2¬p) (after substitution
2(2(3−1i ∨ q) ∧ 22

−1¬i)) gets ‘split up’ by the application of transformation rules into
subformulae which are no longer downwards monotone in p, and which, hence, no longer have
equivalents which are negative in p. �

The above example illustrates the main impediment that we encounter when trying to extend
theorem 2.5.23 to show that all L-formulae on which SSQEMA succeeds are d-persistent.
Indeed, the proof of the latter theorem depends crucially on lemma 2.5.21 stating that the
non-pure antecedents (consequents) of sequents during SQEMA-executions are syntactically
closed (open). This property is lost (even modulo equivalence, as seen above) when we admit
the semantic Ackermann rule.

Question 6.1.3 Are all L-formulae on which SSQEMA succeeds d-persistent?

6.1.2 An extension with replacement

The problems with the syntactic shape of sequents (e.g. not being syntactically closed / open)
encountered in examples 6.1.1 and 6.1.2 suggest a modification of the semantic Ackermann-
rule. Specifically, to circumvent these problems, and obtain a semantic version of SQEMA for

6.1. Two semantic extensions of SQEMA 149

which we could prove d-persistence, we could try and find a syntactically correct equivalent of
the downward-monotone sequents involved in the application of the rule, and substitute with
it before we apply the rule. Accordingly, we will refer to the following rule as the semantic
Ackermann-rule with replacement, and to the version of SQEMA obtained by replacing the
ordinary Ackermann-rule with this rule as SSQEMAr.

The system

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

A1 ⇒ p,
...
An ⇒ p,
B1(p),
...
Bm(p),

is replaced by
∥

∥ B′
1((A1 ∨ . . . ∨An)/p)

where:

1. p does not occur in A1, . . . , An,

2. Form(B1) ∧ · · · ∧ Form(Bm) is downwards monotone in p, and

3. B′
1(p) is a sequent such that

(a) Form(B′
1(p)) ≡sem Form(B1) ∧ · · · ∧ Form(Bm),

(b) Form(B′
1(p)) is negative in p, and

(c) Form(B′
1(p)) is syntactically open.

Once again, a few comments are in order:

1. As in the case of the rule without replacement, the conditions of applicability mix
syntactic and semantic criteria.

2. While a suitable B′(p) always exists, as will be proven subsequently, the rule does not
specify any particular method for obtaining such.

It its clear that SSQEMAr will preserve transformation equivalence (definition 2.4.2). More-
over, a simple induction proves the following analogue of lemma 2.5.21:

Lemma 6.1.4 During the entire (successful or unsuccessful) execution of SSQEMAr on any
L input formula, all antecedents of all non-diamond-link sequents are syntactically closed
formulae, while all consequents of all non-diamond-link sequents are syntactically open.

Hence, by a trivial modification of proposition 2.5.22, SSQEMAr also preserves ad-transformation
equivalence (recall definition 2.5.7). We now have the following theorem:

Theorem 6.1.5 All L-formulae on which SSQEMAr succeeds are locally first-order definable
and locally d-persistent.

Here are two examples illustrating the some aspects of the execution of SSQEMAr.

150 Chapter 6. Semantic Extensions of SQEMA

Example 6.1.6 Consider the input formula ¬(2(23(p∨ q)∨33¬p∨ q)∧2p∧23¬q). The
corresponding initial system, after application of the ∧ and 2-rules, is

∥

∥

∥

∥

∥

∥

i ⇒ 2(2(3p ∨ 3q) ∨ 33¬p ∨ q)
3

−1i ⇒ p
i ⇒ 23¬q

.

The system cannot be solved for q, so we try to eliminate p. The first sequent is downwards
monotone in p, since 2(2(3p ∨ 3q) ∨ 33¬p ∨ q) ≡sem 2(23⊤ ∨ 33¬p ∨ q). Accordingly,
we replace i ⇒ 2(2(3p ∨ 3q) ∨ 33¬p ∨ q) with i ⇒ 2(23⊤ ∨ 33¬p ∨ q), and apply the
Ackermann-rule to obtain the system:

∥

∥

∥

∥

i ⇒ 2(23⊤ ∨ 332
−1¬i ∨ q)

i ⇒ 23¬q
.

Next, solving for q we obtain

∥

∥

∥

∥

3
−1i ∧ ¬(23⊤ ∨ 332

−1¬i) ⇒ q
i ⇒ 23¬q

.

A final application of the Ackermann-rule eliminates p. A few remarks are in order. Firstly, in
each system obtained, each sequent has a syntactically closed antecedent and a syntactically
closed consequent. Secondly, it should be clear that SQEMA will fail on this formula. Thirdly,
suppose we had tried to reduce the input formula without replacement, i.e. with SSQEMA.
Then, after the first application of the Ackermann-rule we would have obtained the system

∥

∥

∥

∥

i ⇒ 2(2(33
−1i ∨ 3q) ∨ 332

−1¬i ∨ q)
i ⇒ 23¬q

.

This system cannot be solved for q. However, note that the initial system is in fact downwards
monotone in q. Hence, if we were to strengthen step Transform.1 to replace all variables in
which the system is upwards (respectively, downwards) with ⊤ (respectively, ⊥) then SSQEMA

would succeed. �

Example 6.1.7 Consider the input formula ¬(2((¬q∨¬p∨3p)∧3¬r)∧2(¬p∨2r)∧2q∧p).
Once again, SQEMA will fail on this input. Let us see if SSQEMAr fares any better. After a
few applications of the ∧-rule the initial system is transformed into

∥

∥

∥

∥

∥

∥

∥

∥

i ⇒ 2((¬q ∨ ¬p ∨ 3p) ∧ 3¬r)
i ⇒ 2(¬p ∨ 2r)
i ⇒ 2q
i ⇒ p

.

(Strictly speaking, conjunction should be distributed over disjunction on the first sequent,
but as this makes no difference to the rest of the execution, we keep the sequent as it is for

6.2. On the Existence of Syntactically Correct Equivalents 151

the sake of compactness of notation.) As the system stands, p cannot be eliminated, but q
and r can. Indeed, solving the system for q and r yields

∥

∥

∥

∥

∥

∥

∥

∥

i ⇒ 2((¬q ∨ ¬p ∨ 3p) ∧ 3¬r)
3

−1(3−1i ∧ ¬¬p) ⇒ r
3

−1i ⇒ q
i ⇒ p

,

which, after two applications of the Ackermann-rule, becomes

∥

∥

∥

∥

i ⇒ 2((2−1¬i ∨ ¬p ∨ 3p) ∧ 32
−1(2−1¬i ∨ ¬p))

i ⇒ p
.

This is where SQEMA would get stuck. However, the sequent i ⇒ 2((2−1¬i ∨ ¬p ∨ 3p) ∧
32

−1(2−1¬i ∨ ¬p)) is downward monotone in p, as the formula (2−1¬i ∨ ¬p ∨ 3p) ∧
32

−1(2−1¬i∨¬p) is semantically equivalent to 32
−1(2−1¬i∨¬p). Applying the Ackermann-

rule with replacement yields

∥

∥ i ⇒ 2(32
−1(2−1¬i ∨ ¬i)) .

Note that, unlike the previous examples, the monotonicity of the formula (2−1¬i∨¬p∨3p)∧
32

−1(2−1¬i ∨ ¬p) essentially involves the fact that 3 and 3
−1 are inverses. �

So the success of SSQEMAr hinges on the availability of some mechanism to obtain suitable,
syntactically open equivalents of given formulae which are negative in specified propositional
variables. In the next section we will prove a Lyndon-type theorem that guarantees the
existence of suitable such equivalents. In sections 6.3 and 6.4 we will develop algorithmic
methods for obtaining the desired equivalents, based on (bi)simulation quantifiers.

6.2 On the Existence of Syntactically Correct Equivalents

In this section we prove versions of Lyndon’s monotonicity theorem for syntactically open and
syntactically closed Lnr -formulae. These theorems guarantee the existence of the equivalents
demanded for substitution by the semantic Ackermann-rule with replacement. How these
equivalents may be constructed is the topic of the next two sections. For a version of Lyndon’s
monotonicity theorem for the basic modal language, see [dRK97].

Definition 6.2.1 An Lnr -bisimulation is an ordinary tense bisimulation (the obvious adapta-
tion of definition 1.5.6), but with the added requirement that points linked by it should agree
not only on all propositional variables, but also on all nominals. We will use the notation
(M,m) ⇄n,r (N , n) to indicate that there is an Lnr -bisimulation between models M and N
linking points m and n. We will write Z : (M,m) ⇄n,r (N , n) if a particular Lnr -bisimulation
Z is of importance.

The notion of an Lnr -k-bisimulation is the obvious relativization of an Lnr -bisimulation
to depth k, analogous to definition 1.5.6. Accordingly we will write (M,m) ⇄k

n,r (N , n) to
indicate that there is a Lnr -k-bisimulation between models M and N linking points m and n.

152 Chapter 6. Semantic Extensions of SQEMA

Note that we do not require the usual condition that all points which are the denotations
of nominals to be linked by the Lnr -bisimulation to their counterparts in the other model,
as this is not necessary for the local preservation of truth of Lnr -formulae. The following
bisimulation notion is needed for the preservation of syntactically closed formulae, which are
upwards monotone in certain variables. The following lemma is standard.

Lemma 6.2.2 Suppose ϕ ∈ Lnr with depth(ϕ) ≤ k. Then, (M,m) ϕ iff (N , n) ϕ,
whenever (M,m) ⇄k

n,r (N , n).

The following bisimulation notion is designed to preserve syntactically closed Lnr -formulae
which are positive (or upward monotone) in certain propositional variables.

Definition 6.2.3 Let Θ be a possibly empty set of propositional variables and k ∈ ω. A
syntactically closed Θ-k-simulation relating a pointed model (M,m) to a pointed model
(N , n) is any sequence of relations Zk ⊆ · · · ⊆ Z0 ⊆WM ×WN , between the domains of the
models, satisfying the following conditions:

(Link) mZkn.

(Asymmetric local harmony for Θ) If uZ0v and p ∈ Θ then (M, u) p implies (N , v)

p.

(Asymmetric local harmony for nominals) if uZ0v and i ∈ NOM then (M, u) i im-
plies (N , v) i.

(Local harmony for propositional variables) if uZ0v and p ∈ PROP−Θ, then (M, u)

p iff (N , v) p.

(Reversive Forth) if uZi+1v and RMuu′, then RN vv′ for some v′ ∈ N such that u′Ziv
′;

similarly if uZi+1v and RMu′u, then RN v′v for some v′ ∈ N such that u′Ziv
′.

(Non-Reversive Back) if uZi+1v and RN vv′, then RMuu′ for some u′ ∈ M such that
u′Ziv

′.

We will use the notation (M,m) ⇉k
SC(Θ) (N , n) to indicate that there exists a syntactically

closed Θ-k-simulation relating (M,m) to (N , n). We will write Z : (M,m) ⇉k
SC(Θ) (N , n) if

a particular Θ-k-simulation Z is of importance.

Lemma 6.2.4 Let Θ be a finite, possibly empty set of propositional variables. Any syntacti-
cally closed Lnr -formula ϕ of modal depth ≤ k, which is positive in the propositional variables
from Θ, is preserved under syntactically closed Θ-k-simulations.

Proof. By structural induction on ϕ, written in negation normal form. qed

The next lemma strengthens lemma 6.2.4, by replacing positivity with upward monotonicity.

6.2. On the Existence of Syntactically Correct Equivalents 153

Lemma 6.2.5 Let Θ be a finite, possibly empty set of propositional variables. Any syntacti-
cally closed Lnr -formula ϕ of modal depth ≤ k, which is upwards monotone in the propositional
variables from Θ, is preserved under syntactically closed Θ-k-simulations.

Proof. Let ϕ satisfy the conditions of the lemma and let Zk ⊆ · · · ⊆ Z0 ⊆ WM ×WN be
a syntactically closed Θ-k-simulation between the models (M,m) and (N , n). Suppose that
(M,m) ϕ.

Let the model M ⋉ N = 〈W⋉, R⋉, V ⋉〉 be defined as follows: W⋉ = Z0; R⋉(u, v)(u′, v′)
iff RMuu′ and RN vv′; V ⋉(p) = {(u, v) ∈ Z0 | u ∈ VM(p)} for all propositional variables
p; and V ⋉(j) = {(u, v) ∈ Z0 | u ∈ VM(j)} for all nominals j. Note that for every nominal
j whose denotation in M is linked to a point in N by Z0, V ⋉(j) is a singleton due to the
asymmetric local harmony for nominals. All other nominals, however, are interpreted by V ⋉

as ∅; to remedy this defect we tacitly add to M ⋉ N a new point, unrelated to any other by
the accessibility relation, where we interpret all those nominals, as well as all propositional
variables. The following hold:

(i) (m,n) ∈W⋉, by construction.

(ii) (M,m) ⇄k
r,n (M ⋉ N , (m,n)), by routine verification that Z ′

k ⊆ · · · ⊆ Z ′
0 with Z ′

i =
{(u, (u, v)) | (u, v) ∈ Zi} satisfies definition 6.2.1.

(iii) Hence, (M ⋉ N , (m,n)) ϕ, by lemma 6.2.2.

(iv) Moreover, (M ⋉ N , (m,n)) ⇉k
SC(Θ) (N , n), by routine verification that Z ′′

k ⊆ · · · ⊆ Z ′′
0

with Z ′′
i = {((u, v), v) | (u, v) ∈ Zi} satisfies definition 6.2.3.

Let M ⋌ N be obtained from M ⋉ N by extending the valuations of the propositional
variables in p ∈ Θ as follows: for every point in (u, v) ∈ M ⋌ N , let (u, v) ∈ V ⋌(p) iff
v ∈ V N (p). Note that V ⋉(p) ⊆ V ⋌(p). It follows from the upward monotonicity of ϕ in
the variables from Θ that (M ⋌ N , (m,n)) ϕ. Finally, it is straightforward to check that
(M ⋌ N , (m,n)) ⇉k

SC(∅) (N , n). Hence, by lemma 6.2.5, (N , n) ϕ. qed

Let us denote by (Lnr)k
SC(Θ) the set of all syntactically closed Lnr -formulae, positive in all

propositional variables is Θ and of modal depth at most k. We will write (M,m) ⇛k
SC(Θ)

(N , n) if (M,m) ϕ implies (N , n) ϕ for all ϕ ∈ (Lnr)k
SC(Θ). Note, that ψ ∈ (Lnr)k

SC(Θ) iff

3ψ ∈ (Lnr)k+1
SC(Θ) iff 2ψ ∈ (Lnr)k+1

SC(Θ) iff 3
−1ψ ∈ (Lnr)k+1

SC(Θ).

Remark 6.2.6 (M,m) ⇛k
SC(Θ) (N , n) iff (N , n) ψ implies (M,m) ψ for all ψ such

that ¬ψ ∈ (Lnr)k
SC(Θ), i.e., iff all syntactically open formulae, negative in the propositional

variables in Θ and of modal depth at most k are preserved in passing from (N , n) to (M,m).

In what follows we will have to be more precise about the propositional variables and nominals
that occur in the language. We will therefore denote by Lnr (Φ,Ψ) the language Lnr built over
the propositional variables in Φ and the nominals in Ψ. (Lnr (Φ,Ψ))k

SC(Θ) is accordingly the

restriction of Lnr (Φ,Ψ) to (Lnr)k
SC(Θ). The relations ⇉k

SC(Θ)(Φ,Ψ) and ⇛k
SC(Θ)(Φ,Ψ) are similarly

generalized from ⇉k
SC(Θ) and ⇛k

SC(Θ).

154 Chapter 6. Semantic Extensions of SQEMA

Lemma 6.2.7 For any pointed models (M,m) and (N , n), set of propositional variables Θ,
finite sets Φ and Ψ respectively of propositional variables and nominals, and k ∈ ω,

(M,m) ⇉k
SC(Θ)(Φ,Ψ) (N , n) iff (M,m) ⇛k

SC(Θ)(Φ,Ψ) (N , n).

Proof. The left-to-right direction is lemma 6.2.4. In the rest of the proof we suppress reference
to Φ and Ψ — the only important fact about them is that they are finite, and hence that
(Lnr)k

SC(Θ)(Φ,Ψ) is finite, modulo equivalence. We prove the right-to-left direction. Suppose

that (M,m) ⇛k
SC(Θ) (N , n) and let

Zi = {(u, v) ∈WM ×WN | (M, u) ⇛i
SC(Θ) (N , v)},

for all 0 ≤ i ≤ k. We will show that, Zk ⊆ · · · ⊆ Z0 is a Θ-k-simulation linking m and n.
By construction, (m,n) ∈ Zk. It should also be clear that the symmetric and asymmetric
local harmony clauses are satisfied by any (u, v) ∈ Z0. Suppose that (u, v) ∈ Zi, for some
0 < i ≤ k. We must show that (u, v) satisfies the back and forth-clauses required by the
definition.

Suppose that RMuu′. Let SC(Θ)i−1(u′) = {ψ ∈ (Lnr)i−1
SC(Θ) | (M, u′) ψ}, i.e. the set

of all (Lnr)i−1
SC(Θ)-formulae true at u′. We may assume that SC(Θ)i−1(u′) is finite. Then

3
∧

SC(Θ)i−1(u′) is an (Lnr)i
SC(Θ)-formula, such that (M, u) 3

∧

SC(Θ)i−1(u′). Hence,

(N , v) 3
∧

SC(Θ)i−1(u′), that is to say, v has a RN -successor, say v′, such that (N , v′)
∧

SC(Θ)i−1(u′). It follows that (M, u′) ⇛i−1
SC(Θ) (N , v′), and hence that (u′, v′) ∈ Zi−1.

This proves half of the reversive forth-clause. The other half is symmetric, using the formula
3

−1
∧

SC(Θ)i−1(u′) for u′ an RM-predecessor of u.
Now for the non-reversive back-clause. Suppose that (u, v) ∈ Zi and that RN vv′. Let

SO(Θ)i−1(v′) = {ψ : ¬ψ ∈ (Lnr)i−1
SC(Θ) & (N , v′) ψ}, i.e. the set of all syntactically open

formulae of modal depth at most (i−1) and negative in the propositional variables in Θ which
are true at v′. Again, we may assume that SO(Θ)i−1(v′) is finite. Then 3

∧

SO(Θ)i−1(v′) is
a syntactically open formula of modal depth at most i, negative in the propositional variables
from Θ, and hence, by remark 6.2.6, (M, u) 3

∧

SO(Θ)i−1(v′). Hence, there is a u′

such that RMuu′ and (M, u′)
∧

SO(Θ)i−1(v′). Again, by remark 6.2.6 it follows that
(M, u′) ⇛i−1

SC(Θ) (N , v′) and hence that (u′, v′) ∈ Zi−1. Note, by the way, that we would not

be able to prove a reversive back-clause in a similar way, since 3
−1

∧

SO(Θ)i−1(v′) is not
syntactically open. qed

Theorem 6.2.8 (Lyndon’s monotonicity theorem for syntactically closed formulae)
A syntactically closed formula ϕ ∈ Lnr is upward monotone in the propositional variables in
a set Θ if and only if it is semantically equivalent to a syntactically closed formula ϕ′ ∈ Lnr
which is positive in the propositional variables in Θ and such that PROP(ϕ′) ⊆ PROP(ϕ),
NOM(ϕ′) ⊆ NOM(ϕ) and depth(ϕ′) ≤ depth(ϕ).

Proof. The right-to-left direction of the bi-implication is immediate. So, assume that ϕ ∈ Lnr
is syntactically closed and upwards monotone in the propositional variables Θ, and suppose
that depth(ϕ) = k. Let

CONS(ϕ) = {ψ ∈ (Lnr (PROP(ϕ),NOM(ϕ)))kSC(Θ) | ϕ→ ψ}.

6.3. Negative equivalents for separately monotone formulae 155

Claim: CONS(ϕ) is a finite set, modulo semantic equivalence.

Proof of Claim: It is sufficient to show that Lnr (PROP(ϕ),NOM(ϕ)))k is a finite set.
We proceed by induction on k. For k = 0 we are dealing with the set of all boolean combina-
tions of elements of PROP(ϕ) ∪ NOM(ϕ). But since there are only a finite number of truth
functions on any given finite number of arguments, there are, modulo semantic equivalence,
only a finite number of boolean combinations of the members of any finite set of formulae.

Suppose the claim holds for k = n. By appealing to the distributive identities any formula
in Lnr (PROP(ϕ),NOM(ϕ)))n+1 can be equivalently written as a disjunction of formulae of the
from

A ∧
∧

3Bi ∧
∧

2Ci ∧
∧

3
−1Di ∧

∧

2
−1Ei

where A as well as all Bi, Ci, Di and Ei are in Lnr (PROP(ϕ),NOM(ϕ)))n. But by the induc-
tive hypothesis the latter set is finite, modulo semantic equivalence. The claim then follows
since, as remarked above, modulo semantic equivalence there are only finitely many different
boolean combinations of any finite number of formulae. ◭

The proof is complete once we can show that CONS(ϕ) ϕ, since we can then take ϕ′

to be
∧

CONS(ϕ). To this end, suppose that (N , n) CONS(ϕ). Let N = {ψ | ¬ψ ∈
(Lnr)k

SC(Θ) & (N , n) ψ}. Then N ∪ {ϕ} is satisfiable, for otherwise N loc ¬ϕ, i.e
∧

N loc ¬ϕ. But then ϕ
∨

{¬ψ | ψ ∈ N} and
∨

{¬ψ | ψ ∈ N} ∈ CONS(ϕ) — a
contradiction.

Let (M,m) N ∪ {ϕ}. Then, by remark 6.2.6, (M,m) ⇛k
SC(Θ) (N , n), hence, by lemma

6.2.7 we have (M,m) ⇉k
SC(Θ) (N , n), and then by lemma 6.2.5 it follows that (N , n) ϕ.

qed

By taking negations, we obtain the following corollary.

Theorem 6.2.9 (Lyndon’s monotonicity theorem for syntactically open formulae)
A syntactically open formula ϕ ∈ Lnr is downward monotone in the propositional variables in
a set Θ if and only if it is semantically equivalent to a syntactically open formula ϕ′ ∈ Lnr
which is negative in the propositional variables in Θ and such that PROP(ϕ′) ⊆ PROP(ϕ),
NOM(ϕ′) ⊆ NOM(ϕ) and depth(ϕ′) ≤ depth(ϕ).

6.3 Negative equivalents for separately monotone formulae

In many of the examples above, the monotonicity of formulae involved in the application of
the Ackermann-rule did not depend on the proper interpretation of the inverse modalities
3

−1 and 2
−1 as inverses of 3 and 2. For example, the downwards monotonicity of 2

−1¬i ∨
(32p ∧22¬p) in p can be detected by looking at 22¬i ∨ (3121p ∧2121¬p). Moreover, the
fact that i is a nominal is also irrelevant — 22¬r∨ (3121p∧2121¬p) is downward monotone
in p for any propositional variable r.

With this observation in mind, we introduce the following terminology and definitions.
We will refer to the bimodal language with two diamonds 31 and 32 as L2.

156 Chapter 6. Semantic Extensions of SQEMA

Definition 6.3.1 Given a formula ϕ ∈ Lnr the separation of ϕ, denoted Sep(ϕ), is the L2-
formula obtained by

1. replacing every occurrence of 3 and 2 in ϕ with 31 and 21, respectively,

2. replacing every occurrence of 3
−1 and 2

−1 in ϕ with 32 and 22, respectively, and

3. uniformly substituting a fresh propositional variable for every nominal occurring in ϕ.

For example, Sep(2−1¬i ∨ (32p ∧ 22¬p)) is 22¬r ∨ (3121p ∧ 2121¬p).

Definition 6.3.2 A Lnr -formula ϕ is separately upward monotone in a proposition variable p
if Sep(ϕ) is upwards monotone in p. The notion of separate downward monotonicity is defined
similarly.

Clearly separate monotonicity implies ordinary monotonicity. Recall that monotonicity and
validity (and hence, satisfiability) problems for formulae are interreducible. Now, the validity
problem for Lnr -formulae is EXPTIME-complete ([ABM00]), while those for Lr ([Spa93]) and
for L2 ([HM92]) are PSPACE-complete. Hence, with the aim of minimizing computational
cost, it might be wise to test formula for separate monotonicity first, and only if that fails
to test for ordinary monotonicity. In section 6.4 we introduce an intermediate monotonicity
notion which requires the testing of Lr-formulae for validity.

In this section we present a method for finding negative (positive) syntactically open
(closed) equivalents for separately downwards (upwards) monotone formulae. The method
will be based on an adaptation of the method of bisimulation quantifiers. The idea originates
from the ‘Pitss quantifiers’ of [Pit92]. Bisimulation quantifiers have been used to prove
uniform interpolation results for the modal µ-calculus in [DL02] and for some modal logics in
[Vis96] and [Ghi95]. The normal form used is inspired by that in [tC05a] and related to that
introduced in [JW95].

6.3.1 Disjunctive forms

If S is a finite, possibly empty, set of formulae, define ∇S as shorthand for

∧

ϕ∈S

31ϕ ∧ 21

∨

ϕ∈S

ϕ,

and △S as shorthand for
∧

ϕ∈S

32ϕ.

Note the asymmetry between these definitions — ∇S and △S are defined like this because
they will be used to write the separations of syntactically closed formulae. In the case of
singleton sets S or S′, we will often write ∇ϕ and △ϕ for ∇{ϕ} and △{ϕ}, respectively.

Propositional variables and their negations will be called literals. Given a propositional
variable p, p and ¬p are p-literals. Moreover, p and ¬p are complementary literals. For a set,
Θ, of propositional variables, a Θ-literal is any p-literal for some p ∈ Θ.

6.3. Negative equivalents for separately monotone formulae 157

Definition 6.3.3 The L2-formulae in disjunctive form are given recursively by

ϕ ::= ⊥ | ⊤ | χ ∧∇S ∧△S′ | ϕ ∨ ψ,

where χ is a (possibly empty) conjunction of literals, S a (possibly empty) and S′ a non-empty
set of formulae in disjunctive form. As usual, we identify the empty conjunction with ⊤, and
the empty disjunction with ⊥. Note that the forms χ ∧ ∇S, ∇S ∧△S′ and ∇S can be seen
as special cases of χ ∧∇S ∧△S′ with respectively S′, χ, or both, empty.

We will call a L2-formula syntactically closed if it contains no positive occurrence of 22. (Since
we will always be careful to specify in which language we work, this reuse of terminology should
cause no confusion. Moreover, in terms of definition 2.5.16, all L2-formulae are syntactically
closed, rendering that notion meaningless for such formulae.) Clearly the separation of any
syntactically closed Lnr -formula will be a syntactically closed L2-formula. Next we define a
translation, (·)⋆ of syntactically closed L2-formulae, written in negation normal form, into
disjunctive form. When reading this definition, it is useful to bear the following equivalences
in mind: ∇∅ ≡sem 21⊥, ∇{ϕ,⊤} ≡sem 31ϕ∧31⊤∧21(ϕ∨⊤) ≡sem 31ϕ, ∇{⊤} ≡ 31⊤ and
ϕ ≡sem ((ϕ ∧ 31⊤) ∨ (ϕ ∧ 21⊥).

⊤⋆ = ⊤

⊥⋆ = ⊥

lit⋆ = (lit ∧∇∅) ∨ (lit ∧∇⊤) for any literal lit

(ϕ ∨ ψ)⋆ = ϕ⋆ ∨ ψ⋆

(31ϕ)⋆ = ∇{ϕ⋆,⊤}

(32ϕ)⋆ = (∇∅ ∧△ϕ⋆) ∨ (∇⊤ ∧△ϕ⋆)

(21ϕ)⋆ = ∇∅ ∨∇ϕ⋆

The case for conjunction is more complicated. Consider a formula of the form
∧

S. If S is
such that S = S′ ∪ {⊤}, S = S′ ∪ {⊥}, or S = S′ ∪ {ϕ ∨ ψ} we translate as follows

(
∧

(S′ ∪ {⊤}))⋆ = (
∧

S′)⋆

(
∧

(S′ ∪ {⊥}))⋆ = ⊥

(
∧

(S′ ∪ {ϕ ∨ ψ}))⋆ = (
∧

(S′ ∪ {ϕ}))⋆ ∨ (
∧

(S′ ∪ {ψ}))⋆

Note that in the last case above we are in effect distributing the conjunction over the disjunc-
tion. If S does not contain ⊤, ⊥ or a disjunction, it means that every formula in S is either
a literal or a formula of the form 31ψ, 21ψ, or 32ψ. We form the following sets:

S31 = {ψ | 31ψ ∈ S}

S21 = {ψ | 21ψ ∈ S}

S32 = {ψ | 32ψ ∈ S}

Lastly, let Slit be the subset of all literals in S. If S31 6= ∅, then the intuition is that any
point satisfying

∧

S must satisfy each member of Slit, every member of S32 must be satisfied

158 Chapter 6. Semantic Extensions of SQEMA

at some R2-successor, and every member of S31 must be satisfied at some R1-successor which
also satisfies all members of S21 . We must also take into account the fact that there may be
R1-successors not satisfying any member of S31 , but which still have to satisfy all members
of S21 . Hence, if S31 6= ∅, we translate thus:

(
∧

S)⋆ =
∧

Slit ∧∇{(ϕ ∧
∧

S21)⋆ | ϕ ∈ S31 ∪ {⊤}} ∧△{ψ⋆ | ψ ∈ S32}.

If, on the other hand, S31 = ∅, points satisfying the formula can either have no R1-successors,
or have R1-successors, each satisfying every member of S21 . Hence, if S31 = ∅, let

(
∧

S)⋆ = (
∧

Slit ∧∇∅ ∧△{ψ⋆ | ψ ∈ S32}) ∨ (
∧

Slit ∧∇{(
∧

S21)⋆} ∧ △{ψ⋆ | ψ ∈ S32}).

It should be clear that ϕ ≡sem ϕ⋆ for every syntactically closed L2-formula ϕ in negation
normal form. Here is an example:

Example 6.3.4 Consider the formula r ∧ 31(3121¬p ∧ 2121p ∧ ¬q). Since it contains no
occurrences of 32, we will omit the subscripts and simply write 3 and 2 for 31 and 21,
respectively. It is translated into disjunctive form as follows:

(r ∧ 3(32¬p ∧ 22p ∧ ¬q))⋆

=r ∧∇{(32¬p ∧ 22p ∧ ¬q)⋆,⊤}

=r ∧∇{¬q ∧∇{(2¬p ∧ 2p)⋆, (2p)⋆},⊤}

=r ∧∇{¬q ∧∇{∇∅ ∨ ∇{¬p ∧ p},∇∅ ∨∇{p}},⊤}

�

6.3.2 Simulation quantifiers and biased simulations

Via disjunctive forms and the following definition we will transform upward monotone syn-
tactically closed formulae into positive ones.

Definition 6.3.5 Let ϕ be an L2-formula in disjunctive form and p a vector of propositional
variables. We define ∃+p.ϕ inductively as follows:

∃+p.⊥ = ⊥

∃+p.⊤ = ⊤

∃+p.(χ ∧∇S ∧△S′) = χ′ ∧∇{∃+p.ψ | ψ ∈ S} ∧ △{∃+p.ψ | ψ ∈ S′}

∃+p.(ϕ ∨ ψ) = ∃+p.ϕ ∨ ∃+p.ψ

where χ′ is ⊥ when χ is inconsistent (i.e. when χ contains complementary literals), or other-
wise, if χ is consistent, χ′ is obtained from χ by removing (by simply deleting) all occurrences
of negative p-literals. ∃+p is called a simulation quantifier.

Note that ∃+p.ϕ is positive in all variables in p. We want to show that ∃+p.ϕ ≡sem ϕ for all
formulas ϕ that are upward monotone in p. To that aim the following definition, which is
essentially a separated version of a syntactically closed Θ-simulation (definition 6.2.3).

6.3. Negative equivalents for separately monotone formulae 159

Definition 6.3.6 Let M = (WM, RM
1 , RM

2 , VM) and N = (WN , RN
1 , R

N
2 , V

N) be L2-
models. Let Θ be sets of propositional variables. A Θ-biased simulation between M and
N is a nonempty binary relation Z ⊆WM ×WN satisfying, for all (u, v) ∈WM ×WN such
that uZv, the following conditions:

(local harmony) (M, u) p iff (N , v) p for all propositional variables p 6∈ Θ,

(asymmetric local harmony) (M, u) p only if (N , v) p, for all propositional variables
p ∈ Θ,

(symmetric forth) if RM
1 uu′ (respectively, RM

2 uu′) then there exists a point v′ ∈WN such
that u′Zv′ and RN

1 vv
′ (respectively, RN

2 vv
′), and

(asymmetric back) if RN
1 vv

′ then there exists a point u′ ∈ WM such that u′Zv′ and
RN

1 uu
′.

We will write M →֒Θ N if there exists a Θ-biased simulation between models M and N , or
(M,m) →֒Θ (N , n) if there is a Θ-biased simulation linking m and n.

A straightforward adaptation of the proof of lemma 6.2.5 establishes the next lemma.

Lemma 6.3.7 For all L2-models (M,m) and (N , n) such that (M,m) →֒Θ (N , n), and all
syntactically closed L2-formulae ϕ, which are upward monotone in the variables in Θ, it holds
that (M,m) ϕ only if (N , n) ϕ.

Lemma 6.3.8 Let ϕ ∈ L2 be a syntactically closed formula in disjunctive from and p a vector
of propositional variables. Then, (M,m) ϕ implies (M,m) ∃+p.ϕ.

Proof. By induction on ϕ. qed

The next theorem motivates why we call ∃+p a ‘simulation quantifier’:

Proposition 6.3.9 Let ϕ ∈ L2 be a syntactically closed formula in disjunctive from. Then,
for any model (N , n) and any vector of propositional variables p,

(N , n) ∃+p.ϕ

if and only if there exists a model (M,m) such that

(M,m) ϕ and (M,m) →֒p (N , n).

Proof. We proceed by induction on ϕ. The base case for ⊤ is trivial, as is the inductive step
for ϕ of the form ψ1 ∨ ψ2. We consider the case for ϕ of the form χ ∧∇S ∧△S′.

The bottom-to-top direction is easy. By lemma 6.3.8, (M,m) ϕ implies (M,m)

∃+p.ϕ. Also note that ∃+p.ϕ is positive in all propositional variables in p. We can now
appeal to lemma 6.3.7, and conclude that (N , n) ∃+p.ϕ.

Conversely, suppose that (N , n) ∃+p.ϕ. By the inductive hypothesis it follows that,
for each pair (ψ, s) such that ψ ∈ S, RN

1 ns and (N , s) ∃+p.ψ, there exists a pointed

160 Chapter 6. Semantic Extensions of SQEMA

model (M(ψ,s),m(ψ,s)) such that (M(ψ,s),m(ψ,s)) ψ and (M(ψ,s),m(ψ,s)) →֒p (N , s). More-

over, since every RN
1 -successor s of n satisfies ∃+p.ψ for some formula ψ ∈ S, we have that

(M(ψ,s),m(ψ,s)) →֒p (N , s) with (M(ψ,s),m(ψ,s)) ψ for some ψ ∈ S.

Also by the inductive hypothesis, for every ψ ∈ S′ there exists a point s ∈ WN and a
pointed model (Mψ,mψ) such that RN

2 ns, (Mψ,mψ) →֒p (N , s) and (Mψ,mψ) ψ.
Now we construct the desired model (M,m) by first taking the disjoint union of the

models in the sets

{

(M(ψ,s),m(ψ,s)) | ψ ∈ S,RN
1 ns, (N , s) ∃+p.ψ

}

and
{

(Mψ,mψ) | ψ ∈ S′
}

.

To this disjoint union we add a new point m and make it an R1-predecessor of each m(ψ,s),
and an R2-predecessor of each mψ. To complete the model we make all propositional variables
occurring positively in χ true at m while all other propositional variables are declared false
there. By construction (M,m) ϕ and (M,m) →֒p (N , n). qed

Theorem 6.3.10 Let ϕ ∈ L2 be a syntactically closed formula in disjunctive from which is
upward monotone in p. Then ϕ ≡sem ∃+p.ϕ.

Proof. As remarked before, ϕ → ∃+p.ϕ. Conversely, suppose that (N , n) ∃+p.ϕ. By
proposition 6.3.9 there exists a model (M,m) such that (M,m) ϕ and (M,m) →֒p (N , n).
But, by lemma 6.3.7, ϕ is preserved under p-biased simulations, i.e. (N , n) ϕ. qed

Theorem 6.3.10 gives us a procedure to compute positive equivalents for upward monotone
syntactically closed L2-formulae, written in disjunctive form. This is easily converted into a
procedure for computing negative equivalents for separately downward monotone syntactically
open Lnr -formulae. To be precise, suppose that ϕ ∈ Lnr is syntactically open and separately
downward monotone in the propositional variable p. We compute the desired equivalent of ϕ
as follows:

1. negation: Negate ϕ and apply the usual procedure to rewrite the ¬ϕ in negation nor-
mal form, obtaining ϕ′. The formula ϕ′ is syntactically closed and separately upward
monotone in p.

2. separation: Separate ϕ′ by calculation Sep(ϕ′). The formula Sep(ϕ′) will be a syntacti-
cally closed L2-formula which is upward monotone in p.

3. disjunctive form: Transform Sep(ϕ′) into disjunctive form by applying the translation
(·)⋆, i.e. by calculating (Sep(ϕ′))⋆.

4. eliminate negative p-occurrences: Calculate ∃+p.(Sep(ϕ′))⋆. This formula is positive
in p.

5. obtain positive Lnr -equivalent: Reverse step 3 as far as possible by applying the inverse
of the translation function (·)⋆ and the definitions of ∇S and △S′. Lastly obtain an
Lnr -formula by applying the inverse of Sep.

6.3. Negative equivalents for separately monotone formulae 161

6. second negation: Negate the resulting formula again to obtain a syntactically open for-
mula, negative in p, and semantically equivalent to ϕ.

We illustrate this procedure with an example.

Example 6.3.11 In example 6.1.1 we used the fact that the sequent i ⇒ 2(23p∨33¬p∨q),
that is to say the formula γ = ¬i ∨ 2(23p ∨ 33¬p ∨ q), was downward monotone in p.
Indeed, it is even separately downward monotone in p, as Sep(γ) = ¬r ∨2(23p∨33¬p∨ q)
is downward monotone in p. (Since there are no inverse modalities involved in this formula,
we can omit the subscripts in the separated from without risk of confusion.) Let us compute
a negative equivalent for this formula using the method of simulation quantifiers, described
above. Negating and rewriting in negation normal form we obtain r ∧3(32¬p∧22p∧¬q).
In example 6.3.4 this formula was translated into disjunctive form, thus:

(r ∧ 3(32¬p ∧ 22p ∧ ¬q))⋆

=r ∧∇{¬q ∧∇{∇∅ ∨ ∇{¬p ∧ p},∇∅ ∨∇{p}},⊤}

Next, application of the simulation quantifier ∃+p yields

∃+p.(r ∧∇{¬q ∧∇{∇∅ ∨ ∇{¬p ∧ p},∇∅ ∨∇{p}},⊤})

=r ∧∇{¬q ∧∇{∇∅ ∨ ∇{⊥},∇∅ ∨∇{p}},⊤}

Reversing the (·)⋆-translation step by step yields

r ∧∇{¬q ∧∇{∇∅ ∨ ∇{⊥},∇∅ ∨∇{p}},⊤}

=r ∧∇{¬q ∧∇{2⊥,2p},⊤}

=r ∧∇{¬q ∧ 32⊥ ∧ 32p ∧ 2(2⊥ ∨ 2p),⊤}

=r ∧ 3(¬q ∧ 32⊥ ∧ 32p ∧ 2(2⊥ ∨ 2p))

Lastly, undoing the Sep-function and negating yields a syntactically open equivalent, negative
in p:

¬i ∨ 2(q ∨ 23⊤ ∨ 23¬p ∨ 3(3⊤ ∧ 3¬p))

Admittedly this equivalent could be simpler. Indeed, as noted in example 6.1.1, it is in
fact equivalent to ¬i ∨ 2(23⊤ ∨ 33¬p ∨ q). The introduction of the subformula 23¬p
is worrying, as this quantifier pattern is often the cause of SQEMA’s failure. However, for
the input formula in example 6.1.1 this causes no problem, as the reader can check. More
sophisticated strategies for undoing (·)⋆ should be able to minimize this problem — all that
we are doing at the moment is applying the definition in reverse. �

Example 6.3.12 In example 6.1.7 the monotonicity of the formula

(2−1¬i ∨ ¬p ∨ 3p) ∧ 32
−1(2−1¬i ∨ ¬p)

was used in an application of the semantic Ackermann rule with replacement. As this formula
is not separately monotone, the method presented in this section will not suffice to compute
an equivalent negative in p in this case. Indeed,

(22¬t ∨ ¬p ∨ 31p) ∧ 3122(22¬t ∨ ¬p)

is not monotone in p. �

162 Chapter 6. Semantic Extensions of SQEMA

These examples illustrate that monotone sequents in SSQEMAr-executions often satisfy the
stronger property of separated monotonicity. Syntactically correct equivalents of these se-
quents can be computed by using the method of simulation quantifiers presented in this
section. However, as example 6.3.12 illustrates, SSQEMAr-executions may give rise to se-
quents which are monotone but not separately monotone. To compute syntactically correct
equivalents for these, stronger methods will have to be considered.

6.4 Negative equivalents for propositionally monotone formu-

lae

The previous section concluded with the observation that the formula (2−1¬i ∨ ¬p ∨ 3p) ∧
32

−1(2−1¬i∨¬p), which is downward monotone in p, is not separately monotone in p. The
methods of that section were hence insufficient to deal with such formulae. Note however,
that the formula (2−1¬r ∨¬p∨3p) ∧32

−1(2−1¬r ∨¬p), obtained by substituting the new
propositional variable r for the nominal i is downward monotone in p. So, although the
monotonicity of the formula does depend on the interpretation of 3 and 3

−1 as inverses, it
does not depend on the interpretation of i as a singleton. Let us formalize this idea, by giving
the following analogues of definitions 6.3.1 and 6.3.2.

Definition 6.4.1 Given a formula ϕ ∈ Lnr , the propositional separation of ϕ, denoted PSep(ϕ),
is the formula obtained by uniformly substituting a fresh propositional variable for every nom-
inal occurring in ϕ.

Definition 6.4.2 An Lnr -formula ϕ is propositionally upward monotone in a propositional
variable p if PSep(ϕ) is upwards monotone in p. The notion of propositional downward mono-
tonicity is defined similarly.

Clearly any separately monotone formula is propositionally monotone, and any propositionally
monotone formula is monotone in the ordinary sense. In this section we develop methods
for computing syntactically correct equivalents for syntactically closed (open) Lnr -formulae
which are propositionally upward (downward) monotone in given propositional variables.
These methods will again be based on suitably adapted bisimulation quantifiers, but will be
considerably more involved than those of the previous section, due to the need to account
adequately for the interaction between the modalities and their inverses.

6.4.1 Disjunctive forms for syntactically closed Lr-formulae

An Lr-formula is syntactically closed (open) if its is syntactically closed (open) when regarded
as a Lnr -formula. In this subsection we introduce disjunctive forms for syntactically closed
Lr-formulae and study some of their properties. Define ©({ϕ1, . . . , ϕn}|{ψ1, . . . , ψm}) as a
shorthand for

n
∧

i=1

3ϕi ∧ 2

n
∨

i=1

ϕi ∧
m
∧

i=1

3
−1ψi.

6.4. Negative equivalents for propositionally monotone formulae 163

The notation ‘©’ is intended to be suggestive of the R-neighbourhood around a point in a
model. We will often omit the curly brackets and simply write ©(ϕ1, . . . , ϕn|ψ1, . . . , ψm) for
©({ϕ1, . . . , ϕn}|{ψ1, . . . , ψm}).

Definition 6.4.3 An Lr-formula is in disjunctive form if it can be obtained using the fol-
lowing recursion:

ϕ ::= ⊤ | ⊥ | χ | ϕ ∨ ψ | χ ∧©({ϕ1, . . . , ϕn}|{ψ1, . . . , ψm})

where χ is a, possibly empty, conjunction of literals, and m,n ∈ {0, 1, 2, . . .}. As before, the
empty conjunction and disjunction are identified with ⊤ and ⊥, respectively.

Convention 6.4.4 Henceforth we will use the symbol χ only to denote conjunctions of liter-
als.

By removing disjunction from the above recursion we obtain the class of disjunction free
formulae in disjunctive form (or the DFDF-formulae, for short). Formally,

ϕ ::= ⊤ | ⊥ | χ | χ ∧©({ϕ1, . . . , ϕn}|{ψ1, . . . , ψm})

where χ, m and n are as before.
A formula is in strict disjunctive form (or is an SDF-formula, for short) if it is a disjunction

of DFDF-formulae.

We further define Bool(ϕ), Fut(ϕ) and Past(ϕ) on DFDF-formulae, ϕ, as follows: Bool(⊤) =
⊤; Bool(⊥) = ⊥; Bool(χ) = χ; Bool(χ∧©({ϕ1, . . . , ϕn}|{ψ1, . . . , ψm})) = χ. Let Fut(⊤) = ∅;
Fut(⊥) = ∅; Fut(χ) = ∅; Fut(χ ∧ ©({ϕ1, . . . , ϕn}|{ψ1, . . . , ψm})) = {ϕ1, . . . , ϕn}. Lastly,
let Past(⊤) = ∅; Past(⊥) = ∅; Past(χ) = ∅; Past(χ ∧ ©({ϕ1, . . . , ϕn}|{ψ1, . . . , ψm})) =
{ψ1, . . . , ψm}.

Definition 6.4.5 Let Θ be a finite set of propositional variables. We define inductively what
it means for a DFDF to be Θ-full : ⊤ and ⊥ are both Θ-full; a conjunction of literals χ is
Θ-full if each literal appearing in χ is a Θ-literal and for each p ∈ Θ, a p-literal appears in χ.
Lastly χ∧©(Φ|Ψ) is Θ-full if χ as well as each formula in Φ∪Ψ is Θ-full. A DFDF-formula
ϕ is full if it is PROP(ϕ)-full.

Definition 6.4.6 The notion of modal depth is adapted to formulae in disjunctive form in
the natural way:

depth(⊥) = depth(⊤) = depth(χ) = 0

depth(ϕ ∨ ψ) = max(depth(ϕ), depth(ψ))

depth(χ ∧©(Φ|Ψ)) = 1 + max{depth(γ) | γ ∈ Φ ∪ Ψ}

We recursively define what it means for a DFDF-formula to be of uniform depth k, for some
k ∈ ω: ⊤, ⊥ and χ are of uniform depth 0; ϕ = χ ∧ ©(Φ|Ψ) is of uniform depth k if each
element of Φ ∪ Ψ is of uniform depth k − 1. A DFDF-formula, ϕ, is of uniform depth if it is
of uniform depth depth(ϕ).

164 Chapter 6. Semantic Extensions of SQEMA

Example 6.4.7 The DFDF-formula

p ∧ ¬q ∧©({¬p ∧ ¬q ∧©(∅|{⊤}),⊤}|∅)

is not of uniform depth. It is, however, equivalent to the following disjunction of DFDF-
formulae of uniform depth:

p ∧ ¬q ∧©({¬p ∧ ¬q ∧©(∅|{⊤}),⊤ ∧©(∅|∅)}|∅)

∨ p ∧ ¬q ∧©({¬p ∧ ¬q ∧©(∅|{⊤}),⊤ ∧©({⊤}|∅)}|∅)

�

Definition 6.4.8 A DFDF-formula is said to be complete if it is full, of uniform depth, and
can be obtained from the recursion

ϕ ::= χ | χ ∧©({ϕ1, . . . , ϕn}|{ψ1, . . . , ψm}).

An SDF-formula is complete if it is a disjunction of complete DFDF-formulae.

Thus a complete DFDF-formula may not contain the symbols ⊤ or ⊥. Note that the different
disjuncts of an SDF-formula need not be full with respect to the same set of propositional
variables or of the same uniform depth.

A complete DFDF of depth k can be seen as a type of characteristic formula of a world in
a model describing, up to syntactically closed simulation, the neighbourhood of that world up
to k steps away. For more on characteristic formulae, see [GO06]. Indeed, we can formalize
this idea as follows:

Definition 6.4.9 Let (M,m) = ((W,R, V),m) be a pointed model, k ∈ ω and Θ a finite set
of propositional variables. The characteristic formula of (M,m) over Θ and of modal depth
k, denoted CharkΘ(M,m) is defined as follows, by induction on k:

1. Char0Θ(M,m) is a conjunction of literals χ such that for each p ∈ Θ, p is a conjunct of
χ iff (M,m) p and ¬p is a conjunct of χ iff (M,m) ¬p.

2. CharkΘ(M,m) = χ∧©(Φ | Ψ) where χ is defined as in item 1, and Φ = {Chark−1
Θ (M, u) |

Rmu} and Ψ = {Chark−1
Θ (M, v) | Rvm}.

Note that the sets Φ and Ψ in clause 2 are finite, and that this is the case even if we do not
work modulo semantic equivalence. Because of the asymmetry in the way that the arguments
of ©(· | ·) are treated, definition 6.4.9 is in fact too weak to be regarded as defining a proper
characteristic formula in the spirit of [GO06]. If we had wanted to obtain a characteristic
formula in that sense, we should have added the additional conjunct 2

−1
∨

Ψ to the definition
of ©(Φ | Ψ). The reason for not having done so, is of course that we want to restrict attention
to syntactically closed (and via negation, syntactically open) formulae. The following lemma
is immediate from definition 6.4.9.

Lemma 6.4.10 (M,m) CharkΘ(M,m), for any pointed model (M,m), finite set of propo-
sitional variables Θ and k ∈ ω.

6.4. Negative equivalents for propositionally monotone formulae 165

Lemma 6.4.11 Every syntactically closed Lr-formula ϕ can be effectively and equivalently
rewritten as a complete SDF-formula.

Proof. Let ϕ ∈ Lr be syntactically closed and in negation normal form. We first rewrite ϕ
equivalently as a formula in disjunctive form, using the translation (·)⋆, recursively defined
by

⊤⋆ = ⊤

⊥⋆ = ⊥

p⋆ = p

(ϕ ∨ ψ)⋆ = ϕ⋆ ∨ ψ⋆

(3ϕ)⋆ = ©(ϕ⋆,⊤ | ∅)

(3−1ϕ)⋆ = ©(∅ | ϕ⋆) ∨©(⊤ | ϕ⋆)

(2ϕ)⋆ = ©(∅ | ∅) ∨©(ϕ⋆ | ∅).

The case for conjunction is more complicated. Consider a formula of the form
∧

S. If S is
such that S = S′ ∪ {⊤}, S = S′ ∪ {⊥} or S = S′ ∪ {ϕ ∨ ψ} we translate as follows:

(
∧

(S′ ∪ {⊤}))⋆ = (
∧

S′)⋆

(
∧

(S′ ∪ {⊥}))⋆ = ⊥

(
∧

(S′ ∪ {ϕ ∨ ψ}))⋆ = (
∧

(S′ ∪ {ϕ}))⋆ ∨ (
∧

(S′ ∪ {ψ}))⋆.

If S does not contain ⊤, ⊥ or a disjunction, it means that every formula in S is either a literal
or a formula of the form 3ψ, 2ψ, or 3

−1ψ. We form the following sets:

S3 = {ψ | 3ψ ∈ S}

S2 = {ψ | 2ψ ∈ S}

S3−1 = {ψ | 3
−1ψ ∈ S}

Lastly, let Slit be the subset of all literals in S. If S3 6= ∅ let

(
∧

S)⋆ =
∧

Slit ∧©({(ϕ ∧
∧

S2)⋆ | ϕ ∈ S3 ∪ {⊤}} | {ψ⋆ | ψ ∈ S3−1}).

If, on the other hand, S3 = ∅, then let

(
∧

S)⋆ = (
∧

Slit ∧©(∅ | {ψ⋆ | ψ ∈ S3−1})) ∨ (
∧

Slit ∧©({(
∧

S2)⋆} | {ψ⋆ | ψ ∈ S3−1})).

Thus the translation (·)⋆ yields an equivalent formula in disjunctive form. The following
equivalences can now be used to convert this formula into an equivalent complete SD-formula:

ϕ ≡ ϕ ∧©(∅ | ∅) ∨©(⊤ | ∅)(6.1)

ϕ ≡ (ϕ ∧ p) ∨ (ϕ ∧ ¬p)(6.2)

166 Chapter 6. Semantic Extensions of SQEMA

χ ∧©({α ∨ β} ∪ Φ|Ψ)

≡ (χ ∧©({α} ∪ Φ|Ψ)) ∨ (χ ∧©({β} ∪ Φ|Ψ)) ∨ (χ ∧©({α, β} ∪ Φ|Ψ))(6.3)

χ ∧©(Φ|{α ∨ β} ∪ Ψ)

≡ (χ ∧©(Φ|{α} ∪ Ψ)) ∨ (χ ∧©(Φ|{β} ∪ Ψ))(6.4)

qed

Example 6.4.12 We illustrate lemma 6.4.11 by converting the syntactically open Lr-formula
p ∧ ¬q ∧ 3q ∧ 2p ∧ 3

−1(¬q ∧ ¬p) into a complete SDF-formula:

(p ∧ ¬q ∧ 3q ∧ 2p ∧ 3
−1(¬q ∧ ¬p))⋆

= p ∧ ¬q ∧©({(q ∧ p), p} | {¬q ∧ ¬p})

The latter formula is an SDF-formula, but it is not complete. We now apply equivalences 6.2
and 6.3 to make it complete:

p ∧ ¬q ∧©({(q ∧ p), p} | {¬q ∧ ¬p})

≡ p ∧ ¬q ∧©({(q ∧ p), (p ∧ q) ∨ (p ∧ ¬q)} | {¬q ∧ ¬p})

≡ p ∧ ¬q ∧©({(q ∧ p), (p ∧ q)} | {¬q ∧ ¬p})

∨ p ∧ ¬q ∧©({(q ∧ p), (p ∧ ¬q)} | {¬q ∧ ¬p})

∨ p ∧ ¬q ∧©({(q ∧ p), (p ∧ q), (p ∧ ¬q)} | {¬q ∧ ¬p}).

This formula may further be simplified using the commutativity of ∧, to obtain:

p ∧ ¬q ∧©({(q ∧ p)} | {¬q ∧ ¬p})

∨ p ∧ ¬q ∧©({(q ∧ p), (p ∧ ¬q)} | {¬q ∧ ¬p}).

�

6.4.2 Coherent formulae and standard models

Next we define a relation between formulae in disjunctive form. The significance of this
definition is given in proposition 6.4.15 below. Continuing with the characteristic formulae-
intuition for DFDF’s, ϕ � ψ means that ϕ and ψ describe the same world, but that ϕ is
possibly more specific, or more detailed, than ψ. This relation, together with a weaker version
of it, will also allow us to syntactically characterize the satisfiable complete DFDF-formulae.
The obtained syntactic criterion will be called (weak) coherency. This characterization will
be needed when we define simulation quantifiers to act on these formulae. We will further
define so-called standard models for (weakly) coherent DFDF-formulae which characterize
the models of these formulae modulo certain syntactically closed simulations. We will use the
these standard models to prove an analogue of proposition 6.3.9.

Definition 6.4.13 Let Θ be a possibly empty set of propositional variables. Given two
conjunctions of literals χ1 and χ2, we write χ1 ⊆Θ χ2 if

6.4. Negative equivalents for propositionally monotone formulae 167

1. each positive Θ-literal in χ1 also appears in χ2,

2. each non-Θ-literal in χ1 also appears in χ2.

Suppose depth(ψ) ≤ depth(ϕ). We define the relations ϕ �Θ ψ and ϕ ≤Θ ψ by induction on
ϕ. We start with ϕ �Θ ψ:

1. ⊤ �Θ ψ if and only if ψ = ⊤;

2. ⊥ �Θ ψ always (i.e. if ψ = ⊤ or ψ = ⊥ or ψ = χ);

3. χ �Θ ψ if and only if

(a) ψ = ⊤, or

(b) ψ = ⊥ and χ is inconsistent, or

(c) ψ = χ′ with χ′ ⊆Θ χ;

4. For ϕ of the form (χ1 ∧©(Φ1|Ψ1)), we specify that

(a) (χ1 ∧©(Φ1|Ψ1)) �Θ ⊤;

(b) (χ1 ∧©(Φ1|Ψ1)) �Θ ⊥ whenever χ1 is inconsistent;

(c) (χ1 ∧©(Φ1|Ψ1)) �Θ χ2 whenever χ2 ⊆Θ χ1;

(d) (χ1 ∧©(Φ1|Ψ1)) �Θ (χ2 ∧©(Φ2|Ψ2)) if

i. χ2 ⊆Θ χ1, and

ii. for each ϕ1 ∈ Φ1 there is a ϕ2 ∈ Φ2 such that ϕ1 �Θ ϕ2,

iii. for each ϕ2 ∈ Φ2 there is a ϕ1 ∈ Φ1 such that ϕ1 �Θ ϕ2, and

iv. for each ψ2 ∈ Ψ2, there is a ψ1 ∈ Ψ1 such that ψ1 � ψ2.

The relation ϕ ≤Θ ψ is defined by replacing ‘�Θ’ everywhere in the above with ‘≤Θ’, and by
replacing clause 4(d) with the clause:

4. (e) (χ1 ∧©(Φ1|Ψ1)) ≤Θ (χ2 ∧©(Φ2|Ψ2)) if

i. χ2 ⊆Θ χ1, and

ii. for each ϕ1 ∈ Φ1 there is a ϕ2 ∈ Φ2 such that ϕ1 ≤Θ ϕ2, and

iii. for each ϕ2 ∈ Φ2 there is a ϕ1 ∈ Φ1 such that ϕ1 ≤Θ ϕ2.

We will write ⊆, ≤ and � for ⊆∅, ≤∅ and �∅, respectively.

Note that the difference between the relations �Θ and ≤Θ is essentially confined to the
treatment of elements of second argument of the ©(· | ·)-construct.

Example 6.4.14 Here are some example illustrating the � and ≤-relations:

[p ∧ ¬q ∧©(¬p ∧ q,¬p ∧ ¬q | ¬p ∧ ¬q, p ∧ q)] � [p ∧ ¬q ∧©(¬p ∧ q,¬p ∧ ¬q | ¬p ∧ ¬q)]

168 Chapter 6. Semantic Extensions of SQEMA

and

[p ∧ ¬q ∧©(¬p ∧ q,¬p ∧ ¬q | ¬p ∧ ¬q, p ∧ q)] � [p ∧©(q,¬q | ¬q)],

but

[p ∧ ¬q ∧©(¬p ∧ q,¬p ∧ ¬q | ¬p ∧ ¬q, p ∧ q)] 6� [p ∧ ¬q ∧©(¬p ∧ ¬q | p ∧ q)].

Lastly

[p ∧ q ∧©(¬p ∧ q,¬p ∧ ¬q | ¬p ∧ ¬q, p ∧ q)] �{q} [p ∧ ¬q ∧©(¬p ∧ ¬q, q | q)]

and

[p ∧ q ∧©(¬p ∧ q,¬p ∧ ¬q | ¬p ∧ ¬q)] ≤{q} [p ∧ ¬q ∧©(¬p ∧ ¬q, q | q)].

Note the asymmetry in the way in which the first and second arguments of the ©-operator
are treated. �

Proposition 6.4.15 For any DFDF-formulae ϕ and ψ,

1. if ϕ � ψ, then ϕ→ ψ, and

2. if ϕ is complete, PROP(ψ) ⊆ PROP(ϕ) and ϕ 6≤ ψ, then ϕ ∧ ψ → ⊥.

Proof. We proceed by induction of ϕ. The base cases are trivial for both claims. (Note
that, in the second case, when ϕ is complete, the cases for ϕ = ⊥ and ϕ = ⊤ do not occur.)
So suppose that ϕ is of the form (χ1 ∧ ©(Φ1|Ψ1)). The cases when ψ is ⊤, ⊥ or χ2 are
again trivial for both claims. Hence, suppose that ψ is of the form (χ2 ∧©(Φ2|Ψ2)). For the
sake of the first claim, suppose that (χ1 ∧©(Φ1|Ψ1)) � (χ2 ∧©(Φ2|Ψ2)), and let (M,m) be
any model such that (M,m) ϕ — the claim clearly follows if no such model exists. Since
χ2 ⊆ χ1, (M,m) χ2.

Let v be any successor of m in M. To see that v satisfies some member of Φ2, we note
that v satisfies some member of Φ1, say ϕ′

1. But then, since ϕ � ψ, there is some member
of Φ2, say ϕ′

2, such that ϕ′
1 � ϕ′

2, and hence, by the inductive hypothesis, ϕ′
1 → ϕ′

2, and
hence (M, v) ϕ′

2.

Now, let ϕ′
2 be any member of Φ2. To see that there is some successor of m in M which

makes ϕ′
2 true, we note that there is some element of Φ1, say ϕ′

1, such that ϕ′
1 � ϕ′

2. But
there is some successor, say v, of m in M such that (M, v) ϕ′

1. Hence, by the inductive
hypothesis, ϕ′

1 → ϕ′
2, and hence (M, v) ϕ′

2.

A symmetric argument establishes the fact that every member of Ψ2 is satisfied at some
predecessor of m. We conclude that (M,m) ψ, and, since (M,m) was arbitrary, that
 ϕ→ ψ.

As for the second claim of the lemma, suppose that ϕ 6≤ ψ. The case when ψ = ⊤ does
not occur, while the case for ψ = ⊥ is clear. Suppose that ψ is of the form χ2. Then it must
be the case that χ2 6⊆ χ1. Since χ1 is PROP(ϕ)-full and PROP(ψ) ⊆ PROP(ϕ), it must be
the case that for some p ∈ PROP(ψ), χ1 and χ2 contain complimentary p-literals. Clearly ϕ
and ψ cannot be simultaneously satisfiable.

6.4. Negative equivalents for propositionally monotone formulae 169

Lastly suppose that ψ is of the form χ2 ∧©(Φ2|Ψ2). If χ2 6⊆ χ1, then the claim follows
as above. Otherwise, there are two possibilities. Firstly, suppose there is some ϕ1 ∈ Φ1 such
that, for each ϕ2 ∈ Φ2, ϕ1 6≤ ϕ2, i.e., by the inductive hypothesis, ϕ1 ∧ ϕ2 → ⊥. Now, on
any model (M,m) such that (M,m) ϕ, m must have a successor, say v, in M making ϕ1

true. But then, since v cannot also satisfy any member of Φ2, we must have (M,m) ¬ψ.
The second possibility, namely that there is some ϕ2 ∈ Φ2 such that, for each ϕ1 ∈ Φ1,
ϕ1 6≤ ϕ2, is analogous. qed

The notion of the coherency of a DFDF-formula is defined next. As will be seen further, this
in fact represents a syntactic characterization of the satisfiable complete DFDF-formulae.

Definition 6.4.16 We define by induction what it means for a DFDF-formula of uniform
depth to be (weakly) coherent. All coherent formulae are also weakly coherent. A formula
which is not weakly coherent is incoherent.

1. ⊤ is coherent;

2. ⊥ is incoherent;

3. a conjunction of literals χ is coherent if and only if it is consistent;

4. ϕ = χ ∧©(Φ|Ψ) is coherent if and only if

(a) χ is consistent,

(b) each element of Φ ∪ Ψ is coherent, and

(c) for each ψ′ ∈ Ψ, ϕ � δ for some δ ∈ Fut(ψ′) .

5. ϕ = χ ∧©(Φ|Ψ) is weakly coherent if and only if

(a) χ is consistent,

(b) each element of Φ ∪ Ψ is weakly coherent, and

(c) for each ψ′ ∈ Ψ, ϕ ≤ δ for some δ ∈ Fut(ψ′) .

An SDF-formula is (weakly) coherent if it is a disjunction of (weakly) coherent DFDF-
formulae.

The intuition behind clauses 4(c) and 5(c) above is that the characteristic formula of each
predecessor of a world m must list (a shallower version of) the characteristic formula of m as
a possible successor.

Example 6.4.17 The formula p∧©(p,¬p | ¬p∧©(p∧©(p,¬p | ¬p) | ∅)) is coherent, while
the formula p ∧©(p,¬p | ¬p ∧©(p ∧©(p,¬p | p) | ∅)) is only weakly coherent. The formula
p ∧©(p,¬p | ¬p ∧©(¬p | ∅)) is incoherent. �

More instances of coherent formulae are given by the following lemma:

Lemma 6.4.18 For any pointed model (M,m) set of propositional variables Θ, and k ∈ ω,
the formula CharkΘ(M,m) is a complete and coherent DFDF-formula.

Proof. By induction on k. qed

170 Chapter 6. Semantic Extensions of SQEMA

Standard models for coherent formulae

For each complete and coherent DFDF-formula ϕ we wish to define a pointed model which
satisfies ϕ, and which, up to syntactically closed depth(ϕ)-simulation, is characteristic of all
models satisfying ϕ. We begin by defining some operations on models.

Let {Mi = (Wi, Ri, Vi)}i∈I be a family of models, the domains of which have been made
pairwise disjoint, e.g. by some suitable indexing. Recall that the disjoint union of the family
{Mi = (Wi, Ri, Vi)}i∈I , denoted

⊎

{Mi}i∈I , is the model with (W,R, V) with W =
⋃

i∈IWi,
R =

⋃

i∈I Ri and V (p) =
⋃

i∈I Vi(p) for each propositional variable p.

The following construction will be used often: Let {(Mi,mi)}i∈I and {(Nj , nj)}j∈J be
two families of pointed models, w a point not in the domain of any Mi or Nj , and χ a possibly
infinite consistent conjunction of literals. Then

COMB({(Mi,mi)}i∈I , {(Nj , nj)}j∈J , w, χ) = (W,R, V)

is the model constructed by adding to the disjoint union of all members of {(Mi,mi)}i∈I
and {(Nj , nj)}j∈J the new point w, and making each mi, i ∈ I, a successor of w and each
nj , j ∈ J , a predecessor of w. The valuation is extended so as to make χ true at w, and all
proposition letters in the language not appearing in χ are declared false at w. More formally,
let

M0 =
(

⊎

{(Mi,mi)}i∈I
)

⊎
(

⊎

{(Nj , nj)}j∈J
)

,

and let W = WM0 ∪ {w}, R = RM0 ∪ {(w,mi) | i ∈ I} ∪ {(nj , w) | j ∈ J}, and V is such
that V (p) = VM0(p) ∪ {w} if p occurs positively in χ, and V (p) = VM0(p), otherwise.

Note that the COMB-construction does not in general preserve the truth of (syntactically
closed) formulae at the points nj , j ∈ J , since these points gain new successors in the
construction. We will further develop conditions sufficient to guarantee the preservation of
truth, up to certain modal depths, under this construction. The proof of the following lemma
is routine.

Lemma 6.4.19 Let {(Mi,mi)}i∈I and {(Nj , nj)}j∈J be two families of pointed models, w a
point not in the domain of any Mi or Nj, χ a consistent conjunction of literals, and k ∈ ω.
Then

1. for each i ∈ I,

(Mi,mi) ⇉k
SC(∅) (COMB({(Mi,mi)}i∈I , {(Nj , nj)}j∈J , w, χ),mi),

and

2. for each j ∈ J , if there is a successor n′j of nj in (Nj , nj) (i.e RNjnjn
′
j) such that

(Nj , n
′
j) ⇉k−1

SC(∅) (COMB({(Mi,mi)}i∈I , {(Nj , nj)}j∈J , w, χ), w), then

(Nj , nj) ⇉k
SC(∅) (COMB({(Mi,mi)}i∈I , {(Nj , nj)}j∈J , w, χ), nj).

6.4. Negative equivalents for propositionally monotone formulae 171

We next define the pointed standard model , (SM(ϕ), wϕ), of a coherent, complete DFDF-
formula, ϕ. The standard model of χ consists of a single, irreflexive point at which all
proposition letters in the language, other than those appearing positively in χ, are false.
Formally, let (SM(χ), wχ) = ((W,R, V), w), with W = {w}, R = ∅, and V (p) = {w} for all
proposition letters p such that p is a conjunct if χ, and V (p) = ∅, otherwise.

Now suppose ϕ = χ∧©(Φ|Ψ), and that the standard models of all the elements of Φ∪Ψ
have already been defined. (Note that, by the coherency of ϕ, each element of Φ ∪ Ψ is
coherent.) We set

(SM(ϕ), wϕ) = (COMB({(SM(α), wα) | α ∈ Φ}, {(SM(β), wβ) | β ∈ Ψ}, wϕ, χ), wϕ).

The next two lemmas describe, respectively, a relation between the standard models of �Θ-
related formulae, and some internal relations within standard models.

Lemma 6.4.20 For all complete and coherent DFDF-formulae ϕ and ψ and sets of proposi-
tional variables Θ such that ϕ �Θ ϕ′, it holds that

(SM(ϕ′), wϕ′) ⇉
depth(ϕ′)
SC(Θ)(PROP(ϕ′),∅) (SM(ϕ), wϕ).

Proof. Let ϕ = χ ∧ ©(Φ | Ψ) and ϕ′ = χ′ ∧ ©(Φ′ | Ψ′) be as in the formulation of
the lemma. We show that, (SM(ϕ′), wϕ′) ⇉k

SC(Θ)(PROP(ϕ′),∅) (SM(ϕ), wϕ) for each k ≤

depth(ϕ′), proceeding by induction on k. We have to verify all clauses of definition 6.2.3. The
base case for k = 0 is easy to verify. Now let 0 < k and suppose that the claim holds for all
natural numbers less than k. Since ϕ �Θ ϕ′, we have χ′ ⊆Θ χ, whence the local harmony
clause. For every ϕ′

0 ∈ Φ′ there is a ϕ0 ∈ Φ such that ϕ0 �Θ ϕ′
0, and hence, by the inductive

hypothesis, such that

(SM(ϕ′
0), wϕ′

0
) ⇉k−1

SC(Θ)(PROP(ϕ′),∅) (SM(ϕ0), wϕ0). (6.5)

Further, also by the inductive hypothesis, we have that

(SM(ϕ′), wϕ′) ⇉k−2
SC(Θ)(PROP(ϕ′),∅) (SM(ϕ), wϕ). (6.6)

It follows from 6.5, 6.6 and the construction of SM(ϕ) and SM(ϕ′) that

(SM(ϕ′), wϕ′
0
) ⇉k−1

SC(Θ)(PROP(ϕ′),∅) (SM(ϕ), wϕ0). (6.7)

Similarly we have that, for each ϕ0 ∈ Φ, there is a ϕ′
0 ∈ Φ′ such that

(SM(ϕ′), wϕ′
0
) ⇉k−1

SC(Θ)(PROP(ϕ′),∅) (SM(ϕ), wϕ0). (6.8)

This deals with the forth clause. As for the asymmetric back clause, note that, for every
ψ′

0 ∈ Ψ′ there is a ψ0 ∈ Ψ such that ψ0 �Θ ψ′
0. Hence, by the inductive hypothesis,

(SM(ψ′
0), wψ′

0
) ⇉k−1

SC(Θ)(PROP(ϕ′),∅) (SM(ψ0), wψ0). (6.9)

172 Chapter 6. Semantic Extensions of SQEMA

It follows from 6.9, 6.6 and the construction of SM(ϕ) and SM(ϕ′) that

(SM(ϕ′), wψ′
0
) ⇉k−1

SC(Θ)(PROP(ϕ′),∅) (SM(ϕ), wψ0). (6.10)

We conclude that
(SM(ϕ′), wϕ′) ⇉k

SC(Θ)(PROP(ϕ′),∅) (SM(ϕ), wϕ).

qed

Lemma 6.4.21 For all complete and coherent DFDF-formulae ϕ = χ ∧©(Φ | Ψ), it holds
that

1. (SM(ϕ0), wϕ0) ⇉
depth(ϕ0)
SC(∅) (SM(ϕ), wϕ0), for all ϕ0 ∈ Φ, and

2. (SM(ψ0), wψ0) ⇉
depth(ψ0)
SC(∅) (SM(ϕ), wψ0), for all ψ0 ∈ Ψ.

Proof. We show, proceeding by induction on k, that, for all k < depth(ϕ),

1. (SM(ϕ0), wϕ0) ⇉k
SC(∅) (SM(ϕ), wϕ0) for all ϕ0 ∈ Φ, and

2. (SM(ψ0), wψ0) ⇉k
SC(∅) (SM(ϕ), wψ0).

The base case for k = 0 is easy to verify. Indeed, for all ϕ0 ∈ Φ, the point wϕ0 has
the same valuation both in (SM(ϕ0) and (SM(ϕ)), and hence (SM(ϕ0), wϕ0) ⇉0

SC(∅)

(SM(ϕ), wϕ0). The case for ψ0 ∈ Ψ is similar. If ϕ �Θ ϕ′ the Bool(ϕ′) ⊆Θ Bool(ϕ),
and hence (SM(ϕ′), wϕ′) ⇉0

SC(Θ)(PROP(ϕ′),∅) (SM(ϕ), wϕ).
Now let 0 < k, and suppose that the claim holds for all natural numbers less than k. Clause

1 of the lemma follows immediately by lemma 6.4.19 and the construction of (SM(ϕ), wϕ).
For the sake of clause 2, let ψ0 ∈ Ψ. By the coherence of ϕ there is a γ ∈ Fut(ϕ0) such that
ϕ �∅ γ. (Notice that, since ϕ is complete, we have PROP(γ) = PROP(ϕ0) = PROP(ϕ)).
By lemma 6.4.20 (SM(γ), wγ) ⇉k−1

SC(∅)(PROP(ϕ),∅) (SM(ϕ), wϕ). We would be able to apply

lemma 6.4.19 and conclude that (SM(ψ0), wψ0) ⇉k
SC(∅)(PROP(ϕ),∅) (SM(ϕ), wψ0) if we were

able to show that also (SM(ψ0), wγ) ⇉k−1
SC(∅)(PROP(ϕ),∅) (SM(ϕ), wϕ). Since wγ has exactly

the same successors in SM(γ) as in SM(ψ0), the latter would not be the case only if wγ
had gained a predecessor in passing from SM(γ) to SM(ψ0) which is not similar to any
predecessor of wϕ in SM(ϕ). But the only predecessor gained in this way by wγ is wψ0 ,
which is also a predecessor of wϕ. The claim follows. qed

Lemma 6.4.22 (SM(ϕ), wϕ) ϕ, for every complete and coherent DFDF-formula ϕ.

Proof. We proceed by induction on ϕ. The base case, when ϕ is a conjunction of literals χ, is
clear. Suppose ϕ = χ∧©(Φ | Ψ) and that depth(ϕ) = k. Then, by the inductive hypothesis,
(SM(ϕ0), wϕ0) ϕ0 for all ϕ0 ∈ Φ and (SM(ψ0), wψ0) ψ0 for all ψ0 ∈ Φ. By lemma
6.4.21, (SM(ϕ0), wϕ0) ⇉k−1

SC(∅) (SM(ϕ), wϕ0) for all ϕ0 ∈ Φ and (SM(ψ0), wψ0) ⇉k−1
SC(∅)

(SM(ϕ), wψ0) for all ψ0 ∈ Φ. Note that depth(γ) = k − 1 for each γ ∈ Φ ∪ Ψ. It follows
that (SM(ϕ), wϕ0) ϕ0 for all ϕ0 ∈ Φ and (SM(ψ), wψ0) ψ0 for all ψ0 ∈ Φ. Moreover,
(SM(ϕ), wϕ) χ, by the construction of (SM(ϕ), wϕ). We conclude that (SM(ϕ), wϕ) ϕ.
qed

6.4. Negative equivalents for propositionally monotone formulae 173

Lemma 6.4.23 Let ϕ be a complete and coherent DFDF -formula. Then for any model
(M,m)

(M,m) ϕ iff (SM(ϕ), wϕ) ⇉
depth(ϕ)
SC(∅)(PROP(ϕ),∅) (M,m).

Proof. By induction on ϕ, with the aid of lemma 6.4.21. qed

Standard models for weakly coherent formulae

To be able to properly define simulation quantifiers for syntactically closed Lr-formulae (in
subsection 6.4.3), we will need a syntactic characterization of the satisfiable such formulae. In
the previous section, where we dealt with separately monotone formulae, satisfiability could
be determined already at the propositional level. For the propositionally monotone formulae
of this section, however, the situation is more complicated.

Lemma 6.4.22 tells us that coherency is a sufficient condition for satisfiability of complete
DFDF-formulae. As will be seen, a characterization can be obtained by weakening this
condition to weak coherency.

To that aim, we define weak standard models (WSM(ϕ), wϕ) for weakly coherent complete
DFDF-formulae ϕ, proceeding by induction on the modal depth of ϕ. For the base case, when
ϕ is a conjunction of literals, let (WSM(ϕ), wϕ) = (SM(ϕ), wϕ). Suppose ϕ is of the form
χ ∧ ©(Φ | Ψ), and that (WSM(γ), wγ) has already been defined for each weakly coherent
DFDF-formula γ with PROP (γ) = PROP(ϕ) and depth(γ) ≤ depth(ϕ). Let S be the set
containing all these weak standard models. Then we define (WSM(ϕ), wϕ) to be the model

(COMB({(WSM(ϕ0), wϕ0)}ϕ0∈Φ, S, wϕ, χ), wϕ).

In other words, (WSM(ϕ), wϕ) is defined like (SM(ϕ), wϕ), but we add as predecessors
to wϕ all weak standard models of formulae of shallower depth. Note that, particularly,
(WSM(ψ), wψ) ∈ S for all ψ ∈ Ψ. The proof of the next lemma illustrates the rationale
behind this construction.

Lemma 6.4.24 Let ϕ and ψ be two weakly coherent DFDF-formulae and Θ a set of propo-

sitional variables. If ϕ ≤Θ ϕ′, then (WSM(ϕ′), wϕ′) ⇉
depth(ϕ′)
SC(Θ)(PROP(ϕ′),∅) (WSM(ϕ), wϕ).

Proof. The proof is quite similar to that of lemma 6.4.20. Let ϕ = χ ∧ ©(Φ | Ψ) and
ϕ′ = χ′ ∧ ©(Φ′ | Ψ′). We show that (WSM(ϕ′), wϕ′) ⇉k

SC(Θ)(PROP(ϕ′),∅) (WSM(ϕ), wϕ)

for all 0 ≤ k ≤ depth(ϕ′), proceeding by induction on k. The base case, for k = 0, is clear.
Suppose that 0 < k ≤ depth(ϕ′) and that the claim holds for all numbers less than k. We
verify the relevant clauses of definition 6.2.3. Since χ′ ⊆Θ χ, the local harmony clauses follow.
The forth clause is the same as that in the proof of lemma 6.4.20. We treat the non-reversive
back clause.

Let v be any predecessor of wϕ′ in WSM(ϕ′). Then, by the construction of WSM(ϕ′),
v is the root wψ0 of (WSM(ψ0), wψ0) for some formula ψ0 with PROP(ψ0) = PROP(ϕ′) and
depth(ψ0) < depth(ϕ′). But, also by construction, the root of another copy of (WSM(ψ0), wψ0)

174 Chapter 6. Semantic Extensions of SQEMA

is a predecessor of wϕ in (WSM(ϕ), wϕ). Moreover, by the inductive hypothesis, we have
that

(SM(ϕ′), wϕ′) ⇉k−2
SC(Θ)(PROP(ϕ′),∅) (SM(ϕ), wϕ).

Hence it follows by the construction of (WSM(ϕ), wϕ) and (WSM(ϕ′), wϕ′) that

(SM(ϕ′), wψ0) ⇉k−1
SC(Θ)(PROP(ϕ′),∅) (SM(ϕ), wψ0).

Thus the non-reversive back clause is verified. We conclude that

(SM(ϕ′), wϕ′) ⇉k
SC(Θ)(PROP(ϕ′),∅) (SM(ϕ), wϕ).

qed

Adapting the proofs of lemmas 6.4.21 and 6.4.22 in a similar way, we obtain the next two
lemmas.

Lemma 6.4.25 For all complete and weakly coherent DFDF-formulae ϕ = χ ∧©(Φ | Ψ), it
holds that

1. (WSM(ϕ0), wϕ0) ⇉
depth(ϕ0)
SC(∅) (WSM(ϕ), wϕ0) for all ϕ0 ∈ Φ, and

2. (WSM(ψ0), wψ0) ⇉
depth(ψ0)
SC(∅) (WSM(ϕ), wψ0) for all ψ0 ∈ Ψ.

Lemma 6.4.26 For all complete and weakly coherent DFDF-formulae ϕ, it holds that

(WSM(ϕ), wϕ) ϕ.

Theorem 6.4.27 Let ϕ be a complete DFDF-formula, then ϕ is satisfiable iff it is weakly
coherent.

Proof. The right-to-left direction follows by lemma 6.4.26. Conversely, suppose that ϕ is an
incoherent complete DFD-formula. We show, proceeding by induction on ϕ, that ϕ is not
satisfiable. The base case, when ϕ is an inconsistent conjunction of literals, is clear. Suppose
that ϕ is of the form χ ∧ ©(Φ|Ψ). We check all possible cases, corresponding to the inco-
herency of ϕ:

Case 1: χ is inconsistent. Then, since χ is a propositional contradiction, χ ∧ ©(Φ|Ψ) is
unsatisfiable.

Case 2: Some member of Φ ∪ Ψ, say γ, is incoherent. Then, by the inductive hypothe-
sis, γ is not satisfiable, hence ϕ is not satisfiable.

Case 3: There exists a ψ′ ∈ Ψ, such that ϕ 6≤ γ for all γ ∈ Fut(ψ′). Then, by lemma
6.4.15, ϕ ∧ γ → ⊥ for all γ ∈ Fut(ψ′). In other words, any point m satisfying ϕ must have
a predecessor, each successor of which must satisfy the formula

∨

Fut(ϕ′), i.e. m must satisfy
ϕ ∧

∨

Fut(ϕ′), i.e. m must satisfy ⊥. Hence, the unsatisfiability of ϕ. qed

6.4. Negative equivalents for propositionally monotone formulae 175

6.4.3 A Lyndon-theorem for syntactically closed Lr-formulae

The simulation quantifiers of definition 6.3.5 are easily adapted to Lr-formulae in strict dis-
junctive form:

Definition 6.4.28 Let ϕ be an SDF-formula and p a vector of propositional variables. We
define ∃+p.ϕ inductively as follows:

∃+p.⊥ = ⊥

∃+p.⊤ = ⊤

∃+p.(χ) = χ′

where χ′ is ⊥ when χ is inconsistent, or otherwise, when χ is consistent, χ′ is obtained from
χ by removing all occurrences of negative p-literals.

∃+p.(χ ∧©(Φ|Ψ)) = χ′ ∧©({∃+p.ϕ | ϕ ∈ Φ}|{∃+p.ψ | ψ ∈ Ψ})

when (χ ∧©(Φ1|Ψ) is weakly coherent, and ⊥ when otherwise, with χ′ is as before. Lastly

∃+p.(ϕ ∨ ψ) = ∃+p.ϕ ∨ ∃+p.ψ

Lemma 6.4.29 Every satisfiable syntactically closed Lr-formula is semantically equivalent
to a disjunction of complete and coherent DFDF-formulae.

Proof. We may take the disjunction of all formulae Char
depth(ϕ)
PROP(ϕ)(M,m) for which (M,m)

ϕ. qed

Theorem 6.4.30 If ϕ is a complete SDF-formula and (M,m) is any model, then

(M,m) ∃+p.ϕ

if and only if the exists a model (N , n) such that

(N , n) ⇉
depth(ϕ)
SC(p)(PROP(ϕ),∅) (M,m) and (N , n) ϕ.

Proof. We proceed by induction on ϕ. The base case, when ϕ is a conjunction of literals χ,
is clear. (The cases for ⊥ and ⊤ do not occur since ϕ is complete.) So suppose that ϕ is of
the from χ∧©(Φ | Ψ), i.e. ϕ is a complete DFDF-formula. The subcase when ϕ is incoherent
follows by theorem 6.4.27 and the definition of ∃+p. Hence, suppose that ϕ is coherent.

It is clear that (N , n) ∃+p.ϕ whenever (N , n) ϕ. Moreover, since ∃+p.ϕ is syntac-
tically closed and in positive in p, it is preserved under syntactically closed p-simulations.
Hence the direction from bottom to top.

Conversely, suppose that (M,m) ∃+p.ϕ. By lemma 6.4.29, ϕ is a equivalent to a
disjunction of complete and coherent formulae, say

∨

ϕi. By the definition of ∃+p, it follows
that (M,m) ∃+p.ϕi, for some i.

176 Chapter 6. Semantic Extensions of SQEMA

Now (M,m) Char
depth(ϕ)
PROP(ϕ)(M,m). Let us write κ for Char

depth(ϕ)
PROP(ϕ)(M,m). By lemma

6.4.23 we have
(SM(κ), wκ) ⇉

depth(ϕ)
SC(∅)(PROP(ϕ),∅) (M,m).

Since ϕi is complete and coherent and ∃+p.ϕi is obtained from it by deleting all negative
p-literals, we have ϕi �p κ. Hence, by lemma 6.4.20,

(SM(ϕi), wϕi
) ⇉

depth(ϕi)
SC(p)(PROP(ϕi),∅)

(SM(κ), wκ).

It follows that
(SM(ϕi), wϕi

) ⇉
depth(ϕi)
SC(p)(PROP(ϕi),∅)

(M,m).

Moreover, by lemma 6.4.23, (SM(ϕi), wϕi
) ϕi, and hence (SM(ϕi), wϕi

) ϕ. Hence we
may take (SM(ϕi), wϕi

) as the desired model (N , n). This concludes the inductive step for
ϕ of the form χ ∧©(Φ | Ψ). The inductive step for disjunction is trivial. qed

The following corollary, which is the ‘Lyndon-theorem’ referred to in the title of this sub-
section, guarantees the existence of effectively obtainable positive equivalents for upward
monotone syntactically closed Lr-formulae.

Corollary 6.4.31 If ϕ is a SDF-formula which is upward monotone in the propositional
variables p, then ϕ ≡sem ∃+p.ϕ.

Corollary 6.4.31, moreover, gives us a way to compute syntactically correct equivalents for
propositionally downward monotone, syntactically open Lnr -formulae. The procedure for sep-
arately monotone formulae, as outlined in the previous section, is adapted in the obvious way
— we will not bore the reader by reiterating the details. Here are a few examples:

Example 6.4.32 Consider the syntactically closed formula ¬p ∧ 3
−1

2p. This formula is
unsatisfiable and hence upward monotone in p. Let us compute an equivalent for it using
simulation quantifiers. First rewrite the formula equivalently as a complete SDF-formula:

¬p ∧ 3
−1

2p

≡ (¬p ∧©(∅ | 2p)) ∨ (¬p ∧©(⊤ | 2p))

≡
∨

χ∈Γ

(¬p ∧©(∅ | χ ∧©(∅ | ∅))) ∨
∨

χ∈Γ

(¬p ∧©(∅ | χ ∧©(p | ∅)))

∨
∨

χ∈Γ

∨

ψ∈Ψ

(¬p ∧©(ψ | χ ∧©(∅ | ∅))) ∨
∨

χ∈Γ

∨

ψ∈Ψ

(¬p ∧©(ψ | χ ∧©(p | ∅)))

where Γ = {p,¬p} and Ψ contains all {p}-full complete DFDF-formulae of depth 1. Now each
disjunct γ of this formula is incoherent. Indeed, Past(γ) is either χ∧©(∅ | ∅) of χ∧©(p | ∅).
In the first case Fut(χ ∧©(∅ | ∅)) = ∅ and hence there is no formula δ ∈ Fut(χ ∧©(∅ | ∅))
such that γ ≤ δ. In the second case Fut(χ ∧©(p | ∅)) = {p}, and since Bool(γ) = ¬p there is
similarly no formula δ ∈ Fut(χ ∧©(∅ | ∅)) such that γ ≤ δ.

Thus applying the simulation quantifier ∃+p to this formula, will return a disjunction in
which is disjunct is ⊥. �

6.5. Conclusion 177

Example 6.4.33 Consider again the formula

ϕ = (2−1¬i ∨ ¬p ∨ 3p) ∧ 32
−1(2−1¬i ∨ ¬p)

form examples 6.1.7 and 6.3.12. In example 6.3.12 it was pointed out that this formula is not
separately monotone in p. However, it is propositionally monotone, for the formula

PSep(ϕ) = (2−1¬r ∨ ¬p ∨ 3p) ∧ 32
−1(2−1¬r ∨ ¬p)

is downward monotone in p. Indeed, this formula is semantically equivalent to 32
−1(2−1¬r∨

¬p). Let us compute an equivalent for ϕ. We begin by negating PSep(ϕ) to obtain

(3−1r ∧ p ∧ 2¬p) ∨ 23
−1(3−1r ∧ p).

The obtained formula, which is syntactically closed, is rewritten as a complete SDF-formula:

(p ∧©(∅ | r)) ∨ (p ∧©(¬p | r)) ∨ (23
−1(3−1r ∧ p))⋆.

We will not bother to write out the translation and transformation into a complete SDF-
formula of the last disjunct, as this disjunct is positive in p and hence unaffected by the
application of the simulation quantifier ∃+p. As for the first two disjuncts:

∃+p.((p ∧©(∅ | r)) ∨ (p ∧©(¬p | r)))

= (p ∧©(∅ | r)) ∨ (p ∧©(⊤ | r)).

Undoing the translation, we obtain

(p ∧ 3
−1r) ∨ 23

−1(3−1r ∧ p).

Lastly, negation and the reversal of the PSep-function yields the formula

(¬p ∨ 2
−1¬i) ∧ 32

−1(2−1¬i ∨ ¬p)

which is syntactically open, negative in p, and, as the reader can easily verify, semantically
equivalent to ϕ. �

6.5 Conclusion

In this chapter we have extended the SQEMA-algorithm with a stronger Ackermann-rule that
does not require negativity in the propositional variable being eliminated, but only downward
monotonicity. In order to be able to guarantee the d-persistence of the formulae on which the
extended algorithm succeeds, we found it necessary to preserve the correct syntactic shape
of the sequents obtained during execution. Hence, we needed to compute equivalents to
the downward monotone sequents in the application of the semantic Ackermann-rule, which
were negative in the propositional variable under consideration and syntactically open. To
facilitate this we considered two stronger forms of monotonicity, viz. separated monotonicity

178 Chapter 6. Semantic Extensions of SQEMA

and propositional monotonicity. Both separated and propositional monotonicity require Lnr -
formulae to be monotone even if we ‘forget’ some of the special features of the semantics of
this language. In the latter case we ‘forget’ that nominals are interpreted as singletons, and
in the former also that 3 and 3

−1 are inverses. In each case we developed methods based on
simulation quantifiers which could be used to compute the desired equivalents.

The question remains — can similar methods be found for Lnr formulae which are only
monotone in the ordinary sense? It seems possible that the method of disjunctive forms and
simulation quantifiers can be extended. However, notions like coherency and the construction
of the standards models become quite tricky. Specifically, we cannot merrily take disjoint
unions to construct the desired models, since this may cause nominals not to be interpreted
as singletons.

Lastly, the most important question which we left open in this chapter is of course
whether the formulae on which SSQEMA (the algorithm without replacement) succeeds are
d-persistent. It is not clear how this could be proved. On the other hand, SSQEMA succeeds
on none of the well-known non-canonical but elementary formulae, hence a counter example
will probably have to involve a new specimen of this rare type.

Conclusion

The forgoing chapters have been a study in what we chose to term ‘algorithmic correspondence
and completeness in modal logic’. For the most part, this was based on the SQEMA-algorithm
and its various extensions and adaptations. This approach can be considered suitable and
natural for the following reasons:

1. It employs (hybrid) modal languages for its computations. This has several advantages,
namely:

(a) By using languages which have only the minimal required expressive power, we
minimize complexity.

(b) In these languages, certain semantic properties, like monotonicity, are decidable,
and can hence be effectively employed in computations. By contrast, monotonicity
is only semi-decidable in first-order logic. (Note that, although the fragments
of first-order logic into which the standard translations map modal and hybrid
languages are well known to be decidable, manipulation of these translations during
attempts to eliminate predicate variables may often lead out of these well behaved
fragments, at least syntactically.)

(c) Computations in these languages are, at least for those familiar with modal and
hybrid logics, intuitive and user friendly — the modal structure of formulae and the
accompanying modal intuitions are not lost by a direct translation into first-order
logic, for example.

(d) The use of these languages facilitates (topological) canonicity proofs.

2. It stays within the confines of the method of substitutions, and hence continues a well-
established tradition within modal correspondence theory.

3. It subsumes and unifies most of the known syntactically specified classes of elementary
and canonical modal and hybrid formulae, and also generates new such classes.

4. SQEMA and its adaptations to hybrid languages are based on relatively simple rules
that transform formulae in an incremental fashion. As a result, it is quite easy to run
these algorithms ‘by hand’, at least on relatively small formulae. Thus they provide
convenient research tools — where one could previously say “Look, we can axiomatize
this using Sahlqvist formulae!”, one could now also say “Some SQEMA-formulae will be
enough to axiomatize that!”. More powerful versions, like the semantic extension, are

179

180 Conclusion

less practical for manual computations, and hence here computerized implementations
become even more desirable.

We conclude with a list of open questions as well as some thoughts on what the way forward
could hold:

Open questions

1. The procedure outlined in the proof of corollary 1.5.15 for determining whether a given
modal formula is semantically equivalent to a Sahlqvist formula, has non-elementary
runtime complexity. Does there exist a procedure for answering this question which has
an elementary upper bound on its complexity?

2. Is it decidable whether a given modal formula is model / locally equivalent to a Sahlqvist
formula?

3. As was seen in example 2.3.3, SQEMA may succeed on an input formula if variables are
eliminated in one order, but may fail on the same formula if elimination is attempted in
another order. For this reason the algorithm could backtrack and attempt all orders. In
example 2.3.3 the auxiliary rules played an essential role. Is it still true that the order
of elimination matters if we were to remove the auxiliary rules from the algorithm?

4. Are all modal formulae on which DLS/SCAN succeed canonical?

5. How can SQEMA be naturally extended to compute first-order equivalents relative to
special frame classes, e.g. the transitive frames?

6. Are all formulae on which SSQEMA succeeds canonical?

The way forward

Separating elementarity and canonicity. There is in principle no reason why we should
only consider algorithms that guarantee both the elementarity and canonicity of the
formulae which they reduce. Since no inclusion holds between the classes of elemen-
tary and canonical formulae, attempts at decidable approximations of these classes will
probably have to diverge at some stage.

Indeed, as we saw, there exist non-canonical van Benthem-formulae, i.e., non-canonical
formulae which are amenable to the method of substitutions. Also, as we have re-
marked, the basic SQEMA-algorithm can be used without adaptation to produce first-
order equivalents of hybrid formulae (with nominals only) which axiomatize incomplete
logics.

It is possible to detect a certain algorithmic flavour in Jónsson’s algebraic proof ([Jón94])
of the canonicity of the Sahlqvist formulae. This proof depends on the transformation of
the algebraic equations corresponding to these formulae into a certain normal form, from
which their canonicity can then be deduced. Jónsson also adapts this approach to prove
the canonicity of certain non-elementary formulae. This method can be extended to the

181

inductive formulae with ease, and it seems plausible that an algorithm for proving the
canonicity of (possibly non-elementary) modal formulae can be developed along these
lines.

Beyond the van-Benthem formulae. The fact that SQEMA stays within the class of van
Benthem-formulae was mentioned above as one of its advantages. However, since we
know that there exist elementary formulae which fall outside this class, this fact simulta-
neously indicates a limitation. The non-inclusion of the elementary formulae in the van
Benthem-formulae is witnessed by the conjunction of the McKinsey formula (a modal
reduction principle) and the transitivity axiom. This formula is hence not reducible to a
first-order frame equivalent by means of the method of substitutions. Thus, the modal
reduction principles interpreted over transitive frames represent the most conspicuous
class of elementary (and canonical!) modal formulae containing members on which all
known algorithms stumble. Algorithms that are able to deal with this class will prob-
ably have to go beyond the familiar pattern of equivalence preserving transformations
and substitutions.

Specialized second-order quantifier elimination. We saw that the elementarity prob-
lem for modal formulae can be reformulated as a second-order quantifier elimination
problem, and can hence be attacked using algorithms like SCAN and DLS. While these
algorithms are designed to handle arbitrary second-order formulae, the translations of
modal formulae represent only a fragment of that langauge. Particularly, the standard
translation embeds L into the so-called guarded fragment of first-order logic ([AvBN98]).
Apart from having various desirable model theoretic properties, this fragment is also
decidable! Hence certain semantic properties of formulae in this fragment, like mono-
tonicity, for example, are also decidable. Thus second-order quantifier elimination algo-
rithms specialized to this fragment could combine the positive computational properties
of modal logics on the one hand, with the flexibility of first-order syntax on the other.

Semi-algorithms. SQEMA and DLS are guaranteed to always terminate, and hence define
decidable classes of formulae. In the search for ever better approximations of the classes
we are interested in, we will have to give up termination at some stage, and employ
semi-algorithms. SCAN, the c-resolution stage of which might run forever, is an example
of such a procedure. Indeed, as we saw (corollary 1.5.4) the class of formulae amenable
to the method of substitutions, i.e. the van Benthem-formulae, although recursively
enumerable, is not decidable. Hence, the development of more efficient semi-algorithms
to identify (or approximate) the van Benthem-formulae might be a good place to start.

Richer languages. The languages treated in this thesis represent only a small segment of the
wide spectrum of modal languages that appear in the literature. There are richer hybrid
languages with, e.g., binders, languages with graded modalities (or counting quantifiers),
languages with the difference operator, propositional dynamic logic, more expressive
temporal languages, and the diverse family of languages of description logic, to name
but a few. There is scope to development the algorithmic approach to correspondence
and completeness in all these directions.

Bibliography

[ABM00] C. Areces, P. Blackburn, and M. Marx. The computational complexity of hybrid
temporal logics. Logic Journal of the IGPL, 8(5):653–679, 2000.

[Ack35] W. Ackermann. Untersuchung über das Eliminationsproblem der mathematischen
Logic. Mathematische Annalen, 110:390–413, 1935.

[AvBN98] H. Andreka, J. van Benthem, and I. Nemeti. Modal languages and bounded
fragments of predicate logic. Journal of Philosophical Logic, 27:217–274, 1998.

[BdRV01] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, 2001.

[BS85] G. Boolos and G. Sambin. An incomplete system of modal logic. Journal of
Philosophical Logic, 14:351–358, 1985.

[BT99] P. Blackburn and M. Tzakova. Hybrid languages and temporal logic. Logic Journal
of the IGPL, 24(1):27–54, 1999.

[BvBW06] P. Blackburn, J.F.A.K. van Benthem, and F. Wolter. Handbook of Modal Logic.
Elsevier, 2006.

[CC06] A. Chagrov and L. A. Chagrova. The truth about algorithmic problems in cor-
respondence theory. In G. Governatori, I. Hodkinson, and Y. Venema, editors,
Advances in Modal Logic, volume 6, pages 121–138. College Publications, 2006.

[CGV05] W. Conradie, V. Goranko, and D. Vakarelov. Elementary canonical formulae: a
survey on syntactic, algorithmic, and model-theoretic aspects. In R. Schmidt,
I. Pratt-Hartmann, M. Reynolds, and H. Wansing, editors, Advances in Modal
Logic, volume 5, pages 17–51. Kings College, 2005.

[CGV06a] W. Conradie, V. Goranko, and D. Vakarelov. Algorithmic correspondence and
completeness in modal logic I: The core algorithm SQEMA. Logical Methods in
Computer Science, 2(1:5), 2006.

[CGV06b] W. Conradie, V. Goranko, and D. Vakarelov. Algorithmic correspondence and
completeness in modal logic II. Polyadic and hybrid extensions of the algorithm
SQEMA. Journal of Logic and Computation, 16:579–612, 2006.

183

184 Bibliography

[Cha91] L. A. Chagrova. An undecidable problem in correspondence theory. Journal of
Symbolic Logic, 56:1261–1272, 1991.

[CK90] C.C. Chang and H. J. Keisler. Model Theory. North-Holland, 1990.

[Con06] W. Conradie. On the strength and scope of DLS. Journal of Applied Non-Classical
Logics, 16(3-4):279–296, 2006.

[CZ93] A. Chagrov and M. Zakharyaschev. The undecidability of the disjunction property
of propositional logics and other related problems. Journal of Symbolic Logic,
58:967–1002, 1993.

[CZ95] A. Chagrov and M. Zakharyaschev. Sahlqvist formulas are not so elementary even
above S4. In L. Csirmaz, D. Gabbay, and M. de Rijke, editors, Logic Colloquium
’92, pages 61–73. CSLI Publications, 1995.

[CZ97] A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford, 1997.

[DL02] G. D’Agostino and G. Lenzi. On modal µ-calculus with explicit interpolants.
Technical Report PP-2002-17, Institute for Logic, Language and Computaion,
University of Amsterdam, 2002.

[D LS97] P. Doherty, W. Lukaszewicz, and A. Szalas. Computing circumscription revisited:
A reduction algorithm. Journal of Automated Reasoning, 18(3):297–336, 1997.

[dR93] M. de Rijke. Diamonds and Defaults. Kluwer Academic Publishers, 1993.

[dR97] M. de Rijke. Advances in Intensional Logic. Springer, 1997.

[dRK97] M. de Rijke and N. Kurtonina. Simulating without negation. Journal of Logic
and Computation, 7:1–22, 1997.

[dRV95] M. de Rijke and Y. Venema. Sahlqvist’s theorem for Boolean algebras with oper-
ators with an application to cylindric algebras. Studia Logica, 54:61–78, 1995.

[Eng96] T. Engel. Quantifier elimination in second-order predicate logic. Master’s thesis,
Max-Planck-Institut für Informatik, Saarbrüken, 1996.

[Esa74] L. L. Esakia. Topological Kripke models. Soviet Mathematics Doklady, 15(1):147–
151, 1974.

[Fin75a] K. Fine. Normal forms in modal logic. Notre Dame Journal of Formal Logic,
16(2):229–237, 1975.

[Fin75b] K. Fine. Some connections between elementary and modal logic. In S Kanger,
editor, Proc. of the 3rd Scandinavian Logic Symposium, Uppsala 1973, pages 110–
143, 1975.

[Fin85] K. Fine. Logics containing K, part II. Journal of Symbolic Logic, 50(2):619–651,
1985.

Bibliography 185

[Geo06] D. Georgiev. An implementation of the algorithm SQEMA for computing first-
order correspondences of modal formulas. Master’s thesis, Sofia University, Faculty
of mathematics and computer science, 2006.

[GG84] D. M. Gabbay and F. Guenther, editors. Handbook of Philosophical Logic. Reidel,
1984.

[GG93] G. Gargov and V. Goranko. Modal logic with names. Journal of Philosophical
Logic, 22:607–636, 1993.

[Ghi95] S. Ghilardi. An algebraic theory of normal forms. Annals Pure and Applied Logic,
71(3):189–245, 1995.

[GHSV04] V. Goranko, U. Hustadt, R. A. Schmidt, and D. Vakarelov. SCAN is complete
for all Sahlqvist formulae. In R. Berghammer, B. Möller, and G. Struth, editors,
Revised Selected Papers of the 7th International Seminar on Relational Methods in
Computer Science and the 2nd International Workshop on Applications of Kleene
Algebra, Bad Malente, Germany, May 12-17, 2003, pages 149–162, 2004.

[GHV03] R. Goldblatt, I. Hodkinson, and Y. Venema. On canonical modal logics that are
not elementarily determined. Logique et Analyse, 181:77–101, 2003.

[GO92] D. M. Gabbay and H.-J. Ohlbach. Quantifier elimination in second-order predicate
logic. South African Computer Journal, 7:35–43, 1992.

[GO06] V. Goranko and M. Otto. Model theory of modal logic. 2006. In [BvBW06].

[Gol75] R. Goldblatt. First-order definability in modal logic. Journal of Symbolic Logic,
40:35–40, 1975.

[Gol91] R. Goldblatt. The McKinsey axiom is not canonical. Journal of Symbolic Logic,
56(2):554–562, 1991.

[GP92] V. Goranko and S. Passy. Using the universal modality: Gains and questions.
Journal of Logic and Computation, 2(1):5–30, 1992.

[GPT87] G. Gargov, S. Passy, and T. Tinchev. Modal environment for Boolean specu-
lations. In D. Skordev, editor, Mathematical Logic and its applications, pages
253–263. Plenum Press, 1987.

[GSS06] D. M. Gabbay, R. Schmidt, and A. Szalas. Second-Order Quantifier Elimina-
tion: Mathematical Foundations, Computational Aspects and Applications. 2006.
Monograph Manuscript, To appear.

[Gus96] J. Gustafsson. Quantifier elimination in second-order predicate logic. Technical
Report LiTH-MAT-R-96-04, Department of Mathematics, Linköping University,
Sweden, 1996.

186 Bibliography

[GV01] V. Goranko and D. Vakarelov. Sahlqvist formulae in hybrid polyadic modal lan-
guages. Journal of Logic and Computation, 11(5):737–254, 2001.

[GV02] V. Goranko and D. Vakarelov. Sahlqvist formulas unleashed in polyadic modal
languages. In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev, edi-
tors, Advances in Modal Logic, volume 3, pages 221–240, Singapore, 2002. World
Scientific.

[GV06] V. Goranko and D. Vakarelov. Elementary canonical formulae: Extending
Sahlqvist theorem. Annals of Pure and Applied Logic, 141(1-2):180–217, 2006.

[HM92] J. Y. Halpern and Y. O. Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence, 54:319–379, 1992.

[Hod93] W. Hodges. Model Theory. Cambridge University Press, 1993.

[Hod07] I. Hodkinson. Hybrid formulas and elementary generated modal logics. To appear
in the Notre Dame Journal of Formal Logic, 2007.

[Jón94] B. Jónsson. On the canonicity of Sahlqvist identities. Studia Logica, 53:473–491,
1994.

[JW95] D. Janin and I. Walukiewicz. Automata for the modal µ-calculus and related
results. In Mathematical foundations of computer science 1995 (Prague), volume
969 of Lecture Notes in Computer Science, pages 552–562. Springer, Berlin, 1995.

[Kra99] M. Kracht. Tools and Techniques in Modal Logic. Elsevier, 1999.

[Lem77] E.J. Lemmon. An introduction to modal logic. Blackwell, 1977.

[Lyn59a] R. C. Lyndon. An interpolation theorem in the predicate calculus. Pacific Journal
of Mathematics, 9:129–142, 1959.

[Lyn59b] R. C. Lyndon. Properties preserved under homomorphism. Pacific Journal of
Mathematics, 9:143–154, 1959.

[McC88] W. W. McCune. Un-skolemizing clause sets. Information Processing Letters,
29:257–263, 1988.

[Pit92] A. M. Pitts. On an interpretation of second order quantification in first order
intuitionistic propositional logic. Journal of Symbolic Logic, 57(1):33–52, 1992.

[Sah75] H. Sahlqvist. Correspondence and completeness in the first and second-order
semantics for modal logic. In S. Kanger, editor, Proceedings of the 3rd Scandina-
vian Logic Symposium, Uppsala 1973, pages 110–143, Amsterdam, 1975. Springer-
Verlag.

[Spa93] E. Spaan. The complexity of propositional tense logics. 1993. In [dR93].

Bibliography 187

[SV89] G. Sambin and V. Vaccaro. A new proof of Sahlqvist’s theorem on modal defin-
ability and completeness. Journal of Symbolic Logic, 54:992–999, 1989.

[Sza93] A. Szalas. On the correspondence between modal and classical logic: An auto-
mated approach. Journal of Logic and Computation, 3:605–620, 1993.

[Sza02] A. Szalas. On the correspondence between modal and classical logic: An auto-
mated approach. In S. Flesca and G. Ianni, editors, Proceedings of JELIA’02,
pages 223–232. Springer-Verlag, 2002.

[tC05a] B. ten Cate. A note on the length of explicit definitions in modal logic. Unpub-
lished note, 2005.

[tC05b] B. D. ten Cate. Model Theory for Extended Modal Languages. PhD thesis, Institute
for Logic, Language and Computation, Universiteit van Amsterdam, 2005.

[tCMV05] B. ten Cate, M. Marx, and P. Viana. Hybrid logics with Sahlqvist axioms. Logic
Journal of the IGPL, 13(3):293–300, 2005.

[Tho75] S.K. Thomason. Reduction of second-order logic to modal logic. Zeitschrift für
mathematische Logic und Grundlagen der Mathematik, 21:107–114, 1975.

[Vak03a] D. Vakarelov. Modal definability in languages with a finite number of propositional
variables, and a new extension of the Sahlqvist class. In P. Balbiani, N.-Y. Suzuki,
F. Wolter, and M. Zakharyaschev, editors, Advances in Modal Logic, volume 4,
pages 495–518. Kings College Publications, 2003.

[Vak03b] D. Vakarelov. On a generalization of the Ackermann’s lemma for computing first-
order equivalents of modal formulae. In TARSKI Workshop, March 11 - 13, 2003,
Toulouse, France, 2003.

[Vak05] D. Vakarelov. Modal definability, solving equations in modal algebras and gener-
alizations of the Ackermann lemma. In Proceedings of the 5th Panhellenic Logic
Symposium, July 25-28, 2005, Athens, 2005.

[vB76] J. F. A. K. van Benthem. Modal reduction principles. Journal of Symbolic Logic,
41(2):301–312, 1976.

[vB83] J. F. A. K. van Benthem. Modal Logic and Classical Logic. Bibliopolis, 1983.

[vB84] J. F. A. K. van Benthem. Correspondence Theory. 1984. In [GG84].

[vB06] J. F. A. K. van Benthem. Modal frame correspondence and fixed-points. Studia
Logica, 83:133–155, 2006.

[Vis96] A. Visser. Uniform interpolation and layered bisimulation. In Gödel ’96 (Brno,
1996), volume 6 of Lecture Notes Logic, pages 139–164. Springer, Berlin, 1996.

[Wal70] W. J. Walkoe. Finite partially-ordered quantification. Journal of Symbolic Logic,
35(4):535–555, 1970.

188 Bibliography

[Wil04] S. Willard. General Topology. Dover Publications, 2004.

[Zak92] M. Zakharyaschev. Canonical formulas for K4. Part I: Basic results. Journal of
Symbolic Logic, 57:1377–1402, 1992.

[Zak96] M. Zakharyaschev. Canonical formulas for K4. Part II: Cofinal subframe logics.
Journal of Symbolic Logic, 61:421–449, 1996.

[Zak97a] M. Zakharyaschev. Canonical formulas for K4. Part III: The finite model property.
Journal of Symbolic Logic, 62:950–975, 1997.

[Zak97b] M. Zakharyaschev. Canonical formulas for modal and superintuitionistic logics:
a short outline. 1997. In [dR97].

Index

(Ln
r (Φ,Ψ))k

SC(Θ), 153

(Ln
r)k

SC(Θ), 153

L,L(Φ), 8
Ln,u, 14
Ln,Ln(PROP,NOM), 14
L2, 155
Lr, 8
Ln

r (Φ,Ψ), 153
Λ ⊕ Γ, 13
K, 13
Kr, 13
≡sem, ≡mod, ≡loc, ≡ax, ≡lfr, ≡fr, 11
≡trans, 57
≡ad

trans, 61
≡di

trans, 115
≡rdi

trans, 115
≡sd

trans, 128
, 9, 11

gl
mod,

gl
gf ,

gl
fr , 11

loc
C , loc

mod, loc
gf , loc

fr , 11
�Θ, ≤Θ, ⊆Θ, 166
3

n,2n, 16
3X, 2X, 3

−1X, 2
−1X , 10

CUTk(ϕ), 40
⊎

, 170
g♯, 10
COMB, 170
M ↾k w, 38
⇛k

SC(Θ), 153
⇄n, ⇄n

Φ, ⇄, 39
→֒Θ, 159
⇄n,r,⇄k

n,r, 151

⇉k
SC(Θ)(Φ,Ψ), ⇛k

SC(Θ)(Φ,Ψ), 153

⇉k
SC(Θ), 152

(·)⋆, 157, 165
Form(·), 45
depth(·), 163
depth(·, ·), 39
PSep(·), 162
Sep(·), 156

Chark
Θ(M,m), 164

pure(ϕ), 49
SM(ϕ), 171
WSM(ϕ), 173
©(· | ·), 163
Bool(·), Fut(·), Past(·), 163
χ, 163
[[ϕ]]M, 9
ST(·, ·), 12
∇,△, 157
∃+, 158, 175
absolutely positive/negative formula, 139
Ackermann’s lemma, 44

discrete frames, 117
modal version, 44
nominals, 126
restricted version for descriptive frames, 65
reversive discrete frames, 116
sd-frames, 127
semantic version, 145

Ackermann-rule, 46
discrete frames, 117
nominals, 126
semantic with replacement, 149
semantic without replacement, 146

admissible points, 121
admissible sets, 10
augmented model, 61, 105
augmented valuation, 61, 105
axiom

dual, 13
K, 13

bad scope
first-order formula, 86
modal formula, 91

(non-)benign ∧/∨ occurrence
first-order formula, 80
modal formula, 91

biased simulation, 159
bisimulation, 39

189

190 Index

n-bisimulation, 39
Ln

r , 151
23-scope, 91
box form, 28

semi-universalized, 141
universalized, 139

box formula, 29, 99
semi-universalized, 141
universalized, 139

c-resolution, 34
calculus, 36
Chagrova’s theorem, 21
characteristic formula, 164
closed formula/operator, 62
cofinal subframe logic/formula, 54
coherent DFDF-formula, 169
complete SDF/DFDF-formula, 164
complex formulae, 32
consequence

local/global, 11
relations, 11

constraint resolution, 34
correspondent

(global) frame, 20
local frame, 20

d-persistence, 11
dependency digraph, 29, 99

general diamond link formula, 123
restricted formula, 89
universalized inductive formula, 139

depth, see modal depth
(general) deskolemizable form, 79
deskolemization, 78
DFDF-formula, 163

(weakly) coherent, 169
complete, 164
full, 163
incoherent, 169
uniform depth, 163

di-persistence, 11
(general) diamond-link formula, 123

forest -like, 123
tree-like, 123

diamond/box-uniform formula, 118
disjunctive form

L2, 157
Lr, 163
disjunction free (DFDF), 163

strict (SDF), 163
DLS algorithm, 35, 82
dual axiom, 13
dual Sahlqvist–van Benthem formula, 28

equivalence
ad-transformation, 61
axiomatic, 11
di-transformation, 115
e-transformation, 74
frame, 11
local, 11
local frame, 11
model, 11
semantic, 11
transformation, 57

transitivity, 57
Esakia’s lemma

for 3 on descriptive frames, 62
for 3

−1 on descriptive frames, 62
for 〈α〉 on descriptive frames, 105
polyadic inverse diamonds, 109
polyadic nominal positive formulae, 111
polyadic syntactically closed formulae, 111
syntactically closed formulae, 64

∃∀-scope, 80
extension of a formula, 9

Fine’s theorem, 23
finite intersection property (FIP), 10
flattened formula, 134
Form(·), 45
formula

(globally) elementary, 20
(globally) first-order definable, 20
canonical, 22
locally elementary, 20
locally first-order definable, 20
pure hybrid, 14

frame
canonical general, 22
canonical, 22
compact general, 10, 60
descriptive general, 10, 60
differentiated general, 10, 59
discrete general, 10
general, 10
Kripke, 9
pointed, 9
refined general, 10, 60

Index 191

reversive general, 104
strongly descriptive general, 120
tight general, 10, 60, 104
underlying Kripke, 10

Geach formula, 26, 32
pure equivalent, 71, 73
reduced by DLS, 85
reduced by SQEMA, 50

general frame
canonical, 22
compact, 10, 60
descriptive, 10, 60
differentiated, 10, 59
discrete, 10
refined, 10, 60
reversive, 104
strongly descriptive, 120
tight, 10, 60, 104

good scope
first-order formula, 86
modal formula, 91

impervious formula, 38
independent restricted formula, 89
inductive formula, 99

SQEMA example, 51
monadic, 29
semi-universalized (SUIF), 141
universalized (UIF), 139

inductive system, 113
input nominals, 126
introduced nominals, 127
inverse existential/universal formula, 127

K axiom, 13
k-hull of a model, 38
k-impervious formula, 38

language
basic modal, 8
basic reversive, 8
hybrid, 14
monadic, 8
polyadic, 8, 95
reversive, 8

logic
cofinal subframe, 54
complete, 14
hybrid, 16

minimal tense, 13
normal modal, 13
sound, 14
strongly complete, 14
subframe, 54

Lyndon’s theorem, 145
syntactcally closed Lr-formulae, 176
syntactically closed L2-formulae, 160
syntactically closed/open formulae, 154

(non-)malignant ∧/∨ occurrence
first-order formula, 80
modal formula, 91

McKinsey formula, 20, 22, 26, 32, 33, 54, 135, 136
non-canonicity, 22
over transitive frames, 35

method of substitutions, 31
MIF, 29
modal constants, 96
modal depth, 25, 163

formulae in disjunctive form, 163
subformula, 39

modal operators, 8
modal reduction principle, 31
modal terms

basic, 8
polyadic, 96

modalities, 8
model, 9

k-hull of, 38
augmented, 61
canonical, 21
standard, 171
unravelling of, 40
weak standard, 173

(PROP,NOM)-related models, 57
modus ponens, 13
monadic inductive formula, 70
monadic inductive formula (MIF), 29
monadic regular formula, 29

dependency digraph, 29
monotonicity, 44

propositional, 162
separate, 156

necessitation, 13
negative system, 45
nominal, 14

input/introduced, 127
nominal positive/negative formula, 110

192 Index

nominalized Sahlqvist–van Benthem formula, 131

open formula/operator, 62

persistence
ad, 61, 105
d, 11
di, 11
e, 31
global, 10
local, 10
r, 11
sd, 121

point-closed, 60
polarity, 26
positive system, 45
prefixed negative propositional variable, 140
propositional monotonicity, 162
propositional separation, 162
pure hybrid formula, 14
pure system, 45

quantifier shifting, 80

r-persistence, 11
regular formula, 99
restricted formula, 88

independent, 89
rules

non-orthodox, 16

Sahlqvist formula, 26, 68
simple, 26
very simple, 26, 118

Sahlqvist–van Benthem formula, 27
dual, 28
nominalized, 131
universalized, 138

satisfiability
augmented, 61
global, 9
parameterized, 15

SCAN algorithm, 34
scope

(strongly) minimal, 79
good/bad

first-order formula, 86
modal formula, 91

SDF-formula, 163
complete, 164

second-order quantifier elimination, 33

semi-universalized pre-inductive (SUPIF), 141
separate monotonicity, 156
sequent

antecedent, 45
consequent, 45
diamond-link, 45
non-diamond-link, 45
normalized, 45
syntactically correct, 146, 149

set
maximal consistent, 21

shallow formula, 25
similarity type, 8

basic modal, 8
monadic, 8
polyadic, 95
reversive, 8

simulation
syntactically closed, 152

simulation quantifier, 158, 175
SQEMA, 45

sequent, 45
antecedent, 45
consequent, 45
diamond-link, 45
non-diamond-link, 45
normalized, 45

system, 45
second-order translation of, 58

transformation rules, 45
Ackermann-rule, 46
auxiliary rules, 47
logical connectives, 45, 100
normalization rules, 47, 100
polarity switching rule, 46

SQEMAn, 117
Ackermann-rule for discrete frames, 117

SQEMAsd, 127
Ackermann-rule for nominals, 126

SSQEMA, 147
Ackermann-rule without replacement, 146

SSQEMAr, 149
Ackermann-rule with replacement, 149

standard model, 171
weak, 173

standard translation, 12
hybrid languages, 15

standardized formula, 79
subframe logic/formula, 54

Index 193

substitution
uniform, 13

substitutions
method of, 31

SUIF, 141
SUPIF, 141
syntactically closed Θ-k-simulation, 152
syntactically closed formula, 63, 110

L2, 157
syntactically correct sequent, 146, 149
syntactically open formula, 63, 110
system

box-uniform, 119
inductive, 113
negative, 45
positive, 45
pure, 45

top level conjunction/disjunction, 80
top level quantifier, 80
transformation equivalence, 57

ad, 61
di, 115
e, 74
strongly descriptive frames, 128
transitivity, 57

translation
standard, 12

truth set of a formula, 9

UIF, 139
undecidability

canonicity, 37
closure of syntactic classes, 37
d-persistence, 37
elementarity (Chagrova’s theorem), 21

underlying Kripke frame, 10
uniform substitution, 13
universal modality, 134
universalized inductive formula (UIF), 139
universalized pre-inductive formula (UPIF), 139
universalized Sahlqvist–van Benthem formula, 138
unravelling of a model, 40
unskolemization, see deskolemization
UPIF, 139

valuation, 9
augmented, 61

van Benthem-formulae, 30, 74

weak standard model, 173

