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Abstract

Nuclear Medicine (NM) images inherently suffer from large amounts of noise and

blur. The purpose of this research is to reduce the noise and blur while maintaining

image integrity for improved diagnosis. The proposal is to further improve image

quality after the standard pre- and post-processing undertaken by a gamma camera

system.

Mean Field Annealing (MFA), the image processing technique used in this research is

a well known image processing approach. The MFA algorithm uses two techniques

to achieve image restoration. Gradient descent is used as the minimisation tech-

nique, while a deterministic approximation to Simulated Annealing (SA) is used for

optimisation. The algorithm anisotropically diffuses an image, iteratively smooth-

ing regions that are considered non-edges and still preserving edge integrity until

a global minimum is obtained. A known advantage of MFA is that it is able to

minimise to this global minimum, skipping over local minima while still providing

comparable results to SA with significantly less computational effort.

Image blur is measured using either a point or line source. Both allow for the

derivation of a Point Spread Function (PSF) that is used to de-blur the image. The

noise variance can be measured using a flood source. The noise is due to the ran-

dom fluctuations in the environment as well as other contributors. Noisy blurred

NM images can be difficult to diagnose particularly at regions with steep intensity

gradients and for this reason MFA is considered suitable for image restoration.

From the literature it is evident that MFA can be applied successfully to digital

phantom images providing improved performance over Wiener filters. In this paper

MFA is shown to yield image enhancement of planar NM images by implementing

a sharpening filter as a post MFA processing technique.
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Chapter 1

Introduction

Medical imaging techniques began with X-rays that were discovered by W.C. Röntgen

in 1895 and soon thereafter the prospect of medical diagnosis was recognized [1].

There are now many different imaging techniques accessible to the medical com-

munity; notably these include Radiology and Computered Tomography (CT) with

X-rays, Diagnostic Ultrasound, Nuclear Magnetic Resonance Imaging (MRI), Elec-

trical Impedance Tomography and Radioisotope Imaging. This research is focused

on Radioisotope Imaging and its derivatives.

In Radioisotope Imaging (planar Nuclear Medicine (NM) imaging) the radiation

originates from inside the body and this is fundamentally different from the other

imaging techniques. Radioisotope-tagged compounds in tracer quantities (known

as a radiotracer or radiopharmaceutical) are injected into the patient’s body where

the isotopes decay and produce gamma-photons. These γ-photons are detectable

and therefore it is possible to obtain images of the distribution of the radionuclide.

Depending on the choice of labeling agent, the distribution of radionuclide can be

representative of different physiological functions, such as blood flow, blood volume

or various metabolic processes.

The processes and physics of Radioisotope Imaging has been well established with

progressively advancing techniques appearing such as Single Photon Emission Com-

puted Tomography (SPECT) and Positron Emission Tomography (PET). However,

due to the physical constraints of both γ-photon detection techniques and the re-

stricted amounts of radiotraces that may be administered, the resolution of Ra-

dioisotope Imaging is limited. As a result, the image quality sub-standard when

compared to anatomical medical images such as MRI and CT scans. The purpose

of this dissertation is to investigate the use of the computational technique Mean
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Field Annealing (MFA) and other post processing filters to improve the overall im-

age quality of Radioisotope images.

MFA is an iterative computational technique that makes use of the Point Spread

Function (PSF) and the noise associated with the NM image. MFA is applied to

NM images with the objective of reducing noise without compromising edge in-

tegrity. Furthermore, using a sharpening filter as a post-MFA technique may yield

subjective image enhancement of planar NM images.

1.1 Progression of Dissertation

This dissertation has been structured to provide a technical understanding of how

MFA can be applied to NM images. A technical paper discussing this application

has been published [2].

Chapter 2 introduces a basic description and background of Nuclear Medicine Imag-

ing details and some diagnosic issues.

Chapter 3 describes general image restoration techniques focusing in detail on the

importance of the accuracy of data models in order to achieve a successful image

restoration result. The prior knowledge required is the determination of an accurate

Point Spread Function and noise data model.

Chapter 4 describes and reviews Mean Field Annealing beginning with a brief discus-

sion of the origins of MFA. It then continues with a mathematically comprehensive

review of the derivation of MFA based on a Bayesian approach. The Chapter also

details different techniques available in edge detection and optimisation required in

MFA. In addition it describes the MFA algorithm as an iterative technique.

Chapter 5 addresses the application of MFA to digital phantom images as a proof of

concept. This chapter focuses on parameter selection, stopping criteria and digital

phantom restoration results.

Chapter 6 discusses how MFA can be applied to NM images highlighting the prob-

lems and requirements surrounding implementation. It also addresses the results of

MFA applied to NM images from an image reconstruction point of view.

Chapter 7 summarises and concludes the study and lists all the recommendations

by the author for future work in MFA applied to Nuclear Medicine
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Chapter 2

Review of Nuclear Medicine Imaging

Numerous factors affect how a scan is performed and these factors will in turn in-

fluence the quality and characteristics of the images. Different types of NM images

require different exposure durations and delays between injection and scanning. For

instance a bone scan requires 2-4 hours before scanning can begin while other scans

only require delays of a couple of minutes. The distance of the collimator to the

target organ and attenuation from other organs and tissues are two examples that

may affect image intensity and quality. The total distance the γ-photons need to

travel is a function of both target organ depth as well collimator distance away from

the body. This distance affects the variance of the Gaussian distribution associated

with the blur that is fundamental to the image restoration process used in this study.

Currently the NM cameras available typically have software that can threshold,

invert, non-linearly scale, eliminate background and perform other standard image

processing functionality. Regardless, edges are not enhanced to the standards of

anatomical imagery (CT, MRI etc.).

There are many issues that need to be factored in when diagnosing using NM images.

Some of these factors are outlined below:

• Overlying bones tend to look more intense but this could be because the ra-

diation is radiating from two overlapping bones, and does not always imply a

region of high uptake.

• Background activity is not necessarily noise, i.e. small amounts of the ra-

diotracer may actually be in those regions interspersed with the noise. NM

physicians determine the difference between noise and background activity by

anticipating a certain distribution.
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• Star effects are artifacts that typically occur with high energy radiopharma-

ceuticals such as Iodine that goes directly to the thyroid.

• Clinicians are often interested in both hot and cold regions. Hot implies regions

of high uptake and cold being regions where there is reduced uptake. It is often

difficult to identify the cold regions due to the influence of noise. Sometimes

the simple solution of inverting the image can help solve this problem.

• Vertebrae and other bone detail are frequently not sufficiently defined in bone

scans (skeletal). For example in a patient suffering from scoliosis the higher

vertebra are often not as well defined as the lower vertebra.

• Infection may require the use of Gallium, however this results in poor qual-

ity images. It is imperative to see where the Gallium has been taken up but

Gallium has a higher energy and penetrates through the septae of a collima-

tor. Generally lower energy radiopharmaceuticals provide a more estimable

quality image even though intrinsic resolution becomes worse with decreasing

gamma ray energy [3]. Due to diagnostic difficulty another type of scan may

be introduced to reinforce the results. Often multiple views are required in

the diagnostic process.
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Chapter 3

Image Restoration

There are many different strategies when it comes to image restoration such as

non-linear extrapolation in frequency space [4], Wiener filters [5], median filters,

weighted median filters, average filters, Graduated Non-Convexity (GNC), Variable

Conductance Diffusion (VCD), Anisotropic Diffusion and Biased Anisotropic Diffu-

sion (BAD) [6] and many more. Different techniques are suitable for different types

of images, and often the correct combination of techniques will yield the best results.

Mean Field Annealing is another technique that has been shown to be qualitatively

equivalent to GNC [7] and is the primary technique that will be investigated in this

study. The following chapter will discuss the prerequisites for MFA.

3.1 General

All images are imperfect and can be described as reflecting the scene as well as the

quality of the imaging system. Images can be degraded in the following ways.

• Image distortion due to the point spread function associated with the partic-

ular imaging system.

• Random noise added to the image due to the environment.

• Random noise added to the image due to the imaging systems (electronic noise

etc).
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Consider a recorded image g and an ideal (non-degraded) image f of a scene. The

recorded image is a function of the distortion D and the combined total noise n.

g = Df + n (3.1)

Image restoration aims to reverse the impact of D and n in Equation 3.1. This

requires some knowledge of how the image has been blurred and affected by the

statistical noise.

3.2 Point Spread Function

There are many parameters that define how well a gamma camera performs, these

parameters include:

• Sharpness and detail (spatial resolution).

• The efficiency with which it detects incident radiation.

• Ability to measure the energy in incident γ-rays i.e. minimise scatter.

• Counting rate it can handle without significant dead-time losses.

In reality a gamma camera is not able to produce ideal images of the radionuclide

distribution. Its imperfections are caused by performance characteristics of the de-

tector, associated electronic circuitry and the collimator. Malfunctions in various

camera components can also cause image artifacts [3]. Therefore standard tests and

calibrations are frequently performed on γ-cameras. Important information such as

the Point Spread Function (PSF) or Modulation Transfer Function (MTF) needs to

be obtained to keep the cameras operating correctly.

There are many aspects that contribute to the overall spatial resolution of the im-

age such as intrinsic spatial resolution and energy resolution (for further details see

Physics in Nuclear Medicine [3]). The resolution of the collimator is a major factor

in determining the overall resolution of the NM images.

Other detector limitations include nonlinearity and non-uniformity. Nonlinearities

arise when there is a nonlinear change of X and Y signals with the displacement dis-

tance of a radiation source (occurring across the surface of the detector) [3]. This can

6



result in pincushion distortion and barrel distortion. Pincushion distortion events

are pushed toward the center of the distortion and barrel distortions are pushed

outward causing hot spots and cold spots respectively [3]. With todays electronic

technology these distortions can be easily countered, however they can have signifi-

cant effects on image non-uniformities.

Non-uniformities cause a more noticeable problem. The two primary causes of non-

uniformities are uniform detection efficiency and position dependent collection of the

scintillation light, the former arising from each Photo-Multiplier (PM) tube having

small differences in the pulse height spectrum. The latter arises from events that

do not occur directly over the center of the PM tube, events may occur anywhere

and will presumably often occur over the gaps and dead areas between the PM tubes.

The collimator is the weak link in the performance of a γ imaging system. For this

reason, collimators are designed and chosen carefully depending on requirements.

According to Cherry et al. collimator resolution Rcoll is defined as the Full Width

at Half Maximum (FWHM) of the radiation profile from a point or line source of

radiation projected by the collimator onto the detector [3]. This profile (see Figure

3.1) is also called the Point or Line Spread Function (PSF & LSF) and in its simplest

form is given by:

Rcoll ≈ d(leff + b)/leff (3.2)

where

• b is distance from the radiation source to the collimator.

• d is the diameter.

• l is the real length (see Figure 3.1).

• leff = l − 2µ−1 is the effective length of the collimator holes.

• µ is the linear attenuation coefficient of the collimator material.

The problem of determining the original image distribution is aided by knowledge

of the PSF. A PSF is analogous to a time impulse response for a physical system

except that it provides spatial characteristics for an imaging system. The PSF pro-

vides information about the form of distortion that the original image distribution

has undergone. This is critical knowledge in the image restoration process. A prior
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Figure 3.1: Adapted from Physics in Nuclear Medicine [3] this image depicts the

Point Spread Function also known as the radiation profile.

knowledge of the PSF is required if it is to be applied in the deconvolution process

associated with image restoration. There are, however, conditions for image restora-

tion filters to be successful. These include the shift invariance of the PSF, radial

symmetry and PSF uniformity with source depth [8]. The distortion is a function of

the particular imaging system and will differ among imaging systems. The origins of

this distortion can be attributed to transformations by the imaging system causing

radiometric distortions (sensor non-linearities etc.) [9].

The PSF is represented as a matrix that when convolved with an ideal image f

will produce the recorded image g (assuming no added noise). A major assumption

often used when attempting to de-blur images is that the distortion is space-invariant

or shift-invariant. In NM there is approximate radial symmetry but unfortunately

there is shift variance as well as PSF non-uniformity with source depth. In this

study, shift invariance is assumed, and because source depth is more or less known

by NM physician the PSF matrix can be adjusted accordingly. This allows for vi-

sually optimum image restoration in planes of interest. The concept of planes of

interest will be further discussed in Section 6.1.1.
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3.3 Noise Determination

Most image restoration techniques require a value of noise variance (σ2
o) in order to

operate correctly. In NM an approximate value for σ2
o can be determined using a

flood source scan by a γ-camera. Iterative image restoration techniques that grad-

ually remove the noise implies the original value of the noise variance will become

redundant after the first iteration. A more accurate value of the up-to-date noise

variance σ2
i at each iteration often results in superior image restoration.

There are many different methods used to update the value of σ2
i , such as Median/3σ

clipping method, block method and iterative multiresolution support method [10].

Noise is characterized by its standard deviation. There are numerous ways of es-

timating standard deviation for a Gaussian distribution. Olsen experimented with

six different methods and determined that the most accurate is the average method

[11]. The average method involves filtering the image with an average filter and then

subtracting the original image from its average. Image edges do not contribute to

the estimate as they are disregarded if above a certain threshold determined from a

cumulative histogram of magnitude of the intensity gradient. It is then possible to

calculate an accurate estimate of the noise.

3.4 Data Models

Consistency of the image with apparent data is dependent on the specific data model

chosen. It describes the probability of observing the data of the object that is in a

particular state. It is a stochastic description of how the data is corrupted due to the

noise. In this case it is given by the imaging system and is determined by inherent

knowledge of the data model form and noise distributions. The noise distribution is

defined by the detector noise. Detector noise can have many different aspects each

with its own noise distribution or distortion.

There is inherent randomness in the number of γ-photons passing through the col-

limators. These quantum fluctuations can be accurately modeled as a Poission

distribution and becomes approximately Gaussian for large counts. Also there is

not a one-to-one correspondence between the number of incident photons and the

number of charge carriers that are released. Many γ-photons are deflected or lost

and some are randomly added. Finally, there is thermal noise in the electronics,

that is characteristically assumed to be spatially uncorrelated and has a zero-mean
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Gaussian with uniform “white” power spectrum [12]. Essentially the random noise

associated with image formation can be described either with a Poisson or with a

Gaussian distribution. The lower the data counts the higher the statistical noise

[13]. In reality the projection data follows a Poisson distribution [13].

P (g|f) =
∏

i

(λfi)giexp(−λfi)
gi!

(3.3)

where p(g|f) is the conditional probability of g being a corrupted form of the ideal

image f [5], gi is the number of counts at the detector and fi is the source density

estimate at pixel position i. However, for the purpose of this discussion, we will

model the noise as a Gaussian distribution specifically being additive, independent

and with a stationary zero-mean. The probability in terms of a Gaussian distribution

[14] with a standard deviation, σ, is given by Equation 3.4.

P (g|f) =
∏

i

1√
2πσ

exp(−(gi − fi)2

2σ2
) (3.4)

3.5 Summary of Image Restoration

This chapter identifies that there are many different aspects causing image degrada-

tion, and discusses numerous image restoration techniques used to attempt reversal

of that degradation. NM images have particular characteristic distortions, some of

these distortions are corrected automatically by gamma cameras while other dis-

tortions require further intervention. The two primary distortions that need to be

corrected are the blur described by a PSF and the statistical noise described by a

distribution and its variance. A discrete PSF and an approximate noise variance can

be determined and defined in various manners. All these choices will have a sizable

impact on the success of the image restoration.
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Chapter 4

Review of Mean Field Annealing

4.1 Background

A good alternative to Simulated Annealing in optimisation problems related to

Markov Random Fields (MRF) is the Mean Field Theory (MFT). It provides com-

parable performance while converging more rapidly. This dissertation will not go

into the complexities of MFT but a clear and comprehensive discussion of MFT can

be found in a text on statistical mechanics by Chandler [15].

MFA is based on MFT and uses Markov Random Fields in the image restoration

process. On the topic of MRFs: according to Perez [16] “each random variable di-

rectly depends on a few other neighboring variables. From a global point of view, all

variables are mutually dependent, but only through the combination of successive

local iterations.” This statement captures Markov-type conditional independencies

among random variables. An image can be considered a Markov Random Field if

the intensities of pixels surrounding a center pixel are dependent on that center pixel

and not directly dependent on any other pixel. Due to the Markov-type interaction

between pixel intensities a suitable deterministic or stochastic iterative algorithm

can be devised, in our case this algorithm is MFA. MFA is based on the common

principle that at each step just a few variables (in MFA: a single one) are considered,

all the others being “frozen” [16]. Markovian properties then imply that the compu-

tations required remain local, i.e. that they only involve the neighboring variables

as is the case with MFA.

NM images are assumed to be piece-wise continuous images and thereby produce

Markovian neighborhoods. Markovian neighborhoods allows the representation of
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images as MRFs [17]. MFA is based on the image restoration methodology of

anisotropic diffusion. Anisotropic diffusion is the process of smoothing all image

regions which are not considered edges while ignoring regions which are considered

edges. Acton describes the Anisotropic diffusion process as yielding “intraregion

smoothing, not interregion smoothing, by impeding diffusion at the image edges”

[18].

The MFA algorithm makes use of two techniques to achieve image restoration.

Gradient descent is used as the minimisation technique while a deterministic ap-

proximation SA is used for optimisation [19].

4.2 Simulated Annealing

Simulated Annealing is a method that is used to increase the probability of conve-

niently stepping over local minima and converge to a global minimum even in the

case of non-convexity [6]. However, it is well know that the major disadvantage

of Simulated Annealing is the large computational effort associated with it. MFA

makes use of Mean Field Theory and Gibbs distribution to derive a deterministic

approximation to Simulated Annealing. This approximation helps resolve the prob-

lem of the computationaly intensive Simulated Annealing. The simulated annealing

concept comes from the mechanical process of annealing. It can be derived from two

seperate perspectives: statistical mechanics [20] and information theory [7, 21].

SA was developed in 1983 [22] to deal with highly nonlinear problems. SA is a

generalization of a Monte Carlo method for examining the equations of n-body sys-

tems consisting of states and frozen states [23]. Consider an annealing process where

a melt (liquids or metals), which is initially at a high temperature and in a disor-

dered state, is gradually cooled. As cooling continues the system gains increasing

order and approaches a “frozen” ground state. During this cooling process the sys-

tem is in approximate thermodynamic equilibrium and can be considered, if the

annealing process is performed correctly, to be in the lowest energy state. If cooling

is insufficient or the initial temperature is too low the system can form imperfections

or become trapped in meta-stable states (local minimum). Franco Busetti explains

SA with the following analogy. “SA approaches the global maximisation problem

similarly to using a bouncing ball that can bounce over mountains from valley to

valley. It begins at a high [energy state] which enables the ball to make very high

bounces, which enables it to bounce over any mountain to access any valley, given

enough bounces. As the temperature declines the ball cannot bounce so high, and
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it can also settle to become trapped in relatively small ranges of valleys. A gen-

erating distribution generates possible valley states to be explored. An acceptance

distribution is also defined, which depends on the difference between the function

value of the present generated valley to be explored and the last saved lowest val-

ley. The acceptance distribution decides probabilistically whether to stay in a new

lower valley or to bounce out of it. All the generating and acceptance distributions

depend on the temperature.” It has been proved that by correctly controlling the

rate at which the temperature is cooled, SA can find the global optimum [24]. This

would in theory require infinite time, and so algorithms such as Fast annealing, Very

Fast Simulated Reannealing (VFSR) [25] or Adaptive Simulated Annealing (ASA)

[26] and Mean Field Annealing are all exponentially faster and overcome the infinite

computational problem.

Figure 4.1: Generalised Simulated Annealing process flow chart [27].
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As stated beforehand SA’s one major advantage is that it does not become trapped

in local minima, but it is also a robust and general technique. Besides the main

computational disadvantage, SA is metaheuristic and delicate fine-tuning of param-

eters is required for successful operation [24]. The algorithm uses a random search

that accepts changes that decrease an objective function f . It also accepts changes

that increase it with a probability,

p = exp

(
−δf

T

)
(4.1)

where δf is the increase in f and T is the control parameter, that is known as the

system “temperature” and is irrespective of the objective function involved. This

type of acceptance criteria is also seen in the Metropolis-Hastings algorithm which

is a rejection sampling algorithm. Metropolis-Hastings is used to create a sequence

of samples from a distribution p(x) requiring only the density be calculated at x.

This is used for probability distributions that are fundamentally difficult to sam-

ple. The algorithm makes use of Markov chains where each state is only dependent

on its previous state. There are two types of Metropolis-Hastings algorithms, the

“Random walk” and the “Independence chain”. The latter can be more accurate

but requires a priori knowledge [28]. It is this type of optimisation that Metropolis-

Hastings algorithm is well suited for (see “Understanding the Metropolis-Hastings

Algorithm” [29] for more information).

From a mechanical perspective: annealing subjects materials such as glass or metal

to a process of heating and slow cooling in order to toughen and reduce brittleness.

MFA has been shown to provide good results much faster than SA [30].

It has been employed in many different fields but particular to image processing,

and has been used for; image restoration [30, 21, 31], motion estimation [32], image

segmentation [33] and more [34, 35].

4.3 The Bayesian Approach

A Bayesian approach is used to develop the Objective Function defined in Section

4.6. Figure 4.2 illustrates a typical Bayesian mode approach.

θ - Random field model parameters
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Figure 4.2: Bayesian model approach adapted from Bouman [36].

X - Unknown image

φ - Physical system model parameters

Y - Observed data

A random field may model the following:

- Achromatic/color/multispectral image

- Image of discrete pixel classifications

- Model of object cross-section

The Bayesian approach makes assumptions about the prior behavior. It does this by

using a model that is problem dependent. While a good prior model may improve

accuracy extensively, a model mismatch can impair accuracy. For this reason a

Bayesian approach is taken firstly when a model mismatch is tolerable, and secondly

when accuracy without the prior is poor [36].

According to Bayes’ rule [37], the a-posteriori conditional probability p(f |g) is given

by:

P (f |g) =
P (g|f)P (f)

P (g)
(4.2)

where:

P (f |g) is the conditional probability that the measured image g is the corruption

or distortion of the ideal image f .

P (g|f) is the conditional probability or conditional density, that depends on the

noise and blur processes.
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P (f) is the a-priori probability that is a measure of the form of f

P (g) is the probability of producing the measured image g and is thus independent

of f and is thereby treated as a constant. It is also known as the evidence.

The aim is to seek an estimate of f referred to as f∗ that will maximise the posterior

conditional probability [6]. This method is known as the Maximum A Posteriori

method. That is Equation 4.2 must be maximised for image restoration. Although

this can be achieved by numerous different methods, the Monte Carlo method may

be suited to solving this type of computational problem because the problem is non-

deterministic and stochastic in character. Monte Carlo methods are especially useful

for modeling phenomena where there is a high degree of uncertainty in the systems

inputs. Many degrees of freedom such as disordered materials, strongly coupled

solids and liquids create computational problems that Monte Carlo methods excel

at solving [38]. In this case the system would be the image with strong inter-pixel

relationships coupled with external influences such as the noise and blur.

4.4 Noise Term

The conditional density is thus the probability of the noise and blur [6]. Assuming

that the data model is sufficiently correct then the probability of gi,j given a pixel fi,j

is influenced only by the distortion convolution factor h and the additive Gaussian

white noise with zero mean and a variance σ2. The conditional density for a (i, j)

[6, 39, 40, 13, 41] is

P (gi,j |fi,j) =
1√
2πσ

exp

−
(
(f ⊗ h)i,j − gi,j

)2

2σ2

 (4.3)

The noise and blur probability (conditional density) for the entire image [14, 41, 13,

5] can be written as

P (g|f) =
∏
i,j

1√
2πσ

exp

−
(
(f ⊗ h)i,j − gi,j

)2

2σ2

 (4.4)

where i represents the horizontal coordinate and j represents the vertical coordinate.
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4.5 Prior Term

In general images can be considered Markov Random Fields, meaning that each

individual pixel intensity is dependent on its neighborhood of surrounding pixel

intensities. A Markov Random Field may be characterized as a Gibbs distribution

for the prior probability [42, 43]. The prior term represents our realizable knowledge

of the attributes of the ideal image f [19, 41]. It is only dependent upon f and can

be represented in the following form [32],

P (f) =
1
z
exp

(
−U(f)

T

)
(4.5)

where z is the normalising function (also known as the partition function) and U(f)

is the energy function and is in the form of [6],

U(f) =
∑

c

Vc(f) (4.6)

When Equation 4.5 & 4.6 are combined they form the Gibbs (or Boltzman) distri-

bution. Configurations of lower energies are more probable whereas configurations

that correspond to higher energies are less likely [16]. In Equation 4.6 c stands for

cliques and represents the set of neighborhood pixels and Vc(f) is given by [6]

Vc = −exp

[
−
(
fi,j − fi′,j′

)2
2T 2

]
(4.7)

where fi′,j′ represents a pixel inside the clique set. Each clique is symmetric and

therefore may be changed from an index set of cliques to pixels [6]. The prior term

can then be expressed for a pixel fi,j inside f as [14, 19, 13]

P (fi,j) = exp

[
− 1

T

∑
c

−exp

((
fi,j − fi′,j′

)2
2T 2

)]
(4.8)

Equation 4.8 may be written in terms of a gradient operator Λi,j instead of cliques.

The summation sign falls away due to the gradient operator being a scalar measure

of the brightness variation about pixel i, j. Simplifying and writing equation 4.8 for
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an entire image f results in [14, 13, 39, 7]

P (f) =
∏
i,j

exp

[
1
T

exp

(
−Λ2

i,j

2T 2

)]
(4.9)

4.6 The Objective Function

Inserting Equation 4.4 & 4.9 into Equation 4.2 we have the following result [6],

P (g|f) ∝
∏
i,j

1√
2πσ

exp

−
(
(f ⊗ h)i,j − gi,j

)2

2σ2

×∏
i,j

exp

[
1
T

exp

(
−Λ2

i,j

2T 2

)]
(4.10)

4.6.1 The Hamiltonian

The prior & noise term equations have been derived above; the successful restora-

tion of images requires that Equation 4.10 be maximised. This ensures that the

restored image has the maximum probability of being in the form of the scene f

while still minimizing the amount of noise in an image by smoothing it. The ratio

between these two concepts will be referred to as β. This problem of maximization

can be turned into a problem of minimisation by taking the natural logarithm and

changing the sign of Equation 4.10. The resulting term is the new objective function

and will be referred to as the Hamiltonian. The Hamiltonian (H) can generally be

interpreted as representing the energy of a physical system. H is then the sum of

the kinetic and potential energy [44]. In this case we are not dealing with a physical

system but rather an image whose pixels contain and interact “energetically”. We

now refer to the energy of an image by examining its prior and noise terms. These

two terms will be examined further in this chapter.

The Hamiltonian is constructed from both the prior and noise term and is derived

as follows [6, 7, 13, 5, 19],
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HT (f) = −ln[P (g|f)× P (f)] (4.11)

HT (f) = −ln[P (g|f)]− ln[P (f)] (4.12)

HT (f) = −
∑
i,j

ln

(
1√
2πσ

)
︸ ︷︷ ︸

Constant term

+
∑
i,j

1
2σ2

(
(f ⊗ h)i,j − gi,j

)2

︸ ︷︷ ︸
Hn

+

∑
i,j

− 1
T

exp

(
−Λ2

i,j

2T 2

)
︸ ︷︷ ︸

Hp

(4.13)

Writing Equation 4.13 in terms of the estimated image f∗, ignoring the constant term

and adding in the ratio constant β, the following final objective function (referred

to as the Total Hamiltonian) is derived,

HT (f∗) =
∑
i,j

1
2σ2

(
(f∗ ⊗ h)i,j − gi,j

)2

︸ ︷︷ ︸
Hn

+β
∑
i,j

− 1
T

exp

(
−Λ2

i,j

2T 2

)
︸ ︷︷ ︸

Hp

(4.14)

The Prior Hamiltonian Hp, also referred to as the penalty function, takes the form

of an inverted Gaussian function. This is necessary to facilitate penalizing the image

at its edges. This is a graduated process whereby the more pronounced the edge the

greater the penalty. Penalizing means that there will be less smoothing over a region

determined as an edge. This is as opposed to a region that is determined as a non-

edge which will gain significant smoothing. Substantial literature [45, 46, 47, 48]

has shown that the inverted Gaussian function (also known as the “upside-down

Gaussian function”) produces noise elimination without the blurring of considerable

edges. The inverted Gaussian function is shown in Figure 4.3 and is conceptualized

if viewed in the x-z plane.

The penalty function Hp is also a function of the ‘temperature’ T . The temperature

is the variable that controls how much smoothing occurs at non-edges. T starts high

and is gradually reduced. Consider Equation 4.14, when the temperature T is very

high the prior term Hp can be essentially ignored [49]. The minimization process

thus becomes Maximum Likelihood (ML) restoration. As seen from Figure 4.3 high

temperatures result in almost no penalty for edges as well as non-edges. As the tem-

perature is reduced, gradients ‘close’ to zero (homogeneous regions) are penalised

to a greater extent. It is noteworthy that it is the inverted Gaussian function that

defines which gradient magnitudes are considered ‘close’ to zero. Besag [45] explains
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that the prior “should be strictly increasing” in the absolute value of Λi,j and if

“occasional abrupt changes” are expected, it should rapidly reach a maximum. This

criterion is also covered by Geman & McClure [47] and Hebert & Leahy [48] and

Blake & Zisserman [46] achieve a similar result by using a “clipped parabola”. The

reduction of T and the use of the inverted Gaussian function achieves three goals,

• The algorithm becomes progressively stricter as to what it considers an edge

and a non-edge

• Non-edges are gradually assigned a greater negative number and thus experi-

ence a greater smoothing affect

• Allows the algorithm to skip local minima and to minimise to the global min-

imum

Figure 4.3: Three dimensional interpretation of how the penalty function changes

the penalty depending on the temperature and gradient.

Snyder et al. puts it eloquently [6]: “It is comforting that the result of the MAP

(Maximum A-posteriori Problem) formulation results in an objective function so

intuitively correct: the “noise term”, Hn, simply says that the restored image f∗

should resemble the measured image g. The prior term Hp simply says the restored

image should be smooth except for abrupt discontinuities at edges.”
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4.6.2 Gradient Operator

An edge point can be regarded as a point in an image where a discontinuity (in

gradient) occurs across some line [50]. A discontinuity may be classified as one of

the five types seen in Figure 4.4.

Figure 4.4: Different discontinuities associated with an edge (Adapted from Vision

Systems [50]).

A gradient discontinuity can be defined where the gradient of the pixel values change

across a line. This type of discontinuity can be classed as

• roof edges (display second order characteristics)

• ramp edges

• convex edges

• concave edges

There are many different types of first order edge operator convolution masks, such

as Roberts Cross [51] and Sobel edge operator [52] convolution masks. First order

operators all approximate first order derivatives of the pixel values in an image.

The Sobel edge operator is an important edge operator that is often used. Like the

Roberts Cross operator Sobel uses two convolution masks given by

∆x =


−1 0 1

−2 0 2

−1 0 1

 ∆y =


1 2 1

0 0 0

−1 −2 −1

 (4.15)
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Sobel masks are 3× 3 while Roberts Cross are 2× 2. An advantage of using a larger

mask size is that errors due to the effects of noise are reduced by local averaging

within the neighborhood of the mask. Another advantage is the use of a mask that is

odd sized because the operators are centered and can therefore provide an estimate

that is biased towards a center pixel (i, j) [53].

It is also possible to use second order derivatives to detect edges. A very popu-

lar second order operator is the Laplacian operator. The Laplacian of a function

f(x, y), denoted by ∇2f(x, y) is defined by [54]:

∇2f(x, y) =
∂2f(x, y)

∂x2
+

∂2f(x, y)
∂y2

(4.16)

Using discrete difference approximations to estimate the derivatives and represent

the Laplacian operator with a 3× 3 convolution mask is:

∇2f(x,y) =


0 1 0

1 −4 1

0 1 0

 (4.17)

There are disadvantages to using second order derivatives.

• Second derivatives will exaggerate noise more than first order operators, and

can be inconvenient when dealing with high noise high energy (such as Gal-

lium) Nuclear Medicine images.

• No directional information about an edge is available with second order oper-

ators.

Interestingly, Brady et al. [53] says “that humans usually do not show strong direc-

tional preferences when detecting edges, motion, or reflective boundaries.”

Due to these disadvantages, methods such as Laplacian Of Gaussian (LOG) have

been developed that blurs the image. Blurring allows for zero-crossing at the edge

while edge position is still preserved [53]. There are many other methods in use

today such as the Difference Of Gaussian (DOG) operator (evidence exists that this

is similar to the human visual system) and the more common Canny edge detector

[55].
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A more stable [53] method called the Quadratic Variation Operator is implemented

in this study. The continuous Quadratic Variation Operator is given by [54]:

Λ2
i,j =

(
∂2f

∂x2

)2

+
(

∂2f

∂y2

)2

+
(

∂2f

∂xy

)2

(4.18)

that according to Wang et al. [19] can be implemented by convolving the following

three kernels as follows [14]

Λ2
i,j = (f ⊗ qxx)2 + (f ⊗ qyy)

2 + (f ⊗ qxy)
2 (4.19)

where

qxx =
1√
6


0 0 0

1 −2 1

0 0 0

 qyy =
1√
6


0 1 0

0 −2 0

0 1 0

 qxy =
1
2


−1 0 1

0 0 0

−1 0 −1


(4.20)

Wang [56] suggests using a first order gradient operator for piecewise uniform images

and second order quadratic variation operator for piecewise linear images. This is

intuitive because piecewise uniform images exhibit step edges and piecewise linear

images exhibit roof edges displaying second order characteristics.

4.7 Gradient Descent

With continuous state space, all gradient descent techniques or iterative system

solving methods can be used [16] as minimizing routines. With both discrete and

continuous state spaces, the simple iterated conditional modes may also be used.

Gradient descent is an optimisation algorithm that approaches a local minimum

of a function by taking steps proportional to the negative of the gradient or approx-

imate gradient of the function at the current point.

Consider the current estimate of the image to be f∗ = fk, then the process of
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minimization is given by [14]

fk+1
i,j = fk

i,j − α
∂HT (fk)

∂fk
i,j

(4.21)

where

k represents the current gradient descent iteration

HT = Hn + Hp Equation 4.14

α is the step size

Y - Observed data

Two weaknesses of gradient descent are

• If the curvature in different directions is very different then gradient descent

can take many iterations to converge toward a local maximum/minimum [57].

• Finding the optimal α per step can be computationally intensive. Conversely,

using a fixed α can have poor results [57]. A small step size will converge to a

minimum (however computationally expensive) and too large a step size may

result in divergence [5].

A more powerful algorithm is given by the Broyden-Fletcher-Goldfarb-Shannon

(BFGS) method that consists of calculating at every step a matrix that is mul-

tiplied by the gradient vector to go into a “better” direction, combined with a more

sophisticated linear search algorithm to find the “best” value of α [58].

In gradient descent used for MFA, the parameter α needs to be recalculated at every

step. There have been various recommendations as to how to calculate α. Bilbo et

al.[20] recommends

α = η × σ ×
√

T

RMS(d)
(4.22)

where
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η is a dimensionless variable [59] that depends on the rate of annealing ρ1 where

η = 1− ρ

σ is the standard deviation associated with the image noise.

RMS(d) is the root mean square norm of ∂HT (fk)

∂fk
i,j

Another version of determining α is suggested by Wang [56],

α =

√
T

Tfinal
× x̄

|∇H|
×N × η × κ× γ (4.23)

where

N is the total number of pixels in the image

|∇H| is the total change in the Hamiltonian (in the previous iteration)

x̄ is the average pixel value

κ is the relaxation ratio that is empirically determined for each type of image

γ is a factor that is dependent on the change in the Hamiltonian and is used to

control the step size where if H(fk+1) > H(fk) then γ is set to 0.5 to ensure

gradient descent. When H(fk+1) < H(fk) then γ is maintained at 1.

4.7.1 Partial Derivative

As evident from Equation 4.21 the partial derivative of the Total Hamiltonian (Equa-

tion 4.14) is required to complete the gradient descent algorithm [14].

∂HT (fk)
∂fi,j

=
∂Hn(fk)

∂fi,j
+ β

∂Hp

∂fi,j
(4.24)

The partial derivative of the Noise Hamiltonian is easily derived [5] for a single pixel

(i, j) as

∂Hn(fk)
∂fi,j

=
1
σ2

((
fk ⊗ h

)
i,j
− gi,j

)2

⊗ hrev (4.25)

1ρ is the ratio at which the temperature, T , is decreased each MFA iteration and will be discussed

in greater detail in section 4.8 on page 26.
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Combining Hp from Equation 4.14 and the edge operator for continuous quadratic

variation Equation 4.18 the following expression for Hp
2 is derived

Hp = − 1
T

exp

(
−(f ⊗ qxx)2 + (f ⊗ qyy)

2 + (f ⊗ qxy)
2

2T 2

)
i,j

(4.26)

Determining the partial derivative of the Prior Hamiltonian of the form of Equation

4.26 is thus given by [5]

∂Hp

∂fi,j
=
(

∂Hp

∂fi,j

)
xx

+
(

∂Hp

∂fi,j

)
yy

+
(

∂Hp

∂fi,j

)
xy

(4.27)

where [5]

(
∂Hp

∂fi,j

)
xx

= − 1
T 3

((
(f ⊗ qxx) exp

(
−(f ⊗ qxx)2 + (f ⊗ qyy)

2 + (f ⊗ qxy)
2

2T 2

))
⊗ qxxrev

)
i,j

(4.28)

Similar expressions can be found for
(

∂Hp

∂fi,j

)
yy

and
(

∂Hp

∂fi,j

)
xy

Bilbro et al. [7] found a superior model is achieved using

(
∂Hp

∂fi,j

)
xx

= − 1
T 3

((
(f ⊗ qxx) exp

(
−(f ⊗ qxx)2

2T 2

))
⊗ qxxrev

)
i,j

(4.29)

4.8 The MFA algorithm

The MFA algorithm is based on the equations and concepts derived in the previ-

ous sections. MFA for image reconstruction consists of the following primary steps

shown in Figure 4.5. MFA consists of two primary calculation loops; the inner

gradient descent loop and the outer annealing loop. The annealing process is pri-

marily controlled by the temperature. The temperature is set at an initial value
2for a single pixel (i, j)
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and an estimate of the image must be determined. The estimate of an image can

be the recorded image or an already enhanced version (e.g. filtered) of the recorded

image. The annealing loop performs two primary functions, viz. calling the gradi-

ent descent loop and gradually reducing the temperature [5]. The gradient descent

loop re-evaluates the noise and prior Hamiltonian as well as their respective par-

tial derivatives at this new reduced temperature. The gradient descent loop then

performs gradient descent using the total Hamiltonian partial derivative and the

parameter alpha. It then iterates until a stopping criterion has been met.

Figure 4.5: MFA process overview flow chart.

4.9 Summary of MFA

This chapter conducts a review of MFA, systematically stepping through the math-

ematical derivation of a MFA type algorithm. It describes in detail, but not in full,

the requirements and choices that are needed for a successful outcome. MFA is a

deterministic algorithm that uses anisotropic diffusion type methodology to improve

images. MFA is based on SA, not requiring the large computational effort of SA,

but still retaining the advantage of avoiding being trapped by local minima. The

objective function is derived using a Bayesian approach. The objective function
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is the Hamiltonian representing the “energy” of the image and constructed from a

prior term (penalty function) and a noise term. The prior effectiveness is based to

a large extent on the choice of gradient operator. The gradient operator is chosen

according to the image’s edge attributes and in this case the Quadratic Variation

Operator is chosen to perform edge extraction. The noise term is also discussed and

an equation using a Gaussian distribution as the conditional density is assumed.

Although, a choice of minimization techniques exists, Gradient Descent is applied

as the iterative minimization routine used in this algorithm. Various derivations

of the partial derivative and variables required in Gradient Descent are described,

following suggestions made by MFA pioneers. Finally the chapter outlines the flow

of the MFA algorithm that needs to be implemented computationally and efficiently

for effective results.
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Chapter 5

Digital Phantom Images

As proof of concept the MFA algorithm is first tested on simple digital phantom

scenes. This also serves the secondary purpose of concluding the suitable parameters

to be used in a MFA algorithm.

Firstly a digital phantom image needs to be generated. The development of im-

age restoration algorithms is greatly aided by using standard digital phantoms with

known properties. A well documented and used example is the Shepp-Logan phan-

tom [60] containing ellipsis with different absorption properties that resembles the

outline of a head. An image of the phantom is shown in Figure 5.1.

Figure 5.1: Modified Shepp-Logan digital phantom [61] often used in image enhanc-

ing studies.

The Shepp-Logan phantom was not used because it did not contain the low resolution

detail that Nuclear Medicine clinical images exhibit. Instead more generalized digital

phantoms containing many different elementary shapes, overlapping with various

intensities were used.

Figure 5.2A and 5.2B are the two scenes created and used for algorithm construction.

Figure 5.2A contains only vertical and horizontal step edges categorized by rectangles

at different intensity levels. Figure 5.2B is similar but also includes ovals with
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different intensity levels. Both images are not complete representations of NM real

images as they do not contain roof or ramp edges that are typically found in NM.

But due to the complexity in construction of a MFA algorithm, Figure 5.2A and

5.2B are a necessity used as a stepping stone.

Figure 5.2: Two different digital phantoms used extensively in this project in the

development of this MFA algorithm.

The next step is to degrade the image. According to Equation 3.1 the image must

be distorted using a PSF and then noise must be added. The degraded digital

phantoms can be seen in Section 5.4 Figure 5.3B.

5.1 Parameter Selection

One of the major downfalls with MFA is that there are many parameters (see list

below) that are required for the algorithm to work successfully. Exacting logic to de-

termine the optimal values of these parameters is difficult to derive, so an empirical

approach is taken. Digital phantom images were used extensively in the develop-

ment of a MFA algorithm and more pertinently in this discussion to determine the

MFA parameters. Experimental empirical methods were used on numerous digital

phantom images such as Figure 5.2A & B to determine optimal parameters. Also

there are many different methods such as the various edge detection techniques that

could all be used, but of these, some are more appropriate than others. The primary

parameters and functions that need to be quantified for use in the MFA algorithm

are the following [6, 17, 62, 7, 39, 5]:

• Edge Kernal Λ

• Beta β
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• Starting Temperature Tstart

• The annealing parameter ρ

• Stopping Temperature Tstop

• Calculation of Alpha α

• Gradient Descent Stopping condition

Since the best combination of the above parameters is not possible to determine

mathematically, and is particular to each type of image, the following empirical

approach is utilized: The MFA algorithm is looped many times and each time a

different combination of parameters is used (see Appendix A). Once a set of results

is attained the parameters providing the most significant improvement in the least

number of iterations is chosen.

5.2 Determining Alpha

There is previous work done in determining the value of α required in Gradient

Descent (see Section 4.7) for MFA application. However, in this study, Equation 4.22

used by Bilbro was found to take too many iterations to approach a global minimum

when compared to Equation 4.23 suggested by Wang. Despite this, we found that

Bilbro’s suggestion seemed to always provide better overall results (ignoring the

lengthy processing time). Experimentation in this study, focused specifically on

256× 256 sized images, yielded a combination of the useful aspects of the previous

two equations and resulted in the following successful solution for α,

α = η ×

√√√√√ σ2T

norm

(
∂HT (fk)

∂fk
i,j

) × κ (5.1)

where κ typically is between 1 & 5 for optimum performance.

5.3 Stopping Criteria

A large part of achieving success with MFA is knowing when to stop the iterative

loop process and post a result. It requires the correct stopping criteria specific to
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each type of MFA problem. In the image restoration problem, having the original

phantom and the degraded version of the phantom allows for comparison using error

metrics such as Peak Signal to Noise Ratio (PSNR) and Root Mean Square Error

(RMSE). These error metrics are used to evaluate the improvement of the image.

This is not necessarily a true indication of image improvement because a PSNR may

indicate a large reduction in noise but this reduction in noise may be accompanied

by a loss in sharpness of the image. Regardless the RMSE or PSNR can be used as

a guideline and is a very good indication in the reduction of noise.

In order to ascertain the correct parameters described in Section 5.1, the PSNR is

taken as the measure of image improvement. This is done by comparing it to the

original scene (bearing in mind that in real-life NM imaging, the scene is always

unknown).

5.4 Results

Figure 5.3B shows a digital phantom that has been degraded using a noise variance

of 0.035 and a Gaussian blur standard deviation, (σ) of 2. These values are typical of

the degradation parameters in certain planar NM cameras found during experimen-

tation in this study. It is evident from Figure 5.3A and D that the MFA algorithm

with the correct parameters can reduce noise substantially without damaging edge

integrity. Figure 5.3C shows a Wiener filter restored image. Comparative noise re-

duction and edge classification is evident from Figure 5.3E and F, that displays the

Sobel edges of the Wiener and MFA restored images. Looking carefully at Figure

5.3B, C and D, it is noticeable that edges appear sharper in the original and Wiener

images in certain regions compared to the MFA restored image. This implies that

MFA has blurred the image slightly in regions. However since MFA has extensively

reduced the noise without edge compromise, it is now possible to apply filters to

further enhance image edges without amplifying the noise. A standard sharpening

filter available in Matlab, w (Equation 5.2), is recommended to highlight the edges

of clinical images. Many other standard image enhancing techniques may also be

used for post-processing and future work in this field is suggested.

w =


−0.167 −0.67 −0.167

−0.67 4.33 −0.67

−0.167 −0.67 −0.167

 (5.2)
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Figure 5.3: Comparison images of a digital phantom with an added noise variance of

0.035, a Gaussian blur standard deviation of 2 (hsigma) and PSF matrix size (hsize)

of 5x5.

The image enhancement ability of MFA and comparison with the Wiener filter is

also evident in Figures 5.4 & 5.5. These Figures show a cross section of the digital

phantom in Figure 5.3 plotted against pixel intensity. They highlight the strengths

of MFA, that can be categorized as a supplementary pre-filter image enhancing

technique.
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Figure 5.4: Graph showing a comparison between the original digital phantom (black

curve) and the degraded version with a noise variance of 0.035, hsigma of 2 and hsize

of 5x5 (green curve).

Figure 5.5: Graph showing a comparison between the original digital phantom and

the Wiener restored version (green) and a MFA restored version (red).

5.5 Summary of Digital Phantom Images

Digital Phantom images are used as proof of concept when constructing an MFA

type algorithm. They also help ascertain the correct parameters required for MFA.

34



The choice of parameter values and functions is critical in achieving successful re-

sults. This chapter highlights these parameters and summarises the techniques used

to derive them. In particular the importance of the stopping criteria used when

restoring digital phantom images is discussed as well as the issues when using these

criteria for real images. Finally, the effective results are shown when applying this

MFA algorithm to digital phantom images.
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Chapter 6

Testing MFA on Clinical Images

6.1 Restoration Knowledge

The task of image restoration is to undo the effects of image blurring and additive

noise. For this to be successful, information is required, namely the PSF and noise.

The PSF can be estimated by imaging a small source of high intensity (in the case of

NM imagery: a radiation source). The PSF can then be mathematically calculated

from the results of the “point” source image. In NM, it is difficult to create a point

source of radiation, therefore a line of radiation can be used instead. The PSF can

still be derived and the mathematical determination is similar to that for a point

source.

Although the PSF can be measured with reasonable accuracy (dependent on source

depth), it is not possible to exactly determine the noise influence in a recorded im-

age. However it is possible to establish the variance of the noise. The variance is

determined by imaging a flood source of radiation. The recorded image can then

be considered largely homogeneous and all variations in pixel intensity are assumed

to make up the variance of the additive noise. Without knowing the scene of the

image, a-priori of information about the degraded image has been gathered. It is

this information that will be critical in the restoration process of the image to be

described.

6.1.1 Determining the PSF

In NM images, as in many other images, the PSF frequently takes on the form of

a Gaussian distribution. The PSF may be determined by examining a point source
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image and fitting a Gaussian distribution to it. Since the PSF is continuous and the

PSF representative matrix is discrete, appropriate approximations must be made

when determining the size and values of the matrix. Once these approximations are

made the PSF matrix is populated with an approximate Gaussian distribution.

Point and line sources need to be imaged in order to obtain the PSF. Firstly the

point and line sources need to be created. The point sources were created by placing

a small amount of Tc-99m into a small plastic tube (approximating a single point

of intensity). The line source were created by using a test tube (1mm internal di-

ameter) seen in Figure 6.1 filled with Tc-99m.

Figure 6.1: Photographs of how line sources were imaged in this experiment. The

1mm test tube contains Tc-99m and is imaged both vertically and horizontally at

different distances parallel to the collimator surface.

To determine the PSF, point and line sources were placed at various distances away

from the collimator. The PSF representative matrix values may also be confirmed

by the LSF. Figure 6.2 shows the results of point sources and X & Y line sources

imaged at 10, 15, 20 and 25cm from the collimator surface. By detailed inspection

of the sources at the individual heights, approximate radial symmetry is concluded.

This conclusion is not immediately evident, nor completely true. It is true that

radiation events located directly over the center of the PM tube will exhibit radial

symmetry. This being said, there are events that occur off-center (discussed in Sec-

tion 3.2) resulting in between-pixel distributions, i.e. non-uniformity. If a point

source is placed off-center from the PM tube, the resulting PSF image will exhibit

a deformed Gaussian distribution. The deformation can be relatively greater for
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radiation events occurring close to the collimator. This is problematic when at-

tempting to ascertain the correct standard deviation of the Gaussian PSF. Every

effort must be made to center a point source when determining a PSF. Although

an image consisting of essentially countless off-center point sources will produce de-

formed Gaussian distributions, this does not adversely affect the image restoration

process. This statement is justified in that an acquired image consists of many

deformed Gaussian distributions added together producing primarily non-deformed

Gaussian PSFs. The overall blurring affect is thus influenced by a correctly specified

non-deformed PSF.

A simple check is performed by rotating the Y line source by 90 degrees and compar-

ing it to the X line source. A discrete Gaussian distribution is fitted to the acquired

point source. Vertical and horizontal line sources were imaged using capillary tubes

to verify the point sources’ distributions and to verify the approximate radial sym-

metry of the blur. Figure 6.3 shows how the point source is convolved with a line

and then compared to the acquired line source. Ignoring the ends in the image of

the capillary source, the two lines suffered only small differences with an RMSE of

5.5%, and that may be attributed to the noise. The process is repeated with the

vertical line resulting in a RMSE of 4.8% that implies approximate radial symmetry.

Radial symmetry and the fitted Gaussian PSF were verified at numerous distances.

A visual example at 10cm and 20cm is provided in Figure 6.5 depicting how accurate

the fitted PSF is compared to the acquired PSF.

Figure 6.2: Imaged vertical and horizontal line sources with the respective point

sources at 10, 15, 20, 25cm. These sources were acquired on a General Electric

Healthcare Infinia gamma camera using a (Low Energy High Resolution) LEHR

collimator.
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Figure 6.3: Visual comparison between a line source derived by convolving the

imaged point source with a perfect line versus the imaged line source.

Figure 6.4 shows the Standard Deviation of the resulting fitted PSFs, and that

these PSFs display a regional linear trend. A linear trend that has been fitted can

be used to predict approximate PSFs at different distances from the collimator. This

measured approximate linearity is consistent with Equation 3.2. From Figure 6.2 it

can also been seen that the blur increases with source distance i.e. there is depth

variance.

As mentioned, image restoration requires PSF uniformity with source depth [8].

Figure 6.2 clearly indicates that this is not the case and this disadvantage implies

that the PSF will only be correctly specified for a single plane in the image. The other

planes will experience a blurring effect due to the MFA process and an incorrectly

specified PSF. This suggests that one could therefore select planes of interest by

modifying the Gaussian distribution to define the PSF used in MFA. The planes of

interest will experience image enhancement while the other planes may experience

increased blur. Software running this image reconstruction technique would have to

be flexible in terms of planes of interest and have easily adjustable PSF parameters.

Figure 6.4: Derived values for standard deviation of the fitted Gaussian PSF using

manual iterative techniques for a best fit solution.
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Figure 6.5: Visual comparison of the real and fitted point sources at 10cm and 20cm.

The point sources have been zoomed for easier comparison.

6.1.2 Determining the Noise Variance

There are various methods of determining the noise variance of a NM image required

in MFA. This determination can be accomplished by either using a flood source,

pure computational methods or hybrid methods. Some examples of computational

methods are listed in Section 3.3. Using a flood source and a novel computational

method to obtain the noise variance is discussed below.

Flood Source

The process of MFA requires a value for the original noise variance (σ2
o) in order

to work successfully. An approximate value for σ2
o can be determined using a flood

source scan by the camera (see Figure 6.6). Considering the process of MFA that

gradually smooths the noise and sharpens the edges, the original value of the noise

variance will become redundant after the first iteration of the MFA algorithm. A

more accurate value of the up-to-date noise variance σ2
i results in the correct oper-

ation of the MFA algorithm.
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Figure 6.6: A flood source placed 22 cm from the collimator (LEHR) surface.

Quadtree Noise Variance Determination

A simple way of determining the σ2
i is by finding a homogeneous region of the im-

age and estimating the noise only from this region. This method requires an initial

guess that could be the noise value derived from a flood source or the previous noise

value calculated. The methods discussed above are generalised and automatically

determine the noise variance. This section discusses an alternative method of deter-

mining the noise variance of an image based on homogeneous regions.

Given that variance is defined as

σ2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (6.1)

where the mean is given by

x̄ =
1
n

n∑
i=1

xi (6.2)

Now consider that an image is made up of m number of homogeneous regions. A

variance σ2
ℵ and mean x̄ℵ can be calculated for each homogeneous region ℵ where

ℵ = 1 → m. Once m number of variances have been calculated then the average

or weighted average of these variances is computed. This is then an estimate of the

noise variance of the image.
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The definition of a homogeneous region is more complicated. A region must be

considered homogeneous if the variance in pixel intensity is only due to noise and

not due to image variation. All image information that varies by less than the noise

variation is not distinguishable from the noise itself and therefore unrecoverable.

If the pixel intensity does not vary by more then 3σnoise within a specified region,

then that region can be considered homogeneous [10, 63]. This presents a problem

because σnoise is unknown and is in fact what this algorithm is trying to determine.

An optimisation method is then applied to overcome this problem.

1. Guess an average variance σ2
guess.

2. Divide the image up into squares using quadtree decomposition with 3σguess

as the threshold.

3. Calculate an average variance σ2
calc of the m square homogeneous regions.

4. If σ2
guess ≈ σ2

calc then an estimate the noise variance has been computed.

Otherwise take the next σ2
guess as a value between the previous σ2

guess and

σ2
calc and return to step 1.

Figure 6.7: This graph depicts the resulting error in variance prediction using

Quadtree noise determination techniques.
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This algorithm is calculation-intensive, and performing it every MFA iteration cre-

ates a more computationally expensive algorithm (see Appendix A for details of the

code). However the concept of recalculating the noise contribution at each MFA

iteration is novel and further experimentation should be performed.

6.2 Discussion

The following technique was tested on a range of planar NM studies obtained from

a GE Infinia γ-camera at Johannesburg Hospital. The use of clinical images in

this study was approved by the Human Research Ethics Committee of the Univer-

sity of the Witwatersrand Johannesburg (protocol no. M060312). All images were

anonymised.

A vital aspect of MFA is defining when the annealing process is complete. Exces-

sive annealing will add significant blur to the image. Normally when dealing with

digital phantom images, error metrics such as PSNR or RMSE may be used since

the algorithm constantly compares the restored image with the real image. How-

ever, when dealing with NM images, this comparison cannot be made. The easiest

solution would be to provide NM physicians with a movie of the restoration process

and allow the NM physician to view and select the iterated image of choice (see Ap-

pendix B for further detail). NM physicians in general need to be careful in trading

sensitivity of detection against false positive diagnosis. It is as yet unknown how

using MFA in NM will affect the Receiver Operator Characteristic (ROC) curve that

plots true positives against false negatives.

A more mathematical approach to achieving the correct stopping criteria is sug-

gested by using the noise and prior Hamiltonians as enhancement indicators. During

the testing and experimental phase, it was discovered that optimal visual annealing

(in the experimental set) occurred between 23 and 28 iterations.

It is important to note that optimal annealing was judged by eye. MFA iterations 5,

15, 25, 35 and 50 are shown in Figure 6.8B,C,D,E and F respectively. Figure 6.8B

shows the introduction of vertical and horizontal fabric-like artifacts. These artifacts

can be attributed to the edge operator weaknesses, where at lower resolutions the

Quadratic Variance Operator is more efficient at detecting vertical and horizontal

edges as opposed to any edges that are obtuse. MFA skips this local minimum. Fig-

ure 6.8C illustrates how MFA has begun improving the image at 15 MFA iterations.

Figure 6.8D shows what appears to be close to optimal visual improvement at 25
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Figure 6.8: Shows iteration steps at 5, 15, 25, 35 and 50 for LLATS003 NM bone

scan. Image D visually appears to be optimum.

MFA iterations and is otherwise currently unverifiable. The image appears to have

blurred at this optimal point, however it is important to notice that this blur has

occurred without edge compromise. Careful inspection shows that intra-region and

NOT inter-region blurring has materialised from MFA restoration. The image can

now be sharpened and restored using image enhancing techniques that are effective

but highly sensitive to noise. Figures 6.8E & F clearly shows how the image begins

to lose form due to over-annealing.
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It was determined experimentally that MFA parameters for NM images are similar

to those used in Figure 5.3D although they are not necessarily the optimal parame-

ters. The following are the primary parameter specifications determined for visually

optimal restoration (see Sections 4.7 and 4.8 for more detail):

• Beta coefficient of 100

• A starting temperature of
√

σ2
approx ∗ 10

• Gradient descent iterations 20

• Relaxation ratio of 2.5

Bar phantoms were initially used to try to quantify MFA improvement of clinical

images. The idea is to put a radiation bath (flood source see Figure 6.6) behind the

bar phantom and scan it to produce an image such as Figure 6.9. The method is

to measure the FWHM resolution of the lines before and after MFA to characterize

improvement. Only preliminary work has been undertaken and further work must

be performed on this concept.

Figure 6.9: Bar phantom placed 5cm from collimator surface. Only the 4.23mm bars

(top left) and 3.18mm (top right) appear. The 2.54mm (bottom right) and 2.12mm

(bottom left) bars are not visually realisable.

The difference between optimal and sub-optimal appears to be negligible in this

application of MFA. In this study the distance of the subject from the collimator

is unknown, so a PSF with a standard deviation of 2 is chosen (corresponding to

17cm from the collimator see Figure 6.4). The noise variance is determined using a

flood source as shown in Figure 6.6 and does not change with changing collimator

distance. A variance of 0.035 is determined using the fact that a flood source is
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considered a homogeneous region. Note that noise variance does change with image

intensity scaling (during the image enhancement process) and this change must be

factored in when applying MFA.

6.3 Results

Figure 6.10A shows an image acquired on General Electric Healthcare Infinia gamma

camera. Figure 6.10C shows the restored image after 20 MFA iterations. The image

appears to be slightly blurred with substantial reduction in noise. Figure 6.10E

shows a Wiener restored image that looks very similar visually to the MFA restored

image. The images are all optimally sharpened (by eye) using Equation 5.2 as the

sharpening filter. The sharpening filter amplifies the noise in the original image after

filtering the image only once as can be seen in Figure 6.10B. The sharpening filter

is run three times on the MFA restored image with image enhancement occurring

before noise amplification becomes apparent (Figure 6.10D). The result is a clearer

and sharper image that may improve diagnosis. In contrast the sharpening filter

can only be run twice before noise amplification becomes visually obstructive in the

Wiener restored image seen in Figure 6.10F. Figure 6.10D appears to contain more

viewable detail then Figure 6.10F.

As mentioned in Section 6.2 MFA results tend to exhibit fabric-like vertical and

horizontal artifacts. After applying the particular sharpening filter (Equation 5.2),

the artifacts become fabric-like diagonal. Further results are shown in Figures 6.11,

6.12, 6.13 and 6.14, all MFA enhanced images being iterated 25 times. These results

also illustrate that these diagonal artifacts can be eradicated with minimal detail

loss by using a [3x3] median filter.

It is possible that enhancing images using MFA may in fact introduce artifacts

that may mislead diagnosis. Addition of detail that was not previously visible may

require NM physicians to recalibrate how they assess their diagnosis. In the example

(Figure 6.10), small focci of activity are seen in the skull after MFA and sharpening,

that were not previously noticeable. It is uncertain if these represent real lesions or

artifacts caused by the MFA approach, and further research would be required to

come to a conclusion. MFA may also be much more effective and suitable for certain

types of NM images. Figures 6.10, 6.11 and 6.12 show an increase in detail but this

may not be the case for Figures 6.13 and 6.14. Further studies of large numbers of

different types of NM images would be required to determine the usefulness of this

image restoration technique. (see Appendix C for enlarged bone scan results)
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Figure 6.10: Results for LLATS. A:original bone scan, B: original scene sharpened,

C: MFA result after 25 iterations, D: MFA result sharpened, E: Wiener filter result,

F: Wiener filter result sharpened.
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Figure 6.11: Results for LAO001. A:original bone scan, B: Wiener filter result, C:

MFA result after 25 iterations, D: Wiener filter result sharpened, E: MFA result

sharpened, F: MFA result sharpened and median filtered.
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Figure 6.12: Results for LAO002. A:original bone scan, B: Wiener filter result, C:

MFA result after 25 iterations, D: Wiener filter result sharpened, E: MFA result

sharpened, F: MFA result sharpened and median filtered.
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Figure 6.13: Results for POST001. A:original liver-spleen scan, B: Wiener filter

result, C: MFA result after 25 iterations, D: Wiener filter result sharpened, E: MFA

result sharpened, F: MFA result sharpened and median filtered.
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Figure 6.14: Results for POSTP002. A:original lung perfusion scan, B: Wiener filter

result, C: MFA result after 25 iterations, D: Wiener filter result sharpened, E: MFA

result sharpened, F: MFA result sharpened and median filtered.
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Chapter 7

Conclusion

NM images can be difficult to diagnose, particularly where steep intensity gradients

occur in the images. MFA, while providing intra-region blurring alone, does not

visually highlight the edges, and for this reason image enhancement of planar NM

images is achieved by implementing a noise-sensitive sharpening filter as a post-MFA

processing technique. The result is a clearer and sharper image with more apparent

viewable detail that may improve diagnosis. Applying, optimally, the same sharp-

ening filter to a Wiener restored image does not yield the same standard of image

enhancement compared to that of the MFA-sharpened image, as assessed subjec-

tively.

The collimator is a limiting factor in the spatial resolution and also in image re-

construction. It is the PSF that provides the spatial information required to imple-

ment MFA. Approximate Gaussian-distributed PSF radial symmetry, as well as PSF

non-uniformity with source depth has been illustrated. The PSF depth variance pre-

cludes complete image reconstruction, but does allow for enhancement of a single

plane of interest per specified PSF, requiring the software running MFA to pro-

vide an adjustable PSF. This also highlights the importance of image presentation

for NM physicians. Furthermore the PSF is shown to display a regional linear trend.

The development of the image restoration algorithm was greatly aided by using

simple digital phantoms with known properties despite the fact that these digital

phantoms are not ideal representations of clinical NM images.

A disadvantage of MFA is that there are a number of parameters that are required

for the algorithm to be successful. The use of digital phantoms and empirical tech-

niques have been shown in this study to yield approximate optimal parameters and

stopping criteria for successful restoration of both digital phantoms and clinical NM
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images. Note that the difference between optimal and sub-optimal results appears

to be negligible in this application of MFA. A further disadvantage is that MFA

restoration yields vertical and horizontal fabric-like artifacts that become diagonal

fabric-like artifacts after a sharpening filter is applied. These artifacts, possibly at-

tributable to edge operator weaknesses, can be removed with minimal image quality

loss by implementing a median filter.

It is possible that an MFA enhanced image may in fact introduce artifacts that may

mislead diagnosis. On the other hand addition of detail that was not previously

visible may require NM physicians to recalibrate how they assess their diagnosis.

MFA may also be more effective and suitable for particular types of NM images.

It is therefore concluded that a full appraisal of MFA for numerous NM images of

different types be conducted with the aid of NM physicians and medical physicists

before a clinical assessment of this technique can be made.

With current processing technology, the computational time required to run the

MFA algorithm is no longer significant and thus MFA holds promise as a supple-

mentary pre-filter tool for the enhancement of diagnostic NM images.

7.1 Suggested Future Work

The following items are recommended for future work and research on the viability

and improvement of MFA applied to NM clinical images.

• It is highly recommended that an extensive appraisal of MFA for various types

of NM images be conducted with the aid of NM physicians and medical physi-

cists.

• It is recommended that further research be done in acquiring a more suitable

edge operator specific to NM images or particular NM image types such as

bone, thyroid etc. The research will need to examine how to implement the

prior Hamiltonian and its partial derivative with different edge operators.

• This MFA implementation was programmed in MATLAB for rapid develop-

ment. Further work is recommended to convert the code to a lower level

programming language for computational efficiency.

• Although not examined in-depth, it may be possible to use the noise and

prior Hamiltonians as enhancement indicators and ultimately as the stopping
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criteria that is vital for MFA operation. It may also be possible to utilize

FWHM resolution of bar phantoms to characterize MFA improvement.

• Possible experimentation with Broyden-Fletcher-Goldfarb-Shannon and con-

jugate gradient methods instead of gradient descent may yield superior results.

• NM images suffer from PSFs that are both shift and depth variant. This MFA

algorithm can be adapted to use varying PSFs corresponding to source depth

(for depth variance) and across a plane (to deal with shift variance). This

would require using many point sources at different points above the collima-

tor (effectively using a three dimensional grid of point sources) to ascertain

the depth and plane distributions of PSFs. It is also recommended that a

more careful and thorough investigation of the factors influencing the PSF be

conducted, and the fitted curve in Figure 6.4 improved.

• Enhancing NM images with PSFs of different standard deviations (associated

with different depths) should yield enhancement of planes of interest, and it

should be investigated how effectively the planes can be separated to recon-

struct a three dimensional version of the planar NM image. Although there are

numerous ways to accomplish this, it is highly recommended that a “movie” of

restoration be used to verify how effectively planes of interest can be focused.

Each frame in the “movie” will be an optimally restored image but restored

with a consecutively changing PSF. This PSF may be attained from a graph

or equation such as that shown in Figure 6.4.

• This MFA algorithm uses the initial estimate of noise for all the MFA itera-

tions. It is believed that iteratively updating the estimate of decreasing noise

as MFA runs could provide superior results. A flood source will only provide

the initial estimate of noise, so an algorithm such as quadtree noise deter-

mination should be investigated in more depth. Other techniques developed

for different applications such as noise evaluation in astronomical images [10]

should be investigated for use in NM images.
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Appendix A

MFA Code

Mean Field Annealing Algorithm

The following code implements the Mean Field Annealing (MFA) algorithm and it

also illustrates the empirical methods used to determine the optimum parameters

required in MFA for digital phantoms. Some of the code has been modified from

Adaptations of the MFA algorithm for the enhancement of Infrared Thermal Images

by Lindy Finn [5].

Contents

• Load the scene

• Simulated image acquisition

• Determine noise content

• Call ANVD function

• Restore using Wiener Filter

• Initialisations

• Parameter selection

• Reinitialisations

• MFA primary loop

• Gradient Descent loop

• Call the Noise Hamiltonian function

• Call the Prior Hamiltonian function

• Gradient Descent calculation

• Print results to screen.

• Function: Noise Variance Determination (ANVD)
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• Function: Noise Hamiltonian Determination

• Noise Hamiltonian

• Derivation of Noise Hamiltonian partial derivative

• Function: Prior Hamiltonian Determination

• Derivation of Prior Hamiltonian

• Derivation of Prior Hamiltonian partial derivative

Load the scene

Load the ideal image referred to as the scene, this is the image that will be used to

create the digital phantom.

clear;
I=imread(’phanB.bmp’);
I=im2double(I);
figure(1), imshow(I);
title(’Original Image’);

Simulated image acquisition

The following simulates the image acquisition process, adding blur and noise.

V=0.035; % Typical variance of the noise.
hsigma=2; % Variance of Guassian distribution associated with the blur.
hsize=5; % Size of PSF.
h=fspecial (’gaussian’,hsize ,hsigma) ; % PSF.
hrev=fliplr(flipud(h)); % Reverse matrix of PSF.
I_blur=conv2(I,h,’same’); % Add blur.
I_blur_noise=imnoise(I_blur, ’gaussian’, 0,V); % Add noise.
[RMSEO,PSNRO]=CalcError(I,I_blur_noise,h); % Calculate RMSE & PSNR.
figure(2), imshow(I_blur_noise);
title([’I blur noise RMSE: ’,num2str(RMSEO),’ PSNR: ’,num2str(PSNRO)]);

Determine noise content

Restore image using Automatic Quadtree Variance Detection (ANVD)
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Call ANVD function

var_approx=ANVD(I_blur_noise); % Approximate variance.

Restore using Wiener Filter

[I_wiener]=wiener2(I_blur_noise,[5 5],var_approx); % Restore using Wiener.
[RMSE1,PSNR1]=CalcError(I,I_wiener,h); % RMSE of Wiener for comparison.

figure(3), imshow(I_wiener);
title([’I wiener RMSE: ’,num2str(RMSE1),’ PSNR: ’,num2str(PSNR1)]);

Initialisations

fk is the running approximation to the original image In this case our first approxi-

mation is the realimage.

fk=I_blur_noise; % Make I_blur_noise the first approximation.
var_approx=0.0035; % The variance is known.
g=I_blur_noise; % g is the recorded image.
[RMSE,PSNR]=CalcError(I,fk,h); % I=Original scene. fk=current image.

Parameter selection

The following five loops run through different combinations of parameters to find

optimum parameters for MFA image restoration.

MAIN_c=0;
% Optimals used for NM
for beta_coeff=[2 10 50 100] % 100
for T_start=[sqrt(var_approx)*10 0.5 1 2] % sqrt(var_approx)*10
for grad_decent_iters=[10 20 50] % 20
for relax_ratio=[0.1 0.4 1 1.5 2 2.5 10 15] % 2.5
for alpha_method=[1 2] % 1

Reinitialisations

Reinitialise the MFA settings for each parameter loop.
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fk=I_blur_noise; % Reinitialise fk as the running approximation.
[RMSE,PSNR]=CalcError(I,fk,h); % I=Original scene. fk=current image.
MAIN_c=MAIN_c+1;
T=T_start;
MFA_iter=0;
Tend=T/60;
RMSE_prev=RMSE;
H_total=0;
Total_count=0;

MFA primary loop

Main MFA while loop.

while RMSE <= RMSE_prev & T>Tend

MFA_iter=MFA_iter+1;
RMSE_prev=RMSE;
beta=sqrt(var_approx)*beta_coeff;

Gradient Descent loop

% Begin Gradient Descent loop.

for grad_descent_iter=1:grad_descent_iters;
Total_count=Total_count+1;

Call the Noise Hamiltonian function

% Determine Noise Hamiltonian and its partial derivative.

[H_noise,pdH_noise]=NHamil(fk,g,h,hrev,V);

Call the Prior Hamiltonian function

% Determine Prior Hamiltonian and its partial derivative.

[H_prior,pdH_prior,Hp_num2]=PHamil(fk,T,’quadratic’);

tempH=H_total;
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H_total=H_noise +beta*H_prior; % Total Hamiltonian.
pdH_total=pdH_noise+beta*pdH_prior; % and its partial derivative.

Hchange=H_total-tempH;
if Hchange >0

gamma=0.5;
else

gamma=1;
end

if alpha_method==1 % First alpha method.

deltaf=pdH_total;
if deltaf==inf

MLF=1;
’MLF inf’

elseif deltaf==0
MLF=1;
’MLF 0’

elseif deltaf==-inf
MLF=-1;
’MLF -inf’

else
MLF=sqrt(norm(deltaf));

end
alpha=0.05*(sqrt(var_approx*T)/MLF)*relax_ratio;

end

if alpha_method==2 % Second alpha method.

if pdH_total==inf
MLF=1;
’MLF inf’

elseif pdH_total==0
MLF=1;
’MLF 0’

elseif pdH_total==-inf
MLF=-1;
’MLF -inf’

else
MLF=sqrt(mean2(pdH_total.^2));

end
alpha=0.05*gamma*(sqrt(var_approx*T)/MLF)*relax_ratio;

end

Gradient Descent calculation

fkNew=fk-alpha*pdH_total;
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fk=fkNew;

[RMSE,PSNR]=CalcError(I,fk,h);
% Write results screen.
fprintf(’M_c=%f T_c=%f H_T=%f RMSE=%f PSNR=%f beta=%f T_s=%f’...
’grad_it=%f relax=%f alp_m=%f MFA_it=%f alp=%f\n ’ ,MAIN_c,...
Total_count,H_total,RMSE, PSNR, beta_coeff,T_start,...
grad_descent_iters, relax_ratio,alpha_method, MFA_iter, alpha);
Totalresults(Total_count,:)=[Total_count T RMSE PSNR H_total];

end % Ends gradient descent main loop

[RMSE,PSNR]=CalcError(I,fk,h);
T=0.95*T; % Decrease the temperature.

% Document results.
results1(MAIN_c,:)=[MAIN_c beta_coeff T_start grad_descent_iters...
relax_ratio alpha_method MFA_iter RMSE PSNR T];

end % ends MFA while loop

results2(MAIN_c,:)=[MAIN_c beta_coeff T_start grad_descent_iters relax_ratio...
alpha_method MFA_iter RMSE PSNR];

end % alpha_method
end % relax_ratio
end % grad_descent_iters
end % start_temp
end % beta_coeff

Print results to screen.

[RMSEf,PSNRf]=CalcError(I,fk,h);
figure(20), imshow(fk);
title([’I after MFA RMSE: ’,num2str(RMSEf),’ PSNR: ’,num2str(PSNRf)]);

figure(22), imshow(abs(fk-I_blur_noise));
title([’I after MFA RMSE: ’,num2str(RMSEf),’ PSNR: ’,num2str(PSNRf)]);

Function: Noise Variance Determination

This function uses quadtree decomposition and optimisation to calculate the ap-

proximate noise variance of an image.

function [NoiseVarGuess]= ANVD(I_real,Thresh_Const);
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% M=[cellstr(’General Count’) cellstr(’Thresh Const’)
% cellstr(’Determined_Var’) cellstr(’No. Blocks’)]

I_real=im2double(I_real);

General_count=0;
Average_Var=0.0053; % First guess.
Average_Var_Prev=0.0022; % Just to get things going
General_count=0;
while (abs(Average_Var-Average_Var_Prev) > 0.0005) & (General_count <50)

Average_Var_Prev=Average_Var;
General_count=General_count+1;

% 94 percent of pixel intensity variations should be encompassed
% by this value of threshhold
Threshhold=sqrt(Average_Var)*Thresh_Const;
S=qtdecomp(I_real,Threshhold,1);

Block=0;
Average_Var=0;

for DIM=[256 128 64 32 16 8 4 2] % for loop 1
[Vals,R,C]=qtgetblk(I_real,S,DIM);

for temp=1:size(R) % for loop 2
I_little_quad=imcrop(I_real,[C(temp) R(temp) DIM DIM]);

[x_S y_S]=size(I_little_quad);
sum=0;
counter=0;
% the following two "for" loops calculate the the sum of pixel
% intensities for average calculations.
for x=1 :x_S

for y=1:y_S
sum=sum+I_little_quad(x, y);
counter=counter+1;
end;

end;
% Calculate average of pixel intensities and creates
% an image of averages.
Ave=sum/counter;
Quad_Image_noise(R(temp):R(temp)+DIM-1,C(temp):C(temp)+DIM-1)=Ave;

% This draws the quads with black lines.
Quad_Image_noise(R(temp):R(temp)+DIM,C(temp))=0;
Quad_Image_noise(R(temp)+DIM,C(temp):C(temp)+DIM)=0;
Quad_Image_noise(R(temp),C(temp):C(temp)+DIM)=0;
Quad_Image_noise(R(temp):R(temp)+DIM,C(temp)+DIM)=0;
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% The following code is used to calculate the variance in each quad
sum=0;
counter=0;
for x=1 :x_S

for y=1:y_S
sum=sum+(I_little_quad(x, y)-Ave)^2;
counter=counter+1;
end;

end;
Var=sum/(counter-1);
% Once the variance has been calculated, it only contributes to the
% average variace if its average falls between 0.2 and 0.8, this is
% done to avoid errors caused by pixel intensity edges, i.e. 0 and 1
if (Ave> 0.2) & (Ave< 0.8)

Block=Block+1;
Average_Var=Average_Var+Var;

end
end % ends for loop 2

end % ends for loop 1
Average_Var=Average_Var/Block;
fprintf(’G_c1=%f Thresh_Const=%f Average_Var=%f No. Blocks=%f \n’ ,...

General_count, Thresh_Const,Average_Var ,Block);

% The next guess is half way between the previous guessed variance and the
% determined variance using quadrature decomposition.
Average_Var=(Average_Var+Average_Var_Prev)/2; %Next guess.

end % ends while loop

NoiseVarGuess=Average_Var;

Function: Noise Hamiltonian Determination (ANVD)

This function takes in the current restoration image, fk=g, f is the original image, the

PSF (h) and the variance of the noise V to determine the NOISE HAMILTONIAN

and PARTIAL DERIVATIVE of the NOISE HAMILTONIAN.

function [H_noise, pdH_noise]= NHamil(g,f,h,hrev,V);

[M1,M2]=size(f) ;
Hn_num1=conv2(f,h,’same’) ;
Hn_num2=zeros(M1,M2); % Create zero matrix same size as fk.
Hn_num2=g-Hn_num1;
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Noise Hamiltonian

Hn_num3=Hn_num2.^2;
H_noise=sum(Hn_num3(:))/(2*V);

Derivation of Noise Hamiltonian partial derivative

pdH_noise=conv2(Hn_num2,hrev,’same’)/V;

Function: Prior Hamiltonian Determination

This function takes in the current restoration image,fk, the temperature, T and

the method with which to determine the PRIOR HAMILTONIAN and PARTIAL

DERIVATIVE of the PRIOR HAMILTONIAN.

function [H_prior, pdH_prior,Hp_num2]= PHamil(fk,T,Method);
% Note, the beta term has NOT been included in this function and must be
% included in the main program

Hp_den1=T^2; % the denominator term.

switch lower(Method)
case ’linneighbor’

Edgematrix=zeros(size(fk,1),size(fk,2));

for x=11:1:size(fk,1)-11
for y=11:1:size(fk,2)-11

for xi=1:1:6
for yi=1:1:6

Edgematrix(x,y)=Edgematrix(x,y)+(fk(x,y)-...
fk(x+3-xi,y+3-yi))^2;

end
end

end
end

Hp_num2=exp(-(Edgematrix)/(2*Hp_den1));

case ’quadratic’
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Derivation of Prior Hamiltonian

qxx=1/sqrt(6)*[0 0 0; 1 -2 1; 0 0 0];
qyy=1/sqrt(6)*[0 1 0; 0 -2 0; 0 1 0];
qxy=1/2*[-1 0 1; 0 0 0; 1 0 -1] ;
Edge1=conv2(fk,qxx,’same’); Edge2=conv2(fk,qyy,’same’);

Edge3=conv2(fk,qxy,’same’);
Edgematrix=Edge1.^2+Edge2.^2+2*Edge3.^2;

Hp_num2=exp(-(Edgematrix)/(2*Hp_den1));
Hp_num3=sum(Hp_num2(:));
H_prior=-(1/(sqrt(pi*2)*T))*Hp_num3 ; % PRIOR note this term is negative.

Derivation of Prior Hamiltonian partial derivative

qxxrev=fliplr(flipud(qxx)); qyyrev=fliplr(flipud(qyy) ) ;
qxyrev=fliplr(flipud(qxy)) ;
Hp_PD_num1=Hp_num2;
Hp_PDxx=Edge1.*Hp_PD_num1 ;
Hp_PDyy=Edge2.*Hp_PD_num1;
Hp_PDxy=Edge3.*Hp_PD_num1;
pdHp2=conv2(Hp_PDxx,qxxrev,’same’)+conv2(Hp_PDyy,qyyrev,’same’)+...

conv2(Hp_PDxy,qxyrev,’same’) ;
pdH_prior=1/ (sqrt(pi*2) *T*Hp_den1) *pdHp2; % PD of PRIOR
% Note the absence of the Beta term and that this term is positive.

case ’sobel’
hy = fspecial(’sobel’);
hx = hy’;
Iy = imfilter(double(I_wiener), hy, ’replicate’);
Ix = imfilter(double(I_wiener), hx, ’replicate’);
Edgematrix = sqrt(Ix.^2 + Iy.^2);
Hp_num2=exp(-(Edgematrix)/(2*Hp_den1));

otherwise
disp(’ERROR: Unknown edge method.’)

end
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Appendix B

MFA restoration program

Figure B.1 shows the program used to determine the results for this report. The

program allows the user to scroll using a sliderbar through a set of consecutive

MFA iterated images. Advanced versions of this software would include automatic

image sharpening filter utilities, median filters and other suitable post-processing

techniques. In addition the software should allow the user to enhance an image

using multiple PSFs. The user can then scroll through a “movie” of optimal image

restoration sets at different PSFs to possibly view detail at different depths, i.e.

planes of interest. This particular program was written in MATLAB’s GUIDE GUI

utility.

Figure B.1: Screen shot of a Graphical User Interface used to produce a movie of
consecutive iterations.
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Appendix C

Enlarged Results

This appendix displays enlarged original bone NM clinical images with their respec-

tive MFA enhancement results. Note that in a printed form these results are not

as visually effective as in digital form (see Appendix D for electronic version of the

results).
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Figure C.1: LLATS: Enlarged original image.
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Figure C.2: LLATS: Enlarged result after 25 MFA iterations and sharpened.

68



Figure C.3: LLATS: Enlarged result further Median filtered.
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Figure C.4: LAO001: Enlarged original image.
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Figure C.5: LAO001: Enlarged result after 25 MFA iterations and sharpened.
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Figure C.6: LAO001: Enlarged result further Median filtered.
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Figure C.7: LAO002: Enlarged original image.
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Figure C.8: LAO002: Enlarged result after 25 MFA iterations and sharpened.
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Figure C.9: LAO002: Enlarged result further Median filtered.
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Appendix D

Electronic Copy of Images and Source
Code

See the inside of the back cover for a cd containing an electronic copy of images and

source code.
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