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Abstract

Shaft voltages and currents are an unavoidable characteristic of rotating machines,

though they are typically a nuisance this work shows that shaft signals can be used

for fault diagnosis. This work focussed on shaft voltages present on synchronous

generators. Measurements on a 4-pole generator found that the angular position

of the shaft could be determined from the shaft voltage. An experimental 20 kVA

2-pole synchronous generator was designed and built which resembled a full-size

600 MVA turbo-generator. The effects of a static eccentricity on the shaft voltage

were successfully determined firstly through FEM simulation and then verified with

physical measurements. Shaft voltages can be used to diagnose static eccentricity,

future work should investigate other faults. In addition, computer simulation was

found to be effective and simulation and measurements of operating machines (such

as turbo-generators) should be considered.
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Chapter 1

Introduction

1.1 In general

Constantly increasing demands for electrical energy is, in the short-term, resulting in

a decrease in spare generating capacity. Accurate condition monitoring of electrical

generators is becoming of greater importance, as the consequences of unforseen or

emergency generator shutdown is becoming more and more difficult to mitigate as

spare capacity is simply not available. While the problem of managing South Africa’s

generating capacity and the development of new capacity is far beyond the scope

of this dissertation, this work is concerned with shedding light on, and developing

expertise in a relatively unexplored area of condition monitoring known as shaft

signal analysis.

A synchronous generator is typically designed to produce a voltage and a current

at the stator terminals through the rotation of a d.c. magnetic field within the

stator windings. A voltage at the terminals of the stator windings is, however, not

the only e.m.f. generated by the changing flux. A voltage also develops between

either end of the rotating shaft. This e.m.f. is not a design trait and is as a result

of unavoidable dissymmetries in the physical construction of the machine. Due to

imperfect manufacturing shaft voltages will be developed even in healthy machines;

a fault generally introduces some kind of disturbance into the magnetic fields within

the machine, and this is manifested as a change in the shaft voltage waveform. This

research concerns itself with the simulation and measurement of shaft voltages under

normal and fault conditions.

Extensive use was made of multi-step finite element simulations in order to predict
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anticipated changes in the shaft signal when a fault was introduced. For the purposes

of this work, the fault in question is a static eccentricity of the rotor. This fault

has the benefit of being simple to simulate with a 2-D model and, using the custom

built miniature turbo-generator, easy to physically demonstrate.

This report documents the various stages of the project, starting with a background

on available condition monitoring techniques and moving through the development

of a measurement system, preliminary experiments carried out with a standard 4-

pole generator, the design of the miniature turbo-generator, the simulation of the

mini-gen and finally the physical measurements and conclusion.

1.2 Thesis plan

1.2.1 Chapter 2 – Background

Starts by presenting a general overview of rotating machine components and the

types of failures which can affect them. The subject of condition monitoring and

its importance is introduced, followed by an overview of the established monitoring

techniques. The different monitoring techniques are listed under the categories of

electrical, chemical, vibrational and temperature. A background is then given of

the proposed technique of shaft signal analysis, which is the principal topic of this

study. Both the history and anticipated application to condition monitoring are

given. In particular, the work of Nippes and Torlay is presented and discussed.

Finally the testing platform which is used to investigate shaft voltages is introduced

and the goals of the testing and of this research are given. Three aspects of the

testing platform, namely simulation, physical measurements and signal processing

are elucidated.

1.2.2 Chapter 3 – Measurement system

This chapter presents a detailed design of the necessary signal interface and power

supply circuits. There are three circuits which were designed and constructed. The

first is a general purpose regulated dual-rail supply, the second is an incremental

encoder interface and isolation circuit needed to obtain angular position information,

and the third is an anti-alias, gain and protection circuit used for measuring the shaft

voltage.

3



1.2. THESIS PLAN

1.2.3 Chapter 4 – Shaft position determination

While the 2-pole miniature generator was being manufactured experiments were

conducted on a 4-pole Siemens generator. The 4-pole generator was retro-fitted

with an insulated bearing on the driven-end. The result of those experiments was

the identification of a technique which could locate the angular position of the shaft.

This technique makes use of an extended capture time to average out the shaft-

voltage, producing a clear waveform which is periodic about a mechanical revolution.

These results were presented at the IEEE International Symposium on Diagnostics

for Electric Machines, Power Electronics and Drives (SDEMPED) in September 2005

[2].

1.2.4 Chapter 5 – Mini-gen design

This chapter details the design objectives for the experimental miniature generator

(or mini-gen). In summary, the mini-gen must be suited to experimentation in the

University’s machines laboratory, it must closely resemble the key characteristics of

a full size turbo-generator and cost of materials and manufacture must be minimised.

The design, final specification and operating characteristics are presented.

1.2.5 Chapter 6 – Mini-gen simulation

This chapter and the next present the focus of this research project. This chapter

details the methodology used and the results obtained from transient finite element

method (FEM) simulations. Maxwell 2DTM from Ansoft was used to perform

these simulations and Matlab from The Mathworks was used to plot and analyse the

results. One of the objectives of this research project is to build expertise in transient

simulations using Maxwell 2DTM and this is reflected in the detailed product-

specific content of this chapter. Background on the model setup, meshing and related

activities is given. Once a consistent approach to the simulations is established,

various questions are posed concerning the suitability of FEM simulation to shaft

voltage prediction and then further, the effect of various machine parameters on the

shaft voltage. These can be looked up using the section titles in the chapter. The

use of the Maxwell 2DTM package to simulate shaft voltage was highly successful,

and the simulation results strongly support the use of shaft voltage measurement as

a condition monitoring tool.
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1.2.6 Chapter 7 – Mini-gen measurements

This chapter follows on from the last by showing how the FEM simulation results

were verified against physical measurements. It begins by detailing the experimental

setup and means by which a static eccentricity can be introduced into the machine.

The primary goal of the experiments was to verify whether or not the shaft voltage

frequency spectrum would behave in a similar manner to the simulations. Experi-

ments were conducted with no eccentricity and at three different levels of eccentricity.

The results obtained in these four cases are presented and discussed. It is concluded

that the FEM simulations were accurate in their prediction of an increased fifth

harmonic in the shaft voltage when the machine was run with a misaligned shaft.
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Chapter 2

Background

2.1 Introduction

This research is concerned with synchronous machines in general, and synchronous

generators in particular. Failures prevalent in other machines (such as squirrel-cage

faults) will not be presented here.

Rotating machines are made up of two key components: a stator and a rotor. Both

are made up of different materials with substantially different properties. The three

basic materials are steel, which gives structural strength and forms the magnetic

circuit in the machine, copper which forms the electrical circuit and carries power

into and out of the machine and finally, various types of insulation which keep

the current flowing where it should. Additional mechanical components such as

fans, bearings, slip-rings, brushes, ducting and casings are also present. In very

large machines (upwards of about 20 MVA) it becomes necessary to include more

sophisticated cooling systems. A common cooling strategy on large turbo-generators

is forced water circulation in the stator and hydrogen circulation in the rotor.

The purpose of any generator or motor is to convert mechanical energy to electrical

energy, or visa-versa. On a large machine, large forces will be present. These forces

act on all parts of the machine to greater and lesser extents. As such, all parts of

the machine are subject to some degree of aging and deterioration. It is the job

of the designer and manufacturer to minimise these effects for specified operating

conditions.

To this end, machine design and manufacturing techniques are very mature and

the risk of sudden failure on most machines is low. Failure becomes a risk where
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machines are operated outside of their design specification or in extremely harsh

environments. Design specifications will include (but are not limited to) the neces-

sary voltage, current and power ratings, intended operating environment (ambient

temperature, humidity, vibration, etc.) and intended machine lifespan. The issue

of design life-span is now highly topical as machines installed many years ago may

now be technically running outside of their design specification, and hence are at a

higher risk of failure.

Risk of failure must also be balanced with the consequences of failure. Unfortunately,

the machines most depended upon often have the greatest complexity and operate

under high levels of mechanical and/or electrical stress. Thus the machines with

the highest risk of failure are also those with the most severe consequences! This

is especially true for the large synchronous turbo-generators employed by power

utilities. However, an important digression needs to be made. Very often, a large

mission-critical machine such as a turbo-generator will be last in a line consisting

of a complex process of pumps, burners, conveyers and the like. A simple conveyer

driver can be overlooked because of its simplicity, low-cost and high reliability –

but should it fail, it could cause a plant shut-down of the same extent as a turbo-

generator failure!

As will be discussed in Section 2.3, any plant monitoring system does need to take

a holistic approach and incorporate the monitoring of supporting as well as primary

plant components. Digression aside, this research is concerned with the condition

monitoring of synchronous generators. A brief overview of machine failures will be

given in Section 2.2 and various established monitoring techniques will be presented

in Section 2.4. A background and motivation of the relatively new technique, and the

focus of this dissertation, of shaft signal monitoring will be presented in Section 2.5.

Finally the proposed testing platform will be discussed in Section 2.6.

2.2 Typical machine failures

Before looking at techniques of condition monitoring, it is wise to consider what

faults are most likely to occur. Eskom does not publicly release its synchronous

machine failure statistics, but the following common faults are documented in the

literature. Tavner and Penman [3] gives a dated but relevant overview of condition

monitoring and typical faults on a wide range of machine types, and is the primary
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source for the material presented below1. Vas [4] presents a more technical approach

to machine diagnostics incorporating parameter estimation. Alger and Samson [5],

Ammann et al. [6], Costello [7] and Verma et al. [8] discuss failures relating to shaft

currents and/or voltages.

2.2.1 Stator core defects

Core faults are rare and usually only occur in very large turbo-generators where the

laminated steel cores are sufficiently massive, and carry a sufficiently high magnetic

flux density, that when shorting occurs between laminations potentially damaging

currents can flow. Laminations can be shorted together during manufacture or as a

result of poor rotor insertion. The circulating currents can cause heating which can

be severe enough to melt the core steel, the molten steel then runs into the slots and

burns through the winding insulation. This would trip the earth-fault protection

relay, at this stage the damage to the stator core and windings would result in them

being written off.

Early indications of this type of fault are the flowing of large circulating currents,

high temperatures and the pyrolysing of the insulation material. On smaller ma-

chines similar damage can occur. In this case, damage can be caused by manufac-

turing defects. However, the stator is often damaged in service through excessive

vibration or as a result of an earlier bearing failure resulting in the rotor rubbing

the stator.

Lee et al. [9] presented a paper on inter-laminar stator core insulation failure detec-

tion techniques for generators based on low flux core excitation.

2.2.2 Winding insulation defects

One of the intrinsically weakest components of an electrical machine, both mechan-

ically and electrically, is the insulation system. This was especially true of earlier

machines, however, modern materials and techniques have greatly improved the

mechanical and electrical strength of the insulation system. Failure due to simple

ageing is now very rare. Most failures are as a result of either manufacturing defects

or mechanical damage caused by foreign materials while the machine is in operation.
1The material presented here is largely a summary of Tavner and Penman [3] Chap. 2, please

refer to it if you require greater background or depth.
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With the exception of a sudden massive physical trauma, insulation failure will be

preceded by an increase in partial discharge activity. The increase can be gradual,

and depending on the location of the defect, symptoms of failure can be observed

days or weeks in advance. Partial discharge detection is a very active area of research,

though it does not fall in the immediate scope of this study.

Winding insulation, in this context, refers to the primary insulation between in-

tended current paths (the copper windings) and surrounding components (such as

the stator and rotor). A failure of this insulation will typically cause a ground fault

which will result in the immediate shut-down of the machine. However, depending

on the electrical connection of the machine with respect to ground it is possible that

a single failure will not result in a fault, but a second failure will complete the circuit

and cause a very serious fault condition.

2.2.3 Winding subconductor faults

These faults are generally confined to large generators where the electrical load-

ings are such that the stator winding is very highly stressed, electrically, thermally

and mechanically. It is normal to subdivide the conductor into a large number of

subconductors and to insulate and transpose them to minimise winding losses. In

modern machines the transposition is distributed throughout the conductor length

by the use of the Roebel technique. This gives a uniform current distribution and

minimises the voltages between subconductors. Older machines, however, have the

transpositions made in the end winding at the knuckle joint and quite large voltages,

up to 50 V rms, can exist between subconductors. If severe mechanical movement

of the winding occurs during operation and the subconductor insulation fails then

subconductors can short together causing arcing.

The early indictors of such faults are arcing activity within the winding and the

pyrolysing of insulation. Although the fact that burning is taking place deep within

a conductor bar usually means that, initially at least, only small quantities of partic-

ulate and gaseous matter produced by the burning are released into the cooling gas

circuit. Where water-cooled subconductors are present, the fault causes a leakage

of gas into the winding cooling system.
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2.2.4 Stator end winding faults

A lot of effort has gone into the design of end winding structures. The end winding

must be restrained against the large forces on the winding during transient loading,

it also needs to cushion the conductor bars against the smaller forces during steady,

continuous running. End winding movements in normal operation are quite signif-

icant and can be as much as a few millimetres on a large turbogenerator. Faults

occur in the end winding when the bracing structure slackens, either as a result of

a succession of unusual overloads or because of an extended period of continuous

running. In some cases the end winding insulation becomes cracked, fretted or worn

away.

Foreign bodies inside a machine, such as steel washers, nuts or small portions of

insulation, get thrown around by the rotor. Damage is caused by these objects,

usually in the stator end winding region, where the insulation is damaged by the

impact or eroded by debris worming into it under the action of electromagnetic

forces (such a piece of debris is colloquially known as a “magnetic termite”).

The early indications of problems are an increase in end winding vibration and the

possibility of electrical discharge activity to nearby earth planes.

2.2.5 Water coolant faults

In water-cooled machines it is possible for a coolant blockage to occur, either in

the pipework leading to or from the conductor bars or in a subconductor itself.

This can be caused by either debris (though filters should protect against this) or

by gas entrainment resulting in gas-locking. Coolant blockage will eventually lead

to machine overheating and ultimately the burning of insulation. It is possible,

however, to operate a machine with some blocked pathways if restrictions on load

are acceptable. The normal vibration of a machine in service can excite resonances

in an improperly designed cooling pipework system and this can cause fatigue failure

of a pipe and loss of coolant.

The early indications of these kinds of fault are high indicated conductor or cooling

water temperatures, possible gas release from the water system and pyrolysing in-

sulation leading eventually to damaging discharge activity which will be electrically

detectable at the machine terminals.
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2.2.6 Rotor winding faults

In turbine-type generators the rotor winding insulation and bracing system must

be designed to withstand exceptionally high centrifugal forces imposed upon them,

and the faults are usually associated with these forces. A short can occur between

rotor turns, due to cracking of the winding insulation. The shorting current which

then flows creates a local hot-spot leading to further insulation degradation and the

possibility of further shorted turns. Once a short has occurred there is an asymmetry

in the flux in the machine and an unbalanced force on the rotor which causes rotor

vibrations. This is usually the first evidence that a shorted turn is present. Shorts

are also sometimes promoted by copper dust produced by fretting action in the

rotor winding. This occurs because of the cyclic movement which a large winding

experiences relative to the rotor, partly due to the self-weight bending of the long

thin rotor and partly due to thermal cycling. If an insulation fault occurs between

the winding and rotor body then an earth fault current flows which can be detected

by an earth leakage relay. If only a single earth fault occurs then the fault current

is limited, but if a second earth fault occurs then very large circulating currents can

flow.

The early indications of these faults are a distortion of the air gap flux and asso-

ciated stray leakage flux around the machine and an increase in bearing vibration.

Further, it is a proposal of this research that rotor faults can be detected through

the measurement and trending of shaft voltages and currents.

2.2.7 Rotor body defects

The high centrifugal stresses in machine rotors can also lead to problems in the

rotor body as well as in the windings. The propagation of cracks from surface

defects in the rotor material, or its associated components, due to high-cycle fatigue

under the action of the self-weight forces during rotation, can lead to catastrophic

rotor failures. This situation is exacerbated if the cooling gas contains moisture or

other impurities which encourage corrosion and can lower the resistance of the rotor

material to fatigue failure. Excessive heating of the rotor can also weaken the rotor

material. This can be caused by eddy current losses due to negative sequence in the

supply. But it is not only high-cycle fatigue which can cause a rotor to fail. Large

transients on the electrical system to which a machine is connected can also impose

sudden strains on its rotor. If a resonant condition exists between the machine and

the system the sudden transients can excite torsional oscillations which can lead to
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rotor or coupling failure.

Eccentricity of the rotor can lead to vibration due to unbalanced magnetic pull and

this can be compounded when the asymmetric heating leads to thermal bending of

the rotor. Two and four pole totally enclosed machines are particularly prone to

these problems especially if they have a small air-gap.

The early indications of these types of faults are usually excessive transverse bearing

vibrations, attention has also been given to measuring the torsional oscillations of

the shaft itself. The influence that static eccentricity has on shaft currents and

voltages will be investigated in this study using both transient simulations and

physical measurements.

2.2.8 Bearing failure

Bearings are a critical component of all rotating machines and their design and

specification is a mature science. The rate of wear with correct installation and

consistent running conditions is reasonably predictable; in addition, bearings are

usually renewed when the machine is serviced. Premature breakdown of bearings

can still occur and can result in excessive vibration and even rotor eccentricity to

the point of contact between the stator and the rotor on small air-gap machines.

Bearing failure can be caused by a number of factors [10]. Poor lubrication will

shorten the life of a bearing, with both under and over lubrication being a problem.

Faulty mounting which can result from poor alignment or other pre-loading condi-

tions, is evidenced by an unusual running band pattern or local injury to the races

such as nickings, score marks or dents. Design faults are less common but can arise

where a bearing is improperly modified after manufacture. Corrosion of bearings

can result from poor sealing, acid fumes, lubricants containing acids, condensation

or unsuitable storage. Dirt and/or other foreign particles in the lubricant can cause

damage. Chatter marks can be caused by static overload, vibrations and knocks

when the bearing was stationary and also by current passing through the bearing.

Shaft currents and voltages are generally regarded as a nuisance feature of rotating

machines because of the damage they can cause to the bearings. This was doc-

umented by Alger and Samson [5] in 1924 along with machine design techniques

which will minimise shaft currents. None-the-less, the damage done to bearings by

shaft currents and voltages has continued to be an operating concern on rotating

machines in general and large generators in particular [6–8, 11].
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2.3 Condition monitoring

The goal of condition monitoring is to save money and/or safeguard reliability and

safety. In most circumstances, up-time and financial cost are directly linked. In

extreme cases (such as nuclear power), reliability and safety must be guaranteed at

(almost) any cost.

With this in mind, it is easy to see why industry should react to recent advances in

the digital arena which have brought down the capital cost of condition monitoring

systems. But what is condition monitoring?

Condition monitoring is the name given to the discipline of monitoring machine

related variables, and inferring the condition of the machine from those variables.

It is desirable to know far more than whether or not a machine is simply working or

broken. A failure on a machine which results in it requiring immediate shut down

is usually preceded by one or more much smaller, less severe, and less expensive

to repair failures. Such as in the example of insulation failure where the failure is

preceded by an increase in partial discharge.

Condition monitoring greatly aids forward planning in production environments. If

it is known that a machine needs to taken down in the next 6 weeks, then a time can

be chosen which will minimise disruption and production losses. If it is expected

that spares will be needed, these can also be ordered ahead of time.

Because of the varied types, designs and ages of machine as well as the many dif-

ferent applications, it is very difficult to prescribe and quantify a single measurable

characteristic which will give a yes or no answer in terms of machine condition.

As already mentioned, one usually wants far more than a “yes” or “no” anyway.

Effective condition monitoring depends on the trending of measured variables.

The cost of measuring equipment for some variables of interest has, in the past,

resulted in a single instrument being purchased which is then used on each machine

in rotation, and samples are separated by days or weeks. The steadily decreasing

cost of online measurement instruments and the associated network connectivity is

now making full-time online measurements of machines feasible. See Table 2.1 for the

tradeoffs between discrete monitoring where a single instrument is used discretely

on several machines, and continuous monitoring where instrumentation is installed

on each machine.

When deciding what to, and what not to monitor, it is important to take into
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Table 2.1: Pros and cons of condition monitoring techniques
Discrete monitoring Continuous monitoring

Capital investment Low High
Sampling interval Long Short

Fair Good
(risk of instrument damage between 
measurements as well as inconsistent 
probe placement)

(probes and instrument are 
fixed)

Poor Good
(probe placement must be accessible 
while the machine is running)

(probes can be placed during 
maintenance)

Fair Good
(samples have to be captured 
manually)

(samples are captured 
automatically and can be 
graphed in real time)

Limited Unlimited

Naturally facillitated Restricted
(expert consultants can meet with 
machine operators when 
measurements are made)

(in-house expertise may be 
insufficient to diagnose some 
problems)

Application of expert 
knowledge

Repeatability

Freedom of probe 
placement

Ease of trending

Application of online 
technologies

account not just the repair or replacement cost of the individual machine, but also

the predicted loss of earnings due to production stoppage. It can be worthwhile to

monitor a relatively inexpensive machine because of the impact that that machine’s

failure will have on the plant as a whole.

There is plethora of machine parameters which can be recorded, and while they are

generally all useful for some purpose, some may offer more insight into the machine’s

condition and possible failure than others. An overview of established monitoring

techniques is given in Section 2.4. This research is concerned with the monitoring

of shaft currents and voltages, the merits of which are discussed in Section 2.5.

2.4 Established techniques

There are numerous machine characteristics which can be monitored. They can be

roughly divided into the four categories given below [3]2. Each of these character-

istics can be translated into a technique by which the condition of a machine is

monitored.

• Electrical
2This material is largely a summary of Tavner and Penman [3] Chapters 4, 5, 6 and 7, please

refer to it if you require greater background or depth.
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• Chemical

• Vibrational

• Temperature

2.4.1 Electrical techniques

Protection relays which monitor for overload, phase faults, ground faults and the

like have been around for some time. Unfortunately they generally only react when

a fault has already occurred and therefore do not serve to identify incipient faults.

They should therefore be regarded as a last line of defence and as a backup to other

more advanced techniques.

Within the machine there is a magnetic flux and electric field which varies, circum-

ferentially in the airgap, periodically in space and, for an a.c. machine, periodically

with time. Under ideal conditions these magnetic flux and electric field waveforms

will be symmetrical but electrical defects in the machine will distort them. Rotor

defects could be detected by electrical sensors fixed to the rotor. Defects on ei-

ther rotor or stator disrupt the radial and circumferential patterns of flux in the

machine causing changes which can be detected outside the machine [12]. These

internal magnetic and electric field distortions will also alter the machine terminal

quantities, the voltage and current, which can be measured to give an indication of

machine condition.

Partial discharge is an early indicator of many electrical faults in machine stators.

A number of techniques have been, and continue to be developed to measure this

phenomenon. These techniques generally operate in the HF realm and involve mea-

surements and connections to just about all aspects of the machine, including stator

windings, rotor windings and external broadband antennas.

Brushgear faults can be picked up by recording a temperature rise of the brushes,

or increased RF emissions from the brushes as a consequence of sparking.

Rotor mounted search coils may be useful, but problems with access and the relia-

bility of instrument slip rings has resulted in limited to no application in industry.

Techniques for generator rotor fault detection are well documented [3]. Earth faults

can be detected using earth leakage protection relays, potential difference measure-

ments or winding resistance to earth measurements. Turn-to-turn faults can be
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detected online with an air-gap search coil and by circulating current measurement.

An off-line quality control technique utilising rapid rise-time surges injected into

the winding between the slip-ring and the earthed body of the rotor has also been

developed.

The principal shortcoming of an air-gap search coil is that it needs to be incorporated

into the machine at manufacture. Online monitoring of shaft voltage may prove to

be an effective alternative, as this research will investigate.

2.4.2 Chemical techniques

Both insulating materials and lubricating oils are complex organic materials which,

when they are degraded by heat or electrical action, produce a very large number

of chemical products in the gas, liquid and solid states. Lubrication oils also carry,

not only the products of their own degradation, but also those from the wear of the

bearings and seals they cool and lubricate. Any technique to detect degradation

needs to measure the concentration of one or more of these complex products in the

most appropriate state, at the most convenient location in the machine.

Heat will break down insulation in a process which usually starts with the volatile

solvents used in manufacture and continues by breaking down the resin. If temper-

atures continue to rise the binder material (e.g. wood, paper, mica or glass fibre)

will also break down until the insulation is charred and no longer has significant

mechanical strength.

Pyrolysing activity gives rise to a wide range of gases, liquid droplets and even some

solid particulates which together make up the smoke being driven off the insulation.

Electrical discharge activity, within or adjacent to the insulation system, also releases

chemical degradation products as a result of the very high temperatures associated

with sparking.

Various methods exist for detecting the byproducts of insulation break down, be

they particulate or molecular in nature. Some methods, such as coolant/lubricant

flow or purity monitors operate full-time. Other methods, such as dissolved gas

analysis usually require a sample of coolant/lubricant to be drawn and analysed

off-line. Newer methods of continuous online monitoring of dissolved gas have also

been developed.
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In addition to monitoring the various lubricants and coolants for insulation break-

down byproducts, they can also be monitored for debris from wear and tear. Such

methods usually exploit the ferromagnetic and/or electrical properties of metallic

debris.

2.4.3 Vibrational techniques

Vibration is a long known, and much studied feature of electrical machines. An

electrical machine is a complex mechanical system, made up of internal components

(such as bearings), its associated support structure and the load to which it is

coupled. It is free to vibrate at its own natural frequency, or can be forced to

vibrate at many different frequencies.

The principal causes of vibration in electrical machines are [3]:

1. The stator core response to the attractive force developed between rotor and

stator.

2. The response of the stator end windings to the electromagnetic forces on the

conductors.

3. The dynamic behaviour of the rotor.

4. The response of the shaft bearings to vibration transmitted from the rotor.

These four areas are inter-related. For example, bearing misalignment or wear can

quite easily result in eccentric running which will in turn stimulate the vibrational

modes of the stator.

Each of these four areas exert their own influence on the total machine vibration,

and characterising each area is a work in itself. That said, vibration monitoring is

technically straight-forward to implement and can give a good indication of the over-

all health of the machine. However, expert analysis is usually required to diagnose

specific faults from machine vibration.

2.4.4 Temperature techniques

The temperatures within a machine are perhaps the best indicators of impending

failure, but obtaining high spacial resolution is difficult and/or expensive.
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There are three basic approaches to temperature monitoring [3]:

1. Measurement of local temperatures at points in the machine using embedded

temperature detectors.

2. Obtaining a thermal image, fed with suitable variables, to monitor the tem-

perature of what is perceived to be the hottest spot in the machine.

3. Measurement of the distributed temperatures in the machine, or the bulk

temperatures of coolant fluids.

These approaches demonstrate the fundamental difficulty of thermal monitoring,

which is resolving the conflict between the fact that point temperature measure-

ments are easy to make, but give only local information, whereas bulk temperature

measurements are more difficult and run the risk that local hot-spots can be over-

looked.

Local temperature measurement is usually accomplished with thermocouples or re-

sistance temperature detectors (RTD). They are usually embedded at manufacture

in areas of interest, such as in the stator windings, stator core or even the bearings.

Measurement of local rotor temperatures is more difficult, but can be done using

a self-contained circuit which is powered by the changing flux in the machine and

transmits data via a contact-less infrared link or similar.

Hot-spot measurement and thermal images are concerned with knowing the temper-

ature at the hottest point. Unfortunately this point may not be conveniently located

at a local thermocouple or RTD. Performing this type of measurement is technically

difficult, but it can be done. One solution for a rotating machine involves program-

ming a microprocessor with a thermal model of that machine and then feeding it

information from key points in the machine.

Bulk measurement of coolant temperatures is simple and is frequently implemented.

A sudden rise can give an indication of the machine being overloaded or of a coolant

system failure, though obtaining information about localised hot-spots is near to

impossible.
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2.5 Proposed technique – shaft signals

“Shaft signals” is used to refer to both shaft voltages and shaft currents. Though

the two are inextricably linked by Ohm’s Law, it is useful to treat them separately.

Where the shaft is correctly insulated, shaft currents are kept to a minimum and

shaft voltages can be measured. It is also possible to monitor the shaft current itself

using Rogowski coils [13].

2.5.1 History – Cause, effect and minimisation

An alternating flux which encircles the shaft can occur if there is a magnetic im-

balance in the machine. Two common causes are stator segmentation and residual

magnetism [5]. This flux will produce a potential difference across the shaft. When

spinning, the shaft is typically insulated at both ends by a thin film of oil in the

bearings, thus there are two oil-films in series in the circuit. If the potential differ-

ence (shaft voltage) exceeds twice the breakdown voltage of the oil-film [6] (because

of the two films), breakdown occurs and a shaft current flows. In the case where a

grounding brush is used at one end of the shaft, the potential difference only needs

to exceed the break-down voltage of a single oil-film in order for a current to flow to

ground. Repeated breakdown usually results in damage to the bearings which can

eventually lead to the failure of the machine [7] (as discussed in Section 2.2.8).

Due to the destructive nature of shaft-currents, much work has gone into construc-

tion and/or grounding methodologies which will limit or manage the shaft currents

[3–8].

The causes of shaft voltages and currents can be summarised as follows:

1. Magnetic Asymmetries, e.g. due to

• joints in the stator laminations

• rotor eccentricity

• rotor or stator sagging producing variable magnetic flux

2. Axial Shaft Flux, e.g. due to

• residual magnetisation

• rotor eccentricity

• saturation
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• asymmetrical rotor winding

3. Electrostatic charge, e.g. due to

• steam brushing turbine blade

4. External voltages on rotor windings, e.g. due to

• static excitation equipment

• voltage source and/or rotor winding insulation asymmetries

• active rotor winding protection

On large machines it is common for one end of the shaft to be grounded and the

other to be insulated. Nippes [14] stated that shaft grounding current peaks range

from 10 mA to 20 A on healthy rotating machines rated above 75 kW up to the

largest, 1200 MW. Voltage on the electrical machine shaft end opposite from the

grounding brush location (the insulated end) can be very high, reaching hundreds

of volts.

2.5.2 Application to condition monitoring

While shaft currents are a known characteristic of machines, and effort is made to

minimise them, shaft voltage analysis and consequent fault diagnosis has received

little in-depth attention. This is owed to the difficulties encountered in obtaining

accurate measurements and due to the difficulty in generalising results from one

machine to another. The other possibility is that the research has been found to be

extremely useful by the utility companies and any further research was kept out of

the public domain by commercial interest.

There is some work which has focused on the diagnostic aspects of shaft voltage

measurement and how different fault conditions might influence those measurements.

Ong et al. [13] looked at different techniques for the measurement of shaft currents.

Their research utilised one or more Rogowski coils to perform the measurement on

motors. Hsu and Stein [15, 16] looked firstly at the effect of eccentricities on shaft

signals and then on the use of shaft signals for eccentricity and/or shorted field coil

detection. Their work does not directly relate to this research as they focused on

motors rather than on generators. Their results are promising none-the-less, though

evidence of further work could not be found.
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Torlay et al. [17, 18] presented papers on the analysis of shaft voltages in large syn-

chronous generators. They started with a small 30 kVA synchronous machine and

concerned themselves with both the measurement of the shaft voltages and the neu-

tral voltage. This machine was dynamically modelled with the finite element package

Flux 2DTM. The following faults were then both simulated and demonstrated and

their results compared:

1. No failure;

2. Inter-turn short-circuit of one ninth of the excitation winding;

3. Inter-turn short-circuit of one pole of the excitation winding;

4. Eccentricity of 3 mm in a 4 mm air-gap (static eccentricity)

In all of the above situations, the generator was unloaded.

Any differences observed between the simulation and the demonstration were ex-

plained and it was found that the analysis of shaft voltage and neutral voltage

were enough to differentiate a single fault. Following the success of the experiment

with the small 30 kVA machine, a 1300 MW generator was also modelled. It was

found that the results cannot be directly carried from one generator to another, as

the results depend on the geometry and the electrical connection of the machine.

However, the simulations did show that the most common failures such as inter-

turn short-circuit in the rotor field winding or static or dynamic eccentricities could

be diagnosed. These simulations were verified against physical measurements on

1300 MW generators.

The study by Torlay et al. concluded that a failure on a synchronous generator can

be identified by analysing shaft voltages and neutral voltages. It was also found that

shaft voltages and neutral voltages are not the only electrical variables modified by

failures. It was recommended that the influence of harmonics in the network on

shaft voltages should be analysed. However, no evidence of further work could be

found.

More recently (June, 2004) Nippes [14] published a paper entitled “Early warning of

developing problems in rotating machinery as provided by monitoring shaft voltages

and grounding currents”. He noted that in mechanical trains, the source of shaft

currents is typically either electrostatic charge build-up or voltage generation from

residual magnetism. While on trains having rotating electrical machines, there are

21



2.5. PROPOSED TECHNIQUE – SHAFT SIGNALS

many additional voltage sources for shaft currents. Most sources cause unbalance or

asymmetry in the magnetic field such as: shorted turns in the rotor and/or stator

winding, shorted rotor/stator core laminations, shorted bearing seal and coupling

insulation, uneven air gap, and/or harmonics and transients from power electronics,

power supplies or loads as well as low level stator winding faults close to the neutral

star connection.

Nippes [14] has stated that condition monitoring using shaft grounding currents

and voltages of rotating shafts is effective. The following list of factors influencing

shaft grounding currents and voltages is taken from his paper (proven field cases are

marked with an asterisk [14]) :

1. Shaft or rotor rubs onto casing or stationary members:

(a) Shaft voltage decreases at rub occurrence. *

(b) Shaft grounding current increases and increasingly compounds, heavily

magnetising the rotating and stationary members. *

(c) If no detectable shaft voltage exists initially, very likely one would be

generated by the rub, depending upon the type of materials that come

into contact.

2. Static charge build-up on the rotating member due to:

(a) High liquid or gas velocity.

(b) Liquid or gas flow through filters.

(c) Turbine saturated steam. *

(d) Turbine dry steam under certain conditions. *

(e) Fogging or wet compression in gas turbines. *

3. Voltage generation from residual magnetism from:

(a) Magnetic particle inspection. *

(b) Welding with improper ground return. *

(c) Improper demagnetising. *

(d) Magnetic bases. *

(e) Lightning strike nearby. *

(f) Plant electrical faults or ground currents.

(g) Compounding of residual magnetism. *

22



2.6. TESTING PLATFORM

4. Electromagnetic asymmetries in electrical machines:

(a) Loss of bearing or seal insulation. *

(b) Loss of coupling insulation. *

(c) Core lamination shorting. *

(d) Unequal gap between the stator and rotor. *

(e) Rotor winding turn shorting. *

(f) Stator winding loss of a parallel circuit. *

(g) Stator winding transposition or turn shorting.

(h) Stator winding faults near wye connection.

(i) Induction motor broken rotor bars.

5. Voltage harmonics and/or transients induced into electrical machines:

(a) Variable frequency drives. *

(b) Pulse-width modulated supplies. *

(c) Excitation system harmonics. *

(d) Unbalanced phase loads on generators.

(e) Rectifier or SCR loads or power supplies.

Nippes has obtained a US patent for his voltage and current monitoring system

(VCM) [19].

Despite the evidence supporting the effectiveness of shaft voltage and current moni-

toring, it is still not a widely used technique. An objective of this research is to gain

local expertise and experience with this phenomenon.

2.6 Testing platform

2.6.1 Introduction and goals

While the results found in the literature will be taken into account, they are not

detailed enough for the purpose of developing a shaft signal based fault diagnosis

system. Such a system is the end objective of Eskom, though a complete or near–

complete system is not the objective of this research project. The purpose of this

research project is to lay the groundwork for the development of such a system. This
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project will include the operation and measurement aspects of a miniature turbo-

generator (mini-gen). The primary focus of this research project is to show that

one or more synchronous generator faults can or can not be reliably diagnosed from

shaft voltages.

Given the existing literature, it is expected that a strong correspondence will be

found between shaft voltage waveforms and the type and magnitude of faults present

on the generator. From the literature it is clear that the exact form of these wave-

forms is likely to vary from machine to machine, however it is hoped that certain

trends will become apparent. In order to recognise the fault(s) present on the gener-

ator various signal processing techniques will have to be employed, such as frequency

spectrum analysis.

To summarise, the goals of this research are the following:

1. Implement a measurement system for the test generator.

2. Investigate possible FEM based simulation of the test generator, in order that

fault characteristics might be predicted using a simulation of a generator. This

is an investigation and the actual use of FEM techniques is not a requirement.

3. Identify a methodology (or lack there-of) that enables the identification of the

fault from the shaft-voltage waveform.

The testing platform is broken down into 3 components :

1. Simulation

2. Physical measurements

3. Signal processing

2.6.2 Simulation

It has been previously stated that the exact form of a shaft voltage waveform is

likely to differ from machine to machine. It would be desirable if one could predict

how a fault would manifest itself in the shaft voltage signal for a particular machine.

To this end, finite element method (FEM) simulations using Ansoft’s Maxwell

2DTM transient solver will be used. The method and results of these simulations will

be presented in Chapter 6.
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It is necessary to use a simulation package capable of performing transient or time

stepped simulation in order to know the generated electromotive forces (e.m.f.’s).

The 2D transient capability of Maxwell 2DTM has not, in the past, been fully

exploited by the School of Electrical and Information Engineering, and one of the

outcomes of this research is to establish expertise in this area.

2.6.3 Physical measurements

This research is motivated by Eskom who would like to implement additional fault

detection and diagnosis capabilities for their large turbo-generators. These genera-

tors are typically in the 600 MW range, with a 2-pole non-salient rotor operating at

3000 RPM. It is difficult and expensive to perform any kind of experimental test-

ing on full-size units. A miniature turbo-generator, or mini-gen will therefore be

designed and constructed.

This mini-gen is to be, as much as possible, a scaled down version of the full-size

units. It will incorporate the same slot and winding configuration. The machine will

be designed with access and modification in mind and will be specially wound so as to

allow the introduction of faults into the rotor. It will also allow for the introduction

of arbitrary rotor eccentricity. The requirements, design and final characteristics of

the machine is given in Chapter 5.

2.6.4 Signal processing

Digital data acquisition cards are capable of recording a very large number of samples

at high sample rates. It is the intention of this research to see what advantages can

be found in processing an extended capture of many thousands of data points.

A dSpaceTM data acquisition and control card will be used. The card is primarily

designed for the full implementation of digital control systems, and its full capabili-

ties will not be used here. It will, however, support a data capture of up to 500 000

samples. Matlab will be used to process the samples, and to produce appropriate

graphs.
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2.7 Conclusion

Rotating machines, while based on fundamental principles of force, motion and

magnetic fields, can be complex in both their construction and nature of failure.

However, it is possible to both categorise and document the types of failure and

techniques of condition monitoring. This chapter has presented a brief overview of

the mechanisms of machine failure and condition monitoring. A background on the

proposed technique of shaft signal monitoring and analysis has been given, and it

is clear from the prior investigation of others that there is definite value in shaft

signals as another source of information when building a comprehensive condition

monitoring system for rotating machines in general, and synchronous generators in

particular.

The principle goal of this research is to investigate the application of shaft signals

to condition monitoring and to establish expertise in the field. This will be ac-

complished using both simulations and physical measurements. The simulations

will be conducted using the Maxwell 2DTM package from Ansoft and will help

to establish expertise in the transient features of the package. Physical measure-

ments will be conducted on a miniature 2-pole synchronous generator which will be

designed and constructed for the express purpose of investigating condition moni-

toring techniques and other aspects of turbo-generator operation and parameters.

These measurements will be obtained and processed using relatively modern data

acquisition hardware in the form of a PC based dSpaceTM data acquisition and

control card.
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Chapter 3

Measurement system

3.1 Introduction

This research is centred on the measurement of shaft voltage in both a simulated

and an experimental environment. Knowledge of the absolute angular position of

the shaft was also desired. A signal interface box was designed and constructed to

interface a dSpaceTM DS1104 data acquisition and processing board to the shaft of

the machine under test and to an incremental encoder. This chapter is broken into

sections which describe the dual-rail DC power supply, the incremental encoder in-

terface and the shaft voltage interface. Use was also made of commercial differential

voltage probes and a Rogowski coil.

3.2 Power supply

3.2.1 Requirements

A DC power supply is required to provide power to both the analogue signal condi-

tioning and interface circuitry as well as to the incremental encoder.

Power supply type : Regulated, dual rail

Voltage output : ±12 V

Current output : ±500 mA
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3.3. ANGULAR POSITION MEASUREMENT

3.2.2 Design

A general purpose power supply utilising a transformer, full-wave bridge rectifier

and 78 & 79 series voltage regulators was implemented. See Figure 3.1.

Considering just the positive rail of the supply: The 7812 requires a minimum drop-

out of 3 V to achieve rated load regulation of ∆VO = 12mV. The transformer

supplies 15 V rms at 500 mA, giving 21 V peak. C1 and C2 smooth the rectified

wave and a simple δV = IT/C calculation where I = 0,5 A, C = 4400 µF and

T = 0,01 s gives δV = 1,1 V. At a load of 0,5 A, the input to the rectifier should not

drop below 19 V which is well within the requirements of the regulator. The same

will apply to the negative rail.

U1 and U2 incorporate short-circuit and thermal protection, fuse F1 is used to

protect against a transformer fault. R2 and R3 ensure that a minimum bias current

always flows through U1 and U2 as their voltage regulation is poor at very low

currents. D5 is used as a power-on indicator.
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Figure 3.1: Power supply schematic

3.3 Angular position measurement

3.3.1 Requirements

It is difficult to obtain accurate angular position information from a rotating ma-

chine in the field. While a once-per-revolution ticker is often utilised to measure

average angular velocity, it can not resolve slight perturbations in the velocity be-

tween whole revolutions. In addition, a simple ticker is particularly ineffective at
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supplying information such as velocity and acceleration when the rotor is spinning

at slow speed (e.g. at start-up).

It is thought that an accurate knowledge of the angular position of the rotor may

be useful in resolving fault type and position in the machine. Given that an experi-

mental unit is the subject of these measurements, there is freedom to implement an

angular position measurement system.

Two models of incremental shaft encoders were used :

Leine & Linde RHI503

Part No: 392911-04

Ser No: 12900388

Supply: 9 – 30 V d.c.

Output: 500 ppr HTL

Stegmann DG 60 L WSR

Part No: DGS60-G4A01024

Ser No: 5W1WC2F00600 - 000266

Supply: 9 – 30 V d.c.

Output: 1024 ppr HTL

In terms of interfacing, these encoders are identical. They require a 9 to 30 V d.c.

supply and provide three digital outputs commonly referred to as A (S00 or PHI0),

B (S90 or PHI90) and Z (Sref or IDX).

The dSpaceTM DS1104 will accept inputs from two incremental encoders. Its inter-

face however, has different specifications :

dSpaceTM DS1104 encoder interface

Supply available : 5 V d.c.

Input: RS422 (differential 0 – 5 V) or

TTL (single ended 0 – 5 V)

3.3.2 Encoder interface and isolation design

See Figure 3.2 for the encoder interface schematic. The advantage of this design

is that the encoder and its supply are completely isolated from the encoder input

on the computer. The encoder is supplied with 24 V obtained by using the +12 V

and −12 V rails of the power supply in series. Although 12 V would be sufficient to

power the encoder (it requires between 9 and 30 V), the higher voltage resulted in

less current drawn by the encoder. In addition, the positive and negative rails are
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equally loaded which keeps them symmetrical about the 0 V rail. The single-ended

digital outputs from the encoder drive LED’s in packaged isolation ICs U2 and U3.

R5 – R7 were chosen so that the LED’s would be driven at the recommended 10 mA.

The PC side of the interface circuit is powered by the 5 V obtained from the encoder

input on the dSpaceTM board, and is only live when the computer is switched

on. C1 is a recommended de-coupling capacitor. Pull-up resistors R1 – R4 were

chosen to provide a low-impedance for noise-resistant switching and are in the range

recommended by the data-sheet. U1 is used to buffer the logic signal and to supply

an RS-422 differential signal.
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Figure 3.2: Encoder interface schematic

3.4 Shaft voltage measurement

3.4.1 Requirements

The shaft of the test generator is mounted on insulated bearings and grounded at

one end; the opposite end of the shaft is left floating. The shaft voltage is measured

between the grounded and the floating (or non-grounded) end. An interface circuit

was placed between the ADC input of the dSpaceTM DS1104 and the brush riding

on the non-grounded end of the shaft.

The shaft voltage interface circuit has three design criteria:

1. High input impedance
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2. Low noise and anti-alias filtering

3. Protect the ADC circuitry from an accidental short to live

3.4.2 Design

The input to the circuit is passed through the low current, fast-blow fuse F1. D1 and

D2 are connected in a voltage clamping arrangement and should the shaft voltage

exceed approximately 10 V above or below ground, D1 and D2 will clamp the signal

to ground. If the voltage exceeds 10 V as a result of a serious fault, the high current

will blow out the fuse and the remainder of the circuit and PC-side circuitry will be

protected.

U2 is an NTE859 quad opamp which was chosen for availability, low-noise and high

input impedance, it also exceeds frequency and supply voltage requirements. Note

that U2A – U2D and their pins are numbered according to their connection in the

physical circuit. U2B is configured as a high-impedance, non-inverting amplifier.

R1 sets the input impedance of the circuit to approximately 10 MΩ. U1A, U1C and

U1D form a 6 order low-pass Bessel filter. A Bessel filter was chosen as it has a

maximally flat group delay across the pass-band, and the preservation of the time

domain was deemed important.

The dSpaceTM DS1104 is capable of sampling at 50 kHz therefore the design cut-off

frequency was specified as 10 kHz, which is well below the Nyquist frequency of

25 kHz. A 6-pole filter exhibits a roll-off of approximately 120 dB per decade. At

Nyquist of 25 kHz, the signal will have been attenuated by 48 dB. This equates to

8 most significant bits of the ADC which will not be affected by aliasing.

An active 3 opamp, 6-pole filter was designed according to the directions and con-

stants described by Horowitz and Hill [20, pp. 275]. This was verified using a linear

Spice simulation. Note that the Spice simulation did not take into account the

characteristics of the NTE859 being used.

Figure 3.3 is a schematic of the signal conditioning and anti-alias filtering circuit.

3.4.3 Characterisation

Figure 3.4 shows the measured interface gain for a 2 V p-p sine wave. An average

of 4.587 was used as a calibration for the recorded shaft voltage.
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Figure 3.3: Shaft voltage interface schematic
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Note that this is a non-inverting design, and the signal does not get inverted.

The cut-off of the physical interfacing unit is less than 10 kHz. This was deemed

to be acceptable since it was found through simulation and testing of the generator

that frequencies above 3 kHz are of little interest for shaft eccentricity detection.

A 16-bit ADC channel on the dSpaceTM DS1104 was used. This channel can measure

±10 V (a range of 20 V). During the course of the measurements the maximum

shaft voltage recorded was approximately 3 V p-p. Thus approximately 13 bits of
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Figure 3.5: Photograph of signal interface box (with cover removed)

resolution were recorded.

Good results in terms of this research were achieved without running into noise

problems and the noise floor has not been fully quantified.

3.5 Additional line current and voltage measurements

Additional voltage and current measurements were obtained using commercial 200:1

differential voltage probes and a Rogowski coil. These probes were connected directly

to the dSpaceTM DS1104 board using coaxial cables.

3.6 Conclusion

Further details of the layout and connection of the probes to the physical test plat-

form can be found in Chapter 7 in addition to the presentation and discussion of

the measurement results. The interfaces and circuits documented here were found

to work well and good results were obtained without further emphasis being given

to the noise floor.

The circuits were packaged together in a steel box and the same power supply was
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3.6. CONCLUSION

used for both the digital interface circuit and the analogue gain and anti-alias filter.

Appropriate smoothing capacitors were used to minimise interference between the

two circuits. Figure 3.5 shows a photograph of the completed signal interface box.

Note the additional BNC connectors on the front of the box which were placed there

to facilitate filtering of additional channels if necessary.
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Chapter 4

Shaft position determination

4.1 Introduction

Shaft voltages (and consequent currents) are a known and generally undesirable

feature of rotating machines. Shaft currents can severely damage the bearings over

time resulting in machine failure. Shaft voltages and currents are generally higher

on larger machines.

Shaft voltages and currents have four primary causes [4] which were expanded on

in Chapter 2. As previously discussed, shaft voltages are influenced by several

characteristics of the machine and they can be used for diagnostic purposes.

In order for shaft voltages and currents to be used for diagnostic purposes a reliable,

relatively noise-free signal is required. The importance of the brushes used to ground

the shaft (for damage protection) and for signal pick-up is emphasised in almost

every paper on the subject of shaft voltage and currents. Because the voltages

and currents are relatively small, ordinary carbon brushes do not work because an

insulating film builds up between the brush and the shaft. Similar problems occur

with solid brushes of other materials [7, 21]. Currently the most effective brushes

are of a bristle-type made from gold alloy.

This chapter does not deal with the topic of machine fault diagnosis; rather it

presents a technique which will give the position of the shaft from the shaft voltage

and a pre-recorded reference signal.
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4.2. EXPERIMENTAL SETUP

4.2 Experimental setup

GeneratorDC Motor

Variable
DC Supply

3 Resistive
Load Bank

Signal
Brush

Rotating
Exciter

Variable
DC Supply

PC Based
Acquisition System

Incremental
Encoder

Insulated
Coupling

Grounding
Brush

Figure 4.1: Diagram of experimental setup

A standard 400 V salient 4-pole generator with rotating excitor is used. The bearing

on the driven side was replaced with an insulated version, insulating the shaft from

the case at that end. Two brushes were mounted on the shaft, one at each end. The

brush at the insulated end was used to pick up a shaft voltage (signal brush) and

the brush at the non-insulated end was used to reliably ground the shaft to the case

(grounding brush). The brushes used were manufactured by Sohre Turbomachinery

and are of the “shaft riding fibre” type made from a silver/gold alloy.

In addition, a 1024 line rotary incremental encoder was coupled to the shaft. This

encoder was used to provide an absolute angular position reference.

A PC based data acquisition system was used to capture the signal from the signal

brush and the rotary encoder. The system took care of producing an absolute

position from the incremental encoder.

4.3 Measurement system

The measurement system is the same as that discussed in Chapter 3. The heart

of the system is an acquisition card set up to sample a single ADC input and a

single rotary encoder input at 25 kHz. An interface circuit is employed between the

acquisition card and the signal brush. This circuit provides a high-impedance input

for the signal brush and performs anti-alias filtering, as well as fused protection

against an accidental short to live potential.

Using the acquisition card an extended number of points can be captured (at present,
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4.4. ALGORITHM

20 seconds of data at 25 kHz). The data is then processed using Matlab.

The major advantage of the long capture time is the ability to average the data

over an extended number of rotational cycles, greatly reducing the noise (compare

Figures 4.3 and 4.4).

4.4 Algorithm

1. A 20 second capture of the shaft voltage and the absolute shaft position is

made. Figure 4.2 shows a snapshot of the shaft voltage capture with the

machine under no load.

2. A plot of the shaft voltage for a single revolution of the machine under no load

is produced. The x-axis has a domain of 360 degrees in 0,5 degree increments.

Using the absolute position recorded alongside the voltage signal, the voltage

signal is averaged over the 20 seconds to produce an almost noise-free signal

for a single revolution. This plot becomes the reference plot. In Figure 4.3

multiple readings at the same absolute position are super-imposed over each

other. In Figure 4.4 these same readings are averaged, producing a noise-free

reference signal.

3. A 1 second capture of the shaft voltage and the absolute shaft position is made

(the test signal). The absolute position is recorded only for future verification,

it is not used in the processing of the second plot. An example time-domain

snapshot from the same machines, now running at 90% excitation is show in

Figure 4.6.

4. The fundamental frequency is found by low-pass filtering the test signal and

then looking at the time between peaks. The signal is then averaged using

the fundamental frequency. In Figure 4.5 the no-load signal is averaged over 1

second using the estimated fundamental frequency, and in Figure 4.7 the same

averaging technique is applied to the 90% excitation signal.

5. The averaged test signal is then resampled to have a length of 720 points (the

same as the reference signal).

6. Finally, the test signal is “slid” over the reference signal in order to find the

point at which the best correlation is obtained. The best correlation is obtained
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4.5. DISCUSSION

at the integer offset n when the following sum results in a minimum :

720∑
k=1

(r(k)− t(k + n))2 (4.1)

(where r(k) is the discrete reference signal and t(k) is the discrete test signal)

4.5 Discussion

In Figure 4.2 a time-domain snap-shot of a signal recorded with the machine under

no-load is shown. The shaft voltage and the absolute position of the shaft were

sampled simultaneously and can be seen on the graph. This is a 4-pole machine,

with a mechanical rotation of 25 Hz or 1500 RPM. The primary source of the shaft

voltage is related to the 50 Hz MMF wave, however, some component of the shaft

voltage is related to the mechanical rotation of the machine. This component enables

one to distinguish adjacent 50 Hz cycles. Hsu et al. have commented on the fact that

the voltage signal is symmetrical about a mechanical rotation, but not an electrical

rotation [15].

The advantage of averaging over multiple mechanical cycles can be seen by compar-

ing the super-imposed plot in Figure 4.3 with the averaged version of the same data

in Figure 4.4. The purpose of the technique given earlier is to be able to determine

shaft voltage position without a permanently connected encoder, hence an averaged

plot of the same data, this time using an estimate of the fundamental frequency, is

shown in Figure 4.5.

The machine was then run with a small resistive load and at 90% excitation current.

A different plot of the shaft-voltage was recorded, as shown in Figure 4.6. Note that

the signal is still affected by mechanical asymmetries and is cyclic over a mechanical

revolution. This signal was averaged over one second using an estimated fundamental

frequency and not the recorded shaft position.

Finally the averaged test signal was shifted until an optimum correlation was found

with the recorded reference signal. These two signals are plotted on the same axes

in Figure 4.8.

For verification purposes, the absolute shaft position recording was kept alongside

the test signal while the test signal was averaged and shifted. It is plotted on the
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Figure 4.2: Time domain plot of the recorded shaft

signal and the shaft absolute position

0 45 90 135 180 225 270 315 360

-100

-50

0

50

100

Absolute position (deg)

S
h

a
ft

 V
o

lt
a

g
e

 (
m

V
)

Figure 4.3: Super-imposed plot of shaft signal cycles,

referenced against the shaft position
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Figure 4.4: Averaged plot of shaft signal cycles over

20 s, referenced using shaft position recording
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Figure 4.5: Averaged plot of shaft signal cycles over

1 s, referenced using an estimated fundamental fre-

quency
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Figure 4.6: Time domain plot of a signal recorded at

90% excitation
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Figure 4.7: Averaged plot of 90% excitation shaft sig-

nal. Averaged over 1 s, referenced using an estimated

fundamental frequency
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Figure 4.8: The reference plot and the 90% excitation

plot after correlation with each other
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4.6. CONCLUSION

same axes with the estimated shaft position in Figure 4.9. This plot shows that the

estimated shaft position is within 8,5 degrees of the actual shaft position.

This process was repeated for different load conditions, 110% excitation and a re-

duced rotational speed (with 40 Hz output frequency). In the tested cases the

estimated shaft position was within 10 degrees of the actual shaft position.

4.6 Conclusion

The shaft voltage waveform, aligned to the angular position of the shaft, is highly

consistent and repetitive for the same loading and excitation conditions. A change

in load does not greatly distort the waveform. A change of 10% of the excitation

field for a constant load produces substantial distortion of the waveform, primarily

through the increase or decrease of a 3rd harmonic.

It is possible to determine the shaft position from a shaft voltage measurement

given that a reference signal is available. Even in the extreme case of a decreased

excitation field, the position of the shaft could be determined to within 10 degrees.
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Chapter 5

Mini-gen design

5.1 Introduction

Large turbo generators are typically 2-pole 3000 RPM units with a large air-gap.

This is quite unlike commercially available generators for small commercial or indus-

trial use which typically have 4 or more poles and have a comparatively much smaller

air-gap. A machine similar to the large units, but which is small enough to be tested

and run in the university’s laboratory facilities was designed and manufactured.

This chapter presents the requirements of this miniature turbo-generator, its design

and a selection of relevant technical drawings and finally its measured operating

characteristics.

5.2 Generator requirements

For this and future projects there are 4 fault types of interest:

1. Displaced air-gap (static eccentricity).

2. Excitation current containing harmonics.

3. Shorted turns at different points in the rotor winding.

4. Earth faults on the rotor winding.

In order to implement these, and possibly future faults on the machine the following

requirements were decided on. These are grouped into 3 categories:
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5.2. GENERATOR REQUIREMENTS

1. Experimental and modification capability.

2. Similarity to a full-sized turbo-generator.

3. Economic use of off-the-shelf components (e.g. stator sections)

5.2.1 Experimental capability

The miniature generator’s purpose is to enable measurements to be made of dif-

ferent conditions imposed on it. The following points list the broad mechanical

and electrical requirements in order for the machine to be useful to this and future

projects.

• Easy access for measurements, assembly and disassembly. This enables the

introduction of faults into the windings, specifically the rotor winding.

• Adjustment of rotor to stator relative position in order to investigate air-gap

eccentricity. This is accomplished by fixing the bearing pedestals to a bed-

plate, thus the rotor is fixed relative to the bed-plate. The stator is mounted

to supporting pillars on the bed-plate either through round holes which locate

it correctly and precisely, or with a combination of oblong holes which enable

its position relative to the rotor to be shifted in the 2 horizontal dimensions.

Shims enable its position to be adjusted in the vertical dimension if desired.

• Insulated bearings for controlled grounding and the measurement of shaft volt-

ages and currents.

• Outboard slip rings for static excitation. This will give control over the exci-

tation current and enable inclusion of harmonics.

• Finished landings on the shaft for specialised gold brushes which will be used

to ground the shaft and/or take voltage measurements.

• Option to replace the slip-rings with a rotating-rectifier type exciter in the

future.

• The unit must be as enclosed as possible to reduce electrical noise.
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5.3. GENERATOR DESIGN

5.2.2 Similarity to full-sized machine

In order for the results obtained from the mini-gen to be as applicable as possible

to the turbo-generators used by Eskom, the machine needs to have similar charac-

teristics:

• Non-salient, 2-pole, 3000 RPM design.

• Distributed concentric field windings on the rotor.

• Rotor to be machined from solid bar.

• Inclusion of damper-bars on the rotor.

• Open stator slots.

5.2.3 Economic decisions

• A conventional LV induction motor stator is used with open-slots. The stator

is therefore a stock item which does not require special tooling for manufacture.

• Windings will not be VPI’ed (Vacuum Pressure Impregnated) to reduce cost

and to enable future modification.

5.3 Generator design

5.3.1 General

The requirement to design a miniature version of a large 600 MW turbo-generator

presents numerous difficulties. In engineering it is not possible to scale a design by

merely reducing all dimensions by a fixed scaling factor. As one obvious example

the power output is proportional to the volume of the active material while the heat

dissipation is proportional to the surface area.

In this project the small unit also has to be manufactured by a conventional motor

manufacturer. Obviously cost was an important consideration.
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5.3. GENERATOR DESIGN

Figure 5.1: Assembly diagram of mini-gen

5.3.2 Constructional features

A conventional LV induction motor stator was used as the basis for the design except

that open stator slots were used as on a full sized turbo-generator. It was also not

considered wise to keep to the same ratio of rotor diameter to core length as this

would present constructional difficulties. The small diameter would make a stator

of great length difficult to wind.

The rotor would be machined from solid as on a full sized unit and the slots would

be milled to form a non-salient pole synchronous machine. The stator and rotor

slotting were the same as the full sized unit. The air-gap dimension on a full sized

unit is very large but it was considered prudent to initially set the rotor diameter

to give a smaller air-gap and to allow the rotor outside diameter to be machined at

a later stage if it was considered of value to the research.

Unlike the full sized unit, the shaft critical speed is well above the operational speed

as presently designed. If at a later stage, it is considered desirable to run through

the first critical speed, the shaft can be machined to weaken it.
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5.4. FINAL SPECIFICATION

The bearings would be pedestal mounted on a bed-plate. The stator would be

mounted with special features so that the air-gap could be distorted in different

ways and the effect on the signals observed. The rotor would have outboard slip-

rings for the excitation current but at a later stage thus could be replaced by an AC

exciter with rotating rectifiers. Landing areas at both ends of the shaft would be

provided for the voltage signal. Special gold-bristle brushes would be used to avoid

any problems with the contact drops experienced with conventional carbon brushes.

5.3.3 Design

Due to the unusual requirements there were no accepted design procedures that

could be followed. Since the stator was of conventional design, existing computer

induction motor design software was initially used to obtain the stator winding

This stator design was then used with a proprietary synchronous design package

called RMxprtTM. This was only able to design conventional salient pole rotors

and this was accepted to provide an initial value for the excitation amp-turns. This

design package enables a model of the machine to be prepared for finite element

software (Maxwell 2DTM) from the same software house. The FEM model was

analysed.

The model was then modified manually so that the actual cross section of the non-

salient pole machine could be analysed.

On the basis of this arrangement, the design values were passed on to the manufac-

turer.

5.4 Final specification

A full depiction of the machine can be seen in Figure 5.1.

5.4.1 Stator

The winding will be a simple mush wound and will basically be a 340 V winding. On

the test bed the voltage can be increased to 380 V to allow the effects of saturation
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to be examined. See Figure 5.2 for a photograph of the stator laminations set in the

case but without windings.

Core length 280 mm

No. of slots 48

Wire size 1,8 mm

Wires in parallel 6

Pitch 1 – 17

Conductors per slot 6

Parallel circuits 2

Connections Star

Figure 5.2: Photograph of the stator before winding

5.4.2 Rotor

The rotor is machined from solid bar. The initial size will give an air-gap of 6 mm

but the design will allow the rotor to be machined down to enlarge the air-gap to

12 mm without damaging the coils.
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5.5. OPERATING CHARACTERISTICS

No. of slots 32 (16 per side)

Slot size 36 mm × 5 mm

Coil size 30 mm × 5 mm

Coils Concentric wound in situ

No. of turns 10

Wire size 4 mm × 1,8 mm

All turns in series

Figure 5.3: Photograph of the rotor in the process of winding

Figure 5.3 is a photograph of the rotor in the process of being wound. Once the

windings were complete, damper bars were added to the slots and bound by a copper

ring on each end. The whole rotor was then wrapped in resi-glass. Note the exposed

wire insulation on the near side of the rotor winding, this is to facilitate the addition

of a rotor inter-winding short, or ground fault.

5.5 Operating characteristics

5.5.1 Measured winding resistances

Table 5.1: Mini-gen winding resistances

Red – Blue 53,6 mΩ

Blue – Yellow 53,6 mΩ

Yellow – Red 53,0 mΩ

Rotor (excl. brushes) 457 mΩ

Resistances measured at 23 ◦C

47



5.5. OPERATING CHARACTERISTICS

The three terminals on the mini-gen were coloured red, blue and yellow. See Ta-

ble 5.1.

5.5.2 Open and short-circuit tests

Due to the unusual design and very large air-gap, the operating point of the machine

is best determined from the empirical test results. The open circuit characteristic is

shown in Figure 5.4 and the short circuit in Figure 5.5.

The operating point of the machine is chosen to be 340 V and is generated with a

field current of 62 A.
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Figure 5.4: Open circuit characteristic of the mini-gen

5.5.3 Rotor temperature rise

Table 5.2 gives the approximate temperature rise of the rotor windings during 25

minutes of operation. The resistance of rotor winding was calculate using V/I. The

48



5.5. OPERATING CHARACTERISTICS

0

10

20

30

40

50

60

70

0 5 10 15 20 25

I field

I s
c

Figure 5.5: Short circuit characteristic of the mini-gen

Table 5.2: Temperature rise of the rotor during no-load operation

Time 
(minutes)

V field
(V)

I field
(A)

R winding 
(Ohms)

T rotor
(deg C)

0 33 64 0.516 23.3
5 36 64 0.563 46.8

10 39 64 0.609 70.2
15 40 64 0.625 78.0
20 42 64 0.656 93.6
25 44 64 0.688 109.3
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temperature of the winding was calculated using Equation 5.1.

RHOT

RCOLD
=

234, 5 + THOT

234, 5 + TCOLD
(5.1)

Given the fast and linear temperature rise it is clear that this machine cannot be

run for longer than 20 or 25 minutes. The primary source of heating is the rotor and

this cannot be avoided. Fortunately, the measurements required for this research

could be obtained during short runs of less than 10 minutes each. Should future

research require more extended runs a larger, more powerful cooling system could

be used. The use of dry-ice could also be considered.

5.6 Conclusion

The requirements for the experimental mini-gen were given, the mini-gen must be

small enough to be tested and modified in the Universities machines laboratory, it

must be as similar to a full size 600 MVA turbo-generator as possible and it must

be cost-effective. These objectives were achieved through the use of a mixture of

RMxprtTM and Maxwell 2DTM to determine the dimensioning and approximate

current capability of the machine.

Once completed, open and short-circuit tests were conducted on the mini-gen and

their results are presented. From a current generation point of view, the generator’s

performance is satisfactory. With the present cooling arrangement the mini-gen

exceeds its operating temperature within 20 minutes. This is unfortunate and can

be attributed to the very high rotor current required to create the required flux in

what is a disproportionately large air-gap. This is part of the trade-off between a

machine which resembles a turbo-generator four orders of magnitude larger than

itself and a machine which operates effectively at its own power level.
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Chapter 6

Mini-gen simulation

6.1 Introduction

At the inception of this research project it was thought that simulating shaft voltage

waveforms for real machines was not possible, and that much greater emphasis would

be placed on the processing of measured waveforms from the test unit.

This has been found to be entirely not true. 2-D transient simulations of a rotating

machine can indicate expected shaft voltage waveforms for different fault types. The

scope of this research project was limited to static eccentricity, and this has been

used to demonstrate the feasibility of simulations for fault diagnosis and condition

monitoring.

This chapter is broken down into several sections :

• Modelling of the test generator using Maxwell 2DTM from Ansoft.

• The strategy which was followed for performing the simulations, given that a

single simulation took approximately 20 hours to complete.

• The results from the many simulations performed. This section addresses

the areas of interest and the questions which were asked and answered in a

simulated environment before performing the tests on the miniature turbo-

generator.

• Computing observations and recommendations which briefly discusses those

components of a computer thought to most influence simulations performed
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with Maxwell 2DTM and recommendations for the purchase of new comput-

ers.

6.2 Modelling

6.2.1 Simulation types

Maxwell 2DTM is capable of solving a wide range of field-type problems including

static electric fields, static magnetic fields, time-varying magnetic fields, time vary-

ing electric fields, DC conduction currents, AC conduction currents and thermal

problems.

This project is solely concerned with magnetic modelling of a generator and there

are two types of simulation which were utilised:

1. Magnetostatic

2. Transient magnetics

For either simulation type, the model to be simulated is drawn in two dimensions,

either cartesian (XY plane) or axisymmetric (RZ plane). This is illustrated in Fig-

ure 6.1.

Maxwell Online Help System 48 Copyright © 1988-2004 Ansoft Corporation

Maxwell 2D — Drawing CommandTopics:

Go Back

Contents

Index

Drawing
Choose Drawing from the Executive Commands menu to select the type of geometry 
used for your problem. Depending on which field solver you chose for your problem, you 
can select either a cartesian or axisymmetric model as shown below:

• A cartesian (XY) model represents a cross-section of a device that extends in the z-
direction. Visualize the model as extending perpendicular to the plane being modeled. 

• An axisymmetric (RZ) model represents a cross-section of a device that is revolved 
360° around an axis of symmetry (the z-axis). Visualize the geometric model as being 
revolved around the z-axis.

> To select the type of geometric model for your problem:
1. Click the mouse on the button next to Drawing . A menu appears.
2. Choose the desired model type:  

Cartesian models can be converted to axisymmetric models (and vice versa); however, 
all solutions, materials, boundaries, and parameter setups will be deleted.

XY Plane Creates a cartesian (XY) model. 
RZ Plane Creates an axisymmetric (RZ) model. 

Note: Cartesian (XY) models are supported for all field solvers. However, you can-
not create an axisymmetric (RZ) model if you select the AC Conduction  or 
Eddy Axial  field solvers. 

Z

R

Y

X

Z
θ

Cartesian (XY Plane) Axisymmetric (RZ Plane)

Geometric Model

Drawing
Differences Between Carte-
sian and Axisymmetric 
Models

Figure 6.1: Possible drawing geometries for Maxwell 2DTM models [1]

All models were drawn in the cartesian plane. The drawing represents a cross-section

of the model, it is assumed that the model extends to plus and minus infinity in

the Z direction (i.e. end-effects are ignored). Current flows exclusively in the Z

direction, with no component in either X or Y. Flux flows exclusively in the X and
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Y directions with no component in the Z direction. This means that one does not

need to place insulation between conducting objects in the model (such as a steel

rotor and the rotor winding) as current is assumed to not flow in the XY plane.

However, laminated steel must be modelled as having zero conductance, because it

is physically insulated against current in the Z direction!

For static solutions the depth of the model, for the purpose of quantities, is nor-

malised to one metre. Quantities in the XY plane (such as flux) are per-metre.

When performing a transient simulation the physical depth of the model has to be

given – end-effects are still ignored and the given depth is used to scale various

quantities in order to calculate e.m.f. in the defined windings. If the laminated steel

(such as that used for the stator) is not given a zero conductance the transient solver

will calculate large eddy currents in the laminations.

Magnetostatic modelling was used to verify the flux in the air-gap of the machine.

Transient magnetic modelling was used far more extensively to model the gener-

ator with a rotating rotor and to find generated voltages (most notably that on

the shaft). When drawing the model, a transient model requires a “band” object.

Objects outside the band are stationary while objects inside move according to the

parameters laid down in the setup.

See Figure 6.2 for the model used. Note the band object which is the circle between

the rotor and stator.

6.2.2 Drawing the model

Maxwell 2DTM provides a simple but functional geometric editor. While geome-

tries can be imported from external formats produced by CAD packages it is recom-

mended that the model be redrawn from scratch with the Maxwell editor. This is

because Maxwell relies on “closed objects” and does not permit object overlap (an

object can be totally enclosed inside another object, in which case the perimeter of

the inner object forms the boundary between the two, as one would expect). When

importing a model from an external file, two points which look like they are iden-

tical, may not be at a sub-millimetre level and Maxwell won’t regard the object as

closed.

When using the editor, good use should be made of the “Boolean” functions which

let you subtract, intersect and union one object with another. There are also pow-
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erful tools to duplicate an object along an arc (to create stator slots for example)

and other types of duplication. These features, combined with the boolean actions

enable repetitive structures to be quickly and accurately created. A boolean action

generally results in the creation of a new object. The old objects do still exist, they

just lose their “visible” and “model object” status, it may be desirable to use the

edit menu to select and then delete them permanently.

Arcs (such as a circle) are represented as multiple straight-line segments and the

number of segments can be edited. Special care should be given to the number of

segments used to represent an arc after boolean operations have been performed on

an object, as the results can be unexpected!

By default, successive objects are labelled “objectXX” where “XX” is a sequential

number. It is recommended that suitable names be given to all objects in the draw-

ing as this will greatly simplify the later tasks of material, boundary and source

assignments. Note that when an object is duplicated the editor is reasonably intel-

ligent about how it names and numbers the resultant new objects and this feature

should be exploited. Of course sensible colouring is also recommended.

6.2.3 Choosing materials

The material selection which was finally used for the majority of simulations was

relatively basic. Although the actual B-H curve for the stator steel was used (see

Figure 6.4), the general steels available in Maxwell 2DTM did not make a noticeable

difference to the shaft voltage. Note that when trying other steels as the laminations

it was important to set their conductivity to zero.
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Ansoft Maxwell 2D   Project: gen_norm   User: Simon   03/27/2006

Figure 6.2: Maxwell 2DTM model of the mini-generator

Ansoft Schematic Capture   User: Simon   03/27/2006
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Figure 6.3: Maxwell 2DTM model external circuit for stator and shaft

55



6.2. MODELLING

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

100 1000 10000

H [A/m]

B
 [T

]

Figure 6.4: B-H curve for laminated steel M400

The materials used for the different components in the model are as follows:

Band vacuum

Casing steel 1008

RotCoils copper

RotDamp (damper bars) copper

RotPack (packing under damper bars) vacuum

RotorCore steel 1008

StatCoils copper

StatInner (air-gap) vacuum

StatOuter (the stator) steelM400 (see Figure 6.4)

background vacuum

6.2.4 Setting up boundaries and sources

Setting up the boundaries is different for the static and transient cases. This is also

where adjustments to excitation and loading are made.

There are many types of boundaries and sources and these are well (though perhaps

a bit obscurely) documented in the online help. Only the source types used in these

simulations will be presented.
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Static simulation

The static simulations assumed an open-circuit stator (i.e. no current in the stator

coils). Only 3 sources were required :

• Balloon : A balloon source is special, it is typically the very outer boundary

of the model and tells the solver that it should assume that this space extends

to infinity with no additional sources.

• Positive rotor coils : A solid current source made up of all the rotor coil objects

on the positive current side. A total current value is entered and this is the

total current flowing in a single rotor coil object - not all of them selected

together! This is different to what was expected.

• Negative rotor coils : The same as for the positive rotor coils except that a

negative current value is entered.

Transient simulation

The transient simulation is capable of attaching an external circuit to the windings,

this feature was used extensively to obtain shaft voltage and other voltage readings.

Sources were assigned to each stator coil group, the damper windings, the rotor

windings and the shaft itself :

• Balloon : This is the same as for a static simulation, see above.

• Stator coil groups : Each group was designated as an externally connected

stranded source. There is an option to choose between stranded and solid,

the difference is that in the stranded case the current is evenly distributed

within the object (as for an individually insulated stranded conductor) and

in the solid case a non-uniform current distribution within the object will be

assumed and calculated. The total number of turns is entered for the group

and this was set as 24.

• Damper bars : These are designated as a “passive end-connected conductor”.

The end resistance between conductors as set at 0,002 Ω and the inductance

between adjacent conductors as 0 H. It was found that the damper bars did

not have a significant effect on the shaft voltage under steady-state operating

conditions and giving an accurate inductance was of little importance.
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• Rotor Winding : The windings were grouped together and assigned a DC

voltage source of 30 V. Total number of turns was set to 160 with a winding

resistance of 0,5 Ω.

• Shaft : The shaft and the outer casing of the model were designated as a

solid single turn winding with an external connection. This enables the easy

measurement of shaft voltage.

“External connection” refers to a connection made between the winding and an ex-

ternal circuit. For each time-step of the transient solution the fields and inductances

in the magnetic model are solved, this is then passed across to a circuit which is

solved using an internal spice solver.

The external circuit used is shown in Figure 6.3. This circuit represents the parallel

and star connection of the windings as found on the physical unit. The internal

resistances of 53 mΩ are as measured. A load resistance of 7,5 Ω is a full-load

value. The shaft circuit is similarly configured, except that it is assumed to be open

circuit and 100 MΩ is used as the load resistance. Voltages and currents from the

probes indicated are recorded for each time step, and are compared to the physical

measurements.

6.2.5 Setting up executive parameters

Executive parameters were not used for static simulations.

When setting up a transient simulation the only option under executive parameters

is core loss. The core loss parameters of the stator were entered, but the simulation

output was not used.

6.2.6 Setting up the solution

This is the final step before running the simulation. For transient simulations it is

broken into two parts: Options and Motion Setup.

Motion setup defines what parts of the model are stationary and which parts are

moving. This is done by defining the band object, an object inside which everything

is assumed to be moving. There is great flexibility in defining how the non-stationary

objects move, and inertia, damping and external forces can be taken into account.

58



6.2. MODELLING

Ansoft Maxwell 2D   User: Simon   03/27/2006

Figure 6.5: Mini-generator model mesh

Damping and external forces can be defined as functions of other available simulation

parameters such as time and position. Such transients were, however, not of interest

in this work and the rotor objects in the model were set to rotate at a constant 3000

RPM with no consideration given to inertia, damping or other parameters. The

solver does produce torque data, which is the torque required to spin the rotor at

the fixed angular velocity.

Of key importance when setting up the solution options is defining the mesh. Maxwell

2DTM uses triangles exclusively in its meshing and solving algorithms. A static sim-

ulation is capable of refining the mesh in multiple passes until an error value is

reduced below a set threshold. A transient simulation, however, does not refine the

mesh during simulation and it is therefore important that the mesh be of sufficient

density to achieve accurate results.

There were initial concerns that the meshing itself would introduce anomalous ar-

tifacts into the results and care was taken to get a similar mesh density for the

different simulations, though it was eventually concluded that this is not the case.

Many of the initial models were meshed by simply requesting an initial mesh and

then refining the various objects to achieve a greater mesh density. Better meshing

was later achieved by seeding the mesh, for which several algorithms are available.
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Mesh density is to a large extent subjective and the results and error output from

the simulation will typically indicate the success of the mesh. The online help goes

into more detail on refining of the mesh and the solver algorithms used.

See Figure 6.5 for a typical mesh employed in these simulations. It is likely that

this mesh is not optimal as emphasis was given to an accurate rather than a quick

solution.

Additional parameters in the solver setup for a static simulation were largely left as

their default values. The parameters available for a transient simulation were more

important:

• Time Step : For most of the simulations this was set to give five steps per

stator slot. 48 slots × 5 = 240 steps in a revolution, the machine was set

to spin at 3000 RPM giving a period of 0,02 s, giving a Time Step of 0,02
240 s.

This value was adjusted and different numbers of steps per tooth, including

non-integer multiples were tried. Interestingly, the primary harmonics did not

change.

• Stop Time : This was set to 10 periods, or 0,2 s. Typically the first one or two

periods were markedly different because of the starting transient, thereafter the

simulation output settled in a steady-state. This initial transition period was

disregarded when analysing the output. Multiple steady-state periods were

simulated in order to later perform a high-resolution FFT on the information.

• Model Depth : This serves primarily as a linear scaling factor for the calculated

voltages and was set to the actual depth of the magnetic circuit. Initially

stacking factor of the laminations was not taken into account. When the

depth was corrected with the stacking factor the output voltages showed a

proportionate decrease as expected. However, it was the change in output,

rather than the absolute magnitudes which was of interest; in order to keep

simulations comparable, the model length was left without the stacking factor

correction.

• Save Fields : One-dimensional information such as the output voltages and

currents are automatically saved for every time step. This option allows one to

save complete two-dimensional field information for selected time steps. This

allows the fields to be analysed at different values of rotor position. Maxwell

2DTM uses primarily text files for all its data output, and when it comes to

the 2D field plots these files can be very large (approx. 5 MB per time step),
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therefore only a few strategic time steps during the steady-state period of the

simulation were saved. As an aside, the field post-processor can produce an

animation of the changing fields as the model changes with time.

6.3 Areas to investigate

The questions it was hoped that would be answered through the use of 2D transient

simulations are as follows:

1. Initial simulation related questions:

(a) Can Maxwell 2DTM simulate a machine under transient conditions and

provide an indication of the shaft voltage?

(b) Does the number of steps in a revolution significantly affect the shaft

voltage?

(c) Can linear approximations of the model materials be used?

2. Fault diagnosis related questions:

(a) What effect does a static eccentricity have on the shaft voltage?

(b) What effect does machine output loading have on the shaft voltage?

(c) What effect does reduced excitation current have on the shaft voltage?

(d) What effect does reduced angular velocity have on the shaft voltage?

3. Once it was established that static eccentricity was manifested repeatedly in

the same fashion (namely an increase in the 5th harmonic), the effect of ma-

chine geometry was queried:

(a) What effect does the existence of damper bars have on the shaft voltage?

(b) What effect does a reduced number of stator slots have on the shaft

voltage?

Once the physical attributes and geometry of the machine was completed to a sat-

isfactory degree, care was taken to modify the simulation set-up as little as possible

in order to be able to identify the cause and effect relationship between the shaft

voltage waveform and the “cause” under test. This care was extended to the fineness

of the mesh and a note was made of the number of triangles in each object, and

whenever the model was changed the mesh was refined to the same point.
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Rigourous attention was given to the colouring and naming of various geometrical

objects as well at the naming of all electrical measurements. The various simulations

were arranged in a set file and directory structure, this facilitated the use of Matlab

scripts to process and compare different simulation results.

6.4 Data analysis technique

Various forms of analysis were looked at including Fourier, short-time Fourier and

wavelets. Traditional FFT analysis proved to be effective at identifying a static

eccentricity condition. The process followed is as follows:

• Window the sample with a hanning window.

• Pad the data with zeros up to the nearest 2x length.

• Perform an FFT on the windowed, padded data.

• If a power spectrum is required then square the output data.

• If normalised data is required (typical) then the data is scaled such that the

maximum point has a value of 1.

• If a dB scale is required then a 10 log ( ) is applied to a power spectrum, or

20 log ( ) to a magnitude spectrum

In almost all cases the FFT output was normalised in some way. Where the same

type of measurement, but of several experiments was compared the normalisation

was applied to all the measurements together, so as not to lose perspective of the

relative magnitudes between experiments.

6.5 Results

6.5.1 Usefulness of transient simulations

Using the model and external circuit shown in Figures 6.2 and 6.3, the node voltage

graphs shown in Figures 6.6 and 6.7 were produced.

Other graphs that can be plotted from the simulation data include:
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Figure 6.6: Output node voltages relative to ground
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Figure 6.7: Shaft voltage relative to ground
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Figure 6.8: Shaft voltage frequency spectrum
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Torque ; Power Loss ; Back EMF ; Flux Linkage ; Winding Current ;

Bar Current ; Bar Voltage ; Position ; Speed ; Branch Current ;

Node Voltage (plotted in Figures 6.6 and 6.7) ; Error ; Core Loss

It is clear from the non-regular peaks in the shaft voltage graph (see Figure 6.7) that

the simulation is not perfect. Remember that the model is perfectly symmetrical

(well, as perfect as finite numerical precision will allow) and one expects a reasonably

regular and periodic waveform. The spikes are therefore most likely due to numerical

inconsistencies such as loss of information due to finite precision, or because of local

minima or similar problems in the numerical solution of simultaneous equations.

In Figure 6.8 the normalised power spectrum of the shaft voltage is plotted. Three

very distinct frequency peaks can be seen at 50 Hz, 150 Hz and 250 Hz (the first,

third and fifth harmonics). The fifth harmonic in particular is later found to be

highly dependant on the static eccentricity.

It can be concluded that the Maxwell 2DTM transient solver is capable of mod-

elling a shaft voltage. In Chapter 7 physical measurements are presented, and the

simulations are found to compare favourably with them.

6.5.2 Influence of steps per revolution

Several models with different eccentricities were drawn and simulated. One of the

models, with a 0,5 mm offset was simulated with 240 steps in a revolution and then

again with 100 steps. 100 steps is also a non-integer multiple of the 48 slots (whereas

240 results from 5 steps per slot). The comparison between the two can be seen in

Figure 6.9.

For 240 steps per revolution, the Nyquist frequency is approximately 6 kHz while

for 100 steps it is 2,5 kHz. Both plots are drawn with range of 0 – 2,5 kHz for

comparison.

From these plots it can be concluded that 100 steps per revolution is sufficient to

qualify changes in the frequency spectrum due to eccentricity. In addition, having

an integer, or an non-integer multiple of the number of stator slots is not important.
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Figure 6.9: Comparison of shaft voltage frequency power spectrums
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Figure 6.10: Comparison of shaft voltage frequency power spectrums for linear vs

non-linear materials
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6.5.3 Feasibility of using linear approximations of materials

A 5 mm eccentricity had been simulated normally with non-linear materials. An

operating point on the B-H curve of those materials was chosen and their magnetic

properties were changed to the chosen linear µr.

All output waveforms produced by the linear model were grossly different to the non-

linear one. See Figure 6.10 for a comparison of the power spectral plot for the two

cases. It is possible that a better operating point could be chosen, but the savings

in computation time did not warrant the time needed to find that operating point

and the added risk of unnecessary errors; especially when considering that different

loading and excitations were also simulated, each of which would have required the

finding of a reliable operating point.

6.5.4 Affect of static eccentricity on shaft voltage

Six different models were simulated, each was identical in the following respects:

• Rotational speed : 3000 RPM

• Ending time : 0,2 s (10 full rotations of the rotor)

• Number of steps per revolution : 240

• Excitation current : 60 A

• Star-connected load resistance (per phase): 7,5 Ω

• Nearly identical mesh density

The following eccentricities were simulated :

0 mm • 0,25 mm • 0,5 mm • 2,5 mm • 5 mm

In Figure 6.14 the relative frequency power spectrums of the shaft voltage for dif-

ferent eccentricities is plotted. Of interest is the 5th harmonic at 250 Hz which

increases significantly as the static eccentricity increases. The purpose of the phys-

ical measurements presented in Chapter 7 is to verify this finding.
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Ansoft Maxwell 2D   Project: gen_norm   User: Simon   03/27/2006

Figure 6.11: Model of the generator with

no eccentricity

Ansoft Maxwell 2D   Project: gen_eccen   User: Simon   03/29/2006

Figure 6.12: Model of the generator with

5 mm of eccentricity
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Figure 6.13: Time domain plot of shaft-voltage at full load for different simulated

eccentricities
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Figure 6.14: Relative frequency spectrum of shaft-voltage at full load for different

simulated eccentricities
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6.5.5 Affect of machine output loading on shaft voltage

Three different loading conditions were simulated for both a no-eccentricity and a

2,5 mm eccentricity condition. Each was identical in the following respects:

• Rotational speed : 3000 RPM

• Ending time : 0,2 s (10 full rotations of the rotor)

• Number of steps per revolution : 240

• Excitation current : 60 A

• Nearly identical mesh density

Because of the large air-gap the regulation of the machine is very good. Table 6.1

shows the simulated RMS phase output voltages (star) for a constant excitation cur-

rent of 60 A and different loads with no eccentricity. Table 6.2 shows the simulated

RMS shaft voltage for the same excitation current and loads with no eccentricity.

Table 6.3 shows the simulated RMS shaft voltage but with a 2,5 mm eccentricity.

Figures 6.15 and 6.16 are comparative illustrations of the shaft power spectrum

with eccentricities of 0 mm and 2,5 mm respectively. In each case the spectrum of

the three cases was normalised to the maximum of any of the three.

From the simulations it appears the machine loading is of little consequence to the

shaft voltage. This is in agreement with the physical measurements as documented

in Chapter 7.

6.5.6 Affect of reduced excitation current on shaft voltage

The rotor winding excitation current was reduced from 60 A to 40 A. Simulations

were then performed with no eccentricity and an eccentricity of 2,5 mm. Each was

identical in the following respects:

• Rotational speed : 3000 RPM

• Number of rotations : 10 full rotations of the rotor

• Number of steps per revolution : 240
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Table 6.1: Phase output voltage (RMS) with different loads and

no eccentricity

Full load (7,5 Ω per phase (star)) : 181,04 V

Half load (15 Ω per phase (star)) : 181,65 V

No load (100 MΩ per phase (star)) : 182,17 V

Table 6.2: Shaft voltage (RMS) with different loads and no eccen-

tricity

Full load (7,5 Ω per phase (star)) : 0,0127 V

Half load (15 Ω per phase (star)) : 0,0113 V

No load (100 MΩ per phase (star)) : 0,0116 V

Table 6.3: Shaft voltage (RMS) with different loads and 2,5 mm

eccentricity

Full load (7,5 Ω per phase (star)) : 0,0487 V

Half load (15 Ω per phase (star)) : 0,0485 V

No load (100 MΩ per phase (star)) : 0,0476 V
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Figure 6.15: Comparison plot of shaft voltage power frequency spectrum for different

load conditions with no eccentricity
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• Star-connected load resistance (per phase): 7,5 Ω

• Nearly identical mesh density

The lower excitation current results in both reduced terminal output voltage (Ta-

ble 6.4 and a large reduction in the shaft voltage (Table 6.5). This is also true when

an eccentricity of 2,5 mm is introduced (Table 6.6).

Figures 6.17 and 6.18 are comparative illustrations of the shaft power spectrum

with eccentricities of 0 mm and 2,5 mm respectively. In each case the spectrum of

the two cases was normalised to the maximum of any of the two.

From the simulations it is clear that a reduced excitation current greatly reduces

the shaft voltage, as expected. However, it can be seen that the fifth harmonic still

increases relative to the other significant harmonics.

6.5.7 Affect of reduced angular velocity on shaft voltage

The angular velocity of the shaft was reduced by 20% from 3000 RPM to 2400 RPM.

Simulations were then performed with no eccentricity and an eccentricity of 2,5 mm.

Each was identical in the following respects:

• Number of rotations : 10 full rotations of the rotor

• Number of steps per revolution : 240

• Excitation current : 60 A

• Star-connected load resistance (per phase): 7,5 Ω

• Nearly identical mesh density

The slower rotation does result in a lower output phase voltage. Table 6.7 shows

the simulated RMS phase output voltages (star) for a constant excitation current of

60 A with different shaft rotation speeds. Table 6.8 shows the simulated RMS shaft

voltage for the same excitation current with no eccentricity at the different speeds.

Table 6.9 shows the simulated RMS shaft voltage but with a 2,5 mm eccentricity.

Figures 6.19 and 6.20 are comparative illustrations of the shaft power spectrum

with eccentricities of 0 mm and 2,5 mm respectively. In each case the spectrum of

the two cases was normalised to the maximum of any of the two.
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Figure 6.16: Comparison plot of shaft voltage power frequency spectrum for different

load conditions with 2,5 mm eccentricity

Table 6.4: Phase output voltage (RMS) with different excitation

currents and no eccentricity

Full excitation (60 A) : 181,04 V

Reduced excitation (40 A) : 132,25 V

Table 6.5: Shaft voltage (RMS) with different excitation currents

and no eccentricity

Full excitation (60 A) : 0,0127 V

Reduced excitation (40 A) : 0,000858 V

Table 6.6: Shaft voltage (RMS) with different excitation currents

and 2,5 mm eccentricity

Full excitation (60 A) : 0,0487 V

Reduced excitation (40 A) : 0,00370 V
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Figure 6.17: Comparison plot of shaft voltage power frequency spectrum for different

excitation currents with no eccentricity
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Figure 6.18: Comparison plot of shaft voltage power frequency spectrum for different

excitation currents with 2,5 mm eccentricity
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From the simulations it is clear that a slower rotational speed results in lower voltages

on both the stator windings and the shaft, this is as expected. At 3000 RPM the

first harmonic is at 50 Hz, while at 2400 RPM the first harmonic is at 40 Hz. The

relative magnitudes of the harmonics, however, remains constant.

6.5.8 Affect of damper bars on shaft voltage

Although the machine spins at synchronous speed and theoretically there should not

be currents in the damper bars, the simulations show that there is current flowing

in the bars (see Figure 6.21. In order to investigate whether or not this influenced

the shaft voltage a model was created where the material properties of the damper

bars were set to either vacuum (for those bars present in rotor slots) or to the same

steel as the rotor (for those bars not in rotor slots).

The model without damper bars was simulated without eccentricity and then with

a 5 mm eccentricity. These results are compared against those from the simulations

using damper bars. The difference in the damper bars is the only difference between

the two simulations.

• Rotational speed : 3000 RPM

• Number of rotations : 10 full rotations of the rotor

• Number of steps per revolution : 240

• Excitation current : 60 A

• Star-connected load resistance (per phase): 7,5 Ω

• Nearly identical mesh density

Excluding the damper bars has very little influence on the RMS magnitude of the

phase output or shaft voltages (Tables 6.10 and 6.11, this is not surprising given

the plot in Figure 6.22. The flux density which is normal to the air-gap is nearly

identical for the two cases. However, Figure 6.24 shows that with no eccentricity

the relative magnitudes of the power spectrum harmonics is different between the

two cases.

With a 5mm eccentricity the results are very different. The RMS magnitude of the

shaft voltage is much greater for the excluded damper bar case as seen in Table 6.12
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6.5. RESULTS

Table 6.7: Phase output voltage (RMS) with different rotational

speeds and no eccentricity

Full speed (3000 RPM) : 181,04 V

80% speed (2400 RPM) : 144,85 V

Table 6.8: Shaft voltage (RMS) with different rotational speeds

and no eccentricity

Full speed (3000 RPM) : 0,0127 V

80% speed (2400 RPM) : 0,00928 V

Table 6.9: Shaft voltage (RMS) with different rotational speeds

and 2,5 mm eccentricity

Full speed (3000 RPM) : 0,0487 V

80% speed (2400 RPM) : 0,0409 V
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v_shaft, full speed (3000 RPM)

v_shaft, 80% speed (2400 RPM)

Figure 6.19: Comparison plot of shaft voltage power frequency spectrum for different

rotational speeds with no eccentricity
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and Figure 6.25. More than that, the dominant 45th and 47th harmonics at 2250

and 2350 Hz are unique to this experiment.

Given that the damper bars are in parallel with and therefore coupled with the shaft,

it is expected that they would influence the shaft voltage. They also influence the

torque one would need to apply to the machine to maintain a rotational speed of

3000 RPM as shown in Figure 6.23. This indicates that synchronous machines with

damper bars will exhibit greater vibration when the rotor is eccentric than machines

without damper bars.

One possible explanation for the high-end harmonics in the shaft voltage when the

damper bars are excluded is that if the bars are included, they shield the shaft from

those high harmonics and the harmonics manifest as circulating currents within the

bars themselves.

6.5.9 Affect of stator slot count on shaft voltage

In all the cases discussed above, there is a clear increase in the fifth harmonic when

the rotor is made eccentric and this increase is roughly proportional to the level of

eccentricity. The question which is now asked, is whether a change to the stator

geometry will effect this phenomenon.

The stator model was modified to have one fewer slot per coil group, resulting in

6 fewer slots. Both the tooth and the slot width were modified evenly around the

stator to accomplish this. Previously the stator had 48 slots, this experiment was

conducted with a 42 slot stator. A 48 slot model is shown in Figure 6.26 and the

new 42 slot model is shown in Figure 6.27. The new model was simulated without

eccentricity and with a 4 mm eccentricity in order to investigate whether or not the

eccentricity on this slightly different geometry would manifest in an increase in the

5th harmonic as previously observed.

A comparison between the power spectrum of the shaft voltage for the two cases

in shown in Figure 6.27. It can be clearly seen that the 5th harmonic increases

significantly for a 4 mm air-gap. It can therefore be concluded that a small variation

in the number of stator slots does not influence which harmonic is significant in the

diagnosis of a static eccentricity.
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v_shaft, 80% speed (2400 RPM)

v_shaft, full speed (3000 RPM)

Figure 6.20: Comparison plot of shaft voltage power frequency spectrum for different

rotational speeds with 2,5 mm eccentricity
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Figure 6.21: Time domain plot of the bar currents for the full load model with no

eccentricity

Table 6.10: Phase output voltage (RMS) with and without damper

bars (no eccentricity)

With damper bars : 181,04 V

Without damper bars : 182,20 V
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Figure 6.22: Flux density normal to the air-gap for the full load model with no

eccentricity

Table 6.11: Shaft voltage (RMS) with and without damper bars

(no eccentricity)

With damper bars : 0,0127 V

Without damper bars : 0,0123 V

Table 6.12: Shaft voltage (RMS) with and without damper bars

(5 mm eccentricity)

With damper bars : 0,112 V

Without damper bars : 0,230 V
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Figure 6.23: Time domain plot of the rotor torque with a 5 mm eccentricity
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Figure 6.24: Comparison plot of shaft voltage power frequency spectrum for simu-

lations with and without damper bars (no eccentricity)
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Figure 6.25: Comparison plot of shaft voltage power frequency spectrum for simu-

lations with and without damper bars (5 mm eccentricity)
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Ansoft Maxwell 2D   Project: gen_eccen   User: Simon   03/29/2006

Figure 6.26: Model of the 48 slot gener-

ator with 5 mm of eccentricity

Ansoft Maxwell 2D   Project: gen_ds_eccen   User: Simon   03/29/2006

Figure 6.27: Model of the 42 slot gener-

ator with 4 mm of eccentricity
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42 stator slots, no eccentricity

42 stator slots, 4mm eccentricity

Figure 6.28: Comparison plot of shaft voltage power frequency spectrum for no

eccentricity and 4mm eccentricity of a machine with a 42 slot stator
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6.6 Computing observations and recommendations

A single simulation took, on average, 20 hours on a single processor 32-bit Intel Pen-

tium 4 2.8 GHz with 512 MB of RAM. RAM utilisation was low and the simulation

process alone did not make use of disk based virtual memory.

An FEM simulation involves converging a large set of non-linear simultaneous equa-

tions. This make an FEM problem difficult to decompose into a form that can be

run in a cluster environment1. It is certainly impossible to solve a single problem in a

cluster environment with the current release of Maxwell 2DTM from Ansoft. Sup-

port for such an environment has to be coded into the engine at a very low level, and

is intertwined in the program’s design. This is changing with the increasing afford-

ability and popularity of dual-core processors or multiple processor based machines.

The latest release of Maxwell 3DTM includes support for dual-core and multiple

processor systems, however, cluster support is still not available. The bottle-neck in

the simulation process appeared to be the processor, with it seeing extended 100%

utilisation, it is therefore worthwhile to obtain as high an instruction rate as possi-

ble. Note that a faster clock rate does not necessarily indicate a higher instruction

rate. AMD advertises that their processors can do more with fewer clocks than Intel

processors. It is not the objective of this report to quantify or to substantiate such

claims, only that the buyer be aware of them when making a purchasing decision.

Engineering maths is typically performed using 64-bit floating point numbers. At the

time of writing, 32-bit processors still power the majority of workstations, including

the workstation on which the simulations were run. This too, is changing, and

workstation level 64-bit processors are available and are seeing far more widespread

use. Microsoft Windows 64-bit has also been recently released. There are definite

penalties incurred for performing maths and manipulating 64-bit numbers on a 32-

bit processor. It is therefore recommended that in future, any machine which is

intended to perform simulations or other heavy maths processing be equipped with

a 64-bit processor as a matter of course.

The memory requirements of a 2-D simulation were modest, and 512 MB was more

than adequate, however, memory access speed will affect the speed of simulation. It

is therefore recommended that preference be given to fast, or low-latency memory

rather than a large quantity of slower memory. According to Ansoft, 3-D simulations
1A computer cluster is made up of more than one computer connected in a network. All com-

puters in the cluster are put to work to solve a single problem, typically with a central machine

administering the whole process
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require far larger quantities of RAM and this must be taken into account if 3-D

simulations are likely to be performed.

6.7 Conclusion

To summarise, the following questions were posed in Section 6.3, here they are

repeated with their conclusions:

1. Initial simulation related questions:

(a) Can Maxwell 2DTM simulate a machine under transient conditions and

provide an indication of the shaft voltage?

Maxwell 2DTM is clearly capable of simulating transient conditions and

producing a shaft voltage measurement.

(b) Does the number of steps in a revolution significantly affect the shaft

voltage?

It was concluded that 100 steps per revolution is sufficient to qualify

changes in the frequency spectrum due to eccentricity. In addition, having

an integer, or an non-integer multiple of the number of stator slots is not

important.

(c) Can linear approximations of the model materials be used?

All output waveforms produced by the linear model were grossly different

to the non-linear one. It is possible that a better operating point could

be chosen, but the savings in computation time did not warrant the time

needed to find that operating point and the added risk of unnecessary

errors; especially when considering that different loading and excitations

were also simulated, each of which would have required the finding of a

reliable operating point.

2. Fault diagnosis related questions:

(a) What effect does a static eccentricity have on the shaft voltage?

In the simulations the 5th harmonic of the shaft voltage showed a marked

increase when a static eccentricity was introduced. This is encouraging as

it provides evidence that the shaft voltage is affected by changing running

conditions and that the change to the shaft voltage can be predicted using

simulations.
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(b) What effect does machine output loading have on the shaft voltage?

From the simulations it appears that the machine loading is of little con-

sequence to the shaft voltage, this is in agreement with the physical mea-

surements as documented in Chapter 7.

(c) What effect does reduced excitation current have on the shaft voltage?

From the simulations it is clear that a reduced excitation current greatly

reduces the shaft voltage, as expected. However, it can be seen that the

fifth harmonic still increases relative to the other significant harmonics.

(d) What effect does reduced angular velocity have on the shaft voltage?

From the simulations it is clear that a slower rotational speed results

in lower voltages on both the stator windings and the shaft, this is as

expected. At 3000 RPM the first harmonic is at 50 Hz, while at 2400

RPM the first harmonic is at 40 Hz. The relative magnitudes of the

harmonics, however, remains constant.

3. Once it was established that static eccentricity was manifested repeatedly in

the same fashion (namely an increase in the 5th harmonic), the effect of ma-

chine geometry was queried:

(a) What effect does the existence of damper bars have on the shaft voltage?

Removing the damper bars in the simulation at a large eccentricity had

the effect of increasing the rms magnitude of the shaft voltage. In ad-

dition, high frequency peaks appeared in the spectrum at the 45th and

47th harmonics. One possible explanation for these high-end harmonics

is that if the bars are included, they shield the shaft from those high

harmonics and the harmonics manifest as circulating currents within the

bars themselves. The origin of the harmonics is deemed to be the 48 slots

in the stator.

(b) What effect does a reduced number of stator slots have on the shaft volt-

age?

It is concluded that a small variation in the number of stator slots does

not influence which harmonic is significant in the diagnosis of a static

eccentricity.
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Chapter 7

Mini-gen measurements

7.1 Introduction

This chapter presents the measurements obtained from the miniature generator. The

purpose of the experiments which were conducted was to verify the feasibility of using

transient FEM simulations, specifically with the Ansoft Maxwell 2DTM package,

to predict changes in the shaft voltage for a static eccentricity (and ultimately other

faults as well).

7.2 Experimental set up

The experimental setup is presented in Figure 7.1 and a photo is shown in Figure 7.2.

A variable speed drive is used to drive a 2-pole induction motor. It is important that

the input frequency to the induction machine can be varied in order to compensate

for increased slip when the load is increased. The induction motor is coupled to

the mini-gen with an insulated flexible coupling. Note that the selection of the

coupling is quite important – if the coupling makes use of black rubber then the

rubber is mostly likely impregnated with carbon making it conductive. A resistance

as low as 400 Ω was measured across a large tyre type coupling. The actual power

being supplied to the induction motor was not of interest, but a digital voltmeter

was placed to measure the line voltage at the induction motor’s inputs in order to

monitor the supplied voltage and the supplied frequency. The mini-gen excitation

current was supplied through slip-rings on the non-driven end (NDE), a separate DC

generator powered by a synchronous motor was used to supply the DC current. A

series resistance and a DC voltmeter were used to monitor the current while another
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Figure 7.1: Experimental setup
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Figure 7.2: Photograph of the coupled miniature turbo-generator and 2-pole induc-

tion motor

DC voltmeter was used to measure the voltage at the slip-ring brushes. In order

to have full control over the load placed on the mini-gen an auto-transformer was

used between the mini-gen output terminals and a 3-phase resistive load-bank. The

auto-transformer is star connected and has a maximum phase current rating of 30 A,

which limited the load that could be placed on the generator.

A dSpaceTM DS1104 data acquisition and control card was used to capture 5 chan-

nels of analogue input and one digital incremental encoder input. This card is

installed in a PC and the data is captured to RAM before being saved to the PC’s

hard-drive. The dSpaceTM platform allows for sophisticated screen based interfaces

to be created, and this was put to use in order to display real-time quantities such

as the rotational speed of the generator and the rms output voltage and current.

The shaft voltage was measured using two gold-alloy bristle brushes sprung mounted

on either side of the shaft (see Figures 7.2 and 7.3), the brush on the NDE was

grounded. The shield of a coax cable was connected to ground at the same point, the

inner of the coax was connected to the brush on the driven end (DE). The cable was

then connected to the high-impedance and protected input of the interfacing unit

(see Section 3.4 in Chapter 3). The interface unit and the PC were powered through

an isolation transformer and care was taken not to introduce any ground loops.

The incremental encoder is intrinsically isolated from the shaft and was connected

to the digital level-shifting input on the interface unit. The filtered shaft voltage

output from the interface unit was connected with a coax cable to ADCH1 on the

dSpaceTM card while the digital encoder output was connected to ENC1 on the
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7.3. ECCENTRICITY ADJUSTMENT

Figure 7.3: Closeup of the NDE shaft brush, slip rings and incremental encoder

dSpaceTM card.

Additional mini-gen output terminal voltages were captured using 200:1 differential

voltage probes and single line current was captured using a 10 mV/A Rogowski unit.

Table 7.1: dSpaceTM channel connections

Encoder input Ch 1 : Shaft mounted incremental encoder

ADCH1 (16-bit) : Shaft voltage

ADCH5 (12-bit) : Red (+ve) – Yellow (-ve) line voltage

ADCH6 (12-bit) : Yellow (+ve) – Blue (-ve) line voltage

ADCH7 (12-bit) : Blue (+ve) – Red (-ve) line voltage

ADCH8 (12-bit) : Red line current

7.3 Eccentricity adjustment

The design of the mini-gen is such that the rotor remains fixed to the bed-plate

via the bearing pedestals. It is possible to move the stator and misalign it relative

to the rotor, creating a static eccentricity. This can be done without disturbing

the machine coupling. In order to move the stator, one bolt from each side of the

stator needs to be removed (the bolt on the one side can be seen to missing in

Figure 7.4). The remaining four bolts are loosened and an overhead crane is used to

very slightly lift the stator off its mounting, the stator can then be relatively easily

man-handled into an eccentric position. When all six bolts (three on each side) are
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Figure 7.4: Closeup of a stator mounting bracket, showing the oblong locating holes

and removable shim

inserted the stator is centred without eccentricity. In addition, the shims can be

changed, removed or boosted to allow for the introduction of a vertical eccentricity.

The mini-gen has a 6 mm air-gap, however it is unwise to attempt much more than

a 3 mm eccentricity because the rotor is wrapped in a layer of resi-glass of uncertain

thickness, and it is not desirable for this to rub against the stator!

7.4 Experiments

The primary goal is to verify whether or not the shaft voltage power spectrum will

behave in a similar fashion to the simulations. The simulations were performed

with numerically perfect symmetry, while the physical machine is not geometrically

perfect and could have been effected by any of a number of manufacturing processes

including welding (which can result in residual magnetism), machining error (it is

known that one slot on the rotor was gouged at the first attempt to cut it) and other

unintended or unavoidable byproducts of machine manufacture.

• Check the noise floor by obtaining a measurement at no load, no excitation.

• Take the generator up to 50 A on no-load and take a reading

• Take the generator to rated output voltage (340 V line) on no load and take a

reading.
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• Take the generator to 70 A with no-load and take a reading

• Bring the generator back to rated output voltage (at 62 A) and apply a 15 A

(line) load, keeping the output voltage constant.

• Apply a 30 A (line) load, keep the output voltage constant.

Measurements were taken with the following eccentricities :

• 0 mm (all six bolts inserted)

• +0, 65 mm

• +1, 9 mm

• −3, 1 mm

Where the negative indicates a horizontal eccentricity in the opposite direction.

7.5 Measured results

7.5.1 No Eccentricity

Table 7.2 presents the mini-gen output rms line voltage and the rms shaft voltage.

This gives a clear indication of whether the shaft voltage was increasing or decreas-

ing. These are all true rms values, as the shaft voltage in particular deviates quite

significantly from a regular first harmonic sinusoid.

The most important result relevant to the diagnosis of static eccentricity is that in

the case of no eccentricity, the shaft voltage rms magnitude does not vary greatly

with loading when the output voltage is held constant.

Figure 7.5 is a plot of the shaft voltage using the recorded absolute angular position

as a reference. This plot uses the technique detailed in Chapter 4. The periodicity

and the harmonic content of the waveform can be seen. The high frequency ripple

is attributed to the stator teeth.

Figure 7.6 shows the dominant frequency components in the shaft voltage.
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Table 7.2: Measured rms voltages for no eccentricity

No load line (rms) shaft (rms)

No excitation : 9,95 V 0,0063 V

50 A excitation : 293,34 V 0,0455 V

Rated line voltage : 339,87 V 0,0775 V

70 A excitation : 364,18 V 0,0741 V

Half load

Rated line voltage : 339,84 V 0,0777 V

Full load

Rated line voltage : 342,03 V 0,0788 V
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Figure 7.5: Position referenced average shaft voltage for no eccentricity and full load

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

N
or

m
al

is
ed

 p
ow

er

Figure 7.6: Normalised power spectrum of the shaft voltage for no eccentricity and

full load
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Table 7.3: Measured rms voltages for +0, 65 mm eccentricity

No load line (rms) shaft (rms)

No excitation : 9,74 V 0,0039 V

50 A excitation : 300,90 V 0,0514 V

Rated line voltage : 339,55 V 0,0848 V

70 A excitation : 361,56 V 0,0844 V

Half load

Rated line voltage : 341,14 V 0,0872 V

Full load

Rated line voltage : 341,01 V 0,0879 V
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Figure 7.7: Position referenced average shaft voltage for +0, 65 mm eccentricity and

full load
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Figure 7.8: Normalised power spectrum of the shaft voltage for +0, 65 mm eccen-

tricity and full load
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7.5.2 +0, 65 mm eccentricity

A slight eccentricity of 0, 65 mm was introduced and the same quantities as presented

for the non-eccentric case are presented in Table 7.3, Figures 7.7 and 7.8.

The rms value of the shaft voltage has increased, and again there is only a small

increase in the magnitude between the loaded and unloaded cases.

The power spectrum plot in Figure 7.8 shows a substantial increase in the rela-

tive magnitude of the fifth harmonic when compared to the no eccentricity power

spectrum in Figure 7.6.

7.5.3 +1, 9 mm eccentricity

This is the highest eccentricity tested in the positive direction and the results are

shown in Table 7.4, Figures 7.9 and 7.10.

The rms value of the shaft voltage has further increased while different loading

still does not result in a substantial difference between the rms magnitudes. The

fifth harmonic is now clearly visible in Figure 7.9 and the ripple due to the stator

teeth has also increased. The power spectrum plot in Figure 7.10 illustrates the

much-increased relative magnitude of the fifth harmonic.

7.5.4 −3, 1 mm eccentricity

The stator was adjusted so as to reverse the orientation of the eccentricity. This

is the largest eccentricity tested, and the same illustrations as before are given in

Table 7.5, Figures 7.11 and 7.12.

Table 7.5 demonstrates the already established trend that an increase in eccentricity

results in an increase in the rms value of the shaft voltage. Further, the loading of

the generator is found not to have a significant impact on the rms magnitude of the

shaft voltage.

The fifth harmonic is once again dominant in Figure 7.12, though curiously the first

harmonic has increased in relative magnitude.
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Table 7.4: Measured rms voltages for +1, 9 mm eccentricity

No load line (rms) shaft (rms)

No excitation : 9,58 V 0,0048 V

50 A excitation : 294,29 V 0,0731 V

Rated line voltage : 340,70 V 0,1250 V

70 A excitation : 360,23 V 0,1289 V

Half load

Rated line voltage : 339,78 V 0,1278 V

Full load

Rated line voltage : 339,63 V 0,1311 V
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Figure 7.9: Position referenced average shaft voltage for +1, 9 mm eccentricity and

full load
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Figure 7.10: Normalised power spectrum of the shaft voltage for +1, 9 mm eccen-

tricity and full load
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Table 7.5: Measured rms voltages for −3, 1 mm eccentricity

No load line (rms) shaft (rms)

No excitation : 9,61 V 0,0073 V

50 A excitation : 296,11 V 0,0998 V

Rated line voltage : 341,49 V 0,1458 V

70 A excitation : 362,30 V 0,1537 V

Half load

Rated line voltage : 340,70 V 0,1493 V

Full load

Rated line voltage : 339,87 V 0,1534 V
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Figure 7.11: Position referenced average shaft voltage for −3, 1 mm eccentricity and

full load
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Figure 7.12: Normalised power spectrum of the shaft voltage for −3, 1 mm eccen-

tricity and full load
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7.5.5 Waveform comparison

What is interesting is to now compare the relationship of shaft voltage waveform to

the absolute shaft position, for the different eccentricities.

In Figure 7.13 the shaft voltage waveform for the two positive eccentricities are laid

one on another. It should be noted that the phase remains unchanged when simply

increasing the eccentricity in a radial direction.

This is not the case in Figure 7.14 where the shaft voltage waveforms from two

eccentricities, one in a positive direction and the other in the radially opposite

negative direction, are laid one on another. The one waveform is phase shifted 180◦

for the other, as one would expect. This observation leads to the possibility of

developing a method to determine the direction of the shaft eccentricity from the

relative phase of the harmonics.
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Figure 7.13: Position referenced average shaft voltage for +0, 65 mm and +1, 9 mm

eccentricity at full load

0 45 90 135 180 225 270 315 360
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Angular position (degrees)

S
ha

ft 
vo

lta
ge

 (
V

)

 

 
+1,9 mm eccentricity
−3,1 mm eccentricity

Figure 7.14: Position referenced average shaft voltage for +1, 9 mm and −3, 1 mm

eccentricity at full load
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7.6 Conclusion

The simulations in Chapter 6 gave strong theoretical evidence of a static eccentricity

influencing the shaft voltage by way of an increased fifth harmonic. This has been

found to be entirely the case. Of further interest is the relative phase difference in

the shaft voltages measured when the eccentricity is first in one direction and then in

the opposite direction. This could possibly be used to determine the orientation of a

shaft misalignment. Given that shaft voltages can be successfully captured, analysed

and used to determine a simple fault such as static eccentricity, it is possible the

further work in this field could provide a suite of techniques for diagnosing several

different faults.
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Chapter 8

Conclusion

8.1 Outcomes

After presenting a background to machine fault types and condition monitoring

techniques, Section 2.6 in Chapter 2 gave the goals of this research project as follows:

1. Implement a measurement system for the test generator.

2. Investigate possible FEM based simulation of the test generator, in order that

fault characteristics might be predicted using a simulation of a generator. This

is an investigation and the actual use of FEM techniques is not a requirement.

3. Identify a methodology (or lack there-of) that enables the identification of the

fault from the shaft-voltage waveform.

An effective measurement system has been developed and tested. Using the dSpaceTM

DS1104 as its platform, it enables the capture of shaft voltage, additional probe mea-

surements and the absolute angular position of the shaft. The measurement system

is composed of three circuits: a power supply circuit, an anti-alias, amplifier and

protection circuit for measuring the shaft voltage and a level shifter and isolator

circuit for the incremental encoder used to measure the absolute shaft position. See

Chapter 3.

Prior to the completion of the experimental mini-gen, experiments were conducted

on a 4-pole synchronous generator and it was found that the shaft voltage waveform

is periodic about a mechanical revolution and can be used to determine the angular

position of the shaft. In order to do this, an extended capture of the shaft voltage
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is required. An averaging technique is then used to determine a clean periodic

waveform. See Chapter 4 and [2].

The design of the experimental mini-gen was undertaken by Mr Alan Meyer and the

design itself was not a primary concern of this research project, though naturally

the mini-gen itself is central to the physical measurement of shaft signals under fault

conditions. The design, specifications and operating characteristics are presented in

Chapter 5. A key objective in the design of the mini-gen was to approximate the

physical characteristics of a large 600 MVA turbo-generator. One of these charac-

teristics is a large air-gap. The generator was operated at approximately 20 kW

with an output voltage of 340 V and a rotor excitation current of 62 A. The very

high excitation current was necessitated by the disproportionately large air-gap, and

with the current cooling system the rotor exceeds safe operating temperatures in 20

minutes.

When this project was conceived it was doubtful whether a shaft voltage could be

simulated, and hence the success of FEM simulations was not a required outcome.

This notion has been turned on its head, so to speak! Multi-step/transient simu-

lations using Maxwell 2DTM were found to be highly capable of simulating shaft

voltage for the fault type of interest (namely static eccentricity). Simulations were

used to not only predict shaft voltage as a result of static eccentricity, but also as

a result of different physical geometries and rotor-bar inclusion and exclusion. See

Chapter 6.

This led to a methodology for the identification of static eccentricity. It was observed

in simulations that a static eccentricity resulted in an increase of the 5th harmonic

in the shaft voltage. This was verified with physical measurements on the completed

experimental mini-gen. See Chapter 7.

8.2 Recommendations for future research

This project has formed the first step in what is hoped to be a new avenue of research

and research-capability in the School of Electrical and Information Engineering at

Wits University. Some recommendations for future research in the field of shaft

signals and of synchronous generator condition monitoring are outlined below.

• Create a portable instrument which can be taken out into the field. It is

important to capture as long a sample period as possible in order to perform
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averaged time-domain analysis.

• Obtain full design details of the stators and rotors as employed at one or two

of Eskom’s power stations and arrange to perform measurements there on a

regular basis.

• Perform transient simulations of faults on both the mini-gen and the full-size

units and compare both averaged time domain and frequency domain.

• Execute further faults on the mini-gen and compare with mini-gen simulations.

The fault of immediate interest is a rotor shorted-turn.

• By taking into account additional components attached to a full size turbo-

generator shaft (essentially just the steam turbine), consider what signal com-

ponents are as a result of the turbine, and what is as a result of the electrical

generator.

• Can phase and magnitude of the shaft voltages be predicted by maths of

feasible complexity, without resorting to an FEM model?

• Patents and papers already exist for the use of shaft voltage and current as a

diagnostic tool. However, the focus is typically on simply observing medium to

long term trends in the waveform. There is room for the use of FEM simulation

as a predictive tool of how a particular fault in the machine will manifest. The

shaft measurements are then compared against this in a time, frequency, or

perhaps other domains such as short-time frequency or wavelet.
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bert Foggia. Analysis of shaft voltages in large synchronous generators. In Proc.

IEEE IEMDC ’99, pages 607–609, May 1999.

[19] P. I. Nippes. Shaft voltage current monitoring system for early warning and

problem detection. U. S. Patent 6,460,013, Oct 1 2002.

[20] Paul Horowitz and Winfield Hill. The Art of Electronics. Cambridge University

Press, second edition edition, 1989.

[21] S. A. Higgins. Shaft earthing brush comparison carried out on eskom’s genera-

tors. In Iris Rotating Machine Conference, San Antonio, Texas, Jun 2002.

101



Appendix A

Minigen drawings
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Appendix B

Matlab source code

B.1 Introduction

The following source code listings are given :

sjh process sims.m This script is used to process simulation results. The script

must be edited to achieve the desired plots and comparisons on each execution.

It makes use of the sjhspec and loaddat functions (listed below).

sjh process measured.m This script is used to process measured results. The

script must be edited to achieve the desired plots and comparisons on each

execution. It makes use of the sjhspec and loadmeas functions (listed below).

sjhspec.m This is general purpose function used to generate a frequency spectrum

from time domain data. It allows different windows types and lengths to be

used as well as options in terms of normalising, decibel scale and others.

loaddat.m This function loads data out of a .dat file generated by the Maxwell

transient solver.

loadmeas.m This function loads data out of a .mat file generated by dSpace from

measured signals.

loadsig.m This function produces the same form of output from either a simulation

or a measured data file, enabling easy comparison.

ave data.m This function performs the averages time domain data against a posi-

tion reference, removing noise and producing a position-periodic signal.
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rmssim.m This function calculates the RMS value of a time-domain sample using

trapezoidal integration.

B.2 sjh process sims.m

1 % Process simulated results, by editing this script various simulated

2 % outputs can be lined up next to one another for comparison.

3

4 % PROJECT NAME mm OFFSET

5 %

6 % gen_norm 0

7 % gen_eccen_3 0.25

8 % gen_eccen_4 0.5

9 % gen_eccen_2 2.5

10 % gen_eccen_cut 4

11 % gen_eccen 5

12

13 %%

14 clear all;

15

16 condition = ’fullload’;

17 %condition = ’slowrot’;

18 datatype = ’extnl_v’;

19 plotparam = ’v_shaft’;

20

21 tests = { ’norm’, ’eccen_3’, ’eccen_4’, ’eccen_2’, ’eccen’ } ;

22 %tests = { ’norm’, ’eccen_4’, ’eccen_4_lores’ } ;

23 numtests = length(tests);

24 Ydata = [ 0; 0.25; 0.5; 2.5; 5];

25 %Ydata = [ 0; 1; 2 ];

26

27 XLabel = ’Freq (Hz)’;

28 YLabel = ’Offset (mm)’;

29 ZLabel = ’Normalised Power (dB)’;

30

31 StopFreq = 3000;

32

33 % Load data out of files

34 clear data;

35 data = cell(numtests,1);

36

37 for ct = [1:numtests]

38 t = char(tests(ct));

39

40 estr = [ ’temp = loaddat(’’gen_’, ...

41 condition, ’/gen_’, t, ’.pjt/’, datatype, ’.dat’’, 0.04);’];

42 eval(estr)

43

44 estr = [ ’data(ct) = {temp.’, plotparam, ’};’ ];

45 eval(estr);

46 clear temp;
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47 end

48

49 clear estr

50 clear cc c ct t cd d

51

52 %%

53 maxlen = -inf;

54 maxSpan = -inf;

55 minT = inf;

56

57 for i = [1:numtests]

58 T = data{i}(2,1) - data{i}(1,1);

59 minT = min(minT, T);

60 maxSpan = max(maxSpan, T * length(data{i}(:,1)));

61 end

62

63 maxlen = ceil(maxSpan / minT);

64

65 %%

66 window = @hann;

67

68 % Resample all vectors to the same length

69 % but Window them first!

70 for i = [1:numtests]

71 T = data{i}(2,1) - data{i}(1,1);

72 oldlen = length(data{i});

73

74 p = round(oldlen * (T / minT));

75 q = oldlen;

76

77 data{i}(:,2) = data{i}(:,2) .* window(oldlen);

78

79 y = data{i}(:,2);

80 x = data{i}(:,1);

81

82 if p ~= q

83 y = resample(y, p,q);

84 x = linspace(x(1), x(end), length(y))’;

85 end

86

87 y = [ y ; zeros(maxlen - length(y),1) ];

88 x = [ x ; [1:1:maxlen - length(x)]’ * (x(2) - x(1)) + x(end)];

89

90 data(i) = {[x, y]};

91 end

92

93 %%

94 %figure;

95 %for i = [1:numtests]

96 % plot(data{i}(:,1), data{i}(:,2));

97 % hold all;

98 %end

99

100 %%

101 NFFT = 2^ceil(log(maxlen)/log(2));
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102

103 % Convert to frequency data

104 spec_opt.dB = 0;

105 spec_opt.Norm = 0;

106 spec_opt.DCremove = 0;

107

108 clear s; s = cell(numtests,1);

109 clear f; f = cell(numtests,1);

110 for i = [1:numtests]

111 clear st; clear ft;

112 [st ft] = sjhspec(data{i}, spec_opt, @rectwin, NFFT);

113 s(i) = {st};

114 f(i) = {ft};

115 end

116

117 StopIdx = ceil((StopFreq / f{1}(end)) * length(f{1}));

118

119 for i = [1:numtests]

120 s(i) = {s{i}(1:StopIdx)};

121 f(i) = {f{i}(1:StopIdx)};

122 end

123

124

125

126 %%

127 %MAX = -inf;

128 %for i = [1:numtests]

129 % MAX = max([MAX; s{i}]);

130 %end

131 %

132 %for i = [1:numtests]

133 % s(i) = {10*log10(s{i} ./ MAX)};

134 %end

135

136 %%

137 x = f{1};

138 y = Ydata(1:numtests);

139 [X,Y] = meshgrid(x,y);

140 Z = zeros(length(y), length(x));

141 for i = [1:numtests]

142 Z(i,:) = s{i};

143 end

144

145 %%

146 fh = figure;

147 mesh(X, Y, Z);

148 axis tight;

149 set (gca, ’XScale’, ’lin’);

150 h = xlabel(XLabel);

151 set (h, ’Interpreter’, ’none’);

152 h = ylabel(YLabel);

153 set (h, ’Interpreter’, ’none’);

154 zlabel(ZLabel);

155 h = title([condition, ’.’, datatype, ’.’, plotparam]);

156 set (h, ’Interpreter’, ’none’);
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157 colormap hsv

158 colorbar

159

160 %%

161 figure;

162 plot3(X’, Y’, Z’);

163 axis tight;

164 set (gca, ’XScale’, ’lin’);

165 h = xlabel(XLabel);

166 set (h, ’Interpreter’, ’none’);

167 h = ylabel(YLabel);

168 set (h, ’Interpreter’, ’none’);

169 zlabel(ZLabel);

170 h = title([condition, ’.’, datatype, ’.’, plotparam]);

171 set (h, ’Interpreter’, ’none’);

B.3 sjh process measured.m

1 % Process measured results, by editing this script various measured

2 % outputs can be lined up next to one another for comparison.

3

4

5 %%

6 clear all;

7

8 experiment = ’eccen2’;

9

10 cd([’Z:\’, experiment]);

11

12 prefix = [experiment, ’.’];

13

14 tests = { ’fl_rv’} ;

15 %tests = { ’nl_fe_40hz’, ’nl_fe_45hz’, ’nl_fe_48hz’, ’nl_fe’, ’nl_fe_52hz’, } ;

16 %tests = { ’nl_ne’, ’nl_he’, ’nl_40e’, ’nl_50e’, ’nl_fe’ } ;

17 %tests = { ’nl_fe’, ’fl_fe’} ;

18 Ynum = 3;

19 numtests = length(tests);

20 Ydata = [0:numtests-1]*1+1;

21

22 XLabel = ’Freq (Hz)’;

23 YLabel = ’Offset (mm)’;

24 ZLabel = ’Normalised Power (dB)’;

25

26 StopFreq = 500;

27 PointsLimit = inf;

28

29 % Load data out of files

30 clear data;

31 clear tempX tempY;

32 data = cell(numtests,1);
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33

34 for ct = [1:numtests]

35 t = char(tests(ct));

36

37 load(t);

38

39 estr = [ ’datalen = length(’, t, ’.X(1).Data);’];

40 eval(estr)

41 datalen = min([datalen PointsLimit]);

42 estr = [ ’data{ct} = zeros(datalen,2);’];

43 eval(estr)

44 estr = [ ’data{ct}(:,1) = ’, t, ’.X(1).Data(1:datalen);’];

45 eval(estr)

46 estr = [ ’data{ct}(:,2) = ’, t, ’.Y(Ynum).Data(1:datalen);’];

47 eval(estr)

48 estr = [ ’clear ’, t, ’;’ ];

49 eval(estr);

50 end

51

52 clear estr

53 clear cc c ct t cd d

54

55 %%

56 % Convert to frequency data

57 spec_opt.dB = 0;

58 spec_opt.Norm = 0;

59 spec_opt.DCremove = 1;

60

61 clear s; s = cell(numtests,1);

62 clear f; f = cell(numtests,1);

63 clear st; clear ft;

64

65 for i = [1:numtests]

66 [st ft] = sjhspec(data{i}, spec_opt);

67 s(i) = {st};

68 f(i) = {ft};

69 clear st; clear ft;

70 end

71

72

73 for i = [1:numtests]

74 StopIdx = min(...

75 ceil((StopFreq / f{i}(end)) * length(f{i})),...

76 length(f{i}));

77 s(i) = {s{i}(1:StopIdx)};

78 f(i) = {f{i}(1:StopIdx)};

79 end

80

81

82

83 %%

84 % Normalise and/or convert to dB

85 % MAX = -inf;

86 % for i = [1:numtests]

87 % MAX = max([MAX; s{i}]);
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88 % end

89 %

90 % for i = [1:numtests]

91 % s(i) = {10*log10(s{i} ./ MAX)};

92 % end

93

94 %%

95 % % Cutoff lower end

96 % for i = [1:numtests]

97 % s(i) = {max(s{i}, -100)};

98 % end

99

100

101

102 %%

103 %figure;

104

105 for i = [1:numtests]

106 plot3(f{i}, ones(size(f{i})) .* Ydata(i), s{i});

107 hold all;

108 end

109

110 axis tight;

111 grid on;

112 set (gca, ’XScale’, ’lin’, ’YTickLabel’, [], ’YTickLabelMode’, ’Manual’);

113 h = xlabel(XLabel);

114 set (h, ’Interpreter’, ’none’);

115 %h = ylabel(YLabel);

116 %set (h, ’Interpreter’, ’none’);

117 zlabel(ZLabel);

118 h = title(’Measured Data’);

119 set (h, ’Interpreter’, ’none’);

120

121 for i = [1:numtests]

122 text(0,Ydata(i),0, [prefix, tests{i}, ’ ’], ’HorizontalAlignment’, ’right’, ’Interpreter’, ’none’);

123 end

B.4 sjhspec.m

1 function [s,f]=sjhspec(dat, options, window, NFFT)

2 %function [s,f]=sjhspec(dat, options, windows, NFFT)

3 %

4 % Where dat is a 2 column matrix (time and signal)

5 % Returns spectrum in s and frequency in f

6 %

7 % This is a configurable frequency spectrum calculator, depending on the

8 % options it can remove the DC component, normalise the output, plot the

9 % output in dB and produce a power spectrum. The window used and the length

10 % of the FFT window are also configurable. It is used extensively by many

11 % other data processing scripts.

12
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13 opt.DCremove = 1;

14 opt.Norm = 1;

15 opt.dB = 1;

16 opt.Power = 1;

17

18 if ~exist(’options’, ’var’)

19 options = opt;

20 else

21 if isfield(options, ’DCremove’)

22 opt.DCremove = options.DCremove;

23 end

24

25 if isfield(options, ’Norm’)

26 opt.Norm = options.Norm;

27 end

28

29 if isfield(options, ’dB’)

30 opt.dB = options.dB;

31 end

32

33 if isfield(options, ’Power’)

34 opt.Power = options.Power;

35 end

36 end

37

38

39 if nargin==0

40 error(’No input vector given’);

41 end

42

43 % Get the time vector

44 t = dat(:,1);

45

46 % Find the sampling frequency

47 fs = 1/(t(2) - t(1));

48

49 % Get the data vector

50 y = dat(:,2);

51 datlen = length(y);

52

53 if ~isa(’window’, ’function_handle’)

54 window = @hann;

55 end

56

57 if ~exist(’NFFT’, ’var’)

58 % Get the closest length of a radix 2 FFT

59 NFFT = 2^ceil(log(datlen)/log(2));

60 end

61

62 % Make the window

63 win = window(datlen);

64 %win = ones(datlen, 1);

65

66 %Remove offset

67 if opt.DCremove

115



B.5. LOADDAT.M

68 dc_offs = mean(y);

69 y = y - dc_offs;

70 end

71

72 %Apply window and pad with zeros to NFFT length

73 y = [ y .* win ; zeros(NFFT - datlen , 1) ];

74

75 Y = fft(y);

76

77 % Only interested in the first half (and a bit) of the FFT

78 Y = Y(1:NFFT/2+2);

79

80 % Get the power spectrum

81 if opt.Power

82 Yout = Y .* conj(Y) / NFFT;

83 else

84 Yout = Y / NFFT;

85 end

86

87 %Normalise the power spectrum to max 1

88 if opt.Norm

89 Yout = Yout ./ max(Yout);

90 end

91

92 %Convert to dB

93 if opt.dB

94 Yout = 10 * log10(Yout);

95 end

96

97 % Create the frequency scale

98 f = [fs * (0:length(Yout)-1) / NFFT]’;

99

100 % Assign the spectrum output

101 s = Yout;

102

103 if nargout==0

104 plot(f,s);

105 if opt.dB

106 ylabel(’Power Spectrum [dB]’);

107 else

108 ylabel(’Magnitude’);

109 end

110 xlabel(’Frequency’);

111 grid on;

112 end

B.5 loaddat.m

1 function [out] = loaddat(fn, skiptime)

2 % function [out] = loaddat(fn, skiptime)

3 %
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4 % Load a .dat file as produced by Maxwell

5

6 out = [ ];

7 if (~exist(’fn’,’var’))

8 disp (’You must specify a filename’);

9 return

10 end

11

12 if (~exist(’skiptime’, ’var’))

13 skiptime = [ ];

14 end

15

16 [fid,msg] = fopen(fn, ’r’);

17 if fid == -1

18 % Maxwell can compress a project, which basically means compressing

19 % every file and adding a .Z to its extension. The code here

20 % transparently handles this, decompressing data files if need be.

21 % Note that the compress tool from unxutils is required.

22 zfn = [fn ’.Z’];

23 [fid,msg] = fopen(zfn, ’r’);

24 if fid == -1

25 disp([fn ’ not found!’]);

26 return

27 end

28

29 fclose(fid);

30 syscmd = ’c:\unxutils\usr\local\wbin\compress -d -c’;

31

32 [status,msg] = dos([syscmd ’ ’ zfn ’ >’ fn]);

33 if status == 0

34 delete(zfn);

35 else

36 disp([’Decompression failed with status ’ int2str(status)]);

37 disp(msg);

38 return;

39 end

40 else

41 fclose(fid);

42 end

43

44

45 [fid,msg] = fopen(fn, ’r’);

46 if (fid == -1)

47 disp ([’Error loading file ’’’ , fn, ’’’’]);

48 disp (msg);

49 return

50 end

51

52 % File is now successfully opened, iterate through it pulling the data into

53 % a Matlab structure based on the names stored in the data file.

54 out = [ ];

55 out.title = fgetl(fid);

56 out.xlabel = fgetl(fid);

57 out.ylabel = fgetl(fid);

58
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B.6. LOADMEAS.M

59 data = [ ];

60

61 while (feof(fid) == 0)

62 tline = fgetl(fid);

63 if tline

64 if any (isstrprop(tline(1), ’alpha’))

65 name = regexprep(tline, ’ ’, ’_’);

66 estr = [ ’out.’, name, ’ = data;’ ];

67 disp(estr);

68 eval(estr);

69 data = [ ];

70 else

71 newentry = [ sscanf(tline, ’%g %g’, [2 1]) ]’;

72 if skiptime

73 if newentry(1) > skiptime

74 data = [ data ; newentry ];

75 end

76 else

77 data = [ data ; newentry ];

78 end

79 end

80 end

81 end

82

83 % Take care of the case where there’s only one unlabeled data set in the

84 % file

85 if length(data) ~= 0

86 disp(’out.data = data;’);

87 out.data = data;

88 end

B.6 loadmeas.m

1 function struct = loadmeas(filename, PointsLimit)

2 % function struct = loadmeas(filename, PointsLimit)

3 %

4 % This is a utility function to pull information out of a measured data file

5 % produced by dSpace and put it into a structure which can be manipulated

6 % with Matlab. The frequency spectrum is also calculated and stored in the

7 % structure.

8

9 StopFreq = 3000;

10

11 % Load data out of files

12 clear struct;

13

14 if ~exist(’PointsLimit’, ’var’)

15 PointsLimit = inf;

16 end

17

18
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B.7. LOADSIG.M

19 Ynum_pos = 1;

20 Ynum_line = 2;

21 Ynum_shaft = 3;

22

23

24 varname = regexprep(filename, ’^(.*/+|)([^/]+)\.[mM][aA][tT]$’, ’$2’);

25 load(filename, varname);

26 estr = [ ’datalen = length(’, varname, ’.X(1).Data);’];

27 eval(estr)

28 datalen = min([datalen PointsLimit]);

29 estr = [ ’time = ’, varname, ’.X(1).Data(1:datalen)’’;’];

30 eval(estr)

31 estr = [ ’struct.pos = [time, ’, varname, ’.Y(Ynum_pos).Data(1:datalen)’’];’];

32 eval(estr)

33 estr = [ ’struct.line = [time, ’, varname, ’.Y(Ynum_line).Data(1:datalen)’’];’];

34 eval(estr)

35 estr = [ ’struct.shaft = [time, ’, varname, ’.Y(Ynum_shaft).Data(1:datalen)’’];’];

36 eval(estr)

37 estr = [ ’clear ’, varname, ’;’ ];

38 eval(estr);

39

40 clear time

41 clear estr

42

43 %%

44 % Convert to frequency data

45 spec_opt.dB = 0;

46 spec_opt.Norm = 0;

47 spec_opt.DCremove = 0;

48 spec_opt.Power = 1;

49

50 clear st; clear ft;

51

52 [struct.s struct.f] = sjhspec(struct.shaft, spec_opt);

53

54 StopIdx = min(...

55 ceil((StopFreq / struct.f(end)) * length(struct.f)),...

56 length(struct.f));

57

58 struct.s = struct.s(1:StopIdx);

59 struct.f = struct.f(1:StopIdx);

B.7 loadsig.m

1 function [data, s, f] = loadsig(type, filename, varargin)

2 % function [data, f, s] = loadsig(type, filename)

3 % where type = "sim" or "meas" and filename is the dat or matlab file

4 %

5 % This utility function will return a consistent Matlab structure for either

6 % measured or simulated data files, allowing easy comparison. It also takes
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B.7. LOADSIG.M

7 % care of the Z compression applied to some Maxwell data files.

8

9 StopFreq = inf;

10

11 % Load data out of files

12 clear data;

13 clear f;

14 clear s;

15

16 if strcmp(type, ’sim’)

17 [fid,msg] = fopen(filename, ’r’);

18 if fid == -1

19 zfilename = [filename ’.Z’];

20 [fid,msg] = fopen(zfilename, ’r’);

21 if fid == -1

22 disp([filename ’ not found!’]);

23 return

24 end

25

26 fclose(fid);

27 syscmd = ’c:\unxutils\usr\local\wbin\compress -d -c’;

28

29 [status,msg] = dos([syscmd ’ ’ zfilename ’ >’ filename]);

30 if status == 0

31 delete(zfilename);

32 else

33 disp([’Decompression failed with status ’ int2str(status)]);

34 disp(msg);

35 return;

36 end

37 else

38 fclose(fid);

39 end

40

41 filedata = loaddat(filename, 0.04);

42 data = filedata.v_shaft;

43 clear filedata;

44

45 elseif strcmp(type, ’meas’)

46 if nargin == 5

47 Ynum = varargin{4};

48 PointsLimit = varargin{5};

49 else

50 PointsLimit = inf;

51 Ynum = 3;

52 end

53

54

55 varname = regexprep(filename, ’^(.*/+|)([^/]+)\.[mM][aA][tT]$’, ’$2’);

56 load(filename, varname);

57 estr = [ ’datalen = length(’, varname, ’.X(1).Data);’];

58 eval(estr)

59 datalen = min([datalen PointsLimit]);

60 data = zeros(datalen,2);

61 estr = [ ’data(:,1) = ’, varname, ’.X(1).Data(1:datalen);’];
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62 eval(estr)

63 estr = [ ’data(:,2) = ’, varname, ’.Y(Ynum).Data(1:datalen);’];

64 eval(estr)

65 estr = [ ’clear ’, varname, ’;’ ];

66 eval(estr);

67

68 else

69 disp(’You must give either ’’sim’’ or ’’meas’’ for type’);

70 return;

71 end

72

73 clear estr

74

75 %%

76 % Convert to frequency data

77 spec_opt.dB = 0;

78 spec_opt.Norm = 0;

79 spec_opt.DCremove = 0;

80 spec_opt.Power = 1;

81

82 clear s;

83 clear f;

84 clear st; clear ft;

85

86 [s f] = sjhspec(data, spec_opt);

87

88 StopIdx = min(...

89 ceil((StopFreq / f(end)) * length(f)),...

90 length(f));

91

92 s = s(1:StopIdx);

93 f = f(1:StopIdx);

B.8 ave data.m

1 function [x,y] = ave_data(data1, data2)

2 % function [x,y] = ave_data(data1, data2)

3 % data1 and data2 must be identical length

4 % they are assumed to be two simultaneously sampled signals

5 % data1 would be position, and data2 is signal

6

7 if length(data1) ~= length(data2)

8 disp(’data1 and data2 must be the same length!’);

9 return;

10 end

11

12 x_len = 720;

13

14 d_len = length(data1);

15 d1_min = min(data1);
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B.9. RMSSIM.M

16 d1_max = max(data1);

17

18 dx = (d1_max - d1_min)/(x_len-1);

19 x = [d1_min:dx:d1_max];

20 y = zeros(x_len,1);

21 y_num = y;

22

23 for i = 1:d_len

24 d1 = data1(i);

25 d2 = data2(i);

26

27

28 idx = ((d1-d1_min)/(dx+d1_max-d1_min)) * x_len + 1;

29 near_idx = round(idx);

30

31 y(near_idx) = y(near_idx) + d2;

32

33 y_num(near_idx) = y_num(near_idx) + 1;

34 end

35

36 y = y ./ y_num;

37

B.9 rmssim.m

1 function rms = rmssim(d)

2 % function rms = rmssim(d) where d is a 2 column matrix with

3 % time and data in columns 1 and 2 respectively

4 %

5 % Calculate the rms value of time domain data and print it out, for

6 % convenience a root 3 value is also calculated in case it’s of interest.

7

8 T = (d(end,1) - d(1,1)) / (length(d)-1);

9 % Using trapezoidal integration:

10 outrms = sqrt(sum(((d(1:end-1,2)+d(2:end,2))/2).^2.*T) / (d(end,1)-d(1,1)));

11

12 % Using left-hand Riemann sum:

13 %outrms = sqrt(sum(d(1:end,2).^2.*T) / (d(end,1)-d(1,1)+T));

14

15 if nargout == 0

16 disp ([’RMS = ’, num2str(outrms, 12)]);

17 disp ([’RMS * sqrt(3) = ’ num2str(outrms*sqrt(3), 12)]);

18 disp ([’RMS / sqrt(3) = ’ num2str(outrms/sqrt(3), 12)]);

19 else

20 rms = outrms;

21 end
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Appendix C

Datasheets

• DGS 60 incremental encoder

• ICPL2631 dual opto-coupler

• NTE859 opamp

• 74HC04 hex inverter

• LM78XX series positive voltage regulator

• LM79XX series negative voltage regulator
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DGS 60, DGS 65 and DGS 66: 
Incremental Encoders for rough
environmental conditions

D
A

T
A

S
H

E
E

T

Incremental encoders in the

DGS 60, DGS 65 and DGS 66

series are in use world-wide

under the toughest environmental

conditions.

The rugged construction – up to

IP 67 degree protection – and the

individual adaptation of the

design to the requirements of

the user are the outstanding

features of this series. 

Resolutions up to 10,000 lines

are available.

Select your individual encoder!

Possible product variants:

6 and 10 mm solid shafts with

servo flange or face mount flange,

through or blind hollow shafts with

connector or cable outlet, TTL or

HTL interface.

Thanks to this wide variety of

products, there are numerous

possible uses, for example in:

· machine tools

· textile machines

· woodworking machines

· packaging machines

Number of lines
100 to 10,000

Incremental Encoder

PIN Signal Signal Core colour Explanation

HTL TTL (cable outlet)

1 N. C. B black Signal line

2 N. C. Sense + grey Connected 
internally to Us

3 Z Z lilac Signal line

4 N. C. Z yellow Signal line

5 A A white Signal line

6 N. C. A brown Signal line

7 N. C. N. C. orange N. C.

8 B B pink Signal line

9 Screen Screen Housing potential

10 GND GND blue Ground connection 

11 N. C. Sense – green Connected  
internally to ground

12 Us Us red Power supply1)

1) Potential free to
housing

N. C. = 
Not Connected

2 SICK-STEGMANN

Incremental Encoder DGS 60, face mount and servo flange

Servo or face mount flange
Connector or cable outlet
Protection class up to IP 67
Electrical Interfaces 
TTL and HTL

Dimensional drawing servo flange

Dimensional drawing face mount flange

Accessories

Connection systems

Mounting systems

PIN and wire allocation/cable 11 core

View of the connector M23 fitted 
to the encoder body

1

R = bending radius min. 40 mm1

R = bending radius min. 40 mm1

General tolerances according to DIN ISO 2768-mk

General tolerances according to DIN ISO 2768-mk

1

Number of lines
100 to 10,000

Incremental Encoder

zero pulse marking

zero pulse marking

deep

(7
 d

ee
p)



Solid shaft 10 mm

6 mm

Number of lines (Z) per revolution 00100 to 10,000, see order info

Attention: number of lines > 5000 Only with TTL 4 … 6V

Electrical Interface TTL/RS 422, 6-channel

HTL/push-pull, 3-channel (A, B, Z)

Mass 1) Approx. 0.3 kg

Moment of inertia of the rotor

Servo flange 13 gcm2

Face mount flange 25 gcm2

Measuring step 90°/number of lines 

Reference signal

Number 1

Position 90° electr. & logically interlocked with A+B

Error limits

100 ≤ Z < 1250 45/Z + 0.054°

1250 < Z ≤ 10000 45/Z + 0.039°

Measuring step deviation 45/Z °

Max. output frequency 

TTL 300 kHz (600 at > 5000 lines)

HTL 200 kHz

Max. operating speed 2)

with shaft seal 6,000 min-1

without shaft seal 10,000 min-1

Max. angular acceleration 5 x 105 rad/s2

Operating torque

with shaft seal 1 Ncm

without shaft seal 0.1 Ncm

Start up torque

with shaft seal 1.5 Ncm

without shaft seal 0.2 Ncm

Permissible shaft loading

Servo flange radial/axial 20 N/10 N

Face mount flange  radial/axial 40 N/20 N

Bearing lifetime 3.6 x 1010 revolutions

Working temperature range – 20 … + 85 °C

Storage temperature range – 30 … + 85 °C

Permissible relative humidity 3) 90 %

EMC 4)

Resistance

to shocks 5) 30/11 g/ms

to vibration 6) 20/10 … 2000 g/Hz

Protection class acc.  IEC 60529 7)

Housing side IP 67

Flange side IP 65

Operating voltage range

Load current TTL/RS 422, 4 … 6 V Max. 20 mA

TTL/RS 422, 10 … 30 V Max. 20 mA

HTL/push-pull, 10 … 30 V Max. 60 mA

Operating current range at no load

at 24 V 100 mA

at 5 V 120 mA

3

DGS 60

Technical Data DGS 60  

Order information see page 5

4) To DIN EN 61000-6-2
and DIN EN 61000-6-3

3) Condensation not permitted

2) At speeds > 6000 rpm the shaft seal 
must be removed

1) For an encoder with connector outlet

S ICK-STEGMANN

servo face m.

Flange type

5) To DIN EN 60068-2-27

6) To DIN EN 60068-2-6

7) With mating connector fitted

SICK AG • Industrial Sensors • Waldkirch • Germany • www.sick.com
Stegmann GmbH & Co. KG • Donaueschingen • Germany • www.sick-stegmann.de8
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Contact:

A u s t r a l i a
Phone +61 3 9497 4100

1800 33 48 02 – tollfree
E-Mail sales@sick.com.au

B e l g i u m / L u x e m b o u r g
Phone +32 (0)2 466 55 66
E-Mail info@sick.be

B r a s i l
Phone +55 11 5091-4900
E-Mail sac@sick.com.br

C e s k á  R e p u b l i k a
Phone +420 2 57 91 18 50
E-Mail sick@sick.cz

C h i n a
Phone +852-2763 6966
E-Mail ghk@sick.com.hk

D a n m a r k
Phone +45 45 82 64 00
E-Mail sick@sick.dk

D e u t s c h l a n d
Phone +49 (0)2 11 53 01-250
E-Mail vzdinfo@sick.de

E s p a ñ a
Phone +34 93 480 31 00
E-Mail info@sick.es

F r a n c e
Phone +33 1 64 62 35 00
E-Mail info@sick.fr

G r e a t  B r i t a i n
Phone +44 (0)1727 831121
E-Mail info@sick.co.uk

I t a l i a
Phone +39 011 797965
E-Mail stegmann@stegmann.it

J a p a n
Phone +81 (0)3 3358 1341
E-Mail info@sick.jp

K o r e a
Phone +82-2 786 6321/4
E-Mail kang@sickkorea.net

N e d e r l a n d s
Phone +31 (0)30 229 25 44
E-Mail info@sick.nl

N o r g e
Phone +47 67 81 50 00
E-Mail austefjord@sick.no

Ö s t e r r e i c h
Phone +43 (0)22 36 62 28 8-0
E-Mail office@sick.at

P o l s k a
Phone +48 22 837 40 50
E-Mail info@sick.pl

S c h w e i z
Phone +41 41 619 29 39
E-Mail contact@sick.ch

S i n g a p o r e
Phone +65 6744 3732
E-Mail admin@sicksgp.com.sg

S u o m i
Phone +358-9-25 15 800
E-Mail sick@sick.fi

S v e r i g e
Phone +46 8 680 64 50
E-Mail info@sick.se

T a i w a n
Phone +886 2 2365-6292
E-Mail sickgrc@ms6.hinet.net

U S A
Phone +1 937-454-1956
E-Mail sales@stegmann.com

More representatives and agencies
in all major industrial nations at
www.sick.com



ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West,

Park View Industrial Estate, Brenda Road

Hartlepool, Cleveland, TS25 1YD

Tel: (01429) 863609  Fax :(01429) 863581

9/10/00 DB92601-AAS/A1

ICPL2631

ICPL2630

DUAL CHANNEL, HIGH CMR, VERY

HIGH SPEED OPTICALLY COUPLED

ISOLATOR LOGIC GATE OUTPUT

ABSOLUTE MAXIMUM RATINGS

(25°C unless otherwise specified)

Storage Temperature -55°C to + 125°C
Operating Temperature 0°C to + 70°C
Lead Soldering Temperature
(1/16 inch (1.6mm) from case for 10 secs)  260°C

INPUT DIODE

Average Forward Current 15mA
(note 5)

Peak Forward Current 30mA
(less than 1msec duration)(note 5)
Reverse Voltage 5V

(note 5)

DETECTOR

Supply Voltage(V
CC

 ) 7V
(1 minute maximum)
Output Current ( I

O
 ) 16mA

(note 5)
Output Voltage ( V

O
 ) 7V

(note 5)
Collector Output Power Dissipation 60mW

APPROVALS

� UL recognised, File No. E91231

DESCRIPTION
The ICPL2630 / ICPL2631 are dual channel

optocouplers consisting of GaAsP light emitting
diodes and high gain integrated photo detectors to
provide 3500Volts

RMS
 electrical isolation between

input and output. The output of the detector I.C.'s
are open collector Schottky clamped transistors.
The ICPL2631 has an internal shield which
provides a guaranteed common mode transient
immunity specification of 1000V/µs
minimum.This unique design provides maximum
ac and dc circuit isolation while achieving TTL
compatibility. The coupled parameters are

guaranteed over the temperature range of 0°C to

70°C, such that a maximum input signal of 5mA

will provide a minimum output sink current of

13mA(equivalent to fan-out of  eight gates)

FEATURES

� High speed - 10MBit/s
� High Common Mode Transient

Immunity 10kV/µs typical
� Logic gate output
� ICPL2631 has improved noise shield

for superior common mode rejection
� Options :-

10mm lead spread - add G after part no.
Surface mount - add SM after part no.
Tape&reel - add SMT&R after part no.

APPLICATIONS

� Line receiver, data transmission
� Computer-peripheral interface
� Data multiplexing
� Pulse transformer replacement

0.3

0.5

Dimensions in mm

6.9
6.3

1.3

15°
Max

3.3

4.0
3.6

2.54

9.7
9.1

0.5 1.3

* ICPL2631  NOISE SHIELD

7.62

4

3

2

1 8

7

6

5*

OPTION GOPTION SM

10.16

10.2
  9.5

0.3

1.2
0.6

1.4
 0.9

7.62 SURFACE MOUNT

V
CC

GND

ISOCOM  INC

1024  S. Greenville Ave, Suite 240,
Allen, TX 75002   USA

Tel: (214) 495-0755  Fax: (214) 495-0901
   e-mail   info@isocom.com
 http://www.isocom.com

DB92601-AAS/A19/10/00

ELECTRICAL CHARACTERISTICS ( T
A
= 0°C to 70°C Unless otherwise noted )

PARAMETER SYM  DEVICE MIN TYP* MAX UNITS      TEST CONDITION

High Level Output Current I
OH

2 250 µA V
CC

= 5.5V, V
O

= 5.5V

(note 5) I
F
= 250µA

Low Level Output Voltage V
OL

0.4 0.6 V V
CC

= 5.5V, I
F
= 5mA

(note 5) I
OL

 (sinking ) = 13mA

High Level Supply Current I
CCH

14 30 mA V
CC

= 5.5V, I
F
= 0mA

(both channels)

Low Level Supply Current I
CCL

26 36 mA V
CC

= 5.5V, I
F
= 10mA

(both channels)

Input Forward Voltage V
F

1.55 1.75 V I
F
= 10mA, T

A
 = 25oC

Input Reverse Breakdown Voltage V
BR

5 V I
R

= 10µA, T
A
 = 25oC

Input Capacitance C
IN

60 pF V
F
 = 0, f = 1MHz

Temperature Coefficient ∆V
F

-1.4 mV/°C I
F
 = 10mA

of Forward Voltage ∆T
A

Input-output Isolation Voltage V
ISO

2500 5000 V
RMS

R.H.equal to or less than
(note 4) 50%, t = 1min. T

A
= 25°C

Input-output Insulation Leakage I
I-O

1 µA R.H = 45%

Current (note 4) t = 5s, T
A
= 25°C

V
I-O

 = 3000V dc

Resistance  (Input to Output) R
I-O

1012 Ω V
I-O

= 500V dc
(note 4)

Capacitance  (Input to Output) C
I-O

0.6  pF f  = 1MHz
(note 4)

Input-input Insulation Leakage I
I-I

         0.005 µA R.H = 45%

Current (note 6) t = 5s, T
A
= 25°C

V
I-O

 = 500V dc

Resistance  (Input to input) R
I-I

1011 Ω V
I-O

= 500V dc
(note 6)

Capacitance  (Input to input) C
I-I

0.6  pF f  = 1MHz
(note 6)

* All typicals at T
A
= 25°C

RECOMMMENDED OPERATING CONDITIONS

PARAMETER  SYMBOL  MIN   MAX   UNITS

Input Current, Low Level I
FL

0 250 µA

Input Current, High Level I
FH

6.3* 15 mA

Supply Voltage, Output V
CC

4.5 5.5 V

Fan Out ( TTL  Load ) N 8

Operating Temperature T
A

0 70 °C

*6.3mA is a guard banded
value which allows for at least
20% CTR degradation.
 Initial input current threshold
value is 5.0mA or less



SWITCHING SPECIFICATIONS AT T
A

= 25°C ( V
CC

 = 5V, I
F
 = 7.5mA Unless otherwise noted )

   PARAMETER SYM DEVICE MIN TYP MAX UNITS TEST CONDITION
Propagation Delay Time
to Logic Low at Output t

PHL
55   75 ns R

L
 = 350Ω, C

L
 = 15pF

( fig 1 )( note2 )

Propagation Delay Time
to Logic High at Output t

PLH
45   75 ns R

L
 = 350Ω, C

L
 = 15pF

( fig 1 )( note3 )

Common Mode Transient
Immunity at Logic High CM

H
ICPL2630          10000 V/µs I

F
 = 0mA, V

CM
= 50V

PP

Level Output ( fig 2 )( note7 ) ICPL2631    1000   10000 V/µs R
L
= 350Ω,V

OH
= 2Vmin.

Common Mode Transient
Immunity at Logic Low CM

L
ICPL2630         -10000 V/µs V

CM
= 50V

PP

Level Output ( fig 2 )( note8 ) ICPL2631   -1000  -10000 V/µs R
L
=350Ω,V

OL
=0.8Vmax.

NOTES:-
1 Bypassing of the power supply line is required, with a 0.01µF ceramic disc capacitor adjacent to

each isolator. The power supply bus for the isolator(s) should be seperate from the bus for any
active loads. Otherwise a larger value of bypass capacitor (up to 0.1µF) may be needed to supress
regenerative feedback via the power supply.

2 The t
PHL

  propagation delay is measured from the 3.75 mA level Low to High transition of the input
current pulse to the 1.5V level on the High to Low transition of the output voltage pulse.

3 The t
PLH

 propagation delay is measured from the 3.75mA level High to Low transition of the input
current pulse to the 1.5V level on the Low to High transition of the output voltage pulse.

4 Device considered a two terminal device; pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7
and 8 shorted together.

5 Each channel.
6 Measured between pins 1 and 2 shorted together and pins 3 and 4 shorted together.
7 CM

H
is the maximum tolerable rate of rise of the common mode voltage to assure that the output

will remain in a high logic state (ie Vout > 2.0V).
8 CM

L
 is the maximum tolerable rate of fall of the common mode voltage to assure that the output

will remain in a low logic state (ie Vout < 0.8V)

DB92601-AAS/A19/10/00

FIG.1 SWITCHING TEST CIRCUIT
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NTE859/NTE859SM
Integrated Circuit

Quad, Low Noise, JFET Input
Operational Amplifier

Description:
The NTE859 (14−Lead DIP) and NTE859SM (SOIC−14 Surface Mount) JFET−input operational am-
plifiers are low noise amplifiers with low noise input bias, offset currents, and fast slew rate.  The low
harmonic distortion and low noise make these devices ideally suited as amplifiers for high−fidelity and
audio preamplifier applications.  Each amplifier features JFET−inputs (for high input impedance)
coupled with bipolar output stages all integrated on a single monolithic chip.

Features:
� Low Power Consumption
� Wide Common−Mode and Differential Voltage Ranges
� Low Input Bias and Offset Currents
� Output Short−Circuit Protection
� Low Total Harmonic Distortion:  0.003% Typ
� Low Noise:  Vn = 18nV√HZ Typ
� High Input Impedance:  JFET−Input Stage
� Internal Frequency Compensation
� Latch−Up Free Operation
� High Slew Rate:  13V/µs Typ

Absolute Maximum Ratings:  (TA = 0 to +70°C unless otherwise specified)
Supply Voltage (Note 1), VCC(+) 18V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Supply Voltage (Note1), VCC(−) −18V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Differential Input Voltage (Note 2), VID ±30V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Input Voltage Range (Note 1, Note 3),VIDR ±15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Duration of Output Short Circuit (Note 4),tS Unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Power Dissipation (TA = +25°C), PD 680mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Derate Above 25°C 10mW/°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Operating Ambient Temperature Range, TA 0° to +70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Storage Temperature Range, Tstg −65° to +150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Lead Temperature (During Soldering, 1/16” from Case for 10sec), TL +260°C. . . . . . . . . . . . . . . . . . 

Note 1. All voltage values, except differential voltages, are with reapect to the midpoint between
VCC(+) and VCC(−).

Note 2. Differential voltages are at the non−inverting input pin with respect to the inverting pin.
Note 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage

or 15V, whichever is less.
Note 4. The output may be shorted to GND or to either supply.  Temperature and/or supply voltages

must be limited to ensure that the dissipation rating is not exceeded.

Electrical Characteristics: (VCC = ±15V, TA = 0 to+70°C unless otherwise specified)

Parameter Symbol Test Conditions Min Typ Max Unit

Input Offset Voltage VIO VO = 0, RS = 50Ω TA = +25°C − 3 10 mV

− − 13 mV

Temperature Coefficient of Input Offset
Voltage

αVIO VO = 0, RS = 50Ω − 10 − µV/°C

Input Offset Current IIO VO = 0, Note 6 TA = +25°C − 5 100 pA

− − 2 nA

Input Bias Current IIB VO = 0, Note 6 TA = +25°C − 30 200 pA

− − 7 nA

Common−Mode Input Voltage Range VICR TA = +25°C ±11 ±12 − V

Maximum Peak Output Voltage Range VOM RL = 10kΩ, TA = +25°C ±12 ±13.5 − V

RL = ≥10kΩ ±12 − − V

RL = ≥2kΩ ±10 ±12 − V

Large−Signal Differential Voltage AVD VO = ±10V,
≥ Ω

TA = +25°C 25 200 − V/mV
Amplification RL ≥ 2kΩ 15 − − V/mV

Unity−Gain Bandwidth B1 TA = +25°C − 3 − MHz

Input Resistance ri TA = +25°C − 1012 − Ω

Common−Mode Rejection Ratio CMRR VIC = VICRmin, VO = 0, RS = 50Ω,
TA = +25°C

70 86 − dB

SupplyVoltage Rejection Ratio
(∆VCC±/∆VIO)

kSVR VCC = ±15V to ±9V, VO = 0,
RS = 50Ω, TA = +25°C

70 86 − dB

Supply Current (Per Amplifier) ICC No Load, VO = 0, TA = +25°C − 1.4 2.5 mA

Crosstalk Attenuation Vo1/Vo2 AVD = 100, TA = +25°C − 120 − dB

Note 5. All characteristics are measured under open−loop conditions with zero common−mode volt-
age unless otherwise specified.

Note 6. Input bias currents of a FET−input operational amplifier are normal junction reverse currents,
which are temperature sensitive.  Pulse techniques must be used that will maintain the junc-
tion temperatures as close to the ambient temperature as is possible.

Operating Characteristics:  (VCC = ±15V, TA = +25°C unless otherwise specified)

Parameter Symbol Test Conditions Min Typ Max Unit

Slew Rate at Unity Gain SR VI = 10V, RL = 2kΩ, CL = 100pF 8 13 − V/µs

Rise Time Overshoot Factor tr VI = 10V, RL = 2kΩ, CL = 100pF − 0.1 − µsI L L

− 10 − %

Equivalent Input Noise Voltage Vn RS = 100Ω f = 1kHz − 18 − nV/√Hz

f = 10Hz to 10kHz − 4 − µV

Equivalent Input Noise Current In RS = 100Ω, f = 1kHz − 0.01 − pA/√Hz

Total Harmonic Distortion THD VO(rms)= 10V, RS ≤ 1kΩ, RL ≥ 2kΩ, f = 1kHz − 0.003 − %
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Philips Semiconductors Product specification

Hex inverter 74HC/HCT04

FEATURES

• Output capability: standard

• ICC category: SSI

GENERAL DESCRIPTION

The 74HC/HCT04 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL).
They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT04 provide six inverting buffers.

QUICK REFERENCE DATA
GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns

Notes

1. CPD is used to determine the dynamic power dissipation (PD in µW):

PD = CPD × VCC
2 × fi + ∑ (CL × VCC

2 × fo) where:

fi = input frequency in MHz

fo = output frequency in MHz

Σ (CL × VCC
2 × fo) = sum of outputs

CL = output load capacitance in pF

VCC = supply voltage in V

2. For HC the condition is VI = GND to VCC
For HCT the condition is VI = GND to VCC − 1.5 V

ORDERING INFORMATION

See “74HC/HCT/HCU/HCMOS Logic Package Information”.

SYMBOL PARAMETER CONDITIONS
TYPICAL

UNIT
HC HCT

tPHL/ tPLH propagation delay nA to nY CL = 15 pF; VCC = 5 V 7 8 ns

CI input capacitance 3.5 3.5 pF

CPD power dissipation capacitance per gate notes 1 and 2 21 24 pF
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Philips Semiconductors Product specification

Hex inverter 74HC/HCT04

PIN DESCRIPTION

PIN NO. SYMBOL NAME AND FUNCTION

1, 3, 5, 9, 11, 13 1A to 6A data inputs

2, 4, 6, 8, 10, 12 1Y to 6Y data outputs

7 GND ground (0 V)

14 VCC positive supply voltage

Fig.1  Pin configuration. Fig.2  Logic symbol. Fig.3  IEC logic symbol.

Fig.4  Functional diagram.
Fig.5 Logic diagram

(one inverter).

FUNCTION TABLE

Notes

1. H = HIGH voltage level
L = LOW voltage level

INPUT OUTPUT

nA nY

L
H

H
L

September 1993 4

Philips Semiconductors Product specification

Hex inverter 74HC/HCT04

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”.

Output capability: standard
ICC category: SSI

AC CHARACTERISTICS FOR 74HC
GND = 0 V; tr = tf = 6 ns; CL = 50 pF

SYMBOL PARAMETER

Tamb (°C)

UNIT

TEST CONDITIONS

74HC
VCC
(V)

WAVEFORMS+25 −40 to +85 −40 to +125

min. typ. max. min. max. min. max.

tPHL/ tPLH propagation delay
nA to nY

25
9
7

85
17
14

105
21
18

130
26
22

ns
2.0
4.5
6.0

Fig.6

tTHL/ tTLH output transition
time

19
7
6

75
15
13

95
19
16

110
22
19

ns
2.0
4.5
6.0

Fig.6
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Philips Semiconductors Product specification

Hex inverter 74HC/HCT04

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”.

Output capability: standard
ICC category: SSI

Note to HCT types
The value of additional quiescent supply current (∆ICC) for a unit load of 1 is given in the family specifications.
To determine ∆ICC per unit, multiply this value by the unit load coefficient shown in the table below.

AC CHARACTERISTICS FOR 74HC
GND = 0 V; tr = tf = 6 ns; CL = 50 pF

AC WAVEFORMS

PACKAGE OUTLINES

See “74HC/HCT/HCU/HCMOS Logic Package Outlines”.

INPUT UNIT LOAD COEFFICIENT

nA 1.20

SYMBOL PARAMETER

Tamb (°C)

UNIT

TEST CONDITIONS

74HCT
VCC
(V)

WAVEFORMS+25 −40 to +85 −40 to +125

min. typ. max. min. max. min. max.

tPHL/ tPLH propagation delay
nA to nY

10 19 24 29 ns 4.5 Fig.6

tTHL/ tTLH output transition
time

7 15 19 22 ns 4.5 Fig.6

Fig.6 Waveforms showing the data input (nA) to data output (nY) propagation delays and the output transition
times.

(1) HC : VM = 50%; VI = GND to VCC
HCT: VM = 1.3 V; VI = GND to 3 V



LM78XX
Series Voltage Regulators
General Description
The LM78XX series of three terminal regulators is available
with several fixed output voltages making them useful in a
wide range of applications. One of these is local on card
regulation, eliminating the distribution problems associated
with single point regulation. The voltages available allow
these regulators to be used in logic systems, instrumenta-
tion, HiFi, and other solid state electronic equipment. Al-
though designed primarily as fixed voltage regulators these
devices can be used with external components to obtain ad-
justable voltages and currents.

The LM78XX series is available in an aluminum TO-3 pack-
age which will allow over 1.0A load current if adequate heat
sinking is provided. Current limiting is included to limit the
peak output current to a safe value. Safe area protection for
the output transistor is provided to limit internal power dissi-
pation. If internal power dissipation becomes too high for the
heat sinking provided, the thermal shutdown circuit takes
over preventing the IC from overheating.

Considerable effort was expanded to make the LM78XX se-
ries of regulators easy to use and minimize the number of
external components. It is not necessary to bypass the out-

put, although this does improve transient response. Input by-
passing is needed only if the regulator is located far from the
filter capacitor of the power supply.

For output voltage other than 5V, 12V and 15V the LM117
series provides an output voltage range from 1.2V to 57V.

Features
n Output current in excess of 1A
n Internal thermal overload protection
n No external components required
n Output transistor safe area protection
n Internal short circuit current limit
n Available in the aluminum TO-3 package

Voltage Range
LM7805C 5V

LM7812C 12V

LM7815C 15V

Connection Diagrams

Metal Can Package
TO-3 (K)

Aluminum

DS007746-2

Bottom View
Order Number LM7805CK,
LM7812CK or LM7815CK

See NS Package Number KC02A

Plastic Package
TO-220 (T)

DS007746-3

Top View
Order Number LM7805CT,
LM7812CT or LM7815CT

See NS Package Number T03B

May 2000

LM
78X

X
S

eries
Voltage

R
egulators

© 2000 National Semiconductor Corporation DS007746 www.national.com

Schematic

DS007746-1

LM
78

X
X

www.national.com 2



Absolute Maximum Ratings (Note 3)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

Input Voltage
(VO = 5V, 12V and 15V) 35V

Internal Power Dissipation (Note 1) Internally Limited
Operating Temperature Range (TA) 0˚C to +70˚C

Maximum Junction Temperature
(K Package) 150˚C
(T Package) 150˚C

Storage Temperature Range −65˚C to +150˚C
Lead Temperature (Soldering, 10 sec.)

TO-3 Package K 300˚C
TO-220 Package T 230˚C

Electrical Characteristics LM78XXC (Note 2)
0˚C ≤ TJ ≤ 125˚C unless otherwise noted.

Output Voltage 5V 12V 15V

Input Voltage (unless otherwise noted) 10V 19V 23V Units

Symbol Parameter Conditions Min Typ Max Min Typ Max Min Typ Max

VO Output Voltage Tj = 25˚C, 5 mA ≤ IO ≤ 1A 4.8 5 5.2 11.5 12 12.5 14.4 15 15.6 V

PD ≤ 15W, 5 mA ≤ IO ≤ 1A 4.75 5.25 11.4 12.6 14.25 15.75 V

VMIN ≤ VIN ≤ VMAX (7.5 ≤ VIN ≤ 20) (14.5 ≤ VIN ≤
27)

(17.5 ≤ VIN ≤
30)

V

∆VO Line Regulation IO = 500
mA

Tj = 25˚C 3 50 4 120 4 150 mV

∆VIN (7 ≤ VIN ≤ 25) 14.5 ≤ VIN ≤ 30) (17.5 ≤ VIN ≤
30)

V

0˚C ≤ Tj ≤ +125˚C 50 120 150 mV

∆VIN (8 ≤ VIN ≤ 20) (15 ≤ VIN ≤ 27) (18.5 ≤ VIN ≤
30)

V

IO ≤ 1A Tj = 25˚C 50 120 150 mV

∆VIN (7.5 ≤ VIN ≤ 20) (14.6 ≤ VIN ≤
27)

(17.7 ≤ VIN ≤
30)

V

0˚C ≤ Tj ≤ +125˚C 25 60 75 mV

∆VIN (8 ≤ VIN ≤ 12) (16 ≤ VIN ≤ 22) (20 ≤ VIN ≤ 26) V

∆VO Load Regulation Tj = 25˚C 5 mA ≤ IO ≤ 1.5A 10 50 12 120 12 150 mV

250 mA ≤ IO ≤
750 mA

25 60 75 mV

5 mA ≤ IO ≤ 1A, 0˚C ≤ Tj ≤
+125˚C

50 120 150 mV

IQ Quiescent Current IO ≤ 1A Tj = 25˚C 8 8 8 mA

0˚C ≤ Tj ≤ +125˚C 8.5 8.5 8.5 mA

∆IQ Quiescent Current 5 mA ≤ IO ≤ 1A 0.5 0.5 0.5 mA

Change Tj = 25˚C, IO ≤ 1A 1.0 1.0 1.0 mA

VMIN ≤ VIN ≤ VMAX (7.5 ≤ VIN ≤ 20) (14.8 ≤ VIN≤ 27) (17.9 ≤ VIN ≤
30)

V

IO ≤ 500 mA, 0˚C ≤ Tj ≤ +125˚C 1.0 1.0 1.0 mA

VMIN ≤ VIN ≤ VMAX (7 ≤ VIN ≤ 25) (14.5 ≤ VIN≤ 30) (17.5 ≤ VIN ≤
30)

V

VN Output Noise
Voltage

TA =25˚C, 10 Hz ≤ f ≤ 100 kHz 40 75 90 µV

Ripple Rejection IO ≤ 1A, Tj = 25˚C
or

62 80 55 72 54 70 dB

f = 120 Hz IO ≤ 500 mA 62 55 54 dB

0˚C ≤ Tj ≤ +125˚C

VMIN ≤ VIN ≤ VMAX (8 ≤ VIN ≤ 18) (15 ≤ VIN ≤ 25) (18.5 ≤ VIN ≤
28.5)

V

RO Dropout Voltage Tj = 25˚C, IOUT = 1A 2.0 2.0 2.0 V

Output Resistance f = 1 kHz 8 18 19 mΩ

LM
78X

X

www.national.com3

Electrical Characteristics LM78XXC (Note 2) (Continued)

0˚C ≤ TJ ≤ 125˚C unless otherwise noted.

Output Voltage 5V 12V 15V

Input Voltage (unless otherwise noted) 10V 19V 23V Units

Symbol Parameter Conditions Min Typ Max Min Typ Max Min Typ Max

Short-Circuit
Current

Tj = 25˚C 2.1 1.5 1.2 A

Peak Output
Current

Tj = 25˚C 2.4 2.4 2.4 A

Average TC of
VOUT

0˚C ≤ Tj ≤ +125˚C, IO = 5 mA 0.6 1.5 1.8 mV/˚C

VIN Input Voltage

Required to
Maintain

Tj = 25˚C, IO ≤ 1A 7.5 14.6 17.7 V

Line Regulation

Note 1: Thermal resistance of the TO-3 package (K, KC) is typically 4˚C/W junction to case and 35˚C/W case to ambient. Thermal resistance of the TO-220 package
(T) is typically 4˚C/W junction to case and 50˚C/W case to ambient.

Note 2: All characteristics are measured with capacitor across the input of 0.22 µF, and a capacitor across the output of 0.1µF. All characteristics except noise voltage
and ripple rejection ratio are measured using pulse techniques (tw ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must
be taken into account separately.

Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. For guaranteed specifications and the test conditions, see Elec-
trical Characteristics.
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Typical Performance Characteristics

Maximum Average Power Dissipation

DS007746-5

Maximum Average Power Dissipation

DS007746-6

Peak Output Current

DS007746-7

Output Voltage (Normalized to 1V at TJ = 25˚C)

DS007746-8

Ripple Rejection

DS007746-9

Ripple Rejection

DS007746-10
LM

78X
X

www.national.com5

Typical Performance Characteristics (Continued)

Output Impedance

DS007746-11

Dropout Voltage

DS007746-12

Dropout Characteristics

DS007746-13

Quiescent Current

DS007746-14

Quiescent Current

DS007746-15
LM

78
X

X

www.national.com 6



Physical Dimensions inches (millimeters) unless otherwise noted

Aluminum Metal Can Package (KC)
Order Number LM7805CK, LM7812CK or LM7815CK

NS Package Number KC02A

LM
78X

X
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Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.

2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.

National Semiconductor
Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com

National Semiconductor
Europe

Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor
Asia Pacific Customer
Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: ap.support@nsc.com

National Semiconductor
Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507

www.national.com

TO-220 Package (T)
Order Number LM7805CT, LM7812CT or LM7815CT

NS Package Number T03B
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National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
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LM79XX Series 3-Terminal Negative Regulators

General Description
The LM79XX series of 3-terminal regulators is available with

fixed output voltages of b5V� b8V� b12V� and b15V�

These devices need only one external component�a com-

pensation capacitor at the output� The LM79XX series is

packaged in the TO-220 power package and is capable of

supplying 1�5A of output current�

These regulators employ internal current limiting safe area

protection and thermal shutdown for protection against vir-

tually all overload conditions�

Low ground pin current of the LM79XX series allows output

voltage to be easily boosted above the preset value with a

resistor divider� The low quiescent current drain of

these devices with a specified maximum change with line

and load ensures good regulation in the voltage boosted

mode�

For applications requiring other voltages� see LM137 data

sheet�

Features
Y Thermal� short circuit and safe area protection
Y High ripple rejection
Y 1�5A output current
Y 4% tolerance on preset output voltage

Connection Diagrams

TO-220 Package

TL�H�7340–14

Front View

Order Number LM7905CT� LM7912CT or LM7915CT

See NS Package Number TO3B

Typical Applications

Fixed Regulator

TL�H�7340–3

�Required if regulator is separated from filter capacitor by

more than 3�� For value given� capacitor must be solid

tantalum� 25 mF aluminum electrolytic may be substituted�

�Required for stability� For value given� capacitor must be

solid tantalum� 25 mF aluminum electrolytic may be substi-

tuted� Values given may be increased without limit�

For output capacitance in excess of 100 mF� a high current

diode from input to output (1N4001� etc�) will protect the

regulator from momentary input shorts�

C1995 National Semiconductor Corporation RRD-B30M115�Printed in U� S� A�

Absolute Maximum Ratings (Note 1)

If Military�Aerospace specified devices are required�

please contact the National Semiconductor Sales

Office�Distributors for availability and specifications�

Input Voltage

(Vo e b5V) b25V

(Vo e b12V and b15V) b35V

Input-Output Differential

(Vo e b5V) 25V

(Vo e b12V and b15V) 30V

Power Dissipation (Note 2) Internally Limited

Operating Junction Temperature Range 0�C to a125�C
Storage Temperature Range b65�C to a150�C
Lead Temperature (Soldering� 10 sec�) 230�C

Electrical Characteristics Conditions unless otherwise noted� IOUT e 500 mA� CIN e 2�2 mF� COUT e 1 mF�

0�C s TJ s a125�C� Power Dissipation s 1�5W�

Part Number LM7905C

Units
Output Voltage b5V

Input Voltage (unless otherwise specified) b10V

Symbol Parameter Conditions Min Typ Max

VO Output Voltage TJ e 25�C b4�8 b5�0 b5�2 V

5 mA s IOUT s 1A� b4�75 b5�25 V

P s 15W (b20 s VIN s b7) V

DVO Line Regulation TJ e 25�C� (Note 3) 8 50 mV

(b25 s VIN s b7) V

2 15 mV

(b12 s VIN s b8) V

DVO Load Regulation TJ e 25�C� (Note 3)

5 mA s IOUT s 1�5A 15 100 mV

250 mA s IOUT s 750 mA 5 50 mV

IQ Quiescent Current TJ e 25�C 1 2 mA

DIQ Quiescent Current With Line 0�5 mA

Change (b25 s VIN s b7) V

With Load� 5 mA s IOUT s 1A 0�5 mA

Vn Output Noise Voltage TA e 25�C� 10 Hz s f s 100 Hz 125 mV

Ripple Rejection f e 120 Hz 54 66 dB

(b18 s VIN s b8) V

Dropout Voltage TJ e 25�C� IOUT e 1A 1�1 V

IOMAX Peak Output Current TJ e 25�C 2�2 A

Average Temperature IOUT e 5 mA� 0�4 mV��C
Coefficient of 0 C s TJ s 100�C
Output Voltage

Typical Applications (Continued)

Variable Output

TL�H�7340–2
�Improves transient response and ripple rejection� Do not increase beyond 50 mF�

VOUT e VSET �
R1 a R2

R2 J
Select R2 as follows�

LM7905CT 300X

LM7912CT 750X

LM7915CT 1k
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Electrical Characteristics (Continued) Conditions unless otherwise noted� IOUT e 500 mA� CIN e 2�2 mF�

COUT e 1 mF� 0�C s TJ s a125�C� Power Dissipation e 1�5W�

Part Number LM7912C LM7915C

Units
Output Voltage b12V b15V

Input Voltage (unless otherwise specified) b19V b23V

Symbol Parameter Conditions Min Typ Max Min Typ Max

VO Output Voltage TJ e 25�C b11�5 b12�0 b12�5 b14�4 b15�0 b15�6 V

5 mA s IOUT s 1A� b11�4 b12�6 b14�25 b15�75 V

P s 15W (b27 s VIN s b14�5) (b30 s VIN s b17�5) V

DVO Line Regulation TJ e 25�C� (Note 3) 5 80 5 100 mV

(b30 s VIN s b14�5) (b30 s VINs b17�5) V

3 30 3 50 mV

(b22 s VIN s b16) (b26 s VIN sb20) V

DVO Load Regulation TJ e 25�C� (Note 3)

5 mA s IOUT s 1�5A 15 200 15 200 mV

250 mA s IOUT s 750 mA 5 75 5 75 mV

IQ Quiescent Current TJ e 25�C 1�5 3 1�5 3 mA

DIQ Quiescent Current With Line 0�5 0�5 mA

Change (b30 s VIN s b14�5) (b30 sVIN s b17�5) V

With Load� 5 mA s IOUT s 1A 0�5 0�5 mA

Vn Output Noise Voltage TA e 25�C� 10 Hz s f s 100 Hz 300 375 mV

Ripple Rejection f e 120 Hz 54 70 54 70 dB

(b25 s VIN s b15) (b30 s VINs b17�5) V

Dropout Voltage TJ e 25�C� IOUT e 1A 1�1 1�1 V

IOMAX Peak Output Current TJ e 25�C 2�2 2�2 A

Average Temperature IOUT e 5 mA� b0�8 b1�0 mV��C
Coefficient of 0 C s TJ s 100�C
Output Voltage

Note 1� Absolute Maximum Ratings indicate limits beyond which damage to the device may occur� Operating Ratings indicate conditions for which the device is

intended to be functional� but do not guarantee Specific Performance limits� For guaranteed specifications and test conditions� see the Electrical Characteristics�

Note 2� Refer to Typical Performance Characteristics and Design Considerations for details�

Note 3� Regulation is measured at a constant junction temperature by pulse testing with a low duty cycle� Changes in output voltage due to heating effects must be

taken into account�

Typical Applications (Continued)

Dual Trimmed Supply

TL�H�7340–4

3

Design Considerations
The LM79XX fixed voltage regulator series has thermal

overload protection from excessive power dissipation� inter-

nal short circuit protection which limits the circuit’s maxi-

mum current� and output transistor safe-area compensation

for reducing the output current as the voltage across the

pass transistor is increased�

Although the internal power dissipation is limited� the junc-

tion temperature must be kept below the maximum speci-

fied temperature (125�C) in order to meet data sheet specifi-

cations� To calculate the maximum junction temperature or

heat sink required� the following thermal resistance values

should be used�

Typ Max Typ Max

Package iJC iJC iJA iJA

�C�W �C�W �C�W �C�W

TO-220 3�0 5�0 60 40

PD MAX e
TJ Max b TA

iJC a iCA
or

TJ Max TA

iJA

iCA e iCS a iSA (without heat sink)

Solving for TJ�

TJ e TA a PD (iJC a iCA) or

e TA a PDiJA (without heat sink)

Where�

TJ e Junction Temperature

TA e Ambient Temperature

PD e Power Dissipation

iJA e Junction-to-Ambient Thermal Resistance

iJC e Junction-to-Case Thermal Resistance

iCA e Case-to-Ambient Thermal Resistance

iCS e Case-to-Heat Sink Thermal Resistance

iSA e Heat Sink-to-Ambient Thermal Resistance

Typical Applications (Continued)

Bypass capacitors are necessary for stable operation of the

LM79XX series of regulators over the input voltage and out-

put current ranges� Output bypass capacitors will improve

the transient response by the regulator�

The bypass capacitors� (2�2 mF on the input� 1�0 mF on the

output) should be ceramic or solid tantalum which have

good high frequency characteristics� If aluminum electrolyt-

ics are used� their values should be 10 mF or larger� The

bypass capacitors should be mounted with the shortest

leads� and if possible� directly across the regulator termi-

nals�

High Stability 1 Amp Regulator

TL�H�7340–5

Load and line regulation k 0�01% temperature stability s 0�2%

�Determine Zener current

��Solid tantalum

�Select resistors to set output voltage� 2 ppm��C tracking suggested

4



Typical Applications (Continued)

Current Source

�IOUT e 1 mA a
5V

R1 TL�H�7340–7

Light Controller Using Silicon Photo Cell

TL�H�7340–8

�Lamp brightness increase until iI e iQ (� 1 mA) a 5V�R1�

�Necessary only if raw supply filter capacitor is more than 2� from LM7905CT

5

Typical Applications (Continued)

High-Sensitivity Light Controller

TL�H�7340–9

�Lamp brightness increases until ii e 5V�R1 (Ii can be set as low as 1 mA)

�Necessary only if raw supply filter capacitor is more than 2� from LM7905

g15V� 1 Amp Tracking Regulators

TL�H�7340–1

(b15) (a15)

Load Regulation at DIL e 1A 40 mV 2 mV

Output Ripple� CIN e 3000 mF� IL e 1A 100 mVrms 100 mVrms

Temperature Stability 50 mV 50 mV

Output Noise 10 Hz s f s 10 kHz 150 mVrms 150 mVrms

�Resistor tolerance of R4 and R5 determine matching of (a) and (b)

outputs�

��Necessary only if raw supply filter capacitors are more than 3� from regu-

lators�

6



Schematic Diagrams
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Schematic Diagrams (Continued)
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Physical Dimensions inches (millimeters)

TO-220 Outline Package (T)

Order Number LM7905CT� LM7912CT or LM7915CT

NS Package Number T03B

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION� As used herein�

1� Life support devices or systems are devices or 2� A critical component is any component of a life

systems which� (a) are intended for surgical implant support device or system whose failure to perform can

into the body� or (b) support or sustain life� and whose be reasonably expected to cause the failure of the life

failure to perform� when properly used in accordance support device or system� or to affect its safety or

with instructions for use provided in the labeling� can effectiveness�

be reasonably expected to result in a significant injury

to the user�

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd� Japan Ltd�
1111 West Bardin Road Fax� (a49) 0-180-530 85 86 13th Floor� Straight Block� Tel� 81-043-299-2309
Arlington� TX 76017 Email� cnjwge� tevm2�nsc�com Ocean Centre� 5 Canton Rd� Fax� 81-043-299-2408
Tel� 1(800) 272-9959 Deutsch Tel� (a49) 0-180-530 85 85 Tsimshatsui� Kowloon
Fax� 1(800) 737-7018 English Tel� (a49) 0-180-532 78 32 Hong Kong

Fran�ais Tel� (a49) 0-180-532 93 58 Tel� (852) 2737-1600
Italiano Tel� (a49) 0-180-534 16 80 Fax� (852) 2736-9960

National does not assume any responsibility for use of any circuitry described� no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications�
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