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Abstract

Drug resistance of the HI virus due to its fast replication and error-prone mutation is a key fac-

tor in the failure to combat the HIV epidemic. For this reason, performing pre-therapy drug

resistance testing and administering appropriate drugs orcombination of drugs accordingly is

very useful. There are two approaches to HIV drug resistancetesting: phenotypic (clinical)

and genotypic (based on the particular virus’s DNA). Genotyping tests HIV drug resistance by

detecting specific mutations known to confer drug resistance. It is cheaper and can be comput-

erised. However, it requires being able to know or learn whatmutations confer drug resistance.

Previous research using pattern recognition techniques has been promising, but the performance

needs to be improved. It is also important for techniques that can quickly learn new rules when

faced with new mutations or drugs.

A relatively recent addition to these techniques is the Support Vector Machines (SVMs).

SVMs have proved very successful in many benchmark applications such as face recognition,

text recognition, and have also performed well in many computational biology problems where

the number of features targeted is large compared to the number of available samples. This

paper explores the use of SVMs in predicting the drug resistance of an HIV strain extracted

from a patient based on the genetic sequence of those parts ofthe viral DNA encoding for the

two enzymes, Reverse Transcriptase or Protease, which are critical for the replication of the

HIV virus. In particular, it is the aim of this reseach to design the model without incorporating

the biological knowledge at hand to enable the resulting classifier accommodate new drugs and

mutations.

To evaluate the performance of SVMs we used cross validationtechnique to measure the

unbiased estimate on 2045 data points. The accuracy of classification and the area under the re-

ceiver operating characteristics curve (AUC) was used as a performance measure. Furthermore,

to compare the performance of our SVMs model we also developed other prediction models

based on popular classification algorithms, namely neural networks, decision trees and logistic

regressions.

The results show that SVMs are a highly successful classifierand out-perform other tech-

niques with performance ranging between (94.13%–96.33%) accuracy and (81.26% - 97.49%)

AUC. Decision trees were rated second and logistic regression performed the worst.
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Chapter 1

Introduction

1.1 Introduction

The Human Immunodeficiency virus (HIV) is a rapidly evolvingvirus resulting in the AIDS

epidemic. The rapid evolution of this virus is due to fast replication and its mutant behaviour.

This mutant behaviour of the virus gives it the advantage of acquiring drug resistance which

is the main reason for the failure of much diagnostic treatment. One solution that has proved

to give better results is pre-therapy drug resistance testing. This solution allows for adminis-

tration of drugs that will prolong viral suppression and help reconstruct the patient’s immunity.

There are two approaches for testing HIV drug resistance, phenotypic and genotypic testing.

Phenotypic testing is laboratory based and measures the relative drug susceptibility of an HIV

strain directly [Beerenwinkelet al.2003a]. Genotypic testing, on the other hand, considers the

genetic information of the HIV strain extracted from the patient and the ability to interpret such

data [Beerenwinkelet al. 2003a]. Due to the cost benefit and other advantages genotyping is

more widely used than phenotyping.

Genotypic testing aims at identifying specific mutation points on the viral genetic makeup

that are known to confer drug resistance based on the biological knowledge available about

the virus and the drug/s. In genotyping, the genetic make up of the HIV strain extracted from

a patient is examined for the existence of mutations (patterns) that are known to confer drug

resistance to a drug or combination of drugs and then be classified as resistant or not resistant to

the drug or combination of drugs accordingly. There are a number of ways of performing this

task and interpreting the results of genotyping is not related to the testing process, hence this

approach has been an ideal application for computerised expert systems [Lathropet al. 1999].

Based on these characteristics, one can consider genotypingas a classification problem which

is best solved using pattern recognition techniques than a traditional algorithmic approach. A

number of applications addressing the HIV drug resistance problem as a pattern recognition

problem are currently available. Draghici and Potter [2003] and Wang and Larder [2003] used

neural networks as a tool for predicting the drug resistanceprofile of HIV strain based on genetic

sequence of viral protease and amino acids on selected positions of protease where mutation is

known to confer drug resistance respectively. Beerenwinkelet al. [2002] used decision tree
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models to predict phenotypic resistance from genotypic information.

Pattern recognition techniques have been proved to be a better option when there are no

known rules relating the input and output of a problem, and the interaction between different

reactants is unknown. One such pattern recognition technique is the Support Vector Machine

(SVMs), which is a statistical learning method proposed by Boseret al. [1992]. Although this

technique is a relatively recent addition to pattern recognition techniques, it has shown superior

performance as a tool for pattern recognition in numerous benchmark applications. Further-

more, its ability to give a better performance based on limited training samples makes it an

ideal approach in computational biology problems, where generating data is costly or difficult.

One such computational biology problem is HIV drug resistance. This research investigates

the performance of SVMs in predicting drug resistance of an HIV strain based on the genetic

sequence of two enzymes; namely Reverse Transcriptase (RT) and Protease (PRO), which are

critical during viral replication and where most mutationsare exhibited [Shafer 2002b]. The

performance of SVMs will be compared to three traditional methods of pattern recognition:

neural networks, decision trees and logistic regression.

The rest of the chapter is organised as follows. The next section gives an introduction to HIV

and the drug resistance problem. This section also shows that this is an open area of research

and indicates the importance of the research. Section 1.3 gives an introduction to Support

Vector Machines, which is the pattern recognition technique used in this research. This section

will highlight why SVMs are an ideal tool for this research and present some applications of

SVMs in computational biology. Section 1.4 and 1.5 give the formal definition of the problem

and an overview of the approach taken to assess the performance of the different algorithms

respectively. Section 1.6 gives an overview of the results found in this work followed by a

section highlighting the contribution of the research. Finally, section 1.8 gives the structure of

this document.

1.2 HIV and the drug resistance problem

The Human Immunodeficiency Virus (HIV) and its infectious agents have resulted in the world-

wide AIDS epidemic. World Health Organisation (WHO) statistics shows that as of December

2003, HIV had already infected between 34 and 46 million people around the world with the

majority of these infection in sub-Saharan African countries [UNAIDS 2004]. Although it has

been more than two decades since HIV was first discovered, there is no effective drug to fully

stop the virus from replicating and stop the epidemic. At thepresent there are more than 18

antiretroviral drugs available and the best they achieved so far is prolonging viral suppression

and helping with immunologic reconstruction using combinatorial therapy (combination of up

to 3 or 4 drugs) [Shafer 2002a]. A major reason for the failureto halt the epidemic is HIV drug

resistance.

HIV drug resistance refers to the loss in the ability of a drugor combination of drugs to

suppress the replication of the virus. The two main reasons for drug resistance are fast replica-
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tion and mutation [Klatt 2003]. Mutation refers to the change in the genetic make up (RNA) of

the virus during replication. During replication, the viral RNA integrates with the human cell

DNA in a number of steps with the aid of different enzymes suchas RT and PRO [Klatt 2003].

HIV mutants result from the high viral replication rate and RT infidelity. RT infidelity is due to

the lack of proof-reading mechanism that preserves the genetic composition of double stranded

DNA genome within the viral RT [Shafer 2002a]. Although all mutations change the structure

of the virus, not all of them have the same effect. Some mutations cause the virus to become

extremely infectious while others make it weak. For example, if a mutation occurred that made

the newly replicated virus resistant to a particular drug orcombination of drugs, treating the pa-

tient with this drug or combination of drugs will have a negative effect. On the contrary, other

mutations slow down the replication process of the virus. Therefore, one of the main concern

during pharmaceutical therapy of an HIV patient is identifying particular mutations known to

confer drug resistance and administering drug/s accordingly. Identification and prediction of

HIV drug resistance is the problem this research is addressing. To address this problem a num-

ber of approaches have been proposed within the last decade.In this regard, one of the most

effective approaches has been pre-therapy HIV drug resistance testing [Hoffmann and Kamps

2003].

There are two approaches of testing an HIV’s strains drug resistance: namely phenotypic

testing and genotypic testing [Klatt 2003]. Phenotypic testing directly measures the replication

of the virus in the presence of a drug or combination of drugs.Genotypic testing on the other

hand relies on the genetic sequence of the HIV virus and theoretical knowledge of specific

mutation and related drug resistance. The primary objective of genotypic testing is to detect

specific mutations known to confer resistance to antiretroviral drugs in well-defined regions of

the RT and PRO, the two critical enzymes in viral replication[Klatt 2003]. Genotypic is the

most widely used because of its simplicity, speed, cost benefit and unlike phenotypic testing

it doen not require a specialised laboratory. Furthermore,interpreting the result of genotypic

is independent of the testing process. The later advantage,has opened the door for successful

technology from other disciplines to collaborate in solving the problem. Such an application is

the computerised expert system [Lathropet al.1999].

The first research carried out to address this problem of perdicting the effect of a drug

or combination of drugs based on the genetic sequence of the HIV strain extracted from the

patient using computerised expert systems was conducted byLathropet al. [1999]. Lathrop

et al. [1999] introduced the AI system, CTSHIV that uses the scientific knowledge about HIV

drug resistance to customise treatment to an individual patient. Following this breakthrough

a number of techniques such as neural networks [Draghici andPotter 2003; Wang and Larder

2003], decision trees [Beerenwinkelet al. 2002], and different regression methods have been

applied to predict drug resistance of an HIV strain directlyor indirectly. Although most of

these applications have been successful, the performance obtained is still far from optimal.

Furthermore, the design of these systems were highly dependent on the biological knowledge

available about the particular drug or combination of drugsand corresponding mutations that
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are known to confer resistance. This means that for these systems to work properly a continuous

update (with possible redesigning) of the systems is required with the discovery of new mutation

points and new drugs. Therefore, the search for new techniques that not only outperform the

existing ones but also address the dynamic behaviour of the virus (mutation and drug resistance)

is required. This research will investigate such a technique by taking no biological knowledge

about the virus into consideration while designing the model. Furthermore, this research uses

the position1 − 250 of RT and position1 − 99 of PRO genetic sequence. Hence, the resulting

model bases its decision not only on mutations already reported to cause drug resistance but

patterns yet not known by humans but reflected in the genetic sequence of the strain.

1.3 Support vector machines

Support Vector Machines (SVMs) are a statistical pattern recognition technique proposed by

Boseret al. [1992] to perform a number of classification and regression tasks in a wide variety

of application domains [Cristianini and Shawe-Taylor 2000]. Since their introduction, SVMs

have been successfully applied to many pattern recognitionand regression applications such

as text categorisation [Joachims 1998], speech recognition [Ganapathiraju 2002], face detec-

tion [Osunaet al.1997], object recognition [Schölkopf 1997], and handwritten text recognition

[Cortes and Vapnik 1995] with remarkable performance. The achievements by SVMs are cred-

ited to the two basic principles behind SVMs: namely the principle of Structural Risk Minimi-

sation (SRM) and the ability to project data into high dimensional feature space where complex

data can be classified with ease [Vapnik 1995]. In this section we will see a high level intro-

duction on how a simple maximum margin classifier, which is the simplest form of SVMs, is

extended into complex classifiers that are complex enough tomodel real world problems, yet

simple enough to be analysed mathematically. But before discussing the classification method,

an introductory summary of risk minimisation and the principle of Structural Risk Minimisa-

tion will be presented. A more detailed explanation of risk minimisation and the mathematical

formulation of SVMs will be presented in Chapter 3.

Like all pattern recognition techniques, SVMs are also aimed at obtaining the best classifica-

tion based on a limited number of training samples. There area number of optimisation criteria

to estimate the performance of a classifier. One such criterion, that is most commonly used by

traditional pattern recognition techniques, is empiricalrisk minimisation [Ganapathiraju 2002].

The empirical risk of a classifier is defined as the sum of the cost of misclassification of the

training sample. Based on this definition, it is intuitive to say that there can be a number of con-

figurations that can minimise the empirical risk or even achieve zero empirical risk. But the best

configuration is the one that trades-off between the empirical risk and expected error (the error

on an unseen validation set). To decide on the best configuration that gives the least expected

error, Vapnik and Chervonenskis proposed the statistical learning theory. This theory suggests

that it is necessary to minimise the capacity of the set of functions (for example the degree of

a polynomial function) relative to the number of training samples along with the empirical risk
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[Vapnik 1995]. This is called the principle of Structural Risk Minimisation (SRM). There are

a number of possible approaches to minimise both the capacity and the empirical risk. Some

pattern recognition techniques accomplish this by definingthe capacity of the set of functions

and minimising the empirical risk while others minimise thecapacity of the set of functions for

a predefined empirical risk. However, SVMs accomplished this by simultaneously minimising

both the empirical risk and the capacity of the hypothesis space [Osunaet al.1997].
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(a) Input space

Class 1 (y =1 )
Class 2 (y = −1)

(b) Feature space

Margin = 2/|w|

y(w.x + b) = 0

y(w.x + b) = 1

Figure 1.1: A toy example illustrating the SVMs training method. For a given non-linear clas-
sification problem shown in the input space, the SVMs map the training data nonlinearly into a
possible higher dimensional feature space and construct the optimal hyperplane with maximum
margin there. The square boxes and circles indicate positive and negative examples to be clas-
sified. The solid separating hyperplane in the feature spaceis the optimal hyperplane and the
margin is defined as the distance between this hyperplane andany one of the hyperplane shown
by broken line. The training samples that lie on the hyperplane indicated by a broken line are
called support vectors

The simplest form of SVMs works well when the training sampleis linearly separable by an

optimal hyperplane, leaving all members of the same class onone side of the hyperplane and the

rest on the other (see Figure 1.1.b). The optimal hyperplaneis defined as the one that maximises

the minimum distance between either of the two classes and itself. This distance is called the

margin of the classifier. To find the optimal hyperplane, the constrained optimisation problem

should be solved (i.e. maximising the margin constrained tothe equalities given in figure 1.1.b).

The solution of this optimisation problem is the orientation of the optimal hyperplane. Using

the classical Lagrangian approach to solve this optimisation problem, the orientation of the

hyperplane will be given in terms of the training samples andtheir corresponding non-negative

Lagrangian multiplier [Cristianini and Shawe-Taylor 2000]. The classical Lagrangian approach

also has the advantage of emphasising the importance of sometraining examples over the rest

and this is reflected on the solution by showing that not all ofthe training samples have non-zero

Lagrangian multipliers but rather a subset of the samples. Those training samples with non-

zero Lagrangian multipliers are the ones that determine theoptimal hyperplane and are called
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Support Vectors(SV) [Vapnik 1995]. Note that for a classifier to perform well, the number of

SVs should be relatively small otherwise over-fitting mightoccur [Vapnik 1995]. Given the

orientation of the hyperplane and the threshold (which can also be determined mathematically

in terms of the SVs, their corresponding label and Lagrangian multiplier) classification of an

unseen sample will be according to the sign of the function:

f(x) = sign(
∑

i

yiαi(x.xi) + b) (1.1)

wherex is the sample to be classified,αi, the Lagrangian multiplier for the Support Vectorxi is

found as a solution for the optimisation problem and the orientation of the optimal hyperplane

w is given by
∑

i αixi andb is the threshold..

So far we have seen the case where the training sample is perfectly separable by a linear

hyperplane. But how do SVMs handle the case where the data is not linearly separable or not

linear at all?

The case where the data is not linearly separable is handled by associating a misclassifica-

tion cost whenever necessary. Hence the task is not only finding an optimal hyperplane that

maximises the margin but also minimises the misclassification cost. The result of this opti-

misation problem also gives us the same decision function (equation 1.1), but the user will be

required to freely select a parameter that trades off between the width of the margin and the

misclassification error when performing the training (defining the model).

Most real life classification problems are not linearly separable and need a complex classi-

fier. SVMs handle such complex classification problems by mapping the data from the input

space (Figure 1.1.a) into a possibly high dimensional feature space (Figure 1.1.b), where the

data can be separated by a simple maximum margin classifier. That means one needs to choose

a mappingΦ : R
d → R

m usually an Hilbert space(H ) wherem ≥ d (usually the mapping

is into a higher dimensional space) such that the data which was not linearly separable will

become linearly separable (the two cases specified above). One question associated with this is

how do we choose the mapping functionΦ(x).

As it can be seen from the above equation, the decision function is based on the dot product

between the sample to be classified and the support vectors. Hence the decision function in

the feature space will have the formf(x) = sign(
∑

i yiαi(Φ(x).Φ(xi)) + b). In addition to

this, Mercer’s theorem has shown that any dot product in a feature space can be computed by a

function in the input space without the need for explicit mapping [Ganapathiraju 2002]. These

functions are called kernels (see section 3.4).

There are a number of points to note here. Firstly, the use of kernel functions enables

SVMs to implicitly perform classification on the feature space without the need to perform the

mapping first and hence prevent the curse of dimensionality from occurring. Secondly, as is the

case for the linearly separable and non-separable datasets, only support vectors are involved in

determining the shape of the hyperplane.

Selection of a kernel map is problem specific and it is up to theuser to choose one. Kernel
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selection can be based on prior information about the problem (for example: mutation points),

successful application of the kernel on similar problems or, in the absence of both of the above,

kernels can be selected by empirically testing their performance in the given problem. There are

a number of kernel functions known to give better performance depending on the characteristics

of problem or the training patterns. However, the polynomial kernel of lower degree and the

Radial Basis Function (RBF) are known to perform well on most datasets.

The polynomial kernel has the form:

k(x, y) = (x.y + 1)d, (1.2)

whered is the degree of the polynomial. A large value ofd refers to a more complicated decision

boundary. And for linear classifiers (linear hyperplane) the value ofd is set to 1.

The radial basis function (RBF) kernel has the form:

k(x, y) = exp(−γ|x − y|2), (1.3)

whereγ is the width of the kernel. The smallerγ, the smoother the decision boundaries. This

kernel is more favourable when one class is totally encircled by the other as shown in the Figure

1.1. The biggerγ gets, the tighter the closed boundaries (circles) become.

Summing up, SVMs are becoming popular because:

• Unlike most traditional pattern recognition techniques that use empirical risk minimisa-

tion, SVMs use structural risk minimisation, which minimises the error on yet-to-be-seen

data and hence has good generalisation performance.

• Unlike other complex pattern recognition techniques, suchas neural networks, which are

very hard to analyse theoretically, SVMs are easy to theoretically analyse without losing

the ability to solve complex pattern recognition problems [Hearstet al.1998].

• Choosing different kernel functions gives different architectures which suit the problem at

hand. Polynomial, RBF and Sigmoid kernels simulate polynomial classifiers, RBF clas-

sifiers and three layer (including feature and output layers) neural networks respectively

[Hearstet al.1998].

For these reasons and their incredible performance in many benchmark applications such as

text, speech and image recognition, SVMs have been recentlyapplied in many biological prob-

lems and have outperformed other pattern recognition techniques. Knowledge-based microar-

ray analysis by Brownet al. [2000] and classification and validation of cancer tissues using

microarray expression data by Fureyet al. [2000] are two examples worth mentioning. Com-

mon problems among these and many other pattern recognitiontasks in computational biology

are the shortage of training samples compared to the large size of features per pattern, and the

availability of noise in the patterns. These two problems have been the main reason for the
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indifferent performance of other pattern recognition techniques. However, previous applica-

tions of SVMs in computational biology or bioinformatics have shown that these problems are

not as critical for SVMs as they are for other pattern recognition techniques [Cristianini and

Shawe-Taylor 2000].

1.4 Drug resistance as a pattern recognition problem

In the previous two sections, the HIV drug resistance problem, the methods of HIV drug resis-

tance testing, and the advantages of the state-of-the-art pattern recognition technique, SVMs,

were presented. This section will discuss how the HIV drug resistance problem can be consid-

ered as a pattern recognition problem and then exactly definethe problem for this research.

In section 1.2, it was pointed out that certain mutations cause resistance and others do not.

In genotype resistance testing, specific positions in the genetic sequence of the HIV strain will

be checked for the existence of certain amino acids and depending on the result the relative

susceptibility of the HIV strain to a drug is measured. For example, consider the mutation

represented by the standard notation M184V, known to conferresistance to Eqivir (one of the

18+ antiretroviral drugs available). The biological interpretation of the above mutation is as

follows. If mutation occurred and the amino acid methionine(M), which is found in position

184, is changed to Valine (V) the newly replicated virus becomes resistant to Eqivir [Hoffmann

and Kamps 2003].

If we see this problem from a computational (pattern recognition) angle and represent each

sequence as a vector in a Euclidean space, different sequences will be plotted to different points

in this space depending on their genetic make-up (the amino acid sequence and its correspond-

ing numeric value). Considering the above example, the virusbefore mutation (non-resistant

virus) will have the numerical equivalent of M at its 184th vector component and is plotted as

a point. However, the mutant (resistant) virus will have thethe numerical equivalent of V at

its 184th vector component and will definitely be plotted into a different point in our Euclidean

space. Once the Euclidean space is divided into disjointed regions each representing a pattern

class (Susceptible, Intermediate, Resistante) based on thetraining samples available, a pattern

(HIV strain) can be labelled to its appropriate drug profile depending upon the region to which

it is plotted.

The drug resistance problem this research is trying to address can be redefined based in the

above argument as:

Given a set of phenotypic data where each sequenced HIV strain is labelled as

Susceptible, Resistantto a particular drug, can SVMs learn from these examples

and predict the drug resistance profile of an unseen HIV strain?

which is the question for this research.

Drug profile of an HIV strain can be susceptible, intermediate or resistante. But very few of

the pattens in the training data are given as labled intermediate. Hence we consider binary clas-
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sification in the research. The research question is answered by investigating the performance

of SVMs and comparing it to the performance of neural networks, decision trees and logistic

regression models.

1.5 Overview of the research approach

To answer the research question a comparative approach is used. The performance of SVMs

in predicting the drug resistance behaviour of HIV based on the viral nucleotide sequence was

empirically tested. The SVMs’ performance was then compared to that of neural networks,

decision trees and logistic regression. These classification techniques were selected because

of their popularity and reputation as a classification tool and have been already applied for

predicting HIV drug resistance. The data used for the empirical testing was the same used

by Ravelaet al. [2003] which comprise sequences of isolates from 2045 individuals. Each

sequence constitutes 297 nucleotides of the viral proteaseand 720+ (some are longer than 720)

nucleotides of the viral reverse transcriptase.

One of the factors affecting performance of a classificationalgorithm is the input encoding

techniques. When encoding the input data some biological knowledge about HIV drug resis-

tance was incorporated. As mentioned previously, HIV drug resistance is related to mutation in

specific positions of the viral genome (for example M184V). However not all mutations have

the same effect. Some of these mutations are major and might cause resistance alone while

others require the existence of the major mutations to causeresistance. To capture this property

of the data, each sequence was converted into a vector form that highlighted both the global

and local position of these mutations. Each sequence was grouped into non-overlapping triplets

and each triplet was given a equivalent numeric value. With this scheme each sequence was

converted to a vector in some higher dimensional space.

After encoding the data, the first set of experiments was doneusing SVMs. The experiment

with SVMs started by further pre-processing the input data to make it suitable for the domain-

restricted kernels and simplify the generalisation and error estimation. Then grid-search using

cross-validation was conducted to select an appropriate kernel and tuning its diagonal factors.

The two kernels used in this experiment were the polynomial (Equation 1.2) and radial-basis

function (Equation 1.3). There are two parameters of interest for each kernel selected. For the

polynomial kernel the parameters of interest are the degreeof the polynomiald and a regu-

larisation constant which indicates the trade-off betweenthe training error and the separating

margin. The parameters of interest for the RBF kernel are the width of the kernelγ and the

regularisation constant. Kernel selection is done staringfrom a simple dot product kernel to a

higher degree polynomials and then different RBF kernels.

The second set of experiments was done using neural networks. The network architecture

used in this research is the popular feedforward multilayerperceptrons with back-propagation

learning. There are different modifications to the standardback-propagation algorithms each

with their advantage in terms of memory usage, convergence speed and training set size. Stan-
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dard and Resilient backpropagation and Levenberg-Marquardt algorithms were tested. Levenberg-

Marquardt was found to be more efficient in terms of performance, convergence and memory

usage for our experiment. Hence, feedforward network with fully connected neurons, log-

sigmoid activation function and Levenberg-Marquardt learning was used. The number of input

neurons equalled the dimensionality of the data and there was only one output. Different num-

bers of neurons in the hidden layer were tested. The experiment with neural networks was

repeated with reduced dimensionality. Dimensionality reduction was conducted using principal

component analysis (PCA) where up to 90% of the information isretained.

Experiments with decision trees and regression were also carried out. The decision tree al-

gorithm used in this experiment was C4.5 by Quinlan [1993]. For C4.5 this experiment used the

default values for all parameters except for the confidence factor which determines how heavy

the pruning is. The algorithm used for logistic regression is penalised logistic regression with

ridge estimator. The default values of all parameters were also used for the logistic regression

models.

1.6 Overview of the result

The performance of the different models was tested using 75%of the data for training and the

remaining 25% for testing. The data was randomly split into training and testing set. The per-

formance of a model was evaluated in terms of accuracy of classification and the area under the

receivers operating characterstics curve (AUC). The AUC proposed by Bradley [1997] which

reflect the trade-off between the classifiers’ sensitivity and specificity, is a better single number

performance indicator.

The results show that SVMs and decision trees performed the best followed by neural net-

works and logistic regression. The accuracy for SVMs rangedbetween 94% for a reverse tran-

scriptase inhibitor to 96% for a protease inhibitor. The AUCfor SVMs model ranged between

81% to 95% with the lowest AUC related to the lowest accuracy and the highest AUC with the

highest accuracy. The accuracy of decision trees was between 91% and 97% and the AUC was

between 85% and 94%. In addition to their performance, the decision tree models showed some

other interesting results. For each tree, we compared the split criteria with previously reported

mutation points. The result showed that most of these split criteria were positions associated

with previously known mutations. The result from the decision tree model was also used as a

confirmation for the input encoding technique used, and a reference point for the performance

comparison. As specified in the previous section, the training data used for the model evaluation

was already labelled using a rule-based algorithm. Hence, the internal structure of the patterns

are expected to suit decision trees more than SVMs.

The accuracy for the neural network models ranged between 64% to 91%. The AUC for

these models was between 69% and 95%. The performance of these models is below expec-

tation. Dimensionality reduction using PCA was performed toenhance the performance. The

performance of the models was reduced as a result of dimensionality reduction. The loss in the
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performance of the neural network models are attributed to underlying properties of the data.

Recall that drug resistance is caused by mutation but not all mutations have the same effect.

Some cause resistance alone however, others depend on the occurrence of additional mutation

to cause resistance. This primary-secondary relationshipbetween mutations causing drug re-

sistance results in some correlated attributes. Hence, might be a causes the loss of valuable

information during dimensionality reduction using PCA.

The performance of the logistic regression models was on average the worst compared to

the other models. The accuracy for these models was between 75% and 92% and the AUC for

these models was between 46% and 85%.

The performance of SVMs and the decision tree models is almost equal, but, the input

encoding technique and the characterstics of the training patterns might favour the decision

tree models. Hence, the performace recorded by SVMs with thenaive approach has shown

a promising start. In general, despite the limitations thisresearch has due to the some easily

addressable and other more complicated issues, the result found answers the research question

positively.

1.7 Contribution of the research

This research has a number of contributions. Due to the fast replication of the virus, new muta-

tions are occurring almost at an order of billions per day inside an untreated patient. This high

number of single point mutations, with the possibility of cross-mutations demands a dynamic

system that can cope with the new mutations causing drug resistance and newly discovered

drugs to address them. One such dynamic system is support vector machines. Furthermore, to

our knowledge, no-one has applied SVMs as a prediction tool in the domain of HIV drug resis-

tance based on the genetic sequence of the virus. Hence, application of such a dynamic system

to this problem is the first contribution. Secondly, despitethe fact that we used genetically clas-

sified data, the design of the SVMs models does not depend on the prior biological knowledge

about the virus and the respective drugs. Hence, if trained with phenotypic data, such a model

will not require redesigning with the discovery of new mutation points or drugs like most of the

existing systems. In addition, the fact that the design of the system is not dependent on the bio-

logical data (mutations) makes the intended system capableof handling any kind of behavioural

variation of the virus that might lead to drug resistance, provided that this behaviour is reflected

on the genetic sequence of the virus. Thirdly, Salzberg [1999] has pointed out the importance

of comparing classifiers on real data. HIV is one of the hard computational biology problems

that is data-rich. Therefore, the results from this work further highlight the outstanding perfor-

mance of SVMs as a tool for pattern recognition. Fourthly, wehave seen how dimensionality

reduction techniques affected the performance of the some of models negatively. This result

together with the biological fact about the primary-secondary relationship between different

mutations suggests that application of unsupervised dimensionality reduction is not a good idea

for HIV drug resistance prediction tools. Finally, the recorded result for SVMs with the two
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most popular kernels showed no necessity for the formulation of new kernel functions, however

incorporating some general prior knowledge about the virusmight boost the performance even

further.

1.8 Structure of the document

Chapter 2 provides background information on HIV biology, general principles of pattern recog-

nition and some of the different approaches available. Specifically, details of statistical pattern

recognition, Bayesian decision theory and dimensionality reduction methods with particular

emphasis on feature extraction methods are discussed. A brief introduction to neural networks,

decision trees and logistic regression is also given in thischapter.

Chapter 3 gives a comprehensive background on the core pattern recognition technique

investigated in this research (support vector machines). This chapter will start by presenting a

detailed discussion on principles of risk minimisation. Itthen presents the basic formulation

of SVMs starting from the simplest form of SVMs (linear SVMs)to the most complex non-

linear SVMs. An overview of different implementations of SVMs, a comparison of SVMs to

other pattern recognition techniques and previous benchmark applications of SVMs are also

considered in this chapter. The discussion of SVMs is based on binary classification problems.

However, an overview on multi-class extension of SVMs is covered. This chapter also reviews

application of other pattern recognition techniques used in predicting HIV drug resistance.

Chapter 4 starts by motivating this research and emphasises the superior quality of SVMs

for the job. The research question for the reported researchis then formulated. The chapter

further describes the details of the experiment: the input data and the input encoding technique

used, the performance evaluation technique and why such a technique was selected and the

experimental steps for the different classification algorithms.

Chapter 5 gives the results for the different models and highlights the findings of the differ-

ent set of experiments. This chapter also compares the performace of the different models to

each other and to previously published works. This chapter will also present limitations of this

research.

Chapter 6 will present the conclusion for this document. Thischapter will also give direction

for future work.

The mathematical details of Chapter 3 and some part of Chapter 2are presented in the

Appendices.
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Chapter 2

Background and Related Work

2.1 Introduction

In the previous chapter an overview of the research was presented. As presented in the previous

chapter, the main objective of the reported work is investigating the performance of SVMs in

predicting the drug resistance behaviour of an HIV strain extracted from a patient based on the

genetic sequence of the viral RT or PRO mutants.

To understand the terms and methodologies used in this research enough background on

the biology of the virus, the general principles in pattern recognition tasks and the pros and

cons of different pattern recognition technique should be established. Hence this chapter is

intended to give a brief background on HIV biology, different pattern recognition techniques

with more emphasis on statistical pattern recognition and some diagonal factors on solving

pattern recognition problems. Furthermore, this chapter is used as an introduction for Chapter

3 where SVMs are discussed in great detail.

This chapter is organised as follows. Section 2.3 covers thenecessary biological background

on the HIV and drug resistance problem. This section starts with general introductory biology

and then describes the phylogenetic information, the genetic structure and viral replication cy-

cle. This section also discusses how drug resistance occursand the different approaches of

predicting drug resistance. Section 2.4 gives a historicaloverview of pattern recognition tech-

niques and describes the different techniques available. Section 2.5 gives a detailed background

on statistical pattern recognition, Bayesian decision theory, dimensionality problem and tech-

niques for dimensionality reduction. Section 2.6, 2.7 and 2.8 give detailed background on neural

networks, decision trees and logistic regression respectively. Finally section 2.9 concludes the

chapter.
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2.2 Introductory Biology

The basic biological process at a cellular level is identical across organisms. The hereditary

genetic information of a living organism is stored in the deoxyribonucleic acid (DNA) or ri-

bonucleic acid (RNA). The units of information that are assembled together to form DNA or

RNA are four nucleic acid units called nucleotides (bases). Adenine (A), guanine (G), cytosine

(C) and thymine (T) make up DNA and the nucleotide thymine is replaced by uracil (U) in

case of RNA. DNA and RNA, which are a polymer of these nucleotides have other common

characteristics beside being a chain of nucleotides. One ofthese property is complementarity.

This is the exclusive bonding rule between adenine and thymine/uracil (A-T/U) and guanine

and cytosine (G-C) [Hunter 1993].

While RNA is a single stranded, DNA is double strand of bases in adouble helix form. Each

of these strands are often millions of bases long and its direction is determined by its head (5’

end) and tail (3’ end)1. The sequence of nucleotides in one of the helices is unrestricted. How-

ever, due to the exclusive bonding between nucleotides, thesequence on the complementary

strand is completely deterministic. A strand of DNA or RNA which is an exact complement

of another strand are called reverse complement to the second [Hunter 1993]. (For example,

ATGCCA is the reverse complement of TACGGT).

The DNA contains genes of an organism, which are used as a template for manufacturing

RNA which then will be used to manufacture protein. The primary role of the nucleic acids

is to carry the encoding of the primary structure of protein.Proteins determine the shape and

structure of a cell. Each non-overlapping triplet of nucleotides in the DNA strand are called

codon. Each codon corresponds to a particular amino acid. Grouping of the four nucleotides

accordingly results in43 = 64 possible triplets encoding 20 amino-acids and three special duty

codons called stop codons [Hunter 1993] (see Table C.1 in Appendix C for complete list of

amino acids and the codons encoding them). However, not all triplets in the genome encode for

protein. In higher organisms approximately 97 – 98% of the genome is a non-coding sequence

calledintrons. And the remaining 2 – 3% calledexonscodes the proteins [Watsonet al.1997].

The mechanism by which proteins are produced from DNA is a sequence of steps, which

are known as the central dogma of molecular biology [Watsonet al. 1997]. Generally, these

steps can be summarised in two steps as transcription and translation. The process starts with

unwinding the helix into a separate strand. From a single strand of DNA as a template the

RNA is manufactured. However, not the entire DNA is used to manufacture the RNA. As we

have stated in the above paragraph, only exons are genic. This process is called transcription,

because RNA is transcribed from the DNA. The RNA is then translated into protein which

determined the structure and function of an organism. Translating the RNA into protein starts

from the codon which encodes the amino acid methionine (AUG). From then on each codon is

1DNA molecules are directional, due to the asymmetric structure of sugar which constitute the skeleton of the
molecule. Each sugar is connected to the strand in its fifth carbon preceding it in the chain and in its third carbon
following it in the chain
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translated into the corresponding amino-acid and is added to the growing chain of amino-acids.

This process is then stopped when one of the stop codons is encountered. However, there are

some complications to the translation process. Depending on where we start encoding, we have

three possible reading frames on each direction. (i.e. 6 open reading frames) [Hunter 1993].

For example, the following sequence ACTGAAGTCGCCA. . . can be read as ACT-GAA-GTC-

GCC-A. . . or CTG-AAG-TCG-CCA-. . . or TGA-AGT-CGC-CA. . ., all of these making the

different reading framed. Usually only one of these frames will produce a functional protein.

However, this is not always true. Therefore, identifying the correct reading frame is the primary

task in many computation biology problems.

2.3 HIV Biology

2.3.1 Introduction

Viruses are a group of submicroscopic infectious agents, unable to replicate outside a host cell.

These submicroscopic organisms essentially contain theirgenetic material in terms of DNA or

RNA surrounded by a protein coat. During replication, the virus integrates its DNA or RNA into

the host’s DNA and takes over the cell’s biological mechanism to replicate [NIAID 2004]. If the

virus contains its genetic material in the form of RNA, it should be first transcribed into DNA

before integrating with the host’s DNA. In most organisms, RNA is transcribed from DNA and

hence, those viruses that contain their genetic material interms of RNA are called retroviruses

to indicate the reverse transcription of RNA to DNA.

This section is intended to give an overview on the biological background of HIV, which is a

retrovirus. The section is organised as follows. Section 2.3.2 gives an overview on phylogenetic

information of the virus and the structure and function of some of the major genes in the viral

genome. It is followed by section 2.3.3 which describes the viral replication process at a very

high level. Finally section 2.3.4 starts with the basic definition of drug resistance and gives the

reason why HIV drug resistance occurs and describes the two general approaches of HIV drug

resistance testing.

2.3.2 HIV phylogeny and genome

The HIV is a retrovirus belonging to the genus2 Lentivirus, which shares many important char-

acteristics with other retroviruses but also has some special features [Coffin 1999]. Besides HIV,

the genusLentivirusincludes Simian Immunodeficiency Virus (SIV), which is phylogenetically

closely related to HIV and the distant relatives: Vesina Virus and Feline Immunodeficiency

Virus (FIV) [Hoffmann and Kamps 2003]. HIV is divided into two subtypes namely: HIV-1

2“A taxonomic category ranking below a family and above a species and generally consisting of a group of
species exhibiting similar characteristics. In taxonomicnomenclature the genus name is used, either alone or
followed by a Latin adjective or epithet, to form the name of aspecies”.(The American Heritage Dictionary)
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and HIV-2 based on the molecular weight of their protein and their subordinate genes [Hoff-

mann and Kamps 2003]. Despite the strict resemblance between HIV-1 and HIV-2, HIV-1 is

the most common subtype and is the main infectious agent thathas led to the worldwide AIDS

epidemic. Even though HIV-2 infection is less common and less virulent, it also results in AIDS

[Klatt 2003]. Furthermore, although HIV-1 and HIV-2 replicate in the same fashion the actual

immune deficiency may be less severe in HIV-2 infected individuals [Hoffmann and Kamps

2003]. Some 99% of HIV patients are infected with HIV-1 with agrowing number being in-

fected by HIV-2 [Draghiciet al.2000].

HIV-1 is classified into two principal genetic groups designated M (main) and O (outliers).

Genetic group M is highly prevalent and is further classifiedinto 10 established subtypes, A

through J. HIV-1 subtype B predominates in Europe and the Americas, whereas HIV-1 subtype

C predominates sub-Saharan Africa [Klatt 2003]. An additional group N (non-M, non-O) has

been discovered recently as a result of interaction betweenthe two principal groups [Klatt 2003;

Health Canada 2001]. In the remainder of this document HIV refers to HIV-1 unless otherwise

specified.

Physically, an HIV viral particle has a diameter ranging approximately from 90 to 100

ηm and is surrounded by an envelope, which encapsulates the genome that encodes the major

functional and structural components of the virus [Coffin 1999]. The HIV genome contains two

single stranded RNA molecules each 9 kilobases in length. These RNA molecules contain 9

different genes encoding 15 different proteins [Greene andPeterlin 2003]. The HIV genome is

classified into three major classes namely: structural genes (gag, pol and env), trans-activation

genes (tat and rev) and accessory genes (nef, vif, vpr and vpu) [Hoffmann and Kamps 2003;

Klatt 2003]. Like all retroviruses, the major genesgag-pol-envare contained in the genome

in the conserved order5’-gag-pol-env-3’[Coffin 1999; Klatt 2003]. The schematic diagram in

Figure 2.1 shows the viral genome of HIV-1 based on the diagram from http://hiv-web.

lanl.gov/immunology/pdf/2000/intro/GenomeMaps.pdf .

Figure 2.1: Schematic diagram of HIV-1 genome

The structural genes (gag-pol-env) are common to all retroviruses. The major components

encoded bygag (group-antigen) include the nucleocapsid proteins capsid(CA), matrix (MA),

and nucleocapsid (NC). Theenv(envelope) gene encodes the envelope glycoproteins, outeren-

velope glycoprotein and transmembrane glycoproteins. Theenvproteins of HIV have a number

of distinct structural and functional features that enablethe virus to replicate efficiently under

the threat of the host’s immune response and which not seen inother retroviruses. Thepol

(polymerase) gene encodes the enzymes reverse transcriptase (RT), protease (PRO) and inte-

grase (IN). These enzymes are the main stakeholders in the viral replication process and hence
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are major target of most antiretroviral drugs [Coffin 1999; Klatt 2003]. The other classes of

genes are also critical in RNA transcription and viral release during the viral replication process

[Klatt 2003; Hoffmann and Kamps 2003].

2.3.3 HIV replication

The replication of the virus within the host body is presented schematically in Figure 2.2. It

is already stated above HIV virus is unable to replicate outside a living host cell. Therefore,

viral replication starts with the virus entering the host cell [Coffin 1999]. This step of the viral

replication is mediated by theenvprotein that interacts with a specific cell surface receptor.

Once the viral core enters the cell, the genome RNA is reverse transcribed by the HIV reverse

transcriptase into a double-stranded DNA molecule. The newly made HIV DNA is then moved

to the cell’s nucleus and integrates with the host cell’s DNAaided by the HIV Integrase. At

this step the viral DNA is called “provirus”. This provirus uses the host cell’s protein-making

machinery to produce new copies of RNA called messenger RNA (mRNA). Once these mRNAs

are processed in the cell nucleus, they are transported to the cytoplasm aided by proteins en-

coded by therevgene. In the cytoplasm the HIV mRNAs are used to make long chains of viral

proteins and enzymes with the help of the host protein makingmachinery and ribosomes. The

newly made HIV core protein, enzyme and RNA will then gather inside the cell’s membrane,

while the viral envelope protein aggregates within the adjacent membrane. Just before the new

virus exits the cell, the long chain of proteins and enzymes that make up the immature viral

core are cleaved into smaller pieces by a viral enzyme calledProtease. Finally, the virus will be

assembled and detaches itself from the host cell. This results in a new infectious viral particle

[Coffin 1999].

An animation of the HIV life-cycle is available athttp://www.hopkins-aids.edu/

hiv_lifecycle/hivcycle_txt.html

2.3.4 HIV drug resistance and assay of drug resistance testing

Once the HIV virus enters the human body it begins to replicate at a very high rate in the order of

billions everyday. During replication, HIV produces perfect copies and copies containing errors

(mutated virus). Mutation is very common in HIV because of the high rate of viral replication

and RT infidelity which is largely due to the lack of 3’– to – 5’ proofreading ability within viral

RT [Whitneyet al.2002]. As a result of the changes in HIV’s genetic structure (mutation), the

ability of a drug or a combination of drugs to block HIV replication inside the body is reduced.

This phenomenon is called drug resistance.

As it is stated in the previous section besides RT another enzyme which plays an important

role in viral replication and the resulting drug resistant mutants is the HIV PRO. During viral

replication, the cell produces a long strand of genetic material that must be cut up and put

together correctly to form new copies of the virus. Cutting upthis long strand is carried out

by the enzyme PRO. Furthermore, PRO is responsible for processing thegag andpol genes,
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Figure 2.2: Viral replication cycle [Wikipedia 2004]
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which are initially expressed as the precursor polyproteins Gag and Gag-Pro-Pol, into their

mature stage immediately after budding [Shafer 2002a; Coffin1999]. Due to their important

role in the viral replication these two proteins are the targets of most of the existing HIV drugs.

Furthermore, most mutations are exhibited in these proteins [Lathropet al.1999; Shafer 2002b]

To date, there are more than eighteen antiretroviral drugs available. These drugs are gener-

ally classified in to three major categories based on the enzyme targeted, the viral replication

stage interfered and their chemical composition [Hoffmannand Kamps 2003]. The first class

of drugs are Nucleoside/Nucleotide RT Inhibitors (NRTIs),which interfere with the viral repli-

cation stage by blocking the further elongation of the proviral DNA and interrupting the chain.

There are seven NRTIs. The second class of drugs are Non-Nucleoside RT Inhibitors (NNRTIs).

NNRTIs interfere with the viral replication state the same way as the NRTIs. There are three

NNRTIs. The third major category are PRO Inhibitors (PIs). PIs function by interfering with the

viral assembly stage of the replication. There are eight PIs. The fourth drug category are fusion

inhibitors (FI). Fusion inhibitors are members of a broaderclass, theentry inhibitors, which stop

the virus from entering the cell by preventing the final phaseof attachment [Beerenwinkelet

al. 2003b]. There are also some more experimental drugs in each class [Hoffmann and Kamps

2003]. A complete list of antiretroviral drugs is given in Table 2.1. For up to date information

visit on-line HIV/AIDS information services such ashttp://www.hopkins-aids.edu .

Drug Abbreviation Target Class

zidovudine ZDV RT NRTI
didanosine ddI RT NRTI
zalcitabine ddC RT NRTI
stavudine d4T RT NRTI
lamivudine 3TC RT NRTI
abacavir ABC RT NRTI
tenofovir TDF RT NRTI
nevirapine NVP RT NNRTI
delavirdine DLV RT NNRTI
efavirenz EFV RT NNRTI
saquinavir SQV PRO PI
indinavir IDV PRO PI
ritonavir RTV PRO PI
nelfinavir NFV PRO PI
amprenavir APV PRO PI
lopinavir LPV PRO PI
atazanavir ATV PRO PI
T-20 gp41 FI
T-1249 gp41 FI

Table 2.1: Antiretroviral Agents [Beerenwinkelet al.2003b, page i19]

The extreme genetic and antigenic variability of HIV, whichresults from the development

of drug resistant viral strains, is the most common reason for the failure of HIV drug therapy

[Draghiciet al.2000]. Although there are many drugs available, none of these drugs have been
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able to stop the viral replication totally. Despite the failure to produce an efficient drug to stop

the viral replication, much has been done in combating the pandemic [Shafer 2002b]. One

such achievement worth mentioning is the prolonging of the viral suppression and help with

immunological reconstruction of the patient using combinational therapy. Furthermore, these

successes have opened a new era of HIV therapy called highly active antiretroviral therapy

(HAART) [Hoffmann and Kamps 2003]. HAART works based on pre-therapy drug resistance

testing of the HIV strain extracted from the patient and giving the patient a combination of drugs

containing one protease inhibitor. Due to the intolerable side-effects and toxicity, combination

of drugs can not exceed four (combination of three drugs is the common one at least one of

the three being a PI) [Lathrop and Pazzani 1999]. Hence a verycareful measurement of drug

resistance is required.

There are two ways of HIV drug resistance testing namely: phenotypic testing and genotypic

testing [Bean 2000].

Phenotyping

Phenotypic testing directly measures the drug resistance behaviour of an HIV strain. The HIV

strain from the patient is placed in a test-tube and the growth of the virus is closely studied under

a treatment of the drug or combination of drugs by varying theconcentration and strength. The

measured viral replication is then compared to the wild type[Hoffmann and Kamps 2003].

Phenotypic testing has some disadvantages. Firstly, the process is time consuming and very

expensive. Secondly, it requires a specialised laboratory. Furthermore, drug resistance of an

HIV strain cannot be detected when the viral load is less than20% [Bean 2000].

Genotyping

Genotypic testing is based on analysing certain mutations associated with drug resistance based

on the genetic structure of the HIV strain extracted from thepatient [Hoffmann and Kamps

2003; Bean 2000]. To conduct genotypic testing the contiguous PRO and RT genes which are

extracted from the plasma are reverse transcribed to cDNA. The cDNA is then amplified us-

ing polymerase chain reaction (PCR) to generate sufficient DNA[Shafer 2002b]. This genetic

sequence is then examined carefully for mutation. Depending on the number and type of muta-

tions exhibited the test reveals whether the patient has developed resistance to a certain drug or

combination of drugs. For example, if the mutation M184V/I is detected3, the HIV strain will

be resistant to the NRTILamivudine(trade name Epivir) [Hoffmann and Kamps 2003]. For

explanation about M184V/I revisit Section 1.4.

Genotyping is more widely used than phenotyping. Some of reasons is that unlike pheno-

typing, genotyping does not require a specialised laboratory, it is cost effective, it is fast and

3Resistance mutation is described by using a number showing the position of the codon where the mutation
occurred and two letters. The letters preceding the number represents the amino acid in the same position of the
wild-type and the letter after the number shows the amino acid produced by the mutation. [Hoffmann and Kamps
2003]
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interpreting the result does not depend on the testing process. Furthermore, the fact that it is

totally based on the genetic sequence of the HIV strain has opened the door for leading tech-

nologies from other fields of study to contribute. One such technology is pattern recognition

and artificial intelligence.

There are a number of commercially available tools to conduct genotypic resistance testing.

But they have a number of limitations. Firstly, certain mutations cause resistance by themselves

while others need to occur in the existence of others to causeresistance. And different geno-

typic tools treat these mutation points differently and hence leads to discordance between the

different tools [Ravelaet al.2003]. Secondly, interpretation of the result of genotypictesting is

difficult [Bean 2000]. Thirdly, most of these tools use knowledge-based approach and are highly

dependent on the known biological facts about the virus and the drug. Hence, these tools will

not be able to perform the required task without continuous update or even require redesigning

with discovery of new drugs and mutation points known to confer resistance to the existing or

newly discovered drugs. For the above mentioned reasons andmore, genotypic testing is open

for more research and collaboration for other disciplines.

2.4 Pattern recognition

Pattern recognition is an interdisciplinary field of study developed mainly in the 1960s covering

developments from a wide variety of disciplines ranging from psychology and physiology to

computer science and artificial intelligence [Webb 1999]. Since then scientists have been in-

vestigating ways to enable machines to recognise pattern the same way humans do to base their

decision-making process on their daily life. According to Pavlidis [1977] pattern recognition

is defined as understanding the building blocks of a given object. Tou and Gonazalez [1974]

also defined pattern recognition as classification of an input data into a category called a pattern

class, which is determined by some given common attributes based on exhibited patterns. A

pattern is defined as the description of any member representing a pattern class. A pattern can

be as basic as observation and measurements [Tou and Gonazalez 1974; Schalkoff 1991]. Ex-

amples of a pattern could be a DNA/Protein sequence, a text document, handwritten characters,

or a signal waveform.

Pattern recognition is a computationally expensive task; therefore it has been a specialised

subject in the past and applications were limited to certaindomains. However recent ad-

vancements in computer hardware (processor speed and storage) have made pattern recognition

widely applicable in range of application areas (see Table 2.2) [Jainet al. 2000]. Although

the applications presented in table 2.2 are diverse, one canlist a number of common properties

between these applications [Jainet al. 2000]. One common property is that the data for each

problem is represented by a very big set of parameters (features). Another common property

is that the features that represent the data cannot usually be defined by the domain expert, but

should be extracted from the exhibited patterns.

Independent of the application domain, a pattern recognition task consists of a number of
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iterative steps. The first step is data collection and preprocessing. This step includes recording

measurements and/or observations, extracting and/or selecting the most representative features

and high level examination of the data to get some idea about the underlying distribution, prob-

ability, structure, etc., of the data. The second step is designing the pattern recognition system

and performing the training. The pattern recognition system is usually designed based on the

properties of the sample data and is dependent on the previous step. Sometimes it might be

impossible to design the pattern recognition system and hence the intended system will be the

result of the training process. Therefore careful representation and preprocessing is required for

the performance of the system. The final step is testing the performance of the designed system

and interpreting the result. Note that each step listed above can be further broken down into a

number of steps.

Problem Domain Application Input Pattern Pattern classes

Bio-informatics Sequence analysis DNA/Protein Known types of
sequence genes/patterns

Data Mining Searching for Points in Compact and well
meaningful pattern multidimensional spaceseparated clusters

Document Internet search Text document Semantic categories
Classification (eg. business, sport, etc.)
Document image Reading machine Document image Alphanumeric
analysis for blind characters, words
Industrial Printed circuit Intensity or range Defective or non -
automation board inspection image defective nature

of product
Multi media Internet search Video clip Video genres (eg. action,
database retrieval dialogue,etc.)
Biometric Person identification Face, iris, Authorised users and
recognition fingerprint access control
Remote sensing Forecast crop Multi spectral Land use categories,

yield image growth pattern of crops
Speech recognition Telephone directory Speech waveform Spoken words

enquiry without
operator

Table 2.2: Examples of Pattern Recognition applications [Jain et al.2000, page 5]

Based on the training approach, a pattern recognition task can be categorised assupervised

or unsupervisedpattern recognition. In supervised pattern recognition, the pattern recognition

system is given a set of examples (input-output pairs) as a training set. This training set is

usually of the form of attribute vectors, and is a subset ofR
n. Given the attribute vectors, we

can synthesise the value of a mapping function for some samples in the training set and choose a

set of hypotheses for the problem. On the contrary, in unsupervised pattern recognition, there is

no output value associated with the inputs and the recognition task is to get some understanding

of the process that generated the input so as to classify the training set’s example into their

respective classes according to their properties and also to generalise for unseen inputs. In the
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remaining part of this document pattern recognition refersto supervised pattern recognition

unless otherwise specified.

Another way of classifying pattern recognition approachesis based on some properties of

the data and assumptions taken. The preprocessing step not only provides us with a concise

representation of the data but also crucial information that helps us select the right pattern

recognition approach to solve the problem at hand. This stepsometimes provides the underly-

ing and statistical basis of the patterns or the underlying structure, which is critical to pattern

recognition. As in other cases none of the above informationcan be provided, all the nec-

essary information for the desired system should thereforebe investigated during the training

process. Thus, based on the information available one approach might be better than another to

solve a particular problem. In summary, based on the underlying principle, data representation

and assumptions made, pattern recognition can be crudely categorised into four main practical

approaches [Jainet al.2000; Schalkoff 1991]. These categories are:

• Template matching,

• Syntactical/structural pattern recognition,

• Statistical pattern recognition,

• Neural pattern recognition (Neural Networks).

Each of these approaches are described below

There are other approaches that do not fit particularly into any of the above categories

[Schalkoff 1991]. Such approaches include combinations ofstatistical and syntactical pattern

recognition, reason-driven pattern recognition where artificial intelligence is used to infer some

rules based on the training data, etc.

Template matching is conceptually the simplest and the earliest form of pattern recognition.

In some applications the pattern under investigation is almost identical to some prototype of the

pattern class. This prototype is called a template. A template might be a certain object in the

problem domain or a string of patterns. Therefore, the pattern recognition problem is reduced

to matching the unknown pattern with these templates and finding the best match. In other sit-

uations the templates may also be contained within the unknown pattern, therefore the pattern

recognition task may also involve determining the relativepositions of these templates. The

performance of this pattern recognition approach depends on the quality of the similarity mea-

sure used. There are a number proposed similarity measurements to determine the best match

between the known pattern (template) and the unknown pattern. Such measurements include

edit distance, sum-of-squares difference and the maximum-likelihood formulation proposed by

Olson [2000]. More on similarity measures can be found in Schalkoff [1991].

Algorithms based on template matching are easy to implementbut suffer from low recog-

nition performance due to distortion, view point change or large interclass variation among the
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patterns [Jainet al. 2000]. This can often be addressed by incorporating some pre-processing

techniques such as rotating the stimulus, scaling, etc. to make it upright, of a standard size, etc.

respectively.

Syntactical/structural pattern recognition: In many real world problems,the structural and

relational information contained in the patterns makes identification of quantifiable features that

can be represented in a vector form difficult or sometimes impossible [Schalkoff 1991]. Some

examples of pattern recognition problems satisfying thesecharacteristics are picture recogni-

tion, time-series analysis, text recognition. One common characteristic of these patterns is that

some kind of inheritance or identifiable organisation is usually exhibited [Olszewski 2001].

Syntactical pattern recognition is not only used for classification of patterns but also description

of patterns [Fu 1974]. For example, in some pattern recognition problems, the structural infor-

mation of the pattern is so important that classification of the pattern might not be enough. It

might thus be necessary to describe the property of the pattern which makes it eligible to be clas-

sified in a certain way. As another example, some patterns like fingerprints are self-dependent

and the number of possible descriptions are extremely large, hence classifying each pattern into

its own class is impractical. Therefore, the task of such a pattern recognition system involves

describing the pattern rather than classifying it.

The complexity, inheritance and identifiable organisationof the patterns, have motivated

many syntactic methods to adopt a hierarchical perspectivewhere these complex patterns are

considered as a composition of simple sub-patterns and hence is hierarchically decomposed

into simpler patterns [Fu 1974; Schalkoff 1991]. The simplest sub-patterns are usually re-

ferred asprimitivesand the relationship among them represents the structural features of the

pattern [Olszewski 2001]. Primitives can then be quantifiedusing formal grammar or relational

descriptions (usually graphs) to facilitate recognition,classification or description of these pat-

terns [Schalkoff 1991].

A statistical approach is based upon a statistical analysis of the data to be classified. The data

are assigned to a particular class by computing class-conditional densities of the data, which is

represented as ad-dimensional feature vector. Thed-dimensional vector space is then divided

into regions corresponding to the different class based on some criterion. Statistical pattern

recognition will discussed in more detail in Section 2.5.

Neural pattern recognition is a computational system inspired by the learning characteris-

tics and the structure of a biological neural network. The key element of this approach is the

novel structure of the information processing system. It iscomposed of a large number of highly

interconnected processing elements (neurones) working incomplete harmony to solve specific

problems. Neural pattern recognition will discussed in more detail in Section 2.6.

24



2.5 Statistical pattern recognition

In statistical pattern recognition, a pattern is represented by a set of features (say a set ofd fea-

tures) obtained through observations/measurements and conveniently viewed as ad-dimensional

feature vectorX = (x1, x2, . . . , xd). The basic assumption in this approach is that there exists

a multivariate class-probability distribution which can be inferred from this exhibited random

patterns [Jainet al.2000; Kanal 2000]. With this assumption, the problem of statistical pattern

recognition can be formulated as follows: given a set of measurements representing the pattern

asd-dimensional feature vectors, the purpose of the pattern recognition system is to classify

these unknown patterns to one of the known (sayc) pattern classes [Webb 1999; Jainet al.

2000]. Classification is done by subdividing the space spanned by these feature vectors into

c disjoint (non-overlapping) regions, where each disjoint region represents a particular class

[Schalkoff 1991]. The vector representation of a pattern also assures that a pattern can only be

plotted to a point in the feature space and hence can be assigned to one class based on the region

to which it is plotted.

Like all other pattern recognition approaches, statistical pattern recognition is also carried

out in a number of sequential steps which can be divided into two major steps: training (learn-

ing) and classification (testing) [Jainet al. 2000]. Each of these are further broken down into

a number of modules. The two major steps and the modules in each step are schematically

presented in Figure 2.3.

Pattern

Training

Pattern
Test

Prepocessing
Feature Classification

LearningPrepocessing
Feature

Extraction/selection

Training

Classification

Measurement

Figure 2.3: Model for statistical pattern recognition [Jain et al.2000, page 8]

The first module is the preprocessing module. This module is responsible for the compact

representation of each pattern. This includes removing noise, segmenting, normalising the pat-

tern and other related operation. The preprocessing moduleis the same for both the training

and the classification mode of the recognition system. Although this module gives a compact

representation of the data, it does not necessarily give an effective one. Despite the intuition

of considering a large number of parameters (features) to characterise a pattern in order to ob-

tain a better recognition, in statistical pattern recognition having a large number of features

to represent a pattern does not usually result in minimum classification error. To resolve this

contradiction, it is necessary to find the representative features by taking into consideration the

number of samples available and the correlation between thefeatures. A module which is re-
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sponsible for this sub-task and which is located in the training mode is feature extraction and/or

selection module. This module is recursive and the feedbackpath shown in the figure (Figure

2.3) allows the designer to optimise the process.

The primary aim of building a pattern recognition system is to build a set of decision bound-

aries that can classify unseen patterns based on the finite set of sample patterns. Furthermore,

Jainet al. [2000] have pointed that the performance of a classifier doesnot only depend on the

complexity of the classifier but also on the interrelationship between the available sample size

and the number of features targeted. For a classification task with arbitrarily large training sam-

ple which is representative of the underlying distributionof the pattern, increasing the number

of features to characterise the pattern will not have a negative effect on the performance of the

classifier [Jainet al. 2000]. However, in real world pattern recognition problemsthe number

of available samples is limited. Moreover, Dudaet al. [2000] have commented that increasing

the number of features for a finite sample size does not resultin small classification errors but

may rather reduce the performance. This comment is further supported by Trunk [1979] with

the help of examples. This property has put a constraint on the number of features that one can

consider for a finite number of training samples. Although there is no defined rule or guide to

solve this problem there have been a number of recommendations and guide lines given over

the past couple of decades. For classifiers which are based onpartitioning the feature space into

regions, the number of training samples should be an exponential function of the number of

features considered. However, Jain and Chandrasekaran [1982] have stated that it is generally

acceptable to have the ratio between the number of training samples and the number of features

per pattern class to be greater than ten. This ratio must be higher for more complex the classi-

fiers. More comprehensive discussion on this topic is covered in Raudys and Jain [1991] and

Jain and Chandrasekaran [1982].

There are a number of approaches to obtain a comparable ratiobetween the sample size and

features targeted such as dimension reduction. The two techniques used in dimension reduction

are feature selection and feature extraction. Feature selection is a process of selecting a subset

of the features that effectively represent the pattern. Feature extraction on the other hand is the

process of finding an arithmetic combination of thed-dimensional feature vector in relation to

a lesser dimensional vector. Dimension reduction will be discussed in more detail in section

2.5.2.

The last step and the final module in statistical pattern recognition is the classification mod-

ule. This module classifies patterns based on the class-conditional probability function which is

obtained during the training process. As stated above, classification is achieved by subdividing

the feature space into a number of disjoint regions. These decision boundaries are defined using

Bayes decision rule [Jainet al. 2000]. Bayesian decision theory is a fundamental statistical

approach to statistical pattern recognition problem. Thisapproach formulates the classification

problem in terms of the probability density function. In thenext section an introduction to

Bayesian decision theory is presented. A detailed presentation of this topic can be found in

Appendix A.1. The presentation of these sections is based onthe work by Dudaet al. [2000]
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and Webb [1999]. The notations are after Dudaet al. [2000].

2.5.1 Bayesian decision theory

Bayesian decision theory is the basic concept behind statistical pattern recognition techniques.

Given a random patternx and ak class pattern recognition task, Bayes’ theorem answers the

question: what is the probability that the observationx belongs to the pattern classωj?

The Bayes rule describes this probability as:

P (ωj|x) =
p(x|ωj)P (ωj)

p(x)
(2.1)

whereP (ωj|x) is the posterior probability,P (ωj) is the prior distribution,p(x|ωj) is the state-

conditional probability andp(x) is the probability density function forx.

Note that, the posterior probability in equation 2.1 is going to be calculated from other prob-

ability functions that are easy to calculate from the given training samples. Once this probability

is estimated the pattern will be assigned to the pattern class with the highest probability. ie.

x → ω if P (ω|x) = max
ωj

P (ωj|x) (2.2)

(For compete presentation of Bayesian decision theory see Appendix A.1)

Bayes decision rule assumes that all the probability functions are defined which is not true in

most real-life pattern recognition problems. However in many of these classification problems

one can assume the form of the class-conditional density (eg. multivariate Gaussian). Based on

this assumption statistical classifiers will be divided into parametric and non-parametric classi-

fiers. Some examples of parametric classifiers are linear andnon-linear discriminant functions.

Some examples of non-linear classifiers arek nearest neighbourhood and multilayer perceptron.

So far we have seen that given the probabilistic densities ortaking some assumption of about

the probability density we will perform classification of unseen patterns based in equation 2.2.

However, there are a number of attributes that can affect theperformance of the classifier spe-

cially when probability density estimation is involved. One such attribute is the proportionality

between the number of features and available training samples. If the number of features is too

large relative to the number of training samples, the classifier is likely to perform badly. To

avoid this problem there are a number of techniques. One of the most acknowledged approach

is dimensionality reduction discussed below. Note that, even though this problem is most likely

in pattern recognition techniques that rely on some probability estimation, it also occurs in other

pattern recognition techniques.
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2.5.2 Dimensionality reduction

The dimension of the data is the number of features that represent each observation or simply

the size of the vector reperesenting the observation. High dimensional data has presented statis-

tical pattern classification systems with many challenges and new perspectives to the problem.

Based on a simple naive intuition one could argue that classification error can be decreased by

increasing the number of features. However, this is not truefor a number of reasons. Firstly,

high dimensional data will have a great demand of computational resources. Secondly, with

high dimensional data, it is very hard to understand the underlying structure of the data which

thus degrades the classifier’s performance. Besides the above mentioned reasons, the impor-

tance of maintaining the ratio between the dimensionality of the data and the number of samples

to increase classifier performance is discussed in section 2.5. Therefore, dimension reduction

is important due to measurement and computational cost and classification accuracy. To see

further the relationship between the number of features andsample size and the importance of

dimensionality reduction, consider the 3-class pattern recognition problem of classifying three

different geometric shapes (circle, square and triangle) adopted from Gutierrez-Osuna given in

Figure 2.4. A simple approach is to divide the feature space into a number of uniform bins and

compute the ratio of examples for each class at each bin as shown in Figure 2.4 (a). When a

new object is found, the object will be placed in the feature space and choose the predominant

class (geometric shape) in the bin it is placed. It can be seenfrom this figure only one feature

is considered. Moreover there is too much overlap and hence the performance will be low. To

address this problem we need an extra feature to represent the pattern. So lets consider a two

and three features as shown in Figure (2.4 (b)) and (2.4 (c)) respectively.

When the number of features increases from one to two, the number of bins increases from

3 to 9 (32). Here, we have to make a decision whether to maintain the density of example per

bin or keep the number of examples constant. In the first case we need to increase the number

of examples from 9 to 27 and the latter case results in sparse 2D scatter plot. Furthermore, when

the dimension is increased to three the problem become worse. The number of bins grows to

27 and if the density needed to maintained 81 examples are required and on the other hand, if

the number of examples are kept constant the 3D scatter plotsare almost empty. Although this

is a trivial example we have been able shown the problem of dimensionality that exists almost

in all pattern recognition problem. In this example, the number of training sample (geometric

shapes) should grow exponentially as the number of featuresconsiders. But increasing the

features increasing continuously for a fixed sample size does not improve the performance,

rather it starts to degrade the performance. This phenomenon is termedCurse of Dimensionality

[Theodoridis and Koutroumbas 1999]. In practise, this means that, for a given sample size,

there is a maximum number of features above which the performance of the classifier starts to

degrade rather than improve. In the last decade much research have been carried out to solve

this problem and come up with different approaches. One way is dimensionality reduction.

Dimensionality reduction can be described as determining asubset or combination of fea-

tures that represent the pattern without losing the class discriminatory information. There are a
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Figure 2.4: Number of bins required for different features (a) one feature (b) two features (c)
three features [Gutierrez-Osuna]

number of methods of reducing the dimensionality that are grouped into feature selection and

feature extraction approaches. Feature selection choosesa subset of all the features which are

more informative while feature extraction creates a new setof less dimensionality by creating

combination of the existing features. Both these approachesselect features or create features,

which are combination of the original features that have high discrimination power and give

better between class difference and better within class similarity. This is done by choosing

a optimal criterion functionJ that defines this similarity and/or difference [Webb 1999].Al-

though it is not reliable when the ratio of sample size and features is small, commonly used

criterion function is the classification error [Jainet al. 2000]. Another issue that needs to be

considered is the number of reduced features.

Feature extraction

The feature extraction method determines a feature subspace of small dimensionality which is

a linear or non-linear combination of the ordinal feature space [Jainet al. 2000; Webb 1999].

Feature extraction can be formally defined as follows:

Given a set of featuresX = {x1, x2, x3, . . . , xd}, find a subsetX ′ derived fromX

with |X ′| = m such that:

J(X ′) = max
x∈Xm

J(X)

whereJ(.) is the optimal criterion function andm ≤ d
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Therefore the aim of feature extraction is to find a concise representation of the data with no

or minimal loss of information. Feature extraction has beenan important problem for decades

and hence different methods have been proposed. These methods can be grouped in to linear

or non-linear transformation of the original feature space. Linear and non-linear transformation

may be distinguished further by supervised or unsupervised. The best known unsupervised

linear transformation technique is the Principal ComponentAnalysis [Jainet al. 2000; Webb

1999]. In these methods, the transformed features are ranked according to the value assigned

by criterion function and the firstm ≤ d features will be chosen [Jainet al. 2000]. Another

linear transformation method which uses the same principleis projection pursuit [Jainet al.

2000]. Other methods like discriminant analysis use the within-class information to perform

linear extraction. With the development of neural networks, new methods of feature extraction

have been investigated. One such method is the non-linear feature extraction method known as

Self-Organising Map (SOM).

The mathematical formulation and detailed discussion of Principal Component Analysis

will be presented next.

Principal component analysis

The Principal Component Analysis (PCA) method originated in 1901 to derive a new set of

features which are linear combination of the original set offeatures describing the data sorted

in descending order of importance according to the criterion function [Webb 1999]. If the new

feature space is said to have a dimensionalitym ≤ d, the firstm newly derived features will be

considered. This technique is widely used because of three important properties [Roweis 1998]:

• It is an optimal linear method for dimensionality reduction

• Model parameters are computed from the data itself

• Once model parameters are computed, compressing and decompressing data

are trivial

There are a number of ways describing PCA mathematically or geometrically. Geometrically

it can be described as finding a set of axes rotated from the original axes to better fit the data

and magnify between class difference [Webb 1999; Norris 2002]. Norris [2002] also described

PCA as “decomposing the original pattern into a set of distinct patterns over the sample and then

recombine them to recreate the original data”. PCA is based onthe statistical representation of

the pattern and suppose the pattern is represented asX = (x1, x2, . . . , xd)
T and the mean be

denoted by:

µ = E[x]

and thed × d covariance matrix given by:

Σ = E[(x − µ)(x − µ)T ]
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The problem of finding the principal components is then defined as finding thed dimensional

normalised vectoraT
i such that foryi = xT

i a, the following properties holds:

1. Var[y1] ≥ Var[y2] ≥ . . . ≥ Var[yd]

2. For alli 6= j the covariance betweenyi andyj should be zero. i.e.yi should

be uncorrelated withyj

Consider the first termy1, the first principal component

y1 = a11x1 + a12x2 + . . . + a1dxd

defined by choosinga1 = (a11, a12, . . . a1d) to maximise the variance ofy1, constrained to

|a1|2 = 1. The variance ofy1 can be written in terms of the covariance matrix anda1 as:

Var[y1] = aT
1 Σa1

Hence to find the first principal component one must solve the problem:

Maximise aT
1 Σa1 subject to aT

1 a1 = 1

this is equivalent to maximising

f(a1) = aT
1 Σa1 − νaT

1 a1

whereν is a Lagrangian multiplier. Setting the partial derivatives with respect toa1 to zero and

solving fora1 will give us the vector value ofa1 that maximises the variance ofy1

∂f(a1)

∂a1

= Σa1 − νa1 = 0 (2.3)

Comparing this expression with eigenstructure of the squarematrixΣ, (2.3) tells us that choos-

ing a1 to be the eigenvector ofΣ with eigenvalueν solves the maximisation problem. Further-

more (2.3) implies:

Var[y1] = at
1Σa1 = ν

Ordering the eigenvaluesλ1, λ2, . . . λd of the covariance matrixΣ in such a way that

λ1 ≥ λ1 ≥ . . . ≥ λd

Because the aim is to maximise the variance we chooseν to be the largest eigenvalueλ1. The

second component, the second principal component

y2 = a21x1 + a22x2 + . . . + a2dxd
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can also be defined by choosinga2 = (a21, a22, . . . a2d) to maximise the variance ofy2, con-

strained to|a2|2 = 1 and the covariance betweeny1 and y2 is zero. The second constraint

implies:

E[y2y1] − E[y1]E[y2] = 0

aT
1 Σa1 = 0

Note that sincea1 is an eigenvector ofΣ, and hencea2 is orthogonal toa1 (i.e. aT
1 a1 = 0).

Using Lagrangian multipliers (µ andη), the problem of maximising the variance ofy2 can be

reformulated as

f(a1, a2) = aT
2 Σa2 − µaT

2 a2 − ηaT
2 a1

Setting the partial derivatives with respect toa2 to zero and multiplying it byat
1, tells us that

η = 0 hence we have:

Σa2 = µa2

This tells us thata2 is also eigenvector ofΣ, which is orthogonal toa1. Remember that we

are still looking to maximise the variance ofy2, hencea2 will be the largest of the remaining

eigenvectors ofΣ (i.e. λ2).

Following the same argument, the variance of theith principal component is

Var[yi] = at
iΣai = λi (2.4)

And the total variance is:

d
∑

i=1

Var[xi] = λ1 + λ2 + . . . + λd =
d

∑

i=1

Var[yi]

Thus to compute the portion of the total variance if the data that is captured by theith principal

component we can use the ration:

proportion of variance=
λi

∑d

j=1 λj

and the portion of the total variance captures by firstk principal components is

p =
k

∑

i=1

λi/
d

∑

i=1

λi

The value of thep is determined by the size of the reduced dimension and is chosen by the user.

Although the value ofp is problem specific choosing a value between 70% and 90% will retain

the information of the original data well [Jolliffe 1986].

The effect of dimensionality reduction using PCA on the performance of some of the pattern

recognition techniques used in this research will be assessed.
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Feature selection

Another approach to dimensionality reduction is feature selection. Unlike feature extraction

that finds a feature space will lesser dimensionality which is linearly or non-linearly combina-

tion of the input space, feature selection finds a subset of the input space that has a considerable

information and lesser dimensionality. To decide which feature space out of the possible sub-

sets, we can use classification performance of each subspaceand select the one with the least

classification error.

There are a number of approaches to do feature selection. In this research feature selection

techniques are not applied but interested reader can read the work by Saeys [2004].

2.6 Neural networks

2.6.1 Introduction

The traditional von Neumann machine, which abstracts the human information processing was

able to solve computational problems faster than a human brain, however it was inefficient

when it comes to recognition, classification and description tasks that the human brain handle

with ease. Real life classification/recognition problems are made complicated by a number of

external factors such as orientation of the object, direction of vision, deformation etc. Aimed

at addressing these limitations, a different paradigm of computing called neural networks was

proposed way back in 1940’s [Russell 1991].

Neural networks are systems inspired by the biological nervous system, which is composed

of numerous inter-connected simple elements (neurons) operating in parallel. These small ele-

ments work as a unit to perform a given task (such are prediction, classification) by adjusting

the value of the connections between them (termed as weight). The values of these connections

are usually adjusted dynamically based on the performance of the network on the given training

and validation sets [Russell 1991].

A neural network is characterised by three design decisions[Wu 1997]:

• pattern of connection between neurons (architecture)

• activation function

• method of determining the weight on the connection (training or learning algorithm)

Both supervised and unsupervised learning methods can be used for neural networks. However,

the presentation in this section is based on supervised learning.

2.6.2 The Perceptron

The simplest form of a neural network used to classify linearly separable patterns is the percep-

tron created by Rosenblatt in 1961 [Rosenblatt 1962]. A perceptron has two layers namely the
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input layer and the output layer (see Figure 2.5). The weights and bias can be adjusted from the

input/output pair presented using the perceptron learningrules. The perceptron learning rule is

described below. Perceptrons have gained repetition because of their ability to generalise well

from a given training sample and a randomly distributed connection (random initial weights)

[Demuth and Beale 2004].

Input layer

output layer

x1

xi

b = 1

∑

f(x) y

w1

wi

wb

...

Figure 2.5: A perceptron.xi andy are the input and output respectively.wi is a weight associ-
ated with each node in the input layer andb is the bias.

The output of the network given in Figure 2.5 is:

y = f(
∑

wi.xi + wb) (2.5)

The activation functionf(x) can have any form depending on the application of the network

(for example: the sign function, log-Sigmoid function). The log-sigmoid function is a typical

choice [Rumelhartet al.1994].

The perceptron uses adaptive learning to adjust its weight in order to produce the correct

output. The rule governing this, known as the perceptron learning rule, is as follows [Demuth

and Beale 2004]:If the network generated the correct output make no change, ifa wrong

output is generated, adjust the weights and the bias by an amount proportional to the difference

between the correct output and the generated output.

In a more generalised way, perceptron learning can be mathematically it can be summarised

as:

wi+1 = wi + ∆wi (2.6)

∆wi = η(Ti − yi)xi (2.7)

wherei corresponds to the current learning set,η is called the learning rate (0 < η ≤ 1) , Ti

refers to the target output andyi is the actual output.

Equation 2.7 is known as the delta rule. Like any other error-correction learning rule, the

ultimate aim of this rule is to increase the overall performance of the system or minimise the

cost [Rumelhartet al.1994]. The common cost function considered is the sum of squared error
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(SSE) (sum of squared difference between the desired outputand the actual output). SSE is

defined as:

SSE =
1

2

∑

i

(Ti − yi)
2 (2.8)

With this definition of the cost, the learning goal will then be minimising this function

(Equation 2.8) with respect to the weight (wi).

∆wi =
∂SSE

∂wi

(2.9)

∂SSE

∂wi

=
∑

i

(Ti − yi)
∂yi

∂wi

The learning rule in Equation 2.7 will become:

∆wi =
∑

i

(Ti − yi)
∂yi

∂wi

(2.10)

Equation 2.10 is called the Gradient descent learning.

The perceptron learning rule is capable of solving any linearly separable classification prob-

lem. However, the gradient descent learning is capable of minimising the squared error to the

hypothesis (some acceptable value defined by the experimenter) even when the problem is not

linearly separable. Although these learning rules are capable of solving classification problems

in finite time, some classification problems (for example: XOR function) are too complicated to

be learned with acceptable accuracy. Most real-world problems are not linearly separable and

can not be solved with the simplest architecture (single layer network). To address this problem

a number of perceptrons can be combined to handle multiclassand complicated classification

problem where there is more than one output and the problem needs a complicated hyperplane

to classify the patterns.

2.6.3 Feedforward multilayer perceptrons

Multilayered perceptron has additional layer called a hidden layer and the neurons in these

layers are called hidden neurons. (They are called hidden because the neurons in these layers

have not external connection except, the input, output or another hidden neuron). The output

from one layer serves as input to the next layer. Figure 2.6 shows multilayered perceptrons with

one hidden layer.

The most popular form of multilayered perceptrons is feedforward topology. In this config-

uration neurons on a layer are only connected to neurons in the next layer. Connection between

neurons in the same layer and loops are also not allowed. (forexample: in Figure 2.6 the input

neurons are connected to neurons from the hidden layer and neurons in the hidden layer are

connected to neurons in the output layer).
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Input layer

hidden layer

output layer

x1

x2

x3

xi

ϕ

ϕ

ϕ

∑

∑

y1

yn

...

...

Figure 2.6: A multilayered perceptron with one hidden layer. Multilayered perceptron is called
fully connected if each neuron in one layer are connected to the every neuron in the next layer.
Otherwise it is called partially connected. Each connection between neurons have associated
weight. The activation function (ϕ) on the hidden layers must be non-linear. Multilayered per-
ceptron with linear activation in the hidden layers can be effectively represented by a perceptron
with relevent activation function.

Similar to perceptrons the output is computed from the inputand the weight of the respective

connection. Each neuron in the network has an output which isthe input for the neurons in the

next layer:

yj = f(
∑

i

wji × xi + wb) (2.11)

Wherewji refers to the weight of the i’th connection in the j’th layer.yi is the output of the

i’th neuron. xi is the input for the i’th neuron.xi’s equals the network input for the neurons

in the input layer and equals the output of the layer before for the subsequent layers. The final

output(s) of the network is computed similarly.

The weights are adjusted during the training process to minimise the sum of squared error.

For multilayered perceptrons SSE is defined as:

SSE =
1

2

∑

i

(ydi − yai)
2 (2.12)

whereydi refers to the desired output andyai is the actual output.

During the training the outputs of the network are calculated by calculating the output at

each layer and continuing until final the output(s) is/are generated. The weights are then ad-

justed by an amount proportional to the SSE of the neuron feeding in to the weight at the given

time during the training. Adjusting these weights is not direct as it is for perceptrons. The error

for the hidden layer can only be known when the error at the output layer is known. Hence
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there must be a mechanism to propagate the error through the network so that each subsequent

weight is adjusted. There are a number of algorithms to handle this task. The most popular

backpropagation algorithm is discussed below.

Backpropagation algorithm

Multilayer perceptron with backpropagation learning is the most popular network architecture

[Delen and Kadam 2005]. During the training process of this architecture, the forward pass the

activations propagate from the input layer to the output layer of the network. On the other hand

the backward pass weights for the connection will be adjusted based on the difference between

the desired and actual output of the layer after it (for example in Figure 2.6 the weights of the

output layer are adjusted based in the error of the output of the network and the weight hidden

layer will then be calculated based on these values). The backpropagation algorithm adjusts

the weight of the connection between the neuroni and j at thek + 1’s iteration as follows

[Riedmiller and Braun 1993]:

wji(k + 1) = wji(k) − η
∂SSE

∂wji

(k) (2.13)

The learning rateη has an important effect on the convergence time of the learning. How-

ever, while a small value for the learning rate might leave the network to require a large number

of iterations to converge, a big value will leave the networkto jump between different values and

might cause the network not to achieve the required bound on the error. To address this prob-

lem, one of the proposed solution is introducing a momentum term. The modified change in

weight will be as shown in Equation 2.14. The introduction ofthese momentum term will give

stability to the learning process (the parameterµ) scales the influence of the previous weight),

however this is not always true in practice [Riedmiller 1994].

∆wji(k) = −η
∂SSE

∂wji

(k) + µ∆wji(k − 1) (2.14)

The backpropagation algorithm has a number of limitation often making the training pro-

cess too slow for real-world problems [Riedmiller and Braun 1993; Delen and Kadam 2005].

To address this problem there are a number of modifications tothese algorithms. Some of

these modifications took the heuristic approach while others perform the numerical optimi-

sation to speed up the training process. Some of these algorithms are Resilient propagation

algorithm proposed by Riedmiller and Braun [1993] which uses the heuristic approach and the

Levenberg-Marquardt algorithm proposed by Hagan and Menhaj [1994] which uses numerical

optimisation.

Resilient backpropagation algorithm

The Resilient backpropagation algorithm was proposed by Riedmiller and Braun [1993] to ad-

dress the weight-update related limitations of standard backpropagation. This algorithm uses
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the sign of the derivative to determine the increase or decrease in the value of the weight. The

size of the weight change is determined with separate updatevalue. The update value of the

weights are as follows [Riedmiller and Braun 1993]:

∆wji(k) =



















−Uji(k) if ∂SSE
∂wji

(k) > 0,

+Uji(k) if ∂SSE
∂wji

(k) < 0,

0 else

(2.15)

The update value is determined as follows:

Uji(k) =



















ǫ+ × Uji(k − 1) if ∂SSE
∂wji

(k − 1) × ∂SSE
∂wji

(k) > 0,

ǫ− × Uji(k − 1) if ∂SSE
∂wji

(k − 1) × ∂SSE
∂wji

(k) < 0,

Uji(k − 1) else

(2.16)

where0 < ǫ− < 1 < ǫ+

The update value is set to an initial value which is perferably proportional to the initial

weight. 0.1 is usually a good initial value. The Resilient backpropagation algorithm is much

faster than the standard backpropagation algorithm and hasa modest memory requirement [De-

len and Kadam 2005].

A thorough explanation of this algorithm can be found in Riedmiller and Braun [1993];

Riedmiller [1994].

Levenberg-Marquardt algorithm

Levenberg-Marquardt learning was introduced by Hagan and Menhaj [1994] to speed up the

training process of a feedforward network. This algorithm generally gives a numerical solution

to the problem of minimising a sum of squares (Equation 2.12)of a nonlinear function (nonlin-

ear least squares) [Hagan and Menhaj 1994]. For the functiony = f(x,w), with x andy are the

input and the output variables respectively, the Taylor series expansion gives us [Chan 1996]:

J∆w = e (2.17)

whereJ is the Jacobian matrix that contains the first derivative of the network error with respect

to weight ande is the error for a given input.

The Levenberg-Marquardt modification to the solution to theabove equation (Equation

2.17) by Newton’s method is given by [Hagan and Menhaj 1994; Chan 1996]:

∆w = (JT J + γI)−1Je (2.18)

whereγ is a regularisation parameter introduced to prevent the ill-conditioned property of Hes-

sian which is approximated by the square of the Jacobian(H = JT J). I is the unity matrix.
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Based on the choice of value forγ, Equation (2.18) exhibits different property. When the

Hessianγ equals zero, it will become the Newton’s method with approximated Hessian matrix.

With large value forγ the algorithm becomes gradient descent with step equals to1
γ
. However

a small value will change the algorithm to Gauss-Newton method [Hagan and Menhaj 1994;

Delen and Kadam 2005]

A thorough explanation of this algorithm can be found in Marquardt [1963]; Hagan and

Menhaj [1994].

2.7 Decision trees

2.7.1 Introduction

Decision trees are one of the popular classification techniques. This technique is an example

of multistage decision process where a subset of the attributes (a single attribute for example)

that make up the pattern rather than he whole pattern is used to examine the decision making

process at different level of the decision tree [Webb 1999].Decision trees are a tree-structured

classifier (see Figure 2.7) where each node in the tree is either a leaf node, which specifies a

class value or a decision node specifying a further test to becarried out on a single attribute

value. The number of splits a decision node has depends on theoutcome of splitting test carried

on an attribute value on the node. For a discrete attributeP1 with possible valuesa1, a2, . . . , an,

the possible outcomes of the split tests areP1 = a1, P1 = a2, . . . , P1 = an (see Figure 2.7 for

example). If the attributeP1 has a continuous value, there are two possible outcomes,P1 ≤ t

andP1 > t.

A decision tree can be used to classify a pattern by traversing the tree from root till we reach

a leaf node which specify the class to which pattern belongs to. Travelling from the root to a

leaf node is carried based on the outcome of the split test on each decision node in between.

Application of decision tree to classify a pattern is similar to applying a series ofif-else-then

statements on the pattern.

This classification technique has a number of features that makes it popular such as speed

of classification, the ability to interpret individual features separately and the ability to handle

missing data [Jainet al. 2000]. Furthermore, the decision tree can easily be interpreted to

decision rules which can be easily understood by the domain experts.

2.7.2 Constructing of decision tree

The main issue of decision tree construction is constructing the smallest possible decision tree

based on a given learning set. This step is carried out in a recursive manner and is an NP-

complete problem [Quinlan 1993]. The general method of constructing decision tree is sum-

marised in Quinlan [1993, page 17-18] as follows:

If there arek classes denoted{C1, C2, ..., Ck}, and a training set,T , then
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Outlook

Humidity Yes Wind

No Yes No Yes

Sunny Overcast Rain

High Normal Strong Weak

Figure 2.7: Decision tree for conditions to play tennis

• if T contains one or more patterns which all belong to a single classCj, then

the decision tree is a leaf identifying classCj.

• if T contains no pattern, the decision tree is a leaf determined from informa-

tion other thanT .

• if T contains objects that belong to a mixture of classes, then a test is chosen,

based on a single attribute, that has one or more mutually exclusive outcomes

{O1, O2, ..., On}. T is partitioned into subsetsT1, T2, ..., Tn, whereTi contains

all the objects inT that have outcomeOi of the chosen test. The same method

is applied recursively to each subset of training objects.

According to this outline, when constructing a decision tree there are certain questions one

need to answer. Some of the questions are:

• how to choose the best split.

• when to stop growing the tree

• how to prune the tree

• how to handle missing attributes

Different variations of decision tree such as C4.5 [Quinlan 1993], CART (classification

and regression tree) [Breimanet al.1984], CHAID (chi-square automatic interaction detection)

[Kass 1980], QUEST (quick unbiased efficient statistical tree) [Loh and Shih 1997] etc. address

these questions differently. In this dissertation we will how these question are answered in the

context of the induction of decision tree algorithm: C4.5.
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2.7.3 Splitting test

Different decision tree algorithm use different criteria to split the training sample in to subsets

on each split test. The split evaluation criteria used by C4.5induction algorithm is informa-

tion gain which measures the quality of given attribute as a split criteria based on the targeted

classification. The presentation in section follows Quinlan [1993] unless specified.

For any subsetS of setT of training examples, letfreq(Ci, S) be the number of patterns

belonging to classCi(i = 1, 2, . . . , n). Selecting one example at random fromS and declaring

that it belongs to classCi has a probability of:

freq(Ci, S)

|S| (2.19)

where|S| is the number of examples in the subset S. And the informationconveyed (in bits) by

this ‘message’ is

− log2

freq(Ci, S)

|S| (2.20)

In general for the probability distributionP = (= p1, p2, . . . , pn), wherepi = freq(Ci,S)
|S|

, the

information conveyed by this distribution is:

Info(P ) =
n

∑

i

pi × log(pi) (2.21)

similarly the information conveyed by the setS will be given by:

Info(P ) = −
n

∑

i

freq(Ci, S)

|S| × log2

freq(Ci, S)

|S| (2.22)

This amount is called entropy of the setS. (see Shannon [2001] for more on Entropy and

information theory).

For example, if we have 15 patterns inS and 9 belong to one class and the rest belong to

another class (two class problem), the average amount information needed to identify the class

of a pattern inS equals:

Info(S) = Info(
9

14
,

5

14
) = 0.94

Now consider attributeX of a pattern inT . If X is a discrete value and havek possible val-

ues, andT1, T2, . . . , Tk are the subsets ofT consisting of patterns with distinct values for this

attribute (X), then the expected information requirement ofT can be found as a weights sum

over theTi’s:

InfoX(T ) =
k

∑

i

|Ti|
|T | × Info(Ti) (2.23)

The information gained byX induced partitioning can be calculated by evaluation the informa-
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tion before and after partitioning as:

Gain(X) = Info(T ) − InfoX(T ) (2.24)

This value favours testing on attributes with large number of distinct value. For example, for

attributeX with unique value for each patterns inT , InfoX(T ) will be zero, maximising the

Gain. To avoid this bias Quinlan [1993] uses information gain ratio instead. By analogy to

Equation (2.21), the information generated by dividingT into k subsets induced byX is given

by:

Split(X) =
k

∑

i

|Ti|
|T | log2

|Ti|
|T | (2.25)

This issplit information. Information gain ratio is then defied as:

Gain Ratio(X) =
Gain(X)

Split(X)
(2.26)

The gain and gain ratio for an attribute which is already selected as a split criteria in an

ancestor node will be zero. Therefore this attribute will not be selected again as we go down

the tree.

In many real world problems attributes do not always have discrete values. Hence we need

to address cases where attributes have continuous value. Quinlan [1993] and a later suggested

improvement in Quinlan [1996] handles continuous attributes as follows.

Suppose the attributeX has a continuous range. AlthoughX has a continuous range, there

can only be finite number of these values in setT . Computing information gain of this attribute

starts by sorting these values in ascending order. Say the ordered values for attributeX are

v1, v2, . . . , vm. Then for each mid-point of intervalsv = vi+vi+1

2
for i ∈ [1,m − 1] we partition

T into two sets: the first subset contains patterns with attributeX ≤ v and the second subset

containing attributes withX > v. For each of them partitions the gain ratio (Equation 2.26)

will be computed and the partition that maximise the gain will be used as a split criteria. Note

that if all the attributes of the pattern have continuous range, we will have binary tree.

2.7.4 Stopping criteria

Based on the above specified criteria, the construction of thedecision tree will be carried out

and a further splitting will be stopped and a leaf node is declared based on a number of criteria.

Allowing the tree to grow until every pattern in the trainingset is correctly classified will result

in an over-fitted model, which will not have good generalisation ability. Alternatively, if we stop

the construction process early will result in under-fitted model which will equally have poor

generalisation ability. One suggested solution to addressthis problem is employing stopping

criteria taking both over-fitting and under-fitting in to consideration. Some of these include:

• If all possible split test have zero gain. In this case all thepatterns in the subset belong to
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the same class.

• When the gain ratio is below some predetermined value.

• Number of patterns in the subset are fewer than some predetermined value or some pro-

portion of the patterns belong to the same class.

• The depth of the node exceeds some predetermined value

Employing stopping criteria enables us to avoid over-fitting; however, the results are uneven

due to the noise and incorrectly classified patterns in the training set. To avoid these anomalies,

C4.5 uses pruning method which is based on estimating the error rates.

2.7.5 Pruning

The generalisation ability of a fully grown tree can be increased by pruning the subtrees that

are not contributing positively towards the generalisation ability if the resulting model. Pruning

of a decision tree refers to the process of replacing a subtree with a leaf node or with the most

frequently used branch [Quinlan 1993]. Quinlan [1987] suggested three different techniques of

pruning. These are:

• Cost-complexity pruning

• Reduced error pruning and

• pessimistic pruning

Cost-complexity pruning proposed by Breimanet al. [1984] performing pruning as follows:

a large tree is created, and then a sub-tree is found startingfrom the leaves. Again from this

sub-tree another sub-tree is found until we are left with a sub-tree containing the root node only.

All this sub-trees will then be tested on a independent validation set and the sub-tree with the

least cost will be selected.

Reduced error pruning also uses sequence of sub-trees to choose one with the least mis-

classification on an independent validation set. However, the way the sub-trees are generated

is different from cost-complexity pruning. In this approach, for each non-leaf sub-tree, we re-

place it with the best possible leaf that will enable the resulting tree better the original on the

validation set. This process in carried out on the resultingtree until no more gain in classifica-

tion is found. Both cost-complexity pruning and reduced error pruning require a independent

validation set and this might be a disadvantage in some classification problem where the num-

ber of training patterns are limited. There are a number of approaches in place to address such

scenario. One of these approaches is cross-validation. However, the approach taken by C4.5 is

a pruning method that does not require an independent validation set: pessimistic pruning.
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Pessimistic pruning

Pessimistic pruning is an approach which increases the errors observed at each leaf pessimisti-

cally using continuous correction for binomial distribution to encourage pruning [Quinlan 1987].

Quinlan [1987] describes pessimistic pruning that effectively increases the number of observed

error at each leaf by 0.5. However, C4.5 uses a far more pessimistic estimate as presented in

[Kohavi and Quinlan 2002] as follows.

When a non-leaf coveringN training patterns of whichE are misclassified,E
N

is an estimate

of the probability ofp of misclassification. However, since the decision tree is constructed on

the sameN training patterns it tends to minimise the apparent error. To make our estimate more

realistic we can derive a confidence limit forp. For a given confidence termCF , we can find

an upper limitpr such thatp ≤ pr with probability1 − CF . Following [Diem 1962, as cited in

Kohavi and Quinlan [2002]],pr satisfies:

CF =







(1 − pr)
N if E = 0

∑E

i=0

(

N

i

)

pi
r(1 − pr)

N−i if E > 0
(2.27)

Let UCF (E,N) be the upper bound on errorpr.

For the non-leaf treeT (shown in Figure 2.8), produced fromN training patterns, where

the sub-treesT ∗
i are already pruned: LetT ∗

f be the subtree corresponding to the most frequent

outcome of the split testB and letL be the leaf labelled with the most frequent class in the

training pattern.

B

T ∗
1 T ∗

2 T ∗
3 T ∗

t

b1 b2 b3 bt

. . .

Figure 2.8: Non-leaf tree with already pruned subtreesT ∗
i

If ET , ET ∗

f
andEL are the number of missclassified patterns by the treeT , sub-treeT ∗

f and

leafL respectively, the corresponding estimated error rates are:

• UCF (ET , N)

• UCF (ET ∗

f
,N)

• UCF (EL, N)

Depending on the lowest value of the above estimate,T will be left unchanged, is replaced by

the subtreeT ∗
f or is replaced by the leafL.
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2.8 Logistic regression

Logistic regression is a regression method which is popularfor modelling dichotomous data. In

this model, the dependent variableY has the value 1 with the probabilityP (Xi) and the value 0

with probability1−P (Xi). The independent variablesXi can have any form. This model does

not assume that the relationship between the independent variables and the dependent variable

is a linear one, or that the dependent variable or the error terms are distributed normally.

Logistic regression is used to predict the effect of the independent variables on the binary

response. The relationship between predictor and the response is determined by thelog oddor

logit transformation ofP (Xi). Given the values ofXi = (Xi1, Xi2, . . . , Xid), the probability

of the response being 1 (odds of observing 1 versus 0), is modelled using logistic regression

model as:

ηi = logit(P (Xi)) = log(
P (Xi)

1 − P (Xi)
) = β0 +

d
∑

j=1

βjXij (2.28)

whereηi is the linear predictor which is a combination of the independent variables.β0 is the

intercept andβ = (β1, β2, . . . βd) is the vector slope parameter [Cessie and van Houwelingen

1992; So 1995].

An alternative form of the logistic regression model is [Perlich et al.2004]:

P (Xi) =
exp(β0 +

∑d

j=1 βjXij)

1 + exp(β0 +
∑d

j=1 βjXij)
(2.29)

To find the best estimate forP (Xi) the loss function used in this model is the log-likelihood.

The parameter estimatêβ maximises the log-likelihood and gives estimateP (Xi) = P (Y = 1).

The log-likelihood for the data(X,Y ) under the logistic model is given by:

l(β) =
∑

i

[Yi log P (Xi) + (1 − Yi) log(1 − P (Xi))] (2.30)

Maximisation ofl(β) yields the maximum likelihood estimator̂β for β. However, the model

becomes unstable when the dimensionality of the pattern is big compared to the available sam-

ple [Perlichet al.2004]. To obtain a more realistic estimates for the parameters and improve the

predictive power of model, Cessie and van Houwelingen [1992]extended a method that adjusts

the regression estimate by shrinking the correlation matrix for the predictor value to wards a

fixed point by adding a constantλ to the diagonal element of the matrix.

The penalised log-likelihood is given by:

l∗(β) = l(β) − λ
∑

j

β2
j /2 (2.31)

wherel(β) is the unrestricted log-likelihood function. The second term is the ridge penalty and

λ is the ridge parameter. The ridge parameter regulates the penalty: whenλ = 0 the solution
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will be unrestricted maximum likelihood estimator, whereas λ → ∞ the βj all tend to zero

[Cessie and van Houwelingen 1992; Eilerset al.2001].

Choosing an optimal value for the smoothing or regularisation constantλ is crucial. The

two dominant data-driven ways of selecting the ridge parameter are cross-validation and Akaik

Information Criterion (AIC) [Schimek 2003]. Due to lack of empirical evidence in the later,

cross -validation is the most popular and successful method[Schimek 2003]. The performance

of cross-validation one may use either the fraction of misclassification or the strength of log-

likelihood prediction.

A thorough explanation of penalised logistic regression with ridge estimator can be found

in Cessie and van Houwelingen [1992]; Eilerset al. [2001]; Zhu and Hastie [2004].

2.9 Summary

In this chapter a detailed overview of the biological background of HIV, a brief overview of

general pattern recognition principles and dimensionality problem and techniques of address-

ing it was presented. This chapter have also presented a detailed background on statistical

pattern recognition techniques and Bayesian decision theory which is the tool broadly used to

perform pattern classification based on some probabilisticknowledge about the random patterns

and the pattern classes. A brief introduction to feedforward neural networks with backpropa-

gation learning was given. Two algorithms proposed to address the problem with the standard

backpropagation algorithm was also introduced. A brief introduction to decision trees based on

the C4.5 algorithm was also given. Furthermore a brief introduction and direction for further

reading for logistic regression was also give. This chapterhave also covered a comprehensive

discussion and the mathematical formulation of principal component analysis which is the best

known unsupervised linear transformation technique.
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Chapter 3

Support Vector Machine (SVM)

3.1 Introduction

SVMs are statistical learning technique developed by Boseret al. [1992] to perform a variety of

supervised learning and function estimations task. Like any other machine learning technique,

SVMs are aimed at minimising the risk (training or test error) based on some simple idea that

provides a clear intuition of what supervised learning is all about. Most traditional machine

learning techniques are based on the Empirical Risk Minimisation (ERM) principle, which ap-

proximates the estimation function based on minimising empirical risk (the error on the training

data). However, SVMs use the principle of Structural Risk Minimisation (SRM), proposed by

Vapnik [1979], which minimises the upper bound on the test error or risk [Scḧolkopf 1997]. The

principle of SRM gives SVMs the advantage over other machine learning techniques, which are

based on ERM. Machine learning techniques based on ERM are morelikely suffer from over-

fitting which is less likely to occur in those based on SRM. Over-fitting refers to the fact that

the training data is perfectly learnt but the estimation function does not perform well on unseen

data. SVMs do not suffer from over-fitting as much and hence give better generalisation.

Beside SRM, the ability of SVMs as a pattern recognition tool relies on their ability to

transform the data into a higher dimensional feature space that is nonlinearly related to the in-

put space. Transforming the data from the input space to feature space transforms a complex

real-world classification into a simple classification problem where the classification task can

be accomplished using a linear hyperplane [Ganapathiraju 2002]. Although the patterns are

mapped from the input space into higher dimensional featurespace, SVMs have a further ad-

vantage of performing all computations in the input space, using a specialised function called

kernel functions. This trick further saves SVMs from suffering the curse of dimensionality.

As the result of the principle of SRM together with the kernel trick, SVMs are rapidly

replacing neural networks, Radial Basis Functions (RBF) and polynomial classifiers which have

been dominant pattern recognition tools [Hearstet al.1998]. Furthermore, SVMs have already

been applied in many benchmark applications including facedetection [Osunaet al. 1997],

text classification [Joachims 1998; Dumaiset al. 1998; Sunet al. 2002], speech recognition

[Ganapathiraju 2002] and in a number of other pattern recognition problems.
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In this chapter a brief introduction to SVMs, implementation issues and some of the bench-

mark application of SVMs will be discussed. Section 3.2 willgive a concise description on

risk minimisation namely ERM and SRM. In section 3.3 we will give a deep insight into linear

SVMs. In section 3.4, the non-linear Support vector machineis described in detail following a

discussion on feature space and kernel mathematics. The material presents solution to two-class

classification problem. Section 3.5 explains how the two-class classification will be extended

to multi-class classification. Section 3.6 gives a brief overview of the approaches taken in im-

plementation of SVM tools. The material presented in this section is based on Vapnik [1995];

Burges [1998]; Osunaet al. [1997]; Cristianini and Shawe-Taylor [2000]; Schölkopf [1997]. If

any other reference is used it will be cited accordingly.

3.2 Risk minimisation

Given a set of training samples(x1, ω1), (x2, ω2), . . . , (xl, ωl) generated independently and iden-

tically distributed from unknown probability with:

(x1, ω1), (x2, ω2), . . . , (xl, ωl) ∈ R
d × Ω (3.1)

wherexi is the input data,ωi is the classxi belongs to andl is the number of examples. The

two-class pattern recognition problem can be described as choosing a functionfα given a set of

decision functions:

{fα : α ∈ Λ}, where fα : R
d → {±1} (3.2)

where{fα : α ∈ Λ} is called the hypothesis space1 [Osunaet al.1997] and will be denoted by

S. Λ is a set of abstract parameters introduced to enablefα correctly classify unseen example

(x, ω), which is generated with the same underlying probability distribution P (x, ω) as the

training data set. However, for a given set of training samples there might be a number of such

functionsfα which work on different subset of the training sample. So howdo we know which

one to choose?

Suppose we have two disjoint subsets of the training sampleX = {x1, x2, . . . , xl} and

X̄ = {x̄1, x̄2, . . . , x̄l̄} such thatX ∩ X̄ = ∅ and there exists a functionf ∗
α such that:







f ∗
α(xi) = ωi i = 1, 2, . . . , l,

f ∗
α(x̄i) 6= ω̄i i = 1, 2, . . . , l̄

If we useX as a training set and̄X the validation set, the decision functionf ∗
α will have a

very poor performance on the validation set. Therefore, theaim of the pattern recognition

system should be to find the functionfα which possibly performs better on both the training and

validation set. In order to choose the functionf ∗
α that performs better on both the training and

1The hypothesis space is a set of all possible functions that can perform the classification and also where we
choose the one that performs best
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validation set, a way of quantifying the performance is needed. By defining of a loss function

L(ωi, fα(xi)) that measures the loss, the difference between the classification according to our

pattern recognition system and the true class of the patternxi, the expected risk, which should

be minimised over all classes of functionsfα will then be given as:

R(α) =

∫

L(ωi, fα(xi))dP (x, ω) α ∈ Λ (3.3)

Estimating the expected risk directly from the above equation is impossible because the distri-

bution probability P (x, ω) is unknown. The only information available is the data, which is

independently generated and identically distributed and can be considered a fair representation

of the underlying distribution. Therefore, one can approximate this error by the measured mean

error on the training set [Vapnik 1995].

3.2.1 Empirical Risk Minimisation (ERM)

The measured mean error (empirical risk) on the training setis given by:

Remp(α) =
1

l

l
∑

i=1

L(ωi, fα(xi)) (3.4)

Note that there is no probability associated in equation 3.4andRemp(α) is a real number for a

given functionfα. Once the estimation is done based on the available trainingsample, the func-

tion fα that minimise the empirical risk will be considered. This isthe principle of Empirical

Risk Minimisation (ERM) [Vapnik 1995].

Consider the 0/1 loss function for two class pattern recognition problem defined as:

L(ωi, fα(xi)) =







0 ωi = fα(xi),

1 ωi 6= fα(xi)
i = 1, 2, . . . , l

whereωi takes the value{±1}.

Using this loss function the empirical risk will have the following form.

Remp(α) =
1

2l

l
∑

i=1

|fα(xi) − ωi| (3.5)

ERM is intuitive and easy to implement, but the question of consistency needs to be answered

[Vapnik 1995; Osunaet al. 1997]. This means, does a non-trivial functionfα that minimises

the empirical risk (3.4) also minimise the actual risk (3.3)?

Consistency of empirical risk depends on both the number of samples available (the law of

large numbers) and the capacity of the set of functions (the Vapnik Chervonenkis dimension

(VC dimension)) of the learning machine [Osunaet al. 1997; Vapnik 1995; Scḧolkopf and

Smola 2001]. Furthermore, Vapnik and Chervonenkis have alsoshown that the finiteness of the
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VC dimension of the hypothesis space is the necessary and sufficient condition for consistency

of the ERM [Vapnik and Chervonenkis 1991, as cited in Osunaet al. [1997]].

When the number of available training samples is small, the empirical risk can easily be

minimised to a small value close to zero, but the data hardly reflects the underlying proba-

bility distribution P (x, ω) and hence results in larger actual risk or inconsistent ERM. This

phenomenon is termed over-fitting [Vapnik 1995]. Although it is not guaranteed, as the number

of data points increases, the empirical risk will increase and at the same time the data will more

likely represent the underlying probability distributionand the actual risk will converge to the

empirical risk. In this case the ERM is said to be consistent and hence the pattern recognition

system that performed well on the training set will also perform well on unseen problems gen-

erated with the same underlying probability distributionP (x, ω). Figure 3.1 shows a simplified

description of the consistency or inconsistency of ERM.

(α)R 

emp
(α)R 

R min

l

Figure 3.1: Asymptotic behaviour of a minimum empirical andcorresponding expected risk
for consistent ERM. Thex−axis shows the the number of examples and they−axis shows the
corresponding risk

In most real life pattern recognition problems we are limited to a finite (usually small)

training data and hence we need to make the most out of these data. To handle this situation a

number of techniques have been proposed in statistical pattern recognition. One such approach

is leaving room for a difference between the empirical risk and the actual risk. Following this,

Vapnik [1995] has shown there exists a bound for the actual risk given the empirical risk and

the measure for the capacity of the class of functions. This bound is given as:

R(α) ≤ Remp(α) + φ(h) (3.6)

The quantityh, which is the measure of the capacity of a set of functions, iscalled the VC

dimension of a set functions and the functionφ(h) is called the confidence term for the ERM
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[Burges 1998; Scḧolkopf 1997]. The VC dimension of a set of function is defined as the maxi-

mum number of points that can be shattered by this class of functions. A given training sample

of d dimension is said to be shattered by the functionfα, if the function can correctly classify

the training sample into all the possible classes. For example, consider the two-class problem

defined above. In this problem, a set ofl points can have2l different possible classifications

and if the set of functionsfα can accomplish this, we say the set of points is shattered by the set

of functionsfα [Burges 1998] (see Figure 3.2). A comprehensive discussion on convergence,

consistency and VC dimensions and other capacity measures can be found in Vapnik [1995].

Figure 3.2: Three points inR2, shattered by oriented lines. The VC dimension of the set of
oriented lines inR2 is therefore, three [Burges 1998, page 4].

From the inequality (3.6) we can see that for the consistencyof the risk minimisation and

good generalisation of the pattern recognition system, theconfidence term,φ(h) should be

minimised at the same time as the empirical risk. Suppose we only minimised the empirical

risk to zero via the principle of ERM, the actual risk will be equal toφ(h) and a large value of

this quantity will result in a system that has poor generalisation. And on the other hand ifφ(h)

is kept close to zero, the expected risk will be equal to the empirical risk, which needs to be

minimised using the principle of ERM.

Consider again the two-class problem defined above. For anyα ∈ Λ andl > h with some

valueη such that0 ≤ η ≤ 1, Vapnik and Chervonenkis [1991] proposed an upper bound on the

error and based on this proposal the inequality (3.6) can be redefined as follows and will hold

with a probability of at least1 − η

R(α) ≤ Remp(α) +

√

h(log(2l
h
) + 1) − log(η

4
)

l
(3.7)

The second term in equation 3.7 is proportional to the ratio (h
l
). Therefore to achieve good

generalisation the empirical risk and the ratio between theVC-dimension and the number of

training samples should be kept to a minimum at the same time.The relation between the two
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terms on the right hand side of equation 3.7 is graphically shown in Figure 3.3.

hn1
*h

S S Sn1
*

Risk

h

Empirical risk

Bound on actual  risk

Nested structure of subsets

(VC dimension)

Bound on VC confidence

Figure 3.3: The optimal classifier needs to find some appropriate structure that minimises both
the empirical risk and the confidence term [Vapnik 1995, page98]

Burges [1998] pointed out that the empirical risk is a decreasing function ofh and to get a

good generalisation based on a limited training set one needs to find the optimal VC dimension.

To overcome the problem of choosing the appropriate (finite)VC dimension Vapnik [1979]

proposed the principle of structural risk minimisation. A detailed discussion on generalisation

theory and the derivation of equation 3.7 can be found in Cristianini and Shawe-Taylor [2000].

3.2.2 Structural Risk Minimisation (SRM)

“The principle of structural risk minimisation defines a trade-off between the quality of the

approximation of the given data and the complexity of the approximating function.” [Vapnik

1995, page 95]. To define the trade-off, both terms in the right hand side of equation (3.7) should

be minimised. If we select one hypothesis classS, we are left with the task of minimising the

empirical risk since the confidence term will be fixed for the selected hypothesis class. (By

defining the hypothesis space, the VC dimension of the set of functionsh is known and together

with the size on the training patternsl, we can calculate the second term in equation 3.7). Let’s

define a nested structure of hypothesis space

S1 ⊂ S2 ⊂ . . . ⊂ Sn ⊂ . . . ,

with hi ≤ hi+1. Note that equation 3.7 also holds for the nested sequence ofhypothesis classes.

By computing the respective actual risk for each subset, we choose the functionf ∗
α in the subset
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S∗
i that minimises the upper bound on the risk [Schölkopf 1997; Osunaet al.1997]. This prin-

ciple is called principle of structural risk minimisation [Vapnik 1995]. Choosing this optimal

combination (optimal trade-off between the capacity of thefunction and the empirical risk) is

the task of the learning algorithm. To find the optimal hypothesis space one can use either of

the following approaches: fix the confidence term and minimise the empirical risk or for a fixed

empirical risk minimise the confidence term. However, the support vector algorithm accomplish

this simultaneously [Osunaet al.1997].

3.3 Linear support vector machine

The linear support vector machine also known as maximum margin classifier is the simplest

form of support vector machine. In this section linear support vector machines will be presented

first and will be used as an introduction to basic principles,notation and approaches that are later

extended to more general Support Vector Machine. Furthermore, support vector machines are

inherently binary classifiers. Therefore the formulation shown below and in subsequent sections

is given for two class pattern recognition problem. In latersections we will see how this will

be extended to multi-class pattern recognition problems. To make the presentation in two class

classification problem simple and consistent with the conventional mathematical presentation

we will useyi instead ofωi as class label.

The complete mathematical formulation can be found in Appendix B. Some mathematical

steps are removed from the presentation in this section. Forthe missing mathematical steps

refer to the Appendix.

3.3.1 Linear separable case (Maximum margin classifier)

Given set of examples((x1, y1), . . . , (xl, yl)) ∈ R
d × {±1}, whereyi ∈ {±1}, andxi ∈ R

d,

assume there exists a set of hyperplanes which totally discriminate the positive examples from

the negative ones. This means we can find a pair(w, b) such that:

yi(xi.w + b) − 1 ≥ 0 i = 1, 2, . . . , l (3.8)

wherew is the direction of the normal or orientation of hyperplane and b is the threshold.

The mapping function which is usually called the hypothesisis then given by:

f(w, b) = sign(w.xi + b) (3.9)

Consider the example given in Figure 3.4. These training samples of the two classes can

be perfectly separated by a linear hyperplane. Furthermore, one can find an infinite number

of hyperplane that can accomplish this task. Some of these hyperplanes are shown in Figure

3.4. As we can seen from the figure, each of these hyperplanes has zero empirical risk, but

we wish to find the one that will minimise the right hand side ofequation (3.7) as seen in the
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previous section. From the figure one can take an educated guess to say the hyperplane that

passes through the middle will be more likely to give the minimum risk. Formally defining this

hyperplane, the optimal hyperplane is a hyperplane which islikely to minimise the expected risk

is the one that maximises the margin, which is defined as the distance between the examples of

the two classes that are close to this hyperplane.
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Optimal hyperplane

Figure 3.4: Optimal separating hyperplane

Once the optimal hyperplane is found all the training sets will satisfy equations (3.8) and

classification will be based on the sign of equation (3.9). The points that lie on the hyperplane

separating the data satisfies the equality:

w.xi + b = 0 (3.10)

Figure 3.5 gives graphical interpretation of support vector classification. All the points that

satisfy the inequalityw.xi + b ≤ ±1 lie onH1 or to the left of it and those satisfyingw.xi + b ≥
±1 will lie on H2 or to the right of it. The margin is therefore defined as the distance betweenH1

or H2 and the optimal hyperplane (see figure 3.5). It is evident that H1 andH2 are parallel and

for a perfectly separable training set, no point lies between the two hyperplanes. Furthermore,

H1, H2 and the optimal hyperplane differ only on the thresholdb. Formally defining the optimal

hyperplane with respect to these two hyperplanes, the separating hyperplane is optimal if the

minimum distance between these hyperplane and the optimal hyperplane is maximal.

By computing the margin for a given orientationw, the problem of finding the optimal

hyperplane will be defined as:

Minimise
1

2
‖w‖2

subject to yi(xi.w + b) − 1 ≥ 0 ∀i

Minimising a quadratic function under a linear constraint formulated above is called quadratic

programming and can be solved to give the solution to the optimal hyperplane using Quadratic
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Figure 3.5: Maximum margin hyperplane for linear separablecase

Programming (QP) optimisation [Cristianini and Shawe-Taylor 2000]. Solving this problem

using the classical Lagrangian multipliers approach has a number of advantages [Cristianini

and Shawe-Taylor 2000]. Firstly, this approach gives an alternative formulation of the original

problem (dual form) which is easier to solve. Secondly, the dual form is not only easier to

solve but also emphasises the importance of some training examples over the other, leading to

a minimised but critical sample size and thirdly, the dual form simplifies generalisation beyond

linear separable cases.

Introducing a dual vector of non-negative Lagrangian multiplier Λ = (α1, α2, . . . , αl) cor-

responding to each inequality constraint in (3.8) the constrained minimisation problem given

above will be rewritten in the dual form as:

Maximise LD(w, b, Λ) =
∑

i=1

αi −
1

2

∑

i,j

αiαjyiyj(xi.xj)

subject to
l

∑

i=1

αiyi = 0; (3.11)

Λ ≥ 0

The Karush-Kuhn-Tucker(KKT) optimisation theory (The KKTtheorem is given in Ap-

pendix B.2), which guarantees the existence of a solution to the optimisation problem shows

that, at the saddle point all points satisfy the constraint (3.8) with strict equality. i.e.

αi(yi(w.xi + b) − 1) = 0 i = 1, . . . , l (3.12)

From equation 3.12, the following two conditions need to be distinguished:

• If αi = 0, thenyi(w.xi + b) ≥ 1
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• If αi > 0, thenyi(w.xi + b) = 1

Recall that one of the advantages of using the Lagrangian function to solve the optimisation

problem is expressing the importance of each pattern in the training set. Consider the value ofαi

corresponding to each training pattern. Training patternswith αi > 0 will fall on the hyperplane

H1 orH2 (see Figure 3.5) and hence are critical in defining the decision boundary. Other training

patterns withαi = 0 lies to the left or right ofH1 andH2 respectively. These training patterns

have no effect in determining the decision boundary. Therefore, if those training patterns with

αi = 0 value are removed and the training is repeated, the decisionboundary will remain the

same. Training patterns with nonzeroαi are calledSupport Vectors(the name of this learning

technique follows from this).

With the orientationw given byw =
∑l

i=1 αiyixi, the mapping function (equation 3.9) can

be redefined as:

f(x, Λ, b) = sign(
l

∑

i=1

yiαi(x.xi) + b) ∀i = 1, . . . , l (3.13)

We have seen that the parameterαi = 0 for all training points except for the support vectors,

hence the mapping function will have its final form:

f(x, Λ, b) = sign(
∑

i∈SV

yiαi(x.xi) + b) ∀i = 1, . . . , l (3.14)

In other words the expression is evaluated in terms of the dotproduct between the pattern

to be classified and the Support Vectors (SV)(xi), and the sign of the function will be used to

classify the pattern to their respective class.

3.3.2 Linearly non-separable case: Soft margin classifier

So far we have seen the case where the training data is perfectly separable using linear hyper-

plane. However, real-world problems involve non-separable data and the assumption taken in

the previous section is too ambitious. To extend the above solution to non-separable data a

positive slack variableξi : i = 1, . . . , i is introduced to associate further cost as a penalty for

misclassification whenever necessary (see Figure(3.6)).

Using this relaxed separation constraint equation (3.8) becomes:

yi(xi.w + b) > 1 − ξi ξi ≥ 0 i = 1, . . . , l (3.15)

The problem of finding optimal margin will therefore comprise two parts.

• Maximise the margin (the same as the linear separable case) and

• Minimise the slack variableξi which counts for amount of error
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Figure 3.6: Maximum margin hyperplane for linear non-separable case

One way of combining these two conditions into a single function is given below:

Φ(w, Ξ) =
1

2
‖w‖2 + C(

l
∑

i=1

ξi)
k

The constantC is a parameter to be chosen freely by the user to specify the trade-off between

the width of the margin and misclassification penalty. Therefore the optimal hyperplane will be

the one that minimises the functionΦ(w, Ξ). i.e.

Minimise Φ(w, Ξ) =
1

2
‖w‖2 + C(

l
∑

i=1

ξi)
k;

yi(xi.w + b) > 1 − ξi i = 1, . . . , l; (3.16)

ξi > 0 i = 1, . . . , l

By choosingk = 1, the above optimisation problem can be solved using QP. Introducing a

dual vector of non-negative valueΛ = (α1, α2, . . . αl) for of each the first constraint andΓ =

(µ1, µ2, . . . , µl) for each of the second constraint the optimisation problem defined above will

be rewritten as:

Maximise LD(w, b, Λ) =
∑

i=1

αi −
1

2

∑

i,j

αiαjyiyj(xi.xj)

subject to
l

∑

i=1

αiyi = 0; (3.17)

0 ≤ Λ ≤ C
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Applying the KKT condition we have:

αi(yi(xi.w + b) − 1 + ξi) = 0 i = 1, 2, . . . l (3.18)

From the above equation three different cases needs to be distinguished:

• If αi = 0, thenµi = C (ξi = 0) andyi(xi.w + b) = 1;

• If 0 ≤ αi ≤ C, then0 ≤ µi ≤ C (ξi = 0) andyi(xi.w + b) = 1;

• If αi = C, thenµi = 0 (ξi > 0) andyi(xi.w + b) = 1 + ξi.

In the first case, the points are on the correct side of the optimal hyperplane and are distant from

the hyperplane by more than the margin (i.e. these points lieto the left or to the right of the

hyperplaneH1 or H2 respectively). In the second case, the points lie on the hyperplaneH1 or

H2 and are Support Vectors. In the third case these points are also support vectors, but do not

necessarily lie on the hyperplaneH1 of H2. These points might be on the wrong side of the

hyperplane or on the right side but closer than the hyperplanesH1 or H2 (For example:X1 and

X2 in Figure 3.6).

Besides the above additional constraints, the solution for the linear separable case holds

with the decision function given by:

f(x, Λ, b) = sign(
∑

i∈SV

yiαi(x.xi) + b) ∀i = 1, . . . , l

So far we have seen the simplest form of SVM which are designedfor the most trivial linear

separable case can be further extended to accommodate casesthat are linearly non-separable.

But most real life classification problems do not have linear dataset but rather non-linear dataset

(see Figure 3.7). Hence, we still need to extend the solutionto accommodate non-linear datasets.

It has been stated at the introduction to this chapter that one of the underlying principle that

makes SVMs interesting is the ability to transform non-linear data from input space to higher

dimensional feature space where the data can be linearly classified. The following section gives

brief introduction to feature space and kernel tricks and show how these concepts are used to

generalise linear SVMs to handle non-linear classificationproblems.

3.4 Non-linear support vector machine: The Kernel trick

In most real life problems, linear combinations of the individual measurements cannot fully

describe the properties of the patterns under consideration. Hence a complex representation of

these measurements is required resulting in a complex structured dataset in the input space. As

is pointed out in the previous chapter changing the representation of the data from the input

space into some feature space has a number of advantages. Feature space, as discussed in the

previous chapter usually have lesser dimensionality than the input space (as a result of feature
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Figure 3.7: Linearly non-separable training sample

selection or extraction). On the contrary, in this section we will see how we can use a feature

space with higher dimension than the input space to increasethe computational power of the

linear SVM described in the previous sections without suffering from curse of dimensionality.

Suppose the training set is((x1, y1), . . . , (xl, yl)) ∈ R
d × {±1} and there is a functionφ(x)

and a mapping given by:

X = {x1, . . . , xd} → Φ(X) = {φ(x1), . . . , φ(xN)} (3.19)

whered < N andF = {Φ(x)|x ∈ X} is called the feature space.
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Consider the mapping given graphically in Figure 3.8. It is easy to see that the data cannot

be separated using a linear hyperplane in the input space. However, once it is projected to the

feature space, separating the data using a linear hyperplane is possible. This simple example

demonstrates the power of mapping a non-linear dataset intofeature space in simplifying com-

plex classification problems. As it is pointed out in section(3.3.1), one of the advantages of

using the classical Lagrangian approach to solve the optimisation problem is simplifying the

problem of extending the solution found for linear SVM into the generic non-linear SVM. Also

note equation (3.13) that the decision function requires the computation of the dot product be-

tween the point to be classified and some of the training examples. Therefore, performing the

classification in the feature space will give the hypothesisand the decision function a new form

which is given by :

f(w, b) = sign(w.φ(xi) + b) (3.20)

and

f(x) = sign(
l

∑

i=1

yiαi(φ(x).φ(xi) + b)) i = 1, . . . , l (3.21)

The dot productφ(x).φ(xi) will be easily defined by introducing the functionK(x, y) called

Kernel function (or more formally called Mercer Kernels to distinguish them from other kernels

used in mathematics). For definition of kernel functions seesee Appendix B.2.

The introduction of the kernel function allows us to computethe dot product without ex-

plicitly mapping the data into the feature space. To show that the kernel function represents

the dot product in the feature space we will use Mercer’s Theorem (see Appendix B.2), which

guarantees the existence of a mappingφ in F for any kernel which is a dot product in some

feature space [Ganapathiraju 2002].

To show how kernels are used to transform data implicitly into a higher dimensional space

consider the following example:-

First lets how mapping from input to feature space simplifiesthe classification problem.

Consider the target function:

f(x, y) =
x2

y2

this target function could not be represeted by a linear machine. However a simple transforma-

tion can make it representable by a linear machine:

(x, y) → (x′, y′) = (log x, log y)

gives the representation

f ′(x′, y′) = log f(x, y) = 2 log x − 2 log y

f ′ could be learnt by a linear machine.
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Now suppose we want the mapping fromR2 to R
6. Let us choose the kernel to be:

K(x, y) = (x.y + 1)2 (3.22)

Choosing the kernel function given below:

(x.y + 1)2 = φ(x).φ(y) (3.23)

Let x = (x1, x2) andy = (y1, y2). This implies

(x.y + 1)2 = x2
1y

2
1 + x2

2y
2
2 + 2x1y1 + 2x2y2 + 2x1y1x2y2 + 1

Now if we define

φ(x) = (1,
√

2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2)

it can easily be shown that equation (3.23) holds. Note that the above example can be easily

generalised to higher dimensional space.

Having introduced the kernel representation of dot productin feature space, the decision

function (3.21) can be rewritten using kernel functions as:

f(x) = sign(
∑

i∈SV

yiαik(x, xi) + b)) i = 1, . . . , l (3.24)

Note that, SVMs can be used to classify non-linear data without the need to transform the input

space to a high dimensional feature space explicitly using akernel function. This strategy also

removes the curse of dimensionality, which usually occurs as a result of dimensionality increase

for a fixed number of sample size. Also note that only the support vectors are involved in the

decision function.

Although kernel functions can be chosen freely, choosing some of the most commonly used

kernels SVMs can represent other known classifiers with a better performance [Osunaet al.

1997]. Some of these kernels are:

• Polynomial Kernel of degreed

K(x, y) = (x.y + 1)d (3.25)

whered is user-defined

• Gaussian radial basis function (RBF)

K(x, y) = exp(−γ‖x − y‖2) (3.26)

whereγ is user-defined
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• Sigmoid kernel: Two layer Neural network

K(x, y) = tanh(k(x.y) + Θ) (3.27)

wherek is gain andΘ is the offset. Both of these parameters are user-defined

Ganapathiraju [2002] reports that though convergence for RBFis the most expensive, this kernel

is very powerful and can model a classifier that can be effective when datepoints from one class

is totally encapsulated by the other. An example of classification using polynomial and RBF is

given in figure 3.9.

Other additional kernels (usually used in function estimation) includes [Vapnik 1995]

• Regularised Fourier (weaker mode regularisation)

For one dimensional case:

K(x, y) =
π

2γ

cosh
π−‖xi−xj‖

γ

sinh π
γ

(3.28)

where0 ≤ ‖xi − xj‖ ≤ 2π andγ is user defined

For the multidimensional caseK(x, y) =
∏d

k=1 Kk(x
k, yk)

• Regularised Fourier (strong mode regularisation)

For one dimensional case:

K(x, y) =
1 − γ2

2(1 − 2γ cosh(xi − xj) + γ2)
(3.29)

where0 ≤ ‖xi − xj‖ ≤ 2π andγ is user defined

For the multidimensional caseK(x, y) =
∏d

k=1 Kk(x
k, yk)
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Figure 3.9: Decision surface given by (a) Polynomial kernel, and (b) RBF kernel. Support
vectors are indicated by dark filled points [Osunaet al.1997]
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3.5 Multi-class classification

SVMs are inherently binary classifiers. The binary SVM discussed in the previous sections use

the discriminant function given in equation 3.20. However,most classification problems are not

limited to binary classification problems but to multi-class classification problems where the

inputs are classified into more than two groups according to their underlying property. To solve

this problem, extending the binary SVM to handle multi-class classification is required. The

multi-class SVM uses a set of discriminant functionfω : X → Ω defined as

fω(w, b) = sign(wω.φ(xi) + bω)

whereX ⊂ R
d andΩ = (ω1, ω2, . . . , ωc) with the same performance evaluation technique. In

multi-class SVM classification the decision function will have the form defined below.

f(x) = arg max
ω∈Ω

fω(x) (3.30)

To implement this, a number of approaches have been proposedin the last decade. Some

of these approaches are one-against-the-rest presented inScḧolkopf [1997], classification by

pairwise coupling proposed by Hastie and Tibshirani [1996]based on the idea proposed by

Friedman [1996] and the Multi-class SVM proposed by Weston and Watkins [1998]. In this

section a brief overview of these three approached will be discussed. For detailed presentation

refer to the above cited references.

In the one-against-the-rest approach, ak-class classifier, is modelled by trainingk different

binary SVMs each discriminating members of one class from the rest. This is done by rela-

belling the training data and assigning say 1 to the class under consideration and−1 to the

remaining members of the training. A new data is then classified once it is tested using all

thek SVMs and the final class is assigned based on equation 3.30. This technique is easy to

implement, most widely used and gives a respectable result.It does however have some limita-

tions [Scḧolkopf 1997]. Two of the limitations are, variation in the output range of the different

SVMs, and mutual exclusion of class member. However, these two limitations have well for-

mulated solutions. More description on the limitation and proposed solution can found in Lee

et al. [2001] and Mayoraz and Alpaydin [1999].

Classification by pairwise coupling also uses a number of binary classifiers to accomplish

the multi-class classification. However, unlike the one-against-the-rest approach, in this ap-

proach a number of different binary classifiers are trained to perform pairwise classification.

That means to performk class classification we needk(k−1)
2

binary classifiers each performing

pairwise classification. Note also that in this approach each binary classifier is trained with

a subset of the training data. For example if our training data is equally balanced between

classes, we have2
k

fraction of the data to train each binary SVM. To classify an unseen pattern,

the pattern will be tested against each class and is classified to the one which satisfies the voting

criteria. Methods of evaluating the voting criteria are briefly described in Hastie and Tibshirani
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[1996].

The third approach is the multi-class SVM proposed by Westonand Watkins [1998]. In

this approach the mathematical formulation found for the binary SVM is extended to handle

multi-class classification considering all the classes at once.

3.6 SVM implementation

Recall that the KKT condition (see Appendix B.2) guarantees anoptimal solution to the con-

strained optimisation problems formulated in equations 3.11 and 3.17. As it can be seen from

these formulations, in order to get an optimal solution computing the dot product(xi.xj) be-

tween all possible pairs of the training sample is required.For a classification task with a large

number of training samples and/or each training sample having a large number of features to

represent it, computing the dot product matrix and keeping the result in memory will be both

processor and memory intensive task and sometimes a specialised computing resource might

be needed. A simple approach to solve the memory problem is computing the dot product on

demand basis. However, this approach will make the computation even more CPU intensive.

To make this processor and/or memory intensive computationefficient, a number of ap-

proaches has been proposed based on the principle that a global solution can be obtained by

solving a smaller sub-problem at a given time. However, theydiffer in the way they define

sub-problem. In the remainder of this section an overview ofthe different algorithms will be

presented.

3.6.1 Chunking

Chunking is the first approach considered in solving SVM learning problem with large training

set proposed by Boseret al. [1992]. This approach is based on the idea of dividing the opti-

misation problem into small sub-problems (chunk) that can be solved efficiently. Training with

this algorithm is done as follows. Training is started randomly with one sub-problem and then

iteratively adding other examples that do not obey the KKT condition. Only support vectors

found in the training stage of one sub-problem are to be carried out to the next stage. At the

end of the optimisation process, when the KKT conditions aremet, only the appropriate support

vectors will be assimilated. This approach was proved by Osunaet al. [1997] to give the same

global optimal solution and takes less resources to converge.

Further extensions of this approach are the decomposition method proposed by Osunaet al.

[1997] and Sequential Minimal Optimisation (SMO) proposedby Platt [1998]. The decomposi-

tion method is based on selecting a working set when there arelarge number of support vectors

that can be handled in memory. This working set is selected insuch a way that it is big enough

to hold all the support vectors, but small enough to be hand-fed by the computer [Osunaet al.

1997]. SMO is a chunking algorithm with the two working sets [Platt 1998].

It is evident that chunking has computational advantage over the naive approach when the
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training data is big. And this advantage is further extendedby the decomposition method and

SMO [Kroon 2003].

3.6.2 Shrinking

The linear memory requirement proportional to the number oftraining examples and support

vectors has many advantages. However, the algorithm may take longer to converge. To over-

come this potential disadvantage, Joachims [1999] proposed shrinking. Shrinking is based on

predicting data points that will not be support vectors and eliminating these points during op-

timisation. Eliminating these data points will result in a smaller sub-problem (shrinking of

the optimisation problem). Furthermore, this algorithm uses the concept of “Bounded Support

Vectors” (BSV), which are support vectors withαi at upper boundC.

To extract these points the algorithm uses a heuristic approach to study the behaviour of

points for a number of iterations. On each iteration only those points which behave consistently

are extracted, which consequently shrinks the original problem [Kroon 2003].

3.6.3 Caching

The optimisation process requires evaluating the kernel matrix in each iteration, which is the

most expensive process. One heuristic approach to speed up this process is caching kernel

evaluation, which trades-off between memory consumption and training time [Joachims 1999].

Caching is a well known technique implemented to speed up memory intensive computations

and is widely used in many applications of computer science.There are a number of caching

strategies such as First In First Out (FIFO), Least Recently Used (LRU), optimal, etc. The

caching strategies used in SVM implementation is LRU, whichreplaces elements that are not

used for a number of iterations, whenever the cache is full.

3.7 Comparison of SVMs to other statistical techniques

In recent years a large variety of pattern recognition techniques have been applied to solve a

wide variety of problems. These includes decision trees, neural networks, logistic regression,

and SVM. Even though the choice of a particular technique depends on the problem at hand,

some techniques are reported to have number of theoretical advantages over the others. One

such technique is SVM. Many researchers have pointed the significant advantage of SVM in a

wide variety of benchmark application. Furthermore, researchers in the field of computational

biology have also consistently shown the outstanding performance of SVMs.

In the last couple of section detailed theoretical background and an overview on the im-

plementation of SVMs was presented. Furthermore, in chapter 2 basic background of decision

trees and neural networks was presented. In the remainder ofthis section a theoretical compar-

ison showing some of the advantages and disadvantages of SVMs compared to decision trees

and/or neural networks is presented.
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Linear or non-linear model

A true challenge for most pattern recognition techniques isbased on how they handle non-linear

real life problems. While some techniques can handle non-linear classification directly, other

need to approximate or use some techniques to convert the non-linear classification into a linear

classification problem.

Decision trees handle non-linear classification problem byapproximating the problem with

pairwise linear classification [Breimanet al. 1984]. Similar to decision trees, SVMs cannot

handle non-linear data directly. To address the problem, SVMs map the non-linear data into a

high-dimensional feature space where it can be classified linearly (or more specifically SVMs

uses kernel function to classify non-linear data without the need for explicit mapping). How-

ever, neural networks do not have this problem and address non-linear classification problem

directly using multiple hyperplanes by the help of different activation functions such as Sig-

moid, Gaussian or Radial Basis functions [Jainet al.2000].

Error minimisation

As pointed out in section 3.2 all pattern recognition techniques are aimed at increasing the

performance (minimise error) of the classifier based on the limited training sample available. It

was also pointed out in section 3.2 that there are two principles of risk minimisation: namely

empirical risk minimisation and structural risk minimisation. Both neural network and decision

trees use the principle of empirical risk minimisation and are most likely to suffer from over-

fitting [Jainet al.2000]. However, SVMs use the principle of structural risk minimisation.

To address the over-fitting problem both these methods have adopted different techniques.

Decision trees use two different techniques. The first technique is stop growing the tree further

when the split is not statistically significant [Breimanet al.1984]. The second approach is first

constructing the tree and then pruning the fully grown tree upward by considering a subtree

with minimum accuracy loss [Breimanet al. 1984; Quinlan 1993]. One can address the over-

fitting problems in neural networks either by choosing an appropriate number of hidden layers

or stopping the training process before the network is fullytrained. Even though the suggested

techniques for both decision trees and neural networks havehelped minimise the possibility of

over-fitting, the problem is still there as the result of the basic principle of risk minimisation.

Furthermore, there is no robust way of selecting a criterionto stop the training process so that

the network will not be over trained, or stop pruning.

As mensioned in section 3.2.2, SVMs use the principle of structural risk minimisation to

avoid over-fitting. However, over-fitting is not absolutelyavoided. A factor that can cause

over-fitting in SVMs is selection of poor kernel function which will result in number of support

vectors comparably equal to the size of the training samples. To address this problem new

data driven kernel selection techniques have been proposedby Sollich [2000] which gives an

intuitive guideline to choose a good kernel function.
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Global vs local solution

Depending on the approach taken to solve the optimisation problem, pattern recognition tech-

niques give global or local minimum. Neural networks use gradient descent techniques which

gives the local minimum [Vapnik 1995]. On the other hand SVMsuse quadratic programming

technique which is guaranteed to give the global minimum [Burges 1998] (also see previous

number of sections).

Multi-class classification

Most real-world problems are not bound to binary classification problems. Therefore, one needs

to consider how multi-class classification is considered when comparing different techniques.

While both decision trees and neural networks can be trained to perform1 − to − n classi-

fication, SVMs can only perform1 − to − 1 classification. This means for SVMs to perform

multi-class classification one needs to trainn different classifiers each performing binary clas-

sification and hence is computationally demanding.

Performance comparison

Generally both decision trees, neural networks and SVMs have been applied in a many classifi-

cation problem and the latter two have been the two competitive techniques recently. To show

the dominant performance of SVM over the decision trees and neural networks, consider table

3.1 showing selected results from Meyeret al. [2002].

Problem SVMs Decision trees Neural Network

BreastCancer 3.14 5.51 24.27
tictactoe 0.14 8.24 33.97
chess 0.49 3.20 39.73
titanic 21.16 21.48 66.90

Table 3.1: Mean error on a test set [Meyeret al.2002]

The result in table 3.1 shows that despite the minor limitations discussed above, SVMs have

outperformed the other two classification techniques.

3.8 Previous work

3.8.1 SVMs benchmark applications

So far we have seen the theoretical background and comparison of SVM. In this section, we

will see the application of SVM as a tool for pattern recognition.
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Text classification

The volume of information found in electronic format has increased incredibly as a result of

the fast growing Internet. This fast growing volume of electronic information has urged many

to look for a better way to organise these resources so as to find and filter for particular infor-

mation in an effective and efficient way. Text classificationor categorisation can be defined as

pattern recognition problem, which classifies natural-language text to one or more predefined

classes according to their content [Dumaiset al. 1998]. So far, much text classification work

is done manually, which has created a bottleneck in efficiency and effectiveness in dynamic

information.

There are a number of systems already in use to organise electronic documents in such a

way that filtering and searching can be done faster and accurately. The speed and accuracy of

such systems have a very high impact on their acceptance and usefulness. To increase the speed

and accuracy of such systems and development of new systems,many have proposed machine

learning techniques. Dumaiset al. [1998] and Joachims [1998] have shown the performance of

machine learning techniques (naive Bayes classifier, k-nearest neighbours, decision tree classi-

fiers and SVM) in text classification in terms ofprecision/Recall-Breakeven Point. In addition,

Sunet al. [2002] have used SVM to classify the web documents. In the next paragraph, we will

see the application of SVM in text classification in more detail giving particular emphasis on

the concepts like feature extraction and kernel used and theresults obtained.

Joachims [1998] conducted his experiment on 12902 documents (75% training and 25%

testing) from Reuters-21578 dataset and 20000 documents (50% training, 50% testing) from

Ohsumed corpus. To represent the text document Joachims [1998] used frequency of appear-

ance of the words in the document with the restriction of frequency greater than two to avoid

unnecessary large feature vectors. Having represented thedocument, further features were se-

lected using a method of feature selection called information gain, which ranks all the words

according to their information gain and selects those with highest the mutual information. Sim-

ilarly Dumaiset al. [1998] used the same number of datasets from Reuters-215782 collections

and used binary feature value (occurs or does not occur) to reduce the feature space. Both

Joachims [1998] and Dumaiset al. [1998] conducted the experiment on a number of different

machine learning techniques: naive Bayes classifier, k-nearest neighbours, decision tree classi-

fiers and SVM. Joachims [1998] used both polynomial kernel ofdegree(d = 1, 2, 3, 4, 5) and

RBF with γ = 0.6, 0.8, 1.0, 1.2 while Dumaiset al. [1998] used only linear SVM. The result

found in both experiments have confirmed that SVM is superiorin performance and training

time over the given training set. Furthermore, Sunet al. [2002] have extended text classifi-

cation technique to web classification and have shown that SVM outperforms FOIL-PILFS3

algorithm.

2Due to the different time in the experiment the Reuters collections used in the experiment by Joachims [1998]
and Dumaiset al. [1998] are different

3FOIL-PILFS is an algorithm, which is designed to learn rules, which use predicates based on Naive Bayesian
models of text instead of keyword tests.
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Microarray gene expression analysis and cancer tissue classification

In the previous section, we have seen how SVMs are applied to text recognition and it is em-

phasised that SVMs perform better than other machine learning techniques when used as a

pattern recognition tool. This section shows how SVMs are used to analyse microarray gene

expressions [Brownet al.2000] and used to classify cancer tissue samples based on microarray

expressions [Fureyet al.2000].

As the amount of data from different microarray hybridisation experiments become huge,

the need for a means to extract biological significance and classifying genes according to their

functional class is increasingly becoming imperative [Brown et al. 2000]. There are a number

of approaches available to handle such task. Most of these approaches use a clustering algo-

rithm based on the similarities between expression patterns to group genes. However, these

approaches have a number of limitations. These limitationsare the motivations for the research

by Brownet al. [2000]. They used SVMs to perform microarray gene expression analysis.

They pointed out that SVMs have the advantage of using a largeset of similarity computing

functions simultaneously and the ability to use prior knowledge about the true functional classes

of the genes. The experiment was based on 2,467 yeast genes, which were selected based on

availability of accurate functional annotation. These data sets were converted into 79 element

gene expression vectors based on the results from an experiment withn = 79 genes on a single

chip, which is converted to a vector form by dividing the expression level of the gene in the

varying condition of interest by the expression level of thegene in some reference condition4.

Having represented the data with the appropriate vector form, the set of genes that have common

functional class are labelled positive, and negative otherwise.

Based on these examples the SVM is taught to discriminate the positive from the negative

examples. To carry out the learning task, polynomial and Gaussian kernels were used. One

problem identified was that the set of positive examples was less in number compared to the

negative ones and hence were treated as noise rather than examples belonging to a separate

class. To handle this problem Brownet al. [2000] modified the kernel value during the support

vector optimisation by adding the ratio of the positive examples multiplied by a scaling factor

to the diagonal elements of the matrix defined by the kernel function. The result showed that

higher degree polynomials and Gaussian kernels give a superior result as compared to previous

analysis techniques.

As a continuation of the research by Brownet al. [2000], Fureyet al. [2000] applied SVMs

in classifying cancer tissues based on the microarray expression data. The features extraction

criteria used are different from that of Brownet al. [2000]. Fureyet al. [2000] used the ratio

of the difference between the mean of the positive examples (cancer tissue) and the negative

examples (normal tissue) and the sum of their standard deviation5, which helped discriminate
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between the two classes. Genes with the highest score of the ratio were extracted.

Unlike Brown et al. [2000], Fureyet al. [2000] used only simple dot-product kernel and

were not only able to classify tissues to the appropriate class but were also able to detect outliers

in the example set. The result was confirmed using biologicalexperiments.

3.8.2 Other machine learning techniques in predicting drug resistance

In the previous section, we have seen the power of SVM as a toolfor pattern recognition and

have showed some application of SVM in bioinformatics and real-world pattern recognition

problems. In this section, we will see how other machine learning techniques are used to pre-

dict drug resistance of HIV mutants. Among many researches carried out in this particular topic

I will try to briefly present the methods used, features targeted, results achieved and the limi-

tations of the research by Lathropet al. [1999] and Draghici and Potter [2003]. Draghici and

Potter [2003] have taken two different methods: Structure-based data mining and Sequence-

based data mining. In this literature, we are interested in the Sequence-based method, which is

based on the amino-acid sequence rather than the structuralfeatures.

Lathropet al. [1999] used rule-based expert systems based on the set of 55 rules extracted

from different literatures on mutation and drug resistanceand used both RT and PRO portions

of the POL gene to predict drug resistant and nearby drug resistant mutants over all FDA6

approved HIV drugs (11 at the time of the research) to suggestoptimal combination of drugs

for a patient under therapy. On the other hand Draghici and Potter [2003] used Neural Networks

to predict resistance toSaquinavirusing HIV Protease amino-acid sequences so that the HIV

mutant is classified as low, medium or high resistant.

The first step taken by both experiments was extracting features that can represent the input

sequence, where both used the codons (433 codons in RT and 99 in PRO). Lathropet al. [1999]

extracted the codons that are targeted by the approved drugs, which reduced the input to 31

different codon positions (20 in RT and 11 in PRO). Draghici and Potter [2003] extracted all

the codons in PRO and assigned a value between 0 and 1 based on their difference from the

wild type 7 (HXB2). Moreover, two codons, which do not show any variationfrom the wild

type were eliminated resulting in 97 codon positions in the input vector. Each input vector

was then converted into a normalised numeric pattern to makeit suitable for Neural Network

processing. Having extracted the relevant features Lathrop et al. [1999] applied the 55 set of

rules in the form ofIF 〈 antecedent〉 THEN〈 consequence〉 WITH 〈 weight〉 with a high level

of confidence, where the weight varies from 0.1 (low resistant) to 1.0 (high resistant). Based on

the rule weight the current resistance of the mutant is calculated. The nearby resistant mutants

were predicted by applying the rule on newly generated sequences from those sequences that

originally do not trigger the rules. The neural network approach taken by Draghici and Potter

[2003] was different from the rule-based expert system. In their research, Draghici and Potter

6Food and Drug Association
7“value is assigned between 0 and 1 inn equal increment wheren is the number of different mutations from

the wild type”[Draghici and Potter 2003, page 103]
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[2003] used thirty-six network architectures with different output matrix (12 × 12 to 3 × 3),

different learning rates ( 0.9 to 0.5) and different initialneighbourhoods. Each network is trained

32 times with 75 % of the data with 10 iterations (except one).

The result found by both research approaches confirms that drug resistance can be predicted

using the protein sequence of the HIV mutant. Results found byLathropet al. [1999] showed

up to 25× viral load reduction in patients that completed one year of therapy of optimal drug

combination recommended by the rule-based expert system. Likewise, the results from Draghici

and Potter [2003] showed 69% coverage and 68% accuracy on a single network (8 × 8 output

matrix, 0.6 learning rate and 8 neighbourhoods) and as high as 85% average coverage and 78%

accuracy over multiple networks.

Although both research methods showed positive results there are some limitations. The

rule-based expert system needs continuous maintenance with addition of new rules and discov-

ery of new mutants and the neural network approach is theoretically hard to verify.

3.9 Summary

In this chapter a detailed background and mathematical formulation of SVM was presented.

The two principles of error minimisation was covered in depth in the first section of the chapter.

The simplest form of SVMs, the maximum margin classifiers wasdescribed in more detail

and was also used to introduce a number of new terms and techniques that was latter used to

address the more complex model if SVMs, the non-linear SVMs.This chapter has also covered

how the inherent binary classifier is extended to multi-class classification and an overview on

the implementation details of SVMs. Finally, comparison ofSVMs with decision trees and

neural network was given followed by some relevant previousworks done on SVMs as a pattern

recognition tool and HIV drug resistance prediction.

In addition to the SVMs background and benchmark applications given so far, the next

chapter will motivate why SVMs are particularly an ideal choice for the pattern recognition this

research is solving.
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Chapter 4

The Experiment

4.1 Introduction

In the previous chapters, detailed background on the HIV biology and a brief discussion on

how this problem is best solved using pattern recognition techniques were presented. Differ-

ent approaches in pattern recognition with more emphasis onstatistical pattern recognition and

SVMs as a classification algorithm were discussed. The different pattern recognition techniques

discussed in Chapter 2 and Chapter 3 have been applied in a number of bioinformatics applica-

tion and all of them have registered good results. However, depending on the type of problem

at hand, the number of training patterns, the dimensionality of the problem, one technique

outperform the other with no one technique showing absolutesuperiority. A brief theoretical

comparisons of some of these techniques were also presented. The results extracted from pre-

vious research (Table 3.1) and the theoretical comparisonspresented reasons out why SVMs

are likely to perform better than the traditional pattern recognition techniques. This research

compared different pattern recognition techniques on the HIV drug resistance problem but it

is not the intention of this research to rank the different techniques in this problem. The main

objective of this work is to assess the performance of SVMs asa tool for HIV drug resistance

prediction.

In this Chapter a recap on the different techniques of HIV drugresistance testing and their

limitations, why the problem is well suited to be solved as a pattern recognition problem and

some of the benefits of using SVMs as a classification technique are presented before formu-

lation the research question. Performance evaluation of classification algorithms can be based

on a number of different metrics. This chapter discussed theapproach taken to measure the

performance of the different algorithms and motivates why the approach was chosen. One of

the major issues in pattern recognition problem is the inputencoding technique. Input encod-

ing have a major effect on the performance of the classifier. Input data and encoding is also

discussed in this Chapter. Moreover, this Chapter will give a detailed background on different

model selection, error estimation and generalisation methods.

In the next section the research question will be motivated and the corresponding research

hypothesis will be formulated. Section 4.3 gives description of the implementation of the dif-
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ferent classification algorithms used for this comparativestudy. Section 4.4 gives a detailed

background on different approaches on model selection, error estimation and generalisation.

Section 4.5 gives the evaluation criteria for this researchand motivates why a particular evalu-

ation criterion is adopted. Section 4.6 will describe the data to be used and motivate why this

data is used and the selected input encoding scheme. In section 4.7 an overview of the approach

to be taken will be given. Finally a Section 4.8 concludes thechapter.

4.2 Research question

The AIDS epidemic has already caused a major economic, political and social problems all

over the world specially in developing countries. Althoughthere are a number of reasons for

the failure in AIDS treatment, the high rate of mutation in the genetic code of the HIV virus

is considered the major cause and is the main focus on combating the epidemic. Mutations

are frequently exhibited on the genetic codes encoding the viral reverse transcriptase (RT) or

protease (PRO) proteins and some of these mutations are known to confer drug resistance.

Since not all mutations cause drug resistance the identification of those particular mutation

points known to confer drug resistance will have advantage both during drug designing and

clinical therapy of an HIV patient. The two ways of accomplishing this are phenotypic and

genotypic testing. In genotypic testing the viral reverse transcriptase and protease are sequenced

and checked for existence of mutations known to confer drug resistance and hence indirectly

predict the drug resistance behaviour of the HIV strain upontherapy.

The two approaches for drug resistance testing mentioned above have their advantages and

disadvantages compared to each other (for more detail see section 2.3.4). One of the advantages

of genotypic approach is that it is well suited for a computerised approach. This advantage is

the reason for the involvement of non-biological disciplines in addressing the drug resistance

problem. Some of the techniques adopted from other disciplines are expert systems and a num-

ber of pattern recognition techniques. These proposed and already implemented systems for

predicting the drug resistance behaviour based on sequenced reverse transcriptase or protease

of an HIV strain extracted from a patient have already improved pharmaceutical therapy of the

patients. However, these systems are still in a-work-in-progress stage and have a number of both

biological and computational limitations. Firstly, most of the existing application to predicting

HIV drug resistance are based on rule-based algorithms [Ravela et al. 2003]. These applica-

tions are designed to predict the drug resistance of an HIV strain based on the sequenced reverse

transcriptase or protease of the virus, highly rely on the biological knowledge available about

the drugs and sets of mutation points known to confer resistance to these drugs. Therefore,

the steady growth of mutation points causing drug resistance, due to failed retroviral therapy

is negatively affecting the performance of these systems. To address the effect of the newly

discovered mutations and incorporate the discovered biological information (about the drugs

and new mutation points known to confer drug resistance), redesigning the systems might be

required. Furthermore, as presented by [Ravelaet al.2003] this approach has resulted in differ-
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ent interpretations of the biological knowledge resultingin discordance between the different

interpretation algorithms. Secondly, the growing number of mutation points, the dimensionality

of the sequenced reverse transcriptase and protease genetic codes, the commonality of noise in

most biological data, together with the cost and politics ofdata generation, leave these tech-

niques to make the maximum out of a limited (usually small) training samples. As mentioned

before many of the already existing techniques (based on neural networks and decision tree) rely

on probabilistic density estimation as a statistical tool for prediction. This approach leaves these

techniques to suffer from the “curse of dimensionality due to the big ratio difference between

the dimensionality of the data and the number of available training samples (high dimensional

and limited samples). Furthermore, most of these techniques use the principle of empirical risk

minimisation (presented in section 3.7), which makes them highly vulnerable to over-fitting.

Thirdly, discovery of additional drugs will also impose additional restrictions on these systems.

To overcome the above specified computational limitations there are a number of well stud-

ied computational approaches that could be considered during model designing. Some of

these approaches are reducing the dimensionality of the patterns, introducing steps to avoid

over-fitting during the training process and incorporatingadvanced techniques to enable these

techniques to accommodate newly discovered mutation points. One can also explore differ-

ent pattern recognition techniques theoretically known toaddress the computational limita-

tions specified above and have shown good performance in other (related) pattern recogni-

tion tasks. This research considers SVMs, a pattern recognition technique which has been

outperforming other pattern recognition techniques in many benchmark applications and com-

putational biology problems. As specified in the previous chapter, the principle of structural

risk minimisation, the fact that, only support vectors determine the classification model and

the kernel trick have enabled SVMs outperform other patternrecognition techniques in a num-

ber of classification problem where the number of available samples is limited, high dimen-

sional and noisy. Moreover, SVMs are pattern recognition technique with a strong mathe-

matical foundation to achieve good generalisation while maintaining a high classification ac-

curacy [Ganapathiraju 2002]. For the above mentioned reasons, SVMs have been recently

applied as a classification tool in a number of pattern recognition problems. In section 3.8.1

a couple of applications of SVMs on problems in bioinformatics and computational molecu-

lar biology was presented. Additional applications of SVMson this domain can be found at

http://www.support-vector.net/bioinformatics.html .

In section 1.4 we have seen how HIV drug resistance prediction is mapped to a general

pattern recognition problem. Therefore, this research explores the performance of SVMs in

predicting the drug resistance behaviour of an HIV strain extracted from a patient to the different

reverse transcriptase and protease inhibitors based on thegenetic codes of the viral reverse

transcriptase and protease respectively. Furthermore, wewant to explore the possibility of

designing a model without incorporating the already existing biological knowledge to have a

model capable of accommodating not yet discovered mutations but contributing to the drug

resistance behaviour of the strain to these drugs. Following the above argument the research
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question for this study can be posed as follows:

Given a set of drug resistance data pairsS = {(x1, y1), (x2, y2), . . . , (xl, yl)}, where

x is a valid genetic sequence of HIV reverse transcriptase or protease for an HIV

strain andy = {Susceptible, Resistant} is the drug resistance behaviour of the

corresponding strain for the drug under investigation: canSVMs learn from these

examples and predict the drug resistance of unseen HIV strains?

To answer this question, the performance of SVMs was evaluated based on accuracy of

classification and the trade-off ability between the sensitivity and specificity (the performance

evaluation criteria is presented in section 4.5). Evaluating the performance of SVMs alone will

fall short of answering the research question. Therefore, in addition to SVMs, a number of

different pattern recognition techniques; namely: decision trees, neural networks and logistic

regression methods was investigated. Previous research byBeerenwinkelet al. [2002] showed

the capacity of decision trees for predicting HIV drug resistance based on the genetic sequence

of the viral protease or reverse transcriptase. Similarly,Draghici and Potter [2003] and [Wang

and Larder 2003] showed the capacity of neural networks for HIV drug resistance prediction

using the genetic sequence of the viral protease and reversetranscriptase and the presence of

mutation on specific positions on the viral protease known toconfer drug resistance respectively.

For these reasons, the answer to the research question is affirmative or othewise based on the

performance of SVMs incomparison to decision trees, neuralnetwork and/or logistic regression.

If SVMs perform equally or better than these techniques, theresearch question will be answered

affermative.

The performance of the different classification algorithmswas evaluated using the same

performance evaluation technique. The best configuration for each of these algorithms was

tuned. And finally comparison of performance was done. The search for the best configuration

for the different algorithms have resulted in different data pre-processing steps for the different

classification algorithms, however it did not compromise the performance comparison since the

focus of the research is accessing the performance SVMs in comparison to the other popular

pattern recognition techniques but not ranking the algorithms according to their performance.

4.3 Classification algorithms description

As presented in Chapter 2 and Chapter 3 pattern recognition/classification techniques can be

categorised differently based on the underlying background, the approaches taken, the assump-

tions made, etc. Furthermore, a single classification technique in turn can be implemented in

a number of different ways each making a distinct design decision and assumption based on

the underlying principles of the technique. Some implementations are designed to be more effi-

cient on large data sets while others are implemented to havefast training time. The underlying

background that lead to the different techniques is presented in the previous chapters. In this
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section, a brief description and a high level comparison of the different classification algorithm

used in this research will be presented.

The following is the list of algorithms used in this research:

1. Support Vector Machines (SVMs)

• SVMlight [Joachims 1999]

2. Neural Networks

• Feedforward Multilayered perceptron [Hagan and Menhaj 1994; Riedmiller and

Braun 1993]

3. Decision Trees

• C4.5 [Quinlan 1993]

4. Regression methods

• Penalised logistic regression [Zhu and Hastie 2004]

Support vector algorithms: SVMlight

As presented in Chapter 3 finding the optimal solution that satisfies the constrained optimi-

sation problem is computationally expensive. To address this problem, a number of differ-

ent implementation of SVMs that differ not only in the approach taken to divide and con-

quer the problem but also implemented for different platforms and problem size are proposed.

A list of different SVMs implementations and utilities can be found fromhttp://www.

kernel-machines.org/software.html . The different approaches taken to make this

CPU and memory intensive computation more efficient were discussed in Chapter 3. In this

section a brief description of SVMlight, an SVMs implementation used in this research will be

presented.

SVMlight written by Joachims [1999] is a C implementation of support vector machine

[Vapnik 1995]. SVMlight is reported to be the most popular implementation of SVM classifi-

cation technique for a number of reasons. Firstly it is capable of learning of ranking functions,

in addition to classification and regression. Secondly, it has scalable memory requirements.

SVMlight used least-recently-used caching strategy to trade-off between memory consumption

and training time. This property enables the algorithm effectively handle large range problems

with many thousands of support vectors. The core optimisation method used in this algorithm

is based on ‘LOQO’ algorithm, which is a software package implementing infeasible-primal-

dual path following method to solve nonlinear optimisationproblems [Vanderbei 1999, as cited

in Joachims [1999]]. Thirdly, it also provides methods for assessing the generalisation perfor-

mance using leave-one-out cross-validation technique. Italso gives both error rate and preci-

sion/recall on the training and test set

76



SVMlight has a method to classify unseen problems based on the constructed model. Unlike

many classification algorithms which return±1, SVMlight returns continuous-valued output

(−∞, +∞), which makes it more suitable than other SVM implementationfor computing the

area under the ROC curve.

For non-commercial use SVMlight is freely available athttp://svmlight.joachims.

org .

Neural Networks: Resilient and Levenberg-Marquardt methods

The most popular neural networks architecture over a wide range of real-world applications

including computational biology problems is the feedforward multilayered perceptorns with

backpropagation algorithm [Baldi and Brunak 2001]. As mentioned in Section 2.6 the stan-

dard backpropagation algorithm is too slow for real-world problems. The two alternative ways

of modifying this algorithm are heuristic approach or numerical optimisation. The Resilient

backpropagation implements the first approach while Levenberg-Marquardt backpropagation

algorithm that implement the later. Details of these two algorithms were presented in section

2.6.

The Matlab neural netwoks toolbox is used for this experiment.

Decision Trees: C4.5

As presented in Section 2.7 there are several heuristics methods in constructing decision tree

each differing in the approaches taken in the construction step. The decision trees algorithm

used in this research is C4.5 written by Quinlan [1993] as replacement for his original im-

plementation ID3 (iterative dichotomizer3rd). C4.5 is a top-down induction of decision tree

algorithm where for a given set of labelled examples the decision tree is constructed in a top-

down fashion. Unlike its predecessor this algorithm can handle both nominal and continuous

attributes.

The splitting criteria used by C4.5 is information gain ratio. C4.5 uses this important metric

to avoid the problem that arises from using information gainas a split criteria. Recall from

Section 2.7 that information gain favours attributes with distinct values. A fully grown decision

tree is the pruned to reduce the size of the tree and avoid possible over fitting. C4.5 prunes the

fully grown tree with out the need for a separate validation set. The C4.5 algorithm also has the

ability to handle missing attributes.

Release 8 of the algorithm can be found inhttp://www.rulequest.com/Personal/ .

Regression Model: Logistic regression

In this research we used penalised logistic regression methods. The version of penalised logistic

regression used in this research is proposed by Zhu and Hastie [2004] as an alternative for SVMs

for microarray cancer diagnosis problem. This algorithm uses Sequential Minimal Optimisation
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(SOM) proposed by Platt [1998] to make it computational feasible for problem with larger

attribute set.

The Matlab implementation of the algorithm is available athttp://www.tsi.enst.

fr/˜gfort/GLM/Programs.html

4.4 Model selection, generalisation and error estimation

Model selection is one of the primary steps in pattern recognition application. This step includes

selection of a particular pattern recognition approach (for example: statistical or structural pat-

tern recognition), a particular pattern recognition technique within the selected approach (for

example: neural networks or SVMs). Once the appropriate classification algorithm for the prob-

lem is identified, parameter tuning is carried out to determine the best configuration that gives

the best performance. The best configuration parameters which is likely give better performance

not only on the training sets but also unseen problems can be selected based on the theoretical

bound on generalisation or error estimation on the trainingset.

Generalisation and error estimation are important becausethey increase the confidence in

the model selected. There are a number of ways of error estimation and generalisation. Estimat-

ing the bound on the generalisation requires detailed theoretical information on the problem to

be solved such as the underlying distribution probability which is generally difficult to compute

from limited training samples. Therefore, estimating the bound is not an easy task for most

pattern recognition tasks. However, error estimation is easy to conduct compared to evaluating

the bound on generalisation. The simplest method of error estimation is cross-validation. This

method is used in this experiment and is described in detail.There are more sophisticated meth-

ods in deriving the bound on the generalisation error and tuning the classifier parameters. Such

methods of error estimation and generalisation methods include PAC bound, complexity penal-

isation and Bayesian model selection. However, these methods require a detailed knowledge

about the behaviour of the data and the underlying distribution. The underlying distribution of

the data is usually unknown and hence error estimation usingcross validation is used in many

practises.

4.4.1 Hold-out and cross-validation method

Cross validation is a model evaluation method that does not apply the entire data set to training

the selected model. In this method some of the available samples are removed from the training

set. Once the model under consideration is trained, those samples that were removed will be

used to test the performance of the trained model. This is thebasic idea behind the model

evaluation methods called cross validation. However depending on the nature of the division

of the training sample between the training and testing sample, we have three different cross-

validation techniques. These techniques will be describednext. The material in this section is

based on Goutte [1997], Plutowskiet al. [1994], Shao [1993].

78



Hold-out method

The hold-out method is the simplest kind of cross validation. The data set is separated into

two sets, called the training set and the testing set. The pattern recognition system will be

trained using the training set only. Then the system will be tested to classify those samples in

the testing set. The performance of the system will be evaluated by the mean absolute test set

error. One disadvantage of this method is the consistency ofthe result. The evaluation may

depend heavily on which points are used as a training set and which points are used as test set.

This means evaluation may be significantly different depending on how the available sample is

divided between the training set and the testing set.

k-fold cross validation

One way to improve the limitations of the hold-out method is thek-fold cross validation method.

In this approach the data set is divided intok disjoint subsets. Each time, one of thek subsets

is used as the test set and the otherk − 1 subsets are put together to form a training set. That

means the hold-out method is repeatedk times. The average error over allk trials will be used

to evaluate the model under investigation. The advantage ofthis method is that, unlike the hold-

out method, how the data gets divided is less significant. Every data point gets to be in a test set

only once, and gets to be in a training setk − 1 times. Hence the consistency of the resulting

estimate is increased ask is increased. One disadvantage of this method is that the training

algorithm has to be run fork times for each training-testing set combination and takesk times

as much computation to make an evaluation.

A variation of this method is to randomly divide the data intoa test and training setk

different times. This approach have the advantage that you can independently choose how large

each test set is and how many trials you average over.

Leave-one-out cross validation

Leave-one-out cross validation isk-fold cross validation taken to its logical extreme, withk

set to be equal ton, the number of data points in the set. This means the pattern recognition

system is trained on all the data except for one pointn separate times and a classification is

made for that point. As before, the average error is computedand used to evaluate the model.

The evaluation given by leave-one-out cross validation error is good, but more expensive to

compute than the other two methods.

So far we have seen the different techniques of cross-validation. Although leave-one-out

technique is the most powerful, it is also the most expensive. Therefore in this research, the

second variation ofk-fold cross-validation where 75% of the data will be used fortraining and

the remaining 25% will be used for testing. The performance will be the average of 10 trials.
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4.5 Performance evaluation criteria

The main objective of this research is to investigate the performance of SVMs relative to some

of the popular machine learning/classification techniques. Like most research on empirical

comparison of classification techniques, the major task of this research is investigating the best

classification technique/algorithm along with its optimalparameter sets that not only give the

best performance on the given data sets but also is likely to have better generalisation. In the last

couple of decades, a number of articles comparing the performance of different classification

techniques/algorithms on a wide variety of classification problem have been published. Al-

though the authors of these articles were able to claim that one classifier is better than the other

for the given task, not all of them agree on the dominant performance of one classifier/algorithm

over the rest. This is evidence showing that different classifiers are more appropriate for dif-

ferent tasks and one can not absolutely claim that one classifier is globally dominant. The

performance of a classifier depends on a number of factors such as the assumptions governing

the problem, the design of the classifier, and the dimensionality of the problem. Hence it is hard

to claim that one classification technique is generally better than others.

Traditionally performance of a classifier is measured in terms of the accuracy of prediction

defined as the percentage classified correctly out of the tested samples. Practically available

samples are divided into training and testing set. The performance of the classifier which is

trained using the training set is then measured based on the mis-classification rate on the test

set. However, this approach has a number of limitations due to the assumptions made about

the test data set [Provostet al. 1998; Fawcett 2003]. Accuracy or error rate as a measure of

performance provides an insight when the available data sets (training and testing sets) are

sufficiently large, the training and test sets are independent and the distribution of the patterns

across the different pattern classes is well balanced [Jainet al.2000; Ferriet al.2003]. However,

these assumptions are very hard to satisfy in most real-world problems where the number of

counter-examples are very few relative to the large set of patterns available. This problem even

becomes more emphasised in classification problems in the domain of computational biology

where data generation is not only costly but also the available data is likely to be highly skewed

(see Saitta and Neri [1998] for example). When the number of patterns belonging to one class is

proportionally very big relative to the other (say 99:1), a complete mis-classification of patterns

belonging to the class with fewer test pattern will not have asignificant effect despite a likely

overall poor generalisation ability of the classifier on unseen problem. In addition to this, using

accuracy as classification performance measure assumes equal misclassification cost or penalty.

This assumption limits the insight we have about the classifier, such as the type of error made

(sensitivity of the classifier) [Provostet al.1998].

There are a number of alternative approaches to address thisbias when evaluating the perfor-

mance of a classifier and making empirical comparison on classifier performance. One approach

is to evaluate the performance of the classifier on each pattern class separately. An alternative

approach is a technique originated in signal detection theory which is a graphical approach to
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visualise, organise and select classifiers based on their performance called Receiver Operation

Characteristics (ROC) [Provostet al.1998; Fawcett 2003]. Spackman [1989] is one of the early

adaptors of ROC in machine learning for comparing and evaluating different classification algo-

rithms [Fawcett 2003]. Following Spackman [1989] and otherearly adopters of this technique,

increasing number of researchers are applying ROC to evaluate and compare the performance

of machine learning algorithms on classification problems that are hard to satisfy assumptions

that makes the use of the traditional approach less appropriate [Fawcett 2003]. In this research

area under the ROC curve (AUC) will be used in conjunction withthe accuracy to measure and

compare the performance of the different classification algorithms used.

Application of the trained classifier will give us information showing the difference between

the true and the predicted class for the set of labelled patterns in the test set. For a binary (two

class) classification problem the information can be summarised in the four metrics listed below:

True Positive (TP): Number of correctly classified positive patterns

True Negative (TN): Number of correctly classified negative patterns

False Positive (FP):Number of misclassified positive patterns

False Negative (FN):Number of misclassified negative patterns

These four metrics can be effectively represented using contingency table or confusion ma-

trix as shown in Table 4.1. This matrix is a basis for many performance measures that combine

these metrics to ease comparison of classifiers.

Predicted Predicted
Positive Negative

Positive
Examples TP FN Pos (TP + FN)
Negative

Examples FP TN Neg (FP + TN)
PPos PNeg N

(TP + FP) (FN + TN)

Table 4.1: A contingency table or confusion Matrix

From Table 4.1, the row total “Pos” and “Neg” are actually positive and negative examples,

the column total “PPos” and “PNeg” the number of predicted negative and positive patterns

respectively. N is the total number of test patterns (N = Pos +Neg = PPos + PNeg). The numbers

along the major diagonals of represents correctly classified patterns while the off-diagonals are

the confusion between the two classes. Common performance metrics which gives meaningful
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measurements can be calculated from the confusion matrix:

error rate=
FP + FN

TP + TN + FP + FN

accuracy (1− Error rate)=
TP + TN

TP + TN + FP + FN

sensitivity (TP rate)=
TP

TP + FN

FP rate=
FP

FP + TN

Specificity (1− FP rate)=
TP

TP + FP

Some of the above metrics allows us to measure the performance of the classifiers with respect

to the individual classes. The two terms which are usually associated with ROC are sensitivity

and specificity, also known as recall and precision respectively. For classifiers with continuous-

valued output(−∞, +∞) (for example SVMlight, neural networks withtanh activation func-

tion), these terms are subjected to different values based on the threshold value (cut-off value

to label a pattern as positive or negative, it its value greater or less than the threshold value

respectively) chosen for classifier. In such cases the majordiagonals and the off diagonals of

the confusion matrix will have a different value based on thechosen threshold value. An ROC

curve, a two dimensional graph where FP rate is plotted on thex-axis and TP rate is plotted

in the y-axis represents all possible combination of TP rate and FP rates [Fawcett 2003]. An

example of ROC curve for three classifiers A, B and C is given inFigure 4.1.
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Figure 4.1: An ROC curve for three classifiers A, B and C

The ROC curve in figure 4.1 shows the performance of the three classifiers in terms of the

trade off between sensitivity and specificity. An ROC curve which is plotted on an FP rate - TP

rate space always passes through the points (0,0) and (1,1).At (0,0) the classifier has classified

all the test sets as negative. On the contrary, at (1,1) the classifier has classified all the test sets
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as positive. For a random classifier, the ROC curve will be a straight line connecting these two

points. For a perfect classifier the ROC curve is a curve connecting the three points ((0,0), (0,1)

and (1,1)). From the ROC curves given in Figure 4.1 it can be said that classifier A performs

better than a random classifier and both classifiers B and C. However, for any two classifiers

where the ROC curve intersects (Classifiers B and C from Figure4.1) it is not always easy to

compare the performance. It can be seen that both classifiershave a better performance than

a random classifier but it is hard to say B is better than C and vice versa. Depending on a

threshold value chosen (particular sensitivity) one is better than the other.

In such instances where the ROC curve crosses using the area under the ROC curve (AUC)

as a single number performance evaluator is an appropriate tool [Bradley 1997]. For a random

classifier the AUC equals 0.5 and for a perfect classifier it will be 1.0. Although it is possible

for a classifier with higher accuracy to have a lower AUC than one with lesser accuracy, AUC

has been voted as a better way of evaluating classifiers performance than accuracy [Ferriet al.

2003]. The algorithm used in this research to calculate the points on the ROC curve and the

area under the curve (AUC) is adopted from Ferriet al. [2003].

4.6 Data and input encoding

4.6.1 Data

Ideally, a large training and test data set for which the phenotypic drug resistance status of the

different samples was known would be used. Unfortunately, these are difficult to obtain in suffi-

cient quantity. Instead, a data set that has previously beenclassified by other researchers is used.

While not ideal, we emphasis that our objective is to evaluatemachine learning algorithms for

future mutations and drugs rather than to discover new biological knowledge for existing drugs

and mutations. The data set used has a high-degree of biological fidelity but more important, it

contains typical patterns and mutations. Thus, if the modelcan learn the mutations that others

have predicted or spotted, it can conclude that the machine learning technique can be used to

learn new patterns for new drugs and mutations.

This research compared the performance of SVMs, neural networks, decision trees and

logistic regression method on the HIV-1 sub-type B, common inEurope and Americas. There

is no reason to believe that performance of other sub-types would be different. The recognition

performance of these algorithms is tested by its ability to classify a given nucleotides sequence

as drug resistant or susceptible and their trade-off between sensitivity and specificity, which is

measured by the metric area under the ROC curve.

Because of the drugs used in the sample data, the genetic sequences of the viral protease

or/and reverse transcriptase were used. The genetic sequences for the protease and reverse

transcriptase of the HIV-1 virus used in this experiment arethe same set of sequences used by

Ravelaet al. [2003] in their investigation of mutation points responsible for the discordances

between different genotypic drug resistance interpretation algorithms. This data set comprises
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sequences of isolates from 2045 individuals each constituting position 1–99 of protease and

1–240+ of reverse transcriptase along with the corresponding drug resistance status labelled

asS for susceptible,I for intermediate andR for resistant for 15 different retroviral drugs ac-

cording to the different algorithms used in Ravelaet al. [2003] (some of the sequences contain

positions 1 – 250 for RT). These algorithms had in some cases classified some sequences differ-

ently. These discordances are reported to result from several frequently occurring simple muta-

tion patterns and small number of drug resistance mutationsin the cases of nucleoside reverse

transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs)

respectively. However, discordances in protease inhibitors (PIs) are results of a large number of

complicated mutation patterns [Ravelaet al.2003]. Therefore, to avoid these discordances, this

research considered drug resistance status assigned by HIVRT and Protease sequence Database

(HIVDB) (http://hivdb.stanford.edu ). A preliminary experiment has shown no per-

formance difference as a result of drug resistance algorithm selection.

As few of the test data sequences were labelled as intermediate, for this research, intermedi-

ate sequences are considered as resistant sequences. Table4.2 shows the final count of resistant

and susceptible sequences for the five selected drugs.

Drug category Drug Resistant (R) Susceptible (S)

PI IDV 884 1161
PI NFV 1037 1008

NRTI AZT 1090 955
NRTI D4T 1058 987

NNRTI NVP 1377 668

Table 4.2: Sequence distribution between resistance (R) andsusceptible(S)

4.6.2 Input encoding

The first step towards applying the different classificationtechniques used is pre-processing and

filtering of the selected data sets to meet the specific data representation requirement of these

algorithms. The sequences from Ravelaet al. [2003] are composed of the codons positioned 1

– 99 of the protease and 1 – 240+ of reverse transcriptase. Each sequence has a reading frame

stating from the first base in the sequence and hence the first (99 × 3 = 297) bases corresponds

to protease while the remaining (240+ ×3 = 720+) bases correspond to reverse transcriptase.

Therefore the first step was extracting part of each sequencecorresponding to the particular

drug category under investigation.

Mutations on different parts of the viral genome are responsible for drug resistance be-

haviour of the virus. Resistance to PIs are caused by exhibited mutations in the viral protease.

However, resistance to both NRTIs and NNRTIs are caused due to some mutations in the viral

reverse transcriptase. The first 297 nucleotides of the sequences are used for the drugs in the

protease inhibitors category. For the other two drug categories, namely NRTI and NNRTI, two
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alternative approaches were taken. The first approach takenwas considering the entire sequence

which is the combination of protease and reverse transcriptase and leaving the task of discrim-

inating those features that are not responsible for the resistance behaviour of the strain for the

particular drug for the classification algorithm. In the second approach, only part of the whole

sequence which belongs reverse transcriptase was considered. After removing the first 297 nu-

cleotides from each sequence to work with the protease inhibitors, the remaining sequence is

part of the original sequence that comprised position 1 – 240+ of the reverse transcriptase. Since

most of the mutation points responsible for drug-resistance for drugs in these two categories is

the first 240 codon positions of the reverse transcriptase, the remaining sequence after elimina-

tion the protease part had all the necessary information needed for this experiment. There is one

problem that could possibly arise when removing the first part of the sequence is the question of

open reading frames of the reverse transcriptase sequence (the remaining part of the sequence)

for those sequences where the protease might be shorter or longer that 297 nucleotides. To ad-

dress the possibility of such problem a preliminary sequence alignment was carried out and no

such problem was identified. Having done this, the second approach has resulted in a sequence

of 720 nucleotides long (240 codons). Thus, there is one set of sequence with the correspond-

ing drug resistance label for the protease inhibitors and another two sets for the nucleoside and

non-nucleoside reverse transcriptase inhibitors.

Designing a complete classifier includes identification of aproper pre-processing and post-

processing techniques beside selecting appropriate classification algorithm and tuning the cor-

responding parameters. Like most computational biology problems, the first pre-processing

step is encoding the nucleotides (character) sequence intoan appropriate vector (numeric) rep-

resentation that can efficiently work across the different classification algorithms used in this

research. The choice of the encoding technique affects the quality of information retrieved

from the raw data (the nucleotide sequences), and consequently the performance of the classi-

fiers. Therefore, when selecting an encoding technique a number of factors should be taken into

consideration. As presented in Wu [1997], when encoding sequences one needs to ask whether

to consider fixed or variable length of sequences, if the local or global information more impor-

tant, if the information has any positional dependency, if the intention is searching for signal or

content, etc. Recall that drug resistance is caused by exhibited mutations in a specific position

in the viral genome. Furthermore, not all mutations have thesame contribution to wards the

drug resistance behaviour of the strain. There are major andminor mutation points. To address

these underlying facts, data representation which can highlight the global position of the mu-

tation points and their positional dependency with other mutations is of interest is considered.

For this purpose the input encoding in this research is as follows.

The sequences in each data set were converted into vectors asfollows. Before converting

each sequence into an equivalent numeric representation, each sequence was first transformed

into a consistent nucleotide representation by substituting those nucleotide codes that represent

any two or more nucleotide bases. The conversion of these nucleotide codes into the bases was

done according to the IUPAC codes (see Table C.2 in Appendix C).Each set of 3 nucleotides
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makes up acodon, which encodes for part of the corresponding enzyme. We giveeach pos-

sible codon a numerical value using a standard numbering scheme. The conversion starts by

assigning an integer value for each of the nucleotide bases:A, C, U and G were assigned 0, 1,

2 and 3 respectively. With a numeric value assigned to each nucleotide base, the numeric value

of the codon is the sum of the integer representation of the each nucleotide base multiplied by

4i, wherei is the position of the nucleotide in the codon. For example, the codon AUG will be

0 × 42 + 2 × 41 + 3 × 40 = 11.

Using this scheme, each sequence was converted into a vector. The protease sequences

are 99-dimensional vectors (99 × 3 = 297) and the reverse transcriptase sequences are 240-

dimensional vectors (240 × 3 = 720). The vector representation of each sequence paired with

the corresponding drug resistance label makes up the data sets used in this research for training

and testing. This representation scheme allows us to detectmutations at which positions caused

drug resistance. Note that this particular input encoding in HIV drug resistance prediction task

has the advantage that it models both the global and relativeposition of mutations exhibited.

Given the vector representation of the above selected data sets, data sets were divided into

a training and test set for cross-validation. As described in Section 4.4, we randomly selected

75% of the data sets for training and the remaining 25% for testing. With this approach the

training set compromises 1500 sequences with the corresponding drug resistance profile for

each drug. The testing set contains 545 sequences. The random selection gives equal proba-

bility for each sequence and usually guarantees evenly distribution between the Resistant and

Susceptible classes relative to the overall distribution over the sample. 10 training and testing

sets were created for each drug in table 4.2.

4.6.3 Alternative input encoding

A lot of questions can be asked about the input encoding technique and we will not claim that

this is the best input encoding that can be used for this problem. However, we believe that the

input encoding used has done the job to answer the research question and had an advantage

compared to the other two approaches were tested as a pre-experiment.

The first alternative approach tested was a sight variation of the above mentioned scheme.

In this approach, the effect of giving different order of significance to the nucleotides in a codon

was investigated. In the above mentioned scheme, the first nucleotides the codon was the most

significant bit. In this alternative approach, the last nucleotide (ie. the third nucleotide) was

given the highest significance. With this scheme, the codon AUG which was equivalent to 11

in the above mentioned scheme will be equivalent to0 × 40 + 2 × 41 + 3 × 42 = 56.

The performance of the different classifiers on the data set with this input encoding scheme

was slightly lower than the performance with the above scheme. Furthermore, this input encod-

ing scheme did not produce a different ordering of the classifiers in terms performance. Besides

the slight performance advantage of the above scheme, thereis a biological explanation that

makes the above representation more favourable. As it can beseen from Table C.1 in Appendix

C, the most significant nucleotide is the first nucleotide in the codon encoding an amino-acid
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and the third nucleotide is the least significant (for example, both GAU and GAC encode the

amino-acid Aspartic acid (Asp).

The second alternative approach tested was direct sequenceencoding presented in Wu

[1997]. In this approach a vector of four units with three zeros and a single one was used for

a nucleotide. The four nucleotides was represented as 1000 (A), 0100 (U), 0010 (G) and 0001

(C). With this scheme, the dimensionality of the data is 12 times more than the two schemes

presented above. For example, the protease sequence which is 297 nucleotides long will have

a new dimensionality of 1188 vector components compared to the 99 dimensional of the above

schemes.

The average performace of the different classifiers with this input encoding scheme was

slightly better than the scheme selected for this research and presented in the previous section.

However, the models were less stable and the standard deviation was bigger. Furthermore,

similar to the above scheme, this input encoding did not result in a different ordering of the

classifiers in terms of performance. Besides the higher dimensionality and the unstable be-

haviour of some of the models, interpretation of the models in terms of mutation points was

more complicated. For example, with the selected input encoding scheme comparing the split

criteria with the mutations points known to confirm drug resistance is easier compared to the bit

encoding. Therefore, the above mentioned reasons, the input encoding scheme presented in the

previous section was selected.

4.7 Detailed methodology

The experiment reported in this dissertation compares the performance of four classification

techniques: SVMs, neural networks, decision trees and logistic regression. The performance

(as described in Section 4.5) of the each classification algorithm described in Section 4.3 was

tested in terms of the ability to classify the sequences for the different HIV strain described in

Section 4.6.1 as susceptible or resistant. As described in the precious section, the input data

was pre-processed to make it suitable for the different classification algorithms. These standard

input representation was used across the different classification algorithms. However, further

pre-processing such as normalisation of the vectors, dimensionality reduction was required for

some of the algorithms. These further pre-processing stepsare described in this section together

with the experimental setup for the different classification algorithms.

For SVMs and neural networks significant testing was done to find the best parameters for

this problem. For this phase of the research much focus have been given to neural networks and

decision trees because previous work has been done on drug resistance using neural networks

and decision trees. A thorough study is not conducted in the case of logistic regression.
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4.7.1 Support vector machines

The first set of experiments was done using SVMs. There is a general approach to use SVMs

as a classification tool, which can be effectively summarised in the following sequence of steps.

Having defined the problem set as a classification problem andprepared the training test where

our learning system is going to acquire its knowledge the next step will be kernel selection.

Kernel selection is based on the available prior knowledge or previous similar experiments or

in the absence of both empirical test on the different kernels from simple to more complicated

ones. For the selected kernels, the kernel parameters are then tuned based on the performance

of the trained learning system on the kept aside test data. Unseen objects are classified based

on the sign of the decision function. In this section we will describe the experimental setup

starting from the kernel selection step. As described in theresearch question and motivation

for the research, existing biological knowledge about the problem will not incorporated and

hence kernel selection is not based on prior knowledge aboutthe problem. Furthermore, to our

knowledge there is no other previous research on drug resistance prediction using SVM as a

classification tool. Hence, empirical testing is used to select the kernel and tune the respective

parameters.

In this experiment we used a base SVM kernel to normalise the encoded input before starting

training and testing with the other kernels. This means the data is transformed using normali-

sation kernelk(x.y) such that the data is contained in a sphere of unit radius.k(x, y) is defined

as:

k(x, y) =
x.y

√

(x.x)(y.y)
(4.1)

This transformation makes the data suitable for the domain-restricted kernels and simplifies the

generalisation and error estimation during optimisation.The data was further transformed using

the polynomial or radial basis kernel during the training process.

There are two parameters of interest for each kernel selected, the kernel parameter and

the regularisation constant. For the polynomial kernel (see equation 3.25) the parameters of

interest is the degree of the polynomiald. In this experiment polynomials of first to third

degree (d = 1, 2 and3) are investigated. The parameters of interest for the RBF kernel (see

equation 3.26) is the width of the kernel (γ). The values ofγ investigated in this research

are (γ = 0.1, 0.5, 1, 2, 5 and10). Different values for the regularisation constant (C), which

indicates the trade-off between the training error and the separating margin, are investigated for

each selected kernel parameter. The values of the regularisation constants are (C = 0, 1, 10, 100

and the default value). The default value for the regularisation is computed from the training

data during the learning process. The selection of the kernel parameters is done starting from

a simple dot product kernel to a higher degree polynomials and different RBF kernels. The

a couple of values for the degree of the polynomial kernel, the width of the RBF kernel and

the regularisation constant are selected with a view that, these values are enough to answer the

research question.
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4.7.2 Neural networks

The second set of experiments was done using neural networks. The network architecture used

in this research is the popular feedforward multilayered perceptrons with fully-connected neu-

rons and backpropagation learning. Neural networks with backpropagation learning has a num-

ber of parameters affecting its performance such as, the learning rate, the momentum term and

the architecture of the network. The network architecture is characterised by the number of hid-

den layers, the number of neurons in each layer, their activation function and so on. There are

different modifications to the standard backpropagation algorithms each with their advantage in

terms of memory usage, convergence speed and training set size. Two of these algorithms are

the Levenberg-Marquardt algorithm proposed by Hagan and Menhaj [1994] and Resilient prop-

agation algorithm proposed by Riedmiller and Braun [1993]. The modification to the standard

backpropagation algorithm adopted by these algorithm is theoretically best suited to certain

problems than other. However, the practical effect is not always in line with the theory. Hence

one needs to test these algorithms and determine the best forthe problem at hand.

One of the parameters that define the architecture of the network is the activation function.

The activation function is responsible for the reaction foreach neuron it is attached to as a

result of the input. Different activation functions have different input and output range and

hence might have different training time. Choosing the appropriate activation function(s) for

our problem at hand is another important step of this experiment. A number of preliminary

experiments will be carried out to choose the appropriate learning algorithm and activation

function before further network parameters are tuned.

The number of neurons in the input layer equals the dimensionality of the data and there

is only one output. However, the number of hidden layers and the number of neurons in each

layer should march the complexity of the classification problem. As described in Riedmiller

and Braun [1993] and numerous previous research, a network with two hidden layers can be

tuned to address any complex problem by choosing appropriate number of neurons in each

layer. There is a theoretical way of choosing the number of neurons. The number of neurons in

the hidden layers should be large enough to address the complexity of the problem but not too

large for the network to estimate the corresponding weight from the available training data. In

this experiment we will start with small number of neurons and increase the number of neurons

to obtain the best network configuration. Furthermore, depending on the learning algorithm, the

respective parameters such as the number of epochs, learning rate, momentum term, etc. will

be tuned to achieve better performance.

Like most pattern recognition algorithms, the performanceof the neural network is affected

by the large dimensionality and the representation of the data. As presented in section 4.6.2, the

order of magnitude of each attribute ranges from 0 to 63. Thismight be a source of problem

for some activation functions which are defined in a standarduniverse. The former problem

will be addressed by preprocessing the data using dimensionality reduction technique. The

dimensionality reduction technique used in this research is principal component analysis (PCA).

The dimensionality reduction is carried according to the recommendation by Jolliffe [1986].
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The latter is addressed by scaling (normalising) the data. The Neural Networks toolbox and

MatLab implementation of PCA is used in this research.

4.7.3 Decision trees

The third set of experiment was evaluating the performance of decision trees. Similar to the

previous two experiments, we started with converting the available training and test data into

a format suitable for the selected decision tree algorithm,C4.5. This algorithm has a module

to build a decision tree based on a given training set and evaluate the resulting tree on a given

test set. This module has a number of parameters, some general and others affecting the per-

formance. In this experiment the default value for all the parameters except one is used. The

parameter confidence factor (CF) affects decision tree pruning. A small value means heavy

pruning. During our experiment we will start with the default value (25%) and decrease the

value if the actual error of the pruned tree on the test is higher than the estimated error.

4.7.4 Logistic regression

The final set of experiment is evaluating the performance of logistic regression. In this ex-

periment we used Matlab implementation penalised Logisticregression with Ridge estimator

proposed by Zhu and Hastie [2004]. The recommended valued were used for all the parameters

and the range of the possible values for the regularisation parameter was set between 0.001 and

1000 in step of 0.1 following recommendations from previousresearch.

4.8 Summary

This work answered the question “can SVMs predict HIV drug resistance based on the genetic

sequence of the viral protease or reverse transcriptase”. To answer this question we will be

using a comparative approach and compare the performance ofSVM to other popular classi-

fication algorithms. The performance evaluation criteria used in this work is the accuracy of

classification and the area under the ROC curve. Previous researchers have argued that area

under the ROC curve is a better single value performance indicator hence more emphasis was

given for this value.

The performance of the different classification algorithmswill be evaluated using cross-

validation testing where randomly 75% of the data was used astraining and the remaining 25%

for testing. This procedure was repeated 10 times on different training-testing data sets and the

average performance is considered.

The results of these experiments is be presented in the next chapter
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Chapter 5

Results and Discussion

5.1 Introduction

Model selection can be carried out by analysing the theoretical bound on generalisation or by

performing empirical experiments and analysing the performance of the classifier based on a

given unbiased test sets. In this work the model selection iscarried out using cross-validation

technique. As discussed in section 4.5, the performance of the different classification algorithms

was evaluated in terms of the accuracy of classification and the area under the ROC curve (AUC)

based on cross-validation results as outlined in the previous chapter. In this procedure 75% of

the data randomly selected were used for the training. The accuracy and the AUC for the

different classification algorithms was then tested on remaining 25% of the data. The results

presented in this chapter are the mean accuracy and AUC over 10 trials. Each of the 10 trials

used different pairs of training and testing sets.

As described in the previous chapter, the main objective of this research is evaluating the

performance of SVMs in comparison to some of the other popular pattern recognition tech-

niques. Hence the conducted research was aimed at achievingthis by designing prediction

models for neural networks, decision trees and logistic regression and comparing them with the

designed SVMs model.

The remainder of this chapter is organised as follows. In thenext section, the performance

of SVMs as a function of kernel parameters and the regularisation constant will be discussed.

This section also gives general remark on SVMs and tries to relate some of our results with

the theory. In section 5.3 the performance of neural networks models is presented. Different

architectures and learning algorithms were investigated and this section presents the results for

the best configuration found. Moreover, the effect of dimensionality reduction is investigated.

Section 5.4 presented the performance of decision trees models followed by section 5.5 which

presents the performance of logistic regression models. The performance comparison of the

different classification algorithms and the finding of this experiment is discusses in section

5.6. Section 5.7 gives some remark on statistical significance test. Section 5.8 discusses the

limitations of the research and hints ways of addressing these limitations. Finally, the chapter

is summarised in section 5.9.
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The results for the different set of experiments are presented in following tables.

Description Table No Page No
SVM Polynomial kernel Table 5.2 Page 95
SVM RBF Kernel Table 5.5 Page 102

Table 5.3 Page 97
Table 5.4 Page 97

Neural networks Table 5.6 Page 104
Decision trees Table 5.7 Page 105
Logistic regression Table 5.8 Page 108
Selected Results Table 5.9 Page 108

Table 5.1: List to result tables

5.2 Performance of SVMs

The success around SVMs is highly attributed to the kernel trick which simplifies highly com-

plex real life problems by projecting the patterns into a higher dimensional feature space where

it can be solved with ease. Hence kernel selection is the critical part of SVM approach. As

presented in section 3.4 the three commonly used kernels arethe polynomial, RBF and sigmoid

kernels. Osunaet al. [1997] has pointed out that, with these kernels SVMs can emulate dif-

ferent previously well studied classifiers. The implementation of SVMs used in this research,

SVMlight, does not incorporate automatic selection criteria for thekernels or their correspond-

ing parameters. Hence, the task of selecting kernel(s) and tuning their parameters are left for

the expert designing the classifier.

Kernel selection is motivated by the information at your disposal. When enough prior infor-

mation is available about the problem, one can choose the best kernel that well suits the problem

or modify existing kernels by incorporating these information or design a specific kernel for the

problem. However in the absence of such information we are forced to make our kernel choice

based on previous research on similar domain or empiricallytest the available kernels. In this

research empirical testing using cross-validation is used.

The polynomial kernel is one of the most commonly used kernels. Depending on the degree

of the polynomial, the shape of the resulting boundary becomes more complicated. Hence

by tuning the degree of the polynomial either based on the estimated VC-dimension or by

assessing the generalisation error (for example cross-validation), the polynomial kernel can be

tuned to adopt the required decision boundaries. The RBF kernel is the most popular kernel

because of its capacity to generate a decision boundaries that can accommodate a wide range of

classification problems. The RBF kernel is best suited for a classification problem where one

class is enclosed by the other class. It can also classify simple linearly separable case, which

according to Keerthi and Lin [2003] can be considered a special case of RBF. For an SVM

classifier with RBF kernel the support vectors are the centres of the RBF andγ, which is the

width of the RBF, determines the area which is influenced by these support vectors [Vapnik
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1995]. The Sigmoid kernel which emulates the multilayered perceptron is a tricky one to use

since it satisfies the Mercer condition only for some values of the gain and the threshold [Vapnik

1995]. For this reason and its comparative poor performancecompared to the other two kernels,

the sigmoid kernel is less recommended by many researchers [Lin and Lin 2005]. However, it

is used for historical reasons. The Sigmoid kernel is not used for this research.

The model selection was done by tuning the kernel parametersfor the polynomial and the

RBF kernels. With the polynomial kernel we have tested different values for the degree of the

polynomial. Similarly, for the RBF kernel model, various values for the width of the kernel were

tested. For each of the polynomial or RBF kernel, we further tuned the models by selecting a

different value for the regularisation constant.

The tuning of these parameters was carried out using grid-search using cross-validation

techniques over the available samples. As pointed out in theprevious chapter we used 75% of

the data for training and the remaining 25% for test. The patterns for the training and testing

sets were selected randomly. These steps were repeated 10 times and the results presented are

the mean value over the 10 experiments.

5.2.1 Effect of polynomial kernel parameter on classification

The polynomial kernel (equation 3.25) has two free parameters that need to be tuned according

to the complexity of the problem: the degree of the polynomial d and the regularisation constant

C. While the degree of the polynomial controls the complexity of the classifier or shape of

decision boundaries, the regularisation constant controls the intensity or sharpness of these

boundaries. In other words the regularisation constant counts for the trade-off between the

width of margin of the classifier and the misclassification penalty. Therefore, model selection

for this kernel is determining a good value for bothd andC. To do this we have used grid-

search using cross validation technique ford = 1,2 or 3 andC in {default value, 1, 10, 100}.

The default value of the regularisation constant is calculated from the training set during the

training steps and equals

N
∑N

i=1 K(xi.xi)
(5.1)

whereK(x, y) is the chosen kernel (in this case the polynomial kernel)andN is the size of the

training set. The results for the performance of the SVMs classifier with polynomial kernel are

presented in Table 5.2 on page 95.

As it can be seen from the table the performance of classifier has increased as we increase the

degree of the polynomial except for the case that the defaultvalue is used for the regularisation

constant. However, the performance gain was not continuousfor all of the patterns and there

are instances where the performance has deteriorated. For NVP(PR) and NVP(PR+RT) when

C = 1 and for NFV whenC = 100 there was no improvement gained as we increased the

degree of the polynomial from two to three (see Figure 5.1 on page 94). This observation

is in line with the theory, that for a given classification problem, if effectively classified by
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a polynomial of lower degree, polynomials of higher degree are likely to generate identical

decision boundary. For example, if a classification problemis linearly separable, one can expect

the same classification boundary from a linear and quadraticand higher degree polynomial

kernel SVMs.

SVMlight is designed to optimise the generalisation in terms of accuracy of classification.

However, as mentioned above in this research we are giving more value to the AUC as a per-

formance measure. As you can see from the table there are instances where the accuracy of

classification has increased, however the AUC remained constant or decreases (for example

NVP(RT) and NVP(PR + RT) forC = 100). Hence when talking about performance gain as a

result of parameter tuning, both AUC and accuracy were considered.

Figure 5.1: Selected graphs (degree (d) vs Accuracy/AUC) showing the behaviour of SVMs as
a function of the polynomial kernel degreed. The solid lines in the graph show the accuracy of
the model, the broken lines show the AUC. These graphs are intended to show how the accuracy
of classification and the AUC are related as a function of the degree of the polynomial.

Similar to the degree of the polynomial, the SVM classifier has shown performance gain as

we increase the value of the regularisation constant keeping the degree of the polynomial fixed.

As can be seen from the table (for instance NFV) the performance increased from 92.66% accu-

racy and 96.96% AUC to 94.31% accuracy and 97.10% AUC as we increase the regularisation

constant from the default value to 10. However, there was no more performance gain as we fur-

ther increased the value of regularisation constant for thegiven polynomial degree. Although

the results presented in the table do not exhibit this behaviour consistently, it is expected to

happen as we further increase the regularisation constant for all patterns for a selected degree.

This is due to the fact that, once we reach a certain value for the regularisation constant that best
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degree (d) = 1 degree (d)= 2 degree (d)= 3
Drug Accu. AUC No. SV Accu. AUC No. SV Accu. AUC No SV
Regularisation constant = default
IDV 95.05 94.96 906 91.19 94.43 1335 95.05 94.97 905
NFV 92.66 96.96 956 79.08 95.67 1376 92.66 96.97 955
AZT (RT) 84.59 96.12 950 64.77 93.86 1486 84.59 96.12 949
AZT (PR + RT) 81.83 96.05 1032 63.12 93.44 1496 81.83 96.04 1030
D4T (RT) 85.14 88.41 971 69.36 86.69 1486 85.14 88.41 969
D4T (PR + RT) 84.22 96.70 1038 68.62 94.85 1496 84.22 96.70 1038
NVP (RT) 68.99 73.53 1020 68.99 73.55 1026 68.99 73.54 1022
NVP (PR + RT) 68.99 77.02 1021 68.99 76.95 1027 68.99 76.98 1019
Regularisation constant = 1
IDV 95.05 95.03 879 96.15 95.66 526 96.78 95.93 880
NFV 92.66 97.02 931 93.39 97.10 523 93.66 97.02 928
AZT (RT) 84.95 96.23 907 92.11 96.43 555 93.01 96.72 907
AZT (PR + RT) 82.94 96.16 987 92.29 96.37 636 92.29 96.16 986
D4T (RT) 85.14 88.45 929 92.29 89.38 573 92.29 88.45 929
D4T (PR + RT) 84.22 96.86 989 92.66 96.83 650 92.73 96.86 989
NVP (RT) 68.99 73.51 1020 72.66 74.31 1015 72.56 74.21 1022
NVP (PR + RT) 68.99 77.01 1022 72.11 77.07 1008 72.11 77.02 1020
Regularisation constant = 10
IDV 94.27 95.96 388 95.23 95.42 289 95.96 94.26 385
NFV 94.31 97.10 355 94.68 97.06 239 94.92 96.85 353
AZT (RT) 92.29 96.80 373 92.48 96.73 241 92.87 96.80 371
AZT (PR + RT) 92.29 96.50 440 92.48 96.67 276 93.01 96.50 440
D4T (RT) 93.02 96.69 489 94.13 96.61 333 94.13 96.68 491
D4T (PR + RT) 92.00 89.46 426 93.94 89.03 283 94.13 89.46 422
NVP (RT) 74.86 76.78 979 79.45 78.93 912 80.25 79.54 979
NVP (PR + RT) 74.68 77.74 970 82.02 79.01 887 82.23 79.55 970
Regularisation constant = 100
IDV 95.73 95.78 258 95.78 95.73 246 95.78 95.73 258
NFV 94.02 97.10 203 95.96 97.40 168 95.96 97.11 205
AZT (RT) 92.84 97.06 208 93.76 96.84 174 94.23 97.06 209
AZT (PR + RT) 92.48 97.13 233 93.76 96.85 208 94.17 97.44 233
D4T (RT) 94.13 88.79 240 94.86 89.33 220 95.05 88.79 240
D4T (PR + RT) 93.97 97.32 278 94.13 97.11 255 94.31 96.94 278
NVP (RT) 82.57 80.12 844 83.49 91.36 816 83.76 80.11 845
NVP (PR + RT) 83.49 80.16 814 83.41 81.25 766 83.54 80.17 816

Table 5.2: SVMs classifier performance with polynomial kernel
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address the trade-off, further increase will either have noor negative effect on the performance

of the classifier.

Another result that needs to be discussed is the number of support vectors. As you can

see from the table, the number of support vectors in most of the cases less than 50% of the

total number of training patterns. As we have mentioned in section 2.5.2 one of the major

problem that compromising the performance of the traditional classification techniques is the

curse of dimensionality. For a polynomial kernel of degreed, the dimension of the feature

space will be at least
(

n+d−1
n

)

[Cristianini and Shawe-Taylor 2000]. However, the ability of

SVMs to implicitly perform this higher dimensional classification task in the input space allows

the classifier to construct hyperplanes in this high-dimensional space without suffering the curse

of dimensionality and/or over-fitting (see Section 3.4). Asyou can also see from the table the

increase in the number of support vectors compare to the increase in the dimension of the

feature space (or increase the degree of the polynomial for afixed value ofC), is very low and

sometimes it even decreased.

Finally, one interesting aspect of support vectors that need to be discussed is the overlap

between the support vectors that shape up different hyperplanes. Based on the reported find-

ings by both Vapnik [1995] and Schölkopf [1997] on the commonality of support vectors among

different classification boundaries on the same problem, wetried to see this behaviour in this re-

search. Although numerical results are not presented, commonality on a number of the support

vectors for different classification hyperplanes for a particular drug with different polynomial

degree and regularisation constant was also witnessed in this reseach.

5.2.2 Effect of RBF Kernel Parameter on classification

The Radial Basis kernel (equation 3.26) is the most popular kernel for practical applications

since it is complex enough to address complex non-linear classification problems by transform-

ing the data into a higher dimensional space and simple enough to solve linear classification

problems, which is considered as a special case [Keerthi andLin 2003]. The classical approach

of estimating RBF classifiers involves finding the RBF centre using k-means clustering mecha-

nisms and then estimating the corresponding weight for eachcluster using error backpropaga-

tion. However, the SVM approach has a more elegant way of computing the centre, weight and

the threshold that results in best generalisation automatically [Scḧolkopf et al.1996].

There are two parameters of interest for the RBF kernel: the width of the kernelγ and the

regularisation constantC. Like the polynomial kernel our goal is to find a good value forboth

γ andC. These pair of values are also determined using grid-searchusing cross validation

technique. The complete result from these experiments is presented in Table 5.5 on page 102.

This kernel is most favourable when one class is totally encircled by the other as shown in

the Figure 3.9(b). However, as presented in Keerthi and Lin [2003] by varying the value of

either of these parameters, fixing the other one, we can achieve almost any kind of decision

boundaries including linear hyperplanes. The value ofγ is related to the diameter of the enclos-

ing boundaries, the smallerγ gets, the tighter the closed boundaries (circles). In otherwords,
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the smaller the value ofγ gets the smoother and more regular the decision boundaries.And for

a regularisation constantC which is a function ofγ, and by keepingγ close to zero, we can

have a linear hyperplane.

To aid our discussion selected results from Table 5.5 on page102 for three drugs: one from

each drug category are presented in Table 5.3 on page 97 and Table 5.4 on page 97. Similar

to the polynomial kernel, there was performance gain as a function of γ andC. As it can be

seen from the Table 5.3, (for example NVP(RT)) there was a performance gain as we gradually

increaseγ from 0.1 to 1. However, as we further increaseγ to 10 the performance deteriorates

(see Figure 5.2). It can also be seen from this table and Table5.5 on page 102 this is not an

isolated incidence.

IDV D4T(RT) NVP(RT)
γ C = 1 C = 100 C = 100

Accu. AUC No. SV Accu. AUC No. SV Accu. AUC No SV

0.1 89.72 94.04 1418 93.94 96.22 328 93.94 78.34 328
0.5 95.05 95.03 892 93.94 96.02 254 93.93 80.02 256
1 95.78 95.37 694 94.50 96.96 239 94.50 81.26 239
2 96.15 94.92 542 94.86 97.17 259 94.86 81.17 259
5 96.33 95.25 426 93.76 97.24 288 93.76 78.23 288
10 96.15 95.63 407 93.03 96.94 325 93.03 76.52 325

Table 5.3: Selected results for SVM with RBF kernel showing theeffect ofγ on the classifier
performance

IDV D4T(RT) NVP(RT)
C γ = 10 γ = 2 γ = 1

Accu. AUC No. SV Accu. AUC No. SV Accu. AUC No SV

default 96.33 95.52 473 92.66 96.61 725 91.01 77.63 816
1 96.15 95.63 407 92.29 96.55 593 92.29 77.52 752
10 95.05 96.97 335 93.94 96.35 309 93.94 78.55 343
100 93.76 96.76 333 94.86 97.17 259 94.50 81.26 239

Table 5.4: Selected results for SVM with RBF kernel showing theeffect ofC on the classifier
performance

Similar to the width of the kernel, performance gain was alsorecorded as a function of the

regularisation constant. It can be seen from Table 5.4 for the drug IDV, as we increased the value

of C from the default value (usually in the range(0, 1]) to 1, the performance increased from

94.33% accuracy and 95.52% AUC to 96.15% accuracy and 95.63%AUC. However, there was

also a saturation point where the performance started to decline (see Figure 5.3 on page 98). As

described in the previous section, this is also an indication that, some value of the regularisation

constant aroundC = 1 has already accounted for the penalty for misclassification. The same

result can also be seen from the Table 5.5. The result from Table 5.4 for the drugs D4T and NVP

shows that the performance increased gradually as we increased the value of the regularisation
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Figure 5.2:γ vs Accuracy/AUC graph for SVM with RBF kernel. The solid lines in the graph
show the accuracy of the model, the broken lines show the AUC.

Figure 5.3:C vs Accuracy/AUC graph for SVM with RBF kernel.The solid lines in the graph
show the accuracy of the model, the broken lines show the AUC.
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constant. However, as we further increase the value ofC we are expecting the performance to

deteriorate or show no gain after some value.

Finally, similar to the result for the polynomial kernel, the number of support vectors is not

as high as the dimensionality of the classification problem.The dimensionality of the feature

space for a Gaussian kernel is∞ [Cristianini and Shawe-Taylor 2000]. As we can see from

the tables (Table 5.3 and Table 5.4) the number of support vectors are once again less than

50% of the sample size. Commonality of support vectors among the different models was also

exhibited.

5.2.3 Remark on SVMs performance

In this research the performance of the SVMs classifier is assessed using the polynomial and

the RBF kernel. As we have discussed in the previous two section, the performance of the

classifier range from 68.99% Accuracy and 73.51% AUC for NVP to 96.78% accuracy and

95.93% AUC for IDV for the polynomial kernel. The performance also ranges from 68.99%

accuracy and 73.55% AUC for NVP to 96.15% accuracy and 95.63%AUC for IDV for the RBF

kernel. These performances were recorded using grid-search on range of values of the degree

of the polynomial and/or the width of the kernel and regularisation constant. The performance

for these models might be increased by doing extensive search around the point where the

best reported performance was recorded. Furthermore, the recorded performances are achieved

without incorporating any of the prior biological information about the mutation points and

the resistance they are known to confer to the input encodingor kernel designing process. By

incorporating these information, further performance gain might be recorded.

As mentioned previously, SVMlight is designed to optimise the accuracy of the classifier but

as you can see from the graphs in the previous section (Figure5.1, Figure 5.2 and Figure 5.3)

optimising the accuracy usually leads to optimised AUC. Thisobservation was also published

previously by Rakotomamonjy [2004]. Consider the highlighted results from the table 5.4 for

D4T and NVP have the accuracy 94.86% and 94.50% respectively. The AUC has a bigger

variance and equals 97.17% and 81.26% for these drugs respectively. These shows that the

AUC variance is higher than the variance in accuracy when thedata is skewed. This is in

agreement with the fact that AUC is more sensitive towards skewed datasets. The same result

was also reported by Rakotomamonjy [2004].

Dimensionality of the patterns under investigation is one of the major issues that compro-

mising the performance of traditional pattern recognitiontechniques. As you can see from the

table we have a pair of data sets for each of the drugs in the nucleoside and non-nucleoside

reverse transcriptase inhibitors category. The difference in the dimension between each pair of

data is 99 attributes (the 99 codons belonging to the protease part of the sequence). This dimen-

sionality difference together with the fact that SVMs constructs classification hyperplanes in a

high dimensional feature space, one can expect a huge performance difference of a model on

these two datasets. As described in section 2.5.2 to avoid curse of dimensionality and maintain

the performance, the number of training sample was supposedto be increased to match the di-
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mensionality difference. The reported result in the previous sections has also showed no much

performance loss as a result of dimensionality. These showsthe capacity of SVMs to handle

high dimensional classification tasks without the need for comparably large data sets.
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c =default c = 1 c = 10 c = 100
Drug Accuracy AUC No. SV Accuracy AUC No. SV Accuracy AUC No. SV Accuracy AUC No. SV
γ = 0.1
IDV 95.05 95.06 870 89.72 94.04 1418 95.78 95.39 683 95.60 94.61 331
NFV 92.66 97.45 912 74.50 95.12 1446 92.84 97.09 698 94.50 96.81 282
AZT (RT) 85.14 96.06 898 66.24 94.12 1452 92.11 96.46 732 92.11 96.50 284
AZT(PR + RT) 83.67 96.03 978 64.04 93.37 1494 88.99 96.24 802 92.11 96.55 342
D4T (RT) 85.14 96.25 914 70.83 94.69 1450 92.29 96.34 738 93.94 96.22 328
D4T(PR + RT) 84.95 96.68 980 68.62 94.80 1490 87.89 96.82 805 93.94 96.94 396
NVP (RT) 85.14 77.03 914 70.83 77.23 1450 92.29 77.06 738 93.94 78.34 328
NVP(PR + RT) 68.99 73.55 1023 68.99 73.41 1024 70.09 73.56 1024
γ = 0.5
IDV 95.23 95.3 806 95.05 95.03 892 95.96 94.35 398 95.60 95.74 266
NFV 92.84 97.63 843 92.66 97.03 933 94.31 96.99 366 95.96 97.37 212
AZT (RT) 87.34 96.31 863 85.14 96.15 914 92.11 96.65 371 92.66 96.93 207
AZT(PR + RT) 85.69 96.15 926 83.12 96.10 911 92.11 96.41 455 92.66 97.02 243
D4T (RT) 85.5 96.45 867 85.14 96.42 933 93.94 96.46 426 93.94 96.02 254
D4T(PR + RT) 86.24 97.23 937 84.59 97.27 1000 93.21 96.55 497 93.94 97.34 286
NVP (RT) 85.5 77.25 867 85.14 77.37 933 93.94 77.76 426 93.94 80.02 254
NVP(PR + RT) 69.36 73.59 1023 68.99 73.52 1019 74.86 76.8 979 82.02 79.97 876
γ = 1
IDV 95.23 95.46 759 95.78 95.37 694 95.78 94.85 340 95.23 95.90 260
NFV 92.84 97.54 769 93.03 97.52 701 94.50 97.14 290 96.15 97.49 203
AZT (RT) 91.93 96.44 809 92.11 96.56 745 92.11 96.58 289 93.39 97.21 193
AZT(PR + RT) 86.79 96.32 880 88.62 96.35 812 92.11 96.58 353 92.66 97.10 226
D4T (RT) 91.01 96.48 816 92.29 96.54 752 93.94 96.31 343 94.50 96.96 239
D4T(PR + RT) 86.97 97.39 881 88.26 97.37 819 93.94 96.62 401 94.50 97.18 288
NVP (RT) 91.01 77.63 816 92.29 77.52 752 93.94 78.55 343 94.50 81.26 239
NVP(PR + RT) 70.09 73.56 1016 70.09 73.65 1017 76.88 78.38 958 82.20 80.16 869
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c =default c = 1 c = 10 c = 100
Drug Accuracy AUC No. SV Accuracy AUC No. SV Accuracy AUC No. SV Accuracy AUC No. SV
γ = 2
IDV 95.78 95.17 664 96.15 94.92 542 95.78 95.4 310 94.13 96.65 268
NFV 93.03 97.07 668 93.39 97.12 531 94.86 97.43 258 95.96 97.75 200
AZT (RT) 92.29 96.55 715 92.11 96.56 575 92.29 96.71 263 93.76 97.46 192
AZT(PR + RT) 89.36 96.36 791 91.93 96.43 658 92.29 96.72 309 93.21 96.71 236
D4T (RT) 92.66 96.61 725 92.29 96.55 593 93.94 96.35 309 94.86 97.17 259
D4T(PR + RT) 89.17 97.34 791 92.48 96.86 672 93.94 96.61 372 93.58 97.11 303
NVP (RT) 92.66 78.05 725 92.29 77.99 593 93.94 80.02 309 94.86 81.17 259
NVP(PR + RT) 70.09 73.74 1020 72.66 74.15 1021 79.27 79.09 935 81.83 79.41 886
γ = 5
IDV 96.15 95.28 252 96.33 95.25 426 95.05 96.43 312 94.13 96.84 291
NFV 93.39 97.11 508 94.13 97.54 397 95.96 97.93 251 95.41 98.14 227
AZT (RT) 92.29 96.53 543 92.11 96.55 408 92.66 97.07 246 94.13 96.64 230
AZT(PR + RT) 92.11 96.48 652 92.11 96.51 513 92.66 97 303 93.21 97.16 297
D4T (RT) 93.03 96.64 565 93.94 96.50 460 94.13 96.85 291 93.76 97.24 288
D4T(PR + RT) 92.66 97.40 658 93.21 96.76 538 94.31 97.47 351 92.11 96.81 353
NVP (RT) 93.03 78.11 565 93.94 78.80 460 94.13 80.84 291 93.76 78.23 288
NVP(PR + RT) 73.39 74.72 1032 73.94 76.53 1016 81.10 78.83 937 77.43 74.96 928
γ = 10
IDV 96.33 95.52 473 96.15 95.63 407 95.05 96.97 335 93.76 96.76 333
NFV 94.5 97.12 434 94.86 97.79 369 95.78 98.2 274 95.78 98.24 249
AZT (RT) 92.29 96.54 444 92.11 96.56 356 93.21 97.38 259 94.13 96.18 274
AZT(PR + RT) 92.29 96.49 565 92.11 96.45 469 92.84 96.52 344 93.39 97.2 347
D4T (RT) 93.76 96.60 485 93.94 96.54 417 94.68 97.16 324 93.03 96.94 325
D4T(PR + RT) 93.39 97.39 590 94.13 97.18 504 94.31 97.19 386 92.29 96.68 405
NVP (RT) 93.76 78.92 485 93.94 79.73 417 94.68 80.45 324 93.03 76.52 325
NVP(PR + RT) 73.94 75.76 1034 76.15 77.25 1012 79.63 77.37 989 74.13 73.15 971

Table 5.5: SVMs classifier performance with Radial Basis Function (RBF) kernel
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5.3 Performance of neural networks

The performance of a neural network is highly affected by itsarchitecture. Some of the factors

defining the architecture and hence affecting the performance of a neural network model are:

the connection type, the learning or training algorithms, the number of hidden layers and the

number of neurons in them, the activation functions, learning rate, initial values of the weight

and the training stopping criteria. Although we did not perform exhaustive search for all of these

factors affecting the performance, in this experiment we have tried different network architec-

tures with different numbers of neurons in the hidden layer,activation function and learning

algorithm. The architecture were chosen using empirical testing as there is no automatic way

of selecting a network architecture for a given problem.

In search of a simple network architecture which is complex enough networks with one

hidden (input layer, one hidden layer and output layer) and two hidden layer architectures were

tested. There were no performance difference between thesetwo architectures and hence an

architecture with one hidden layer network was used as it convergence faster. The number of

neurons in the input layers equals the dimensionality of thedata and the network has one outout

(the output layer has one neuron). Different number of neurons in the hidden layer were tested

starting with a simple network with 5 neurons. The number of neurons were increased by 5

until no performance gain was recorded and computational time increased highly (sometimes

longer than an hour). For most of the drugs, architecture with 10 – 15 neurons were complex

enough.

For each architecture, different learning algorithms werealso tested. The three learning

algorithms tested are standard backpropagation, Resilientbackpropagation and the Levenberg-

Marquardt algorithm. Each of these learning algorithms have their theoretical pros and cons.

However, empirically testing is required to see their perform on the problem at hand. For this

experiment, the Levenberg-Marquardt algorithm was selected. This algorithm was the best in

terms of performance, convergence and memory usage. Similarly different activation functions

were tested and log-Sigmoid transfer function was selected. Finally, feedforward neural net-

works with fully connected neurons and log-sigmoid activation function were used.

The performance of these architectures were evaluated on the same data sets with the iden-

tical input encoding technique with the SVMs model. However, the data was further pre-

processed to make it more suitable for neural network model.The data was normalised in a

such away that it will have zero mean and unit standard deviation. The data was then divided

into three sets, where 50% is used for training, 25% for validation and the remaining 25% for

testing. Each experiment was repeated 10 times and the mean accuracy and AUC is presented

in Table 5.6 on page 104.

As it can be seen from Table 5.6 the performance of the networkhas reduced as the dimen-

sionality of the data increased. The mean accuracy of the network on the protease inhibitors is

between 89% and 91%. However, the performance is reduced to the range 82% to 84% for the

AZT and D4T as a result of increase in the dimensionality of the patterns. The performance was
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Original dimensionality Reduced Dimensionality
Drug Accuracy AUC Accuracy AUC
IDV 89.75 91.76 89.91 86.76
NFV 91.74 95.31 78.90 87.51
AZT (RT) 82.57 87.79 82.20 88.57
AZT( PR + RT) 82.02 87.70 59.63 60.94
D4T (RT) 84.34 91.85 84.22 92.25
D4T( PR + RT) 82.33 87.09 60.37 54.80
NVP (RT) 69.72 68.93 70.49 69.50
NVP( PR + RT) 64.77 71.10 68.99 47.06

Table 5.6: Performance of neural networks model

further reduced to the range 64% to 69% for NVP due to the higher dimensionality of the data

and its relatively skewness. Similar to SVMs algorithm, theLevenberg-Marquardt algorithm is

accuracy optimised, however it also optimises AUC in most ofthe cases.

To address the performance loss as a result of dimensionality increase, we performed one

more pre-processing technique to reduce the dimensionality of the data. For these task we used

principal component analysis. As recommended by Jolliffe [1986] we reduced the dimension-

ality of the data up to 90%. The data was then reduced to 2 or 3 dimensional patterns. As we

have done in the experiment with the original dimensionality, the data was divided into training,

validation and test sets and the mean accuracy and AUC over 10repeats of the each experiment

is given in Table 5.6.

As it can be seen from the table there is no performance gain asa result of dimensionality

reduction except for NVP(RT). The reason for these reduced performance could be the informa-

tion loss due to dimensionality reduction. Remember that thedata have discrete representation

with each numeric value representing one of the 20 amino acids. Hence, dimensionality re-

duction we might have caused some valuable information to belost. From the performance on

AZT(PR+RT), D4T(PR + RT) and NVP(PR + RT) it can be seen that theinformation loss was

even higher for these data sets.

5.4 Performance of decision trees

In this part of the experiment we generated decision tree models that describes the drug resis-

tance profile of an HIV strain in terms of the numeric composition of the vector, which in turn

represents the different amino acids composition of the enzyme targeted by the drug. To esti-

mate the prediction power of the decision tree model we performed 10 independent tests, each

time we used 75% of the data for training and the remaining 25%for testing. The result for the

performance of this model is given in Table 5.7 on page 105. The result gives a mean number

of interior nodes of the tree, number of leaves of the tree, accuracy of prediction and AUC over

the 10 experiments.

Each training session resulted in one decision tree for eachdrug. Most of the resulting
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Drug No. Interior No. Leaves Accuracy AUC
vertex

IDV 16 17 97.06 92.70
NFV 6 7 97.06 94.43
AZT (RT) 14 15 96.33 93.41
AZT (PR + RT) 18 19 94.86 90.96
D4T (RT) 29 30 93.58 88.29
D4T (PR + RT) 29 30 91.93 85.39
NVP (RT) 25 26 94.31 85.52
NVP (PR + RT) 25 26 94.68 85.99

Table 5.7: Performance of pruned C4.5 classification algorithm

P90

R P30

R P82

P82 P46

P82 R R S

R S

≤11 >11

≤2 >2

≤54 >54

≤9 >9 ≤9 >9

≤5 >5

Figure 5.4: Example Decision tree for NFV. The label of the interior nodes refers to the position
of the codon in the sequence (for example P30 means amino acidat position 30) and the label
of the leaves indicated the drug resistance property of the strain
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P90

R P30

R P82

R S P46

R S

M

N

T/A I

I

Figure 5.5: Biologically interpreted decision tree for NFV given in Figure 5.4. The label for
the edges represents the amino acid (codon) at the position give in the node above it. M =
Methionine(AUG), T = Threonine(ACC), N = Asparagine(AAU), I = Isoleucine(AUC) and
A = Alanine(GCU) (see Table C.1 in Appendix C)

decision trees were simple with the most complicated one having an average of 29 interior

nodes (see Table 5.7). An example of a decision tree for the drug NFV is given in Figure 5.4.

This tree is one of the 10 trees generated for this drug and is only selected as an example because

it has the average tree size. The biological interpretationthe decision trees is not in the scope

of these research and requires deep biological knowledge. However, there are some biological

aspects of these trees we want to discuss. For each of the interior nodes of the resulting trees

for IDV, NFV, AZT(RT), D4T(RT) and NVP(RT) we tried to compare if these mutation points

are previously reported. We have found (result not shown forall) that most of the interior

nodes are reported as significant mutation points. For example, for the drug NFV (decision

tree given in Figure 5.5) all four of the interior nodes P30, P46, P82 and P90 are identified as

positions associated with drug resistance1 (see Beerenwinkelet al. [2002] and Drug resistance

summaries onhttp://hivdb.stanford.edu/index.html ). However, not all of the

position associated with drug resistance are interior nodes on our tree. For example position

71 of the protease sequence is indicated as a position associated with drug resistance to NFV

by Beerenwinkelet al. [2002] does not appear as a split criteria in our tree. The absence of

these and other positions as an interior node from our tree might be due to a number of reasons.

Firstly, the number of samples in our data set associating drug resistance with these positions

might be very few. Secondly, most of the mutation patterns are correlated and hence might be

ignored as a split criteria. On the contrary, we have also seen positions which are not previously

associated with mutation to the particular drugs appear as an interior node. For example, some

1The mutation related to these positions are 30N, 46I, 82A, 82T, 82I, 90M
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positions inside the protease part of the sequence have appeared as an interior node for the

decision tree for D4T(PR + RT). This phenomenon is very hard to reason out without further

clinical study. However, it has been argued by a number of researchers that one of the limitations

of current clinical research is that only an isolated gene isstudied during drug design. And there

might be a possibility that these positions have an effect inthe drug resistance behaviour of the

drug.

The result shown in Table 5.7 gives the average performance of the pruned tree. During the

experiment we first constructed the unpruned tree and then each of these trees were pruned using

information gain ratio criterion. We tested different values for pruning confidence factor in order

to prevent both over and under fitting. As it can be seen from table we have found accuracy in

the range 91.93% to 97.06% and area under the ROC curve in the range 85.29% to 94.43%.

The variation of performance between the decision tree models for D4T(RT)and D4T(PR +

RT), and AZT(RT) and AZT(PR + RT) might be due to the codons from protease which are

used as a split criteria for decision trees for D4T(PR + RT) and AZT(PR + RT). However, the

performance variation between NVP(RT) and NVP(PR + RT) is very small compared to the

previous two. This variation in the performance between thetwo models of decision tree for

NVP might be due to the reason than there is only one position belonging to protease which has

occurred as a split criteria deep inside the tree (decision tree not shown).

The variation in the performance is not in contradiction with the argument made in the above

paragraph about the possible effect of protease mutation indrug resistance behaviour of reverse

transcriptase inhibitors. The main reason behind this variation might be that the data used in this

research is already classified with drug resistance prediction algorithm that considered protease

or reverse transcriptase genes alone for the respective inhibitor drug resistance prediction.

Finally, the high performance rate of the decision tree model together with the confirma-

tion of most interior nodes as positions associated with drug resistance can be considered as a

confirmation for input encoding technique used.

5.5 Performance of logistic regression

The final part of the experiment was performance evaluation of logistic regression techniques.

As mentioned in Section 2.8 the choice of an optimal value forthe ridge parameter is crucial.

It was also mentioned that cross-validation is the most successfull way of estimating it. Hence,

like the rest of the experiment, we also used 75% of the data randomly selected for training and

the remaining 25% for testing. The result given in Table 5.8 is the mean value for the accuracy

and the AUC over 10 experiments.

In this part of experiment we used logistic regression with ridge estimate. Different values

for ridge parameter were tested. The results presented in the table are the best performance

recorded. The accuracy for logistic regression model ranges 75.78% to 93.39% and AUC ranges

from 50.96% to 85.06%.
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Drug Accuracy AUC
IDV 92.66 85.06
NFV 93.39 83.58
AZT (RT) 81.10 78.24
AZT (PR + RT) 84.40 78.01
D4T (RT) 80.55 65.37
D4T (PR + RT) 80.38 63.31
NVP (RT) 75.78 46.26
NVP (PR + RT) 77.98 50.96

Table 5.8: Performance of logistic regression

5.6 Discussion

Evaluation of different algorithms usually leads to a biased ranking of the algorithms. As spec-

ified in section 4.4, theoretical estimation of the generalisation ability of different algorithm re-

quires deep knowledge about the underlying distribution ofdata. These information is usually

not available hence researchers are forced to find alternative approach that can give unbiased

estimator of the true error rate of a classifier. When the number of training and testing pat-

terns are limited, a single train-and-test experiment willresult in a misleading information. To

avoid this problem and get unbiased estimate on the performance of the different algorithms,

this research used cross-validation. The performance for each of the different classification al-

gorithms is given in Table 5.9. The results show that SVMs produce the best results in all cases.

Overall, decision trees were the second best (except for NVP). The performance of the different

models on NVP is relatively poor compared to the other drugs.This might be due to the relative

skewness of the data sets for this drug. Neural networks performed well compared to logistic

regression but was inferior to the other two classifiers.

SVM NN DT Logistic Reg
Drug Accu. AUC Accu. AUC Accu. AUC Accu. AUC
IDV 96.33 95.52 89.75 91.76 97.06 92.70 92.66 85.06
NFV 96.15 97.49 91.74 95.31 97.06 94.43 93.39 83.58
AZT (RT) 94.13 96.64 82.20 88.57 94.86 90.96 81.10 78.24
AZT (PR + RT) 93.21 96.64 82.02 87.70 96.33 93.41 84.40 78.01
D4T (RT) 94.86 97.17 84.34 91.85 91.93 85.39 80.55 65.37
D4T (PR + RT) 93.58 97.11 76.33 84.09 93.58 88.29 80.38 63.31
NVP (RT) 94.50 81.26 70.49 69.50 94.31 85.52 75.78 46.26
NVP (PR + RT) 82.20 80.16 64.77 71.10 94.68 85.99 77.98 50.96

Table 5.9: Performance of the different classification algorithms

Decision trees had a slightly better accuracy than SVMs on almost all data sets however,

SVMs have overall better area under the curve which means theSVM models have an overall

better trade-off between sensitivity and specificity compared to decision trees (see the graphs

in Figure 5.6 and 5.7). There can be a number of reasons for theimpressive performance of
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decision trees. Firstly, as we have mentioned in section 5.4the training and testing set was

previously classified using a knowledge based approach, hence best suits decision tree model.

Secondly, the discrete data encoding can be argued to suit the decision tree model than SVMs.

Figure 5.6: Accuracy of the different classifiers

Comparing the performance of SVMs and neural network, it can be seen from the table

that neural networks were outperformed by SVMs on all datasets (see the graphs in Figure 5.6

and 5.7). This might be attributed to the dimensionality of the data compared to the number of

available training samples and the loss of information during dimensionality reduction. As we

have mentioned in section 5.4 and Chapter 2, mutation points complement each other to cause

drug resistance. While some mutations are major and cause resistance alone, others are sec-

ondary and needs the existence of other mutations to cause drug resistance. That means these

attributes are highly correlated and might be given lower rank during dimensionality reduction

using principal component analysis. Besides its performance, SVMs converged rapidly com-

pared to neural network even on the reduced dimensionality.The results also shows that the

SVM models also outperformed the logistic regression models.

Although there are no previous research known to us which used SVMs to directly predict

HIV drug resistance, to check the performance of our model wemade comparison to the SVM

regression model by Beerenwinkelet al. [2003a], the decision tree models by Beerenwinkelet

al. [2002] and the neural networks models by Draghici and Potter[2003] and Wang and Larder
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Figure 5.7: Area under the ROC curve of the different classifiers

[2003].

The difference in the size of the data sets used, the error estimation techniques and the test

method are different and makes direct comparison of our models with models in previous work

difficult. The SVMs models for this research can be compared positively to SVMs model by

Beerenwinkelet al. [2003a] where SVM regression is used to predict the genotypic resistance

from phenotypic resistance. Similarly the decision tree models for this research produced a

better performance than the decision tree models presentedin Beerenwinkelet al. [2002] in

all of the five drugs. Comparing our neural networks models with the neural networks models

in Draghici and Potter [2003] our model performed better than the single network model of

Draghici and Potter [2003]. However, the performance of theneural network model by Wang

and Larder [2003] on one drug in the protease inhibitor category was slightly higher than what

we have achieved which might be attributed to the incorporated previous knowledge about the

drugs.

A key result is minimal biological knowledge or expert knowledge was used (we only used

the fact of what the drug was targeted at to select the generalgenomic region to study). We

do not wish to downplay the contribution that expert knowledge can make to understanding

the mutation process (after all, we are only using the one-dimensional knowledge given by

the genomic sequence, when the virus and its RNA/DNA are both complex three dimensional

objects). However, these results show that machine learning can significantly complement and
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assist the work of human experts working on the virus.

5.7 Statistical significance

It has become a tradition to report statistical significanceif a two-tailed, paired t-test produces a

p-value less than some significance level (usually 0.05) [Salzberg 1999]. According to Salzberg

[1999], these statistical tests should be used very carefully when used for classifiers compari-

son as they are not designed for computation experiments. Furthermore, Salzberg [1999] has

highlighted following problems:

• The t-test assumes that the test sets are independent for each algorithm. In this research

cross-validation with random partitioning of the data set between training and testing was

used. And the different algorithms are trained and tested onthe same data set. This means

that the test sets share some of the patterns and hence are notindependent. Dietterich

[1996, as cited in Salzberg [1999]] has pointed out that thishas a “high probability of

Type I error . . . and should never be used”.

• The use of wrong p-value finds statistical significance wherethere is none. This is usually

addressed by making adjustment to the significance level called Bonferroniadjustment

provided that the experiments are independent of one another.

Salzberg [1997] highlighted k-fold cross validation as a recommended approach, but has also

emphasised that it will not produce valid statistics because the test data are interdependent.

Recommended alternative approaches can be found in Salzberg[1997], Salzberg [1999] or

[Gascuel and Caraux 1992]. For this research, we have chosen to present the performance

of the different classifier graphically as given in Figure 5.6 and Figure 5.7.

5.8 Limitations of the research

The results achieved in this research are not without their limitations. Some of the limitations

can be easily addressed while the others are more complicated and costly. One of the limitation

is the availability of the data. As stated in the introduction section, our wish was designing

a model without incorporating the existing biological knowledge. To do this one needs a pure

phenotypic HIV drug resistance data which is very expensiveto generate, has a very low quality

as a computational data and might present a different level of difficulty.

Another limitation is number of training samples. Again dueto the cost of data generation

and the politics behind patient-doctor privilege it is always hard to collect a large number of data.

As an example due to the small number sequences labelled intermediate (I) we were forced to

perform two-class classification rather than multi-class classification. Another limitation that

needs to be addressed is the input encoding technique. In this research, an input encoding

technique used converts the patterns in to a discrete vector. This encoding might be well suited
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for one algorithm more than the other and might have affectedthe ranking of the algorithms

according to performance.

This research can further be extended to address the above limitations. Further improvement

to this research can be obtained by collecting high quality and large number of data from dif-

ferent gene databases. The same target can also achieved by working collaborations with HIV

laboratories. This research can also be extended to make it more user friendly, web based so

that it can be accessible a wide range of experts working in the field. Further more this research

can be extended to by incorporating different feature extraction and reduction techniques.

5.9 Summary

Performing comparative research is always a source of controversy among pattern recognition

societies. The reason for conducting comparative analysisof performance of SVMs against neu-

ral network, decision trees and/or logistic regression wasnot to verify or falsify the superiority

of one classification technique over the other. As a relatively new addition to the pattern recog-

nition techniques, SVMs have been compared to numerous pattern recognition techniques in a

number of benchmark application. The result from these research claimed SVMs has a better

performance on high dimensional data when faced with limited training samples. Dimensional-

ity of the patterns and shortage of training sample is one of the common characteristics of many

computation biology problems. Following this, this research investigates if SVMs can be used

as a drug resistance tool based on an HIV strain. The results found might not be used directly

to answer the question however, it has promised positive result.

The research have a number of limitations, however its significance in the bioinformatics

and computational biology research can not be ignored.
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Chapter 6

Conclusion and Future work

6.1 Conclusion

The Human Immuno-deficiency Virus (HIV) has infected millions of people and is spreading

with a very high rate. One of the reasons for the failure in combating the epidemic is the drug

resistant behaviour of the virus, which results from the rapid mutation rate. HIV drug resistance

testing that helps optimise drug administration has shown apositive result in prolonging viral

suppression and helps to reconstruct patient immunity. Phenotypic testing and genotypic testing

are the two approaches for doing HIV drug resistance tests. The genotypic approach has gained

a lot of interest because it is cost effective, easy to conduct and the interpretation of the result

is independent of the process. The latter advantage has alsomade genotypic testing an ideal

application for computerized expert systems and/or pattern recognition techniques.

Pattern recognition techniques have been used to solve problems that cannot be solved using

the traditional algorithmic approach. These techniques are particularly useful when the relation

between the input and the output is not defined properly, the data to be processed is enormous

in size and very hard to analyse manually. This research usedSVMs as a pattern recognition

technique.

Although SVMs are relatively new, have shown outstanding performance as a tool for pat-

tern recognition. The principle of structural risk minimisation and the ability of SVMs to trans-

form the input data to higher dimensional feature space (kernel trick) are the secret behind the

success achieved by SVMs. Other traditional pattern recognition techniques use the principle

of empirical risk minimisation, which minimises the training error and usually suffers from

over-fitting. On the other hand, the principle structural risk minimisation, which minimises the

upper bound on the test error, gives SVMs the ability to generalise better. SVMs can be simply

described as a combination of linear network, regularisation and kernel trick. It discriminate

the positive examples from the negative ones using a hyperplane while maintaining a maximum

margin between them. Many real-world problems are not linearly separable (separable by a

linear hyperplane). To classify non-linear data sets, SVMsuse a kernel function that implicitly

works in a higher dimensional feature space, where the data can be discriminated using a linear

hyperplane.
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There are a number of different implementations of SVMs. This research used SVMlight, a

C implementation of Vapnik’s support vector machine. SMVlight is selected because it the most

popular implementation, it is optimal and can handle large problems. It also has the ability

to incorporate user defined kernel function and a cost model besides the three popular kernel

functions.

The input data used to answer the research question is the genetic sequence of the viral

protease and reverse transcriptase from 2045 individuals.These sequences were previously

classified using some of the popular drug resistance interpretation algorithms. On this data set

the performance of SVMs, neural networks, decision trees and logistic regression were tested.

The best performance for these algorithms was configured using grid-search over a range of

model parameters.

The results showed that SVMs outperformed the neural networks and logistic regression.

The performance of the decision tree models and the SVMs models was almost similar. The

results in this research confirms the findings of many researchers outlining the power of SVMs

as a classification tool.

6.2 Future work

Although this research showed the ability of SVMs as a tool for predicting the HIV drug resis-

tance based on the genetic sequence of the virus, it has a number of limitations. Following the

achievements of this work and to some of address the limitations, the following future directions

are proposed:

1. The two major limitations identified arise from the numberand quality of data available.

To address this limitation further research should be conducted by gathering large size

of quality data and performing not only binary but multi-class prediction of HIV drug

resistance.

2. As pointed out in the previous chapter, the input encodingtechnique might have favoured

some classification algorithms than the others. Section 4.6also highlighted the effect of

different input encoding scheme however, a detailed study was not done. To investigate

the effect of input encoding schemes in the performance of the different classification

algorithm further research should be conducted.

3. The data used in this research was previously classified using rule-based algorithms. Al-

though this does not compromise what is achieved in this research, conducting the re-

search using pure phenotypic data will give more insight andmight present a different

level of challenge.

4. In this research we only concentrated on the computation property and computational

achievement of the different classification tools. However, further work should be done
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in close collaboration with experts in the field to investigate the biological implications

of the results.

5. The results for the decision tree model showed that interior nodes were related to existing

mutation points, even though we did not use any of the prior biological information.

Further research can be conducted to investigate the application of SVMs to identify

mutation points using SVMs for feature selection. This can be carried out by performing

sensitivity analysis on SVMs and investigate if this technique can be used to identify

mutation points. This work should also be done in collaboration with biological experts.

6. Similar to the above future work, Boz [2002] investigated ways of converting a trained

neural network into a decision tree in order to make the complex rules discovered by

the neural network model more human understandable. In our particular problem this

can also be used identify mutation points which are known to confer drug resistance.

This mutation points are the split criteria. Hence, future research can be carried out to

investigate ways of converting a trained SVMs model into a decision tree.
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Appendix A

Statistical and Parametric Classifiers

A.1 Bayesian decision theory

Bayesian decision theory is a tool broadly used to solve pattern recognition problems, provided

the problem is defined in terms of probability densities and all the probability values are de-

fined. Having defined all the relevant probability valued, Bayesian decision theory is based on

finding optimal trade offs between the various classification decisions and the accompanying

cost (misclassification penality) [Dudaet al. 2000]. The material on this section is extracted

form Dudaet al. [2000] unless otherwise specified.

Given a set of patterns represented by ad-dimensional feature vectorX = (x1, x2, . . . , xd) ∈
R

d called the feature space, letω be any of thec finite states of natureΩ = {ω1, ω2, . . . , ωc} and

A = {α1, α2, . . . , αa} be the finite set of possible actions. The decision problem isthen defined

as choosing an appropriate action among the finite set of possible actions for an event in the

world ( an event belonging to one of the finite states of naturebased on the measurement given

by the feature vectorx). The performance of the decision system is then measured bythe loss

functionλ : A×Ω → R, which establishes the costλ(αi|ωj) that describes the loss incurred by

choosing actionαi when the state of nature isωj. However, we cannot observe the world and

hence we need to consider the measurementx ∈ R
d and the mapping functionα(x) : R

d → A
called the decision function, which is the function of measurement, that tells us which action to

take for the given measurements.

The measurementx and the corresponding state of natureω can be viewed as a single

observation and might be considered in terms of probability. In this probabilistic framework,

decision will be based on the posterior probabilityP (ωj|x) for j = 1, . . . , c, which is the

probability that the measurementx belongs to the state of natureωj. An actionαj will be taken

based on the largest probability once the posterior is computed for each state of nature. But how

do we know the posterior probability?

Let x ∈ R
d be a random variable and assume the prior distributionP (ωj), which tells

how likely the nature of state isωj and letp(x|ωj) be the state-conditional probability, which

describes the relationship among the state of natureωj and measurementx are known. With

the prior distribution and state-conditional density, thejoint distribution,p(ωj, x), of finding a
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measurement in the state of natureωj and having the vector valuex will be given as:

p(ωj, x) = P (ωj|x)p(x) = p(x|ωj)P (ωj) (A.1)

rearranging the above equation we get the Bayes rule:

P (ωj|x) =
p(x|ωj)P (ωj)

p(x)
(A.2)

wherep(x) =
∑

ωj∈Ω p(x|ωj)P (ωj) is the probability density function forx.

Therefore: P (ωj|x) =
p(x|ωj)P (wj)

∑

ωj∈Ω p(x|ωj)P (wj)
(A.3)

The Bayes rule tells us how the probability of the state of nature is updated by inverting

the relationship among world state and measurement. The term P (ωj|x), the probability that

the true state of nature isωj, accounts for the fact that once the measurement is observedthe

probability of having a certain state changes. Suppose for the measurementx the actionαi is

taken while the true state of nature isωj. According to the definition the penalty of taking action

αi while the true state of nature isωj is given byλ(αi|ωj). And the average loss also known as

theconditional riskof choosing this action is given by:

R(αi|x) =
∑

ωj∈Ω

λ(αi|ωj)P (ωj|x)

If we have a decision ruleα which tells us which action to take for every possible observation

we can substituteαi by α(x) and obtain the average lossR(α(x)|x) given the measurementx.

The overall average loss (expected risk) therefore will be obtained by averaging over all possible

measurements and is given as:

R =

∫

Rd

R(α(x)|x)P (x)dx (A.4)

The expected risk is a single scalar that measures the overall performance. Then the best deci-

sion rule is found by computing the expected risk for all possible actions and selecting the one

that minimises the risk, i.e.

α = arg min
α

Rα = arg min
α

∫

Rd

R(α(x)|x)P (x)dx, ∀x ∈ R
d (A.5)

By minimising point-wise the function under the sign of integral, it is easy to conclude that the

optimal function is

α(x) = arg min
αi∈A

R(αi|x), ∀x ∈ R
d (A.6)

The resulting overall minimum risk is called theBayes risk.
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Bayesian pattern classification is based on Bayes decision theory to define the decision

boundaries to perform pattern recognition tasks. Pattern recognition is a particular decision

problem where the world is seen as a pattern source, the stateof nature is seen as the pattern

classes with the measurement being a pattern. Each actionαi is simply identifying the pattern to

be in one of the pattern class. The decision ruleα(x) is a discriminant function which maps the

patternx to one of the pattern classes. To evaluate the performance lets assume misclassification

is equally bad and consider the 0/1 loss function, which is defined to be

λ(αi|ωj) =







0 i = j,

1 i 6= j
i, j = 1, . . . , c (A.7)

The optimal decision function is then

α(x) = arg min
αi

R(αi|x) = arg min
αi

∑

ωi

λ(αi|ωj)P (ωj|x)

= arg min
ωi

∑

ωj∈Ω∧i6=j

P (ωj|x)

= arg min
ωi

1 − P (ωi|x)

= arg max
ωi

P (ωi|x)

Therefore the Bayes decision rule can be restated as follows

x → ω if P (ω|x) = max
ωj

P (ωj|x) (A.8)

Recall equation (2.2) and note that the denominator (p(x)) is independent ofωi therefore the

best decision rule is given by

α(x) = arg max
ωi

p(ωi|x)P (ω), ∀x ∈ Rd (A.9)

In the formulation of the Bayes decision rule it is assumed that all the class-conditional densities

are defined. However, this assumption does not hold in practise and hence one needs to learn

these parameters from the available training samples. Sometimes one can assume something

about the form of the class-conditional density. Dependingon the assumption taken we have

parametric and nonparametric approaches for density estimation [Jainet al.2000]. If we can as-

sume that the class-conditional density have specific form but have unknown parameters, which

needs to be estimated based on the sample, equation (2.2) will be used to calculate the posterior

probability. In this case we have a parametric classification problem. Otherwise the poste-

rior probability should be directly estimated on the feature space (training data) or alternatively

construct the decision boundary on the feature space and thus resulting in a non-parametric
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classifier.
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Appendix B

SVM: Mathematical formulation

B.1 Linear support vector machines

The linear support vector machine also known as maximum margin classifier is the simplest

form of Support Vector Machine. Hence this section will be used as an introduction to basic

principles, notation and approaches that are later extended to a more general support vector

machine. Furthermore, Support Vector Machines are inherently binary classifier. Therefore

the formulation shown below and in subsequent sections is given for two class pattern recog-

nition problem. In later sections we will see how this will beextended to multi-class pattern

recognition problems. To make the presentation in two classclassification problem simple and

consistent with the conventional mathematical presentation we will useyi instead ofωi as class

label. The material presented in this section is based on Vapnik [1995]; Burges [1998]; Osuna

et al. [1997]; Cristianini and Shawe-Taylor [2000]; Schölkopf [1997]. If any other reference is

used it will be cited accordingly.

B.1.1 Linear separable case - Maximum margin classifier

Given set of examples((x1, y1), . . . , (xl, yl)) ∈ R
d × {±1}, whereyi ∈ {±1}, xi ∈ R

d as-

sume there exists a set of hyperplanes which totally discriminate the positive examples from the

negative ones. This means we can find a pair(w, b) such that:

yi(xi.w + b) − 1 ≥ 0 i = 1, 2, . . . , l (B.1)

wherew is the direction of the normal or orientation of hyperplane and b is the threshold.

The mapping function which is usually called the hypothesisis then given by:

f(w, b) = sign(w.xi + b) (B.2)

Consider the example given in Figure 3.4. These training samples of the two classes (circle

and square) can be perfectly separated by a linear hyperplane. Furthermore, one can find infinite

number of hyperplane that can accomplish this task. Some of these hyperplane are shown in

130



Figure 3.4. As we can seen from the figure, each of these hyperplane have zero empirical risk,

but we should find the one that will minimise the right hand side of equation (3.7) as seen in

Section 3.2. From the figure one can take an educated guess to say the hyperplane that passes

through the middle will be more likely to give the best minimum risk. Formally defining this

hyperplane, the optimal hyperplane that is likely to minimise the expected risk is the one that

maximises the margin, which is defined as the distance between the examples from the the

opposite class that are close to this hyperplane.

Once the optimal hyperplane is found all the training sets will satisfy equations (B.1) and

classification will be based on the sign of equation (B.2). Thepoints that lie on the hyperplane

separating the data satisfies:

w.xi + b = 0 (B.3)

Figure 3.5 gives graphical interpretation of Support Vector Classification. All the points that

satisfy the inequalityw.xi + b ≥ ±1 lie onH1 or to the left of it and those satisfyingw.xi + b ≥
±1 will lie on H2 or to the right of it. The margin is therefore defined as the distance betweenH1

or H2 and the optimal hyperplane (see figure 3.5). It is evident that H1 andH2 are parallel and

for a perfectly separable training set, no point lies between the two hyperplane. Furthermore,

H1, H2 and the optimal hyperplane differ only on the thresholdb. Formally defining the optimal

hyperplane with respect to these two hyperplanes, the separating hyperplane is optimal if the

minimum distance between these hyperplane and the optimal hyperplane is maximal. i.e.

if min

{

min
yi=1

{

w.xi + b

‖ w ‖

}

, min
yi=−1

{−(w.xi + b)

‖ w ‖

}

}

is maximal.

To compute the threshold for a givenw, let

d+ = min
yi=1

{w.xi}, d− = min
yi=−1

{−w.xi}

Substituting this values, then the optimal hyperplane is the one which maximises the equation

given below:
1

‖ w ‖ min{d+ + b, d− − b}

From the above expression, the maximum will be attained whenthe two expressions inside the

bracket are equal. Hence the threshold for the optimal hyperplane will be:

bopt =
d− − d+

2

and the respective margin will be:

γ =
1

‖ w ‖|d+ + bopt| =
1

‖ w ‖|d− − bopt|
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=⇒ γ =
d+ + d−

2 ‖ w ‖
Therefore we can find the optimal hyperplane that maximises the margin by minimising‖ w ‖
subject to equation (B.1). i.e.

Minimise
1

2
‖w‖2

subject to yi(xi.w + b) − 1 ≥ 0 ∀i

Note that minimising‖w‖ is the same as minimising‖w‖2. Minimising a quadratic function

under a linear constraint formulated above is called quadratic program and can be solved to

give the solution to the optimal hyperplane using QuadraticProgramming (QP) optimisation

[Cristianini and Shawe-Taylor 2000]. Solving this problem using the classical Lagrangian mul-

tipliers approach have a number of advantages [Cristianini and Shawe-Taylor 2000]. Firstly, this

approach gives an alternative formulation of the original problem (dual form) which is easier to

solve. Secondly, the dual form is not only easier to solve butalso emphasises the importance

of some training examples over the other, leading to a minimised but critical sample size and

thirdly, the dual form makes generalisation beyond linear separable cases an easy task.

Introduce a dual vector of non-negative Lagrangian multiplier Λ = (α1, α2, . . . , αl) corre-

sponding to each inequality constraint in (B.1) the Lagrangian function (see Appendix B.2) will

be defined as:

LP (w, b, Λ) =
1

2
‖ w ‖2 −

l
∑

i=1

αiyi(xi.w + b) +
∑

i=1

αi (B.4)

The saddle point of the Lagrangian, which will be determinedby minimisingLP with respect

to w andb and maximise with respect toΛ ≥ 0 is the solution to the optimisation problem.

Minimising LP with respect tow andb we have:

∂LP (w, b, Λ)

∂w
= 0

=⇒ w =
l

∑

i=1

αiyixi (B.5)

∂LP (w, b, Λ)

∂b
= 0

=⇒
l

∑

i=1

αiyi = 0 (B.6)

substituting equation (B.5) and (B.6) into (B.4) we have

LD(w, b, Λ) =
∑

i=1

αi −
1

2

∑

i,j

αiαjyiyj(xi.xj) (B.7)
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The optimisation problem is now reduced to maximisingLD with respect toΛ constrained to

(B.6) with the solution given by (B.5). i.e.

Maximise LD(w, b, Λ) =
∑

i=1

αi −
1

2

∑

i,j

αiαjyiyj(xi.xj)

subject to
l

∑

i=1

αiyi = 0; (B.8)

Λ ≥ 0

The Karush-Kuhn-Tucker theorem (see Appendix B.2) of optimisation theory, which guar-

antees the existence of a solution to the optimisation problem shows that, at the saddle point all

points satisfy the constraint (B.1) with strict equality. i.e.

αi(yi(w.xi + b) − 1) = 0 i = 1, . . . , l (B.9)

From this equation, the following two conditions need to be distinguished:

• If αi = 0, thenyi(w.xi + b) ≥ 1

• If αi > 0, thenyi(w.xi + b) = 1

Recall that one of the advantages of using the Lagrangian function to solve the optimisation

problem is expressing the importance of each pattern in the training set. Consider the value

of αi corresponding to each training pattern. Training patternswith αi > 0 will fall on the

hyperplaneH1 or H2 (see figure 3.5) and hence are critical in defining the decision boundary.

Other training patterns withαi = 0 lies to the left or right ofH1 andH2 respectively. These

training patterns have no effect in determining the decision boundary. Therefore if those training

patterns withαi = 0 value are removed and the training is repeated, the decisionboundary will

remain the same. Training patterns with nonzeroαi are calledSupport Vectors(The name of

this learning technique follows from this).

Suppose the parameter setΛ∗ solves the quadratic optimisation problem given in equation

(B.8). Then the orientation of the optimal hyperplanew∗ will given by equation (B.5). The

geometric margin can be redefine in terms ofΛ∗ as:

γ =
d+ + d−

2 ‖ w∗ ‖

for maximum margin hyperplaned+ = d− = 1, hence

γ =
1

‖ w∗ ‖ =

(

√

(w∗.w∗)

)−1

(B.10)

133



substitutingw in (B.5) in (B.1) we have

yi(
∑

j

α∗
jy

∗
j (xi.xj) + b∗) = 1;

and substitutingw from (B.5) in (B.10) we have

(w∗.w∗) =
∑

i,j

α∗
i α

∗
jyiyj(xi.xj)

=
∑

i

α∗
i yi

∑

j

α∗
jyj(xi.xj)

=
∑

i

α∗
i (1 − yib

∗)

=
∑

i

α∗
i −

∑

i

(α∗
i yi)b

∗

Using equation (B.6) the second term will be cancelled. Therefore,

γ =

(√

∑

i

α∗
i

)−1

(B.11)

However, the threshold can not be computed directly fromΛ∗. To compute the thresholdb∗

recall the optimal hyperplane with the maximum margin was defines as:







maxyi=−1(w
∗.xi) + b∗ = −1,

maxyi=+1(w
∗.xi) + b∗ = +1

∀i = 1, 2, . . . , l

Adding the two expressions and solving for the threshold of the optimal hyperplaneb∗ gives:

b∗ = −maxyi=−1(w
∗.xi) + maxyi=+1(w

∗.xi)

2
(B.12)

With the weight vectorw∗ and the thresholdb∗ in place, substituting equation (B.5) into

equation (B.2) the mapping function can be redefined as:

f(x, Λ∗, b∗) = sign(
l

∑

i=1

yiα
∗
i (x.xi) + b∗) ∀i = 1, . . . , l (B.13)

We have seen that the parameterα∗
i = 0 for all training points except for the support vectors,

hence the mapping function will have its final form:

f(x, Λ∗, b∗) = sign(
∑

i∈SV

yiα
∗
i (x.xi) + b∗) ∀i = 1, . . . , l (B.14)

In other words the expression is evaluated in terms of the dotproduct between the pattern
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to be classified and the Support Vectors(xi), and the sign of the function is used to classify the

pattern to their respective class. Summing up the dual approach in the case of linear separable

examples the following proposition can be made:

Proposition B.1.1 Consider a set of training data which can be separated into their respective

class by a linear hyperplane:

((x1, y1), . . . , (xl, yl)) ∈ R
n × {±1}

LetΛ ∈ R
l be a vector that solves the constrained optimisation problem given below:

Maximise LD(w, b, Λ) =
∑

i=1

αi −
1

2

∑

i,j

αiαjyiyj(xi.xj)

subject to
l

∑

i=1

αiyi = 0;

Λ ≥ 0

Then the optimal hyperplane is defined by the pairw andb defined as:

w =
l

∑

i=1

αiyixi

and

b = −1

2
[max
yi=−1

(w.xi) + max
yi=+1

(w.xi)]

with the geometric margin given by:

γ =

(√

∑

i∈SV

αi

)−1

And classification of unseen data will be done based on the signof the function:

f(x, α, b) = sign(
∑

i∈SV

yiαi(x.xi) + b) ∀i = 1, . . . , l

B.1.2 Linearly non-separable case - Soft margin classifier

So far we have seen the case where the training data is perfectly separable using linear hy-

perplane but real-world problems involve non-separable data and the assumption taken in the

previous section is too ambitious. To extend the above solution to non-separable data a positive

slack variableξi; i = 1, . . . , i is introduced to associate further cost as a penalty for misclassifi-

cation whenever necessary (see Figure 3.6).
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Using this relaxed separation constraint equation (B.1) becomes:

yi(xi.w + b) > 1 − ξi ξi ≥ 0 i = 1, . . . , l (B.15)

The problem of finding optimal margin will therefore compromise two part.

• Maximise the margin (the same as the linear separable case) and

• Minimise the slack variableξi which counts for amount of error

One way of combining these two conditions into a single function is given below:

Φ(w, Ξ) =
1

2
‖w‖2 + C(

l
∑

i=1

ξi)
k

The constantC is a parameter to be freely chosen by the user to specify the trade-off between

the width of the margin and misclassification penalty. Therefore the optimal hyperplane will be

the one that minimises the functionΦ(w, Ξ). i.e.

Minimise Φ(w, Ξ) =
1

2
‖w‖2 + C(

l
∑

i=1

ξi)
k;

yi(xi.w + b) > 1 − ξi i = 1, . . . , l; (B.16)

ξi > 0 i = 1, . . . , l

If we choosek = 1, the above optimisation problem can be solved using QP. Introducing

a dual vector of non-negative valueΛ = (α1, α2, . . . αl) for of each the first constraint and

Γ = (µ1, µ2, . . . , µl) for each of the second constraint the Lagrangian representation will be:

LP (w, b, Λ, Ξ, Γ) =
1

2
‖ w ‖2 −

l
∑

i=1

αi(yi(xi.w + b) − 1 + ξi) −
l

∑

i=1

µiξi + C
l

∑

i=1

ξi (B.17)

Following the same approach as the separable case, the solution to the optimisation problem

will be determined by the saddle point of the primal form of the Lagrangian which will be

determined by minimising with respect tow, b andΞ and maximised with respect toΛ andΓ.

Minimising LP with respect tow, b andΞ gives:

∂LP (w, b, Λ, Ξ, Γ)

∂w
= w −

l
∑

i=1

αiyixi = 0 (B.18)

∂LP (w, b, Λ, Ξ, Γ)

∂b
=

l
∑

i=1

αiyi = 0 (B.19)

∂LP (w, b, Λ, Ξ, Γ)

∂Γ
= C − αi − µi = 0 (B.20)
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Substituting (B.18),(B.19) and (B.20) into (B.17) the dual fromwill still be given by:

LD(w, b, Λ) =
∑

i=1

αi −
1

2

∑

i,j

αiαjyiyj(xi.xj) (B.21)

The dual form is the same for both linear separable and non-separable cases (see equation (B.7)

and (B.21)) respectively. But there are additional constraints to be satisfied in the later case. It is

stated above that both the Lagrangian multipliersΛ andΓ should be non-negative. AlthoughΓ

does not appears in the dual form as a result of choosingk to be one, equation (B.20) places the

constraint thatC = αi + µi. This condition limits the value ofΛ to be less thatC. Otherwise,

if Λ > C, thenΓ < 0 for the condition in equation (B.20) to hold but this a violation of the

assumption that the Lagrangian multiplierΓ is non-negative. Therefore, the new optimisation

problem will be redefined as:

Maximise LD(w, b, Λ) =
∑

i=1

αi −
1

2

∑

i,j

αiαjyiyj(xi.xj)

subject to
l

∑

i=1

αiyi = 0; (B.22)

0 ≤ Λ ≤ C

Applying the KKT condition we have:

αi(yi(xi.w + b) − 1 + ξi) = 0 i = 1, 2, . . . l (B.23)

Following the above equation three different cases needs tobe distinguished:

• If αi = 0, thenµi = C (ξi = 0) andyi(xi.w + b) = 1;

• If 0 ≤ αi ≤ C, then0 ≤ µi ≤ C (ξi = 0) andyi(xi.w + b) = 1;

• If αi = C, thenµi = 0 (ξi > 0) andyi(xi.w + b) = 1 + ξi.

In the first case the points are on the correct side of the optimal hyperplane and are distant from

the hyperplane by more than the marginγ (i.e. these points lie to the left or to the right of the

hyperplaneH1 or H2 respectively). In the second case, the points lie on the hyperplaneH1 or

H2 and are Support Vectors. In the third case these points are also Support Vectors, but does

not necessarily lie on the hyperplaneH1 of H2. These points might be on the wrong side of the

hyperplane or on the right side but closer than the hyperplanesH1 or H2 (For example:X1 and

X2 in Figure (3.6)).

Besides the above additional constraints, the solution for the linear separable case holds.

Therefore the solution found in the previous section will begeneralise by restating proposition

B.1.1 as:
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Proposition B.1.2 Given a set of training data

((x1, y1), . . . , (xl, yl)) ∈ R
n × {±1}

LetΛ ∈ R
l be a vector that solves the constrained optimisation problem given below:

Maximise LD(w, b, Λ) =
∑

i=1

αi −
1

2

∑

i,j

αiαjyiyj(xi.xj)

subject to
l

∑

i=1

αiyi = 0;

0 ≤ Λ ≤ C

Then the optimal hyperplane is defined by the pairw andb defined as:

w =
l

∑

i=1

αiyixi

and

b = −1

2
[max
yi=−1

(w.xi) + max
yi=+1

(w.xi)]

with the geometric margin given by:

γ =

(√

∑

i∈SV

αi

)−1

And classification of unseen data will be done based on the signof the function:

f(x, α, b) = sign(
∑

i∈SV

yiα
∗
i (x.xi) + b) ∀i = 1, . . . , l

B.2 Important definitions and theorems

Definition B.2.1 [Cristianini and Shawe-Taylor 2000] Given an optimisation problem with the

objective functionf(w), and equality constrainthi(w), i = 1, 2, . . . l, we define the Lagrangian

function as

L(w, Λ) = f(w) +
l

∑

i

αihi(w)

where the coefficientαi are called the Lagrangian multipliers.

Theorem B.2.2 (Kuhn - Tucker) [Cristianini and Shawe-Taylor 2000] The pointυ0 ∈ R min-

imises the function

f : R
N → R
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subject to

gi(υ) ≤ 0, i = 1, . . . , l

wheregi are convex function and there is at least one point satisfying the constraint with strict

inequalities, if and only if there exists a vectorΛ0 ≥ 0 ∈ R
l with

L(υ, Λ) = f(υ) +
l

∑

i

αigi(υ)

has a saddle point at(υ0, Λ0), which is the minimum with respect toυ and a maximum with

respect toΛ. The condition to be a maximum with respect toΛ is equivalent to the Kuhn-Tucker

condition

αigi(υ0) = 0, ∀αi ∈ Λ0

i.e. for eachi eitherαi = 0, or gi(υ0) = 0 The last relation is known as Karush-Kuhn-Tucker

(KKT) complementarity condition.

Definition B.2.3 [Cristianini and Shawe-Taylor 2000] A kernelK(x, y) is a function such that

for any two points(x, y) in the input space:

K(x, y) = φ(x).φ(y) (B.24)

wherex, y ∈ X andφ is the mappingX → F .

Theorem B.2.4 (Mercer’s Theorem) [Burges 1998] There exists a mappingφ and an expansion

K(x, y) =
∑

i

φi(x).φi(y)

if and only if, for anyg(x) such that

∫

g(x)2dx is finite

then
∫

K(x, y)g(x)g(y)dxdy ≥ 0
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Appendix C

Genetic codes

C.1 RNA codon table

Amino-acid Name Code codons coding it

Alanine (Ala) A GCU, GCC, GCA, GCG
Arginine(Arg) R CGU, CGC, CGA, CGG, AGA, AGG
Asparagine (Asn) N AAU, AAC
Aspartic acid (Asp) D GAU, GAC
Cysteine (Cys) C UGU, UGC
Glutamine (Gln) Q CAA, CAG
Glutamic acid (Glu) E GAA, GAG
Glycine (Gly) G GGU, GGC, GGA, GGG
Histidine (His) H CAU, CAC
Isoleucine (Ile) I AUU, AUC, AUA
Leucine (Leu) L UUA, UUG, CUU, CUC, CUA, CUG
Lysine (Lys) K AAA, AAG
Methionine (Met) M AUG
Phenylalanine(Phe) F UUU, UUC
Proline (Pro) P CCU, CCC, CCA, CCG
Serine (Ser) S UCU, UCC, UCA, UCG, AGU,AGC
Threonine (Thr) T ACU, ACC, ACA, ACG
Tryptophan (Trp) W UGG
Tyrosine (Tyr) Y UAU, UAC
Valine (Val) V GUU, GUC, GUA, GUG
Start AUG, GUG
Stop UAG, UGA, UAA

Table C.1: Standard amino acids used in proteins, and the codons that code for each amino acid.
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C.2 The IUPAC nucleotides Codes

Nucleotide Code: Base:

A Adenine
C Cytosine
G Guanine
T (orU) Thymine (or Uracil)
R A or G
Y C or T
S G or C
W A or T
K G or T
M A or C
B C or G or T
D A or G or T
H A or C or T
V A or C or G
N any base
. or - gap

Table C.2: The IUPAC nucleotides Codes
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