-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Wits Institutional Repository on DSPACE

SUPPORT VECTOR M ACHINE PREDICTION OF
HIV-1 DRUG RESISTANCE USING THE VIRAL
NUCLEOTIDE PATTERNS

Seare Tesfamichael Araya

A dissertation submitted to the Faculty of Science, Unigis the Witwatersrand, Johannes-
burg, in fulfilment of the requirements for the degree of Masif Science

Johannesburg, 2006


https://core.ac.uk/display/39664677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

| declare that this research report is my own, unaided waik.deing submitted for the degree
of Master of Science in the University of the Witwatersraddhannesburg. It has not been
submitted before any degree or examination in any othereJysity.

Seare Tesfamichael Araya
20 th day of October 2006



Abstract

Drug resistance of the HI virus due to its fast replicatiod arror-prone mutation is a key fac-
tor in the failure to combat the HIV epidemic. For this regsparforming pre-therapy drug
resistance testing and administering appropriate drugembination of drugs accordingly is
very useful. There are two approaches to HIV drug resistéesting: phenotypic (clinical)
and genotypic (based on the particular virus’s DNA). Gepioty tests HIV drug resistance by
detecting specific mutations known to confer drug resistaids cheaper and can be comput-
erised. However, it requires being able to know or learn waiiations confer drug resistance.
Previous research using pattern recognition technigquebd®n promising, but the performance
needs to be improved. It is also important for techniquesdaa quickly learn new rules when
faced with new mutations or drugs.

A relatively recent addition to these techniques is the Supyector Machines (SVMs).
SVMs have proved very successful in many benchmark apmitasuch as face recognition,
text recognition, and have also performed well in many ca@mpenal biology problems where
the number of features targeted is large compared to the ewuoflavailable samples. This
paper explores the use of SVMs in predicting the drug rasistaf an HIV strain extracted
from a patient based on the genetic sequence of those pahe wiral DNA encoding for the
two enzymes, Reverse Transcriptase or Protease, whichiicaldor the replication of the
HIV virus. In particular, it is the aim of this reseach to dgsthe model without incorporating
the biological knowledge at hand to enable the resultingsifier accommodate new drugs and
mutations.

To evaluate the performance of SVMs we used cross validaiomique to measure the
unbiased estimate on 2045 data points. The accuracy offedagen and the area under the re-
ceiver operating characteristics curve (AUC) was used asfarpgance measure. Furthermore,
to compare the performance of our SVMs model we also devdlogiger prediction models
based on popular classification algorithms, namely newlorks, decision trees and logistic
regressions.

The results show that SVMs are a highly successful classifidrout-perform other tech-
niques with performance ranging between (94.13%-96.33%)racy and (81.26% - 97.49%)
AUC. Decision trees were rated second and logistic regnegsdormed the worst.
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Chapter 1

Introduction

1.1 Introduction

The Human Immunodeficiency virus (HIV) is a rapidly evolviaigus resulting in the AIDS
epidemic. The rapid evolution of this virus is due to fastlicgtion and its mutant behaviour.
This mutant behaviour of the virus gives it the advantagecguaing drug resistance which
is the main reason for the failure of much diagnostic treatm®ne solution that has proved
to give better results is pre-therapy drug resistancengsfrhis solution allows for adminis-
tration of drugs that will prolong viral suppression andgedconstruct the patient’s immunity.
There are two approaches for testing HIV drug resistanceng@iypic and genotypic testing.
Phenotypic testing is laboratory based and measures tieveetirug susceptibility of an HIV
strain directly [Beerenwinkedt al. 2003a]. Genotypic testing, on the other hand, considers the
genetic information of the HIV strain extracted from theipat and the ability to interpret such
data [Beerenwinkeét al. 2003a]. Due to the cost benefit and other advantages gengtigi
more widely used than phenotyping.

Genotypic testing aims at identifying specific mutationreion the viral genetic makeup
that are known to confer drug resistance based on the baabgnhowledge available about
the virus and the drug/s. In genotyping, the genetic makefaipeoHIV strain extracted from
a patient is examined for the existence of mutations (pajehat are known to confer drug
resistance to a drug or combination of drugs and then beiftdasas resistant or not resistant to
the drug or combination of drugs accordingly. There are aberof ways of performing this
task and interpreting the results of genotyping is not eeldb the testing process, hence this
approach has been an ideal application for computeriseeregpstems [Lathropt al. 1999].
Based on these characteristics, one can consider genogpiaglassification problem which
is best solved using pattern recognition techniques thaaditibnal algorithmic approach. A
number of applications addressing the HIV drug resistamoblpm as a pattern recognition
problem are currently available. Draghici and Potter [4G08 Wang and Larder [2003] used
neural networks as a tool for predicting the drug resist@nogle of HIV strain based on genetic
sequence of viral protease and amino acids on selectedopssitf protease where mutation is
known to confer drug resistance respectively. Beerenwigkell. [2002] used decision tree
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models to predict phenotypic resistance from genotypiarméation.

Pattern recognition techniques have been proved to be er lmgition when there are no
known rules relating the input and output of a problem, aredititeraction between different
reactants is unknown. One such pattern recognition teakrnigthe Support Vector Machine
(SVMs), which is a statistical learning method proposed bgaBet al.[1992]. Although this
technique is a relatively recent addition to pattern re@gagmtechniques, it has shown superior
performance as a tool for pattern recognition in numerouxtmark applications. Further-
more, its ability to give a better performance based on é&dhitraining samples makes it an
ideal approach in computational biology problems, whereegating data is costly or difficult.
One such computational biology problem is HIV drug resiseanThis research investigates
the performance of SVMs in predicting drug resistance of & strain based on the genetic
sequence of two enzymes; namely Reverse Transcriptase (@R ratease (PRO), which are
critical during viral replication and where most mutaticare exhibited [Shafer 2002b]. The
performance of SVMs will be compared to three traditionakhmods of pattern recognition:
neural networks, decision trees and logistic regression.

The rest of the chapter is organised as follows. The nexiosegives an introduction to HIV
and the drug resistance problem. This section also showshisas an open area of research
and indicates the importance of the research. Section ¥€5 @n introduction to Support
Vector Machines, which is the pattern recognition techaigsed in this research. This section
will highlight why SVMs are an ideal tool for this researchdapresent some applications of
SVMs in computational biology. Section 1.4 and 1.5 give thrrfal definition of the problem
and an overview of the approach taken to assess the perfoentdrthe different algorithms
respectively. Section 1.6 gives an overview of the reswtsd in this work followed by a
section highlighting the contribution of the research.afin section 1.8 gives the structure of
this document.

1.2 HIV and the drug resistance problem

The Human Immunodeficiency Virus (HIV) and its infectiougats have resulted in the world-
wide AIDS epidemic. World Health Organisation (WHO) statistshows that as of December
2003, HIV had already infected between 34 and 46 million peapound the world with the
majority of these infection in sub-Saharan African cowegfilUNAIDS 2004]. Although it has
been more than two decades since HIV was first discovererg th@o effective drug to fully
stop the virus from replicating and stop the epidemic. Atphesent there are more than 18
antiretroviral drugs available and the best they achiewefasis prolonging viral suppression
and helping with immunologic reconstruction using combanial therapy (combination of up
to 3 or 4 drugs) [Shafer 2002a]. A major reason for the faitarkalt the epidemic is HIV drug
resistance.

HIV drug resistance refers to the loss in the ability of a douggombination of drugs to
suppress the replication of the virus. The two main reasongriig resistance are fast replica-
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tion and mutation [Klatt 2003]. Mutation refers to the charg the genetic make up (RNA) of
the virus during replication. During replication, the ViRNA integrates with the human cell
DNA in a number of steps with the aid of different enzymes saERT and PRO [Klatt 2003].
HIV mutants result from the high viral replication rate antl iRfidelity. RT infidelity is due to
the lack of proof-reading mechanism that preserves thetgesmmposition of double stranded
DNA genome within the viral RT [Shafer 2002a]. Although alltations change the structure
of the virus, not all of them have the same effect. Some nuartatcause the virus to become
extremely infectious while others make it weak. For examipke mutation occurred that made
the newly replicated virus resistant to a particular drugambination of drugs, treating the pa-
tient with this drug or combination of drugs will have a negaeffect. On the contrary, other
mutations slow down the replication process of the viruseréfore, one of the main concern
during pharmaceutical therapy of an HIV patient is idemtifyparticular mutations known to
confer drug resistance and administering drug/s accodirigentification and prediction of
HIV drug resistance is the problem this research is addrgs3b address this problem a num-
ber of approaches have been proposed within the last detadeis regard, one of the most
effective approaches has been pre-therapy HIV drug ressteesting [Hoffmann and Kamps
2003].

There are two approaches of testing an HIV’s strains drugteexe: namely phenotypic
testing and genotypic testing [Klatt 2003]. Phenotypititgsdirectly measures the replication
of the virus in the presence of a drug or combination of drigsnotypic testing on the other
hand relies on the genetic sequence of the HIV virus and ¢ieal knowledge of specific
mutation and related drug resistance. The primary obgdfvgenotypic testing is to detect
specific mutations known to confer resistance to antirgtabdrugs in well-defined regions of
the RT and PRO, the two critical enzymes in viral replicatitatt 2003]. Genotypic is the
most widely used because of its simplicity, speed, cost fitesned unlike phenotypic testing
it doen not require a specialised laboratory. Furthermioterpreting the result of genotypic
is independent of the testing process. The later advanitegeopened the door for successful
technology from other disciplines to collaborate in sofythe problem. Such an application is
the computerised expert system [Lathegal. 1999].

The first research carried out to address this problem ofigiérg the effect of a drug
or combination of drugs based on the genetic sequence of iMestrhin extracted from the
patient using computerised expert systems was conductecthyop et al. [1999]. Lathrop
et al.[1999] introduced the Al system, CTSHIV that uses the sdierkhowledge about HIV
drug resistance to customise treatment to an individua¢mpiat Following this breakthrough
a number of techniques such as neural networks [DraghicPartigzr 2003; Wang and Larder
2003], decision trees [Beerenwinketl al. 2002], and different regression methods have been
applied to predict drug resistance of an HIV strain direcityindirectly. Although most of
these applications have been successful, the performaiaemed is still far from optimal.
Furthermore, the design of these systems were highly dep¢me the biological knowledge
available about the particular drug or combination of dragd corresponding mutations that
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are known to confer resistance. This means that for thesersggo work properly a continuous
update (with possible redesigning) of the systems is requiith the discovery of new mutation
points and new drugs. Therefore, the search for new techsithat not only outperform the
existing ones but also address the dynamic behaviour ofithe mutation and drug resistance)
is required. This research will investigate such a techaioyitaking no biological knowledge
about the virus into consideration while designing the nhoBarthermore, this research uses
the positionl — 250 of RT and positionl — 99 of PRO genetic sequence. Hence, the resulting
model bases its decision not only on mutations already tegdo cause drug resistance but
patterns yet not known by humans but reflected in the geneticesace of the strain.

1.3 Support vector machines

Support Vector Machines (SVMs) are a statistical patteoogaition technique proposed by
Boseret al.[1992] to perform a number of classification and regressaskg in a wide variety
of application domains [Cristianini and Shawe-Taylor 2008ince their introduction, SVMs
have been successfully applied to many pattern recognaimhregression applications such
as text categorisation [Joachims 1998], speech recogr{@anapathiraju 2002], face detec-
tion [Osuneet al. 1997], object recognition [Séikopf 1997], and handwritten text recognition
[Cortes and Vapnik 1995] with remarkable performance. ThHeesements by SVMs are cred-
ited to the two basic principles behind SVMs: namely the @gle of Structural Risk Minimi-
sation (SRM) and the ability to project data into high dimensi feature space where complex
data can be classified with ease [Vapnik 1995]. In this seatie will see a high level intro-
duction on how a simple maximum margin classifier, which & shmplest form of SVMs, is
extended into complex classifiers that are complex enoughoidel real world problems, yet
simple enough to be analysed mathematically. But beforeigiésieg the classification method,
an introductory summary of risk minimisation and the pnodeiof Structural Risk Minimisa-
tion will be presented. A more detailed explanation of riskimisation and the mathematical
formulation of SVMs will be presented in Chapter 3.

Like all pattern recognition techniques, SVMs are also d@iaibtaining the best classifica-
tion based on a limited number of training samples. Theraanember of optimisation criteria
to estimate the performance of a classifier. One such @tetihat is most commonly used by
traditional pattern recognition techniques, is empiricgd minimisation [Ganapathiraju 2002].
The empirical risk of a classifier is defined as the sum of tret 0b misclassification of the
training sample. Based on this definition, it is intuitive &y $hat there can be a number of con-
figurations that can minimise the empirical risk or even aghizero empirical risk. But the best
configuration is the one that trades-off between the englirisk and expected error (the error
on an unseen validation set). To decide on the best confignrétat gives the least expected
error, Vapnik and Chervonenskis proposed the statistieahleg theory. This theory suggests
that it is necessary to minimise the capacity of the set oftions (for example the degree of
a polynomial function) relative to the number of trainingrgdes along with the empirical risk
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[Vapnik 1995]. This is called the principle of Structural Rislinimisation (SRM). There are
a number of possible approaches to minimise both the cagpacit the empirical risk. Some
pattern recognition techniques accomplish this by defitivegcapacity of the set of functions
and minimising the empirical risk while others minimise taoacity of the set of functions for
a predefined empirical risk. However, SVMs accomplishesl lblyi simultaneously minimising
both the empirical risk and the capacity of the hypothestesjOsunat al. 1997].

y(wx+b)=1

1 Class1(y=1)
o Class 2 (y=-1)

O o
o © ° © L
OO © O
o © o ©
© )
© © O O
O o 0 o o
O © o o 5
o © o o
O .
° % %o Margin = 2/|w
- N S
(a) Input space (b) Feature space

Figure 1.1: A toy example illustrating the SVMs training imed. For a given non-linear clas-
sification problem shown in the input space, the SVMs maprtirihg data nonlinearly into a
possible higher dimensional feature space and constracigtimal hyperplane with maximum
margin there. The square boxes and circles indicate pesitid negative examples to be clas-
sified. The solid separating hyperplane in the feature spaitee optimal hyperplane and the
margin is defined as the distance between this hyperplanargnone of the hyperplane shown
by broken line. The training samples that lie on the hypempladicated by a broken line are
called support vectors

The simplest form of SVMs works well when the training sampliénearly separable by an
optimal hyperplane, leaving all members of the same clasmerside of the hyperplane and the
rest on the other (see Figure 1.1.b). The optimal hyperptatiefined as the one that maximises
the minimum distance between either of the two classes asll.itThis distance is called the
margin of the classifier. To find the optimal hyperplane, thestrained optimisation problem
should be solved (i.e. maximising the margin constraingbéaqualities given in figure 1.1.b).
The solution of this optimisation problem is the orientatiaf the optimal hyperplane. Using
the classical Lagrangian approach to solve this optinteaproblem, the orientation of the
hyperplane will be given in terms of the training samples to&ar corresponding non-negative
Lagrangian multiplier [Cristianini and Shawe-Taylor 2000he classical Lagrangian approach
also has the advantage of emphasising the importance of samimg examples over the rest
and this is reflected on the solution by showing that not atheftraining samples have non-zero
Lagrangian multipliers but rather a subset of the sampldss@ training samples with non-
zero Lagrangian multipliers are the ones that determinephienal hyperplane and are called
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Support VectorgSV) [Vapnik 1995]. Note that for a classifier to perform wetle number of
SVs should be relatively small otherwise over-fitting migietur [Vapnik 1995]. Given the
orientation of the hyperplane and the threshold (which dsm lae determined mathematically
in terms of the SVs, their corresponding label and Lagrangialtiplier) classification of an
unseen sample will be according to the sign of the function:

f(z) = sz’gn(z yia(z.x;) + b) (1.2)

wherez is the sample to be classified,, the Lagrangian multiplier for the Support Vectgris
found as a solution for the optimisation problem and thematon of the optimal hyperplane
w is given by) . o;z; andb is the threshold..

So far we have seen the case where the training sample icihegeparable by a linear
hyperplane. But how do SVMs handle the case where the datd Isearly separable or not
linear at all?

The case where the data is not linearly separable is hanglladdmciating a misclassifica-
tion cost whenever necessary. Hence the task is not onlynfinain optimal hyperplane that
maximises the margin but also minimises the misclassifinatiost. The result of this opti-
misation problem also gives us the same decision functiqoaigon 1.1), but the user will be
required to freely select a parameter that trades off betvee width of the margin and the
misclassification error when performing the training (defiythe model).

Most real life classification problems are not linearly gepée and need a complex classi-
fier. SVMs handle such complex classification problems bypirapthe data from the input
space (Figure 1.1.a) into a possibly high dimensional feaspace (Figure 1.1.b), where the
data can be separated by a simple maximum margin classifiat.nieans one needs to choose
a mapping® : R — R™ usually an Hilbert spacé’#’) wherem > d (usually the mapping
is into a higher dimensional space) such that the data whah mot linearly separable will
become linearly separable (the two cases specified abowe)q@estion associated with this is
how do we choose the mapping functidgr).

As it can be seen from the above equation, the decision fumidibased on the dot product
between the sample to be classified and the support vect@scethe decision function in
the feature space will have the forfitx) = sign(}_, yia;(®(z).®(x;)) + b). In addition to
this, Mercer’s theorem has shown that any dot product in@feapace can be computed by a
function in the input space without the need for explicit piag [Ganapathiraju 2002]. These
functions are called kernels (see section 3.4).

There are a number of points to note here. Firstly, the usesofef functions enables
SVMs to implicitly perform classification on the feature spavithout the need to perform the
mapping first and hence prevent the curse of dimensionadity bccurring. Secondly, as is the
case for the linearly separable and non-separable datasétsupport vectors are involved in
determining the shape of the hyperplane.

Selection of a kernel map is problem specific and it is up tauder to choose one. Kernel
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selection can be based on prior information about the pnolffer example: mutation points),
successful application of the kernel on similar problemsmothe absence of both of the above,
kernels can be selected by empirically testing their peréorce in the given problem. There are
a number of kernel functions known to give better perforneashepending on the characteristics
of problem or the training patterns. However, the polyndrkénel of lower degree and the
Radial Basis Function (RBF) are known to perform well on mostskita

The polynomial kernel has the form:

k(z,y) = (zy +1)% (1.2)

whered is the degree of the polynomial. A large valuelo&fers to a more complicated decision
boundary. And for linear classifiers (linear hyperplane)yhlue ofd is set to 1.
The radial basis function (RBF) kernel has the form:

k(z,y) = exp(—ylz — y[*), (1.3)

where~ is the width of the kernel. The smaller the smoother the decision boundaries. This
kernel is more favourable when one class is totally enairblethe other as shown in the Figure
1.1. The bigger gets, the tighter the closed boundaries (circles) become.

Summing up, SVMs are becoming popular because:

¢ Unlike most traditional pattern recognition techniquestthse empirical risk minimisa-
tion, SVMs use structural risk minimisation, which minimssthe error on yet-to-be-seen
data and hence has good generalisation performance.

¢ Unlike other complex pattern recognition techniques, sagcheural networks, which are
very hard to analyse theoretically, SVMs are easy to thaxalgt analyse without losing
the ability to solve complex pattern recognition probletdsdrstet al. 1998].

e Choosing different kernel functions gives different arebitires which suit the problem at
hand. Polynomial, RBF and Sigmoid kernels simulate polynbolgssifiers, RBF clas-
sifiers and three layer (including feature and output Igyeesiral networks respectively
[Hearstet al. 1998].

For these reasons and their incredible performance in manghmark applications such as
text, speech and image recognition, SVMs have been recapplyed in many biological prob-
lems and have outperformed other pattern recognition tqabs. Knowledge-based microar-
ray analysis by Browret al. [2000] and classification and validation of cancer tissusagu
microarray expression data by Furetyal. [2000] are two examples worth mentioning. Com-
mon problems among these and many other pattern recogtas&a in computational biology
are the shortage of training samples compared to the lazgeo$ifeatures per pattern, and the
availability of noise in the patterns. These two problemgehldeen the main reason for the
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indifferent performance of other pattern recognition teghes. However, previous applica-
tions of SVMs in computational biology or bioinformaticsveashown that these problems are
not as critical for SVMs as they are for other pattern recogmitechniques [Cristianini and
Shawe-Taylor 2000].

1.4 Drug resistance as a pattern recognition problem

In the previous two sections, the HIV drug resistance problae methods of HIV drug resis-
tance testing, and the advantages of the state-of-theatidrp recognition technique, SVMs,
were presented. This section will discuss how the HIV drggstance problem can be consid-
ered as a pattern recognition problem and then exactly difenproblem for this research.

In section 1.2, it was pointed out that certain mutationseaesistance and others do not.
In genotype resistance testing, specific positions in tmetie sequence of the HIV strain will
be checked for the existence of certain amino acids and déepgein the result the relative
susceptibility of the HIV strain to a drug is measured. Foaraple, consider the mutation
represented by the standard notation M184V, known to caef@stance to Eqivir (one of the
18+ antiretroviral drugs available). The biological imieztation of the above mutation is as
follows. If mutation occurred and the amino acid methion{kB, which is found in position
184, is changed to Valine (V) the newly replicated virus lmees resistant to Eqivir [Hoffmann
and Kamps 2003].

If we see this problem from a computational (pattern recogmy angle and represent each
sequence as a vector in a Euclidean space, different sezpienitbe plotted to different points
in this space depending on their genetic make-up (the antildosaquence and its correspond-
ing numeric value). Considering the above example, the \oaisre mutation (non-resistant
virus) will have the numerical equivalent of M at its 184tlkctar component and is plotted as
a point. However, the mutant (resistant) virus will have tie numerical equivalent of V at
its 184th vector component and will definitely be plottediatdifferent point in our Euclidean
space. Once the Euclidean space is divided into disjoirggmmns each representing a pattern
class (Susceptible, Intermediate, Resistante) based dratheng samples available, a pattern
(HIV strain) can be labelled to its appropriate drug profigending upon the region to which
it is plotted.

The drug resistance problem this research is trying to addran be redefined based in the
above argument as:

Given a set of phenotypic data where each sequenced Hi\h sgrdabelled as
SusceptibleResistanto a particular drug, can SVMs learn from these examples
and predict the drug resistance profile of an unseen HIVr&trai

which is the question for this research.
Drug profile of an HIV strain can be susceptible, intermexl@tresistante. But very few of
the pattens in the training data are given as labled inteilateedHence we consider binary clas-
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sification in the research. The research question is angvilrévestigating the performance
of SVMs and comparing it to the performance of neural netwpdecision trees and logistic
regression models.

1.5 Overview of the research approach

To answer the research question a comparative approackds Uifie performance of SVMs
in predicting the drug resistance behaviour of HIV basedherviral nucleotide sequence was
empirically tested. The SVMs’ performance was then conmgpaoethat of neural networks,
decision trees and logistic regression. These classditaichniques were selected because
of their popularity and reputation as a classification tand ave been already applied for
predicting HIV drug resistance. The data used for the ewgditiesting was the same used
by Ravelaet al. [2003] which comprise sequences of isolates from 2045 iddals. Each
sequence constitutes 297 nucleotides of the viral protad&20+ (some are longer than 720)
nucleotides of the viral reverse transcriptase.

One of the factors affecting performance of a classificatiigorithm is the input encoding
techniques. When encoding the input data some biologicakkeutye about HIV drug resis-
tance was incorporated. As mentioned previously, HIV desgistance is related to mutation in
specific positions of the viral genome (for example M184Vowéver not all mutations have
the same effect. Some of these mutations are major and megiseaesistance alone while
others require the existence of the major mutations to caassgtance. To capture this property
of the data, each sequence was converted into a vector faihidghlighted both the global
and local position of these mutations. Each sequence wapgdanto non-overlapping triplets
and each triplet was given a equivalent numeric value. With scheme each sequence was
converted to a vector in some higher dimensional space.

After encoding the data, the first set of experiments was dsirgg SVMs. The experiment
with SVMs started by further pre-processing the input datanéke it suitable for the domain-
restricted kernels and simplify the generalisation andregstimation. Then grid-search using
cross-validation was conducted to select an appropriateekand tuning its diagonal factors.
The two kernels used in this experiment were the polynonkigugtion 1.2) and radial-basis
function (Equation 1.3). There are two parameters of isteie each kernel selected. For the
polynomial kernel the parameters of interest are the degfélee polynomiald and a regu-
larisation constant which indicates the trade-off betwientraining error and the separating
margin. The parameters of interest for the RBF kernel are tli¢hvaf the kernel and the
regularisation constant. Kernel selection is done stdrimg a simple dot product kernel to a
higher degree polynomials and then different RBF kernels.

The second set of experiments was done using neural netwdhiesnetwork architecture
used in this research is the popular feedforward multilggEceptrons with back-propagation
learning. There are different modifications to the standeack-propagation algorithms each
with their advantage in terms of memory usage, converggomeedsand training set size. Stan-
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dard and Resilient backpropagation and Levenberg-Martabkyorithms were tested. Levenberg-
Marquardt was found to be more efficient in terms of perforogamwonvergence and memory
usage for our experiment. Hence, feedforward network willy fconnected neurons, log-
sigmoid activation function and Levenberg-Marquardthé&ag was used. The number of input
neurons equalled the dimensionality of the data and thessowly one output. Different num-
bers of neurons in the hidden layer were tested. The expetimigh neural networks was
repeated with reduced dimensionality. Dimensionalityuctihn was conducted using principal
component analysis (PCA) where up to 90% of the informatioetained.

Experiments with decision trees and regression were alsidaut. The decision tree al-
gorithm used in this experiment was C4.5 by Quinlan [1993}.&4.5 this experiment used the
default values for all parameters except for the confideactf which determines how heavy
the pruning is. The algorithm used for logistic regress®penalised logistic regression with
ridge estimator. The default values of all parameters wisie @sed for the logistic regression
models.

1.6 Overview of the result

The performance of the different models was tested using @b¥e data for training and the
remaining 25% for testing. The data was randomly split indining and testing set. The per-
formance of a model was evaluated in terms of accuracy ofifieetion and the area under the
receivers operating characterstics curve (AUC). The AUG@sed by Bradley [1997] which
reflect the trade-off between the classifiers’ sensitivitgl apecificity, is a better single number
performance indicator.

The results show that SVMs and decision trees performeddbefbllowed by neural net-
works and logistic regression. The accuracy for SVMs rarggdieen 94% for a reverse tran-
scriptase inhibitor to 96% for a protease inhibitor. The AIWESVMs model ranged between
81% to 95% with the lowest AUC related to the lowest accuramy/the highest AUC with the
highest accuracy. The accuracy of decision trees was betd&® and 97% and the AUC was
between 85% and 94%. In addition to their performance, tbesbs tree models showed some
other interesting results. For each tree, we compared thiesferia with previously reported
mutation points. The result showed that most of these syiléra were positions associated
with previously known mutations. The result from the demisiree model was also used as a
confirmation for the input encoding technique used, andexeate point for the performance
comparison. As specified in the previous section, the mgidata used for the model evaluation
was already labelled using a rule-based algorithm. Heheanternal structure of the patterns
are expected to suit decision trees more than SVMs.

The accuracy for the neural network models ranged betwe&nt6491%. The AUC for
these models was between 69% and 95%. The performance efrimdels is below expec-
tation. Dimensionality reduction using PCA was performeénbance the performance. The
performance of the models was reduced as a result of dimelgioreduction. The loss in the

10



performance of the neural network models are attributechttetlying properties of the data.
Recall that drug resistance is caused by mutation but not @htions have the same effect.
Some cause resistance alone however, others depend orctireeoce of additional mutation
to cause resistance. This primary-secondary relatiorsfiyween mutations causing drug re-
sistance results in some correlated attributes. Hencehtrbigy a causes the loss of valuable
information during dimensionality reduction using PCA.

The performance of the logistic regression models was orageethe worst compared to
the other models. The accuracy for these models was betviéraid 92% and the AUC for
these models was between 46% and 85%.

The performance of SVMs and the decision tree models is dlegsal, but, the input
encoding technique and the characterstics of the trainattgqms might favour the decision
tree models. Hence, the performace recorded by SVMs witm#nee approach has shown
a promising start. In general, despite the limitations tesearch has due to the some easily
addressable and other more complicated issues, the reantl inswers the research question
positively.

1.7 Contribution of the research

This research has a number of contributions. Due to thedasitation of the virus, new muta-
tions are occurring almost at an order of billions per dayd@sn untreated patient. This high
number of single point mutations, with the possibility obss-mutations demands a dynamic
system that can cope with the new mutations causing drugtaesie and newly discovered
drugs to address them. One such dynamic system is supptot veachines. Furthermore, to
our knowledge, no-one has applied SVMs as a prediction toiblé domain of HIV drug resis-
tance based on the genetic sequence of the virus. Henceajgu of such a dynamic system
to this problem is the first contribution. Secondly, desgiieefact that we used genetically clas-
sified data, the design of the SVMs models does not dependeqoritr biological knowledge
about the virus and the respective drugs. Hence, if trainddphenotypic data, such a model
will not require redesigning with the discovery of new migatpoints or drugs like most of the
existing systems. In addition, the fact that the design efsystem is not dependent on the bio-
logical data (mutations) makes the intended system capéhkndling any kind of behavioural
variation of the virus that might lead to drug resistanceyjted that this behaviour is reflected
on the genetic sequence of the virus. Thirdly, Salzberg9188s pointed out the importance
of comparing classifiers on real data. HIV is one of the hammatational biology problems
that is data-rich. Therefore, the results from this workHar highlight the outstanding perfor-
mance of SVMs as a tool for pattern recognition. Fourthly,hage seen how dimensionality
reduction techniques affected the performance of the sdmsodels negatively. This result
together with the biological fact about the primary-se@wydrelationship between different
mutations suggests that application of unsupervised difopality reduction is not a good idea
for HIV drug resistance prediction tools. Finally, the resed result for SVMs with the two
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most popular kernels showed no necessity for the formulatimew kernel functions, however
incorporating some general prior knowledge about the vinight boost the performance even
further.

1.8 Structure of the document

Chapter 2 provides background information on HIV biologyerl principles of pattern recog-
nition and some of the different approaches available. iBpaity, details of statistical pattern
recognition, Bayesian decision theory and dimensionaktuction methods with particular
emphasis on feature extraction methods are discussedefimitrioduction to neural networks,
decision trees and logistic regression is also given indhipter.

Chapter 3 gives a comprehensive background on the core rpateognition technique
investigated in this research (support vector machinesis dhapter will start by presenting a
detailed discussion on principles of risk minimisation.thén presents the basic formulation
of SVMs starting from the simplest form of SVMs (linear SVMs)the most complex non-
linear SVMs. An overview of different implementations of B¢, a comparison of SVMs to
other pattern recognition techniques and previous bendhayplications of SVMs are also
considered in this chapter. The discussion of SVMs is basddrary classification problems.
However, an overview on multi-class extension of SVMs isezed. This chapter also reviews
application of other pattern recognition techniques usgutéedicting HIV drug resistance.

Chapter 4 starts by motivating this research and emphasisesiperior quality of SVMs
for the job. The research question for the reported resdarttten formulated. The chapter
further describes the details of the experiment: the inptd dnd the input encoding technique
used, the performance evaluation technique and why sucbhaitpie was selected and the
experimental steps for the different classification aldonis.

Chapter 5 gives the results for the different models and fygtd the findings of the differ-
ent set of experiments. This chapter also compares therpeate of the different models to
each other and to previously published works. This chapiiéaiso present limitations of this
research.

Chapter 6 will present the conclusion for this document. Thapter will also give direction
for future work.

The mathematical details of Chapter 3 and some part of Chapaee presented in the
Appendices.
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Chapter 2

Background and Related Work

2.1 Introduction

In the previous chapter an overview of the research was pie$eAs presented in the previous
chapter, the main objective of the reported work is invediigy the performance of SVMs in
predicting the drug resistance behaviour of an HIV straimnaeted from a patient based on the
genetic sequence of the viral RT or PRO mutants.

To understand the terms and methodologies used in thisrofseaough background on
the biology of the virus, the general principles in patteznagnition tasks and the pros and
cons of different pattern recognition technique should s®@tdished. Hence this chapter is
intended to give a brief background on HIV biology, differgattern recognition techniques
with more emphasis on statistical pattern recognition amdesdiagonal factors on solving
pattern recognition problems. Furthermore, this chagteised as an introduction for Chapter
3 where SVMs are discussed in great detail.

This chapter is organised as follows. Section 2.3 covers¢kessary biological background
on the HIV and drug resistance problem. This section stattsgeneral introductory biology
and then describes the phylogenetic information, the gesgtcture and viral replication cy-
cle. This section also discusses how drug resistance oeturthe different approaches of
predicting drug resistance. Section 2.4 gives a histodealview of pattern recognition tech-
niques and describes the different techniques availakletid 2.5 gives a detailed background
on statistical pattern recognition, Bayesian decisionipyedimensionality problem and tech-
nigues for dimensionality reduction. Section 2.6, 2.7 a8/e detailed background on neural
networks, decision trees and logistic regression respygtiFinally section 2.9 concludes the
chapter.
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2.2 Introductory Biology

The basic biological process at a cellular level is idehtoss organisms. The hereditary
genetic information of a living organism is stored in the xig@honucleic acid (DNA) or ri-
bonucleic acid (RNA). The units of information that are aska together to form DNA or
RNA are four nucleic acid units called nucleotides (basedemne (A), guanine (G), cytosine
(C) and thymine (T) make up DNA and the nucleotide thymine @aeed by uracil (U) in
case of RNA. DNA and RNA, which are a polymer of these nuclestitiave other common
characteristics beside being a chain of nucleotides. Oieesk property is complementarity.
This is the exclusive bonding rule between adenine and thgfuaracil (A-T/U) and guanine
and cytosine (G-C) [Hunter 1993].

While RNA is a single stranded, DNA is double strand of basegliouble helix form. Each
of these strands are often millions of bases long and itsiie is determined by its head (5’
end) and tail (3’ end) The sequence of nucleotides in one of the helices is uinestr How-
ever, due to the exclusive bonding between nucleotidesse¢ljgence on the complementary
strand is completely deterministic. A strand of DNA or RNA wiiis an exact complement
of another strand are called reverse complement to the ddetumter 1993]. (For example,
ATGCCA is the reverse complement of TACGGT).

The DNA contains genes of an organism, which are used as dat@nipr manufacturing
RNA which then will be used to manufacture protein. The priynaie of the nucleic acids
is to carry the encoding of the primary structure of protétnoteins determine the shape and
structure of a cell. Each non-overlapping triplet of nutides in the DNA strand are called
codon. Each codon corresponds to a particular amino acidugdrg of the four nucleotides
accordingly results id® = 64 possible triplets encoding 20 amino-acids and three spduaig
codons called stop codons [Hunter 1993] (see Table C.1 in AgipeC for complete list of
amino acids and the codons encoding them). However, notf@#ts in the genome encode for
protein. In higher organisms approximately 97 — 98% of theogee is a non-coding sequence
calledintrons. And the remaining 2 — 3% callezkonscodes the proteins [Watsat al. 1997].

The mechanism by which proteins are produced from DNA is aiesecg of steps, which
are known as the central dogma of molecular biology [Watstoal. 1997]. Generally, these
steps can be summarised in two steps as transcription amglatian. The process starts with
unwinding the helix into a separate strand. From a singknstiof DNA as a template the
RNA is manufactured. However, not the entire DNA is used to ufecture the RNA. As we
have stated in the above paragraph, only exons are genis.pfdiess is called transcription,
because RNA is transcribed from the DNA. The RNA is then trdaedlanto protein which
determined the structure and function of an organism. Tasing the RNA into protein starts
from the codon which encodes the amino acid methionine (AB@&m then on each codon is

IDNA molecules are directional, due to the asymmetric stmgcof sugar which constitute the skeleton of the
molecule. Each sugar is connected to the strand in its fifthorapreceding it in the chain and in its third carbon
following it in the chain
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translated into the corresponding amino-acid and is adal#getgrowing chain of amino-acids.
This process is then stopped when one of the stop codonsasieteced. However, there are
some complications to the translation process. Dependinvgh@re we start encoding, we have
three possible reading frames on each direction. (i.e. & opading frames) [Hunter 1993].
For example, the following sequence ACTGAAGTCGCCAcan be read as ACT-GAA-GTC-
GCC-A .. or CTG-AAG-TCG-CCA-.. or TGA-AGT-CGC-CA .., all of these making the
different reading framed. Usually only one of these framébproduce a functional protein.
However, this is not always true. Therefore, identifying torrect reading frame is the primary
task in many computation biology problems.

2.3 HIV Biology

2.3.1 Introduction

Viruses are a group of submicroscopic infectious agentshlerto replicate outside a host cell.
These submicroscopic organisms essentially contain gegietic material in terms of DNA or
RNA surrounded by a protein coat. During replication, thesintegrates its DNA or RNA into
the host’'s DNA and takes over the cell’s biological mechautis replicate [NIAID 2004]. If the
virus contains its genetic material in the form of RNA, it slibbe first transcribed into DNA
before integrating with the host's DNA. In most organisms ABltranscribed from DNA and
hence, those viruses that contain their genetic materiarms of RNA are called retroviruses
to indicate the reverse transcription of RNA to DNA.

This section is intended to give an overview on the biolddiegkground of HIV, which is a
retrovirus. The section is organised as follows. SectiBr2jives an overview on phylogenetic
information of the virus and the structure and function ahsoof the major genes in the viral
genome. ltis followed by section 2.3.3 which describes tin& veplication process at a very
high level. Finally section 2.3.4 starts with the basic daén of drug resistance and gives the
reason why HIV drug resistance occurs and describes theawergl approaches of HIV drug
resistance testing.

2.3.2 HIV phylogeny and genome

The HIV is a retrovirus belonging to the geRusentivirus which shares many important char-
acteristics with other retroviruses but also has some aprecitures [Coffin 1999]. Besides HIV,
the genud.entivirusincludes Simian Immunodeficiency Virus (SIV), which is pbyénetically
closely related to HIV and the distant relatives: Vesinau¥iand Feline Immunodeficiency
Virus (FIV) [Hoffmann and Kamps 2003]. HIV is divided into basubtypes namely: HIV-1

2“A taxonomic category ranking below a family and above a sseand generally consisting of a group of
species exhibiting similar characteristics. In taxonominenclature the genus name is used, either alone or
followed by a Latin adjective or epithet, to form the name spacies”.(The American Heritage Dictionary)

15



and HIV-2 based on the molecular weight of their protein dmartsubordinate genes [Hoff-
mann and Kamps 2003]. Despite the strict resemblance betitBé1l and HIV-2, HIV-1 is
the most common subtype and is the main infectious agenh#salied to the worldwide AIDS
epidemic. Even though HIV-2 infection is less common and {@silent, it also results in AIDS
[Klatt 2003]. Furthermore, although HIV-1 and HIV-2 reie in the same fashion the actual
immune deficiency may be less severe in HIV-2 infected imlligis [Hoffmann and Kamps
2003]. Some 99% of HIV patients are infected with HIV-1 witlg@wing number being in-
fected by HIV-2 [Draghiciet al. 2000].

HIV-1 is classified into two principal genetic groups desitgd M (main) and O (outliers).
Genetic group M is highly prevalent and is further classiii@d 10 established subtypes, A
through J. HIV-1 subtype B predominates in Europe and therfkag, whereas HIV-1 subtype
C predominates sub-Saharan Africa [Klatt 2003]. An adddiayroup N (non-M, non-O) has
been discovered recently as a result of interaction bettyeetwo principal groups [Klatt 2003;
Health Canada 2001]. In the remainder of this document HI¥restio HIV-1 unless otherwise
specified.

Physically, an HIV viral particle has a diameter ranging ragpnately from 90 to 100
nm and is surrounded by an envelope, which encapsulates tfwengethat encodes the major
functional and structural components of the virus [Coffin2]99 he HIV genome contains two
single stranded RNA molecules each 9 kilobases in lengths&@ RNA molecules contain 9
different genes encoding 15 different proteins [GreeneRetdrlin 2003]. The HIV genome is
classified into three major classes namely: structural géyesg, pol and env), trans-activation
genes (tat and rev) and accessory genes (nef, vif, vpr and[Maffmann and Kamps 2003;
Klatt 2003]. Like all retroviruses, the major gengagpol-envare contained in the genome
in the conserved ordéy'-gag-pol-env-3Coffin 1999; Klatt 2003]. The schematic diagram in
Figure 2.1 shows the viral genome of HIV-1 based on the diadram http://hiv-web.
lanl.gov/immunology/pdf/2000/intro/GenomeMaps.pdf

tat -.=|]
—
| [

gag | : H_—]
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Figure 2.1: Schematic diagram of HIV-1 genome

The structural genegi&g-pol-eny) are common to all retroviruses. The major components

encoded bygag (group-antigen) include the nucleocapsid proteins cafisfg), matrix (MA),

and nucleocapsid (NC). Trenv(envelope) gene encodes the envelope glycoproteins, enter
velope glycoprotein and transmembrane glycoproteins.eflproteins of HIV have a number
of distinct structural and functional features that enabéevirus to replicate efficiently under
the threat of the host's immune response and which not seethér retroviruses. Thpol
(polymerase) gene encodes the enzymes reverse transer{iRa@), protease (PRO) and inte-
grase (IN). These enzymes are the main stakeholders inrddeeplication process and hence
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are major target of most antiretroviral drugs [Coffin 1999atKl2003]. The other classes of
genes are also critical in RNA transcription and viral reéedsring the viral replication process
[Klatt 2003; Hoffmann and Kamps 2003].

2.3.3 HIV replication

The replication of the virus within the host body is presdrdehematically in Figure 2.2. It
is already stated above HIV virus is unable to replicateidata living host cell. Therefore,
viral replication starts with the virus entering the hodt goffin 1999]. This step of the viral
replication is mediated by thenv protein that interacts with a specific cell surface receptor
Once the viral core enters the cell, the genome RNA is reveassdribed by the HIV reverse
transcriptase into a double-stranded DNA molecule. Thdywewade HIV DNA is then moved
to the cell's nucleus and integrates with the host cell's D&lded by the HIV Integrase. At
this step the viral DNA is called “provirus”. This proviruses the host cell's protein-making
machinery to produce new copies of RNA called messenger RNA @)RBihce these mRNAs
are processed in the cell nucleus, they are transportectoytoplasm aided by proteins en-
coded by theev gene. In the cytoplasm the HIV mRNAs are used to make long shadiiral
proteins and enzymes with the help of the host protein makiaghinery and ribosomes. The
newly made HIV core protein, enzyme and RNA will then gatheida the cell's membrane,
while the viral envelope protein aggregates within the eeljg membrane. Just before the new
virus exits the cell, the long chain of proteins and enzynhas make up the immature viral
core are cleaved into smaller pieces by a viral enzyme cRitettase. Finally, the virus will be
assembled and detaches itself from the host cell. Thisteeisua new infectious viral particle
[Coffin 1999].

An animation of the HIV life-cycle is available attp://www.hopkins-aids.edu/
hiv_lifecycle/hivcycle_txt.html

2.3.4 HIV drug resistance and assay of drug resistance testing

Once the HIV virus enters the human body it begins to reiaat very high rate in the order of
billions everyday. During replication, HIV produces peatfeopies and copies containing errors
(mutated virus). Mutation is very common in HIV because & tiigh rate of viral replication
and RT infidelity which is largely due to the lack of 3'— to — Sgofreading ability within viral
RT [Whitneyet al. 2002]. As a result of the changes in HIV’s genetic structanatétion), the
ability of a drug or a combination of drugs to block HIV reg@tion inside the body is reduced.
This phenomenon is called drug resistance.

As it is stated in the previous section besides RT anothgmeezavhich plays an important
role in viral replication and the resulting drug resistanttamts is the HIV PRO. During viral
replication, the cell produces a long strand of genetic rmatéhat must be cut up and put
together correctly to form new copies of the virus. Cuttingthig long strand is carried out
by the enzyme PRO. Furthermore, PRO is responsible for psoug thegag andpol genes,
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Figure 2.2: Viral replication cycle [Wikipedia 2004]
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which are initially expressed as the precursor polyprat€ag and Gag-Pro-Po) into their
mature stage immediately after budding [Shafer 2002a; Ca@f®0]. Due to their important
role in the viral replication these two proteins are thee#sf most of the existing HIV drugs.
Furthermore, most mutations are exhibited in these prefeathropet al. 1999; Shafer 2002b]

To date, there are more than eighteen antiretroviral drugitadle. These drugs are gener-
ally classified in to three major categories based on thereazgrgeted, the viral replication
stage interfered and their chemical composition [Hoffmand Kamps 2003]. The first class
of drugs are Nucleoside/Nucleotide RT Inhibitors (NRTighjch interfere with the viral repli-
cation stage by blocking the further elongation of the maDNA and interrupting the chain.
There are seven NRTIs. The second class of drugs are Nored&ide RT Inhibitors (NNRTIS).
NNRTIs interfere with the viral replication state the samayvas the NRTIs. There are three
NNRTIs. The third major category are PRO Inhibitors (PId% fanction by interfering with the
viral assembly stage of the replication. There are eight e fourth drug category are fusion
inhibitors (Fl). Fusion inhibitors are members of a broadass, theentry inhibitors which stop
the virus from entering the cell by preventing the final phakattachment [Beerenwinkeit
al. 2003b]. There are also some more experimental drugs in éas$ [tloffmann and Kamps
2003]. A complete list of antiretroviral drugs is given inbl@ 2.1. For up to date information
visit on-line HIV/AIDS information services such astp://www.hopkins-aids.edu

| Drug | Abbreviation | Target | Class |
zidovudine | ZDV RT NRTI
didanosine| ddl RT NRTI
zalcitabine | ddC RT NRTI
stavudine | d4T RT NRTI
lamivudine | 3TC RT NRTI
abacavir ABC RT NRTI
tenofovir | TDF RT NRTI
nevirapine | NVP RT NNRTI
delavirdine| DLV RT NNRTI
efavirenz | EFV RT NNRTI
saquinavir | SQV PRO | PI
indinavir IDV PRO Pl
ritonavir RTV PRO Pl
nelfinavir | NFV PRO Pl
amprenavir| APV PRO | PI
lopinavir LPV PRO | PI
atazanavir | ATV PRO Pl
T-20 gp4l | FI
T-1249 gp4l | FI

Table 2.1: Antiretroviral Agents [Beerenwinked al. 2003b, page i19]

The extreme genetic and antigenic variability of HIV, whigsults from the development
of drug resistant viral strains, is the most common reasothi® failure of HIV drug therapy
[Draghiciet al. 2000]. Although there are many drugs available, none oktllesgs have been
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able to stop the viral replication totally. Despite thedad to produce an efficient drug to stop
the viral replication, much has been done in combating thed@amic [Shafer 2002b]. One
such achievement worth mentioning is the prolonging of tinal wuppression and help with
immunological reconstruction of the patient using comboral therapy. Furthermore, these
successes have opened a new era of HIV therapy called highlye antiretroviral therapy
(HAART) [Hoffmann and Kamps 2003]. HAART works based on pinerapy drug resistance
testing of the HIV strain extracted from the patient andmigguMine patient a combination of drugs
containing one protease inhibitor. Due to the intolerale-gffects and toxicity, combination
of drugs can not exceed four (combination of three drugsesctmmon one at least one of
the three being a PI) [Lathrop and Pazzani 1999]. Hence acasful measurement of drug
resistance is required.

There are two ways of HIV drug resistance testing namelynptygic testing and genotypic
testing [Bean 2000].

Phenotyping

Phenotypic testing directly measures the drug resistaelaviour of an HIV strain. The HIV
strain from the patient is placed in a test-tube and the drofthe virus is closely studied under
a treatment of the drug or combination of drugs by varyingcitiecentration and strength. The
measured viral replication is then compared to the wild fyj@fmann and Kamps 2003].

Phenotypic testing has some disadvantages. Firstly, teeps is time consuming and very
expensive. Secondly, it requires a specialised laboratéuythermore, drug resistance of an
HIV strain cannot be detected when the viral load is less 8@ [Bean 2000].

Genotyping

Genotypic testing is based on analysing certain mutatisssaated with drug resistance based
on the genetic structure of the HIV strain extracted from pagent [Hoffmann and Kamps
2003; Bean 2000]. To conduct genotypic testing the contiglRiRO and RT genes which are
extracted from the plasma are reverse transcribed to cDN&.CDNA is then amplified us-
ing polymerase chain reaction (PCR) to generate sufficient [Bafer 2002b]. This genetic
sequence is then examined carefully for mutation. Depgnolinthe number and type of muta-
tions exhibited the test reveals whether the patient hasloleed resistance to a certain drug or
combination of drugs. For example, if the mutation M184\¢/tetectet] the HIV strain will
be resistant to the NRTlamivudine(trade name Epivir) [Hoffmann and Kamps 2003]. For
explanation about M184V/I revisit Section 1.4.

Genotyping is more widely used than phenotyping. Some cfaresiis that unlike pheno-
typing, genotyping does not require a specialised laboyaibis cost effective, it is fast and

3Resistance mutation is described by using a number showimgadsition of the codon where the mutation
occurred and two letters. The letters preceding the nungggesents the amino acid in the same position of the
wild-type and the letter after the number shows the amind pmduced by the mutation. [Hoffmann and Kamps
2003]
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interpreting the result does not depend on the testing psoceurthermore, the fact that it is
totally based on the genetic sequence of the HIV strain hasexpthe door for leading tech-
nologies from other fields of study to contribute. One sudmnt®logy is pattern recognition
and artificial intelligence.

There are a number of commercially available tools to cohdenotypic resistance testing.
But they have a number of limitations. Firstly, certain miata$ cause resistance by themselves
while others need to occur in the existence of others to ceasstance. And different geno-
typic tools treat these mutation points differently anddesfeads to discordance between the
different tools [Ravelat al. 2003]. Secondly, interpretation of the result of genotypgting is
difficult [Bean 2000]. Thirdly, most of these tools use knoade-based approach and are highly
dependent on the known biological facts about the virus hadltug. Hence, these tools will
not be able to perform the required task without continuqdate or even require redesigning
with discovery of new drugs and mutation points known to eomésistance to the existing or
newly discovered drugs. For the above mentioned reasonsarg genotypic testing is open
for more research and collaboration for other disciplines.

2.4 Pattern recognition

Pattern recognition is an interdisciplinary field of stueyvdloped mainly in the 1960s covering
developments from a wide variety of disciplines rangingrfrpsychology and physiology to
computer science and artificial intelligence [Webb 1999hc8 then scientists have been in-
vestigating ways to enable machines to recognise pattersaitme way humans do to base their
decision-making process on their daily life. According ®vidis [1977] pattern recognition
is defined as understanding the building blocks of a giveeaibjTou and Gonazalez [1974]
also defined pattern recognition as classification of antidpta into a category called a pattern
class, which is determined by some given common attribudsed on exhibited patterns. A
pattern is defined as the description of any member repiagempattern class. A pattern can
be as basic as observation and measurements [Tou and Gema2aK; Schalkoff 1991]. Ex-
amples of a pattern could be a DNA/Protein sequence, a texindent, handwritten characters,
or a signal waveform.

Pattern recognition is a computationally expensive tasétefore it has been a specialised
subject in the past and applications were limited to certdimains. However recent ad-
vancements in computer hardware (processor speed andestbieve made pattern recognition
widely applicable in range of application areas (see Tal [Jainet al. 2000]. Although
the applications presented in table 2.2 are diverse, onéstannumber of common properties
between these applications [Jahal. 2000]. One common property is that the data for each
problem is represented by a very big set of parameters (EgtuAnother common property
is that the features that represent the data cannot usualigtned by the domain expert, but
should be extracted from the exhibited patterns.

Independent of the application domain, a pattern recagnitsk consists of a number of
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iterative steps. The first step is data collection and piegssing. This step includes recording
measurements and/or observations, extracting and/artisgjehe most representative features
and high level examination of the data to get some idea abeutrtderlying distribution, prob-
ability, structure, etc., of the data. The second step igydew) the pattern recognition system
and performing the training. The pattern recognition sysie usually designed based on the
properties of the sample data and is dependent on the peestep. Sometimes it might be
impossible to design the pattern recognition system andehtre intended system will be the
result of the training process. Therefore careful repriedem and preprocessing is required for
the performance of the system. The final step is testing tHenpeance of the designed system
and interpreting the result. Note that each step listed @loban be further broken down into a
number of steps.

| Problem Domain | Application | Input Pattern | Pattern classes |
Bio-informatics Sequence analysis | DNA/Protein Known types of
sequence genes/patterns

Data Mining Searching for Points in Compact and well

meaningful pattern | multidimensional space separated clusters
Document Internet search Text document Semantic categories
Classification (eg. business, sport, etc.)
Documentimage | Reading machine | Documentimage Alphanumeric
analysis for blind characters, words
Industrial Printed circuit Intensity or range Defective or non -
automation board inspection image defective nature

of product

Multi media Internet search Video clip Video genres (eg. action,
database retrieval dialogue,etc.)
Biometric Person identification Face, iris, Authorised users and
recognition fingerprint access control
Remote sensing | Forecast crop Multi spectral Land use categories,

yield image growth pattern of crops
Speech recognition Telephone directory] Speech waveform Spoken words

enquiry without

operator

Table 2.2: Examples of Pattern Recognition applicationis [dgal. 2000, page 5]

Based on the training approach, a pattern recognition taskea@ategorised asipervised
or unsupervisedpattern recognition. In supervised pattern recognitiba,gattern recognition
system is given a set of examples (input-output pairs) asinitig set. This training set is
usually of the form of attribute vectors, and is a subseRdf Given the attribute vectors, we
can synthesise the value of a mapping function for some ssmpthe training set and choose a
set of hypotheses for the problem. On the contrary, in unsigesl pattern recognition, there is
no output value associated with the inputs and the recagrisisk is to get some understanding
of the process that generated the input so as to classifyrdireng set's example into their
respective classes according to their properties and algerteralise for unseen inputs. In the
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remaining part of this document pattern recognition refersupervised pattern recognition
unless otherwise specified.

Another way of classifying pattern recognition approacisdsased on some properties of
the data and assumptions taken. The preprocessing stemlggtrovides us with a concise
representation of the data but also crucial informatiort tredps us select the right pattern
recognition approach to solve the problem at hand. Thisstegetimes provides the underly-
ing and statistical basis of the patterns or the underlytngcgire, which is critical to pattern
recognition. As in other cases none of the above informat&m be provided, all the nec-
essary information for the desired system should therdfermvestigated during the training
process. Thus, based on the information available one appmight be better than another to
solve a particular problem. In summary, based on the unidgrlyrinciple, data representation
and assumptions made, pattern recognition can be crudelgarégsed into four main practical
approaches [Jaiet al. 2000; Schalkoff 1991]. These categories are:

e Template matching,
e Syntactical/structural pattern recognition,
e Statistical pattern recognition,

e Neural pattern recognition (Neural Networks).

Each of these approaches are described below

There are other approaches that do not fit particularly imy @ the above categories
[Schalkoff 1991]. Such approaches include combinationstatistical and syntactical pattern
recognition, reason-driven pattern recognition whené@el intelligence is used to infer some
rules based on the training data, etc.

Template matchingis conceptually the simplest and the earliest form of pattecognition.
In some applications the pattern under investigation ioatrdentical to some prototype of the
pattern class. This prototype is called a template. A tetaptaght be a certain object in the
problem domain or a string of patterns. Therefore, the patecognition problem is reduced
to matching the unknown pattern with these templates anthfirttie best match. In other sit-
uations the templates may also be contained within the wmkrpattern, therefore the pattern
recognition task may also involve determining the relapesitions of these templates. The
performance of this pattern recognition approach dependkequality of the similarity mea-
sure used. There are a number proposed similarity measoteneedetermine the best match
between the known pattern (template) and the unknown pateuch measurements include
edit distance, sum-of-squares difference and the maximiketihood formulation proposed by
Olson [2000]. More on similarity measures can be found inaBaiff [1991].

Algorithms based on template matching are easy to implemma&rguffer from low recog-
nition performance due to distortion, view point changeangé interclass variation among the
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patterns [Jairet al. 2000]. This can often be addressed by incorporating somenoeessing
techniques such as rotating the stimulus, scaling, etcateent upright, of a standard size, etc.
respectively.

Syntactical/structural pattern recognition: In many real world problems,the structural and
relational information contained in the patterns makeatifieation of quantifiable features that
can be represented in a vector form difficult or sometimesssjple [Schalkoff 1991]. Some
examples of pattern recognition problems satisfying tleseacteristics are picture recogni-
tion, time-series analysis, text recognition. One commiwaracteristic of these patterns is that
some kind of inheritance or identifiable organisation isaliyuexhibited [Olszewski 2001].
Syntactical pattern recognition is not only used for classtion of patterns but also description
of patterns [Fu 1974]. For example, in some pattern recmgngroblems, the structural infor-
mation of the pattern is so important that classificationhef pattern might not be enough. It
might thus be necessary to describe the property of therpattéch makes it eligible to be clas-
sified in a certain way. As another example, some patterediligerprints are self-dependent
and the number of possible descriptions are extremely |aygce classifying each pattern into
its own class is impractical. Therefore, the task of suchteeparecognition system involves
describing the pattern rather than classifying it.

The complexity, inheritance and identifiable organisatiérihe patterns, have motivated
many syntactic methods to adopt a hierarchical perspeatinere these complex patterns are
considered as a composition of simple sub-patterns andehisnierarchically decomposed
into simpler patterns [Fu 1974; Schalkoff 1991]. The simpleub-patterns are usually re-
ferred asprimitivesand the relationship among them represents the strucemalres of the
pattern [Olszewski 2001]. Primitives can then be quantifisidg formal grammar or relational
descriptions (usually graphs) to facilitate recogniticlassification or description of these pat-
terns [Schalkoff 1991].

A statistical approachis based upon a statistical analysis of the data to be ckdsifhe data
are assigned to a particular class by computing class-ttondi densities of the data, which is
represented as@&dimensional feature vector. Thidimensional vector space is then divided
into regions corresponding to the different class basedoomescriterion. Statistical pattern
recognition will discussed in more detail in Section 2.5.

Neural pattern recognition is a computational system inspired by the learning chariaete
tics and the structure of a biological neural network. The &ement of this approach is the
novel structure of the information processing system.doimposed of a large number of highly
interconnected processing elements (neurones) workingriplete harmony to solve specific
problems. Neural pattern recognition will discussed in enbetail in Section 2.6.
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2.5 Statistical pattern recognition

In statistical pattern recognition, a pattern is represg:bly a set of features (say a setidea-
tures) obtained through observations/measurements andmmently viewed asddimensional
feature vectolX = (x4, x,,...,24). The basic assumption in this approach is that there exists
a multivariate class-probability distribution which caa inferred from this exhibited random
patterns [Jairet al. 2000; Kanal 2000]. With this assumption, the problem ofistiaal pattern
recognition can be formulated as follows: given a set of meaments representing the pattern
asd-dimensional feature vectors, the purpose of the patterogr@tion system is to classify
these unknown patterns to one of the known (eppattern classes [Webb 1999; Janal.
2000]. Classification is done by subdividing the space sphiyethese feature vectors into
¢ disjoint (non-overlapping) regions, where each disjogdion represents a particular class
[Schalkoff 1991]. The vector representation of a patteso alssures that a pattern can only be
plotted to a point in the feature space and hence can be agdigone class based on the region
to which it is plotted.

Like all other pattern recognition approaches, statikpedtern recognition is also carried
out in a number of sequential steps which can be divided imtomajor steps: training (learn-
ing) and classification (testing) [Jaat al. 2000]. Each of these are further broken down into
a number of modules. The two major steps and the modules im #ap are schematically
presented in Figure 2.3.

Test Feature [P
- ; Classification -
Pattern Prepocessing Measurement
A
,,,,, Classification | | _________
Training
Training . Feature .
—— ™ Prepocessing . . Learning
Pattern Extraction/selection

A

Figure 2.3: Model for statistical pattern recognition fJei al. 2000, page 8]

The first module is the preprocessing module. This modulespansible for the compact
representation of each pattern. This includes removingen@egmenting, normalising the pat-
tern and other related operation. The preprocessing maslafee same for both the training
and the classification mode of the recognition system. Aitjiothis module gives a compact
representation of the data, it does not necessarily givdfaotige one. Despite the intuition
of considering a large number of parameters (features)doackerise a pattern in order to ob-
tain a better recognition, in statistical pattern recdgnithaving a large number of features
to represent a pattern does not usually result in minimurssdiaation error. To resolve this
contradiction, it is necessary to find the representatigéufes by taking into consideration the
number of samples available and the correlation betweefetitares. A module which is re-

25



sponsible for this sub-task and which is located in the ingimode is feature extraction and/or
selection module. This module is recursive and the feedpattk shown in the figure (Figure
2.3) allows the designer to optimise the process.

The primary aim of building a pattern recognition systenoibuild a set of decision bound-
aries that can classify unseen patterns based on the fihité semple patterns. Furthermore,
Jainet al.[2000] have pointed that the performance of a classifier doesnly depend on the
complexity of the classifier but also on the interrelatiapdietween the available sample size
and the number of features targeted. For a classificati@wtels arbitrarily large training sam-
ple which is representative of the underlying distributairthe pattern, increasing the number
of features to characterise the pattern will not have a negatfect on the performance of the
classifier [Jairet al. 2000]. However, in real world pattern recognition probletims number
of available samples is limited. Moreover, Duefaal. [2000] have commented that increasing
the number of features for a finite sample size does not ressihall classification errors but
may rather reduce the performance. This comment is furingpated by Trunk [1979] with
the help of examples. This property has put a constraintemtimber of features that one can
consider for a finite number of training samples. Althougéréhis no defined rule or guide to
solve this problem there have been a number of recommendadiod guide lines given over
the past couple of decades. For classifiers which are baseartitioning the feature space into
regions, the number of training samples should be an expahémction of the number of
features considered. However, Jain and Chandrasekara®][i8% stated that it is generally
acceptable to have the ratio between the number of traimnmgpkes and the number of features
per pattern class to be greater than ten. This ratio mustdbeehfor more complex the classi-
fiers. More comprehensive discussion on this topic is caverdRaudys and Jain [1991] and
Jain and Chandrasekaran [1982].

There are a number of approaches to obtain a comparabldedti@en the sample size and
features targeted such as dimension reduction. The twaitpods used in dimension reduction
are feature selection and feature extraction. Featuretsg®las a process of selecting a subset
of the features that effectively represent the patterntufeaxtraction on the other hand is the
process of finding an arithmetic combination of theimensional feature vector in relation to
a lesser dimensional vector. Dimension reduction will lecdssed in more detail in section
2.5.2.

The last step and the final module in statistical patterngeition is the classification mod-
ule. This module classifies patterns based on the classtimyrad probability function which is
obtained during the training process. As stated abovesiilztion is achieved by subdividing
the feature space into a number of disjoint regions. Thesisida boundaries are defined using
Bayes decision rule [Jaiat al. 2000]. Bayesian decision theory is a fundamental statlstica
approach to statistical pattern recognition problem. &pigroach formulates the classification
problem in terms of the probability density function. In thext section an introduction to
Bayesian decision theory is presented. A detailed presentaf this topic can be found in
Appendix A.1. The presentation of these sections is basddeowork by Dudeet al. [2000]
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and Webb [1999]. The notations are after Dadal. [2000].

2.5.1 Bayesian decision theory

Bayesian decision theory is the basic concept behind stafigattern recognition techniques.
Given a random pattern and ak class pattern recognition task, Bayes’ theorem answers the
question: what is the probability that the observatidpelongs to the pattern class?

The Bayes rule describes this probability as:

P(wj|z) = %

(2.1)
whereP(w;|x) is the posterior probabilityl’(w;) is the prior distributionp(z|w,) is the state-
conditional probability ang(x) is the probability density function fat.

Note that, the posterior probability in equation 2.1 is gaim be calculated from other prob-
ability functions that are easy to calculate from the givaming samples. Once this probability
is estimated the pattern will be assigned to the patterrs eléth the highest probability. ie.

r—w if Pwlx)= max P(wj|z) (2.2)

(For compete presentation of Bayesian decision theory spegix A.1)

Bayes decision rule assumes that all the probability funstare defined which is not true in
most real-life pattern recognition problems. However imgnaf these classification problems
one can assume the form of the class-conditional densitynfedjivariate Gaussian). Based on
this assumption statistical classifiers will be dividediparametric and non-parametric classi-
fiers. Some examples of parametric classifiers are lineanandinear discriminant functions.
Some examples of non-linear classifiers/arearest neighbourhood and multilayer perceptron.

So far we have seen that given the probabilistic densitieakang some assumption of about
the probability density we will perform classification ofseen patterns based in equation 2.2.
However, there are a number of attributes that can affegbéinrmance of the classifier spe-
cially when probability density estimation is involved. ©such attribute is the proportionality
between the number of features and available training sssnfflthe number of features is too
large relative to the number of training samples, the di@sss likely to perform badly. To
avoid this problem there are a number of techniques. Oneeafibst acknowledged approach
is dimensionality reduction discussed below. Note thagnathough this problem is most likely
in pattern recognition techniques that rely on some prdipabstimation, it also occurs in other
pattern recognition techniques.
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2.5.2 Dimensionality reduction

The dimension of the data is the number of features that septeeach observation or simply
the size of the vector reperesenting the observation. Higlemsional data has presented statis-
tical pattern classification systems with many challengebsreew perspectives to the problem.
Based on a simple naive intuition one could argue that claasidin error can be decreased by
increasing the number of features. However, this is not fou@ number of reasons. Firstly,
high dimensional data will have a great demand of computaticesources. Secondly, with
high dimensional data, it is very hard to understand the tyidg structure of the data which
thus degrades the classifier's performance. Besides theeabeutioned reasons, the impor-
tance of maintaining the ratio between the dimensionafith@ data and the number of samples
to increase classifier performance is discussed in sectnTherefore, dimension reduction
is important due to measurement and computational cost lasdiftcation accuracy. To see
further the relationship between the number of featuressaniple size and the importance of
dimensionality reduction, consider the 3-class pattecogaition problem of classifying three
different geometric shapes (circle, square and trianglepted from Gutierrez-Osuna given in
Figure 2.4. A simple approach is to divide the feature spatmea number of uniform bins and
compute the ratio of examples for each class at each bin agmsihoFigure 2.4 (a). When a
new object is found, the object will be placed in the featyrace and choose the predominant
class (geometric shape) in the bin it is placed. It can be Beemthis figure only one feature
is considered. Moreover there is too much overlap and hdrecpdrformance will be low. To
address this problem we need an extra feature to represepattern. So lets consider a two
and three features as shown in Figure (2.4 (b)) and (2.4€spactively.

When the number of features increases from one to two, the auaflbins increases from
3 to 9(3?). Here, we have to make a decision whether to maintain thetgtefsexample per
bin or keep the number of examples constant. In the first caseaesd to increase the number
of examples from 9 to 27 and the latter case results in sp&rseatter plot. Furthermore, when
the dimension is increased to three the problem become wdtse number of bins grows to
27 and if the density needed to maintained 81 examples auireecgand on the other hand, if
the number of examples are kept constant the 3D scattergr®@most empty. Although this
is a trivial example we have been able shown the problem oéd#ionality that exists almost
in all pattern recognition problem. In this example, the bemof training sample (geometric
shapes) should grow exponentially as the number of featoasiders. But increasing the
features increasing continuously for a fixed sample sizes am improve the performance,
rather it starts to degrade the performance. This phenomistiermedCurse of Dimensionality
[Theodoridis and Koutroumbas 1999]. In practise, this rseiuat, for a given sample size,
there is a maximum number of features above which the pedocen of the classifier starts to
degrade rather than improve. In the last decade much réskave been carried out to solve
this problem and come up with different approaches. One wdjymensionality reduction.

Dimensionality reduction can be described as determinisgbset or combination of fea-
tures that represent the pattern without losing the clagsgiciinatory information. There are a
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Figure 2.4: Number of bins required for different featurasdne feature (b) two features (c)
three features [Gutierrez-Osuna]

number of methods of reducing the dimensionality that aoeiged into feature selection and
feature extraction approaches. Feature selection chaosaisset of all the features which are
more informative while feature extraction creates a newokétss dimensionality by creating
combination of the existing features. Both these approasélest features or create features,
which are combination of the original features that havéhhdgscrimination power and give
better between class difference and better within clasfiagitg. This is done by choosing
a optimal criterion function/ that defines this similarity and/or difference [Webb 1998]-
though it is not reliable when the ratio of sample size andufes is small, commonly used
criterion function is the classification error [Jagh al. 2000]. Another issue that needs to be
considered is the number of reduced features.

Feature extraction

The feature extraction method determines a feature subsgatnall dimensionality which is
a linear or non-linear combination of the ordinal featuracgp[Jainet al. 2000; Webb 1999].
Feature extraction can be formally defined as follows:

Given a set of feature¥” = {z, x5, x3,...,24}, find a subseX’ derived fromX
with | X’| = m such that:
J(X') = max J(X)

:DEXm

where.J(.) is the optimal criterion function ana < d
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Therefore the aim of feature extraction is to find a concipeasentation of the data with no
or minimal loss of information. Feature extraction has baemmportant problem for decades
and hence different methods have been proposed. Thesedaatho be grouped in to linear
or non-linear transformation of the original feature spdgeear and non-linear transformation
may be distinguished further by supervised or unsupervisdte best known unsupervised
linear transformation technique is the Principal Comporferdlysis [Jainet al. 2000; Webb
1999]. In these methods, the transformed features are daad@ording to the value assigned
by criterion function and the first: < d features will be chosen [Jagt al. 2000]. Another
linear transformation method which uses the same prinégpf@ojection pursuit [Jairet al.
2000]. Other methods like discriminant analysis use théiwitlass information to perform
linear extraction. With the development of neural netwpriesv methods of feature extraction
have been investigated. One such method is the non-linaturéextraction method known as
Self-Organising Map (SOM).

The mathematical formulation and detailed discussion afdgyal Component Analysis
will be presented next.

Principal component analysis

The Principal Component Analysis (PCA) method originated9011to derive a new set of
features which are linear combination of the original sefieatures describing the data sorted
in descending order of importance according to the critefimction [Webb 1999]. If the new
feature space is said to have a dimensionality d, the firstm newly derived features will be
considered. This technique is widely used because of thrpertant properties [Roweis 1998]:

e Itis an optimal linear method for dimensionality reduction
e Model parameters are computed from the data itself

e Once model parameters are computed, compressing and dexssimg data
are trivial

There are a number of ways describing PCA mathematically omeérically. Geometrically

it can be described as finding a set of axes rotated from tiggnatiaxes to better fit the data
and magnify between class difference [Webb 1999; Norri2P0Qorris [2002] also described
PCA as “decomposing the original pattern into a set of dispatterns over the sample and then
recombine them to recreate the original data”. PCA is basdtestatistical representation of
the pattern and suppose the pattern is represent&d as(zy, z, ..., 74)’ and the mean be
denoted by:

p= Elz]

and thed x d covariance matrix given by:
Y= E[(x — p)(x—p)"]
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The problem of finding the principal components is then defia finding thel dimensional
normalised vectos! such that fory; = 27 a, the following properties holds:

1. Vary] > Var[ys] > ... > Varly,]

2. For alli # j the covariance betweep andy; should be zero. i.ey; should
be uncorrelated witl;

Consider the first termp,, the first principal component
Y1 = 41171 + Q122 + ... + Q1474

defined by choosing; = (ai1,a12,...a14) to maximise the variance af;, constrained to
la1|? = 1. The variance ofj; can be written in terms of the covariance matrix an@s:

Varly,] = al Ya,
Hence to find the first principal component one must solve thblpm:
Maximise alYa; subjectto ala; =1
this is equivalent to maximising
f(ay) = alYa; — val a;

wherev is a Lagrangian multiplier. Setting the partial derivasweith respect ta; to zero and
solving fora; will give us the vector value af, that maximises the variance gf

df(a1)
8@1

=Xa; —va; =0 (2.3)

Comparing this expression with eigenstructure of the squomateix >, (2.3) tells us that choos-
ing a; to be the eigenvector af with eigenvalue’ solves the maximisation problem. Further-
more (2.3) implies:

Varly,] = a{Xa; = v

Ordering the eigenvalues, X, . .. A4 of the covariance matriX in such a way that
AN > >N

Because the aim is to maximise the variance we chodsebe the largest eigenvalug. The
second component, the second principal component

Y2 = A21T1 + G22T2 + ... + A24%q
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can also be defined by choosing = (as1, ass, . . . azs) to maximise the variance af, con-
strained to|ay;|*> = 1 and the covariance between andy, is zero. The second constraint
implies:

Elyayn] — E[y1]Elya] =0

ai¥a; =0

Note that since:; is an eigenvector of, and hence, is orthogonal ta; (i.e. afa; = 0).
Using Lagrangian multipliersi(andn), the problem of maximising the variance @f can be
reformulated as

flay, as) = a2 Yay — palas — nat a

Setting the partial derivatives with respectdoto zero and multiplying it by}, tells us that
n = 0 hence we have:
Yay = pag

This tells us that, is also eigenvector of, which is orthogonal ta;;. Remember that we
are still looking to maximise the variance gf, henceu, will be the largest of the remaining
eigenvectors ok (i.e. o).

Following the same argument, the variance ofithigorincipal component is

And the total variance is:

d d
ZVar[xi] =M+t F A= ZVar[yi]

=1 =1
Thus to compute the portion of the total variance if the da# is captured by th&" principal
component we can use the ration:

proportion of variance-= SISV
J

Jj=1

and the portion of the total variance captures by firptincipal components is

k d
P=2 NN
=1 =1

The value of the is determined by the size of the reduced dimension and isschogthe user.
Although the value op is problem specific choosing a value between 70% and 90%etln
the information of the original data well [Jolliffe 1986].

The effect of dimensionality reduction using PCA on the penfance of some of the pattern
recognition techniques used in this research will be assgess
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Feature selection

Another approach to dimensionality reduction is featulec®n. Unlike feature extraction
that finds a feature space will lesser dimensionality wheclniearly or non-linearly combina-
tion of the input space, feature selection finds a subsetadhiput space that has a considerable
information and lesser dimensionality. To decide whichdeaspace out of the possible sub-
sets, we can use classification performance of each subapdcselect the one with the least
classification error.

There are a number of approaches to do feature selectiohislresearch feature selection
techniques are not applied but interested reader can reaudaitk by Saeys [2004].

2.6 Neural networks

2.6.1 Introduction

The traditional von Neumann machine, which abstracts tmeamuiinformation processing was
able to solve computational problems faster than a humain,bhawever it was inefficient
when it comes to recognition, classification and descniptasks that the human brain handle
with ease. Real life classification/recognition problenmesmade complicated by a number of
external factors such as orientation of the object, dioactf vision, deformation etc. Aimed
at addressing these limitations, a different paradigm affmating called neural networks was
proposed way back in 1940’s [Russell 1991].

Neural networks are systems inspired by the biologicalmes\system, which is composed
of numerous inter-connected simple elements (neuronspabpeg in parallel. These small ele-
ments work as a unit to perform a given task (such are predictilassification) by adjusting
the value of the connections between them (termed as weiliie)values of these connections
are usually adjusted dynamically based on the performaifite metwork on the given training
and validation sets [Russell 1991].

A neural network is characterised by three design decigMus1997]:

e pattern of connection between neurons (architecture)
e activation function
e method of determining the weight on the connection (trajranlearning algorithm)

Both supervised and unsupervised learning methods can déarseeural networks. However,
the presentation in this section is based on supervisexitear

2.6.2 The Perceptron

The simplest form of a neural network used to classify liyeseparable patterns is the percep-
tron created by Rosenblatt in 1961 [Rosenblatt 1962]. A pa&roeias two layers namely the
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input layer and the output layer (see Figure 2.5). The weight bias can be adjusted from the
input/output pair presented using the perceptron leamiles. The perceptron learning rule is
described below. Perceptrons have gained repetition beaafutheir ability to generalise well
from a given training sample and a randomly distributed eation (random initial weights)
[Demuth and Beale 2004].

@

: w

@fi@» fla)

w,” output layer

Input layer

Figure 2.5: A perceptron:; andy are the input and output respectively. is a weight associ-
ated with each node in the input layer anid the bias.

The output of the network given in Figure 2.5 is:

Yy = f(z w;.T; + wy) (2.5)

The activation functiorf (x) can have any form depending on the application of the network
(for example: the sign function, log-Sigmoid function). eltog-sigmoid function is a typical
choice [Rumelharet al. 1994].

The perceptron uses adaptive learning to adjust its wergbtder to produce the correct
output. The rule governing this, known as the perceptromieg rule, is as follows [Demuth
and Beale 2004]:f the network generated the correct output make no changa,wfong
output is generated, adjust the weights and the bias by an ahpsoportional to the difference
between the correct output and the generated output.

In a more generalised way, perceptron learning can be maitteatty it can be summarised
as:

wip1 = w; + Aw; (2.6)

Aw; = n(T; — y;)z; (2.7)

wherei corresponds to the current learning sets called the learning raté) (< n < 1), T;
refers to the target output angis the actual output.

Equation 2.7 is known as the delta rule. Like any other ecmyrection learning rule, the
ultimate aim of this rule is to increase the overall perfong®of the system or minimise the
cost [Rumelharet al. 1994]. The common cost function considered is the sum ofreguerror

34



(SSE) (sum of squared difference between the desired oatglithe actual output). SSE is
defined as:

1 2
SSE =353 (Ti—w) (2.8)
With this definition of the cost, the learning goal will thee minimising this function
(Equation 2.8) with respect to the weightj.
_ O0SSE

Aw: = 2.
wi =5 (2.9)

9SSE Oy

The learning rule in Equation 2.7 will become:

dy;
Awy = (T~ i) 5 (2.10)

i

Equation 2.10 is called the Gradient descent learning.

The perceptron learning rule is capable of solving any lilyeseparable classification prob-
lem. However, the gradient descent learning is capable nimsing the squared error to the
hypothesis (some acceptable value defined by the expeemeaven when the problem is not
linearly separable. Although these learning rules areldapzt solving classification problems
in finite time, some classification problems (for example:Xfonction) are too complicated to
be learned with acceptable accuracy. Most real-world groklare not linearly separable and
can not be solved with the simplest architecture (singledagtwork). To address this problem
a number of perceptrons can be combined to handle multieladsomplicated classification
problem where there is more than one output and the probleatsreecomplicated hyperplane
to classify the patterns.

2.6.3 Feedforward multilayer perceptrons

Multilayered perceptron has additional layer called a biddayer and the neurons in these
layers are called hidden neurons. (They are called hiddeause the neurons in these layers
have not external connection except, the input, output othem hidden neuron). The output
from one layer serves as input to the next layer. Figure 2@/simultilayered perceptrons with
one hidden layer.

The most popular form of multilayered perceptrons is feegléwd topology. In this config-
uration neurons on a layer are only connected to neuronginekt layer. Connection between
neurons in the same layer and loops are also not allowedextmple: in Figure 2.6 the input
neurons are connected to neurons from the hidden layer amdmein the hidden layer are
connected to neurons in the output layer).
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Figure 2.6: A multilayered perceptron with one hidden layultilayered perceptron is called
fully connected if each neuron in one layer are connectedd@very neuron in the next layer.
Otherwise it is called partially connected. Each connechietween neurons have associated
weight. The activation functiong) on the hidden layers must be non-linear. Multilayered per-
ceptron with linear activation in the hidden layers can lbeatively represented by a perceptron
with relevent activation function.

Similar to perceptrons the output is computed from the iamatthe weight of the respective
connection. Each neuron in the network has an output whittkeignput for the neurons in the
next layer:

Wherew;; refers to the weight of the i'th connection in the j'th layer. is the output of the
i'th neuron. z; is the input for the i'th neuronz;’s equals the network input for the neurons
in the input layer and equals the output of the layer beforéhfe subsequent layers. The final
output(s) of the network is computed similarly.

The weights are adjusted during the training process tomsa the sum of squared error.
For multilayered perceptrons SSE is defined as:

1 2
SSE =53 (Yas = vas) (2.12)

()

whereyy; refers to the desired output apg is the actual output.

During the training the outputs of the network are calculdtg calculating the output at
each layer and continuing until final the output(s) is/areegated. The weights are then ad-
justed by an amount proportional to the SSE of the neuroririged to the weight at the given
time during the training. Adjusting these weights is noediras it is for perceptrons. The error
for the hidden layer can only be known when the error at th@uwutyer is known. Hence
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there must be a mechanism to propagate the error througtetiverk so that each subsequent
weight is adjusted. There are a number of algorithms to leatidé task. The most popular
backpropagation algorithm is discussed below.

Backpropagation algorithm

Multilayer perceptron with backpropagation learning is thost popular network architecture
[Delen and Kadam 2005]. During the training process of thitigecture, the forward pass the
activations propagate from the input layer to the outpu¢taf the network. On the other hand
the backward pass weights for the connection will be adfuisgsed on the difference between
the desired and actual output of the layer after it (for edampFigure 2.6 the weights of the
output layer are adjusted based in the error of the outputeohetwork and the weight hidden
layer will then be calculated based on these values). Thkpbapagation algorithm adjusts
the weight of the connection between the neui@nd j at thek + 1's iteration as follows
[Riedmiller and Braun 1993]:

The learning ratey has an important effect on the convergence time of the legrrfow-
ever, while a small value for the learning rate might leawertbtwork to require a large number
of iterations to converge, a big value will leave the netwtorfjump between different values and
might cause the network not to achieve the required bounti@error. To address this prob-
lem, one of the proposed solution is introducing a momentmm.t The modified change in
weight will be as shown in Equation 2.14. The introductionttefse momentum term will give
stability to the learning process (the parameiescales the influence of the previous weight),
however this is not always true in practice [Riedmiller 1994]

The backpropagation algorithm has a number of limitatiderofnaking the training pro-
cess too slow for real-world problems [Riedmiller and Brau83;PDelen and Kadam 2005].
To address this problem there are a number of modificationbese algorithms. Some of
these modifications took the heuristic approach while stlparform the numerical optimi-
sation to speed up the training process. Some of these thigsriare Resilient propagation
algorithm proposed by Riedmiller and Braun [1993] which useshteuristic approach and the
Levenberg-Marquardt algorithm proposed by Hagan and MdtB84] which uses numerical
optimisation.

Resilient backpropagation algorithm

The Resilient backpropagation algorithm was proposed byrRiet and Braun [1993] to ad-
dress the weight-update related limitations of standadkfr@pagation. This algorithm uses
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the sign of the derivative to determine the increase or deserén the value of the weight. The
size of the weight change is determined with separate upddte. The update value of the
weights are as follows [Riedmiller and Braun 1993]:

~Uji(k) if 25E (k) > 0,

Oowy;
Aw;ik) = § +Us(k)  if Z5E (k) <0, (2.15)
0 else

The update value is determined as follows:

ef x Uji(k — 1) if 258E () — 1) x 9S5E () >,

Wi 6wji
Uji(k) = § e x Uji(k — 1) if %Swﬂ(k; —1) x %ﬁ%(k) <0, (2.16)
Uji(k —1) else

where) < e~ <1 < €'

The update value is set to an initial value which is perfgrgisbportional to the initial
weight. 0.1 is usually a good initial value. The Resilientkg@opagation algorithm is much
faster than the standard backpropagation algorithm and hasdest memory requirement [De-
len and Kadam 2005].

A thorough explanation of this algorithm can be found in Rid#mand Braun [1993];
Riedmiller [1994].

Levenberg-Marquardt algorithm

Levenberg-Marquardt learning was introduced by Hagan aedhd] [1994] to speed up the
training process of a feedforward network. This algorithengrally gives a numerical solution
to the problem of minimising a sum of squares (Equation 2ot 2)nonlinear function (nonlin-
ear least squares) [Hagan and Menhaj 1994]. For the fungtiorf (x, w), with  andy are the
input and the output variables respectively, the Tayloesexxpansion gives us [Chan 1996]:

JAw =e (2.17)

where/J is the Jacobian matrix that contains the first derivativdefrietwork error with respect
to weight anck is the error for a given input.

The Levenberg-Marquardt modification to the solution to #ftve equation (Equation
2.17) by Newton’s method is given by [Hagan and Menhaj 1994rCID96]:

Aw = (J'T +~I)Je (2.18)

where~ is a regularisation parameter introduced to prevent thepifiditioned property of Hes-
sian which is approximated by the square of the Jacolfiar- J7.J). I is the unity matrix.
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Based on the choice of value for Equation (2.18) exhibits different property. When the
Hessiany equals zero, it will become the Newton’s method with apprated Hessian matrix.
With large value fory the algorithm becomes gradient descent with step equéjs However
a small value will change the algorithm to Gauss-Newton oefiHagan and Menhaj 1994;
Delen and Kadam 2005]

A thorough explanation of this algorithm can be found in Magit [1963]; Hagan and
Menhaj [1994].

2.7 Decision trees

2.7.1 Introduction

Decision trees are one of the popular classification teckasig This technique is an example
of multistage decision process where a subset of the atslfa single attribute for example)
that make up the pattern rather than he whole pattern is wsexkimine the decision making
process at different level of the decision tree [Webb 198@&cision trees are a tree-structured
classifier (see Figure 2.7) where each node in the tree igsraitheaf node, which specifies a
class value or a decision node specifying a further test toaoeed out on a single attribute
value. The number of splits a decision node has depends autbeme of splitting test carried
on an attribute value on the node. For a discrete attriButgith possible values, a,, . . ., a,,
the possible outcomes of the split tests &e= a1, P, = ao,..., P, = a, (see Figure 2.7 for
example). If the attributé”’, has a continuous value, there are two possible outcomes, ¢
andP;, > t.

A decision tree can be used to classify a pattern by travgtemtree from root till we reach
a leaf node which specify the class to which pattern beloagJtavelling from the root to a
leaf node is carried based on the outcome of the split testoh decision node in between.
Application of decision tree to classify a pattern is simila applying a series af-else-then
statements on the pattern.

This classification technique has a number of features tla&emit popular such as speed
of classification, the ability to interpret individual feaés separately and the ability to handle
missing data [Jairet al. 2000]. Furthermore, the decision tree can easily be intéedrto
decision rules which can be easily understood by the domxgierts.

2.7.2 Constructing of decision tree

The main issue of decision tree construction is constrgdtie smallest possible decision tree
based on a given learning set. This step is carried out in @si®e manner and is an NP-
complete problem [Quinlan 1993]. The general method of tan8ng decision tree is sum-
marised in Quinlan [1993, page 17-18] as follows:

If there arek classes denoted”, Cs, ..., C.}, and a training sefl’, then
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Figure 2.7: Decision tree for conditions to play tennis

e if T contains one or more patterns which all belong to a singkescla, then
the decision tree is a leaf identifying claSs.

e if 7' contains no pattern, the decision tree is a leaf determireed informa-
tion other thari".

e if T contains objects that belong to a mixture of classes, theatast chosen,
based on a single attribute, that has one or more mutuallygxe outcomes
{01, 0., ...,0,}. T'is partitioned into subsei§ , 75, ..., T,,, whereT; contains
all the objects i’ that have outcomé@; of the chosen test. The same method
Is applied recursively to each subset of training objects.

According to this outline, when constructing a decisior tiigere are certain questions one
need to answer. Some of the questions are:

e how to choose the best split.

e when to stop growing the tree

e how to prune the tree

e how to handle missing attributes

Different variations of decision tree such as C4.5 [Quinl&93], CART (classification
and regression tree) [Breimanal. 1984], CHAID (chi-square automatic interaction detection)
[Kass 1980], QUEST (quick unbiased efficient statistica¢jfLoh and Shih 1997] etc. address

these questions differently. In this dissertation we withhthese question are answered in the
context of the induction of decision tree algorithm: C4.5.
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2.7.3 Splitting test

Different decision tree algorithm use different criterdasplit the training sample in to subsets
on each split test. The split evaluation criteria used by @ddbiction algorithm is informa-
tion gain which measures the quality of given attribute aplé criteria based on the targeted
classification. The presentation in section follows Quir{lE993] unless specified.

For any subsef of setT" of training examples, lefreq(C;, S) be the number of patterns
belonging to class’;(i = 1,2,...,n). Selecting one example at random fréhand declaring
that it belongs to class;; has a probability of:

freq(C;, 5)

5 (2.19)

where|S| is the number of examples in the subset S. And the informatioweyed (in bits) by
this ‘message’ is
freq(Cs, S)

S (2.20)

— log,

In general for the probability distributio® = (= p1,ps, ..., pn), Wherep; = % the
information conveyed by this distribution is:

Info(P) = ipz- x log(p;) (2.22)

similarly the information conveyed by the sewill be given by:

" freq(C;, S freq(C;, S
Info(P) = — > % x log, % (2.22)

This amount is called entropy of the s€t (see Shannon [2001] for more on Entropy and
information theory).

For example, if we have 15 patterns$hand 9 belong to one class and the rest belong to
another class (two class problem), the average amountiaftwn needed to identify the class

of a pattern inS equals:
9 5

Info(S) = Info(ﬁ, ﬂ) =0.94
Now consider attributeX of a pattern inZ". If X is a discrete value and hawepossible val-
ues, andly, Ts, ..., T, are the subsets df consisting of patterns with distinct values for this
attribute (X), then the expected information requiremenfofan be found as a weights sum
over theT;'s:

k
T
Infox(T) =) ||7j|| x Info(T}) (2.23)

The information gained by induced partitioning can be calculated by evaluation th@ma-

41



tion before and after partitioning as:
Gain(X) = Info(T") — Infox(7T) (2.24)

This value favours testing on attributes with large numbetistinct value. For example, for
attribute X with unique value for each patternsn Infox (7") will be zero, maximising the
Gain. To avoid this bias Quinlan [1993] uses information gainoratstead. By analogy to
Equation (2.21), the information generated by dividihghto £ subsets induced h¥ is given

by:

k
. 1; T;
Split(X) = g ||T\| log, ‘|T|’ (2.25)

This issplit information Information gain ratio is then defied as:

Gain(X)
~ Split(X)

The gain and gain ratio for an attribute which is already eld as a split criteria in an
ancestor node will be zero. Therefore this attribute will be selected again as we go down
the tree.

In many real world problems attributes do not always haverdts values. Hence we need
to address cases where attributes have continuous valuela®{1993] and a later suggested
improvement in Quinlan [1996] handles continuous atteluds follows.

Suppose the attribut& has a continuous range. Althoughhas a continuous range, there
can only be finite number of these values inlBeComputing information gain of this attribute
starts by sorting these values in ascending order. Say thexaat values for attribut&” are
U1, g, ..., Um. Then for each mid-point of intervals= ”*% fori € [1,m — 1] we partition
T into two sets: the first subset contains patterns with aii#i’x’ < » and the second subset
containing attributes wittX’ > v. For each of then partitions the gain ratio (Equation 2.26)
will be computed and the partition that maximise the gain el used as a split criteria. Note
that if all the attributes of the pattern have continuougeanve will have binary tree.

Gain Ratio(X) (2.26)

2.7.4 Stopping criteria

Based on the above specified criteria, the construction ofl¢ieesion tree will be carried out
and a further splitting will be stopped and a leaf node isaled based on a number of criteria.
Allowing the tree to grow until every pattern in the trainiset is correctly classified will result
in an over-fitted model, which will not have good general@matbility. Alternatively, if we stop
the construction process early will result in under-fittedd®l which will equally have poor
generalisation ability. One suggested solution to addi@ssproblem is employing stopping
criteria taking both over-fitting and under-fitting in to cieration. Some of these include:

o If all possible split test have zero gain. In this case allghtterns in the subset belong to
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the same class.
e When the gain ratio is below some predetermined value.

e Number of patterns in the subset are fewer than some predet value or some pro-
portion of the patterns belong to the same class.

e The depth of the node exceeds some predetermined value

Employing stopping criteria enables us to avoid over-fiftihowever, the results are uneven
due to the noise and incorrectly classified patterns in #iritrg set. To avoid these anomalies,
C4.5 uses pruning method which is based on estimating therates.

2.7.5 Pruning

The generalisation ability of a fully grown tree can be irased by pruning the subtrees that
are not contributing positively towards the generalisatibility if the resulting model. Pruning
of a decision tree refers to the process of replacing a stibtith a leaf node or with the most
frequently used branch [Quinlan 1993]. Quinlan [1987] s2gigd three different techniques of
pruning. These are:

e Cost-complexity pruning
e Reduced error pruning and
e pessimistic pruning

Cost-complexity pruning proposed by Breimetral.[1984] performing pruning as follows:
a large tree is created, and then a sub-tree is found stdrtingthe leaves. Again from this
sub-tree another sub-tree is found until we are left withkatsee containing the root node only.
All this sub-trees will then be tested on a independent a#ilieh set and the sub-tree with the
least cost will be selected.

Reduced error pruning also uses sequence of sub-trees teecbhae with the least mis-
classification on an independent validation set. Howewerway the sub-trees are generated
is different from cost-complexity pruning. In this apprbador each non-leaf sub-tree, we re-
place it with the best possible leaf that will enable the t@sy tree better the original on the
validation set. This process in carried out on the resuliieg until no more gain in classifica-
tion is found. Both cost-complexity pruning and reduced reprining require a independent
validation set and this might be a disadvantage in someititag®on problem where the num-
ber of training patterns are limited. There are a number pf@gches in place to address such
scenario. One of these approaches is cross-validationetwthe approach taken by C4.5 is
a pruning method that does not require an independent tialidset: pessimistic pruning.
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Pessimistic pruning

Pessimistic pruning is an approach which increases thesashserved at each leaf pessimisti-
cally using continuous correction for binomial distrilmrtito encourage pruning [Quinlan 1987].
Quinlan [1987] describes pessimistic pruning that efletyi increases the number of observed
error at each leaf by 0.5. However, C4.5 uses a far more pedgirastimate as presented in
[Kohavi and Quinlan 2002] as follows.

When a non-leaf coveringy training patterns of whicli’ are misclassified]% is an estimate
of the probability ofp of misclassification. However, since the decision tree isstraicted on
the sameV training patterns it tends to minimise the apparent erroma@ke our estimate more
realistic we can derive a confidence limit far For a given confidence tertiF’, we can find
an upper limitp,. such thap < p, with probabilityl — C'F'. Following [Diem 1962, as cited in
Kohavi and Quinlan [2002]]p, satisfies:

(1—p)N if £E=0
Sito (Npi(1 = p)V=" i E>0
Let Ucr(E, N) be the upper bound on errpy.

For the non-leaf tre& (shown in Figure 2.8), produced froid training patterns, where

the sub-tree§’" are already pruned: Lét; be the subtree corresponding to the most frequent
outcome of the split tesB and letL be the leaf labelled with the most frequent class in the

training pattern.

CF = (2.27)

N

b
T3 17

3 ‘

/ ' ’
(¥

Figure 2.8: Non-leaf tree with already pruned subtrges

If Er, ET; and £, are the number of missclassified patterns by the'fresub-tre€l’; and
leaf L respectively, the corresponding estimated error rates are

o Ucp(Er,N)
i UCF(ET;,N)
[ ] UCF(ELyN)

Depending on the lowest value of the above estinateijll be left unchanged, is replaced by
the subtred’; or is replaced by the ledf.
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2.8 Logistic regression

Logistic regression is a regression method which is pogatanodelling dichotomous data. In
this model, the dependent variablehas the value 1 with the probabilify(.X;) and the value 0
with probability 1 — P(X;). The independent variablés; can have any form. This model does
not assume that the relationship between the independeables and the dependent variable
is a linear one, or that the dependent variable or the emorstare distributed normally.
Logistic regression is used to predict the effect of the pahelent variables on the binary
response. The relationship between predictor and the mesps determined by tHeg oddor
logit transformation ofP(X;). Given the values oX; = (X1, Xj2, ..., Xiq4), the probability
of the response being 1 (odds of observing 1 versus 0), is lleddgsing logistic regression

model as:

d
= ogit(P(X,) = g 55) = Bt D 31X, (2.28)

wheren; is the linear predictor which is a combination of the indegeant variablesj, is the
intercept and? = (1, B2, . . . B4) is the vector slope parameter [Cessie and van Houwelingen
1992; So 1995].

An alternative form of the logistic regression model is [Réret al. 2004]:

exp(fBo + Y7—, B Xij)

) = ! (2.29)
1+ exp(fo + D5, 35 Xij)

To find the best estimate fd?(X;) the loss function used in this model is the log-likelihood.
The parameter estimatemaximises the log-likelihood and gives estim&eX;) = P(Y = 1).
The log-likelihood for the dat&aX, Y) under the logistic model is given by:

1(8) =Y _[Yilog P(X;) + (1 = ¥;)log(1 — P(X))] (2.30)

(2

Maximisation of/(3) yields the maximum likelihood estimatorfor 3. However, the model
becomes unstable when the dimensionality of the patterigisdmpared to the available sam-
ple [Perlichet al.2004]. To obtain a more realistic estimates for the parars@ied improve the
predictive power of model, Cessie and van Houwelingen [1888nded a method that adjusts
the regression estimate by shrinking the correlation mébm the predictor value to wards a
fixed point by adding a constantto the diagonal element of the matrix.

The penalised log-likelihood is given by:

(8) =1(B) — AZ@W (2.31)

wherel(3) is the unrestricted log-likelihood function. The seconuirtés the ridge penalty and
A is the ridge parameter. The ridge parameter regulates thedtpewhen) = 0 the solution
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will be unrestricted maximum likelihood estimator, whesea— oo the 3; all tend to zero
[Cessie and van Houwelingen 1992; Eiletsal. 2001].

Choosing an optimal value for the smoothing or regularisationstant) is crucial. The
two dominant data-driven ways of selecting the ridge patansae cross-validation and Akaik
Information Criterion (AIC) [Schimek 2003]. Due to lack of empal evidence in the later,
cross -validation is the most popular and successful mg8ubimek 2003]. The performance
of cross-validation one may use either the fraction of nasssification or the strength of log-
likelihood prediction.

A thorough explanation of penalised logistic regressiothwidge estimator can be found
in Cessie and van Houwelingen [1992]; Eiletsal.[2001]; Zhu and Hastie [2004].

2.9 Summary

In this chapter a detailed overview of the biological backgrd of HIV, a brief overview of
general pattern recognition principles and dimensiopalibblem and techniques of address-
ing it was presented. This chapter have also presented dedebeckground on statistical
pattern recognition techniques and Bayesian decisionyhgbich is the tool broadly used to
perform pattern classification based on some probabikstevledge about the random patterns
and the pattern classes. A brief introduction to feedfodwaural networks with backpropa-
gation learning was given. Two algorithms proposed to askitiee problem with the standard
backpropagation algorithm was also introduced. A brigbidtiction to decision trees based on
the C4.5 algorithm was also given. Furthermore a brief intotidn and direction for further
reading for logistic regression was also give. This chapéee also covered a comprehensive
discussion and the mathematical formulation of princigethponent analysis which is the best
known unsupervised linear transformation technique.
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Chapter 3

Support Vector Machine (SVM)

3.1 Introduction

SVMs are statistical learning technique developed by Betal.[1992] to perform a variety of
supervised learning and function estimations task. Likeaher machine learning technique,
SVMs are aimed at minimising the risk (training or test erfmased on some simple idea that
provides a clear intuition of what supervised learning Isahbut. Most traditional machine
learning techniques are based on the Empirical Risk MinitiwisdERM) principle, which ap-
proximates the estimation function based on minimisingieog risk (the error on the training
data). However, SVMs use the principle of Structural Risk ikisation (SRM), proposed by
Vapnik [1979], which minimises the upper bound on the testrear risk [Sctolkopf 1997]. The
principle of SRM gives SVMs the advantage over other macliaming techniques, which are
based on ERM. Machine learning techniques based on ERM arelikagesuffer from over-
fitting which is less likely to occur in those based on SRM. Ghteing refers to the fact that
the training data is perfectly learnt but the estimatiorction does not perform well on unseen
data. SVMs do not suffer from over-fitting as much and henge etter generalisation.

Beside SRM, the ability of SVMs as a pattern recognition todieseon their ability to
transform the data into a higher dimensional feature sgaates nonlinearly related to the in-
put space. Transforming the data from the input space torfeapace transforms a complex
real-world classification into a simple classification gesb where the classification task can
be accomplished using a linear hyperplane [Ganapathi@p2]2 Although the patterns are
mapped from the input space into higher dimensional featpaee, SVMs have a further ad-
vantage of performing all computations in the input spas&gia specialised function called
kernel functions. This trick further saves SVMs from sufigrthe curse of dimensionality.

As the result of the principle of SRM together with the kerrmék, SVMs are rapidly
replacing neural networks, Radial Basis Functions (RBF) anghpohial classifiers which have
been dominant pattern recognition tools [Heatsal. 1998]. Furthermore, SVMs have already
been applied in many benchmark applications including fdetection [Osunat al. 1997],
text classification [Joachims 1998; Dumaisal. 1998; Sunet al. 2002], speech recognition
[Ganapathiraju 2002] and in a number of other pattern reitiogrproblems.
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In this chapter a brief introduction to SVMs, implementatissues and some of the bench-
mark application of SVMs will be discussed. Section 3.2 ille a concise description on
risk minimisation namely ERM and SRM. In section 3.3 we will@a& deep insight into linear
SVMs. In section 3.4, the non-linear Support vector macksrdescribed in detail following a
discussion on feature space and kernel mathematics. Tlegiad@resents solution to two-class
classification problem. Section 3.5 explains how the tvassiclassification will be extended
to multi-class classification. Section 3.6 gives a briefroiesv of the approaches taken in im-
plementation of SVM tools. The material presented in thidiea is based on Vapnik [1995];
Burges [1998]; Osunat al.[1997]; Cristianini and Shawe-Taylor [2000]; Sitkopf [1997]. If
any other reference is used it will be cited accordingly.

3.2 Risk minimisation

Given a set of training samplés,, w; ), (z2, w2), . . ., (21, w;) generated independently and iden-
tically distributed from unknown probability with:

(xl,wl),(xg,wg),...,(:cl,wl) GRd x £ (31)

wherez; is the input datay; is the classe; belongs to and is the number of examples. The
two-class pattern recognition problem can be describeti@ssing a functiory,, given a set of
decision functions:

{fa:a €A}, where f,:R?— {41} (3.2)

where{f, : a € A} is called the hypothesis spdd©sunaet al. 1997] and will be denoted by
S. A is a set of abstract parameters introduced to enAptrrectly classify unseen example
(z,w), which is generated with the same underlying probabilistrdbution P(x,w) as the
training data set. However, for a given set of training sasphere might be a number of such
functionsf,, which work on different subset of the training sample. So lhdewe know which
one to choose?

Suppose we have two disjoint subsets of the training sample {z,z,,...,2;} and
X = {@y,7,...,Z;} such thatX N X = () and there exists a functioff such that:

If we use X as a training set and the validation set, the decision functigij will have a
very poor performance on the validation set. Therefore,aine of the pattern recognition
system should be to find the functigp which possibly performs better on both the training and
validation set. In order to choose the functignthat performs better on both the training and

1The hypothesis space is a set of all possible functions #raperform the classification and also where we
choose the one that performs best

48



validation set, a way of quantifying the performance is meedBy defining of a loss function
L(w;, fo(x;)) that measures the loss, the difference between the classifiaccording to our

pattern recognition system and the true class of the pattethe expected risk, which should
be minimised over all classes of functiofiswill then be given as:

Rla) = / L(ws, fa(@))dP(@,w) o€ A (3.3)

Estimating the expected risk directly from the above equiais impossible because the distri-
bution probability P(z,w) is unknown. The only information available is the data, vahie
independently generated and identically distributed awdle considered a fair representation
of the underlying distribution. Therefore, one can apprade this error by the measured mean
error on the training set [Vapnik 1995].

3.2.1 Empirical Risk Minimisation (ERM)

The measured mean error (empirical risk) on the trainingssgiven by:

—_

l
emp 7 Z wza foz xz (34)

Note that there is no probability associated in equatioreB&R,,,,(«) is a real number for a
given functionf,,. Once the estimation is done based on the available tragaingle, the func-
tion f,, that minimise the empirical risk will be considered. Thighe principle of Empirical
Risk Minimisation (ERM) [Vapnik 1995].

Consider the 0/1 loss function for two class pattern recagnjiroblem defined as:

L(wi,fa(zi)){(l) i;;‘“g; i=1,2,...,1

wherew;, takes the valug¢+1}.
Using this loss function the empirical risk will have theléVing form.

emp 2l Z |foz xz z (35)

ERM is intuitive and easy to implement, but the question ofststency needs to be answered
[Vapnik 1995; Osunat al. 1997]. This means, does a non-trivial functignthat minimises
the empirical risk (3.4) also minimise the actual risk (3.3)

Consistency of empirical risk depends on both the numberrapses available (the law of
large numbers) and the capacity of the set of functions (dgenik Chervonenkis dimension
(VC dimension)) of the learning machine [Osuetnal. 1997; Vapnik 1995; Satikopf and
Smola 2001]. Furthermore, Vapnik and Chervonenkis havesilewn that the finiteness of the
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VC dimension of the hypothesis space is the necessary aficiexuif condition for consistency
of the ERM [Vapnik and Chervonenkis 1991, as cited in Osetral.[1997]].

When the number of available training samples is small, thpireal risk can easily be
minimised to a small value close to zero, but the data harefigcets the underlying proba-
bility distribution P(z,w) and hence results in larger actual risk or inconsistent ERMs T
phenomenon is termed over-fitting [Vapnik 1995]. Althoutis not guaranteed, as the number
of data points increases, the empirical risk will increase @ the same time the data will more
likely represent the underlying probability distributiand the actual risk will converge to the
empirical risk. In this case the ERM is said to be consistedttance the pattern recognition
system that performed well on the training set will also perf well on unseen problems gen-
erated with the same underlying probability distributi®fr, w). Figure 3.1 shows a simplified
description of the consistency or inconsistency of ERM.

A

R(a)

I:inin

R‘-:mp(a)

»
|

Figure 3.1: Asymptotic behaviour of a minimum empirical asaresponding expected risk
for consistent ERM. The—axis shows the the number of examples andithaxis shows the
corresponding risk

In most real life pattern recognition problems we are limhite a finite (usually small)
training data and hence we need to make the most out of théseTtahandle this situation a
number of techniques have been proposed in statisticarpattcognition. One such approach
is leaving room for a difference between the empirical risd the actual risk. Following this,
Vapnik [1995] has shown there exists a bound for the actsklgiven the empirical risk and
the measure for the capacity of the class of functions. Toisd is given as:

R(a) < Remp(a) + ¢(h) (3.6)

The quantityh, which is the measure of the capacity of a set of functionsailed the VC
dimension of a set functions and the functiofh) is called the confidence term for the ERM

50



[Burges 1998; Sabikopf 1997]. The VC dimension of a set of function is definsdfae maxi-
mum number of points that can be shattered by this class ofiins. A given training sample
of d dimension is said to be shattered by the functignif the function can correctly classify
the training sample into all the possible classes. For el@nopnsider the two-class problem
defined above. In this problem, a setigfoints can have' different possible classifications
and if the set of functiong, can accomplish this, we say the set of points is shattereleyet
of functions f,, [Burges 1998] (see Figure 3.2). A comprehensive discussiocoavergence,
consistency and VC dimensions and other capacity measandsecfound in Vapnik [1995].

o ] o] ]
O o ®
O
—
[ o]

[ ] o]
L o] O @
S— Ay j7/ ;/<
@] e}
Q [
Figure 3.2: Three points ii®?, shattered by oriented lines. The VC dimension of the set of
oriented lines irR? is therefore, three [Burges 1998, page 4].

From the inequality (3.6) we can see that for the consisteftiie risk minimisation and
good generalisation of the pattern recognition system,ctivdidence termg(h) should be
minimised at the same time as the empirical risk. Supposenkeminimised the empirical
risk to zero via the principle of ERM, the actual risk will beugdjto ¢(h) and a large value of
this quantity will result in a system that has poor geneadili;. And on the other hand df(h)
is kept close to zero, the expected risk will be equal to theigoal risk, which needs to be
minimised using the principle of ERM.

Consider again the two-class problem defined above. Fornany\ and/ > h with some
valuen such that) < n < 1, Vapnik and Chervonenkis [1991] proposed an upper bounden th
error and based on this proposal the inequality (3.6) cartbefined as follows and will hold
with a probability of at least — n

ng&m@+¢m%%wﬁ—m@> an

The second term in equation 3.7 is proportional to the raé;tbo (Therefore to achieve good
generalisation the empirical risk and the ratio between@edimension and the number of
training samples should be kept to a minimum at the same fithe.relation between the two
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terms on the right hand side of equation 3.7 is graphicalbynshin Figure 3.3.

Risk

Bound on actdal risk

/1

Empirical riék

Bourm confidenc

h, h* h,  (VCdimensior

<b Nested structure of subse

Figure 3.3: The optimal classifier needs to find some appatgstructure that minimises both
the empirical risk and the confidence term [Vapnik 1995, ffje

Burges [1998] pointed out that the empirical risk is a dedgrgpfinction ofh and to get a
good generalisation based on a limited training set onesiedithd the optimal VC dimension.
To overcome the problem of choosing the appropriate (fini€)dimension Vapnik [1979]
proposed the principle of structural risk minimisation. étailed discussion on generalisation
theory and the derivation of equation 3.7 can be found in i@nsti and Shawe-Taylor [2000].

3.2.2 Structural Risk Minimisation (SRM)

“The principle of structural risk minimisation defines adeaoff between the quality of the
approximation of the given data and the complexity of therapiating function.” [Vapnik
1995, page 95]. To define the trade-off, both terms in thd hghd side of equation (3.7) should
be minimised. If we select one hypothesis cl&ssve are left with the task of minimising the
empirical risk since the confidence term will be fixed for tledested hypothesis class. (By
defining the hypothesis space, the VC dimension of the seinafionsh is known and together
with the size on the training patterhswve can calculate the second term in equation 3.7). Let’s
define a nested structure of hypothesis space

SicSsc...cS,C...,

with h; < h;,1. Note that equation 3.7 also holds for the nested sequenuggothesis classes.
By computing the respective actual risk for each subset, wesshthe functiorf in the subset

52



S} that minimises the upper bound on the risk [8i&opf 1997; Osuna&t al. 1997]. This prin-
ciple is called principle of structural risk minimisationdpnik 1995]. Choosing this optimal
combination (optimal trade-off between the capacity offthection and the empirical risk) is
the task of the learning algorithm. To find the optimal hymsis space one can use either of
the following approaches: fix the confidence term and mirertti® empirical risk or for a fixed
empirical risk minimise the confidence term. However, thgpsut vector algorithm accomplish
this simultaneously [Osuret al. 1997].

3.3 Linear support vector machine

The linear support vector machine also known as maximum ima&igssifier is the simplest
form of support vector machine. In this section linear suppector machines will be presented
first and will be used as an introduction to basic principhegation and approaches that are later
extended to more general Support Vector Machine. Furthexnsoipport vector machines are
inherently binary classifiers. Therefore the formulatibown below and in subsequent sections
is given for two class pattern recognition problem. In laections we will see how this will
be extended to multi-class pattern recognition problermandike the presentation in two class
classification problem simple and consistent with the cofiwaal mathematical presentation
we will usey; instead ofv; as class label.

The complete mathematical formulation can be found in ApgpeB. Some mathematical
steps are removed from the presentation in this section.tHeomissing mathematical steps
refer to the Appendix.

3.3.1 Linear separable case (Maximum margin classifier)

Given set of example§zy,v1), ..., (v, y)) € R x {1}, wherey;, € {&1}, andz; € R,
assume there exists a set of hyperplanes which totallyidisate the positive examples from
the negative ones. This means we can find a (aib) such that:

yi(zpw+b)—1>0 i=1,2,...,1 (3.8)

wherew is the direction of the normal or orientation of hyperpland ais the threshold.
The mapping function which is usually called the hypothésteen given by:

f(w,b) = sign(w.z; +b) (3.9)

Consider the example given in Figure 3.4. These training t&81gf the two classes can
be perfectly separated by a linear hyperplane. Furthernoore can find an infinite number
of hyperplane that can accomplish this task. Some of theperplanes are shown in Figure
3.4. As we can seen from the figure, each of these hyperplaasegdio empirical risk, but
we wish to find the one that will minimise the right hand sideeqtiation (3.7) as seen in the
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previous section. From the figure one can take an educates goesay the hyperplane that
passes through the middle will be more likely to give the mimm risk. Formally defining this
hyperplane, the optimal hyperplane is a hyperplane whitkaly to minimise the expected risk
is the one that maximises the margin, which is defined as #tardie between the examples of
the two classes that are close to this hyperplane.

Optimal hyperplane

Figure 3.4: Optimal separating hyperplane

Once the optimal hyperplane is found all the training setssatisfy equations (3.8) and
classification will be based on the sign of equation (3.9)e phints that lie on the hyperplane
separating the data satisfies the equality:

wx; +b=0 (3.10)

Figure 3.5 gives graphical interpretation of support vectassification. All the points that
satisfy the inequalityv.z; + b < £1 lie on H; or to the left of it and those satisfying.z; + b >
+1 will lie on H, orto the right of it. The margin is therefore defined as théatlise betwee#d/;
or H, and the optimal hyperplane (see figure 3.5). It is eviderttthaand H, are parallel and
for a perfectly separable training set, no point lies betwtbe two hyperplanes. Furthermore,
H,, H, and the optimal hyperplane differ only on the thresholBormally defining the optimal
hyperplane with respect to these two hyperplanes, the stpguhyperplane is optimal if the
minimum distance between these hyperplane and the optiypalplane is maximal.

By computing the margin for a given orientatian the problem of finding the optimal
hyperplane will be defined as:

o 1
Minimise §Hw|]2
subjectto  yi(z;w+b) —1>0 Y,

Minimising a quadratic function under a linear constraorfiulated above is called quadratic
programming and can be solved to give the solution to ther@thyperplane using Quadratic
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Figure 3.5: Maximum margin hyperplane for linear separabke

Programming (QP) optimisation [Cristianini and Shawe-dayl000]. Solving this problem
using the classical Lagrangian multipliers approach hasmber of advantages [Cristianini
and Shawe-Taylor 2000]. Firstly, this approach gives agriadttive formulation of the original
problem (dual form) which is easier to solve. Secondly, thaldorm is not only easier to
solve but also emphasises the importance of some trainagebes over the other, leading to
a minimised but critical sample size and thirdly, the duahfsimplifies generalisation beyond
linear separable cases.

Introducing a dual vector of non-negative Lagrangian rpliéir A = (a1, as, ..., «;) cor-
responding to each inequality constraint in (3.8) the ganstd minimisation problem given
above will be rewritten in the dual form as:

. 1
Maximise LD<U}, b, A) = Z o — 5 Z QG0 YY (.CEZ.TJ)
i=1 i

!
subject to Z ay; = 0; (3.11)

i=1

A>0

The Karush-Kuhn-Tucker(KKT) optimisation theory (The KKfieorem is given in Ap-
pendix B.2), which guarantees the existence of a solutiohéaptimisation problem shows
that, at the saddle point all points satisfy the constra@r&)(with strict equality. i.e.

a(yi(we; +b)—1)=0 i=1,...,1 (3.12)
From equation 3.12, the following two conditions need to istimyuished:
o If a; =0, theny;(w.z; +b) > 1

55



o If ; > 0, theny;(w.z; + b) =1

Recall that one of the advantages of using the Lagrangiartitumto solve the optimisation
problem is expressing the importance of each pattern indiv@ng set. Consider the value @f
corresponding to each training pattern. Training pattesittsa; > 0 will fall on the hyperplane
H, or H, (see Figure 3.5) and hence are critical in defining the datisbundary. Other training
patterns withy; = 0 lies to the left or right of/; and H, respectively. These training patterns
have no effect in determining the decision boundary. Theegfif those training patterns with
a; = 0 value are removed and the training is repeated, the dedisiondary will remain the
same. Training patterns with nonzexpare calledSupport Vectorgthe name of this learning
technique follows from this).

With the orientationv given byw = 2221 oy, the mapping function (equation 3.9) can
be redefined as:

l

flz,Ab) = sign(z yioi(x.;)+b)  Vi=1,...,1 (3.13)

=1
We have seen that the parameter= 0 for all training points except for the support vectors,

hence the mapping function will have its final form:

flz,Ab) = sign(z yioi(x.x;)+b)  Vi=1,...,1 (3.14)
€SV

In other words the expression is evaluated in terms of thedmtuct between the pattern
to be classified and the Support Vectors (3¥)), and the sign of the function will be used to
classify the pattern to their respective class.

3.3.2 Linearly non-separable case: Soft margin classifier

So far we have seen the case where the training data is pgigeparable using linear hyper-
plane. However, real-world problems involve non-separalaita and the assumption taken in
the previous section is too ambitious. To extend the abolgisn to non-separable data a
positive slack variablg; : : = 1,...,i is introduced to associate further cost as a penalty for
misclassification whenever necessary (see Figure(3.6)).

Using this relaxed separation constraint equation (3.8pives:

The problem of finding optimal margin will therefore comgrisvo parts.
e Maximise the margin (the same as the linear separable cade) a

e Minimise the slack variabl€; which counts for amount of error
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Figure 3.6: Maximum margin hyperplane for linear non-sapbe case

One way of combining these two conditions into a single fiorcis given below:

1 l
O(w, Z) = Sl + c)_ &)
=1

The constant is a parameter to be chosen freely by the user to specify dlde-ff between
the width of the margin and misclassification penalty. Tfereethe optimal hyperplane will be
the one that minimises the functidn(w, =). i.e.

l
o S S N
Minimise  ®(w, =) = §Hw|] + C(;:1 &)

&E>0 1=1,...,1

By choosingk = 1, the above optimisation problem can be solved using QRodotiing a
dual vector of non-negative value = (a1, as, ... q;) for of each the first constraint arnd =
(g1, p2, - - ., i) for each of the second constraint the optimisation problefindd above will
be rewritten as:

. 1
Maximise LD(UJ, b, A) = E o — 5 E C(iOéjyiyj(SCi.l'j)
=1

i’j

l
subjectto ) auy; = 0; (3.17)
i=1
0<AZC
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Applying the KKT condition we have:
ai(yi(pw+b)—14+&) =0 i=1,2,...1 (3.18)
From the above equation three different cases needs to thegdished:
o If o; =0, theny; = C (& = 0) andy;(z;.w + b) = 1;
o If 0 <o <C,then0 < p; < C (& =0) andy;(x;.w + b) = 1;
o If o; = C, thenyu; =0 (& > 0) andy;(z;.w +b) = 1 +&;.

In the first case, the points are on the correct side of thenaptiyperplane and are distant from
the hyperplane by more than the margin (i.e. these point® ltee left or to the right of the
hyperplaneH; or H, respectively). In the second case, the points lie on therpjguee H, or
H, and are Support Vectors. In the third case these points soesapport vectors, but do not
necessarily lie on the hyperplaig of H,. These points might be on the wrong side of the
hyperplane or on the right side but closer than the hypeeslah or H, (For example:X; and
X5 in Figure 3.6).

Besides the above additional constraints, the solutionHerlinear separable case holds
with the decision function given by:

flx,A)D) = Sz'gn(z yioi(z.xy) +b)  Yi=1,...,1
€SV

So far we have seen the simplest form of SVM which are desifpratie most trivial linear
separable case can be further extended to accommodatetitasare linearly non-separable.
But most real life classification problems do not have linedadet but rather non-linear dataset
(see Figure 3.7). Hence, we still need to extend the solttiaccommodate non-linear datasets.
It has been stated at the introduction to this chapter thatadrthe underlying principle that
makes SVMs interesting is the ability to transform non-dindata from input space to higher
dimensional feature space where the data can be lineadyifital. The following section gives
brief introduction to feature space and kernel tricks amalxshow these concepts are used to
generalise linear SVMs to handle non-linear classificgpiablems.

3.4 Non-linear support vector machine: The Kernel trick

In most real life problems, linear combinations of the indinal measurements cannot fully
describe the properties of the patterns under considaratence a complex representation of
these measurements is required resulting in a complextstadcdataset in the input space. As
is pointed out in the previous chapter changing the reptasen of the data from the input
space into some feature space has a number of advantagésteFgsace, as discussed in the
previous chapter usually have lesser dimensionality thanmput space (as a result of feature
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Figure 3.7: Linearly non-separable training sample

selection or extraction). On the contrary, in this sectianwill see how we can use a feature
space with higher dimension than the input space to incrieseomputational power of the
linear SVM described in the previous sections without suffgfrom curse of dimensionality.

Suppose the training set (&1, y1), . . ., (z1,4)) € R? x {£1} and there is a function(x)
and a mapping given by:

X ={z1,...,zq} = ®(X) ={o(21),...,0(zn)} (3.19)

whered < N andF' = {®(z)|z € X} is called the feature space.

A \

O . ©
o l© Mapping
o O ® O ©
O O
o o © O
0® o o ° 0
O ® O O O
° Oo0
L o o O
O ¢ .—@—» © -
O ¢ O ©
0 o O ©
Input Space Feature space

Figure 3.8: Mapping from two dimensional input space into@ tvmensional feature space
where data can be linearly separated
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Consider the mapping given graphically in Figure 3.8. It isyet® see that the data cannot
be separated using a linear hyperplane in the input spacseVén, once it is projected to the
feature space, separating the data using a linear hypergaossible. This simple example
demonstrates the power of mapping a non-linear datasefgatore space in simplifying com-
plex classification problems. As it is pointed out in sect{8r8.1), one of the advantages of
using the classical Lagrangian approach to solve the ogsitioin problem is simplifying the
problem of extending the solution found for linear SVM inb@ tyeneric non-linear SVM. Also
note equation (3.13) that the decision function requirescttmputation of the dot product be-
tween the point to be classified and some of the training el@sng herefore, performing the
classification in the feature space will give the hypothas the decision function a new form
which is given by :

f(w,b) = sign(w.¢(x;) + b) (3.20)
and l
flz) = sign(z yiou(d(x).0(x) + b)) i=1,...,1 (3.21)

The dot product(x).4(z;) will be easily defined by introducing the functiéd(z, y) called
Kernel function (or more formally called Mercer Kernels istthguish them from other kernels
used in mathematics). For definition of kernel functionssseAppendix B.2.

The introduction of the kernel function allows us to comptite dot product without ex-
plicitly mapping the data into the feature space. To show tiva kernel function represents
the dot product in the feature space we will use Mercer’s Témaqsee Appendix B.2), which
guarantees the existence of a mappinm F' for any kernel which is a dot product in some
feature space [Ganapathiraju 2002].

To show how kernels are used to transform data implicitlg enhigher dimensional space
consider the following example:-

First lets how mapping from input to feature space simpltiesclassification problem.

Consider the target function:

x?

this target function could not be represeted by a linear inachiHowever a simple transforma-
tion can make it representable by a linear machine:

(z,y) = (@',y) = (logx,log y)
gives the representation
f'(@,y') =log f(z,y) = 2logz — 2logy
f' could be learnt by a linear machine.
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Now suppose we want the mapping frdh to R. Let us choose the kernel to be:
K(z,y) = (z.y +1)° (3.22)
Choosing the kernel function given below:

(z.y +1)* = d(x).6(y) (3.23)
Letz = (x1,22) andy = (y1, y2). This implies
(z.y +1)* = 2Tyl + 23y5 + 20191 + 239ys + 22191 70y2 + 1
Now if we define

¢($) = (17 \/§I1, \/5372, l’%, ZL‘%, \/51’1372)

it can easily be shown that equation (3.23) holds. Note thatbove example can be easily
generalised to higher dimensional space.

Having introduced the kernel representation of dot produdeature space, the decision
function (3.21) can be rewritten using kernel functions as:

flz) = sign(z yiouk(x,x;) +b) i=1,...,1 (3.24)
€SV

Note that, SVMs can be used to classify non-linear data wittiee need to transform the input
space to a high dimensional feature space explicitly usikgrael function. This strategy also
removes the curse of dimensionality, which usually occars i@esult of dimensionality increase
for a fixed number of sample size. Also note that only the stupyextors are involved in the
decision function.

Although kernel functions can be chosen freely, choosimgesof the most commonly used
kernels SVMs can represent other known classifiers with sebperformance [Osunet al.
1997]. Some of these kernels are:

e Polynomial Kernel of degreé
K(z,y) = (z.y + 1) (3.25)

whered is user-defined

e Gaussian radial basis function (RBF)
K(z,y) = exp(—yz — y|*) (3.26)
where~ is user-defined
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¢ Sigmoid kernel: Two layer Neural network
K(z,y) = tanh(k(z.y) + O) (3.27)

wherek is gain andd is the offset. Both of these parameters are user-defined

Ganapathiraju [2002] reports that though convergence foriRBfe most expensive, this kernel
is very powerful and can model a classifier that can be effeethen datepoints from one class
is totally encapsulated by the other. An example of claggifio using polynomial and RBF is
given in figure 3.9.

Other additional kernels (usually used in function estiomgtincludes [Vapnik 1995]

e Regularised Fourier (weaker mode regularisation)
For one dimensional case:

. - cosh m—||z;—x;]| 28
($7y) - % sinhg ( . )
where0 < ||lz; — z;|| < 27 andv is user defined
For the multidimensional casé(z,y) = [0, Kx(z*,y*)
e Regularised Fourier (strong mode regularisation)
For one dimensional case:
1 A2
K(z,y) = v (3.29)

2(1 — 2y cosh(z; — ;) +72)

where0 < |lz; — ;]| < 2w andvy is user defined
For the multidimensional cagé(z, y) = [0, Kx(z*, y*)

Figure 3.9: Decision surface given by (a) Polynomial keragld (b) RBF kernel. Support
vectors are indicated by dark filled points [Osuatal. 1997]
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3.5 Multi-class classification

SVMs are inherently binary classifiers. The binary SVM dssad in the previous sections use
the discriminant function given in equation 3.20. Howewaost classification problems are not
limited to binary classification problems but to multi-dadassification problems where the
inputs are classified into more than two groups accordingeo tinderlying property. To solve
this problem, extending the binary SVM to handle multi-slatassification is required. The
multi-class SVM uses a set of discriminant functipn: X — Q defined as

fw(wa b) = Sign(ww'(b(xi) + bw)

whereX C R? andQ = (wy,w,...,w.) with the same performance evaluation technique. In
multi-class SVM classification the decision function widlve the form defined below.

f(z) = argmax f,(z) (3.30)

weN

To implement this, a number of approaches have been propostheé last decade. Some
of these approaches are one-against-the-rest presengatiilkopf [1997], classification by
pairwise coupling proposed by Hastie and Tibshirani [199&$ed on the idea proposed by
Friedman [1996] and the Multi-class SVM proposed by Westod Watkins [1998]. In this
section a brief overview of these three approached will Beuwdised. For detailed presentation
refer to the above cited references.

In the one-against-the-rest approacl;@ass classifier, is modelled by trainigglifferent
binary SVMs each discriminating members of one class froenrédst. This is done by rela-
belling the training data and assigning say 1 to the clasgmuodnsideration and-1 to the
remaining members of the training. A new data is then cla&skifince it is tested using all
the £ SVMs and the final class is assigned based on equation 3.38.téldinique is easy to
implement, most widely used and gives a respectable rdsdties however have some limita-
tions [Sclolkopf 1997]. Two of the limitations are, variation in thetput range of the different
SVMs, and mutual exclusion of class member. However, theediinitations have well for-
mulated solutions. More description on the limitation amdgmsed solution can found in Lee
et al.[2001] and Mayoraz and Alpaydin [1999].

Classification by pairwise coupling also uses a number ofrpinkssifiers to accomplish
the multi-class classification. However, unlike the onatast-the-rest approach, in this ap-
proach a number of different binary classifiers are traireegerform pairwise classification.
That means to perforrh class classification we neéé‘“;—l) binary classifiers each performing
pairwise classification. Note also that in this approactdanary classifier is trained with
a subset of the training data. For example if our trainingadatequally balanced between
classes, we havgfraction of the data to train each binary SVM. To classify aseen pattern,
the pattern will be tested against each class and is claksiftbe one which satisfies the voting
criteria. Methods of evaluating the voting criteria areeflyi described in Hastie and Tibshirani
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[1996].

The third approach is the multi-class SVM proposed by Westath Watkins [1998]. In
this approach the mathematical formulation found for theaby SVM is extended to handle
multi-class classification considering all the classesato

3.6 SVM implementation

Recall that the KKT condition (see Appendix B.2) guaranteesgimal solution to the con-
strained optimisation problems formulated in equatiodd &nd 3.17. As it can be seen from
these formulations, in order to get an optimal solution cotimg the dot productz;.z;) be-
tween all possible pairs of the training sample is requifeat.a classification task with a large
number of training samples and/or each training samplengaailarge number of features to
represent it, computing the dot product matrix and keepegrésult in memory will be both
processor and memory intensive task and sometimes a gpediabmputing resource might
be needed. A simple approach to solve the memory problenmipebng the dot product on
demand basis. However, this approach will make the compuataven more CPU intensive.

To make this processor and/or memory intensive computaificient, a number of ap-
proaches has been proposed based on the principle thata gtbbtion can be obtained by
solving a smaller sub-problem at a given time. However, tthiéfgr in the way they define
sub-problem. In the remainder of this section an overviewhefdifferent algorithms will be
presented.

3.6.1 Chunking

Chunking is the first approach considered in solving SVM lgmyproblem with large training
set proposed by Boset al.[1992]. This approach is based on the idea of dividing the opt
misation problem into small sub-problems (chunk) that casdived efficiently. Training with
this algorithm is done as follows. Training is started ramtowith one sub-problem and then
iteratively adding other examples that do not obey the KKdition. Only support vectors
found in the training stage of one sub-problem are to beewut to the next stage. At the
end of the optimisation process, when the KKT conditiongwaeg only the appropriate support
vectors will be assimilated. This approach was proved byn@stial.[1997] to give the same
global optimal solution and takes less resources to corverg

Further extensions of this approach are the decompositethad proposed by Osueaal.
[1997] and Sequential Minimal Optimisation (SMO) propobgdPlatt [1998]. The decomposi-
tion method is based on selecting a working set when theramaye number of support vectors
that can be handled in memory. This working set is selectedeh a way that it is big enough
to hold all the support vectors, but small enough to be haadsly the computer [Osuret al.
1997]. SMO is a chunking algorithm with the two working sd®étt 1998].

It is evident that chunking has computational advantage theenaive approach when the
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training data is big. And this advantage is further extenofethe decomposition method and
SMO [Kroon 2003].

3.6.2 Shrinking

The linear memory requirement proportional to the numbdradhing examples and support
vectors has many advantages. However, the algorithm mayldalger to converge. To over-
come this potential disadvantage, Joachims [1999] prapskenking. Shrinking is based on
predicting data points that will not be support vectors alimdirating these points during op-
timisation. Eliminating these data points will result in maler sub-problem (shrinking of
the optimisation problem). Furthermore, this algorithresuthe concept of “Bounded Support
Vectors” (BSV), which are support vectors with at upper bound”'.

To extract these points the algorithm uses a heuristic @gprto study the behaviour of
points for a number of iterations. On each iteration onlysthpoints which behave consistently
are extracted, which consequently shrinks the originablero [Kroon 2003].

3.6.3 Caching

The optimisation process requires evaluating the kernélixna each iteration, which is the
most expensive process. One heuristic approach to spedusuprocess is caching kernel
evaluation, which trades-off between memory consumpti@hteaining time [Joachims 1999].
Caching is a well known technique implemented to speed up memtensive computations
and is widely used in many applications of computer sciefitere are a number of caching
strategies such as First In First Out (FIFO), Least RecenfigdLRU), optimal, etc. The
caching strategies used in SVM implementation is LRU, whigghlaces elements that are not
used for a number of iterations, whenever the cache is full.

3.7 Comparison of SVMs to other statistical techniques

In recent years a large variety of pattern recognition tepies have been applied to solve a
wide variety of problems. These includes decision treesgraleetworks, logistic regression,
and SVM. Even though the choice of a particular techniquesddg on the problem at hand,
some techniques are reported to have number of theoretleahtages over the others. One
such technique is SVM. Many researchers have pointed tindisent advantage of SVM in a
wide variety of benchmark application. Furthermore, redeers in the field of computational
biology have also consistently shown the outstanding pedoce of SVMs.

In the last couple of section detailed theoretical backgdoand an overview on the im-
plementation of SVMs was presented. Furthermore, in ch&pbasic background of decision
trees and neural networks was presented. In the remaindaisafection a theoretical compar-
ison showing some of the advantages and disadvantages of $@iMpared to decision trees
and/or neural networks is presented.
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Linear or non-linear model

A true challenge for most pattern recognition techniquésged on how they handle non-linear
real life problems. While some techniques can handle nastficlassification directly, other
need to approximate or use some techniques to convert thkmeam classification into a linear
classification problem.

Decision trees handle non-linear classification problerafggroximating the problem with
pairwise linear classification [Breimaet al. 1984]. Similar to decision trees, SVMs cannot
handle non-linear data directly. To address the problenM$&¥hap the non-linear data into a
high-dimensional feature space where it can be classifiegily (or more specifically SVMs
uses kernel function to classify non-linear data withowet tieed for explicit mapping). How-
ever, neural networks do not have this problem and addresdimear classification problem
directly using multiple hyperplanes by the help of diffaractivation functions such as Sig-
moid, Gaussian or Radial Basis functions [Jairal. 2000].

Error minimisation

As pointed out in section 3.2 all pattern recognition teges are aimed at increasing the
performance (minimise error) of the classifier based onithigdd training sample available. It
was also pointed out in section 3.2 that there are two priesipf risk minimisation: namely
empirical risk minimisation and structural risk minimigat. Both neural network and decision
trees use the principle of empirical risk minimisation amel most likely to suffer from over-
fitting [Jainet al. 2000]. However, SVMs use the principle of structural riskhimisation.

To address the over-fitting problem both these methods hdmeted different techniques.
Decision trees use two different techniques. The first teglnis stop growing the tree further
when the split is not statistically significant [Breimanal. 1984]. The second approach is first
constructing the tree and then pruning the fully grown trpevard by considering a subtree
with minimum accuracy loss [Breimagt al. 1984; Quinlan 1993]. One can address the over-
fitting problems in neural networks either by choosing anrappate number of hidden layers
or stopping the training process before the network is fulljned. Even though the suggested
techniques for both decision trees and neural networks halped minimise the possibility of
over-fitting, the problem is still there as the result of ttaesib principle of risk minimisation.
Furthermore, there is no robust way of selecting a critet@ostop the training process so that
the network will not be over trained, or stop pruning.

As mensioned in section 3.2.2, SVMs use the principle ofcttinal risk minimisation to
avoid over-fitting. However, over-fitting is not absolutelyoided. A factor that can cause
over-fitting in SVMs is selection of poor kernel function whiwill result in number of support
vectors comparably equal to the size of the training samplesaddress this problem new
data driven kernel selection techniques have been progms&allich [2000] which gives an
intuitive guideline to choose a good kernel function.
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Global vs local solution

Depending on the approach taken to solve the optimisatiobl@m, pattern recognition tech-
niques give global or local minimum. Neural networks usedgmat descent techniques which
gives the local minimum [Vapnik 1995]. On the other hand SMMs quadratic programming
technique which is guaranteed to give the global minimum ¢Bar1998] (also see previous
number of sections).

Multi-class classification

Most real-world problems are not bound to binary classificgproblems. Therefore, one needs
to consider how multi-class classification is considereeémtomparing different techniques.

While both decision trees and neural networks can be tramedrforml — to — n classi-
fication, SVMs can only performh — to — 1 classification. This means for SVMs to perform
multi-class classification one needs to traidifferent classifiers each performing binary clas-
sification and hence is computationally demanding.

Performance comparison

Generally both decision trees, neural networks and SVMe baen applied in a many classifi-
cation problem and the latter two have been the two competiéichniques recently. To show
the dominant performance of SVM over the decision trees @&odah networks, consider table
3.1 showing selected results from Meyral.[2002].

| Problem SVMs | Decision trees| Neural Network |
BreastCancer 3.14 551 24.27

tictactoe 0.14 | 8.24 33.97

chess 0.49 | 3.20 39.73

titanic 21.16 | 21.48 66.90

Table 3.1: Mean error on a test set [Megtial. 2002]

The result in table 3.1 shows that despite the minor lindtegidiscussed above, SVMs have
outperformed the other two classification techniques.

3.8 Previous work

3.8.1 SVMs benchmark applications

So far we have seen the theoretical background and compasfsBVM. In this section, we
will see the application of SVM as a tool for pattern recoigmit
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Text classification

The volume of information found in electronic format hasrgased incredibly as a result of
the fast growing Internet. This fast growing volume of elentc information has urged many
to look for a better way to organise these resources so asda@fid filter for particular infor-
mation in an effective and efficient way. Text classificatowrcategorisation can be defined as
pattern recognition problem, which classifies naturafjleage text to one or more predefined
classes according to their content [Dumeisal. 1998]. So far, much text classification work
is done manually, which has created a bottleneck in effigiemd effectiveness in dynamic
information.

There are a number of systems already in use to organisecgliectiocuments in such a
way that filtering and searching can be done faster and aetyirdhe speed and accuracy of
such systems have a very high impact on their acceptancesafdiness. To increase the speed
and accuracy of such systems and development of new systeang, have proposed machine
learning techniques. Dumaes al.[1998] and Joachims [1998] have shown the performance of
machine learning techniques (naive Bayes classifier, keseaeighbours, decision tree classi-
fiers and SVM) in text classification in terms piecision/Recall-Breakeven Poirih addition,
Sunet al.[2002] have used SVM to classify the web documents. In thé pepagraph, we will
see the application of SVM in text classification in more dej&ing particular emphasis on
the concepts like feature extraction and kernel used ancethats obtained.

Joachims [1998] conducted his experiment on 12902 docwer(&bb training and 25%
testing) from Reuters-21578 dataset and 20000 documerfis {&0ning, 50% testing) from
Ohsumed corpus. To represent the text document Joachir@8][i8ed frequency of appear-
ance of the words in the document with the restriction of ilmtpy greater than two to avoid
unnecessary large feature vectors. Having representetbthanent, further features were se-
lected using a method of feature selection called inforomagjain, which ranks all the words
according to their information gain and selects those wighést the mutual information. Sim-
ilarly Dumaiset al.[1998] used the same number of datasets from Reuters-2t6H8ctions
and used binary feature value (occurs or does not occur)diaceethe feature space. Both
Joachims [1998] and Dumagt al. [1998] conducted the experiment on a number of different
machine learning techniques: naive Bayes classifier, keseaeighbours, decision tree classi-
fiers and SVM. Joachims [1998] used both polynomial kernelegiree(d = 1,2, 3,4,5) and
RBF with~ = 0.6,0.8, 1.0, 1.2 while Dumaiset al.[1998] used only linear SVM. The result
found in both experiments have confirmed that SVM is supenigrerformance and training
time over the given training set. Furthermore, Siral. [2002] have extended text classifi-
cation technique to web classification and have shown thadl utperforms FOIL-PILFS
algorithm.

2Due to the different time in the experiment the Reuters ctibes used in the experiment by Joachims [1998]
and Dumaiset al.[1998] are different

SFOIL-PILFS is an algorithm, which is designed to learn rulgsich use predicates based on Naive Bayesian
models of text instead of keyword tests.
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Microarray gene expression analysis and cancer tissue claBsation

In the previous section, we have seen how SVMs are appliegktaecognition and it is em-
phasised that SVMs perform better than other machine legn@chniques when used as a
pattern recognition tool. This section shows how SVMs aedus analyse microarray gene
expressions [Browet al. 2000] and used to classify cancer tissue samples based ovamay
expressions [Furegt al. 2000].

As the amount of data from different microarray hybridisatexperiments become huge,
the need for a means to extract biological significance aaskdlying genes according to their
functional class is increasingly becoming imperative [Bnat al. 2000]. There are a number
of approaches available to handle such task. Most of thgs®aghes use a clustering algo-
rithm based on the similarities between expression pattermgroup genes. However, these
approaches have a number of limitations. These limitattwashe motivations for the research
by Brownet al.[2000]. They used SVMs to perform microarray gene expressialysis.

They pointed out that SVMs have the advantage of using a sgef similarity computing
functions simultaneously and the ability to use prior krextge about the true functional classes
of the genes. The experiment was based on 2,467 yeast genmeb, were selected based on
availability of accurate functional annotation. Theseadsdts were converted into 79 element
gene expression vectors based on the results from an exgenmthn = 79 genes on a single
chip, which is converted to a vector form by dividing the eegsion level of the gene in the
varying condition of interest by the expression level of gigme in some reference conditfon
Having represented the data with the appropriate vector,ftire set of genes that have common
functional class are labelled positive, and negative @ilsey.

Based on these examples the SVM is taught to discriminatedbiéiye from the negative
examples. To carry out the learning task, polynomial andsSian kernels were used. One
problem identified was that the set of positive examples was in number compared to the
negative ones and hence were treated as noise rather thauplesabelonging to a separate
class. To handle this problem Browetal.[2000] modified the kernel value during the support
vector optimisation by adding the ratio of the positive epés multiplied by a scaling factor
to the diagonal elements of the matrix defined by the kernsdtian. The result showed that
higher degree polynomials and Gaussian kernels give aisupesult as compared to previous
analysis techniques.

As a continuation of the research by Broetal.[2000], Fureyet al.[2000] applied SVMs
in classifying cancer tissues based on the microarray sgfme data. The features extraction
criteria used are different from that of Brovet al. [2000]. Fureyet al.[2000] used the ratio
of the difference between the mean of the positive examl@scer tissue) and the negative
examples (normal tissue) and the sum of their standard titmviawhich helped discriminate
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between the two classes. Genes with the highest score dadtibenere extracted.

Unlike Brown et al. [2000], Fureyet al. [2000] used only simple dot-product kernel and
were not only able to classify tissues to the appropriatesdbait were also able to detect outliers
in the example set. The result was confirmed using biologxpériments.

3.8.2 Other machine learning techniques in predicting drug restance

In the previous section, we have seen the power of SVM as ddoglattern recognition and
have showed some application of SVM in bioinformatics aral-veorld pattern recognition
problems. In this section, we will see how other machinenliegr techniques are used to pre-
dict drug resistance of HIV mutants. Among many researchgged out in this particular topic

| will try to briefly present the methods used, features taderesults achieved and the limi-
tations of the research by Lathrep al. [1999] and Draghici and Potter [2003]. Draghici and
Potter [2003] have taken two different methods: Structased data mining and Sequence-
based data mining. In this literature, we are interestederS8equence-based method, which is
based on the amino-acid sequence rather than the struidatates.

Lathropet al.[1999] used rule-based expert systems based on the set ofesbaxtracted
from different literatures on mutation and drug resistaace used both RT and PRO portions
of the POL gene to predict drug resistant and nearby drugteggi mutants over all FOA
approved HIV drugs (11 at the time of the research) to sugg&shal combination of drugs
for a patient under therapy. On the other hand Draghici aigP[@003] used Neural Networks
to predict resistance t8aquinavirusing HIV Protease amino-acid sequences so that the HIV
mutant is classified as low, medium or high resistant.

The first step taken by both experiments was extracting featinat can represent the input
sequence, where both used the codons (433 codons in RT andP88D). Lathropet al.[1999]
extracted the codons that are targeted by the approved,dsnysh reduced the input to 31
different codon positions (20 in RT and 11 in PRO). Draghiwil &otter [2003] extracted all
the codons in PRO and assigned a value between 0 and 1 baskeirodifference from the
wild type 7 (HXB2). Moreover, two codons, which do not show any variatimm the wild
type were eliminated resulting in 97 codon positions in thgut vector. Each input vector
was then converted into a hormalised numeric pattern to ritaketable for Neural Network
processing. Having extracted the relevant features Lpter@l. [1999] applied the 55 set of
rules in the form olF ( antecedent THEN ( consequenceWITH ( weight) with a high level
of confidence, where the weight varies from 0.1 (low resi3tanl.0 (high resistant). Based on
the rule weight the current resistance of the mutant is tatied. The nearby resistant mutants
were predicted by applying the rule on newly generated sempgefrom those sequences that
originally do not trigger the rules. The neural network agmh taken by Draghici and Potter
[2003] was different from the rule-based expert systemhéirtresearch, Draghici and Potter

5Food and Drug Association
"value is assigned between 0 and Lirequal increment where is the number of different mutations from
the wild type”[Draghici and Potter 2003, page 103]
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[2003] used thirty-six network architectures with diffeteutput matrix {2 x 12 to 3 x 3),
different learning rates (0.9 to 0.5) and different initi@ighbourhoods. Each network is trained
32 times with 75 % of the data with 10 iterations (except one).

The result found by both research approaches confirms thgtrdsistance can be predicted
using the protein sequence of the HIV mutant. Results foundabgropet al. [1999] showed
up to 25« viral load reduction in patients that completed one yeahefdpy of optimal drug
combination recommended by the rule-based expert systi&ewise, the results from Draghici
and Potter [2003] showed 69% coverage and 68% accuracy ogle sietwork § x 8 output
matrix, 0.6 learning rate and 8 neighbourhoods) and as lE@%%b average coverage and 78%
accuracy over multiple networks.

Although both research methods showed positive resulte e some limitations. The
rule-based expert system needs continuous maintenaritaddition of new rules and discov-
ery of new mutants and the neural network approach is theallgthard to verify.

3.9 Summary

In this chapter a detailed background and mathematicalutaton of SVM was presented.
The two principles of error minimisation was covered in dheptthe first section of the chapter.
The simplest form of SVMs, the maximum margin classifiers wascribed in more detail
and was also used to introduce a number of new terms and tgewihat was latter used to
address the more complex model if SVMs, the non-linear SVIlss chapter has also covered
how the inherent binary classifier is extended to multilasssification and an overview on
the implementation details of SVMs. Finally, comparisonSMMs with decision trees and
neural network was given followed by some relevant previeoks done on SVMs as a pattern
recognition tool and HIV drug resistance prediction.

In addition to the SVMs background and benchmark applioatigiven so far, the next
chapter will motivate why SVMs are particularly an ideal @®ofor the pattern recognition this
research is solving.
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Chapter 4

The Experiment

4.1 Introduction

In the previous chapters, detailed background on the HINbgyand a brief discussion on
how this problem is best solved using pattern recognitichn&ues were presented. Differ-
ent approaches in pattern recognition with more emphasssatistical pattern recognition and
SVMs as a classification algorithm were discussed. Therdifitgpattern recognition techniques
discussed in Chapter 2 and Chapter 3 have been applied in a nahtbeinformatics applica-
tion and all of them have registered good results. Howewegedding on the type of problem
at hand, the number of training patterns, the dimensignalitthe problem, one technique
outperform the other with no one technique showing absduperiority. A brief theoretical
comparisons of some of these techniques were also presérttedesults extracted from pre-
vious research (Table 3.1) and the theoretical comparipoEsented reasons out why SVMs
are likely to perform better than the traditional patteroognition techniques. This research
compared different pattern recognition techniques on thé ditug resistance problem but it
is not the intention of this research to rank the differeohteques in this problem. The main
objective of this work is to assess the performance of SVMs @®l| for HIV drug resistance
prediction.

In this Chapter a recap on the different techniques of HIV dasgjstance testing and their
limitations, why the problem is well suited to be solved asa#tgyn recognition problem and
some of the benefits of using SVMs as a classification teclengge presented before formu-
lation the research question. Performance evaluationagkilcation algorithms can be based
on a number of different metrics. This chapter discussedafipgoach taken to measure the
performance of the different algorithms and motivates wigyapproach was chosen. One of
the major issues in pattern recognition problem is the immaoding technique. Input encod-
ing have a major effect on the performance of the classifigouti data and encoding is also
discussed in this Chapter. Moreover, this Chapter will givetited background on different
model selection, error estimation and generalisation aukth

In the next section the research question will be motivatetithe corresponding research
hypothesis will be formulated. Section 4.3 gives desaiptf the implementation of the dif-
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ferent classification algorithms used for this comparasittely. Section 4.4 gives a detailed
background on different approaches on model selectionr estimation and generalisation.
Section 4.5 gives the evaluation criteria for this researuth motivates why a particular evalu-
ation criterion is adopted. Section 4.6 will describe thtada be used and motivate why this
data is used and the selected input encoding scheme. lorsdctian overview of the approach
to be taken will be given. Finally a Section 4.8 concludesdiapter.

4.2 Research question

The AIDS epidemic has already caused a major economic,iqablénd social problems all
over the world specially in developing countries. Althougkre are a number of reasons for
the failure in AIDS treatment, the high rate of mutation ie tienetic code of the HIV virus
is considered the major cause and is the main focus on camgbtte epidemic. Mutations
are frequently exhibited on the genetic codes encoding itia¢ reverse transcriptase (RT) or
protease (PRO) proteins and some of these mutations arenkttowonfer drug resistance.
Since not all mutations cause drug resistance the ideriificaf those particular mutation
points known to confer drug resistance will have advantagté buring drug designing and
clinical therapy of an HIV patient. The two ways of accomiping) this are phenotypic and
genotypic testing. In genotypic testing the viral reveraascriptase and protease are sequenced
and checked for existence of mutations known to confer desgstance and hence indirectly
predict the drug resistance behaviour of the HIV strain uppenapy.

The two approaches for drug resistance testing mentioneekdiave their advantages and
disadvantages compared to each other (for more detail sBers2.3.4). One of the advantages
of genotypic approach is that it is well suited for a compset approach. This advantage is
the reason for the involvement of non-biological discipnn addressing the drug resistance
problem. Some of the techniques adopted from other diseiplare expert systems and a num-
ber of pattern recognition techniques. These proposed laa@ady implemented systems for
predicting the drug resistance behaviour based on sequieacerse transcriptase or protease
of an HIV strain extracted from a patient have already imptbgharmaceutical therapy of the
patients. However, these systems are still in a-work-ogpess stage and have a number of both
biological and computational limitations. Firstly, mogttbe existing application to predicting
HIV drug resistance are based on rule-based algorithms [Ravel. 2003]. These applica-
tions are designed to predict the drug resistance of an H&hdbased on the sequenced reverse
transcriptase or protease of the virus, highly rely on tloddgical knowledge available about
the drugs and sets of mutation points known to confer resistdo these drugs. Therefore,
the steady growth of mutation points causing drug resistadae to failed retroviral therapy
is negatively affecting the performance of these systentsaddress the effect of the newly
discovered mutations and incorporate the discovered dpimab information (about the drugs
and new mutation points known to confer drug resistancegsigning the systems might be
required. Furthermore, as presented by [Raeekd. 2003] this approach has resulted in differ-
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ent interpretations of the biological knowledge resultingliscordance between the different
interpretation algorithms. Secondly, the growing numbenotation points, the dimensionality
of the sequenced reverse transcriptase and proteaseoqyevektis, the commonality of noise in
most biological data, together with the cost and politicslafa generation, leave these tech-
niques to make the maximum out of a limited (usually smadjning samples. As mentioned
before many of the already existing techniques (based araheetworks and decision tree) rely
on probabilistic density estimation as a statistical tooldrediction. This approach leaves these
techniques to suffer from the “curse of dimensionality du¢hie big ratio difference between
the dimensionality of the data and the number of availalaiming samples (high dimensional
and limited samples). Furthermore, most of these techsigse the principle of empirical risk
minimisation (presented in section 3.7), which makes theghly vulnerable to over-fitting.
Thirdly, discovery of additional drugs will also impose &dthal restrictions on these systems.

To overcome the above specified computational limitatibese are a number of well stud-
ied computational approaches that could be consideredglumiodel designing. Some of
these approaches are reducing the dimensionality of therpat introducing steps to avoid
over-fitting during the training process and incorporataalyanced techniques to enable these
techniques to accommodate newly discovered mutation oi@he can also explore differ-
ent pattern recognition techniques theoretically knowraddress the computational limita-
tions specified above and have shown good performance im (#lated) pattern recogni-
tion tasks. This research considers SVMs, a pattern retogrtechnique which has been
outperforming other pattern recognition techniques inyrtz@nchmark applications and com-
putational biology problems. As specified in the previouaptbr, the principle of structural
risk minimisation, the fact that, only support vectors deifi@e the classification model and
the kernel trick have enabled SVMs outperform other pattecognition techniques in a num-
ber of classification problem where the number of availablaes is limited, high dimen-
sional and noisy. Moreover, SVMs are pattern recognitiahnéue with a strong mathe-
matical foundation to achieve good generalisation whilentaining a high classification ac-
curacy [Ganapathiraju 2002]. For the above mentioned resas®VMs have been recently
applied as a classification tool in a number of pattern reitiognproblems. In section 3.8.1
a couple of applications of SVMs on problems in bioinformoatand computational molecu-
lar biology was presented. Additional applications of SVbsthis domain can be found at
http://www.support-vector.net/bioinformatics.html

In section 1.4 we have seen how HIV drug resistance predié¢tianapped to a general
pattern recognition problem. Therefore, this researchoegp the performance of SVMs in
predicting the drug resistance behaviour of an HIV stratreeted from a patient to the different
reverse transcriptase and protease inhibitors based ogethetic codes of the viral reverse
transcriptase and protease respectively. Furthermorewave to explore the possibility of
designing a model without incorporating the already emgsthiological knowledge to have a
model capable of accommodating not yet discovered mutatiom contributing to the drug
resistance behaviour of the strain to these drugs. Follpwhe above argument the research
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guestion for this study can be posed as follows:

Given a set of drug resistance data p&irs {(x1,y1), (x2,y2), ..., (x;, y)}, where

x is a valid genetic sequence of HIV reverse transcriptaseaiease for an HIV
strain andy = {Susceptible, Resistanis the drug resistance behaviour of the
corresponding strain for the drug under investigation: $&iMs learn from these
examples and predict the drug resistance of unseen H\hsftai

To answer this question, the performance of SVMs was evadubdsed on accuracy of
classification and the trade-off ability between the sensitand specificity (the performance
evaluation criteria is presented in section 4.5). Evahgptihe performance of SVMs alone will
fall short of answering the research question. Therefar@ddition to SVMs, a number of
different pattern recognition techniques; namely: decisrees, neural networks and logistic
regression methods was investigated. Previous researBedrgnwinkekt al. [2002] showed
the capacity of decision trees for predicting HIV drug resise based on the genetic sequence
of the viral protease or reverse transcriptase. Simil&taghici and Potter [2003] and [Wang
and Larder 2003] showed the capacity of neural networks fdf dHug resistance prediction
using the genetic sequence of the viral protease and retrarsgcriptase and the presence of
mutation on specific positions on the viral protease knowaotder drug resistance respectively.
For these reasons, the answer to the research questiorrnsagiffe or othewise based on the
performance of SVMs incomparison to decision trees, newwi@bork and/or logistic regression.
If SVMs perform equally or better than these techniquestglearch question will be answered
affermative.

The performance of the different classification algorithwes evaluated using the same
performance evaluation technique. The best configurabore&ch of these algorithms was
tuned. And finally comparison of performance was done. Theckefor the best configuration
for the different algorithms have resulted in differentadpte-processing steps for the different
classification algorithms, however it did not compromiseplerformance comparison since the
focus of the research is accessing the performance SVMsmpaadson to the other popular
pattern recognition techniques but not ranking the algor#t according to their performance.

4.3 Classification algorithms description

As presented in Chapter 2 and Chapter 3 pattern recognitamsification techniques can be
categorised differently based on the underlying backgiotire approaches taken, the assump-
tions made, etc. Furthermore, a single classification tgcienin turn can be implemented in
a number of different ways each making a distinct designsitetiand assumption based on
the underlying principles of the technique. Some implemtons are designed to be more effi-
cient on large data sets while others are implemented tofaaté&aining time. The underlying
background that lead to the different techniques is preseint the previous chapters. In this
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section, a brief description and a high level comparisomefdifferent classification algorithm
used in this research will be presented.
The following is the list of algorithms used in this research

1. Support Vector Machines (SVMs)
e SVM! 4" [Joachims 1999]
2. Neural Networks

e Feedforward Multilayered perceptron [Hagan and Menhaj4i%8edmiller and
Braun 1993]

3. Decision Trees
e C4.5[Quinlan 1993]
4. Regression methods

e Penalised logistic regression [Zhu and Hastie 2004]

Support vector algorithms: SVM!9ht

As presented in Chapter 3 finding the optimal solution thas®as the constrained optimi-
sation problem is computationally expensive. To addresspioblem, a number of differ-
ent implementation of SVMs that differ not only in the apmbaaken to divide and con-
quer the problem but also implemented for different platferand problem size are proposed.
A list of different SVMs implementations and utilities cae toound fromhttp://www.
kernel-machines.org/software.html . The different approaches taken to make this
CPU and memory intensive computation more efficient wereugsed in Chapter 3. In this
section a brief description of SV, an SVMs implementation used in this research will be
presented.

SVMU9ht written by Joachims [1999] is a C implementation of supp@tter machine
[Vapnik 1995]. SVM¥" is reported to be the most popular implementation of SVMsifas
cation technique for a number of reasons. Firstly it is cépablearning of ranking functions,
in addition to classification and regression. Secondlyai bBcalable memory requirements.
SVM'9 ysed least-recently-used caching strategy to trade-btffdmn memory consumption
and training time. This property enables the algorithmatifely handle large range problems
with many thousands of support vectors. The core optinueatiethod used in this algorithm
is based on ‘LOQQO’ algorithm, which is a software packagelementing infeasible-primal-
dual path following method to solve nonlinear optimisamoblems [Vanderbei 1999, as cited
in Joachims [1999]]. Thirdly, it also provides methods fes@ssing the generalisation perfor-
mance using leave-one-out cross-validation techniquelstt gives both error rate and preci-
sion/recall on the training and test set
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SVMY9" has a method to classify unseen problems based on the attestruodel. Unlike
many classification algorithms which retusal, SVM" 9" returns continuous-valued output
(—o0, +00), which makes it more suitable than other SVM implementattwrcomputing the
area under the ROC curve.

For non-commercial use SV is freely available atttp:/svmlight.joachims.
org .

Neural Networks: Resilient and Levenberg-Marquardt methods

The most popular neural networks architecture over a widgeaf real-world applications

including computational biology problems is the feedfomvanultilayered perceptorns with

backpropagation algorithm [Baldi and Brunak 2001]. As merdtbin Section 2.6 the stan-
dard backpropagation algorithm is too slow for real-wonidigems. The two alternative ways
of modifying this algorithm are heuristic approach or nuicedroptimisation. The Resilient

backpropagation implements the first approach while LeseMarquardt backpropagation
algorithm that implement the later. Details of these twaathms were presented in section
2.6.

The Matlab neural netwoks toolbox is used for this experimen

Decision Trees: C4.5

As presented in Section 2.7 there are several heuristidsaaietin constructing decision tree
each differing in the approaches taken in the constructiep. sThe decision trees algorithm
used in this research is C4.5 written by Quinlan [1993] asa@phent for his original im-
plementation 1D3 (iterative dichotomizaf?). C4.5 is a top-down induction of decision tree
algorithm where for a given set of labelled examples thegiecitree is constructed in a top-
down fashion. Unlike its predecessor this algorithm cardle@both nominal and continuous
attributes.

The splitting criteria used by C4.5 is information gain rat@#.5 uses this important metric
to avoid the problem that arises from using information gasna split criteria. Recall from
Section 2.7 that information gain favours attributes wistidct values. A fully grown decision
tree is the pruned to reduce the size of the tree and avoidgt®sser fitting. C4.5 prunes the
fully grown tree with out the need for a separate validatien $he C4.5 algorithm also has the
ability to handle missing attributes.

Release 8 of the algorithm can be foundhitp://www.rulequest.com/Personal/

Regression Model: Logistic regression

In this research we used penalised logistic regressionadstiThe version of penalised logistic
regression used in this research is proposed by Zhu andeH2804] as an alternative for SVMs
for microarray cancer diagnosis problem. This algorithesuSequential Minimal Optimisation
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(SOM) proposed by Platt [1998] to make it computational itdasfor problem with larger
attribute set.

The Matlab implementation of the algorithm is availablentp://www.tsi.enst.
fr/ gfort/GLM/Programs.htmi

4.4 Model selection, generalisation and error estimation

Model selection is one of the primary steps in pattern rettmgrapplication. This step includes
selection of a particular pattern recognition approachdgkample: statistical or structural pat-
tern recognition), a particular pattern recognition teghe within the selected approach (for
example: neural networks or SVMs). Once the appropriatsiflaation algorithm for the prob-
lem is identified, parameter tuning is carried out to detamthe best configuration that gives
the best performance. The best configuration parametechuglikely give better performance
not only on the training sets but also unseen problems caelbeted based on the theoretical
bound on generalisation or error estimation on the traisitg

Generalisation and error estimation are important bectieseincrease the confidence in
the model selected. There are a number of ways of error égtimend generalisation. Estimat-
ing the bound on the generalisation requires detailed étieal information on the problem to
be solved such as the underlying distribution probabilibyali is generally difficult to compute
from limited training samples. Therefore, estimating tloaitd is not an easy task for most
pattern recognition tasks. However, error estimation &y ea conduct compared to evaluating
the bound on generalisation. The simplest method of ertonason is cross-validation. This
method is used in this experiment and is described in ddtadre are more sophisticated meth-
ods in deriving the bound on the generalisation error anthgutne classifier parameters. Such
methods of error estimation and generalisation methodsdedAC bound, complexity penal-
isation and Bayesian model selection. However, these metrerlire a detailed knowledge
about the behaviour of the data and the underlying distobhufThe underlying distribution of
the data is usually unknown and hence error estimation usigs validation is used in many
practises.

4.4.1 Hold-out and cross-validation method

Cross validation is a model evaluation method that does ruly dipe entire data set to training
the selected model. In this method some of the available lesmape removed from the training
set. Once the model under consideration is trained, thaosplea that were removed will be
used to test the performance of the trained model. This id#sec idea behind the model
evaluation methods called cross validation. However deipgnon the nature of the division
of the training sample between the training and testing $amye have three different cross-
validation techniques. These techniques will be descnitged. The material in this section is
based on Goutte [1997], Plutowsi al.[1994], Shao [1993].
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Hold-out method

The hold-out method is the simplest kind of cross validatidime data set is separated into
two sets, called the training set and the testing set. Thienpatecognition system will be
trained using the training set only. Then the system willdsged to classify those samples in
the testing set. The performance of the system will be etaduby the mean absolute test set
error. One disadvantage of this method is the consistentijeofesult. The evaluation may
depend heavily on which points are used as a training set archyoints are used as test set.
This means evaluation may be significantly different depandn how the available sample is
divided between the training set and the testing set.

k-fold cross validation

One way to improve the limitations of the hold-out methodhisi-fold cross validation method.

In this approach the data set is divided ihtdisjoint subsets. Each time, one of thesubsets

is used as the test set and the other 1 subsets are put together to form a training set. That
means the hold-out method is repeatetimes. The average error over &ltrials will be used

to evaluate the model under investigation. The advantagesomethod is that, unlike the hold-
out method, how the data gets divided is less significantryed@ta point gets to be in a test set
only once, and gets to be in a training et 1 times. Hence the consistency of the resulting
estimate is increased &sis increased. One disadvantage of this method is that tivertga
algorithm has to be run for times for each training-testing set combination and takeshes

as much computation to make an evaluation.

A variation of this method is to randomly divide the data imtdest and training set
different times. This approach have the advantage that gounclependently choose how large
each test set is and how many trials you average over.

Leave-one-out cross validation

Leave-one-out cross validation isfold cross validation taken to its logical extreme, with
set to be equal ta, the number of data points in the set. This means the pateoygnition
system is trained on all the data except for one poisseparate times and a classification is
made for that point. As before, the average error is compaedused to evaluate the model.
The evaluation given by leave-one-out cross validationres good, but more expensive to
compute than the other two methods.

So far we have seen the different techniques of cross-validaAlthough leave-one-out
technique is the most powerful, it is also the most expensiigerefore in this research, the
second variation of-fold cross-validation where 75% of the data will be usedtfaining and
the remaining 25% will be used for testing. The performanitibe the average of 10 trials.
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4.5 Performance evaluation criteria

The main objective of this research is to investigate théoperance of SVMs relative to some
of the popular machine learning/classification techniquetke most research on empirical
comparison of classification techniques, the major taskisfresearch is investigating the best
classification technique/algorithm along with its optimparameter sets that not only give the
best performance on the given data sets but also is likelgite hetter generalisation. In the last
couple of decades, a number of articles comparing the pedioce of different classification
techniques/algorithms on a wide variety of classificatioobfem have been published. Al-
though the authors of these articles were able to claim tmattassifier is better than the other
for the given task, not all of them agree on the dominant perémce of one classifier/algorithm
over the rest. This is evidence showing that different di@ss are more appropriate for dif-
ferent tasks and one can not absolutely claim that one fitxss globally dominant. The
performance of a classifier depends on a number of factofsasithe assumptions governing
the problem, the design of the classifier, and the dimenkigmé the problem. Hence itis hard
to claim that one classification technique is generallydvettan others.

Traditionally performance of a classifier is measured imteof the accuracy of prediction
defined as the percentage classified correctly out of thedestimples. Practically available
samples are divided into training and testing set. The padace of the classifier which is
trained using the training set is then measured based onitielassification rate on the test
set. However, this approach has a number of limitations dubd assumptions made about
the test data set [Provost al. 1998; Fawcett 2003]. Accuracy or error rate as a measure of
performance provides an insight when the available dat (s&tining and testing sets) are
sufficiently large, the training and test sets are indepehded the distribution of the patterns
across the different pattern classes is well balanced §1@h2000; Ferriet al.2003]. However,
these assumptions are very hard to satisfy in most realdwodblems where the number of
counter-examples are very few relative to the large set idépes available. This problem even
becomes more emphasised in classification problems in thaidoof computational biology
where data generation is not only costly but also the aVailddita is likely to be highly skewed
(see Saitta and Neri [1998] for example). When the numbertbéipes belonging to one class is
proportionally very big relative to the other (say 99:1) oanplete mis-classification of patterns
belonging to the class with fewer test pattern will not hawggmificant effect despite a likely
overall poor generalisation ability of the classifier onegs problem. In addition to this, using
accuracy as classification performance measure assumesw@galassification cost or penalty.
This assumption limits the insight we have about the classsuch as the type of error made
(sensitivity of the classifier) [Provost al. 1998].

There are a number of alternative approaches to addressdbihen evaluating the perfor-
mance of a classifier and making empirical comparison osifiesperformance. One approach
is to evaluate the performance of the classifier on eachrpattass separately. An alternative
approach is a technique originated in signal detectionrthetich is a graphical approach to
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visualise, organise and select classifiers based on théarpence called Receiver Operation
Characteristics (ROC) [Provost al. 1998; Fawcett 2003]. Spackman [1989] is one of the early
adaptors of ROC in machine learning for comparing and etialgdifferent classification algo-
rithms [Fawcett 2003]. Following Spackman [1989] and otenly adopters of this technique,
increasing number of researchers are applying ROC to eeatunel compare the performance
of machine learning algorithms on classification problehzd &ire hard to satisfy assumptions
that makes the use of the traditional approach less apptedfawcett 2003]. In this research
area under the ROC curve (AUC) will be used in conjunction whthaccuracy to measure and
compare the performance of the different classificatiooratigms used.

Application of the trained classifier will give us informati showing the difference between
the true and the predicted class for the set of labelled ppatia the test set. For a binary (two
class) classification problem the information can be sunsadiin the four metrics listed below:

True Positive (TP): Number of correctly classified positive patterns

True Negative (TN): Number of correctly classified negative patterns

False Positive (FP):Number of misclassified positive patterns

False Negative (FN):Number of misclassified negative patterns

These four metrics can be effectively represented usingrgency table or confusion ma-
trix as shown in Table 4.1. This matrix is a basis for many grenfince measures that combine
these metrics to ease comparison of classifiers.

Predicted| Predicted
Positive | Negative
Positive
Examples TP FN Pos (TP + FN)
Negative
Examples FP TN Neg (FP + TN)
PPos PNeg N
(TP +FP)| (FN + TN)

Table 4.1: A contingency table or confusion Matrix

From Table 4.1, the row total “Pos” and “Neg” are actuallyipes and negative examples,

the column total “PPos” and “PNeg” the number of predictedatige and positive patterns

respectively. N is the total number of test patterns (N = PNgg = PPos + PNeg). The numbers
along the major diagonals of represents correctly claggifterns while the off-diagonals are
the confusion between the two classes. Common performaniceEsnehich gives meaningful
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measurements can be calculated from the confusion matrix:

FP+FN

TP+TN+ FP+ FN
TP+TN

TP+TN+ FP+ FN
TP

TP+ FN

error rate=

accuracy (1- Error rate)=
sensitivity (TP rate)=

FPrate= ————
A= T h TN

TP

Specificity (1— FP rate)= TP+ FP

Some of the above metrics allows us to measure the perfoer@rbe classifiers with respect
to the individual classes. The two terms which are usuabpeaisted with ROC are sensitivity
and specificity, also known as recall and precision resypagtiFor classifiers with continuous-
valued outpuf —oo, +00) (for example SVM¥", neural networks witltanh activation func-
tion), these terms are subjected to different values basdtethreshold value (cut-off value
to label a pattern as positive or negative, it its value gneat less than the threshold value
respectively) chosen for classifier. In such cases the nisggonals and the off diagonals of
the confusion matrix will have a different value based onahesen threshold value. An ROC
curve, a two dimensional graph where FP rate is plotted on:tagis and TP rate is plotted
in the y-axis represents all possible combination of TP rate andafés fFawcett 2003]. An
example of ROC curve for three classifiers A, B and C is giveligure 4.1.

ll

True Positives

»

0 False Positives 1

Figure 4.1: An ROC curve for three classifiers A, B and C

The ROC curve in figure 4.1 shows the performance of the tHessi@iers in terms of the
trade off between sensitivity and specificity. An ROC curJ@ah is plotted on an FP rate - TP
rate space always passes through the points (0,0) and At,(0,0) the classifier has classified
all the test sets as negative. On the contrary, at (1,1) #Hssifier has classified all the test sets
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as positive. For a random classifier, the ROC curve will beagt line connecting these two
points. For a perfect classifier the ROC curve is a curve acimgethe three points ((0,0), (0,1)
and (1,1)). From the ROC curves given in Figure 4.1 it can Il that classifier A performs
better than a random classifier and both classifiers B and Cetawfor any two classifiers
where the ROC curve intersects (Classifiers B and C from FidLirgit is not always easy to
compare the performance. It can be seen that both clasdifiwesa better performance than
a random classifier but it is hard to say B is better than C and versa. Depending on a
threshold value chosen (particular sensitivity) one isdvehan the other.

In such instances where the ROC curve crosses using theraeathe ROC curve (AUC)
as a single number performance evaluator is an appropoat¢Bradley 1997]. For a random
classifier the AUC equals 0.5 and for a perfect classifierlitlvd 1.0. Although it is possible
for a classifier with higher accuracy to have a lower AUC thaa with lesser accuracy, AUC
has been voted as a better way of evaluating classifiersrpefwe than accuracy [Feet al.
2003]. The algorithm used in this research to calculate thetp on the ROC curve and the
area under the curve (AUC) is adopted from Fetral. [2003].

4.6 Data and input encoding

4.6.1 Data

Ideally, a large training and test data set for which the phgac drug resistance status of the
different samples was known would be used. Unfortunatiegse are difficult to obtain in suffi-
cient quantity. Instead, a data set that has previously tlessified by other researchers is used.
While not ideal, we emphasis that our objective is to evaluzehine learning algorithms for
future mutations and drugs rather than to discover new gicé knowledge for existing drugs
and mutations. The data set used has a high-degree of lmaldigielity but more important, it
contains typical patterns and mutations. Thus, if the modellearn the mutations that others
have predicted or spotted, it can conclude that the mackaming technique can be used to
learn new patterns for new drugs and mutations.

This research compared the performance of SVMs, neuralanks$wdecision trees and
logistic regression method on the HIV-1 sub-type B, commoBEunope and Americas. There
is no reason to believe that performance of other sub-tyesgdibe different. The recognition
performance of these algorithms is tested by its abilitylassify a given nucleotides sequence
as drug resistant or susceptible and their trade-off betweasitivity and specificity, which is
measured by the metric area under the ROC curve.

Because of the drugs used in the sample data, the geneticneeguaf the viral protease
or/and reverse transcriptase were used. The genetic ssxpiéor the protease and reverse
transcriptase of the HIV-1 virus used in this experimenttheesame set of sequences used by
Ravelaet al. [2003] in their investigation of mutation points responsifor the discordances
between different genotypic drug resistance interpmaagigorithms. This data set comprises
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sequences of isolates from 2045 individuals each constfygosition 1-99 of protease and
1-240+ of reverse transcriptase along with the correspondiug resistance status labelled
asS for susceptible| for intermediate andR for resistant for 15 different retroviral drugs ac-
cording to the different algorithms used in Ravetaal.[2003] (some of the sequences contain
positions 1 — 250 for RT). These algorithms had in some cdassifted some sequences differ-
ently. These discordances are reported to result from aevequently occurring simple muta-
tion patterns and small number of drug resistance mutatiotise cases of nucleoside reverse
transcriptase inhibitors (NRTIs) and non-nucleoside revéranscriptase inhibitors (NNRTIS)
respectively. However, discordances in protease inhib(f®ls) are results of a large number of
complicated mutation patterns [Ravelal. 2003]. Therefore, to avoid these discordances, this
research considered drug resistance status assigned by Hivid Protease sequence Database
(HIVDB) (http://hivdb.stanford.edu ). A preliminary experiment has shown no per-
formance difference as a result of drug resistance algorstblection.

As few of the test data sequences were labelled as interteetbathis research, intermedi-
ate sequences are considered as resistant sequencedt.Zatlews the final count of resistant
and susceptible sequences for the five selected drugs.

| Drug category| Drug | Resistant (R) Susceptible (S)

PI IDV 884 1161
PI NFV | 1037 1008
NRTI AZT 1090 955
NRTI DAT 1058 987

[ NNRTI [NVP [ 1377 | 668 |

Table 4.2: Sequence distribution between resistance (R3asukptible(S)

4.6.2 Input encoding

The first step towards applying the different classificatexhniques used is pre-processing and
filtering of the selected data sets to meet the specific datesentation requirement of these
algorithms. The sequences from Rawvelal. [2003] are composed of the codons positioned 1
— 99 of the protease and 1 — 240+ of reverse transcriptasé deggience has a reading frame
stating from the first base in the sequence and hence thedfirst§ = 297) bases corresponds
to protease while the remaining40+ x3 = 720+) bases correspond to reverse transcriptase.
Therefore the first step was extracting part of each sequemitesponding to the particular
drug category under investigation.

Mutations on different parts of the viral genome are resfm@dor drug resistance be-
haviour of the virus. Resistance to Pls are caused by extibitgations in the viral protease.
However, resistance to both NRTIs and NNRTIs are causedalseme mutations in the viral
reverse transcriptase. The first 297 nucleotides of theeses are used for the drugs in the
protease inhibitors category. For the other two drug categonamely NRTI and NNRTI, two
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alternative approaches were taken. The first approach tekeonsidering the entire sequence
which is the combination of protease and reverse transs@pand leaving the task of discrim-
inating those features that are not responsible for theteegie behaviour of the strain for the
particular drug for the classification algorithm. In the @ed approach, only part of the whole
sequence which belongs reverse transcriptase was cosgidter removing the first 297 nu-
cleotides from each sequence to work with the proteaseitorsh the remaining sequence is
part of the original sequence that comprised position 1 +24@he reverse transcriptase. Since
most of the mutation points responsible for drug-resistdnc drugs in these two categories is
the first 240 codon positions of the reverse transcripthgesgmaining sequence after elimina-
tion the protease part had all the necessary informatiodate®r this experiment. There is one
problem that could possibly arise when removing the first githe sequence is the question of
open reading frames of the reverse transcriptase sequidaeces(naining part of the sequence)
for those sequences where the protease might be shortargarlthat 297 nucleotides. To ad-
dress the possibility of such problem a preliminary seqaeatignment was carried out and no
such problem was identified. Having done this, the secontbaph has resulted in a sequence
of 720 nucleotides long (240 codons). Thus, there is onefssquence with the correspond-
ing drug resistance label for the protease inhibitors armdhen two sets for the nucleoside and
non-nucleoside reverse transcriptase inhibitors.

Designing a complete classifier includes identification pf@per pre-processing and post-
processing techniques beside selecting appropriatafatagsn algorithm and tuning the cor-
responding parameters. Like most computational biologyblems, the first pre-processing
step is encoding the nucleotides (character) sequencarnappropriate vector (numeric) rep-
resentation that can efficiently work across the differdassification algorithms used in this
research. The choice of the encoding technique affects uhéty) of information retrieved
from the raw data (the nucleotide sequences), and constyjtien performance of the classi-
fiers. Therefore, when selecting an encoding technique dauaofi factors should be taken into
consideration. As presented in Wu [1997], when encodingeseces one needs to ask whether
to consider fixed or variable length of sequences, if thellocglobal information more impor-
tant, if the information has any positional dependencyéfintention is searching for signal or
content, etc. Recall that drug resistance is caused by ¢adlibutations in a specific position
in the viral genome. Furthermore, not all mutations havestinae contribution to wards the
drug resistance behaviour of the strain. There are majomandr mutation points. To address
these underlying facts, data representation which carligigithe global position of the mu-
tation points and their positional dependency with othetatons is of interest is considered.
For this purpose the input encoding in this research is &snel

The sequences in each data set were converted into vecttotoass. Before converting
each sequence into an equivalent numeric representatioh,sequence was first transformed
into a consistent nucleotide representation by substgutiose nucleotide codes that represent
any two or more nucleotide bases. The conversion of thedeatide codes into the bases was
done according to the IUPAC codes (see Table C.2 in AppendiE&gh set of 3 nucleotides
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makes up aodon which encodes for part of the corresponding enzyme. We gaadh pos-
sible codon a numerical value using a standard numberingnseh The conversion starts by
assigning an integer value for each of the nucleotide baseS; U and G were assigned 0, 1,
2 and 3 respectively. With a numeric value assigned to eacleotide base, the numeric value
of the codon is the sum of the integer representation of tbk eacleotide base multiplied by
4*, wherei is the position of the nucleotide in the codon. For exampie,dodon AUG will be
0x4%2+2x4+3x4%=11.

Using this scheme, each sequence was converted into a.véldter protease sequences
are 99-dimensional vector8q x 3 = 297) and the reverse transcriptase sequences are 240-
dimensional vector2¢0 x 3 = 720). The vector representation of each sequence paired with
the corresponding drug resistance label makes up the datassal in this research for training
and testing. This representation scheme allows us to detgetions at which positions caused
drug resistance. Note that this particular input encodmiglV drug resistance prediction task
has the advantage that it models both the global and reladis#ion of mutations exhibited.

Given the vector representation of the above selected didadata sets were divided into
a training and test set for cross-validation. As descrilme8action 4.4, we randomly selected
75% of the data sets for training and the remaining 25% fdmgs With this approach the
training set compromises 1500 sequences with the corrdsppidrug resistance profile for
each drug. The testing set contains 545 sequences. Themaslection gives equal proba-
bility for each sequence and usually guarantees evenlglison between the Resistant and
Susceptible classes relative to the overall distributieer dhe sample. 10 training and testing
sets were created for each drug in table 4.2.

4.6.3 Alternative input encoding

A lot of questions can be asked about the input encoding teahrand we will not claim that
this is the best input encoding that can be used for this pmobHowever, we believe that the
input encoding used has done the job to answer the reseaestiaquand had an advantage
compared to the other two approaches were tested as a pearegpt.

The first alternative approach tested was a sight variatidtheoabove mentioned scheme.
In this approach, the effect of giving different order ofrsfgcance to the nucleotides in a codon
was investigated. In the above mentioned scheme, the fickotides the codon was the most
significant bit. In this alternative approach, the last rotide (ie. the third nucleotide) was
given the highest significance. With this scheme, the codd@® Avhich was equivalent to 11
in the above mentioned scheme will be equivalertt t04° + 2 x 4! + 3 x 42 = 56.

The performance of the different classifiers on the data ghtthis input encoding scheme
was slightly lower than the performance with the above s@&dfmrthermore, this input encod-
ing scheme did not produce a different ordering of the digssiin terms performance. Besides
the slight performance advantage of the above scheme, itharbiological explanation that
makes the above representation more favourable. As it caadyefrom Table C.1 in Appendix
C, the most significant nucleotide is the first nucleotide m ¢bdon encoding an amino-acid
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and the third nucleotide is the least significant (for exampbth GAU and GAC encode the
amino-acid Aspartic acid (Asp).

The second alternative approach tested was direct sequoeling presented in Wu
[1997]. In this approach a vector of four units with threeaseand a single one was used for
a nucleotide. The four nucleotides was represented as K)00100 (U), 0010 (G) and 0001
(C). With this scheme, the dimensionality of the data is 128more than the two schemes
presented above. For example, the protease sequence wi2@ nucleotides long will have
a new dimensionality of 1188 vector components compareldg®9® dimensional of the above
schemes.

The average performace of the different classifiers with thput encoding scheme was
slightly better than the scheme selected for this researdipeesented in the previous section.
However, the models were less stable and the standard ideviaas bigger. Furthermore,
similar to the above scheme, this input encoding did notlréswa different ordering of the
classifiers in terms of performance. Besides the higher ditoaality and the unstable be-
haviour of some of the models, interpretation of the modelterms of mutation points was
more complicated. For example, with the selected input @ngoscheme comparing the split
criteria with the mutations points known to confirm drug sésnce is easier compared to the bit
encoding. Therefore, the above mentioned reasons, theenpoding scheme presented in the
previous section was selected.

4.7 Detailed methodology

The experiment reported in this dissertation compares énfopnance of four classification
techniques: SVMs, neural networks, decision trees andtiogiegression. The performance
(as described in Section 4.5) of the each classificationrithgo described in Section 4.3 was
tested in terms of the ability to classify the sequencesHerdifferent HIV strain described in
Section 4.6.1 as susceptible or resistant. As describeukeipitecious section, the input data
was pre-processed to make it suitable for the differensdliaation algorithms. These standard
input representation was used across the different cleatsifn algorithms. However, further
pre-processing such as normalisation of the vectors, dirapality reduction was required for
some of the algorithms. These further pre-processing siepsescribed in this section together
with the experimental setup for the different classifica@gorithms.

For SVMs and neural networks significant testing was donentbthie best parameters for
this problem. For this phase of the research much focus ree ¢pven to neural networks and
decision trees because previous work has been done on digtanee using neural networks
and decision trees. A thorough study is not conducted indlse of logistic regression.
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4.7.1 Support vector machines

The first set of experiments was done using SVMs. There is argeapproach to use SVMs
as a classification tool, which can be effectively summadrisehe following sequence of steps.
Having defined the problem set as a classification problenpeghred the training test where
our learning system is going to acquire its knowledge the step will be kernel selection.
Kernel selection is based on the available prior knowledgerevious similar experiments or
in the absence of both empirical test on the different karfreim simple to more complicated
ones. For the selected kernels, the kernel parametersarduhed based on the performance
of the trained learning system on the kept aside test datae&mobjects are classified based
on the sign of the decision function. In this section we wakdribe the experimental setup
starting from the kernel selection step. As described inréisearch question and motivation
for the research, existing biological knowledge about theblem will not incorporated and
hence kernel selection is not based on prior knowledge aheysroblem. Furthermore, to our
knowledge there is no other previous research on drug aesstprediction using SVM as a
classification tool. Hence, empirical testing is used teddhe kernel and tune the respective
parameters.

In this experiment we used a base SVM kernel to normalisertbeded input before starting
training and testing with the other kernels. This means #ta @ transformed using normali-
sation kernek(z.y) such that the data is contained in a sphere of unit radius.y) is defined
as:

k(z,y) = ——ad (4.1)
(z.2)(y.y)
This transformation makes the data suitable for the domestricted kernels and simplifies the
generalisation and error estimation during optimisatitime data was further transformed using

the polynomial or radial basis kernel during the traininggarss.

There are two parameters of interest for each kernel selette kernel parameter and
the regularisation constant. For the polynomial kerne¢ (sguation 3.25) the parameters of
interest is the degree of the polynomial In this experiment polynomials of first to third
degree { = 1,2 and3) are investigated. The parameters of interest for the RBFekésee
equation 3.26) is the width of the kernef)( The values ofy investigated in this research
are (v = 0.1,0.5,1,2,5 and 10). Different values for the regularisation constaff),(which
indicates the trade-off between the training error and épasating margin, are investigated for
each selected kernel parameter. The values of the reailarisonstants aré(= 0, 1, 10, 100
and the default value). The default value for the reguléiosais computed from the training
data during the learning process. The selection of the kparameters is done starting from
a simple dot product kernel to a higher degree polynomiatsdifierent RBF kernels. The
a couple of values for the degree of the polynomial kernd,width of the RBF kernel and
the regularisation constant are selected with a view thatd values are enough to answer the
research question.
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4.7.2 Neural networks

The second set of experiments was done using neural netwidnesnetwork architecture used
in this research is the popular feedforward multilayered@etrons with fully-connected neu-
rons and backpropagation learning. Neural networks wittkjppaopagation learning has a num-
ber of parameters affecting its performance such as, theitgarate, the momentum term and
the architecture of the network. The network architectsicharacterised by the number of hid-
den layers, the number of neurons in each layer, their d@icivéunction and so on. There are
different modifications to the standard backpropagatigorhms each with their advantage in
terms of memory usage, convergence speed and trainingzsetTsvo of these algorithms are
the Levenberg-Marquardt algorithm proposed by Hagan anahiglig1994] and Resilient prop-
agation algorithm proposed by Riedmiller and Braun [1993]e Wiodification to the standard
backpropagation algorithm adopted by these algorithm esrtttically best suited to certain
problems than other. However, the practical effect is n@agst in line with the theory. Hence
one needs to test these algorithms and determine the bekefproblem at hand.

One of the parameters that define the architecture of theonkt® the activation function.
The activation function is responsible for the reaction dach neuron it is attached to as a
result of the input. Different activation functions havdfelient input and output range and
hence might have different training time. Choosing the appate activation function(s) for
our problem at hand is another important step of this expErtm A number of preliminary
experiments will be carried out to choose the appropriadeniag algorithm and activation
function before further network parameters are tuned.

The number of neurons in the input layer equals the dimeastgrof the data and there
is only one output. However, the number of hidden layers &echimber of neurons in each
layer should march the complexity of the classification pgob As described in Riedmiller
and Braun [1993] and numerous previous research, a netwaonktwo hidden layers can be
tuned to address any complex problem by choosing apprepniatnber of neurons in each
layer. There is a theoretical way of choosing the number ofares. The number of neurons in
the hidden layers should be large enough to address the ewitypdf the problem but not too
large for the network to estimate the corresponding weigithfthe available training data. In
this experiment we will start with small number of neurond arcrease the number of neurons
to obtain the best network configuration. Furthermore, ddjpg on the learning algorithm, the
respective parameters such as the number of epochs, lgaat@ momentum term, etc. will
be tuned to achieve better performance.

Like most pattern recognition algorithms, the performaoicthe neural network is affected
by the large dimensionality and the representation of ti. des presented in section 4.6.2, the
order of magnitude of each attribute ranges from 0 to 63. Thght be a source of problem
for some activation functions which are defined in a standauiderse. The former problem
will be addressed by preprocessing the data using dimealgpmeduction technique. The
dimensionality reduction technique used in this researphincipal component analysis (PCA).
The dimensionality reduction is carried according to theoremendation by Jolliffe [1986].
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The latter is addressed by scaling (normalising) the datee Neural Networks toolbox and
MatLab implementation of PCA is used in this research.

4.7.3 Decision trees

The third set of experiment was evaluating the performariceoision trees. Similar to the
previous two experiments, we started with converting thealalle training and test data into
a format suitable for the selected decision tree algoritGhb. This algorithm has a module
to build a decision tree based on a given training set andiaigthe resulting tree on a given
test set. This module has a number of parameters, some gandrathers affecting the per-
formance. In this experiment the default value for all theap@eters except one is used. The
parameter confidence factor (CF) affects decision tree pgunA small value means heavy
pruning. During our experiment we will start with the defavhlue (25%) and decrease the
value if the actual error of the pruned tree on the test isdrigian the estimated error.

4.7.4 Logistic regression

The final set of experiment is evaluating the performanceogistic regression. In this ex-
periment we used Matlab implementation penalised Logrstizession with Ridge estimator
proposed by Zhu and Hastie [2004]. The recommended valueslwged for all the parameters
and the range of the possible values for the regularisatoarpeter was set between 0.001 and
1000 in step of 0.1 following recommendations from previcesearch.

4.8 Summary

This work answered the question “can SVMs predict HIV drugjstance based on the genetic
sequence of the viral protease or reverse transcriptase’an$wer this question we will be
using a comparative approach and compare the performar8@Mfto other popular classi-
fication algorithms. The performance evaluation critesadiin this work is the accuracy of
classification and the area under the ROC curve. Previoesungsers have argued that area
under the ROC curve is a better single value performanceatati hence more emphasis was
given for this value.

The performance of the different classification algorithwi be evaluated using cross-
validation testing where randomly 75% of the data was usécasng and the remaining 25%
for testing. This procedure was repeated 10 times on diftéraining-testing data sets and the
average performance is considered.

The results of these experiments is be presented in the hegter
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Chapter 5

Results and Discussion

5.1 Introduction

Model selection can be carried out by analysing the thezakeiound on generalisation or by
performing empirical experiments and analysing the parforce of the classifier based on a
given unbiased test sets. In this work the model selecti@ansed out using cross-validation
technique. As discussed in section 4.5, the performandedifferent classification algorithms
was evaluated in terms of the accuracy of classificationlamdtea under the ROC curve (AUC)
based on cross-validation results as outlined in the pusvahapter. In this procedure 75% of
the data randomly selected were used for the training. Tharacy and the AUC for the
different classification algorithms was then tested on iemg@ 25% of the data. The results
presented in this chapter are the mean accuracy and AUC 6uveialls. Each of the 10 trials
used different pairs of training and testing sets.

As described in the previous chapter, the main objectivénisfresearch is evaluating the
performance of SVMs in comparison to some of the other popuddiern recognition tech-
niques. Hence the conducted research was aimed at achiéninhy designing prediction
models for neural networks, decision trees and logistioaggion and comparing them with the
designed SVMs model.

The remainder of this chapter is organised as follows. Imthé section, the performance
of SVMs as a function of kernel parameters and the regulasisaonstant will be discussed.
This section also gives general remark on SVMs and triesl&dersome of our results with
the theory. In section 5.3 the performance of neural netsvankdels is presented. Different
architectures and learning algorithms were investigatebthis section presents the results for
the best configuration found. Moreover, the effect of dinn@melity reduction is investigated.
Section 5.4 presented the performance of decision treeglmfmlowed by section 5.5 which
presents the performance of logistic regression model® pEnformance comparison of the
different classification algorithms and the finding of thigperiment is discusses in section
5.6. Section 5.7 gives some remark on statistical signifiegast. Section 5.8 discusses the
limitations of the research and hints ways of addressingethienitations. Finally, the chapter
is summarised in section 5.9.
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The results for the different set of experiments are preseint following tables.

Description Table No | Page No
SVM Polynomial kernel Table 5.2 | Page 95
SVM RBF Kernel Table 5.5| Page 102
Table 5.3| Page 97
Table 5.4 | Page 97
Neural networks Table 5.6 | Page 104
Decision trees Table 5.7 | Page 105
Logistic regression Table 5.8 | Page 108
Selected Results Table 5.9| Page 108

Table 5.1: List to result tables

5.2 Performance of SVMs

The success around SVMs is highly attributed to the kerie twhich simplifies highly com-
plex real life problems by projecting the patterns into éleigdimensional feature space where
it can be solved with ease. Hence kernel selection is thiearpart of SVM approach. As
presented in section 3.4 the three commonly used kerneteapolynomial, RBF and sigmoid
kernels. Osunat al.[1997] has pointed out that, with these kernels SVMs can ataudif-
ferent previously well studied classifiers. The implem&ataof SVMs used in this research,
SVM'9"  does not incorporate automatic selection criteria forkérmels or their correspond-
ing parameters. Hence, the task of selecting kernel(s) @amdd their parameters are left for
the expert designing the classifier.

Kernel selection is motivated by the information at youpdisal. When enough prior infor-
mation is available about the problem, one can choose thédesl that well suits the problem
or modify existing kernels by incorporating these inforimator design a specific kernel for the
problem. However in the absence of such information we axetbto make our kernel choice
based on previous research on similar domain or empiritediiythe available kernels. In this
research empirical testing using cross-validation is used

The polynomial kernel is one of the most commonly used kerrigépending on the degree
of the polynomial, the shape of the resulting boundary bexsomore complicated. Hence
by tuning the degree of the polynomial either based on thienastd VC-dimension or by
assessing the generalisation error (for example crosdat@in), the polynomial kernel can be
tuned to adopt the required decision boundaries. The RBF kisrtize most popular kernel
because of its capacity to generate a decision boundadesah accommodate a wide range of
classification problems. The RBF kernel is best suited for ssdiaation problem where one
class is enclosed by the other class. It can also classifglsitmearly separable case, which
according to Keerthi and Lin [2003] can be considered a specse of RBF. For an SVM
classifier with RBF kernel the support vectors are the centrédseoRBF andy, which is the
width of the RBF, determines the area which is influenced byetlsegpport vectors [Vapnik
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1995]. The Sigmoid kernel which emulates the multilayerecceptron is a tricky one to use
since it satisfies the Mercer condition only for some valdfgl@®gain and the threshold [Vapnik
1995]. For this reason and its comparative poor performaop®ared to the other two kernels,
the sigmoid kernel is less recommended by many researdhiararid Lin 2005]. However, it
is used for historical reasons. The Sigmoid kernel is nod éigethis research.

The model selection was done by tuning the kernel paramfgtetee polynomial and the
RBF kernels. With the polynomial kernel we have tested diffexalues for the degree of the
polynomial. Similarly, for the RBF kernel model, various vadifor the width of the kernel were
tested. For each of the polynomial or RBF kernel, we furtheedluiimne models by selecting a
different value for the regularisation constant.

The tuning of these parameters was carried out using gattkeusing cross-validation
techniques over the available samples. As pointed out ipté&@ous chapter we used 75% of
the data for training and the remaining 25% for test. Theepast for the training and testing
sets were selected randomly. These steps were repeatedelOand the results presented are
the mean value over the 10 experiments.

5.2.1 Effect of polynomial kernel parameter on classification

The polynomial kernel (equation 3.25) has two free parametat need to be tuned according
to the complexity of the problem: the degree of the polyndmend the regularisation constant
C. While the degree of the polynomial controls the complexityhe classifier or shape of
decision boundaries, the regularisation constant cantied intensity or sharpness of these
boundaries. In other words the regularisation constanhtsofor the trade-off between the
width of margin of the classifier and the misclassificationglty. Therefore, model selection
for this kernel is determining a good value for betland C'. To do this we have used grid-
search using cross validation techniquedor 1,2 or 3 and” in {default value, 1, 10, 100
The default value of the regularisation constant is catedldrom the training set during the
training steps and equals

N
S K ()
whereK (x,y) is the chosen kernel (in this case the polynomial kernel)grns the size of the
training set. The results for the performance of the SVMsgifeer with polynomial kernel are
presented in Table 5.2 on page 95.

As it can be seen from the table the performance of classdiritreased as we increase the
degree of the polynomial except for the case that the defalue is used for the regularisation
constant. However, the performance gain was not contintauall of the patterns and there
are instances where the performance has deteriorated. \HB(MR) and NVP(PR+RT) when
C = 1 and for NFV whenC' = 100 there was no improvement gained as we increased the
degree of the polynomial from two to three (see Figure 5.1 agep94). This observation
is in line with the theory, that for a given classification Ipkem, if effectively classified by

(5.1)
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a polynomial of lower degree, polynomials of higher degree lkkely to generate identical
decision boundary. For example, if a classification probkelimearly separable, one can expect
the same classification boundary from a linear and quadaaiic higher degree polynomial
kernel SVMs.

SVM9" is designed to optimise the generalisation in terms of awguof classification.
However, as mentioned above in this research we are giving raue to the AUC as a per-
formance measure. As you can see from the table there aenoest where the accuracy of
classification has increased, however the AUC remainedta@oiner decreases (for example
NVP(RT) and NVP(PR + RT) fo€ = 100). Hence when talking about performance gain as a
result of parameter tuning, both AUC and accuracy were densd.
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Figure 5.1: Selected graphs (degrée\us Accuracy/AUC) showing the behaviour of SVMs as
a function of the polynomial kernel degréeThe solid lines in the graph show the accuracy of
the model, the broken lines show the AUC. These graphs amdeatkto show how the accuracy
of classification and the AUC are related as a function of #ggele of the polynomial.

Similar to the degree of the polynomial, the SVM classifies Bhown performance gain as
we increase the value of the regularisation constant kgependegree of the polynomial fixed.
As can be seen from the table (for instance NFV) the perfoomarcreased from 92.66% accu-
racy and 96.96% AUC to 94.31% accuracy and 97.10% AUC as wease the regularisation
constant from the default value to 10. However, there was o@performance gain as we fur-
ther increased the value of regularisation constant fogihen polynomial degree. Although
the results presented in the table do not exhibit this belawonsistently, it is expected to
happen as we further increase the regularisation congsiaatl|fpatterns for a selected degree.
This is due to the fact that, once we reach a certain valudéordgularisation constant that best
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degree (d)=1

degree (d)=2

degree (d)=3

Drug

Accu. | AUC | No. SV

Accu. | AUC | No. SV

Accu. | AUC | No SV

Regularisation constant = default

IDV 95.05 | 94.96 906 | 91.19 | 94.43 1335| 95.05 | 94.97 905
NFV 92.66 | 96.96 956 | 79.08 | 95.67 1376| 92.66 | 96.97 955
AZT (RT) 84.59 | 96.12 950 | 64.77 | 93.86 1486 | 84.59 | 96.12 949
AZT (PR +RT) | 81.83 | 96.05 1032| 63.12 | 93.44 1496 | 81.83 | 96.04| 1030
D4T (RT) 85.14 | 88.41 971 | 69.36 | 86.69 1486 | 85.14 | 88.41 969
DAT (PR + RT) | 84.22 | 96.70 1038 | 68.62 | 94.85 1496 | 84.22 | 96.70| 1038
NVP (RT) 68.99 | 73.53 1020| 68.99 | 73.55 1026| 68.99 | 73.54| 1022
NVP (PR + RT)| 68.99 | 77.02 1021 | 68.99 | 76.95 1027| 68.99 | 76.98| 1019
Regularisation constant = 1

IDV 95.05 | 95.03 879 | 96.15 | 95.66 526 | 96.78 | 95.93 880
NFV 92.66 | 97.02 931 93.39| 97.10 523 | 93.66 | 97.02 928
AZT (RT) 84.95 | 96.23 907 | 92.11 | 96.43 555| 93.01 | 96.72 907
AZT (PR+RT) | 82.94 | 96.16 987 | 92.29 | 96.37 636 | 92.29 | 96.16 986
D4T (RT) 85.14 | 88.45 929 | 92.29 | 89.38 573| 92.29 | 88.45 929
D4T (PR + RT) | 84.22 | 96.86 989 | 92.66 | 96.83 650 | 92.73 | 96.86 989
NVP (RT) 68.99 | 73.51 1020| 72.66 | 74.31 1015| 72.56 | 74.21| 1022
NVP (PR + RT)| 68.99 | 77.01 1022| 72.11 | 77.07 1008| 72.11| 77.02| 1020
Regularisation constant = 10

IDV 94.27 | 95.96 388 | 95.23 | 95.42 289 | 95.96 | 94.26 385
NFV 94.31| 97.10 355| 94.68 | 97.06 239| 94.92 | 96.85 353
AZT (RT) 92.29 | 96.80 373|92.48 | 96.73 241 92.87 | 96.80 371
AZT (PR + RT) | 92.29 | 96.50 440 | 92.48 | 96.67 276| 93.01 | 96.50 440
D4T (RT) 93.02 | 96.69 489 | 94.13 | 96.61 333| 94.13 | 96.68 491
D4T (PR + RT) | 92.00 | 89.46 426 | 93.94 | 89.03 283 | 94.13 | 89.46 422
NVP (RT) 74.86 | 76.78 979 | 79.45 | 78.93 912| 80.25| 79.54 979
NVP (PR + RT)| 74.68 | 77.74 970 | 82.02 | 79.01 887 | 82.23 | 79.55 970
Regularisation constant = 100

IDV 95.73 | 95.78 258 | 95.78 | 95.73 246| 95.78 | 95.73 258
NFV 94.02 | 97.10 203 | 95.96 | 97.40 168 | 95.96 | 97.11 205
AZT (RT) 92.84 | 97.06 208 | 93.76 | 96.84 174 | 94.23| 97.06 209
AZT (PR+RT)| 92.48 | 97.13 233 | 93.76 | 96.85 208 | 94.17 | 97.44 233
D4T (RT) 94.13 | 88.79 240 | 94.86 | 89.33 220| 95.05 | 88.79 240
D4T (PR + RT) | 93.97 | 97.32 278| 94.13| 97.11 255| 94.31| 96.94 278
NVP (RT) 82.57 | 80.12 844 | 83.49 | 91.36 816 | 83.76 | 80.11 845
NVP (PR + RT)| 83.49 | 80.16 814 | 83.41 | 81.25 766 | 83.54 | 80.17 816

Table 5.2: SVMs classifier performance with polynomial kedrn
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address the trade-off, further increase will either havemegative effect on the performance
of the classifier.

Another result that needs to be discussed is the number glosupectors. As you can
see from the table, the number of support vectors in mostettses less than 50% of the
total number of training patterns. As we have mentioned tiige 2.5.2 one of the major
problem that compromising the performance of the tradtiamassification techniques is the
curse of dimensionality. For a polynomial kernel of degidee¢he dimension of the feature
space will be at least""*") [Cristianini and Shawe-Taylor 2000]. However, the abilify o
SVMs to implicitly perform this higher dimensional classétion task in the input space allows
the classifier to construct hyperplanes in this high-dinwera space without suffering the curse
of dimensionality and/or over-fitting (see Section 3.4). yasl can also see from the table the
increase in the number of support vectors compare to theaserin the dimension of the
feature space (or increase the degree of the polynomialfiged value ofC), is very low and
sometimes it even decreased.

Finally, one interesting aspect of support vectors thatineebe discussed is the overlap
between the support vectors that shape up different hygeepl Based on the reported find-
ings by both Vapnik [1995] and Sotkopf [1997] on the commonality of support vectors among
different classification boundaries on the same problentrieg to see this behaviour in this re-
search. Although numerical results are not presented, arality on a number of the support
vectors for different classification hyperplanes for a ipatar drug with different polynomial
degree and regularisation constant was also witnesseaireeach.

5.2.2 Effect of RBF Kernel Parameter on classification

The Radial Basis kernel (equation 3.26) is the most popularekdor practical applications
since it is complex enough to address complex non-lineasiflaation problems by transform-
ing the data into a higher dimensional space and simple éntugolve linear classification
problems, which is considered as a special case [Keerthiiewi2D03]. The classical approach
of estimating RBF classifiers involves finding the RBF centregisimeans clustering mecha-
nisms and then estimating the corresponding weight for eltter using error backpropaga-
tion. However, the SVM approach has a more elegant way of atingthe centre, weight and
the threshold that results in best generalisation autaalsti{Sclblkopf et al. 1996].

There are two parameters of interest for the RBF kernel: théwatithe kernely and the
regularisation constardt. Like the polynomial kernel our goal is to find a good valuelioth
~ andC. These pair of values are also determined using grid-sassitiyg cross validation
technique. The complete result from these experimentsesenited in Table 5.5 on page 102.

This kernel is most favourable when one class is totallyretesd by the other as shown in
the Figure 3.9(b). However, as presented in Keerthi and 2008] by varying the value of
either of these parameters, fixing the other one, we can\ahienost any kind of decision
boundaries including linear hyperplanes. The value igfrelated to the diameter of the enclos-
ing boundaries, the smallergets, the tighter the closed boundaries (circles). In otweds,
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the smaller the value of gets the smoother and more regular the decision boundameisfor
a regularisation constait which is a function ofy, and by keepingy close to zero, we can
have a linear hyperplane.

To aid our discussion selected results from Table 5.5 on p@gdor three drugs: one from
each drug category are presented in Table 5.3 on page 97 dlel54 on page 97. Similar
to the polynomial kernel, there was performance gain as etiimof v andC. As it can be
seen from the Table 5.3, (for example NVP(RT)) there was tBopaance gain as we gradually
increasey from 0.1 to 1. However, as we further increasto 10 the performance deteriorates
(see Figure 5.2). It can also be seen from this table and Tablen page 102 this is not an
isolated incidence.

IDV DAT(RT) NVP(RT)

~ C=1 C =100 C =100

Accu. | AUC | No. SV | Accu. | AUC | No. SV | Accu. | AUC | No SV
0.1] 89.72 | 94.04 1418 | 93.94 | 96.22 328 | 93.94 | 78.34 328
0.5] 95.05| 95.03 892 | 93.94 | 96.02 254 | 93.93 | 80.02 256
1 95.78 | 95.37 694 | 94.50 | 96.96 239| 94.50 | 81.26 239
2 96.15 | 94.92 5421 94.86 | 97.17 259 94.86| 81.17 259
5 96.33 | 95.25 426 | 93.76 | 97.24 288 | 93.76 | 78.23 288
10 | 96.15| 95.63 407 | 93.03 | 96.94 325| 93.03 | 76.52 325

Table 5.3: Selected results for SVM with RBF kernel showingefiect ofy on the classifier
performance

IDV D4T(RT) NVP(RT)

C ~v=10 v=2 ~v=1

Accu. | AUC | No. SV | Accu. | AUC | No. SV | Accu. | AUC | No SV
default| 96.33 | 95.52 473 | 92.66 | 96.61 725| 91.01| 77.63 816
1 96.15 | 95.63 407 | 92.29 | 96.55 593 | 92.29 | 77.52 752
10 95.05 | 96.97 335 93.94| 96.35 309 | 93.94| 78.55 343
100 93.76 | 96.76 333|94.86 | 97.17 259 | 94.50 | 81.26 239

Table 5.4: Selected results for SVM with RBF kernel showingefiect of C' on the classifier
performance

Similar to the width of the kernel, performance gain was aésmrded as a function of the
regularisation constant. It can be seen from Table 5.4 todthg IDV, as we increased the value
of C' from the default value (usually in the range 1)) to 1, the performance increased from
94.33% accuracy and 95.52% AUC to 96.15% accuracy and 9543% However, there was
also a saturation point where the performance started lmddsee Figure 5.3 on page 98). As
described in the previous section, this is also an indinahat, some value of the regularisation
constant around’ = 1 has already accounted for the penalty for misclassificafidre same
result can also be seen from the Table 5.5. The result frone Bad for the drugs D4T and NVP
shows that the performance increased gradually as we sexldhe value of the regularisation
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Figure 5.2:~v vs Accuracy/AUC graph for SVM with RBF kernel. The solid linesthe graph
show the accuracy of the model, the broken lines show the AUC.
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Figure 5.3:C' vs Accuracy/AUC graph for SVM with RBF kernel.The solid linesthe graph
show the accuracy of the model, the broken lines show the AUC.
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constant. However, as we further increase the valug wfe are expecting the performance to
deteriorate or show no gain after some value.

Finally, similar to the result for the polynomial kernelethumber of support vectors is not
as high as the dimensionality of the classification probldime dimensionality of the feature
space for a Gaussian kernelds [Cristianini and Shawe-Taylor 2000]. As we can see from
the tables (Table 5.3 and Table 5.4) the number of suppotbrgeare once again less than
50% of the sample size. Commonality of support vectors amioaglifferent models was also
exhibited.

5.2.3 Remark on SVMs performance

In this research the performance of the SVMs classifier isss&xl using the polynomial and
the RBF kernel. As we have discussed in the previous two sedtienperformance of the
classifier range from 68.99% Accuracy and 73.51% AUC for N¥P6.78% accuracy and
95.93% AUC for IDV for the polynomial kernel. The performa&nalso ranges from 68.99%
accuracy and 73.55% AUC for NVP to 96.15% accuracy and 95 &3% for IDV for the RBF
kernel. These performances were recorded using gridtsearcange of values of the degree
of the polynomial and/or the width of the kernel and reguslation constant. The performance
for these models might be increased by doing extensive lseaaund the point where the
best reported performance was recorded. Furthermoregtioeded performances are achieved
without incorporating any of the prior biological infornian about the mutation points and
the resistance they are known to confer to the input encaglikgrnel designing process. By
incorporating these information, further performancengaight be recorded.

As mentioned previously, SV is designed to optimise the accuracy of the classifier but
as you can see from the graphs in the previous section (Figird=igure 5.2 and Figure 5.3)
optimising the accuracy usually leads to optimised AUC. Thiservation was also published
previously by Rakotomamonjy [2004]. Consider the highlightesults from the table 5.4 for
DAT and NVP have the accuracy 94.86% and 94.50% respectivélg AUC has a bigger
variance and equals 97.17% and 81.26% for these drugs teghec These shows that the
AUC variance is higher than the variance in accuracy whendtta is skewed. This is in
agreement with the fact that AUC is more sensitive towar@svekl datasets. The same result
was also reported by Rakotomamonjy [2004].

Dimensionality of the patterns under investigation is ohéhe major issues that compro-
mising the performance of traditional pattern recognitiechniques. As you can see from the
table we have a pair of data sets for each of the drugs in thieegide and non-nucleoside
reverse transcriptase inhibitors category. The diffeeandhe dimension between each pair of
data is 99 attributes (the 99 codons belonging to the pretead of the sequence). This dimen-
sionality difference together with the fact that SVMs cousts classification hyperplanes in a
high dimensional feature space, one can expect a huge menice difference of a model on
these two datasets. As described in section 2.5.2 to avose @i dimensionality and maintain
the performance, the number of training sample was supdodaelincreased to match the di-
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mensionality difference. The reported result in the presisections has also showed no much
performance loss as a result of dimensionality. These shloavsapacity of SVMs to handle
high dimensional classification tasks without the need éonjgarably large data sets.
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T0T

¢ =default

c=1

c=10

c=100

Drug Accuracy| AUC | No. SV | Accuracy| AUC | No. SV | Accuracy| AUC | No. SV | Accuracy| AUC | No. SV
~v=0.1

IDV 95.05 95.06 870 | 89.72 94.04 1418 95.78 95.39 683 | 95.60 94.61 331
NFV 92.66 97.45 912 | 74.50 95.12 1446 | 92.84 97.09 698 | 94.50 96.81 282
AZT (RT) 85.14 96.06 898 | 66.24 94.12 1452 92.11 96.46 732] 92.11 96.50 284
AZT(PR + RT) | 83.67 96.03 978 | 64.04 93.37 1494 | 88.99 96.24 802 | 92.11 96.55 342
DAT (RT) 85.14 96.25 914 | 70.83 94.69 1450| 92.29 96.34 738 | 93.94 96.22 328
DAT(PR + RT) | 84.95 96.68 980 | 68.62 94.80 1490| 87.89 96.82 805 | 93.94 96.94 396
NVP (RT) 85.14 77.03 914 | 70.83 77.23 14501 92.29 77.06 738 | 93.94 78.34 328
NVP(PR + RT)| 68.99 73.55 1023 | 68.99 73.41 1024 | 70.09 73.56 1024

~v=0.5

IDV 95.23 95.3 806 | 95.05 95.03 892 | 95.96 94.35 398 | 95.60 95.74 266
NFV 92.84 97.63 843 | 92.66 97.03 933 | 94.31 96.99 366 | 95.96 97.37 212
AZT (RT) 87.34 96.31 863 | 85.14 96.15 914 | 92.11 96.65 371 | 92.66 96.93 207
AZT(PR + RT) | 85.69 96.15 926 | 83.12 96.10 911 92.11 96.41 455| 92.66 97.02 243
DAT (RT) 85.5 96.45 867 | 85.14 96.42 933 | 93.94 96.46 426 | 93.94 96.02 254
DAT(PR + RT) | 86.24 97.23 937 | 84.59 97.27 1000 93.21 96.55 497 | 93.94 97.34 286
NVP (RT) 85.5 77.25 867 | 85.14 77.37 933 | 93.94 77.76 426 | 93.94 80.02 254
NVP(PR + RT)| 69.36 73.59 1023 | 68.99 73.52 1019| 74.86 76.8 979 | 82.02 79.97 876
1=1

IDV 95.23 95.46 759 | 95.78 95.37 694 | 95.78 94.85 340 | 95.23 95.90 260
NFV 92.84 97.54 769 | 93.03 97.52 701| 94.50 97.14 2901 96.15 97.49 203
AZT (RT) 91.93 96.44 809 | 92.11 96.56 7451 92.11 96.58 289 93.39 97.21 193
AZT(PR +RT) | 86.79 96.32 880 | 88.62 96.35 812 | 92.11 96.58 353 | 92.66 97.10 226
DAT (RT) 91.01 96.48 816 | 92.29 96.54 752 | 93.94 96.31 343 | 94.50 96.96 239
DAT(PR + RT) | 86.97 97.39 881 | 88.26 97.37 819 | 93.94 96.62 401 | 94.50 97.18 288
NVP (RT) 91.01 77.63 816 | 92.29 77.52 752 | 93.94 78.55 343 | 94.50 81.26 239
NVP(PR + RT)| 70.09 73.56 1016 | 70.09 73.65 1017 | 76.88 78.38 958 | 82.20 80.16 869




coT

¢ =default

c=1

c=10

c =100

Drug Accuracy| AUC | No. SV | Accuracy| AUC | No. SV | Accuracy| AUC | No. SV | Accuracy| AUC | No. SV
y=2

IDV 95.78 95.17 664 | 96.15 94.92 542 | 95.78 954 310| 94.13 96.65 268
NFV 93.03 97.07 668 | 93.39 97.12 531 | 94.86 97.43 258 | 95.96 97.75 200
AZT (RT) 92.29 96.55 715| 92.11 96.56 575 92.29 96.71 263 | 93.76 97.46 192
AZT(PR + RT) | 89.36 96.36 791 | 91.93 96.43 658 | 92.29 96.72 309 | 93.21 96.71 236
DAT (RT) 92.66 96.61 725 | 92.29 96.55 593 | 93.94 96.35 309 | 94.86 97.17 259
DAT(PR + RT) | 89.17 97.34 791 | 92.48 96.86 672 | 93.94 96.61 372 | 93.58 97.11 303
NVP (RT) 92.66 78.05 725 | 92.29 77.99 593 | 93.94 80.02 309 | 94.86 81.17 259
NVP(PR + RT)| 70.09 73.74 1020| 72.66 74.15 1021 | 79.27 79.09 935| 81.83 79.41 886
Y=5

IDV 96.15 95.28 252 | 96.33 95.25 426 | 95.05 96.43 312 | 94.13 96.84 291
NFV 93.39 97.11 508 | 94.13 97.54 397 | 95.96 97.93 251 | 9541 98.14 227
AZT (RT) 92.29 96.53 543 | 92.11 96.55 408 | 92.66 97.07 246 | 94.13 96.64 230
AZT(PR +RT) | 92.11 96.48 652 | 92.11 96.51 513 | 92.66 97 303 | 93.21 97.16 297
DAT (RT) 93.03 96.64 565 | 93.94 96.50 460 | 94.13 96.85 291 | 93.76 97.24 288
DAT(PR + RT) | 92.66 97.40 658 | 93.21 96.76 538 | 94.31 97.47 351| 92.11 96.81 353
NVP (RT) 93.03 78.11 565 | 93.94 78.80 460 | 94.13 80.84 291 | 93.76 78.23 288
NVP(PR + RT)| 73.39 74.72 1032 | 73.94 76.53 1016| 81.10 78.83 937 | 77.43 74.96 928
~=10

IDV 96.33 95.52 473 | 96.15 95.63 407 | 95.05 96.97 335| 93.76 96.76 333
NFV 94.5 97.12 434 | 94.86 97.79 369 | 95.78 98.2 274 | 95.78 98.24 249
AZT (RT) 92.29 96.54 444 | 92.11 96.56 356 | 93.21 97.38 2591 94.13 96.18 274
AZT(PR +RT) | 92.29 96.49 565| 92.11 96.45 469 | 92.84 96.52 344 | 93.39 97.2 347
DAT (RT) 93.76 96.60 485 | 93.94 96.54 417 | 94.68 97.16 324 | 93.03 96.94 325
DAT(PR + RT) | 93.39 97.39 590 | 94.13 97.18 504 | 94.31 97.19 386 | 92.29 96.68 405
NVP (RT) 93.76 78.92 485 | 93.94 79.73 417 | 94.68 80.45 324 | 93.03 76.52 325
NVP(PR + RT)| 73.94 75.76 1034 | 76.15 77.25 1012| 79.63 77.37 989 | 74.13 73.15 971

Table 5.5: SVMs classifier performance with Radial Basis HandiRBF) kernel




5.3 Performance of neural networks

The performance of a neural network is highly affected byithitecture. Some of the factors
defining the architecture and hence affecting the perfoomaf a neural network model are:
the connection type, the learning or training algorithrhg, humber of hidden layers and the
number of neurons in them, the activation functions, lesgmate, initial values of the weight
and the training stopping criteria. Although we did not pemi exhaustive search for all of these
factors affecting the performance, in this experiment weehaed different network architec-
tures with different numbers of neurons in the hidden lagetivation function and learning
algorithm. The architecture were chosen using empiricslrig as there is no automatic way
of selecting a network architecture for a given problem.

In search of a simple network architecture which is compleaugh networks with one
hidden (input layer, one hidden layer and output layer) aradHidden layer architectures were
tested. There were no performance difference between tivesarchitectures and hence an
architecture with one hidden layer network was used as Nergence faster. The number of
neurons in the input layers equals the dimensionality ofitite and the network has one outout
(the output layer has one neuron). Different number of nesimo the hidden layer were tested
starting with a simple network with 5 neurons. The number@ifrons were increased by 5
until no performance gain was recorded and computatiomed thcreased highly (sometimes
longer than an hour). For most of the drugs, architectura ™t — 15 neurons were complex
enough.

For each architecture, different learning algorithms weds® tested. The three learning
algorithms tested are standard backpropagation, Redil@akpropagation and the Levenberg-
Marquardt algorithm. Each of these learning algorithmsehiéneir theoretical pros and cons.
However, empirically testing is required to see their pgrf@n the problem at hand. For this
experiment, the Levenberg-Marquardt algorithm was setecThis algorithm was the best in
terms of performance, convergence and memory usage. 8imtl&erent activation functions
were tested and log-Sigmoid transfer function was seledi@aally, feedforward neural net-
works with fully connected neurons and log-sigmoid actorafunction were used.

The performance of these architectures were evaluatedessatne data sets with the iden-
tical input encoding technique with the SVMs model. Howevbe data was further pre-
processed to make it more suitable for neural network moé@leé data was normalised in a
such away that it will have zero mean and unit standard dewiaiThe data was then divided
into three sets, where 50% is used for training, 25% for adilch and the remaining 25% for
testing. Each experiment was repeated 10 times and the neearaay and AUC is presented
in Table 5.6 on page 104.

As it can be seen from Table 5.6 the performance of the nethaskeduced as the dimen-
sionality of the data increased. The mean accuracy of theankton the protease inhibitors is
between 89% and 91%. However, the performance is reducée t@ahge 82% to 84% for the
AZT and DA4T as a result of increase in the dimensionality efghtterns. The performance was
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Original dimensionality] Reduced Dimensionality

Drug Accuracy| AUC Accuracy| AUC

IDV 89.75 91.76 89.91 86.76
NFV 91.74 95.31 78.90 87.51
AZT (RT) 82.57 87.79 82.20 88.57
AZT(PR +RT) | 82.02 87.70 59.63 60.94
DAT (RT) 84.34 91.85 84.22 92.25
D4T(PR + RT) | 82.33 87.09 60.37 54.80
NVP (RT) 69.72 68.93 70.49 69.50
NVP( PR + RT)| 64.77 71.10 68.99 47.06

Table 5.6: Performance of neural networks model

further reduced to the range 64% to 69% for NVP due to the higimensionality of the data
and its relatively skewness. Similar to SVMs algorithm, tleeenberg-Marquardt algorithm is
accuracy optimised, however it also optimises AUC in moghefcases.

To address the performance loss as a result of dimensipialitease, we performed one
more pre-processing technique to reduce the dimensigmdilihe data. For these task we used
principal component analysis. As recommended by JollE#8p] we reduced the dimension-
ality of the data up to 90%. The data was then reduced to 2 am@rBional patterns. As we
have done in the experiment with the original dimensiopgiite data was divided into training,
validation and test sets and the mean accuracy and AUC ovepgats of the each experiment
is given in Table 5.6.

As it can be seen from the table there is no performance gaarresult of dimensionality
reduction except for NVP(RT). The reason for these redueeidpmance could be the informa-
tion loss due to dimensionality reduction. Remember thatitita have discrete representation
with each numeric value representing one of the 20 amincsaditence, dimensionality re-
duction we might have caused some valuable information fogie From the performance on
AZT(PR+RT), DAT(PR + RT) and NVP(PR + RT) it can be seen thainf@mation loss was
even higher for these data sets.

5.4 Performance of decision trees

In this part of the experiment we generated decision treeetsdtiat describes the drug resis-
tance profile of an HIV strain in terms of the numeric composibf the vector, which in turn
represents the different amino acids composition of thgmeztargeted by the drug. To esti-
mate the prediction power of the decision tree model we paéd 10 independent tests, each
time we used 75% of the data for training and the remaining 85%esting. The result for the
performance of this model is given in Table 5.7 on page 10% réult gives a mean number
of interior nodes of the tree, number of leaves of the treey@cy of prediction and AUC over
the 10 experiments.

Each training session resulted in one decision tree for dast). Most of the resulting
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Drug No. Interior | No. Leaves| Accuracy| AUC
vertex

IDV 16 17 97.06 92.70
NFV 6 7 97.06 94.43
AZT (RT) 14 15 96.33 93.41
AZT (PR+RT) | 18 19 94.86 90.96
D4T (RT) 29 30 93.58 88.29
D4T (PR + RT) | 29 30 91.93 85.39
NVP (RT) 25 26 94.31 85.52
NVP (PR + RT)| 25 26 94.68 85.99

Table 5.7: Performance of pruned C4.5 classification algorit
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Figure 5.4: Example Decision tree for NFV. The label of theiior nodes refers to the position
of the codon in the sequence (for example P30 means amin@agpakition 30) and the label
of the leaves indicated the drug resistance property oftthes

105



ol |
Figure 5.5: Biologically interpreted decision tree for NFWen in Figure 5.4. The label for
the edges represents the amino acid (codon) at the positrenirgthe node above it. M =

Methionine(AUG), T = Threoning(ACC), N = Asparaging(AAU), | = Isoleucine(AUC) and
A = Alanine(GCU) (see Table C.1 in Appendix C)

decision trees were simple with the most complicated onéngaan average of 29 interior
nodes (see Table 5.7). An example of a decision tree for thg NFV is given in Figure 5.4.
This tree is one of the 10 trees generated for this drug andyselected as an example because
it has the average tree size. The biological interpretatiendecision trees is not in the scope
of these research and requires deep biological knowledgeelkr, there are some biological
aspects of these trees we want to discuss. For each of th®imedes of the resulting trees
for IDV, NFV, AZT(RT), DAT(RT) and NVP(RT) we tried to compauif these mutation points
are previously reported. We have found (result not shownafrthat most of the interior
nodes are reported as significant mutation points. For ebarfgr the drug NFV (decision
tree given in Figure 5.5) all four of the interior nodes P386PP82 and P90 are identified as
positions associated with drug resistah(see Beerenwinkadt al. [2002] and Drug resistance
summaries ofittp://hivdb.stanford.edu/index.html ). However, not all of the
position associated with drug resistance are interior s@feour tree. For example position
71 of the protease sequence is indicated as a position assevith drug resistance to NFV
by Beerenwinkekt al. [2002] does not appear as a split criteria in our tree. Therates of
these and other positions as an interior node from our trgatrbe due to a number of reasons.
Firstly, the number of samples in our data set associating tsistance with these positions
might be very few. Secondly, most of the mutation patterescarrelated and hence might be
ignored as a split criteria. On the contrary, we have also pesitions which are not previously
associated with mutation to the particular drugs appeanastarior node. For example, some

1The mutation related to these positions are 30N, 46l, 82K, 821, 90M
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positions inside the protease part of the sequence haveuaggpas an interior node for the
decision tree for D4T(PR + RT). This phenomenon is very harceason out without further
clinical study. However, it has been argued by a number efnehers that one of the limitations
of current clinical research is that only an isolated gerséudied during drug design. And there
might be a possibility that these positions have an effetitedrug resistance behaviour of the
drug.

The result shown in Table 5.7 gives the average performafte @runed tree. During the
experiment we first constructed the unpruned tree and trednagdhese trees were pruned using
information gain ratio criterion. We tested different v@dufor pruning confidence factor in order
to prevent both over and under fitting. As it can be seen frdatetave have found accuracy in
the range 91.93% to 97.06% and area under the ROC curve iratige 185.29% to 94.43%.
The variation of performance between the decision tree ladde D4T(RT)and D4T(PR +
RT), and AZT(RT) and AZT(PR + RT) might be due to the codonsfrerotease which are
used as a split criteria for decision trees for DAT(PR + R1J AAT(PR + RT). However, the
performance variation between NVP(RT) and NVP(PR + RT) iy wnall compared to the
previous two. This variation in the performance betweenttwe models of decision tree for
NVP might be due to the reason than there is only one posigtomiging to protease which has
occurred as a split criteria deep inside the tree (decisemrot shown).

The variation in the performance is not in contradictiortwviite argument made in the above
paragraph about the possible effect of protease mutatidrugpresistance behaviour of reverse
transcriptase inhibitors. The main reason behind thigtian might be that the data used in this
research is already classified with drug resistance piediatgorithm that considered protease
or reverse transcriptase genes alone for the respectil@torrdrug resistance prediction.

Finally, the high performance rate of the decision tree rhtmigether with the confirma-
tion of most interior nodes as positions associated witly desistance can be considered as a
confirmation for input encoding technique used.

5.5 Performance of logistic regression

The final part of the experiment was performance evaluatidagistic regression techniques.

As mentioned in Section 2.8 the choice of an optimal valugHerridge parameter is crucial.

It was also mentioned that cross-validation is the mostesgfall way of estimating it. Hence,

like the rest of the experiment, we also used 75% of the dat@oraly selected for training and

the remaining 25% for testing. The result given in Table 5.8e& mean value for the accuracy
and the AUC over 10 experiments.

In this part of experiment we used logistic regression willge estimate. Different values
for ridge parameter were tested. The results presenteckitatiie are the best performance
recorded. The accuracy for logistic regression model raii§er/ 8% to 93.39% and AUC ranges
from 50.96% to 85.06%.
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Drug Accuracy| AUC

IDV 92.66 85.06
NFV 93.39 83.58
AZT (RT) 81.10 78.24
AZT (PR + RT) | 84.40 78.01
DAT (RT) 80.55 65.37
DAT (PR + RT) | 80.38 63.31
NVP (RT) 75.78 46.26
NVP (PR + RT)| 77.98 50.96

Table 5.8: Performance of logistic regression

5.6 Discussion

Evaluation of different algorithms usually leads to a béhssnking of the algorithms. As spec-
ified in section 4.4, theoretical estimation of the gensedion ability of different algorithm re-
quires deep knowledge about the underlying distributiodadf. These information is usually
not available hence researchers are forced to find alteenagiproach that can give unbiased
estimator of the true error rate of a classifier. When the nurobé&raining and testing pat-
terns are limited, a single train-and-test experiment sgdlult in a misleading information. To
avoid this problem and get unbiased estimate on the perfurenaf the different algorithms,
this research used cross-validation. The performancesafdn ef the different classification al-
gorithms is given in Table 5.9. The results show that SVMslpoe the best results in all cases.
Overall, decision trees were the second best (except for)NMi& performance of the different
models on NVP is relatively poor compared to the other driigss might be due to the relative
skewness of the data sets for this drug. Neural networkepeed well compared to logistic
regression but was inferior to the other two classifiers.

SVM NN DT Logistic Reg
Drug Accu. | AUC | Accu. | AUC | Accu. | AUC | Accu. | AUC
IDV 96.33 | 95.52| 89.75| 91.76| 97.06 | 92.70| 92.66 | 85.06
NFV 96.15| 97.49| 91.74 | 95.31| 97.06 | 94.43| 93.39 | 83.58
AZT (RT) 94.13 | 96.64| 82.20 | 88.57| 94.86 | 90.96| 81.10| 78.24
AZT (PR+RT)| 93.21 | 96.64| 82.02 | 87.70| 96.33 | 93.41| 84.40| 78.01
D4T (RT) 94.86 | 97.17| 84.34 | 91.85| 91.93 | 85.39| 80.55 | 65.37
D4AT (PR +RT) | 93.58 | 97.11| 76.33 | 84.09| 93.58 | 88.29| 80.38 | 63.31
NVP (RT) 94.50| 81.26| 70.49 | 69.50| 94.31 | 85.52| 75.78 | 46.26
NVP (PR + RT)| 82.20 | 80.16| 64.77 | 71.10| 94.68 | 85.99| 77.98 | 50.96

Table 5.9: Performance of the different classification athms

Decision trees had a slightly better accuracy than SVMs orost all data sets however,
SVMs have overall better area under the curve which meanS\hé models have an overall
better trade-off between sensitivity and specificity compao decision trees (see the graphs
in Figure 5.6 and 5.7). There can be a number of reasons fanmeessive performance of

108



decision trees. Firstly, as we have mentioned in sectiorttie4raining and testing set was
previously classified using a knowledge based approacitehesst suits decision tree model.
Secondly, the discrete data encoding can be argued to sudettision tree model than SVMs.
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Figure 5.6: Accuracy of the different classifiers

Comparing the performance of SVMs and neural network, it carsden from the table
that neural networks were outperformed by SVMs on all désasee the graphs in Figure 5.6
and 5.7). This might be attributed to the dimensionalityhaf tata compared to the number of
available training samples and the loss of informationmydimensionality reduction. As we
have mentioned in section 5.4 and Chapter 2, mutation poimgkment each other to cause
drug resistance. While some mutations are major and cauistarese alone, others are sec-
ondary and needs the existence of other mutations to caugaelistance. That means these
attributes are highly correlated and might be given lowakmuring dimensionality reduction
using principal component analysis. Besides its performa8%Ms converged rapidly com-
pared to neural network even on the reduced dimensiondlite results also shows that the
SVM models also outperformed the logistic regression nsdel

Although there are no previous research known to us whictl 888Vis to directly predict
HIV drug resistance, to check the performance of our modenade comparison to the SVM
regression model by Beerenwinlaglal. [2003a], the decision tree models by Beerenwirdtel
al. [2002] and the neural networks models by Draghici and P{{@03] and Wang and Larder
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Figure 5.7: Area under the ROC curve of the different classfi
[2003].

The difference in the size of the data sets used, the errionagin techniques and the test
method are different and makes direct comparison of our leadéh models in previous work
difficult. The SVMs models for this research can be compaussitipely to SVMs model by
Beerenwinkekt al.[2003a] where SVM regression is used to predict the genomgsistance
from phenotypic resistance. Similarly the decision treedet® for this research produced a
better performance than the decision tree models presantdderenwinkelet al. [2002] in
all of the five drugs. Comparing our neural networks model& wie neural networks models
in Draghici and Potter [2003] our model performed bettenttize single network model of
Draghici and Potter [2003]. However, the performance ofrteral network model by Wang
and Larder [2003] on one drug in the protease inhibitor aategas slightly higher than what
we have achieved which might be attributed to the incorgaratrevious knowledge about the
drugs.

A key result is minimal biological knowledge or expert knedge was used (we only used
the fact of what the drug was targeted at to select the gegeradmic region to study). We
do not wish to downplay the contribution that expert knowledan make to understanding
the mutation process (after all, we are only using the ongedsional knowledge given by
the genomic sequence, when the virus and its RNA/DNA are bartiptex three dimensional
objects). However, these results show that machine legean significantly complement and
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assist the work of human experts working on the virus.

5.7 Statistical significance

It has become a tradition to report statistical significahagwo-tailed, paired t-test produces a
p-value less than some significance level (usually 0.09feag 1999]. According to Salzberg
[1999], these statistical tests should be used very cdyefdien used for classifiers compari-
son as they are not designed for computation experimentshdfmore, Salzberg [1999] has
highlighted following problems:

e The t-test assumes that the test sets are independent foalgacithm. In this research
cross-validation with random patrtitioning of the data sstleen training and testing was
used. And the different algorithms are trained and testeti®@same data set. This means
that the test sets share some of the patterns and hence drelepéndent. Dietterich
[1996, as cited in Salzberg [1999]] has pointed out that hiais a “high probability of
Type | error ... and should never be used”.

e The use of wrong p-value finds statistical significance whiegee is none. This is usually
addressed by making adjustment to the significance levieddcBbnferroniadjustment
provided that the experiments are independent of one anothe

Salzberg [1997] highlighted k-fold cross validation as eoramended approach, but has also
emphasised that it will not produce valid statistics beeatine test data are interdependent.
Recommended alternative approaches can be found in Salgf#9d], Salzberg [1999] or
[Gascuel and Caraux 1992]. For this research, we have chospresent the performance
of the different classifier graphically as given in Figuré &nd Figure 5.7.

5.8 Limitations of the research

The results achieved in this research are not without tivitdtions. Some of the limitations
can be easily addressed while the others are more compliaatecostly. One of the limitation
is the availability of the data. As stated in the introductsection, our wish was designing
a model without incorporating the existing biological kredge. To do this one needs a pure
phenotypic HIV drug resistance data which is very expertsiggenerate, has a very low quality
as a computational data and might present a different |daffaulty.

Another limitation is number of training samples. Again daghe cost of data generation
and the politics behind patient-doctor privilege it is aj)@éard to collect a large number of data.
As an example due to the small number sequences labellethedeate (I) we were forced to
perform two-class classification rather than multi-classsification. Another limitation that
needs to be addressed is the input encoding technique. drrébéarch, an input encoding
technique used converts the patterns in to a discrete vadim encoding might be well suited
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for one algorithm more than the other and might have affettiedanking of the algorithms
according to performance.

This research can further be extended to address the abutetions. Further improvement
to this research can be obtained by collecting high quahty large number of data from dif-
ferent gene databases. The same target can also achieveastlggicollaborations with HIV
laboratories. This research can also be extended to makeré user friendly, web based so
that it can be accessible a wide range of experts workingatigéhd. Further more this research
can be extended to by incorporating different feature extya and reduction techniques.

5.9 Summary

Performing comparative research is always a source of @zsy among pattern recognition
societies. The reason for conducting comparative anadypisrformance of SVMs against neu-
ral network, decision trees and/or logistic regression mago verify or falsify the superiority
of one classification technique over the other. As a reltiwew addition to the pattern recog-
nition techniques, SVMs have been compared to numerousrpatcognition techniques in a
number of benchmark application. The result from thesearebeclaimed SVMs has a better
performance on high dimensional data when faced with lidnitaining samples. Dimensional-
ity of the patterns and shortage of training sample is onee@tbommon characteristics of many
computation biology problems. Following this, this reséainvestigates if SVMs can be used
as a drug resistance tool based on an HIV strain. The resuitglfmight not be used directly
to answer the question however, it has promised positivdtres

The research have a number of limitations, however its Bagmce in the bioinformatics
and computational biology research can not be ignored.
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Chapter 6

Conclusion and Future work

6.1 Conclusion

The Human Immuno-deficiency Virus (HIV) has infected mitigoof people and is spreading
with a very high rate. One of the reasons for the failure in lsatimg the epidemic is the drug
resistant behaviour of the virus, which results from thedaputation rate. HIV drug resistance
testing that helps optimise drug administration has shopwaositive result in prolonging viral
suppression and helps to reconstruct patient immunitynétigpic testing and genotypic testing
are the two approaches for doing HIV drug resistance tesis génotypic approach has gained
a lot of interest because it is cost effective, easy to conand the interpretation of the result
is independent of the process. The latter advantage hasrade genotypic testing an ideal
application for computerized expert systems and/or patezognition techniques.

Pattern recognition techniques have been used to solvéepnetbhat cannot be solved using
the traditional algorithmic approach. These techniquegarticularly useful when the relation
between the input and the output is not defined properly, #te t be processed is enormous
in size and very hard to analyse manually. This research 8%&ds as a pattern recognition
technique.

Although SVMs are relatively new, have shown outstandinggomance as a tool for pat-
tern recognition. The principle of structural risk minimi®n and the ability of SVMs to trans-
form the input data to higher dimensional feature spacenéidrick) are the secret behind the
success achieved by SVMs. Other traditional pattern ratogrtechniques use the principle
of empirical risk minimisation, which minimises the traigi error and usually suffers from
over-fitting. On the other hand, the principle structurgknminimisation, which minimises the
upper bound on the test error, gives SVMs the ability to galiser better. SVMs can be simply
described as a combination of linear network, regulansaéind kernel trick. It discriminate
the positive examples from the negative ones using a hygeeplhile maintaining a maximum
margin between them. Many real-world problems are not figeseparable (separable by a
linear hyperplane). To classify non-linear data sets, S\Ubtsa kernel function that implicitly
works in a higher dimensional feature space, where the datéde discriminated using a linear
hyperplane.
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There are a number of different implementations of SVMs sThsearch used SV¥*, a
C implementation of Vapnik’s support vector machine. SMV is selected because it the most
popular implementation, it is optimal and can handle larggblems. It also has the ability
to incorporate user defined kernel function and a cost moekgtlps the three popular kernel
functions.

The input data used to answer the research question is tletigeequence of the viral
protease and reverse transcriptase from 2045 individuBigse sequences were previously
classified using some of the popular drug resistance irgtafon algorithms. On this data set
the performance of SVMs, neural networks, decision treedagistic regression were tested.
The best performance for these algorithms was configuredjugid-search over a range of
model parameters.

The results showed that SVMs outperformed the neural n&svand logistic regression.
The performance of the decision tree models and the SVMs Inedes almost similar. The
results in this research confirms the findings of many reseasoutlining the power of SVMs
as a classification tool.

6.2 Future work

Although this research showed the ability of SVMs as a toopfedicting the HIV drug resis-
tance based on the genetic sequence of the virus, it has aanwilmitations. Following the
achievements of this work and to some of address the limitagithe following future directions
are proposed:

1. The two major limitations identified arise from the numbad quality of data available.
To address this limitation further research should be cotetuby gathering large size
of quality data and performing not only binary but multissaprediction of HIV drug
resistance.

2. As pointed out in the previous chapter, the input encotéognique might have favoured
some classification algorithms than the others. Sectiomk® highlighted the effect of
different input encoding scheme however, a detailed stualy mot done. To investigate
the effect of input encoding schemes in the performance efdifferent classification
algorithm further research should be conducted.

3. The data used in this research was previously classifiad usle-based algorithms. Al-
though this does not compromise what is achieved in thisarebe conducting the re-
search using pure phenotypic data will give more insight maght present a different
level of challenge.

4. In this research we only concentrated on the computatiopgoty and computational
achievement of the different classification tools. HowgeWerther work should be done
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in close collaboration with experts in the field to investegthe biological implications
of the results.

. The results for the decision tree model showed that otendes were related to existing
mutation points, even though we did not use any of the priotolgical information.
Further research can be conducted to investigate the apphcof SVMs to identify
mutation points using SVMs for feature selection. This carérried out by performing
sensitivity analysis on SVMs and investigate if this tecjua can be used to identify
mutation points. This work should also be done in collaboratvith biological experts.

. Similar to the above future work, Boz [2002] investigatealys/ of converting a trained
neural network into a decision tree in order to make the cemplles discovered by
the neural network model more human understandable. In adicplar problem this
can also be used identify mutation points which are knownatfer drug resistance.
This mutation points are the split criteria. Hence, futwesearch can be carried out to
investigate ways of converting a trained SVMs model into @igien tree.
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Appendix A

Statistical and Parametric Classifiers

A.1 Bayesian decision theory

Bayesian decision theory is a tool broadly used to solve jatézognition problems, provided
the problem is defined in terms of probability densities alhdha probability values are de-
fined. Having defined all the relevant probability valued, &sgn decision theory is based on
finding optimal trade offs between the various classificatiecisions and the accompanying
cost (misclassification penality) [Duda al. 2000]. The material on this section is extracted
form Dudaet al.[2000] unless otherwise specified.

Given a set of patterns represented lolydimensional feature vect® = (xy, zo, ..., z4) €
R? called the feature space, lebe any of the finite states of natur@ = {w;,ws, . ..,w.} and
A ={aq,a9,...,a,} be the finite set of possible actions. The decision probleimeis defined
as choosing an appropriate action among the finite set oflpesactions for an event in the
world ( an event belonging to one of the finite states of nabased on the measurement given
by the feature vectar). The performance of the decision system is then measurdaebpss
function) : A x Q — R, which establishes the casto;|w;) that describes the loss incurred by
choosing actiony; when the state of nature is;. However, we cannot observe the world and
hence we need to consider the measurementR? and the mapping function(z) : R? — A
called the decision function, which is the function of measwent, that tells us which action to
take for the given measurements.

The measurement and the corresponding state of naturecan be viewed as a single
observation and might be considered in terms of probabilitythis probabilistic framework,
decision will be based on the posterior probabilityw;|z) for j = 1,...,¢, which is the
probability that the measuremenbelongs to the state of nature. An actiona; will be taken
based on the largest probability once the posterior is coeddor each state of nature. But how
do we know the posterior probability?

Let z € R? be a random variable and assume the prior distribuftgw;), which tells
how likely the nature of state is; and letp(z|w;) be the state-conditional probability, which
describes the relationship among the state of natyr@and measurement are known. With
the prior distribution and state-conditional density, jiiat distribution,p(w;, z), of finding a
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measurement in the state of natureand having the vector valuewill be given as:
p(wj,x) = Plwjla)p(z) = pla|w;) Pw;) (A.1)

rearranging the above equation we get the Bayes rule:

p(z|w;) P(w))
Plwj|lx) = ——F———= A.2
wherep(z) = Zwi_eg p(x|w;)P(w,) is the probability density function for.
. p(x|w;) P(w;)
Therefore: P(w;|x) = (A.3)
) = 5 el PG

The Bayes rule tells us how the probability of the state of ratsi updated by inverting
the relationship among world state and measurement. The®¢w;|z), the probability that
the true state of nature is;, accounts for the fact that once the measurement is obséreed
probability of having a certain state changes. Supposen®nteasurement the actiono; is
taken while the true state of nature.s According to the definition the penalty of taking action
«; while the true state of natureds is given byA(«;|w;). And the average loss also known as
the conditional riskof choosing this action is given by:

Rlaile) = Y Mas|w;) Plw;lz)
w; €N
If we have a decision rule which tells us which action to take for every possible obaton
we can substitute; by «(x) and obtain the average log%«(x)|z) given the measurement
The overall average loseXpected risktherefore will be obtained by averaging over all possible
measurements and is given as:

R= /]Rd R(a(z)|x)P(z)dz (A.4)

The expected risk is a single scalar that measures the bgerfdrmance. Then the best deci-
sion rule is found by computing the expected risk for all plassactions and selecting the one
that minimises the risk, i.e.

a = argmin R, = arg min/ R(a(x)|z)P(z)dr, Ve R? (A.5)
« R4

«

By minimising point-wise the function under the sign of int&git is easy to conclude that the
optimal function is
ax) = arg meig R(as|z), Vo eR? (A.6)

The resulting overall minimum risk is called tBayes risk
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Bayesian pattern classification is based on Bayes decisiamytite define the decision
boundaries to perform pattern recognition tasks. Pattecognition is a particular decision
problem where the world is seen as a pattern source, theddtatdure is seen as the pattern
classes with the measurement being a pattern. Each agtissimply identifying the pattern to
be in one of the pattern class. The decision rule) is a discriminant function which maps the
patternx to one of the pattern classes. To evaluate the performatscadsume misclassification
is equally bad and consider the 0/1 loss function, which fsdd to be

0 2=y,

Maglw;j) = o ij=1,...,c (A7)
1 i#]

The optimal decision function is then

a(z) = argmin R(y|z) = arg mlnz A |w;) P(wj|z)
= arg min Z P(wj|x)
Y EQNiA]

= argmin 1 — P(w;|z)

K3

= arg max P(w;|z)

Therefore the Bayes decision rule can be restated as follows

r—w if  Plwlr) =max P(w;l|z) (A.8)
Recall equation (2.2) and note that the denominai6r)j is independent ob; therefore the
best decision rule is given by

a(z) = argmaxp(w;|z)P(w), V€ R? (A.9)

In the formulation of the Bayes decision rule it is assumetah#he class-conditional densities
are defined. However, this assumption does not hold in geaeind hence one needs to learn
these parameters from the available training samples. Boe®one can assume something
about the form of the class-conditional density. Dependinghe assumption taken we have
parametric and nonparametric approaches for density astin{Jainet al. 2000]. If we can as-
sume that the class-conditional density have specific farnmnéve unknown parameters, which
needs to be estimated based on the sample, equation (2.Bewied to calculate the posterior
probability. In this case we have a parametric classificagimblem. Otherwise the poste-
rior probability should be directly estimated on the featspace (training data) or alternatively
construct the decision boundary on the feature space amsdrésulting in a non-parametric
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classifier.
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Appendix B

SVM: Mathematical formulation

B.1 Linear support vector machines

The linear support vector machine also known as maximum imatgssifier is the simplest
form of Support Vector Machine. Hence this section will bedigs an introduction to basic
principles, notation and approaches that are later extetml@ more general support vector
machine. Furthermore, Support Vector Machines are inllgremary classifier. Therefore
the formulation shown below and in subsequent sectionsvendior two class pattern recog-
nition problem. In later sections we will see how this will egtended to multi-class pattern
recognition problems. To make the presentation in two atisssification problem simple and
consistent with the conventional mathematical presemtatie will usey; instead otv; as class
label. The material presented in this section is based onikdp995]; Burges [1998]; Osuna
et al.[1997]; Cristianini and Shawe-Taylor [2000]; Sikopf [1997]. If any other reference is
used it will be cited accordingly.

B.1.1 Linear separable case - Maximum margin classifier

Given set of example§z1,v1), ..., (z;,w)) € R? x {+1}, wherey; € {£1},z;, € R? as-
sume there exists a set of hyperplanes which totally discata the positive examples from the
negative ones. This means we can find a pair) such that:

yi(z,w+b)—1>0 i=1,2,...,1 (B.1)

wherew is the direction of the normal or orientation of hyperpland ais the threshold.
The mapping function which is usually called the hypothéstien given by:

f(w,b) = sign(w.z; + b) (B.2)

Consider the example given in Figure 3.4. These training &s1gs the two classes (circle
and square) can be perfectly separated by a linear hypergfamthermore, one can find infinite
number of hyperplane that can accomplish this task. Somkeskthyperplane are shown in
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Figure 3.4. As we can seen from the figure, each of these higperpave zero empirical risk,
but we should find the one that will minimise the right handesid equation (3.7) as seen in
Section 3.2. From the figure one can take an educated gueayg tbeshyperplane that passes
through the middle will be more likely to give the best minimuisk. Formally defining this
hyperplane, the optimal hyperplane that is likely to mirgenthe expected risk is the one that
maximises the margin, which is defined as the distance betweeexamples from the the
opposite class that are close to this hyperplane.

Once the optimal hyperplane is found all the training setksatisfy equations (B.1) and
classification will be based on the sign of equation (B.2). pbiats that lie on the hyperplane
separating the data satisfies:

wa; +b=0 (B.3)

Figure 3.5 gives graphical interpretation of Support Ve€ilassification. All the points that
satisfy the inequalityv.z; + b > +1 lie on H, or to the left of it and those satisfying.x; + b >
+1 will lie on H; or to the right of it. The margin is therefore defined as theatlice betwee#,
or H, and the optimal hyperplane (see figure 3.5). It is evideritthaand H, are parallel and
for a perfectly separable training set, no point lies betwiae two hyperplane. Furthermore,
H,, H, and the optimal hyperplane differ only on the threshiolBormally defining the optimal
hyperplane with respect to these two hyperplanes, the atpguhyperplane is optimal if the
minimum distance between these hyperplane and the optiypatplane is maximal. i.e.

: , . [wa;+b . [ —(w.x; +b) : :
if  min{ min{ —— %, min { ———= is maximal
v=t [ flw | Jw= 0 [l

To compute the threshold for a given let

dy = min{w.z;}, d_ = min{-w.z;}
yi=1 yi=—1
Substituting this values, then the optimal hyperplane ésathe which maximises the equation

given below:
1
—— min{dy +b,d_ — b}
[w |
From the above expression, the maximum will be attained vihemwo expressions inside the

bracket are equal. Hence the threshold for the optimal ipjaee will be:

d_—d
bopt: 9 i
and the respective margin will be:
1 1
V= 7 lds + bopt| = 7——d — bop|
| w ] o wl] '
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Cdi+d
2 ||l

:’Y

Therefore we can find the optimal hyperplane that maximisesrtargin by minimising| w ||
subject to equation (B.1). i.e.
1
Minimise §Hw\|2
subjectto y;(z;w+b)—1>0 VY,

Note that minimising|w|| is the same as minimisinyw||?. Minimising a quadratic function
under a linear constraint formulated above is called quedpaogram and can be solved to
give the solution to the optimal hyperplane using Quadmtimgramming (QP) optimisation
[Cristianini and Shawe-Taylor 2000]. Solving this problesing the classical Lagrangian mul-
tipliers approach have a number of advantages [Cristianth&hawe-Taylor 2000]. Firstly, this
approach gives an alternative formulation of the origiralgem (dual form) which is easier to
solve. Secondly, the dual form is not only easier to solvedisd emphasises the importance
of some training examples over the other, leading to a maeohibut critical sample size and
thirdly, the dual form makes generalisation beyond linegrasable cases an easy task.

Introduce a dual vector of non-negative Lagrangian mudiph = («y, as, ..., «q) corre-
sponding to each inequality constraint in (B.1) the Lagrandunction (see Appendix B.2) will
be defined as:

I
1
Lp(w,b,A) = B [ w|* — Zaiyi<xi‘w +b)+ Z%’ (B.4)

=1 =1
The saddle point of the Lagrangian, which will be determibgdninimising L with respect
to w andb and maximise with respect th > 0 is the solution to the optimisation problem.
Minimising L p with respect tav andb we have:

OLp(w,b,\)

—= =0
ow

l
= w = Z QY T; (B.5)
i=1
OLp(w,b.A) _

ob N
l
i=1

substituting equation (B.5) and (B.6) into (B.4) we have
1
LD(U% b, A) = Z QG — 5 Z OéiOéjyiyj(xiwj) (B.7)
i=1 ij
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The optimisation problem is now reduced to maximising with respect ta\ constrained to
(B.6) with the solution given by (B.5). i.e.

. 1
Maximise LD<U}, b, A) = Z o — 5 Z QG0 YY (.CEZ.T])
=1

,L'7j

l
subjectto ) oy = 0; (B.8)

i=1

A>0

The Karush-Kuhn-Tucker theorem (see Appendix B.2) of ogation theory, which guar-
antees the existence of a solution to the optimisation praldhows that, at the saddle point all
points satisfy the constraint (B.1) with strict equalite. i.

a(yi(wa; +b)—1)=0 i=1,...,1 (B.9)

From this equation, the following two conditions need to stidguished:
o If o; =0, theny;(w.z; +b) > 1
o If a; > 0, theny;(w.z; +b) =1

Recall that one of the advantages of using the Lagrangiartiumto solve the optimisation
problem is expressing the importance of each pattern inrtheing set. Consider the value
of a; corresponding to each training pattern. Training pattevits «; > 0 will fall on the
hyperplaneH; or H, (see figure 3.5) and hence are critical in defining the detismindary.
Other training patterns with; = 0 lies to the left or right ofH/; and H, respectively. These
training patterns have no effect in determining the denibimundary. Therefore if those training
patterns withn; = 0 value are removed and the training is repeated, the dedisiondary will
remain the same. Training patterns with nonzerare calledSupport Vector¢The name of
this learning technique follows from this).

Suppose the parameter g€t solves the quadratic optimisation problem given in equatio
(B.8). Then the orientation of the optimal hyperplane will given by equation (B.5). The
geometric margin can be redefine in terms\ofas:

dy +d_
V=
2w |

for maximum margin hyperplané. = d_ = 1, hence

y= L ( (w*w*))_l (B.10)

R

133



substitutingw in (B.5) in (B.1) we have
Za s (wpxy) +07) =1
and substitutinge from (B.5) in (B.10) we have
Za Gy (zi.75)
= Z%yi Zajyj(xi.xj)
i j
= Z a; (1 —y;b")
= Z af = 2l

Using equation (B.6) the second term will be cancelled. Tioeee
-1
. ( Zo‘f> (B.11)
However, the threshold can not be computed directly fitom To compute the threshold

recall the optimal hyperplane with the maximum margin wages as:

max,,__1(w*.z;) + b* = —

maxy,— 1 (w.z;) + b* = +1

Vi=1,2,...,1

Adding the two expressions and solving for the thresholdhefdptimal hyperplang* gives:

o  maxy,——1 (w".z;) ‘g maxy, -1 (w”.2;) (B.12)

With the weight vectorv* and the threshold* in place, substituting equation (B.5) into
equation (B.2) the mapping function can be redefined as:

f(z, A", b") = sign Zyl (r.x;)+0%) Vi=1,...,1 (B.13)

We have seen that the parameté¢r= 0 for all training points except for the support vectors,
hence the mapping function will have its final form:

[z, A" b%) = sign( Zyz (x.m;)) +b") Vi=1,...,1 (B.14)
1€SV

In other words the expression is evaluated in terms of thepdtuct between the pattern
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to be classified and the Support Vectrs), and the sign of the function is used to classify the
pattern to their respective class. Summing up the dual agprin the case of linear separable
examples the following proposition can be made:

Proposition B.1.1 Consider a set of training data which can be separated inta tlespective
class by a linear hyperplane:

(1, 91), - (2, m)) € R™ x {£1}

Let A € R be a vector that solves the constrained optimisation probigven below:

. 1
Maximise LD('LU, b, A) = E o; — 5 E aiajyiyj(xi.xj)
i=1 i

!
subject to Z ay; = 0;
=1

A>0

Then the optimal hyperplane is defined by the paandb defined as:

l
w = E OGY; T4
i=1

and 1
b= —§[y7m:a_xl(wmz) + ﬁ%(wafz)]

with the geometric margin given by:

And classification of unseen data will be done based on thedditire function:

f(z,a,b) = sign(z yioy(z.x;) +b)  Yi=1,...,1
iesV

B.1.2 Linearly non-separable case - Soft margin classifier

So far we have seen the case where the training data is peréegarable using linear hy-
perplane but real-world problems involve non-separabta dad the assumption taken in the
previous section is too ambitious. To extend the aboveisoltid non-separable data a positive
slack variable;;i = 1,. .., is introduced to associate further cost as a penalty forlassifi-
cation whenever necessary (see Figure 3.6).
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Using this relaxed separation constraint equation (B.1dnes:
yilzw+b) >1—& &>0 i=1,...,1 (B.15)
The problem of finding optimal margin will therefore comprisstwo part.
e Maximise the margin (the same as the linear separable cade) a
e Minimise the slack variablg; which counts for amount of error

One way of combining these two conditions into a single fiamcis given below:

l
|
Mw:%=ﬂwW+CQ:®k
=1
The constanC is a parameter to be freely chosen by the user to specify dlde-wff between
the width of the margin and misclassification penalty. Tfeeethe optimal hyperplane will be
the one that minimises the functidqw, =). i.e.

l
. 1
Minimise  ®(w,Z) = §||w||2 + C( E &)
=1

yilziw+b) >1-& i=1,...,1 (B.16)
>0 i=1,...,1

If we choosek = 1, the above optimisation problem can be solved using QRodntring
a dual vector of non-negative value = (ay, s, ...q;) for of each the first constraint and
' = (1, p2, - - -, i) for each of the second constraint the Lagrangian repretsamiaill be:

Lp(w,b,A,Z,T) = wa 2:%%@w+b—L%; Xy@+C§};@1n
=1
Following the same approach as the separable case, th@sdluthe optimisation problem
will be determined by the saddle point of the primal form oé thagrangian which will be
determined by minimising with respect tq b and= and maximised with respect tbandTI".
Minimising L p with respect tav, b and= gives:

OLp(w,b, A, =, T) l
5w =w — Z a;yx; =0 (B.18)
aLMwb/&” }:awr—o (B.19)

OLp(w,b, A, =, T)
or

:C—Oéi—/tizo (BZO)
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Substituting (B.18),(B.19) and (B.20) into (B.17) the dual frasfi still be given by:

(w,b,\) Z a; — Z a0y (2.2 5) (B.21)
2y}

The dual form is the same for both linear separable and nparable cases (see equation (B.7)
and (B.21)) respectively. But there are additional constsdmmbe satisfied in the later case. Itis
stated above that both the Lagrangian multipli&@ndl” should be non-negative. Although
does not appears in the dual form as a result of chodstoge one, equation (B.20) places the
constraint that”’ = «; + p,;. This condition limits the value ok to be less tha€’. Otherwise,
if A > C, thenl' < 0 for the condition in equation (B.20) to hold but this a viotatiof the
assumption that the Lagrangian multiplieis non-negative. Therefore, the new optimisation
problem will be redefined as:

Maximise Lp(w,b,A) Zaz Zaiajyiyj(xi.xj)

.3

!
subject to Z ay; = 0; (B.22)

i=1

0<ALZC

Applying the KKT condition we have:
ai(yi(zpw+0) —14+&) =0 i=1,2,...1 (B.23)
Following the above equation three different cases neels thstinguished:
o If a; =0, theny; = C (§ = 0) andy;(z;.w +b) = 1,
o If 0 < <C,then0d < p; < C (& =0) andy;(z;.w +b) = 1;
o If o; = C, theny; =0 (& > 0) andy;(z;.w +b) = 1 +&;.

In the first case the points are on the correct side of the @ptiyperplane and are distant from
the hyperplane by more than the margifi.e. these points lie to the left or to the right of the
hyperplanef; or H, respectively). In the second case, the points lie on therpjguee ; or
H, and are Support Vectors. In the third case these points soeSalpport Vectors, but does
not necessarily lie on the hyperplafg of H,. These points might be on the wrong side of the
hyperplane or on the right side but closer than the hypeeslah or H, (For exampleX; and
X5 in Figure (3.6)).

Besides the above additional constraints, the solutionterlinear separable case holds.
Therefore the solution found in the previous section wileaeralise by restating proposition
B.1.1 as:
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Proposition B.1.2 Given a set of training data

((x1,11)s .-, (z,m)) € R® x {£1}

LetA € R! be a vector that solves the constrained optimisation proldgé/en below:

Maximise Lp(w,b,A) ZO” Zaiajyiyj(xi.xj)
i,J
!
subject to Z ay; = 0;
i=1

0<ALZC

Then the optimal hyperplane is defined by the paandb defined as:

l
w = E QY T;
i=1

and 1
b= ——[max (w.z;) + max (w.z;)]
yi=—1 yi=+1

with the geometric margin given by:

And classification of unseen data will be done based on thedditire function:

f(z,a,b) = sign( Zy, (r.x;)+0b) Vi=1,...,1

€SV

B.2 Important definitions and theorems

Definition B.2.1 [Cristianini and Shawe-Taylor 2000] Given an optimisatiomblem with the
objective functiory (w), and equality constraint;(w), i = 1,2, ..., we define the Lagrangian
function as

L(w,A) = f(w) + Zaihi(w)

where the coefficient; are called the Lagrangian multipliers.

Theorem B.2.2 (Kuhn - Tucker) [Cristianini and Shawe-Taylor 2000] The paigte R min-
imises the function
f:RY SR
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subject to
gz(v>§07 lzlaul

whereg; are convex function and there is at least one point satigfftie constraint with strict
inequalities, if and only if there exists a vectty > 0 € R! with

L(v,A) = f(v) + Z @;g;(v)

has a saddle point atvy, Ay), which is the minimum with respect toand a maximum with
respect to\. The condition to be a maximum with respecAts equivalent to the Kuhn-Tucker
condition

@;g:(vg) =0, Vo, € Ag

i.e. for eachi eithera; = 0, or g;(vy) = 0 The last relation is known as Karush-Kuhn-Tucker
(KKT) complementarity condition.

Definition B.2.3 [Cristianini and Shawe-Taylor 2000] A kernél(x, y) is a function such that
for any two point§z, y) in the input space:

K(z,y) = o(x).0(y) (B.24)
wherez,y € X and¢ is the mappingX — F.

Theorem B.2.4 (Mercer’s Theorem) [Burges 1998] There exists a mappiagd an expansion
K(w,y) = 3 oilx)-6i(y)
if and only if, for anyg(x) such that
/g(w)Qd:z: is finite

then
[ E@pa@gtdsdy = 0
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Appendix C

Genetic codes

C.1 RNA codon table

| Amino-acid Name | Code| codons coding it |

CCU, CCC, CCA, CCG
UCU, UCC, UCA, UCG, AGU,AGC
ACU, ACC, ACA, ACG

Proline (Pro)
Serine (Ser)
Threonine (Thr)

Alanine (Ala) A GCU, GCC, GCA, GCG
Arginine(Arg) R CGU, CGC, CGA, CGG, AGA, AGG
Asparagine (Asn) | N AAU, AAC
Aspatrtic acid (Asp)| D GAU, GAC
Cysteine (Cys) C UGU, UGC
Glutamine (GIn) Q CAA, CAG
Glutamic acid (Glu)| E GAA, GAG
Glycine (Gly) G GGU, GGC, GGA, GGG
Histidine (His) H CAU, CAC
Isoleucine (lle) I AUU, AUC, AUA
Leucine (Leu) L UUA, UUG, CUU, CUC, CUA, CUG
Lysine (Lys) K AAA, AAG
Methionine (Met) | M AUG
Phenylalanine(Phe) F UuuU, UucC
P
S
T
wW
Y
Y

Tryptophan (Trp) UGG

Tyrosine (Tyr) UAU, UAC

Valine (Val) GUU, GUC, GUA, GUG
Start AUG, GUG

Stop UAG, UGA, UAA

Table C.1: Standard amino acids used in proteins, and thensdtdat code for each amino acid.
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C.2 The IUPAC nucleotides Codes

| Nucleotide Code] Base:

A Adenine

C Cytosine
Guanine
Thymine (or Uracil)
AorG
CorT
GorC
AorT
GorT
AorC
CorGorT
AorGorT
AorCorT
AorCorG
any base

gap
Table C.2: The IUPAC nucleotides Codes

@

_|
B
S

z < T|jojw g X s|n<D

o
=
1
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