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ABSTRACT 

I investigated whether inorganic contaminants associated with gold mining waste discharges 

in the Free State Province, South Africa, were accumulated by a threatened species of lizard, 

Cordylus giganteus; if the route of exposure could be dietary, and whether accumulation of 

contaminants could be associated with potential physiological costs. I compared elemental 

concentrations in tissue and blood samples between populations of this species, from four 

sites around the province. Inorganic contaminants were known to be elevated in soils, water, 

sediments and vegetation of the first mining site, and to a lesser extent at the second mining 

site. The third site was not known to be contaminated by mining discharges, but was selected 

because of its potential to be contaminated by wind-blown contaminants. This site was also 

heavily overgrazed. The fourth site was both uncontaminated by mining and relatively 

undisturbed. Lizards from the most contaminated site had significantly higher blood 

concentrations of Li, Na, Al, S, Ca, P, Si, Cr, Mn, Fe, Ni, W and Bi when compared with all 

the other sites investigated. Based upon a comparison of elemental concentrations in selected 

lizard prey items found at these sites (Coleoptera, Tenebrionidae) I did not find conclusive 

evidence for a dietary route of exposure to contaminants. I tested for significant differences in 

body condition among populations. Lizards from the heavily grazed site were in similar 

condition to lizards from the most contaminated site, and all these lizards were in significantly 

poorer condition than lizards from the undisturbed site. The adult sex ratio of the population 

inhabiting the most contaminated site also deviated significantly from an expected 1:1 ratio in 

favour of females. The reason for this deviation is not understood, but may be a consequence 

of sexes being differentially affected by inorganic contaminants. My research demonstrates 

that the disposal of gold and uranium mine waste has resulted in the accumulation of 

contaminants by a representative resident vertebrate, and that this accumulation is potentially 

associated with poorer body condition which might affect fitness. It highlights the potential 

threat of mining-waste discharges to lizards, shows the need for site remediation measures, 
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and also highlights the need for further investigation into the potential effects of 

environmental contaminants from gold and uranium mine waste on exposed vertebrates in 

South Africa. 
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CHAPTER 1: INORGANIC CONTAMINATION OF A THREATENED LIZARD, 

CORDYLUS GIGANTEUS, IN SOUTH AFRICA 

 

INTRODUCTION 

 

South Africa is well known for its gold and uranium mining industry, which is often heavily 

criticised for the damage it causes to the environment (Smuts & Winter 2004). Potential effects from 

mining on the environment are numerous. The most serious of these effects include: changes in 

hydrogeological systems; hydrological transformations of soils and surficial flows; contamination of 

soils and surficial water reservoirs; and pollution of the atmosphere (Rybicka 1996).  

 

The release of various organic and inorganic contaminants used during mining processes has been 

shown to be associated with the accumulation of contaminants by organisms inhabiting these 

environments. Examples of studies where the accumulation of inorganic contaminants have been 

documented in living organisms include the accumulation of cadmium, lead, copper and zinc in 

tissues of three spined stickelback fish sampled from various watercourses in Flanders (Gasterosteus 

aculeatus; Bervoets et al. 2001); the accumulation of lead, cadmium, mercury, manganese, selenium 

and chromium in feathers, liver, kidney and heart tissue of laughing gulls (Larus atricilla) sampled 

from an airport in New York (Gochfeld et al. 1996); elevated tissue levels of cadmium and nickel in 

muskrat (Ondatra zibethica) occurring in the vicinity of an ore-smelter in Canada (Parker 2004); and 

in South Africa, elevated concentrations of copper, nickel, chromium, iron and manganese in organs 

of red-knobbed coot (Fulica cristata) occurring in the vicinity of gold mining operations in Gauteng 

(Van Eeden 2003). The majority of these studies report only on the accumulation of inorganic 

contaminants in living organisms, but not the physiological (or fitness and survival) consequences 

thereof.   
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Nevertheless, some investigations into fitness effects of exposure to inorganic contaminants have 

reported a number of effects on various taxonomic groups. Haywood et al. (2004) and Haywood 

(2004) reported consequences for Xenopus laevis tadpoles during a seven-day exposure to elevated 

concentrations of Zn, Cu, Pb and Cd. These effects included reduced hatching success, reduced 

survival, reduced growth, and increases in the occurrence of malformations. Potential negative effects 

of ingestion of metal contaminants include reduced growth in fish (Oncorhynchus mykiss; Hansen et 

al. 2004). Exposure to elevated copper concentrations in water (up to 26µg Cu/L) was associated 

with immune system deficiencies in fish (Oncorhynchus mykiss; Dethloff & Bailey 1998). Also 

indicating immune system effects, Snoeijs et al. (2004) reported a decrease in immune 

responsiveness from birds (Parus major) sampled at a site with elevated levels of mainly lead and 

cadmium emanating from a metallurgic smelter. Tilapia larvae exposed to varying concentrations 

(30, 50, 100, 200 or 400 µg/L) of copper sulphate all expressed suppressed yolk absorption rates (Wu 

et al. 2003). Increases in levels of territorial aggressive behaviour and reductions in egg hatching 

success from great tit couples exposed to high environmental concentrations of arsenic, cadmium, 

copper, lead and zinc has also been reported (Janssens et al. 2003), as has damage to the DNA 

structure of fish (Sparus aurata) and molluscs (Scapharca inaequivalvis) due to exposure to elevated 

concentrations (0.1 ppm) of copper sulphate (Gabbianelli et al. 2003). Furthermore, exposure to 

metal contaminants also affects organisms at a population level. For example, skewed sex ratios in 

favour of adult female birds have been reported in some populations of white-tailed ptarmigan 

(Lagopus leucurus) exposed to elevated concentrations of cadmium in the Colorado Rocky 

Mountains ore belt (Larison et al. 2000).  

 

On a global scale reptiles appear to be declining mainly due to habitat loss, introduced invasive 

species, diseases and parasitism, unsustainable harvesting, climate change and environmental 

pollution (Gibbons et al. 2000). Reptiles (and lizards in particular) are considered to be useful 

bioindicator organisms because they are mostly insectivorous (Bishop & Gendron 1998), are 
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integral to many food webs (Lambert 1997; Campbell & Campbell 2000), and they show high site 

fidelity (Burger et al. 2004; Lambert 1993). These characteristics of lizards provide opportunities 

to compare contaminant effects on individuals and populations inhabiting contaminated and 

reference sites within a small geographical area (Hopkins 2000). 

 

Despite these features, reptiles remain the least studied vertebrate group with regard to the 

accumulation and effects of inorganic contaminants (Hopkins 2000). This has been attributed to 

various reasons, including difficulty in sampling sufficient numbers, their relatively low economic 

value and their apparent difficulty in laboratory maintenance (Loumbourdis 1997). Among the 

reptiles studied, turtles have received far greater attention than crocodilians and squamates (lizards 

and snakes) (Hopkins et al. 2002). Furthermore, studies of squamates have mostly focused on organic 

contaminants such as DDT, dieldrin and PCB concentrations (Campbell & Campbell 2000; Campbell 

& Campbell 2001). Negative effects from organic contaminants on lizards include reductions in brain 

cholinesterase activity in green anoles exposed to organophosphorous pesticides (Hall & Clark 1982). 

A species of dwarf lizard (Lacerta parva) exhibited liver, kidney and intestinal damage after 

exposure to low doses of malathion, an organophosphorous pesticide (Ozelmas & Akay 1995). 

Exogenous estradiol caused ovary development in male leopard geckos (Eublepharis macularius) 

(Bull et al. 1988). Also, various studies have examined the lethal doses of organic contaminants in 

lizards (e.g. Kihara &Yamashita 1978; McIlroy et al. 1985; Twigg & Mead 1990). 

 

The few studies on potential effects of inorganic pollution on reptiles have generally been in 

controlled environments, such as laboratories (Brasfield et al. 2004; Hopkins et al. 2001, 2002, 

2005). These studies mostly measured the relevant inorganic uptake concentration by killing 

individuals and sampling tissues from various major organs. Some field studies investigating the 

effects of inorganic contaminants on reptiles have also been attempted. These have also mostly used 

destructive sampling techniques, requiring tissue samples from major organs such as kidneys and 
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livers (Anan et al. 2001; Burger et al. 2004; Loumbourdis 1997). Thus, few studies have used non-

destructive sampling in a field environment, to analyze potential effects of inorganic contaminants on 

reptiles (e.g. Jeffree et al. 2001). 

 

Cordylus giganteus (giant girdled or sungazer lizard) is a species endemic to the highveld region 

of South Africa. The highveld also supports extensive farming activities (cropping), as well as 

gold and coal mining, and therefore populations may be exposed to inorganic contaminants. 

Cordylus giganteus is considered to be threatened and has been listed as vulnerable in the IUCN 

Red List of Threatened Species (see http://www.redlist.org). Until now, the main recorded threats 

to this species have been direct loss of habitat through agriculture and industrial development, as 

well as the illegal collecting of these animals for the pet and “muti” (traditional medicine) trades. 

However, large areas of Gauteng and the Free State Provinces (the latter is where most C. 

giganteus populations occur) have been reportedly affected by contaminated dust, seepage and 

groundwater emanating from gold mining activities (Coetzee 1995; Rosner & van Schalkwyk 

2000; Weiersbye et al. 2003). These contaminants may provide an additional threat to 

populations of C. giganteus if the lizards are negatively affected by exposure to these 

contaminants.  

 

Sungazer lizards are unique among cordylids because they live in self-excavated burrows, 

normally in soil types that become very hard when dry (Branch 1998). Burrows are normally 

found in undulating grassland, dominated by Themeda triandra (Jacobsen et al. 1990; Ruddock 

2000). Cordylus giganteus are partially opportunistic sit-and-wait predators, preferring beetles 

(van Wyk 2000). Their position in the food chain, and their tendency to high site fidelity 

(McIntyre pers. obs.), make these reptiles ideal for use in ecotoxicological investigations, 

especially when repeated sampling of the same individuals are an advantage.   
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I focused on the population health and conservation of C. giganteus in and around the Welkom 

area of the Free State Province, South Africa, an area of intensive mining. My aim was to 

investigate the possible uptake of inorganic contaminants by C. giganteus living in the mining 

area. For comparison, I had a control site away from mining activity. First, I asked whether 

lizards in mining areas contained significant levels of the inorganic contaminants known to be 

elevated on the study sites, and second, whether they could be accumulating these through dietary 

intake. Third, I asked whether C. giganteus from mining areas were in poorer body condition 

compared to the control site. Finally, I tested whether the sex ratios of the C. giganteus 

populations from the mining areas were significantly different to the other populations under 

investigation. 

 

MATERIALS AND METHODS 

 

Study area 

I sampled four sites in the Free State Province (Fig. 1.1). Mining 1 and Mining 2 are contaminated 

sites, affected by mining effluents. Overgrazed Rangeland is not known to be a contaminated site, but 

is in the vicinity of mining areas. Thus, the possibility exists that this site is affected by wind-blown 

contaminants from nearby mining operations. The only known disturbance to this site, however, 

appears to be severe overgrazing. Undisturbed Rangeland is an undisturbed site, unaffected by any 

mining-related contaminants.  

 

Mining 1 (Evaporation pan site) 

This site (27°56’S; 26°33’E) containing a natural saltpan, is in the Welkom area of the Free State 

Province. The pan has been used over a period of 40 years for the legally licensed discharge and 

evaporation of gold mine process water and, to a lesser extent, purified sewage effluent (Weiersbye et 

al. 2003). The pan water and sediment, as well as the surrounding soils, were contaminated with a 
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variety of elements. These elements are associated with acid mine drainage and mine process water 

discharge, and included sulphur (S), chloride (Cl), sodium (Na), calcium (Ca), magnesium (Mg), 

potassium (K), iron (Fe), aluminium (Al), manganese (Mn), strontium (Sr), titanium (Ti), zinc (Zn), 

chromium (Cr), cobalt (Co), nickel (Ni), uranium (U), gold (Au), mercury (Hg), copper (Cu), arsenic 

(As), lithium (Li), vanadium (V), yttrium (Y) and selenium (Se). Total dissolved solid concentrations 

were also reported to be significantly higher than other saltpans in the area (Weiersbye et al. 2003).  

 

           

Mining 1

 

(a)

Overgrazed Rangeland  

Mining 2

Undisturbed Rangeland

N 200km 

(b) 

                       

 

Figure 1.1: (a) Map of South Africa with provincial boundaries, showing the geographical 

distribution of C. giganteus (dark shading) based on de Waal (1978), Jacobsen et al. (1990) and 

Ruddock (2000). (b) Enlarged map of the Free State Province, showing the approximate locality 

of the four study sites.  
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A population of C. giganteus occurs in close proximity to the evaporation pan itself (within a 500 m 

radius). Anecdotal reports have speculated that this population has been in decline over the past few 

years (J. Hardy, Directorate of Nature Conservation, DTEEA, pers. comm.). The potential therefore 

exists that this population of C. giganteus are negatively affected by the exposure to an obviously 

contaminated environment. Potential pathways of exposure include direct contact through the soil in 

which these lizards live, as well as exposure through diet (invertebrates). 

Mining 2 (Slimes dam site) 

The second C. giganteus population potentially affected by mining related contaminants occurs on a 

farm (27°56’S; 26°40’E) that received acid mine drainage from the adjacent slimes dams. This farm 

(Slimes dam site) is roughly 10 km from the Evaporation pan site and the surface water streams and 

soils are contaminated by seepage from adjacent slimes dams (I.M. Weiersbye pers. comm.). Only a 

small population of C. giganteus appears to be persisting on this site. 

 

Overgrazed Rangeland site 

Overgrazed Rangeland is a severely overgrazed game ranch site situated about 15 km northeast of 

Welkom (27°52’S; 26°47’E).  No mining activity has taken place in its immediate vicinity and it is 

believed to be largely free of any contaminants associated with mining. Nevertheless, pollution from 

gold mining has been shown to spread far beyond the actual mining footprint, and the possibility 

exists that this site may also have been affected in the form of contaminated dust (Weiersbye & 

Witkowski. 2003). This site presented the opportunity to investigate the potential of lizards being 

affected by wind-blown contaminants and the potential physiological costs associated with less 

vegetation cover (and an expected loss of prey availability).  
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Undisturbed Rangeland (Control) site 

The control site, Undisturbed Rangeland, is situated near Lindley in the Free State Province 

(28°01’S; 28°05’E). The population of lizards on this farm has been fenced off and protected from 

most anthropogenic influences. The site is free of cattle grazing and the grassland around this 

population is undisturbed. This population thus served as a control, since no anthropogenic 

disturbance was expected to affect it. Unfortunately, no populations of C. giganteus in closer vicinity 

to the previous three sites in the Welkom area were considered to be sufficiently undisturbed for use 

in the study as a control population.  

 

Climate can be expected to influence the amount of prey available to lizards (and hence the 

physiological condition of lizards). Thus, I obtained climate data for the two previous years (2003 

and 2004) from the South African Weather Service. These data, along with the other main 

characteristics of each site is reported in Table 1.1. 
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Table 1.1: Main characteristics of sites where I investigated the accumulation and effects of mining 

contaminants and disturbance on populations of C. giganteus. Two types of disturbance effects are 

identified (mining emissions and overgrazing). X indicates sites affected by one or both of these 

disturbances.  

 

Site 
Total rainfall 

(mm) 2003-4

Average monthly 

rainfall (±SD) for 

2003-4 

Mining 

emissions
Over-grazing

Mining 1 

(Evaporation 

pan) 

474.6 

 

19.78 ± 23.99 

 

X  

Mining 2 

(Slimes dam) 
474.6 19.78 ± 23.99 X  

Overgrazed 

Rangeland 
474.6 19.78 ± 23.99  X 

Undisturbed 

Rangeland 

(Control) 

892.7 42.80 ± 53.66   

 

Study animal 

Cordylus giganteus is the largest member of the Cordylidae, with adults reaching total lengths of 

almost 400 mm (Bates 1992; van Wyk 1992). The Cordylidae is the only lizard family restricted to 

the African continent and many of its members are endemic to the southern African sub region 

(Branch 1998). Cordylus giganteus are endemic to South Africa and restricted to the highveld 

grasslands of the Free State and Mpumalanga provinces (Fig. 1.1). This also happens to be an area 
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impacted by gold and coal mining, as well as agriculture (grazing and cropping of maize and 

sunflowers).  Females reproduce on average only once every second year, giving live birth to two or 

three young in late summer and autumn (van Wyk 1991, 1992). Van Wyk (2000) found that C. 

giganteus fed during eight months of the year, with foraging success peaking during warm spring and 

early summer months. He considered them to be partially opportunistic insectivores, preferring 

beetles, especially scarabaeids, curculionids and tenebrionids. 

 

The listing of C. giganteus as vulnerable by the IUCN has been criticised in the past for not being 

well substantiated and apparently being based on charisma and unsubstantiated claims of over-

exploitation for the pet trade (Branch 2001). The listing has, however, not changed recently, mainly 

because the population viability of this species has not been investigated. In addition, there is little 

information on the impact of changing land-use practices on the status of C. giganteus. Thus, the 

current conservation status of the lizard is simply not known. However, it is likely to be affected by 

the following parameters: (1) habitat destruction (van Wyk 1992; Jacobsen et al. 1990); (2) 

disturbance and contamination from mining (Weiersbye et al. 2003); and (3) illegal collecting for the 

pet and muti trade (Newbery pers. comm.). 

 

Investigating potential accumulation of inorganic contaminants by C. giganteus 

Lizard sampling 

I obtained tissue and blood samples from adult lizards from Mining 1 and Overgrazed Rangeland 

during February 2004, as well as September-October 2004. Lizards from Mining 2 were sampled 

only during February 2004 and the Control population was sampled only during 

September/October 2004. I permanently marked individual lizards using passive integrated 

transponders (PIT tags; Identipet), with a unique alpha-numeric code. These tags were injected 

subcutaneously into the postero-femoral region of the hind legs. This is a widely used method for 

marking lizards and other animals that has previously been evaluated (Keck 1994; Perret & Joly 
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2002; Gibbons & Andrews 2004). This marking will also aid in future monitoring attempts of 

these populations.  

 

I weighed lizards to the nearest 0.1 g on a digital scale, measured snout-vent length (SVL) and 

tail length to the nearest 1 mm with a ruler and head length, width and height to the nearest 0.1 

mm using digital callipers. I sexed lizards by checking for the presence of generation glands in 

the femoral and forearm regions. These glands are only present in males (van Wyk 1992). I took a 

blood and/or tissue sample (see below), before releasing lizards at the point of capture within one 

day. 

 

Lizard contaminant accumulation  

Because C. giganteus is a species of conservation concern, I used non-lethal techniques for 

obtaining tissue and blood samples. The levels of elements in blood, tissue and urine are known 

to differ due to the half-life of each contaminant, and the affinity of particular cell types for 

different ions.  Blood sampling holds obvious advantages over tissue sampling, being less 

invasive and repeatable on the same individual over time. However, tissue samples from tail 

clippings in reptiles may be more reliable than blood in documenting the accumulation of 

contaminants, due to the composite of blood, skin, bone and tissue found in tail clippings 

(Jackson et al. 2003). Thus, I obtained tissue and blood samples in order to ensure accumulated 

contaminants were detected and for comparative purposes between tail tissue and blood.  I 

removed small amounts of tissue (5-10 mm) from the tips of C. giganteus tails (Hopkins et al. 

2001; Jackson et al. 2003) for analysis of inorganic contaminants. I also obtained a 150 µl blood 

sample from the suborbital sinus of each lizard, using two 75 µl heparinised micro-capillary 

tubes. This procedure is a standard method for obtaining blood from free-ranging lizards (Mautz 

& Nagy 2000; Znari & Nagy 1997; Nagy 1993). Each blood sample was stored in polypropylene 

containers, centrifuged for seven minutes at 3000 rpm and the plasma removed using a 
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micropipette. After removal, the plasma and red blood cells were frozen and returned to the 

laboratory for further analysis.  

 

Inorganic concentrations were quantified for the blood and tissue samples in the laboratory. I 

cleaned all tail tissue and invertebrate samples (not red blood or plasma samples) thoroughly with 

toluene before analysis, to remove external soil and vegetative particles. All samples analyzed 

were dried and then underwent closed microwave digestion in aqua regia (55% solution of nitric 

acid, HNO3 and 32% solution of Hydrochloric acid, HCl), using a Multiwave 3000 microwave 

(Anton Paar).  

 

The digest solutions were cooled to room temperature, and then made up to volume in 50 ml 

graduated PVP volumetric flasks using double-distilled water (Milipore).  The concentrations of 

21 elements were analyzed in triplicate using Inductively Coupled Plasma-Optical Emission 

Spectrometry (ICP-OES) on a Ciros-CCD analyzer (Spectro). Plasma power was set at 1300W; 

coolant flow at 13 l/min; auxiliary flow at 1 l/min; and nebulizer flow at 1 l/min.  

 

By comparing elemental concentrations between lizards from the mining affected sites and lizards 

from areas not affected by mining activity (Rangeland 1 and Rangeland 2: Control) populations, I 

would be able to detect metal uptake in lizards from mining contaminated areas.  

 

Dietary exposure of C. giganteus to inorganic contaminants 

Because C. giganteus are insectivorous, an obvious pathway to exposure is through diet, i.e. 

invertebrates that feed on detrital or plant material that has acquired contaminants via the soil-

water pathway, or predatory invertebrates. A previous study reported on the seasonal dietary 

composition of C. giganteus in some detail (Van Wyk, 2000). Accordingly, I hand-collected as 

many potential prey items as possible during the lizard sampling period. These invertebrates were 
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then assessed for elemental contents. I froze all the invertebrates I collected before removing their 

abdomens (and thus abdominal contents), and drying the remaining tissues. The removal of the 

abdominal contents was done in accordance with standard practice in investigations involving 

accumulation of contaminants in actual tissues of food chain representatives (Sandoval et al. 

2001). The remaining invertebrate samples (entire organisms minus abdominal contents) were 

then cleaned in toluene to remove the antifreeze used in the pitfall traps (see below), as well as 

dissolve surface cuticles and embedded dust or vegetation particles. Concentrations of inorganics 

were also quantified using ICP-OES after microwave digestion in aqua regia. By determining the 

concentrations of inorganics in the invertebrates found in the area, I investigated the potential 

pathway of contaminant transport between the two trophic levels represented by C. giganteus and 

the invertebrates respectively.  

 

Potential effects of inorganic contaminants 

Lizard body condition 

I performed a regression of body weight (log-transformed) on SVL (log-transformed) to obtain an 

index of body condition (Anderholm et al. 2004; Cuadrada 1998; Dunlap & Mathies 2003; Jakob 

et al. 1996), for comparison among sites. Since lizards were sampled from the control site only 

during the final sampling period, I restricted the comparison only to adult lizards caught during 

this period, upon first capture, from all sites. Mining 2 was excluded from analysis due to small 

sample sizes. 

 

Invertebrate abundance  

Because food availability directly impacts body condition, I measured prey abundance at the three 

main sites under investigation [Mining 1, Overgrazed Rangeland and Undisturbed Rangeland 

(Control)]. Since lizards from Mining 2 were not used in comparisons of body condition due to a 

small sample size (n = 7), invertebrate abundance was not measured here. I used a nested-cross 
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array of pitfall traps (Perner & Schueler, 2004) to sample invertebrate abundance. Accordingly, I 

buried 25 unbaited plastic bowls (diameter = 200 mm; depth 150 mm) with their open ends flush 

with the ground.  

 

Individual traps were set out in a cross form, with distances of traps from the centre in increasing 

order: 0.5, 3, 6, 12, 24, and 48 m. Each trap was covered with a metal grid consisting of squares 

small enough to prevent the entry of any small vertebrates. Small amounts of automotive 

antifreeze were used to kill and preserve all invertebrates caught in the traps.  I set 25 traps at 

each site, for a period of four weeks during summer. I checked each trap once a week and 

collected and preserved all trapped insects for later identification in the lab. All insects were 

sorted, identified to the lowest taxon possible (mostly family) and counted.  

Grass cover 

Sungazer lizards have been thought to be very sensitive to changes in general habitat 

characteristics including changes to vegetation type (Jacobsen et al. 1990). Changes in vegetation 

cover can be expected to influence the amount of prey available to the lizards, and thus indirectly, 

the body condition of lizards. Such vegetation cover changes can also be expected to influence 

lizard populations in other ways. For example, thermoregulatory behaviour of lizards may be 

influenced since less vegetation cover may provide more basking opportunity (a potential trade-

off may be found in the potential increase of exposure to aerial predators). I therefore estimated 

the percentage of vegetation cover for each site under investigation. I did this by visually 

estimating the percentage of ground covered by vegetation (aerial cover) in ten 1 x 1 m quadrants 

for each site. An overhead digital photograph was also taken at head height over each quadrant in 

order to obtain a visual archival record. 
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Lizard population sex ratios 

I tested for a significant departure from a 1:1 sex ratio using chi-square tests. Since the sample 

size for Mining 2 was considered too small (n = 7), I only tested the three remaining populations 

(Mining 1, Overgrazed Rangeland and Undisturbed Rangeland).  

 

Data analysis 

Statistical analyses were performed with Statistica (Version 6.1, StatSoft Inc.). Data are reported 

as means ± standard deviations (SD). Statistical significance was set at α = 0.05. 

 

RESULTS 

I captured a total of 198 individual lizards (Mining 1 = 86; Mining 2 = 7; Overgrazed Rangeland 

= 73; Undisturbed Rangeland = 32).  

Lizard elemental concentrations: Tail and blood elemental concentrations between sexes 
 

I initially compared concentrations of 19 elements found in whole blood and tissue between lizard 

sexes (n = 12 males, 12 females). Two elements (Hg and Pb) were below minimum detection 

limits for most of the samples analyzed. None of the elements occurred in significantly different 

concentrations (P = 0.05) between sexes (see Appendix 1, Table A1.1.). Because no differences 

were observed in elemental concentrations between sexes, I subsequently used samples from both 

sexes for all further comparisons between tissue types and populations. 

Lizard elemental concentrations: Tail elemental concentrations between sites 
 

Elemental concentrations found in tail tissue from lizards did not differ significantly between 

sites (see Appendix, Table A1.2). Measured elemental concentrations for lizard tail tissue are 

reported in Table A1.3 (see Appendix). Lead and mercury concentrations were largely below 

minimum detection limits for ICP-OES in the tail samples. 
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Lizard elemental concentrations: Whole blood elemental concentrations between sites 

Significant differences between sites were observed for concentrations of the following elements 

in C. giganteus whole blood samples: Li, Na, Al, S, P, Si, Ca, Cr, Mn, Fe, Ni, Cu, W and Bi 

(Table 1.2; Fig. 1.2 – Fig 1.5). Lead and mercury concentrations were largely below minimum 

detection limits for ICP-OES in the whole blood samples. Samples from Mining 1 had 

significantly higher concentrations of Li, Na, Al, S, Ca, P, Si, Cr, Mn, Fe, Ni, W and Bi, when 

compared with all the other investigated sites. Cu concentrations were only significantly higher in 

individuals from Mining 1 when compared with individuals from Undisturbed Rangeland 

(Control). Tukey test results, confirming the above mentioned differences, are reported in 

Appendix (Table A1.4). 
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Table 1.2: Mean concentrations (μg/g dry mass) ± standard deviations (SD) and one-way 

analysis of variance (ANOVA) results comparing C. giganteus whole blood elemental 

concentrations between sites. Cu concentrations were log-transformed before analysis to meet 

the normal distribution requirements (Kolmogorov-Smirnov D = 0.35; df = 3; P = <0.05). All 

significant P-values are highlighted. 

 

     Mining 1 (n = 3) 
Undisturbed 

Rangeland (n = 4) 
    Mining 2 (n = 4) 

Overgrazed  

   Rangeland (n = 4) 
ANOVA 

 Mean SD Mean SD Mean SD Mean SD F   df P  

Li 8.4 0.9 2.5 0.4 2.9 1.2 3.2 1.5 20.99 3 <0.001 

Na 1441 224.2 647.7 126.7 488.4 255.4 571.2 231.1 13.63 3 <0.001 

Mg 247.1 74.8 118.4 42.1 143.4 107.6 128.7 60 2.01 3 0.17 

Al 62 11.7 19.3 1.8 21.6 11.8 21.4 7.9 16.92 3 <0.001 

Si 24 3.4 7 0.9 8.1 3.8 8.5 3.6 21.43 3 <0.001 

P 22.4 2.8 6.3 1.1 7 3 7.8 3.3 26.07 3 <0.001 

S 6276.3 418.4 1995.3 786.4 2782.4 1836.3 2620.8 1157.9 8.13 3 <0.005 

K 3165.1 1092.9 1147.4 726.5 1932.2 1490.4 1733.4 712.9 2.16 3 0.15 

Ca 266.3 34.9 136.6 56.3 154.8 88.3 87.4 32.5 5.41 3 0.016 

Cr 137.4 15.2 40.6 9.2 44.7 19.6 50.1 22 22.78 3 <0.001 

Mn 13.4 1.6 4 1 3.4 1.4 5.2 2.3 25.8 3 <0.001 

Fe 1677.1 181.9 450.4 170.2 786.5 431.4 725.6 344.4 9.51 3 0.002 

Ni 214 64.9 31.6 5.4 65.6 47.8 46.9 19.4 15.22 3 <0.001 

Cu 87.9 43 6.2 1.6 34 52.3 12.6 5 6.250 3 0.010 

Zn 20.3 8.1 7.6 1.6 12.8 11.5 7.7 4.7 2.15 3 0.151 

W 82.3 6.8 23.9 6.9 27 8.9 28 10 35.76 3 <0.001 

Bi 24 4.1 7.1 1.6 8 3.4 8.3 3.6 20.41 3 <0.001 
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Invertebrate elemental concentrations 

Sample sizes allowed only for comparisons of elemental concentrations found in Tenebrionidae 

(beetles) between areas of different land use (areas known to be affected by mining pollutants vs. 

rangeland). Concentrations of most elements for Tenebrionidae did not differ significantly 

between areas of different land use. Ni and W concentrations were, however, significantly higher 

in beetles from mining areas, when compared with rangelands. Detailed results for the 

comparisons of all other elemental concentrations of beetles between land uses are reported in 

Appendix, Table A1.5.  

 

Site effects on C. giganteus  

Body condition 

All the residual values from all sampled adult lizards were used in an initial t-test to quantify any 

potential differences in condition between sexes. I found no significant difference in body 

condition between sexes (t = -0.88; df = 111; P = 0.379) (see Appendix 1, Fig A1.1). For this 

reason, all adults were combined for subsequent comparisons of body condition between sites. 

Residual values were significantly different between sites (ANOVA F = 30.24; df = 2; P = 

<0.001; Fig. 1.2). A post-hoc Tukey test showed that lizards from Mining 1 and Overgrazed 

Rangeland were in significantly poorer condition than lizards from the Undisturbed Rangeland 

(Control) population. I did not detect any significant differences in condition between lizards 

from Mining 1 and Overgrazed Rangeland. 
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Figure 1.2: Plot of mean residual values (body condition), obtained after regressing log-

transformed body weight over log-transformed SVL of C. giganteus from three localities.  Mean 

(± SD) values are reported. 

 

Prey availability  

Total numbers of invertebrates sampled from the relevant orders and families are reported in 

Table A1.6 (see Appendix) and were used as an index of prey availability. Total numbers of 

relevant invertebrates sampled were significantly different between sites (χ² = 29.589; df = 2; P = 

<0.001). Invertebrate abundance was highest at Mining 1. Overgrazed Rangeland and 

Undisturbed Rangeland (Control) had similar abundances, but showed significantly less insect 

abundance than Mining 1 (Fig. 1.3). 
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Figure 1.3: Total numbers of prey items (invertebrates) sampled at three of the sites. These 

invertebrates were sampled during a four-week period from September to October 2004.  

 

Comparing grass cover between sites 

Significant differences exist in aerial vegetation cover between sites (χ² = 60.91; df = 2; P-value = 

<0.001). Undisturbed Rangeland (Control) had the highest percentage aerial cover (90%), 

followed by Mining 1 (65%), then Overgrazed Rangeland (10%).  Vegetation consisted primarily 

of grasses at all sites. 

 

Population sex ratios 

Neither the Overgrazed Rangeland population nor the Undisturbed Rangeland Control population 

deviated significantly from a 1:1 sex ratio (Overgrazed Rangeland: 32 males: 41 females; χ2 = 

0.555; df = 1; P = 0.758) (Control: 14 males: 18 females; χ2 = 0.25; df = 1; P = 0.882).  The 

observed sex ratio from the Mining 1 population did, however, differ significantly from an 

expected 1:1 ratio, in favour of females (25 males, 61 females; χ2 = 7.535; df = 1; P = 0.023).  
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DISCUSSION 

 

Elemental concentrations in Cordylus giganteus tissue 

Cordylus giganteus accumulates various inorganic contaminants in areas affected by mining 

effluents in the Free State Province. Lizards from Mining 1 (Evaporation Pan) showed elevated 

concentrations of the following elements in whole blood samples: Li, Na, Al, S; Ca, P, Si, Cr, 

Mn, Fe, Ni, W and Bi. These concentrations could rarely be compared with other reported values 

for metal concentrations, especially in reptiles, since very few studies have measured heavy metal 

accumulations in this group. A notable exception is Hopkins et al. (2002), who studied the 

accumulation of a number of metals by banded water snakes (Nerodia fasciata) in organs 

including gonads, kidneys and liver. They found high concentrations of As, S, Cd, Sr, Cu and V. 

All reported concentrations of Cu by Hopkins et al. (2002) were substantially lower than those 

reported here. The highest values reported for Cu in water snakes were less than 60 μg/g dry 

mass, found in the gonads of the snakes fed two years on a contaminated diet with elevated 

concentrations of Cu. Van Eeden (2003) found Cu concentrations of 14.4 μg/g dry mass in blood 

samples obtained from red-knobbed coot (Fulica cristata) occurring around some contaminated 

water sources in the Gauteng Province, South Africa. In contrast, I found mean Cu concentrations 

of 87.9 μg/g dry mass for C. giganteus, measured in blood samples obtained from lizards in the 

Evaporation Pan area.  

 

Other metal concentrations found in blood samples of sungazer lizards from Mining 1 are also 

relatively high when compared with metal concentrations found in various organs of red-knobbed 

coot (Fulica cristata), collected from a contaminated water source in South Africa. Van Eeden & 

Schoonbee (1992) reported mean Ni concentrations of 40.9 μg/g dry mass in red-knobbed coot 

organs. The mean Ni concentration in sungazer lizard blood samples from Mining 1 was 214 μg/g 

dry mass. Also, Van Eeden & Schoonbee (1992) reported mean Cr concentrations of 8.9 μg/g dry 
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mass for the same bird species. This value is also much lower than the mean concentration of 

137.4 μg/g dry mass for C. giganteus blood samples from Mining 1. Fe and Mn concentrations 

compared more favourably between the two investigations. Coot organs were reported to have 

mean concentrations of 1566 μg/g dry mass and 45.2 μg/g dry mass for the two metals 

respectively. My investigation showed mean Fe and Mn concentrations of 1677.1 μg/g dry mass 

and 13.4 μg/g dry mass respectively for blood samples obtained from C. giganteus in the Mining 

1 area. 

 

Besides the above-mentioned metals, lizards from Mining 1 also had higher mean concentrations 

of Li, Na, Al, S, P, Si, W and Bi. Some of the elements which I found to be enriched in lizard 

blood from Mining 1, had also previously been reported as being elevated in the water or 

sediments of the salt pan used for evaporation of mine water on the Mining 1 site, i.e. Li, Na, Al, 

Cr, Mn, Fe and Ni (Weiersbye et al., 2003). While I did not measure metal accumulation in the 

organs (i.e., liver, kidneys and gonads), the high metal concentrations in blood could indicate that 

these organs might also have high concentrations of heavy metals.  

 

Tissue elemental concentrations in males and females 

I found no significant differences in concentrations of all the elements investigated between sexes 

of C. giganteus. In contrast, Burger et al. (2004) documented differences in metal concentrations 

measured between sexes of Anolis sagrei. They discovered generally higher concentrations of 

most metals measured in females. These differences were attributed to differences in diet due to 

microhabitat differences in foraging locations (females tending to feed closer to the ground than 

males, which tend to feed on tree trunks and branches). The similar elemental concentrations for 

male and female C. giganteus is not surprising, since no known feeding or other behavioural 

differences exist between sexes of this lizard species (van Wyk 1992). It is thus expected that 

 22 
 



lizards from both sexes would be exposed to the same environmental contaminants, if exposure is 

dietary related, or through direct contact with contaminated soil. 

 

Dietary exposure of C. giganteus to inorganic contaminants 

Potential pathways of exposure to inorganic contaminants by C. giganteus include exposure 

through diet (i.e. the ingestion of contaminated prey items), as well as through direct contact with 

contaminants found in the soils inhabited by lizards. Most of the controlled ecotoxicological 

experiments on reptiles have focused on the obvious potential accumulation of contaminants 

through diet (see Hopkins et al. 2001; 2002; 2005). I only found significantly elevated 

concentrations of Ni and W in beetles from areas affected by mining contaminants (Mining 1 and 

Mining 2). The lack of elevated concentrations of the other elements analyzed (particularly Li, 

Na, Al, S; Ca, P, Si, Cr, Mn, Fe, and Bi) in beetles from mining affected areas does not exclude 

diet as a pathway of exposure for these elements. Rather, this may indicate that either the 

sampling was inadequate, or that the subsets of invertebrates analyzed for elemental content in 

this study are not accumulating significant concentrations of any of the inorganic contaminants 

investigated. Based on other studies (e.g. Hopkins et al. 2001; 2002; 2005), it is likely that C. 

giganteus may be exposed to inorganic contaminants through diet, and this aspect requires further 

investigation before diet can be excluded as a pathway of potential exposure.  

 

It is possible that the lizards on Mining 1 (Evaporation Pan) and other areas affected by mining 

contaminants also accumulate inorganic contaminants through direct exposure. Van Wyk (2000) 

reported finding substantial amounts of soil and grass in the stomach contents of C. giganteus. It 

is thus possible that lizards accumulate contaminants through the accidental ingestion of soil and 

vegetation, during prey capture. Also, gut contents of the prey items (which were removed before 

measuring elemental concentrations in invertebrates) can be high in inorganic contaminants and 

the lizards would ingest these. I washed the insects and removed gut contents in accordance with 
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best practise for food chain studies requiring knowledge of metal accumulation contents in actual 

invertebrate tissues. However, this probably resulted in an underestimation of the actual amount 

of total elements ingested by lizards (i.e. as soil contamination on prey items, and via gut 

contents). Direct exposure could also potentially include the direct absorption of any of these 

contaminants through the skins of lizards, although this is an unlikely pathway of exposure.  

 

Physiological costs of exposure to inorganic contaminants 

The effects of inorganic contaminants on reptiles are very poorly understood. In fact, no adult 

reptile mortality due to metal intoxication has ever been reported (Linder & Grillitsch 2000). A 

few studies have documented contaminant concentrations in certain reptiles (mostly turtles and 

alligators), but not the actual biological effects associated with high concentrations of such 

contaminants (Hopkins et al. 1999). A notable exception is Hopkins et al. (2002), who reported 

that high concentrations of six elements (As, Cd, Cu, Se, Sr and V), accumulated through 

contaminated diet, did not negatively affect food consumption, growth, condition factor, 

overwinter survival and mass loss, metabolic rate as well as gonadosomatic indices in banded 

water snakes (Nerodia fasciata). However, Brasfield et al. (2004) found acute mortality in fence 

lizard (Sceloporus undulates) eggs that had been exposed to high concentrations of Cd.   

 

Cordylus giganteus lizards from Undisturbed Rangelands were in a significantly better condition 

than lizards sampled from Overgrazed Rangeland and Mining 1. The amount of prey items 

available to lizards at these sites may have influenced the condition of lizards. However, I found 

that the Mining 1 site had the highest prey availability and significantly more prey items than the 

other two sites (Overgrazed Rangeland and Undisturbed Rangeland). Since the vegetation was 

extremely sparse and the amount of grass cover very low (~10%) at the Overgrazed Rangeland 

site, it is not surprising that invertebrate abundance was lower at this site. In contrast, the 

Undisturbed Rangeland site had a very high percentage of grass cover (~90%), yet low prey 
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availability. This may have been the result of some cold weather experienced during the 

invertebrate sampling period for this area, reducing invertebrate activity. Since my investigation 

did not reveal any inorganic contaminant accumulation in these lizards and no environmental 

pollution has been reported for the immediate area around the Overgrazed Rangeland site, it is 

unlikely that mining related environmental contamination affects the condition of these lizards. 

Rather, low prey availability is the most likely explanation of the relatively poor body condition 

of lizards on this site.  

 

Lizards from Mining 1 have been shown to accumulate very high concentrations of inorganic 

contaminants when compared with lizards from all other sites. These include Li, Na, Al, S, Ca, P, 

Si, Cr, Mn, Fe, Ni, W and B in blood. Also, Cu concentrations measured in lizards from Mining 1 

were significantly higher than the concentrations measured from populations unaffected by 

mining contaminants. Lizards from this site are also in comparatively poor condition (similar in 

condition to lizards from Overgrazed Rangeland). Since prey availability is significantly higher 

on this site than the other study sites, it is unlikely that a shortage of prey is affecting the 

condition of lizards on this site.  A potential cause for the lower body condition of lizards at the 

Mining 1 (Evaporation Pan) would appear to be the high concentrations of inorganic 

contaminants they are exposed to (and are accumulating in blood). However, a direct link 

between the contaminant accumulation and the loss of physiological condition has not been 

demonstrated and it is possible that other environmental variables may be affecting the condition 

of lizards from this site.  

 

Potential inorganic contaminant effects on populations 

Mining 1 had significantly fewer male lizards when compared with the other two sites (29% 

male, compared with 44% for the other sites). Van Wyk (1992) and Ruddock (2000) did not 

report any significant gender based differences for feeding behaviour in these lizards that could 
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potentially lead to higher levels of contaminant accumulation by either of the sexes. Furthermore, 

no significant differences were observed when concentrations of the various metals in blood and 

tail tissue were compared between sexes. Some studies have provided evidence that inorganic 

contaminants may affect individuals of a specific sex more than the other (see Burger et al. 2004 

and Larison et al. 2000). While my study does not provide conclusive evidence, it does suggest 

the possibility that the lizard exposure to inorganic contaminants at Mining 1 has influenced the 

population sex ratio at that site. The lack of difference in elemental concentrations between sexes 

of this lizard, however, weakens this argument and further investigations into the potential 

endocrine disrupting influence of the inorganic contaminants need to be undertaken.  

 

CONCLUSION 

 

The results of my study indicate that inorganic contaminants emanating from gold mining 

effluents, as well as over-grazing, may have a negative impact on populations of C. giganteus in 

the Welkom area of the Free State Province. Lizards from a mining contaminated site have 

accumulated Li, Na, Al, S, Ca, P, Si, Cr, Mn, Fe, Cu, Ni, W and Bi in blood. The effects of 

accumulation of these contaminants on lizards are poorly understood, but a potential cost of this, 

and of overgrazing, could be a reduction of body condition in individual lizards. Also, the skewed 

sex ratio exhibited by the mining influenced population, indicates a potential population level 

effect of exposure to inorganic contaminants. Since C. giganteus is already considered to be a 

threatened species, further research into the exact effects of mining related contaminants on this 

species is critical. Also, the overall conservation status of this species on the highveld needs to be 

assessed, in order to quantify the threat posed to this species by land disturbance and the gold 

mine emissions, as well as to facilitate future monitoring of restoration efforts.  
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CHAPTER 2: CONSERVATION AND MANAGEMENT RECOMMENDATIONS FOR 

CORDYLUS GIGANTEUS IN THE WELKOM AREA OF THE FREE STATE PROVINCE 

 

INTRODUCTION 

 

Reptiles are considered to be important components of terrestrial ecosystems, being integral to 

many food webs (Lambert 1997). Lizards in particular, are predators and prey of vertebrates, as 

well as invertebrates. They are thus crucial to the proper functioning of many ecological processes 

(Campbell & Campbell 2000). For these reasons, it is very important on a community level, to 

understand the potential effects of contaminants on reptiles. Lizards, especially, are considered to 

be susceptible to the bioaccumulation of persistent environmental contaminants because they are 

often secondary and tertiary predators in the systems in which they occur (Bishop & Gendron 

1998). Also, in contrast to birds and mammals, lizards have relatively weak dispersal abilities, 

making them good indicators of localized terrestrial habitat quality (Lambert 1993). 

 

Here, I discuss the potential effects that inorganic contaminants have on populations of threatened 

sungazer lizards, Cordylus giganteus. Potential conservation measures for these populations of 

lizard are explored. I also report on the estimated population size of C. giganteus at Mining 1 

(Evaporation Pan) – a preliminary result from a mark-recapture study. Furthermore, I highlight the 

need for relevant future research to aid in conservation related decisions. 

  

INORGANIC POLLUTANT EFFECTS ON SUNGAZER LIZARDS 

 

It is evident from my investigation that inorganic contaminants emanating from mining 

operations in the Welkom area of the Free State Province are affecting populations of the 

threatened lizard, C. giganteus. I showed that individuals from the Evaporation pan in 

 27 
 



particular, are accumulating abnormally high concentrations of Li, Na, Al, S, Ca, P, Si, Cr, Mn, 

Fe, Ni, Cu, W and Bi (Chapter 1). The potential effects of this accumulation are poorly 

understood. Nevertheless, exposures to high concentrations of some of these elements have 

been shown to have severe negative effects on other vertebrates. For example, rats have 

exhibited anaemia from exposure to high Al concentrations through drinking water (Farina et 

al. 2005). This included decreased red blood cells, blood haemoglobin and hematocrit. 

Unfortunately, no blood Al levels were reported in this study. Lizards from the Evaporation pan 

had far higher blood concentrations of Al (62 μg/g dry mass) when compared with lizards from 

any of the other populations sampled (Undisturbed Rangeland = 19.3 μg/g dry mass; Slimes 

dam = 21.6 μg/g dry mass; Overgrazed Rangeland = 21.4 μg/g dry mass). 

 

Elevated concentrations of Cu have also been shown to have deleterious effects on vertebrates. 

Gaetke & Chow (2003) reported liver cirrhoses as well as severe gastrointestinal effects of Cu 

exposure in humans. Fish also suffered oxidative stress in liver tissue (Sanchez et al. 2005). 

Both the Evaporation pan and Slimes dam lizards (populations affected by mining effluents) 

had abnormally high blood concentrations of Cu, albeit the latter were still much lower than the 

former.  The Evaporation Pan lizards displayed mean concentrations of 87.9 μg/g dry mass of 

Cu (compared with the control site concentrations of 6.2 μg/g dry mass). 

 

Muralidhara (2005) reported oxidative stress in the testes of mice exposed to high 

concentrations of Fe. Evaporation pan lizards showed significantly elevated concentrations of 

Fe in blood samples (1677.1 μg/g dry mass, compared to control population concentrations of 

450.4 μg/g dry mass). Exposures to high concentrations of Cr have also been shown to have 

definite negative effects on vertebrates. Elbetieha & Al-Hamood (1997) reported that mice 

displayed lowered fertility and reproductive potential when exposed to high Cr concentrations. 
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Evaporation pan lizards had the highest blood concentrations of this metal as well (137.4μg/g 

dry mass, compared to control concentrations of 40.6 μg/g dry mass). 

 

While the physiological effects of exposure to inorganic contaminants are not fully understood, 

I have also demonstrated that lizards from the contaminated site, as well as the overgrazed site, 

are in poorer condition than lizards from a control population. Furthermore, the adult sex ratio 

of the Evaporation Pan population was significantly skewed towards females. This may be the 

result of male lizards being more vulnerable to negative effects associated with the high levels 

of inorganic contamination.  The means whereby individuals are exposed to the contaminants at 

Evaporation Pan has not been identified conclusively, but is likely to be through (1) prey 

ingestion, (2) direct contact and/or (3) indirect ingestion of contaminated soil.  Although the 

invertebrates analyzed from the Evaporation Pan did not contain abnormally high inorganic 

concentrations (Chapter 1), I excluded the possibility of surface contamination and gut contents, 

both of which would increase the elemental load consumed by C. giganteus. I also did not 

assess the amounts of metals excreted in the faeces of C. giganteus in order to determine the 

assimilation efficiencies for the various contaminants. 

CONSERVATION MEASURES 

Since very little is currently known regarding the overall health of C. giganteus populations 

across the Free State Province, the conservation value of the Mining 1 (Evaporation pan) 

population cannot be gauged. For the same reason, however, the value of the Evaporation Pan 

population cannot be underestimated. It is thus important that all possible conservation 

measures be carefully considered and implemented. These may include:   
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(1) Site remediation:  

With much potential for further threat on an already threatened species of reptile, a 

precautionary approach would involve the removal of as much of the threat posed by inorganic 

contaminants as possible. Thus, the remediation of the Evaporation Pan site is a priority 

conservation measure. Whilst the exact manner of remediation is beyond the scope of this 

investigation, it is worth pointing out that some conventional techniques are not applicable. 

Excavation, compacting, ripping, grading and drainage of soils, alongside the addition of 

topsoil and organic wastes are all commonly employed methods of remediation (Wong 2003). 

These high disturbance techniques are not appropriate for the contaminated areas (two pans and 

a drainage line), because of the direct threat posed to existing lizard populations that live in 

burrows on the adjacent grasslands. Rather, the use of pollution control at source to prevent any 

further discharges, and low-disturbance evaporation and crust removal from the pans and 

drainage lines, followed by phytoremediation techniques on the pan itself are recommended 

(Weiersbye & Cukrowska 2005).  Evaporation involves the removal of pollutant and salt crusts 

that form every winter on the pan (evaporation exceeding rainfall by 2.5x in this region), 

whereas phytoextraction uses tolerant green plants and their associated microbiota to remove 

and concentrate environmental contaminants (Cunningham & Owe 1996; Wong 2003).  

 

Evaporative transport, crust removal and phytoextraction appear to be the least invasive 

measures of reducing the concentrations of inorganic contaminants in the soils and groundwater 

at the Evaporation Pan. Phytoremedition, however, would have to exclude all species known to 

invade grasslands (indigenous as well as exotic invasives), and have to be carefully 

implemented on the pollution point sources only (i.e. on and around the base of the slimes 

dams, and only on the evaporation pans themselves) in order to prevent drastic changes in 

general habitat (e.g. more woody species in a grassland). Cordylus giganteus only occurs in 

highveld grasslands (Jacobsen et al. 1990). Thus, it is important that the choices of suitable 
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vegetation be carefully considered, and strategically planted on the pollutant point sources only, 

so as not to alter major habitat characteristics. Furthermore, key microhabitat requirements for 

C. giganteus need to be identified in order to ensure that these are not negatively affected by 

potential rehabilitation techniques. 

 

(2) Applying a precautionary principle with current conservation tools, specifically 

translocations 

Many conservation biologists have debated the effectiveness of translocations as a conservation 

tool for reptiles and amphibians over the past decades (for detailed discussions see Burke 1991; 

Dodd & Seigel 1991; Griffith et al. 1989; Reinert 1991; Seigel & Dodd 1992; Taubes 1992 and 

Trenham & Marsh 2002). Some successes have been reported with translocations of lizards in 

New Zealand. These include translocations of specific skink species (Towns & Ferreira 2002) 

and notably, populations of tuatara (Sphenodon guntheri) (Nelson et al. 2002). However, there 

are risks involved in the translocations of any naturally occurring reptile populations. Some of 

these risks include the spreading of diseases and parasitic organisms to populations of 

previously unexposed reptiles (Cunningham 1996). Also, various known and unknown genetic 

impacts may be made on already existing populations of reptiles (Whiting 1997). In addition, 

the levels of contaminants found in the lizards on the most contaminated site could result in 

genetic damage, and therefore the Evaporation Pan populations should not be ‘rescued’ by 

translocation to clean populations, in case this impairs the latter population as well.   

 

Translocations of C. giganteus have been attempted a number of times previously (Jacobsen et 

al. 1990; Groenewald 1992; J. Hardy, DTEEA Nature Conservation pers. comm.; Newbery 

1992; Newbery et al. 1992). Many of these translocations have not been as successful as hoped 

(Groenewald 1992). Also, the successes of most translocation attempts have simply not been 

assessed (van Wyk pers. comm.). DTEEA Nature Conservation officials translocated lizards 
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from other populations at Welkom (which were scheduled for mine construction activities) to 

augment an existing population at the evaporation pan (i.e. the most contaminated site), as well 

as to other sites in the Welkom area (J. Hardy pers. comm.). These translocation attempts were 

unfortunately not recorded or followed-up to ascertain success rates, and the translocation of 

lizards to the most contaminated mining site has resulted in their exposure to contaminants. 

This exposure may be resulting in impairment of the population, and hence increased liability 

for gold mining companies that manage the Mining 1 site. Also, many of these translocation 

operations seem to have taken place in somewhat haphazard fashion and operations have simply 

not been set up in ways to facilitate accurate monitoring.  

 

With many potential risks involved in the translocation of populations of C. giganteus around 

mining sites, and no quantitative data available regarding the success of such attempts, it is 

advisable to avoid such operations until their effectiveness can be assessed. Further research 

into the microhabitat preferences of C. giganteus will also aid in the suitability assessments of 

sites for new populations.  

 

POPULATION SIZE AT MINING 1 

 (EVAPORATION PAN) 

 

In order to obtain baseline information on population ecology of C. giganteus at the mine 

evaporation pan (the most contaminated site), I instigated a mark-recapture study. Immediate 

estimates of the population size at this site will assist the mining company in ascertaining the 

success of their pan rehabilitation measures in the long term. A once-off population estimate is 

of limited value because no population trends can be estimated from this. Nevertheless, future 

population investigations at this site will be able to use these data as part of any long-term 

mark-recapture studies. Unfortunately, I only had sufficient sample sizes for the mine 
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evaporation pan population; there were insufficient animals found at the second mining site 

(only seven animals were captured). 

 

I used the Peterson method, as described in Krebs (1989). This specific method is applicable to 

closed populations. While I cannot be sure that the population at the evaporation pan is closed, 

the sedentary nature of these lizards make it unlikely that significant emigration or immigration 

takes place, particularly over the relatively brief duration of this study. Further underlying 

assumptions include that there is no heterogeneity between animals in their catchability, that 

there is no trap response, that catching and marking do not affect mortality or emigration rates, 

and that emigration is not permanent (Krebs 1989).  

 

Two samples were taken at the evaporation pan. Each sample consisted of all the adult lizards 

captured during ten days of sampling, ensuring the entire study area was covered per sample. 

These samples were taken during 4 - 14 February 2004 and 20 - 30 September 2004. I caught 

lizards using noose traps, each consisting of a peg knocked into the ground next to each 

individual burrow and an attached nylon noose in the entrance of each burrow. Traps were 

monitored continuously to ensure that no lizards died while caught in traps. I set nooses at all 

known burrows. Trapping effort per burrow continued for two days or until an adult resident 

was caught. All captured lizards were permanently marked with Passive Integrated Transponder 

(P.I.T.) tags (each tag having a unique alpha-numeric code). These I injected subcutaneously 

into the postero-femoral region of the right hind leg of individual lizards.  

 

Population size was estimated using the following parameters in Krebs (1989): 

 M = number of individuals marked in the first sample 

 C = total number of individuals captured in the second sample 

 R = number of individuals in second sample that were marked 
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From these three variables I was able to obtain an estimate of 

 N = size of the population at the time of marking 

 

The estimator I used to calculate N was from Bailey (1952): 

 N = M(C+1) / R+1 

 

Ninety-five percent confidence intervals were estimated using the normal equation as set out in 

Krebs (1989): 

 

 R/C +- {Za[√[(1-f)(R/C)(1-R/C)] / C-1] + 1/2C} 

 where Za = 1.96, for 95% confidence interval. 

 

A total of 69 adult lizards from both sexes were marked during the first sampling period 

(February 2004). My trapping method excluded the capture of juveniles. Thus, while juveniles 

were present in the population, only the adult population size could be calculated. 

Subsequently, 34 of 50 adult lizards captured during the second sampling period (September 

2004) were recaptures of marked individuals. A population size estimate (N) was calculated as 

101 (95% CI: 88.2 - 118.4). The total population of C. giganteus in the Evaporation pan site is 

thus estimated as being between 88 and 119 adult individuals, with an unknown number of 

juveniles. 
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CONCLUSION: RESEARCH NEEDS & FUTURE DIRECTIONS 

 

Reptile ecotoxicology, especially involving inorganic contaminants, is a relatively new field 

(Hopkins 2000; Linder & Grillitsch 2000). There is a general paucity of information regarding 

the accumulation of inorganic contaminants and the effects of such accumulation, on reptiles. 

One of the problems faced by reptile ecotoxicologists is that the effects of environmental 

contaminants on reptiles cannot be predicted with toxicity thresholds established from other 

vertebrates, due to reptiles’ unique combinations of physiological and life history characteristics 

(Campbell & Campbell 2002). Thus, the need exists for very specific investigations using 

applicable reptile species and standardised investigation techniques. Linder & Grillitch (2000) 

made some recommendations regarding future research needs. Their recommendations include 

research into: 

- The regulatory capacity of reptiles: This includes the ability of reptiles to 

acclimate and adapt to contaminated environments.  

- The remobilization of metals during major stress phases, including hibernation 

and reproduction. 

- Critical organ and tissue concentrations of individual elements. 

- Biomarkers of adverse effects. These may include various physiological 

indicators such as hormonal levels and the effects of inorganic contaminants 

on these. 

While we know that mining contaminants are being accumulated by (and probably negatively 

affect) populations of C. giganteus, more information is required to make adequate 

conservation recommendations. Future studies regarding pollutant effects on C. giganteus 

should include firstly, investigations into the fitness consequences of metal accumulation in this 

lizard. Well-controlled and standardized techniques should be applied here. Due to the 
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conservation concern for this species, it is perhaps important to use a substitute (and not 

threatened) species of lizard for any lab-based studies into individual pollutant effects. Second, 

the manner in which environmental contaminants affect population viability and fitness of this 

threatened lizard needs to be investigated. Long-term monitoring of the population at the mine 

evaporation pan is recommended in order to determine potential population level effects.  

The mine evaporation pan population of sungazer lizards presents an opportunity for further 

investigation into the apparent effects of contaminant exposure on reptiles. Lizards here have 

been shown to accumulate high concentrations of various inorganic contaminants, and the 

population size appears large enough for most field investigations.  This study has provided a 

base-line for the long-term monitoring of sungazer lizard contaminant levels and population 

health in order to assist the mining company and the regulators in determining the success of 

their remediation measures.  
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APPENDIX  

 

Table A1.1: One-way Analysis of Variance (ANOVA) results comparing elemental 

concentrations measured in C. giganteus between sexes, using whole blood and tissue 

samples. There were no sex effects. 

 

Element F df P 

Li 0.02 1 0.8796 

Na 0.01 1 0.924 

Mg 0.28 1 0.5953 

Al 0.41 1 0.5237 

Si 0.11 1 0.7436 

S 0.06 1 0.8051 

K 0.23 1 0.6367 

Ca 0.04 1 0.8412 

Cr 0.05 1 0.8294 

Mn 0.36 1 0.5499 

Fe 0.15 1 0.7015 

Ni 0.07 1 0.79 

Cu 0.1 1 0.7585 

Zn 0.23 1 0.6298 

W 0.04 1 0.8484 

Bi 0.05 1 0.8298 

P 0.22 1 0.6388 

Ti 0.71 1 0.4056 

Ba 0.04 1 0.8521 
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Table A1.2: One-way analysis of variance (ANOVA) results for elemental concentrations 

from lizard tissue samples. Concentrations of Li, Na, Si, P, Cu, Ba and Bi were log-

tranformed before analysis to meet normal distribution requirements. No significant 

differences were found between sites. 

 

 Kolmogorov-Smirnov ANOVA 

 D df P F df P 

Li 0.315 3 <0.05 1.045 3 0.383 

Na 2.72 3 <0.05 2.655 3 0.064 

Mg   n.s. 0.991 3 0.417 

Al   n.s. 1.521 3 0.239 

Si 0.290 3 <0.05 0.602 3 0.618 

P 0.279 3 <0.05 1.804 3 0.165 

S   n.s. 0.817 3 0.499 

K   n.s. 1.599 3 0.23 

Ca   n.s. 0.869 3 0.473 

TI   n.s. 0.412 3 0.746 

Mn   n.s. 1.715 3 0.196 

Fe   n.s. 0.549 3 0.654 

Cu 0.446 3 <0.01 2.182 3 0.108 

Zn   n.s. 3.017 3 0.054 

Ba 0.288 3 <0.05 0.903 3 0.457 

Bi 0.281 3 <0.05 0.545 3 0.655 
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Table A1.3: Mean concentrations (μg/g dry mass) and standard deviations (SD) of all 

elements sampled in C. giganteus tail tissue for each of the four sites. 

 

 

Mining 1 (Evaporation pan) 

n=3 

Undisturbed Rangeland

n=4 

Mining 2 (slimes dam) 

n=4 

Overgrazed Rangeland

n=4 

 Mean SD Mean SD Mean SD Mean SD 

Li 2.5 1.5 1.8 0.1 2.5 0.3 3.0 0.9 

Na 703.4 318.5 643.8 94.2 562.4 43.5 747.7 199.0 

Mg 2392.9 507.6 2618.3 393.3 2105.9 151.4 2351.1 268.8 

Al 167.2 152.1 135.4 16.3 220.7 112.9 303.2 92.9 

Si 22.7 19.0 30.1 6.4 25.0 10.4 74.4 67.7 

P  11.8 18.2 15.1 6.8 12.3 10.3 58.3 63.5 

S  8031.2 3804.7 10397.6 4603.1 6366.5 789.4 77900.0 4055.9 

K  927.6 640.3 411.2 140.8 579.9 229.7 538.1 72.8 

Ca 118530.4 21598.1 133002.8 22479.5 110850.1 5773.6 120916.3 20281.6 

Ti 21.3 19.6 16.7 0.5 26.1 10.1 28.7 19.7 

Cr 32.1 20.5 26.0 0.7 26.3 0.7 34.3 14.5 

Mn 11.3 4.9 8.7 1.2 13.7 5.8 16.5 7.8 

Fe 406.2 404.1 264.2 21.1 452.7 183.4 547.4 212.6 

Ni 41.0 57.5 20.6 1.7 23.1 2.5 26.7 14.8 

Cu 18.7 35.7 5.8 1.8 7.3 2.3 7.4 4.1 

Zn 179.6 25.8 147.5 6.0 150.4 27.0 163.1 13.6 

W 20.6 17.6 18.7 2.0 14.7 3.5 19.2 9.2 

Bi 23.8 20.8 32.2 7.3 26.8 11.6 79.8 71.9 

Ba 57.5 29.6 59.2 10.2 51.7 11.8 128.3 101.9 
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Table A1.4: Tukey test results indicating between which sites significant differences occurred 

in elemental concentrations obtained from whole blood samples. M1 = Mining 1; M2 = 

Mining 2; R = Overgrazed Rangeland; C = Undisturbed Rangeland (Control). 

 

 M1-R M1-M2 M1-C R-M1 R-M2 R-C M2-M1 M2-R M2-C C-M1 C-R C-M2 

Li X X X X   X   X   

Na X X  X   X      

Mg             

Al X X X X   X   X   

Si X X X X   X   X   

P X X X X   X   X   

S   X       X   

K             

Ca X   X         

Cr X X X X   X   X   

Mn X X X X   X   X   

Fe   X       X   

Ni X X X X   X   X   

Cu X  X X      X   

Zn             

W X X X X   X   X   

Bi X X X X   X   X   
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Table A1.5: Mean concentrations (μg/g dry mass), standard deviations (SD) and one-way 

analysis of variance (ANOVA) results of elements in all beetle samples between areas of 

differing land use (mining contaminant affected vs. rangeland). Concentrations of Al, Si, P, 

Ca, Ti, Fe and Bi were log-transformed before analysis to meet the normal distribution 

requirements. Significant p-values are highlighted. 

 

 Mining (n = 5) Rangeland (n = 3) Kolgorov-
Smirnov  ANOVA   

 Mean SD Mean SD D df P F df P 
Li 4.1 1.1 234.7 402.0  1 n.s. 1.85 1 0.223 
Na 556.7 126.4 431.6 51.2  1 n.s. 2.55 1 0.162 
Mg 1032.5 331.9 979.4 146.9  1 n.s. 0.07 1 0.807 
Al 389.5 268.0 279.6 99.2 0.40 1 <0.01 0.45 1 0.525 
Si 54.1 33.5 36.5 8.7 0.40 1 <0.01 0.93 1 0.371 
P 49.9 32.5 33.3 8.5 0.39 1 0.012 0.87 1 0.388 
S 8553.0 3957.8 4333.7 601.5  1 n.s. 3.16 1 0.126 
K 4072.5 656.1 3387.4 699.6  1 n.s. 1.95 1 0.212 
Ca 695.9 164.7 733.8 136.9 0.35 1 0.042 0.16 1 0.705 
Ti 64.1 48.5 53.1 17.3 0.40 1 <0.01 0.03 1 0.868 
Cr 56.9 14.7 35.7 4.1  1 n.s. 5.63 1 0.055 
Mn 55.0 14.6 41.8 4.4  1 n.s. 2.19 1 0.189 
Fe 1045.9 488.8 788.7 264.6 0.38 1 0.017 0.83 1 0.399 
Ni 64.6 19.9 33.7 1.4  1 n.s. 6.77 1 0.041 
Cu 35.0 10.8 20.9 2.8  1 n.s. 4.64 1 0.075 
Zn 293.5 58.3 268.2 19.8  1 n.s. 0.50 1 0.506 
W 29.5 7.9 13.1 1.5  1 n.s. 12.06 1 0.013 
Bi 56.5 37.1 37.8 9.9 0.40 1 <0.01 0.83 1 0.396 
Ba 9.2 9.1 1.6 1.2  1 n.s. 1.38 1 0.361 
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Figure A1.1: Residual values (indicating physiological body condition) for both sexes of C. 

giganteus lizards sampled from all sites. 
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Table A1.6: Total amounts of invertebrates sampled from study sites. M1 = Mining 1; R = 

Overgrazed Rangeland; C = Undisturbed Rangeland (Control). 

                                                                                          Site 

 M 1 R C 

ARACHNIDA 
Araneae 253 108 63 

Solipugida 59 16 0 

INSECTA 

COLEOPTERA   

Histeridae 372 264 238 

Coccinelidae 1 0 0 

Carabidae 1 0 0 

Undetermined 175 57 195 

HYMENOPTERA   

Eumenidae 5 1 3 

Formicidae 757 989 724 

Sphecidae 72 24 16 

Undetermined 222 87 116 

ISOPTERA 

Hodotermitidae 12 124 0 

LEPIDOPTERA 95 169 257 

MANTODEA   

Thespidae 0 1 0 

Undetermined 28 0 0 

ORTHOPTERA   

Acrididae 1 0 1 

Undetermined 6 1 95 

PHASMATODEA 7 1 0
BLATTODEA    
Blaberidae 0 0 7 

Blatellidae 0 0 45 

Blattidae 0 0 1 

Blattodea Undetermined 6 0 52 

HEMIPTERA      
Acanthosomidae 0 0 2 

Pyrrhocoridae 0 0 2 

Riduviidae 0 1 8 

Hemiptera Undetermined 43 0 3 
Undetermined Insecta 7 26 33 

TOTAL 2122 1869 1861 
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