
Open Standard Query Interface for
Geospatial Databases in OSA /
Parlay

Lebogang Kenneth Masenya

A project report submitted to the Faculty of Engineering and the Built Environment,

University of the Witwatersrand, Johannesburg, South Africa, in partial fulfilment

of the requirements for the degree of Master of Science in Engineering.

Johannesburg, October 2001

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/39664354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I declare that this project report is my own, unaided work, except where otherwise

acknowledged. It is being submitted for the degree of Master of Science in Engi-

neering in the University of the Witwatersrand, Johannesburg, South Africa. It has

not been submitted before for any degree or examination in any other university.

Signed this day of 20

Lebogang Kenneth Masenya.

i

Abstract

Telecommunication networks have evolved from voice only single service networks

to multimedia networks providing bearer services such as voice, data and video

transportation. Moreover, these networks, collectively called Next Generation Net-

works (NGNs), enable rapid creation, deployment and management of advanced

services in an efficient manner. However, the initial business model of telcos was

to internally develop and provide these advanced services to customers. In this mo-

nopolized environment, service development is driven by technological availability

rather than customer demands. Furthermore, vendor specific network elements pro-

hibit the development of re-useable service components, which in turn increases

the time-to-market of services. Deregulation and advances in Distributed Comput-

ing Systems (DCSs) are driving towards open networks and rapid service delivery.

Third party Application Service Providers (ASPs) are envisioned to develop and

supply the services, with the telco providing bearer services. The use of softswitch

architectures such as Open Service Access (OSA) / Parlay (OSA / Parlay) in an

open NGN environment abstract services from core network elements through its

Application Programming Interface (API). Services are thus decoupled from ven-

dor and protocol specific network equipment and can be provided across a plethora

of network architectures. One major advantage of NGN is the ability to provide

bearer service in a mobile environment. Location Based Services (LBSs) are envis-

aged to be an important class of services provided in the NGN environment. For an

LBS service to be complete, a geospatial database is necessary to provide location

information. This report documents the design and implementation of a Geospa-

tial Data Access Service Capability Feature (GDASCF) as an extension to the OSA

/ Parlay gateway. The GDASCF encapsulates necessary APIs that offer uniform

access to query geospatial databases. One key component of the design is the real-

ization of the Adapter layer which adapts function calls to an appropriate Database

Management System (DBMS). The introduction of the GDASCF and Adapter layer

provides a solution which results in flexible and rapid service creation.

ii

Acknowledgements

The following research was conducted under the endorsement of the Center for

Telecommunications Access and Services (CeTAS) and the Information Engineer-

ing Research Programme (IERP) at the University of the Witwatersrand, Johannes-

burg, South Africa. CeTAS is funded by Telkom SA Limited, Siemens Telecommu-

nications and the Department of Trade and Industry’s THRIP programme. I would

also like to give thanks to the National Research Foundation (NRF). Their financial

support is much appreciated.

I would like to extend thanks to my supervisors, Prof. Hu Hanrahan, Prof. Barry

Dwolatzky and Prof. Rex van Olst for their kind supervision and valuable input

towards this research. In addition, I would like to thank Nkosinathi Khoza, Sefako

Tholo, Ted Mwakabaga and my other colleagues and friends for their valuable sup-

port during the research. Finally, I would like to thank my parents (Dikgale and

Suzan Masenya), brothers (Brian and Keletso Masenya), sisters (Lerato and Kwena

Masenya) and my nephew (Paballo Masenya) for their love, support and patience

throughout my tertiary studies. Without them, I would have lost site of my goals

and aspirations.

iii

Contents

Declaration i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures viii

1 Introduction 1

1.1 Background . 1

1.2 Emerging Business Case . 2

1.3 Characteristics of Applications and their Execution Environment . . 4

1.3.1 The “My Nearest” type of services 4

1.4 Requirements for Content Providers 6

1.4.1 Handling Different Content 7

1.4.2 Handling Different Devices 8

1.4.3 Deployment of Mobile Applications 9

iv

1.4.4 Working with Different Providers 9

1.5 Location Based Services with OSA / Parlay 9

1.6 Overview of Research Report . 10

2 OSA / Parlay Overview 12

2.1 Background on OSA / Parlay . 12

2.2 OSA / Parlay Architecture . 13

2.2.1 Logical Architecture . 13

2.2.2 Physical Architecture . 14

2.2.3 Role of the Parlay Framework 15

2.2.4 Security Issues . 17

2.2.5 Scalability Issues . 18

2.3 Support for Location Based Services 18

3 Design of the OSA / Parlay Geospatial Data Access SCF 20

3.1 Proposed Architecture . 20

3.2 Design Requirements and Constraints 22

3.3 Design Methodology . 23

3.3.1 Use Case Modelling . 23

3.3.2 Use Cases . 24

3.3.3 Sequence Diagrams . 30

4 Implementation of The Geospatial Data Access SCF 38

v

4.1 Implementation Approach . 38

4.2 Deployment of Service and Gateway Components 38

4.3 Example services with and without the GDASCF 39

4.3.1 First Approach : Implementation without using the GDASCF

Interface . 40

4.3.2 Second Approach : Implementation using the GDASCF In-

terface . 41

4.3.3 Comparison of both approaches 44

4.4 Chapter Summary . 46

5 Critical Design Review 47

5.1 Introduction . 47

5.2 Coupling . 47

5.3 Cohesion . 48

5.4 Completeness and Primitiveness 50

6 Conclusion 51

6.1 Discussion . 51

6.2 Conclusions . 52

6.3 Recommendations for Further Work 53

References 55

A Robustness Diagrams 59

vi

A.1 Establish User Position . 59

A.2 Proximity To A Region . 62

B Interface Class Definitions 65

B.1 Interface Class for IpProximity . 65

B.1.1 Method periodicProximityReportRequest() 66

B.1.2 Method triggeredProximityReportRequest() 67

B.1.3 Method periodicProximityReportingStop() 68

B.1.4 Method triggeredProximityReportingStop() 69

B.2 Interface Class for IpAppProximity 69

B.2.1 Method proximityReportRes() 70

B.2.2 Method periodicProximityReportRes() 71

B.2.3 Method triggeredProximityReportRes() 71

B.2.4 Method proximityReportErr() 72

B.2.5 Method periodicProximityReportErr() 72

B.2.6 Method TriggeredProximityReportErr() 73

C IDL specifications for the Geospatial Data Access Service Capability
Feature 74

C.1 CommonDataDefinitions.IDL . 74

C.2 IpProximity.IDL . 76

C.3 IpAppProximity.IDL . 77

vii

List of Figures

1.1 Single Service Networks . 2

1.2 Converged Networks . 3

2.1 Parlay Logical Architecture . 13

2.2 Service Enabler Sub-Layer . 15

2.3 Service Registration And Discovery 16

2.4 Trust And Security Management Protocol 17

3.1 Proposed Architecture . 21

3.2 Use Case Diagram . 23

3.3 Establish User Position - Interactive Request 31

3.4 Establish User Position - Periodic Request 32

3.5 Establish User Position - Triggered Request 33

3.6 Proximity to a Region - Interactive Request 35

3.7 Proximity to a Region - Periodic Request 36

3.8 Proximity to a Region - Triggered Request 37

4.1 Deployment of Components . 39

4.2 Deployment of a GIS in a corporate 40

viii

4.3 Sequence diagram to access corporate database using RPC 41

4.4 Sequence of events for “Find Nearest ATM” Service 43

5.1 Vertical and Horizontal Coupling 48

5.2 Class Diagram . 49

A.1 Establish User Position - Interactive Request 59

A.2 Establish User Position - Periodic Request 60

A.3 Establish User Position - Triggered Request 61

A.4 Proximity - Interactive Request . 62

A.5 Proximity - Periodic Request . 63

A.6 Proximity - Triggered Request . 64

B.1 Interface Class IpProximity . 65

B.2 Interface Class IpAppProximity 70

ix

chapterAcronyms

x

Chapter 1

Introduction

1.1 Background

It is usually the case that different telecommunications technologies progress inde-

pendently from one another. This independence in progress is because technolo-

gies are designed to resolve problems that are unique to their problem space and

time. It is for that reason that the current telecommunications networks are separate.

Adapter patterns as described in [1] and [2] can be used to build gateways between

different networks’ protocols. For example, media gateways exist between Inter-

net Protocol (IP) Networks and the Public Switched Telephone Networks (PSTNs).

However, services are usually implemented on one particular network infrastruc-

ture and not readily transferable to another. Thus, in most cases, services are not

re-usable and need to be re-designed to be deployed in another network infrastruc-

ture [3]. The use of adapters only complicates service development and results in

non reusable software. Furthermore, since services developed in this manner are

strongly coupled to their network infrastructure, developers need to have intimate

knowledge of the inner workings of the network protocols. Clearly this will pro-

hibit new role players and third party organizations from entering the telecommu-

nications environment, further increasing the monopoly hold of existing operators

[4][5][6]. This type of network environment can be classified as single service net-

work as illustrated in Figure 1.1.

Telecommunications networks have evolved from voice only transportation net-

works to multimedia mobile networks capable of carrying voice, data and video

1

Services
Running on

PSTN

Services
Running on

PLMN

Services
Running on

Data/IP
Network

Access, Transport and Switching Networks

PSTN

Telephone

PBX
PLMNCell Phone

Comm. Tower

Data/IP Network
Server

Figure 1.1: Single Service Networks

in a mobile environment such as Universal Mobile Telephony System (UMTS) [7].

Services in such an environment are deployed in an open and scalable manner using

Application Programming Interfaces (API) such as OSA / Parlay [8] and Java API

for Intergraded Networks (JAIN) [9] as shown in figure 1.2.

1.2 Emerging Business Case

Current telecommunications environments influence the way services are provided

to customers. This factor suggests that there is a greater drive towards telecom-

munications monopolies [5]. This approach may appear to be lucrative for the

telecommunications provider because it acts as both the network operator and ser-

vice provider, but customers are placed at a disadvantage. This results from services

being driven by available technologies rather than customer demands [3]. The main

reason for this drive is that the telecommunications infrastructure is mostly based

on vendor specific network equipment with proprietary interfaces which is usually

limited in capability [3]. Design patterns for developing, deploying and introducing

[10] services in a common manner across multiple network platforms do not exist.

2

Connectivity/Backbone network

Service Network

Laptop

MGW

MGW MGW

MGW

API

Workstation

s

s s

s ContentContent
A1

1

A1
1

Cell Phone

Figure 1.2: Converged Networks

Several approaches are employed to remedy the situation outlined above. Firstly, as

telecommunications technology progresses, it is realized that software will play an

important role. New software architectures are being developed which will affect

the way services are deployed. These architectures provide an advantage in that

an abstraction layer is introduced between the vendor specific network elements in

the physical layer and the services in the application layer. The necessity of this

approach is reflected in the fact that services are decoupled from the physical layer

and thus can be deployed across a plethora of network infrastructures. Specifically,

future telecommunications services are expected to be distributed in nature [11],

running in a Distributed Processing Environment (DPE) [12].

Furthermore, the telecommunications environment is undergoing changes as dereg-

ulation takes place. New policies are put in place to ensure that existing monopolies

disappear while new role players emerge [5]. In this regard a new type of mar-

ket is created. This market, which is open [13] and global in nature, addresses the

communication needs of a Global Information Society.

The entrance of new role players in the telecommunications environment will also

3

affect the way services are deployed to customers. While customers initially were

bound to utilizing services at the discretion of the provider, service development

will now be driven by specific customer demands.

The problems associated with implementing a GIS system are its cost, literacy

amongst users, lack of awareness of spatial data suppliers and data standards and

lack of coordination between users. It has been estimated [14] that in implementing

a GIS, data costs represent 80% of the total system cost. These factors will severely

limit small budget 3rd party vendors and utilities from implementing GIS systems

or applications based on such systems such as Location Based Services. To re-

duce these costs, we propose an infrastructure where 3rd party Application Service

Providers (ASPs) can access geospatial databases maintained and developed by sep-

arate vendors. This approach removes the need for 3rd parties to incur the costs of

developing and maintaining such databases thus reducing the implementation costs

of a GIS system. ASPs can therefore concentrate on developing innovative applica-

tions while they gain access to already existing and maintained quality spatial data

at a lower cost.

1.3 Characteristics of Applications and their Execu-

tion Environment

The business case outlined in Chapter 1.2, provides an indication of the characteris-

tics that services and the environment hosting the services must posses. To illustrate

this factor, Consider the following generic example.

1.3.1 The “My Nearest” type of services

Users can access this type of service to locate their nearest restaurants, bank ATMs

etc. The “My Nearest” services depend largely on the GIS data stored in differ-

ent GIS databases. This information can include spatial information such as the

geodetic coordinates, as well as non spatial information such as the street addresses

of places. Users can use their mobile units to access the service. The information

4

contained in the query could be the spatial coordinates of the mobile unit at ser-

vice access time. Such coordinates can be in any form ranging from more accurate

GPS coordinate to less accurate mobile cell location. Moreover a Universal Loca-

tion Framework [15] can be used to aggregate location information from various

sources. The service must then query the GIS database for the requested location

nearest to the mobile units coordinates. The implementation of the “My Nearest”

service is discussed in detail in Chapter 4.3.

To satisfy the business case as outlined above, the services and their environment

must posses the following characteristics.

1. Applications must adopt a standard calling convention. A generic set of Ap-

plication Programming Interfaces (APIs) must exist to ensure that GIS infor-

mation residing in different databases, is queried in a standard, scalable and

consistent manner. ASPs can then use the same set of APIs to implement

different services.

2. Controlled access must be permitted for APSs accessing the GIS databases.

3. ASPs must be able to subscribe to different GIS database providers. Different

GIS databases can be used during service run-time. This factor is necessary

since ASPs can make a choice of using a different database based on cost,

type and quality of information they require etc..

4. The environment hosting the service must allow for more standardized inter-

faces to be added without breaking client applications using old interfaces.

5. Applications must be decoupled from the GIS database. To ensure their trans-

parency with the GIS database. This will ensure that the service is indepen-

dent from the database structure and implementation.

6. Services must be deployed in a Rapid Application Development (RAD) ap-

proach for reduced time-to-market.

OSA / Parlay gateway provides an infrastructure that implements APIs in a generic

and scalable manner. Applications can call these APIs to query for a multitude of

network information. More specifically, in “My Nearest” type of services, applica-

tions will query the network for the location of the mobile terminating unit. The

5

OSA / Parlay gateway also provides a framework that controls access to the Ser-

vice Capability Features (SCFs) and allows more interfaces to be introduced in a

scalable manner.

Since different GIS database providers will implement their databases differently,

transparency of accessing the GIS information is essential. This will ensure that ap-

plication developers do not concern themselves with different structures and schemas

from a multitude of different providers further enhancing scalability. The purpose

of the GDASCF component in the Parlay gateway will ensure this type of trans-

parency.

1.4 Requirements for Content Providers

Mobile devices are continually evolving at an explosive rate. This presents op-

portunities for development of new and innovative applications and services. To

capitalize on these opportunities, the physical attributes of mobile devices must be

considered. These attributes include form factor, browsers, input/output limitations

as well as the type of transactions that are likely to be conducted on the device.

These attributes expose limitations of the existing mobile devices, while at the same

time enabling the development of applications that are not possible on normal desk-

top devices. This can be seen in leveraging Location Based Services (LBSs) for

mobile applications. LBSs need to be location-aware as well as being able to ag-

gregate technology and content from a multitude of sources. The content is usually

stored as objects within a database. Reference [15] describes the Universal Location

Framework technology that is used in aggregating multiple location technologies.

The evolution of mobile devices has been influenced by the evolution of the telecom-

munications networks over the years. The deployment of second-generation net-

work technologies such as Global System for Mobile communication (GSM) and

General Packet Radio Service (GPRS) resulted in the first generation of mobile de-

vices that were only focused on phone calls. Access to data was possible only in an

offline environment. Incremental improvement on mobile devices enabled access

to mobile wireless data applications. The large usage of these applications was lim-

ited by the small display and difficult data input mechanisms. Portable Digital As-

sistants (PDAs) addressed these issues as they gained access to wireless networks.

6

They could host a multitude of wireless applications, but the lack of bandwidth and

poor coverage resulted in these applications working in both the offline and on-

line environment. As a result applications were not able to compute their current

location.

The emergence of smart phones addresses most of the limitations that mobile de-

vices have. These include local storage, advanced displays, better input mecha-

nisms, faster and enhanced mobile data networks and low cost positioning devices.

These devices are ideal for implementing mobile applications. Moreover, since the

GDASCF will be designed in accordance with the OSA / Parlay specifications, it

will inherently posses the benefits of security, scalability and flexibility.

1.4.1 Handling Different Content

Third Generation Networks are required to provide mobility with a wide range of

services and data content, independent of the type of the user equipment. In the

Universal Mobile Telephony System (UMTS) network, the user equipment is not

restricted in functionality [7]. Applications that reside on the device must be able

to use content that is contained on the Web, any database or file system. This fact

implies that applications must be provided with the correct level of abstraction for

this to be possible. With this approach, code reusability can be exploited and an

advantage in development time and cost can be gained.

In an attempt to achieve this level of abstraction, applications running on mobile de-

vices can be provided with runtime libraries to connect to databases with the use of

technologies such as Open Database Connectivity (ODBC) and Java Database Con-

nectivity (JDBC). However, more value can be added by providing context aware

applications. Geospatial databases are necessary for such context aware applica-

tions. However, there are no existing mechanisms to support uniform and generic

access to these types of databases.

7

1.4.2 Handling Different Devices

Different devices vary in the way they handle different content. The spectrum

ranges from content that requires advanced display capabilities such as high res-

olution streaming video, to high quality audio capabilities such as voice recogni-

tion, while other require large, fast storage capabilities. However, by providing the

right level of abstraction, the application logic can be unaware of these features yet

transparently gain benefit them.

A data model should be separated from the presentation model. In a mobile environ-

ment, context aware information can be provided by geospatial databases, however

the model of this data should be abstract enough to be handled by any device. It is up

to the application to display the information in an application specific manner. This

approach closely relates to the Model View Controller (MVC) [16] design pattern

where the model and the view are independent of each other while the controller de-

fines the way they interact. Existing data access technologies and standards depend

on the application designer to implement the MVC pattern. Moreover, different

geospatial content providers will structure their databases in different ways requir-

ing the application designer to know the database schema beforehand. Clearly,

changes in the schema will break the application from accessing the database. Stan-

dards such as ODBC and JDBC provide APIs to access the databases directly. How-

ever, since in a general case databases will be provided by different providers, with

some providing more accurate or updated location information at different costs,

the application designer will have to know all this information, which is dynamic

in nature, at design time. An efficient solution is to provide a layer of abstraction

on top of the existing database access API technologies. This solution will fur-

ther enhance scalability since the database structure will be transparent from the

applications. By decoupling application logic from database structure, vendor in-

dependence is also encouraged. ASPs can thus be free to change between different

content providers who in turn can implement any database access technology while

keeping it transparent from the applications.

8

1.4.3 Deployment of Mobile Applications

Since the NGN standard does not restrict the functionality of user equipment in

any way, mobile devices in any form naturally benefit from location awareness and

can be supported by any mobile technology. The location of user equipment can

be based on automatic positioning such as Global Positioning System (GPS) or a

hybrid of mobile technologies as described in the Universal Location Framework

(ULF) [15]. In cases where an application cannot use automatic positioning sys-

tems, it can use manual positioning that has been defaulted to it to perform its task.

For instance, in LBS services that need to perform location queries, a query can be

based on a location other than the mobile’s current position by using the defaulted

position.

1.4.4 Working with Different Providers

Vendor independence is becoming important in today’s Open Services Market (OSM)

[3]. In general, a provider of a specific service will not contain all the necessary

resources, technology and content to offer all services internally within an organi-

zation. Architectures to deploy a service or a range of services may involve several

role players all sharing resources to provide a solution. A framework to integrate

internally developed solutions with externally hosted content is thus necessary. This

framework must enable Application Service Providers (ASP) to switch seamlessly

between different service and content providers in a prioritized and automatic man-

ner.

1.5 Location Based Services with OSA / Parlay

The sponsors of the OpenGIS Open Location Services (OLS) initiative state [17]:

”Spatial connectivity is a primary, universal construct for business planning and

modelling, service development and deployment, network provisioning and opera-

tion and customer satisfaction. The location based services are of universal industry

service significance and depend upon the availability of relevant spatial information

infrastructure in forms useful for small devices.”

9

One class of applications that is supported by the geospatial databases is Location

Based Services (LBSs). A Location Based Service can be defined as a service that

has the ability to determine and transmit the location of a mobile device in a mobile

network. Moreover, these applications make use of location sensing technologies

such as (but not limited to) Global System for Mobile Communications (GSM)

and General Packet Radio Service (GPRS). Different network protocols introduce

difficulties in the way LBS applications are developed. An architecture that allows

applications to be developed in a generic, reusable and maintainable way is thus

necessary.

OSA / Parlay introduces a layer of abstraction between the application layer and the

core network. This OSA / Parlay gateway is made available to the application layer

by use of generic APIs. The OSA / Parlay API are extensive including, Mobility

Management, Call Control, User Interaction, User location / User status, Terminal

capabilities, Data session control, Generic Messaging, Connectivity Management,

Account Management, Content based Charging. Mobile applications can use these

APIs to obtain dynamic location information about other mobile devices. The OSA

/ Parlay gateway however does not have a component to provide a generic query

API for geospatial databases.

The purpose of this research is thus to define the geospatial data access interface

for the OSA / Parlay gateway. Since it is impossible to capture all the requirements

for LBS services at design time, the geospatial interface is defined in a manner that

makes it easily extensible. To achieve this objective, the ICONIX design process

was adopted. As discussed in chapter 5, new interfaces can be defined and added

with ease to the existing interfaces.

1.6 Overview of Research Report

This dissertation discusses the design of OSA / Parlay based architecture that ad-

dress the limitation is discussed above. The report is structured as follows:

Chapter 2 introduces and discusses the OSA / Parlay architecture and highlights

the important literature of this subject that contributed significantly to this research.

The nature of Geospatial Information Systems (GISs) and Location Based Services

10

(LBSs) and their applications are outlined in detail within the necessary context that

will enable the design of the OSA / Parlay Geospatial Data Access SCF (GDASCF).

Chapter 3, presents the proposed architecture for the design of the OSA / Parlay

GDASCF . The software engineering methodology used is then described. A de-

tailed layout of the design of the GDASCF is presented in detail using the ICONIX

design process.

Chapter 4 presents the implementation of the GDASCF. Example applications of

benchmark services are provided to better clarify its usage.

Chapter 5 discusses the critical design review from the software engineering per-

spective. Software engineering matrices are outlined. They are then described on

how they apply to the design of the GDASCF.

Chapter 6, in this chapter conclusions and limitations of the design are discussed

and recommendations for future research are proposed.

11

Chapter 2

OSA / Parlay Overview

2.1 Background on OSA / Parlay

The Parlay group was formed in 1998 as an industry forum with five initial compa-

nies to create the first version. This initiation was sparked by the explosive growth

of the Internet and wireless technologies. As advantages of open APIs became

apparent, more companies joined the Parlay group to produce the second version

known as Parlay 2. At this time the first version of the Parlay API was submitted to

the European Telecommunications Standards Institute (ETSI) and the International

Telecommunication Union - Telecommunications standardization Sector (ITU-T)

for international standardization. In partnership with the 3rd Generation Partner-

ship Programme (3GPP), the Parlay initiated work on a similar API to provide

access to applications built on top of the Universal Mobile Telecommunications

System (UMTS) network. At this time three different standards were being devel-

oped to serve the same purpose. To avoid such a situation, the three groups were

combined into one working group called the Open Service Access (OSA). With this

arrangement more APIs were defined and fedback into Parlay. An agreement with

ETSI and Parlay was reached to make joint work formally possible. Currently the

definition of the APIs is done in the context of OSA / Parlay and the entire partic-

ipants are collectively called the Joint Working Group (JWG). The JWG has also

collaborated with the Java APIs for Intergraded Network (JAIN) community [18] to

develop Java versions of the OSA / Parlay APIs. Furthermore, the JWG is divided

into smaller groups responsible for developing and testing specific new APIs.

12

2.2 OSA / Parlay Architecture

2.2.1 Logical Architecture

The logical architecture of the OSA / Parlay consists of the Applications and Ap-

plication Servers residing in the application layer, Service Capability Servers (SCS)

and the OSA / Parlay Framework in the gateway, as well as the core network ele-

ments. The logical architecture is shown in figure 2.1.

Service Components:
Authentication, Routing,

Billing, Storage,
Configuration

Physical Networks: ISDN,
PLMN, InternetVOIP,….

Parlay API

A
p

p
li

c
at

io
n

 1

A
p

p
li

c
at

io
n

 n
-1

A
p

p
li

c
at

io
n

 3

A
p

p
li

c
at

io
n

 2

A
p

p
li

c
at

io
n

 n

API (e.g JAIN
Protocol API)

Application Layer

Gateway

Core Network Elements

Figure 2.1: Parlay Logical Architecture

The applications reside in the application servers in the application layer and ac-

cess the capabilities defined in OSA / Parlay through the OSA / Parlay APIs. The

capabilities known as Service Capability Features (SCF) are encapsulated in SCSs

which implement the server side API. It is the responsibility of the applications in

the application layer to implement callback interfaces which the SCFs use to return

results. The communication environment is realized by using standard middleware

architectures such as Common Object Request Broker Architecture (CORBA) [19].

13

Through this communication infrastructure, the SCS serves as proxy that interacts

with core network elements [20]. Note that the SCS is a proxy in the sense of be-

ing a common point of contact and not because that the working logic resides in

it and not elsewhere. It is also important to note that since the SCSs are logical

entities, SCFs need not be implemented in the same box. Typically, different ven-

dors will offer their own SCFs that will reside in different business domains as the

other SCFs. There may also be cases where different SCFs from different vendors

are offered which accomplish the same task. With this arrangement, an Application

Service Provider (ASP) in the application layer will choose an SCF to use during

service run-time. Moreover, a particular vendor may choose to implement different

SCFs placed in disparate locations but all belonging to the same SCS.

2.2.2 Physical Architecture

The applications will interact with the SCSs via the APIs. Eventually it is the net-

work entities that implement the required functionalities. SCSs are thus interfaces

that abstract the core network entities from the applications. This abstraction is nec-

essary since network elements such as switches, Interactive Voice Response systems

(IVRs) and Generic Packet Radio Service (GPRS) Support Nodes (SGSNs) can be

supplied by different vendors and thus specific operation logic be different.

As was described earlier, the specification for SCSs does not place a limitation on

how they can be deployed in a network. There are thus various ways in which this

objective can be satisfied. One approach is to deploy an SCS directly on a network

element such as an HLR [20]. With this configuration the SCS is a component part

of the network element [20]. The advantage of this configuration is that it results in

a reduction of network traffic between the SCS and the network element. However,

it also requires that the SCS be tightly coupled to the network element. Thus the

software for the SCS may not be reusable across a plethora of network entities

belonging to disparate vendors.

The second option is to deploy the SCS as a separate node [20]. The application

will thus access the SCS via the API as usual while the SCS communicates with

the network elements via a Customized Applications for Mobile Enhanced Logic

(CAMEL) protocol [21]. This configuration is particularly useful where it is unde-

sirable to deploy SCS directly on core network nodes such as a Mobile Switching

14

Centre (MSC) [20]. If this is the case, then the SCSs should be deployed to every

MSC in the network to offer ubiquitous services. This solution is not easily scalable

for larger networks with many MSCs. A Service Enabler Sublayer (SES) [20] in

the network can be distinguished, as shown in figure 2.2

Framework

SCS - 1 SCS - 2

HLR MSC G-GSN S-GSN

Service Enabler Sublayer

Network Layer

Service -1 Service - 2 Service - N

Application Layer

Figure 2.2: Service Enabler Sub-Layer

The SES layer will contain the SCSs and the Gateway Framework. The API that

implements the functionalities of the gateway can be offered in one physical node

or the SCSs can be distributed in different nodes while the OSA / Parlay Gateway

node contains the framework and a few other SCSs.

2.2.3 Role of the Parlay Framework

The idea behind the Parlay Framework is to allow the telecommunications network

operator to control access to the Parlay Gateway. Moreover, the Framework allows

for scalability and introduces an element of competition between vendors. To en-

courage competitiveness, the framework allows for the registration of SCSs from

different vendors. SCSs implementing non-standard APIs can also be permitted by

the operator. The Framework will thus be a single point of access under the control

of the network operator that applications can use to access the Parlay API. This ap-

proach ensure the ease of implementing and enforcing different security policies by

the network operator. The Framework implements the following group of APIs

15

• Trust and Security Management (TSM) [22] for authentication of domains

• Registration of new SCSs to the framework

• Service Life Cycle Manager for the object instantiation of API implementa-

tion.

• Service Discovery to allow an application to find existing interfaces in the

network.

• Integrity Management for issues such as load balancing and fault manage-

ment.

• Event Notification to allow applications to register for specific events such as

the registration of new SCSs.

• Contract Management to manage the contracts such as Service Level Agree-

ments (SLA) between domains.

To elaborate on the operation of the above mentioned API types, a diagram in figure

2.3 shows a Message Sequence Diagram detailing the typical actions and API calls

necessary to register an SCS with the Framework, application authentication by the

Framework and the usage of the SCS by the application.

Application Framework Interface Service SCFFramework

1. Authentication

2. Request Registration Interface

3. Register Factory

4. Authentication 5. Authentication

6. Request Discovery Interface 7. Request Discovery Interface

8. Discover Service 9. Discover Service

10. Select Service and Sign SLA

11. Create Service Manager

12. Return Service Manager13. Return Service Manager14. Return Service Manager

Figure 2.3: Service Registration And Discovery

16

2.2.4 Security Issues

As was stated above, having a single point of access and control allows for the

network operator to easily enforce security policies as well as centralized manage-

ment. It must be noted that since SCSs are logical entities, they need not reside in

the same physical location. Applications will thus need to obtain a reference to the

appropriate SCS at service run-time. This reference is similar to the CORBA Object

Reference. For this to be possible, the application has to be authenticated first. This

type of authentication is realized at the application layer and can be accomplished

by using Trust and Security Management (TSM) Protocol as shown in figure 2.4.

IpAppAPILevelAuthentication
Framework Interface Framework

Client
IpAPILevelAuthentication

1. InitiateAuthentication

2. SelectAuthMechanism

3. Challenge

4. Challenge

5. Challenge

6. AuthSucceded

7. Challenge

8. AuthSucceded

9.

Figure 2.4: Trust And Security Management Protocol

Apart from authenticating at the application layer, it is necessary to ensure a se-

cure communication channel as well as controlled access to capabilities [20]. One

approach to ensure a secure communication channel is to establish dedicated links

between the network operator domain and the Application Service Provider (ASP).

Both parties can then ensure that only OSA / Parlay communications are allowed

on the link. Communications protocol used on the dedicated link can then be re-

stricted in accordance to the agreement between the parties. For instance, CORBA

can be used as a communication platform through a firewall. Since CORBA uses

17

object references to identify and locate run-time instance of object, Secure Socket

Layer (SSL) [23] protocol can then be used to prevent the stealing of object refer-

ences [20]. Security can also be ensured by controlling access using Service Level

Agreements (SLAs)

2.2.5 Scalability Issues

It was mentioned earlier that the OSA / Parlay Framework provides applications

with a single point of access to the SCSs. This allows scalability on various dimen-

sions.

Firstly new SCSs can be added and registered with the Framework. Some of these

SCSs may belong to different vendors all supporting the same protocol in commu-

nicating with the Framework. Some of these SCSs may be performing the same

task. In that case, applications can negotiate SLAs and Quality of Service (QoS)

parameters that can be used to choose the SCS to be used during service run-time.

As applications using the Gateway increase in number, the number of queries and

transactions performed will also increase. The Framework provides the ability for

load management. Applications can be directed to other SCSs performing the same

task but running on different processors. This ability removes the disadvantage of a

limited number of applications that can use the Gateway at a time. Since the OSA

/ Parlay Gateway is not an actual transport network entity, this type of scalability

is limited by the network number and capabilities of network entities. This can be

achieved without the applications being aware that different sessions run on differ-

ent processors. Load management can further be achieved on a session basis by

using middleware such as CORBA.

2.3 Support for Location Based Services

The previous sections have outlined the architecture of the OSA / Parlay standard.

Within the architecture, considerations were taken for scalability and security. The

emergence of 3G networks has highlighted the need for mobility. It is now neces-

sary to provide subscribers of the mobile network with value added services as those

18

enjoyed by Internet static subscribers. Moreover, mobile subscribers can leverage

more services such as Location Based Services (LBS).

By their nature LBSs require location information. Location information exists in

two forms, namely dynamic and static information. Dynamic location information

includes data such as the mobile’s location at every instant as the mobile device

moves in the network. This dynamic information can be the cell in which the mobile

exists at that instant in the GSM network or it ca be geodetic coordinates such as in

a GPS environment.

There is also static location information that exists in databases which contains in-

formation about certain locations. For instance, a database may contain location

information about certain restaurants or train services available in a particular area.

A LBS service can thus be written to provide subscribers with a subset of this infor-

mation, depending on the area they are in at that time. Moreover the static database

must store spatial information so that queries can be tailored for specific locations.

The OSA / Parlay APIs are extensive, covering a large range of functionalities in-

cluding Mobility, Location, Presence and Availability management, Call Control

User Interaction, Messaging, Content Based Charging and Policy Management.

These interfaces are valuable in providing dynamic location information that is

needed by LBS services. However the OSA / Parlay standard does not define

any interface for the access of static location information contained in geospatial

databases. It is thus the purpose of this report to motivate the extension of the OSA

/ Parlay specification to include support for LBS services by including the Geospa-

tial Data Access SCF (GDASCF). The GDASCF will reside in the OSA / Parlay

gateway and will provide access to different types of data sources via the Adapter

layer as explained in chapter 3.

19

Chapter 3

Design of the OSA / Parlay
Geospatial Data Access SCF

3.1 Proposed Architecture

In creating applications, we would expect a set of reusable components for Location

Based Services (e.g. Display a Map) to emerge, together with application specific

logic. Based on that factor, the application layer is divided into service components

and applications as shown in figure 3.1.

The service components are reusable, while the applications encapsulate the ap-

plication specific logic. Service components can be accessed by applications for a

particular service and will query the Geospatial Data Access SCF (GDASCF). They

also contain callback interfaces as a way of returning results to the applications.

As opposed to other components of the OSA / Parlay gateway, which are used to

control communications resources directly, by its very nature, the Data Access SCF

is a data access API. The adapter layer above has a role similar to the adapters in

the Java API for the Integrated Networks (JAIN) [9] technology, adopting the func-

tion calls to different operating environments. This approach closely matches the

function of the adapter design pattern [1][2]. Rather than forcing the Data Access

SCF to implement remote methods to access the databases individually, which cre-

ates excessive class bloating and diminishes performance and readability, concrete

adapters are inherited and implemented by their providers. The Data Access SCF is

20

Oracle
MySql

SQL Server

Oracle
Adapter

SQL Server
Adapter

MySQL
Adapter

Messaging
SCF

Mobility
SCF

DataAcess
SCF

P&A Man.
SCFParlay Gateway Layer

Adapter Layer

app 1 app 2 app n

service 1 service 2 Service n

Application Layer

Application Specific Logic

Service Components
(e.g. LBS)

Data Sources

Figure 3.1: Proposed Architecture

unchanged as the adapter always supports the same interfaces.

Each adapter must be created for each Database Management System (DBMS).

Adapter providers must inherit from the abstract adapter class to create their appli-

cation specific concrete adapter class. This will ensure that all concrete adapters

support the same interfaces while the implementation varies according to the appli-

cation. This approach also adds a level of flexibility so that adapter implementors

can add more non-standard interfaces over and above the standard interfaces. This

approach closely resembles the Extension Interface [1] Design Pattern which allows

multiple interfaces to be exported by a component, to prevent bloating of interfaces

and breaking of client code when developers extend or modify the functionality of

the component.

Note that different DBMSs may possess different functionalities or they may exe-

cute certain functionalities differently by adopting the above architecture, that in-

formation is abstracted from the service or application using the functionality. For

instance, the Oracle DBMS has the Locator functionality, which is used extensively

in LBS applications. A similar functionality may exist in the other DBMSs. How-

ever the GIS component of the OSA / Parlay will only expose the same set of APIs to

21

the applications and services requiring the use of these functionalities. It is then up

to the adapters in the adapter layer to convert to the correct syntax during service-

runtime. Furthermore the API in the adapter layer between the gateway and the

adapter can be standardized. This will ensure that the implementers of the Data

Access SCF develops against the same set of APIs for the adapters, regardless of

existing DBMSs further enhancing software reuse.

3.2 Design Requirements and Constraints

The GDASCF is a component of the Parlay gateway. Application will use the the

GDASCF to query for static geospatial data contained in various databases from

different providers in a generic manner. The GDASCF must also be able to commu-

nicate with the Mobility Management Service Capability Feature (SCF) use-cases

already supplied by the Parlay gateway.

To support context aware computing [24], the Mobility Management [25] Service

Capability Feature supports three types of requests.

1. Interactive Requests - To support interactive requests from the applications.

2. Periodic Requests - To support periodic requests from applications. A period

is set at which the SCF must return results to the application.

3. Triggered Requests - To support triggered requests, an event is set by the

application. The SCF will return results back to the application when the

event is triggered.

This places an important constraint on the design of the GDASCF. Applications

must be able to invoke these types of requests at any point in time to support context

aware computing.

22

Service

Interactive

Periodic

Triggered Mobility SCF

GIS Database

Figure 3.2: Use Case Diagram

3.3 Design Methodology

To identify the methods of the GDASCF interface, the ICONIX [26] design process

was followed. This process is based on the Unified Modelling Language (UML)

[27] and inherits from Rational Unified Process (RUP) [27] and Reference Model

for Open Distributed Processing (RM-ODP) [28]. The process is also use-case

driven in accordance with the OSA / Parlay standard.

3.3.1 Use Case Modelling

The use-case diagram in figure 3.2 shows the actors of the Data Access Component

and their use-cases. The actors are Service, Mobility SCF and the GIS Database.

The actor GIS Database is taken as a combination of the actual database storage

medium, Database Management System (DBMS) and Database Adapter. As ex-

plained above, the use-cases are divided into three parts. The actor Service can

invoke any type of use-case at any time. The GIS Database is a passive object that

the Data Access SCF uses to store and retrieve geospatial data. The Mobility SCF

is used by the periodic and triggered use-cases to deliver the required position infor-

mation. The use-cases represent the functionality called ‘Establish User Position’

and ‘Proximity to a Region’. Every service must register with the OSA / Parlay

Framework before it can use any SCF. This registration, which includes authentica-

tion and authorization, is not shown but is discussed in detail in [20].

23

For the purposes of this report, callback interfaces implemented at the application

layer will have names starting with the prefix “IPApp”. SCFs in the gateway will

be named starting with prefix “IP”. The Communications Session Manager (CSM)

manages the communication sessions established by service components at the ap-

plication layer. The IPAppInterface serves as the initial contact for services.

3.3.2 Use Cases

Establish User Position - Interactive Request

1. PRE-CONDITIONS

The application contacts the IPAppInterface, which invokes the CSM. The

CSM then instantiates the IPAppUserPosition and the IPUserPosition.

2. MAIN-FLOW

The service sends a message to the IPAppUserPosition. This message con-

tains the user’s device longitude and latitude and device ID. It also contains

the name of the Spatial Reference System (SRS) that it uses. The map dis-

played on the user’s device will have the SRS. The IPAppUserPosition in

turn passes a message to the IPUserPosition containing the same parameters.

The IPUserPosition determines which database supports Position information

with that required SRS. The IPUserPosition then connects to that database’s

driver. It passes a message to the driver. The driver then formulates an SQL

query specific to the DBMS and sends it to the database. The DBMS then

returns a result set to the driver. The driver passes this result to the IPUserPo-

sition. This information is finally relayed to the IPAppUserPosition back to

the service.

3. ALTERNATE-FLOWS

• The IPUserPosition does not find a database containing the Position in-

formation. So it throws an exception back to the IPAppUserPosition.

The IPAppUserPosition then throws an exception back to the service.

• The IPUserPosition finds a database supporting the Position informa-

tion but the required information is not contained inn the database. The

DBMS returns an error back to the driver. The driver will then throw

24

an exception back to the IPUserPosition, which is finally relayed to the

service.

Establish User Position - Periodic Request

1. PRE-CONDITIONS

The application contacts the IPAppInterface, which invokes the CSM. The

CSM then instantiates the IPAppUserPosition and IPUserPosition and the

IpUserLocationCamel.

2. MAIN-FLOW

The service sends a message to the IPAppUserPosition, requiring a Periodic

Position request. This message contains the user’s device longitude and lati-

tude and device ID. It also contains the name of the Spatial Reference System

(SRS) that it uses. The IPUserPosition sends a message to IpUserLocation-

Camel for periodic location request. After a certain time interval, the IpUser-

LocationCamel reports this to the IPUserPosition until periodic reporting is

stopped. The IPUserPosition determines which database supports Position

information with that required SRS. The IPUserPosition then connects to that

database’s driver. It then passes a message to the driver. The driver then for-

mulates an SQL query specific to the DBMS and sends it to the database. The

DBMS then returns a result set to the driver. The driver passes this result to

the IPUserPosition. This information is then relayed to the IPAppUserPosi-

tion back to the service.

3. ALTERNATE-FLOWS

• The IPUserPosition does not find a database containing the location in-

formation. It then throws an exception back to the IPAppUserPosition.

The IPAppUserPosition then throws an exception back to the service.

• The IPUserPosition finds a database supporting the location informa-

tion but the required information is not contained in the database. The

DBMS returns an error back to the driver. The driver will then throw

an exception back to the IPUserPosition, which is finally relayed to the

service.

25

• The IPAppUserPosition sends a Triggered Location Stop Message to the

IPUserPosition. The IPUserPosition will then send a TriggeredLication-

ReportingStop message to the IPUserLocationCamel and a Database

connection is closed.

Establish User Position - Triggered Request

1. PRE-CONDITIONS

The application contacts the IPAppInterface, which invokes the CSM. The

CSM then instantiates the IPAppUserPosition and IPUserPosition and the

IpUserLocationCamel.

2. MAIN-FLOW

The service sends a message to the IPAppUserPosition, requiring a triggered

Position request. This message contains the user’s device longitude and lat-

itude and device ID. It also contains the name of the Spatial Reference Sys-

tem (SRS) that it uses. The IPUserPosition sends a message to IpUserLoca-

tionCamel for triggered location request. When the user’s location changes,

the IpUserLocationCamel reports this to the IPUserPosition until triggered

reporting is stopped. The IPUserPosition determines which database sup-

ports Position information with that required SRS. The IPUserPosition then

connects to that database’s driver. It passes a message to the driver. The

driver then formulates an SQL query specific to the DBMS and sends it to

the database. The DBMS returns a result set to the driver. The driver passes

this result to the IPUserPosition. This information is finally relayed via the

IPAppUserPosition back to the service.

3. ALTERNATE-FLOWS

• The IPUserPosition does not find a database containing the location in-

formation. It then throws an exception back to the IPAppUserPosition.

finally, the IPAppUserPosition throws an exception back to the service.

• The IPUserPosition finds a database supporting the location informa-

tion but the required information is not contained in the database. The

DBMS returns an error back to the driver. The driver will then throw

an exception back to the IPUserPosition, which is finally relayed to the

service.

26

• The IPAppUserPosition sends a Triggered Location Stop Message to the

IPUserPosition. The IPUserPosition will send a TriggeredLicationRe-

portingStop message to the IPUserLocationCamel and a Database con-

nection is closed.

Proximity to a Region - Interactive Request

1. PRE-CONDITIONS

The service has been contacted by the application to request a proximity ser-

vice. The service contacts the CSM and the IpAppProximity and IpProximity

are instantiated.

2. MAIN-FLOW

The IpAppProximity sends a message to the IpProximity for interactive prox-

imity query. The IpProximity then determines which driver supports prox-

imity queries from the registry. The IpProximity then connects to the driver.

The driver then formulates a query statement and sends it to the correspond-

ing DBMS. The DBMS then returns the result set to the driver, which passes

it back to the IpProximity. The information is finally relayed back to the

IpAppProximity.

27

3. ALTERNATE-FLOWS

• The IpProximity does not find a database containing the proximity in-

formation. It then throws an exception back to the IpAppProximity. The

IpAppProximity then throws an exception back to the service.

• The IpProximity finds a database supporting the Position information

but the required information is not contained in the database. The DBMS

returns an error back to the driver. The driver will then throw an excep-

tion back to the IpProximity, which is finally relayed to the service.

Proximity to a Region - Periodic Request

1. PRE-CONDITIONS

The service has been contacted by the application to request a proximity ser-

vice. The service contacts the CSM and the IpAppProximity and IpProximity

are instantiated.

2. MAIN-FLOW

The IpAppProximity sends a message to the IpProximity for periodic prox-

imity query. The IpProximity sends a message to IpUserLocationCamel for

periodic location request. After a certain time interval, the IpUserLocation-

Camel reports the location of the mobile user to the IpProximity until periodic

reporting is stopped. The IpProximity then determines which driver supports

proximity queries from the registry. The IpProximity connects to the driver.

The driver formulates a query statement and sends it to the corresponding

DBMS. The DBMS then returns the result set to the driver, which passes it

back to the IpProximity. The information is finally relayed back to the IpApp-

Proximity.

3. ALTERNATE-FLOWS

• The IpProximity does not find a database containing the proximity in-

formation. It then throws an exception back to the IpAppProximity. The

IpAppProximity finally throws an exception back to the service.

• The IpProximity finds a database supporting the Position information

but the required information is not contained inn the database. The

DBMS returns an error back to the driver. The driver will then throw

28

an exception back to the IpProximity, which is finally relayed to the

service.

Proximity to a Region - Triggered Request

1. PRE-CONDITIONS

The service has been contacted by the application to request a proximity ser-

vice. The service contacts the CSM and the IpAppProximity and IpProximity

are instantiated.

2. MAIN-FLOW

The IpAppProximity sends a message to the IpProximity for Triggered prox-

imity query. The IpProximity sends a message to IpUserLocationCamel for

Triggered location request. When the user’s location changes, the IpUser-

LocationCamel reports this to the IPUserPosition until triggered reporting is

stopped. The IpProximity then determines which driver supports proximity

queries from the registry. The IpProximity connects to the driver. The driver

formulates a query statement and sends it to the corresponding DBMS. The

DBMS then returns the result set to the driver, which passes it back to the

IpProximity. The information is finally relayed back to the IpAppProximity.

3. ALTERNATE-FLOWS

• The IpProximity does not find a database containing the proximity in-

formation. It then throws an exception back to the IpAppProximity. The

IpAppProximity then throws an exception back to the service.

• The IpProximity finds a database supporting the Position information

but the required information is not contained inn the database. The

DBMS returns an error back to the driver. The driver will then throw

an exception back to the IpProximity, which is finally relayed to the

service.

Note that application designers are free to model the application layer to their lik-

ing. It is for that reason that the activation of a application is modelled as a passed

message and not a function call. This opens different ways in which designers

can implement their message passing protocols between the application and the in-

terface object. For instance, the interface can be implemented as Graphical User

29

interface (GUI) as in a Web service or cell-phone application or it can be imple-

mented as another API with the service calling its interfaces. In both cases, the way

messages are passed to it is influenced by the type of the interface. The Model View

Controller (MVC) model can be used to address this issue.

3.3.3 Sequence Diagrams

The sequence diagrams figure 3.3 to 3.5 outline the flow of the use-cases, including

the objects that collaborate to achieve these functionalities. As can be seen from the

diagrams, two new objects were discovered. The ‘Driver’ helps to convert the calls

from the gateway to specific Structured Query Language (SQL) commands of the

implemented database. The ‘Registry’ is necessary to store information concerning

every driver that registers with the Data Access SCF.

Sequence Diagrams for Establish User Position

The service will send a message to the appropriate IpApp interface. An appropriate

PosionReportReq() method will thus be invoked on the Ip interface. The interac-

tive use case will thus query the Registry for the database supporting the required

information. The periodic and triggered cases will first send a message to the mo-

bility SCF for periodic or triggered updates. The Registry will then be queried for

database information. The Ip interface will then connect to the driver and a database

will be queried. The result set from the database will be relayed back to the service

as shown in figures 3.3 to 3.5.

The application must first register for events at periodic time intervals. The Period is

passed as a parameter by the application. The Mobility SCF will then return results

via a callback interface to the GDASCF at those specified intervals. The results are

finally relayed back to the application.

The applications will first register for events with the GDASCF. For instance in a

GSM network, an event can be set for when a mobile changes cells. This will cause

the Mobility SCF to call a callback method of the GDASCF notifying it of the event

and its parameters.

30

Service IpAppInterface IpAppUserPosition IpUserPosition Registry Driver Database

Position Request
Position Request

PositionReportReq()
EvaluateDriver()

Connect()

PrepareLocationInfoQuery()

ExecuteLocationInfoQuery()

Return ResultsetReturn ResultsetPositionReportRes()

Return ResultPositionReportRes

Figure
3.3:E

stablish
U

serPosition
-Interactive

R
equest

31

Service IpAppInterface IpAppUserPosition IpUserPosition Registry Driver DatabaseIpUserLocationCamel

Position Request

Connect()

PrepareLocationInfoQuery()

Return Resultset
Return ResultsetPositionReportRes

Position Request

PeriodicPositionReportReq()

PeriodicLocationReportingStartReq()

ExecuteLocationInfoQuery()

*PeriodicLocationReport()

EvaluateDriver()

PeriodicPositionReportRes() Return Resultset

Figure
3.4:E

stablish
U

serPosition
-Periodic

R
equest

32

Service IpAppInterface IpAppUserPosition IpUserPosition Registry Driver DatabaseIpUserLocationCamel

Position Request
Position Request

PrepareLocationInfoQuery()

Return Resultset

Return Resultset

TriggeredPositionReportReq()

TriggeredLocationReportingStartReq()

*TriggeredLocationReport()

EvaluateDriver()

Connect()

ExecuteLocationInfoQuery()

Return Resultset
PeriodicPositionReportRes()

PositionReportRes

Figure
3.5:E

stablish
U

serPosition
-Triggered

R
equest

33

It must be noted that the difference between the three use-cases in figures 3.3 to

3.5 is the inclusion of the IpUserLocationCamel Interface from the Mobility Man-

agement SCF [29] in the Periodic and Triggered cases. This is necessary since

geographic information is required by the GDASCF in this instances.

Sequence Diagrams for Proximity to a Region

The service will send a message to the appropriate IpApp interface. An appropriate

PosionReportReq() method will thus be invoked on the Ip interface. The interactive

use case will thus query the Registry for the database supporting the required infor-

mation. The periodic and triggered cases will first send a message to the mobility

SCF for periodic or triggered updates. The Registry will be queried for database

information. The Ip interface will connect to the driver and a database will then

be queried. The result set from the database will be relayed back to the service as

shown in figures 3.6 to 3.5 below.

Similar to the ‘Establish User Position’, The service will send a message to the ap-

propriate IpApp interface. An appropriate ProximityReportReq() method will thus

be invoked on the Ip interface. For the Periodic and Triggered cases, the IpApp in-

terface will first send a message to the Mobility SCF notifying it to return periodic

and triggered updates respectively. The procedure for querying the database and

returning results is the same as above.

By their very nature, sequence diagrams show the time flow of information and

method calls. However, they are derived from dynamic view of ICONIX that does

not show time dependance but is very useful in determining collaborating candidate

objects and their methods. This view is called Robustness modelling [26] and the

corresponding diagrams for the above use-cases are shown in Appendix A.

34

Service IpAppInterface IpAppProximity IpProximity Registry Driver Database

Proximity Request

Connect()

PrepareProximityQuery()

Return ResultsetReturn Resultset

Return Result

ProximityReportReq()

EvaluateDriver()

ExecuteProximityQuery()

ProximityReportRes()

ProximityReportRes

Proximity Request

Figure
3.6:Proxim

ity
to

a
R

egion
-Interactive

R
equest

35

Service IpAppInterface IpAppProximity IpProximity Registry Driver DatabaseIpUserLocationCamel

Proximity Request

EvaluateDriver()

Connect()

PrepareProximityQuery()

Return Resultset

Proximity Request

PeriodicProximityReportReq ()
PeriodicLocationReportingStartReq()

*PeriodicLocationReport ()

ExecuteProximitytQuery ()

Return ResultsetPeriodicProximityReportRes()

Return Resultset

PositionReportRes

Figure
3.7:Proxim

ity
to

a
R

egion
-Periodic

R
equest

36

Service IpAppInterface IpAppProximity IpProximity Registry Driver DatabaseIpUserLocationCamel

EvaluateDriver()

Connect()

PrepareProximityQuery()

Return ResultsetReturn Resultset

Return Resultset
PositionReportRes

Proximity Request
Proximity Request

TriggeredProximityReportReq()

TriggeredLocationReportingStartReq()

*TriggeredLocationReport()

ExecuteProximityQuery()

TriggeredProximityReportRes()

Figure
3.8:Proxim

ity
to

a
R

egion
-Triggered

R
equest

37

Chapter 4

Implementation of The Geospatial
Data Access SCF

4.1 Implementation Approach

The ICONIX design process suggests that a design of a system be started from

modelling interactions with the outside world in the form of use-cases. Chapter 3

outlines the use-cases for services that will be running on top of the Gateway and

are necessary to model the internal functionality of the GDASCF. Note that these

services are not restricted from using other SCFs of the Gateway.

To implement the services outlined in chapter 3, all layers of the Proposed Architec-

ture shown in figure 3.1 had to be simulated. The Mobility Management SCF was

simulated by writing a simple method that returns arbitrary location information to

the GDASCF.

4.2 Deployment of Service and Gateway Components

Deployment and development of the services was achieved by using The Ace ORB

(TAO) which is a CORBA version 2.0 compliant with the Object Management

Group (OMG) Object Request Broker (ORB). All implementation is performed us-

ing C++ on a Linux Redhat 9 platform. Figure 4.1 below outlines the logical view

38

of component deployment.

DAS Server

Adapter Server

Application ServerDatabase Server

Internet

Figure 4.1: Deployment of Components

For generality, different servers run components at different layers of the Proposed

Architecture shown in figure 3.1 and explained in section 3.1. However, note that all

the interfaces can be run on the same server. Figure 4.1 suggests that the interfaces

may exist in different business domains in the general case.

Every interface that runs inside a server has its unique address known as the Inter-

operable Object Reference (IOR). The semantics of the IOR are similar to that of

the C++ pointer except that they go beyond pointing at objects in the same memory

space. For simplicity, all interfaces know each other’s IORs. These IORs are stored

in different files with the same names as the name of the interfaces. The Interface

Definition Language (IDL) files for the interfaces are shown in Appendix B.

4.3 Example services with and without the GDASCF

This section describes two approaches of implementing a ”My Nearest” service.

The first approach looks at how this type of service is implemented without using the

OSA / Parlay gateway. In the second approach, this service is implemented by using

the GDASCF as part of the OSA / Parlay gateway. Advantages of implementing the

39

service using the GDASCF are then extracted.

4.3.1 First Approach : Implementation without using the GDASCF
Interface

The most common way of implementing a GIS is to deploy the GIS server within

an organization or a corporate Local Area Network (LAN). The server includes the

GIS Database as well as services that can be invoked by users. Each organization

defines rules of how to access the database and services in a specific manner. Figure

4.2 shows how a GIS can be deployed in an organization.

Transport Networks: GPRS,
WLAN, GPS

Metadatabase
Spatial

Database

GIS ServerApplication
Server

Make call via
RPC

Make call via
RPC

Retrieve Data

PDA

Figure 4.2: Deployment of a GIS in a corporate

Users are usually employees of the organization with controlled access to the GIS.

Furthermore, users have to understand interaction rules defined by the organization.

The client application can access the service in the GIS using Remote Procedure

Calls (RPCs). This is essential since RPC abstracts the client and the service from

different network infrastructures.

A sequence diagram in figure 4.3 shows how a client accesses a corporate database

using RPC.

1. Firstly, the RPCClient makes a call ExecuteQuery(), which is actually a stub

interface to the actual method implemented by RPCService.

40

RPCClient

RPCInterface RPCService Database

ExecuteQuery()

Call Service

ExecuteQuery()

Return Resultset

Return Resultset
Return Resultset

Stub interface for the ectual method.

Actual implementation method call.

Figure 4.3: Sequence diagram to access corporate database using RPC

2. The RPCInterface implements the skeleton interfaces, which interprets com-

ponent invocation requests and calls the corresponding methods in the RPC-

Service, with the parameter values supplied by the RPCClient.

3. The RPCService implements the ExecuteQuery() method which queries the

database and returns the result set back to RPCService. The result is then

returned to RPCClient.

4.3.2 Second Approach : Implementation using the GDASCF
Interface

In this section, we will demonstrate how a “My Nearest” type of a location based

service can be implemented using the GDASCF. The service implemented is called

Find Nearest ATM and is accessed via the Short Message Service (SMS). The flow

of events are as follows:

1. The user sends an SMS message to the SMS gateway. The message contains

the keywords “ATM name-of-bank” where name-of-bank can be any name of

a bank.

41

2. The SMS is intercepted by an SMS gateway. The Kannel [30] is used as as

an SMS gateway in this service.

3. The gateway extracts the keywords from the SMS message and invokes the

corresponding application, passing the keywords as arguments.

4. The IPAppProximity is instantiated.

5. The IpAppProximity sends a message to the IpProximity for interactive an

proximity query.

6. The IpProximity determines which driver supports proximity queries from

the registry.

7. The IpProximity connects to the driver.

8. The driver formulates a query statement and sends it to the corresponding

DBMS.

9. The DBMS returns the result set to the driver, which passes it back to the

IpProximity.

10. The information is relayed back to the IpAppProximity.

11. The gateway finally sends an SMS back to the user containing relevant infor-

mation.

42

User

SMSGateway IpAppProximity IpProximity Registry Driver Database

ProximityReportReq()
EvaluateDriver()

Connect()

PrepareProximityQuery()

ExecuteProximityQuery()

Return ResultsetReturn Resultset
ProximityReportRes()

ProximityReportReq

ProximityReportRes

Req SMS

SMS Res

Figure
4.4:Sequence

ofevents
for“Find

N
earestA

T
M

”
Service

43

4.3.3 Comparison of both approaches

In the first approach, the methods of the RPCService are written to be specific for a

particular implementation. Thus the implementation of this service must be aware

of the structure of the database at design time since it will be querying it directly.

Should the database implementation change, the RPCService will have to be rewrit-

ten and recompiled. The abstraction provided by the GDASCF in the second ap-

proach, does not require the application accessing the service to know the structure

of the database. Thus changes to the database structure are kept transparent from

the application. Moreover, applications can query a different database at run-time

with no recompilation required. This factor has a considerable impact on the devel-

opment time and time-to-market of applications.

Since methods of the RPCService are not standardized, a protocol for client / server

communication must be specified during design time. This can be done achieved by

generating client stubs and server skeletons. If the server implementation changes,

new stubs and skeletons must be generated and installed in both the client and the

server. Clearly if there are many clients accessing the service, this will impact

negatively on deployment time. Standardization of method calls in the GDASCF

ensures that the client knows its input and output parameters all the time. Moreover,

the GDASCF is contained in the OSA / Parlay gateway, which is maintained by

a separate entity. The client application is thus free to choose between different

GDASCFs at run-time.

In the first approach, since the GIS and the services are maintained by one orga-

nization, the interface of the service is limited to the scheme that the organization

chooses. As shown in figure 4.3, the interface is limited to communicating using

only RPC. However, more interfaces can be implemented, but they have to access

the service via RPCInterface. In the second approach, the access to the service

uses the SMS Gateway interface as shown in figure 4.4. More interfaces can be

implemented that are independent from the SMS Gateway interface.

Use of the OSA / Parlay gateway with GDASCF motivates the fact that the GIS and

services that run on it, do not have to be maintained by the same organization. This

fact is important since 3rd party organizations are motivated to develop different

services while gaining controlled access to the GIS.

44

The table 4.1 summarizes the differences between the two approaches as outlined

above.

First Approach Second Approach
Database structure dependant. Database structure and implementation

independent.

No standard calling convention i.e. Dif-

ferent server implementations can break

the client

Standardized OSA/Parlay APIs. New

APIs can be added in a controlled manner

without breaking the client.

Client applications need to be recompiled

for different service implementations.

Client Applications can choose between

different SCFs at run-time without recom-

pilation.

Implementing new interface objects is not

scalable enough i.e. It depends on the ini-

tial interface.

More interfaces can be implemented for

flexibility and scalability.

Applications are highly coupled to the

service. This restricts 3rd party organiza-

tions from accessing the service.

3rd party organizations can gain con-

trolled access to the service. This has the

effect of increasing revenue for the ser-

vice provider, while reducing costs asso-

ciated with implementing the service in-

frastructure, such as a GIS, for 3rd party

organizations.

Increased time-to-market of applications

and services.

Reduced time-to-market of applications

and services.

Table 4.1: Comparison of the two approches

45

4.4 Chapter Summary

In the previous chapter we discussed the design of services that run on the GDASCF

and as well as to model its internal behavior. In this chapter we discussed the plat-

form on which the services are implemented. The purpose of this chapter was to

show how different components at different layers of the proposed infrastructure can

be deployed. Two example where provided to show the difference between services

that use GDASCF and those that do not. Advantages gained by using GDASCF are

then and outlined.

Note that in figure 4.4, the calls to IpProximity could be changed by calling the

TriggeredProximityReportReq() and PeriodicProximityReportReq() without chang-

ing method calls to other interfaces. The only difference is that the IpProximity

interface would then make calls to the Mobility Management interface for for trig-

gered and periodic location reports cases. However the implementation logic to call

the methods of the Mobility Management interface lies within the gateway and is

hidden from the application or service developer. We conclude that the GDASCF

provides generic interfaces across a plethora of services.

46

Chapter 5

Critical Design Review

5.1 Introduction

Best practices in software engineering require that software be evaluated against

a set of pre-defined matrices. This will ensure that the software is designed to be

highly reusable and easy to maintain. Amongst the matrices that will be discussed in

this chapter are Coupling, Cohesion and Completeness and Primitiveness. Detailed

explanations of these matrices can be found in [31]. The purpose of this chapter is

to show how these software matrices apply to the design of the GDASCF.

5.2 Coupling

Coupling is a measure of strength of association established by a connection from

one module to another [31]. The intent is to produce a design with weak coupling

between classes, as this reduces complexity and results in a system that is easier to

change or correct.

However, there is a trade-off between coupling and inheritance. While weak cou-

pling is desirable, inheritance is necessary to help us exploit the commonality among

abstractions and thus be able to reuse classes. Achieving this desired effect of in-

heritance results in strong coupling between superclasses and subclasses.

47

To balance the tradeoff between coupling and inheritance, we divide coupling into

two forms which are

• Vertical coupling describes the coupling between superclasses and subclasses.

• Horizontal coupling describes coupling between classes on the same level of

the hierarchy in a class diagram.

This two forms of coupling can be best illustrated by use of a diagram. Figure 5.1

shows inheritance results with strong vertical coupling.

Superclass

Subclass1 Subclass2

Horizontal Coupling

Vertical Coupling

Figure 5.1: Vertical and Horizontal Coupling

As shown in the class diagram of figure 5.2, vertical coupling is increased by em-

ploying inheritance. This is necessary to make sure that interfaces can be easily

changed and reused. Horizontal coupling is reduced by employing as little associa-

tion between the classes across the hierarchy as possible.

5.3 Cohesion

Cohesion is defined as the degree of connectivity among the elements of single mod-

ule, class or object [31]. The degrees of cohesion varies across the spectrum from

48

the
leastdesirable

coincidentalcohesion
to

the
m

ostdesirable
functionalcohesion.

C
oincidentalcohesion

occurs
w

hen
entirely

unrelated
abstractions

are
grouped

to-

getherin
a

class
orm

odule.
Functionalcohesion

is
achieved

by
grouping

elem
ents

w
ith

identicalfunctionality
to

provide
w

ell-bounded
behavior.

«interface»
IpInterface

«interface»
IpAppGISInterface

«interface»
IpGISInterface

«interface»
IpAppAddressTranslate

+positionReportRes()
+triggeredPositionReportRes()
+periodicPositionReportRes()

«interface»
IpAppUserPosition

+proximityReportRes()
+triggeredProximityReportRes()
+periodicProximityReportRes()
+proximityReportErr()
+periodicProximityReportErr()
+TriggeredProximityReportErr()

«interface»
IpAppProximity

«interface»
IpAddressTranslate

+positionReportReq()
+triggeredPositionReportReq()
+periodicPositionReportReq()

«interface»
IpUserPosition

+proximityReportReq()
+tiggeredProximityReportReq()
+periodicProximityReportReq()
+periodicProximityReportingStop()
+triggeredProximityReportingStop()

«interface»
IpProximity

«uses»

«uses»

«refines»

Figure
5.2:C

lass
D

iagram

T
he

class
diagram

in
figure

5.2
show

s
tw

o
sets

of
interface

classes.
T

hese
classes

are
grouped

as
IpA

pp
and

Ip
interface

classes.T
he

IpA
pp

classes
are

the
application

layer
callback

interface
classes

to
be

im
plem

ented
by

the
service

designer.
T

he
Ip

49

classes are generic gateway SCF interface classes.

Functional cohesion is thus achieved by employing a UML Using relationship be-

tween corresponding classes. Thus the IpProximity interface uses the IpAppProx-

imity interface, the IpUserPosition interface uses the IpAppUserPosition interface

and the IpAddressTranslate uses the IpAppAddressTranslate interface.

5.4 Completeness and Primitiveness

Completeness refers to an interface class that captures all the meaningful charac-

teristics of the abstractions [31]. Clearly the concept of completeness is subjective

and providing all the characteristics will complicate the use of the interfaces. How-

ever, inheritance was used to implement primitive interfaces [31]. This means that

existing interfaces can be extended by means of inheritance. Newer interfaces can

also be defined by inheriting from the IpInterface interface.

50

Chapter 6

Conclusion

This report set out to describe the design of the Data Access SCF to be used in the

Parlay/OSA gateway. The purpose of the research was not to identify all the inter-

faces and characteristics of their abstractions, but rather to define an infrastructure

that can be easily extended to include more functionality from a set that is initially

provided.

6.1 Discussion

The report outlines two business cases that necessitate the need for an architecture

that allows rapid service creation. Firstly, a business case was presented, describing

the architecture for the elimination of monopolies in the telecommunications envi-

ronment. This way, service creation can be driven by customer demands. Secondly,

for developing countries, the cost of implementing a GIS can be very high for third

party ASPs. An approach was thus suggested to reduce such costs.

To satisfy the above business cases, this report proposed an architecture for Geospa-

tial Data Access based on Parlay / OSA. The report presented the design and im-

plementation of the Data Access SCF residing in the Parlay / OSA Gateway. To

accomplish these tasks, the ICONIX design process was employed. This process

is a light weight methodology based on the Unified Software Development Process

[27]. The process is use-case driven, architecture centric, iterative and incremental

in nature and uses the Unified Modelling Language (UML).

51

The Data Access architecture consists of layers with the purpose of providing nec-

essary abstraction to develop reusable and generic applications. The application

layer implements application specific logic for a particular service. Method calls

are made from the application layer to the gateway layer through the Data Access

SCF interfaces. The Data Access SCF offers uniform access to GIS databases resid-

ing in a lower layer. To ensure that different DBMSs can be supported, an adapter

layer was introduced to adopt different function calls to different operating environ-

ments. The Data Access SCF can also make internal calls to the Mobility SCF to

query for location information.

6.2 Conclusions

Chapter 1 outlined existing problems with the current telecommunications archi-

tectures. These problems present difficulties in the way applications are developed

in that environment. The GDASCF was designed to address the solutions to these

problems. A number of conclusions can be made about the GDASCF.

While the Parlay/OSA gateway provides a level of abstraction to the applications

from the actual network transport entities, the GDASCF provides several layers of

abstraction to the application layer from different geospatial databases. The result

of such an approach is evident from the fact that application developers need not

concentrate on the finer details of setting up a complete GIS infrastructure. Thus

application vendors will be able to concentrate on developing innovative applica-

tions and services at a reduced risk and cost.

The GDASCF architecture also has benefits to large organizations that maintain GIS

systems. Firstly, by removing the application development to third party organiza-

tions, they can then concentrate their time and effort on building generic and robust

GIS infrastructures. Moreover, by so doing, they will be opening their infrastructure

to a vast number of third party application developers. This has the advantage that

more innovative applications will be developed to use such infrastructures resulting

in more revenue for the business.

The design chapter outlined the key features of the Data Access SCF. The report

made the important conclusion that the design process followed results in a reusable

52

and maintainable software design. This conclusion is evident from the discussion

in the critical design review chapter. Each interface class of the Data Access SCF

implemented three types of method calls. These types of methods are Interactive,

Periodic and Triggered calls, in accordance with the Parlay / OSA standard of the

Mobility Interface. The reuse provided by Data Access SCF allows for rapid cre-

ation and delivery of reusable and maintainable services.

To show the applicability of the GDASCF, a typical service that can be implemented

was chosen. The “My Nearest” type of service represents an important class of ser-

vices that users with mobile units can access. Users can query for nearest restau-

rants, bank ATMs etc. Chapter 4 discusses in detail how the service can be im-

plemented using the OSA / Parlay gateway with the GDASCF encapsulated. The

same type of service is then implemented using the normal Remote Procedure Call

(RPC) approach. Comparing the two, it can be seen that the implementations with

the GDASCF provides more advantages as discussed in table 4.1.

6.3 Recommendations for Further Work

The design of the GDASCF has highlighted the need for the adapter interface. This

is necessary since different gateway vendors will be forced to develop the GDASCF

against the same set of APIs everytime. While the GDASCF must be considered

part of the OSA / Parlay gateway, it must be noted that the Adapter layer resides

outside the gateway. However, standardizing the Adapter interfaces will ensure that

database vendors need only provide adapters supporting the same set of interface.

Since the adapter layer may reside in a separate business domain, different adapters

will be provided by different vendors. Similar to the OSA / Parlay gateway, there

will be cases when the adapters performing the same task are deployed. Access to

the adapters will thus need to be controlled. The most important extension is thus to

extend the Adapter layer to include interfaces for the Registry, which will be used

to register adapters and their capabilities similar to the OSA / Parlay Framework.

The Registry interface is shown explicitly in the Sequence Diagrams in chapter 3.

It is also recommended that the proposed data access architecture be adopted by the

OSA / Parlay standard and the Data Access SCF be included as an integral part of

the OSA / Parlay gateway.

53

The design of the GDASCF concentrated mostly on the access of applications to

geospatial data. For the GIS infrastructure to be open, there needs to be a access

control, accounting and subscription interfaces. It is therefore recommended that

further research be done on the design of such interfaces to reside in the GDASCF.

54

References

[1] D. Schmidt, M. Stal, H. Rohnert, and F. Buschman, Pattern-Oriented Software

Architecture, Patterns for Concurrent and Networked Objects, vol. 2. Chich-

ester, England: John Wiley, September 2000. ISBN: 0-471-60695-2.

[2] E. Gamma and R. Helm and R. Johnson and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software. Indiana, U.S.A.: Addison

Wesley Professional, October 1994. ISBN: 0201633612.

[3] T. Magendanz and R. Popescu-Zeletin. International Thomson Computer

Press.

[4] A. Gillwald and S. Kane Edited by C. Armstrong, “South African

Telecommunications Sector Performance Review,” University of the Wit-

watersrand, LINK Research Agenda, 2002/3 Policy Research Paper No

5, http://www.researchictafrica.net/images/upload/sector-perfomance-rev.pdf,

Last Accessed 15 August 2005, August 2003.

[5] L. Correa, “Natural or Unnatural Monopolies In UK Telecommunica-

tions ?,” University of London, Economics Working Paper No. 501,

http://www.econ.qmul.ac.uk/papers/doc/wp501.pdf, Last Accessed 11 August

2005. ISSN 1473-0278.

[6] C. S. Allen and A. L. Fletcher, “From Alte Tante to European

Macher: German Telecommunications in the Global Economy,” A Pub-

lication of the American Institute for Contemporary German Studies,

http://www.aicgs.org/Publications/PDF/allenfletcher.pdf, Last Accessed 15

August 2005, March 1999.

[7] R. Kruger and H. Mellein. Rohde and Schwartz, Munchen, Germany.

55

[8] R. R. Bhat and R. Gupta, “JAIN Protocol APIs,” IEEE Communications Mag-

azine, vol. 38, no. 1, pp. 100–107, January 2000.

[9] J. de Keijzer, D. Tait, and R. Goedman, “JAIN: A New Approach to Services

in Communication Networks,” IEEE Communications Magazine, vol. 38, no.

1, pp. 94–99, January 2000.

[10] L. Rising, Design Patterns In Communications Software. New York,

USA: Press Syndicate of the University of Cambridge, 2001. ISBN-10:

0521790409.

[11] S. S. Yau and F. Karim, “A Lightweight Middleware Protocol for Ad Hoc

Distributed Object Computing in Ubiquitous Computing Environments,” in

Proceedings on the 6th IEEE International Symposium on Object-Oriented

Real-Time Distributed Computing (ISORC 2003), pp. 172–179, May 14-16

2000.

[12] S. Vinoski, “CORBA: Integrating Diverse Applications Within Distributed

Heterogeneous Environments,” IEEE Communications Magazine, vol. 35, no.

2, February 1997.

[13] C. Egelhaaf, P. FitzPatrick, P. Loosemore, O. Risnes, and F. Stoin-

ski, “Middleware for telecommunications,” in European In-

stitute for Research and Strategic studies in Telecommunica-

tions, (http://www.eurescom.de/ pub/deliverables/documents/P900-

series/P910/P910 brochure.pdf, Last Accessed 01 August 2005), EU-

RESCOM Project P910, Technology Assessment of Middleware for

Telecommunications, February 2001.

[14] B. Dwolatzky and R. van Olst, “A Mobile Geographic

Data Capturing Device for Use By Unskilled Operators,”

(http://synergy.intergraph.com/catalogfiles/documents/1627.pdf, Last Ac-

cessed 18 August 2005), University of the Witwatersrand, Johannesburg,

South Africa, 2003.

[15] W. Lara, Senior Software Engineer, “Universal Location Framework:

A New Wireless Building Block,” IntelDeveloperUPDATEMagazine,

http://www.intel.com/technology/magazine/communications/wi02031.pdf,

Last Accessed 27 July 2005, February.

56

[16] L. J. Pinson and R. S. Wiener, An Introduction to Object-Oriented Program-

ming and Smalltalk. Colorado, Springs: Addison-Wesley, 1988. ISBN: 0-201-

19127-X.

[17] K. Kwan and W. Shi, “A Study of Dynamic Database in Mobile GIS,” in Pro-

ceedings of the ISPRS Technical Commission IV Symposium: Symposium on

Geospatial theory, Processing and Applications, (Ottawa, Canada), July 09-12

2002.

[18] S. Beddus, G. Bruce, and S. Davis, “Opening Up Networks with JAIN Parlay,”

IEEE Communications Magazine, vol. 38, no. 4, pp. 136–143, April 2000.

[19] M. Henning and S. Vinoski, Advanced CORBA programming with C++.

Addison-Wesley, 1999.

[20] A. Moerdijk and L. Klosterman, “Opening the networks with Parlay/OSA:

Standards and Aspects Behind the APIs,” IEEE Communications Magazine,

vol. 17, pp. 58–64, May/June 2003.

[21] 3rd Generation Partnership Project, “Customised applications for mobile net-

work enhanced logic service description,” Stage 1 3G TS 22.078 version 3.4.1

Release 1999, http://webapp.etsi.org/exchangefolder/ts 122078v030401p.pdf

Last Accessed 11 August 2005, 2000-03.

[22] R. Corin, G. D. Caprio, S. Etalle, S. Gnesi, G. Lenzini, and C. Moiso, “Secu-

rity Analysis of Parlay/OSA Framework,” in 7th IFIP WG 6.1 International

Conference on Formal Methods for Open Object-Based Distributed Systems

(FMOODS), (Athens, Greece), pp. 131–146, Springer-Verlag, June 2005.

[23] A. O. Freier, P. Karlton, and P. C. Kocher, “The SSL Protocol Version

3.0,” (http://wp.netscape.com/eng/ssl3/draft302.txt, Lasts Accessed 11 August

2005), November 18.

[24] M. R. Ebling, G. D. H. Hunt, and H. Lei, “Issues for Context Services for

Pervasive Computing,” in Proceedings Workshop on Middleware for Mobile

Computing, IFIP/ACM Middleware 2001, (Heidelberg, Germany), Novem-

ber 2001. http://www.cs.arizona.edu/mmc/13%0Ebling.pdf, Last Accessed 18

August 2005.

[25] 3rd Generation Partnership Project, “Open Services Access, Appli-

cation Programming Interface, Mobility SCF,” 3GPP TS 29.198-

6 version 4.3.0 Release 4 ETSI TS 129 198-6 V4.3.0 (2001-12),

57

http://webapp.etsi.org/exchangefolder/ts 12919806v040300p.pdf Last

Accessed 11 August 2005, 2002.

[26] D. Rosenberg, M. Collins-Cope, and M. Stephens, Agile Developmet with

ICONIX Process: People, Process, and Pragmatism. Apress L.P, January

1999. ISBN: 0201571692.

[27] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development

Process. Addison-Wesley, January 1999. ISBN: 0201571692.

[28] K. Raymonds, “Reference Model of Open Distributed Pro-

cessing RM-ODP:Introduction,” in International Confer-

ence On Open Distributed Computing 1995 (ICODP’95),

(http://www.dstc.edu.au/Research/Projects/ODP/papers/icodp95.slides.ps,

Last Accessed 01 August 2005), February 20 1995.

[29] The Parlay Group., “Open Services Access, Application Programming Inter-

face, Mobility SCF”., etsi es 202 915-6 v1.1.1 (2003-01), ed.

[30] L. Wirzenius, “Kannel architecture and design - revision: 1.20,” Master’s the-

sis, Wapit Ltd, http://www.kannel.org/kannel-arch-snapshot/arch.html#EN16,

Last Accessed 01 August 2005. Work-in-progress for Masters Thesis.

[31] G. Booch, Object Oriented Design with Applications. Benjamin/Cummings.

ISBN: 0805353402.

58

Appendix A

Robustness Diagrams

A.1 Establish User Position

The following robustness diagrams correspond to Sequence diagrams in chapter

3.3.3

Service IpAppInterface Position Request IpAppUserPosition PositionReportReq

IpUserPosition

Evaluate Driver

Registry

Connect

DriverPrepareLocationInfoQueryExecuteLocationInfoQueryDatabase

Return

Return

PositionReportRes

Figure A.1: Establish User Position - Interactive Request

59

Service IpAppInterface Position Request IpAppUserPosition

PeriodicPositionReportReq

IpUserPosition

Evaluate Driver

Registry

Connect

DriverPrepareLocationInfoQueryExecuteLocationInfoQueryDatabase

Return

Return

PeriodicPositionReportRes
PeriodicLocationReportingStartReq

IpUserLocationCamel

*PeriodicLocationReport

Figure A.2: Establish User Position - Periodic Request

60

Service IpAppInterface Position Request IpAppUserPosition

TriggeredPositionReportReq

IpUserPosition

Evaluate Driver

Registry

Connect

DriverPrepareLocationInfoQueryExecuteLocationInfoQueryDatabase

Return

Return

TriggeredPositionReportRes
TriggeredLocationReportingStartReq

IpUserLocationCamel

*TriggeredLocationReport

Figure A.3: Establish User Position - Triggered Request

61

A.2 Proximity To A Region

The following robustness diagrams correspond to Sequence diagrams in chapter

3.3.3.

Service IpAppInterface Proximity Request IpAppProximity ProximityReportReq

IpProximity

Evaluate Driver

Registry

Connect

DriverPrepareProximityQueryExecuteProximtyQueryDatabase

Return

Return

ProximityReportRes

Figure A.4: Proximity - Interactive Request

62

Service IpAppInterface Proximity Request IpAppProximity

PeriodicProximityReportReq

IpProximity

Evaluate Driver

Registry

Connect

DriverPrepareProximityQueryExecuteProximityQueryDatabase

Return

Return

PeriodicProximityReportRes
PeriodicLocationReportingStartReq

IpUserLocationCamel

*PeriodicLocationReport

Figure A.5: Proximity - Periodic Request

63

Service IpAppInterface Proximity Request IpAppProximity

TriggeredProximityReportReq

IpProximity

Evaluate Driver

Registry

Connect

DriverPrepareProximityQueryExecuteProximityQueryDatabase

Return

Return

TriggeredProximityReportRes
TriggeredLocationReportingStartReq

IpUserLocationCamel

*TriggredLocationReport

Figure A.6: Proximity - Triggered Request

64

Appendix B

Interface Class Definitions

B.1 Interface Class for IpProximity

The IpProximity Interface class inherits from IpGISInterface which in turn inherits

from IpService. Note that the OSA / Parlay standard requires that each interface

inherits from IpService.

proximityReportRequest (appLocation : in IpAppProximityRef, users : in
TpAddressSet, request : in TpProximityRequest, locationList : in
TpLocationList) : TpAssignmentID

periodicProximityReportRequest (appLocation : in IpAppProximityRef ,
users : in TpAddressSet, request : in TpProximityRequest, ReportingInterval
: in TpDuration, locationList : in TpLocationList) : TpAssignmentID

triggeredProximityReportRequest (appLocation : in IpAppProximityRef,
users : in TpAddressSet, request : in TpProximityRequest, triggers : in
TpLocationTriggerSet, locationList : in TpLocationList) : TpAssignmentID

periodicProximityReportingStop(stopRequest : in
TpMobilityStopAssignmentData) : void

triggeredProximityReportingStop(stopRequest : in
TpMobilityStopAssignmentData) : void

 <<Interface>>
 IpProximity

Figure B.1: Interface Class IpProximity

65

Method proximityReportRequest()

Parameters

appLocation : in IpAppProximityRef

Specifies the application interface for callbacks from the Proximity service.

users : in TpAddressSet

Specifies the user(s) for which the location shall be reported.

request : in TpProximityRequest

Specifies among others the requested location type, accuracy time, and priority

locationList : in TpLocationList

Specifies the list of locations for which proximity must be reported. This parameter

is a list of strings specifying the names of locations that reporting should be done.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P APPLICATION NOT ACTIVATED,
P REQUEST ACCURACY CANNOT BE DELIVERED,
P REQUEST RESPONSE TIME CANNOT BE DELIVERED,
P INFORMATION NOT AVAILABLE, P INVALID INTERFACE TYPE,
P CANNOT CONNECT TO DATABASE, P LOCATION LIST IS EMPTY.

B.1.1 Method periodicProximityReportRequest()

Parameters

appLocation : in IpAppProximityRef

66

Specifies the application interface for callbacks from the Proximity service.

users : in TpAddressSet

Specifies the user(s) for which the location shall be reported.

request : in TpProximityRequest

Specifies among others the requested location type, accuracy time and priority

ReportingInterval : in TpDuration

Specifies the requested interval in seconds between the reports

locationList : in TpLocationList

Specifies the list of locations for which proximity must be reported

Returns

TpAssignmentID

Raises

TpCommonExceptions, P INVALID REPORTING INTERVAL,
P APPLICATION NOT ACTIVATED,
P REQUEST ACCURACY CANNOT BE DELIVERED,
P REQUEST RESPONSE TIME CANNOT BE DELIVERED,
P INFORMATION NOT AVAILABLE, P INVALID INTERFACE TYPE,
P CANNOT CONNECT TO DATABASE, P LOCATION LIST IS EMPTY.

B.1.2 Method triggeredProximityReportRequest()

Parameters

appLocation : in IpAppProximityRef

Specifies the application interface for callbacks from the Proximity service.

67

users : in TpAddressSet

Specifies the user(s) for which the location shall be reported.

request : in TpProximityRequest

Specifies among others the requested location type, accuracy time and priority

triggers : in TpLocationTriggerSet

Specifies the trigger conditions

locationList : in TpLocationList

Specifies the list of locations for which proximity must be reported

Returns

TpAssignmentID

Raises

TpCommonExceptions, P TRIGGER CONDITIONS NOT SUBSCRIBED,
P INVALID REPORTING INTERVAL, P APPLICATION NOT ACTIVATED,
P REQUEST ACCURACY CANNOT BE DELIVERED,
P REQUEST RESPONSE TIME CANNOT BE DELIVERED,
P INFORMATION NOT AVAILABLE, P INVALID INTERFACE TYPE,
P CANNOT CONNECT TO DATABASE, P LOCATION LIST IS EMPTY.

B.1.3 Method periodicProximityReportingStop()

Parameters

stopRequest : in TpMobilityStopAssignmentData

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the

assignment should be stopped.

Raises

68

TpCommonExceptions, P INVALID ASSIGNMENT ID

B.1.4 Method triggeredProximityReportingStop()

Parameters

stopRequest : in TpMobilityStopAssignmentData

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the

assignment should be stopped.

Raises

TpCommonExceptions, P INVALID ASSIGNMENT ID

B.2 Interface Class for IpAppProximity

The IpAppProximity Interface class inherits from IpAppGISInterface which in turn

inherits from IpService. Note that the standard of Parlay requires that each interface

inherits from IpService.

69

proximityReportRes(assignmentID : in TpAssignmentID, proximitySet : in
TpProximitySet) : void

proximityReportErr(assignmentID : in TpAssignmentID, cause : in
TpProximityError, diagnostic : in TpProximityDiagnostic) : void

periodicProximityReportRes(assignmentID : in TpAssignmentID,
proximitySet : in TpProximitySet) : void

periodicProximityReportErr(assignmentID : in TpAssignmentID, cause : in
TpProximityError, diagnostic : in TpProximityDiagnostic) :void

triggeredProximityReportRes(assignmentID : in TpAssignmentID,
proximitySet : in TpProximitySet) : void

TriggeredProximityReportErr(proximitySet : in TpProximitySet, cause : in
TpProximityError, diagnostic : in TpProximityDiagnostic)

 <<Interface>>
IpAppProximity

Figure B.2: Interface Class IpAppProximity

B.2.1 Method proximityReportRes()

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID of the proximity report request.

proximitySet : in TpProximitySet

Specifies the location(s) of one or several location. This parameter is similar to

TpLocationList. As a matter of fact, it can be defined as

Typedef TpLocationList TpProximitySet

Returns

Void

70

B.2.2 Method periodicProximityReportRes()

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID of the failed location report request.

proximitySet : in TpProximitySet

Specifies the location(s) of one or several location. This parameter is similar to

TpLocationList. As a matter of fact, it can be defined as

Typedef TpLocationList TpProximitySet

Returns

Void

B.2.3 Method triggeredProximityReportRes()

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID of the failed location report request.

proximitySet : in TpProximitySet

Specifies the location(s) of one or several location. This parameter is similar to

TpLocationList. As a matter of fact, it can be defined as

Typedef TpLocationList TpProximitySet

Returns

Void

71

B.2.4 Method proximityReportErr()

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID of the failed location report request.

cause : in TpProximityError

Specifies the error that led to the failure.

diagnostic : in TpProximityDiagnostic

Specifies additional information about the error that led to the failure.

Returns

Void

B.2.5 Method periodicProximityReportErr()

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID of the failed location report request.

cause : in TpProximityError

Specifies the error that led to the failure.

diagnostic : in TpProximityDiagnostic

Specifies additional information about the error that led to the failure.

Returns

Void

72

B.2.6 Method TriggeredProximityReportErr()

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID of the failed location report request.

cause : in TpProximityError

Specifies the error that led to the failure.

diagnostic : in TpProximityDiagnostic

Specifies additional information about the error that led to the failure.

Returns

Void

73

Appendix C

IDL specifications for the Geospatial
Data Access Service Capability
Feature

C.1 CommonDataDefinitions.IDL

/**

* The C++ code MAY NOT compile if the IDL definition contains

*variables that are aliased multiple times. E.G. the TpInt32

*definition below is aliased multiple times. If this is a

*problem, this multiple aliases must be removed from the IDL

*file.

***/

typedef long TpInt32;

typedef TpInt32 TpAssignmentID;

typedef long IpAppProximityCamelRef;

typedef string TpString;

74

/***

*The following enumerated types are as defined in the

*OSA / Parlay Common Data Definitions specification.

***/

enum TpAddressPlan {

P_ADDRESS_PLAN_NOT_PRESENT,

P_ADDRESS_PLAN_UNDEFINED,

P_ADDRESS_PLAN_IP,

P_ADDRESS_PLAN_MULTICAST,

P_ADDRESS_PLAN_UNICAST,

P_ADDRESS_PLAN_E164,

P_ADDRESS_PLAN_AESA,

P_ADDRESS_PLAN_URL,

P_ADDRESS_PLAN_NSAP,

P_ADDRESS_PLAN_SMTP,

P_ADDRESS_PLAN_MSMAIL,

P_ADDRESS_PLAN_X400,

P_ADDRESS_PLAN_SIP,

P_ADDRESS_PLAN_ANY,

P_ADDRESS_PLAN_NATIONAL

};

enum TpAddressPresentation {

P_ADDRESS_PRESENTATION_UNEFINED,

P_ADDRESS_PRESENTATION_ALLOWED,

P_ADDRESS_PRESENTATION_RESTRICTED,

P_ADDRESS_PRESENTATION_ADDRESS_NOT_AVAILABLE

};

enum TpAddressScreening {

P_ADDRESS_SCREENING_UNDEFINED,

P_ADDRESS_SCREENING_USER_VERIFIED_PASSED,

P_ADDRESS_SCREENING_USER_NOT_VERIFIED,

P_ADDRESS_SCREENING_USER_VERIFIED_FAILED,

P_ADDRESS_SCREENING_NETWORK

75

};

/***

*The struct below according to the OSA / Parlay Specification

*Common Data Definitions, page 9.

**/

struct TpAddress

{

TpAddressPlan plan;

TpString AddrString;

TpString Name;

TpAddressPresentation Presentation;

TpAddressScreening Screening;

TpString SubAddressString;

} ;//TpAddress;

struct TpAddressSet

{

TpInt32 Number;

TpAddress Set[100];

} ;//TpAddressSet;

C.2 IpProximity.IDL

interface IpProximity {

TpAssignmentID proximityReportReq

(in IpAppProximityRef appLocation,

in TpAddressSet users,

in TpProximityRequest request,

in TpLocationList locationList);

76

TpAssignmentID triggeredProximityReportReq

(in IpAppProximityRef appLocation,

in TpAddressSet users,

in TpProximityRequest request,

in TpLocationTriggerSet triggers,

in TpLocationList locationList);

TpAssignmentID periodicProximityReportReq

(in IpAppProximityRef appLocation,

in TpAddressSet users,

in TpProximityRequest request,

in TpDurationReportingInterval,

in TpLocationList locationList) ;

void triggeredProximityReportStop

(in TpMobilityStopAssignmentData stopRequest) ;

};

C.3 IpAppProximity.IDL

interface IpProximity {

void proximityReportRes(

in TpAssignmentID assignmentID,

in TpProximitySet proximitySet);

void proximityReportErr(

in TpAssignmentID assignmentID,

in TpProximityError cause,

in TpProximityDiagnostic diagnostic);

77

void periodicProximityReportRes(

in TpAssignmentID assignmentID,

in TpProximitySet proximitySet);

void periodicProximityReportErr(

in TpAssignmentID assignmentID,

in TpProximityError cause,

in TpProximityDiagnostic diagnostic);

void triggeredProximityReportRes(

in TpAssignmentID assignmentID,

in TpProximitySet proximitySet);

void triggeredProximityReportErr(

in TpProximitySet proximitySet,

in TpProximityError cause,

in TpProximityDiagnostic diagnostic);

};

78

