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Abstract 

Malaria is one of the most debilitating pathogenic infections known to man, 

responsible for approximately three million deaths annually, primarily children in 

sub-Saharan Africa.  The parasite has evaded multiple attempts at eradication, 

predominantly through the complexity of its life cycle, the ability to elude host 

immune response, and gametocyte formation to ensure dissemination.  The recent 

completion of the genome sequence has opened up a multitude of avenues for 

exploration and identification of novel drug and vaccine targets, as well as providing 

a glimpse into the complex mechanisms that have contributed to the success of this 

pathogen.  The mechanisms of gene regulation, especially those governing 

gametocytogenesis, have, however, not yet been elucidated. 

In this research, differential display has been used to identify some of the genes that 

are differentially expressed between the asexual parasite and gametocyte stages of P. 

falciparum.  Numerous genes involved in diverse aspects of metabolism, protein 

synthesis and immune evasion were identified.  A combination of BLASTN and 

BLASTX similarity searches was used to categorize and increase the confidence with 

which a transcript could be identified.  Expression data for confidently identified 

genes were confirmed using reverse slot blot and available microarray data. 

PfMyb2, a novel transcription factor which may regulate genes involved in 

gametocytogenesis, was characterized.  The DNA binding domains of the protein 

were cloned and expressed as a histidine fusion protein.  Mobility shift assays were 

used to assess the in vitro binding capability of the recombinant 6xHis-PfMyb2, 

which bound to oligonucleotides containing the consensus Myb regulatory element.  

Two of the oligonucleotides represent sequences located within promoters of P. 

falciparum genes (Pfcrk1 and Pfmap1) known to play a role in regulating the cell 

cycle, a function ascribed to many members of the vertebrate Myb family.  The 

identification of PfMyb2 as a bona fide transcription factor is a first step into gaining 

some insight into the many regulatory processes that occur during the life cycle of 

this complex organism.  A better understanding of the molecular mechanisms that 

govern its survival is essential for the ultimate eradication of this deadly parasite. 
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CHAPTER 1- INTRODUCTION 

 

1.1 The burden of malaria 

 

Malaria is a blood disease caused by the protozoan parasite of the genus Plasmodium, 

and transmitted by the Anopheles mosquito.  In 2002, 2.2 billion people were exposed 

to the threat of P. falciparum malaria, resulting in approximately 515 million clinical 

cases (Snow et al., 2005).  Of these, 70% were children and infants in sub-Saharan 

Africa, 25% occurred in South East Asia and the remaining 5% in South America.  

 

The frequency of malaria has been increasing at an alarming rate (Wahlgren and 

Chen, 2002; Carucci, 2004) due to various factors. Among these is the increasing 

resistance of the mosquito vector to insecticides, resistance of the parasite to 

antimalarial drugs, a climate that is more conducive to the survival of the mosquito, 

mass movement of people into areas of high transmission, and the continued inability 

of developing countries to afford the necessities for disease control.   

 

Humans are susceptible to infection from four species of Plasmodium: P. falciparum, 

P. vivax, P. ovale and P. malariae.  Two characteristics that distinguish P. falciparum 

from the other malarias are its ability to invade erythrocytes of all ages causing 

extremely high parasitaemias, and the capacity to avoid splenic clearance by 

adherence to host capillary endothelium (Heddini, 2002).  These features all 

contribute to making P. falciparum the most pathogenic of the four species of 

Plasmodium.  Some of the difficulties inherent in combating this pathogen are 

highlighted when examining the complexities of the parasite life cycle. 
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1.2 P. falciparum life cycle 

 
The life cycle of P. falciparum (Figure 1) alternates between a mosquito vector and a 

human host.  Sporozoites are inoculated into the human with the bite of a female 

Anopheles mosquito (1), upon which they migrate immediately to the liver and 

invade hepatic cells (2).  A dormant period ensues lasting approximately two weeks, 

during which the sporozoites mature into schizonts and cause rupture of the 

hepatocytes (3).  A hepatocyte can release up to 30 000 merozoites, each capable of 

invading an erythrocyte.  Thus begins a period of asexual cycling in the erythrocytes 

(4), where a single merozoite invading a cell is capable of producing as many as 36 

merozoites in a mature multinucleated schizont.  On average in P. falciparum, 16 new 

merozoites are released from an erythrocyte every 48 hours, each of which is able to 

invade a new cell. The resultant exponential increase in parasitaemia is largely 

responsible for the onset of clinical symptoms (Suh et al., 2004). 

 

At a point during the multiple rounds of asexual erythrocytic cycling, a proportion of 

parasites are stimulated to differentiate into gametocytes (5), the sexual form essential 

for transmission.  This process is one of the most significant events in ensuring the 

survival and dissemination of the parasite.  Unlike the asexual erythrocytic stages, the 

gametocyte is able to survive the environment of the mosquito midgut, and hence its 

presence in the infected host when the mosquito takes a blood meal is of paramount 

importance to ensure the continued survival of the parasite.  Male and female 

gametocytes are ingested by the mosquito during a blood meal (6), and the male 

exflagellates under the influence of xanthurenic acid to form eight microgametes each 

of which is capable of fertilizing the female macrogamete to form a zygote (7).  The 

zygote, or ookinete, passes through the epithelial cells of the midgut and lodges in the 

basal lamina were it grows into an oocyst that develops into numerous sporozoites 

(8).  Upon rupture of the oocyst, the sporozoites invade the salivary glands (9) to 

complete the cycle.   
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Figure 1- Life cycle of Plasmodium falciparum 

A diagrammatic representation of the life cycle of P. falciparum, as it 
alternates between the Anopheles mosquito vector and human host.  See text 
for details (http://www.luc.edu/depts/biology/lifecyl.gif). 
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1.3 Sexual development in P. falciparum 

 

Upon rupture of an erythrocyte, each released merozoite has one of two 

developmental pathways it can follow.  It can either embark on another round of 

schizogony, or it can convert to a single male or female gametocyte (Diebner et al., 

2000).  Plasmodium is one of the few Apicomplexa to exhibit asexual schizogony, 

and as such it is possible that this has evolved as a means of extending the period of 

transmissibility of the parasite, thereby increasing its chances of survival (Dyer and 

Day, 2000).  An intricate balance must be maintained between the asexual and sexual 

cycles; prolonging the asexual cycle and thereby reducing the exposure of the 

antigenic gametocytes must be balanced with ensuring that gametocytes are available 

when a mosquito takes a blood meal (Dyer and Day, 2000). 

 

Currently the mechanisms mediating the switch in the life cycle of the parasite have 

not been fully elucidated, but an understanding of sexual development is of prime 

importance in the development of transmission blocking vaccines and as a 

contribution to the general understanding of parasite biology. 

 

1.3.1 Gametocyte morphology   

Several highly distinctive morphological and genetic traits distinguish gametocytes 

from asexual parasites (Figure 2).  The entire growth period of the gametocyte has 

been divided into five stages (I-V) spanning a period of 8-17 days following 

erythrocyte invasion of a sexually committed merozoite (Hawking et al., 1971).  

Stage I gametocytes appear within two days of red cell invasion, but are 

morphologically indistinguishable from asexual trophozoites. Stage II gametocytes 

are produced after two days of growth and begin to elongate within the erythrocyte 

through the formation of a subpellicular cytoskeleton.  Cells at stage III can be 

distinguished into male and female forms by the varying arrangement of the 

cytoplasm, with the male cytoplasm having fewer ribosomes, mitochondria and 
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endoplasmic reticulum (ER) than the female.  The erythrocyte is also becoming 

clearly distorted by this stage (2-8 days post-invasion).  Sexually differentiated stage 

IV gametocytes are spindle-shaped with pointed poles, and have taken on a more 

symmetrical conformation corresponding to the complete enclosure of the parasite in 

a subpellicular cytoskeleton.  There is a marked increase in the density of ribosomes, 

endoplasmic reticulum, Golgi vesicles and mitochondria in the female 

macrogametocyte relative to the male microgametocyte, which reflects the 

subsequent development of the macrogametocyte as the fertilized egg.  Collapse of 

the pointed, spindle shape into a crescent shape with rounded extremities marks the 

final transformation of the stage IV parasite to the morphologically mature stage V 

gametocyte (Talman et al., 2004). 

 

 

Figure 2- Gametocyte morphology 

The five morphological stages of P. falciparum gametocytes are illustrated (Carter 
and Graves, 1988) See text for details. 
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1.3.2 Sexual stage-specific gene expression 

Development of gametocytes is accompanied by a coordinated expression of sexual 

stage-specific genes, in addition to the many genes whose expression is up- or down-

regulated (Janse and Waters, 2004).  In their analysis of the genome using a high 

density microarray, Le Roch et al. (2003) identified 152 genes showing elevated 

levels of expression in gametocytes, and 218 genes expressed uniquely in sexual 

stages.  Of these 370 genes, approximately 84% were identified only as hypothetical 

proteins, highlighting both the difficulties inherent in isolating sufficient quantities of 

gametocyte RNA for analysis, and the relative lack of research interest that has 

hitherto characterised this developmental stage.   

  

Proteomic analysis of this stage has confirmed the existence of stage-specific gene 

expression, with numerous proteins found to be over-represented in the gametocyte 

(Florens et al., 2002).  Some of these include proteins involved in cell cycle/DNA 

processing, which are required to respond immediately, upon uptake by the mosquito, 

to the stimuli to release the gametocyte from its arrested state in the G0 stage of the 

cycle and initiate gametogenesis.  Proteins involved in the mitochondrial 

tricarboxylic acid (TCA) cycle are also in evidence as this source of energy replaces 

the dependence on glycolysis seen in asexual parasites (Young et al., 2005).  Proteins 

involved in protection against oxidative stress are upregulated in sexual stages to 

compensate for the elevated levels of oxidative agents associated with the 

erythrocytic stages (Lasonder et al., 2002).  The number of proteins expressed 

uniquely in sexual stages, and the diversity of their functions, reflect the fundamental 

changes and adaptations that the parasite must make to ensure its survival in a new 

environment.   

 

Because the expression of many of the sexual-stage specific genes, especially the 

surface antigens, is not essential for asexual proliferation, they provide a good target 

for gene disruption studies, and several have thus been quite extensively 

characterised. 
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Pfs16 and Pfg27/25 

One of the earliest genes identified as being specific to sexual stages is Pfs16, which 

encodes a protein that localises to the parasitophorous vacuolar membrane (PVM) of 

the parasite.  The synthesis of Pfs16 protein is specific to gametocytes, but promoter 

activity is evident in ring stages and mRNA can be detected within 24 hours of 

erythrocyte invasion (Dechering et al., 1997).  Transcriptional activity of Pfs16 is 

therefore often used as a marker of sexually committed ring stages (Schneider et al., 

2004).  The early onset of expression and its abundance led to speculation that it was 

intricately involved in the formation of gametocytes.  Knockout studies refuted this 

belief however, as Pfs16- mutants were still capable of forming gametocytes with no 

apparent morphological changes.  However, a significant reduction in the conversion 

rate to gametocytes was observed (Kongkasuriyachai et al., 2004) and male mutants 

were unable to exflagellate and were not infectious to mosquitoes.  Thus it appears 

that Pfs16, although not essential for gametocyte growth, is required for optimal 

production of mature gametocytes. 

 

In parasites committed to the sexual pathway, Pfg27/25 is expressed approximately 

30 hours after erythrocyte invasion.  By the time these committed parasites have 

matured to stage I and II gametocytes, it represents approximately 5-10% of the 

cytoplasmic protein content of the cell (Lobo et al., 1999), coinciding with a time at 

which the transcription rate of this gene is beginning to decrease (Alano et al., 1996).  

Pologe (1994) ascribed defective gametocytogenesis to DNA rearrangements 

upstream of the Pfg27/25 locus, but this was disputed by Alano et al. (1996).  In an 

attempt to better understand the transcriptional regulation of the Pfg27/25 gene, 

Alano et al (1996) studied the upstream genomic sequences of the gene.  A highly 

conserved sequence in the 5’ untranslated region of the gene was identified, 

consisting of five direct and one inverted repeat of a 90bp unit.  Each unit contained a 

poly-dT tract, a 47bp conserved tract and a short d(AT) tract.  Analysis of the 

upstream polymorphic region in gametocyteless strains showed that no correlation 

existed between the upstream regions and the ability to convert to gametocytes.  
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Based on the close proximity of the polymorphic region to the transcriptional control 

apparatus of the gene, Alano et al. (1996) proposed that the gene is under the 

transcriptional influence of the polymorphic region, which contributes to the irregular 

expression of this gene.  Subsequent to this, complete disruption of the Pfg27/25 

locus through homologous recombination has resulted in a complete loss of the 

sexual phenotype (Lobo et al., 1999), again implicating this gene as a crucial element 

in gametocyte development.  Despite not maturing to gametocytes, all transgenic 

mutants maintained expression of Pfs16, indicating that their commitment to sexual 

differentiation had not been affected.  This shows that a clear genetic distinction 

exists between the commitment to sexual development and the physical development 

of this stage.  This knockout further implicates a region upstream of the Pfg27/25 

locus in sexual development.   

 

Pfs25 

Whereas Pfs16 is suitable as a marker of early stage gametocytes, identification of 

late stage gametocytes requires quantification of the Pfs25 gene, whose mRNA is 

expressed in stage V gametocytes (Schneider et al., 2004) and in mosquito sexual 

stages (gametes/ookinetes) (Kongkasuriyachai and Kumar, 2002).  Pfs25 encodes a 

surface antigen containing epidermal growth factor-like domains, which may be 

involved in invasion of the midgut epithelium.  Antibodies raised against Pfs25 can 

block the development of oocysts in the midgut of the mosquito thereby significantly 

reducing transmission of the parasite; this makes it a leading transmission-blocking 

vaccine candidate (Barr et al., 1991; Kaslow et al., 1991).    

 

Pfs230 and Pfs48/45 

A unique protein family containing several cysteine repeats has been identified in 

sexual stages of Plasmodium.  Pfs230 and Pfs48/45 are two members of this family 

that have been well characterised and identified as potential transmission-blocking 

vaccine candidates (Moreira et al., 2004).  Expression of both of these proteins begins 

in stage III gametocytes. 



Chapter 1-Introduction  

 

9

Pfs230 encodes a 360kDa protein that contains six tandemly repeated six-cysteine 

domains and is localised to the plasma membrane.  Full length Pfs230 (360kDa) is 

proteolytically cleaved to a 310kDa form as soon as the parasite emerges from the red 

cell in the mosquito midgut.  It is postulated that this stage specific processing is an 

immune evasion strategy, where an N-terminal 50kDa span containing an 

immunodominant region is cleaved from the protein to attract the immune response, 

such that the 310kDa form is not vulnerable to antibodies upon release from the red 

cell (Williamson et al., 1996).  The role of Pfs230 in sexual stage parasites has yet to 

be determined, as mutants expressing truncated forms of this protein are still able to 

form gametocytes (Eksi et al., 2002).   

 

Pfs48/45 encodes a 55kDa membrane protein containing two six-cysteine domains 

(Moreira et al., 2004).  Knockout mutants lacking this gene were still able to form 

gametocytes that differentiated into gametes, but male gametes were unable to adhere 

to and penetrate female gametes.  Fertilization and zygote formation were thus 

severely affected (van Dijk et al., 2001).   

 

Exflagellation, and thus male gamete formation in the mosquito, is induced by 

xanthurenic acid (Billker et al., 1998) through a calcium-dependant pathway 

requiring calcium-dependant protein kinases (CDPK) (Billker et al., 2004).  Recently 

knock-out of CDPK4 in P. berghei abrogated the formation of male gametes, and the 

existence of six to seven CPDKs in the P. falciparum genome has led to speculation 

that these could play a similarly important role in gamete formation in this organism 

(Billker et al., 2004). 

 

1.3.3 Environmental factors influencing sexual development 

The first to demonstrate a parasite sensitivity to the environment were Carter and 

Miller (1979) who showed that gametocyte conversion rate could be modulated by 

the addition of fresh erythrocytes to the culture.  This was confirmed by Bruce et al. 
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(1990) who found that during rapid asexual growth, the proportion of schizonts 

forming gametocytes was very low immediately following the dilution of the culture 

with fresh erythrocytes.  This proportion increased as the levels of parasitaemia rose 

and asexual growth slowed, but upon addition of fresh erythrocytes asexual growth 

was again favoured.  Using a co-culture technique, where experimental and control 

cultures were separated by a semi-permeable membrane, Dyer and Day (2003) 

demonstrated that the conversion of asexual parasites to gametocytes occurred in a 

density dependant manner regulated through the action of diffusible molecules.  Thus 

conversion to gametocytes is inhibited during conditions that favour asexual growth, 

but as the parasitaemia increases up to and beyond a critical level asexual growth is 

inhibited and the parasites are released from the inhibition of sexual development.  In 

this model the formation of sexual stages is the default developmental pathway, 

whilst the asexual stages serve to increase the transmission potential of the parasite 

(Dyer and Day, 2003).   

 

Irrespective of whether diffusible factors stimulate sexual growth, or override an 

inhibition on sexual development, the inference is that the parasites have a 

quantitative sensitivity to the environment, and are able to regulate their own growth 

and development (Dyer and Day, 2003).  In the model proposed by Dyer and Day 

(2000), an intricate balance exists between stimulatory/inhibitory environmental 

signals, signal transduction pathways and transcription factors in the nucleus of the 

parasite.  Variation in concentration of any of these components above or below a 

certain threshold can trigger a switch in the developmental cycle of the parasite.  

Some of these environmental influences are described below.   

 

Nacher et al. (2002) described a linear relationship between the likelihood of 

observing gametocytes in peripheral blood smears and the degree of anaemia, which 

is a cause of severe morbidity in malaria (Chang and Stevenson, 2004).  The onset of 

malarial anemia is precipitated by sub-optimal erythropoiesis following the increased 

production of erythropoietin (EPO) in the kidney.  The production of EPO is 
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regulated in a feed-back loop with the degree of tissue oxygenation and Nacher et al. 

(2002) thus postulate that hypoxia could be one of the many signals for the onset of 

gametocytogenesis.   

 

Host immunity is one of the most important factors affecting the rate of conversion to 

gametocytes.  Immune response is associated with both increased and decreased 

gametocyte load, possibly because a decrease in gametocytaemia is accompanied by 

an increased rate of commitment to gametocytogenesis (Dyer and Day, 2000; Talman 

et al., 2004). The immune response to gametocytes has also been proposed as one of 

the reasons for the small number of asexual parasites that actually form gametocytes 

(Taylor and Read, 1997).  If the transmission-blocking immunity that has been 

demonstrated for several surface antigens of P. falciparum is dependant on the 

gametocyte density, as has been proposed (Taylor and Read, 1997), it is advantageous 

to keep this number of gametocytes to a minimum.   

 

In addition to the mechanisms postulated by Taylor and Read (1997), alternative 

explanations do exist for the surprisingly small number of asexual parasites that 

convert to gametocytes.  One theory is that the parasites attempt to minimise the 

damage inflicted on the mosquito vector.  Penetration of the stomach wall by the 

ookinete can be harmful to the mosquito; potentially fatal damage is reduced by 

minimizing the number of gametocytes as well as through the apoptotic potential of 

the ookinete (Talman et al., 2004).  Another explanation, as described by Piper et al. 

(1999), is a naturally acquired age-dependant immunity to PfEMP-1.  Trophozoites 

and gametocytes share the same repertoire of var genes, responsible for expression of 

the same combinations of PfEMP-1 variants.  Immunoepidemiological studies 

performed by Piper et al. (1999) showed that an antibody response is generated to an 

infected erythrocyte containing a PfEMP1 variant irrespective of whether the 

erythrocyte contains a trophozoite or gametocyte, and that this immune response has 

the ability to regulate the density of both gametocytes and trophozoites.   
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Another host factor that increases the conversion to gametocytes is exposure of 

asexual parasites to host hormones, such as insulin, progesterone and testosterone.  

The same effect is seen upon exposure to host steroids and corticosteroids, but in both 

cases the mechanisms by which this occurs have yet to be ascertained (Dyer and Day, 

2000; Talman et al., 2004). 

 

Anti-malarial drugs have different effects on the development of gametocytes 

depending on their modes of action.  Treatment with anti-folate drugs and 

chloroquine increases the number of gametocytes in malaria infected individuals 

(Barkakaty et al., 1988), potentially as a response to a declining asexual parasitaemia.  

Conversely a six-dose regimen of co-artemether administered to children in Gambia 

was found to reduce gametocyte prevalence, duration of gametocyte carriage and 

infectiousness to mosquitoes (Sutherland et al., 2005).  In vitro studies showed that 

riboflavin has potent anti-malarial activities against both asexual and gametocyte 

stages of the disease, specifically when used in combination with other antimalarial 

drugs (Akompong et al., 2000), but the effects in vivo have yet to be ascertained.   

 

1.3.4 Genetic factors regulating gametocytogenesis 

To date very few genetic mechanisms have been implicated in the process of 

gametocytogenesis.  It has been reported that a decrease in gametocyte development 

in parasites maintained in culture for a long time is associated with a deletion on the 

short arm of chromosome 9 (Alano et al., 1995), whilst defects in the production of 

male gametocytes have been associated with a region on chromosome 12 (Guinet and 

Wellems, 1997).  Gardiner et al. (2005) were the first to report the identification of 

some of the genes on chromosome 9 thought to be associated with gametocyte 

formation, specifically a gene they have designated as P. falciparum gene implicated 

in gametocytogenesis (pfgig).  This gene is expressed predominantly in schizonts, 

coinciding with the approximate time at which a decision to commit to a gametocyte 

is made.  Up-regulation of this gene resulted in an increased expression of Pfs16, an 



Chapter 1-Introduction  

 

13

early marker of sexual development, whilst genetic silencing resulted in decreased 

gametocytogenesis.  Significant expression of this gene has been recently confirmed 

using an early-stage gametocyte microarray, supporting the notion that it is involved 

in early sexual development (Gardiner et al., 2005; Young et al., 2005).  Eksi et al 

(2005) have reported the identification of a sub-telomeric gene family that is 

expressed during the transition from asexual to sexual stages.  A P. falciparum- 

specific sub-telomeric gene family consisting of 36 genes (designated DXF, for 

differentially expressed exported family) was found to contain six members that were 

differentially expressed in parasites committed to sexual development.  The 

expression pattern of these genes is consistent with the commitment to sexual 

development, i.e. in schizonts of the cycle preceding gametocyte formation.  This is 

similar to the expression pattern of the other markers of sexual development, Pfs16 

and Pfs25. 

 

1.3.5 Signalling pathways implicated in gametocytogenesis 

A prerequisite for a developmental cycle that is highly dependant on the external 

environment is the existence of signalling pathways that transmit environmental 

stimuli to the transcriptional apparatus of the parasite.  Cyclin-dependant kinases are 

key regulators of the progression of the cell cycle, and numerous eukaryotic 

homologues of protein kinases and phosphatases have been cloned in P. falciparum 

(Doerig and Chakrabarti, 2004).  Many of these are highly conserved and are either 

upregulated or exclusively expressed in gametocytes.  Two mitogen activated protein 

kinases (MAPK) of the ERK1/ERK2 sub-family, PfMAP-1 and PfMAP-2, have been 

identified as being expressed predominantly in gametocytes (Doerig, 1997; Dorin et 

al., 1999).  Kinases belonging to this subfamily play a central role in regulation of 

cellular proliferation suggesting possible roles for these proteins in the process of 

sexual development, potentially either maintaining or releasing the gametocyte from 

its arrested state in the Go stage of the cell cycle (Dorin et al., 1999). 
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Evidence collected thus far points to the involvement of both a phorbol ester-induced 

pathway (Trager and Gill, 1989) and a cyclic AMP-dependant pathway during 

commitment to sexual development (Inselberg, 1983).  In the latter pathway, protein 

kinase A is activated by the binding of cyclic AMP (cAMP), the levels of which are 

controlled by the activity of adenylyl cyclase.  All three of these components have 

been identified in P. falciparum (Doerig, 1997), though the mechanism of action of 

the adenylyl cyclase differs to its mammalian counterpart in that it utilises Mn2+ ATP 

as a substrate rather than Mg2+ ATP, and its activity is unaffected by compounds that 

inhibit G-proteins (Doerig, 1997).  Support for a role for cAMP pathways in sexual 

differentiation comes from stimulation of gametocytogenesis in cultures where cAMP 

levels were artificially elevated through the addition of caffeine (Brockelman, 1982) 

and 8-bromo-cAMP (Trager and Gill, 1989).   

 

Xanthurenic acid, which stimulates gamete growth in the mosquito, also stimulates 

guanylate cyclase activity in purified gametocyte membranes.  This may be through 

one of the two guanylate cyclase genes that have been identified in P. falciparum, 

both of which are specifically expressed in gametocytes (Doerig and Chakrabarti, 

2004). 

 

Dyer and Day (2000a) proposed the existence of a G protein-dependant signal 

transduction pathway in the parasite based on a response to the cholera toxin.  

Heterotrimeric G proteins are conserved in eukaryotes and often control a cell’s 

sensitivity to its environment by the coupling of membrane-bound signal receptors to 

downstream effector mechanisms.  These proteins are activated through the exchange 

of GDP for GTP, and are able to regulate their own activity through an intrinsic 

GTPase activity.  Dyer and Day (2000a) induced gametocyte growth through addition 

of cholera toxin to cultures; this removes the GTPase activity of the protein causing 

uncontrolled signalling cascades.  Despite these results, which indirectly implicate G-

proteins in a signalling cascade, there is no evidence from the genome for the 
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existence of G-protein signalling in the parasite (Aravind et al., 2003; Doerig and 

Chakrabarti, 2004).   

 

The decision to commit to sexual development is a multifactorial one, based on an 

intricate relationship between environmental stimuli and developmental pathways 

acting on stage specific genes.  Although the mechanisms involved remain poorly 

understood, it is generally accepted that conversion to a gametocyte occurs when 

environmental conditions no longer favour asexual growth.  This can be due to, 

amongst other as yet unidentified factors, a rapidly increasing asexual parasitaemia, 

drug pressure, host immune response and severe anaemia.  Continued survival must 

then take precedence over multiplication, and the emphasis shifts to initiating 

mechanisms that will ensure the successful proliferation of the parasite.  The 

complexities involved in controlling the life cycle to this extent can be better 

appreciated if one examines some of the gene regulatory mechanisms at play in the 

parasite. 

 

1.4 P. falciparum gene regulation 

 

Plasmodium is a small, haploid, genomically complicated organism that is able to 

adapt its gene expression to suit the myriad environments in which it finds itself 

(Bannister and Mitchell, 2003).  During the course of natural infection, the malaria 

parasite invades and multiplies within several different cell types: hepatocytes and 

erythrocytes in humans, and gut, vasculature and salivary glands in mosquitoes.  

Upon entry into each cell immediate adaptations must be made to ensure survival and 

proliferation in the new environment, and this must require a highly coordinated 

pattern of gene expression.  Investigations into the mechanisms of gene regulation in 

Plasmodium were for a long time hampered by the limited techniques that could be 

applied, as well as difficulties inherent in working with the different developmental 

stages of the parasite.  Only with the advent of transfection technology in P. 

falciparum (Wu et al., 1995) has light been shed on some of the elements that control 
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the essential gene regulatory mechanisms in the parasite (Crabb and Cowman, 1996; 

Horrocks and Kilbey, 1996; Wickham et al., 2003).  Homologues of all 12 subunits of 

RNA Polymerase II, TATA-box binding protein (TBP) and TFIIB have been 

identified in the genome using bioinformatic or experimental analysis (McAndrew et 

al., 1993; Coulson et al., 2004; Ruvalcaba-Salazar et al., 2005).  Even though the 

specific sequences and some of the regulatory factors involved may differ, the overall 

mechanism of gene regulation in the parasite shows similarities to the classic 

eukaryotic principles of gene regulation.  The correct timing and expression levels of 

genes are controlled by promoter and terminator sequences which flank the coding 

regions (Horrocks et al., 1998), and the rate of transcription is regulated by the 

binding of transcription factors (trans-acting elements) to activation sequences (cis-

acting elements) within promoter regions.  Binding of transcription factors to DNA 

alters the conformation of DNA in that region, which either allows access of other 

transcription factors to previously unreachable sequences, or alternatively prevents 

the binding of other transcription factors.  Other features in common with eukaryotic 

gene regulation include monocistronically transcribed genes, 5’ and 3’ untranslated 

regions, the presence of introns, capped mRNA and polyA tails (Kumar et al., 2004).   

 

Transcriptional regulation has been shown to play a major role in controlling gene 

expression in many of the Plasmodium species.  Microarray experiments (Bozdech et 

al., 2003; Florent et al., 2004) have demonstrated fluctuating levels of RNA 

throughout the parasite’s life cycle for many genes, implying control of gene 

regulation at the level of RNA synthesis or mRNA stability.  Nuclear run-on 

experiments have demonstrated transcriptional regulation of genes required for 

pathogenesis (Scherf et al., 1998), sexual differentiation (Alano et al., 1996) and 

cytoadherence (Lanzer et al., 1992).  There is also evidence for posttranscriptional 

regulation of gene expression in the parasite (Coulson et al., 2004), and the 

identification of the Puf family of RNA binding proteins in P. falciparum (Cui et al., 

2002) suggests regulation of gene expression at the translational level. Thus the 
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control of gene expression is likely to occur at multiple levels, including epigenetic 

mechanisms. 

 

1.4.1 Epigenetic gene regulation in P. falciparum 

Regulation of gene expression that is mediated by chromatin with no involvement of 

transcription factors is referred to as “epigenetic.”  In most instances this involves the 

silencing of individual genes through condensation of the surrounding chromatin 

fibre, rendering binding sites required for initiation of transcription inaccessible to 

transcription factors or other proteins (Horrocks et al., 1998).  The conformation of 

the chromatin fibre is controlled by acetylation, methylation or phosphorylation of the 

histone proteins, themselves differentially expressed, which form part of the 

nucleosome (Sterner and Berger, 2000).  The expression of these proteins is strictly 

regulated, but the processes by which this is mediated in Plasmodium have not been 

elucidated (Lobo and Kumar, 1999).  

 

There is much evidence to suggest that mechanisms for the chromatin-mediated 

regulation of gene expression do exist in the parasite, such as the non-random 

distribution of gene clusters in the parasite genome (Le Roch et al., 2003) combined 

with the identification of proteins involved specifically in chromatin remodelling (Ji 

and Arnot, 1997; Fan et al., 2004).  Furthermore, there is evidence to suggest that the 

extent of chromatin packaging in gametocytes is reduced compared to asexual 

parasites, possibly to accommodate the three rounds of rapid replication that male 

gametocytes must undergo as they enter the mosquito (Pace et al., 1998).    

 

The chromatin environment defines specific genes as either transcriptionally active or 

silent, and transformation from one state to the other is accomplished primarily 

through the covalent modifications of histones. Alterations to chromatin structure 

could account for variation in patterns of gene expression, and hence morphological 

and metabolic disparities between the different developmental stages of the parasite.   
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Probably the best studied case of epigenetic gene regulation in Plasmodium is the var 

gene family.  Malaria parasites rely on a mechanism of antigenic variation whereby 

they evade the antibody response of the host by altering the antigenic phenotype of 

the infected red blood cell.  The var genes encoding the erythrocyte membrane 

protein family (PfEMP1) are primarily responsible for this mechanism.  P. 

falciparum possesses a family of 40-60 var genes whose expression must be tightly 

regulated. Expression of more copies than is necessary would result in premature 

expenditure of the antigenic repertoire, but the rate of switching between genes must 

be sufficiently rapid to stay ahead of the corresponding antigenic response of the host 

(Horrocks et al., 1998; Deitsch, 2004).  Regulation of var gene switching appears to 

be controlled at the level of transcription initiation, as evidenced by the identification 

of only a single transcribed var gene in nuclear run-on experiments.  Switching 

between var genes is not accompanied by any conformational changes in DNA as is 

the case in many species exhibiting clonal antigenic variation (Scherf et al., 1998).  

Therefore regulation of the expression of var genes most likely involves epigenetic 

mechanisms.   

 

1.4.2 Transcriptional gene regulation 

Transcriptional regulation implies the control of gene expression regulated by the 

interplay between promoters, regulatory sequences and transcription factors.  This 

mechanism of gene regulation will be discussed in detail in Chapter 3. 

 

1.4.3 Post-transcriptional gene regulation 

Alterations in the protein-coding sequence of a pre-mRNA after its synthesis, RNA 

editing, regulation of the stability of mRNAs and regulation of the subcellular 

location of specific mRNAs are all post-transcriptional mechanisms by which a cell 

can modulate the levels of protein to suit its developmental requirements (Lodish et 

al., 1999).  In Plasmodium, it has been postulated that there is a heavy reliance on 
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post-transcriptional mechanisms to control protein expression.  This assertion is 

based on the paucity of recognisable transcription factors or their regulatory domains, 

an increased number of potential RNA binding proteins in the genome and the high 

prevalence of antisense transcripts in the genome (Patankar et al., 2001).  

Furthermore, the Plasmodium genome encodes approximately one third of the 

number of proteins involved in transcriptional processes when compared to the 

genomes of other eukaryotes (Coulson et al., 2004).  Conversely, it encodes nearly 

twice the number of CCCH-type zinc finger proteins which function in regulating 

mRNA stability and localisation.   

 

Given the regulatory sequences and transcription factors that have been identified in 

the parasite genome, it is likely that post-transcriptional mechanisms work in concert 

with transcriptional regulation to control gene expression.  Post-transcriptional 

control allows a more rapid response to new environments such as is required during 

the transmission from mosquito to host, and also places little limitation on the 

nucleotide composition of intergenic sequences, which would explain the 

approximately 90% AT content seen in P. falciparum (Coulson et al., 2004).  

 

1.4.4 Translational mechanisms of gene regulation 

Translational control plays an essential role in the regulation of gene expression 

during the development of most eukaryotic cells.  Identification of the Puf family of 

RNA binding proteins (Cui et al., 2002) provides some evidence for the existence of 

this regulatory mechanism in Plasmodium.  These evolutionarily conserved proteins 

are an important family of translational regulators that control the expression of 

multiple genes by binding to the 3’ untranslated region of the target mRNA and 

repressing translation (Wickens et al., 2002).  

 

Examples of translational gene regulation in P. falciparum are the stage specific 

expression of Pfs25, and the var gene family.  In both cases the mRNA is evident in 
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early ring stages but protein is only detected later.  The mechanisms that allow 

nascent mRNA to remain untranslated in the cell have yet to be ascertained. 

 

Ribosomal RNAs (rRNAs) are central to defining the ribosome, the complex that is 

formed between RNA and proteins to facilitate translation (McCutchan et al., 1995).  

Regulation of the rate of rRNA synthesis is an essential mechanism by which a cell 

controls its growth and development, and numerous regulation strategies have been 

identified.  The distinct types of rRNA units that exist between erythrocytic and 

mosquito stages of the parasite life cycle may be a unique response to the innate 

cellular need to optimise protein synthesis under different physiological conditions 

(Mercereau-Puijalon et al., 2002). 
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1.5 Aims and Objectives 

 

The aim of this research was to gain some insight into the mechanism by which an 

asexual parasite develops into a gametocyte.  The two-fold strategy entailed 

identifying genes differentially expressed between these two developmental stages, 

followed by analysis of a transcription factor, PfMyb2, which may play a role in 

development.   

 

Chapter 2: 

 To utilise differential display to identify some of the genes differentially 

expressed between the asexual and gametocyte parasite stages of P. 

falciparum 

 To characterise and categorise the gene transcripts identified through 

differential display 

 To confirm the expression profiles by comparison with available microarray 

data 

 To ascertain the utility of differential display as a genome profiling method in 

an era of high-throughput techniques such as microarrays 

 

Chapter 3: 

 To express and purify 6xHis-PfMyb2, a P. falciparum  transcription factor  

 To perform binding studies with recombinant 6xHis-PfMyb2 to ascertain the 

in vitro binding potential of this protein with consensus Myb regulatory 

elements 
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CHAPTER 2- IDENTIFICATION OF P. FALCIPARUM STAGE 

SPECIFIC GENE EXPRESSION 

 
2.1 Introduction 

 
Consequent to the successful sequencing of the P. falciparum genome a new era has 

dawned in Plasmodium research.  Identification of the approximately 5300 genes 

(Gardner et al., 2002) that are co-ordinately expressed during the life cycle of the 

parasite represents but the tip of the iceberg in the quest for a greater understanding of 

the biological complexities inherent in the parasite.  By themselves, the millions of 

bases of DNA sequence that have been identified shed no light on gene function, 

cellular processes or targets for drug and vaccine development (Lockhart and 

Winzeler, 2000).  The focus of research has thus shifted from the identification of 

genes to the determination of the protein products of these genes and their patterns of 

expression between different life cycle stages and under the influence of different 

environmental stimuli.  This new field of functional genomics aims to achieve a 

greater understanding of the complex interplay that occurs between the constituent 

components of a biological system (Lockhart and Winzeler, 2000).  

 

In recent years gene expression profiling has replaced traditional gene-by-gene 

analysis as the quintessential tool for studying gene function (Le Roch et al., 2003), 

and has been successfully employed to gain insight into many fundamental biological 

processes.  Large scale genome screening methods are ideally suited to an organism 

such as Plasmodium where the application of routine genetic tools presents unique 

challenges.  The complexity of the life cycle, the difficulties in maintaining most 

stages in routine culture and the predominantly haploid life cycle, which complicates 

any attempts at gene disruption (Wellems et al., 1999), are all motivating factors to 

exploit new high throughput methods to accumulate information about genes.  To this 

end, numerous large-scale genome profiling methods have been employed in 
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Plasmodium, of which DNA microarrays (Hayward et al., 2000; Mamoun et al., 

2001; Bozdech et al., 2003; Le Roch et al., 2003), serial analysis of gene expression 

(SAGE) (Munasinghe et al., 2001; Patankar et al., 2001), suppression subtractive 

hybridisation (SSH) (Dessens et al., 2000; Spielmann and Beck, 2000; Florent et al., 

2004) and differential display (Cui et al., 2001) have proven to be particularly 

valuable.  

 

2.1.1 Differential display 

 

The technique of differential display, first described by Liang and Pardee (1992), is 

the method of choice in many laboratories for the direct comparison of two or more 

RNA populations.  It is a simple, sensitive and reliable technique that was developed 

to overcome the limitations of earlier methods in the search for differentially 

expressed genes (Liang, 2002).  The method relies on the amplification by 

polymerase chain reaction (PCR) of cDNA sequences derived from mRNA 

populations by reverse transcription.  Poly(dT) primers, with two anchoring bases at 

their 3’ end to anneal immediately upstream of the polyA tail, are used in 

combination with defined arbitrary 5’ primers to generate a pool of differently sized 

cDNA fragments which can be resolved on an acrylamide gel and visualised by 

autoradiography.  In this manner mRNA can be preferentially reverse transcribed 

from a pool of total RNA.  The method provides a comparative snapshot of the gene 

expression between cells from different developmental stages or under the influence 

of different environmental perturbations.   

 

The 5’ primer is usually a short (10-15mer) arbitrary oligonucleotide that will anneal 

to multiple sites on the cDNA.  Because the 5’ primer will be used for reamplification 

following identification of differentially expressed fragments, the optimal length 

needs to be empirically determined: a shorter primer will anneal to the end of the 

cDNA molecule more frequently generating more fragments, whilst a longer primer 

is required for efficient reamplification of differentially expressed fragments.  In their 
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original description of the method Liang and Pardee (1992) utilised a 10 base primer 

for both the initial RT-PCR reaction and the subsequent reamplification.   

 

Following the random amplification of cDNA fragments, bands on the 

autoradiograph that are unique to one sample are considered to be differentially 

expressed, and are reamplified after excision and elution from the acrylamide gel.  

Sequencing and bioinformatic analysis of the reamplified fragments allows 

identification of genes differentially expressed between the biological samples being 

compared.   

 

Cui et al. (2001) were the first to use differential display to compare gene expression 

between the different developmental stages of P. falciparum, with a view to 

identifying some of the genes that are differentially expressed during 

gametocytogenesis.  Prior to this publication it was thought that the high AT content 

of the Plasmodium genome would preclude the use of differential display, as the 

oligo(dT) primers could anneal to any of the polyA stretches that are found 

throughout the genome.  However, Cui et al. identified 96 genes as being stage 

specific thereby showing that the application of differential display to Plasmodium 

genomics can be highly valuable.  Furthermore, they considered the annealing of 

oligo(dT) primers to internal A-rich regions of mRNAs as being advantageous 

because the majority of the differential display products were found to be within 

coding regions and could be rapidly identified using BLASTN and BLASTX 

analysis. 

 

Subsequent to the pioneering work by Liang and Pardee there have been countless 

papers published, describing both the successful application of the technique and the 

high rate of false positives that seemed to be prevalent.  Numerous modifications and 

improvements have been proposed in an attempt to reduce the rate of the false 

positives, as discussed below.   
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The first anomaly arises with the use of the short random 5’ primer which can anneal 

degenerately during the reverse transcription step making the reproducibility of the 

technique difficult.  This can be exacerbated if there are even slight temperature 

differences between tubes, or different batches of polymerase are used (Liang and 

Pardee, 1995).  Inconsistent annealing between samples can erroneously identify a 

gene as being differentially expressed.  Furthermore, subcloning of the fragments is 

required to get accurate sequence, as the short primer is not optimal for direct 

sequencing of the PCR products.  This problem can be circumvented by the use of a 

longer 5’ oligonucleotide (20mer).  A low annealing temperature can be used for the 

first PCR cycle to achieve arbitrary priming, and the annealing temperature can then 

be increased to attain greater stringency, and hence reproducibility.  This method has 

been successfully utilised in differential display to improve the reproducibility and 

facilitate subsequent band reamplification and sequencing (Zhao et al., 1995). 

 

Another practical limitation to the technique is the presence of contaminating 

sequences, which can arise in one of two ways:  identically sized cDNA fragments 

can co-migrate with the band of interest on the acrylamide gel, or alternatively a 

contaminant can be introduced during the reamplification procedure.  Whilst the 

contaminating sequence may initially be present in tiny amounts relative to the 

fragment of interest, after reamplification by PCR the two DNA sequences may be 

amplified to almost equivalent levels (Miele et al., 1998).  Aside from the obvious 

precautions that should be taken to avoid contamination in the reamplification or gel 

elution process, two further methods have been described for the reduction of false 

positives by contaminating sequences.  The first describes the use of a modified 

single strand conformation polymorphism (SSCP) reaction following elution of the 

candidate fragments.  SSCP allows separation of single stranded DNA molecules on 

the basis of conformation rather than size, and the “correct” fragment can then be 

eluted from the SSCP gel (Miele et al., 1998).  In the second method, Callard et al. 

(1994) only subcloned half of the reamplified product, and used the balance as a 

hybridisation probe to identify the plasmid colonies containing the correct insert.  In 
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both instances the authors have managed to isolate the true differentially expressed 

fragment from contaminating sequences.   

 

A final aspect of the technique that has come in for some criticism has been its 

questioned ability to identify rare transcripts (Matz and Lukyanov, 1998; Lievens et 

al., 2001).  It has been  suggested (Bertioli et al., 1995) that the competition for 

substrates between the PCR components would be the limiting factor for 

amplification.  For example, vital components such as dNTPs could be depleted 

before rare transcripts have had a chance to be amplified to perceptible levels.  This is 

an important point as the difficulty in identifying genes responsible for a specific 

function is often a result of the gene being expressed at low levels.  However, 

depending on the cell types being compared it may not present a problem, as the 

greater the number of differentially expressed transcripts, the higher the probability of 

detecting some of them (Matz and Lukyanov, 1998).  Thus if the two samples being 

compared are expected to have large variation in gene expression, some differentially 

expressed transcripts will inevitably be identified. 

 

Despite the intricacies of the technique, differential display is still the simplest and 

most economical method for mRNA comparison, particularly where a pronounced 

difference is expected between the populations being compared and identification of a 

few differentially expressed transcripts is sufficient.  Used in combination with a 

reliable method of verification it can be a very powerful technique for the 

identification of stage specific gene expression. 

 

2.1.2 Microarrays 

Microarray technology is designed to measure fluctuations in mRNA expression 

levels to facilitate an understanding of biological processes (Yue et al., 2001) and is 

capable of screening entire genomes simultaneously.  This means that the expression 

profile of every developmental stage can be elucidated, and functions ascribed on the 
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basis of the cell physiology at the time of expression.  This has been confirmed in 

Plasmodium by the microarray analysis of Bozdech et al (2003), who used a high 

density oligonucleotide microarray to analyse the complete transcriptome of the 

intraerythrocytic developmental cycle of the parasite.  The discovery in Plasmodium 

that the temporal expression of a gene is integrally linked to the cellular requirement 

for its protein product was confirmed by Le Roch et al. (2003), who organised groups 

of genes into clusters based on their temporal expression patterns, and concluded that 

all genes within a cluster are likely to be involved in similar cellular processes and 

hence the expression profile of a gene can give insight into its biological role.  

Further verification from a proteomics perspective was provided by Florens et al. 

(2002), who utilised a combination of high-resolution liquid chromatography and 

tandem mass spectrometry to compare the protein complement of the 

intraerythrocytic stages of the parasite. 

 

All three research groups illustrated that the induction of genes in the erythrocytic 

stages of the parasite occurs only once per cycle, and only when there is a need for 

the protein product.  Sporozoites for example, following inoculation by the female 

Anopheles mosquito, are primarily concerned with evasion of the host immune 

system and invasion of the hepatic parenchymal cells, and their protein complement 

predominantly mirrors these requirements.  Merozoites require the machinery to 

facilitate invasion of erythrocytes following release from the liver, as well as the 

proteins that will migrate to the surface of the infected erythrocyte to direct the 

complex immune evasion strategy of the parasite.  The maturation of the trophozoite 

sees concomitant expression of proteins required for metabolism, sequestration and 

immune evasion, and later the DNA replication machinery required for the 

development of multinucleated schizonts.  Gametocytes contain the protein 

complement required for the resumption of the cell cycle upon entry into the 

mosquito as they react to the stimuli to initiate gametogenesis (Florens et al., 2002).  

Thus as the malaria parasite undergoes the distinct morphological and metabolic 

changes that characterise its life cycle, a tightly coordinated pattern of gene 
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expression is mandatory to ensure that the protein requirement of each stage is 

fulfilled.  Evidence by Bozdech et al (2003) also shows that as much as 60% of the 

genome is active throughout the entire life cycle, with discrete peaks of expression at 

specific times.  Thus what seems to be the induction of a gene at a time corresponding 

to the need for its protein product may in fact be up-regulation of a constitutively 

active gene.   

 

Although operons do not exist in the parasite, as gene expression appears to be 

monocistronic (with the exception of the mitochondrial genes) (Carlton, 1999), it has 

been postulated that in addition to being temporally co-expressed, groups of 

functionally related genes are clustered in similar positions on chromosomes (Florens 

et al., 2002).  For example, genes belonging to the var gene family that encode 

erythrocyte membrane proteins cluster subtelomerically (Fischer et al., 1997), and 

genes required in the initial stages of gametocytogenesis seem to be localised to a 

subtelomeric region of chromosome 9 (Alano et al., 1995).  Genome profiling has 

produced conflicting data for whether functionally related genes are spatially 

clustered.  Whereas proteomic analysis by Florens et al. (2002) and functional 

clustering by Le Roch et al. (2003) demonstrated that genes with similar expression 

patterns and functions are clustered on chromosomes, the microarray analysis of 

Bozdech et al. (2003) has shown that this rarely occurs.  Perhaps the difference 

between the sets of data arises from the differing methods used to identify clusters as 

well as different criteria for what constitutes a gene cluster.  Certainly there is 

agreement on the proposal by  Le Roch et al. (2003), that telomeric genes are 

primarily concerned with erythrocyte remodelling whereas genes towards the 

centromeres are more likely to be involved in cell growth and maintenance.   

 

In an organism such as Plasmodium, where approximately 60% of the identified open 

reading frames (ORFs) have no known sequence similarity to genes in other 

organisms (Gardner et al., 2002), the synchronicity between gene expression and 

developmental progression is particularly relevant, and can be used to glean insight 
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into the functions of the unique genes.  Genes that are co-expressed at different 

developmental stages or under the effect of different environmental stimuli, or are 

present in clusters on chromosomes, can be assigned similar functions in a “guilt by 

association” model.  For example, based on their presence in clusters of co-expressed 

genes, Florens et al. (2002) proposed putative functions for 24 proteins annotated as 

hypothetical in the PlasmoDB database.  

 

Taken together, the microarray data that have been published thus far go a long way 

toward facilitating an understanding of the complex patterns of gene expression and 

regulation in the parasite.  However, the costs of performing these experiments are 

substantial and not feasible for the majority of laboratories.  The method also requires 

a high degree of technical expertise to standardise and interpret results.  Furthermore 

the method has been questioned for its accuracy and sensitivity, specifically where 

cDNA probes are used (Liang, 2002).  As with any new technique, refinements and 

modifications will doubtless develop to increase the accuracy of the technique, but 

problems do exist with the reproducibility of results, the sensitivity and cross-

hybridisation of the probes, and interpretation and management of data (Liang, 2002).  

 

In light of the urgency in identifying novel drug and vaccine targets numerous 

laboratories have performed alternative genome profiling methods and have 

successfully contributed to increasing the knowledge-base surrounding the parasite. 

 

2.1.3 Serial Analysis of Gene Expression 

SAGE is a highly sensitive and quantitative study of the gene expression profile of a 

given cell.  The technique is based on two principles: first, a short (10mer) 

oligonucleotide from a defined position within a transcript can uniquely identify a 

gene; second, ligation of several short tags into a single molecule allows for 

successful sequencing of these molecules.  The expression levels of a gene can then 

be quantitated by the relative abundance of its representative tag (Velculescu et al., 
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1995; Munasinghe et al., 2001).  SAGE has been successfully used to screen the 

Plasmodium genome for variations in gene expression despite its high AT content 

(Munasinghe et al., 2001).  Whereas microarray studies are limited to the analysis of 

known genes in a so-called “closed platform,” SAGE analysis is not dependant on the 

prior availability of transcript information (Velculescu et al., 1995) and can thus 

assist in the identification of uncharacterised ORFs.  It has been particularly useful in 

its identification of the large number of antisense transcripts that characterise the 

Plasmodium genome (Patankar et al., 2001).  This discovery is important for its 

implications in the mechanisms of post-transcriptional regulation in the parasite.  The 

biggest drawback with the SAGE technique is that, being of the “open platform” 

variety, numerous sequencing reactions are required to gauge accurate expression 

information.  This is both costly and time consuming. 

 

2.1.4 Suppression Subtractive Hybridisation 

Suppression subtractive hybridisation (SSH) is a profiling technique that has been 

used to screen the Plasmodium genome for differentially expressed genes (Dessens et 

al., 2000; Spielmann and Beck, 2000; Florent et al., 2004).  SSH is a modification of 

the standard subtractive hybridisation (SH) technique that compares two populations 

of mRNA and produces clones of genes that are unique to one population.  The 

principle of the subtraction step is that following hybridisation of the two populations 

the remaining unhybridised cDNAs represent genes unique to one population.  The 

modification of SSH is that these differentially expressed sequences are isolated by 

selective PCR amplification rather than by physical separation (Diatchenko et al., 

1996).  Dessens et al. (2000) first proved the utility of SSH in Plasmodium parasites 

when they compared gene expression between mosquito stages (gametes, zygotes and 

ookinetes) and asexual parasites from a non-gametocyte producing strain of P. 

berghei.  Florent et al. (2004) set out to analyse the expression profiles of the late 

erythrocytic stages of P. falciparum and in their analysis of 50 gene transcripts 

differentially expressed during merozoite morphogenesis, they recognised that SSH 
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was able to identify alternative mRNA splice sites, and hence refined the description 

of two genes previously annotated in the PlasmoDB database.  The differences in 

splice site organisation may be due to strain-dependant factors (SSH was performed 

on the FcB1 parasite strain whereas PlasmoDB is based on 3D7 parasites) or may 

have more substantial relevance with regard to alternative splicing mechanisms in the 

parasite.  Like all genome profiling methods SSH has certain drawbacks.  The 

procedure favours highly differentially expressed genes and thus the primary 

application should be to detect dramatic changes in gene expression (Ji et al., 2002).  

The technique is also technically demanding and requires a large investment of time 

and money. 

 

 

 

In light of the importance of understanding gene expression in the malaria parasite, 

differential display was used in this study to compare the expression profiles of 

asexual and gametocyte stages of P. falciparum.  Despite the immense advances that 

have been made in Plasmodium genomics subsequent to the initiation of this 

research, small-scale genome profiling efforts such as this can still make a 

contribution to the knowledge-base relating to the complex biology of the malaria 

parasite.  
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2.2 Materials and Methods 

 

2.2.1 Plasmodium falciparum culture methods 

 

The 3D7 strain of Plasmodium falciparum parasites was used throughout this 

research.  Initial stocks were a gift from the Department of Pharmacy and 

Pharmacology of the University of the Witwatersrand.   

All parasite culture work was performed in a laminar flow hood, and standard sterile 

techniques used throughout.  Equipment was sterilised by autoclaving (120°C, 

15lb/in2) prior to use, and reagents and media were sterilised either by autoclaving or 

by filtration through 0.22µm filter unit with the aid of a peristaltic pump for larger 

volumes. 

MilliQ water was used for the preparation of all solutions and media. 

All centrifugation steps were performed in a Jouan BR 3.11 centrifuge at room 

temperature. 

 

2.2.1.1 Preparation of parasite culture from frozen stock 

Frozen parasite cultures were removed from liquid nitrogen and placed in a preheated 

water bath at 37°C.  The thawed suspension (1ml) was transferred to calibrated 

Falcon tubes, and 0.1ml 12% NaCl was added whilst swirling the tubes.  The cultures 

were incubated for five minutes at room temperature, after which nine volumes of 

1.6% NaCl were added in a drop wise manner.  The tubes were centrifuged at 600g 

for five minutes, the supernatant was removed, and the pellet resuspended in nine 

volumes of a 0.9% NaCl/ 0.2% glucose solution.  The tubes were centrifuged as 

before and fresh erythrocytes were added to the pellet to a volume of 750µl.  This 

was transferred to a sterile Nunc 24cm2 tissue culture flask and 5ml complete RPMI 

culture medium (A-1) supplemented with 20% human AB plasma was added.  The 

flask was gassed with 93% N2, 5% CO2, and 2% O2 and incubated at 37°C for 48 
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hours before microscopic analysis was performed to ascertain the viability of the 

parasites.   

 

2.2.1.2 Freezing of asexual parasite cultures 

Asexual parasites mainly in the ring stage were centrifuged at 800g for five minutes 

and the supernatant was removed.  The packed cells were resuspended in a 1:1 ratio 

with freezing solution (A-1).  1ml of this suspension was aliquoted into sterile 1.8ml 

cryotubes, incubated at room temperature for 5 minutes and stored in liquid nitrogen.   

 

2.2.1.3 Preparation of erythrocytes for malaria cultures 

Whole blood was collected in Acid Citrate Dextrose (ACD) tubes from volunteers.  

Tubes were centrifuged at 900g for ten minutes and the plasma and white cell layers 

were removed.  The remaining red cells were resuspended in two volumes sterile PBS 

and centrifuged as before.  This procedure was repeated three times to ensure 

complete removal of contaminating white cells.  An equal volume of incomplete 

RPMI medium (A-1) was added to obtain a haematocrit of 50%.  Washed red blood 

cells were stored at 4°C for up to two weeks.  Whole blood could be stored at 4°C in 

ACD tubes for up to one month and washed prior to use. 

 

2.2.1.4 Continuous culture method 

Parasite cultures were incubated at 37°C in an atmosphere consisting of 93% N2, 5% 

CO2, and 2% O2 according to a modification of the method of Trager and Jensen 

(1976).  Cultures were maintained at a haematocrit of 5% in 80cm2 or 175cm2 Nunc 

tissue culture flasks containing 20ml or 30ml complete RPMI medium (A-1) 

respectively.  Parasites were monitored daily by microscopic analysis of stained 

blood smears (A-2), and parasitaemia was calculated by counting the number of 

parasitized erythrocytes as a percentage of total red cells in the microscope field.  

This was kept within a constant range of 4-10% either through the aspiration of 
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culture or by dividing cultures into two flasks.  Culture medium was removed and 

pre-warmed complete culture medium was added daily.  The culture flasks were kept 

out of the incubator for as little time as possible.   

 

2.2.1.5 Sorbitol synchronisation of cultures 

D-sorbitol provokes osmotic lysis of all of the parasite stages except rings (Lambros 

and Vanderberg, 1979).  Cultures containing predominantly early ring stage parasites 

were transferred to 50ml Nunc tubes and centrifuged at 600g for five minutes. The 

supernatant was aspirated and ten volumes (approximately 20ml) of 5% D-sorbitol in 

PBS were added.  The solution was incubated at 37°C for 40 minutes, followed by 

centrifugation at 600g for five minutes.  The supernatant was removed and the pellet 

resuspended in complete culture medium, and incubated as described. 

 

2.2.1.6 Preparation of gametocytes  

Exposure to certain stressful conditions induces the formation of gametocytes in the 

3D7 strain of P. falciparum.  An increase in parasitaemia, a diminished surface area 

in which to grow and no addition of fresh erythrocytes are factors that stress the 

parasites resulting in their conversion to sexual stages (Carter et al., 1993).  On 

average, eight flasks of synchronous ring-stage parasites were prepared at a time.  

The method used to culture gametocytes was a modification of the method of Carter 

et al. (1993).  Cultures were initiated at a parasitaemia of 2% and a haematocrit of 5% 

in an 80cm2 tissue culture flask, with 20ml complete culture medium supplemented 

with 10% human serum.  Dilutions were prepared from stock cultures that had been 

recently thawed, as the gametocyte conversion rate decreases after prolonged time in 

culture.  Flasks were left in an upright position to reduce the surface area available to 

the parasites.  The medium was replaced daily, but only 15ml medium was removed 

each day to avoid aspirating the gametocytes which don’t adhere to the flask surface.  

Culture flasks were gassed daily with 2% O2, 5% CO2 and 93% N2 for 30 seconds.  
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Microscopic analysis was performed every alternate day.  Gametocyte cultures were 

harvested after 12-16 days. 

 

One of two methods was used to purify the gametocytes from residual asexual 

parasites.  The cultures were either purified through a Percoll density gradient (see 

below) or were subjected to two rounds of D-sorbitol treatment 24 hours apart 

(Petmitr et al., 1997) starting on day 12, and the gametocytes collected by 

centrifugation at 900g for 10 minutes.   

 

2.2.1.7 Isolation of gametocytes by Percoll gradient 

After 12-16 days medium was removed; cultures were combined into two 50ml Nunc 

tubes, centrifuged at 900g for five minutes, and the pellet resuspended in 6ml 1X 

incomplete culture medium (A-1).  

10X incomplete culture medium (IM) was used to make 90% Percoll, and this was 

diluted with 1X IM to make 35%, 50%, 65% and 80% Percoll (in both instances, 

incomplete culture medium could be replaced with PBS).  2.5ml of each dilution 

were carefully layered into a 15ml Falcon tube to form a step-wise gradient.  3ml 

resuspended gametocyte cultures were added to the top and the tubes were 

centrifuged at 1100g for 40 minutes at 37°C.  

 

Layers were washed with 15ml incomplete RPMI culture medium by centrifugation 

at 900g for ten minutes.  Pellets were resuspended in 1ml PBS, and 5µl were used to 

prepare a smear to verify the presence of gametocytes.  Relevant layers were pooled 

and washed twice in PBS.  The supernatant was discarded and the pellet was either 

frozen in liquid nitrogen or used immediately for an RNA extraction.   
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2.2.2 RNA extraction 

 

The primary concern when working with RNA is the control of RNases, tiny amounts 

of which are sufficient to destroy RNA.  RNases may be released from cells 

immediately after harvesting, or may arise through contamination from skin or 

clothing.  Thus all RNA work was performed in a dedicated area of the laboratory 

which was wiped thoroughly with RNaseZap prior to use.  In addition, the following 

basic precautions were taken: 

Samples were kept on ice, which slows down the activity of RNases. 

Latex gloves were worn and changed regularly. 

Disposable sterile polypropylene Falcon tubes were used at all times. 

A dedicated set of pipettes was used for all RNA work, and filter pipette tips used at 

all times.  

All tubes and pipette tips used were certified RNase/DNase free by the 

manufacturers. 

Only water treated with diethylpyrocarbonate (DEPC), or provided as nuclease-free, 

was used.  0.1% DEPC was prepared in water, mixed overnight, and then autoclaved 

to destroy the DEPC. 

 

2.2.2.1 Total RNA isolation Kit  

The Genelute™ Mammalian Total RNA Miniprep kit was used for gametocyte 

extractions and asexual parasite extractions from fewer than two 80cm2 tissue culture 

flasks.  The kit was used as per manufacturer’s instructions.  Pelleted cells were 

resuspended in saponin at a final concentration of 0.05%.  Cells were left at room 

temperature for approximately five minutes to allow for cell lysis and the parasites 

were collected by centrifugation at 1100g for five minutes at 4°C and washed three 

times with PBS.  Gametocytes were lysed and homogenized in guanidine thiocyanate 

and β-mercaptoethanol to release RNA and inactivate RNases.  Lysates were 

centrifuged through a filtration column to remove debris and shear DNA.  The filtrate 
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was then applied to a high capacity silica column to bind total RNA, followed by 

washing and elution in sterile distilled water.  Centrifugation steps were performed in 

a Sorvall RMC14 microcentrifuge at 4°C. 

 

2.2.2.2 Guanidium Isothiocyanate method 

This method (Chomczynski and Sacchi, 1987) was used with larger quantities of 

starting material, such as RNA extractions from asexual parasite stages where up to 

four 175cm2 culture flasks were combined.  

 

Four 175cm2 sterile tissue culture flasks, each containing 30ml culture medium at 10-

15% parasitaemia, were used.  Parasites were transferred to 50ml sterile Nunc tubes 

and centrifuged for five minutes at 1100g at 4°C in a Jouan BR3.11 centrifuge.  The 

supernatant was removed and saponin was added to the pellet at a final concentration 

of 0.05% to lyse the erythrocyte pellet.  Tubes were left to stand at room temperature 

for five minutes and were then centrifuged for ten minutes at 1100g.  The parasite 

pellet was washed three times in PBS.  5ml ice-cold D* solution was added (4M 

guanidine thiocyanate, 0.75M sodium citrate pH 7.0, 10% N-laurylsarcosine and 

0.072% ß-mercaptoethanol) and the pellet was resuspended completely using a 21 

gauge needle.  0.5ml 2M sodium acetate (pH 4.0 with glacial acetic acid) was added 

and mixed by gentle inversion.  RNA was extracted twice with buffered phenol (pH 

4.2) and chloroform at room temperature and precipitated with isopropanol overnight 

at -20°C (A-2).  After a wash with 75% ethanol, the pellet was resuspended in 20µl 

nuclease free water and heated to 65°C for ten minutes to increase solubility.  

Concentration was determined by measuring the absorbance of the sample at a 

wavelength of 260nm (2.2.2.5) on a Beckman DU-65 spectrophotometer, and RNA 

samples were diluted to a concentration of 1µg/µl and stored at -70°C. 
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2.2.2.3 TRI reagent 

This method became the method of choice for all RNA extractions.  20ml parasite 

culture were transferred to 50ml sterile tubes (Nunc) and centrifuged for five minutes 

at 1100g in a Jouan BR3.11 centrifuge.  The pellet was washed once in sterile PBS, 

and 20ml TRI reagent pre-warmed to 37°C were added to the pellet.  The reagent is a 

solution of phenol and guanidine isothiocyanate which disrupts cells and dissolves 

cellular components whilst maintaining the integrity of the RNA.  Addition of 

chloroform followed by centrifugation separates the solution into an organic phase 

and an aqueous phase.  The RNA can be purified from the aqueous phase by 

precipitation with isopropanol (A-2). 

 

2.2.2.4 Removal of DNA contamination from RNA samples 

To minimise false positives in the differential display experiments the template RNA 

had to be devoid of any contaminating DNA.  Digestion of residual DNA with 

DNaseI ensured that all products amplified in the RT-PCR reactions originated from 

RNA. 

40 units (1µl) RNase-free DNaseI in 1X Buffer L (1mM Tris-HCl pH 7.5, 1mM 

MgCl2) (Roche, Germany) were added for every 100µl of reaction, and the tubes 

were incubated at 37°C for 30 minutes.  The enzyme was inactivated at 99°C for five 

minutes. 

 

2.2.2.5 Measurement of RNA yield and purity 

An RNA solution with a concentration of 40µg/ml has an absorbance of 1.0 at a fixed 

wavelength of 260nm.  The absorbance of 1µl of RNA in 49µl TE buffer (A-1) was 

measured at 260nm (A260) and 280nm (A280) UV light in a Beckman DU65 

spectrophotometer calibrated with TE buffer.  The purity of an RNA preparation is 

ascertained by calculating the A260:A280 ratio.  This value should be between 1.8 and  

2.0.  A smaller value is indicative of protein contamination, and if necessary the RNA 
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can be purified a second time by phenol: chloroform extraction. 

 

Further verification of the quality of the RNA came from analysing an aliquot on a 

1% agarose gel containing 10µg/ml ethidium bromide, electrophoresed at 90V for 30 

minutes in 1X TAE buffer (A-1).  The 28S and 18S ribosomal RNA bands are used 

as an indication of the quality of the RNA.  These two subunits should ideally be 

visible as distinct bands on an agarose gel with the intensity of the 28S subunit 

approximately twice that of the 18S subunit.   

 

2.2.3 Differential Display 

 

2.2.3.1 Reverse Transcription Polymerase Chain Reaction 

RNA was reverse transcribed using Superscript III reverse transcriptase. The quantity 

of RNA ranged from 0.5-1µg in a 20µl reaction.  The quality of RNA was an 

important factor in minimising false positives and a high concentration of template 

RNA helped to ensure that genes expressed at low levels were still amplified.  

Asexual and gametocyte stage parasite preparations were kept separate to minimize 

the chances of cross-stage contamination.  Two-base anchored primers were designed 

in such a way as to selectively anneal to the 5’ end of the poly-A tail, thereby 

preferentially transcribing messenger RNA (mRNA).  Primers were designated 

T12VN, where V represents G, A and C and N represents any of the four nucleotides.   

 

A separate reaction tube was set up for each anchored primer, containing 0.5µM 

primer, 0.5-1µg RNA, 0.5mM dNTP in a 13µl final volume.  The reaction was 

incubated at 65°C for five minutes, and chilled quickly on ice.  The volume was 

increased to 20µl with the addition of 1X First Strand Buffer (50mM Tris-HCl pH 

8.3, 75mM KCl, 3mM MgCl2), 5mM DTT, 40U RNaseOUT and 200U SuperscriptIII 

Reverse Transcriptase.  Reaction tubes were incubated at 50°C for 55 minutes, after 
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which the enzyme was inactivated at 70°C for 15 minutes.  cDNA was used 

immediately for a PCR reaction or stored at -20°C until required. 

 

Differential display relies on RT-PCR amplification of mRNA utilizing as many 

combinations of random primers as possible.  Reactions involving asexual and 

gametocyte stage parasite RNA were performed separately, and tubes kept apart at all 

times to prevent contamination of samples.  Three random 10-mers and eight random 

13-mers were used with each of the four cDNA samples for PCR reactions.  Although 

these were arbitrary primers, they were designed in such a manner as to accommodate 

the high AT content of the P. falciparum genome.  The 2-base anchored primer 

corresponding was used as the downstream primer.  A 25µl PCR included 0.2mM 

primers, 0.5µl cDNA, 2µM dNTPs, 1.5mM MgCl2, 1X PCR buffer (50mM KCl and 

10mM Tris-HCl pH 8.3), 2µCi α-32P(dATP) (800Ci/mmol, 10µCi/µl) and 0.625U 

Takara Taq Polymerase.  All primer sequences are listed in A-3.   

 

Reactions were assembled on ice and placed immediately into an Eppendorf Gradient 

thermal cycler preheated to 94°C.  The PCR program for the 10 base primers 

comprised one cycle of 94°C for one minute, 30°C for five minutes, and 72°C for five 

minutes, followed by 40 cycles of denaturation at 94°C for one minute, annealing at 

35°C for 30 seconds and extension at 72°C for one minute.  The first low-temperature 

cycle allows the arbitrary 5’ primer to anneal as often as it can, and stringency is then 

increased to reduce non-specific annealing and hence limit false positives on the 

differential display gel.  For the 13-base primers the annealing temperatures of the 

two stages were increased to 35°C and 40°C respectively. 

 

2.2.3.2 Electrophoresis of RT-PCR products 

3µl PCR reaction were mixed with 2µl stop solution and denatured at 90°C for five 

minutes prior to loading onto a 6% acrylamide sequencing gel (A-2) pre-heated to 

approximately 46°C by electrophoresis for 45 minutes.  A 6% acrylamide gel was 
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used to facilitate elution of PCR products.  cDNA was electrophoresed for four to six 

hours at 60W with current and voltage set to be non-limiting, and the gel was exposed 

to X-ray film overnight. 

 

2.2.3.3 Identification of differentially expressed cDNAs 

The X-ray film was developed in a Kodak X-Omat film processor in the casualty 

ward of the Johannesburg General Hospital, South Africa.  The incorporation of α-32P 

d(ATP) into the PCR reaction allowed the visualisation of PCR products, and thus the 

comparison of gene expression between the two parasite stages was possible.  

Asexual parasite and gametocyte expression profiles were compared visually and 

fragments that were present in only one stage were identified as potential 

differentially expressed genes. 

 

2.2.3.4 Excision and elution of differentially expressed fragments 

A critical step in the differential display process is the accurate excision of the 

identified cDNA fragments, which requires precise realignment of the autoradiograph 

with the acrylamide gel.  A second exposure of the gel was made and the bands 

representing genes of interest were excised from the autoradiograph.  This second 

autoradiograph was realigned with the gel, and PCR products were excised with a 

sterile scalpel by cutting the acrylamide gel through the holes that had been created in 

the autoradiograph.  Excised fragments were sliced into small pieces, placed in 30µl 

water and centrifuged through a pre-soaked 200µl pipette filter tip at 15000g for ten 

minutes in a Sorvall RMC-14 centrifuge.  A further exposure of the gel was then 

made to verify that the fragments had been accurately excised.  

 

2.2.3.5 Reamplification of eluted products 

Reamplification was performed with the same primer combinations as had been used 

for the original PCR reaction.  The PCR reaction was set up as described (2.2.3.1) but 
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the dNTP concentration was increased to 70µM and the radio-label was omitted.  

10µl of eluate was used for an initial 100µl PCR (designated PCR1), 1µl of which 

was then used as a template for a second round of PCR.  PCR2 was set up in 

triplicate, and the reactions were pooled and precipitated with ethanol, and the pellet 

resuspended in final volume of 30µl water.  2µl of this was assessed on a 1% agarose 

gel in the presence of 10µg/ml ethidium bromide.  

 

2.2.4 Subcloning of PCR products 

 

2.2.4.1 Preparation of PCR products and vector for subcloning 

Reamplified products were subcloned into the pGEM-3Z plasmid vector.  

Phosphorylation and blunt-ending reactions were performed in a single tube.  For 

ligation with the dephosphorylated vector, a 5’ phosphate group was added to the 

PCR product by combining PCR product, 1mM ATP, 200µM dNTPs, 1X T4 

polynucleotide kinase buffer (70mM Tris-HCl pH 7.6, 10mM MgCl2, 5mM DTT) and 

10U T4 polynucleotide kinase in a 50µl reaction volume.  This was incubated at 37°C 

for 60 minutes.  Thereafter, the additional adenine that Taq polymerase tends to add 

at the 3’end during PCR amplification was removed by the addition of 2µl (2U) T4 

DNA polymerase to the reaction tubes. The reaction was allowed to continue at 37°C 

for five minutes after which the enzyme was inactivated at 75°C for 15 minutes.  

The DNA was purified by phenol: chloroform extraction and ethanol precipitation 

(A-2) and the pellet was resuspended in 10µl 1X DNA dilution buffer supplied with 

the Rapid DNA Ligation Kit. 

 

The pGEM3Z vector was prepared for subcloning by linearising it with the restriction 

enzyme HincII (Roche, Germany).  1µg vector, 2µl 1X Buffer M (10mM Tris-HCl 

pH 7.5, 10mM MgCl2, 50mM NaCl, 1mM DTT) (Roche, Germany) and 2µl (6-20U) 

HincII were combined with water in a 20µl reaction volume.  The reaction was 

incubated at 37°C for four hours.  The enzyme created a blunt ended linear vector 
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making it compatible for ligation with the PCR product.  The vector was 

dephosphorylated to prevent self-ligation by adding 1U Calf Intestinal Phosphatase to 

the above reaction and incubating it at 50°C for 60 minutes.  The sample was 

extracted with phenol/chloroform and purified by ethanol precipitation.  The 

dephosphorylated vector was resuspended in 10µl 1 X DNA dilution buffer from the 

Rapid DNA ligation kit and stored at -20°C until required. 

 

2.2.4.2 Ligation of vector and DNA   

Aliquots of the dephosphorylated, linearised vector and the phosphorylated blunt-

ended PCR product were electrophoresed on a 1% agarose gel alongside 2µl of DNA 

mass ladder to estimate the yield of DNA.  The molar ratio of vector DNA to insert 

DNA was calculated such that a molar ratio of 1:2 was used for the ligation reaction.  

In addition the total amount of DNA in the reaction was kept below 200ng. 

 

Ligation of the vector and insert DNA was carried out using the Rapid DNA Ligation 

Kit. 9µl DNA (vector + insert) in 1X DNA dilution buffer, 10µl 2X T4 DNA ligation 

buffer and 1µl T4 DNA ligase were combined in a 1.5ml Eppendorf tube, and the 

reaction incubated at room temperature for 30 minutes.  A mock ligation reaction, 

containing all the reagents except the DNA, was prepared to check for self-ligation of 

the vector.  Linearised vector is not taken up by competent cells during the 

transformation and thus no colonies should be observed on these plates. 

 

2.2.4.3 Transformation of competent cells 

Subcloning efficiency DH5α competent cells (stored at -70°C in 50µl aliquots) were 

thawed on ice and transformed according to the manufacturer’s instructions. In brief, 

5µl of ligation mix was added to 50µl of ice-cold cells in 1.5ml Eppendorf tubes and 

gently mixed.  The tubes were left on ice for 30 minutes, and then heat-shocked at 

37°C for 20 seconds. The tubes were incubated on ice for a further two minutes.  
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500µl of Luria Broth (LB) medium (A-1) were added, and the cells incubated at 37°C 

for 60 minutes in an environmental shaker at 250rpm.  50µl and 450µl aliquots of 

these transformed cells were spread onto LB agar plates (A-1) containing 100µg/ml 

ampicillin, and incubated at 37°C overnight.   

The following day the plates were removed from the incubator and stored at 4°C.  

Four to six discrete colonies were transferred from the agar plates to 10ml growth 

tubes containing 2ml LB medium with 100µg/ml ampicillin, using a sterile loop or 

pipette tip.  These tubes were incubated overnight at 37°C in an environmental shaker 

at 250rpm. 

 

2.2.4.4 Purification of plasmid DNA 

Glycerol stocks of the individual colonies were prepared for permanent storage at -

70°C by adding 500µl of cells from the overnight cultures to 500µl 60% sterile 

glycerol.  Plasmid DNA was liberated from the E. coli host cells by SDS/alkaline 

lysis followed by precipitation with ethanol (A-2). 

 

 The presence of plasmid inserts was verified by digesting 10µl of the plasmid DNA 

with 10U EcoR1 and 10U HindIII (Roche, Germany) which cut the vector adjacent to 

the cloning site.  The reaction was performed in 1X buffer B (10mM Tris-HCl pH 

8.0, 5mM MgCl2, 100mM NaCl, 1mM β–mercaptoethanol) at 37°C for four hours.  

The digested products were electrophoresed on a 1% agarose gel in 1X TAE at 90V 

for 40 minutes (A-1).   

 

2.2.5 DNA sequencing 

 

DNA sequencing was performed using the Sequenase® 2.0 sequencing kit as per 

manufacturer’s instructions. All reactions were performed in 1.5ml Eppendorf tubes, 

which were kept closed to prevent evaporation of the small volumes.   
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Two methods were used to prepare the DNA for sequencing depending on whether 

the template was plasmid DNA or PCR product.   

 

Plasmids containing inserts were denatured in preparation for sequencing by the 

addition of 2µl 2M NaOH, 2mM EDTA to 20µl plasmid DNA followed by 

incubation at room temperature for five minutes.  3µl 3M sodium acetate (pH 5.0) 

and 7µl water were added and mixed thoroughly to neutralise the reaction.  75µl ice 

cold 100% ethanol was added to precipitate the DNA at -70°C for ten minutes, after 

which it was centrifuged for ten minutes.  The precipitate was washed with 200µl 

70% ethanol for five minutes, allowed to air dry, and then resuspended in 7µl water.  

Plasmid DNA and the T7 or Sp6 RNA polymerase sequencing primers were annealed 

by heating 1µM primer, 1X Sequenase® buffer and 7µl plasmid DNA at 65°C for two 

minutes and then cooling slowly to room temperature.  The tubes were stored on ice 

and used for the sequencing reaction within one hour.   

 

The PCR products were prepared for sequencing using a PCR product pre-sequencing 

kit. The kit contained two enzymes: Shrimp Alkaline Phosphatase (SAP), which 

dephosphorylates any residual dNTPs from the PCR reaction and exonuclease I (exo), 

which removes remaining single strand primers.  7µl PCR product was incubated at 

37°C for 15 minutes with 1U SAP and 1U exo, and then heated to 80°C for 15 

minutes to inactivate the enzymes.  5-10pmol of the same primer that had been used 

as the upstream primer in the original PCR reaction was added to the pre-treated PCR 

product, boiled for five minutes, and then snap-cooled in an ice water bath which 

promotes primer annealing and prevents renaturation of PCR template. 

 

2.2.6 Reverse slot blot verification of differentially expressed cDNAs  

 

One of the accepted vagaries of the differential display technique is the number of 

false positives that can be generated.  This propensity for false positives requires 
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verification of the expression profile of the eluted fragments. A novel and efficient 

method for this purpose is a reverse slot blot (Meyersfeld and Coetzer, 2003).   

 

RNA from new asexual parasite and gametocyte cultures was reverse transcribed as 

described (2.2.3.1).  cDNA was amplified with the same arbitrary primers as had been 

used previously and α-32P-labelled RT-PCR products were pooled to generate asexual 

and gametocyte stage probes.   

For the slot blot, 2µl of either plasmid DNA or reamplified differentially expressed 

cDNA fragments from the differential display gel (2.2.3.5) were added to 198µl 

denaturing solution (25mM EDTA, 0.4M NaOH).  This was heated at 95°C for two 

minutes and stored on ice until required.  

 

A Biorad slot blot apparatus was assembled using ten pieces of damp Whatman no. 1 

filter paper overlaid with pre-soaked Hybond™-N nylon membrane.  A vacuum was 

applied until the membrane was almost dry, the denatured DNA was added to the slot 

apparatus and the vacuum was again applied.  The slot blot was washed with 400µl 

neutralisation solution (1.5M NaCl, 0.5M Tris-HCl pH 7.2, 1mM EDTA) and the 

vacuum applied to draw all solutions through the membrane.  The membrane was 

then dried in an 80°C oven for ten minutes, wrapped in Gladwrap and placed DNA-

side down on a UV transilluminator at 302nm for four minutes to crosslink the DNA.  

The blot was prepared in duplicate so that the two membranes could be probed 

separately with asexual and gametocyte stage RNA.  The pGEM-3Z vector was 

spotted onto the membrane to be used as a negative control.   

 

Membranes were inserted into 100ml Hybaid hybridisation tubes with approximately 

5ml hybridisation solution (5X SSC, 5X Denhardts solution, 0.5% SDS) and 

incubated at 42°C for 40 minutes with rotation in a Hybaid incubator.  50X Denhardts 

solution consisted of 1% (w/v) bovine serum albumin, 1% (w/v) Ficoll™ and 1% 

(w/v) polyvinylpyrrolidone; 5X SSC comprised 0.75M NaCl, 75mM Na-citrate pH 

7.0.   
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α-32P –labelled probes were denatured at 95°C for five minutes and added to the 

hybridisation tubes.  These were incubated overnight at 42°C, following which the 

blots were washed twice with 2X SSC at room temperature for 15 minutes, shaking 

vigorously.  Blots were exposed to X-ray film for 40 minutes with intensifying 

screens.  If further washes were required to reduce background radioactivity, 

stringency was increased by performing washes at 65°C, and using 0.5X SSC/ 0.1% 

SDS as a washing agent.  This was repeated until background had been eliminated. 

The intensity of the bands on the autoradiographs was quantitated using Syngene 

GeneTools version 2.20.02.  An initial overnight exposure was performed and this 

was increased as required. 

 

2.2.7 Bioinformatic Analysis of Differentially Expressed Transcripts 

 

2.2.7.1 Transcript Identification 

Transcript sequences were analysed by comparison with the PlasmoDB 

(http://plasmodb.org) and TIGR (www.tigr.org/tdb/tgi/pfgi/) databases.  Where 

discrepancies existed between the two databases the match with the better 

Expectation (E) value was selected.  A combination of nucleotide-nucleotide 

(BLASTN) and nucleotide-protein (BLASTX) similarity searches (Altschul et al., 

1997) were performed to increase the confidence with which a gene identity was 

assigned.  Transcripts were classified into categories on the basis of the E values of 

the first and second BLASTN and BLASTX matches.  Transcripts that were members 

of multi-gene families could also be identified in this manner.  For a transcript 

identity to be assigned, a threshold E value was arbitrarily set at 10-5 after inspection 

of the E values of all matches.  Protein analysis of the identified transcripts was 

obtained from the ExPASY Proteomics Server (http://us.expasy.org/) as well as 

geneDB (www.genedb.org/).  The clustering analysis of Le Roch et al. (2003) was 

downloaded  from http://carrier.gnf.org/publications/CellCycle/. 
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2.2.7.2 Transcript Expression Profile 

PlasmoDB contains expression profiles for almost every gene in the Plasmodium 

genome, generated using a high-density oligonucleotide array (Le Roch et al., 2003).  

mRNA expression values of P. falciparum genes for nine different life cycle stages 

from 17 microarray experiments were obtained from the RNA Abundance Database 

(http://www.cbil.upenn.edu/RAD/) (Manduchi et al., 2004) and compared with data 

obtained from differential display and reverse slot blot.   
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2.3 Results 

 

2.3.1 Plasmodium falciparum cultures 

 

2.3.1.1 Asexual parasites 

Asexual parasites were maintained in culture as described (2.2.1.4).  Figure 3 shows a 

thin blood smear of mixed asexual parasites, representative of the stages the culture 

flask contained when parasites were harvested for RNA extractions.   

 

 
Figure 3-Asexual parasites in culture 

Thin blood smear stained with Giemsa, showing mixed asexual P. falciparum 
erythrocytic stage parasites at 1000x magnification.  Arrows indicate late trophozoite 
(T), ring (R) and schizont (S) stages. 

 

2.3.1.2 Gametocytes 

The 3D7 strain of parasite was used in this study because of its ability to form 

gametocytes in culture when exposed to stressful conditions (2.2.1.6). Early stage 

gametocytes were visible within eight days of the cultures being initiated, but cultures 

were continued until at least day 14, by which stage thin blood smears indicated a 



Chapter 2-Results 
 

 

50

gametocytaemia of between 1-2%.  Figure 4 shows thin blood smears of gametocytes 

at different times of culture. 

 

 
Figure 4- Gametocytes in culture 

Thin blood smears made between 10 and 12 days after initiation of 
gametocyte cultures, showing stage III and IV gametocytes under 1000x 
magnification. 

 
 

Gametocytes were purified from residual asexual parasites by centrifugation through 

a Percoll density gradient (Figure 5).   
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Figure 5- Percoll gradient purification of gametocytes 

Gametocyte cultures before (A) and after (B) centrifugation through a Percoll density 
gradient.  The fractions contained predominantly 1) lysed erythrocytes and extra-
erythrocytic asexual parasites, 2) and 3) debris; 4) debris and gametocytes, 5) 
gametocytes and unparasitised erythrocytes and 6) residual asexual parasites and 
unparasitised erythrocytes.  “Debris” refers to haemozoin and lysed erythrocyte 
fragments.  C: Gametocyte culture layered on top of the Percoll gradient. 
 

Layers 4) and 5) were collected and pooled as described (2.2.1.7).  Centrifugation of 

the parasite cultures through the Percoll density gradient resulted in pure 

gametocytes, devoid of any contaminating asexual parasites.  

 

 
Figure 6- Purified gametocytes after Percoll gradient centrifugation 

These images, taken from the same slide, show predominantly stage III and IV 

gametocytes after purification through a Percoll density gradient.   
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Despite repeated attempts with numerous combinations of Percoll densities, the yield 

of gametocytes purified by this method remained low.  An alternate method, as 

described in 2.2.1.6, involved lysing erythrocytes that contained asexual stage 

parasites from day 12 with two rounds of D-sorbitol treatment 24 hours apart.  D-

sorbitol has no effect on ring stages or gametocytes.  Thus the initial treatment would 

eliminate trophozoites but leave the early rings intact.  These would be removed by 

the second treatment by which time they would have matured to trophozoites.  

Erythrocytes containing gametocytes were then collected by centrifugation, whilst 

dead asexual parasites remained in the supernatant.  The yield of gametocytes 

increased considerably utilising this method. 

 

2.3.2 RNA Extractions 

 

Maximum RNA yield from asexual parasites was obtained by harvesting cultures 

containing predominantly late stages.  Yield varied according to the method used.  

Typically, 80-120µg RNA was obtained from a 40ml culture at a haematocrit of 5% 

and a parasitaemia of approximately 12% using TRI Reagent (2.2.2.3).  The integrity 

and purity of the RNA were assessed by agarose gel electrophoresis (Figure 7) and 

spectrophotometry respectively.  The 28S (±4000b) and 18S (±2100b) ribosomal 

RNA subunits migrate at approximately 1100bp and 800bp relative to the double-

stranded DNA size marker (Figure 7).  Messenger RNA (mRNA) is sometimes 

visible as a faint smear between these two ribosomal subunits. 
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Figure 7- RNA analysis 

RNA from mixed asexual stage parasites (A) and gametocytes (G) was 
electrophoresed on a 1% agarose gel.  The two bands in the RNA lanes 
represent the 28S and 18S ribosomal RNA subunits. 
 
 

Spectrophotometric analysis of isolated RNA gave A260:A280 ratios that ranged 

between 1.8 and 2.0 which is within the prescribed range of a pure RNA preparation. 

An indication of good quality RNA is that the approximate intensity of the 28S 

ribosomal subunit should be twice that of the 18S subunit.  In the gametocyte RNA 

shown in Figure 7 the 18S subunit is more intense indicating that some degradation 

has occurred.  Using TRI reagent to extract RNA from 160ml of gametocyte culture 

at a gametocytaemia of approximately 2% yielded 100-150µg RNA.  

 

2.3.3 Differential Display 

 

2.3.3.1 Identification and reamplification of differentially expressed cDNAs 

Differential display was used to compare gene expression between predominantly late 

stage asexual parasites and gametocytes of P. falciparum.  In each experiment, RT-

PCR products from gametocyte cultures were compared with a minimum of two 
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different asexual stage RNA extractions, due to the higher degree of variation 

expected between the asexual stage parasite cultures.  To reduce the number of false 

positives in a technique known to be error-prone, only gene fragments unique to a 

developmental stage were chosen for further analysis (Figure 8). 

 
Figure 8- Differential display analysis of P. falciparum gene expression 

Autoradiograph of α-32P-labelled RT-PCR products separated on a 6% 
acrylamide gel.  Arrows indicate some of the bands that would have been 
identified as differentially expressed.  A: asexual; G: gametocyte.  

 

A total of 55 differentially expressed fragments were excised from five differential 

display gels encompassing 44 arbitrary primer combinations.  Twenty-one of these 

transcripts were expressed uniquely in gametocytes, whilst the remaining 34 were 

expressed in asexual stages.  37 transcripts were successfully reamplified (2.2.3.5) 

using two rounds of PCR, a success rate of 67%.  Elution of small quantities of DNA 
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from the acrylamide gel probably accounted for the low amplification rate.  

Reamplified eluates were analysed by agarose gel electrophoresis (Figure 9).   

 

Agarose gel analysis occasionally showed more than one product in the 

reamplification (eluates 48 and 51 in Figure 9), arising from either contamination or 

co-migration of similarly sized bands in the original differential display gel.  

Transcripts such as these were discarded as candidates for sequencing directly from 

the PCR product.  Even when the amplification appeared to be specific, often the 

direct sequencing was of a poor quality due to contaminating bands that were not 

resolved on the agarose gel, or the fact that short (13mer) sequencing primers were 

used.  In total, six transcripts were directly sequenced whilst 31 were subcloned into 

the pGEM3Z vector to facilitate sequencing (2.2.4, 2.2.5).   

 

 

 

Figure 9- Reamplification of differential display fragments 

1% agarose gel showing some of the fragments reamplified from a differential 
display gel.  Two bands are evident in eluates 48 and 51.  The lack of product 
in eluate 53 was either failed PCR or insufficient PCR template due to 
inefficient elution of the band from the acrylamide gel.  Amplified products 
ranged in size from 200-600bp.   

 
 

2.3.3.2 Subcloning and sequencing of reamplified fragments 

Multiple colonies were selected from overnight incubations of transformed DH5α 

cells, and the presence of insert verified by restriction digest analysis of plasmid 

DNA (Figure 10).  All colonies from a plate would have contained the same size 



Chapter 2-Results 
 

 

56

insert if only one fragment had been excised from the acrylamide gel.  In some 

instances, however, either through the introduction of a contaminant or because 

similarly sized bands had co-migrated on the acrylamide gel, inserts of different sizes 

were identified on the agarose gel (e.g. E23).  Either of these could have represented 

a differentially expressed fragment, and so plasmids from both colonies were 

sequenced. 

 

 
Figure 10- Verification of plasmid inserts after transformation of DH5α cells 

The presence of plasmid inserts was verified on a 1% agarose gel following 
digestion of plasmid DNA with EcoR1 and HindIII.  Multiple colonies from 
each plate were analysed.  The lanes representing E23 contain inserts of 
different sizes. 
 
 

Inserts were sequenced using the Sp6 and T7 sequencing primers, which anneal 

adjacent to the multiple cloning site of the vector.  The subcloning of 31 reamplified 

fragments generated 35 unique sequences since four clones contained inserts of 

different sizes.  These, combined with six transcripts that were sequenced directly 

from PCR products, generated a total of 41 unique sequences.   

 

2.3.3.3 Identification and analysis of differentially expressed transcripts 

Sequences were submitted to the P. falciparum genome databases (PlasmoDB and 

TIGR) which use the BLAST algorithm to search for homologous sequences within 

the genome.  The length of the sequences submitted to the database ranged from 66-

232 nucleotides.  Sequence identity with the database was not always 100%, due to 

errors that could have been introduced by Taq polymerase during the multiple rounds 
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of PCR, as well as sequencing ambiguities.  Where a discrete band on the sequencing 

gel could not be discerned an “N” was inserted into the sequence to represent all of 

the four nucleotides. 

The Expectation (E) value is a reference value which indicates the probability of the 

query sequence being present in the genome by chance and thus apportions a 

statistical significance to any sequence match.  27 sequences (A-4) had a match to the 

P. falciparum genome with an E value below the set threshold of 10-5.  The threshold 

value was arbitrarily assigned after inspection of the E values of all matches.  The 

gene source and the stage in which the genes were expressed are presented in Table 1.  

Of the remaining 14 sequences, 12 had nucleotide homology to sequences within the 

human genome and two matched the Plasmodium database but had E values above 

the set threshold. 
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Table 1-Transcripts with nucleotide homology to the PlasmoDB database   

 

Eluate Stage Gene Locus Gene Product Nucleotide 
Identity  E Value 

E2-3  Asexual PFF0435w Ornithine 
aminotransferase 87% 6e-09 

E2-4 Asexual PFD0625c PfEMP1 83% 2e-06 

E4-2 Asexual MAL7P1.166 Regulator of 
nonsense transcripts 91% 5e-25 

E5-1 Asexual chr5.rRNA-1-
28s-A rRNA 96% 1e-40 

E 6-8 Asexual PF10_0121 HPRT 92% 8e-18 
E9-1 Asexual PFL2665c PfEMP1 85%T 2e-19 
E 10  Gametocyte PF11_0361 Hypothetical protein 98% 3e-09 
E12-2 Gametocyte PF14_0338 Hypothetical protein 93% 5e-26 
E16-3 Gametocyte MAL13P1.226 Hypothetical protein 92% 1e-07 
E17-1 Asexual PF14_0124 Actin II 97% 3e-38 
E18-1T Asexual NP660290 PfEMP1 93% 5e-11 

E19-1 Asexual chr7.rRNA-1-
28s rRNA 88% 2e-25 

E23-1 Asexual MAL13P1.70 Hypothetical protein 100% 2e-09 

E25-2 Asexual chr7.rRNA-1-
28s rRNA 96% 2e-25 

E26-2 Asexual PF07_0050 PfEMP1 86% 2e-21 
E27-2 Gametocyte PFD0020c PfEMP1 96% 8e-17 
E28-1T Asexual NP660290 PfEMP1 84% 3e-22 
E37-6 Asexual PFI0210c Hypothetical protein 93% 3e-13 
E39-1 Asexual PFI1475w MSP-1 100% 1e-24 

E39-2 Asexual PFD1120c Integral membrane 
protein 92% 8e-16 

E39-3 Asexual PFF0745c Putative 
ribonuclease 93% 4e-12 

E42  Asexual chr5.rRNA-1-
28s-A rRNA 98% 3e-27 

E43-1  Asexual PF14_0076 Plasmepsin 1 
precursor 97% 1e-25 

E43-2  Asexual PFE0925c snRNP 94% 2e-17 
E51-3 Asexual PF10_0025 PF70 protein 87% 2e-14 

E52-1 Asexual chr7.rRNA-1-
28s rRNA 100% 3e-13 

E54-4 Gametocyte PF10_0244 Hypothetical protein 100% 4e-10 
T TIGR database 

Differentially expressed transcripts were identified using a BLASTN sequence 
similarity search on PlasmoDB.  The gene identity is that of the best (first) 
match using only a BLASTN search.  Data were obtained from the PlasmoDB 
version 4.3 accessed on 2 February 2005. 
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To increase the confidence with which the gene source could be allocated to a 

transcript it is necessary to consider both nucleotide and protein sequence similarity 

searches.  Gene annotations from Table 1 were classified into categories based on the 

best matches from BLASTN and BLASTX similarity searches, as well as the E-

values of the first and second best matches. These criteria enabled a more stringent 

appraisal of the value of the gene annotation when compared to identifying a 

significant best match from a single similarity search.  The criteria for the categories 

are presented in Table 2 and the categorised transcripts are shown in Table 3. 

 
Table 2-Criteria for the classification of transcripts using sequence similarity 
search outputs 

Transcript 

Category 

First Match E Value Second Match E value 

 

1st Match 

BLASTN and 

BLASTX BLASTN BLASTX BLASTN BLASTX 

      

A Identical ≤T ≤T >T >T 

B Identical ≤T ≤T ≤T ≤T 

C Identical ≤T >T   

D Non-identical 

rRNA gene 

≤T    

 
Threshold (T) was set at 10e-05.  Category A contains transcripts whose gene source could 
be confidently assigned.  Members of gene families were placed into category B, where 
BLASTN and BLASTX first and second matches were both below threshold.  Category C 
genes were similar to those in category A but for the fact that their BLASTX matches were 
above threshold.  Category D contained those transcripts identified as rRNA genes. 

 
 

Transcripts whose gene source could be confidently ascertained were placed into 

category A (Table 3).  Genes of known or predicted function in category A are 

PFI1475w (merozoite surface protein 1, precursor), PFD1120c (integral membrane 

protein), PFF0745C (putative ribonuclease), PF10_0121 (hypoxanthine 

phosphoribosyltransferase), PF10_0025 (PF70 protein) and PFE0925c (small nuclear 
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ribonucleoprotein).  The remaining transcripts were identified as hypothetical 

proteins. 

 

Transcripts in category B (Table 3) had both BLASTN and BLASTX first and second 

match E-values below the 10-5 threshold, making it difficult to ascertain the specific 

gene source.  Gene families in category B are PfEMP1 (PFD0020c, PFL2665c, 

PF07_0050), actin (PF14_0124) and plasmepsin (PF14_0076).   

Five gene transcripts in this category were members of the PfEMP1 family, four of 

which were found to be expressed maximally in asexual stages.  Because the specific 

gene source cannot be defined, it is difficult to assign an expression profile to these 

transcripts.   Thus, even though a tentative gene assignment has been made on the 

basis of the best BLASTN and BLASTX match, the transcript may actually be 

representing the second best match.  Despite having a BLASTX second match greater 

than threshold, transcript E-18 was placed into category B after the remaining 

matches all identified it as a member of the PfEMP1 family. 

 

Inspection of the BLASTN alignment of transcript E4-2 to the genome showed that 

the plus strand encoded an erythrocyte membrane-associated antigen (MAL7P1.12) 

whilst the minus stranded coded for a regulator of nonsense transcripts 

(MAL7P1.166).  Thus the two DNA strands were coding for two unrelated genes, 

either of which could have represented the differentially expressed transcript.  These 

two genes are not necessarily members of gene families, but category B was still the 

most appropriate classification.   
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Table 3-Classification of transcripts identified by differential display 

 First Match Second Match a 
Eluate BLASTN BLASTX BLASTN BLASTX 

 Gene 
Locus 

E-
value 

Gene 
locus 

E- 
value 

Gene 
Locus 

E- 
value Gene Locus E- 

value 
A – Single Genes 
E39-1 PFI1475w 1e-24 PFI1475w 2e-18 PF11_0317 0.035 PF11_0178 0.21 
E39-2 PFD1120c 8e-16 PFD1120c 1e-11 MAL13P1.19 0.997 NM  

E23-1 MAL13P1.
70 2e-09 MAL13P1.

70 3e-05 NM  NM  

E39-3 PFF0745c 4e-12 PFF0745c 5e-06 PF13_0073 0.70 NM  
E37-6 PFI0210c 3e-13 PFI0210c 7e-08 PFL2300w 0.67 NM NM 
E6-8 PF10_0121 8e-18 PF10_0121 6e-19 PF14_0192 0.008 PF07_0104 1.0 
E51-3 PF10_0025 2e-14 PF10_0025 9e-09 NM  NM  
E43-2 PFE0925c 2e-17 PFE0925c 2e-11 NM  PF08_0096 0.002 
E10 PF11_0361 3e-09 PF11_0361 9e-06 PF10_0032 0.52 NM  
E12-2 PF14_0338 5e-26 PF14_0338 2e-14 NM  NM  
E54-4 PF10_0244 4e-10 PF10_0244 9e-07 NM  NM  
B – Gene families 
E27-2 PFD0020c 8e-17 PFD0020c 7e-11 MAL7P1.50 2e-05 PFL1950w 1e-06 
E9-1 PFL2665c 2e-19 PFL2665c 5e-17 PFA0765c 4e-11 PFD0005w 1e-15 
E26-2 PF07_0050 2e-21 PF07_0050 2e-16 MAL7P1.1 9e-11 PF08_0141 1e-11 
E17-1 PF14_0124 2e-38 PF14_0124 4e-29 PFL2215w 5e-28 PFL2215w 3e-25 
E18-1T NP660290 5e-11 NP660290 10e-07 PFC0005w 4e-05 NP660287 3e-03 
E43-1 PF14_0076 1e-25 PF14_0076 3e-14 PF14_0078 2e-15 PF14_0077 4e-10 

E4-2 MAL7P1.1
2 1e-24 MAL7P1.1

2 6e-08 MAL7P1.16
6 1e-24 MAL7P1.166 7e-07 

C – Single genes 

E16-3 MAL13P1.
226 1e-07 MAL13P1.

226 0.004 NM  NM  

E2-3 PFF0435w 6e-09 NM 0.01 NM  NM  
E2-4 PFD0625c 2e-06 PFD0625c 0.011 NM  NM  
E28-1T NP660290 3e-22 NP660290 7e-03 TC12934 2e-05 NM  
D – Ribosomal RNA gene families 

E5-1 chr5.rRNA-
1-28s-A 1e-40 PF11_0501 5e-23 chr1.rRNA-

1-28s 3e-34 MAL13P1.45
5 5e-23 

E25-2 chr5.rRNA-
1-28s-A 2e-25 PF11_0501 0.045 chr1.rRNA-

1-28s 1e-18 MAL13P1.45
5 0.045 

E42 chr7.rRNA-
1-28s 3e-27 PF11_0500 2e-06 chr5.rRNA-

1-28s-A 4e-27 MAL13P1.45
0 2e-06 

E19-1 chr7.rRNA-
1-28s 3e-13 NM  chr5.rRNA-

1-28s-A 6e-13 NM  

E52 chr7.rRNA-
1-28s 2e-25 NM  chr5.rRNA-

1-28s-A 3e-25 NM  
      a NM; no match to the database. T TIGR database 
 
The 27 differentially expressed transcripts with sequence homology to the PlasmoDB  
database were categorised according to the criteria presented in Table 2.  w: Watson 
(antisense) DNA strand; c: Crick (sense) DNA strand 
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The transcripts assigned to category C (Table 3) had BLASTN and BLASTX first 

match E-values below and above the threshold respectively.  For transcript E28-1 this 

could be explained by the fact that the sequence contained a high number of 

unreadable nucleotides thus reducing the E value of the BLASTX match, whilst for 

E16-3 the BLASTX value is reduced because the sequence overlaps with an intronic 

region.  Intronic sequence can originate either from DNA contamination or RNA that 

has not yet been processed (pre-mRNA).  The latter explanation is more likely in this 

instance considering that RNA was treated with DNase prior to use.  This category 

highlights the manner in which the dual sequence similarity search can prevent 

erroneous identification of gene transcripts.  

 

Category D has five transcripts identified as rRNA. However, because of the high 

nucleotide overlap among the ribosomal RNA genes as evidenced by the E-values of 

BLASTN first and second matches, it was not possible to confidently assign the 

transcript to a gene locus.  The transcripts in category D would be expected to have 

BLASTX E values above threshold, as they do not code for proteins. Despite this 

there is some homology to genes coding for hypothetical proteins as evidenced by the 

BLASTX E values of transcripts E5-1 and E42, indicating that these transcripts could 

in fact represent hypothetical proteins.   

 

2.3.3.4 Verification of differential display results 

The stage of maximum expression of all transcripts identified by differential display 

was verified using a reverse slot blot (Meyersfeld and Coetzer, 2003).  Either 

reamplified transcripts or plasmid DNA of subcloned transcripts were spotted onto a 

nylon membrane for hybridisation with 32P-labelled asexual and gametocyte RT-PCR 

reactions from new RNA extractions (Figure 11).  The intensities of the bands on the 

autoradiograph were scanned using Syngene GeneTools software. 
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Figure 11- Reverse slot blot for the verification of differential display data  

The top of the image represents the membrane probed with 32P-labelled RT-PCR products 
from asexual stage parasites, whilst the bottom membrane contains the identical fragments, 
probed with gametocyte 32P-labelled RT-PCR products.  The two arrows indicate the 
pGEM3Z vector which was used as a negative control; the intensity of these bands was taken 
to be background, and subtracted from the values of all other bands.  Bands over-expressed in 
gametocytes are indicated with a red star; the band marked with a blue circle required a 
shorter exposure time.   

 

Table 4 illustrates the comparison between differential display data and reverse slot 

blot results for the confidently identified category A transcripts.  Seven of the ten 

transcripts showed a correlation between the two methods, with discrepancies 

probably being attributable to variations between parasite cultures at the time of RNA 

extraction.  When the two methods of analysis were in agreement the stage of 

maximum expression of the transcript could be confidently assigned. 

 

Analysis of the ratio of expression between asexual stage parasites and gametocytes 

shows that the majority are close to 1, indicating some level of expression in both 

developmental stages.  This points to a gene expression pattern in the parasite 

whereby a large portion of genes are constitutively active, with up-regulation at 

specific points in the developmental cycle.  Thus more convincing ratios would 

probably have been obtained had highly synchronous parasite cultures been used.   

 
 
 



Chapter 2-Results 
 

 

64

Table 4-Reverse slot blot verification of differential display data 
 

Eluate Gene Locus Description of gene 

product  

Differentia

l Display 

Reverse Slot 

blot 

Rati

o 

A:G 

E39-1 PFI1475w MSP-1 Asexual Asexual 1.2 

E39-2 PFD1120c 
 

Integral membrane protein Asexual Asexual 1.2 

E23-1 MAL13P1.70 Hypothetical protein Asexual Asexual 1.3 

E39-3 PFF0745c Ribonuclease, putative Asexual Asexual 1.2 

E6-8 PF10_0121 HPRT Asexual Asexual 2.7 

E54-4 PF10_0244 Hypothetical protein Gametocyte Gametocyte 0.8 

E37-6 PFI0210c Hypothetical protein Asexual Asexual 1.3 

E51-3 PF10_0025 PF70 protein Asexual Gametocyte 0.7 

E43-2 PFE0925c snRNP Asexual Gametocyte 0.8 

E12 PF14_0338 Hypothetical protein Gametocyte Asexual 3.7 

 
The intensities of the signals on the asexual (A) and gametocyte (G) autoradiographs 
are expressed as an A:G ratio.  A value of one indicates that expression was equivalent; 
anything less than one represents an over-expression in gametocytes, whilst any value 
greater than one indicates that the transcript is over-expressed in asexual stage parasites.  

 

 

A second method of verification was subsequently used to confirm the stage of 

maximum expression of the transcripts identified by differential display.  With the 

progression of the PlasmoDB database and the availability of microarray data for 

almost all annotated and predicted genes, the results of the differential display for 

category A genes were compared with the available microarray data (Table 5).  

Absolute expression values of the transcripts were obtained from the RNA abundance 

database (http://www.cbil.upenn.edu/RAD/) (Manduchi et al., 2004).   
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Of the 11 genes in category A whose expression profiles were analysed by 

microarray, nine were maximally expressed in the stage in which they had been 

identified by differential display, leaving two discrepancies. The first transcript for 

which there was disagreement was PFE0925c (E43-2), the small nuclear 

ribonucleoprotein.  PFE0925c was identified in asexual stages in differential display, 

but reverse slot blot and microarray both showed elevated levels of expression in 

gametocytes, although the microarray values are not significantly different.  Mass 

spectrometry data available for this protein on PlasmoDB showed evidence for 

PFE0925c peptide fragments in both asexual parasite and gametocyte stages. 

 

E37-6 (PFI0210c) was the second transcript for which there was a discrepancy in 

results.  It represents the only instance where differential display and reverse slot blot 

correlated (both showing increased expression in asexual stages), but contradicted 

microarray data.  However, the available microarray data were below the threshold of 

confidence as there were either too few probes per slide or the expression was too 

low.  Furthermore, mass spectrometry has evidenced peptide fragments of this protein 

in merozoites confirming that the differential display and reverse slot data are 

probably correct. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2-Results 
 

 

66

 

Table 5-Microarray verification of differential display results 

 Gene Locus Description of 

gene product 

Differential 

Display 

Microarray 

 

    Asexual Gametocyt
E39-1 PFI1475w MSP-1 Asexual 1677 100 

E39-2 PFD1120c 

 

Integral 

membrane 

Asexual 2017 163 

E23-1 MAL13P1.70 Hypothetical 

protein

Asexual 70 3 

E39-3 PFF0745c Ribonuclease, 

putative

Asexual 144 42 

E6-8 PF10_0121 HPRT Asexual 4583 1199 

E51-3 PF10_0025 PF70 protein Asexual 736 22 

E43-2 PFE0925c snRNP Asexual 178 217 

E10 PF11_0361 Hypothetical 

protein

Gametocyte 87 458 

E37-6 PFI0210c Hypothetical 

protein

Asexual 5 56 

E12 PF14_0338 Hypothetical 

protein

Gametocyte 418 454 

E54-4 PF10_0244 Hypothetical 

protein

Gametocyte 337 416 

 
mRNA expression values of P. falciparum genes (Le Roch et al., 2003) were 
obtained from the RNA Abundance Database 
(http://www.cbil.upenn.edu/RAD/).  The peak expression between all asexual 
life stages was compared with the differential display data, and the stage of 
maximum expression is indicated in bold italics. 

 

 

Table 6 shows a comparison of the stages of maximum expression as determined by 

differential display, reverse slot blot and microarrays.   
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Table 6-Comparison of expression data from all three methods of analysis 

Eluate Gene Locus Differential 

Display 

Reverse slot 

blot 

Microarray 

E39-1 PFI1475w Asexual Asexual Asexual 

E39-2 PFD1120c 
 

Asexual Asexual Asexual 

E23-1 MAL13P1.70 Asexual Asexual Asexual 

E39-3 PFF0745c Asexual Asexual Asexual 

E6-8 PF10_0121 Asexual Asexual Asexual 

E54-4 PF10_0244 Gametocyte Gametocyte Gametocyte 

E10 PF11_0361 Gametocyte ND Gametocyte 

E37-6 PFI0210c Asexual Asexual Gametocyte 

E51-3 PF10_0025 Asexual Gametocyte Asexual 

E43-2 PFE0925c Asexual Gametocyte Gametocyte 

E12 PF14_0338 Gametocyte Asexual Gametocyte 

ND No data   
 
 
 

Ultimately the selection criteria that were employed resulted in the identification of 

only one false positive (E43-2), where differential display did not correlate with 

either reverse slot blot or microarrays.  When reverse slot blot results did not correlate 

with microarrays or differential display (E12 and E51-3), the discrepancy was 

attributed to variations between parasite stages of the various cultures from which 

RNA was extracted, although again the microarray values for E12 are not 

significantly different in asexual and gametocyte stages.  The final permutation, 

where reverse slot blot and differential display contradicted microarrays, occurred 

only once (E37-6) and mass spectrometry showed the microarray data to be 

erroneous.  Despite the small sample number, the low proportion of false positives 
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(9%) was satisfactory considering the reported error rates of the differential display 

technique (Callard et al., 1994; Luce and Burrows, 1998; Miele et al., 1998).   

 

The data presented here indicate that differential display is still a viable alternative to 

microarrays for small laboratories wishing to perform genome profiling experiments.  

The data analysis has been enhanced by the microarray data that have become 

available but which had not yet been published at the time this research was initiated.  

Microarray data can serve as an excellent guide as to the accuracy of the differential 

display results despite the fact that microarrays themselves are not infallible. Thus 

any discrepancies in results should still be verified using an independent method.   
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2.4 Discussion 

 

Differential display has been used to compare gene expression between 

predominantly late stage asexual parasites and predominantly late stage gametocytes 

of P. falciparum.  The positive identification of 27 genes that are differentially 

expressed between these two developmental stages confirms the utility of differential 

display, both as a genome profiling method in Plasmodium and as a viable alternative 

to microarrays in small laboratories.  In this research differential display was 

preferred to SSH or SAGE due to the rapidity with which results could be generated 

and the fact that fewer downstream manipulations are required.  This represents a 

small-scale effort to contribute to knowledge of the molecular biology of the malaria 

parasite. 

 

2.4.1 Identification of differentially expressed genes 

 

A total of 41 transcripts were identified, which is quite a small number given the vast 

difference in gene expression of parasites only a few hours apart in their development 

(Bozdech et al., 2003).  This number would probably have been larger had highly 

synchronous asexual parasite cultures been used.  The aim of this study, however, 

was not to identify the maximum number of genes, but rather to compare gene 

expression between mixed asexual and gametocyte parasite cultures to identify 

candidate differentially expressed genes that would provide opportunity for further 

investigation.  Numerous genes were identified that play pivotal roles in the 

structural, metabolic and immune defence properties of the parasite.   

 

The majority of identified genes were from asexual stage parasites.  This is similar to 

what was found by Cui et al. (2001) where almost two thirds of the transcripts came 

from asexual parasites.  Potentially this is due to the greater transcriptional activity of 

the asexual parasites, mirroring the increased metabolic requirements of this stage.   
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2.4.2 Analysis of differentially expressed gene transcripts 

 

Sequences were submitted to the PlasmoDB database where the WashU BLAST 

algorithm was used to search for homologous sequences. Two sequence similarity 

searches, BLASTN (transcript nucleotide to genome) and BLASTX (transcript 

nucleotide to proteome), were used to confidently assign identities to the reamplified 

transcripts.  Nucleotide sequence identities ranged from 83% to 100%, with the 

majority being in excess of 90%.  The less than perfect match is attributable to both 

problematic sequencing where individual nucleotides could not be discerned, and 

errors incorporated by Taq polymerase during the two rounds of PCR that were 

required for reamplification.  Taq polymerase has a reported error rate of 10-4 errors 

per base pair (Barnes, 1992).  Ultimately the stringency of band selection from the 

differential display gel experiments, combined with the dual similarity searches, 

facilitated the reduction of false positives.  Of the 11 confidently identified transcripts 

whose expression was compared with microarray data, only two transcripts showed a 

discrepancy.   

 

A proportion of transcripts matched to the human genome database rather than 

Plasmodium.  Contamination during PCR reactions is not uncommon, and by the 

nature of the reaction a small contamination could be amplified to detectable levels in 

subsequent analysis.  Investigation of the transcripts originating from a human 

contaminant showed that the majority of these were excised from the same 

differential display acrylamide gel with a possible source being residual white blood 

cells in the blood used for culturing. 

 

2.4.2.1 Differentially expressed genes encoding surface proteins 

Differentially expressed surface proteins would most likely play integral roles in the 

immune evasion strategies of the parasite.  Transcript E39-1 (PFI1475w), over-

expressed in asexual parasite stages, was identified in the PlasmoDB database as 
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merozoite surface protein 1 (MSP-1 precursor).  This gene encodes a protein involved 

in adhesion of the merozoite to the surface of the erythrocyte through a 

glycosylphosphatidylinositol (GPI) anchor.  During schizogony the protein is cleaved 

into fragments which remain associated with the parasite surface and elicit a 

protective immune response in the host, making MSP-1 a leading vaccine candidate 

(Pan et al., 1999). 

 

E51-3 (PF10_0025), also detected at elevated levels in asexual parasites, was 

identified as Pf70, a 70kDa exoantigen consisting of two transmembrane domains.   

Several peptides of Pf70 have been synthesized (James et al., 1993) and have been 

found to be highly immunogenic in rabbits.  Furthermore, studies in Zaire (Tshefu 

and James, 1995) have shown that infected individuals with antibodies to Pf70 had 

lower parasitaemias than those who did not develop antibodies against this antigen.   

 

PfEMP1 is a surface protein encoded by a family of approximately 60 var genes.  

Infected erythrocytes express only a single var gene at any given time, with switching 

between genes occurring at a rate of approximately 2% per generation (Roberts et al., 

1992).  This mechanism of gene switching contributing to antigenic variation is 

fundamental to the parasite’s ability to successfully evade host immune responses.  

PfEMP1 is also an adhesive molecule that binds to a host of human receptors to 

mediate the process of sequestration, whereby parasitized erythrocytes adhere to the 

capillary endothelium to avoid splenic clearance.  The high number of PfEMP1 genes 

identified in this study reflects the high copy number and diversity of this gene 

family, two factors integral to the immune evasion strategy of the parasite.   

 

2.4.2.2 Differentially expressed genes involved in cell signalling/metabolism 

Transcript E39-2 (PFD1120c) is a gene encoding a 14.8kDa integral membrane 

protein that is predicted to act as a signalling peptide (http://www.genedb.org/).  The 

protein consists primarily of transmembrane domains indicating a potential function 
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in cell signalling, erythrocyte invasion (given its elevated expression in asexual 

parasites), transport or immune evasion.   

 

Transcript E6-8 (PF10_0121) was identified as hypoxanthine 

phosphoribosyltransferase (HPRT), which is involved in the purine salvage pathway 

of the parasite.  P. falciparum is capable of de novo synthesis of pyrimidines 

(cytosine, thymine and uracil) but utilises a salvage pathway to obtain purines.  

Hypoxanthine is the primary purine salvaged from the host, and by a series of 

enzymatic reactions can be converted to ATP (dATP) or GTP (dGTP) to be 

incorporated into RNA and DNA respectively.  HPRT is one of numerous enzymes 

involved in this process, specifically responsible for the conversion of hypoxanthine 

to inosine monophosphate (Keough et al., 1999).  Despite being found to be over-

expressed in asexual stage parasites, gametocytes by necessity would also require 

purines as they are still transcriptionally active, as shown in the microarray data.  The 

synthesis of HPRT mRNA may therefore occur in the early gametocyte stages which 

were not included in this study, or the gene may be expressed at a level not detectable 

by this method. 

 

E43-1 (PF14_0076) is a precursor to plasmepsin I, which belongs to a family of ten 

aspartyl proteases involved in haemoglobin degradation. Intraerythrocytic stages of 

Plasmodium rely on red blood cell haemoglobin as a vital source of nutrients, 

degrading vast quantities of it.  Haemoglobin is endocytosed from the erythrocyte 

cytosol and trafficked to an acidic food vacuole, where it is degraded by parasite 

proteases.  Plasmepsins I and II, which are highly homologous, initiate this process 

(Le Bonniec et al., 1999).   

 

2.4.2.3 Differentially expressed genes involved in RNA metabolism 

E39-3 (PFF0745C) is annotated as a putative ribonuclease involved in RNA 

degradation.  Ribonucleases act at the crossroads between transcription and 
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translation, and as such the elevated levels of expression of this gene in the asexual 

parasites probably represents the greater transcriptional activity of this developmental 

stage. 

 

E43-2 (PFE0925c) was identified as a small nuclear ribonucleoprotein (snRNP), 

which contains a DEAD/DEAH box helicase domain at its carboxy terminal. These 

proteins are a component of the spliceosome, involved in numerous aspects of RNA 

metabolism including nuclear transcription, pre-mRNA splicing, translation and 

organellar gene expression.   

 

A significant proportion (11%) of the transcripts identified by differential display 

corresponded to various ribosomal RNA (rRNA) genes.  These molecules are 

responsible for defining the nature of the ribosomes, the protein complexes 

fundamental to the process of translation.  In contrast to other species, these genes in 

Plasmodium are structurally distinct and developmentally controlled (McCutchan et 

al., 1995), and differ from other eukaryotes in that their copy number within the 

genome is unusually low (Langsley et al., 1983).  The high proportion of these gene 

transcripts identified in this study indicates that despite their low copy number they 

are transcriptionally very active.  The small subunit (SSU) rRNA genes exist in two 

distinct forms, designated A and S, that are expressed during the intraerythrocytic and 

mosquito stages, respectively.  No explanation is currently available for this anomaly 

but it raises the possibility that other components of the transcription and translation 

machinery may also be stage specific.  All RNA genes identified in this study were of 

the A-type, and were identified in asexual erythrocytic stages.  The advantage for the 

parasite in having distinct ribosomes at different developmental stages has not been 

determined.   

 

Another aspect where Plasmodium species are unique is in the chromosomal 

arrangement of the ribosomal DNA units.  In eukaryotes, multiple repeats are 

commonly clustered together in a head to tail arrangement, whereas in Plasmodium 
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the five copies are each located on a different chromosome (chromosomes 1, 5, 7, 11, 

and 13).  The significance of these ribosomal characteristics to the translational 

mechanisms of the parasite is not known. 

 

2.4.2.4 Differentially expressed actin genes 

PF14_0124 was identified as Actin II, a motility associated protein that assists in the 

formation of the axoneme, a specialised structure consisting of two parallel 

microtubules responsible for motility of male gametes.  Actin II was identified in 

asexual stage parasites in differential display whilst according to microarray analysis 

there is a large peak of expression of PF14_0124 in gametocytes.  Despite the 

apparent divergence between members of the P. falciparum actin gene family 

(Wesseling et al., 1988) it is possible that this transcript actually represents actin 

(PFL2215w), which is expressed in both developmental stages of the parasite 

(Wesseling et al., 1989).  Indeed BLASTN and BLASTX similarity searches 

identified actin as the second best match, both with E values below threshold.  This 

again highlights the difficulty in performing expression analyses for transcripts that 

belong to gene families, where the specific gene source is not identified.   

 

2.4.2.5 Differentially expressed genes annotated as hypothetical 

Five of the differentially expressed transcripts were found to encode proteins 

identified as hypothetical, i.e. the ORFs encoding these proteins have no known 

sequence similarity to genes in other organisms.  Assigning putative functions to 

these hypothetical proteins in the absence of sequence similarity is difficult but the 

fact that they are unique does classify them as potential drug or vaccine targets.  

Some insight into the biological roles that these hypothetical proteins may play can 

be gained by examining the protein domains they contain.  In each instance only the 

domain with the best score, representing the most confident assignment, is discussed.   
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Transcript E54-4 (PF10_0244) is a gametocyte stage-specific hypothetical protein 

that contains two EF-hand motifs.  These motifs are involved in binding intracellular 

calcium, inducing a conformational change that is transmitted to target proteins often 

catalyzing enzymatic reactions.   

 

E37-6 (PFI0210c) encodes a hypothetical protein expressed in asexual stages.  This 

protein contains the motif of an ion transport protein, a family of proteins comprising 

sodium, calcium or potassium ion channels.  Ion transport is an essential mechanism 

for intraerythrocytic survival and growth of the parasite.  A small stretch of 13 amino 

acids at the carboxy terminal of the protein corresponds to a Myb-like DNA binding 

domain.   

 

E23-1 (MAL13P1.70) and E10 (PF11_0361) are hypothetical proteins containing 

multiple transmembrane domains.  They are likely to be members of one of the large 

families of surface proteins, playing a role in transport, immune evasion, 

sequestration, or in the case of the asexual stage-specific MAL13P1.70, erythrocyte 

invasion.   

 

E12 (PF14_0338) contains a domain implicating it as a member of the group of Sm 

proteins which are central to RNA metabolism and are involved in diverse processes 

such as pre-mRNA splicing and telomere formation.   

 

Analysing individual protein domains in isolation provides only partial information as 

far as gaining an understanding of the molecular function of these uncharacterised 

proteins is concerned.  Le Roch et al (2003) organised genes into clusters based on 

the premise that genes with similar temporal patterns of expression are involved in 

comparable functions.  The dataset containing these clusters was downloaded 

(http://carrier.gnf.org/publications/CellCycle/) and searched for the hypothetical 

proteins identified in this study.  Only PF14_0338 (E12) and PFI0210c (E37-6) were 

present in this dataset.   
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PF14_0338 was found in cluster 8, along with genes mainly involved in cell cycle 

regulation and progression.  The genes in this cluster are expressed predominantly in 

trophozoites but with a broad variation of expression (Le Roch et al., 2003).  This 

does not really correlate with the function of RNA metabolism ascribed on the basis 

of being part of the Sm family of proteins; however, PF14_0338 may represent one of 

the exceptions to the cluster’s characteristics. 

 

PFI0210c was found in cluster 6 along with genes expressed in asexual stages, a 

finding that correlates with results from this study.  The genes in this cluster code for 

proteins involved in protein synthesis, such as translation initiation factors and 

ribosomal proteins.  It is unclear how this correlates with the presence of an ion 

transport motif.   

 

Further analysis of these hypothetical proteins is required before any functions can be 

confidently assigned.  As more functional information becomes available it will be 

interesting to ascertain the validity of expression-based clustering of genes.   
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2.5 Conclusion 

 

Differential display is a technique that can be prone to false positives, and 

independent verification of results is thus required.  In this research, reverse slot blot 

and available microarray data were used for verification of the stage of maximum 

expression of differentially expressed transcripts identified in asexual and gametocyte 

parasites of P. falciparum.  A stage of expression could be confidently assigned to the 

gene transcript when there was correlation between all three methods of analysis. 

 

The majority of the genes that were identified in this study reflect the diverse 

molecular and biochemical requirements of the two developmental stages, as opposed 

to being involved directly in the conversion of the parasite from an asexual form to a 

gametocyte.  The exception to this was transcript E37-6, the hypothetical protein 

containing a Myb-like DNA binding domain.  This particular protein was not 

characterised further due to the small number of homologous amino acids involved, 

and the divergence of this sequence from the two identified Myb proteins in 

Plasmodium, PF10_0327 and PF13_0088. 

 

The inability to identify transcripts that could play a role in sexual development could 

be due to the questioned ability of differential display to identify rare transcripts.  

Transcription factors would be expected to play a vital role in the regulation of genes 

implicated in gametocytogenesis, and these have been shown by microarrays to be 

expressed at very low levels in Plasmodium.  Also, the fact that predominantly late-

stage gametocytes were used for the comparison means that some of the transcribed 

messages may already have been translated, and potentially degraded.  Conversion to 

a sexual transmissible form requires a highly coordinated pattern of gene expression, 

and characterisation of one of the few annotated transcription factors in Plasmodium, 

PfMyb2, could help in gaining some insight into this process. 
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CHAPTER 3- CHARACTERISATION OF PFMYB2 
 

 
3.1 Introduction 

 
Despite the prevalence of post-transcriptional mechanisms of gene regulation in P. 

falciparum, microarray analysis has also highlighted the stringent transcriptional 

regulation that occurs throughout the intraerythrocytic developmental cycle of the 

parasite.  There is evidence that the basic structure of the transcriptional apparatus in 

Plasmodium mirrors that seen in eukaryotes (Horrocks et al., 1998).  Thus the 

transcriptional machinery consists of promoter and enhancer elements under the 

control of RNA Polymerase II, which is directed to transcription initiation sites by a 

set of transcription factors to form a transcription initiation complex.  A number of 

promoters and upstream regulatory regions have been characterised from several 

Plasmodium species, but many of these are divergent both within the Plasmodium 

genus and from other eukaryotic regulatory domains (Coulson et al., 2004; Deitsch, 

2004).  The only similarity these sequences have to common eukaryotic regulatory 

elements is the presence of homopolymeric dA:dT tracts which have been shown in 

some eukaryotes to play an integral role in the regulation of transcription (Horrocks et 

al., 1998)   

 

Identification of the cis-acting elements has been particularly difficult due to the high 

AT content of the intergenic regions of the parasite.  For example, regions resembling 

the classic TATA box motif (consensus TATAAA/TA) are abundant upstream of 

most genes purely as a function of the AT content of the genome and not in a 

regulatory capacity.  In addition, regulatory domains in the parasite appear to be 

located much further upstream of the transcription initiation site than is generally 

seen (Kumar et al., 2004).  The identification of only a handful of recognisable 

eukaryotic regulatory sequences has led to speculation that in addition to the basal 

transcriptional apparatus, Plasmodium has developed its own unique set of specific 
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transcription factors that interact with regulatory sequences.  Thus the identification 

of gene regulatory elements and the transcription factors that bind to them is still an 

important goal in unravelling the complexities of gene regulation in this organism. 

 

3.1.1 Common eukaryotic regulatory elements in P. falciparum 

3.1.1.1 The TATA box 

A primary event that initiates transcription is the binding of TATA binding protein 

(TBP) to the TATA region of a promoter.  The TATA box is a region consisting of a 

consensus sequence (TATAAA/TA) that has been extensively characterised in 

eukaryotes as a core promoter element, invariably located 25-35bp upstream of the 

transcription initiation site.  In vitro mutagenesis studies have shown that even a 

single-base change in this nucleotide sequence drastically decreases transcription of 

genes adjacent to a TATA box, highlighting the importance of this regulatory domain 

for efficient transcription (Lodish et al., 1999).   

 

Despite the difficulty in recognising these motifs within the AT-rich P. falciparum 

genome, several TATA-like motifs that are essential for efficient gene expression 

have been identified.  The P. falciparum knob-associated histidine-rich protein 

(kahrp) gene promoter contains a consensus TATA box (TATAA) 81bp upstream of 

the transcription initiation site and the gbp130 gene contains a TATA-like motif 

(TGTAA) 186bp upstream of the start site.  Chromatin immunoprecipitation assays 

have shown that PfTBP interacts with both of these divergent TATA-like motifs ex 

vivo (Ruvalcaba-Salazar et al., 2005) suggesting that structural distortion of the 

sequences may be more important for protein-DNA binding than is base pair 

complementarity.  In both instances these TATA-like motifs appear unrelated to 

sequences previously identified as essential for efficient promoter activity: 160bp 

upstream of the RNA initiation site in Pfkahrp (Lanzer et al., 1992) and 507bp 

upstream of the gbp130 RNA initiation site (Horrocks and Lanzer, 1999).  Whether 



Chapter 3-Introduction  
 

 

80

these sequences are mutually exclusive or work in tandem to ensure efficient 

promoter activity remains to be ascertained.   

TATA boxes have also been identified up to 60bp upstream of transcriptional start 

sites of the P. falciparum hsp86 gene (Su and Wellems, 1994) and upstream of the 

calmodulin gene (Robson and Jennings, 1991), P. falciparum proliferating cell 

nuclear antigen gene (PfPCNA) (Horrocks and Kilbey, 1996) and Pfs25 (Dechering et 

al., 1999).  

 

3.1.1.2 OCT1 transcriptional domains 

A major transcriptional start site has been mapped 960bp upstream of the 

translational start site of the PfPCNA gene (Horrocks and Kilbey, 1996).  Two 

sequences sharing homology to the consensus sequence of the OCT1 transcription 

factor binding site (ATGCAAAT) were found approximately 270bp (ATTCAAAT) 

and 230bp (ATGCATAT) upstream of the transcriptional start site.  Consensus OCT1 

binding sites have been identified in other Plasmodia, making it one of the more 

conserved eukaryotic regulatory sequences identified thus far. 

 

3.1.1.3 The GC-rich region 

In eukaryotes, transcription of genes with promoters containing a TATA box begins 

at a specific initiation site. In contrast, transcription of many protein-coding genes has 

been shown to begin at any one of multiple potential sites over an extended region 

spanning 20-200bp.  As a result, such genes give rise to mRNAs with multiple 

alternative 5’ ends. These genes often contain a GC-rich region (consensus 

GGGCGG) within approximately 100 base pairs of the start-site region.  These 

regions are particularly prevalent in constitutively expressed housekeeping genes 

(Lodish et al., 1999).   
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Multiple transcriptional start sites have been identified for numerous P. falciparum 

genes, such as calmodulin (Robson and Jennings, 1991), PfPCNA (Horrocks and 

Kilbey, 1996) and MSP-2 (Wickham et al., 2003).  GC patches have been identified 

between 370 and 500bp upstream of the transcriptional start site of the proliferating 

cell nuclear antigen (PfPCNA) gene (Horrocks and Kilbey, 1996) and also upstream 

of the hsp86 transcription initiation site (Wu et al., 1995) but no homologue of SP1, 

the 100kDa protein that interacts with this region, has been identified in P. 

falciparum.   If these GC-rich domains do indeed function as transcriptional 

regulators, it highlights again the distinguishing feature of Plasmodium 

transcriptional machinery whereby the regulatory sequences are much further 

upstream of the transcription initiation site than is seen in other eukaryotes. 

 

3.1.1.4 The CAAT box 

The CAAT box (consensus GGCCAATCT) is another common promoter element 

that is usually found approximately 80bp upstream of the transcription initiation site.  

In eukaryotes the transcription factor NF1, a 60kDa protein, binds to the CAAT box 

(Berg et al., 2005).  NF1 is also known as CBF (CCAAT box-binding factor) and 

CTF (CCAAT binding transcription factor).   

 

Three sequences have been identified in Plasmodium that have homology with CBF 

(Coulson et al., 2004) and putative CAAT boxes have been identified upstream of the 

Pfs25 (Dechering et al., 1999) and  calmodulin genes (Robson and Jennings, 1991).  

In addition, an inverted CAAT box was identified upstream of the hsp86 transcription 

initiation site (Wu et al., 1995).   

 

In their intensive analysis of regulatory sequences in the Plasmodium genome, using 

the hsp gene family as a model, Militello et al. (2004) report the absence of any 

distinguishable CAAT boxes.  This, combined with the findings of Dechering et al. 

(1999), who show that the CAAT box upstream of the Pfs25 gene is not essential for 
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efficient transcriptional activity, indicates that the functional significance of these 

regulatory regions in the Plasmodium genome has yet to be determined, and 

underscores the postulate that P. falciparum utilises its own unique set of regulatory 

elements.   

 

3.1.2 Regulatory sequences unique to P. falciparum 

 

Two distinct approaches have been used to identify unique regulatory sequences 

within the Plasmodium genome.  In the classic gene-by-gene approach the effects of 

serial deletions on the upstream regions of transcription initiation sites are analysed 

using reporter gene expression.  Although this has been successful in Plasmodium, as 

will be discussed below, it is more tedious than bioinformatic approaches, which 

exploit the availability of the complete genome sequence to identify over-represented 

sequence elements upstream of co-ordinately regulated genes.  Some of the identified 

regulatory sequences are discussed below. 

 

A cis-acting element identified in P. falciparum that is essential for efficient promoter 

activity is a 24-bp region upstream of the CDP-diacylglycerol synthase transcription 

initiation site (Osta et al., 2002).  In comparison to other eukaryotes the distance from 

the transcriptional start site is vast, with the regulatory domains occurring between 

1640 and 1569bp upstream of the translation initiation codon.   Mapping of this 

region identified a 44bp region that bound specifically to trophozoite-stage nuclear 

extracts, and a 24bp region contained within the 44bp domain that mediated this 

specific interaction (Osta et al., 2002).  The 24bp region that is essential for 

transcription factor binding shows no homology to any known eukaryotic binding 

motifs. 

 

gbp130 is a developmentally regulated gene expressed uniquely in trophozoites, 

encoding a glycophorin binding protein (Horrocks and Lanzer, 1999).  Horrocks and 

Lanzer (1999) identified a five bp element between 544 and 507bp upstream of the 
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transcriptional start site that binds nuclear factors in a specific manner and is 

responsible for efficient activity of the gbp130 promoter.  This region is encompassed 

within a 300bp repeat element that is similar to those seen upstream of the pfg27/25 

gene (Alano et al., 1996), but appear to bear no relation to the putative TATA-like 

motif identified 186bp upstream of the transcription initiation site (Ruvalcaba-Salazar 

et al., 2005).    

 

pfs16 and pfs25 are two sexual stage-specific genes that have been identified as 

markers of sexual differentiation.  Dechering et al. (1999) analysed the promoter 

regions of these genes and found sequence elements that are essential for efficient 

transcriptional activity.  The upstream regions of both genes show extreme AT-bias, 

and contain long homopolymeric dA:dT tracts, a common feature of eukaryotic 

intergenic regions.  Studies conducted in Dictyostelium discoideum and yeast have 

shown the ability of similar homopolymeric tracts to stimulate transcription either by 

the introduction of bends into the DNA which enhances the affinity of transcription 

factors for their binding sites, or by the direct binding of certain transcription factors 

(Horrocks et al., 1998).  Despite the instability of these tracts, which would ordinarily 

render them susceptible to elimination during replication and repair, bioinformatic 

analysis shows that they are over-represented in the P. falciparum genome, 

suggesting that they confer some selective advantage.  The fact that they primarily 

localise to regions flanking genes gives rise to the speculation that they play a similar 

role in P. falciparum gene regulation as is seen in other eukaryotes.   

 

In addition to these AT tracts, two elements with homology to the yeast MATα2 

transcription factor binding site were identified upstream of the Pfs16 transcription 

initiation site.  An eight bp binding domain (AAGGAATA) was identified 409bp 

upstream of the transcriptional start site of Pfs25 that is recognised by the protein 

PAF-1, a protein not found in any other eukaryotic databases (Dechering et al., 1999)   
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Another P. falciparum gene containing novel regulatory sequences is the knob-

associated histidine rich protein (kahrp).  The kahrp gene, developmentally regulated 

during the intraerythrocytic cycle, is under the transcriptional control of a 

palindromic sequence located 160bp upstream of the RNA initiation site (Lanzer et 

al., 1992).  Utilising mobility shift assays, Lanzer et al. showed that this site is 

recognised in a specific manner by parasite nuclear extracts, but the interactions 

varied depending on the stage from which the extracts were derived, in accordance 

with the expression profile of the gene.  The mechanism of regulation through this 

sequence element has not been elucidated. 

 

Merozoite surface protein-2 (MSP-2) is an important molecule involved in parasite 

invasion of erythrocytes.  Wickham et al. (2003) have characterised the promoter of 

this gene and defined certain regions that are required for expression on the merozoite 

surface.  A single putative transcriptional start site has been identified 256bp 

upstream of the transcriptional start site, and transcriptional activity of the promoter 

was increased by a deletion of a region 170bp upstream of the initiation site, 

identifying this region as a potential negative regulator of the gene.   

 

Bioinformatic approaches have also had success in identifying regulatory regions in 

P. falciparum, although the functionality of these regions is more hypothetical and 

has yet to be determined.  Based on the premise that over-represented sequence 

elements upstream of co-ordinately regulated genes are often regulatory elements, 

Militello et al. (2004) devised a new bioinformatic strategy for identification of 

regulatory elements in P. falciparum.  The result of their analysis was the G-box, 

which was detected upstream of seven out of 18 heat shock protein (hsp) genes and 

appears to be a bona fide regulatory element despite not interacting specifically with 

any nuclear factors.  The regulatory element is a palindromic sequence consisting of 

two G-boxes located 195bp upstream of the transcription initiation site; the sequence 

is not homologous to any known transcription factor binding site, but its palindromic 

nature suggests that it may be recognised by a transcription factor unique to 
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Plasmodium.  Transcription factors often interact with palindromic sequences, 

however Militello et al. (2004) were unable to experimentally demonstrate any 

interaction between the G box and DNA-binding proteins, leading to speculation on 

mechanisms by which the G box could function.  Some possibilities include 

regulation of transcription through its intrinsic DNA structure, a mechanism which 

has been shown to occur in Plasmodium (Porter, 2002).  Alternatively it may function 

as a stem-loop RNA element, structures which are known to play a role in many 

aspects of gene regulation including RNA stability and translation (Mignone et al., 

2002).  Despite not being present in mature hsp86 RNA, it is possible that the G box 

is present in the nascent RNA and is lost upon processing.   

Despite the hsp86 gene requiring dual, palindromic G-boxes, single G boxes were 

also over-represented in the hsp gene family 5’ upstream sequences, indicating that 

two G boxes are not always required for activation of gene expression (Militello et 

al., 2004). 

 

Transfection experiments indicated that, as with many of the genes described above, 

an upstream sequence element, 5’ UTR, G-boxes, 3’ UTR and the region containing 

the transcription start site are all required for efficient reporter gene expression.  

Genome-wide analysis revealed palindromic G-boxes upstream of five more 

Plasmodium genes, indicating that they are not unique to the hsp gene family.  The 

‘GC’ patches identified by Horrocks and Kilbey (1996) upstream of the PfPCNA 

gene are not included amongst these five genes.  Whether or not these patches 

represent G-boxes, or indeed if they have a regulatory role in the transcription of the 

PfPCNA gene, remains to be determined. 

 

Peterson et al. (2004) utilised Bayesian Decomposition to analyse microarray data in 

a search for regulatory motifs upstream of co-regulated sets of genes.  This resulted in 

a handful of motifs being classified as transcription factor binding sites, based on the 

expectation that these sites would be enriched amongst co-regulated sets of genes 

(Militello et al., 2004; Peterson et al., 2004).  It remains to be determined whether the 
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motifs identified in this manner have any binding capacity when incubated with 

nuclear extracts or whether, like the G boxes of Militello et al. (2004), they show no 

binding. 

 

3.1.3 P. falciparum transcription factors 

 

The eukaryotic gene regulatory machinery makes use of two distinct types of 

transcription factors.  Basal transcription factors are required for all regulatory events, 

and assist RNA polymerase in the recognition of promoter sequences and unravelling 

the DNA double helix.  Modulatory or specific transcription factors regulate the 

expression of specific genes at a specific time, and allow differential expression at 

different developmental stages of a life cycle, such as are seen in Plasmodium.  

 

3.1.3.1 Basal transcription factors in P. falciparum 

Despite a great deal of research, not much is known thus far about the trans-acting 

elements directing transcriptional regulation in P. falciparum.  Genome mining and 

proteome analysis, in addition to traditional molecular biology techniques, have 

indicated a scarcity of recognisable eukaryotic regulatory transcription factors, 

although some components of the basal transcriptional apparatus have been 

identified.  These include a highly divergent TATA binding protein (McAndrew et 

al., 1993; Ruvalcaba-Salazar et al., 2005) and homologues of all 12 subunits of RNA 

polymerase II and TFIIB, TFIID, TFIIEα and TFIIH (Coulson et al., 2004).  The 

identification of TATA boxes and the P. falciparum TATA binding protein (PfTBP) 

heralded the first instance where cis-acting elements were identified in concert with 

their corresponding trans-acting factor (Ruvalcaba-Salazar et al., 2005). TBP is part 

of transcription factor IID (TFIID), which is a sequence specific basal transcription 

factor that forms the scaffold upon which the rest of the transcriptional apparatus 

assembles prior to transcription initiation (Orphanides et al., 1996).  TBP binds 

directly to the TATA box element, after which a preinitiation complex is formed 
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consisting of RNA Polymerase II and basal transcription factors TFIIA, B, E, F and 

H.  PfTBP has been implicated in the transcriptional regulation of kahrp and gbp-130, 

and given the identification of TATA-like motifs in the calmodulin and hsp86 genes, 

is likely to be involved in the transcriptional regulation of these genes in addition to 

many more genes in the parasite genome. 

 

3.1.3.2 Specific transcription factors in P. falciparum  

Despite the findings that the regulatory mechanisms in P. falciparum are similar to 

those seen in eukaryotes, and many components of the basal transcriptional 

machinery have been recognized, very few modulatory transcription factors have 

been identified.   

 

An interesting aspect of Plasmodium protein biology is that the proteins appear to be 

much larger than their eukaryotic counterparts, with a high degree of variation outside 

of the functional domains.  Thus simple overall sequence similarity searches are 

possibly too stringent to accurately identify specific classes of proteins in the 

database.  Kumar at al. (2004) searched for conserved transcription factors in the 

Plasmodium genome based on the ability of nuclear extracts to interact with 

sequences representing highly conserved transcription factor binding motifs localised 

on a DNA array.  A total of 20 positive hits were returned, of which cis-acting 

elements had been identified for six genes.  The specificity of the interaction of eight 

of the most prominent positive hits, cMyb, CREB, EGR, MEF-1, NFkB, E2F1, Smad 

3/4, and HSE, was ascertained using mobility shift assays.  Highly specific binding 

was only observed for c-Myb and MEF-1 indicating that binding on the array may 

have been non-specific or that the binding proteins may have a broader binding 

specificity than previously described.   

 

To identify differences between gametocyte-producing and gametocyteless strains of 

parasite, Gissot et al. (2004) used a gene-specific microarray printed with 153 PCR 
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products representing genes potentially involved in cell cycle.  Their analysis 

included mapping of the expression profiles of five putative transcription factors; 

PfMyb3, pfhmg2, pfphD2, pfphDB and pfkrox.  The annotation of these proteins as 

bona fide transcription factors in P. falciparum has not yet been validated. 

 

3.1.3.3 The cMyb family 

The Myb family of DNA-binding proteins is amongst the most recognisable of the 

eukaryotic transcription factors to have been identified in P. falciparum.  Vertebrate 

c-myb is known to encode sequence-specific DNA-binding proteins that are involved 

in the proliferation and differentiation of haematopoietic cells, and have been 

implicated in regulating the G1/S transition in the cell cycle (Thompson et al., 1986). 

The Myb proteins have been well conserved throughout evolution specifically in their 

N-terminal DNA binding domains.  These generally contain three repeats (R1, R2 

and R3) of approximately 50 amino acids with three regularly spaced tryptophan 

molecules (Lipsick, 1996).  The three tandem repeats each contain a helix-turn-helix 

(HTH) motif which is critical for DNA binding.  Despite the structural conservation, 

there is a large degree of variation in transactivation by the Myb proteins, depending 

on cell type and promoter structure (Oh and Premkumar Reddy, 1999).  This implies 

that Myb is reliant on other cell-type specific co-factors to mediate transactivation, a 

fact confirmed by its association with a CAAT enhancer-binding protein (C/EBP) 

(Ogata et al., 2003). 

 

PfMyb1 was the first specific transcription factor to be characterised in P. falciparum 

(Boschet et al., 2004).  Nuclear extracts containing this protein were shown by 

mobility shift assay to interact in a specific manner with consensus Myb DNA 

binding domains.  Subsequent analysis demonstrated that knock-down of this gene 

using dsRNA severely inhibited growth of P. falciparum cultures (Gissot et al., 

2005), suggesting that this transcription factor plays an essential role in the 

intraerythrocytic growth of the parasite.  Chromatin immunoprecipitation assays 



Chapter 3-Introduction  
 

 

89

identified six genes that may be directly regulated by PfMyb1, and several more that 

may be regulated by transcription factors under the control of PfMyb1.   

 

The identification of the Myb family of DNA binding proteins in P. falciparum, and 

evidence for the vital role played by one member of this family in transcriptional 

regulation, suggests that further investigation of this gene family is warranted to gain 

more insight into the mechanisms of transcriptional regulation in the parasite. 

 

To this end PF10_0327, identified on the PlasmoDB database as PfMyb2, was 

investigated.  Bioinformatic analysis was used to identify the DNA binding domains 

of the protein which were cloned into an expression vector.  Purified recombinant 

protein was incubated with end-labelled consensus cMyb DNA binding domains and 

analysed by EMSA. 
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3.2 Materials and Methods 

 

3.2.1 Cloning of PfMyb2 

3.2.1.1 Genomic DNA isolation from P. falciparum 

P. falciparum strain 3D7 was maintained in culture as described (2.2.1) and late stage 

parasites were harvested for DNA extraction when parasitaemia reached 10-15%.  A 

20ml culture was transferred to a 50ml Nunc tube, and cells were pelleted by 

centrifugation at 1100g for 15 minutes.  The cell pellet was washed once in PBS by 

centrifugation at 1100g for five minutes, and the packed erythrocytes lysed in 0.05% 

saponin.  The parasite pellet was resuspended by gentle pipetting in 250µl lysis buffer 

(10mM Tris-HCl pH 8.0, 20mM EDTA, 0.5% SDS) supplemented with 0.025mg/ml 

Proteinase K to remove any contaminating proteins.  The solution was incubated at 

37°C for three hours with occasional mixing.  1ml MilliQ water was added after three 

hours, and the DNA was purified by phenol: chloroform extraction and ethanol 

precipitation (A-2). 

 

3.2.1.2 Preparation of PfMyb2 DNA for cloning 

The N terminal region of the PfMyb2 transcription factor contains two DNA binding 

domains.  From the first methionine, a region spanning 196 amino acids 

encompassing both DNA binding domains was selected for amplification and cloning 

into the pET15-b and pGEX-4T-2 expression vectors.  Protein expression was under 

the control of the bacteriophage T7 promoter (pET-15b) or the tac promoter (pGEX-

4T-2).  Nde1 (5’) and BamH1 (3’) restriction sites were added to the PCR primers for 

ligation with the pET-15b expression vector, and BamH1 (5’) and Xho1 (3’) 

restriction sites were appended for ligation with the pGEX-4T-2 expression vector 

(A-3).  0.5-1.0µg DNA, forward and reverse primers at a final concentration of 

0.4µM and 2X High Fidelity PCR Master Mix were combined in a 50µl PCR 

reaction.  A two step PCR was performed in an Eppendorf Gradient thermal cycler.  
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Five cycles of denaturation at 94°C for 30 seconds, annealing at 50°C for 30 seconds 

and extension at 72°C for 30 seconds to allow annealing of the gene-specific region 

of the primer, were followed by 25 cycles of denaturation at 94°C for 30 seconds, 

annealing at 65°C for 30 seconds and extension at 72°C for 30 seconds for 

amplification of the entire region including the appended restriction sites.  PCR 

products were purified by phenol: chloroform extraction and ethanol precipitation (A-

2) and the pellet resuspended in 50µl nuclease-free water.  Amplification was 

confirmed by electrophoresis of 10µl PCR product on a 1% agarose gel at 60mA for 

30 minutes.   

 

The PCR products were subsequently digested with the appropriate restriction 

enzymes for cloning into pET-15b and pGEX-4T-2 expression vectors.  40µl PCR 

product, 5µl 10X restriction enzyme buffer, 0.5µg acetylated BSA and 1U 

appropriate enzyme were combined in a microcentrifuge tube and the volume 

adjusted to 50µl with MilliQ water.  Nde1 (Roche Buffer H: 50mM Tris-HCl pH 7.5, 

10mM MgCl2, 100mM NaCl, 1mM DTT) required overnight digestion at 37°C whilst 

two hours incubation was sufficient for complete Xho1  digestion (Roche Buffer H) 

of the PCR product.  Products were purified by phenol:chloroform extraction and 

ethanol precipitation and subsequently digested with BamH1 (Roche Buffer B: 10mM 

Tris-HCl pH 8.0, 5mM MgCl2, 100mM NaCl, 1mM β-mercaptoethanol) at 37°C for 

two hours.  DNA was again purified and was resuspended in 10µl 1X DNA dilution 

buffer from the Rapid DNA Ligation Kit. 

 

3.2.1.3 Preparation of pET-15b and pGEX-4T-2 expression vectors 

1µg of each vector was digested with either Nde1 (pET-15b) or Xho1 (pGEX-4T-2) 

to create compatible ends for ligation with PfMyb2.  Reactions were incubated at 

37°C for two hours, after which 1U Calf Intestinal Phosphatase (CIP) (Roche, 

Germany) was added and the incubation continued for a further 30 minutes.  CIP 

removes the 5’ phosphate from the linearised vector thereby preventing religation.  
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The vector was purified by extraction with phenol and chloroform followed by 

ethanol precipitation.  The pellet was resuspended in a final volume of 40µl nuclease-

free water, and was digested with BamH1 followed by treatment with CIP.  The 

vector was purified and resuspended in 10µl 1X DNA dilution buffer from the Rapid 

DNA Ligation kit.  

 

3.2.1.4 Ligation of insert and vector 

Aliquots of prepared PfMyb2 and linearised dephosphorylated vector were loaded 

onto a 1% agarose gel alongside a DNA mass ladder to establish concentrations for 

ligation.  A molar ratio of 3:1 - 5:1 of insert: vector was used for the ligation reaction 

but the total amount of DNA in the reaction did not exceed 200ng.  The ligation 

reaction was set up using the Rapid DNA Ligation Kit as described (2.2.4.2), but the 

ligation temperature was decreased to 16°C.  5µl of ligated products were used to 

transform competent DH5α cells as described (2.2.4.3). 

  

3.2.1.5 Confirmation of the presence of inserts by colony PCR 

Individual transformed colonies were picked from agar plates with a sterile pipette 

tip, resuspended in 7µl nuclease-free water, and lysed by boiling for 5 minutes.  5µl 

was combined with a final concentration of 0.1µM forward and reverse primers and 

2X Roche PCR Master Mix in a 25µl PCR reaction.  pGEX-4T-2 vector primers (A-

3) were used for amplification, which append an additional 147bp to the size of the 

PCR product, whereas gene-specific primers were used for the insert in the pET-15b 

vector.  The PCR comprised 30 30-second cycles of denaturation at 94°C, annealing 

at 60°C and elongation at 72°C.   

 

3.2.1.6 Confirmation of the presence of inserts by restriction enzyme analysis 

Further verification of the presence of inserts was obtained by restriction analysis of 

purified plasmid DNA.  Following the purification of plasmid DNA from transformed 
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colonies (3.2.1.7), pET-15b was digested with HindIII (Promega, USA) and Xba1 

(Promega, USA) in 1X Promega Buffer B (6mM Tris-HCl pH 7.5, 6mM MgCl2, 

50mM NaCl, 1mM DTT), whilst pGEX-4T-2 was digested with BamH1 and Xho1 in 

1X Promega Buffer C (10mM Tris-HCl pH 7.9, 10mM MgCl2, 50mM NaCl, 1mM 

DTT) in 20µl reaction volumes.  The digestion of the respective constructs with these 

enzymes increased the size of the PfMyb2 inserts by 399bp (pET-15b) and 25bp 

(pGEX-4T-2) respectively. Reactions were incubated at 37°C for two hours, and the 

presence of an insert was verified by agarose gel electrophoresis.  

  

3.2.1.7 Purification of plasmid DNA  

The Eppendorf FastPlasmid™ Mini Kit was used for the rapid isolation and 

purification of plasmid DNA.  The method allows DNA to be captured on a solid 

phase support and then eluted in a low-salt buffer.  Plasmid DNA was purified as per 

the instructions in the kit and stored at 4°C until required. 

 

3.2.1.8 Verification of insert sequence and orientation 

To verify the fidelity of the PfMyb2 amplification, single colonies were spread onto 

an agar plate and sent for sequencing (Inqaba Biotec, South Africa).  Analysis of the 

sequence data using ChromasPro Version 1.2 identified an error in the 

PfMyb2/pGEX-4T-2 construct which precluded further work with this particular 

construct.  All further investigation was thus performed only with PfMyb2/pET-15b. 

 

3.2.1.9 Transformation of BL21-CodonPlus competent cells 

BL21-CodonPlus® (DE3)-RIL competent cells were chosen as the host cells for 

expression of recombinant protein.  The CodonPlus-RIL cells contain additional 

copies of the tRNAs for the arginine, isoleucine and leucine codons prevalent in AT-

rich genomes, in addition to a pACYC-based plasmid that confers chloramphenicol 

resistance.  A 100µl aliquot of cells was thawed on ice and mixed with 2µl 10% 
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XL10-Gold ß-mercaptoethanol, which is included with the kit to increase 

transformation efficiency.  The cells were incubated on ice for ten minutes with 

occasional mixing.  Approximately 50ng plasmid DNA containing the PfMyb2 

construct (quantitated by agarose gel electrophoresis) were used for transformation, 

which was performed as per manufacturer’s instructions.   

 

3.2.2 Expression of 6x His-PfMyb2 protein 

 

3.2.2.1 Induction of target protein using IPTG 

Conditions for the optimal expression of 6xHis-PfMyb2 had to be determined 

empirically.  Variables such as isopropyl-1-thio-β-D-galactopyranoside (IPTG) 

concentration, length and temperature of induction and optical density of cultures at 

the time of induction all had an influence on the efficiency of protein expression.  In 

addition, the induction was performed in the presence of 0.2M-1M glycyl-glycine in 

an attempt to increase the solubility of the recombinant protein (Gosh et al., 2004).  

The range of values for these variables is indicated in parentheses below. 

 

1ml aliquots of LB broth, containing 50µg/ml chloramphenicol and 100µg/ml 

ampicillin, were inoculated with single transformed colonies (3.2.1.9) in 14ml round 

bottomed Falcon tubes.  These were incubated at 37°C with vigorous rotation for 16 

hours.  A 1:10 dilution was made into fresh LB medium (1-50ml) and the cells were 

incubated (24°C-37°C) until the absorbance at 600nm was between 0.5-1.8.  IPTG 

was added at a final concentration of 0.4-1.0mM to and incubated at 37°C (1-20 

hours).  100µl aliquots of induced cultures and uninduced control cultures (no IPTG) 

were solubilised in 1X SDS buffer (A-1) and 20µl were analysed by SDS-PAGE on a 

10% mini gel (Laemmli, 1970) prepared in a Hoefer Mighty Small Dual Casting 

Tray.  Gels were electrophoresed for 90 minutes at 35mA with cooling to 4°C and 

stained overnight with 0.5% Coomassie Brilliant Blue in 10% acetic acid/25% 
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methanol.  Gels were destained in 10% acetic acid/ 10% methanol followed by 10% 

acetic acid.  The expected size of the 6xHis-PfMyb2 fusion protein was 24.8kDa.   

 

3.2.2.2 Induction of target protein using the Overnight Express™ Autoinduction 

System 

The Overnight Express™ Autoinduction systems are designed for high-level protein 

expression with all IPTG-inducible expression systems.  The system comprises three 

solutions, which control growth of the cultures, use lactose to induce expression at 

optimal cell density and control the pH of the cultures.   

LB medium containing 50µg/ml chloramphenicol and 100µg/ml ampicillin was 

inoculated from glycerol stocks and grown overnight at 37°C with shaking.  A 500µl 

aliquot of this was added to 200ml Overnight Express medium and grown at room 

temperature for 24 hours with shaking.  The soluble fraction was purified as 

described (3.2.2.3). 

3.2.2.3 Extraction of soluble proteins from BL21 cells 

Following IPTG induction, cells were pelleted by centrifugation at 15000g for one 

minute.  The pellet was frozen at -70°C for five minutes, and allowed to thaw slowly 

to room temperature.  The pellet was resuspended in 200µl BugBuster HT Protein 

Extraction Reagent containing 2.5µl Protease Inhibitor Cocktail Set III per 1ml 

induced cells.  This specific cocktail of protease inhibitors targets serine, cysteine, 

trypsin-like and aspartic proteases, as well as aminopeptidase B and leucine 

aminopeptidase.  The cell suspension was incubated at room temperature for 20 

minutes with gentle inversion.  Insoluble proteins were removed by centrifugation at 

15000g for 15 minutes at 4°C, and a 20µl aliquot of supernatant was solubilised in 

1X SDS solubilisation buffer for SDS-PAGE analysis.  The insoluble pellet was 

resuspended in 200µl 0.1M phosphate buffer pH 8.0, and a 20µl aliquot solubilised as 

above for electrophoresis.  
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3.2.2.4 Immunoblot to confirm the expression of 6xHis-PfMyb2 

Proteins were transferred to nitrocellulose membrane at 50V for four hours in a TE 

series Transphor Electrophoresis Unit system at 4°C (A-2).  The presence of 

transferred proteins was confirmed by immersing the membrane for ten minutes with 

slow agitation in 1% Ponceau S diluted in 7% acetic acid.  The membrane was 

destained in water to visualise the proteins.  The presence of 6xHis-PfMyb2 was 

confirmed with mouse anti-His antibody detected by goat anti-mouse peroxidase 

conjugated IgG using 4-chloro-1-napthol as a substrate (A-2). 

 

3.2.2.5 Purification of 6xHis-PfMyb2 

pET-15b (5708bp) encodes an N-terminal His-tag comprising six histidine residues 

that allows purification of the resultant recombinant protein by the affinity of 

histidine for Ni2+- charged magnetic agarose beads.  Beads from either Novagen 

(USA) or Sigma (USA) were used.  In both instances, 10-30µl packed beads, 

equilibrated in binding buffer, were incubated with the soluble extract from induced 

cells for 1 hour at room temperature with slow rotation.  Beads were collected with a 

magnet, and washed twice with wash buffer (A-1).  6xHis-PfMyb2 was eluted from 

the beads in two to five bead volumes elution buffer (A-1), and immediately dialysed 

into 1X electrophoretic mobility shift assay (EMSA) binding buffer containing 2mM 

DTT to reduce the conserved cysteines.  Aliquots representing 10% of all fractions 

were electrophoresed on a 10% acrylamide gel (35mA for 90 minutes at 4°C) and 

visualised with 0.5% Coomassie Brilliant Blue to assess the quality of the protein 

purification. 

 

3.2.2.6 Purification of 6xHis-PfMyb2 under denaturing conditions 

The insoluble pellet produced after lysis of the bacterial pellet was retained for 

purification of inclusion bodies.  The pellet was resuspended by vortexing in the same 

volume of BugBuster HT that was used for the original pellet, and lysozyme was 
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added to a final concentration of 1KU/ml.  This was mixed and allowed to incubate at 

room temperature for five minutes.  The suspension was transferred to a 15ml Nunc 

tube and six volumes of 10% BugBuster HT were added and vortexed for one minute.  

The suspension was centrifuged at 5000g for 15 minutes at 4°C and the supernatant 

was removed.  The inclusion bodies were resuspended in 0.5 times the original 

culture volume of 10% BugBuster HT, mixed by vortexing and centrifuged as before.  

This was repeated twice, and the pellet was then resuspended a final time and 

centrifuged at 16000g for 15 minutes at 4°C.  The final pellet was resuspended in 1-

2ml binding buffer containing 8M urea, and left on ice for one hour to ensure 

complete denaturation of the target protein.  Protein was purified as above (3.2.2.4) 

with the inclusion of 8M urea in all solutions.   

An alternative protocol to purify protein under denaturing conditions involved 

denaturation of the entire insoluble pellet, as opposed to isolation of inclusion bodies.  

The insoluble pellet from 3.2.2.2 was resuspended in binding buffer containing 8M 

urea, and allowed to incubate on ice for one hour to ensure complete denaturation of 

the protein.  Purification was then performed as described (3.2.2.4).  

 

3.2.2.7 Dialysis of denatured and purified 6xHis-PfMyb2 

Purified PfMyb2 was subjected to step-wise dialysis to remove all traces of urea, and 

allow the protein to refold and revert to its native conformation.  Purified denatured 

protein in 8M urea was aliquoted into ¼ inch dialysis tubing and placed into 100ml 

PBS containing 7M urea.  The urea concentration was decreased in a step-wise 

manner by the addition of urea-free PBS every 45 minutes for five hours, after which 

the dialysed products were transferred to a fresh beaker containing 100ml urea-free 

PBS for 30 minutes.  A 100µl aliquot was removed after each dilution and 

centrifuged at maximum speed for 60 seconds.  The pellet was diluted into 1x SDS 

solubilisation buffer and electrophoresed alongside the supernatant of the same 

fraction on a 10% acrylamide gel.   
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3.2.3 In vitro translation of PfMyb2  

 

The in vitro system is based on transcription with a T7 bacteriophage polymerase 

followed by translation in an optimised rabbit reticulocyte lysate.  The 

PROTEINscript ®II kit is designed for linked in vitro transcription and translation and 

was used for translation of PfMyb2 using either PCR product or plasmid DNA from 

transformed DH5α cells as a template.   

 

3.2.3.1 PCR primer design for in vitro translation 

A 5’ PCR primer was designed to incorporate the T7 promoter, ribosome binding site 

and a histidine tag which, in addition to the PfMyb2 gene-specific region, resulted in 

a primer 84 nucleotides in length (A-3).  P.falciparum total RNA was reverse 

transcribed as described (2.2.3.1), but with one of the two PfMyb2 gene-specific 

primers instead of the 2-base anchored primer (A-3).  A two-step PCR was used, 

which entailed five cycles of denaturation at 94°C, annealing at 45°C and elongation 

at 72°C, all for 30 seconds, followed by 25 cycles of 30 seconds denaturation at 94°C, 

30 seconds annealing at 60°C and extension for 30 seconds at 72°C.  The first step in 

the PCR allowed annealing of the gene-specific portion of the primer, after which the 

stringency could be increased for annealing of the full length in vitro translation 

primer. 

 

3.2.3.2 In vitro translation procedure  

A 10µl transcription reaction was prepared incorporating 2µl 5X transcription mix, 

2µl enzyme mix (supplied with the kit) and 0.5µg plasmid DNA or 2-5µl PCR 

product.  Components were mixed by pipetting and incubated at 30°C for 60 minutes.   

Any transcription reaction not used immediately in the translation reaction was stored 

at -20°C for later use.  The RNA produced during the transcription reaction was 

translated by combining 2.5µl 20X translation mix, 2.5µl 500µM methionine, 35µl 
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reticulocyte lysate, 8µl nuclease-free water and 2µl transcription reaction.  These 

reagents were combined in a 500µl PCR tube and incubated at 30°C for 60 minutes.   

A negative control reaction contained all components except the RNA template.  This 

was to confirm the successful translation of PfMyb2, as well as assist in the 

identification of this protein amongst the 200mg/ml endogenous proteins present 

within the reticulocyte lysate.  In general, four translation reactions were initiated, 

and these were then pooled and diluted to 500µl in 0.1M Na2PO4 pH 8.0 for 

purification of 6xHis-PfMyb2 (3.2.2.4).  An immunoblot (3.2.2.3) was used to 

confirm the identity of the protein.   

 

3.2.4 Electrophoretic mobility shift assays (EMSA) 

 

Mobility shift assays were performed to assess the binding potential of 6xHis-

PfMyb2 to oligonucleotides representing consensus Myb DNA binding sequences 

(A-3).  P. falciparum putative Myb regulatory elements (MREs) (pfcrk1 and pfmap1), 

as well as the chicken mim-1 gene element, were used as potential binding sequences, 

in addition to the consensus sequence of the Myb binding domain (Boschet et al., 

2004).  The sequence representing the binding domain of NfΚB was used as a 

negative control. 

 

3.2.4.1 Binding reactions using an EMSA kit 

Nucleic acids can be detected in the acrylamide gel under UV light using the 

Molecular Probes’ fluorescence-based EMSA kit.  The kit contains SYBR Green for 

the detection and staining of a minimum of 1ng DNA.  40ng oligo was incubated for 

20 minutes at room temperature with 8µl purified 6xHis-PfMyb2 in 1x Binding 

buffer (75mM KCl, 0.1M DTT, 0.1M EDTA, 10mM Tris pH 7.4).  Glycerol was 

added to a final concentration of 5% immediately prior to loading onto a 6% 

acrylamide gel which had been pre-electrophoresed at 160V for 2 hours.  Samples 
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were electrophoresed at 130V for 90 minutes and visualised as per the instructions in 

the kit   

 

To increase the sensitivity of detection, as well as ascertain the specificity of the 

interaction with competition experiments, the oligonucleotides were end-labelled for 

detection with autoradiography.  

 

3.2.4.2 End-labelling of oligonucleotides 

Complementary single stranded oligonucleotides were annealed by combining 

forward and reverse sequences in a 500µl PCR tube, and heating to 90°C for five 

minutes.  Tubes were cooled slowly to room temperature over a period of 30 minutes.  

500ng double stranded oligonucleotides were incubated at 37°C for 60 minutes in a 

30µl reaction containing 20U T4 polynucleotide kinase (PNK), T4 PNK buffer 

(70mM Tris-HCl pH 7.6, 10mM MgCl2, 5mM DTT)  and 5µl [γ-32P]ATP 

(6000Ci/mmol; 10µCi/µl).  The reaction was stopped by the addition of 1µl 0.5M 

EDTA.  End–labelled products were then diluted to 50µl with water, purified by 

centrifugation through Sephadex G-25 columns to remove unincorporated ATP, and 

the incorporation of 32P measured using a scintillation counter.  Oligonucleotides 

were used immediately or stored at -70°C and used within a week.   

 

3.2.4.2 Binding reaction and electrophoresis 

Binding reactions were prepared by combining 8µl 6xHis-PfMyb2, EMSA binding 

buffer (A-1) and 3x106 cpm 32P-labelled oligonucleotides (40ng) in a 10µl reaction.  

Competition reactions contained 10- and 100-fold excess of unlabelled homologous 

or non-homologous competitor oligonucleotide.  Tubes were incubated at room 

temperature for 20 minutes, after which glycerol was added to a final concentration of 

5%.  Samples were loaded without loading dye onto a 4% non-denaturing acrylamide 
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gel and electrophoresed at 100V (4mA) for one hour at 4°C in 0.25X TBE buffer (A-

1).  

 

Gels were dried for 70 minutes at 80°C and exposed to X-ray film overnight at -70°C 

in a cassette containing intensifying screens.   
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3.3 Results 

 
3.3.1 Cloning PfMyb2 into expression vectors 

 
PfMyb2 (PF10_0327) is described in the PlasmoDB database as a 2748bp gene 

encoding a 108kDa protein containing two putative Myb-like DNA binding domains.  

Consistent with the majority of proteins in the Myb family, these binding domains are 

found at the amino-terminal, specifically spanning amino acids 14-53 and 59-103 

(Figure 12).   

 
Figure 12- Amino acid sequence of PfMyb2 

PfMyb2 is a protein comprising 916 amino acids.  The two Myb-like DNA binding 
domains are highlighted in red, and the region of protein that was cloned into the 
pET-15b and pGEX-4T-2 expression vectors is underlined.   
 

 

3.3.1.1 Amplification of PfMyb2 
The 5’ region of PF10_0327 encompassing the two Myb-like DNA binding domains 

was amplified from P. falciparum 3D7 genomic DNA.  Using gene specific primers 

with the appropriate restriction sites appended for subsequent cloning (A-3), a 

product of 616bp (pET-15b) or 611bp (pGEX-4T-2) was obtained.  The amplified 

products are illustrated in Figure 13.   
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Figure 13- Amplification of PfMyb2 for cloning 

10µl of PCR product was electrophoresed alongside a 100bp DNA size marker 
(MW).  pET and pGEX denote PfMyb2 PCR product amplified with primers for the 
subsequent cloning into pET-15b and pGEX-4T-2 expression vectors.   
 
 

After the transformation of DH5α cells (3.2.1.4), single colonies were picked from 

plates and screened for the presence of inserts via colony PCR (Figure 14). 

 

Figure 14-Verification of the presence of PfMyb2 inserts 

Colonies of transformed DH5α cells were used as a template for a PCR reaction with 
either vector primers flanking the cloning site (pGEX-4T-2, A) or the PfMyb2 
primers used for the original amplification (pET-15b, B).  These PCR reactions 
generated products of 735bp and 616bp respectively.  MW: 100bp DNA size marker; 
pET: pET-15b expression vector; pGEX: pGEX-4T-2 expression vector. 
 

 
Further verification of the presence of inserts was obtained by restriction enzyme 

analysis of purified plasmid (Figure 15). 
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Figure 15-Restriction enzyme analysis of vector constructs 

pGEX-4T-2 was digested with BamH1 and Xho1, which increased the size of the 
product by  25bp to 613bp, whilst pET-15b was digested with HindIII and Xba1 
which created a 987bp product.  The low intensity of the pGEX-4T-2 insert is 
probably a result of incomplete digestion.   
 

 

3.3.1.2 Sequence verification of PfMyb2 insert 

After verifying the presence of inserts, plasmid DNA was sequenced to ensure that no 

errors had been introduced during the amplification and that the insert was in-frame.  

The sequencing results were analysed using ChromasPro version 1.2, which indicated 

that whereas the sequence of PfMyb2 in pET-15b was correct, there was an error in 

the pGEX-4T-2/PfMyb2 sequence (Figure 16).  A T-C point mutation was introduced 

into the sequence at position 391 of PfMyb2 during PCR amplification, which would 

result in a switch from a serine (TCC) to a proline (CCC).  Whereas serine is often 

found in protein functional centres and is relatively common within tight turns on the 

protein surface, proline is a helix breaker, being unable to adopt a normal helical 

conformation.  This mutation occurred outside of the DNA binding domain and did 

not result in a frame-shift, but despite this the different structures of these amino acids 

precluded further work with the PfMyb2/pGEX-4T-2 construct.  
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Figure 16-Partial DNA sequence of 6xHis-PfMyb2 in pGEX-4T-2 

The above sequence represents the portion of PfMyb2 sequence in pGEX-4T-2 
vector that had a mutation introduced during amplification.  The arrow indicates a 
cytosine residue that should be a thymine, which would result in an amino acid 
change from a serine to a proline.  It is clear from the quality of the sequence that this 
is a genuine mutation introduced during amplification, and is not a reading error. 
 

 

3.3.2 Expression and purification of 6xHis-PfMyb2 protein 

 

Induced cells were lysed and proteins separated by SDS-PAGE (Figure 17).    

Induction times and IPTG concentrations were varied as described (3.2.2.1).  As the 

levels of expression of PfMyb2 wee not significantly affected by these variables, 

subsequent inductions were performed with 0.4mM IPTG for four hours at 37°C.  An 

immunoblot was performed to verify that the protein represented recombinant 

PfMyb2, and not a bacterial protein of a similar size.   
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Figure 17-Expression of 6xHis-PfMyb2 

Whole bacterial cell extracts from uninduced vector control (1), induced vector controls (2, 
3), and induced vector constructs (4-10) were electrophoresed alongside a red blood cell  
membrane marker (RBC)on a 10% acrylamide gel.  4,5,6 represent samples induced with 
0.4mM IPTG for 3,4 or 5 hours respectively, whilst 7,8,9 are samples induced with 1mM 
IPTG, also for 3, 4, or 5 hours respectively.  All samples were induced at 37°C.  Band 7 of 
the RBC membrane has a molecular weight of 29kDa.  6xHis-PfMyb2, deduced from amino 
acid sequence to be 24.8kDa, is evident only in lanes 4-9. 

 

 

 

Figure 18- Immunoblot to confirm the expression of 6xHis-PfMyb2  

Lanes 1-4 from the Coomassie Blue-stained gel in Figure 17 were transferred to 
nitrocellulose membrane and incubated overnight with anti-His antibody raised in 
mouse.  6xHis-PfMyb2 was visualised with 1,3, diaminobenzidine which produces a 
brown colour.  RBC: red blood cell membrane marker; 1: uninduced vector control; 
2,3: induced vector controls; 4: induced 6xHis-PfMyb2 construct. 
 
 



Chapter 3- Results 

 

107

3.3.2.1 Purification of 6xHis-PfMyb2 under native conditions 

Separation of whole bacterial cell extracts into soluble and insoluble fractions 

indicated that most of the expressed protein was insoluble, as evidenced by 

SDS_PAGE analysis (Figure 19).  This correlated with bioinformatic analysis of 

6xHis-PfMyb2, which indicated that over-expression in E. coli would yield protein 

that had a 58% probability of being insoluble (www.biotech.ou.edu).   

 

 

Figure 19-Assay to assess the solubility of 6xHis-PfMyb2 

Cultures were induced with 0.4mM IPTG at 37°C for four hours.  Soluble and 
insoluble protein fractions were analysed by SDS-PAGE.  Most of the expressed 
protein is evident in the insoluble fraction.  RBC: red blood cell membrane marker; 
UI: uninduced control; W: induced whole extract; Sol: soluble fraction; Ins: 
insoluble fraction.   
 
 

 
Conditions that were varied in an attempt to obtain a significant yield of soluble 

protein included induction of the cultures at room temperature, in the presence of 

glycyl-glycine (Gosh et al., 2004) as well as at varying optical densities.  These all 

decrease the rate of recombinant protein production, thereby allowing the cells 

sufficient time to correctly fold the newly synthesized protein rather than sequester it 

shows how the presence of glycyl-glycine had no marked effect on the expression 

profile as most of the expressed protein remained in the insoluble fraction.   
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Figure 20- Effect of glycyl-glycine on the solubility of 6xHis-PfMyb2 

6xHis-PfMyb2 was induced in the presence of increasing concentrations 
of glycyl-glycine, and the soluble fractions analysed by SDS-PAGE 
alongside an erythrocyte membrane marker (RBC).  UI: uninduced 
control; W: induced whole extract; 1: no glycyl-glycine added; 2: 0.1M 
glycyl-glycine; 3: 0.2M glycyl-glycine; 4: 0.5M glycyl-glycine.  
Increasing the glycyl-glycine concentration to 1M also had no significant 
effect on solubility (not shown). 

 

Despite some purified soluble protein being obtained, the concentration was always 

too low for use in the mobility shift reactions.  From a 200ml culture, a 100µl elution 

would contain approximately 500ng purified protein, at a concentration of only 

5ng/µl.  As the maximum volume that could be included in the EMSA binding 

reaction was 8µl protein, this would equate to only 40ng protein in the reaction which 

may influence the detection sensitivity. 

 

3.3.2.2 Purification of 6xHis-PfMyb2 under denaturing conditions 

Attempts to purify the protein from inclusion bodies (3.2.2.5) were more successful 

as a pure pull-down with nickel beads was obtained (Figure 21).  However, to obtain 

functional protein it had to be renatured through step-wise dialysis to remove any 

residual urea (3.2.2.6).  Figure 22  shows the precipitate that was formed in 4M urea, 

which could have been due either the inability of the denatured protein to regain its 
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native conformation , or possibly the dialysis was too rapid to allow correct refolding 

of the protein. 

 

Figure 21- Purification of 6xHis-PfMyb2 under denaturing 
conditions 

Inclusion bodies containing PfMyb2 were denatured in 8M urea, 
purified by pull-down on Ni2+ magnetic beads, and electrophoresed on 
a 10% SDS gel alongside an erythrocyte membrane marker (RBC).  
UI, uninduced control; I, induced control; whole, induced whole 
extract; Sup, supernatant following pull-down of 6xHis-PfMyb2 and 
PD, pull-down containing pure denatured PfMyb2.   
 

 

Figure 22- Precipitation of 6xHis-PfMyb2 during dialysis 

P1, P2, P3: Pellets from 4, 2 and 0M urea respectively indicating 
precipitated 6xHis-PfMyb2. S1, S2, S3: supernatants from the same 
fractions; RBC: erythrocyte membrane proteins.   
 

Thus despite initially obtaining a good yield of protein, the protein was lost through 

precipitation during the dialysis procedure.  The dialysis protocol was not optimised 
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as there was no guarantee that the protein would regain its native conformation.  

Rather, an in vitro translation kit was used in an effort to obtain sufficient yield of 

soluble protein. 

 

3.3.2.3 In vitro translation of 6xHis-PfMyb2 

The PROTEINscript II in vitro translation kit uses either plasmid DNA or PCR 

product as template for the transcription and subsequent translation of the protein of 

interest in an optimised rabbit reticulocyte lysate.  When using PCR product as a 

template, the components that would ordinarily be provided in the vector sequence 

had to be added to the PCR primer.  These components included a histidine tag, a 

ribosome binding site and T7 promoter regions.  The design of this primer is 

illustrated below (Figure 23).   

 

 
5’GATCGGATCCTAATACGACTCACTATAGGGAGAGCCACCATGGCATCAT
CATCATCATCATATGAGGATTCAAATAAAAGGAGG 
Figure 23-Primer for the in vitro translation of PfMyb2 

The T7 promoter, Ribosome binding site (RBS) and histidine tag are indicated, as well as the 
gene-specific primer.  Colour-coded nucleotides are shown below the image, with text 
colours corresponding to the various components of the primer.   
 

This 84 nucleotide primer was used in combination with a gene-specific downstream 

primer to amplify PfMyb2 from P. falciparum genomic DNA, and the product of this 

reaction was then transcribed and used as a template in a translation reaction.  

Successful translation was confirmed by SDS-PAGE analysis in the presence of a 

negative control containing no RNA template (Figure 24). 
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Figure 24- SDS-PAGE analysis of in vitro translation products 

A negative control was electrophoresed alongside the reaction expressing 6xHis-
PfMyb2. 

 
Protein obtained in this manner was soluble, but again the yield was low, with only 

approximately 100ng protein obtained from a 50µl reaction.  Setting up multiple 

reactions and pooling them increased the yield to approximately 500ng, and the 

concentration was increased to 10ng/µl by eluting into 50µl, but this was still to low 

for the EMSA reactions.  Therefore the Overnight Express™ Autoinduction system 

was used in an attempt to obtain a high yield of concentrated protein.   

 

3.3.2.4 Expression of 6xHis-PfMyb2 using Overnight Express™ 

The use of the Overnight Express™ Autoinduction system vastly improved the yield 

of soluble protein, as shown in Figure 25.  200ml cultures were grown for 24 hours at 

room temperature, the cells lysed in 3ml BugBuster® and protein was purified from 

the soluble fraction.  Approximately 4µg protein was obtained in a 100µl elution 

volume, a concentration of 40ng/µl.  Thus approximately 320ng protein could be used 

in the EMSA reaction thereby ensuring that the protein concentration was not a 

limiting factor.   
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Figure 25- Purification of 6xHis-PfMyb2 from the Overnight ExpressTM system 

Purified 6xHis-PfMyb2 was electrophoresed on a 10% acrylamide gel.  RBC: red blood cell 
membrane marker; W: induced whole extract; E1: elution in 50µl imidazole; E2: a second 
elution in 100mM imidazole.  5µl of 80µl elutions are shown. 
 

 
3.3.3 Binding studies with 6xHis-PfMyb2  

 

Purified recombinant protein was incubated with double stranded oligonucleotides 

representing consensus Myb regulatory elements (A-3).  Pfmap1 and Pfcrk1 represent 

portions of the promoter region of the parasite mitogen activated protein kinase 

(map1) and cyclin related kinase (crk1) genes respectively.  c-Myb  oligonucleotide 

represents the consensus c-Myb binding sequence as described by Kumar et al 

(2004), whilst the oligonucleotide denoted mim-1 represents a portion of the 

promoter region of the chicken mim-1 gene.  NfKB was used as a non-homologous 

competitor and negative control.  The oligonucleotide alignment with the consensus 

binding domain is shown in Figure 26.  Whereas the oligonucleotides from the two 

vertebrate sequences conform exactly to the consensus sequence, the two P. 

falciparum sequences are slightly divergent, highlighting the unique gene sequences 

that are prevalent in this organism.   
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Figure 26- Oligonucleotides used for EMSA analysis 

The oligonucleotides used for mobility shift assays with 6xHis-PfMyb2 were compared using 
ClustalW software.  The consensus nucleotides that are recognised by Myb proteins are 
highlighted green, whilst the divergent domains in the two oligonucleotides derived from P. 
falciparum genes are in orange.  Y: T or C; K: G or T 
 
 
Each experiment was performed with a different sample of purified protein which led 

to inconsistent binding; the gels shown below represent a selection of experiments 

where binding was observed. 

 

3.3.3.1 6xHis-PfMyb2 binds in vitro to Myb regulatory elements 

The first evidence that recombinant PfMyb2 was able to bind in vitro came from the 

fluorescence-based method of analysis (Figure 27), where a band-shift was evident 

when Pfcrk1 and Pfmap1 oligonucleotides were incubated with protein.   Analysis 

with this method does not allow competition experiments, hence incubation with 

100x excess of homologous competitor does not remove the signal, as in lane 5 

below.  Oligonucleotides were thus end-labelled with γ32P(ATP) so that they could 

also be detected via autoradiography.   

 

Pfmap1 in Figure 27 was end-labeled, so that the same gel could be dried and 

exposed to an autoradiograph.  Here, the decrease in intensity of the signal in the 

presence of excess unlabelled oligonucleotide can be clearly seen in lane 3 (Figure 

28) which points to a specific interaction between oligonucleotide and protein.  The 

autoradiograph also indicates that 6xHis-PfMyb2 forms two complexes when bound 

to oligonucleotide, something not evident in the less sensitive fluorescence-based 

assay. 
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Figure 27-6xHis-PfMyb2 binds to Pfcrk1 and Pfmap1 

EMSA gel stained in SybrGreen and visualized under UV light.  Arrows indicate the complex 
formed by 6xHis-PfMyb2 bound to oligonucleotide.  1: Pfcrk1 oligonucleotide 2: Pfcrk1 
oligonucleotide with 6xHis-PfMyb2; 3: Pfmap1 oligonucleotide; 4 Pfmap1 oligonucleotide 
with 6xHis-PfMyb2; 5: 100x excess of homologous (Pfmap1) unlabelled competitor.   
 

 
Figure 28- Autoradiograph indicating an interaction between 6xHis-PfMyb2 and 

Pfmap1 

Overnight exposure of lanes 3, 4 and 5 of the gel shown in Figure 28.  1: Pfmap-1 
oligonucleotide; 2: Pfmap1 oligonucleotide incubated with 6xHis-PfMyb2; Pfmap1 
oligonucleotide incubated with 6xHis-PfMyb2 in the presence of 100 fold excess of 
unlabeled homologous competitor (Pfmap1).   
 

Following confirmation that 6xHis-PfMyb2 was able to bind to the two slightly 

divergent P. falciparum regulatory elements, its ability to interact with the vertebrate 
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consensus sequences, cMyb and mim1, was assayed.  A composite of three different 

mobility shift assays performed with cMyb oligonucleotide, using 6xHis-PfMyb2 

from different purifications, is shown in Figure 29.   

 
 
 
 

 
Figure 29- 6xHis-PfMyb2 binds to the consensus cMyb oligonucleotide 

Overnight exposure of three independent mobility shift assays using 6xHis-PfMyb2 from 
different purifications, and the consensus cMyb oligonucleotide.  The block triangle 
represents increasing concentrations of protein (100ng, 150ng, 200ng), and the components 
of each reaction are indicated as being included (+) or excluded (-).  Hom: 10x (+) or 100x 
(++) excess of unlabelled cMyb oligonucleotide; Het: 100-fold excess of unlabelled NfKB 
oligonucleotide; all reactions contained 40ng oligonucleotide and 200-300ng protein. 
 

The increasing intensity of the band representing oligonucleotide bound to 6xHis-

PfMyb2, the loss of signal in the presence of unlabelled homologous competitor and 

the reappearance of the signal where the unlabelled competitor is non-homologous all 

indicate a specific interaction between the cMyb oligonucleotide and 6xHis-PfMyb2.  

As opposed to the two complexes formed between 6xHis-PfMyb2 and Pfmap1, only 

one complex is formed from the interaction with cMyb.   

 

The final assay was to determine the interaction between 6xHis-PfMyb2 and the 

oligonucleotide representing a portion of the chicken mim-1 gene promoter (Figure 

30).  The smearing of the mim-1 oligonucleotide makes it difficult to ascertain the 
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specificity of the interaction, but binding can be clearly seen in lane 2.  As with 

Pfmap1, two complexes are formed when 6xHis-PfMyb2 binds to mim-1.   

 

Figure 30- 6xHis-PfMyb2 binds to the mim-1 oligonucleotide 

Overnight exposures of a mobility shift assay performed with mim-1 oligonucleotide. 1: 
mim-1; 2: mim-1 with 6xHis-PfMyb2; 3: mim-1 and 6xHis-PfMyb2 in the presence of 100 
fold excess of unlabelled homologous (mim-1) competitor.   
 

No binding was observed when 6xHis-PfMyb2 was incubated in the presence of 

NfKB oligonucleotide, which did not contain the consensus Myb recognition 

sequence, as indicated by the example in Figure 31. 

 

Figure 31- 6xHis-PfMyb2 does not bind to the NfKB oligonucleotide 

This overnight exposure of a mobility shift assay performed with the negative control NfKB 
shows that no interaction occurs.  This oligonucleotide consistently left a remnant in the well 
when electrophoresed on an acrylamide gel. 1:  NfKB oligonucleotide; 2; NfKB incubated 
with 6xHis-PfMyb2.   
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3.3.4 Bioinformatic analysis of PfMyb2 

 

PfMyb2 (PF10_0327) is described in the PlasmoDB database as a 2748bp gene 

encoding Myb2 protein (A-3).  This single exon gene, located on chromosome 10, is 

expressed predominantly in the asexual parasite stages, with a decline in expression 

in gametocytes (Figure 32). 

 

 

Figure 32- mRNA Expression profile of PfMyb2 

Absolute expression data for PfMyb2 mRNA were obtained from the PlasmoDB database 
(www.plasmoDB.org/).  Expression is maximal during the late ring and late trophozoite 
stage, but is evident at low levels throughout the intraerythrocytic developmental cycle of the 
parasite.  S: schizonts; ER: early rings; LR: late rings; ET: early trophozoites; LT: late 
trophozoites; ES: early schizonts; LS: late schizonts; M: merozoites; G: gametocytes. 
Plasmodium developmental stages were synchronised by sorbitol (green) or temperature 
(purple) (Le Roch et al., 2003). 
 
The binding domains of Myb proteins are highly conserved at the amino terminal, 

generally consisting of three tandem repeats (R1, R2 and R3) of approximately 50 

amino acids, with regularly spaced tryptophan residues which have been shown to be 

critical for the DNA binding activity of the protein.  These binding domains 

specifically recognise the consensus sequence YAACT/GG (Biedenkapp et al., 1988), 

where Y represents T or C.   

 

To date, PfMyb1 (PF13_0088), a 50kDa transcription factor, is the only member of 

the Myb family to be characterised in P. falciparum (Boschet et al., 2004).  ClustalW 

software (http://www.ebi.ac.uk/clustalw/index) was used to compare the amplified 

portion of PfMyb2 binding domains with the binding domains of PfMyb1 (Figure 

33).  Despite the fact that the binding domains are at the carboxy-terminus of PfMyb1 

and the amino terminus of PfMyb2 there is still a good correlation (25%) between the 



Chapter 3- Results 

 

118

two sequences, specifically as concerns the conserved tryptophan (W) and cysteine 

(C) residues.  Based on amino acid similarity between the binding domains of the two 

Myb proteins (PfMyb1 and PfMyb2) it appears as though PfMyb2 contains only two 

repeat regions, which correspond best to R1 and R2 of PfMyb1.  This is similar to 

observations made in retroviral versions of c-Myb (v-Myb) and most plant Myb 

proteins which contain only two binding domains.  In the latter case these are R2 and 

R3 (Williams and Grotewald, 1997) which by themselves are sufficient for DNA 

binding.   

 

 

Figure 33-Clustal-W alignment comparing the binding domains of PfMyb2 and PfMyb1 

The conserved tryptophan (w) residues are coloured blue, whilst the two conserved cysteine 
(c) residues are indicated with an arrow.  A conserved tyrosine residue (y), also characteristic 
of Myb binding domains, is coloured green.  The three repeats that comprise the binding 
domains of PfMyb1 (R1, R2 and R3) are underlined, and the PfMyb2 binding domains are 
overlined.  Identical (*), conservative (:) and semi-conservative (.) amino acid substitutions 
are indicated.    
 
 
Each repeat encodes three helices which form a helix-turn-helix structure.  The role 

of these tryptophans is to mediate DNA binding through preservation of the helical 

structure of the binding domains, rather than interacting directly with the DNA 

Confirmation that PfMyb2 conforms to this characteristic structure was obtained 

using SSPro software available from the Institute for Genomics and Bioinformatics 

(www.igb.uci.edu/servers/psss.html) (Figure 34).  
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Figure 34- Helix-turn-helix structure of PfMyb2 binding domains  

SSPro was used for predicting secondary structure of the binding domains of PfMyb2, which 
verified that they conformed to the characteristic Myb structure.  Helical regions (H) are 
indicated, as well as coils (C), extended strands (E), turns (T) and bends (S).  The turn motifs 
are underlined. The PfMyb2 binding domains are overlined.   
 
Comparison between PfMyb2 and its nearest human homologue, CDC5, reveals two 

characteristics common to many P. falciparum proteins (Figure 35).  The first of 

these is that homology exists primarily in the functional (binding) domains, whilst the 

remainder of the protein shows minimal homology.  An exception to this is the region 

indicated in parenthesis in Figure 35, which is highly homologous despite not being 

annotated as a functional domain.  The significance of this region is not known.  

Secondly, many P. falciparum proteins contain long stretches of homopolymeric 

residues, most commonly asparagines (N), which in Plasmodium can vary from as 

few as 10 to more than a thousand amino acids.   

 
It is also evident that the degree of homology between PfMyb2 and human CDC5 is 

far greater than that between PfMyb2 and PfMyb1.  The divergence between these 

two members of the Myb family in the parasite may have arisen due to the dearth of 

specific transcription factors, and the need to perform unique functions.   
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Figure 35- An alignment between PfMyb2 and human CDC5 

The protein sequences of PfMyb2 and CDC-5 have been compared with ClustalW.  The 
binding domains of PfMyb2 are overlined, whilst the Myb binding domains of CDC-5 are 
underlined.  The bracket indicates a region of the proteins that has no annotated function 
despite the high sequence similarity.  Identical (*), conservative (:) and semi-conservative (.) 
substitutions are indicated. 
 

A putative three dimensional structure of PfMyb2 was obtained from Swiss-Model 

v3.5 (http://swissmodel.expasy.org/).  This program compares a submitted sequence 

with all protein structures available in the database, and returns an alignment between 

these sequences and the query (target) sequence.  In Figure 36, the proposed tertiary 
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structure of PfMyb2 is shown.  Despite entering all 196 amino acids from the region 

amplified, the returned structure contained only the first 93 amino acids, implying 

divergence of the remaining sequence from homologous sequences.  Thus the last 10 

amino acids of R2 are not shown.  Only the conserved cysteine in R1 is shown, as the 

R2 cysteine is outside of the first 93 amino acids  Another cysteine residue is present 

immediately adjacent to R1, and this residue is highlighted for its potential to form 

disulfide bonds.  Figure 36 (B) shows the alignment of the target sequence (PfMyb2) 

with its closest homologues.   

 
The interaction between Myb and its cognate DNA is mediated by the helix-turn-

helix structure of the binding domains.  The general structure of the helix-turn helix 

(HTH) motif is shown in Figure 37 using the mouse Myb protein as a model.  Of the 

three helices comprising the binding domain, the recognition helix fits into the major 

groove of the DNA where it mediates binding, whilst the stabilising helix supports 

the structure.  It has not been determined which helices play these respective roles in 

PfMyb2.  The role of the tryptophan residues in stabilising the structure, as opposed 

to interacting directly to the DNA, can be clearly seen. 
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Figure 36- Model of putative tertiary structure of PfMyb2 binding domains and 
sequence comparison with homologous proteins 

A: Putative tertiary structure of PfMyb2, as deduced by comparison to the structures of 
homologous proteins, obtained using SwissPDB viewer.  The first binding domain is 
coloured yellow whilst the first 35 amino acids of the second domain are in red.  The first 
arginine is coloured green.  The corresponding regions are underlined in (B). 
B:  Sequence comparison between the binding domains of PfMyb2 (target) and closest 
homologous proteins.  1h8aC: Myb Transforming Protein, Chain C (Homo sapiens); 1mseC: 
Myb DNA binding domain, (Mus musculus); 1h89c: Myb proto-oncogene protein (Homo 
sapiens); 1h88c; Myb proto-oncogene protein (Homo sapiens). 
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Figure 37 -Model of the interaction between Myb and its DNA binding domain 

The binding domains of mouse cMyb  (Morikawa et al., 1995) are shown bound to the double 
helix of DNA (green).  The conserved tryptophan residues are in red.  
 
 

The protein has been rotated in Figure 38 to give an idea of its 3-dimensional 

structure. 

 

 
Figure 38- Three dimensional perspective of the structure of PfMyb2 

PfMyb2 has been rotated around its central axis to get a different perspective of the three 
dimensional structure.  The first arginine is indicated in green; the conserved tryptophans are 
coloured red and cysteines are shown in yellow.  The protein was reduced with DTT prior to 
binding to prevent the formation of disulfide bonds.  
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3.4 Discussion 

 
The identification and characterization of transcriptional regulators in Plasmodium 

falciparum is a critical step in enhancing our understanding of the gene regulatory 

mechanisms of the parasite.  Despite the identification of numerous basal 

transcription factors, many of which mirror the eukaryotic gene regulatory apparatus, 

the only specific transcription factor to be characterized to date is the DNA binding 

protein PfMyb1 (Boschet et al., 2004).  Nuclear extracts containing PfMyb1 bound in 

a sequence specific manner to oligonucleotides representing consensus c-myb DNA 

binding domains, as determined by polyclonal antibodies directed against PfMyb1.  

Purified recombinant PfMyb1 was unable to bind, potentially due to incorrect folding 

or processing of the recombinant protein (Boschet et al., 2004).  Though the 

importance of PfMyb1 to the intraerythrocytic cycle of the parasite has been 

demonstrated through the use of RNAi (Gissot et al., 2005) its mechanisms of action 

and general significance remain unknown. 

The work presented here represents the first example of functional studies performed 

with a recombinant P. falciparum specific transcription factor, PfMyb2.   

 

3.4.1 Recombinant P. falciparum protein expression 

 

An integral requirement for the functional analysis of proteins is the ability to express 

and purify the protein in a state that closely mimics its native conformation.  One of 

the most common systems for the expression of recombinant proteins is the bacterium 

Escherichia coli.  However, the expression of P. falciparum proteins in E.coli has 

often proven problematic due to the high AT content of the parasite genome (in 

excess of 80%) and the codon bias exhibited by this organism.  Certain codons 

frequently used by P. falciparum in highly expressed genes are found in insufficient 

quantities in the bacterial host resulting in translation stalling, whereby the bacterium 

produces low yields or truncated forms of the protein (Baca and Hol, 2000).  PfMyb2 

was therefore expressed in BL21 competent cells containing the RIL plasmid, which 
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encodes tRNAs commonly found in AT-rich organisms but which are particularly 

rare in E. coli, specifically arginine (R), isoleucine (I) and leucine (L).   

 

Another criterion, not unique to Plasmodium, is that the bacterial host is highly 

sensitive to the production of foreign proteins, and over-expressed proteins often 

aggregate into insoluble inclusion bodies.  Inclusion bodies form when the translation 

rate of the protein exceeds the capacity of the cell to correctly fold the protein.  

Purification of functional protein from inclusion bodies requires the use of a strong 

denaturant, followed by gradual removal of this denaturant under conditions optimal 

for protein refolding.  There is no guarantee that the renatured protein will regain its 

native conformation, and functional studies may therefore be compromised, thus this 

approach was not pursued after initial attempts resulted in precipitation of the 

recombinant protein. 

Slowing down the rate of translation is a primary consideration when inducing 

expression of recombinant protein.  Despite experimenting with many of the 

parameters known to do this (induction was performed at different temperatures, with 

varying concentrations of IPTG and over a range of time periods), an insufficient 

yield was obtained to perform functional studies.  None of the varied conditions of 

time or temperature had a marked effect on protein solubility, and the majority of 

expressed protein remained sequestered in inclusion bodies.  The addition of a 

dipeptide such as glycylglycine to induced cultures has also been shown to increase 

the solubility of the expressed protein (Gosh et al., 2004).  The mechanism by which 

this occurs is not well understood but three options have been postulated.  The first is 

that the increased osmotic stress caused by the high concentration of dipeptide 

induces the expression of heat-shock proteins with chaperone-like activity, which 

enhances correct folding.  Another option is that the dipeptide interacts directly with 

the expressed protein and acts as a chemical chaperone.  Finally, the considerable 

energy spent by the bacterium in glycylglycine transport slows down the overall 

metabolic rate, including protein synthesis, thereby allowing sufficient time for 
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correct folding of the recombinant protein.  Despite inducing cultures in up to 1M 

glycylglycine there was no increase in the solubility of expressed protein.   

 

In an attempt to circumvent some of the problems associated with the bacterial 

expression of recombinant proteins, PfMyb2 was expressed using a mammalian in 

vitro translation system, which uses optimised rabbit reticulocytes for the expression 

of recombinant protein.  In vivo, reticulocytes are highly specialised cells primarily 

responsible for the synthesis of globin, which represents more than 90% of the 

protein made in the reticulocyte.  These cells have lost their nuclei but contain the 

complete translation machinery for extensive protein synthesis.  Soluble protein was 

obtained using this method, but the concentration remained too low for use in the 

mobility shift assays.   

 

A high yield of soluble protein was ultimately obtained using the Overnight 

Express™ Autoinduction System, which allows bacterial growth to proceed to high 

cell density before induction by lactose.  The return to a bacterial system enabled 

purification of sufficiently high yield of concentrated soluble protein, suitable for use 

in the mobility shift assays. 

 

3.4.2 Functional analysis of 6xHis-PfMyb2 

 

Two methods are commonly used for the assessment of protein/DNA interactions.  If 

purified recombinant protein is available, the protein can be incubated with specific 

end-labelled DNA sequences and an interaction verified by autoradiography 

following gel electrophoresis.  Alternatively, the same labelled oligonucleotides can 

be incubated with whole nuclear extracts and the interaction verified using an 

antibody directed against the protein of interest.  In both cases the specificity of the 

interaction can be confirmed with competition experiments using unlabeled 

homologous or non-homologous competitor oligonucleotides.  With nuclear extracts 

the in vivo state of the protein can be approximated, as any chaperones or co-factors 
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that may facilitate binding are present.  The former method is more direct and the 

absence of contaminating proteins means the results are often more conclusive.  

However, obstacles to overcome include the solubility of the expressed protein and 

the manner in which the expressed protein folds.  Nonetheless this was the preferred 

method in this research as an antibody to PfMyb2 was not available.   

 

Mobility shift assays were performed with purified 6xHis-PfMyb2 and 

oligonucleotides representing a consensus Myb regulatory element (MRE) (Kumar et 

al., 2004), putative MREs identified in Pfcrk1 and Pfmap1 gene promoters (Boschet 

et al., 2004) and a MRE identified in the chicken mim-1 gene promoter.  Initial 

experiments to deduce the binding potential of 6xHis-PfMyb2 yielded inconsistent 

results.  Every time the protein is expressed, be it in a mammalian or bacterial system, 

the manner in which the protein folds may differ and this could influence its binding 

capability.  Furthermore, the amount of protein in the reaction seemed to be a 

determining factor in the outcome of the experiment, implying that the results were 

dependant on the limits of detection of the method used for EMSA experiments as 

well as the concentration of protein.  Increasing the sensitivity of detection by using 

autoradiography still required prolonged exposure of the autoradiograph to visualise 

the shifted bands.  Smearing of some of the oligonucleotides during electrophoresis 

also made verification of the results more complicated, particularly in assessing the 

specificity of the reaction.  However, upon increasing the yield and concentration of 

purified protein with the Overnight Express™ system results were more conclusive.  

Data indicated that 6xHis-PfMyb2 bound to all oligonucleotides containing the 

consensus MRE sequence, in addition to the partially divergent P. falciparum-derived 

sequences, and the specificity of the interactions were confirmed with competition 

experiments.  No binding was observed with NfKB oligonucleotide which again 

indicated that the observed interactions were specific, and reliant upon the presence 

of the Myb recognition sequence.   
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3.4.3 Structural analysis of the Myb protein family 

 

The Myb family of oncogenes has been highly conserved during evolution, being 

present in all vertebrates studied to date as well as some invertebrates (Lipsick et al., 

2001).  They play an essential role in the cell, participating in the regulation of genes 

involved in cell cycle progression and differentiation.  In addition to their function, 

the tripartite structure of these proteins has also been conserved, consisting of an N-

terminal binding domain, central transactivation domain and a C-terminal negative 

regulatory domain (Kanei-Ishii et al., 1996).  The highest degree of conservation is 

within the binding domains, which consist of three repeats (R1, R2 and R3) of 

approximately 50 amino acids containing regularly spaced tryptophan residues 

(Kanei-Ishii et al., 1996).  Each repeat is predicted to form a helix-turn-helix structure 

which is critical for DNA binding (Pinson et al., 2001).  Mutation analysis of c-Myb 

constructs (Saikumar et al., 1990) has determined that the role of these tryptophans is 

to mediate DNA binding through preservation of the helical structure of the binding 

domains, rather than interacting directly with the DNA.  The creation of a 

hydrophobic platform that allows adjacent basic amino acids to bind DNA is essential 

for this process.  In addition to the conserved tryptophan residues, the Myb proteins 

contain a critical cysteine residue in their second repeat (R2), which needs to be in a 

reduced state for DNA binding to occur in vitro (Guehmann et al., 1992).  It is 

speculated that Myb function may therefore be regulated by a reduction-oxidation 

system (Guehmann et al., 1992).   

 

The transactivation and negative regulatory domains of the conserved Myb proteins 

have not been identified in PfMyb2.  This could be due to the incomplete annotation 

of the protein in the PlasmoDB database, or due to a degree of sequence divergence 

of these domains from homologous proteins.   

 

Many proteins in Plasmodium have been shown to be up to 50% larger than 

orthologous proteins and are characterised by long stretches of homopolymeric 
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residues, most commonly asparagines (Aravind et al., 2003).  These low complexity 

regions, when seen in other eukaryotes, generally occur in transcription factors and 

nuclear proteins, whereas they are prevalent in the vast majority of Plasmodium 

proteins (Pizzi and Frontali, 2001).  The biological significance of these regions 

remains unknown, but the resultant sequence variation from host proteins makes them 

potential candidates for drug targets.   

 

Structurally, PfMyb2 conforms to the characteristics of a Myb transcription factor, 

with all conserved cysteines and tryptophans evident in the protein.  In addition the 

binding domains are conserved at the amino terminal end of the protein, and form the 

characteristic helix-turn-helix structure when modelled with SwissPDB viewer.  The 

general structure of the helix-turn helix (HTH) motif is composed of two α-helices 

connected by a short stretch of amino acids, the “turn”.  The recognition helix fits into 

the major groove of the DNA where its amino acids play a major role in recognising 

the specific DNA binding region.  This interaction is a versatile one, as it is thought 

that the manner in which the recognition helix is presented to the binding domain 

varies between proteins, increasing the number of proteins that can interact with the 

same motif (Alberts et al., 2002).    

 

PfMyb1 and PfMyb2 both contain conserved cysteine residues in R1 and R2 (cys46, 

cys95), but it is unclear whether the reduced state of one or both of these residues is 

required for DNA binding. These appear to be quite distant from each other in terms 

of amino acid location, but depending on the manner in which the protein folds they 

could be sufficiently close to form disulfide bridges.  Although there was no evidence 

in Plasmodium that these would prevent DNA binding through the formation of 

disulfide bonds, this possibility was removed by reduction of the protein in 2mM 

DTT prior to binding.   Preliminary data indicated that this was important for binding 

since attempts to replicate an experiment were unsuccessful when using protein that 

had been stored at 4°C for a few days, potentially because in that time the DTT had 

oxidized allowing disulfide bridges to reform (Getz et al., 1999).   
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In contrast to the majority of Myb proteins, PfMyb1 has C-terminal binding 

domains(Boschet et al., 2004), as is the case in D. discoideum.  Analysis of the two 

binding domains of PfMyb2 indicated that they were most similar to R1 and R2 of 

PfMyb1.  In vertebrates, R2 and R3 constitute the minimum requirements for 

sequence-specific DNA binding whilst R1 appears to have no direct interaction with 

DNA (Ogata et al., 1994).  Despite this, deletion of a portion of R1 in c-myb 

abrogated DNA binding (Sala et al., 1995), and these authors thus speculate that R1 

may activate a mechanism of c-myb function that involves interaction with other 

cellular factors.  This could have important implications for functional studies using 

recombinant protein in an environment devoid of cellular factors. 

 

It is not surprising that PfMyb2 recognises and binds to a range of sequences.  All of 

the oligonucleotides contained elements of the consensus binding domain, despite the 

slight divergence of the P. falciparum-derived sequences.  A similar binding pattern 

was observed with PfMyb1 (Boschet et al., 2004), leading to speculation that in an 

organism where very few specific transcription factors have been identified, one 

transcription factor may be responsible for the activation of numerous genes, and 

hence recognise different regulatory elements.  Furthermore, studies have shown that 

PfTBP also interacts with highly divergent TATA-like motifs suggesting that the 

structure of the protein may be more important for binding than base-pair 

complementarity (Ruvalcaba-Salazar et al., 2005). 

 

3.4.4 Role of PfMyb2 in parasite development  

 

Having ascertained that recombinant PfMyb2 protein binds to consensus MRE 

sequences, and therefore established that it is a transcription factor in P. falciparum, 

one can speculate on the role that this specific transcription factor plays in the 

parasite.  There is evidence for the critical role played by PfMyb1 in the control of 

genes involved in cell cycle (Gissot et al., 2005) which is consistent with the 

conserved function of the Myb protein family. There is every reason to believe that 
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the closely related PfMyb2 has a similarly important role in the cell.  Expression of 

both genes is evident throughout the intraerythrocytic life of the parasite and both 

could therefore function during asexual or gametocyte stages.  Two of the Myb 

regulatory elements to which PfMyb2 bound are found in the promoters of genes that 

are involved in signalling pathways that control progression of the cell cycle.  Despite 

binding to similar regulatory elements, the affinity or kinetics with which PfMyb1 

and PfMyb2 bind could be different, and this redundancy could further denote the 

importance of these two proteins.   

 

Pfmap-1 and Pfcrk-1 are two genes expressed predominantly in asexual and sexual 

stages respectively, whose promoters contain putative Myb regulatory elements 

(Doerig et al., 1995; Doerig et al., 1996).  Pfcrk-1 encodes a novel cdc2-related 

protein kinase and is most closely related to a family of negative regulators of cell 

growth (Doerig et al., 1995).  Pfmap-1 encodes a novel protein kinase that contains a 

conserved cdc-2 region.  Comparison with closely related proteins suggests that 

Pfmap-1 plays an important role in adaptive response and signal transduction (Doerig 

et al., 1996).  PfMyb2 binds to oligonucleotides representing promoter regions of 

both of these genes, which implies that the protein functions in both the asexual 

parasite and gametocyte stages of the life cycle.   

 

Some vertebrate Myb proteins participate in regulation of the G0/G1 transition of the 

cell cycle (Kolchanov et al., 2002).  If a similar role for this protein exists in the 

parasite, PfMyb2 could be an important component in the arrest of gametocytes in the 

G0 stage of the cell cycle, where they remain until they reach the mosquito midgut.  

Although a correlation has not been conclusively shown between the classical cell 

cycle progression and the P. falciparum life cycle it is feasible that such a regulatory 

role may exist for this transcription factor.   
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3.5 Conclusion 

 
The work presented here has focussed on gaining insight into one of the few 

annotated specific transcription factors in P. falciparum, PfMyb2.  Recombinant 

6xHis-PfMyb2 was expressed, purified and shown to bind to consensus Myb 

regulatory sequences derived from Plasmodium and chicken gene promoters.  Based 

on homology to conserved proteins, PfMyb2 probably plays a role in regulating genes 

involved in growth and differentiation of the parasite.  The identification and 

characterisation of transcription factors and elucidation of the roles they play in 

regulating the complex life cycle of the malaria parasite will contribute to the 

knowledge base surrounding the gene regulatory mechanisms of the malaria parasite 

and is fundamental to efforts to ultimately eradicate this disease.     

 

 

 
 



Concluding remarks 

 

133

3.6 Concluding remarks 

 

In an era of high-throughput genomic profiling, smaller laboratories can still make 

valuable contributions to knowledge through the use of accessible techniques such as 

differential display.  This research began by comparing the gene expression between 

asexual parasite and gametocyte stages of P. falciparum, with a view to identifying 

novel differentially expressed genes as well as genes that may be implicated in the 

gametocytogenesis process.  The identification of such differentially expressed 

transcripts is important in garnering a better understanding of the complex gene 

regulatory mechanisms at play in the parasite that control all aspects of its intricate 

life cycle.  The adaptability of the parasite to vastly different host environments, 

combined with sophisticated immune evasion strategies, has contributed to the 

parasite’s ability to evade all attempts at eradication over the last century.   

 

Numerous genes were identified whose differential expression was a consequence of 

the diverse requirements of the two developmental stages rather than playing a 

causative role in sexual development.  The pursuit of a transcription factor belonging 

to a family known to regulate cell cycle progression and differentiation was therefore 

a natural progression of this work. 

 

Having overcome the difficulties inherent in purifying recombinant P. falciparum 

proteins, binding experiments were performed indicating that 6xHis-PfMyb2 bound 

to cMyb, Pfcrk1, Pfmap1 and mim-1 oligonucleotides containing the Myb consensus 

binding sequence.  These findings are consistent with results obtained in analysis of 

PfMyb1 (Boschet et al., 2004), the only other member of this protein family to be 

characterised in P. falciparum.  That these proteins are able to bind promiscuously 

could be a function of the paucity of specific transcription factors in Plasmodium 

requiring that they act on numerous genes.  The significance of having two closely 

related transcription factors in the cell at similar times, which recognise and bind to 

the same consensus sequence, alludes to the importance of these transcription factors 
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in the parasite.  Comparative analysis of the kinetics of these two proteins, and their 

respective binding affinities, will shed light on this.   

 

This research has opened the door for a multitude of future investigations.  Obtaining 

an antibody to PfMyb2 and performing binding studies with nuclear extracts will 

allow analysis of PfMyb2 in the presence of any chaperone proteins or co-factors that 

may facilitate binding specificity and fidelity.  In addition, chromatin 

immunoprecipitation assays can be performed to analyse ex vivo protein/DNA 

interactions at the different intraerythrocytic time points of the parasite.  These will 

facilitate a better understanding of the transcriptional apparatus of the parasite. 
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APPENDIX 
 

A-1 Reagents 

 

A-1.1 Parasite culture media 

 

Freezing solution: 

72ml of PBS (for freezing) were combined with 28ml glycerol, and sterilised by 

filtration through a 0.22µm filter.  This was stored at -20°C until required.  For 

freezing, pelleted cultures were resuspended in a 1:1 ratio with freezing solution, and 

stored in liquid nitrogen. 

 

Phosphate Buffered Saline (PBS) (pH 7.4): 

10mM Na2HPO4, 1.4mM KH2PO4, 142mM NaCl and 2.7mM KCl. 

 

PBS for freezing: 

80mM Na2HPO4; 30mM KH2PO4; 120mM NaCl 

 

RPMI culture medium (incomplete): 

RPMI culture medium was supplemented with 25mM HEPES, 2mM L-Glutamine, 

50µg/ml gentamycin, 44µg/ml hypoxanthine and 20mM D-glucose.  Stored at 4°C 

until required. 

 

RPMI complete culture medium:  

90ml incomplete culture medium was supplemented with 10ml inactivated human 

type AB plasma and 2.8ml 5% sodium bicarbonate.  This was stored at 4°C and was 

used within 3-4 days.  Plasma was inactivated at 56°C for two hours prior to use, 

centrifuged at 1100g for 15 minutes, and the supernatant collected and stored at          

-70°C in 10ml aliquots. 
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A-1.2 DNA analysis 

 

Agarose gel: 

Agarose was diluted to 1% in 1X TAE buffer and 1µl ethidium bromide (10µg/µl) 

was added per 10ml.   

 

50x TAE buffer (pH 8.0): 

2M Tris-acetate, 100 ml 0.5M EDTA pH 8.0 in 1000ml 

 

10x TBE buffer: 

890mM Tris base, 890mM Boric Acid, 20mM EDTA 

 

TE buffer (pH 8.0): 

10 mM Tris-HCl pH 8.0, 1mM EDTA 

 

A-1.3 Recombinant protein expression  

 

Coomassie Brilliant Blue stain: 

0.5g Coomassie Blue R-250 was mixed with 25% isopropanol and 10% acetic acid in 

two litres.  

 

Laemlli gel:  

This consists of a lower (resolving) gel and an upper (stacking) gel.  The resolving 

gel comprised 10% acrylamide, 0.1% bis-acrylamide, 0.375M Tris-HCl pH 8.8, 1% 

SDS, 50µl 10% APS and 20µl TEMED.  The stacking gel comprised 4% acrylamide, 

0.15% bis-acrylamide, 0.125M Tris-HCl pH 6.8, 0.15% SDS, 50µl APS and 10µl 

TEMED.  Gels were electrophoresed at 35mA for 90 minutes with cooling to 4°C. 
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LB medium: 

10g bactotryptone, 5g yeast extract, 10g NaCl and 10ml of 1M Tris-HCl pH 7.5 were 

combined in 1 litre water and sterilized by autoclaving (120°C, 15lb/in2).   

 

LB agar: 

LB medium was supplemented with 15g agar per litre.  The solution was allowed to 

cool to the touch before the addition of sterile ampicillin to a final concentration of 

100µg/ml.   

 

Novagen BugBuster® Ni-NTA His Bind Purification kit 

 

Binding buffer: 

0.5M NaCl, 20mM Tris-HCl pH 7.9, 5mM imidazole 

Wash buffer: 

0.5M NaCl, 20mM Tris-HCl pH 7.9, 20-60mM imidazole 

Elution buffer: 

0.25M NaCl, 10mM Tris-HCl pH7.9, 30-100mM imidazole 

 

5X SDS Solubilisation buffer (pH 8.0): 

50mM Tris-HCl, 5mM EDTA, 5% SDS, 0.5% bromophenol blue, 50% glycerol and 

5% ß-mercaptoethanol 

 

SDS electrophoresis buffer (pH 8.3): 

6.06g Tris base, 28.8g glycine, 2.0g SDS.  H20 to 1000ml 

 
 

Sigma His-SelectTM HC Nickel Magnetic Beads 

 

Binding buffer: 

50mM NaPO4 pH8.0, 0.3M NaCl 
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Wash buffer: 

50mM NaPO4 pH 8.0, 0.3M NaCl, 20mM imidazole 

Elution buffer: 

50mM NaPO4 pH8.0, 0.3M NaCl, 50-200mM imidazole 

 

SOB medium:  

20g tryptone, 5g yeast extract and 0.5g NaCl were combined in a final volume of 

1000ml water and sterilised by autoclaving.  10ml filter-sterilised 1M MgSO4 and 

10ml filter-sterilised 1M MgCl2 were added immediately prior to use. 

 

SOC medium:  

2ml sterile 20% glucose was made up to 100ml with SOB medium.  

For denaturing conditions, urea was added to all buffers to a final concentration of 

8M.   

 

A-1.4 Electrophoretic mobility shift assays (EMSAs) 

 

TBE acrylamide gel:  

5% glycerol, 0.25X TBE, 4% acrylamide, 0.2% bis-acrylamide, 75µl 10% APS and 

20µl TEMED were combined.  Gels were allowed to polymerise for two hours before 

running, and were pre-run at 160v (10mA) for 90 minutes before samples were 

loaded.  Samples were electrophoresed at 4°C for 90 minutes at 100v (4mA) in a 

0.25X TBE running buffer. 

 

5X EMSA binding buffer (pH 7.4): 

750mM KCl, 50mM Tris-HCl, 0.5mM EDTA.   

 

1X EMSA binding buffer (pH 7.4) for dialysis: 

0.3g DTT in 100ml 1X EMSA binding buffer.   



A-2 

 

139

A-2 Standard Laboratory Procedures  

 

Microscopic analysis of stained blood smears: 

Smears were fixed in methanol and were stained using either the Rapid Haematology 

Staining Kit as per manufacturer’s instructions, or by immersion for 15 minutes in 

10% Giemsa solution diluted in 6.7mM phosphate buffer (pH 7.1).  Slides were 

washed briefly under running water and were analysed using oil immersion 

microscopy at 1000x magnification. 

 

Preparation and electrophoresis of DNA sequencing gels: 

Glass sequencing plates (30cm x 40cm) were thoroughly washed with Extran 

detergent and assembled with 0.4mm spacers and two 19 well combs in an EZCast 

gel casting boot.  The gel was assembled in a BRL model S2 electrophoresis 

apparatus.  The gel was pre-electrophoresed at 60W for 45 minutes so that it had 

reached approximately 47°C by the time the samples were ready to be loaded.  

Samples were electrophoresed at 60W constant power, with voltage and amperage set 

to be non-limiting in 1X TBE buffer for between two and four hours.  When 

electrophoresis of more than six hours was required, power was reduced to 55W.  The 

gel was exposed to X-ray film at -70°C overnight, and the film then developed using 

a Kodak automatic developer in the emergency ward of the Johannesburg General 

Hospital (Johannesburg, South Africa). 

 

DNA sequencing gel: 

A 60ml gel contained 6M urea, 1X TBE, 12µl TEMED, 0.3% bis-acrylamide, 6% 

acrylamide and 480µl 10% ammonium persulphate (APS). 

 

Stop solution: 

95% deionised formamide, 20mM EDTA pH 7.5, 0.1% bromophenol blue 0.1% 

xylene cyanol FF 
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Phenol: chloroform extraction and ethanol precipitation of DNA and RNA: 

DNA was extracted with Phenol pH 8.0, whilst Phenol pH 4.2 was used for RNA 

extractions. 

For extraction of DNA or RNA, 500µl 1:1 phenol: chloroform was added to the 

resuspended pellets, and centrifuged briefly.  The aqueous supernatant was removed, 

and combined with 250µl phenol.  Samples were mixed thoroughly, centrifuged 

briefly, and the supernatant again removed and precipitated with 100% ice cold 

ethanol. 

2½ volumes ice cold 100% ethanol and 10% 3M sodium acetate were combined with 

the aqueous supernatants and left at -70°C for 30 minutes.  Samples were 

electrophoresed at maximum speed at 4°C for 30 minutes, and the pellet washed in 

70% ice cold ethanol.  The pellet was air dried and resuspended in an appropriate 

volume of water.  For RNA extractions 100% ethanol could be replaced with 

isopropanol. 

 

Alkaline lysis plasmid DNA mini-preparation: 

All centrifugation steps were performed at 15000g in a Sorvall RMC-14 microfuge at 

4°C. 

Bacterial cultures were collected by centrifugation and the cells resuspended in ice-

cold lysis buffer (10mM EDTA, 50mM glucose, 25mM Tris-HCl pH 8.0) and 

incubated at room temperature for five minutes.  0.2M NaOH, 1% SDS solution was 

added to the lysed cells and mixed by gentle inversion.  The mixture was neutralized 

by the addition of ice cold 5M potassium acetate (pH 4.8) and mixed by gentle 

inversion.  The tubes were placed on ice for 15 minutes, allowing the chromosomal 

DNA and bacterial proteins to precipitate, and these could then be removed by 

centrifugation.  The supernatant was transferred to a fresh 1.5ml Eppendorf tube and 

the DNA purified by extraction with phenol/chloroform (1:1) followed by ethanol 

precipitation.   
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Removal of RNA contamination from plasmid DNA: 

Following precipitation with ethanol the DNA was pelleted by centrifugation, air-

dried, and resuspended in 100µl TE buffer containing 1µl DNAse-free RNAse 

(500µg/ml).  The reaction was incubated at 37°C for 30 minutes following which 

40µl 5M potassium acetate (pH 4.8) and 260µl water were added to each tube.  The 

DNA was extracted first with phenol/chloroform and then with chloroform, and 

precipitated with 2½ volumes of ice-cold 100% ethanol at -70°C for 30 minutes.   

 

Protein transfer and immunoblot: 

Following electrophoresis the SDS-acrylamide gel was soaked in transblot buffer 

(25mM Tris-HCl, 192mM glycine, 20% methanol) for ten minutes.  A similarly sized 

piece of nitrocellulose membrane was cut and equilibrated in transblot buffer along 

with two pieces of filter paper.  The gel was placed on one piece of filter paper in a 

wet blot cassette, and the membrane and second piece of filter paper were layered on 

top of the gel.  The cassette was closed and placed into a Transblot system at 4°C 

with pre-cooled transfer buffer.  The system was connected to a power supply and 

proteins transferred for four hours at 35V.  

For protein transfer from SDS gels that had been stained with Coomassie Brilliant 

Blue, gels were thoroughly destained, rinsed in numerous changes of distilled water 

to remove the last traces of acetic acid (including an overnight wash), and proteins 

were recharged for one hour at 4°C in SDS incubation buffer (25mM Tris-HCl, 

192mM glycine, 1% SDS) prior to protein transfer.   

 

Nitrocellulose membrane containing the transferred proteins was incubated in 3% 

BSA in TBS (50mM Tris-HCl pH 7.5, 150mM NaCl) for one hour at room 

temperature, and washed in TBS.  The blot was incubated overnight with primary 

antibody (mouse anti-His antibody) diluted 1:2000 in 1% BSA in TBS.  The 

membrane was washed four times in TBS/0.05% Tween 20 for five minutes with 

rapid shaking.  The secondary antibody was goat anti-mouse IgG conjugated to 

horseradish peroxidase Type IV.  A 1:2000 dilution in 1% BSA in TBS was added to 



A-2 

 

142

the membrane and left to incubate for one hour.  The blot was washed four times with 

TBS/0.05% Tween 20 for five minutes.  To initiate the colour reaction the blot was 

covered in 4-chloro-1-napthol.  

4-chloro-1-naphthol: 

15mg dissolved in 5ml methanol, and added to 25ml TBS.  12.5µl 30% hydrogen 

peroxide was added immediately prior to use. 

When performing the colour reaction for stained gels, 4-chloro-1-napthol was 

replaced with 1,3, diaminobenzidine. 

1, 3, diaminobenzidine: 

15mg was dissolved for 30 minutes in 25ml TBS in the dark with rapid stirring.  

12.5µl 30% hydrogen peroxide was added immediately prior to use. 

 
 
A-3 Plasmid maps and primer sequences  

 
A-3.1 Primers for differential display 

 
Arbitrary 13mers:  
 
60-2: 5’ AAACTCCTTGATG 3’ 
60-1: 5’ TTACACAAGCACA 3’ 
55-6: 5’ CTCCTACTCTATG 3’ 
55-5: 5’ CTCACTATCCATC 3’ 
55-4: 5’ TCCCTTTAGCATC 3’ 
55-3: 5’ AGGATAGGTGATG 3’ 
55-2: 5’CAATGCGTCTTCC 3’ 
55-1: 5’ GTCCAATTAGATG 3’ 
 
Arbitrary 10mers:  
 
AT70: 5’ TGAAACTAGT 3’ 
AT60: 5’ TATGACGTCT 3’ 
AT50: 5’ GTGCAATGAG 3’ 
 
Anchored primers:  
 
P129: 5’ TTTTTTTTTTTTVA 3’ 
P130: 5’ TTTTTTTTTTTTVG 3’ 
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P131: 5’ TTTTTTTTTTTTVC 3’ 
P132: 5’ TTTTTTTTTTTTVT 3’ 
 
V= A/G/C 
 
 
A-3.2 Nucleotide sequence of PF10_0327 
ATGAGGATTCAAATAAAAGGAGGTATATGGAAAAATTGTGAGGATGAAGTTCTTAAAGCAGCTGTTAT
GAAATATGGTTTAAATAATTGGTCAAGGGTCGCATCTTTATTAGTTCGTAAATCAGCTAAACAGTGTA
AGGCGAGGTGGTATGAATGGCTTGATCCATCAGTTAGAAAAACCGAATGGAATAAAGAAGAAGAAGAA
AAACTTTTACATCTAGCCAAATTGTTTCCAACACAATGGAGAACCATAGCACCTATAGTAGGAAGAAC
AGCACAACAATGTTTAGAACATTATGAATATCTACTTGATGAAGCGGAAGGAAAGGTTTATGATAAAA
ATAAGAACCCACGACATCTAAGGCCAGGTGAAATAGACCCTGCTCCTGAATCCAAACCAGCACGTGCA
GATCCTGTAGATATGGATGAAGATGAAAAAGAAATGCTTGCAGAAGCTAAGGCAAGACTTGCAAATAC
GAAAGGTAAAAAAGCAAAAAGAAAAGCTAGAGAAAAACAACTGGAACAAGCTAGGAGATTAGCTTTAT
TACAAAAAAAGAGAGAATTAAAAGCAGCAGGGATAACATCATTAAATTATAAAAGAAAAGATAAAAAT
AAAATTGATCATTCGAAAGAAATATTATTTCATAGGAAACCATTAAAAGGTTTTTATGATGTTAAAGA
TGAACAAAATATTAATGATGATATATATGAAAATAATAAGACAAATCAGAAGAAAAGTATAAAATCAA
TGGATGTTGAAAATATTAATGATGCTATGGAATATAATAAAAATAAAGGTAAACGACAACATCAACAT
AATAATAATGAAGAAGCAAATTTGTTATCTACCATAGAAAATTATGATAAACAATTTAACGAATTAAG
TCATTTAAGAAAAAGGGTTCGATTGAATTTACCAGAACCTATATTAAATGAAAATGAAATAGATGAAA
TAATACAAATAAATAAAGAAGCATCAGCATTTAACGATATTATAAAAGATCAAAACGATAAATTACCA
ATAAATAATATTTTACCAAGTATTGAAAGCTCCTCATTTATATTAAACAATAAAGATAAATTTTCAAA
CTTGGAAACAGATTTTTATAATAATAATAATAATAAATCAATTGCTTTTTCTAGTAAACTAGATCTAA
GTATACAACAAGCAGCAAAAAATATCATTTCTCGAAAAATGAATATTCCATTTATAGGAATGAACAAT
GATTATAATGAAGAAGAATTCGAAAGAAAAAATAATATATTTCAAAAGAGTAATAAGAATGTTCCTGA
TGATTTAGAATATGATGACACGAACAATTATCATAATAATAATAATAATAATAATAATAATACTTCTT
TTAATTCGATCAAAAATTCCACAACCCTTTATAATCATTTGGATGTAGAAAAAAATATAAAAGACGTA
CAAGAAGAAATTGAAAAACAAAAGAAATTAAATGAAGAAGATCAACAAAAGAATCAAAAAGAAAAGTT
AACTATTAAAAATAAAATTATTAGTGATATTAAAAGTTTTAAAAAAAATATTAGTTTATATGCTCATT
CTATTATTTCTTATAAAAATTTAAAAAATGATCAATCTATGATGGATAATCAAACTATACAAACAACT
GAATATTATGATGATAATTATGAAGAGAAAATCGATCGAGCAAAATTACATATTAAAGCATCGTTAGC
CAATTTACCCCAAGAAACGAATCTTATAGAACTTCAATTAAATGAAGAACATCCAGAATGTGATACGG
ACAATATAGAAAAAGATGAAATAGAAAAAGATATACAAGATATTGAAAATGAAAAAAGAAAAAACGAA
GAAAGAAAAGAAAAAGAAAAATTTAATAAGCAAAATAAAATTATTAGATGGAATTTACCTAGACCATA
TTTCTTAGATAAAATTAATCTCTTTAATAATTATATGCACAATGAATATGAAGATGTCCATAATTTAA
TACAAAGAGAGATGCTCCTCTTAATAAAAAATGATATGTTTAATTATCCCCTCAGAAATTCAACACCA
GTACAAAATAAAGTTCATGTGGAAGATCTCGAAAACGTATACATGAATATGGCTATGAAGAGTATAAA
TGAGGAGTTCGAAGATATGTATGGCGAAGCATCATTAAATAACAACACAAAGGATGATTCTAATATTG
ATGGGTGTGATGAAAAGAGTGATAATATTGATGGTTGTGATGAAAAAAGTGATACAACTAATAAAGGT
GATGATACGTCCCAATGTAGTATCGAGCATAGTTCATATAATCATATCGATGTGTGGGAAGAAATTAA
CAAAAATATAATTTTTTGCCCATCAAAAAATGCATATCGCTTTATTGAAGATGTTAATGAAAACGATA
AAAAAGAAAATTACAAATACAAATGTGAAAAATTAAAAAATTTAATTTTAAATGATATGGAACATTAT
AAAAAATTAGAAAATAAATATGATATTTATACAAAAGGATATCAACTAAAAATTAAAAGTTATAAAAA
ATCATATGATACTCTATTTAATTCATATATTAATTGTATTAACGAAAAAGAAGCTTTAAATGTTCTAC
ATGAAAATGAAAAAATATATGCATTAACAAGAATTAAAGAAGAAAAAAAGGAAAATAAAAAAGAAATC
GAATATCATAAATCATTACAAAAGTTTTATCAAGACCTTTTAGAAACAAATCATCAATTAAAAGAAAC
ATGTAAACAAACGTTAAAGGTGCCATAA 
 

Forward (yellow) and reverse (grey) primers for amplification and cloning. 
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A-3.3 pET-15b vector construct and cloning cassette 

 

 
Nucleotides highlighted in blue are the additional bases required for restriction 

enzyme digestion.  Recognition sequences are highlighted in purple, restriction sites 

are indicated with a triangle and stop codons are highlighted in green. 

 

 
PfMyb2 (600bp with appended restriction sites) was cloned into the pET-15b 

expression vector (5698bp after digestion) to generate a 6298bp construct.   

 

Primers for cloning of PfMyb2 into pET-15b expression vector: 
 
 
Forward: 5’ CAGTCAGTC CATATG ATGAGGATTCAAATAAAAGG 3’ 
 
 
 
Reverse:  5’ GATC GGATCC TTA TAATGATGTTATCCCTGCTGCTT 3’ 

BamH1 

Nde1 

Stop 
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A-3.4 pGEX-4T-2 vector construct and cloning cassette 

 
 

 
 
 
Primers used for the cloning of PfMyb2 into the pGEX-4T-2 expression vector:  

 
 

 

 

 

 
Forward: 5’ GATC GGATCC ATGAGGATTCAAATAAAAGG 3’ 
 
                                                                 
 
Reverse:  5’ GATC CTCGAG TCA TAATGATGTTATCCCTGCTGCTT 3’ 

BamH1 

Xho1 Stop 
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Nucleotides highlighted in blue are additional sequences flanking the restriction 

enzyme recognition sequences (highlighted in purple) required for enzyme binding.  

Restriction sites are indicated with a triangle, and stop codons are highlighted in 

green. 

 

 
 
 
 
 
The above cloning cassette spans nucleotides 930-967. 
 
 
pGEX-4T-2 vector primers: 
 
 
Forward:  5’ GGGCTGGCAAGCCACGTTTGGTG 3’ 
Reverse:  5’ CCGGGAGCTGCATGTGTCAGAGG 3’ 
 
 
The forward primer spans nucleotides 869-891, whilst the reverse primer spans 1040-

1018.  Using these primers for amplification appends 147 nucleotides to the insert 

size, creating a PCR product of 735bp when used for amplification of PfMyb2.   

 

 

A-3.5 Primer design for in vitro translation 

 

 
5’GATCGGATCCTAATACGACTCACTATAGGGAGAGCCACCATGGCATCAT
CATCATCATCATATGAGGATTCAAATAAAAGGAGG 
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A3-6 Oligonucleotide sequences for EMSA assays 

 
NfKBf: AGTTGAGGGGACTTTCCCAGGC 

NfKBr: GCCTGGGAAAGTCCCCTCAACT 

cMybf: TACAGGCATAACGGTTCCGTAGTGA 

cMybr: TCACTACGGAACCGTTATGCCTGTA 

Pfmap1f: TATTTGAGAACTGGATGAACAG 

Pfmap1r: CTGTTCATCCAGTTCTCAAATA 

Pfcrk1f: TAAAAATAACCGACACCAAAAA 

Pfcrk1r: TTTTTGGTGTCGGTTATTTTTA 

mim-1f: ACACATTATAACGGTTTTTAGC 

mim-1r: GCTAAAAACCGTTATAATGTGT 
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A-4 Differential Display Transcript Sequences 

 
The sequences below represent the raw data as read off the sequencing gels.  Where 

ambiguity existed in the sequence, the nucleotide was substituted with an “N.” 

 
E2-3 
CCCTTTNGTAAAAACTCATTTATAAATTNTCATCAAAAATTTAANNNTTTT
TACAATAATTTCATGCACATTCATCTCATTT 
 
E2-4 
CAAGGATACACAAGGTGTAGCGACAGGNCTACAAACCATCAACCGTACC
CTTGAAAATAGTGGTGAACAAAACCCGAACAAGAGTTAC 
 
E4-2 
GACATAATTATTATCGGTAAGATTTTTATTTTGTATATAGGGATTAAAGAA
TTGGAGCTATTATTATTATTGTTATCGTTGTTTTCGTCAACCTTGTTGTTAT
GAAACATGGTCTGATGCAGTGTTAATAGATTCGTCATTCG 
 
E5-1 
TGTATCTAACCAGTGACGCGCATGAATGGATTAACGAGATTCCCACTGTC
CCTACTTGCTATCTAGCGAAACCACAGCCAAGGGAACGGGCTTGGCAAAA
TCAGCGGGGAAAGAAGACCCTGTTGAGCTTTACTCTAGTCTGGCTTGTGA
AACGACTTAAGAGGTGTAGCATAAGTGGGAGTAGAAACTGAATATGTTTA
CCGATCAGTGAAATACCACTA 
 
E6-8 
ATATCTTAACTTACTTTAGAAAATGACCCAATACCAAATAATCCAGNNNC
TGGTGAAAATNCCTTTGACNCCGTTTTCGTAAAGGATGACGATGGTTATG
ACCTTGATTCTTTTATGATCCCTGCACATTATAAAAAATATCTTACCAAGG
TCTTAGTTCAAANGTCATAAAANNGATTGAGAATNCTTATGATATTAAAG
GTGTCACATGCGAGTTTCATAT 
 
E9-1 
GTCTTTTTTTTTTTTGGGATTGGGTATATCATATGTTACACGATTCTTTAGA
GTGGAAGACAGAACTTAGTAAGTGTATAAATAATAACACTAATGGCAAC
ACATGTAGAAACAATAATAAATGTAAAACAGATTGTGGTTGTTTTGCAAA
ATGGGTTGTTAAAAAAAAAGACGATGGGACAAAATAAAGCCATTTACA 
 
E10 
GCTACGTCATTGATAGTCTTTTCTATAGATGAAAAGATAAACTTTATATTA
TATGTTGATGTTATTT 
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E12-2 
CATCAAGTTTTGGCAAGGCGGTTCCAAATTTAACGCGTTAATACCGAAAA
TTCCGAATTTTTNCTCACTGATTTTTTTGAAGGAATTTTATTTTTTTTATTT
GCGCAAATATTTTCTTCAATGGATGAAGATACTGTAAAATTTATTTGCTTC
TGCTTATTTGACAGTACTATAATTATTACTTGGATATTTTTTTNGTTTCCTT
TGACCTAGTTTCAGACTGAGGACTGCAGTCGAG 
 
E16-3 
TTTTTTTTTTTTNNNCTTCATTTNTTTTTACTTCCTTTGTGTAAATAACTTTG
TCCATTTTTTCCAGAATTTTTTTNTTTCTTTTTTCGTCACCAGATTC 
 
E17-1 
GAACAAAAAGAATGCTATGTAGGTGATGAAGCTCAAAATAAAAGAGGTA
TTTTAACTTTAAAATATCCAATAGAACATGGTATTGTTACAAATTGGGATG
ATATGGAAAAAATATGGCATCATACGTTTCTATAATGAATTGAGAGTTTC
ACCTGAAGAACATCCAGTCTTAGTTAATCA 
GAAGCTCCATTAATCTAAACAA 
 
E18-1 
CCATCACTACCACTTNCCTCTTTATATGTTAGTNCACATATCATTCCTCTCC
ATATATNTTGACCGTTTTCGCATCCCA 
 
 
E19-1 
AAACTTTNGTTTCTTCTGATTCCATTTNNTTTGCTCATACTCTTAATACTTG
ATATGATCGTACCAACAACCGCATCAGGNCTCAAGGTTAACAGCCGTTCT
GGTTCCC 
 
E23-1 
GCATAATATTTTTCTCTAGACTTACTTACACATTTTTCTTTTATTAACGTAT
TTATTATCAAATCA 
 
E25-2 
CCTATAAATGGATAAGTAAAACAACTTTAAAAGTAGTGGTATTTCACTGA
CGTAAAAACATATTTCAGTTTCTACTCCCACTTATGCTGCACCTCTTAAGT
CGTTTCACAAAGCCAGACTAGAGTAAACCAACAGGGCTCTTCTT 
 
E26-2 
TAAATCACCATCTGGAGTTTTTGCAGATATGTCTGTATCCAAACATATATC
TCTATAATCTCCAAACGTATAGAACATGGATCGCAAAAATTCGGGAGGGA
TGATCCCACTATCTAATA 
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E27-2 
CCATTATCTTTGTATGTTAGGGCGTAAATCATACCTTTCCAGATATGTTCA
CCGTTTGCTTCCCACCAGGTTTTACGTTTTTCCGTCACTAGGTTTGGATTCA
GGTG 
 
E28-1 
CCATCACTACCACTTCCCTCTTTATATGTTAGTCGCACATATCATTCCTCTC
CATATATCGTTCGACCGTTTTCGCATCCCACNNNNNNNGGGGTTTTTAACC
ACTATTTNNGGGGACAGTAGGNNNCCAGGTTCGTTCCGTTAAATTTTCTTT
TATTTATCATTAA 
 
E37-6 
CCTCCTACNCTATGTTCATCATAACTGCATAAACAAAATAATACACACAA
TTTAATTATTTCTATATATATCAAATCGTATAAAATATAAAAA 
 
E39-1 
ACACACATTATCCCAATCAGGAGAAACAGAAGTAACAGAAGAAACAGAA
GAAACAGAAGAAACAGTAGGACACACAACAACGGTAACAATAACATTAC
CACCAACACAACCATCACCACCAAAAGAAGTAAAA 
 
E39-2 
CTGATACTTCTGGTTTTTTATTAGATTTACTAAGATAACCAAAACCTAAAG
CACTACCTAAGAGTAAAGCAAGACCAGTAACAACAGTAGATAT 
 
E39-3 
ACGTAAAGTGATTCCTAATAAATCGAACCTTCTTTCTTTTAAAAATGATTA
CTTAAATATAACAAATGAATAACGAAAGACGGTGTTGTGGAGCTATTGCT
CTTGAAAAATTTAAATGTCGCAAAAAAAANNNNAAATTACACAAGCACA
CACACACACACACACAGC 
 
E42 
TTCTTTCACTTTACCTTTATAACAAACCTTGGAATCAATTTACTTGGAGAA
GAGGTTCGTTGAACTCAATTCAAAAAATTTATTGAACGGGGTTTTCGGAT
TCAGTTCATTTTATTTTTTGTTTTGTAGCAATAGTAATTCGTTTT 
 
E43-1 
TGTCGAATTAAAAAATCAAAATAAAATCAAACAAGTCCGTTTCTACCTTT
TATTTACCATTTGATGATAAACACAAAGGTTATTTAACCATAGGAGGTAT
TGAAGATAGATTTTATGAAGGTCAATTAACTTATGAAAATT 
 
E43-2 
ATCGATACCTCTACCAGCAACATCTGTAGCTACTAGTATATCAAATTCTGC
ATTTTTGAAAGCACTTAATGTTTGTTCTCGTATTTCTTGAGCTTTTCC 
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E51-3 
ACCATAGTNNNNCTTCATCACATCAANNGGAAAAGAATAATGAAAATGA
AACTGAAAAGAAANCTGATCAAAATGAAACTGGAACAAAAANNTTCTAA
ATATGATCC 
 
E52-1 
GATGGTAACATATATATAAATGAACTCCTTTACATAGGCTTTACACTCGG
GGTGCGTTTTCTTTGCACTTTACCTTTATAACAAACCTTGGAATCAATTTA
CTTGGAGAAGAGGTTCGTTGAACTCAATTCAAA 
 
E54-4 
CCGAAGGGAAAGTGCTTTCCTTATTTTGAACAGATTGTAACAACTCCATG
GGTACAGAAAGAGGGATATTAATTATCCTCTCCTTTCTTACTTCTACAATT
TTATTCATAATAAAAAATTCA 
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A-5 List of Suppliers of Chemicals and Equipment 

 
 
Acrylamide BDH, UK 
ACD vacutainer tubes Beckton Dickinson, UK 
Agar Oxoid, UK 
Agarose FMC, USA 
Ammonium Chloride Sigma, USA 
Ammonium Persulphate Stratagene, USA 
Ampicillin Sigma, USA 
  
β-mercaptoethanol Merck, USA 
Bactotryptone  Oxoid, UK 
Beckman SU65 spectrophotometer Beckman, USA 
Beckman, J2-21 centrifuge and JA-17 rotor Beckman, USA 
BL21-CodonPlus® (DE3)-RIL competent cells  Stratagene, USA 
Blue/orange loading dye Promega, USA 
Boric acid USA, USA 
Bovine serum albumin Pierce, USA 
Bromophenol blue BDH, UK 
BRL model S2 electrophoresis apparatus BRL, USA 
BugBuster HT protein extraction reagent Novagen, USA 
  
4-chloro-1-napthol Sigma, USA 
Calf intestinal Phosphatase Roche, Germany 
Centrifuge tubes Nunc, Denmark 
Chloroform SMM Chemicals, RSA 
Coomassie brilliant blue R-250 BDH, UK 
Cryotubes Nunc, Denmark 
  
DC power supply, PS 500X Hoefer , USA 
DEPC Sigma, USA 
DH5α competent cells GibcoBRL, USA 
Dialysis tubing Sigma, USA 
1,3, diaminobenzidine Sigma, USA 
100bp DNA ladder Promega, USA 
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DNA mass ladder GibcoBRL, USA 
DNase-free RNase Roche, Germany 
  
EDTA Roche, Germany 
EMSA kit Invitrogen, USA 
Eppendorf Mastercycler gradient thermal 

l
Eppendorf, Germany 

Eppendorf tubes Eppendorf, Germany 
Ethanol BDH, UK 
Ethidium bromide Roche, Germany 
Extran Merck, Germany 
EZCast Gel Casting Boot GibcoBRL, USA 
  
FastPlasmid™ Mini Kit Eppendorf, Germany 
Falcon tubes  Becton Dickinson, USA 
Filter tips QSP, USA 
Filter paper Whatman, USA 
0.22µm filters Millipore, USA 
  
Gel 3-place casting tray CBS Scientific, USA 
Geldoc Scanning System Synoptics, UK   
Gel Casting Tray Hoefer, USA 
Genelute Mammalian Total RNA Miniprep Kit Sigma, USA 
Gentamycin solution  Sigma, USA 
Goat anti-mouse peroxidase conjugated IgG Sigma, USA 
Glacial acetic acid Saarchem, RSA 
d-Glucose Saarchem, RSA 
Glycerol Sigma, USA 
Glycine BDH, UK 
Glycyl-glycine Sigma, USA 
Guanidium thiocyanate Fluka, Switzerland 
  
Heating block Hägar, RSA 
High Fidelity PCR Master Mix Roche, Germany 
Hybond-N nylon membrane Amersham,  
Hybridisation tubes Hybaid, UK 
Hydrochloric acid Saarchem, RSA 
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Hypoxanthine solution Sigma, USA 
IPTG Invitrogen, USA 
Isopropanol Saarchem, RSA 
  
Jouan BR3.11 centrifuge Jouan, France 
  
Laminar flow hood Labotec, RSA 
Lysozyme  Sigma, USA 
  
Methanol Saarchem, RSA 
Mighty Small Dual Casting Tray  Hoefer USA 
Mineral oil Sigma, USA 
Mouse anti-His antibody Amersham  
  
N-laurylsarcosine Sigma, USA 
  
Oligonucleotide primers 
 

Inqaba Biotech, RSA; 
IDT USA 

Overnight Express Autoinduction system Novagen, USA 

  

Parafilm Whatman, UK 

PCR Master Mix Kit Roche, Germany 
PCR product pre-sequencing kit Amersham, UK 
PCR tubes QSP, USA 
Peristaltic pump SJ-1211 SIS, USA 
PET-15b expression vector Novagen, USA 
pGEM-3Z vector Promega, USA 
PGEX-4T-2 expression vector Novagen, USA 
Phenol ICN Biochemicals, USA 
PMSF Roche, Germany 
Polyvinylpyrrolidone Sigma, USA 
Ponceau S  Sigma USA 
Potassium acetate Saarchem, RSA 
Potassium chloride Saarchem, RSA 
Potassium di-hydrogen orthophosphate Saarchem, RSA 



A-5 

 

155

Prepared dialysis tubing Gibco BRL, USA 
Protease Inhibitor Cocktail Set III  Calbiochem, USA 
PROTEINscript® II in vitro translation kit Ambion, USA 
α32P(dATP) Amersham, UK 
γ32P ATP Amersham, UK 
  
Rapid DNA Ligation Kit Roche, Germany 
Rapid Haematology Staining Kit  SAIMR, SA  
RNaseZap Ambion, USA 
RPMI culture medium Invitrogen, USA 
  
Saponin USB, UK 
SDS BDH, UK 
  
Sequenase® PCR Product sequencing Kit Amersham , UK 
Sequenase® version 2.0 DNA sequencing kit Amersham , UK 
d-Sorbitol Sigma, USA 
di-Sodium hydrogen orthophosphate Saarchem, SA 
Sodium acetate BDH, UK 
Sodium chloride Saarchem, RSA 
Sodium citrate Saarchem, RSA 
Sodium di-hydrogen orthophosphate Saarchem, RSA 
Sodium hydroxide Saarchem, RSA 
Sorvall RMC-14 centrifuge Sorvall, USA 
Sp6 RNA Polymerase promoter Promega, USA 
Superscript III Rnase H- Reverse Transcriptase Invitrogen, USA 
  
T4 DNA plymerase Roche, Germnay 
T4 polynucleotide kinase Promega, USA 
T7 RNA polymerase promoter Promega, USA 
TE Transphor Electrophoresis Unit  Hoefer, USA 
TEMED Promega, USA 
Thermohybaid IP22 Shake’n’Stack Hybaid, UK 
TRI reagent Sigma, USA 
Tris BDH, UK 
Triton X-100 Sigma, USA 
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Tryptone Sigma, USA 
Tween20 Merck, Germany 
  
Urea GibcoBRL, USA 
UV transilluminator UVP, USA 
  
X-ray film Agfa, Germany 
  
Yeast extract Oxoid, UK 
  
Zeiss Axiostar microscope  Zeiss, Germany 
 
 



References 

 

157

REFERENCES 

 
Akompong, T., Eksi, S., Williamson, K. and Haldari, K. (2000). "Gametocytocidal 

activity and synergistic interactions of riboflavin with standard antimalarial 
drugs against growth of Plasmodium falciparum in vitro." Antimicrobial 
Agents and Chemotherapy 44(11): 3107-3111. 

Alano, P., Roca L., Smith D., Read D., Carter R. and Day K. (1995). "Plasmodium 
falciparum: Parasites Defective in Early Stages of Gametocytogenesis." 
Experimental Parasitology 81(2): 227-235. 

Alano, P., Silvestrini, F. and Roca, L. (1996). "Structure and polymorphism of the 
upstream region of the pfg27/25 gene, transcriptionally regulated in 
gametocytogenesis of Plasmodium falciparum." Molecular and Biochemical 
Parasitology 79(2): 207-217. 

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002). Basic 
Genetic Mechanisms in Molecular Biology of the Cell Garland Science. New 
York. 

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and 
Lipman, D. J. (1997). "Gapped BLAST and PSI-BLAST: a new generation of 
protein database search programs." Nucleic Acids Research 25(17): 3389-
3402. 

Aravind, L., Iyer, L. M., Wellems, T. E. and Miller, L. H. (2003). "Plasmodium 
biology: genomic gleanings." Cell 115(7): 771-785. 

Baca, A. M. and Hol, W. G. J. (2000). "Overcoming codon bias: A method for high 
level overexpression of Plasmodium and other AT-rich parasite genes in 
Escherichia coli." International Journal for Parasitology 30: 113-118. 

Bannister, L. and Mitchell, G. (2003). "The ins, outs and roundabouts of malaria." 
Trends in Parasitology 19(5): 209-213. 

Barkakaty, B. N., Sharma, G. K. and Chakravorty, N. K. (1988). "Studies on efficacy 
of treatment with sulfamethoxazole + trimethoprim and sulfalene + 
pyrimethamine combinations in Plasmodium falciparum malaria of known 
and unknown resistant status." Journal of Communicable Diseases 20: 165-
174. 

Barnes, W. M. (1992). "The fidelity of Taq polymerase catalyzing PCR is improved 
by an N-terminal deletion." Gene 112(1): 29-35. 



References 

 

158

Barr, P. J., Green, K. M., Gibson, H. L., Bathurst, I. C., Quakyi, I. A. and Kaslow, D. 
C. (1991). "Recombinant Pfs25 protein of Plasmodium falciparum elicits 
malaria transmission-blocking immunity in experimental animals." Journal of 
Experimental Medicine 174(5): 1203-1208. 

Berg, J. M., Tymoczko, J. L. and Stryer, L. (2005). Synthesizing the Molecules of 
Life in Biochemistry W H Freeman and Company. New York. 

Bertioli, D. J., Schlichter, U. H. A., Adams, M. J., Burrows, P. R., Steinbib, H.-H. 
and Antoniw, J. F. (1995). "An analysis of differential display shows a strong 
bias towards high copy number mRNAs." Nucleic Acids Research 23: 4520-
4523. 

Biedenkapp, H., Borgmeyer, U., Sippel, A. E. and Klempnauer, K. H. (1988). "Viral 
myb oncogene encodes a sequence-specific DNA-binding activity." Nature 
335(6193): 835-837. 

Billker, O., Dechamps, S., Tewari, R., Wenig, G., Franke-Fayard, B. and Brinkmann, 
V. (2004). "Calcium and a calcium-dependant protein kinase regulate gamete 
formation and mosquito transmission in a malaria parasite." Cell 117: 503-
514. 

Billker, O., Lindo, V., Panico, M., Etienne, A. E., Paxton, T., Dell, A., Rogers, M. J., 
Sinden, R. E. and Morris, H. R. (1998). "Identification of xanthurenic acid as 
the putative inducer of malaria development in the mosquito." Nature 392: 
289-292. 

Boschet, C., Gissot, M., Briquet, S., Hamid, Z., Claudel-Renard, C. and Vaquero, C. 
(2004). "Characterization of PfMyb1 transcription factor during erythrocytic 
development of 3D7 and F12 Plasmodium falciparum clones." Molecular and 
Biochemical Parasitology 138(1): 159-163. 

Bozdech, Z., Llinas, M., Pulliam, B. L., Wong, E. D., Zhu, J. and DeRisi, J. L. 
(2003). "The transcriptome of the intraerythrocytic developmental cycle of 
Plasmodium falciparum." Public Library of Science, Biology 1(1): E5. 

Brockelman, C. R. (1982). "Conditions favouring gametocytogenesis in the contiuous 
culture of Plasmodium falciparum." Journal of Protozoology 29: 454-458. 

Bruce, M. C., Alano, P., Duthie, S. and Carter, R. (1990). "Commitment of the 
malaria parasite Plasmodium falciparum to sexual and asexual development." 
Parasitology 100 Pt 2: 191-200. 

Callard, D., Lescure, B. and Mazzolini, L. (1994). "A method for the elimination of 
false positives generated by the mRNA differential display technique." 
Biotechniques 16(6): 1096-1103. 



References 

 

159

Carlton, J. M.-R. (1999). "Gene Synteny across Plasmodium spp: Could 'Operon-like' 
Structures Exist?" Parasitology Today 15(5): 178-179. 

Carter, R. and Graves, P. M., Eds. (1988). Gametocytes in Malaria: Principles and 
practice of malariology. London, Churchill Livingstone. 

Carter, R. and Miller, H. (1979). "Evidence for environmental modulation of 
gametocytogenesis in Plasmodium falciparum in continuous culture." Bulletin 
of the World Health Organisation 1: 37-52. 

Carter, R., Ranford-Cartwright, L. and Alano, P. (1993). "The culture and preparation 
of gametocytes of Plasmodium falciparum for immunochemical, molecular, 
and mosquito infectivity studies." Methods in Molecular Biology 21: 67-88. 

Carucci, D. (2004). "Know thine enemy." Nature 430: 944-945. 

Chang, K.-H. and Stevenson, M. M. (2004). "Malarial anaemia: mechanisms and 
implications of insufficient erythropoiesis during blood-stage malaria." 
International Journal for Parasitology 34: 1501-1016. 

Chomczynski, P. and Sacchi, N. (1987). "Single-step method of RNA isolation by 
acid guanidinium thiocyanate-phenol-chloroform extraction." Analytical 
Biochemistry 162(1): 156-159. 

Coulson, R. M. R., Hall, N. and Ouzounis, C. A. (2004). "Comparative genomics of 
transcriptional control in the human malaria parasite Plasmodium 
falciparum." Genome Research 14: 1548-1554. 

Crabb, B. S. and Cowman, A. F. (1996). "Characterization of promoters and stable 
transfection by homologous and nonhomologous recombination in 
Plasmodium falciparum." Proceedings of the National Academy of Sciences 
of the U S A 93: 7289-7294. 

Cui, L., Fan, Q. and Li, J. (2002). "The malaria parasite Plasmodium falciparum 
encodes members of the Puf RNA-binding protein family with conserved 
RNA binding activity." Nucleic Acids Research 30: 4607-4617. 

Cui, L., Rzomp, K. A., Fan, Q., Martin, S. K. and Williams, J. (2001). "Plasmodium 
falciparum: differential display analysis of gene expression during 
gametocytogenesis." Experimental Parasitology 99: 244-254. 

Dechering, K., Kaan, A. M., Mbacham, W., Wirth, D. F., Eling, W., Konings, R. N. 
and Stunnenberg, H. G. (1999). "Isolation and functional characterisation of 
two distinct sexual-stage-specific promoters of the human malaria parasite 
Plasmodium falciparum." Molecular and Cellular Biology 19(2): 967-978. 



References 

 

160

Dechering, K. J., Kaan, A. M., Mbacham, W., Wirth, D. F., Eling, W., Konings, R. N. 
and Stunnenberg, H. G. (1999). "Isolation and functional characterisation of 
two distinct sexual-stage-specific promoters of the human malaria parasite 
Plasmodium falciparum." Molecular and Cellular Biology 19(2): 967-978. 

Dechering, K. J., Thompson, J., Dodemont, H. J., Eling, W. and Konings, R. N. H. 
(1997). "Developmentally regulated expression of pfs16, a marker for sexual 
differentiation of the human malaria parasite Plasmodium falciparum." 
Molecular and Biochemical Parasitology 89(2): 235-244. 

Deitsch, K. W. (2004). Gene Expression in Malaria Parasites: Genomes and 
Molecular Biology.Waters, A. P. and Janse, C. J. Caister Academic Press. 
Wymondham: 205-227. 

Dessens, J. T., Margos, G., Rodriguez, M. C. and Sinden, R. E. (2000). 
"Identification of Differentially Regulated Genes of Plasmodium by 
Suppression Subtractive Hybridization." Parasitology Today 16(8): 354-356. 

Diatchenko, L., Lau, Y. F., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., 
Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E. D. and Siebert, P. D. 
(1996). "Suppression subtractive hybridization: a method for generating 
differentially regulated or tissue-specific cDNA probes and libraries." 
Proceedings of the National Academy of Sciences of the U S A 93(12): 6025-
6030. 

Diebner, H. H., Eichner, M., Molineaux, L., Collins, W. E., Jeffery, G. M. and Dietz, 
K. (2000). "Modelling the transition of asexual blood stages of Plasmodium 
falciparum to gametocytes." Journal of Theoretical Biology 202: 113-127. 

Doerig, C. D. (1997). "Signal transduction in malaria parasites." Parasitology Today 
13(8): 307-313. 

Doerig, C. D. and Chakrabarti, D. (2004). Cell cycle control in Plasmodium 
falciparum: A genomics perspective in Malaria Parasites: Genomes and 
Molecular Biology.Waters, A. P. and Janse, C. J. Caister Academic Press. 
Wymondham: 249-288. 

Doerig, C. D., Horrocks, P., Coyle, J., Carlton, J., Sultan, A., Arnot, D. and R., C. 
(1995). "Pfck-1, a developmentally regulated cdc2-related protein kinase of 
Plasmodium falciparum." Molecular and Biochemical Parasitology 70: 167-
174. 

Doerig, C. M., Parzy, D., Langsley, G., Horrocks, P., R., C. and Doerig, C. D. (1996). 
"A MAP kinase homolog from the human malaria parasite Plasmodium 
falciparum." Gene 177: 1-6. 



References 

 

161

Dorin, D., Alano, P., Boccaccio, I., Ciceron, L., Doerig, C., Sulpice, R., Parzy, D. and 
Doerig, C. (1999). "An Atypical Mitogen-activated Protein Kinase (MAPK) 
Homologue Expressed in Gametocytes of the Human Malaria Parasite 
Plasmodium falciparum. Identification of a MAPK signature." Journal of 
Biological Chemistry 274(42): 29912-29920. 

Dyer, M. and Day, K. P. (2000). "Commitment to gametocytogenesis in Plasmodium 
falciparum." Parasitology Today 16(3): 102-107. 

Dyer, M. and Day, K. P. (2000a). "Expression of Plasmodium falciparum trimeric G 
proteins and their involvement in switching to sexual development." 
Molecular and Biochemical Parasitology 110: 437-448. 

Dyer, M. and Day, K. P. (2003). "Regulation of the rate of asexual growth and 
commitment to sexual development by diffusible factors from in vitro cultures 
of Plasmodium falciparum." American Journal of Tropical Medicine and 
Hygiene 68(4): 403-409. 

Eksi, S., Haile, Y., Furuya, T., Ma, L., Su, X. and Williamson, K. C. (2005). 
"Identification of a subtelomeric gene family expressed during the asexual-
sexual stage transition in Plasmodium falciaprum." Molecular and 
Biochemical Parasitology 143(1): 90-99. 

Eksi, S., Stump, A., Fanning, S. L., Shenouda, M. I., Fujioka, H. and Williamson, K. 
C. (2002). "Targeting and sequestration of truncated Pfs230 in an 
intraerythrocytic compartment during Plasmodium falciparum 
gametocytogenesis." Molecular Microbiology 44: 1507-1516. 

Fan, Q., An, L. and Cui, L. (2004). "PfADA2, a Plasmodium falciparum homologue 
of the transcriptional coactivator ADA2 and its in vivo association with the 
histone acetyltransferase PfGCN5." Gene 336(2): 251-261. 

Fischer, K., Horrocks, P., Preuss, M., Wiesner, J., Wunsch, S., Camargo, A. A. and 
Lanzer, M. (1997). "Expression of var genes located within polymorphic 
subtelomeric domains of Plasmodium falciparum chromosomes." Molecular 
and Cellular Biology 17(7): 3679-3686. 

Florens, L., Washburn, M. P., Raine, J. D., Anthony, R. M., Grainger, M., Haynes, J. 
D., Moch, J. K., Muster, N., Sacci, J. B., Tabb, D. L., Witney, A. A., Wolters, 
D., Wu, Y., Gardner, M. J., Holder, A. A., Sinden, R. E., Yates, J. R. and 
Carucci, D. J. (2002). "A proteomic view of the Plasmodium falciparum life 
cycle." Nature 419(6906): 520-526. 

Florent, I., Charneau, S. and Grellier, P. (2004). "Plasmodium falciparum genes 
differentially expressed during merozoite morphogenesis." Molecular and 
Biochemical Parasitology 135(1): 143-148. 



References 

 

162

Gardiner, D. L., Dixon, M. W. A., Spielmann, T., Skinner-Adams, T. S., Hawthorne, 
P. L., Ortega, M. R., Kemp, D. J. and Trenholme, K. R. (2005). "Implication 
of a Plasmodium falciparum gene in the switch between asexual reproduction 
and gametocytogenesis." Molecular and Biochemical Parasitology 140(2): 
153-160. 

Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., Carlton, 
J. M., Pain, A., Nelson, K. E., Bowman, S., Paulsen, I. T., James, K., Eisen, J. 
A., Rutherford, K., Salzberg, S. L., Craig, A., Kyes, S., Chan, M. S., Nene, V., 
Shallom, S. J., Suh, B., Peterson, J., Angiuoli, S., Pertea, M., Allen, J., 
Selengut, J., Haft, D., Mather, M. W., Vaidya, A. B., Martin, D. M., Fairlamb, 
A. H., Fraunholz, M. J., Roos, D. S., Ralph, S. A., McFadden, G. I., 
Cummings, L. M., Subramanian, G. M., Mungall, C., Venter, J. C., Carucci, 
D. J., Hoffman, S. L., Newbold, C., Davis, R. W., Fraser, C. M. and Barrell, 
B. (2002). "Genome sequence of the human malaria parasite Plasmodium 
falciparum." Nature 419: 498-511. 

Getz, E. B., Xiao, M., Chakrabarty, T., Cooke, R. and Selvin, P. R. (1999). "A 
comparison between the sulfhydryl reductants Tris(2-carboxyethyl)phosphine 
and Dithiothreitol for use in protein biochemistry." Analytical Biochemistry 
273: 73-80. 

Gissot, M., Briquet, S., Refour, P., Boschet, C. and Vaquero, C. (2005). "PfMyb1, a 
Plasmodium falciparum transcription factor, is required for intra-erythrocytic 
growth and controls key genes for cell cycle regulation." Journal of Molecular 
Biology 346(1): 29-42. 

Gissot, M., Refour, P., Briquet, S., Boschet, C., Coupe, S., Mazier, D. and Vaquero, 
C. (2004). "Transcriptome of 3D7 and its gametocyte-less derivative F12 
Plasmodium falciparum clones during erythrocytic development using a gene-
specific microarray assigned to gene regulation, cell cycle and transcription 
factors." Gene 341: 267-277. 

Gosh, S., Rasheedi, S., Rahim, S. S., Banerjee, S., Choudhary, R. K., Chakhaiyar, P., 
Ehtesham, N. Z., Mukhopadhyay, S. and Hasnain, S. E. (2004). "Method for 
enhancing solubility of the expressed recombinant proteins in Escherichia 
coli." Biotechniques 37(3): 418-423. 

Guehmann, S., Vorbrueggen, G., Kalkbrenner, F. and Moelling, K. (1992). 
"Reduction of a conserved cys is essential for Myb-DNA binding." Nucleic 
Acids Research 20: 2279-2286. 

Guinet, F. and Wellems, T. E. (1997). "Physical mapping of a defect in Plasmodium 
falciparum male gametocytogenesis to an 800kb segment of chromosome 12." 
Molecular and Biochemical Parasitology 90: 343-346. 



References 

 

163

Hawking, F., Wilson, M. E. and Gammage, K. (1971). "Evidence for cyclic 
development and short-lived maturity in the gametocytes of Plasmodium 
falciparum." Transactions of the Royal Society of Tropical Medicine and 
Hygiene 65(5): 549-559. 

Hayward, R. E., Derisi, J. L., Alfadhli, S., Kaslow, D. C., Brown, P. O. and Rathod, 
P. K. (2000). "Shotgun DNA microarrays and stage-specific gene expression 
in Plasmodium falciparum malaria." Molecular Microbiology 35(1): 6-14. 

Heddini, A. (2002). "Malaria Pathogenesis: a jigsaw with an increasing number of 
pieces." International Journal for Parasitology 32: 1587-1598. 

Horrocks, P., Dechering, K. and Lanzer, M. (1998). "Control of gene expression in 
Plasmodium falciparum." Molecular and Biochemical Parasitology 95(2): 
171-181. 

Horrocks, P. and Kilbey, B. J. (1996). "Physical and functional mapping of the 
transcriptional start sites of Plasmodium falciparum proliferating cell nuclear 
antigen." Molecular and Biochemical Parasitology 82: 207-215. 

Horrocks, P. and Lanzer, M. (1999). "Mutational analysis identifies a five base pair 
cis-acting sequence essential for gbp130 promoter activity in Plasmodium 
falciparum." Molecular and Biochemical Parasitology 99(1): 77-87. 

Inselberg, J. (1983). "Stage-specific inhibitory effect of cyclic AMP on asexual 
maturation and gametocyte formation of Plasmodium falciparum." Journal of 
Parasitology 69: 592-597. 

James, M. A., Montenegro-James, S. and Fajfar-Whetstone, C. (1993). 
"Immunogenicity and antigenic reactivity of a carrier-free synthetic peptide 
complex derived from a 70-kDa Plasmodium falciparum exoantigen." 
Parasitology Research 79(6): 501-507. 

Janse, C. J. and Waters, A. P. (2004). Sexual development of malaria parasites in 
Malaria Parasites: Genomes and Molecular Biology.Janse, C. J. and Waters, 
A. P. Caister Academic Press. Wymondham: 445-474. 

Ji, D.-D. and Arnot, D. E. (1997). "A Plasmodium falciparum homologue of the 
ATPase subunit of a multi-protein complex involved in chromatin 
remodelling for transcription." Molecular and Biochemical Parasitology 
88(151-162). 

Ji, W., Wright, M. B., Cai, L., Flament, A. and Lindpaintner, K. (2002). "Efficacy of 
SSH PCR in isolating differentially expressed genes." BMC Genomics 3(1): 
12. 



References 

 

164

Kanei-Ishii, C., Nomura, T., Ogata, K., Sarai, A., Yasukawa, T. and Tashiro, S. 
(1996). "Structure and function of the proteins encoded by the myb gene 
family." Current Topics in Microbiology and Immunology 211: 89-98. 

Kaslow, D. C., Isaacs, S. N., Quakyi, I. A., Gwadz, R. W., Moss, B. and Keister, D. 
B. (1991). "Induction of Plasmodium falciparum transmission-blocking 
antibodies by recombinant vaccinia virus." Science 252: 1310-1313. 

Keough, D. T., Ng, A.-L., Winzor, D. J., Emmerson, B. T. and de Jersey, J. (1999). 
"Purification and characterization of Plasmodium falciparum hypoxanthine-
guanine-xanthine phosphoribosyltransferase and comparison with the human 
enzyme." Molecular and Biochemical Parasitology 98(1): 29-41. 

Kolchanov, N. A., Ignatieva, E. V., Ananko, E. A., Podkolodnaya, O. A., 
Stepanenko, I. L., Merkulova, T. I., Pozdnyakov, M. A., Podkolodny, N. L., 
Naumochkin, A. N. and Romashchenko, A. G. (2002). "Transcription 
Regulatory Regions Database (TRRD): its status in 2002." Nucleic Acids 
Research 30(1): 312-317. 

Kongkasuriyachai, D., Fujioka, H. and Kumar, N. (2004). "Functional analysis of 
Plasmodium falciparum parasitophorous vacuole membrane protein (Pfs16) 
during gametocytogenesis and gametogenesis by targeted gene disruption." 
Molecular and Biochemical Parasitology 133: 275-285. 

Kongkasuriyachai, D. and Kumar, N. (2002). "Functional characterisation of sexual 
stage specific proteins in Plasmodium falciparum." International Journal for 
Parasitology 32(13): 1559-1566. 

Kumar, N., Cha, G., Pineda, F., Maciel, J., Haddad, D., Bhattacharyya, M. and 
Nagayasu, E. (2004). "Molecular complexity of sexual development and gene 
regulation in Plasmodium falciparum." International Journal for Parasitology 
34(13-14): 1451-1458. 

Laemmli, U. K. (1970). "Cleavage of structural proteins during the assembly of the 
head of bacteriophage T4." Nature 227: 680-685. 

Lambros, C. and Vanderberg, J. P. (1979). "Synchronization of Plasmodium 
falciparum erythrocytic stages in culture." Journal of Parasitology 65(3): 418-
420. 

Langsley, G., Hyde, J. E., Goman, M. and Scaife, J. G. (1983). "Cloning and 
characterisation of the rRNA genes from the human malaria parasite 
Plasmodium falciparum." Nucleic Acids Research 11(24): 8703-8717. 

Lanzer, M., de Bruin, D. and Ravetch, J. V. (1992). "A sequence element associated 
with the Plasmodium falciparum KAHRP gene is the site of developmentally 



References 

 

165

regulated protein-DNA interactions." Nucleic Acids Research 20(12): 3051-
3056. 

Lasonder, E., Ishihama, Y., Andersen, J. S., Vermunt, A. M., Pain, A., Sauerwein, R. 
W., Eling, W. M., Hall, N., Waters, A. P., Stunnenberg, H. G. and Mann, M. 
(2002). "Analysis of the Plasmodium falciparum proteome by high-accuracy 
mass spectrometry." Nature 419(6906): 537-542. 

Le Bonniec, S., Deregnaucourt, C., Redeker, V., Banerjee, R., Grellier, P., Goldberg, 
D. E. and Schrevel, J. (1999). "Plasmepsin II, an acidic hemoglobinase from 
the Plasmodium falciparum food vacuole, is active at neutral pH on the host 
erythrocyte membrane skeleton." Journal of Biological Chemistry 274(20): 
14218-14223. 

Le Roch, K. G., Zhou, Y., Blair, P. L., Grainger, M., Moch, J. K., Haynes, J. D., De 
La Vega, P., Holder, A. A., Batalov, S., Carucci, D. J. and Winzeler, E. A. 
(2003). "Discovery of Gene Function by Expression Profiling of the Malaria 
Parasite Life Cycle." Science 301: 1503-1508. 

Liang, P. (2002). "A decade of differential display." Biotechniques 33: 338-346. 

Liang, P. and Pardee, A. B. (1992). "Differential display of eukaryotic messenger 
RNA by means of the polymerase chain reaction." Science 257(5072): 967-
971. 

Liang, P. and Pardee, A. B. (1995). "Recent advances in differential display." Current 
Opinion in Immunology 7(2): 274-280. 

Lievens, S., Goormachtig, S. and Holsters, M. (2001). "A critical evaluation of 
differential display as a tool to identify genes involved in legume nodulation: 
looking back and looking forward." Nucleic Acids Research 29(17): 3459-
3468. 

Lipsick, J. S. (1996). "One billion years of Myb." Oncogene 13: 223-235. 

Lipsick, J. S., Manak, J., Mitiku, N., Chen, C.-K., Fogarty, P. and Guthrie, E. (2001). 
"Functional evolution of the Myb oncogene family." Blood Cells, Molecules 
and Diseases 27(2): 456-458. 

Lobo, C.-A., Fujioka, H., Aikawa, M. and Kumar, N. (1999). "Disruption of the 
Pfg27 Locus by Homologous Recombination Leads to Loss of the Sexual 
Phenotype in P. falciparum." Molecular Cell 3(6): 793-798. 

Lobo, C. A. and Kumar, N. (1999). "Differential transcription of histone genes in 
asexual and sexual stages of Plasmodium falciparum." International Journal 
for Parasitology 29(9): 1447-1449. 



References 

 

166

Lockhart, D. J. and Winzeler, E. A. (2000). "Genomics, gene expression and DNA 
arrays." Nature 405(6788): 827-836. 

Lodish, H., Berk, A., Zipursky, L., Matsudaira, P., Baltimore, D. and Darnell, J., Eds. 
(1999). RNA Processing, Nuclear Transport, and Post-Transcriptional Control 
in Molecular Cell Biology. New York, W H Freeman and Company. 

Luce, M. J. and Burrows, P. D. (1998). "Minimizing false positives in differential 
display." Biotechniques 24(5): 766-768. 

Mamoun, B. C., Gluzman, I. Y., Hott, C., MacMillan, S. K., Amarakone, A. S., 
Anderson, D. L., Carlton, J. M., Dame, J. B., Chakrabarti, D., Martin, R. K., 
Brownstein, B. H. and Goldberg, D. E. (2001). "Co-ordinated programme of 
gene expression during asexual intraerythrocytic development of the human 
malaria parasite Plasmodium falciparum revealed by microarray analysis." 
Molecular Microbiology 39(1): 26-36. 

Manduchi, E., Grant, G. R., He, H., Liu, J., Mailman, M. D., Pizarro, A. D., Whetzel, 
P. L. and Stoeckert, C. J., Jr. (2004). "RAD and the RAD Study-Annotator: an 
approach to collection, organization and exchange of all relevant information 
for high-throughput gene expression studies." Bioinformatics 20(4): 452-459. 

Matz, M. V. and Lukyanov, S. A. (1998). "Different strategies of differential display: 
areas of application." Nucleic Acids Research 26(24): 5537-5543. 

McAndrew, M. B., Read, M., Sims, P. F. and Hyde, J. E. (1993). "Characterisation of 
the gene encoding an unusually divergent TATA-binding protein (TBP) from 
the extremely A+T-rich human malaria parasite Plasmodium falciparum." 
Gene(124): 165-171. 

McCutchan, T. F., Li, J., McConkey, G. A., Rogers, M. J. and Waters, A. P. (1995). 
"The cytoplasmic ribosomal RNAs of Plasmodium spp." Parasitology Today 
11(4): 134-138. 

Mercereau-Puijalon, O., Barale, J. C. and Bischoff, E. (2002). "Three multigene 
families in Plasmodium parasites: facts and questions." International Journal 
for Parasitology 32(11): 1323-1344. 

Meyersfeld, D. R. and Coetzer, T. L. (2003). "Reverse slot blot for the verification of 
cDNAs identified through differential display." Biotechniques 34(2): 270-272. 

Miele, G., MacRae, L., McBride, D., Manson, J. and Clinton, M. (1998). 
"Elimination of false positives generated through PCR re-amplification of 
differential display cDNA." Biotechniques 25(1): 138-144. 



References 

 

167

Mignone, F., Gissi, C., Liuni, S. and Pesole, G. (2002). "Untranslated regions of 
mRNAs." Genome Biology 3: 4.1-4.10. 

Militello, K. T., Dodge, M., Bethke, L. and Wirth, D. F. (2004). "Identification of 
regulatory elements in the Plasmodium falciparum genome." Molecular and 
Biochemical Parasitology 134(1): 75-88. 

Moreira, C. K., Marrelli, M. T. and Jacobs-Lorena, M. (2004). "Gene expression in 
Plasmodium: from gametocytes to sporozoites." International Journal for 
Parasitology 34(13-14): 1431-1440. 

Morikawa, S., Ogata, K., Sekikawa, A., Sarai, A., Ishii, S., Nishimura, Y. and 
Nakamura, H. (1995). "Determination of the NMR solution structure of a 
specific DNA complex of the Myb DNA-binding domain." Journal of 
Biomolecular NMR 6(3): 294-305. 

Munasinghe, A., Patankar, S., Cook, B. P., Madden, S. L., Martin, R. K., Kyle, D. E., 
Shoaibi, A., Cummings, L. M. and Wirth, D. F. (2001). "Serial analysis of 
gene expression (SAGE) in Plasmodium falciparum: application of the 
technique to A-T rich genomes." Molecular and Biochemical Parasitology 
113(1): 23-34. 

Nacher, M., Singhasivanon, P., Silachamroon, U., Treeprasertsuk, S., Tosukhowong, 
T., Vannaphan, S., Gay, F., Mazier, D. and Looareesuwan, S. (2002). 
"Decreased hemoglobin concentrations, hyperparasitemia, and severe malaria 
are associated with increased Plasmodium falciparum gametocyte carriage." 
Journal of Parasitology 88(1): 97-101. 

Ogata, K., Morikawa, S., Nakamura, H., Sekikawa, A., Inoue, T., Kanai, H., Sarai, 
A., Ishii, S. and Nishimura, Y. (1994). "Solution structure of a specific DNA 
complex of the  Myb DNA-binding domain with cooperative recognition 
helices." Cell 79: 639-648. 

Ogata, K., Sato, K. and Tahirov, T. H. (2003). "Eukaryotic transcriptional regulatory 
complexes: cooperativity from near and afar." Current Opinion in Structural 
Biology 13(1): 40-48. 

Oh, I.-H. and Premkumar Reddy, E. (1999). "The myb gene family in cell growth, 
differentiation and apoptosis." Oncogene 18(19): 3017-3033. 

Orphanides, G., Lagrange, T. and Reinberg, D. (1996). "The general transcription 
factors of RNA polymerase II." Genes and Development 10: 2657-2683. 

Osta, M., Gannoun-Zaki, L., Bonnefoy, S., Roy, C. and Vial, H. J. (2002). "A 24 bp 
cis-acting element essential for the transcriptional activity of Plasmodium 



References 

 

168

falciparum CDP-diacylglycerol synthase gene promoter." Molecular and 
Biochemical Parasitology 121(1): 87-98. 

Pace, T., Birago, C., Janse, C. J., Picci, L. and Ponzi, M. (1998). "Developmental 
regulation of a Plasmodium gene involves the generation of stage-specific 5' 
untranslated sequences." Molecular and Biochemical Parasitology 97(1-2): 
45-53. 

Pan, W., Ravot, E., Tolle, R., Frank, R., Mosbach, R., Turbachova, I. and Bujard, H. 
(1999). "Vaccine candidate MSP-1 from Plasmodium falciparum: a 
redesigned 4917 bp polynucleotide enables synthesis and isolation of full-
length protein from Escherichia coli and mammalian cells." Nucleic Acids 
Research 27(4): 1094-1103. 

Patankar, S., Munasinghe, A., Shoaibi, A., Cummings, L. M. and Wirth, D. F. (2001). 
"Serial analysis of gene expression in Plasmodium falciparum reveals the 
global expression profile of erythrocytic stages and the presence of anti-sense 
transcripts in the malarial parasite." Molecular Biology of the Cell 12(10): 
3114-3125. 

Peterson, A. J., Kossenkov, A. V. and Ochs, M. F. (2004). Linking gene expression 
patterns and transcriptional regulation in Plasmodium falciparum. The fifth 
International Conference for the Critical Assessment of Microarray Data 
Analysis, North Carolina, USA. 

Petmitr, P., Pongvilairat, G. and Wilairat, P. (1997). "Large scale culture technique 
for pure Plasmodium falciparum gametocytes." South East Asian Journal for 
Tropical Medicine and Public Health 28(1): 18-21. 

Pinson, B., Brendeford, E. M., Gabrielsen, O. S. and Daignan-Fornier, B. (2001). 
"Highly conserved features of DNA binding between two divergent members 
of the Myb family of transcription factors." Nucleic Acids Research 29(2): 
527-535. 

Piper, K. P., Hayward, R. E., Cox, M. J. and Day, K. P. (1999). "Malaria transmission 
and naturally acquired immunity to PfEMP-1." Infection and Immunity 
67(12): 6369-6374. 

Pizzi, E. and Frontali, C. (2001). "Low-complexity regions in Plasmodium 
falciparum proteins." Genome Research 11(2): 218-229. 

Pologe, L. G. (1994). "Aberrant transcription and the failure of Plasmodium 
falciparum to differentiate into gametocytes." Molecular and Biochemical 
Parasitology 68: 35-43. 



References 

 

169

Porter, M. E. (2002). "Positive and negative effects of deletions and mutations within 
the 5' flanking region of Plasmodium falciparum DNA polymerase delta." 
Molecular and Biochemical Parasitology 122: 9-19. 

Roberts, D. J., Craig, A. G., Berendt, A. R., Pinches, R., Nash, G., Marsh, K. and 
Newbold, C. I. (1992). "Rapid switching to multiple antigenic and adhesive 
phenotypes in malaria." Nature 357(6380): 689-692. 

Robson, K. J. H. and Jennings, M. W. (1991). "The structure of the calmodulin gene 
of Plasmodium falciparum." Molecular and Biochemical Parasitology 46: 19-
34. 

Ruvalcaba-Salazar, O. K., Ramirez-Estudillo, M. d. C., Montiel-Condado, D., 
Recillas-Targa, F., Vargas, M. and Hernandez-Rivas, R. (2005). 
"Recombinant and native Plasmodium falciparum TATA-binding-protein 
binds to a specific TATA box element in promoter regions." Molecular and 
Biochemical Parasitology 140(2): 183-196. 

Saikumar, P., Murali, R. and Premkumar Reddy, E. (1990). "Role of tryptophan 
repeats and flanking amino acids in Myb-DNA interactions." Proceedings of 
the National Academy of Sciences of the U S A 87: 8452-8456. 

Sala, A., Bellon, T., Melotti, P., Peschle, C. and Calabretta, B. (1995). "Inhibition of 
erythro-myeloid differentiation by constitutive expression of a DNA binding 
deficient c-myb mutant: implication for c-myb function." Blood 86(9): 3404-
3412. 

Scherf, A., Hernandez-Rivas, R., Buffet, P., Bottius, E., Benatar, C., Pouvelle, B., 
Gysin, J. and Lanzer, M. (1998). "Antigenic variation in malaria: in situ 
switching, relaxed and mutually exclusive transcription of var genes during 
intra-erythrocytic development in Plasmodium falciparum." EMBO Journal 
17(18): 5418-5426. 

Schneider, P., Schoone, G., Schallig, H., Verhage, D., Telgt, D., Eling, W. and 
Sauerwein, R. (2004). "Quantification of Plasmodium falciparum gametocytes 
in differential stages of development by quantitative nucleic acid sequence-
based amplification." Molecular and Biochemical Parasitology 137(1): 35-41. 

Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y. and Hay, S. I. (2005). "The 
global distribution of clinical episodes of Plasmodium falciparum malaria." 
Nature 434: 214-217. 

Spielmann, T. and Beck, H. P. (2000). "Analysis of stage-specific transcription in 
Plasmodium falciparum reveals a set of genes exclusively transcribed in ring 
stage parasites." Molecular and Biochemical Parasitology 111: 453-458. 



References 

 

170

Sterner, D. E. and Berger, S. L. (2000). "Acetylation of histones and transcription-
related factors." Microbiology and Molecular Biology Reviews 64: 435-459. 

Su, X. Z. and Wellems, T. E. (1994). "Sequence, transcript characterization and 
polymorphisms of a Plasmodium falciparum gene belonging to the heat-shock 
protein (HSP) 90 family." Gene 151(1-2): 225-230. 

Suh, K. N., Kain, K. C. and Keystone, J. S. (2004). "Malaria." Canadian Medical 
Association Journal 170(11): 1693-1702. 

Sutherland, C. J., Ord, R., Dunyo, S., Jawara, M. and Drakeley, C. J. (2005). 
"Reduction of malaria transmission to Anopheles mosquitoes with a six dose 
regimen of co-artemether." PloS Medicine 2(4). 

Talman, A. M., Domarle, O., McKenzie, F. E., Ariey, F. and Robert, V. (2004). 
"Gametocytogenesis: the puberty of Plasmodium falciparum." Malaria 
Journal 3(1). 

Taylor, L. H. and Read, A. F. (1997). "Why so few transmission stages? 
Reproductive restraint by malaria parasites." Parasitology Today 13: 135-140. 

Thompson, C. B., Challoner, P. B., Neiman, P. E. and Groudine, M. (1986). 
"Expression of the c-myb proto-oncogene during cellular proliferation." 
Nature 319(6052): 374-380. 

Trager, W. and Gill, G. S. (1989). "Plasmodium falciparum gametocyte formation in 
vitro: its stimulation by phorbol diesters and by 8-bromo cyclic adenosine 
monophosphate." Journal of Protozoology 36: 451-454. 

Trager, W. and Jensen, J. B. (1976). "Human malaria parasites in continuous culture." 
Science 193(4254): 673-675. 

Tshefu, K. and James, M. A. (1995). "Relationship of antibodies to soluble 
Plasmodium falciparum antigen (Pf70) and protection against malaria in a 
human population living under intense transmission in Kinshasa, Zaire." 
Tropical Medicine and Parasitology 46(2): 72-76. 

van Dijk, M. M., Janse, C. J., Thompson, J., Waters, A. P., Braks, J. A. M., 
Dodemant, H. J., Stunenberg, H. G., van Gemert, G., Sauerwein, R. W. and 
Eling, W. (2001). "A central role for Pfs48/45 in malaria parasite male gamete 
fertility." Cell 104: 153-164. 

Velculescu, V. E., Zhang, L., Vogelstein, B. and Kinzler, K. W. (1995). "Serial 
analysis of gene expression." Science 270(5235): 484-487. 



References 

 

171

Wahlgren, M. and Chen, Q. (2002). "Plasmodium falciparum: A painful malaria 
parasite is being unveiled." 
www.nature.com/nm/special_focus/malaria/introduction 

Wellems, T. E., Su, X. Z., Ferdig, M. and Fidock, D. A. (1999). "Genome projects, 
genetic analysis, and the changing landscape of malaria research." Current 
Opinion in Microbiology 2(4): 415-419. 

Wesseling, J. G., Smits, M. A. and Schoenmakers, J. G. G. (1988). "Extremely 
diverged actin proteins in Plasmodium falciparum." Molecular and 
Biochemical Parasitology 30(2): 143-153. 

Wesseling, J. G., Snijders, P. J., van Someren, P., Jansen, J., Smits, M. A. and 
Schoenmakers, J. G. (1989). "Stage-specific expression and genomic 
organization of the actin genes of the malaria parasite Plasmodium 
falciparum." Mol Biochem Parasitol 35(2): 167-176. 

Wickens, M., Bernstein, D. S., Kimble, J. and Parker, R. (2002). "A PUF family 
portrait: 3'UTR regulation as a way of life." Trends in Genetics 18: 150-157. 

Wickham, M. E., Thompson, J. K. and Cowman, A. F. (2003). "Characterisation of 
the merozoite surface protein-2 promoter using stable and transient 
transfection in Plasmodium falciparum." Molecular and Biochemical 
Parasitology 129(2): 147-156. 

Williams, C. E. and Grotewald, E. (1997). "Differences between plant and animal 
Myb domains are fundamental for DNA binding activity, and chimeric Myb 
domains have novel DNA binding specificities." The Journal of Biological 
Chemistry 272: 563-571. 

Williamson, K. C., Fujioka, H., Aikawa, M. and Kaslow, D. C. (1996). "Stage-
specific processing of Pfs230, a Plasmodium falciparum transmission-
blocking vaccine candidate." Molecular and Biochemical Parasitology 78(1-
2): 161-169. 

Wu, Y., Sifri, C. D., Lei, H. H., Su, X. Z. and Wellems, T. (1995). "Transfection of 
Plasmodium falciparum within human red blood cells." Proceedings of the 
National Academy of Sciences of the U S A 92: 973-977. 

Young, J. A., Fivelman, Q. L., Blair, P. L., de la Vega, P., Le Roch, K. G., Zhou, Y., 
Carucci, D. J., Baker, D. A. and Winzeler, E. A. (2005). "The Plasmodium 
falciparum sexual development transcriptome: A microarray analysis using 
ontology-based pattern identification." Molecular and Biochemical 
Parasitology 143(1): 67-79. 



References 

 

172

Yue, H., Eastman, P. S., Wang, B. B., Minor, J., Doctolero, M. H., Nuttall, R. L., 
Stack, R., Becker, J. W., Montgomery, J. R., Vainer, M. and Johnston, R. 
(2001). "An evaluation of the performance of cDNA microarrays for detecting 
changes in global mRNA expression." Nucleic Acids Research 29(8): E41-41. 

Zhao, S., Ooi, S. L. and Pardee, A. B. (1995). "New primer strategy improves 
precision of differential display." Biotechniques 18(5): 842-850. 

 


