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ABSTRACT 

 

Methods are presented for obtaining models used for predicting welded sample resistance 

and effective weld current (RMS) for desired weld diameter (weld quality) in the 

resistance spot welding process. These models were used to design predictive controllers 

for the welding process. A suitable process model forms an important step in the 

development and design of process controllers for achieving good weld quality with good 

reproducibility.  

 

Effective current, dynamic resistance and applied electrode force are identified as 

important input parameters necessary to predict the output weld diameter. These input 

parameters are used for the process model and design of a predictive controller.  

 

A three parameter empirical model with dependent and independent variables was used 

for curve fitting the nonlinear halfwave dynamic resistance. The estimates of the 

parameters were used to develop charts for determining overall resistance of samples for 

any desired weld diameter. Estimating resistance for samples welded in the machines 

from which dataset obtained were used to plot the chart yielded accurate results. However 

using these charts to estimate sample resistance for new and unknown machines yielded 

high estimation error. To improve the prediction accuracy the same set of data generated 

from the model were used to train four different neural network types. These were the 

Generalised Feed Forward (GFF) neural network, Multilayer Perceptron (MLP) network, 

Radial Basis Function (RBF) and Recurrent neural network (RNN).  

 

Of the four network types trained, the MLP had the least mean square error for training 

and cross validation of 0.00037 and 0.00039 respectively with linear correlation 

coefficient in testing of 0.999 and maximum estimation error range from 0.1% to 3%. A 

prediction accuracy of about 97% to 99.9%. This model was selected for the design and 

implementation of the controller for predicting overall sample resistance. Using this 

predicted overall sample resistance, and applied electrode force, a second model was 

developed for predicting required effective weld current for any desired weld diameter. 

The prediction accuracy of this model was in the range of 94% to 99%.   

 iv



The neural network predictive controller was designed using the MLP neural network 

models. The controller outputs effective current for any desired weld diameter and is 

observed to track the desired output accurately with same prediction accuracy of the 

model used which was about 94% to 99%. The controller works by utilizing the neural 

network output embedded in Microsoft Excel as a digital link library and is able to 

generate outputs for given inputs on activating the process by the push of a command 

button. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background 
 

There are two main approaches to quality analysis in a manufacturing environment; they 

are reactive and proactive quality analysis (1). Strategies for reactive quality analysis 

include individual inspection of all products according to specifications, sampling plans, 

and lot acceptance determination. Proactive strategy includes physical cause-effect 

knowledge, risk analysis, process control, statistical quality control (including statistical 

process control and control charts), monitoring and diagnosis (1). Proactive strategy is 

considered important in continuous manufacturing processes because of the savings of 

cost in time loss that would have being caused by interruption in the process during 

quality check. 

 

In resistance spot welding there is the need to either control the changing variables that 

affect weld quality during the welding process or to model the parameters that affect the 

process so that the products of the process will be of the desired quality. From 1912 when 

E.G.Budd (2) made spot welds on the first automobile body in Philadelphia, Pennsylvania, 

USA, using resistance spot welding process, research work has been ongoing in trying to 

guarantee quality of resistance spot welds. 

 

Specifically, resistance spot welding is one of the most widely used materials joining 

processes in the automotive industry. Thousands of welds are made on vehicle bodies and 

other material components. The quality of the spot welds are of paramount importance in 

the automotive assembly process. More than 30% redundant (excess) spot welds are often 

required by design specifications (3) in resistance spot welded structures because of the 

uncertainty and difficulty in making and reproducing good quality spot welds. This 

measure is aimed at reducing the chance of failure of the spot welded structure. 
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Eliminating this waste (excess weld) by correctly predicting parameters that will give 

good spot welds with possibility for reproducibility of the good weld quality will help 

reduce production cost in this area.  

 

Currently on the traditional shop floor (3), destructive techniques for assessing weld 

quality, though considered inappropriate, expensive and time consuming, are still 

conducted periodically in assembly plants, because current monitoring and control 

systems in use have failed to adequately meet the challenge of determining (predicting) 

weld quality (3). 

 

Studies carried out over the last fifty years (3, 4) on modelling and controlling the 

resistance spot welding process have proved that the physical laws governing the 

resistance spot welding process are highly complex and non linear. This makes control of 

the process a difficult task, particularly with the increased usage of corrosion resistant 

galvanized steel sheets (4) compared to the use of bare steel sheets. The difficulty arises 

because of unpredictable quality variation in the spot weld due to changes in current 

density resulting from the changes in the diameter of the electrode tip during the welding 

process (4). This change in diameter is caused by the rapid wear of the electrode tip 

surface in contact with the galvanised steel sheet during the spot welding process (4).     

 

Feng et al (3) suggest that to consistently achieve good resistance spot welds, two 

conditions must be met. First, an optimum set of welding parameters must be defined to 

produce the properties desired of the weld. Secondly, control must be implemented to 

maintain the process variables within necessary ranges so that optimized welds can be 

made with good reproducibility. 

 

Matsuyama (5) in his review of previous research work done in the mid sixties cited the 

work by Waller et al (6), in which the researchers formulated regression equations 

(obtained by regression analysis) for quality monitoring of resistance spot welding. The 

equation was determined using many preliminary experimental data. Similarly, other 

researchers in the seventies tried different monitoring systems like using thermo sensors 

to measure surface temperature of weld or monitoring the resistance between the 
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electrode tips by monitoring voltage between electrode tips and welding current (5). In the 

eighties there were attempts to use simulation techniques built and run on computers (5), 

to model the actual resistance spot welding process.   Research has continued to be active 

in this field. Presently, neural network models are being explored in this area because of 

their suitability for nonlinear problems as well as ease in adjustment of pre-set parameters 

and adaptability to learning (6).  

 

The Literature suggest that to be able to develop and design a process control application, 

a proper model of the physical process has to be established (3, 5). This means that the 

critical parameters that affect quality in the process has to be identified, then modelled 

using an appropriate  framework and finally used to develop a controller that can predict 

the quality of output for any combination of input variables for the process.  

 

The resistance spot welding machine and the welding process are made up of mechanical 

and electrical characteristics (3, 7). In the literature review the views and findings of 

researchers on these characteristics as sources of variations to resistance spot weld quality 

are discussed. The specific features of the parameters that influence the characteristics 

covered in this thesis are dynamic resistance, effective current, machine friction, stiffness 

and weight of the welding machine cylinder head (7, 8, 9). Applied electrode force which is 

used during the welding process is also discussed. The benefits of using neural networks 

and the approach for designing a neural network controller are outlined. 

 

Other forms of variations in the resistance spot welding process exist. Wei et al (10) 

mentioned abnormal conditions which include welding plate misalignment and parts not 

fitting correctly during the welding process as an example of such variation. Such process 

abnormalities affect the relationships between the weld size (weld quality) and the input 

process variables and thus cause the weld quality to vary. The variations however, can be 

easily managed by good engineering practice and are therefore not considered in this 

research.  

 

Further discussed in this thesis is the design methodology for the development of a 

predictive controller. The methodology involves relationship analysis of the resistance 
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spot welding input parameters and identification of signals used as inputs and outputs in 

the neural network architecture. An empirical model was developed for curve fitting the 

nonlinear dynamic resistance parameter (one of the required neural network input signal) 

necessary for predicting overall resistance of each welded sample. Neural network types 

were analysed and the most appropriate neural network type and architecture based on 

least prediction error criteria was employed for the development and design of the 

predictive controller.  

 

A neural network predictive controller model was used in this application because other 

design methodology which embodies a conventional continuous frequency domain 

controller design and neural network adaptive control architectures are considered 

inappropriate for the design of a predictive process controller (11, 12). Similarly fuzzy logic 

is considered inappropriate for developing the process controller because of the problem 

with designing membership functions which Kumar et al (13) give as type and number of 

member functions, their shape and range and the difficulty with choosing appropriate 

fuzzy rules (13).  

 

 

1.2 Research Hypothesis 
 

Is it possible to empirically model dynamic resistance variable and predict with accuracy 

of about 100%, the required effective weld current for a desired weld diameter (weld 

quality) with good chance of reproducibility in the resistance spot welding process? 

 

 

1.3 Research Contribution 
 

Reproducing desired weld quality in the resistance spot welding process has remained a 

challenge. Addressing the research hypothesis will give rise to the possibility of 

reproducing desired quality of spot welds using specified combinations of the welding 

parameters. The aim of this research therefore is to model the parameters that affect the 
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final product and thus ensure a desired quality output with possibility for exact 

reproducibility. Based on this need this research work aims to:  

• Carry out further research to determine the contributory effects of electrical 

parameters on the resistance spot welding process, and to demonstrate that the 

data generated from the electrical characteristic sources alone are sufficient and 

appropriate to build a process model. The process model will be used to predict 

the optimum welding parameters that give a good weld quality output with 

possibility for good reproducibility. For the sake of error minimisation the same 

material composition and thickness are used for all the samples investigated.  

 

• Investigate different neural network types and select the most appropriate (ability 

to predict accurately) that can be used to model and optimise the resistance spot 

welding process, based on the identified input parameters from the welding 

process data.  

 

• Investigate the possibility of deploying the identified neural network model for 

the development and design of controller with capability of predicting effective 

weld current for any desired weld diameter, given applied electrode force and 

predicted (estimated) resistance. 

 

• Confirm the most important parameter(s) that would be used to set boundary 

ranges for which these controllers can work and predict outcomes accurately. 

 

Included in this work is an empirical model for curve fitting the dynamic resistance curve 

in order to obtain the parameters that can be used to estimate each sample resistance with 

good accuracy. The predicted sample resistance, applied electrode force and effective 

current will be used as input variables to train the neural network with the weld diameter 

as the output variable. The weld diameter is normally taken as the production criterion of 

weld quality. However, because effective current is what can be controlled in the welding 

process and is presently in the industry determined by trial and error. A unique 

contribution of this research is to overcome this trial and error method by using neural 
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network to learn the pattern of the data so that effective current can be accurately 

predicted for any desired weld diameter.  

 

An important contribution of this work was the use of only electrical characteristics and 

applied electrode force data to model the resistance spot welding process. The data were 

generated from four different resistance spot welding machines and were used to train 

and validate the selected neural network types. The trained neural networks were used to 

predict (generalise) weld quality for situations it has not experienced or seen before using 

real data from the welding machines.  

 

The neural network model which gave the least error prediction was used in the 

development and design of the predictive controllers. This was used for predicting 

effective current required to achieve desired weld diameter in any resistance spot welding 

machine with materials type, electrode type and thickness specified as the boundary 

conditions.  

 

In summary the contributions of this work to the pool of knowledge are as follows: 

• The application of an approximate empirical mathematical function to model the 

dynamic resistance curve and to use the generated parameters to train the neural 

network for predicting sample resistance. 

• Use of feedforward multi layer perceptron algorithm for developing resistance 

spot welding process model and inversing the initial feedforward network 

architecture, such that effective current can be predicted and controlled in the 

welding process for desired weld quality (weld diameter). The selection of the 

neural network type is based on least error minimization and other criteria. 

• Use of this model to optimize welding parameters for best quality of weld in any 

resistance spot welding machine. 

• The development and design of a controller, such that for a desired weld diameter, 

required effective current will be predicted. 

• Present an appropriate controller for use in this application based on prediction 

accuracy. 
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• Accurately predict the current that will be used to achieve a desired weld diameter 

without identifying the welding machine in the model.  

•  Show that electrical characteristics and applied electrode force data alone are 

enough to predict weld quality. This will help resolve the debate on the real 

importance of electrical characteristics data to mechanical characteristics data in 

the resistance spot welding process and weld quality determination.  

• Based on findings to present electrical characteristics data alone as sufficient data 

to use in modelling and developing controller for predicting weld quality output.  

• Show that it is possible to use data generated from the welding machines to train 

the neural network and then validate its ability to generalise using any of the spot 

welding machines to accurately predict output. 

 

 

1.4 Thesis Outline 
 

To address the research hypothesis, two approaches are used. First approach deals with 

the qualitative theory and development of the resistance welding process, dynamic 

resistance theory, neural network types and applications and the numerical techniques 

required for applying the theory to practical applications. The second part deals with 

quantitative development and design process, from the analysis of the problem 

specification, to the choice of appropriate neural network type for the process model, and 

finally to the actual neural network controller design using the models.  

 

The dynamic resistance concept, mechanical characteristics, historical development of 

real time control methodology discussed in Chapter 2 forms a crucial part of the 

modelling methodology. Chapter 3 deals with the literature review on neural network 

types and design steps for the process controller. Chapter 4 discusses the experimental 

procedure for process data generation. Chapter 5 presents the Results and Discussions of 

the data generated. Chapter 6 discusses the modelling of the welding process parameters. 

Controller design implementation is presented in Chapter 7. Chapter 8 presents the final 

conclusions relating to this study. 

 7



CHAPTER 2 

 

BACKGROUND AND HISTORICAL DEVELOPMENT OF 

RESISTANCE SPOT WELDING PROCESS MODELLING 
 
 
2.1 Introduction 
 

This section consists of a review of the analysis of resistance spot welding process 

parameters. A proper theoretical understanding of the resistance spot welding techniques 

and process parameters is very crucial for the development of process model and 

predictive controller. The work of researchers who developed mathematical models and 

simulation of the resistance spot welding process are explored so as to identify the 

parameters that critically affect weld quality and their relationships to one another. The 

section begins with the primary definition of the welding process, progressing to more 

detailed description of the concepts and theories around the process. This review will also 

include discussion on electrode degradation and the views of researchers on the effect of 

mechanical characteristics on weld quality. 

 

 

2.2 Resistance Spot Welding 
 

Work by Gupta et al (14) as cited by Aravinthan et al (15) mentioned that the resistance 

welding process was invented in 1877 by Elihu Thomson, but only put to use in 

manufacturing by E.G.Budd (2). This process has since then been used as a joining 

process in the manufacturing industries, particularly in the automobile and aircraft 

industry (15). Some of the advantages of resistance spot welding over other joining 

techniques are the ease of automating the process, high energy efficiency, and high speed 
(16). 
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Spot welding is a joining process in which coalescence of sheet metals is produced 

between the surfaces of two or more metal parts by the application of heat and pressure in 

a localized area (16). Figure 2.1, shows the sequence of a typical resistance spot welding 

process cycle. It consists of squeeze stage, weld stage and forge stage. At the beginning 

of the welding process, the workpiece (metal sheet) to be joined are placed in-between 

the two copper electrodes shown. The electrodes are subsequently closed onto the 

workpiece and optimum pressure is applied such that the electrodes exert some 

compressive stress on the workpiece. The applied pressure causes an increase in the 

electrical contact of the surfaces in contact. The copper electrodes also provide support 

and pass current to the work piece, when the current is applied.   

 

 

Figur (17)e 2.1: Resistance spot welding cycle 

Sequence 
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With electrical contact achieved by the effect of the electrode force, current is passed 

through the sheet metals for a set time period. Heat is generated between the surfaces of 

the sheet metals by the resistance offered to the flow of current. During this time a nugget 

is formed in-between the plate samples (16) and grows further to become the spot weld as 

heat generated by the resistance effect is sustained. After the weld is formed the applied 

ressure is maintained to enhance solidification of the weld and to prevent expulsion. The 

uring the welding process, once the specified cycle time which marks the process 

ompletion is reached, the current supply is switched off and the weld (nugget) is allowed 

 solidify by slow cooling under pressure (16). The applied electrode force and the 

surrounding solid metal help to contain the molten pool (16).  The effect of the applied 

der plastic deformation on the heated metal sealing creates a ring on 

e surface of the metal. This effect can lead to corona (part with the ring impression) 

 

xpulsion is accelerated when welding close to an edge due to bad fit or lack of 

ode force (16). Expulsion can also occur at the 

trode work interface if the generation of heat is too quick and excessive (16). This can 

 

p

pressure is subsequently released and the electrodes are lifted away from the work piece 
(17).  
 
D

c

to

electrode pressure un

th

bonding (16). Expulsion occurs when this sealed ring ruptures suddenly during the welding 

process such that some of the molten nugget metal is spewed out from between the sheets 
(16).  

E

mechanical supports or low applied electr

elec

happen when scales which build up high resistance are present on the surfaces of the 

sheets to be welded or when low resistivity metals are used (16).  
 

The parameters which are considered in the spot welding process are electrode force, 

diameter of the electrode contact surface, squeeze time, weld time, hold time and weld 

current (18). These parameters will each be briefly discussed. 
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2.2.1 Electrode  

 

The copper electrodes used during the resistance spot welding process plays a very 

important role. The specific roles played by the electrode in the welding process are as 

follows:  

 

2.2.1.1 Electrode Force 

 

2.2.1.2 Electrode Diameter 

urface is used to determine the weld diameter. Weld 

eter is a measure of weld quality. As the welding progresses the diameter of the 

electrode will change eld diameter (nugget diameter) is 

determ s that has been made with the electrode. 

Generally the nugget diameter is slightly eter 

 

A general recommendation (18) is that the weld should have a nugget diam

than 4

 

The electrode force is obtained by the compressive effect of the two electrodes applied to 

the sheet metals thereby squeezing the metal sheets to be joined together (18). Adequate 

electrode force is necessary to achieve good weld. The applied electrode force has some 

inverse relationship with heat energy (18). Too low an applied force is inadequate for 

achieving good weld quality. Excessively increasing the applied electrode force can lead 

to expulsion (18). Optimum value of applied electrode force has to be determined for best 

output. 

 

 

Diameter of the electrode contact s

diam

 due to effect of wear. W

ined based on the number of spot weld

less than the contact electrodes diam (18).  

eter of greater 

t t, (5  is recommended as appropriate), “t” being the thickness

sheet. However, the work done by Weber et al (19) gave further wear classes of electrodes 

based on the num ith the electrode. Such that th

diameter should be based on wear state of the electrode. The wear classes, the num

corresponding spot welds and the nugget diameter that the weld should have as given by 

 of the steel 

ber of weld spots made w e nugget 

ber of 
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Weber s are pre nted in Table 2.1. Transitio  state 1 p

Table 2.1 indicates the state of mild wear while transition state 2 is the state of rapid wear 

f the welding electrode. In this research the electrode to be used is the one that has made 

ore than 900 number of spot welds but less than 1700 (Wear class V1). So an achieved 

meter

 et al (19) finding se n resented in the 

o

m

tdt 54 <≤  will be considered weld dia  of satisfactory. Optimisation of the 

sistance spot welding process however is to maximise the size of the weld diameter for re

a given set of input parameters.   

 

Table 2.1: Definition of the wear classes (19)

Wear class Number of spot 

welds 

Quality Remark 

V0 – non-wear state 9≤ 00  td 5≥  Spot weld is 

“good”. 

V1 – transition state 1 900 … 1700 tdt 54 <≤  Spot weld is 

“satisfactory”. 

V2 – transition state 2 1700 … 2000 tdt 43 <≤  Spot weld is 

“adequate”. 

V3 – worn state 2000≥  td 3<  Spot weld is 

“inadequate”. 

 

 

2.2.1.3 Effect of Electrode Degradation  
 

Many research and studies have been carried o t onu  the degradation of electrodes during 

sistance spot welding (20). Particularly because of the rapid wear of these electrodes re

with the increased usage of Zinc coated steels in manufacturing (20, 21). This has raised 

production cost in the areas of frequent electrode change over time, cost of replacing 

electrodes and high possibility for poor weld joint quality (21). Zinc coated steel protects 

the steel sheet from corrosion (20).  
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Dupuy et al (20) reported a study on degradation of electrodes when spot welding zinc 

findings of the study were that degradation of electrodes was 

characterized by an enlargement of the electrode tip (20). This enlarged electrode tip 

their respective studies mentioned that the actual cause 

f electrode enlargement is still not very clear however, a number of phenomena are 

given as the likely causes of the enlargement of the electrode tip. This ranges from 

n of zinc into copper, possibility of pitting erosion, cracking of 

lectrode tip, mushrooming and other reasons (20).   

queeze time as shown in Figure 2.1, is the time at which the required level of the 

rough the circuit (18). This is done to achieve good 

lectrical contact between the electrodes and the work piece, and between the two 

lates after 

the squeeze time is completed as shown in Figure 2.1. Weld time is giving in weld cycles 

with peaks and troughs such that one peak and a trough give a complete wave length. In a 

coated steels. The main 

causes current density passing through the electrode to drop and can get to a point where 

the weld current is not sufficient to achieve a weld (20). 

 

Dupuy et al (20) and De et al (21) in 

o

possibility of diffusio

e

 

The importance of this electrode wear to this study is the fact that changes in the tip size 

and topography of the electrode governs the nugget size and shape formation during the 

welding process (20). Also, zinc coated metal sheet which is known to wear the copper 

electrodes away so quickly are used for the experiment in this research. Electrode 

condition is therefore an important quality consideration in the development of the 

process model. 
 

 

2.2.2 Squeeze time 

 

S

pressure is set and no current flowing th

e

surfaces of the work piece (17, 18).  
 

2.2.3 Weld time 

 

Weld time is the duration in which the welding current is applied to the sheet p
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50 Hz power system one cycle is given as 1/50 of a second (18). The welding time is 

e in the welding process. Two half wave cycles gives 

one cycle time , a number of halfwave cycle time are required to successively make a 

rrent switched off, 

d to the welded metal sheet for cooling. This period helps 
(18)

he weld current is made available in the welding circuit during spot welding by setting 

window) for making the weld. Most spot welding 

achine current tap switch are set so that between seventy and ninety percent current are 

tilized (18).  Determining actual current to use, is usually by trial and error, the guide is 

heet metal, but has to be sufficiently high enough to achieve good weld (18) (should 

curs between the metal sheets (18). This indicates that the correct 

eld current has been exceeded. The lower boundary is the current that will be enough to 

represented as half wave cycle tim
(18)

spot weld. The total welding process time (program) to make a number of spot welds are 

further divided into a number of small time steps (18). Typically the time steps are planned 

(arranged) in such a way that they fall within the entire welding current window range 

that will be used to spot weld a number of samples.  
 

 

2.2.4 Forge time (cooling-time) 
 

Hold time is the period from when the weld time is completed, the cu

and the electrodes still applie

the weld to chill  as the nugget solidifies as shown in Figure 2.1. Optimum hold time is 

necessary to prevent the electrode in contact with the hot spot weld heating up, or the 

weld spot cooling too fast as it can alter the metallurgical property of the metal (18).  

 

2.2.5 Weld current 

 
T

the transformer tap switch to a level that allows a maximum amount of current to be 

made available (18). The effective current used during the welding cycle is based on the 

percentage of current set (current 

m

u

that weld current should be kept as low as possible to reduce excessive heat input into the 

s

achieve good weld diameter size as is practically possible).  

 

When determining the current to be used, the current is gradually increased until weld 

expulsion (splatter) oc

w
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exceed the stick limit (18). Stick limit is the threshold weld diameter that is sufficient to 

form a welded joint. This trial and error approach introduces much variability in the spot 

weld quality and presents difficulty with reproducibility of the desired quality.  

 

Having established the welding sequence in the resistance spot welding process, it is 

important to investigate the previous techniques and methods that have been used for 

modelling the process parameters.  

 

 

2.3 Development of Resistance Spot Welding Process Control Models  
 

This section presents the modelling and control approach used by previous researchers in 

this area of study. Several techniques and procedures have been suggested for welding 

process modelling, monitoring and control, involving routine or continuous monitoring of 

the process variables.  

 

Investigations on the development of real time control methodology by Tsai et al (22), 

found that the initial approach to resistance spot welding modelling in the fifties was 

ased on observing the electrodes movement during the welding process. Electrode 

n

s 

because the welding operation had to be interrupted to 

ttach the thermocouples with an additional problem of spurious feedback signals and 

b

displaceme ts were assumed to relate to the achieved weld size. Monitoring and control 

equipment developed then was based on thermal expansion rate or maximum expansion 

displacement (22). Other researchers continued to try improving on this model (22). This 

lead to a number of monitoring and control equipment produced in this area but with little 

or no success (22, 23, 24). 

 

Progressing from the fifties to the sixties Tsai et al (22) reported J.A. Greenwood as having 

developed a model that correlates the surface temperature of spot welds to maximum 

temperature at the nugget centre during the welding process (22). In order to determine 

temperature of the weld nugget using infrared emission from the metal surface, 

thermocouples were mounted on either the workpiece or the electrodes (22). This approach 

was reported as unsuccessful 

a
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erroneous temperature reading from the thermocouple due to variations in infrared 

emissitivity (22).  

 

Tsai et al (22) mentioned that to improve the monitoring and control process an automatic 

trying to use the thermal expansion curve to adjust weld current, weld 

e and electrode force, the electrode displacement in a number of cases were 

ations (22).   

g process and in service under 

ading conditions. However, this optimisation procedure was limited and could not be 

the earlier investigations temperature and pattern of formation of nuggets were calculated 

load adjusting system was developed in the seventies by Johnson and Needham. This 

system was based on the observation that by combining electrode force, weld current and 

welding duration it will be possible to determine weld quality, provided a critical value of 

applied electrode force was used. This system was able to restrict weld expansion during 

welding (22). A linear relationship was said to exist between the subsized nugget and the 

expulsion limit (22). Electrode force was at that stage presented as the most important 

control parameter necessary to achieve good weld quality (22). The drawback as reported 
(22) was that while 

tim

insensitive and sometimes had no response to the expansion signal in the initial expansion 

rate based control system (22).  

 

Further and more advanced techniques like ultrasonic signals and acoustic emission 

techniques were employed to detect weld size (22). However, cost and complexity made 

these systems unsuitable for use in most applic

 

Feng et al (3) gave a different perspective to the modelling and performance development 

of the resistance spot welding process. He proposed an “integrated interdisciplinary 

modelling approach to simulate the performance properties of resistance spot weld 

joints”.  The approach used basic physical phenomena such as the physics, mechanics and 

metallurgy of the process, which occur during the weldin

lo

effectively applied to high-strength steels because weldment properties depend on 

microstructure (3). 

  

Further work in resistance spot welding process was in using numerical simulation 

techniques to predict pattern and size of nugget during the welding cycle (23). In most of 
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without accounting for varying contact diameters at the electrode-workpiece surface and 

the faying (surface of  member that is in contact with another member to which it is 

ined) surface between the sheet metals (23).  

ontact diameter concept and observed interface 

ontact resistance on the nugget formation process. The study applied varying contact 

iameter model without incorporating contact resistance model and concluded that the 

terface contact resistance can be ignored in normal resistance spot welding as it is not 

po

g the nugget formation process . 

 

as the recent work in 2002, by Matsuyama et al . In this new approach an algorithm 

eters 

wh

predict

measur

provide

 
 

jo

 

Matsuyama (23) reviewed the research work done in the mid eighties by Nishiguchi in 

which the study produced a numerical simulation of nugget formation for estimating 

contact diameters at the electrode-sheet interface. The review concluded that it was 

possible to predict with some accuracy the nugget formation process without including 

the electrical contact resistance at the faying surfaces (23).  

 

In 2000, Matsuyama (24) developed a numerical simulation procedure to predict the 

nugget formation process using varying c

c

d

in

very im rtant. The research work presented varying contact diameter alone as adequate 

for estimatin (24)

 

An improvement to an earlier method that used a heat conduction differential equation
(25)w

based on an integral form of an energy balance model for monitoring and control of the 

resistance spot welding process was developed. The simulation was set to calculate the 

average temperature of a weld during the welding cycle by using measured param

ich are welding voltage, welding current and total plate thickness. This was used to 

 both weld diameter and expulsion occurrence (25). Current and voltage 

ements made across the electrodes were processed according to equation 2.1, to 

 dynamic resistance, given as (25): 

IVR /=            2.1 
 
 

here W R  is the dynamic resistance (ohms),  is voltage (Volts) and V I  is current 

(Ampere).  
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Only peak values of voltage and current were used in order to avoid the effect of 

inductance (effect due to voltage drop in the circuit) on the value of these parameters (25). 

 

Tsai et al (22) mentioned that the use of electrical parameters for monitoring and control of 

the resistance spot welding process are considered the most successful of all in-process 

quality control systems. However, there are a number of limitations (22), which are;   

1. The method is mostly suitable for uncoated mild steels, compared to other metal 

alloys and coated mild steels because of electrode wear during the welding 

process, which makes reproducibility of same weld quality with the same machine 

the 

wear state of the electrodes to set boundary conditions.  

d 

oming weld quality prediction 

uncertainty. Work by previous researchers in developing neural network application in 

H wever, the extent has not been quantified in terms 

f what quantity (value) of mechanical characteristics affects weld diameter (8). Tang et al 

setting difficult (22). This can though be accounted for in a model, by using 

2. The voltage clip position on the electrode to capture data during the welding 

process gets on the way (22).  

 

In these techniques, trial and error and experience still dominates its effective use (22) 

particularly in the determination and setting of the welding machine for achieving desire

spot weld quality. Use of artificial intelligence applications like the artificial neural 

networks are been used to model the resistance spot welding process (6). This application 

technique is further explored in this research for overc

resistance spot welding are presented and extensively discussed in Chapter 3.    

 

 

2.4 Effect of Machine Mechanical Characteristics on Weld Quality 

Many researchers agree that welding machine mechanical characteristics does affect weld 

quality with explanations on how.  o

o
(8) stated that the resistance spot welding machine is made up primarily of electrical and 

mechanical subsystems which are believed to affect weld quality in some ways (8). Lipa (9) 

mentioned that the resistance spot welding machine had always been viewed as a 
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transformer and its importance as far as influence on weld quality is concerned has been 

the object of debates by many authors (9).  

A recent work in 2003 by Tang et al (8) was carried out by experimental investigation on 

welding machines using modified mechanical characteristics, which were welding force, 

lectrode displacement, and other process characteristics, such as electrode alignment. 

 was made on the influence of the machine stiffness on the characteristics of 

e welding force, electrode displacement, and electrode alignment. The work concluded 

he study (8) also revealed that friction (condition of moving parts of the welding 

h steel and aluminium welding. And in some 

combinations of parameters because data ranges do overlap, the reduction in strength is 

. 

e

The identified characteristics were then linked to weld quality through process signature 

analysis (8). Emphasis was placed on the signals during welding stage when electric weld 

current is applied. Subsequently the hold stage was analyzed to see how it influenced the 

solidification of the liquid nuggets (8). 

 

From their study they found that machine stiffness (refers to the rigidity of the upper and 

or lower arm of the welding machine part) slightly improves weld quality in terms of 

weld strength and significantly raises welding expulsion limits (8). Further analysis as 

reported (8)

th

based on the analysis carried out that “due to thermal expansion of the weldment, in a 

stiff machine, the electrode force increases higher than its preset value to accommodate 

the stiffness” (8). The increased electrode force imposes a forging force on the nugget, 

which is beneficial for preventing welding expulsion (8).  

 

T

machine) was unfavourable for bot

not statistically significant. The influence of friction was reported to vary with welding 

conditions (8). The findings (8) were that the tensile-shear strength of welds and welding 

expulsion limits, were not significantly influenced by machine moving mass (weight of 

the cylinder head) for steel and aluminium welding alloys that were used for the 

experiment. However machine stiffness and friction do affect welding processes and weld 

quality (8)
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Similar work was done by Satoh et al (26) and Dorn et al (27). These researchers have made 

valuable contributions to the understanding of the effects of machine characteristics on 

resistance welding. However, the results of these studies had been mainly descriptive (26). 

The expressions of the influence are not explicit, but mostly comparative (26).  

 

 

2.5 Concluding Remarks 

ynamic resistance as presented by the recent work of Matsuyama (25) and others is 

timately related to the progress of the welding operation. It is possible to obtain 

formation regarding the nugget growth by monitoring the parameters that are related to 

is variable. Dynamic resistance (varying contact diameter) therefore is a suitable and 

ppropriate parameter that can be used for modelling and estimating the nugget formation 

rocess.  

The effect of mechanical characteri ality has been descriptive, not very 

concrete and of some debate among researchers. Considering the unclear speculations 

and debate around this issue, the possibility of using only 

lectrical characteristics data to accurately predict weld diameter (weld quality). 

meters data is thought to in some ways reflect the welding 

state and mechanical characteristics of the welding machine. 

 

D

in

in

th

a

p

 

stics on weld qu

 this research will investigate 

e

Electrical characteristic para
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CHAPTER 3 

 

NEURAL NETWORKS  
 

3.1 Introduction  
 

The chapter introduces the fundamentals of neural networks, neural network types, 

learning rules, optimisation techniques and application in resistance spot welding process. 

Neural networks controllers and the theoretical steps for the design of the process 

ontroller are included in this chapter. Sensitivity analysis which is typically carried out 

elson et al (30) gave the historical trend of neural networks development as having 

c

in neural network modelling for determining the contributory effect of inputs to outputs 

in a neural network model is discussed. 

 

 

3.2 Background  
 

Artificial Intelligence (AI) provides several techniques that are used in manufacturing 

systems (28). In the 1980’s, knowledge based expert systems were the most popular 

artificial intelligence techniques, they have however become less effective with the 

continuously changing, complex and open environment of manufacturing systems (28). 

Neural networks are identified as capable techniques that can be used in increasing 

manufacturing system’s predictability because of its ability to learn, adapt and do parallel 

distributed computation (28). Neural networks are robust systems (28). Smith (29) mentioned 

that applying neural networks techniques in manufacturing systems creates potential to 

increase product quality, improve system reliability and reduce the reaction time of a 

manufacturing system.  

 

N

started at conceptual level around 1890 with investigation and insights into brain activity. 

The development progressed to 1936 with the successful explanation of the brain as a 

computing paradigm by Alan Turing (30). This explanation gave a deeper insight into 
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neural network concept. In 1943 Warren McCulloch and Walter Pitts presented a work 
(30) explaining how neurons might work by modeling a simple neural network using 

electrical circuits. This discovery by Warren McCulloch and Walter Pitts was used by 

John von Neumann for teaching theory of computing machines (30). In 1949, Donald 

Hebb presented the connection between psychology and physiology and explained how 

neural pathway is reinforced each time it is used (30). Following the improvement on 

hardware and software capability in the 1950s, research in this area progressed further. 

he period 1969 to 1981 recorded stunted growth because of reduced funding and 

diverted attention to artificial intelligence that looked more promising at that time (30). 

iteratur (28, 31) described the basic components of a neural network as nodes (or 

h the n

eural networks as having the capability to solve problems without a detailed, explicit 

Hassoun 

as pattern rec tion, through a learning process. The research 

further des b

from complica t patterns and detect trends which are too 

com humans or other computer techniques (31). 

 

T

However from 1982 to date there was a marked turn around and renewed interest in 

research in the field of neural network and a period of unfolding application possibilities 

mostly due to the availability of capable computer hardware and better understanding of 

neural network capability (30).  

 

L e 

neurons, adapted from a biological neuron) and adaptable weights (31). These neurons are 

also referred to as processing elements (28, 31). Weight in neural network refers to the 

adjustable parameter on each connection that scales the data passing through it (31). The 

weights were presented by Hassoun (31) as corresponding to biological synapses. 

Identified inputs referred to as signals are accumulated and put throug etworks, 

adapted by the weights, and the sum passed to an activation function that determines the 

neurons response (31). Neural networks learn by example (31). Hung et al (28) presented 

n

algorithm available for the solution procedure. 

 

(31) mentioned that a neural network is configured for a specific application, such 

ognition or data classifica

cri ed the neural network as having a remarkable ability to derive meaning 

ted data and is able to extrac

plex to be noticed by either 
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Martin (32)  80's that have 

made grow o first was reduction 

in t n umber of inputs. This was achieved by the basic change 

in the learn

on the devel t of “inverted” or “reversed” neural networks (32). These two 

entioned breakthroughs have helped with solutions for large scale problems involving 

me series models and nonlinear multiple-input-multiple-output (MIMO) models (32, 33).  

rincipe et al and other authors (34, 35) listed what makes a neural network unique as 

pt to changing conditions online 

• Universal approximators 

– They can learn any model given enough data and processing elements and 

time 

.2.1 How Artificial Neural Networks (ANN) Work 

eondes (35) reported the work carried out on universal approximation theorem in 1984 by 

e research group in San Diego which described neural networks as a heuristic technique 

  unsupervised learning paradigm. 

ation 

 reported two breakthroughs in neural networks use in the late

th f the application possible in the process industries. The 

rai ing time even with large n

ing algorithm. The second was a deeper insight by the work of Caudill et al (33) 

opmen

m

ti

 
 
P

follows: 

• Nonlinear models 

– Many nonlinear models exist, but the mathematics required is usually 

involved or nonexistent.  

– Neural networks are a simplified nonlinear system (combinations of 

simple nonlinear functions). 

• Trained from the data 

– No expert knowledge is required a priori 

– Each task does not need to be completely specified in code 

– They can learn and ada

 

 

3
 

L

th

used to perform various task within the supervised or

This consists of optimized training, selection of appropriate size of a network and 

prediction of how much data that are required to achieve particular generaliz
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performance. The sequence in using artificial neural networks consists of determining the 

input and output signals (34, 35). This is followed by using generated data set to train and 

validate the network. A neural network architecture made up of inputs, network layers 

with hidden layers and output is shown in Figure 3.1.  Hidden layers are the layers in-

between the input and output layers. 

 

 

 

 

 

 

 

 

igure 3.2: Neural Network Adaptive process (34)  

 

 

 

 

 

Hidden layers

Input 

Input 
Output

 
Input  

 

Figure 3.1: A neural network architecture [adapted (34)]  

 

At the training stage, the data is presented to the network (34). Figure 3.2 shows the 

adaptive process which takes place during the training stage of the neural network.  

 

 

 

 

F
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The network computes an output which is compared to the desired output. Based on the 

ssing the epoch through an 

iteration process.  An epoch is a complete set of input/output data made up of elementary 

and e mentary is 

a comp

showin
 

 

 

 

 

(34)] 

 

To use the network a new set of data different from a test set are used to validate the 

network. The network then computes the output based on its training (34). The various 

aspects of the Neural Network models are as follows (35, 36):  

• Neurons 

• A state of activation for every unit, equivalent to the output of the unit. 

• Connection between the units: each connection is defined by a weight which 

determines the signal of the unit. 

• A propagation rule: determines the effective input of a unit from its external 

inputs. 

• An external input or bias (threshold) for each unit. 

• A learning rule and an environment within which the system should operate. 

level of error (difference between computed output and desired output) referred to as cost 

in neural network terms, the network weights are modified (adapted) to reduce the error 
(34) see Figure 3.2. The weight modification is done by pa

 ex mplar. An exemplar is one individual set of input/output data while ele

lete set of input row. Presented in Figure 3.3 is a single neural network structure 

g these terms. 

Inputs Weights 

Ele n

 

 

 

 

Figure 3.3: Single Layer Neural Network Structure [adapted 

 

5,  3,  2,  5,  3 

1,  0,  0,  1,  0

5,  3,  2,  2,  1 

 
Outputs

5,  3,  2,  5,  3 me tary 

Exemplar 
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In a neural network structure as is shown in Figure 3.4, the processing element (neuron) 

has one scalar input (p) transmitted through a connection th

 26

at multiplies its strength by 

e scalar weight (w), to form the product (wp), again a scalar (36).  

 

 

 

 

 
 

Figure 3.4: The Sim (36) 

Here the weighted input ly argument 36) of the transfer 

function (f), which produces the scalar output ( ) such that:  

 

                            (3.1)  

put and thus more than one 

weight such that the parameters can be adjusted for the network to exhibit some desired 

ehaviour (36). This creates the possibility for a network to be trained to do a particular job 

th

 

 

 

 

 

 

 

 

ple Neuron Model 

 
(plus the scalar bias (b) are the on

a

)( bwpfa +=

 

This sum is the argument of the transfer function f . The parameters w and b are 

adjustable scalar parameters of the neuron (36).  

 

It is possible for a single neuron to have more than one in

b

by adjusting the weight or bias parameters (36).  

 



Many artificial neural networks (ANN) can be considered function approximator (34, 35). 

Function approximation approximates the function f when y = f(x), given y and x (input 

& o

 binary (on or off) 

Art i

learning machines 

Artifici nctions to approximate complex 

fun (34) ceptron (MLP) and radial basis function 

BF) which will be discussed in later section, the MLPs approximates input-output 

 

Huang entioned that neural networks are being applied in many fields. Some of 

the ben t

• 

• rning and adapting ability. 

•  is robust, accurate and can operate in real time. 

• ors for space-constrained and power-constrained applications. 

• t antly reduced. 

•  quickly and accurately solve difficult process problems that cannot be 

• t such that small changes in an input 

•  training data set.  

 

utput respectively) (34). Examples are: 

– Linear regression  

– Classification, where the output function is

ific al neural networks are good for function approximation because 

– they are universal approximators 

– they are efficient approximators 

– they can be implemented as 

 

al neural networks use ensembles of simple fu

ctions . For example in multilayer per

(R

function using a combination of functions like logistic or tanh while RBFs approximates 

input-output function using a combination of Gaussians (34). 

 

3.2.2  Benefits and Applications of Neural Networks 
 

et al (28) m

efi s as given by Huang et al (28) are as follows: 

High processing achieved through massive parallelism. 

Efficient knowledge acquisition through lea

It

Compact process

Da a analysis tasks time is signific

It is able to

solved with conventional methods. 

In the presence of noise the nets are robus

signal will not drastically affect a node's output. 

Can generalise from
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Smith   

manufactu process planning, scheduling, process 

monito g

 

Artifici n n applied in the following areas (37, 38): 

usiness 

to evaluate the probability of oil geological formations 

 

 forecasting 
 

• For assessment of credit risk 

•

• Analysing portfolios and rating investments  

 

a

 Automating robots and control systems (with machine vision and sensors for 

a) 

• Controlling production line processes 

anding cause of epileptic seizures 

(29) reported that neural networks have been implemented in broad areas in

ring, including the design phase, 

rin  and quality assurance.  

al eural networks have specifically bee

B

• Used 

• For Identifying corporate candidates for specific positions

• Recognition of hand written signatures 
 

Environmental  

• Used for weather

Financial 

 Identifying forgeries 

 

M nufacturing 

•

pressure, temperature, gas, etceter

• Inspecting for quality 

• Selecting parts on an assembly line 

 

Medical 

• Analysing speech in hearing aids for the profoundly deaf 

• Diagnosing/prescribing treatments from symptoms 

• Monitoring surgery 

• Predicting adverse drug reactions 

• Reading X-rays 

• Underst
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Military 

mentioned that it is only recently, that neural network techniques are 

finding its way into the industries (39) (39)

problem

unstable when applied to large scale problems . This as explained by Yalcinoz  was 

due to th

conditions and inefficient m ine weights in the energy 

function”. Yalcinoz 

improve odifying the algorithm, such that 

Presently, a lim

boxes whose rules are unknown. Results are 

explainable m (41)

means is that while it presents an accurate  representation is 

unclear and is not yet well understood 

 

Some other disadvantages of neural networks , which hinder the optimal application 

of neural networks in certain areas, are: 

 

 Use of trial and error methods to find the proper neural network architecture for a 

given problem. This makes it usually time-consuming; this is though improved 

• Classifying radar signals 

• Creating smart weapons 

• Optimising the use of scarce resources  

• Recording and tracking targets 

 

3.2.3  Neural Networks Limitations 
 

(39) Stergiou et al 

. According to Stergiou et al , one of the major 

s with neural networks in the early times was that neural network programs were 
(40) (40)

e “network solution having a local minimum which depends on the initial 

apping method used to determ
(40) explained that the limitation was however overcome by an 

ment in the energy function. This was done by m

reliable feasible solutions were produced and various methods developed to escape from 

the local minima.  

 

itation that is yet to be overcome is that neural networks function as black 

presented as output without giving 

athematical function that was used to arrive at the answer . What this 

output result, the knowledge
(41). 

(29, 37)

1.

with the use of genetic algorithm. 
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2. Sometimes a particular neural network learning algorithms for a given problem 

may not be efficient enough for network convergence. 

3. Acquisition of an optimal training set for a specific neural network application 

continues to be a challenge. 

For neural networks to be used more effectively, there should be improvements in the 

following areas (37): 

 

1. In knowledge representation, non-numerical operations, and symbolic reasoning 

 Specifically compared to the neural 

techniques in solving the complex non linear resistance spot welding process modelling 

ar and 

ynamic process like the resistance spot welding process is the ability to learn and track 

which are areas that basic neural networks cannot deal with. 

2. The determination of number of nodes, number of layers, connections, and initial 

weights of a neural network should be easier. 

3. Possibility for determining the optimal network architecture while training by 

controlling the minimal number of nodes, weights, and layers during training. 

 

While these limitations do not pose an immediate problem, overcoming them will 

make the technique more usable (37). 

 

 

3.3 Neural Networks versus Other Methods  

In this section neural network technique is compared with other methods used for the 

analysis and design of models and control systems.

network techniques are the traditional linear statistics method that has been in use for 

long and the more recent techniques like fuzzy set theory and program algorithm. The 

reason for comparing, is to justify the appropriateness of the use of neural network 

and control problem.  

A very useful capability of a predictive modelling tool in a chaotic, non line

d

changes (41). Linear statistics are able to model nonlinear variables but do not have 

learning capability to track dynamic systems, compared to neural networks that are able 
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to learn and recognise patterns in complex, dynamic and chaotic events (41). Neural 

networks can create their own organization or representations of the information received 

during learning, with additional ability to represent any function and learn from 

representative examples (41). This capability has made neural network useful and superior 

to linear statistics and many other non-statistical techniques (41). In addition to this 

capability, neural networks because of its robustness can tolerate partial destruction of its 

network, though this could lead to a corresponding degradation of performance, some 

network capabilities can however, still be retained even with major network damage (42). 

This robustness is absent in linear statistics method. 

al networks techniques (41, 42). Neural network systems are stable. 

eriority of neural networks to other 

ethods is the fact that it is extremely sensitive to noise or unreliable data. There is no 

tion on the output type (41). Neural networks can output results of complex 

e (43). Neural networks 

that it has not seen before, it generates a reasonable response. Most 

to accurately generate a reasonable response in most non linear, c

relationships (41, 43).    

 

Fuzzy set theory is a technique that can be used like the neural network. Fuzzy set theory 

was developed with the capacity to deal with problems which were not solvable with 

traditional statistical methods (42). However, the use of fuzzy set theory requires a good 

knowledge of rules for modelling a process, and sometimes closed-loop systems 

developed using fuzzy logic are unstable (42). This burden of the knowledge of rules is 

absent with neur

 

Neural networks models are predictive (models are accurate with reality) even though 

they are not descriptive (41). It is possible with neural networks to go straight from data to 

the model without the need for extra tools like recoding or simplification. This is not 

possible with other methods (41). Additional sup

m

restric

processes in a short computational time and can be done in real tim

are able to generalise (41). That is when a trained neural network is presented with data 

methods are not able 

omplex and chaotic 
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Other methods on handling data have many drawbacks which neural networks do not 

possess (43). For instance statistical techniques imposes restrictions on the number of input 

data compared to neural network that can accept as much inputs and outputs as possible 

in a single netw

 32

ork architecture. The regressions performed with statistical methods 

mostly uses simple dependency functions (linear and logarithmic), which are quite 

unrealistic (43).  

 

Statistical techniques require intensive mathematical methods to transform data; this is 

not needed in the use of neural network techniques. Neural networks are non-linear hence 

are better able to account for complexity of human behaviour and real life situations (43). 

nd they can give tolerance to missing values (41). 
 

 
 
 

 

 

Figure 3.5: A Simple Feedforward Neural Network Diagram (39). 

A

 

3.4 Classification of Neural Networks 

The two major kinds of network structures for the neurons making up the neural networks 

are feedforward and feedback network structures (43). Feedforward neural networks are 

biologically inspired classification algorithm made up of a number of simple neurons 

organised in layers (44). The signals can only travel in one direction from input to output. 

There is no feedback (39). Presented in Figure 3.5 is an example of a simple feedforward 

neural network.  

 
 
 
 
 



The layers arrangements are such that every unit layer is connected to all the units in the 

previous layer and each connection has a different strength or weight (44). The weights on 

these connections encode the knowledge of a network (44). There is no feedback between 

layers when it acts as a classifier (44). This is because data enters at the inputs and passes 

through the network, layer by layer, until it arrives at the output (s). Feedforward neural 

networks usually produce a response to an input quickly (43). Most feedforward neural 

networks can be trained using a wide variety of efficient conventional numerical methods 

in addition to algorithms invented by neural network researchers (43). 

 

Feedback neural networks are network structures where every neuron is potentially joined 

to every other neuron (46), such that the output of one layer routes back to a previous layer 
(45) forming cycles among the neurons in the network connections (43) as is shown in 

Figure 3.6. They have signals travelling in both directions (43). 

 

 
 
Figure 3.6: Simple Feedback Network Diagram [Adapted (45)]  
 

Feedback

Hidden 
layer 
 

Inputs Outputs 

Feedback
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Another unique behaviour of feedback neural network is its ability to update the 

activation of all neurons in parallel (46). In some feedback neural networks, each time an 

put is presented, the neural network must iterate for a potentially long time before it 

eural networks are also classified as supervised or unsupervised based on the training 

rning the inputs and outputs are provided, 

nd an input – output relationship is established. What this means is that the network 

 what 

ill use to group the input data (42, 48).  

an al distinct neural network models 

 their internal architecture and from the learning 

ral Network Architectures 

ultilayer perceptron (MLP) architecture is a supervised neural network type with 

edforward network structure where each unit receives inputs only from a lower layer 

in

produces a response (43, 47). Feedback neural networks are usually more difficult to train 

than feedforward neural networks (43). It is possible to control the connections between 

the neurons (45). Also, by changing the parameters that controls the connections (45) the 

neuron in the network can be excited or inhibited.  
 

N

(teaching) method used (42). In supervised lea

a

processes the inputs and compares the resulting outputs against the desired output. While 

for unsupervised learning, only inputs are provided with no desired output. The neural 

network then decides for itself through a process of adaption or self organization

features it w

 

There are m y classes of neural networks (42). Sever

can be distinguished both from

algorithms that they use (48). Neural network architectures, learning algorithms, training 

and neural network controller model are further discussed.  
 

 

3.4.1 Neu
 

Different kinds of neural network architectures exists (48). The most commonly used ones 

are Multilayer Perceptron (MLP), Radial Basis Function (RBF), Self Organising Map 

(SOM) and Recurrent Neural Network (RNN). These are discussed in this section. 
 

 

 3.4.1.1 Multi-layer Perceptron (MLP)  
 

M

fe
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unit (34, 49). The network is termed supervised because desire targets are presented to the 

network during training. MLP are powerful models for solving nonlinear mapping 

problems.  

 

The simplest network architecture consists of a single layer with directed inputs and 

weighted connections to the output unit (49). The network is trained with standard 

backpropagation (simple learning algorithms which finds the weights for linear and 

binary activation functions) algorithm (34). However, these algorithms can only work for a 

limited number of functions. The limitations are overcome by adding one or more layers, 

known as hidden layers which are nonlinear units between the input and the output (44, 49).  

Presented in Figure 3.7 is a typical architecture of a multilayer perceptron network.  
 

 

   

Input Layer 

Hidden Layer 

Output Layer 

Figure 3.7: Architecture of a multi-layer perceptron network (50)

 

As shown in Figure 3.7, in the hidden layer is a nonlinear node with an elementwise 

nonlinearity function and the output layer with linear node. The computations performed 
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by the network with a single hidden layer with nonlinear activation functions and a linear 

output layer can be written mathematically as (50):  

 

 

Bsfx == )(  baAs ++ )(       (3.2) 

 

 

where s  is a vector of inputs and x  a vector of outputs. A  is the matrix of weights of the 

first layer, a  is the bias vector of the first layer. B  and b  are the weight matrix and the 

bias vector of the second layer respectively,  is the weight parameter. 

 

Hagan et a (36)l xplained that the principle of the network operation is that the network 

odes perform calculations in successive layers until an output value is computed at each 

value represented with ones on the 

orrect class node and a low output value on all the rest represented with zeros (36).  

ne ork computation is the squared 

ifference between the actual and desired outputs. The activities for each unit are 

comp  forward ation thr network, arious training cases. 

Starting with the output units, backward propagation (chain rule) through the network is 

used to compute the derivatives of the error function with respect to the input received by 

each unit (36, 49).  

 

 e

n

of the output nodes. This happens when data from an input pattern is presented at the 

input layer. Each layer of neurons may have a different number of neurons and a different 

transfer function (36). The output of the MLP is expected to indicate the appropriate class 

of the input data. That is there should be a high output 

c

 

The error function generally used in the neural tw

d

uted by  propag ough the  for v

 

The learning algorithm and number of iterations determines how good the error on the 

training set is minimized while the number of learning samples determines how good the 

training samples represent the actual function (36). The different kinds of activation 

functions with their equations are shown in Table 3.1. 
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Table 3.1: Different Types of Activation Functions (36). 

 

Name Linear Sigmoid Tanh Softmax 

 
Function 

 

A 
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1  
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( )aa

aa

ee
ee
−

−

+
−  

 

∑
j

a
j

a

e
e  

 

Perceptron learning rule is used in MLP. This learning rule is a method used for finding 

the weights in the network (49). The perceptron has the property of searching for the 

existence of a set of weights which it uses to solve a problem (49). This rule follows a 

linear regression approach, that is, given a set of inputs and output values, the network 

finds the best linear mapping from inputs (49)

(

to outputs . Based on training, the network 

an predict the most likely output value 49). This ability to determine the output for an 
(36, 49)

 provided a sufficient number of hidden units are 
(36)

ximation with BiasAxon or LinearAxon 

 the transfer function. Each processing element in the Multilayer Perceptron 

ward pass . In the forward pass 

, given inputs are used to predict output. In the backward pass, it is explained (50) “that 

e partial derivatives of the cost function with respect to the different parameters are 

c

input the network was not trained with is known as generalization .  

 

Multilayer perceptron networks are known as approximators (two-layer networks with a 

sigmoid transfer function in the hidden layer and linear transfer functions in the output 

layer) and can approximate any function
 (36)available . These hidden units make use of non-linear activation functions . The 

performance of MLP function approximation does not degrade with increased input 

dimensionality unlike polynomial based function approximators (34). Linear output is used 

for the multilayer perceptrons for function appro

as

architecture contributes to the global function of the network. A change in one weight 

may greatly affect the global function (34). 

 

The back-propagation algorithm used for solving learning problem of the MLP can take 

two forms; the forms are either forward pass or back (36, 49)

(50)

th

propagated back through the network”.  
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The same chain rule of differentiation which gives similar computational rules for the 

o-associative structure, a process of 

etting the same values for both the inputs and the outputs of the network (50), such that 

ator for 

(51). The 

and chaotic time series prediction (52). 

The RBF architecture consists of two-layer fully connected network, with an input layer 

Figure 3.8: Radial basis function (RBF) network (52)

forward pass is same one for backward pass (50). The network adapts weights by using 

any gradient-based optimisation algorithm (50) and the iteration of the whole process is 

continued until the weights have converged (50). 

  

Though the MLP is a supervised neural network type, it can also be used for 

unsupervised learning. This is done by using aut

s

the extracted sources can emerge from the values of the hidden neurons. This process 

approach is however computationally intensive (50). 

 

 

3.4.1.2 Radial Basis Function Networks 
 

The radial basis function (RBF) neural network is a universal approxim

continuous functions given a sufficient number of hidden units. RBF have proven to be 

valuable alternative to multilayer perceptrons (MLPs) in many real world tasks 

tasks include speech recognition, data classification 

performing no computations (51, 52). See Figure 3.8. 

 

 

wK
wbw1

f(ξ) 

s1(ξ) sb(ξ) sK(ξ)•  •  • •  •  •

ξ1 ξi ξN•  •  • •  •  •
Input layer 

Hidden layer

Output layer 
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RBF is a commonly used neural network type (52). The computation nodes of the hidden 

layers of radial base function network are different and serve a different purpose from the 

utput layer of the network as opposed to the MLP where the hidden and output layers 

share a common neuron model (52).

while the output layer is linear. This makes the network unable to approximate non-linear 

nctions compared to MLP in which both hidden and output layers are non-linear (51, 52). 

 The outputs are linearly combined with weights, w1, w2, 

wb,…wK, in the output layer of the network, f(ξ) (52). The general output of a RBF 

etwork is thus (52): 
 

           (3.3) 

utput tails off as the input value moves away from this point (51). The most commonly 

applied transfer function of an RBF network is the Gaussian and the output of the 

o

 The hidden layer of the RBF network is non-linear 

fu

 

Radial basis function networks are feedforward neural networks. The distinguishing 

feature of an RBF network from other networks is that RBF network uses radial functions 

(i.e. the transfer functions of the hidden units) while other neural network types does not 
(52). In the RBF structure each of the components of the input vector (ξ) feeds forward to 

the basis function (K).

…

n

∑
=

=
K

b
bb swwf
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where ξ is the vector applied to the input neurons and sb represents the transfer function 

(basis function) b. RBF hidden layer neurons have a receptive field which has a centre: 

that is, a particular input value at which the neurons have a maximum output (52). Their 

o

network is given by (52): 
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where each hidden node is parameterized by two quantities: a centre m in input space and 

re neurons than most other neural 

akes it very unique (53). 

(54). The SOM 

(also known as the Kohonen feature map) algorithm is one of the best known artificial 

o  using 

upervised learning, the SOM is based on unsupervised learning (54). In this unsupervised 

he SOM can thus serve as a clustering tool of high-dimensional data.  And can construct 

 topology preserving mapping from the high-dimensional space onto map units in such a 

ay that relative distances between data points are preserved (56). The map units, or 

eurons, usually form a two-dimensional regular lattice where the location of a map unit 

ies semantic information (55, 56), See Figure 3.9. It is made of a number of neurons 

width σb 
(52). Generally radial basis network requires mo

network types (36). Its simple structure and fast learning ability m
 

 

3.4.1.3 Self-Organizing Maps (SOM) 
 

Self-Organizing Map (SOM) was introduced by Teuvo Kohonen in 1982 

neural network algorithms (54). In contrast to many other neural netw rks

s

learning the network performs some kind of data compression, such as dimensional 

reduction or clustering (48) by visualising high-dimensional data and converting it into 

simple low – dimensional display as is shown in Figure 3.9.  

 

 

Figure 3.9: Dimensional Reduction of Data by Self-organising map [adapted (31)] 

 

T

a

w

n

carr
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that are arranged in a predefined structure (56). In most cases this structure is a regular 

rid of neurons of 1-, 2- or 3-dimensions (56). 

SOM neural network type is relatively easy to implement and evaluate, and is 

omputationally not expensive (54). However, it has the problem of overcrowding and 

e to the size and shape of the network 

at are fixed before the training phase begins (51, 55). Presented in Figure 3.10 is a Self-

igure 3.10: Self-organising map architecture (31)

he weight of each processing element (PE) represents the center of its cluster as is 

sion of the input vectors 
4). In essence the reference vector consists of the weights of the neurons. The reference 

vectors together form a codebook. The neurons of the map are connected to adjacent 

g

 

c

underutilization of the neurons in the network du

th

Organising Map architecture.  

 

 

 

 

 

 

 

 

 

 PEs

Neighbors

weights

inputs

F

 

T

shown in the Figure 3.10. Neighboring PEs has similar weights. 

 

The SOM identifies a mapping from high dimensional input data space onto a regular 

array of neurons (54). Every neuron i of the map is associated with an n-dimensional 

reference vector [ ]Tll mmm ln1 ,,K= , where m denotes the dimen
(5
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neurons by a neighbourhood relationship, which dictates the topology, or the structure of 

the map (57). The most common topologies in use are rectangular and hexagonal topology 
(57). SOM is most suitable for classification problems as such will not be used for the 

application problem being investigated in this research. 

 
 

3.4.1.4 Recurrent Neural Networks 
 

Recurrent networks can have an infinite memory depth and thus find relationships 
(34)

ation, and temporal pattern classification 

. The human brain is a form of recurrent neural network (58).  

 

Recurrent neural networks are a kind of network with feedback connections (58). They are 

computationally powerful and because of their ability to implement almost arbitrary 

behaviour they have found good use in adaptive robotics, music composition, speech 

recognition and other applications (58). Backpropagation algorithm which is one of the 

best learning algorithms can not be easily used in the recurrent neural network 

architectures. This is because to use backpropagation algorithms in a network, the 

architecture has to be of feed-forward form (34, 51). This adds some comput tional 

expense.  
 

re lengthy sequence of vectors making 

andling of the input and outputs sometimes difficult to follow through (51). Presented in 

through time as well as through the instantaneous input space . Most real-world data 

contains information in its time structure. Recurrent networks are the state of the art in 

nonlinear time series prediction, system identific
(34)

a

The inputs and outputs of this architecture a

h

Figure 3.11 is a fully recurrent neural network.  
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ork entails finding the network parameters (weights and biases) 

ate a given function (48). Neural networks have the ability to 

When training the neural network, care is taken to ensure that they do not overfit the 

training data as this can prevent the network from generalizing (48).  The process is as 

 
 
 
 
 
 
 
 
 
 

Figure 3.11: Fully recurrent neural networks (59)

 

Fully recurrent networks provide two-way connections between all processors in the 

neural network (59). They are typically complex, dynamical systems, and exhibit 

instability (59). Having, discussed the classification and architecture of neural networks. 

The next section is about how neural networks are trained. 
 

 

3.4.2 Neural Network Training Methods  

 

Training the neural netw

which would best approxim

learn from examples by adapting the weights on its connections in order to achieve a 

desired specification using specific learning rules (48). During the learning process, the 

network embodies the complex relationships between the network inputs/explicative data 

and the network outputs/explained data (48). This learning process produces a statistical 

model which can determine an estimation of the likely outcome when fed with an input 

variable (48).  
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follows: E  

propagated tow

are either the .  The prediction obtained at the network’s 

output is c d

the difference 

the network gives) are computed. This error value is then backpropagated by going 

upwards in e

contribution of

the learning se

 are 

known (48) ghts and corrects mistakes by modifying 

the weight twork 

form, wher y

nodes as anoth

rules are as fol

- Biologically based rule such as Hebb’s rule – one of the learning rules in 

ion (input) (60).  

tion which allows networks to adapt to changes in input data over 

g Law – an unsupervised learning rule, used when 

tem, via the Kohonen clustering algorithm, which 

 

The practical 

criteria during pping criteria include (34): 

 Using fixed number of epochs. 

ach example (data) is entered as input in the neural network. The values are 

ards the output through a function. These are activation functions which 

linear, logistic and softmax (48)

alle  an error or cost function (48). As explained earlier, the error value which is 

between the expected value (real output) and the actual output value (what 

 th  network and modifying the weights of each hidden unit based on the error 

 each to the total error value. This mechanism is repeated for each value in 

t (48).  

 

Neural network uses trial and error method of learning and finds the patterns associating 

inputs and outputs using a large set of training data where both inputs and outputs

. It initially begins with random wei

 that it has given each input item (48). The network works in feedback ne

eb  a given node output can be transmitted back to itself or to other previous 

er input (48). The learning process is done using models and rules (48). These 

lows: 

which changes in synaptic strengths (weights) are proportional to the 

neuron activat

- Grossberg Learning – a learning rule based on self-training and self-

organisa

time (61). 

- Kohonen’s Learnin

breaking down a sys

takes a high-dimensional input and clusters (55).  

approach to training a neural network is to know how to set stopping 

 the training of the network (34). Common sto

–

– Stop when the mean square error (MSE) gets below a certain point. 
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– Use of cross validation criteria to monitor performance. Cross validation 

rmance and not necessarily 

• Trying many possible networks and using the smallest network that meets the 

• Use at forces weights (discriminant functions) that 

• validation by :  

– setting aside a subset of data to test the network  

• If too slow, network will not be able to make accurate predictions. 

     method). 

In decision based neural networks, the target determines the correctness of the 

clas i g pattern (41). The objective of the learning process is to find 

helps to store best weights that gives best perfo

for stopping the network. 

 

The aim during the training process is to maximize generalization (34). The following can 

be done to achieve this (34):  

design criteria. 

 of weight decay – a method th

are not necessary to zero. 

Use of cross 

– Monitoring the network to avoid memorizing. Memorizing occurs when 

the training set mean square error (MSE) continue to fall while the cross 

validation mean square error starts to rise. 

 

The learning process is a trade-off made between the training speed and the weight 

quality (degree of error or convergence) (48). 

 

• If too fast, weights may not be effective for new data. 

 

There are two approaches to learning in supervised training (48). The approaches depend 

on the nature of the target values which are (42, 43): 

 

1). Based on the correctness of the decision (how accurate the results are  

compared to the target values). 

2). Based on the optimization of a training cost function. (The least square error  

 

sif cation for each trainin
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a s o at gives an accurate classification (42). In the first phase (retrieving 

phase) the objective is to determine which class the pattern belongs to based on the output 

values. The output values are function of the input values and network weights (41, 42). The 

learning process sequence consists of the input data propagated through the network to 

ard through the 

etwork. Depending on the level of error the weights are modified accordingly (42). 

rks, the correctness of the training pattern is 

etermined when the error or cost function has been minimised. This function is 

er, the function to be minimised 

ight be subjected to constraints in the form of equality constraints or bounds (47, 62).  

• Descent Optimization 

Inverse Neural Network 

that can learn the inverse of

 

et f weights th

compute the system output. Error is computed and propagated backw

n

 

In optimisation based neural netwo

d

minimised by using the least square error method of optimisation (41, 42). The optimisation 

technique is used to find a set of design parameters (44, 49), that can be defined as optimal 
(44). This could be in order to minimise or maximise a particular function such as an error 

function which is dependent on another variable. Howev

m

The optimization techniques used include the following (44, 49): 

• Inverse Neural Network 

• Brute-Force Method 

• Fminbnd   

• Quasi-Newton Methods 

 

A discussion of each of these optimisation techniques are given below.  

 

 

3.4.2.1 

 

The role of an inverse neural network is to predict the unknown inputs to a system such 

that it can produce a desired output. Psaltis et al (63) proposed mathematical algorithms 

 target system mappings for the purpose of predicting 

unknown system inputs to produce the desired outputs.  
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Psaltis et al (63) explained that in many real cases, learning the inverse of the system by 

mathematical algorithms was very difficult and time consuming. This complexity of 

mod i  the derivation of inverse nonlinear mapping 

from on (MLP) or radial basis function (RBF) 

whi i system (64, 65)

 

Williams  and Linden et al developed the first methods of inverting feed forward 

neural n

based o h method (similar to back-propagation) in 

whi a utput 

and  
 

The use

neural 

process uct quality control problems as well as simple predictions 

. To use inverse neural networks the target values take the role of the input while the 

ell ng direct inverse systems has led to

 a simple neural network multilayer perceptr

ch s trained as a simulator of a given .  

(66) (67) 

etworks. It was an inversion algorithm of feedforward neural networks which is 

n numerical gradient descent searc

ch  candidate inverse is iteratively refined to decrease the error between its o

 the target (66, 67).  

 of inverse neural networks has over the years emerged as a useful technique in 

network application (34). Inverse neural network models are used for solving 

 optimization and prod
(34)

input takes the role of the target values. Upon training the network a relationship of the 

output-to-input is obtained rather than input-to-output. This can then be used to adapt the 

network to correct the output to the required output. The algorithm is as shown below (34): 

• Desired output value, yd is entered 

• The current position, yact is also entered 

• The difference between the two, actd yyy −=1  is obtained 

• The absolute of this difference is )( 12 yabsy =  required to update the position. 

This absolute is passed through the inverse neural network to get the required 

input, x  which gives this position.  1

• This input is then passed through the neural network to get the position, y3. 

•  y3 is compared with y2 while updating the input value, until the point where the 

two are equal or less than an error value. This input is then returned as the 

required input value which would set the actual output value to the required 

output hence minimizing the difference between the two, which is the 

optimization process. 
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An obvious problem associated with network inversion arises when a many-to-one 

ulation requires a large computational cost to find an exact inverse of the target 

ven on neural networks of moderate size (31, 69). Inversion therefore, only yields estimate 

verses which approximate the inverse of the target to a certain degree (69). 

Additionally, the use of inverse neural network optimisation technique takes a long time 
(69)

ques or algorithms that have been developed for 
(28)

.  

.4.2.2 Brute Force Method 

the end of the data range set . Different values of the input are then tested until at the 

than the in e err alue . One major drawback of this technique is that in 

m f ut values are created with incremental steps chosen as a 

function must invert from one to many targets (31, 68, 69). What this means is that in a 

typical neural network structure a number of input variables are used to generate one 

output (31), whereas in Inverse neural networks model it is required that the output be used 

to determine the inputs. While this is possible it could be very difficult (68). The 

manip

e

in

 

to find the optimal position, hence would not be practical for a large data training set . 

The reason it takes a lot of time could be attributed to the fact that if the signal is a 

random signal or a non-linear relationship the value could lie within a small range such 

that the method keeps fluctuating around this point (due to the gradient of search) (31, 69). 

This disadvantage makes this technique inappropriate in the resistance spot welding 

process modelling problem.  

 

There are though several techni

improving inverse neural network accuracy . These algorithms are based on fields 

such as numerical optimization methods (e.g. gradient descent search method and 

nonlinear programming) and other methods such as fuzzy logic and evolutionary methods 
(28)

 

 

3
 

In this method input arrays and values are defined from the start of the data range set to 
(44)

point where a particular input value gives the required output or an output less or greater 

put by th or v (44, 47)

the algorith  an array o inp
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result if the i  it is too small ncrements are too large the solution would be skipped and if

e method would converge too slowly (47).  

Sim he array, it would take a lot of time before 

find g  the array is too small the solution would 

not  s reason that this method is discouraged.  

 

 

3.4 3 imisation Technique (Fminbnd)  
 

This m box (47). The optimisation technique is a mean 

quare error minimisation function (47). The function is minimised by finding the 

                 

th

 

ilarly, if there are too many inputs in t

in  the possible solution and if the input in
(47) be found for small accuracies . It is for thi

.2.  Bounded Min

ethod is from the MATLAB 6.2 tool

s

optimum parameter that gives the minimum turning point(s) of the function to be 

minimised or the minimum point of the function within bounds specified for the 

parameter (47). Such that (47): 

 

 [ ] ),,,(@fminbnd,,, OptionsxxFunOptionsExitflagFvalX UL=         (3.5) 

where:  

• Fun is the function to be minimized 

•

• eter 

• acy and displays what the function should 

do. 

 

 xL is the lower bound for the parameter 

xU is the upper bound for the param

 Options can be used to specify the accur

• X is the optimum value 

• Fval is value of the function 

• Exitflag is a convergence criterion. 

 

This optimisation technique returns the optimum value onto X, the value of the function 

at this optimum value is also returned to fval. It is reported (47) that the Exitflag takes on a 
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value of 1 if the method converges, 0 if it does not converge and -1 if the number of 

iterations is exceeded. 

 

This method however has the following limitations (70):  

• The function to be minimized must be continuous.  

ns.  

 Fminbnd only handles real variables. 

ses either the Line search

um values (47, 70). In using line search techniques, the search starts from a 

ld decrease along the line (71). This 

assump

search mption is made about the function (47). The interval is divided in 

the ratio of 1:τ where τ is a number greater than 1, which ensures that best reduction 

e interval per step (47, 70). A principle of scale similari (divid

interval in the same manner at each stage) is then used. This method of search is very 

effective because it is robust (70). It however requires a continuous function in order to 

wo p  long time 

to c v

to find 

 

• 

•  which have the values fL, fm, fU. 

The parabola to be fitted takes a function of the form: 

• Fminbnd may only give local solutio

• Fminbnd often exhibits slow convergence when the solution is on a boundary of 

the interval.  

•

The Fminbnd u , Golden search or Parabolic search techniques to 

determine optim

point with an assumption that the function shou

tion is sometimes misleading and can yield inaccurate results. With the Golden 

method no assu

occurs within th ty ing the 

rk roperly. It has linear convergence properties and as a result may take a

on erge. The parabolic method makes use of the assumption that the function is able 

the optimum point by itself (70). The algorithm is as follows (70): 

Divide the interval into three points 

 The method fits a parabola to the three values

 

                        cXxmxf new +−= 2)()(            (3.6) 

  

 where m is the gradient and c the intercept. 
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• The new point Xnew then becomes the minimum of the function. The point Xnew is 

then given by: 

 

( ) ( ) ( )
                       ( ) ( ) ( )⎟

⎟
⎠

⎞
⎜
⎛

−+
−+−+−

LmU

LmUULmmUL

XXf
XXfXXfXXf 2222221        (3.7) 

 

w (XU) then the new 

), otherwise the new interval is (Xm, Xnew, XU). 

is then checked. If f(Xnew) has the accuracy required, the method 

eturns to the second step and goes through all the 

 

The  own becomes inaccurate when there are two solutions 

bec ther problem is that 

ometimes the points may lie on the function but the middle interval may not really lie on 

rabolic search would get stuck 

on this poi 70)  problems above, the parabolic search is combined 

with the go

 

ethod to minimize    

⎜
⎝ −+−

=
ULmmUL

new XXfXXf
X

2

• The value of the function at this new value, f (Xnew) is then calculated. 

• Say the interval XL to Xm was the larger interval, if f(Xne )>f

interval becomes (XL, Xm, Xnew

• The accuracy 

stops otherwise the method r

steps again until an accurate value is obtained.  

 parabolic search method on its

ause it tries to oscillate between the two solutions (70). Ano

s

the lowest point on the function to be minimised so the pa

nt ( . To cater for the two
(70)lden search method . 

 

3.4.2.4 Descent Optimisation Methods  
 

In this method, the optimisation approach is to minimise the function along a particular 

direction (49). The algorithm for the descent methods is as follows (49): 

1 Start at some given point X1 

2 Assign i = 1, 

3 Choose a search direction Di 

4 Use line minimization techniques such as golden search m

f(Xi + λDi) by varying the scalar λ. 

5 Update Xi+1 = Xi + λmin Di 
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6 Check for convergence. If no convergence return to point 3. 

 

There exist three kinds of descent methods, which are (49): 

method is deemed to be non-convergent . For the steepest descent method, the 

inimized along the direction with the greatest slope (49). The steepest 

radient descent methods have a fast convergence initially, but convergence slows down 

nimu eds an infinite number of steps in order to 

onverge on a quadratic surface (49).  

ose to the minimum point. These methods 

need an infinite number of steps in other to converge on a quadratic surface.  

od makes use of search directions (49) The se rch di

re chosen based on information gained from previous searches (49). It should be noted 

 (a matrix and the determinant of that matrix) but do not 

1. Alternating variables, 

2. Steepest Descents  

3. Conjugate Gradient methods. 

 

The alternating variable method is an iterative method for minimizing a function jointly 

over all variables. It is limited by the fact that even though the step sizes get smaller and 

smaller as the minimum point is approached, this value is never reached, hence the 
(49)

function is m

g

as the mi m point is reached. It also, ne

c

In the steepest descent method the function is minimized along the direction with the 

greatest slope which is the negative gradient. The steepest gradient descent method has a 

fast convergence initially but slows down cl

 

The conjugate gradient meth . a rections 

a

that for an n-dimensional space quadratic surface, conjugate gradient method would 

converge in n steps or less (49). In conjugate gradient methods, the directions are 

conjugate to the Hessian matrix

need to be calculated (49). The draw back in this method is that the gradient of the error 

function with respect to the inputs and thus the weights at times requires complex 

mathematical computations (49).  
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3.4.2.5 Quasi-Newton Method  

 (49) is the most used optimisation method. The curvature of the 

nction is computed at each iteration, in order to formulate the quadratic model of the 

 

Quasi-Newton method

fu

problem of the form (49): 

 

                                             ,
2
1min bxcHxx TT

x
++           (3.8) 

where H is e 

 

 th Hessian matrix, which is a positive definite matrix, c is a constant vector 

and b is a o

equation 3.8 g

The conventional Newto  

minimise the function after a number of iterations 

computational lating the Hessian matrix . The BFGS (Broyden 

Fletcher Goldfarb and Shanno) methods are used to update the Hessian matrix, so 

  

rocessing elements (PE) are to the output PE, the lower 

te be set because of error decay. 

 c nstant. The optimal solution is reached when the partial derivative of 

oes to zero (49).  

n method calculates H and proceeds in a direction of descent to
(49). This method is, however 

ly intensive for calcu (49)

reducing the computational time (49).  

 

Learning rate and learning algorithms which affects the performance of neural networks 

are further discussed. 

 

3.4.2.6 Learning Rates 
 

The learning rate determines by how much the weights at each step has to be changed and 

how long it takes the network to converge (34). Learning rates can be set based on the 

following (34): 

– Normalized learning rates – achieved by dividing the number of exemplars 

per update. This provides consistent learning between batch and online. 

– The closer the p

should the learning ra

 53



– NeuralExpert (programmed software) can be used to pick theoretically 

n alternative to determining learning rate is to use adaptive learning rates (34). An 

g rate. What this does is that if there are 

onsecutive errors of same sign the delta-bar-delta will increase the learning rate (add) 
(34)

tputs to 
(48)

orithms, these are:  

 

c. Quasi-Newton Algorithm and 

d. Levenberg-Marquardt (LM) Algorithm. 

(a) Backpropagation Algorithm 

Backpropagation algorithm is a gradient descent optimization procedure whereby the 

best initial weights. 

 

A

example is the delta-bar-delta adaptive learnin

c

and if they are of different signs it will decrease the learning rate . 
 

 

3.4.2.7 Learning Algorithms 
 

Neural networks fundamentally use two kinds of learning algorithms, namely; supervised 

and unsupervised learning (48). In supervised learning as earlier explained, the known 

target values or desired outputs (correct results) are presented to the neural network 

during training. The neural network adjusts its weights and tries to match its ou

the target values . The learning algorithms are further classified under four kinds of 

learning alg

a. Backpropagation Algorithm 

b. Conjugate Gradient Algorithm

 

 

 

mean square error performance index is minimized (72). This method makes use of a set 

of data which includes the input and output of the actual plant to be modelled by the 

neural network (73). As the inputs are applied to the network, the network output is 

computed and is compared with the actual plant output. The algorithm then adjusts the 

network parameters such that the sum of the squared error between the actual plant 
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output, and the neural network output can be minimized (72, 73). The numerical 

performance of the backpropagation method depends on these three (72): 

 (1) The frequency of update which can be done in two ways; Block adaptive, or Data 

adaptive.  

(2) The direction of update which is either first order or second order methods.  

3) The data adaptive method used. 

b) Conjugate Gradient Algorithm  

ugate directions (74). 

duces faster convergence compared to the steepest descent 

gradi nt dire tion to determ

tep size that minimizes the performance function along that line (75). The first step of the 

bine the new 

teepest descent direction with the previous search direction (74). The Scaled Conjugate 

 avoid this time consuming 

 of the line search . The key principle of this algorithm is to combine the 

 

c) Quasi-Newton Algorithm 

s an alternative to Conjugate Gradient Algorithm methods for fast 

ses the f lowi  form la (75)

        3.9 

(
 

 

(
 

In conjugate gradient algorithm, a search is performed along conj

This method generally pro

directions (74). A search is made along the conjugate e c  ine the 

s

conjugate gradient algorithms is to search in the steepest direction, and then a line search 

is performed along the current search direction which optimizes the function (75). The 

next search is done such that it is the conjugate of the previous search direction. The 

general procedure for determining the new search direction is to com

s

Gradient (SCG) algorithm is however now being used to
(74, 75)nature

model trust region approach (where the solution is likely to be found) with the conjugate 

gradient approach (75). 

 

(
 

Newton’s method i

optimization (76). Newton’s method u ol ng u : 

                                            

                                                 kkkk gAxx 1
1

−
+ −=    
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k is a m ance index at the current 

onjugate gradient methods 

ut it is computationally intensive (75, 76). In Quasi-Newton algorithm, an approximate 

M) Algorithm 
 

 was designed to approach second order training speed without having 

                                                                 3.11 

Wh  with 

resp (75).  

3.5

 

It is im at 

the pro

section

order to

 

Hagan 

to lear  do all the work related to an application. His 

uggestion is that the neural network application developer must make a number of 

decisions and perform a number of activities related to the application prior to making a 

where A atrix of the second derivatives of the perform

weight values. Newton’s method converges faster than the c

b

second derivative matrix is updated at each iteration of the algorithm (75).  
 

 

(d) Levenberg-Marquardt (L

The LM algorithm

to compute the Hessian Matrix (75). When the performance function has the form of the 

sum of squares, the Hessian matrix can be approximated to (75): 

 

                                                          JJH T=           3.10 

and the gradient is  

 eJg T=     

ere J is the Jacobian matrix, which contains first derivatives of the network errors

ect to the weights, and e is a vector of network errors 
 

 

  Neural Network Design Formulation 

portant to select and organise the neural network architecture in such a way th

duction process problem would be solvable by neural network techniques. This 

 deals with the approach for formulation of the neural network architecture in 

 apply it in this problem area. 

(36) pointed out that it is sometimes misbelieved that neural networks can be used 

n anything, and that they can

s
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decision (36). The choices made will affect the quality of the results achieved. Hagan (36) 

summarizes these choices as follows: 

 

1. Determination of the task to be performed by the network in the application. 

2. Analysis of the data available for the application. 

Choice of the inputs to the neural network. 

4. Proper pre-processing of the data for input to the network. 

7. Training of the neural network on the training data. 

8. Verification of the trained network on test data. 

 it. If a neural network is expected to learn and generalize from a set of 

aining data, a user should, in a general way, be able to also do that to some extent. The 

3. 

5. Choice of the desired outputs of the network, including post-processing of the 

outputs.      

6. Choice of the neural network learning method and algorithm (learning rule) to  

be used for training. Setting of the parameters associated with the network chosen, 

including number of processing elements in each layer, type of processing 

elements and learning constants. 

9. Analysis of the results and possible retraining of the network or modifications of 

parameters or pre-processing. 

 
In formulating neural network architecture, the input data to the network are determined 

and pre-proposed in order to achieve accurate output. Discussed below are classes of 

data, input data selection and pre-processing techniques.  
 

 

3.5.1 Input Data Processing  

 

According to Freeman et al (44), the single best way to handle data in a neural network 

task is to study

tr

goal in this analysis is to learn more about the problem, and to improve the representation 

of the data to the network. In general the smaller the neural network is the less data that is 

needed to achieve good generalization and overall network performance (47).  
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Neural networks differ in the kinds of data they accept (43). There are two major kinds of 

rning with categorical target values and unsupervised 

arning with categorical outputs are called "classification." (43) Quantitative variables are 

numerical measurements of some attribute, such as length in metres (43). The 

Some variables can be treate titativ , such as number of 

n or any binary variable (43). Most regression algorithms can also be used for 

supervised classification by encod

and using those binary variables as target values for the regression algorithm (43). 

thers (36). In addition there is a trade off between having a lot of inputs and therefore a 

sam

W = [(I+1) * A + (A+1) * O]       (3.12) 

data, namely categorical and quantitative data (43). Categorical variables take only a finite 

number of possible values, and they are usually several or more cases falling into each 

category. Categorical variables may have symbolic values (43) (e.g., "male" and "female", 

or "red", "green" and "blue") that must be encoded into numbers before being given to the 

network. Both supervised lea

le

measurements have to be made in such a way that at least some arithmetic relations 

among the measurements reflect analogous relations among the attributes of the objects 

that are measured (43). A supervised learning with quantitative target values (43) is called 

"regression."  

 

d as either categorical or quan e

childre

ing categorical target values as 0 or 1 binary variables 

 

Having studied the available data, certain variables should appear more important than 

o

large network and having a small number of inputs at the expense of reduced 

performance due to information loss. However there is no easy way to handle this trade-

off as explained by Hagan (36). 

 

As pointed out by Hush et al (62), for generalization purposes, the number of training 

ples should be approximately ten times the number of weights in the multi-layer 

propagation network. For a three-layer back-propagation network with inputs (I), outputs 

(O), neurons (A) in the hidden layer and training samples (P), the number of weights can 

be estimated thus (62): 
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And  

10 * [(I +1) * A + (A+1) * O] = P     (3.13) 

 

With this information, a more intelligent choice of architecture can be made.  

ailable data, such characteristics and improvements can be discovered. 

its output . When this happens, the neuron stalls , making learning extremely slow if 

ot impossible. If some inputs have very small dynamic ranges, their information content 

be  network (28). 

he solution to this problem is to pre-process all inputs so that they have the same 

m

tp

tions like statistical noise and overfitting that can affect the 

performance of the neural network (36). The next section discusses these variations and 

eir effect on neural network performance. This is followed by the application of neural 

 

Hagan (36) state that any operation, which linearizes the input data, is usually beneficial. 

By studying the av

The learning rule in a processing element (neuron) usually employs each input in the 

calculation of the gradient with respect to the weights (36). As a result, if the dynamic 

range of an input is large, the weight adjustments associated with that input are also large 
(36). However, in some cases the adjustments are too large, causing the neurons to saturate 

(36) (36)

n

may  lost or not effectively used by the

T

dynamic range. This can usually be achieved without loss of information and with 

improved performance of the trained network in almost every case (36).  

 

In determining the network output, one of the best ways is to analyze how the 

perfor ance of the network will be judged in the particular application it was designed 

for. As in what exactly should the ou ut be doing and the measures that will show that it 

is doing well (36). 

There are some varia

th

networks in resistance spot welding and the process controller model design.  
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3.6 Noise and Generalization  

 

‘Statistical noise’ refers to the variation in the target values that is unpredictable from the 

inputs of a specific network, regardless of the architect r wure o eights (77). ‘Physical noise’ 

fers to variation in the target values that is inherently unpredictable regardless of what 

e f 

e several ways to improve generalization for smooth functions when only small training 

ce . The noise in 

ed to be independent or to follow some known stochastic 

odel (78), such as an autoregressive process (79). The more that is known about the noise 

fective the network can be (78).  

 the noise is present in the target values, what the network learns depends mainly on the 

 D are observed; 

here D represents noise and X represents actual input values) it is unlikely that the 

net r

re

inputs are used (78). Noise in the inputs usually refers to measurement and data capturing 

error (78). Noise in the actual data is not a good thing, since it limits the accuracy of 

generalization that can be achieved (78), no matter how extensive the training set was (79). 

On the other hand, injecting artificial noise (jitter) into the inputs during training is on  o

th

sets are present (78, 79).  

 

Certain assumptions about noise are necessary for theoretical results (78). Usually, the 

noise distribution is assumed to have mean and finite varian (78, 79)

different cases is usually assum

m

distribution, the more ef

If

error function (78). For example, if the noise is independent with finite variance for all 

training, a network that is well-trained using least squares will produce outputs that 

approximate the conditional mean of the target values (78, 79).  

 

Noise in the inputs limit the accuracy of generalization in a more complicated way than 

noise in the targets (78). In a region of the input space where the function (weight, bias and 

activation function) being learned is fairly flat, input noise will have little effect (79). In 

regions where that function is steep, input noise can degrade generalisation severely (79). 

 

Furthermore, if the target function is Y = f(X), but noisy inputs X +

(w

wo k obtain an accurate estimate of the function f(X) given X+D, no matter how large 
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the i

learn a
 

 

3.7 
 

When developing neural networks it is imperative that the network is able to generalize, 

that is ens r cases that are not 
(77)

the training data set range . Overfitting leads to 

xcessive variance in the outputs whereas underfitting produces excessive bias (77). 

fit t of training data. If there are only 

w training data set available, any of the following can be done (80, 34): 

rd trend and stopping it 

immediately. 

 

 tra ning set is. The network will according to White (79) not learn f(X), but will instead 

 convolution of f(X) with the distribution of the noise D. 

Overfitting   

uring that the network will accurately predict output fo

included in the training set . A problem usually arises when a network is not complex 

enough to detect the signal in a complicated data set. This can lead to underfitting. Also, 

when a network is too complex that it fits the signal and the noise in the signal it will lead 

to overfittting (79, 80).  Overfitting is a major problem in that it can cause the network to 
(80)give predictions that are beyond 

e

Over ting can however be avoided by using a large se

fe

 

• Model Selection (selecting the right number of weights, that is, the number of 

hidden units and layers). This is done by trial and error. 

• Early stopping during the training. Using the cross validation curve to see when 

the curve is turning away from the normal downwa

• Weight decay plot and monitoring of performance. A drop down curve of the plot 

indicates good performance.   

• Combining networks to improve performance.  

• Using Bayesian Learning to improve learning performance.  

 

It is important to ensure that there is no underfitting or overfitting of the training data set 

by the network. The easiest way to do this is by choosing the appropriate number of 

hidden units and hidden layers (77, 80). This is done by trial and error and by comparing the 

network architecture to obtain the combination that presents the least mean square error.  
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3.8
 

Ov t

trained  results in the network 

being unable to predict future behaviour. Another problem is when the network is not 

the true output (80). 

his usually results due to ill-conditioning of the network (80).  

hen there are both large and small layers in the network, 

the learning rate difference would be significant). 

  

significant differences in the learning rates of the weights). 

r signals 

  Reconditioning of Neural Networks   

erfi ting as discussed in the previous section is a condition that occurs when the 

 neural network follows the actual outputs perfectly (80). This

properly trained such that the neural network is not a representation of 

T

 

Depending on the application problem the network is usually trained using standard 

gradient descent methods (80). These methods make use of learning rates (η). If this rate is 

too slow, the network will take a long time to converge to the error tolerance and may not 

converge within the specified training steps (80). The Training steps are adjusted by trial 

and error in an attempt to obtain an optimal learning rate. If the rate is too fast the 

network will diverge and will not give accurate result as well (80). A network therefore is 

seen as ill-conditioned when the global learning rate can not be used to train the network. 

That is each weight requires different learning rates that differ so much from one another 

that a global rate can not be used to train the entire network (80). The major causes of ill-

conditioning are (80): 

• Network architecture (w

• Initial weights (if the initial weights are too large or too small that there are

 

The above causes of ill-conditioning can be catered for as follows (80): 

 

Large inputs and outputs values are normalized (80). Normalizing the values would make 

them lie between 0 and 1. Normalizing the input ensures that it has an average of zero 

and a standard deviation of 1 (80). When dealing with large values small learning rate 

should be used. This would means using a lot of steps to move the bias across the 

network (80). The outputs and the hidden units are normalized as well (80), this help to 

adjust the weight condition to suit the network intended performance. The reason for this 

is that if the initial values of the weights are too small, the activation and erro
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will fade out as they go through the network (80) and if they are too large, the activation 

he use of neural networks to predict weld quality in resistance spot welding has gained 

atsuyama (5) conducted similar research to estimate nugget size and to detect the 

not 

cluded as inputs in the neural network. The research concluded that neural network can 

prediction in the use of dataset not used in the training of the neural network. This is 

function which is the tanh with a maximum of ±1 would be saturated giving a derivative 

close to zero (80). This prevents the error signal from being backpropagated through the 

nodes, a phenomenon known as paralysis (80). The appropriate learning rate can be 

computed mathematically (80). 
 

 

3.9 The application of Neural Networks in Resistance Spot Welding   
 

T

attention because of the highly non-linear processes prevalent in resistance spot welding 

process and the ability of neural networks to model such phenomena (4, 5). The common 

factor in these methods is the relation of pertinent information to weld quality (4). The 

quality of a model depends directly on the parameters selected and the dataset used. 

Aravinthan et al (15) carried out research in which he selected dynamic resistance as the 

only input to the neural network model to predict weld strength. The weld strength was 

taken as the value of the shear stress at the point of the spot weld failure. The accuracy of 

the prediction and repeatability of weld quality was not given in the findings (15). 

 

M

occurrence of expulsion during welding using neural network prediction. The research 

involved the use of welding current values and reducing rate of dynamic resistance. 

Uncoated steel sheet of 1 mm thickness was used. Electrode force and weld time were 

in

predict nugget formation and detect the occurrence of expulsion during welding, on the 

condition that the adaptable range for accurate output should be within the training 

dataset range.  

 

The outcome of the findings by Matsuyama (5) created the possibility for using neural 

networks to predict a variable in the resistance spot welding process which will help 

control expulsion. However, difficulty still exists with getting an accurate weld quality 
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mostly due to the extreme inconsistent nature of the dynamic resistance variable during 

the welding process (3, 4). Also these variables change from one machine to another (4). If 

is dynamic resistance variable is modelled (made linear), managing it and using it to 

re 

entified in these phases and used as inputs in a neural network model (4). The research 

 neural network, Brown et al (81) proposed a 

ethod of optimising the process of selecting the inputs. In their investigations, data 

fference between the minimum and 

aximum resistance value, the resistance drop from the peak to the last half cycle value 

e respectively. 

th

predict weld quality for any resistance spot welding machine will be possible and the 

accuracy should improve by using neural network capability. 

 

The need therefore is to further the research and to accurately determine the effective 

weld current that can be used to achieve a desired weld diameter, with possibility for 

reproducibility of same level of weld quality in any resistance spot welding machine.  

 

Exploring more literature in this application area, an earlier study was carried out by 

Monari et al (4) on extracting physical features from the three phases of welding based on 

statistical verification of the pertinence of each feature of the welding process. These 

phases are (4): positioning, welding and forging. Different input parameters we

id

concluded by suggesting that future work in using neural network techniques should 

concentrate on obtaining a model that can predict the quality of spot welds for a given 

machine under a reasonable range of welding conditions (4). Emphasis was on adapting a 

welding parameter which can be controlled towards achieving good joint quality (4).  

 

On the issue of selecting the best inputs to the

m

associated with each weld nugget diameter was collated and features of the various 

electrical signals extracted as potential neural network inputs. A feature extraction 

method was then used to statistically analyse and rank the inputs according to their ability 

to distinguish between different weld sizes (81). The features which were observed to give 

the best performance were selected for use as inputs to the neural network models (81). 

The features were value of the electrode to electrode resistance, rate of rise of resistance 

at different half cycle of current flow, the di

m

of current flow, the areas under the energy curve and the resistance curv
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The study concluded that by using an extracted feature of the input data it was possible to 

predict weld diameter more accurately than using the entire resistance waveform (81).  

They also found that there were practical difficulties associated with accurately 

approximating the rate of change of resistance over small regions of the dynamic 

resistance curve, as such only few input combinations were selected (81). The prediction 

accuracy using this model was inconclusive.  

 

This research will concentrate on the development of an empirical model for curve fitting 

s output in combination with 

 the resistance spot welding process will 

l network model for predicting weld quality (weld diameter) 

ess controller. The next section will discuss the choice and 

ler. 

oller Model Design  

Process controller can be described as a device that is used to monitor and control the 

at Fuzzy logic and neural 

networks provide new methods for designing control systems.  Most of the proposed 

in he work of Werbos mentioned that there are five general methods 
(84)

the inconsistent dynamic resistance variable. The dynamic resistance output from the 

empirical model will be trained using neural networks. Thi

other identified input parameters generated from

be used to create the neura

and for the design of the proc

methodology for designing the process control
 

3.10 Neural Network Process Contr
 

activity and resources of a system (47). Berenji (82) mentioned th

approaches to control applications use neural networks (typically feedforward neural 

networks) as black-box representations of plants and/or controllers trained using 

supervised learning (83). These approaches are justifiable for control of nonlinear systems 
(83).  

 

Hines (84) in review g t

for implementing neural network controllers. These are : 

(a) Model based Controller (predictive control) 

(b) Direct Inverse Control 

(c) Neural Adaptive Control 

(d) Back-Propagation Through Time (BPTT) 
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The

 

3.10.1

This is a neural network based m ent advance industrial 

algorithm ates a target system 

bining a prediction and a control strategy (47). An approximate plant 

m phase and unstable processes and in the design the designer 

oes not have to take special precautions. Predictive controllers are easy to tune and 

process constraints can be ha atically (8

lass of model-based controller design concept and has four major features in common as 
(85) (85)

odel of the process to be controlled. The model is used to predict 

the process output over the prediction horizon. 

the process output over the prediction horizon an i-step-ahead 

se methods are further discussed below: 

 Model based controller (Predictive Control) 

ethod that is used to implem
(47) .  A Model Predictive Control Toolbox controller autom

(the plant) by com

model provides the prediction. The control strategy compares predicted plant signals to a 

set of objectives and then adjusts available actuators to achieve the objectives within the 

plant's constraints (47).  

Soeterboek (85) mentioned that predictive controllers are used to control a wide variety of 

processes like non minimu

d

ndled system 5). Predictive controller belongs to the 

c

given by Soeterboek . They are : 

1. A developed m

2. The criterion function that is minimized in order to obtain the optimal controller 

output sequence over the prediction horizon. Usually, a quadratic criterion which 

weights tracking error and controller output is used. 

3. The reference trajectory for the process output. 

4. The minimization procedure itself. 

 

In order to predict 

predictor is required. An i-step-ahead prediction of the process output is the function of 

all the data up to t = k (defined as the vector l ), the future controller output sequence µ  

and a model of the process ∇ . Such an i-step-ahead predictor can be described by the 

equation given below (85): 
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Y (k + i) = ),,( ∇lµf        (3.14) 

 

where f  is a function. Clearly, i-step-ahead predictors depend heavily on the model of 

the process.    

 

The m ller will be the most appropriate control model in this 

st 

nd can compensate an inaccurate model such that the model will not tremendously affect 

thod 

 very stable and robust (87). However due to the fact that there is currently exceeding 

rs or a linear plant and 

eed specifications which the overall system must meet in terms of stability and 

n with these methods (86).  

.10.2 Direct Inverse Control 

Here the neural network is trained to model the inverse of a plant (target system) (84). First 

the neural network learns the inverse model which is used as a forward controller. This 

odel predictive contro

problem area because it uses a model of the process. The starting point is to develop an 

appropriate model of the process to be controlled by the controller. Of equal importance 

is that it is predictive and accepts set points from the controlled variables (85). It is robu

a

the performance of the controller (86). 

 

The selection of a model predictive controller design technique in neural networks is 

based on evaluation of the applicability of other techniques (87, 88). For instance there exist 

conventional techniques like the Continuous Frequency Domain Techniques for the 

design of controller (87). A lot of research done shows that the frequency domain me

is

needs for adaptive designs which are able to learn and store data, these methods are being 

replaced by artificial intelligent related methods. There exist quite a number of 

continuous control techniques. Amongst these are prominent techniques such as (86, 88): 

• Quantitative Feedback Theory (QFT),  

• H-infinity Controller Designs, and  

• Fuzzy-Logic Designs. 
 

These techniques are more appropriate for the design of controlle  f

n

responses (88). Real time controllers become difficult to desig
 

 

3
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me  modeled or approximated by an inverse 

nction (F-1). Since F (F-1) = 1, the output (y(k)) approximates the input (u(k)) (84).  

n inverse model neural network controller is implemented as an approximation of an 

verse nonlinear function, where the neural network is employed to approximate the 

inv ne with system states as network 

input and system inputs as network output. The training continues until either the learning 

erro

lear

sys

 

resented in Figure 3.12 is a Neural Inverse Controller (34).  

 

 

 

 be controlled being trained. The 

verse model then finds the input that created the system output.  The inverse model 

 the “optimal” controller and determines the system input required to create the 

esired system behavior as is shown in Figure 3.13. 

 

 

 

thodology only works for a plant that can be

fu

 

A

in

erse function (84). The neural network is trained off-li

r is below a specific goal or the learning curve flattens with no further decrease in 

ning error. Once the network is trained, it is used to calculate the input signal to the 

tem so that the system follows a desired state space trajectory (84). 

P

 

 

 
 

 

 

 

Figure 3.12: Neural Network Inverse Controller (34)  

 

The Figure shows an inverse model of the system to

in

is

d
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Figure 3.13: Inverse Model Optimal Controller (34)

 

isturbance could be a problem in inverse model controller. This is because Inverse 

controller do not have direct feedback (feedback is only through training). To correct 

fference between the plant 

(target system) and model of the plant is passed through the inverse model in order to 

 required for correction. An inverse model controller 

with disturbance correction is shown in figure 3.14. 

urbance correction (34)

.10.3 Neural Adaptive Control 

eural adaptive control may be the best technique to use for a plant model that changes 

D

a disturbance therefore in inverse model controller the di

determine how much control is

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Inverse controller with dist
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Model of Plant
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-

+
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effort + model error
+ plant noise

with unit delay

 

3
 

N

with time due to wear, temperature effects, etc. Hines (84) mentioned that Model 

Referenced Adaptive Control (MRAC) which is a class of neural network adaptive 

control is known to have the capability to adapt the controller characteristics so that the 

controller/plant combinations perform like a reference plant (target system) (84).  
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The plant lies between the neural network and the error term such that there is no method 

to directly adjust the controller weights in order to reduce the error. This leaves the option 

of using indirect control. In indirect adaptive control, an artificial neural network (ANN) 

entification model is used to model a non-linear plant (84). If necessary, this model may 

e updated to track the plant. The error signals can then be backpropagated through the 

roller so that the plant response is equal to that 

f the reference model. This method uses two neural networks, one for system 

hat the error signals can be propagated 

rough it to the controller. Next the controller is trained with BPTT paradigm (84). BPTT 

 the ACM method, a critic evaluates the results of the control action: if it is good, the 

f n a decision has to be made without an exact 

id

b

identification model to train the neural cont

o

identification and one for MRAC (84).   

 

 

3.10.4 Back-Propagation Through Time (BPTT) 

 

BPTT is a neural network controller that can be used to move a system from one state to 

another state in a finite number of steps (if the system is controllable). First a system 

identification neural network model is trained so t

th

training takes place in two steps; the plant motion stage, where the plant takes k time 

steps, secondly the weight adjustment stage, where the controller’s weights are adjusted 

to make the final state approach the target state. In BPTT there is only one set of weights 

to adjust because there is only one controller (84).  

 

 

3.10.5 Adaptive Critic Methods (ACM) 

 

In

action is reinforced, if it is poor, the action is weakened. This is a trial and error method 

and uses active exploration when the gradient of the evaluation system in terms of the 

control action is not available. This is an approximate method and is only used when a 

more exact method is not available (84). O te

conclusion as to its effectiveness (e.g. chess), but an approximation of its effectiveness 
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can be obtained. This approximation can be used to change the control system (84). This 

type of learning is called reinforcement learning.  

 

There are three classes of learning that can be used in neural network control (89). These 

are supervised, unsupervised and reinforcement learning (89). In supervised learning, at 

each time step, a teacher provides the desired control objective to the learning system. In 

unsupervised learning, the presence of a teacher or a supervisor to provide the correct 

control response is not assumed (89). In reinforcement learning, the teacher’s response is 

ot as direct and informative as in supervised learning and it serves more to evaluate the 

tate of the system. Once a neural network has been trained with a set of data, it can 

et (89). 

of the 

tate variable (84). The control variable (decision variable) is indicative of time, but not 

 function of the state 

ariable and the control variable to zero as the integer approaches infinity (90). An optimal 

n

s

interpolate and produce answers for the cases not present in the data s

 

The task of neural network based system identification is to build mathematical model of 

a dynamic system based on empirical data. In neural network based system identification, 

the internal weights and biases of the neural network are adjusted to make the model 

outputs similar to the measured outputs (84). 

The resistance spot welding process control problem is considered a sampled-data control 

system which is characterized (perhaps only approximately) by the first-order difference 

equation where the output variable is a specified real and single valued function 

s

necessarily directly proportional to time (90). The control variable is constrained to be an 

element of a given set of values. In order for a solution to exist to the problem, it is 

necessary that control actions exist which drive the values of the

v

controller produces the absolute minimum of the sum of the function of the state variable 

and the control variable (90).   

 

 

3.11 Pole Assignment (Placement) in Control Systems 
 

Pole assignment is the placement of pole for the synthesis of feedback control systems 
(91). It is relevant in this research because of the control system that will be designed for 
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the synthesis of the neural network feedback system that will be used for predicting the 

resistance spot welding parameter. Previous research (91) has confirmed that when all of 

he state variables of a system are completely controllable and measurable, the closed – 

e effective state-space approach for designing 

ntrol systems, especially for multivariable systems (91). 

 some specific applications, some states in the linear system may not be available for 

nd input (control) variables. 

or linear dynamic systems, the state estimator design task can be reduced to finding an 

n conventional approaches to state estimator synthesis for linear dynamic systems via 

pole assignment, the output gain matrix L is usually obtained through off-line 

computation (91). In many real-time applications, the system dynamics are time-varying. 

In such applications, the time-varying nature of the plants entails on-line state estimation 

and hence complicates the computation (91). 
 

 

3.12 Design Steps for the Neural Network Predictive Controller 
 

In this design linear neural network and Scaled Conjugate Gradient algorithm as the 

ization algorithm are chosen (88). The network was trained using multi layer 

t

loop poles of the system (the roots of characteristic equation) can be placed at the desired 

locations on the complex plane with state feedback through appropriate gains (91).   

 

Whereas the transient behaviour of a feedback control system is largely determined by its 

closed-loop poles, pole placement is a v ry 

feedback co

 

In

feedback, because they are not measurable or such a measurement is too slow, too costly, 

or some other reason. In this case, a state estimator (observer) has to be used to estimate 

the unavailable states (91). A state estimator (observer) estimates the state variable of a 

dynamic system based on the measurements of the output a

F

output gain matrix. The output matrices in most linear state estimators are time-invariant. 

For time-varying dynamic systems, state estimators with time-invariant output matrices 

cannot follow the variation of system parameters, hence real-time gain updating of the 

output matrices of state estimators is necessary (91). 
 

I

optim
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perceptron. The input and output values were normalized before training the network so 

s to decrease the errors and also to enhance generalization. 

After training the neural network, the netw

used to train the network. The best performing neural network architecture was employed 

in the development and design of the controller. An example of a predictive controller 

where optimization block and a neural network model block were used is shown in 

an raining of Neural Network Diagram (88)  

he optimization is implemented by minimizing the function (88). 

 

 

 input value, which ensures that 

the error function 

actual neural network process output is close to zero (88).  

 

 

3.13 Sensitivity Analysis 
 

a
 

ork was validated using data which was not 

Figure 3.15. 
 

 
 

Figure 3.15: Data Generation d T

Input

T
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The point of optimizing this function is in order to get the

f gets minimized, that is, the error between the desired value and the 
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Sensitivity define h

analysis is a procedu of the outcome of an alternative to 

changes in its parameters (92).  Sensitivity analysis is used to check the quality of a model. 

 the output is measured by the response of the output 

all changes in the input .  

ean : 

 dependently between its mean +/- a user defined 

number of standard deviations.  

.14 Concluding Remarks  

s t e relative importance of each input to the output (34). Sensitivity 

re used to access sensitivity 

The effect of the input parameters to
(93)to sm

 

Sensitivity analysis allows the determination of inputs that are important to the output 

solution. It is used to reduce the number of inputs that are of real importance in the model 
(34). The essence is that inputs that do not contain useful information can then be 

eliminated (34). 

 

To test for input parameters sensitivity about m (34)

– Each input is varied in

– A report is generated relating the variation of each output with the 

variation in each input: 

• A table and three dimensional column plot of the sensitivity of 

each input is made. 

• A plot is created for each input showing the network output(s) over 

the range of the varied input. 
 

 

3
 

This section has discussed the different neural network architectures. These are 

Multilayer Perceptron (MLP), Radial Basis Function (RBF), Recurrent Neural Network 

(RNN) and Self Organising Map (SOM). Each of these neural network architectures 

except self organising maps (SOM) were tested in this application to find the most 

appropriate neural network architecture. The SOM which is based on unsupervised 

learning is considered inappropriate for this problem, because supervised learning is 

applied to this problem. 
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The inverse neural network optimisation method would be used based on theoretical 

applicability to this problem area. The fminbnd (bounded minimization technique) is 

mited by its instability and the requirement to define boundary parameters and 

and 

hidden layers are considered in the modelling. There is some trial and error used to 

etermine the most appropriate and optimal number of hidden layers that would be most 

uitable in the selected neural network type that would be used. To optimize the training 

ferent number of iterations while 

hecking the error function. If that function converges before the iterations have been 

xceeded, then the network will be retra  number of iterations being 

decremented to the value of the error function converged. 

ensitivity Analysis will be carried out to give the contributions of each input to the 

utput. It will also show the importance of each input parameter to the output.  

orks techniques are presented by previous researcher (6) as an application that 

 

li

condition. The brute force method is discouraged due to the fact that it is very uncertain 

and lies on extremes. Quasi-Newton is considered computationally expensive and for 

Conjugate Gradient methods the gradient of the error function with respect to the inputs 

and thus the weights were going to be required which is quite complex to calculate and is 

therefore not used in this application problem.  

 

The required inputs and output for the neural networks, methodology for structuring the 

neural network, based on the choice of the number of neurons (processing elements) 

d

s

convergence the network would be trained with dif

c

e ined with the

the iteration at which 

S

o

 

Neural netw

can be applied in the resistance spot welding process, with the ability to learn the pattern 

in the welding process data such that it can predict desired variable. In this research 

neural network will be trained with the identified welding process parameters to 

accurately predict effective weld current required to achieve any desired weld diameter. 

This is because effective weld current is a parameter that can be controlled in the welding 

process in other to achieve desired weld. Same electrode and material type used in the 

welding process will be used to set the boundary conditions for the model prediction. 

 

 75



     CHAPTER 4  
 
 

TEST CONDITION 

.1 Introduction: 

r different welding machines with instrumentation for capturing the welding 

process data were used. The data captured during the welding process were peak values 

of dyna l e in k  a u ty f 

ave cycles (weld time) of each of the welded plate samples. These values were then 

sed to calculate peak dynamic resistance generated from each of the welded sample. The 

r e. After the 

spot w e weld e o achieved 

during the welding process was determ e same thickness of metal plate was used 

for the entir ples welded.  

.

alvanized low carbon steel designated DC04 was selected (94) for this investigation, 

llowing ISO 14373 standards (95). The specific chemical composition and mechanical 

w in Tables 4.1 and 4.2 respectively. 

%B 

 

 

4
 

The aim of the test was to generate relevant (identified) process parameter data from the 

resistance spot welding process. This data was used for the modelling of the welding 

process. Fou

mic vo tage and corr spond g pea  values of dyn mic c rrent for twen  hal

w

u

other data captured are effective current (RMS) and applied electrode fo c

eld is made th  diameter which is the measur f weld quality 

ined. Th

e sam

 

 

4 2 Materials Selection 
 

G

fo

properties of the material are shown belo

 

Table 4.1:  Chemical Composition of the galvanised plain Carbon Steel 

%C %Si %Mn %P %S %Al %N %Cu %Cr %Ni %Nb %Ti 
0.003 0.009 0.114 0.007 0.008 0.027 0.0038 0.031 0.039 0.031 0.002 0.06 0.0002

 

 

Table 4.2:  Mechanical properties of the galvanised plain Carbon Steel (94)
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60 mm 

40 mm 

0.88 mm

Yield Strength 

(MPa) 

Ultimate Tensile Strength 

(MPa) 

% Elongation 

139 298 46 

 

A copper electrode with rounded tip, defined as electrode material A16 by DIN ISO 5821 
(94) specification, of electrode cap type A, width diameter 16mm and length 20mm was 

selected (94).  

Welding of Plate Samples 
 

Prewelding preparation was first carried out by cutting up the galvanized low carbon steel 

40mm of 0.88mm thickness, as shown in Figure 4.1 below.  

    

 

 

 

4.3 

sheet into plates of 60mm by 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Shape and size of the sample plates welded 
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The sheets were cleaned with dry rags. Two separate plates of equal dimension were 

selected and placed together in-between two electrode tips (17) (upper and lower electrode 

pick-ups) of the welding machine (centralized adequately).  

 

Using ISO 669 as a guide (96), the welding of the samples was performed on four 50 Hz 

power supply (94) alternating current electric resistance spot welding machines made 

available by the Federal Institute of Materials Research (BAM) and Technical University 

(TU) Berlin, Germany. Four different resistance spot welding machines were used in 

order to have a range of variability for the quality process modelling and to investigate 

the effect of the welding machines on weld quality. The machines were C-Gun, Dalex 

Gun 25, Dalex PMS 14-4, and Dalex Gun 35. These machines were one mobile (Dalex 

Gun 25) and three stationary resistance spot welding machines (C-Gun, Dalex-25, PMS 

14-4, and Dalex Gun 35) with settings for simultaneous reading of weld time and 

effective current (RMS).  

 

The stationary machines were fixed in one place while the mobile can be moved around 

and can be attached to a robot should the need arise. Figures 4.2 and 4.3 respectively 

show the pictures of the stationary and mobile resistance spot welding machines. 
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Figure 4.2: PMS-stationary Resistance spot welding machine 
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Figure 4.3: Dalex-25, Mobile Resistance spot welding machine 

 

The welding parameters consisting of the welding period, applied electrode force 

(pressure), current level and squeeze time were set before commencement of the welding. 

The electrode force was set at the required value by using a pneumatically operated force 

gauge. To establish the effect of electrode force changes on weld quality in the process 

modelling, three force ranges which were 2.2 kN, 2.6 kN and 3.0 kN were selected for all 

four welding machines. These applied electrode force range are typically within the range 

sed in these machine types for making spot welds for this material type and thickness (94, 

 96)

u
95, . However to be able to see how a small deviation from this range will affect the 

weld quality output, particularly in validating the neural network model that was 

developed, an additional range of values of 1.76 kN, 2.16 kN and 2.46 kN of applied 

electrode forces were selected for Dalex-25 welding machine.  
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The setting of the effective current range was by trial and error. This is because the 

an 3.7 mm were 

lassified as poor weld quality (18, 19). 

 weld quality and some suggestions from the ISO 

166 (97, 98) were useful guides for making some of these selections and decisions.  

 

The welding program was made up of six time steps for each specified applied electrode 

force category (value). Time steps explained in the literature is the total welding process 

time required to make a number of spot welds. In each time steps eight plate samples 

were spot welded. Twenty halfwave cycles time explained in the literature were required 

to weld each of the plate samples.    

effective weld current required to give the best weld quality is not known. The guide was 

to select a current range that meet and at least exceed the stick limit value of weld 

diameter by a value greater than 4√t or equal/less than 5√t where t is weld thickness. 

With t = 0.88mm, stick limit is expected to be ≥ 3.7 mm, while maximum boundary is the 

effective current that can maximize weld diameter before an expulsion occurs. The choice 

of current was by finding the range that gives a weld diameter of at least 3.7 mm as the 

lower limit and the current range before expulsion as the upper limit. Similarly the 

number of welding cycles was determined by trial and error. The selection was to 

determine the welding cycle period that would give a good weld quality for a given 

welding current range.  

 

So pre-welding preparations of the plate samples and setting of the welding machine 

parameters was done and the welding was then carried out. The value of the parameters 

used to achieve each weld diameter was noted. In some cases there was expulsion 

indicating a poor weld quality. Similarly achieved weld diameters less th

c

 

The welding of the samples involved a selection of combination of the parameters from 

the ranges of applied electrode force and weld current. Welding time was fixed for 20 

cycle periods for the welding of each specimen. The predetermined current range 

between stick limit and expulsion limit was divided into six welding steps for every 

selected applied electrode force. This is a grouping of the effective welding current into 

six ranges from low to high. The opinion of the operator based on experience, work from 

previous researchers on achieving good

8
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Instrumentation was set up for monitoring the welding process. This was done by 

connecting one end of the instrumentation wire to the electrode head of the welding 

machine and the other end to a computer for capturing the dynamic values of half wave 

voltage between electrodes and sheet. Also captured on the computer display is the value 

of the applied electrode force used in the welding operation. Effective current (RMS) is 

similarly picked up by a sensor device; the signal is amplified, converted and displayed as 

effective current on a recorder. The obtained potential difference value for each of the 

quiva e) by 

ultiplying each of the halfwave potential difference value with 6.4483 (this is an 

fter welding, each single spot welded plate sample was opened up using Instron torsion 

achine. The Torsion machine generated the torque stress needed for separating the 

joined plates, exposing the fracture surface of the spot weld (formed nugget).  ISO 

14324-2003 was used as guide (100).  The type of fracture after shear of each sample was 

observed, fracture types were either plug failure (A) or shear fracture (S). Plug and shear 

failure describes the fracture surface failure mode. A plug failure mode also called button 

failure typically looks like a button as shown in Figure 4.4 while a shear failure is an 

interface failure shown in Figure 4.5.  

 

welded sample was converted to an e lent dynamic current value (kilo amper

m

instrument correction factor) (94). Peak values of halfwave dynamic voltage and 

corresponding peak halfwave dynamic current were captured and displayed on the 

computer screen. Peak halfwave dynamic values of voltage and current were taken to 

avoid the effect of inductance (inaccurate resistance in the circuit due to voltage drop) (99). 

The peak values of the dynamic current and dynamic voltage waveforms were used to 

calculate the halfwave dynamic resistance for the entire welded sample.  

 

A

m
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Figure 4.4: Plug failure [adapted (101)] Figure 4.5: Shear failure [adapted (101)] 

 

The opening of the spot welded plates was to determine the achieved weld diameter 

(weld quality) by measuring the cross section of the exposed nugget surface using 

calibrated magnified ruler. Randomly selected samples from each welding step were 

taken for metallographic examination and estimation of nugget size. This was necessary, 

as a means of comparing weld diameter results obtained using the calibrated magnified 

ruler to the labour intensive metallographic nugget estimated result. Figures 4.6 and 4.7 

shows the Instron torsion machine and one of the spot welded plates. 

 

 

 83



 
Figure 4.6: Instron torsion machine 

 

 
 

 

igure 4.7: Double Plate with welded spot  

 

F
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Estimation of nugget size by me mination was done using opened 

(separated) spot welded double plate samples with exposed nuggets. The exposed nugget 

was polished using e etching was done 

 on the surface exposed the fusion and heat-affected 

ones of the weld as is shown in Figure 4.8. The image of the nugget was scanned into a 

omputer and the nugget size and weld depth measured by drawing a line across the 

ach sample several measurements were taken and the average 

f these was considered as the final nugget diameter for a particular sample. 

tallographic exa

emery paper and then etched (acid attack). Th

using 2 percent nital. The acid attack

z

c

nugget and measuring. In e

o

 

 
Figure 4.8: Microstructure of a spot weld nugget 

 

 

4.4 Concluding Remarks 
 

In this experiment electrical characteristics made up of halfwave dynamic voltage, 

halfwave dynamic current and effective current (RMS) were obtained. Equally 

corresponding weld diameter for each spot welded samp

electrode force used for the welding of the samples was reco

le was determined and applied 

rded.  
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CHAPTER 5 

 

RESULTS: DATA SET GENERATED  

 

 

5.1 Introduction 
 

Presented in this chapter is the data obtained from the resistance spot welding process. 

These are dynamic voltage (peak halfwave voltage), dynamic current (peak halfwave 

current), calculated halfwave dynamic resistance, effective weld current (RMS) 

(Instantaneous current) and the weld diameter of each welded sample. A table showing 

the selection of the weld diameter used to determine good weld quality range based on 

observed expulsion limits is included in this Chapter. Also presented are micrographs of 

some spot welded samples. The micrographs were used for determining nugget size.  

 

 

5.2 Dynamic Voltage and Dynamic Current Data  

entation readings as described in chapter 4. The welding 

achine at an 

 

Dynamic halfwave voltage and dynamic halfwave current data were obtained in the 

welding process by instrum

program as previously explained, consists of twenty halvewave welding cycles (HW) for 

each sample welded.  Eight samples were welded under each time step and there were six 

time steps for each applied electrode force used. Dynamic voltage and dynamic current 

dataset therefore consists of twenty halfwaves made up of ten troughs (negative values) 

and ten peaks (positive values), for each welded sample.   

 

The dynamic halfwave values of voltage and current for time step 1 to step 6 using 

applied electrode force of 2.2 kN obtained using C-Gun welding machine are presented in 

Appendix A.  Figure 5.1 show a plot of dynamic voltage for Dalex-25 Gun m

applied electrode force of 2.2 kN. Corresponding values of halfwave dynamic current of 

same applied electrode force with same welding machine are presented in Figures 5.2. 
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Similar results were obtained for the welding steps one to six for the entire samples 

welded in all the four welding machines for all the applied electrode forces used.  
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Figure 5.1: Dynamic Voltage step 1- 6 for Dalex-Gun 25 applied force 2,2kN. 

 

The dynamic voltage values of steps 5 and 6 are higher than the dynamic voltage values 

p tween as can be seen in Figure 5.1. The higher 

me steps 5 and 6 are carried out at higher welding current compared to the lower time 

re gradually lowering down as shown in Figure 5.1. This 

ehaviour typically shows the response of the welded material to the effect of increasing 

voltage during the welding process. 

of ste s 1 and 2, with step 3 and 4 in-be

ti

steps of 1 and 2, hence higher dynamic voltage. The dynamic voltage at between the first 

two halfwave cycles was high (steep), with a sudden drop and then incremental rise to a 

peak at about halfwave four befo

b

This behaviour will be extensively discussed under 

the dynamic resistance modelling section in the next Chapter.  

The higher dynamic current values for the higher time steps 5 and 6 and lower dynamic 

current values for the lower time steps 1 and 2, with time steps 3 and 4 in-between as 
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shown in Figure 5.2. The dynamic current for each of the time steps in Figure 5.2 showed 

an initial increase up to the second halfwave, then a sharp drop to halfwave four and 

radual increase from that point to the twentieth halfwave.  

  

g
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Figure 5.2: Dynamic Current step 1- 6 for Dalex-Gun 25 applied force 2,2kN. 

Dynamic Resistance Data  

 

 

5.3 
 

The generated peak halfwave dynamic voltage and peak halfwave dynamic current values 

were used to calculate peak halfwave dynamic resistance values for the entire welded 

samples using the relationship: 

 

IRV =           (5.1) 

where V is peak dynamic voltage (V), I is peak dynamic current (kA) and R is peak 

dynamic resistance (mΩ). Dynamic resistance calculated using the dynamic voltage and 

current obtained from C-Gun welding machine at applied electrode force of 2.2 kN is 
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presented in Figure 5.3. Similar values obtained for the entire applied electrode force and 

for all four welding machines used are presented in Appendix B.   
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Figure 5.3: C-Gun (2.2 kN) steps 1-6, Dynamic Resistance plot 

 

)(mΩ

Figure 5.3 shows a common trend in the dynamic resistance behaviour of the welded 

le ps 1 to 

. The plots of each of the sample dynamic resistance graph showed an initial high 

state effect of the material resistance and inter-contact resistance effect between the 

samp s generated from the C-Gun welding machine, at 2.2 kN force, and time ste

6

dynamic resistance value at the first halfwave, followed by sudden sharp drop at about 

the second halfwave and gradual increase in resistance from the second halfwave point to 

a peak point and then a gradual decrease from the peak point. The initial high dynamic 

resistance at the first halfwave is due to the effect of the contact resistance of the material, 

this effect is not sustained and within the second halfwave with increase in heat generated 

the contact resistance effect is overcome (102). The dynamic resistance due to the solid 
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welded material (plates) causes the dynamic resistance to increase to the peak point, with 

a change of state from solid to a mixture of solid and liquid, the dynamic resistance drops 

. This state accounts for the sudden change in dynamic resistance.  The liquid state of 

nward 

trend of the dy ce curve (102). 

 

It w bserv he o ance ves  in endi

that the dynamic resistance curves of all the we ed sam av r tr d like the 

ones in Figure 5.3, with some samples however showing some slight deviation. The slight 

variation is expected because of som riability that may e ari rom the ma

or m e setti r inst t rea s etcet , 10).  

 

It is observed that the peak points in the dynamic resistance curve of Figure .3 di

all at the  halfw cycle e in all the time . Som f the ak p

are seen to be reached at earlier halfwave cycles times than thers. T e peak oint of t  

dyn resista curve wel time s 4-6 rred bou he f

halfwave cycle (HW 4) an ing steps wav ycle

6). This can be explained as the effect of incr d wel urre t the gher

steps, such that the peak d ic resistance are hed  the few cle t

com  to the uced w g cu  of steps 1-2 which takes r ha ave 

5.4 Effective Weld Current (RMS) and Weld Diameter Dataset 
 

The modelling of the resistance spot welding process parameters will require dynamic 

resistance, effective weld current (RMS), weld diameter and applied electrode force. 

Having determined dynamic resistance values for given applied electrode forces from the 

previous section, this section presents effective weld current and weld diameter data 

needed for the modelling process. Presented in Table 5.1 are effective weld current and 

weld diameter dataset for C-Gun welding machine at an applied electrode force of 2.2kN. 

(102)

the weld accounts for a decease in dynamic resistance as is noted with the dow

namic resistan

as o ed from t  graphs f the dynamic resist  cur

p  h

shown

e simila

 App x B, 

ld le en

e va  hav sen f chine 

achin ngs o rumen ding era (3

 5 d not 

occur same ave  tim steps e o  pe oints 

o h p he

amic nce s for ding step  occu  at a t t ourth 

d ld we time 1-2 at about the sixth half e c  (HW 

ease ding c nt a  hi  time 

ynam  reac within  first  cy imes, 

pared  red eldin
(94)

rrent longe lfw cycle 

time to reach the peak points . This observation will be further discussed in modelling 

section of Chapter 6.   
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Similar results were obtained for the entire samples welded.  Figures 5.4 and 5.5 shows 

the effective weld current (RMS) and weld diameter achieved for time steps 1 and 6. 
 

Table 5.1:  Additional Generated Data for Step 1 and 6, of C-Gun Machine at  

2.2kN Force 

Sp
ec

im
en

s.n
r. 

Fe (kN) 
 

Is (kA) 
 

dp (mm) 
 

dpk (mm)
 

Mt 
(Nm) 

 

Win. 
(Deg) 

BA 
 

Step 
 

15-1 2.2 5.75 4.8 3.8 6.6 2.9 S Step 1 
15-2 2.2 5.76 4.8 3.6 7.0 34.4 S Step 1 
15-3 2.2 5.76 4.8 3.6 6.8 14.2 S Step 1 
15-4 2.2 5.73 4.8 3.7 7.4 12.7 S Step 1 
15-5 2.2 5.73 4.8 3.4 6.8 33.9 S Step 1 
15-7 2.2 5.74 4.9 3.5 8.0 15 S Step 1 
15-8 2.2 5.76 4.9 4 6.7 6.7 S Step 1 

         
17-1 2.2 7.27 5.7 4.2 13.6 78.6 S Step 6 
17-2 2.2 7.32 5.6 4.4 14.4 65.7 A Step 6 
17-4 2.2 7.6 4.9 4 9.6 64.8 A Step 6 
17-5 2.2 7.34 5.9 4.4 14.3 62 A Step 6 
17-6 2.2 7.59 5 3.4 11.7 67.9 A Step 6 
17-7 2.2 7.37 5.7 4 18.1 68.4 A Step 6 
17-8 2.2 7.34 5.6 4.1 14.4 66.8 A Step 6 

 

Abbreviation terms as used in the table are as follows: Fe: Electrode force (kN), Is: 

Welding current (kA), dP: spot diameter with corona zone (mm), dpk: spot-diameter 

(mm), BA: fracture type, A: plug failure, S: Interface fracture. 
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Figure 5.4: C-Gun (2.2 kN) Average Values of Effective Weld Current for steps 1 and 6 
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Figure 5.5: C-Gun (2.2 kN) Average Values of Weld Diameter for steps 1 and 6 
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The results of effective weld current and weld diameter in Figures 5.4 and 5.5 show that, 

the average size of the achieved weld diameter is larger in samples made at time step 6 

than time step 1. The increase in weld diameter from step 1 to step 6 is because of the 

increase in current used from step 1 to step 6. Similarly, micrographs were obtained for a 

umber of the samples welded. Presented in Figures 5.6 and 5.7 are micrographs of the n

nugget of some samples welded with Dalex PMS welding machine for step 1 and step 6 

respectively.  
  

 
Figure 5.6: Metallography of weld spot nuggets ple, Dalex PMS 

 

igure 5.7: Metallography of weld spot nuggets of step 6, welded sample, Dalex PMS 

 of step 1, welded sam

F
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These represent the two extremes of the time steps. The Figures show that the nugget 

sizes produced in step six are bigger in size (Figure 5.7) than the nugget sizes from step 

one (Figure 5.6). This agrees with the direct relationship between effective weld current 

and achieved weld diameter. 
 

The selection of the good weld quality range using weld diameter cut off value based on 

Force 

(kN) 

Diameter 

achieved 

ctive 

Current (kA) 

Effective 

Current 

(kA) 

Weld diameter 

(mm) 

xpulsion 

Weld 

Diameter 

(mm) 

observed expulsion limit is presented in Table 5.1.  
 

Table 5.1:  Observed Maximum Values: weld diameter, effective current and 

observed expulsion weld diameter 

Machine 

Type 

Applied 

Electrode 

Maximum. 

Weld 

Corresponding 

Effe

Maximum Corresponding E

(mm) 

2.2 5.9 7.34 7.51 5.6 5.6 

2.6 6.1 8.32 8.41 6.0 None 

 

C-Gun 

None 3.0 6.2 8.62 8.66 6.1 

2.2 5.6 7.41 7.43 5.3 None 

2.6 6.0 8.39 8.39 6.0 None 

 

DZ 

 3.0 6.6 9.39 9.42 6.2 None 

2.2 6.60 8.33 8.58 6.15 5.8  

2.6 6.50 8.76 8.84 6.2 None PMS 

3.0 6.80 9.24 9.34 6.3 None 

1.76 5.4 7.04 7.04 5.4 5.25 

2.16 5.9 7.69 7.69 5.9 5.4 

2.2 6.0 7.63 7.73 5.7 5.5 

2.46 5.9 7.85 7.85 5.9 None 

2.6 6.1 7.95 7.95 6.1 None 

 

Dalex 

 

3.0 6.3 8.55 8.57 5.9 None 
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In defining weld quality, weld diameter less than 3.7 mm was considered a bad weld 

because it is below the stick limit. Theoretically, the weld diameter is expected to be 

between 3.7mm and 4.7mm to be considered a satisfactory weld quality for the electrode 

ear class used (19). Maximising the size of the weld diameter to a possible large size 

efore expulsion point will give better weld quality (weld diameter).  

ased on observation as shown in Table 5.1, weld diameter between 3.7 mm and less 

an 5.25 mm was considered good weld. With less than 5.25 mm weld diameter as the 

etter spot weld quality.  Less than 5.25 mm weld diameter was taken as a cut-off point 

ecause an expulsion was observed to occur at 5.25 mm during the welding process as 

hown in the Table. This observation shows that there is no guarantee that expulsion will 

ot occur at a weld diameter above 5.25 mm.  

.5 Concluding Remarks 

y using the equation (19)

w

b

 

B

th

b

b

s

n

 

 

5
 

 tdt 54 <≤B , it was possible to have a guide to what defines 

 good or poor quality weld. The nugget sizes produced in step six are bigger in size than 

e nugget sizes from step one because of higher current range applied. This agrees with 

e direct relationship between effective weld current and achieved weld diameter. 

ffective weld current achieved, in the time steps 6 are higher than in the steps one.  

o expulsion was observed at below 5 mm weld diameter. This means that high chance 

xist to push the current up to the point of producing this weld diameter without 

xpulsion. The earliest expulsion was with Dalex 25 welding machine with a weld 

iameter of 5.25 mm at an applied electrode force of 1.76 kN. Expulsions were frequent 

s noticed at the lower applied electrode force than at higher applied electrode force. This 

ay be because at the lower applied electrode force, larger gap exist between the plates 

ontact surfaces which creates higher resistance. During the welding process with fast 

eat generation mostly due to higher resistance and rapid growth of the nugget (23), 

ithout adequate constraints chance for expulsion occurring will be very high.  

a

th

th

E

 

N

e

e

d

a

m

c

h

w

 95



The non linear nature of dynamic ables makes it difficult to use in 

redicting weld quality. It is therefore important to model this variable in other to use it 

r predicting weld quality.  

 

 resistance vari

p

fo
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CHAPTER 6 
 
 

MODELLING THE PROCESS PARAMETERS 
 

 

6.1 Introduction 
 

Presented in this Chapter are the models used for estimating the process parameters in the 

sistance spot welding process. These process parameters are dynamic resistance, 

applied electrode force, effective weld current and weld diameter. Dynamic resistance 

generated from each welded sample showed non linear and complex behaviour in having 

twenty halfwave dynamic resistance values per sample. An empirical model was 

developed and used to curve fit the dynamic resistance curve, such that the twenty 

halfwave dynamic resistance per sample was reduced to just one resistance value for each 

sample welded. This estimated resistance per sample will be referred to as sample 

resistance in this thesis. The level of error in the estimation was determined for each of 

the samples using the root mean square error and sum of square criteria (103).  

 

The prediction capability of the empirical model was improved by passing the outputs 

from the model through neural network learning for intelligent and accurate prediction. 

The predicted sample resistance from the neural network with applied electrode force and 

effective weld current were used as in inputs in a second neural network model to predict 

weld diameter.  

 

our neural network types which are generalized feed forward, multilayer perceptron 

ral network (RNN) types were 

ained and tested to find the one with least error and best generalization capability, for 

re

F

(MLP), radial basis function (RBF) and recurrent neu

tr

predicting sample resistance and the weld diameter. Such that for any desired weld 

diameter it was possible to determine the optimum parameters that will be needed to 

achieve the weld diameter. 
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6.2 Empirical Model for the Dynamic Resistance Parameter  

hree 

tages as is shown in Figure 6.1.  

 Dynamic Resistance Curve 
 
 
The first stage is the rly stage

eak point. The second stage is the peak point and the third stage is the dynamic 

resistance from the peak point to welding completion. 

6.2.1 First Stage 

 

An empirical (mathematical) model that explains the pattern of the dynamic resistance 

behaviour (102) was developed. The purpose was to use it to linearise the nonlinear 

dynamic resistance curve and to be able to estimate a resistance value for each welded 

sample. This is because a linear input parameter to the neural network model would help 

improve the neural network prediction accuracy as discussed earlier in the literature 

section. In developing this model the dynamic resistance curve was broken up into t

s

 

 
 

Figure 6.1: Trend Pattern of

ea  of the resistance change from its initial value up to the 

p

0 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Halfwaves

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

Dynamic Resistance Curve

First 
Stage Second 

Stage Third 
Stage

 
R )  ( Ωm

 98



 

Figure 6.1 shows that in e first few initial halfwave cycle times there is significant drop 

in the

th

 dynamic resistance followed by a gradual increase. Peak point is reached after few 

me halfwave cycles depending on the welding current intensity (102). With the dynamic 

resistance there is a corresponding increase in temperature and amount of energy 

generated (23, 102). This is because resistivity increases with temperature. It ca  be 

concluded that changes in welding cycle time corresponds to changes in temperature and 

generation of heat energy as the dynamic resistance progresses up to the peak point.  

 

Based on observation of the dynamic resistance curve, it can be stated that the dynamic 

resistance behaviour of the spot welded sample from the first halfwave cycle time t  

peak point is directly related to the number of halfwave cycles plus the initial resistance 

at first halfwave cycle time. Expressed mathematically: 

 

 

ti

n

o the

01 RNR c +∝            .1) 

 

(6

Such that 
 

01 RNMR c +×=           (6.2) 

 

 

where 1R  is a function that accounts for the resistance from first time cycle up to the 

resistance at the peak point. cN  is the number of half waves. 0R  is the surface resistance 

of the sample. Parameter M  is a function of temperature which depends on the material 

sist (94, 102), expressed by ance )( sR  during current flow re

 

 
A
lRs β=            (6.3) 
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with β  = specific electrical resistance (temperature dependant), l  = length of current 

flow in work piece and A  = current area (electrode contact area). As is shown in Figure 

6.2.  
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Figure 6.2: Influence of Param

M  generates an increase in the 

value of the sample resistance . The effect of the initial resistance which is due to the 

contact resistance between the surfaces of the welded plate in contact disappears after the 

first few welding halfwave cycles. This agrees with Matsuyama (24) findings in which he 

concluded that the resistance due to the interface contact resistance is not very important 

in normal resistance spot welding.  
 
 
6.2.2 Second Stage 
 

 This peak point is 

)(R

The second phase is the peak point of the dynamic resistance curve.

referred to by most researchers as the β  peak (94, 102). In explaining the formation of the 

β  peak, De et al (94) in reviewing the work by Dickinson (102) in this area mentioned that 
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at the peak point there is decreased interface resistance which is influenced by the 

increased bulk resistivity with temperature. This eventually leads to an overall decrease in 

the sample resistance away from the peak point (94), such that the peak point stands out. 

his view is consistent with the views of other researchers (102). However, at this T β  peak 

there is no change in dynamic resistance and welding cycle time hence:  
 

0=
CdN

dR             

 

With the change in dynamic resistance to the change in welding cycle time being equal to 

zero 0dR  at th  β  peak it is possible to estimate the parameter M=
CdN

is . The parameter 

M  in equation (6.2) is determined by taking the second order partial derivative of the 

same equation (6.2). 
 

 

6.2.3 Third Stage 
 

The third phase corresponds to the downward slope from the β  peak of the dynamic 

ure 6.3.  resistance curve, Fig

 
Figure 6.3: Dynamic resistance trend from the peak point downwards 

Slightly away from the β  peak is a marked decrease in dynamic resistance sloping 

downwards as the welding cycle time progresses. The drop in dynamic resistance is due 

Dynamic Resistance
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 101



to a change in contact diameter (contact resistance) because of the change of state from 

solid to liquid of the sheet surfaces in contact and increase in the cross sectional area (23, 

94).  

 

Estimating the change in cross sectional area of the contact surfaces is difficult because 

the contact diameter is not constant during welding (23), Matsuyama (23) used simulation 

method to determine contact diameter but only at a particular time (t). Contact diameter 

change at plate interface (23) during the welding process is dependent on time.  The 

change in cross sectional area (contact diameter) affects the downward slope of the curve 

from the β  peak (102).  

 

rve from the The downward slope of the dynamic resistance cu β  peak is observed to 

llow a mathematical function of inverse relationship between the dynamic resistance 

ownward slope 

fo

d ( 2R ) and the welding cycle time ( ) raised to power index “n” ( n is 

0 and 1) and strongly influences the downward slope from 

the

Nc

an index that ranges between 

β  peak .  

Represented thus:  

            (6.4) 

Such that, 

 

 

 
n

cNR ∝2

n
cN

KR =2           (6.5) 

 

here 2R  is the dynamic resistance of the downward slope from the β  peak, is the cNW

welding cycle time, n is power index and K  is a constant. The power index n  describes 

the steepness of the slope. The physical cause of the downward slope is due to drop in 

interface resistance as a result of change of state from solid to liquid as the faying surface 

elts (104). K directly influences the sample resistance. Increasing K leads to an increase 

esistance as is shown in Figure 6.4.  

m

in sample r

 102



 

Figure 6.4: Influence of Parameter K on Resistance 
 
  

 

t describes the dynamic resistance will then be the total of 

 
 

6.2.4 Total Resistance  
 

The mathematical function tha

1R and 2R acting in parallel, such that   

 

 

21

111
RRR

+=             (6.6) 

 

 

R  is total resistance; 1R and 2R are defined earlier. 

 

Substituting equations (6.2) and (6.5) into equation (6.6), the expression becomes; 

K
N

RNMR

n
c

c

+
+×

=
)(

11

0

                      (6.7)  

 

such that, 

Relationship between Parameter K and Resistance 
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)(
))()((1

0

0

RNMK
RNMNK

R c

c
n

c

+×
+××+

=           (6.8) 

 

 

 

By making R  the subject of the equation; 

 

 

 

))()((( RoNcNcMNcK
RoKNcMKR nn ×+××+

×+××
=                    (6.9) 

 

 

 and are known for each sample welded, 0R cN K  and M can be estimated. To determine 

the unknown parameter  (power index), the effect of change of  on the slope of the 

dynamic resistance curve was evaluated by taking  values from 0 to 1 and substituting 

see the effect on the model. By increasing n 

 0.2, the drop in resistance is noticeable but far from actually fitting the dynamic 

n n

n

into a plot of equation 6.9.  

 

The value of n is incrementally increased to 

to

resistance curve. Further increasing n to 0.5 correctly fits the curve as is shown in Figure 

6.5.  
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igure 6.5: Curve fitted Model at n = 0.5 

 

The power index n was taken as 0.5 in this model due to best fit. It is observed that the 

dynamic resistance curve fitting model responds to this power index n by some unknown 

non linear relationship function. This relationship is assumed to be depending on the 

contact area of the sheet surfaces during the welding process (23).  

 

o calculate sample resistance R, the parameters K and M have to be determined. M and  

 taking partial derivatives of equation (6.7) at the 

F

T

N can be estimated by β  peak where                              

0=
cdN

dR , such that; 
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nK
NRNMM

dN
dRR n

c

c

)1(2
0

2 ))/(()/1( −++×−
=

−       (6.10) 

 

nK
NRNM

M
R

dN
dR n

c

c

)1(2
02 )( −−+×

=        (6.11) 

aximum a

 

 

t 0=
cdN

dR , when pc NN = , pN  is the cycle number at βM  peak 
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The equation will be 

 

 

Mn
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=

1
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pN

Similarly parameter M will be 

pK 0 )(2
=          (6.12) 

RNM 2+×
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p

p

N
RNK

2
)2( 0

2 −
=M           (6.13) 

 

 

Such that once parameter M  is estimated K can be determined and vice versa. The total 

resistance (R) can therefore be determined by the equation:  

 

 

5.0
05.1

0

)( c
c

c NR
NMK

RNMK
R ×+

×+
+××

=         (6.14) 

his equation is the model that can be used for curve fitting the dynamic resistance curve 

nd for determining the sample resistance , once the parameters 

 

 

 

T

)(R K  and Ma  are 

stimated. This model equation (6.14) was used to test one hundred and seventy samples 

er machine for all four machines used. This was to confirm the model suitability for 

urve fitting the dynamic resistance curves and for estimating the resistance of welded 

amples.  

he curve fitting and estimation of the unknown parameters were done for each welded 

ample in MATLAB (105). This was done by first making a plot of the dynamic resistance 

curve in MATLAB, followed by the equation (6.14) of the model being written in the 

MATLAB curve fitting custom solution option (105). The confidence interval was set at 

95%.  Initial parameter values were assumed and supplied (103) before starting iteration 

process for determining the final value of the parameters. Assuming initial parameter 

values were because the iteration process can not proceed without some initial values 

supplied. These initial values were randomly generated in MATLAB, and the correct 

parameter values were determined through the iteration process (103).  
 

Through the iterative process the 

e

p

c

s

 

T

s

K  and M  parameters which curve fitted (best fits) the 

dynamic resistance curve were determ ith the parameters ined. W K  and M  known it was 
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possible to determine the sample resistance for each of the welded samples. This was 

done by substituting the values of the parameters K  and M  generated, and  which is 

the initial dynamic resistance value into the model expression of equation (6.14).  

 

Presented in Figure 6.6 is the result of the curve fitting of the dynami rve 

for one of the samples taken from DZ machine under applied electrode force of 3.0 kN, 

using the model (equation 6.14) to make the fit. 
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sis urve

 

Sim esults w  obtain ll lded s . Pres in Appendix C are the 

results of the curve fit o  sa  take  all elding in  

different applied electrode force.  

 
 
6.3 pplyi he Em al el   
 

The primary purpose of the empirical mode tion 6.14) was to lineari  

inc t no ar dy esi  param ddi , the  is  

exp for est ing sam sista  an u  wel onditio

 

Figure 6.6:  Fitted Dynamic Re tance C : DZ machine at 3.0 kN Force.   

ilar r ere ed for a the we amples ented 

f some mples n from four w  mach es, for

 A ng t piric  Mod

l (equa se the

onsisten nline namic r stance eter. A tionally model  being

lored imat ple re nce in nknown ding c n.   

2 6 8 12 4 18 20

0.07 

0.075 

0.08 

0.085 

0.09 

0.095 

0.1 

0.105 
Dynami tance c Resis

Fitted

Ωm  

Model Fitted Dynamic Resistance Curve 

H  Cycle 
 

alfwave Time



Th irical l is ap lied by determinin  the param terse emp  mode p g e K , M   and  and 

substituting these values into the mo uation mate le resis  Th  

of square error and root m r in each of the sam t  

were determine ). In all the case um of square erro oot me ar

we ifican ss tha 103)  show d es n. Pre  in  

6.1 are the

oR

del eq  to esti  samp tance. e sum

ean square erro ple resis ance estimated

d (103 s the s r and r an squ e error 

re sign tly le n one ( . This s a goo timatio sented  Table

K , M  and v det d for mples welded in C-Gun m  

which were used to determ  sam sist  

 

Table 6.1: Estim  samp tan  
E
Current 

Weld 
Di

(mm) 

K Su
Squ

RM
 Ro ( R

 oR  alues ermine some sa achine

ine the ple re ance (R).

ated le resis ce (R) 
ffective 

(kA) 
ameter 

 
 
 

M 
 
 

m of 
ares 
 

SE 

 
Ω ) m

 
 ( Ωm )

 
6.48 3  .7 0.5391 0.029 0.001 0.008 0.106 0.101 
6.48 3  0..7 6395 0.021 0.0002 0.004 0.085 0.11 
6.52 3  .7 0.5928 0.022 0.0005 0.005 0.091 0.104 
6.5 3  .7 0.5886 0.023 0.0005 0.005 0.092 0.105 
6.53 3.9 0.5961 0.021 0.0003 0.004 0.086 0.105 
6.52 3.7 0.5845 0.023 0.0004 0.005 0.089 0.104 
6.52 3.7 0.5942 0.022 0.0005 0.005 0.091 0.105 
6.51 3  .7 0.6391 0.019 0.0004 0.004 0.086 0.108 
6.99 4 0.5125 0.029 0.0004 0.005 0.093 0.097 
7.01 4 0.5598 0.024 0.0526 0.054 0.087 0.102 
6.99 4 0.5394 0.024 0.0529 0.054 0.085 0.099 
6.97 4 0.5507 0.025 0.0003 0.004 0.086 0.101 
6.93 4 0.5823 0.024 0.0002 0.004 0.085 0.105 
6.96 4 5394 0.026 0.0003 0.004 0.083 0.1 0.
6.97 .5164 0.025 0.1194 0.081 0.089 0.096 4 0

7 4 0.5598 0.024 0.0005 0.006 0.092 0.102 
7.35 4 0.5536 0.027 0.0002 0.003 0.082 0.102 
7.34 4.4 0.5164 0.031 0.0002 0.004 0.089 0.099 
7.36 4.4 0.5132 0.029 0.0002 0.004 0.087 0.097 
7.33 4.3 0.537 0.027 0.0002 0.003 0.083 0.1 
7.28 4.5 0.5536 0.031 0.0632 0.059 0.084 0.105 
7.31 4.5 0.0002 0.003 0.085 0.104 0.5628 0.027 
7.36 4.5 0.5281 0.028 0.0002 0.003 0.082 0.099 
7.39 4.5 0.5267 0.028 0.0002 0.003 0.083 0.099 
7.71 5.7 0.5334 0.03 0.0001 0.002 0.081 0.101 

Effective 
Current 

Weld 
Diameter 

K 
 

M 
 

Sum of 
Squares 

RMSE 
 

Ro (  
 

R (Ωm ) Ωm )
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(kA) (mm)     

7.74 5.5 0.5123 0.032 0.0001 0.003 0.085 0.098 
7.7 5.5 0.4893 0.035 0.0564 0.056 0.083 0.096 
7.7 5.6 0.5003 0.033 0.0577 0.057 0.082 0.097 
7.75 5.6 0.489 0.035 0.0002 0.003 0.086 0.096 
7.73 5.6 0.4893 0.035 0.0002 0.003 0.088 0.096 
7.73 5.5 0.489 0.035 0.0003 0.004 0.091 0.096 
7.76 5.5 0.5003 0.033 0.0002 0.003 0.085 0.097 
8.18 6 0.4944 0.036 9.80E-05 0.002 0.083 0.097 
8.2 5.9 0.4709 0.042 0.0490 0.052 0.084 0.094 
8.14 5.9 0.4721 0.039 0.0001 0.002 0.084 0.094 
8.15 5.9 0.4702 0.039 8.68E-05 0.002 0.084 0.093 
8.13 5.9 0.46 0.036 0.1166 0.08 0.084 0.091 
8.12 5.8 0.4709 0.04 8.08E-05 0.002 0.084 0.094 
8.16 6 0.4552 0.042 0.0001 0.003 0.086 0.092 
8.18 6 0.46 0.041 0.0001 0.002 0.084 0.092 
8.59 6 0.4348 0.042 0.0001 0.003 079 0.088 0.
8.62 6 0.4128 0.046 0.0001 0.002 0.081 0.084 
8.61 5.9 0.4186 0.046 9.16E-05 0.002 0.081 0.085 
8.6 5.6 0.4358 0.046 0.0028 0.013 0.08 0.089 
8.66 6.1 0.4095 0.045 9.56E-05 0.002 0.083 0.084 
8.63 6 0.4186 0.042 0.0415 0.048 0.079 0.085 
8.62 6.2 .4256 0.043 9.66E-05 0.002 0.079 0.080  6 
8.59 6.2 0.4358 0.04  6.81E-05 0.002 0.081 0.088 3

 

pirical model to estimate sample 

 

As is shown in Table 6.1, it is possible to use the em

resistance once K  and M  parameters are determined through an iteration process and 

oR  known.  

e parameters are plotted and used for estimation needed values of 

 

To predict sample resistance R without going through an iteration process, graphs of 

M  and K  values of th

and oR  for a desired weld diameter. Presented in Figure 6.7 is a plot of the parameters 

M  and K  of one of the welding machines. 
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Figure 6.7: Machine C-Zange – Parameters M and K and Applied electrode force 2.2KN 

 

To test if this is able to estimate sample resistance.  

The parameters are estimated from the graph of Figures 6.7 at a desired weld diameter of 

.3 mm. The values for 5 M and K were determined from the graph as K  = 0.6561, M = 

0.02623. Initial dynamic resistance  at first halfwave for this welding machine 

average is 0.094448. 

 

Substituting these values into the model equation (6.13); 

 

Ro

 )))5.0^(*())5.1^*(/(())*(*( NcRoNcMKRoNcMKR +++=  

 

R = (0.6561*(0.02623*20+0.007563))/((0.6561+(0.02623*20^1.5))+(0.007563*(20^0.5))) 

 

R = 0.101 
 
To validate the above estimate, this value was compared to the actual value of the 

dynamic resistance at weld diameter of 5.3 mm for this machine and applied electrode 

force. Four values of sample resistance (R) were obtained. The values were 0.116201, 

Ωm  
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0.115402, 0.115902 and 0.112434. Percentage accuracy in estimating was 85%, 86%, 

85.5% and 88.9% respectively. 

 
Similarly compared for weld diameters of 5.9 mm, the parameters were estimated from 

the graphs of Figures 6.7, the value of R obtained was 0.1013 Ωm . Compared to actual 

value of R which was 0.10126 Ωm , a percentage accuracy of 99.98%. This was done for 

all the samples and the accuracies were all above 85%. 

 

The applicability of this model was further verified to any of the welding machines 

without an identifier using data set generated from all the welding machines. The essence 

of this was to see how the graph can be used to accurately estimate sample resistance for 

a desired weld diameter in an unknown situation (unknown machine). Graphs were 

developed using the data generated from the model expression for different weld 

diameters. Presented in Figure 6.8 and 6.9 are the plots of  K  , M  and  parameter 

values for different weld diameters for a number of samples welded at different applied 

electrode force using the four welding machines. These parameters were used for 

estimating sample resistance for a desired weld diameter in unknown welding machines.  
 

 

oR
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Generated K and M parameters 

 

 
Figure 6.8:  Parameters K  and M  Generated 
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)( Ωm

 
 
 
 

Generated Parameter R0

 

Figure 6.9: Parameter oR  Generated 

 

The obtained result of the sample resistance was compared with the actual values of 

sample resistance obtained. Presented in Figure 6.10 is the estimation of sample 

resistance for samples welded in an unknown welding machine.  
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Figure 6.10: Predicted Resistance to actual in Dalex Machine 

 

The Figure shows the actual resistance compared to the predicted. The predicted is not 

following the actual. Similar estimations were made without identifying (unknown) the 

ence (error) of the predicted to the actual ranged 

between 16% to 149%. The large prediction error as is shown in figure 6.10 may be 

because the model can only track linear changes and is not able to follow nonlinear 

d  changes in new situation. Statistical analysis will be carried out to 

d t e relationships betwee p rameters. If nonlinear relationships are 

c n t between the param nd the samp  resistan  then neu l networ

techniques will be the most appropriate method to use in modelling the process.  
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T ror was investigated by carrying out correlation analysis and multiple 

regression analyses between the p  an e re e R ted le 

6.2 is the correlation of the parameters to one another.  

 

Table 6.2: Correlations Matrix 
Current 

(kA) 
eld  

) 
M  

he cause of this er

arameters d sampl sistanc . Presen in Tab

    

  W Diameter
(mm

K  Ro R 

 Current (kA) 1.000      
 Weld Diameter 0.951 1.000     

(mm) 
 K -0.943 -0.884 1.000    
 M 0.959 0.921 -

0.956 
1.000   

 Ro ( Ωm ) -0.648 -0.569 0.457 -0.479 1.000  
 R ( Ωm ) -0.912 -0.830 0.979 -0.922 0.466 1.000 

 

The table shows significant linear correlation between the parameters. Strong linear 

correlation exists between current and all the parameters and between weld diameter and 

all the parameters with slight reduction with Ro. The linear correlation coefficient 

between the parameters K, M and Ro are about 0.5 and are considered significant. The 

rediction error is therefore not due to lack of linear correlation between the parameters. p

Further investigation was done using multiple linear regression analysis to ascertain the 

relationship between the predicted variable R (sample resistance) to the other variables. 

Presented in Table 6.3 is the result of the multiple regression for sample resistance (R).   

 

Table 6.3: Multiple Correlations Matrix 

Results of multiple regression for R  ( Ωm )      
        
Summary measures       
 Multiple R 0.9840      
 R-Square 0.9683      
 Adj R-Square 0.9645      
 StErr. of Est. 0.0012      
        
ANOVA Table       
 Source df SS MS F p-value  
 Explained 5 0.0020 0.0004 256.6746 0.0000  
 Unexplained 42 0.0001 0.0000    
        
Regression       
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coefficients 

  Coeffici t Std Err t-value p-value limiten
Lower Upper 

limit
 Constant 0.0146 0.0215 0.6797 0.5004 -0.0287 0.0579
 Current (kA) 0.0001 0.0019 0.0759 0.9399 -0.0038 0.0041
 Weld Diameter (mm) 0.0014 0.0007 2.1295 0.0391 0.0001 0.0027
 K 0.1279 0.0124 10.2839 0.0000 0.1028 0.1531
 M 0.0146 0.1090 0.1336 0.8944 -0.2055 0.2346
 Ro 0.0996 0.0757 1.3159 0.1954 -0.0531 0.2523
        

 

The R-Square, adjusted R-Square, high F value and low standard error shows good 

stimation accuracy. The p-value gives indication of clear linear relationship existing 

nly between the sample resistance (R) and weld diameter, K and Ro. While the 

icated by 

e high p value. The relationships were combinations of linear and non linear 

R and some of the parameters. To improve the 

rediction accuracy neural network technique will be employed to learn the pattern in the 

 

(known),  without the need to conduct the welding experiment or going through the 

e

o

relationship between R and current and M parameter are not seen as linear as ind

th

relationships among the parameters. The level of estimation error in the result obtained 

by using the graph suggests that the technique is not appropriate for an accurate result. 

The values were further linearised using logarithm function (89) but the improvement in 

estimation accuracy was little.  

 

It can be concluded that the sample resistance of a desired weld diameter in an unknown 

welding machines can be predicted using the graphs. This is however with high level of 

prediction inaccuracy mostly because of the nonlinear and complex relationship that 

exists between the sample resistance 

p

data and to be able to make accurate prediction (6).    

 

 

6.4      Improving the Empirical Model using Artificial Neural Networks  
 

The generated parameters from the empirical model were passed through neural network 

learning in other to improve the prediction accuracy. Such that for any desired weld 

diameter in any of the welding machines the sample resistance will be determined
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iteration process of determining the parameters  K  , M  and oR . The inputs are weld 

diameter and parameters  K  , M  and oR . Sample resistance was the output. The result 

was validated (tested) and further cross validated on dataset not used for the training and 

then used to make prediction on dataset not seen before. 

 

Four neural network types which are generalized feed forward, multilayer perceptron 

(MLP), recurrent network and radial basis function (RBF) were tested to find the best 

predictor to be used for improving the empirical model. 

 

 

6.4.1   Training using Generalized feed forward neural network 
 

co ections 

an jump over one or more layers (33). The inputs for this network as mentioned earlier are 

le resistance 

from the empirical model is the output.  

 

The dataset were randomised to achieve even spread. Then the columns were tagged as 

inputs and outputs. 70% of the data set (exemplars) was set apart (tagged) for training, 

15% for training and another 15% for cross validation. 20 exemplars were kept as 

production data for production testing. 

 

The generalized feed forward network design was made up of 2 inputs processing 

elements,  1 output processing element, 502 exemplars, 3 hidden layers, with first hidden 

layer made up of 16 processing elements, TanhAxon transfer function, with momentum 

learning rule. The second hidden layer was made up 8 processing elements, TanhAxon 

transfer function and momentum learning rule. The third hidden layer was made up of 5 

processing elements, TanhAxon transfer function and momentum learning rule also. The 

outer layer consists of one processing element, BiasAxon transfer function and 

conjugated gradient learning rule. 3000 epochs were specified for the training iterations.  

Generalized feedforward networks are a generalization of the MLP such that nn

c

desired weld diameter and applied electrode force, while linearised samp
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The generated architecture design showing input and out put files with the hidden layers 

and transfer functions is presented in Figure 6.11. 

 
Figure 6.11: Generated generalized feedforward network architecture design (106)   

 

The results of the training and cross validation are presented in Figure 6.12. 
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Figure 6.12: Training performance of the generalized feedforward network 
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The result of the training performance shows a good performance and a small error of 

about 0.05 at training epochs of 2000. The training was therefore stopped at 2000 epochs. 

The mean square error MSE curve showed a downward slope (weight decay) indicative 

of good performance. The network was tested to validate the consistency of the 

performance.  

 

The testing error is measured by the linear correlation coefficient (r), mean absolute error 

(MAE), normalised mean squared error (NMSE) and mean squared error (MSE). These 

statistical parameters give an acceptable measure of the level of control and performance 

quality of the network (93). How closely the predicted resistance lines are following the 

ctual resistance was determined as is shown in Figure 6.13.  

Figure 6.13: Testing performance of the generalized feedforward network. 

a
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The result of the testing performance gave a mean sum of squares of 0.001, and mean 

absolute error (MAE) of 0.03. This indicates a good performance. The normalised mean 

quared error (NMSE) was about 0.83 and the linear correlation coefficient was 0.52. A 

linear correlation coefficient of 0.52 shows that the set of point are not close to a straight 

line, which indicates a poor correlation. The graph in Figures 6.13 shows that estimated 

resistance is not closely following the actual resistance value. The performance of the 

network will be further validated by presenting data not seen before by the network to see 

how well it can generalize. Table 6.4 shows the predicted resistance (R) to the estimated 

resistance, and the estimation accuracy using the generalized feedforward neural network 

type.  

 

Table 6.4: Predicted Resistance to Actual Resistance using generalized feedforward  

                 Neural Network type.  
 

Machine 
Type 

 
Applied 
Force 
(kN) 

Weld 
diameter 

(mm) 

R predicted 
mΩ 

 

R actual 
mΩ  

 

Difference 
 
 

% 
Difference

 

s

PMS 3 3.7 0.1186 0.1079 0.0107 9.9222 
C-Gun 3 4.4 0.117 0.1662 -0.049 -29.591 
Dalex-35 3 4 0.1191 0.089 0.03 33.741 
Dalex-25 2.46 5.7 0.0986 0.0716 0.0271 37.799 
Dalex-35 3 4 0.1191 0.1017 0.0174 17.116 
PMS 2.2 5.3 0.0959 0.1154 -0.019 -16.88 
Dalex-25 2.46 4 0.1123 0.0739 0.0384 51.949 
Dalex-25 3 3.7 0.1186 0.1015 0.0171 16.892 
C-Gun 2.2 4.4 0.1063 0.1178 -0.012 -9.8047 
Dalex-25 2.46 3.6 0.1115 0.084 0.0275 32.693 
Dalex-25 2.46 5.5 0.0991 0.0714 0.0277 38.754 
C-Gun 2.2 3.5 0.1087 0.1053 0.0035 3.3057 
Dalex-25 2.46 3.8 0.1124 0.0828 0.0295 35.67 
Dalex-35 3 6.3 0.1079 0.1378 -0.03 -21.708 
Dalex-25 2.16 5.4 0.1001 0.0578 0.0423 73.055 
C-Gun 3 6.5 0.1103 0.1408 -0.031 -21.665 
Dalex-25 2.46 3.6 0.1115 0.0889 0.0226 25.467 
PMS 2.6 3.8 0.1167 0.1262 -0.009 -7.5071 
Dalex-25 1.76 4 0.1034 0.0966 0.0068 7.0807 

 

Table 6.4 shows marked differences between the predicted resistances to the actual, with 

prediction error of about 3% to 73%. The prediction output of this network using real 
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data not used for training the network is presented in Figure 6.14. This is to further 

evaluate how well the network is able to generalize.  
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igure 6.14: Validation performance of the generalized feedforward network. F

The graph showed that the generalisation is very poor. The network was not able to 

predict accurate output for data that it has not seen before. Though a large error of 3% to 

73%, it is an improvement from the earlier estimation error of about 16% to 149%. To 

achieve reliable and usable process model this error is considered high and unacceptable. 

Other neural network types will be tested. 

 

 

6.4.2   Training using Multilayer Perceptron neural network type 
 

Multilayer perceptrons (MLP) are layered feedforward networks architecture which is 

pically trained with static backpropagation (33). In this network architecture there are 2 

output 

processing elements (linearised sample resistance), 487 exemplars and 1 hidden layer. 

ty

input processing elements (desired weld diameter and applied electrode force), 1 
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The hidden layer has 16 processing elements, TanhAxon transfer function with 

momentum learning rule. The output layer uses BiasAxon transfer function with 

conjugate gradient learning rule. The hidden layer and the process elements were 

determined by trial and error and by comparing the error output. The generated network 

architecture is shown in Figure 6.15.  

 
Figure 6.15: Generated multilayer perceptrons (MLP) network architecture design (106)   
 

The levels of errors for the training and cross validation are shown in Figures 6.16. 
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Figure 6.16: Training performance of the multilayer perceptrons (MLP) network    
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Similar to the generalised feedforward neural network type, the result of the training 

performance of the multilayer neural network showed good performance with an error 

output of about 0.05 at training epochs of 3000 and cross validation error of 0.06 at same 

epoch of 3000. The downward slope (weight decay) however did not indicate a good 

training and cross validation performance, as the slope did not show a significant drop. 

The overall network performance was confirmed by the testing performance result. The 

sting performance of the multilayer perceptron neural network used is presented in 

perceptrons (MLP) network. 

The test performance result gave a mean sum of squares of 0.008, mean absolute error 

(MAE) of 0.02 indicating good performance. Normalised mean squared error (NMSE) of 

te

Figure 6.17. 
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Figure 6.17: Testing performance of the multilayer 
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0.67 and linear correlation coefficient of 0.6. In the graph of Figure 6.17, the estimated 

resistance is not closely following the actual resistance value, it is however performing 

better than the feedforward neural network type. The performance of the network will be 

validated using data set not seen before by the multilayer perceptron neural network. 

Table 6.5 shows the predicted resistance (R) to the estimated resistance, and the 

estimation accuracy using the multilayer perceptron neural network type.  

 

Table 6.5: Predicted Resistance to Actual Resistance using multilayer perceptron 

                 neural network type. 

 
 

Machine 
Type 

 
Applied 

Force (kN) 
 

Weld 
diameter 

(mm) 

R predicted 
(mΩ) 

 

R actual 
(mΩ) 

 

Difference 
 
 

% Difference 
 
 

PMS 3 3.7 0.1134 0.1079 0.0055 5.1089 
C-Gun 3 4.4 0.1212 0.1662 -0.045 -27.09 
Dalex-35 3 4 0.1175 0.089 0.0285 32.023 
Dalex-25 2.46 5.7 0.0766 0.0716 0.005 7.0184 
Dalex-35 15.612 3 4 0.1175 0.1017 0.0159 
PMS 2.2 5.3 0.0837 0.1154 -0.0317 -27.446 
Dalex-25 2.46 4 0.0951 0.0739 0.0212 28.619 
Dalex-25 3 3.7 0.1134 0.1015 0.0119 11.773 
C-Gun 2.2 4.4 0.1042 0.1178 -0.0136 -11.527 
Dalex-25 2.46 3.6 0.0877 0.084 0.0037 4.3658 
Dalex-25 2.46 5.5 0.0758 0.0714 0.0044 6.1602 
C-Gun 2.2 3.5 0.0998 0.1053 -0.0054 -5.1532 
Dalex-25 2.46 3.8 0.0918 0.0828 0.009 10.833 
Dalex-35 3 6.3 0.1077 0.1378 -0.0301 -21.858 
Dalex-25 2.16 5.4 0.096 0.0578 0.0381 65.951 
C-Gun 3 6.5 0.1129 0.1408 -0.0279 -19.828 
Dalex-25 2.46 3.6 0.0877 0.0889 -0.0012 -1.3175 
PMS 2.6 3.8 0.1229 0.1262 -0.0033 -2.6032 
Dalex-25 1.76 4 0.0978 0.0966 0.0012 1.285 

 

Table 6.5 shows a prediction error of 1% to 65% using real data not used for training the 

network. This generalization is presented in graph form in Figure 6.18. The graph showed 

that the generalisation is slightly improved from the generalized feedforward neural 

etwork type. It is still considered generally poor.  n
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Figure 6.18: Validation performance of the multilayer perceptrons (MLP) network   

Redial basis neural network type and Recurrent neural network were explored to see if 

there will be further improvement in the prediction of sample resistance. 

 

 

6.4.3   Training with Redial Basis Function Neural Network 
 

Radial basis function (RBF) networks are nonlinear hybrid networks typically containing 

a single hidden layer of processing elements (PEs). This layer uses gaussian transfer 

functions. The centres and widths of the gaussians are set by unsupervised learning rules, 

and supervised learning is applied to the output layer. These networks tend to learn much 

faster than MLPs (33). 

 

ork architecture design to be used here is made up of 2 

with no 

 

The radial basis function netw

input processing element with 1 output processing element, 487 exemplars, 
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hidden layer, 10 cluster centres, using consciencefull competitive learning with Euclidean 

metrics (92). The output layer uses the conjugate gradient learning rule and Bias Axon 

transfer function. 100 epochs of iteration is done for the unsupervised learning with a set 

rate of decay and 1000 epochs for the supervised learning. The generated network 

architecture design is shown in Figure 6.19.    
 

 
 

Figure 6.19: Generated Radial basis function (RBF) network architecture design (106)   
 

This Radial basis function network architecture was trained and cross validated. The 

result of the training performance and cross validation is shown in Figure 6.20.  
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Figure 6.20: Training performance of the Radial basis function (RBF) network    
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The Radial basis function training performance result shows a mean square error output 

of about 0.07 at a training epoch of 180 and cross validation error of 0.09 at an epoch of 

17. The downward slope (weight decay) did not indicate a good training and cross 

e of the 

nction network was further validated by testing its 

performance. The result of the test perform
 

1

validation performance. The network will be tested to confirm overall performanc

network. The Radial basis fu

ance is presented in Figure 6.21. 
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Figure 6.21: Testing performance of the Radial basis function network  

 

The test performance result is poor. Though with a good mean sum of squares of 0.001, 

and mean absolute error (MAE) of 0.02. The performance is not consistent as the 

normalised mean squared error (NMSE) was 0.98 and linear correlation coefficient was 

0.24. The graph (Figure 6.21) shows the estimated resistance is not closely following the 

actual resistance value at all. The performance of the network validated using data set not 
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seen before by the Radial basis function neural network is presented in Table 6.6 and 

Figures 6.22 respectively.  

 

Table 6.6: Predicted Resistance to Actual Resistance using Radial basis function 

                 neural network type. 
 

Machine 
Type 

 
Applied 

Force (kN) 
 

Weld 
diameter 

(mm) 

R predicted 
mΩ 

 

R actual 
mΩ 

 

Difference 
 
 

% Difference 
 
 

PMS 3 3.7 0.1174 0.1079 0.0095 8.8182 
C-Gun 3 4.4 0.1156 0.1662 -0.0506 -30.429 
Dalex-35 3 4 0.1175 0.089 0.0285 32.024 
Dalex-25 2.46 5.7 0.0945 0.0716 0.023 32.088 
Dalex-35 3 4 0.1175 0.1017 0.0159 15.612 
PMS 2.2 5.3 0.1037 0.1154 -0.0117 -10.143 
Dalex-25 2.46 4 0.1215 0.0739 0.0475 64.314 
Dalex-25 3 3.7 0.1174 0.1015 0.016 15.718 
C-Gun 2.2 4.4 0.116 0.1178 -0.0018 -1.4936 
Dalex-25 2.46 3.6 0.1089 0.084 0.0249 29.596 
Dalex-25 2.46 5.5 0.0899 0.0714 0.0184 25.808 
C-Gun 2.2 3.5 0.1161 0.1053 0.0109 10.34 
Dalex-25 2.46 3.8 0.1152 0.0828 0.0324 39.089 
Dalex-35 3 6.3 0.1037 0.1378 -0.0341 -24.738 
Dalex-25 2.16 5.4 0.1045 0.0578 0.0466 80.637 
C-Gun 3 6.5 0.1029 0.1408 -0.0379 -26.924 
Dalex-25 2.46 3.6 0.1089 0.0889 0.02 22.539 
PMS 2.6 3.8 0.1171 0.1262 -0.0091 -7.2037 
Dalex-25 1.76 4 0.1186 0.0966 0.022 22.776 

 

The table shows the predicted resistance (R) to the estimated resistance, and the 

estimation accuracy. Table 6.6 shows a prediction error of about 1.5% to 80% using real 

data not used for training the network. The graph of Figure 6.22 shows that the 

generalisation is poor, as the predicted resistance is not following the actual resistance.  
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6.4.4   Training with Recurrent Network 
 

Recurrent neural networks was used for training the data set and for predicting output. 

Recurrent neural networks can have an infinite memory depth (33) and thus find 

relationships through time as well as through the instantaneous input space (33). Most real-

world data contains information in its time structure. Recurrent networks are the state of 

the art in nonlinear time series prediction, system identification, and temporal pattern 

classification (33). Though the set of data presented to the network is not a typical time 

series prediction dataset, it is however a time dependent variable event.  

 

The recurrent network architecture used here is made up of 2 input processing elements 

with 1 output processing element as in other earlier architectures used. There are 480 

exemplars, with 1 hidden layer and an input layer Axon. There are 16 processing

lements in the hidden layer and uses TanhAxon transfer function and momentum 
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Figure 6.22: Validation performance of the Radial basis function (RBF) network   

 

 

 

e

learning rule. The output layer consists of BiasAxion Transfer function and conjugate 
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gradient learning rule. 1000 epochs was used for the supervised learning. The network 

architecture design is shown in Figure 6.23. 
 

    
Figure 6.23: Generated Recurrent network architecture design (106)

 

This Recurrent network architecture was trained and cross validated. The result of the 

training performance and cross validation is shown in Figure 6.24.  

 

 

igure 6.24: Training performance of the Recurrent neural network   
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The recurrent network training performance result gave a mean square error output of 

about 0.08 at a training epoch of 830 and cross validation error of 0.08 as well at an 

e 1 wa weight y) is sub ial bu go

network was further tested to confirm overall performance. The testing performance

t rrent ne rk is prese  in Figure 6.
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Figure 6.25: Testing performance of the Recurrent network architecture.   

 

The test performance result is considered generally poor like with the radial basis 

function. It though showed a good mean sum of squares of 0.001, and mean absolute 

error (MAE) of 0.03. The performance is however not consistent, as the normalised mean 

squared error (NMSE) achieved was 0.96, with linear correlation coefficient of 0.2. The 

graph (Figure 6.25) shows the estimated resistance not closely following the actual 

resistance value. The performance of the network validated using data set not seen before 

by the Recurrent neural network is presented in Table 6.7 and Figures 6.26 respectively.  

 

 

Table 6.7: Predicted Resistance to Actual Resistance using Recurrent   
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                 neural network type. 
 

Machine 
Type 

 
Applied 

Force (kN) 
 

Weld 
diameter 

(mm) 

R predicted 
mΩ 

 

R actual 
mΩ 

 

Difference 
 
 

% 
Difference 

 
PMS 3 3.7 0.118 0.108 0.01 9.238
C-Gun 3 4.4 0.106 0.166 -0.0603 -36.3
Dalex-35 3 4 0.11 0.089 0.0213 23.93
Dalex-25 2.46 5.7 0.101 0.072 0.0294 41.06
Dalex-35 3 4 0.116 0.102 0.0146 14.31
PMS 2.2 5.3 0.109 0.18 -0.0715 -39.7
Dalex-25 2.46 4 0.11 0.115 -0.0058 -5
Dalex-25 3 3.7 0.119 0.074 0.0449 60.68
C-Gun 2.2 4.4 0.115 0.101 0.0137 13.47
Dalex-25 2.46 3.6 0.108 0.118 -0.01 -8.52
Dalex-25 2.46 5.5 0.118 0.084 0.0335 9.883
C-Gun 2.2 3.5 0.104 0.071 0.0326 45.66
Dalex-25 2.46 3.8 0.121 0.105 0.016 15.2
Dalex-35 3 6.3 0.116 0.083 0.0329 39.71
Dalex-25 2.16 5.4 0.1 0.138 -0.0377 -27.4
C-Gun 3 6.5 0.115 0.058 0.0571 98.68
Dalex-25 2.46 3.6 0.118 0.185 -0.0665 -36
PMS 2.6 3.8 0.101 0.141 -0.0397 -28.2
Dalex-25 1.76 4 0.127 0.089 0.0379 42.7

 

 

The results in Tab  6le .7 shows a prediction error of about 5% to 98% using real data set 

he graph of Figure 6.26 confirms this high prediction 

 not 

following th

 

not used for training the network. T

inaccuracy. It is seen in the graph (Figure 6.26) that the predicted resistance is

e actual resistance accurately.  
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er, though with high prediction 

accuracy. To further reduce this substantial error in the prediction of the sample 

resistance, the neural network architecture will be refined by increasing the number of 

input parameters (33).  
 

Table 6.8: Comparism of performance results of the four neural network types used. 

Neural 

Network Type 

Training MSE Testing MSE Linear 

Correlation 

Coefficient ( r ) 

%Error Range 
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Figure 6.26: Validation performance of the Recurrent network   
 

A summary of the performance of all four neural network architectures used are 

presented in Table 6.8. Of the four neural network architectures compared here the 

multilayer perceptron (MLP) is the best perform

in

Generalized 

Feed Forward 

0.045 0.001 0.52 3% - 73% 

Multilayer 0.047 0.008 0.60 1% - 65%

Perceptron 

 

Redial basis 

Function 

0.067 0.001 0.24 1.5% - 80% 

Recurrent 

Network 

0.079 0.001 0.52 5% - 98% 

Ωm
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6.5 Improving Prediction Accuracy using Multilayer Perceptron 

Neural Network Architecture 
  
To further reduce the prediction error, the number of parameters to be used as inputs to 

the neural network architecture was increased by including the parameters K, M and Ro 

from the empirical model to the earlier inputs which were desired weld diameter and 

applied electrode force. Linearised sample resistance is the output. The multilayer 

perceptron architecture considered a better performer of the four neural network 

architectures tested was selected. 

 

The architecture design is a 5 input processing elements, 1 output processing elements, 

488 exemplars and 1 hidden layer Multilayer perceptron architecture. The hidden layer 

has 8 processing elements with TanhAxon transfer function, using momentum learning 

tput layer uses BiasAxon transfer function with conjugate gradient learning rule. The ou

rule. The architecture is shown in Figure 6.27. 
 

 
Figure 6.27: Generated Multilayer perceptron network with more input parameters (106).   
 

The network was trained and cross validated. The result of the training performance and 

cross validation is shown in Figure 6.28. 
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igure 6.28: Training performance of the MLP network with more input parameters.   

raining performance result of this multilayer perceptron architecture is better than the 

F

 

T

previous. The training mean square error output was 0.0004 at a training epoch of 3000 

and 0.0004 for the cross validation error output at an epoch of 3000. The downward slope 

(weight decay) is very good. The network will be further tested to confirm overall 

performance. The testing performance of the multilayer perceptron with more input 

parameters is presented in Figure 6.29. 
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Figure 6.29: Testing performanc  M w th t p s.  

 

he test performance result of this network is consistent with the training performance.  

resistance is accurately following the actual resistance. The performance of 

 was validated using data set not seen before by the multilayer perceptron. 

The result is presented in Table 6.9 and Figures 6.30 respectively.  

 

 

 

 

 

 

e of the LP net ork wi  more inpu arameter

)(m
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Ω

T

The Mean sum of squares is 2.28614E-06, mean absolute error (MAE) is 0.001173088. 

The normalised mean squared error (NMSE) is 0.00234, with linear correlation 

coefficient of 0.99884. The performance is outstanding. The graph (Figure 6.29) shows 

the estimated 

the network
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Table 6.9: Predicted Resistance to Actual Resistance using Multilayer perceptron with 

more input parameters.   

 
Machine 

Type 
Force 
(kN) 

Diameter 
(mm) 

K 
 

M 
 

Ro 
 

R 
predicted 

mΩ 
R Actual 

mΩ 

% 
Difference

 
PMS 3 5.9 0.46 0.0356 0.0841 0.0908 0.09076 0.04676 

C-Gun 3 4.2 0.697 0.0148 0.0837 0.113799 0.11102 2.50259 
Dalex-35 3 4.4 0.516 0.0314 0.0891 0.097824 0.09886 -1.0435 
Dalex-25 3 4.4 0.61 0.0213 0.0847 0.107378 0.10787 -0.45268 
Dalex-25 2.46 3.6 0.428 0.047 0.1268 0.088637 0.08736 1.45592 

PMS 2.6 3.3 1.1 0.0384 0.2107 0.194962 0.19403 0.48232 
Dalex-35 3 4 0.554 0.0266 0.0818 0.100916 0.10237 -1.41895 

PMS 3 3.7 0.455 0.0332 0.0898 0.088333 0.08914 -0.90842 
C-Gun 2.6 4 0.879 0.0345 0.1695 0.159946 0.15926 0.43179 
PMS 3 3.9 0.464 0.0299 0.0981 0.088331 0.08964 -1.45683 

Dalex-25 2.16 5.4 0.38 0.0646 0.1102 0.080149 0.08 0.18339 
Dalex-25 1.76 5.1 0.39 0.0644 0.1475 0.083353 0.08199 1.65961 
C-Gun 2.2 4.5 0.693 0.0197 0.0961 0.119565 0.11796 1.3594 

Dalex-35 2.2 3.7 0.78 0.025 0.1002 0.110687 0.11458 -2.88982 
Dalex-25 2.16 3.8 0.448 0.0438 0.1301 0.091104 0.09091 0.21214 
C-Gun 3 5.6 0.436 0.0459 0.08 0.087492 0.08862 -1.27284 

Dalex-25 2.2 5.6 0.55 0.0332 0.093 0.106392 0.10591 0.45528 
PMS 2.6 6 0.402 0.0607 0.1182 0.085126 0.08402 1.31829 

Dalex-25 1.76 5.3 0.388 0.0702 0.1323 0.083277 0.08194 1.63661 

 
Dalex- 25 2.16 4.5 0.398 0.0564 0.1203 0.083765 0.08306 0.85326 

The network was validated using real data set not used for training the network. The 

result in Table 6.9 shows a good prediction with error of 0.1% to 2.9%. Similarly the plot 

of the actual predicted resistance to the predicted gave a very good match as is shown in 

Figure 6.30.  
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ance of the Multilayer perceptron neural   

This neural network model for predicting sample resistance accurately tracked the actual 

sample resistance. The performance of the network was outstanding with a prediction 

sis will be conducted carried out, to 

lish the contribution of each of these inputs to the output. 

.6 Sensitivity analysis of the Result  

rried out to determine the influence of these parameters to the 

ple resistance. Sensitivity Analysis (34)

• First, train the network with all inputs 

• Second, compute the relative importance of each input to the overall response -- 

called sensitivity 

Ωm

Figure 6.30: Validation perform

                     Network Using Production Dataset.  

 

accuracy of 97% to 99.9%. Sensitivity Analy

estab
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Sensitivity analysis of these parameters (weld diameter, applied electrode force, K, M and 

Ro parameters) was ca

sam



• In NeuroSolutions, this is done by fixing the weights, adding a dither to each 

input, and computing the difference in the result 

– Controller has a sensitivity button 

– Criterion has a sensitivity access point 

• This is the sensitivity for the current solution. Should average over multiple 

training runs. 

 

 

 

An output y(k) at an arbitrary time step k influences both the plant dynamics and the 

inverse dynamics (34). The Delta Rule was used for computing the sensitivity of the output 

to each weight using the chain rule as follows (34):  
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This equation was used for computing the relative importance of each input to the overall 

sponse and determining the difference in the result using neurosolution software 

ted in Figure 6.31.  

re

package (92). The result of the sensitivity analysis is presen

 

Sensitivity about the Mean 

Force (1.1%)
Diameter (0.7%)
K (32.7%)
M (60%)
Ro (5.5%)

 
 

Figure 6.31: Sensitivity Analysis of the Input Parameters to the Output. 

 

model are shown to have strong influence on the 

utput, Figure 6.31. Applied electrode force contributed 1.1% to the output sample 

sistance. Desired weld diameter 0.7% and parameter Ro 5.5%. The parameters K and M 

 32.7% and 

0% respectively to the output (sample resistance). These two parameters are considered 

these mentioned process parameters. 

The result shows the contribution of each input to the overall resistance output. The 

parameters estimated from the empirical 

o

re

estimated from the empirical model (equation 14) show large contributions of

6

critical for estimating the sample resistance.  

 

Having developed a model that can predict sample resistance, the intension of this 

research is to be able to use this predicted sample resistance in combination with applied 

electrode force to determine the effective weld current (RMS) that will be required for a 

desired weld diameter. The overall welding process will therefore be modelled using 
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6.7 Modelling the Overall Welding Process  

g process was modelled in other to determine required effective weld 

urrent needed to achieve desired weld diameter in any of the resistance spot welding 

termine the 

apability of the neural network to predict weld quality (weld diameter) using the process 

para hich m predicte ynamic res

app de force and effective weld current. Based on the performan

neura odel feedfor wa

be ct the e weld curre ed to achieve  weld quality  

d  welding machine. Such that the output of the neural network model is 

effective weld current and the inputs are ted sample ce, applied ele  

for ed weld diameter. This inversed feedforward neural network model was 

us ive est and contro resistance spot welding process. S t 

for any desired weld diameter it was possible to determine the required effective weld 

cur ve the weld quality.  

 

esult of sensitivity analysis carried out to establish the relationship between the inputs to 

e output parameters is also presented.  

 

The overall weldin

c
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6.7.1 Neural Network Model for the Overall Welding Process  
 

Four neural network types which are generalized feed forward, multilayer perceptron 

(MLP), radial basis function (RBF) and recurrent neural network architectures as 

previously used were trained and tested using input process parameters which are 

predicted sample resistance, applied electrode force and effective weld current to output 

weld diameter. The neural network architectures were validated using similar dataset not 

used for the training or testing to confirm prediction accuracy of the network. The best 
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performing neural network architecture using least error and prediction accuracy criteria 

was selected (33).  

 

Presented in Table 6.10 is a summary of the performance of each of the neural network 

types considered. 

 

Table 6.10: Comparism of performance results of four neural network types. 

 

Neural 

Network 

Type 

Training MSE Testing MSE Linear 

Correlation 

Coefficient ( r ) 

%Error 

Predicting 

Production Data 

Generalized 0.0129 0.127 0.92 11.5 

Feed Forward 

Multilayer 0.0067 0.050 0.972 7.05 

Perceptron 

Redial basis 

Function 

0.0146 0.1412 0.91 12 

Recurrent 

Network 

0.0154 0.1618 0.91 12 

  

 

From the performance result shown in Table 6.10, the multilayer perceptron (MLP) 

outperformed the other four neural network types. It is therefore chosen as the neural 

network that will be used for developing the predictive controller model for the welding 

process. This multilayer perceptron neural network architecture consists of 3 inputs 

which are predicted sample resistance, applied electrode force and effective weld current, 

with output as weld diameter.  There were 474 exemplars and 2 hidden layers. The first 

idden layer has 11 processing elements, TanhAxon transfer function with momentum 

r 

h

learning rule, the second hidden layer has 5 processing elements, TanhAxon transfe

function with momentum learning rule. The output layer uses BiasAxon transfer function 

with conjugate gradient learning rule. The learning iteration was 3991 epochs, this was 
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because no lower epoch could give a good performance. The figure of the generated 

network architecture is shown in Figure 6.32.  

 

 Figure 6.32: Generated multilayer perceptron (MLP) network architecture design 

 

Result of the network training performance and cross validation is shown in Figure 6.33. 

(106)
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Figure 6.33: Training performance of the multilayer perceptron (MLP) network design. 

The training epoch for best result was at 3991 epochs with a  mean square error output of 

0.0067 for the training and 0.008 for the cross validation as is shown in Figure 6.33. 

Weight decay (downward slope) of the training and cross validation plot is substantial. 
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The network test performance result using data set not seen before by the network is 

presented in Figure 6.34. 
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Figure 6.34: Testing performance of the multilayer perceptron network 

 

The result of the testing shown in Figure 6.34 gives a mean sum of squares of 0.05, mean 

d linear 

his performance is outstanding and consistent with the 

training performance result. The graph in Figure 6.34 shows the estimated weld diameter 

y n tu m a f su

 usin  produc on dataset ot known networ esented  Figures 6. .  

absolute error (MAE) 0f 0.18, normalised mean squared error (NMSE) of 0.06, an

correlation coefficient is 0.97. T

is closel  tracki g cthe a al weld dia eter. The v lidated per orma ce ren lt of the 

net orkw g ti  n to the k is pr in 35
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Table 6.11: Predicted Weld Diameter to Actual Weld 

  
 

achine Force Current Diameter Diameter D

Dalex-25 2.16 7.36 0.0716 5.656 5.8 -0.144 -2.483 
C-Gun 2.2 7.57 0.0874 5.737 5.5 0.237 4.3089 

Dalex-35 3 6.71 0.1813 3.9558 3.8 0.1558 4.1002 
PMS 3 8.18 0.0967 5.8585 6 -0.141 -2.358 

Dalex-25 2.6 8.3 0.0895 5.9558 6 -0.044 -0.737 
PMS 2.6 6.74 0.1001 3.9277 3.9 0.0277 0.7105 

Dalex-25 2.46 6.57 0.0796 4.1165 4 0.1165 2.9116 
Dalex-25 2.46 6.91 0.0749 5.2619 5.4 -0.138 -2.557 
C-Gun 3 6.39 0.108 3.6963 3.6 0.0963 2.6764 
PMS 2.2 6.6 0.1797 3.9005 3.9 0.0005 0.0126 

Dalex-25 3 8.12 0.1101 5.8079 5.45 0.3579 6.567 
Dalex-25 2.16 6.89 0.0792 5.4285 5.6 -0.172 -3.063 
C-Gun 2.6 6.79 0.1253 3.8974 4 -0.103 -2.564 
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Dalex-25 2.46 7.85 0.063 5.8313 5.9 -0.069 -1.165 
D 6.29 0.1949 3.7818 3.7 0.0818 2.2111 alex-35 2.6 
C-Gun 2.6 7.89 0.1119 5.8775 5.6 0.2775 4.9548 

Dalex-25 2.2 5.75 0.1129 3.6247 3.9 -0.275 -7.06 
PMS 3 7.73 0.0955 5.3371 5.5 -0.163 -2.962 

Dalex-25 2.6 7.04 0.1021 4.6689 4.5 0.1689 3.7525 
Dalex- 25 3 7.7 0.0956 5.2567 5.5 -0.243 -4.423 
Dalex-25 3 7.02 0.1073 3.928 4 -0.072 -1.8 
C-Gun 3 7.72 0.0832 5.4812 5.8 -0.319 -5.497 

Dalex-35 3 6.95 0.1076 3.8958 3.9 -0.004 -0.108 
PMS 2.2 7.41 0.1098 5.6851 5.6 0.0851 1.519 

Dalex-25 1.76 6.17 0.0857 4.9997 5.2 -0.2 -3.852 
PMS 2.6 5.92 0.1077 3.5941 3.5 0.0941 2.6889 

Dalex-25 2.6 7.15 0.1636 4.254 4.5 -0.246 -5.466 
Dalex-25 2.16 6.78 0.0811 5.3311 5.5 -0.169 -3.071 
C-Gun 2.6 6.38 0.1255 3.6919 3.85 -0.158 -4.107 
PMS 2.6 6.29 0.1948 3.7816 3.8 -0.018 -0.484 

Dalex-25 2.2 7.77 0.1676 5.9859 5.8 0.1859 3.2054 
Dalex-25 2.16 5.77 0.0908 3.6378 3.6 0.0378 1.0499 
C-Gun 3 7.75 0.079 5.5707 5.8 -0.229 -3.953 

Dalex-25 2.2 7.11 0.1139 5.494 5.4 0.094 1.74 
Dalex-35 2.2 5.98 0.1238 3.6449 3.6 0.0449 1.2471 
Dalex-25 2.46 7.24 0.0741 5.6291 5.5 0.1291 2.3467 
Dalex-25 3 9.29 0.0865 6.1245 6.3 -0.175 -2.785 

PMS 2.6 7.47 0.0983 5.6617 5.5 0.1617 2.9405 
Dalex-25 2.6764 3 6.39 0.108 3.6963 3.6 0.0963 
Dalex- 25 2.2 7.17 0.0938 5.5707 5.9 -0.329 -5.582 
 
It is seen from the table that the prediction error is between 0.01% to 7.05%. That is an 

accuracy of about 99.99% to 93% in the prediction.   

 

6.7.2 Relationship Analysis of the Process Parameters 

stimated sample 

sistance determined from the dynamic resistance and applied electrode force are tested 

measure). This is necessary to confirm the importance of the inputs to the output 

(solution). The neural network was first trained using the selected input parameters, 

followed by computing the relative importance of each input to the overall response. 

Presented in Figure 6.36 is a graph showing the sensitivity of the selected input 

parameters to the output. The result is however based on data correlation, which is a 

 

Sensitivity analysis of the input parameters which are effective current, e

re

to determine their contribution and relationship to the achieved weld diameter (quality 
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linear function and does not necessarily show the true physical importance of the inputs 

to the outputs (33). 

 

Sensitivity about the Mean

Force (12.9%) 
Current (9.2%) 
Resistance (77.9%) 

 
 

Figure 6.36: Sensitivity of the selected inputs parameters to the output. 

 

The result shows that sample resistance significantly influenced the output (weld 

iameter). The input parameters used to determine the output in this neural network 

6.7.2.1 Effect of Dynamic Resistance on Weld Quality 
 

Presented in Figure 6.37 is the relationship between sample resistance and weld diameter. 

d

model are further analyzed to show the relationship between each of the input to the 

output (weld diameter).  
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Figure 6.37: Sensitivity Result of the Varied Input Resistance to Weld Diameter 

e contributed 

e most to the achieved weld diameter. This extreme influence of the resistance to the 

 welding time steps are presented.  
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Figure 6.37 shows that, in comparing the two parameters, sample resistanc

th

achieved weld diameter means that a small change in dynamic resistance during the spot 

welding process affects the weld diameter achieved. An increase in dynamic resistance 

leads to a decrease in achieved weld diameter.  

 

To further analyse the effect of resistance on the welding process quality. Calculated 

sample resistance for applied electrode forces 2.2kN, 2.6kN and 3.0kN carried out on all 

the four welding machines over the six
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Figure 6.38: Calculated Sample Resistance welded with C-Gun Machi

 

The result of Figures 6.38 shows that resistance generated in using lower applied 

electrode force of 2.2kN was higher compared to the other two applied electrode forces 

2.6kN and 3.0kN. This is expected because at lower applied electrode force less contact 

exists between the plate surfaces to be welded such that the resistance offered is higher 

compared to the surface under higher applied electrode force (22, 23) like the 2.6 and 3.0kN 

applied electrode forces. This trend is similar to the sample resistance generated in the 

DZ welding machine in Figure 6.39.  

 
 

m
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Figure 6.39: Calculated Sample Resistance welded with DZ Machine 

ith high resistance is a higher chance for generation of heat and fast nugget growth 

eration and slower nugget growth. This is also not an advantage as achieving 

aximum nugget size takes longer and the electrodes in contacts will have enough time 

to absorb some of the heat generated. It is important to use an optimal applied electrode 

force for best results. As shown in Figure 6.39 the resistance achieved in using applied 

electrode force of 2.6kN and 3.0kN  for the C-Gun welding machine are very close. This 

is suggestive of an optimal point between 2.6kN and 3.0kN in welding with C-Gun 

machine.    
 

 

Ω

 

W

which can lead to expulsion of the nugget formed. It is therefore not necessarily 

advantageous to weld at a low applied electrode force. Equally at very high applied 

electrode force, less resistance is offered by contact surface between the plates with lower 

heat gen

m

m
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Figure 6.40: Calculated Sample Resistance welded with Dalex Machine 
 

The calculated sample resistance trend in Dalex machine Figure 6.40 and Figure 6.41 are 

 the previous figures. Figure 6.40, welding using Dalex machine, 

Ωm

slightly different from

there was close overlap between welding at an applied electrode force of 2.2kN and 

2.6kN.  
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Figure 6.41: Calculated Sample Resistance welded with PMS Machine 

 Figure 6.41, welding with PMS machine, the gap between all three applied electrode 

. In all 

e four welding machines, the calculated sample resistance decreases at the later welding 

time steps. 
 

To investigate the effect of welding machines on the sample resistance (calculated), the 

calculated sample resistance at specific applied electrode forces of 2.2kN, 2.6kN and 

pared in all the four welding machines used. Presented in Figures 6.42, 

6.43 and 6.44 respectively are the sample resistance generated at specific applied 

electrode forces in all four welding machines. 
 

Ωm

 

In

forces of 2.2kN, 2.6kN and 3.0kN are very close and overlapping at some points

th

3.0kN are com
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Figure 6.42: Calculated Sample Resistance in all four Machines at 2.2kN Force  
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Figure 6.43: Calculated Sample Resistance in all four Machines at 2.6kN Force  
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Welding Machines at 3.0kN
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ur Machines at 3.0kN Force  

The Figures show consistent behaviour of all the four machines under the applied 

electrode forces of 2.2kN, 2.6kN and 3.0kN. Sample resistance generated with the use of 

the PMS welding machines showed higher sample resistance in all the three applied force 

cases considered. The sample resistance in using PMS welding machine is substantial as 

can be seen by the large gap between the sample resistance lines from this machine 

compared to the other three welding machines. DZ machine, C-Gun and Dalex closely 

followed one another. 

 

The plots of sample resistance in Figures 6.42 to 6.44 shows that for same applied 

electrode force, using same type of sample material and thickness it was not possible to 

generate the same value of dynamic resistance in all the welding machines. This means 

that each welding machine maintained unique but consistent dynamic resistance 

Ωm

 

Figure 6.44: Calculated Sample Resistance in all fo

 

behaviour under particular applied electrode force.  

 

With this unique behaviour it is possible to say that the resistance generated in each 

welding machine is able to provide some information about the welding machine from 



which it was generated. This is very important as it shows that the resistance (electrical 

characteristic parameter) has some machine characteristics information, justifying the fact 

that in using sample resistance to model the welding process, reasonable information on 

the welding machine characteristics are provided as well in the model. Reasonable 

amount of information in the dynamic resistance data therefore exists to be able to give a 

give a good indication about mechanical characteristics of the welding machine, without 

aving to generate specific mechanical characteristics data. The calculated sample 

sistance from the nonlinear halfwave dynamic resistance is considered a strong signal 

e use re for modelling and 

redicting weld diameter (weld quality).  

Applied electrode force affects weld diameter in some ways (94).  Presented in Figure 6.45 

is the effect of varied input force on weld diameter.  

 

h

re

and will b d as one of the inputs in the neural network architectu

p
 

 

6.5.2.2 Effect of Applied Electrode Force on Weld Quality 
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Figure 6.45: Result of the Varied Input Force to Weld Diameter 

The Figure shows, that the varied input force to the weld diameter had almost no 

significant effect on the weld diameter at a low applied electrode force. By increasing the 

applied electrode force to a certain point at about 2.3 kN -2.45 kN the weld starts to 
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respond to the change. Increasing the applied electrode force to above a certain value 

leads to decrease in the achieved weld diameter size. This was explained by De et al (94)  

in welding two plate surfaces at high applied electrode force, a large area of interface is 

established, which reduces the initial contact resistance, thereby reducing the heating and 

nugget growth (94). This means that above an optimum point of applied electrode 

application, the effect becomes detrimental to the weld diameter produced.  

 

 

6.5.2.3 ffect of Weld Current on Weld Diameter 
 

arameter that affects weld diameter. Presented in 

igure 6.46 is a graph showing the effect of varied weld current on weld diameter.  
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Figure 6.46: Result of the Varied Input Current to Weld Diameter 

Figure 6.46 shows some direct relationship between weld diameter and weld current as is 

expected. Increasing the effective weld current leads to an increase in the size of weld 

diameter achieved. This creates opportunity to maximise the size of weld diameter that 
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can possibly be achieved. Increase in the welding current brings about increase in heat 

supply to plate sample welded, leading to a corresponding nugget growth. The graph 

shows that in the welding process increasing the weld current initially had a mild effect 

on the weld diameter with a sudden upward change. This point of change corresponds to 

the point of high resistance drop away from the β  peak point (102) (Figure 6.1). To 

continue increasing the effective weld current above a particular weld diameter will lead 

to expulsion. Optimum welding current that gives good weld quality has to be determined 

and selected in the resistance welding process.    

e cure fit were estimated and 

oodness of fit was carried out to determine the level of error, using the least sum of 

ameter and applied 

lectrode force, it was possible to estimate the resistance for each sample welded. Plotting 

is graph and using it to predict sample resistance for any desired weld diameter in any 

elding machine did not yield accurate result. Neural network technique was employed 

 the prediction to improve the prediction accuracy. Different neural network types and 

rchitectures were investigated. The multilayer perceptron neural network using the 

arameters M, K and Ro as inputs yielded good result such that it was possible to 

ccurately predict resistance for any of the welded sample in an unknown welding 

achine. Sensitivity analysis confirmed the contributory effect of these parameters on the 

output.  

 

 

6.8 Concluding Remarks 
 

An empirical model that best fits the dynamic halfwave resistance curve was developed. 

The best fit parameters M and K for the dynamic resistanc

g

square and root mean square error criteria. This agrees with Ratowinski (89) findings that 

the least sum of squares using an iterative method beginning with a set of initial 

parameter estimates is appropriate for non linear regression expression models. Using the 

model expression the parameters M and K was determined through an iterative process. 

 

In all cases the curve fitting of each of the dynamic resistance curves for each welded 

sample and estimation of the parameters using the model yielded good results. By 

plotting a graph using these parameters M, K and Ro for given weld di

e

th

w

in

a

p

a

m

 159



 

Relationship analysis was carried out on the identified input process parameters that are 

trong signals that affect weld quality. These input parameters are sample resistance, 

effective we  as 

the output. Sample resistance show ence on weld diameter, followed 

y effective current. Applied electrode force did not have much influence on the weld 

uality and above a certain point in the application of the force the effect was detrimental.  

ach of the resistance spot welding machine used gave unique dynamic resistance curve. 

uracy of about 93% to 99.99% was obtained. The 

ext Chapter will present implementation of the predictive controller. 

s

ld current (RMS) and applied electrode force. Weld diameter was taken

ed the strongest influ

b

q

 

E

This shows that the electrical characteristics parameter particularly dynamic resistance is 

able to provide some information on the mechanical behaviour of the machine. This 

behaviour was confirmed using sensitivity analysis carried out to determine the influence 

of these three input parameters (applied electrode force, effective weld current and 

predicted sample resistance) on the output (weld diameter). 

 

Four neural network types which were generalised feed forward neural network type, 

multilayer perceptron neural network, radial basis function neural network and recurrent 

neural network were trained, tested, validated and compared, in other to determine the 

most appropriate for modelling the welding process. Of all four neural networks tested, 

the multilayer perceptron (MLP) neural network which out performed the other three was 

selected and used to model the overall process for predicting weld diameter. Using this 

network architecture, prediction acc

n
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CHAPTER 7 
 

 
DESIGN AND IMPLEMENTATION OF THE PREDICTIVE 

CONTROLLER  
 

 

7.1 Introduction 

 this chapter, the selected neural network which showed best performance in training, 

testing and accurately predicting outcome was used for designing the predictive 

controller. The best performing neural network of all the neural network types tested as 

discussed in Chapter 6 was the feedforward multilayer perceptron (MLP) neural network. 

The inputs were predicted sample resistance, effective weld current and applied electrode 

force and output was weld diameter. However, because effective current is what must be 

controlled in the welding process, the neural network architecture was inversed and used 

in the controller model. This implies that for any desired weld diameter (based on choice 

of good weld) (19), given applied electrode force, and estimated (predicted) sample 

sired weld diameter can be 

redicted using this controller. The controller can be applied online such that the neural 

t also done in real time.  

 

7.2 Design and Development of MLP Neural Network Model 
 

The selected MLP network architecture was used for the design of the predictive 

controller. The feedforward neural network architecture consists of 3 input processing 

elements, 1 output processing element, 474 exemplars with 2 hidden layers. The 

architecture was designed such that desired weld diameter which is usually an output was 

made an input and effective current (originally an input) was made as output. Typically in 

the welding process weld diameter is the output from the combination of the process 

 

In

resistance, the effective weld current (RMS) to achieve the de

p

network training is done in real time and predictive control and adjustment of effective 

weld curren
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parameters used. Effective current is a parameter that can be controlled to give a desired 

weld quality (weld diameter), hence the need to know what effective current that will be 

required for a desired weld diameter. The first hidden layer of the network architecture 

has 11 processing elements and uses TanhAxon transfer function with momentum 

learning rule. The second hidden layer has 5 processing elements, TanhAxon transfer 

function with momentum learning rule. The output layer uses BiasAxon transfer function 

with conjugate gradient learning rule. The learning iteration was 3000 epochs.  

 

The multilayer perceptron network architecture is shown in Figure 7.1  

 

 Figure 7.1: Generated Inverse MLP network architecture 

 

Presented in Figure 7.2 are the performance results of the network training and cross 

validation. 

 

(106)
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Figure 7.2: Testing performance of the multilayer perceptron (MLP) network design. 
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Figure 7.3: Testing performance of the inverse multilayer perceptron network 
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The mean square error output of 0.0063 at 3000 epochs was obtained for the training and 

 shown in Figure 7.3. Weight decay 

ownward slope) of the training and cross validation plot is good. To determine overall 

r f , t  w ith not in

network. Presented in Figure 7.3 is the perfor  result network st. 

 res f the t shown in Figure 7.3 gives a mean of squ 0.08, m

ute or (MA 0.23, no lised me ared er MSE) 1 and li
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Table 7.1: Predicted Effective Weld Current to Actual Effective Weld Current using  

                  Multilayer Perceptron (MPL) network   

 
Machine 

Type 
Force 
(kN) 

 

Resistance 
(mΩ) 

 

Diameter 
(mm) 

 

Predicted 
Current 

(kA) 

Actual 
Current 

(kA) 

Difference 
 
 

% 
Difference 

 
       

Dale 21 x-25 2.16 0.072 5.8 7.329 7.36 -0.031 -0.4
C-Gun 2.2 0.087 5.5 7.140 7.57 -0.430 -5.685 

Dalex-35 3 0.181 3.8 6.863 6.71 0.153 2.287 
PMS 3 0.097 6 8.520 8.18 0.340 4.159 

Dalex-25 2.6 0.089 6 7.981 8.3 -0.319 -3.838 
PMS 2.6 0.100 3.9 6.499 6.74 -0.241 -3.574 

Dale  x-25 2.46 0.080 4 6.485 6.57 -0.085 -1.291
Dalex-25 2.46 0.075 5.4 7.318 6.91 0.408 5.909 
C-Gun 3 0.108 3.6 6.600 6.39 0.210 3.281 
PM  S 2.2 0.180 3.9 6.522 6.6 -0.078 -1.178

Dalex-25 3 0.110 5.45 8.036 8.12 -0.084 -1.030 
Dalex-25 2.16 0.079 5.6 7.173 6.89 0.283 4.108 
C-G  un 2.6 0.125 4 6.673 6.79 -0.117 -1.729

Dalex-25 2.46 0.063 5.9 7.655 7.85 -0.195 -2.486 
Dalex-35 2.6 0.195 3.7 6.567 6.29 0.277 4.411 
C-G -0.119 -1.510 un 2.6 0.112 5.6 7.771 7.89 

Dale 0.326 5.678 x-25 2.2 0.113 3.9 6.076 5.75 
PMS 3 0.096 5.5 7.955 7.73 0.225 2.905 

Dalex-25 2.6 0.102 4.5 7.009 7.04 -0.031 -0.447 
Dalex- 25 3 0.096 5.5 7.955 7.7 0.255 3.312 
Dalex-25 3 0.107 4 7.007 7.02 -0.013 -0.179 
C-Gun 3 0.083 5.8 8.121 7.72 0.401 5.190 

Dalex-35 3 0.108 3.9 6.913 6.95 -0.037 -0.533 
PMS 2.2 0.110 5.6 7.296 7.41 -0.114 -1.538 

Dalex-25 1.76 0.086 5.2 6.536 6.17 0.366 5.930 
PMS 2.6 0.108 3.5 6.115 5.92 0.195 3.301 

Dalex-25 2.6 0.164 4.5 7.176 7.15 0.026 0.361 
Dalex-25 2.16 0.081 5.5 7.106 6.78 0.326 4.814 
C-Gun 2.6 0.125 3.85 6.524 6.38 0.144 2.257 
PMS 2.6 0.195 3.8 6.631 6.29 0.341 5.420 

Dalex-25 2.2 0.168 5.8 7.549 7.77 -0.221 -2.843 
Dalex-25 2.16 0.091 3.6 5.783 5.77 0.013 0.217 
C-Gun 3 0.079 5.8 8.082 7.75 0.332 4.282 

Dalex-25 2.2 0.114 5.4 7.175 7.11 0.065 0.919 
Dalex-35 2.2 0.124 3.6 5.906 5.98 -0.074 -1.234 
Dalex-25 2.46 0.074 5.5 7.374 7.24 0.134 1.846 
Dalex-25 3 0.087 6.3 8.810 9.29 -0.480 -5.162 

PMS 1.559 2.6 0.098 5.5 7.586 7.47 0.116 
Dale -0.675 x-25 2.6 0.122 4.9 7.350 7.4 -0.050 
Dalex- 25 2.2 0.094 5.9 7.463 7.17 0.293 4.085 
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The table shows that the prediction error is between 0.17% and 5.9%. That is an accuracy 

of about 99.83% to 94% for the prediction.  This inverse multilayer neural network 

architecture was used as the process model for the controller design. 

 

 

7.3       Design and Implementation of the Predictive Process Controller 
 

The multilayer perceptron neural network architecture model developed previously was 

used for the design and implementation of the overall predictive process controller. 

resented in Figure 7.5, is the design of the predictive controller using the inverse of the 

d an 

arlier neural network model discussed in Chapter 6. The initial model was used for 

predicting sample resistance given the input parameters M, K and Ro. The predicted 

sample resistance was then used as an input with weld diameter and applied electrode 

force to predict the effective weld current in the controller model.  

 

Figure 7.5: Neural Network Controller Design for Predicting Effective Current 

To make this controller usable, a dialogue box was designed such that it was possible to 

input values into the predictive controller and by the push of a command button obtain 

P

feedforward neural network model for predicting the effective weld current for desired 

weld diameter. The design was made by integrating this inversed MLP model an

e
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M 
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Ne al ur
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the output. This controller form was embedded into an excel application with input values 

from an original neurosolutions (107) breadboard that have been loaded into an 'Input' 

worksheet, generated from the trained and tested neural network models. The network 

output is generated from a digital link library (DLL). On pressing the command button, 

the code used for running the controller becomes active such that the embedded controller 

form automatically calls up (predict) output(s) from the digital link library (DLL). The 

code for running the controller is presented in Appendix D.  

 

Presented in Figure 7.6 is the controller designed form for capturing the inputs; force, 

eter, and parameters K, M and Ro, for predicting sample resistance. (mΩ) weld diam

 

  

)(kN

)(mm

)(mΩ

)(mΩ

Figure 7.6: Controller Model form for predicting Sample resistance 
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Figure 7.7: Controller form for generating network output. 

 online situation new input can trained such that most recent data are used. Figure 7.7 

resents this option of retesting the inputs of the network or just calling up an already 

ained neural network as shown. 

o predict effective weld current the generated (predicted) sample resistance from this 

ontroller form was combined with applied electrode force and desired weld diameter as 

roller form also embedded in an excelXP (107) application for 

fective current as is shown in Figure 7.8.  

 

In
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c
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Figures 7.8: Effective Current Predicted for C-Gun Machine 3.0kN Applied Force 
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The design of the embedded controller used for predicting the effective current (RMS) for 

the welding process is presented in Figure 7.9.  

Figure 7.9: Embedded Controller for Predicting Effective Weld Current [Adapted (34)]  

 

The code used for running the controller form is attached in Appendix E. The inputs 

values which are used for the training, validation and testing were used to create an 

original neurosolutions breadboard loaded into the 'Input' worksheet and used to generate 

outputs from the neural network digital link library (DLL). Like in the first controller the 

'Output' worksheet receives the output values generated by the DLL. 

 

By entering the inputs which are applied electrode force, desired weld diameter and 

sample resistance predicted and pressing the command button it automatically outputs 
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effective weld current required to achieve the desired weld diameter, called up from the 

digital link library stored in a breadboard.  
 

The controller forms are tested with real production data to further confirm their 

performance in terms of prediction accuracy. Data sets which are not known to the neural 

networks were randomly selected from all the machines and effective weld current for the 

desired weld diameter were predicted using the neural network predictive controller form. 

The predicted result was compared to the actual production data obtained for the desired 

weld diameter. The prediction accuracy in predicting the effective current was 

determined for all the welding machines and applied electrode forces used. The results of 

the prediction grouped by the machine types, for different applied electrode forces are 

presented Table 7.2.  
 

Table 7.2:  Prediction of Effective Weld Current for Different Machines and Applied  
Electrode Force 
 

Applied Electrode 

Force (kN) 

Welding 

Machine Type 

Predicted Weld 

Current (kA) 

Actual Weld 

Current 

(kA) 

Prediction 

Accuracy 

3.0 C-Gun 6.704 6.48 96.55% 

2.6 C-Gun 7.985 8.29 95.29% 

2.2 C-Gun 7.122 7.10 99.66% 

1.76 Dalex 5.383 5.18 96.86% 

2.46 Dalex 6.388 6.58 97.04% 

3.0 Dalex 8.359 8.49 97.97% 

2.2 PMS 6.475 6.35 98.08% 

2.6 PMS 7.986 7.68 95.28% 

3.0 PMS 8.963 9.36 93.88% 

3.0 DZ 7.326 7.61 95.61% 

2.6 DZ 8.089 8.32 96.43% 

3.0 DZ 6.074 6.49 93.58% 

The forms (dialogue box) of the neural networks on which each of the result was 
generated are presented in Appendix F.    
 
 

 170



 
7.4 Concluding Remarks 
 

Predictive controller design was developed for the sample resistance neural network 

model needed for predicting the sample resistance. This sample resistance was used as an 

input in the overall process predictive controller. The multilayer neural network type was 

used, as it was the best performer of the four neural networks tested. The network 

architecture consists of five inputs and one output. The inputs were applied electrode 

force, weld diameter and the parameters M, K and Ro. M, K and Ro were determined 

using the model expression that curve fitted the non linear dynamic resistance curve. The 

controller was embedded in an ExcelXP and calls up an output when an input is entered 

and command button pressed (activated).  

  

Implementing the neural network model for predicting effective weld current output was 

similar to the sample resistance prediction controller. A multilayer perceptron type neural 

network, which was the best performing neural network, was selected and embedded into 

an excelXP application. The initial network architecture consists of three inputs and one 

output. The inputs were applied electrode force, effective weld current and predicted 

sample resistance. The output was the weld diameter. This network architecture was 

inverse such that applied electrode force, predicted sample resistance and weld diameter 

were used as inputs and effective weld current as output such that for any desired weld 

diameter, the effective weld current to achieve it can be determined. This is because the 

weld current is the parameter that can be controlled during the welding process.  

 

This inverse neural network was used for implementing the predictive controller, such 

that by entering the inputs which are applied electrode force, desired weld diameter and 

sample resistance predicted and pressing the command button it automatically outputs 

effective current required to achieve the desired weld diameter, called up from the digital 

link library stored in a breadboard. Accuracy of the prediction was checked by predicting 

weld current output for production data set not known to the neural network. The 

prediction accuracy ranged between about 93.5% and 99.6%. The next Chapter presents 

full conclusion of the findings in this research. 
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CHAPTER 8 

 

CONCLUSIONS  
 
8.1 Introduction 
 
This final chapter highlights the major conclusions made in this study and the future work 

that could be attempted as a direct result of this study. The work is seen as having a 

positive influence on the future of resistance spot welding and application of neural 

network in developing predictive controller for desired spot weld quality reproducibility. 

Work directly pertaining to this study includes four articles that have been developed and 

are being reviewed for publication. The abstracts are presented in Appendix G, H, I and J.  

 

 

8.2 Conclusion on Findings 
 

The conclusions arising from this study are as follows: 

 

1. Electrical parameter data set generated from the resistance spot welding process was 

sufficient data in combination with applied electrode force for modelling the welding 

process and predicting weld quality. The model developed was used in a predictive 

process controller to determine required effective current for desired weld diameter (weld 

quality) in any of the resistance spot welding machines. The input parameters used were 

predicted sample resistance from the half wave peak dynamic resistance generated, 

applied electrode force and the desired weld diameter, outputting required effective 

current (RMS).  

 

The relationship analysis shows that the sample resistance generated in each welding 

machine used maintained consistent behaviour for all the applied electrode force ranges. 

This gives unique indication of the mechanical characteristic of the welding machine. It is 

concluded that the electrical parameter data have information on mechanical 

characteristic enough to model the resistance spot welding process and to good accuracy 
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predict weld quality (weld diameter). Using the electrical parameter data in the process 

model and in the predictive controller precludes the need to generate additional costly 

mechanical parameter data from the resistance spot welding machines for the process 

modelling. This verifies the argument in literature as to which of electrical and 

mechanical parameter data are most appropriate for modelling the resistance spot welding 

process. 

 

2. The nonlinear dynamic resistance plot was curve fitted using an empirical three 

parameter equation expression given as: 

 

 5.0
5.1 )(

NcRo
NcMK

RoNcMKR ×+
×+

+××
=     (6.14)   

     

R is the sample resistance for each sample welded, Ro is the initial dynamic resistance 

value at step one welding halfwave cycle.  is the number of halfwave cycles, cN K  and 

M  are unknown parameters that are determined through an iterative process of the curve 

itting. It can also be calculated at the f β  peak point of 0/ =dNcdR

ple resistance 

and by taking the 

second order partial derivative of the equation. The sam  can be 

estimated using this model equation. Estimating sample resistance using plots of the 

parameters

)(R

M , K  and  for a given weld diameter and applied electrode force read off 

from developed graphs made of these parameters for a specific machine yielded an 

accuracy of about 85% to 99%. However, when machine identifiers were excluded so that 

sample resistance can be predicted for any unknown welding machine, maximum 

prediction error of about 149% was observed.   

   

3. Neural network capability was employed to improve the prediction accuracy of the 

empirical model for estimating sample resistance. Four neural network types which are 

generalized feed forward neural network, multilayer perceptron (MLP), recurrent network 

and radial basis function (RBF) neural network were trained and tested to find the one 

with least error and best prediction capability to use for the estimation.  

oR
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The networks architecture which consists of two inputs and one output which were weld 

diameter and applied electrode force as inputs and sample resistance as the output were 

trained tested and validated. The best performing neural network type with this 

architecture was the multilayer perceptron (MLP) with maximum estimation error of 

about 65%, an accuracy of about 35%.  

 

To overcome this unacceptable prediction level, multilayer perceptron neural network 

with inputs made up of weld diameter, applied electrode force, M , K  and  parameters 

from the empirical model expression was used to train and test th r 

perceptron neural network architecture prediction performance 

mean square error in training and cross validation of 0.00037 and 0.000390 with linear 

correlation coefficient in testing of 0.999 and maximum estim

3%. This is an accuracy of about 99.9% to 97%. This model was selected for the design 

and implementation of the controller for predicting overall samp

analysis carried to confirm the influence of the parameters to the output (sample 

resistance) shows that the parameter 

oR

e network. Multilaye

was excellent. It yielded a 

ation error of about 0.1% to 

le resistance. Sensitivity 

M  from the model expression is the most 

contributor, followed by K  and . Applied electrode and weld diameter had little effect. 

Development of the models and accurately predicting sample resistance in the resistance 

spot welding process is a unique contribution of this work to the body of knowledge.  

 

4. Applied electrode force, dynamic resistance and effective weld current are presented as 

useful and strong input signals that can be used to model the resistance spot welding 

process as they all have significant relationship with weld diameter (weld quality). The 

effect of applied electrode is not so significant up to a point. Above a certain point the 

effect is significant and detrimental to the achieved weld diameter. Optimum applied 

electrode force value does exist for best yield, for this range of forces considered above 

about 2.45 kN the effect is seen as detrimental. There is direct relationship between 

effective current and achieved weld diameter. Increasing effective current achieves bigger 

size weld diameter all other conditions kept constant. Sample resistance has very 

significant effect on weld diameter. There is inverse relationship between the weld 

diameter and resistance. This work further verifies this understanding in the literature, on 

the relationship between these spot welding parameters. 

oR
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5. Four neural network types were trained, tested and validated to determine the best 

performing neural network to use for the resistance spot welding process model. The 

Multi layer perceptron (MLP) neural network type used outperformed the others. The 

Multi layer perceptron (MLP) neural network architecture used as the process model 

consists of three inputs which are applied electrode force, dynamic resistance and 

effective weld current with weld diameter as the output. The performance result gave a 

mean square error in training and cross validation of 0.0067 and 0.05 with linear 

correlation coefficient in testing of 0.972 and maximum estimation error of about 7%. 

The predicted output from this model closely followed the actual observation. However 

because the parameter that can be easily controlled which affects weld diameter is 

effective current, the neural network architecture was inverse such that applied electrode 

force, weld diameter and sample resistance were used as inputs and effective current as 

output. So for any desired weld diameter, using a particular applied electrode force and 

sample resistance, the required effective current can be predicted. 

 

6. The two multilayer perceptron neural network architectures, a forward form and an 

inverse form developed was employed for the design of the controllers. One controller 

was for predicting sample resistance using the parameters from the empirical model and 

another for predicting effective weld current required for any desired weld diameter. The 

controllers were implemented by embedding both controller forms in an excelXP 

application. When the inputs are entered and the command button on the controller form 

applied, it generates outputs from the neural network digital link library (DLL).  

 

The controller designed using the inverse neural network model was tested with data 

which was not used during the training process and for data it had not seen before. The 

result yielded accurate, reliable, and repeatable prediction. The controller was found to be 

predicting well to an accuracy of about 93.5 to 99.9%. This controller is appropriate in 

this application problem. This is a unique contribution that has not been done before. 

This work presents the possibility of employing the developed empirical model used for 

predicting sample resistance and the inverse multilayer perceptron neural network 

predictive controller model for predicting effective weld current (RMS) for any desired 
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weld diameter in any new resistance spot welding machine. Boundary condition will be 

the use of the same material (galvanised low carbon steel) with thickness of 0.88 mm. 

Other unique identifiers like mechanical characteristic need not be known to be able to 

predict weld quality using this controller for any new resistance spot welding machine, 

for this material type and thickness.  

 

To obtain an accurate prediction using this controller it should be ensured that use of 

worn out electrodes are avoided, as data from completely worn out electrodes were not 

used in building and designing the process model and predictive controller. Copper 

electrode of material type A16 with electrode wear class V1 (transition state 1) 

corresponding to 900 to 1700 spot welds made with the electrode is the range used in this 

research. The welding cycle time used in the design of this model is 20 halfwave cycles. 

The controller can be used online or off-line.  

 

 

8.3 Future Work 
 

During the investigation undertaken in this study some other alternatives and ideas have 

emerged but unfortunately not all these could be investigated in this study 

 

These alternative suggestions are: 

 

1. The need to investigate the effect of other types of materials and thickness on the 

resistance spot welding process and to develop model(s) for predicting weld quality for 

such conditions. This will help confirm the effect of material types and changes in 

material thickness on weld quality and will give flexibility in the selection of materials 

types and thickness for use in the resistance spot welding.  

 

2. There is the need to investigate and model the relationship between the failure modes 

of the welded samples to shear stress and the torque angle at the point of failure. This is 

because resistance spot welds under shear stress fails at different angles. A model should 
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be used to establish these relationships and to predict the shear stress and torque angle at 

which a spot weld can fail. 
 

3. The developed predictive controller design from this work should be implemented on 

actual welding machine in other to evaluate and confirm its design performance in real 

welding condition. 
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APPENDIX A 

 

DYNAMIC VOLTAGE AND CURRENT DATASET 

 

 

Table A1: Step-1 (HW 1-20): Halfwave Voltage Values for C-Gun Machine at Applied  

Force of 2.2kN  
 

Voltage 
values 
step-1 HW 1 (V) HW 2 (V) HW 3 (V) HW 4 (V) HW 5 (V) HW 6 (V) 

Specimen 1 1.008455 -1.0869723 1.03544545 -1.239099 1.18021 -1.39123 
Specimen 2 1.0403527 -1.0845186 1.02808439 -1.236645 1.17776 -1.39368 
Specimen 3 1.05507469 -1.1066015 1.03299177 -1.24155 1.18267 -1.40104 
Specimen 4 1.09678697 -1.1458602 1.06979668 -1.29799 1.22192 -1.43785 
Specimen 5 1.001094 -1.1115089 1.04526 -1.2587286 1.19493 -1.4084 
Specimen 6 1.04771 -1.1016943 1.0379 -1.2513676 1.19003 -1.41086 
Specimen 7 1.0747 -1.121323 1.04526 -1.2660897 1.2072 -1.43539 

Specimen 8 1.06488931 
-

1.12132358 1.05507469 -1.26854 1.20966 -1.42803 

Average: 1.04863283 -1.1099753 1.04372662 -1.2575012 1.1955475 -1.41331 
Standard 
Deviation 0.0301 0.0187 0.0126 0.0190 0.0149 0.0172 

       
 

step-1 
(Continue) HW 7 (V) HW 8 (V) HW 9 (V) HW 10 (V) HW 11 (V) HW 12 (V) 
Specimen 1 1.26364 -1.44766 1.31271 -1.4722 1.32498 -1.46974
Specimen 2 1.271 -1.46238 1.32988 -1.49919 1.35197 -1.50409
Specimen 3 1.28817 -1.47465 1.3397 -1.50655 1.35688 -1.50655
Specimen 4 1.31271 -1.49919 1.35197 -1.51391 1.35688 -1.50164
Specimen 5 1.29553 -1.47465 1.33234 -1.48447 1.33725 -1.4771
Specimen 6 1.28817 -1.48201 1.34951 -1.52372 1.3716 -1.52618
Specimen 7 1.31026 -1.50655 1.36669 -1.5409 1.38877 -1.54581
Specimen 8 1.3078 -1.50164 1.35933 -1.53354 1.37896 -1.53599

Average: 1.29216 -1.4810912 1.34276625 -1.50931 1.35841125 -1.5083875
Standard 
Deviation 0.0170 0.0192 0.0164 0.0221 0.0198 0.0250

       
 

step-1 
(Continue) HW 13 (V) HW 14 (V) HW 15 (V) HW 16 (V) HW 17 (V) HW 18 (V) 
Specimen 1 1.32498 -1.45993 1.32498 -1.44521 1.32007 -1.43294
Specimen 2 1.35688 -1.48937 1.34951 -1.46974 1.34215 -1.45748
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Specimen 3 1.35688 -1.49183 1.34951 -1.4722 1.3397 -1.45502
Specimen 4 1.34951 -1.48201 1.3397 -1.45993 1.32498 -1.4403
Specimen 5 1.32988 -1.45748 1.32007 -1.4403 1.31026 -1.42312
Specimen 6 1.37405 -1.51391 1.36914 -1.49673 1.35688 -1.47465
Specimen 7 1.39123 -1.53354 1.38632 -1.51636 1.38141 -1.50409
Specimen 8 1.37896 -1.52372 1.3765 -1.509 1.36914 -1.49673

Average: 1.35779625 -1.4939737 1.35196625 -1.47618375 1.34307375 -1.4605412
Standard 
Deviation 0.0217 0.0262 0.0223 0.0266 0.0231 0.0274

   
 

step-1 
(Continue) HW 19 (V) HW 20 (V) 
Specimen 1 1.31516 -1.42067
Specimen 2 1.33234 -1.44275
Specimen 3 1.32988 -1.4403
Specimen 4 1.31516 -1.42558
Specimen 5 1.30044 -1.41086
Specimen 6 1.34951 -1.46238
Specimen 7 1.37405 -1.49183
Specimen 8 1.36424 -1.48201

Average: 1.3350975 -1.4470475
Standard 
Deviation 0.0240 0.0274

 

 

Table A2: Step-2 (HW 1-20): Halfwave Voltage Values for C-Gun Machine at Applied  

Force of 2.2kN  
 

Voltage 
values 
step-2 HW 1 (V) HW 2 (V) HW 3 (V) HW 4 (V) HW 5 (V) HW 6 (V) 

Specimen 1 1.09678 -1.21702 1.23665 -1.50409 1.44275 -1.65131
Specimen 2 1.0894259 -1.19248 1.14095 -1.38141 1.32007 -1.53599
Specimen 3 1.109055 -1.19248 1.15567 -1.40349 1.33725 -1.55562
Specimen 4 1.1262309 -1.194933 1.15322 -1.39859 1.33725 -1.55808
Specimen 5 1.13604557 -1.21947 1.16058 -1.39859 1.3397 -1.56053
Specimen 6 1.104147 -1.1998407 1.15322 -1.39613 1.3397 -1.56298
Specimen 7 1.08451867 -1.1703968 1.12868 -1.38141 1.33234 -1.55071
Specimen 8 1.12623095 -1.1998407 1.15077 -1.39368 1.33234 -1.56544

Average: 1.10905425 -1.1983076 1.1599675 -1.40717375 1.347675 -1.5675825
Standard 
Deviation 0.0176 0.0144 0.0304 0.0374 0.0364 0.0328
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step-2 

(Continue) HW 7 (V) HW 8 (V) HW 9 (V) HW 10 (V) HW 11 (V) HW 12 (V) 
Specimen 1 1.509 -1.69303 1.53109 -1.68812 1.52863 -1.67585
Specimen 2 1.41086 -1.59488 1.44275 -1.60224 1.4403 -1.58752
Specimen 3 1.41822 -1.6096 1.45502 -1.61696 1.45502 -1.60224
Specimen 4 1.41822 -1.61206 1.45257 -1.61451 1.45011 -1.59979
Specimen 5 1.42558 -1.61942 1.46729 -1.63414 1.46974 -1.62187
Specimen 6 1.43049 -1.62432 1.46974 -1.62678 1.46238 -1.6096
Specimen 7 1.42312 -1.61206 1.45748 -1.61206 1.45011 -1.59243
Specimen 8 1.42067 -1.62923 1.45993 -1.6415 1.46484 -1.62678

Average: 1.43202 -1.624325 1.46698375 -1.62953875 1.46514125 -1.61451
Standard 
Deviation 0.0296 0.0277 0.0255 0.0251 0.0256 0.0264

   
 

step-2 
(Continue) HW 13 (V) HW 14 (V) HW 15 (V) HW 16 (V) HW 17 (V) HW 18 (V) 
Specimen 1 1.51882 -1.65622 1.52127 -1.6415 1.51146 -1.61206
Specimen 2 1.43539 -1.56789 1.42803 -1.55071 1.41576 -1.53354
Specimen 3 1.44766 -1.58507 1.44275 -1.56298 1.43049 -1.54581
Specimen 4 1.44766 -1.58507 1.44521 -1.57034 1.43785 -1.55562
Specimen 5 1.46484 -1.60224 1.45748 -1.58261 1.45502 -1.56544
Specimen 6 1.45502 -1.59243 1.44766 -1.5728 1.43539 -1.55071
Specimen 7 1.4403 -1.57034 1.42803 -1.54581 1.41331 -1.52372
Specimen 8 1.45993 -1.6096 1.45011 -1.58752 1.43785 -1.56544

Average: 1.4587025 -1.5961075 1.4525675 -1.57678375 1.44214125 -1.5565425
Standard 
Deviation 0.0245 0.0263 0.0277 0.0279 0.0290 0.0250

   
 

step-2 
(Continue) HW 19 (V) HW 20 (V) 
Specimen 1 1.48692 -1.58261
Specimen 2 1.4084 -1.51146
Specimen 3 1.42558 -1.52863
Specimen 4 1.44521 -1.54826
Specimen 5 1.45257 -1.54826
Specimen 6 1.42803 -1.53599
Specimen 7 1.39859 -1.50409
Specimen 8 1.42803 -1.54826

Average: 1.43416625 -1.538445
Standard 
Deviation 0.0258 0.0230

 

Table A3: Step-3 (HW 1-20): Halfwave Voltage Values for C-Gun Machine at Applied  

Force of 2.2kN  

 193



 
 

Voltage 
values 
step-3 HW 1 (V) HW 2 (V) HW 3 (V) HW 4 (V) HW 5 (V) HW 6 (V) 

Specimen 1 1.1286845 -1.271 1.28081 -1.54581 1.4722 -1.68321
Specimen 2 1.12132 -1.28817 1.28081 -1.5409 1.47465 -1.69057
Specimen 3 1.09924066 -1.26364 1.27345 -1.53599 1.45748 -1.67094
Specimen 4 1.1458601 -1.29308 1.30044 -1.56544 1.48692 -1.70039
Specimen 5 1.153221 -1.29799 1.29553 -1.55808 1.48447 -1.69548
Specimen 6 1.1286845 -1.27836 1.28572 -1.54335 1.47465 -1.68812
Specimen 7 1.1605821 -1.28327 1.29553 -1.55317 1.47465 -1.67585
Specimen 8 1.11887 -1.2685433 1.28327 -1.54581 1.47465 -1.69057

Average: 1.13205786 -1.280506 1.286945 -1.54856875 1.47495875 -1.6868912
Standard 
Deviation 0.0188 0.0115 0.0087 0.0091 0.0083 0.0092

       
 

step-3 
(Continue) HW 7 (V) HW 8 (V) HW 9 (V) HW 10 (V) HW 11 (V) HW 12 (V) 
Specimen 1 1.53599 -1.7102 1.54335 -1.68812 1.52863 -1.65868
Specimen 2 1.54335 -1.71756 1.54826 -1.69793 1.53599 -1.67094
Specimen 3 1.52863 -1.70039 1.53109 -1.67585 1.51391 -1.64395
Specimen 4 1.54581 -1.71511 1.54581 -1.69303 1.52863 -1.66604
Specimen 5 1.54826 -1.7102 1.54335 -1.68076 1.52127 -1.65131
Specimen 6 1.5409 -1.70775 1.53845 -1.6783 1.51636 -1.64641
Specimen 7 1.53599 -1.70284 1.5409 -1.67585 1.50655 -1.6415
Specimen 8 1.53599 -1.70284 1.53599 -1.6783 1.51636 -1.64641

Average: 1.539365 -1.7083612 1.5409 -1.6835175 1.5209625 -1.653155
Standard 
Deviation 0.0060 0.0057 0.0052 0.0079 0.0090 0.0102

       
 

step-3 
(Continue) HW 13 (V) HW 14 (V) HW 15 (V) HW 16 (V) HW 17 (V) HW 18 (V) 
Specimen 1 1.509 -1.62678 1.48692 -1.59488 1.46484 -1.57034
Specimen 2 1.52863 -1.6415 1.51882 -1.61696 1.50409 -1.58752
Specimen 3 1.49673 -1.61451 1.47465 -1.58507 1.45748 -1.56298
Specimen 4 1.51882 -1.63659 1.509 -1.61206 1.49183 -1.58507
Specimen 5 1.49919 -1.61942 1.48447 -1.58997 1.46484 -1.56053
Specimen 6 1.49428 -1.61451 1.47465 -1.58507 1.45748 -1.55562
Specimen 7 1.48692 -1.60715 1.46974 -1.58016 1.45748 -1.56053
Specimen 8 1.49673 -1.61696 1.4771 -1.58752 1.45748 -1.56298

Average: 1.5037875 -1.6221775 1.48691875 -1.59396125 1.46944 -1.5681962
Standard 
Deviation 0.0131 0.0111 0.0166 0.0126 0.0170 0.0111
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step-3 

(Continue) HW 19 (V) HW 20 (V) 
Specimen 1 1.44766 -1.54826
Specimen 2 1.48201 -1.56298
Specimen 3 1.4403 -1.5409
Specimen 4 1.4771 -1.56053
Specimen 5 1.45011 -1.5409
Specimen 6 1.43785 -1.53354
Specimen 7 1.4403 -1.53599
Specimen 8 1.4403 -1.5409

Average: 1.45195375 -1.5455
Standard 
Deviation 0.0164 0.0102

 

 

Table A4: Step-4 (HW 1-20): Halfwave Voltage Values for C-Gun Machine at Applied  

Force of 2.2kN  

 
 

Voltage 
values 
step-4 HW 1 (V) HW 2 (V) HW 3 (V) HW 4 (V) HW 5 (V) HW 6 (V) 

Specimen 1 1.138499 -1.36424 1.4084 -1.66358 1.59488 -1.774
Specimen 2 1.1556748 -1.39368 1.43785 -1.68321 1.60224 -1.78872
Specimen 3 1.14831387 -1.41331 1.46484 -1.71756 1.63169 -1.82062
Specimen 4 1.1581284 -1.39368 1.45011 -1.70039 1.60715 -1.78872
Specimen 5 1.1679431 -1.40595 1.45993 -1.71511 1.61451 -1.79363
Specimen 6 1.16058218 -1.41331 1.46238 -1.71756 1.62187 -1.80344
Specimen 7 1.1703968 -1.39613 1.44275 -1.69548 1.61206 -1.78627
Specimen 8 1.14831387 -1.40595 1.44766 -1.68567 1.61206 -1.78872

Average: 1.1559815 -1.3982812 1.44674 -1.69732 1.6120575 -1.793015
Standard 
Deviation 0.0100 0.0149 0.0170 0.0181 0.0106 0.0129

       
 

step-4 
(Continue) HW 7 (V) HW 8 (V) HW 9 (V) HW 10 (V) HW 11 (V) HW 12 (V) 
Specimen 1 1.62678 -1.77154 1.61206 -1.74701 1.59243 -1.71756
Specimen 2 1.63169 -1.77891 1.61942 -1.74946 1.59243 -1.71266
Specimen 3 1.66358 -1.81816 1.65377 -1.79853 1.64395 -1.77154
Specimen 4 1.63414 -1.77891 1.61206 -1.7421 1.58507 -1.70039
Specimen 5 1.63414 -1.77891 1.61942 -1.74946 1.60469 -1.71266
Specimen 6 1.63659 -1.77645 1.61696 -1.7421 1.58016 -1.70284
Specimen 7 1.62678 -1.76664 1.60715 -1.73229 1.59243 -1.70284
Specimen 8 1.63659 -1.77645 1.61942 -1.7421 1.59243 -1.70775
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Average: 1.63628625 -1.7807462 1.6200325 -1.75038125 1.59794875 -1.71603
Standard 
Deviation 0.0109 0.0147 0.0134 0.0189 0.0186 0.0217

       
 

step-4 
(Continue) HW 13 (V) HW 14 (V) HW 15 (V) HW 16 (V) HW 17 (V) HW 18 (V) 
Specimen 1 1.58016 -1.68321 1.56298 -1.64641 1.52863 -1.60224
Specimen 2 1.56789 -1.68076 1.54335 -1.64395 1.51391 -1.60469
Specimen 3 1.6096 -1.72492 1.54826 -1.65622 1.49428 -1.58752
Specimen 4 1.55808 -1.65622 1.52127 -1.6096 1.48692 -1.56789
Specimen 5 1.58261 -1.67094 1.54581 -1.62678 1.51146 -1.58261
Specimen 6 1.55071 -1.66113 1.52372 -1.61696 1.49183 -1.58016
Specimen 7 1.57034 -1.66358 1.55071 -1.62187 1.509 -1.57525
Specimen 8 1.57034 -1.6734 1.54581 -1.63659 1.51636 -1.60224

Average: 1.57371625 -1.67677 1.54273875 -1.6322975 1.50654875 -1.587825
Standard 
Deviation 0.0167 0.0202 0.0130 0.0151 0.0133 0.0129

   
 

step-4 
(Continue) HW 19 (V) HW 20 (V) 
Specimen 1 1.47956 -1.56298
Specimen 2 1.48447 -1.57034
Specimen 3 1.46484 -1.54581
Specimen 4 1.45011 -1.53354
Specimen 5 1.46729 -1.54826
Specimen 6 1.46484 -1.54581
Specimen 7 1.46238 -1.53109
Specimen 8 1.49428 -1.5728

Average: 1.47097125 -1.5513287
Standard 
Deviation 0.0132 0.0148

 

 

 

 

 

Table A5: Step-5 (HW 1-20): Halfwave Voltage Values for C-Gun Machine at Applied  

Force of 2.2kN  

 
 

Voltage 
values HW 1 (V) HW 2 (V) HW 3 (V) HW 4 (V) HW 5 (V) HW 6 (V) 
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step-5 

Specimen 1 1.180211 -1.49919 1.56053 -1.78136 1.6783 -1.83289
Specimen 2 1.1703968 -1.48692 1.55562 -1.77645 1.67585 -1.82062
Specimen 3 1.1679431 -1.49183 1.56544 -1.78627 1.6783 -1.83043
Specimen 4 1.14586 -1.45257 1.52618 -1.75437 1.6734 -1.83043
Specimen 5 1.16548955 -1.48447 1.55071 -1.774 1.6734 -1.82307
Specimen 6 1.16303586 -1.4771 1.56544 -1.77891 1.6783 -1.82307
Specimen 7 1.17285048 -1.49183 1.57034 -1.78872 1.68321 -1.84025
Specimen 8 1.18021142 -1.48937 1.56053 -1.78136 1.68321 -1.84025

Average: 1.16824978 -1.48416 1.55684875 -1.77768 1.67799625 -1.8301262
Standard 
Deviation 0.0103 0.0134 0.0129 0.0099 0.0036 0.0071

       
 

step-5 
(Continue) HW 7 (V) HW 8 (V) HW 9 (V) HW 10 (V) HW 11 (V) HW 12 (V) 
Specimen 1 1.68076 -1.8059 1.65377 -1.76418 1.62432 -1.71266
Specimen 2 1.66604 -1.78627 1.61942 -1.73229 1.5728 -1.66849
Specimen 3 1.66604 -1.79117 1.62678 -1.7421 1.24646 -1.2955335
Specimen 4 1.68812 -1.80344 1.65131 -1.76173 1.61451 -1.71756
Specimen 5 1.65622 -1.77645 1.60715 -1.72247 1.55808 -1.66113
Specimen 6 1.66849 -1.78627 1.63169 -1.73719 1.58997 -1.68567
Specimen 7 1.69548 -1.8108 1.65868 -1.76418 1.61942 -1.72492
Specimen 8 1.69303 -1.8108 1.64886 -1.75191 1.60224 -1.69548

Average: 1.6767725 -1.7963875 1.6372075 -1.74700625 1.553475 -1.6451804
Standard 
Deviation 0.0136 0.0122 0.0174 0.0149 0.1180 0.1339

       
 

step-5 
(Continue) HW 13 (V) HW 14 (V) HW 15 (V) HW 16 (V) HW 17 (V) HW 18 (V) 
Specimen 1 1.55071 -1.6415 1.50164 -1.58997 1.46729 -1.54826
Specimen 2 1.52618 -1.61206 1.48201 -1.56053 1.44766 -1.51636
Specimen 3 1.1924 -1.278357 1.1998407 -1.275904 1.190026 -1.22928
Specimen 4 1.5777 -1.66604 1.53599 -1.61206 1.49428 -1.57034
Specimen 5 1.51146 -1.60469 1.47465 -1.55562 1.44275 -1.51882
Specimen 6 1.5409 -1.61696 1.49183 -1.56544 1.43785 -1.51146
Specimen 7 1.58752 -1.66358 1.51391 -1.60224 1.4771 -1.56053
Specimen 8 1.56053 -1.6415 1.48692 -1.56789 1.44766 -1.52863

Average: 1.505925 -1.5905858 1.46084884 -1.54120675 1.425577 -1.49796
Standard 
Deviation 0.1208 0.1199 0.1003 0.1021 0.0908 0.1035

   
 

step-5 
(Continue) HW 19 (V) HW 20 (V) 
Specimen 1 1.43785 -1.51882
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Specimen 2 1.41576 -1.48692
Specimen 3 1.145806 -1.21947
Specimen 4 1.45993 -1.53845
Specimen 5 1.41822 -1.48937
Specimen 6 1.4084 -1.48201
Specimen 7 1.43785 -1.51146
Specimen 8 1.42067 -1.49428

Average: 1.39306075 -1.4675975
Standard 
Deviation 0.0947 0.0955

 

 

Table A6: Step-6 (HW 1-20): Halfwave Voltage Values for C-Gun Machine at Applied  

Force of 2.2kN  
 

Voltage 
values 
step-6 HW 1 (V) HW 2 (V) HW 3 (V) HW 4 (V) HW 5 (V) HW 6 (V) 

Specimen 1 1.20720172 -1.60224 1.66358 -1.86724 1.74946 -1.88687
Specimen 2 1.24400663 -1.63169 1.68567 -1.88196 1.75437 -1.88441
Specimen 3 1.2587286 -1.65622 1.7102 -1.90159 1.774 -1.90895
Specimen 4 1.22683107 -1.60469 1.66849 -1.8746 1.75191 -1.88932
Specimen 5 1.31761658 -1.65868 1.71266 -1.9114 1.78872 -1.93103
Specimen 6 1.31025553 -1.68321 1.72983 -1.93103 1.77645 -1.91386
Specimen 7 1.29307997 -1.65622 1.71266 -1.9114 1.77891 -1.90404
Specimen 8 1.32988489 -1.69057 1.74701 -1.94821 1.8059 -1.95311

Average: 1.27345062 -1.64794 1.7037625 -1.90342875 1.772465 -1.9089487
Standard 
Deviation 0.0426 0.0307 0.0272 0.0262 0.0184 0.0223

       
 

step-6 
(Continue) HW 7 (V) HW 8 (V) HW 9 (V) HW 10 (V) HW 11 (V) HW 12 (V) 
Specimen 1 1.70775 -1.81816 1.63169 1.7421 1.56544 1.65868
Specimen 2 1.7102 -1.82062 1.62923 -1.73719 1.56544 -1.66113
Specimen 3 1.75682 -1.85742 1.67585 -1.78136 1.60469 -1.69303
Specimen 4 1.71511 -1.82798 1.63905 -1.74455 1.56053 -1.65868
Specimen 5 1.76909 -1.88196 1.68567 -1.79363 1.61942 -1.7102
Specimen 6 1.72983 -1.84025 1.6415 -1.74701 1.56053 -1.66113
Specimen 7 1.72247 -1.82062 1.62187 -1.72002 1.54581 -1.63414
Specimen 8 1.80835 -1.91386 1.73719 -1.84025 1.68321 -1.75928

Average: 1.7399525 
-

1.84760875 1.65775625 -1.76326375 1.58813375 -1.6795337
Standard 
Deviation 0.0331 0.0325 0.0368 0.0367 0.0428 0.0372

       

 198



 
step-6 

(Continue) HW 13 (V) HW 14 (V) HW 15 (V) HW 16 (V) HW 17 (V) HW 18 (V) 
Specimen 1 1.49919 -1.58752 1.45257 -1.53354 1.41576 -1.49183
Specimen 2 1.509 -1.59243 1.45748 -1.53845 1.42067 -1.49673
Specimen 3 1.53845 -1.61942 1.48692 -1.56053 1.44275 -1.51882
Specimen 4 1.50409 -1.59243 1.45257 -1.53354 1.40595 -1.48447
Specimen 5 1.56053 -1.63905 1.50409 -1.57525 1.45748 -1.52863
Specimen 6 1.50164 -1.59488 1.45502 -1.53599 1.41331 -1.49183
Specimen 7 1.47956 -1.56298 1.42803 -1.50164 1.38632 -1.46238
Specimen 8 1.58507 -1.66604 1.52127 -1.60469 1.47956 -1.56298

Average: 1.52219125 -1.6068437 1.46974375 -1.54795375 1.427725 -1.5047087
Standard 
Deviation 0.0335 0.0307 0.0292 0.0294 0.0283 0.0291

   
 

step-6 
(Continue) HW 19 (V) HW 20 (V) 
Specimen 1 1.38877 -1.46238
Specimen 2 1.39368 -1.4722
Specimen 3 1.41822 -1.48937
Specimen 4 1.3765 -1.45257
Specimen 5 1.42558 -1.49919
Specimen 6 1.39123 -1.46729
Specimen 7 1.35442 -1.42558
Specimen 8 1.45011 -1.52618

Average: 1.39981375 -1.474345
Standard 
Deviation 0.0282 0.0287

 

 

 

 

 

 

Table A7: Step-1 (HW 1-20): Halfwave Current Values for C-Gun Machine at Applied  

Force of 2.2kN  
 

Current 
values 
step-1 HW 1 (kA) HW 2 (kA) HW 3 (kA) HW 4 (kA) HW 5 (kA) HW 6 (kA) 

Specimen 1 10.5345877 -12.262022 11.4065268 -12.2620228 11.2956161 -12.135313 
Specimen 2 10.4877086 -12.357070 11.4382525 -12.3095468 11.2956161 -12.166974 
Specimen 3 10.5035069 -12.341272 11.4699136 -12.293684 11.3273417 -12.119450 
Specimen 4 10.4243218 -12.29368 11.3907285 -12.2303616 11.216431 -12.103588 
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Specimen 5 10.6144177 -12.420457 11.4857764 -12.4363203 11.3748657 -12.181677 
Specimen 6 10.7094656 -12.372933 11.4540508 -12.3254096 11.3590029 -12.198636 
Specimen 7 10.4877086 -12.341272 11.4699136 -12.3729336 11.2956161 -12.166974 
Specimen 8 10.5827565 -12.388796 11.4382525 -12.293684 11.3114789 -12.182837 

Average: 10.5430592 -12.347188 11.4441768 12.3154953 11.309496 -12.156931
Standard 
Deviation 0.0838 0.0475 0.0306 0.0603 0.0451 0.0315 

       
 

step-1 
(Continue) HW 7 (kA) HW 8 (kA) HW 9 (kA) HW 10 (kA) HW 11 (kA) HW 12 (kA)
Specimen 1 11.121383 -11.992677 11.0579962 -11.9451533 11.0263351 -11.913492 
Specimen 2 11.0579962 -11.992677 10.9154243 -11.8659682 10.8995615 -11.786783 
Specimen 3 11.0263351 -11.92935 10.9154243 -11.8659682 10.9312871 -11.818444 
Specimen 4 11.0263351 -11.929355 10.9470855 -11.881831 10.8995615 -11.865968 
Specimen 5 11.0897219 -12.056064 10.9946094 -11.9134922 10.9470855 -11.881831 
Specimen 6 11.1372458 -12.056064 11.0579962 -12.0085401 11.1055202 -11.992677 
Specimen 7 11.0579962 -11.976879 10.9312871 -11.8501054 10.8995615 -11.834307 
Specimen 8 11.0579962 -12.040265 10.9470855 -11.929355 10.9312226 -11.897629 

Average: 11.0718762 -11.996667 10.9708636 -11.9075517 10.9550169 -11.873891 
Standard 
Deviation 0.0384 0.0480 0.0554 0.0494 0.0691 0.0598 

       
 

step-1 
(Continue) HW 13 (kA) HW 14 (kA) HW 15 (kA) HW 16 (kA) HW 17 (kA) HW 18 (kA)
Specimen 1 11.0421334 -11.865968 11.0421334 -11.9134922 11.073859 -11.929355 
Specimen 2 10.9946094 -11.802581 10.9946094 -11.8659682 10.9788111 -11.897629 
Specimen 3 10.9788111 -11.850105 10.9788111 -11.8659682 11.0421334 -11.865968 
Specimen 4 11.0104723 -11.897629 11.0104723 -11.9610162 11.0421334 -11.961016 
Specimen 5 11.0421334 -11.929355 11.0421334 -11.9451533 11.0579962 -11.929355 
Specimen 6 11.1847698 -11.992677 11.1847698 -12.0402658 11.2480921 -12.103588 
Specimen 7 10.9788111 -11.802581 10.9788111 -11.881831 10.9946094 -11.834307 
Specimen 8 11.0263351 -11.897629 11.0263351 -11.8976294 11.0263351 -11.913492 

Average: 11.0322594 -11.879815 11.0322594 -11.9214155 11.0579962 -11.929338 
Standard 
Deviation 0.0617 0.0600 0.0623 0.0555 0.0776 0.0756

   
 

step-1 
(Continue) HW 19 (kA) HW 20 (kA)
Specimen 1 11.121383 -11.913496 
Specimen 2 10.9788111 -11.897629 
Specimen 3 11.073859 -11.913492 
Specimen 4 11.1055202 -12.040201 
Specimen 5 11.121383 -11.945153 
Specimen 6 11.2956161 -12.103588 
Specimen 7 11.0421334 -11.834307 
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Specimen 8 11.073859 -11.945153 

Average: 11.1015706 -11.949127 
Standard 
Deviation 0.0856 0.0795 

 

 

Table A8: Step-2 (HW 1-20): Halfwave Current Values for C-Gun Machine at Applied  

Force of 2.2kN  
 

Current 
values 
step-2 HW 1 (kA) HW 2 (kA) HW 3 (kA) HW 4 (kA) HW 5 (kA) HW 6 (kA) 

Specimen 1 11.5333004 -13.371001 12.3254096 -12.974946 11.976879 -12.800649 
Specimen 2 11.1372458 -12.848173 11.9451533 -12.68980 11.6758723 -12.578892 
Specimen 3 11.0104723 -12.848173 11.9134922 -12.721464 11.6916707 -12.563029 
Specimen 4 11.0104723 -12.816512 11.881831 -12.673940 11.6916707 -12.531368 
Specimen 5 10.9946094 -12.800649 11.881831 -12.705601 11.6758723 -12.547166 
Specimen 6 11.0579962 -12.848173 11.8976294 -12.658077 11.6916707 -12.483844 
Specimen 7 11.0897219 -12.911560 11.9451533 -12.73732 11.7075335 -12.515505 
Specimen 8 10.9788111 -12.800649 11.8501054 -12.705601 11.6441467 -12.515505 

Average: 11.1015787 -12.905611 11.9550757 -12.733345 11.7194145 -12.566995
Standard 
Deviation 0.1706 0.1791 0.1432 0.0943 0.0989 0.0926

       

step-2 
(Continue) HW 7 (kA) HW 8 (kA) HW 9 (kA) HW 10 (kA) HW 11 (kA) HW 12 (kA)
Specimen 1 11.7867831 -12.673940 11.7075335 -12.6264162 11.7709203 -12.705601 
Specimen 2 11.4857764 -12.420457 11.4540508 -12.3729336 11.4382525 -12.420457 
Specimen 3 11.5649616 -12.436320 11.4223897 -12.3729336 11.4223897 -12.404594 
Specimen 4 11.4065268 -12.372933 11.3590029 -12.3095468 11.34314 -12.277885 
Specimen 5 11.4540508 -12.372933 11.4065268 -12.3095468 11.34314 -12.293684 
Specimen 6 11.4382525 -12.341272 11.34314 -12.2620228 11.34314 -12.309546 
Specimen 7 11.4857764 -12.388796 11.4223897 -12.3887964 11.4065268 -12.357070 
Specimen 8 11.4540508 -12.388796 11.34314 -12.3254096 11.4223897 -12.388796 

Average: 11.5095223 -12.424431 11.4322717 -12.3709507 11.4362374 -12.394704
Standard 
Deviation 0.1134 0.0982 0.1109 0.1043 0.1319 0.1275

   
 

step-2 
(Continue) HW 13 (kA) HW 14 (kA) HW 15 (kA) HW 16 (kA) HW 17 (kA) HW 18 (kA)
Specimen 1 11.8501054 -12.68980 11.9134922 -12.7056014 11.8976294 -12.768988 
Specimen 2 11.5174376 -12.420457 11.5649616 -12.4679815 11.6124855 -12.531368 
Specimen 3 11.5333004 -12.404594 11.5174376 -12.3887964 11.5649616 -12.420457 
Specimen 4 11.4065268 -12.293684 11.4382525 -12.293684 11.4699136 -12.357070 
Specimen 5 11.3907285 -12.277885 11.4699136 -12.2778856 11.4857764 -12.262022 
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Specimen 6 11.4223897 -12.357070 11.4699136 -12.3254096 11.5015748 -12.404594 
Specimen 7 11.4857764 -12.388796 11.5333004 -12.4521187 11.6441467 -12.467981 
Specimen 8 11.4540508 -12.404594 11.4540658 -12.3412724 11.5332359 -12.372933 

Average: 11.5075395 -12.404610 11.5451672 -12.4065937 11.5887155 -12.448177
Standard 
Deviation 0.1381 0.1186 0.1449 0.1303 0.1299 0.1421

   
 

step-2 
(Continue) HW 19 (kA) HW 20 (kA)
Specimen 1 11.929355 -12.832374 
Specimen 2 11.7075335 -12.499642 
Specimen 3 11.5808244 -12.420457 
Specimen 4 11.4382525 -12.309546 
Specimen 5 11.4857764 -12.325409 
Specimen 6 11.5649616 -12.357070 
Specimen 7 11.7075335 -12.499642 
Specimen 8 11.5333004 -12.388796 

Average: 11.6184422 -12.454117
Standard 
Deviation 0.1475 0.1579

 

 

 

 

 

 

 

 

Table A9: Step-3 (HW 1-20): Halfwave Current Values for C-Gun Machine at Applied  

Force of 2.2kN  
 

Current 
values 
step-3 HW 1 (kA) HW 2 (kA) HW 3 (kA) HW 4 (kA) HW 5 (kA) HW 6 (kA) 

Specimen 1 11.5808244 -13.402662 12.3570707 -13.1491799 12.0877897 -12.927422 
Specimen 2 11.6758723 -13.371001 12.293684 -13.006608 12.0560641 -12.927422 
Specimen 3 11.6124855 -13.418525 12.3254096 -13.0699948 12.0085401 -12.879898 
Specimen 4 11.5649616 -13.355138 12.293684 -13.0224708 12.0719269 -12.911560 
Specimen 5 11.5808244 -13.355138 12.3095468 -13.054132 12.1035881 -12.927422 
Specimen 6 11.5649616 -13.339340 12.3254096 -13.1175188 12.1035881 -12.911560 
Specimen 7 11.4699136 -13.228429 12.2144988 -12.9908097 11.9926773 -12.78485 
Specimen 8 11.6441467 -13.386864 12.3570707 -13.054132 12.151112 -12.911560 
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Average: 11.5867488 -13.357137 12.3095468 -13.0581057 12.0719108 -12.897712
Standard 
Deviation 0.0576 0.0546 0.0427 0.0506 0.0488 0.0451

       
 

step-3 
(Continue) HW 7 (kA) HW 8 (kA) HW 9 (kA) HW 10 (kA) HW 11 (kA) HW 12 (kA)
Specimen 1 11.881831 -12.848173 11.881831 -12.8798989 11.9451533 -12.927422 
Specimen 2 11.8976294 -12.832374 11.881831 -12.8165121 11.976879 -12.864036 
Specimen 3 11.8659682 -12.848173 11.929355 -12.8956972 11.9451533 -12.974946 
Specimen 4 11.881831 -12.800649 11.881831 -12.8640361 11.929355 -12.864036 
Specimen 5 11.976879 -12.911560 11.976879 -12.9115601 12.0560641 -12.974946 
Specimen 6 11.9451533 -12.879898 11.929355 -12.8956972 12.0402658 -12.959084 
Specimen 7 11.8501054 -12.753125 11.8501054 -12.8323749 11.9768145 -12.959084 
Specimen 8 11.9293357 -12.848173 11.9610162 -12.9274229 12.0085401 -13.006608 

Average: 11.9035916 -12.84026 11.9115255 -12.8778999 11.9847781 -12.941270
Standard 
Deviation 0.0403 0.0448 0.0415 0.0358 0.0434 0.0491

       
 

step-3 
(Continue) HW 13 (kA) HW 14 (kA) HW 15 (kA) HW 16 (kA) HW 17 (kA) HW 18 (kA)
Specimen 1 12.0560641 -12.927422 12.1353137 -12.9749468 12.1669749 -13.069994 
Specimen 2 12.0560641 -12.879898 12.0560641 -12.9115601 12.1035881 -12.959084 
Specimen 3 12.0877897 -12.990809 12.2303616 -13.006608 12.2778856 -13.101655 
Specimen 4 12.0402658 -12.864036 12.0719269 -12.8956972 12.1035881 -12.974946 
Specimen 5 12.1669749 -13.069994 12.2620228 -13.054132 12.3095468 -13.117518 
Specimen 6 12.0877897 -12.974946 12.1828377 -13.0224708 12.2778856 -13.149179 
Specimen 7 12.0560641 -12.959084 12.151112 -13.006608 12.2303616 -13.069994 
Specimen 8 12.0877897 -13.022470 12.2144988 -13.1175188 12.24616 -13.133381 

Average: 12.0798503 -12.961083 12.1630172 -12.9986927 12.2144988 -13.071969
Standard 
Deviation 0.0372 0.0651 0.0689 0.0677 0.0752 0.0660

   
 

step-3 
(Continue) HW 19 (kA) HW 20 (kA)
Specimen 1 12.293684 -13.085857 
Specimen 2 12.2303616 -12.990809 
Specimen 3 12.3095468 -13.117518 
Specimen 4 12.1986554 -12.990777 
Specimen 5 12.3412724 -13.101655 
Specimen 6 12.2778856 -13.133381 
Specimen 7 12.198636 -13.054132 
Specimen 8 12.3570707 -13.133381 

Average: 12.2758891 -13.075939
Standard 0.0574 0.0548
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Deviation 
 

 

Table A10: Step-4 (HW 1-20): Halfwave Current Values for C-Gun Machine at  

   Applied Force of 2.2kN  
 

Current 
values 
step-4 HW 1 (kA) HW 2 (kA) HW 3 (kA) HW 4 (kA) HW 5 (kA) HW 6 (kA) 

Specimen 1 12.3887964 -13.925490 12.8006493 -13.4185254 12.5788923 -13.323477 
Specimen 2 12.3254096 -13.877966 12.8006493 -13.3710014 12.5471666 -13.339340 
Specimen 3 12.293684 -13.909627 12.737327 -13.3393403 12.4996427 -13.355138 
Specimen 4 12.2620228 -13.925490 12.8481733 -13.4501866 12.5946906 -13.355138 
Specimen 5 12.24616 -13.925490 12.7214642 -13.4185254 12.5788923 -13.386864 
Specimen 6 12.2778856 -13.877966 12.7689881 -13.4501866 12.6105534 -13.371001 
Specimen 7 12.1669749 -13.798717 12.737327 -13.3551386 12.5155055 -13.339340 
Specimen 8 12.3095468 -13.877966 12.7056014 -13.3710014 12.5471666 -13.323477 

Average: 12.28381 -13.889839 12.7650224 -13.3967382 12.5590637 -13.349222
Standard 
Deviation 0.0603 0.0402 0.0453 0.0403 0.0361 0.0209

       
 

step-4 
(Continue) HW 7 (kA) HW 8 (kA) HW 9 (kA) HW 10 (kA) HW 11 (kA) HW 12 (kA) 
Specimen 1 12.4679815 -13.418525 12.5788923 -13.4185254 12.6264162 -13.450186 
Specimen 2 12.4521187 -13.386864 12.5313683 -13.4501866 12.6264162 -13.481912 
Specimen 3 12.4045947 -13.355138 12.4521187 -13.3393403 12.4679815 -13.402662 
Specimen 4 12.4679815 -13.450186 12.5155055 -13.4977105 12.5946906 -13.545234 
Specimen 5 12.4838443 -13.386864 12.5313683 -13.4501866 12.5946906 -13.481912 
Specimen 6 12.5313683 -13.434388 12.6264162 -13.4977105 12.6739402 -13.576960 
Specimen 7 12.4045947 -13.402662 12.5788923 -13.4185254 12.5788923 -13.466049 
Specimen 8 12.4838443 -13.355155 12.5313038 -13.4343882 12.5947203 -13.545234 

Average: 12.462041 -13.398723 12.5432332 -13.4383217 12.5947185 -13.49376
Standard 
Deviation 0.0396 0.0324 0.0487 0.0473 0.0555 0.0542

       
 

step-4 
(Continue) HW 13 (kA) HW 14 (kA) HW 15 (kA) HW 16 (kA) HW 17 (kA) HW 18 (kA) 
Specimen 1 12.642279 -13.513573 12.7531253 -13.5610973 12.8481733 -13.703669 
Specimen 2 12.689803 -13.545234 12.8006493 -13.6244841 12.8640361 -13.656145 
Specimen 3 12.5630294 -13.466049 12.7531253 -13.6244841 12.8956972 -13.798717 
Specimen 4 12.784851 -13.640346 12.8481733 -13.7036692 12.9749468 -13.798717 
Specimen 5 12.6580774 -13.576960 12.8165121 -13.6720081 12.9274229 -13.798717 
Specimen 6 12.737327 -13.656145 12.8640361 -13.7036692 12.9274229 -13.767056 
Specimen 7 12.6264162 -13.497710 12.737327 -13.592823 12.8798989 -13.735394 
Specimen 8 12.7056014 -13.529436 12.7689881 -13.6086213 12.8640361 -13.656145 
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Average: 12.6759231 -13.55318 12.7927421 -13.636357 12.8977043 -13.739320
Standard 
Deviation 0.0646 0.0629 0.0441 0.0487 0.0400 0.0575

   
 

step-4 
(Continue) HW 19 (kA) HW 20 (kA)
Specimen 1 13.006608 -13.81458 
Specimen 2 12.9908097 -13.767056 
Specimen 3 13.054132 -13.909627 
Specimen 4 13.0699948 -13.862104 
Specimen 5 13.054132 -13.893829 
Specimen 6 13.054132 -13.877966 
Specimen 7 12.9749468 -13.893829 
Specimen 8 12.959084 -13.735394 

Average: 13.0204799 -13.844298
Standard 
Deviation 0.0399 0.0606

 

 

 

 

 

 

 

 

Table A11: Step-5 (HW 1-20): Halfwave Current Values for C-Gun Machine at  

   Applied Force of 2.2kN  
 

Current 
values 
step-5 HW 1 (kA) HW 2 (kA) HW 3 (kA) HW 4 (kA) HW 5 (kA) HW 6 (kA) 

Specimen 1 12.7214642 -14.210634 13.1016559 -13.7511932 12.9432857 -13.687870 
Specimen 2 12.7214642 -14.147247 13.006608 -13.6403469 12.8481733 -13.672008 
Specimen 3 12.7056014 -14.131449 12.959084 -13.6720081 12.8956972 -13.751193 
Specimen 4 12.7214642 -14.194771 12.9749468 -13.6561453 12.7689881 -13.640346 
Specimen 5 12.7214642 -14.226497 12.9432857 -13.5769601 12.8481733 -13.687870 
Specimen 6 12.7214642 -14.194771 12.9908097 -13.6244841 12.8323749 -13.672008 
Specimen 7 12.737327 -14.131449 12.9432857 -13.592823 12.8640361 -13.608621 
Specimen 8 12.689803 -14.147247 13.0224708 -13.7036692 12.8323749 -13.735394 

Average: 12.7175065 -14.173008 12.9927683 -13.6522037 12.8541379 -13.681914
Standard 
Deviation 0.0131 0.0354 0.0491 0.0536 0.0475 0.0433
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step-5 
(Continue) HW 7 (kA) HW 8 (kA) HW 9 (kA) HW 10 (kA) HW 11 (kA) HW 12 (kA) 
Specimen 1 12.8481733 -13.719532 12.8798989 -13.7511932 12.9274229 -13.877966 
Specimen 2 12.8798989 -13.767056 13.054132 -13.8779668 13.0858576 -13.973014 
Specimen 3 12.8956972 -13.81458 12.9908097 -13.9096279 13.7987172 -14.876034 
Specimen 4 12.8006493 -13.767056 12.9432857 -13.7829188 12.9432857 -13.798717 
Specimen 5 12.8165121 -13.81458 12.959084 -13.8779668 13.0699948 -14.004675 
Specimen 6 12.8006493 -13.719532 12.8481733 -13.7511932 13.006608 -13.941353 
Specimen 7 12.7689881 -13.719532 12.8481733 -13.719532 12.9115601 -13.767056 
Specimen 8 12.784851 -13.719532 12.8798989 -13.7987172 12.9432857 -13.893829 

Average: 12.8244274 -13.755175 12.925432 -13.8086395 13.0858415 -14.016581
Standard 
Deviation 0.0427 0.0394 0.0693 0.0662 0.2763 0.3336

       
 

step-5 
(Continue) HW 13 (kA) HW 14 (kA) HW 15 (kA) HW 16 (kA) HW 17 (kA) HW 18 (kA) 
Specimen 1 13.1491799 -14.068062 13.3234775 -14.1789734 13.4185254 -14.242360 
Specimen 2 13.2600907 -14.115586 13.3393403 -14.2264974 13.5294362 -14.321545 
Specimen 3 14.0364015 -14.923558 14.0363796 -14.8918975 14.1314495 -15.018606 
Specimen 4 13.0858576 -13.941353 13.1809055 -14.0997238 13.3234775 -14.210634 
Specimen 5 13.2442279 -14.083925 13.2918163 -14.1789734 13.4501866 -14.337408 
Specimen 6 13.1175188 -14.020538 13.3868642 -14.1789734 13.4343882 -14.321545 
Specimen 7 12.9749468 -13.941353 13.2125667 -14.1155866 13.3710014 -14.226497 
Specimen 8 13.1016559 -14.083925 13.3551386 -14.1947718 13.5135733 -14.369069 

Average: 13.2462349 -14.147288 13.3908111 -14.2581747 13.5215048 -14.380958
Standard 
Deviation 0.3104 0.2997 0.2527 0.2426 0.2391 0.2469

   
 

step-5 
(Continue) HW 19 (kA) HW 20 (kA)
Specimen 1 13.5769601 -14.305682 
Specimen 2 13.5769601 -14.416593 
Specimen 3 14.2264974 -15.050267 
Specimen 4 13.4501866 -14.226497 
Specimen 5 13.6244841 -14.416593 
Specimen 6 13.6244841 -14.416593 
Specimen 7 13.4977105 -14.305682 
Specimen 8 13.5769601 -14.384932 

Average: 13.6442804 -14.440355
Standard 
Deviation 0.2271 0.2395
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Table A12: Step-6 (HW 1-20): Halfwave Current Values for C-Gun Machine at  

  Applied Force of 2.2kN  
 

Current 
values 
step-6 HW 1 (kA) HW 2 (kA) HW 3 (kA) HW 4 (kA) HW 5 (kA) HW 6 (kA) 

Specimen 1 13.2759535 -14.590890 13.4185254 -14.0839255 13.3393403 -14.147247 
Specimen 2 13.1809055 -14.511641 13.4343882 -14.0205387 13.3393403 -14.163110 
Specimen 3 13.2284295 -14.479980 13.3710014 -13.9413536 13.3710014 -14.115586 
Specimen 4 12.9746244 -14.416593 13.2284295 -13.9096279 13.1967039 -14.036401 
Specimen 5 12.959084 -14.305682 13.1808862 -13.8779668 13.1809055 -13.973014 
Specimen 6 12.8640361 -14.305682 13.1016559 -13.81458 13.1491799 -13.973014 
Specimen 7 12.9908097 -14.353206 13.3393403 -13.9096279 13.3076146 -14.131449 
Specimen 8 12.8956972 -14.305682 13.1809055 -13.7829188 13.1967039 -13.973014 

Average: 13.0461925 -14.408669 13.2818916 -13.9175674 13.2600987 -14.06410
Standard 
Deviation 0.1482 0.1024 0.1167 0.0931 0.0820 0.0787

       
 

step-6 
(Continue) HW 7 (kA) HW 8 (kA) HW 9 (kA) HW 10 (kA) HW 11 (kA) HW 12 (kA)
Specimen 1 13.4185254 -14.337408 13.6244841 -14.5116412 13.7511932 -14.701737 
Specimen 2 13.4026626 -14.305682 13.5452345 -14.4641172 13.7036692 -14.622552 
Specimen 3 13.3076146 -14.210634 13.4977105 -14.3690693 13.6720081 -14.606689 
Specimen 4 13.2125667 -14.163110 13.3710014 -14.3056825 13.5294362 -14.479980 
Specimen 5 13.2125667 -14.083925 13.3393403 -14.2106346 13.4660494 -14.353206 
Specimen 6 13.1967039 -14.178973 13.4026626 -14.3532065 13.5294362 -14.495778 
Specimen 7 13.3868642 -14.305682 13.592823 -14.5116412 13.7987172 -14.733462 
Specimen 8 13.1175188 -14.004675 13.3076146 -14.1155866 13.3868642 -14.305682 

Average: 13.2818779 -14.198761 13.4601089 -14.3551974 13.6046717 -14.537386
Standard 
Deviation 0.1054 0.1088 0.1131 0.1331 0.1376 0.1458

       
 

step-6 
(Continue) HW 13 (kA) HW 14 (kA) HW 15 (kA) HW 16 (kA) HW 17 (kA) HW 18 (kA)
Specimen 1 13.9413536 -14.876034 14.1314495 -14.9869454 14.3215453 -15.113654 
Specimen 2 13.8462411 -14.796785 14.0680627 -14.9076958 14.1947718 -15.081993 
Specimen 3 13.8462411 -14.812647 14.1155866 -14.8918975 14.2423602 -15.050267 
Specimen 4 13.7353949 -14.701737 13.9730147 -14.7809867 14.0839255 -14.923558 
Specimen 5 13.6403469 -14.543366 13.8462411 -14.7017371 13.9730147 -14.828510 
Specimen 6 13.767056 -14.670075 13.8938296 -14.7492611 14.0839255 -14.907695 
Specimen 7 13.9413536 -14.860171 14.1314495 -14.9710826 14.3056825 -15.161178 
Specimen 8 13.6720081 -14.575028 13.9096279 -14.7492611 14.0364015 -14.812647 

Average: 13.7987494 -14.729480 14.0086577 -14.8423584 14.1552034 -14.984938
Standard 
Deviation 0.1069 0.1187 0.1094 0.1031 0.1209 0.1251
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step-6 
(Continue) HW 19 (kA) HW 20 (kA)
Specimen 1 14.4165933 -15.192904 
Specimen 2 14.2898842 -15.113525 
Specimen 3 14.3849321 -15.113654 
Specimen 4 14.2423602 -15.034469 
Specimen 5 14.1314495 -14.923558 
Specimen 6 14.1947718 -14.971082 
Specimen 7 14.3532065 -15.145380 
Specimen 8 14.1314495 -14.907695 

Average: 14.2680809 -15.050283
Standard 
Deviation 0.1042 0.1002

 

 

 

 

 

 

 

 

APPENDIX B 

 

CALCULATED SAMPLE DYNAMIC RESISTANCE PLOTS 
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Figure B1: C-Gun (2.6 kN) steps 1-6, Dynamic Resistance plot 
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Figure B2: C-Gun (3.0 kN) steps 1-6, Dynamic Resistance plot 
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Figure B3: PMS (2.2 kN) steps 1-6, Dynamic Resistance plot 
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Figure B4: PMS (2.6 kN) steps 1-6, Dynamic Resistance plot 
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Figure B5: PMS (3.0 kN) steps 1-6, Dynamic Resistance plot 
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Figure B6: Dalex-25 (1.76 kN) steps 1-6, Dynamic Resistance plot 

)(mΩ

 214



Dalex-25 (2.16kN)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

HW
1

HW
3

HW
5

HW
7

HW
9

HW
11

HW
13

HW
15

HW
17

HW
19

Halfwave

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6

 

)(mΩ

 

Figure B7: Dalex-25 (2.16 kN) steps 1-6, Dynamic Resistance plot 
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Figure B8: Dalex-25 (2.2 kN) steps 1-6, Dynamic Resistance plot 
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Figure B9: Dalex-25 (2.46 kN) steps 1-6, Dynamic Resistance plot 
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Figure B10: Dalex-25 (2.6 kN) steps 1-6, Dynamic Resistance plot 
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Figure B11: Dalex-25 (3.0 kN) steps 1-6, Dynamic Resistance plot 
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Figure B12: DZ-35 (2.2 kN) steps 1-6, Dynamic Resistance plot 
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Figure B13: DZ-35 (2.6 kN) steps 1-6, Dynamic Resistance plot 
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Figure B14: DZ-35 (3.0 kN) steps 1-6, Dynamic Resistance plot 
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APPENDIX C 

 

FITTED DYNAMIC RESISTANCE CURVES 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure C1:  Fitted Dynamic Resistance Curve:  C-Gun machine at 2.2kN applied 

Force. 
 
 
 
 

Data and Fits
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Figure C2:  Fitted Dynamic Resistance Curve: PMS machine at 2.2 kN Force. 
 

 
 
Figure C3:  Fitted Dynamic Resistance Curve: PMS machine at 2.6kN Force. 
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Figure C4:  Fitted Dynamic Resistance Curve: Dalex-35 machine at 2.2kN Force. 
 
 
 
 
 

2 4 6 8 10 12 14 16 18 20 

0.12 

0.13 

0.14 

Halfwave Cycle Time

Ωm  

2 4 6 8 10 12 14 16 18 20 
-4 

0 

4 

8 X10-3 Level of error

Dynamic Resistance 
Fitted 

Fitted 

 Fit 
Deviation

 
 

Data and Fits

Fit 
Deviation 
 

4 6 8 10 12 14 16 18 20 
0.07 

0.08 

0.09 

0.1 

Halfwave Cycle Time
 

 Ωm  

2 4 6 8 10 12 14 16 18 20 
0 

0.005 

0.015 

0.025 
Level of error

Dynamic Resistance  

Fitted

Fitted 

 

 
Figure C5  Fitted Dynamic Resistance Curve: Dalex-25 machine at 3.0kN Force. 
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Figure C7:  Fitted Dynamic Resistance Curve: Dalex-25 machine at 2.16 kN Force. 

 

Figure C6:  Fitted Dynamic Resistance Curve: Dalex-25 machine at 1.76 kN Force. 
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     Figure C8:  Fitted Dynamic Resistance Model Sample: C-Zange machine (3.0kN). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 227



 
 

Figure C9:  Fitted Dynamic Resistance Curve: Dalex-25 machine at 2.6kN Force. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12 14 16 18 20 
0.1 

0.11 

0.12 

Halfwave Cycle Time

Ωm  

 

2 4 6 8 10 12 14 16 18 20 -0.01 

0 

0.01 

0.02 

0.03 Level of error

Dynamic Resistance 

 Fitted 

Fitted 

 

Fit 
Deviation 
 

 228



APPENDIX D 

 

CODE FOR RUNNING EMBEDDED NEURAL NETWORK MODEL: 

PREDICTING SAMPLE RESISTANCE 

 

 

Private Sub CommandButton1_Click() 

     

Step by step instructions are given on how to use the 'generated DLL for this purpose.  

This function returns the network ‘response’. 

  

    'Step 1: Create a new neural network object of the NSRecallNetwork type. 

    '----------------------------------------------------------------------- 

 

    'Step 2: Set the pathName of the generated network DLL. 

    '------------------------------------------------------ 

   The DLL_PATH_NAME below is defined in the Globals module as the 'path to the        

    newly generated DLL. 

    nn.dllPathName = DLL_PATH_NAME 

 

    'Step 3: Load the saved network weights. 

    '--------------------------------------- 

    'The initial best weights file is an exact copy of the weights file that was saved 

    'when the DLL was generated. However, the best weights file will change with each 

    'run of the TrainNetwork function if the network is reset before training. 

    nn.loadWeights BEST_WEIGHTS_PATH_NAME 

     

    'Step 4: Define the input data. 

    '------------------------------ 

    'The original breadboard's training input data has been added to this 

    'workbook in the 'Input' worksheet. This step retrieves the data from this worksheet    
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     into an array then 'transposes this array to get it in the right format for input into the  

    generated DLL. 

    'The number of inputs in the input data must match the number of inputs 

    'expected by the generated DLL. 

 

    '    Dim inputDataTransposed As Variant, inputData As Variant 

    '    inputData = Array(ForceText.Value, DiamterText.Value, KText.Value,   

         MText.Value, RoText.Value) 

     

Dim inputData(0 To 4, 0 To 0)  As Variant 

inputData(0, 0) = CSng(ForceText.Value) 

inputData(1, 0) = CSng(DiamterText.Value) 

inputData(2, 0) = CSng(KText.Value) 

inputData(3, 0) = CSng(MText.Value) 

inputData(4, 0) = CSng(RoText.Value) 

     

'    With ThisWorkbook.Sheets("Input") 

'        If .Cells(2, 1).CurrentRegion.Columns.Count = 1 Then 

'            inputDataTransposed = .Range(.Cells(2, 1), .Cells(2, 1).End(xlDown)).Value 

'        Else 

'            inputDataTransposed = .Range(.Cells(2, 1), .Cells(2, 

1).End(xlToRight).End(xlDown)).Value 

'        End If 

'    End With 

'    inputData = TransposeArray(inputDataTransposed) 

     

    'Step 5: Send the input data to the network DLL. 

    '----------------------------------------------- 

    nn.inputData = inputData 

     

    'Step 6: Get the network response (output). 

    '------------------------------------------ 
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    'The network response is assigned to the return value of GetNetworkResponse 

    'function. 

    Dim netout As Variant 

    netout = nn.getResponse 

     

outputText.Value = netout(0, 0) 

     

    'Step 7: Release the neural network object. 

    '------------------------------------------ 

    Set nn = Nothing 

End Sub 
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APPENDIX E 

 

CODE FOR RUNNING EMBEDDED NEURAL NETWORK MODEL: 

PREDICTING OVERALL PROCESS PARAMETER 

 

 

Private Sub CommandButton1_Click() 

     

Step by step instructions are given on how to use the 'generated DLL for this purpose.  

This function returns the network ‘response’. 

  

    'Step 1: Create a new neural network object of the NSRecallNetwork type. 

    '----------------------------------------------------------------------- 

 

    'Step 2: Set the pathName of the generated network DLL. 

    '------------------------------------------------------ 

   The DLL_PATH_NAME below is defined in the Globals module as the 'path to the        

    newly generated DLL. 

    nn.dllPathName = DLL_PATH_NAME 

 

    'Step 3: Load the saved network weights. 

    '--------------------------------------- 

    'The initial best weights file is an exact copy of the weights file that was saved 

    'when the DLL was generated. However, the best weights file will change with each 

    'run of the TrainNetwork function if the network is reset before training. 

    nn.loadWeights BEST_WEIGHTS_PATH_NAME 

     

    'Step 4: Define the input data. 

    '------------------------------ 

    'The original breadboard's training input data has been added to this 

    'workbook in the 'Input' worksheet. This step retrieves the data from this worksheet    
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     into an array then 'transposes this array to get it in the right format for input into the  

    generated DLL. 

    'The number of inputs in the input data must match the number of inputs 

    'expected by the generated DLL. 

 

    '    Dim inputDataTransposed As Variant, inputData As Variant 

    '    inputData = Array(ForceText.Value, ResistanceText.Value, DiameterText.Value)   

     

Dim inputData(0 To 2, 0 To 0)  As Variant 

inputData(0, 0) = CSng(ForceText.Value) 

inputData(1, 0) = CSng(ResistanceText.Value) 

inputData(2, 0) = CSng(DiameterText.Value) 

     

'    With ThisWorkbook.Sheets("Input") 

'        If .Cells(2, 1).CurrentRegion.Columns.Count = 1 Then 

'            inputDataTransposed = .Range(.Cells(2, 1), .Cells(2, 1).End(xlDown)).Value 

'        Else 

'            inputDataTransposed = .Range(.Cells(2, 1), .Cells(2, 

1).End(xlToRight).End(xlDown)).Value 

'        End If 

'    End With 

'    inputData = TransposeArray(inputDataTransposed) 

     

    'Step 5: Send the input data to the network DLL. 

    '----------------------------------------------- 

    nn.inputData = inputData 

     

    'Step 6: Get the network response (output). 

    '------------------------------------------ 

    'The network response is assigned to the return value of GetNetworkResponse 

    'function. 

    Dim netout As Variant 
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    netout = nn.getResponse 

    CurrentText.Value = netout(0, 0) 

     

    'Step 7: Release the neural network object. 

    '------------------------------------------ 

    Set nn = Nothing 

End Sub 
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APPENDIX F 

 

PREDICTION OF EFFECTIVE CURRENT FOR DESIRED WELD 

DIAMETER USING CONTROLLER FORM 

 

N  

 

C-gun Machine with an applied force of 3.0 k
 

 
Predicted = 6.703784 
Actual = 6.48 
Prediction accuracy = 96.55% 
 
F1: Effective Current Predicted for C-Gun Machine 3.0kN Applied Force 
 

C-gun Machine with an applied force of 2.6 kN  
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Predicted = 7.98468 
Actual = 8.29 
Prediction accuracy = 95.29% 
 
Figures F2: Effective Current Predicted 
 
 

for C-Gun Machine 2.6 kN Applied Force 

C-gun Machine with applied force of 2.2 kN  
 

 
 
Predicted = 7.121756 
Actual = 7.1 
Prediction accuracy = 99.66% 
 
F3: Effective Current Predicted for C-Gun Machine 2.2 kN Applied Force 
 
 
Dalex Machine with an applied force of 1.76 kN  
 

 236



 
 
Predicted = 5.383359 
Actual = 5.18 
Prediction accuracy = 96.86% 
 
F4: Effective Current Predicted for Dalex Machine 1.76 kN Applied Force 
 
 
 
Dalex Machine with an applied force of 2.46 kN  
 

 
 
Predicted = 6.38831 
Actual = 6.58 
Prediction accuracy = 97.04% 
 
F5: Effective Current Predicted for Dalex Machine 2.46 kN Applied Force 
 
Dalex Machine with an applied force of 3.0 kN  
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Predicted = 8.358552 
Actual = 8.49 
Prediction accuracy = 97.97% 
 
F6: Effective Current Predicted for Dalex Machine 3.0 kN Applied Force 
 
 
 
PMS Machine with an applied force of 2.2 kN  
 

 
 
Predicted = 6.474659 
Actual = 6.35 
Prediction accuracy = 98.08% 
 
F7: Effective Current Predicted for PMS Machin
 

e 2.2 kN Applied Force 

 
PMS Machine with an applied force of 2.6 kN  
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Predicted = 7.986079 
Actual = 7.68 
Prediction accuracy = 95.28% 
 
F8: Effective Current Predicted for PMS Machine 2.6 kN Applied Force 
 
 
 
PMS Machine with an applied force of 3.0 kN  
 

 
 
Predicted = 8.963214 
Actual = 9.36 
Prediction accuracy = 93.88% 
 
F9: Effective Current Predicted for PMS Machine 3.0 kN Applied Force 
 
 
DZ Machine with an applied force of 3.0 kN  
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Predicted = 7.325683 
Actual = 7.61 
Prediction accuracy = 95.61% 
 
F10: Effective Current Predicted for DZ Machine 3.0 kN Applied Force 
 
 
 
DZ Machine with an applied force of 2.6 kN  
 

 
 
Predicted = 8.088946 
Actual = 8.32 
Prediction accuracy = 96.43% 
 
F11: Effective Current Predicted for DZ Machine 2.6 kN Applied Force 
 
 
DZ Machine with an applied force of 2.2 kN  
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Predicted = 6.073895 
Actual = 6.49 
Prediction accuracy = 93.58% 
 
F12: Effective Current Predicted for DZ Machine 2.2 kN Applied Force 
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APPENDIX G 

 

PAPER SUBMISSION 1 

 

 

MODELLING DYNAMIC RESISTANCE VARIABLE IN 
RESISTANCE SPOT WELDING 

 
Pius Nwachukwu Oba, Professor D. Chandler and Dr. S. Oerder 

(University of the Witwatersrand, Johannesburg, South Africa) 

 

Prof. Dr.-Ing. Dr. h.c.L. Dorn and Dr. Ing. Kevin Momeni 

(Technical University Berlin, Germany) 

 
 

Abstract 

 

The non linear and complex nature of dynamic resistance variables makes it difficult to 

predict weld quality. Presented in this paper is the method used to obtain appropriate 

models for predicting weld resistance from dynamic resistance halfwaves.  

 

An empirical three parameter approximate mathematical function model with dependent 

and independent variables was developed for curve fitting the nonlinear halfwave 

dynamic resistance curve. The values of the parameters were used for determining overall 

resistance for any desired weld diameter. The prediction capability of the empirical model 

for predicting resistance in any welding machine was improved by passing the outputs 

from the empirical model through neural network learning. By using the multilayer 

perceptron (MLP) neural network architecture, resistance of each sample was predicted 

with an accuracy of about 99.9% to 97%. This estimated resistance can be used for 

predicting weld quality with good reproducibility.  
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APPENDIX H 

 

PAPER SUBMISSION 2 

 

 

MODELLING RESISTANCE SPOT WELDING PARAMETERS 
FOR PREDICTING EFFECTIVE WELD CURRENT 

 
Pius Nwachukwu Oba, Professor D. Chandler and Dr. S. Oerder 

(University of the Witwatersrand, Johannesburg, South Africa) 

 

Prof. Dr.-Ing. Dr. h.c.L. Dorn and Dr. Ing. Kevin Momeni 

(Technical University Berlin, Germany) 

 
 
Abstract 

 

Presented in this paper is a model used for predicting effective weld current (RMS) for 

desired weld diameter (weld quality) in the resistance spot welding process. Electrical 

parameters namely effective weld current and dynamic resistance with applied electrode 

force, are identified as the strongest input signals necessary to predict the output weld 

diameter. These input parameters are used for developing a neural network process model 

for predicting effective weld current.  

 

An initial empirical model developed by the authors as was used for predicting sample 

resistance which was integrated with this model for predicting required effective weld 

current for any desired weld diameter. The prediction accuracy of this model was in the 

range of 94% to 99%.  This neural network process model was designed by optimising 

the squared error between the neural network output and the desired output. The neural 

network process model delivers effective current for any desired weld diameter. The 

model is observed to predict the desired output accurately.  
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APPENDIX I 

 

PAPER 3 DEVELOPED FOR PUBLICATION  
 

 

CASE STUDY ON IMPROVING NEURAL NETWORK PREDICTIVE CAPABILITY 

APPLICATION IN RESISTANCE SPOT WELDING QUALITY MODELLING 

 
Pius Nwachukwu Oba, Professor D. Chandler and Dr. S. Oerder 

(University of the Witwatersrand, Johannesburg, South Africa) 

 

Prof. Dr.-Ing. Dr. h.c.L. Dorn and Dr. Ing. Kevin Momeni 

(Technical University Berlin, Germany) 

 
Abstract 

 
A three parameter approximate mathematical function model with dependent and 

independent variables was used for curve fitting nonlinear halfwave dynamic resistance 

curve generated from the resistance spot welding process. The value estimates of the 

parameters were used to develop charts for determining overall resistance of samples for 

any desired weld diameter. The prediction error in estimating sample resistance using the 

charts was 16% to 167%.  

 

The empirical model prediction accuracy was improved using neural network artificial 

intelligency to learn the pattern in the dataset. The two inputs used were applied electrode 

force and weld diameter while calculated sample resistance from the empirical model was 

the output. These dataset were used to train four neural network types. These were the 

Generalised feed forward neural network, Multilayer perceptron network, Redial basis 

function and Recurrent network. Of all the four network types, the multilayer perceptron 

had the least mean square error for training and cross validation with prediction error of  

65%. Prediction improvement from previous 167%.  
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The number of input parameters in the multilayer perceptron architecture was increased 

from the initial two inputs to five inputs by including all the estimation parameters from 

the mathematical model. This Multilayer perceptron neural network architecture yielded a 

mean square error in training and cross validation of 0.00037 and 0.000390 with linear 

correlation coefficient in testing of 0.999 and maximum estimation error of about 0.1% to 

3%. An accuracy of 99.9% to 97%.  
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UAPPENDIX J 

 

UPAPER 4 DEVELOPED FOR PUBLICATION 

 

 

DESIGN AND IMPLEMENTATION OF PREDICTIVE CONTROLLER FOR THE 

RESISTANCE SPOT WELDING PROCESS. 

 
Pius Nwachukwu Oba, Professor D. Chandler and Dr. S. Oerder 

(University of the Witwatersrand, Johannesburg, South Africa) 

 

Prof. Dr.-Ing. Dr. h.c.L. Dorn and Dr. Ing. Kevin Momeni 

(Technical University Berlin, Germany) 

 
Abstract 
 
Presented in this paper is the method used for the design of a predictive controller for 

predicting effective weld current in the resistance spot welding process using a developed 

process model. A suitable process model forms an important step in the development and 

design of process controller for achieving good weld quality with good reproducibility.  

 

The process model developed by the Authors consists of three parameter empirical model 

with dependent and independent variables used for curve fitting the nonlinear halfwave 

dynamic resistance curve. To improve the prediction accuracy of this empirical model, 

the data generated from the model were used to train four different neural network types. 

Of the four network types trained, the MLP had the least mean square error for training 

and cross validation of 0.00037 and 0.000390 respectively with linear correlation 

coefficient in testing of 0.999 and maximum estimation error range from 0.1% to 3%. 

This model was selected for the design and implementation of the controller for 

predicting overall sample resistance. Using this predicted overall sample resistance, and 

applied electrode force, a similar model was developed for predicting required effective 

weld current for any desired weld diameter. The prediction accuracy of this model was in 
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the range of about 94% to 99%.  The controller outputs effective current for any desired 

weld diameter. This controller is observed to track the desired output accurately with 

same prediction accuracy of the model used which was about 94% to 99%. The controller 

works by utilizing the neural network output embedded in Microsoft Excel as a digital 

link library. 

 

 

 

 

 

 

 

 

 

 

 


