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ABSTRACT

Methods are presented for obtaining models used for predicting welded sample resistance
and effective weld current (RMS) for desired weld diameter (weld quality) in the
resistance spot welding process. These models were used to design predictive controllers
for the welding process. A suitable process model forms an important step in the
development and design of process controllers for achieving good weld quality with good

reproducibility.

Effective current, dynamic resistance and applied electrode force are identified as
important input parameters necessary to predict the output weld diameter. These input

parameters are used for the process model and design of a predictive controller.

A three parameter empirical model with dependent and independent variables was used
for curve fitting the nonlinear halfwave dynamic resistance. The estimates of the
parameters were used to develop charts for determining overall resistance of samples for
any desired weld diameter. Estimating resistance for samples welded in the machines
from which dataset obtained were used to plot the chart yielded accurate results. However
using these charts to estimate sample resistance for new and unknown machines yielded
high estimation error. To improve the prediction accuracy the same set of data generated
from the model were used to train four different neural network types. These were the
Generalised Feed Forward (GFF) neural network, Multilayer Perceptron (MLP) network,
Radial Basis Function (RBF) and Recurrent neural network (RNN).

Of the four network types trained, the MLP had the least mean square error for training
and cross validation of 0.00037 and 0.00039 respectively with linear correlation
coefficient in testing of 0.999 and maximum estimation error range from 0.1% to 3%. A
prediction accuracy of about 97% to 99.9%. This model was selected for the design and
implementation of the controller for predicting overall sample resistance. Using this
predicted overall sample resistance, and applied electrode force, a second model was
developed for predicting required effective weld current for any desired weld diameter.

The prediction accuracy of this model was in the range of 94% to 99%.

v



The neural network predictive controller was designed using the MLP neural network
models. The controller outputs effective current for any desired weld diameter and is
observed to track the desired output accurately with same prediction accuracy of the
model used which was about 94% to 99%. The controller works by utilizing the neural
network output embedded in Microsoft Excel as a digital link library and is able to
generate outputs for given inputs on activating the process by the push of a command

button.
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CHAPTER 1

INTRODUCTION

1.1 Background

There are two main approaches to quality analysis in a manufacturing environment; they
are reactive and proactive quality analysis . Strategies for reactive quality analysis
include individual inspection of all products according to specifications, sampling plans,
and lot acceptance determination. Proactive strategy includes physical cause-effect
knowledge, risk analysis, process control, statistical quality control (including statistical
process control and control charts), monitoring and diagnosis ". Proactive strategy is
considered important in continuous manufacturing processes because of the savings of
cost in time loss that would have being caused by interruption in the process during

quality check.

In resistance spot welding there is the need to either control the changing variables that
affect weld quality during the welding process or to model the parameters that affect the
process so that the products of the process will be of the desired quality. From 1912 when
E.G.Budd ® made spot welds on the first automobile body in Philadelphia, Pennsylvania,
USA, using resistance spot welding process, research work has been ongoing in trying to

guarantee quality of resistance spot welds.

Specifically, resistance spot welding is one of the most widely used materials joining
processes in the automotive industry. Thousands of welds are made on vehicle bodies and
other material components. The quality of the spot welds are of paramount importance in
the automotive assembly process. More than 30% redundant (excess) spot welds are often

®) in resistance spot welded structures because of the

required by design specifications
uncertainty and difficulty in making and reproducing good quality spot welds. This

measure is aimed at reducing the chance of failure of the spot welded structure.



Eliminating this waste (excess weld) by correctly predicting parameters that will give
good spot welds with possibility for reproducibility of the good weld quality will help

reduce production cost in this area.

Currently on the traditional shop floor ©, destructive techniques for assessing weld
quality, though considered inappropriate, expensive and time consuming, are still
conducted periodically in assembly plants, because current monitoring and control
systems in use have failed to adequately meet the challenge of determining (predicting)

weld quality ©.

Studies carried out over the last fifty years ¢ ¥

on modelling and controlling the
resistance spot welding process have proved that the physical laws governing the
resistance spot welding process are highly complex and non linear. This makes control of
the process a difficult task, particularly with the increased usage of corrosion resistant

@ compared to the use of bare steel sheets. The difficulty arises

galvanized steel sheets
because of unpredictable quality variation in the spot weld due to changes in current
density resulting from the changes in the diameter of the electrode tip during the welding
process Y. This change in diameter is caused by the rapid wear of the electrode tip

surface in contact with the galvanised steel sheet during the spot welding process .

Feng et al ©® suggest that to consistently achieve good resistance spot welds, two
conditions must be met. First, an optimum set of welding parameters must be defined to
produce the properties desired of the weld. Secondly, control must be implemented to
maintain the process variables within necessary ranges so that optimized welds can be

made with good reproducibility.

Matsuyama © in his review of previous research work done in the mid sixties cited the
work by Waller et al ) in which the researchers formulated regression equations
(obtained by regression analysis) for quality monitoring of resistance spot welding. The
equation was determined using many preliminary experimental data. Similarly, other
researchers in the seventies tried different monitoring systems like using thermo sensors

to measure surface temperature of weld or monitoring the resistance between the



electrode tips by monitoring voltage between electrode tips and welding current ©. In the
eighties there were attempts to use simulation techniques built and run on computers
to model the actual resistance spot welding process. Research has continued to be active
in this field. Presently, neural network models are being explored in this area because of
their suitability for nonlinear problems as well as ease in adjustment of pre-set parameters

and adaptability to learning ©.

The Literature suggest that to be able to develop and design a process control application,
a proper model of the physical process has to be established . This means that the
critical parameters that affect quality in the process has to be identified, then modelled
using an appropriate framework and finally used to develop a controller that can predict

the quality of output for any combination of input variables for the process.

The resistance spot welding machine and the welding process are made up of mechanical
and electrical characteristics ®* 7. In the literature review the views and findings of
researchers on these characteristics as sources of variations to resistance spot weld quality
are discussed. The specific features of the parameters that influence the characteristics
covered in this thesis are dynamic resistance, effective current, machine friction, stiffness
and weight of the welding machine cylinder head "> *?. Applied electrode force which is
used during the welding process is also discussed. The benefits of using neural networks
and the approach for designing a neural network controller are outlined.

Other forms of variations in the resistance spot welding process exist. Wei et al !
mentioned abnormal conditions which include welding plate misalignment and parts not
fitting correctly during the welding process as an example of such variation. Such process
abnormalities affect the relationships between the weld size (weld quality) and the input
process variables and thus cause the weld quality to vary. The variations however, can be
easily managed by good engineering practice and are therefore not considered in this

research.

Further discussed in this thesis is the design methodology for the development of a

predictive controller. The methodology involves relationship analysis of the resistance



spot welding input parameters and identification of signals used as inputs and outputs in
the neural network architecture. An empirical model was developed for curve fitting the
nonlinear dynamic resistance parameter (one of the required neural network input signal)
necessary for predicting overall resistance of each welded sample. Neural network types
were analysed and the most appropriate neural network type and architecture based on
least prediction error criteria was employed for the development and design of the

predictive controller.

A neural network predictive controller model was used in this application because other
design methodology which embodies a conventional continuous frequency domain
controller design and neural network adaptive control architectures are considered
inappropriate for the design of a predictive process controller '"*'?. Similarly fuzzy logic
is considered inappropriate for developing the process controller because of the problem
with designing membership functions which Kumar et al '* give as type and number of
member functions, their shape and range and the difficulty with choosing appropriate

fuzzy rules ).

1.2 Research Hypothesis

Is it possible to empirically model dynamic resistance variable and predict with accuracy
of about 100%, the required effective weld current for a desired weld diameter (weld

quality) with good chance of reproducibility in the resistance spot welding process?

1.3 Research Contribution

Reproducing desired weld quality in the resistance spot welding process has remained a
challenge. Addressing the research hypothesis will give rise to the possibility of
reproducing desired quality of spot welds using specified combinations of the welding

parameters. The aim of this research therefore is to model the parameters that affect the



final product and thus ensure a desired quality output with possibility for exact

reproducibility. Based on this need this research work aims to:

Carry out further research to determine the contributory effects of electrical
parameters on the resistance spot welding process, and to demonstrate that the
data generated from the electrical characteristic sources alone are sufficient and
appropriate to build a process model. The process model will be used to predict
the optimum welding parameters that give a good weld quality output with
possibility for good reproducibility. For the sake of error minimisation the same

material composition and thickness are used for all the samples investigated.

Investigate different neural network types and select the most appropriate (ability
to predict accurately) that can be used to model and optimise the resistance spot
welding process, based on the identified input parameters from the welding

process data.

Investigate the possibility of deploying the identified neural network model for
the development and design of controller with capability of predicting effective
weld current for any desired weld diameter, given applied electrode force and

predicted (estimated) resistance.

Confirm the most important parameter(s) that would be used to set boundary

ranges for which these controllers can work and predict outcomes accurately.

Included in this work is an empirical model for curve fitting the dynamic resistance curve

in order to obtain the parameters that can be used to estimate each sample resistance with

good accuracy. The predicted sample resistance, applied electrode force and effective

current will be used as input variables to train the neural network with the weld diameter

as the output variable. The weld diameter is normally taken as the production criterion of

weld quality. However, because effective current is what can be controlled in the welding

process and is presently in the industry determined by trial and error. A unique

contribution of this research is to overcome this trial and error method by using neural



network to learn the pattern of the data so that effective current can be accurately

predicted for any desired weld diameter.

An important contribution of this work was the use of only electrical characteristics and
applied electrode force data to model the resistance spot welding process. The data were
generated from four different resistance spot welding machines and were used to train
and validate the selected neural network types. The trained neural networks were used to
predict (generalise) weld quality for situations it has not experienced or seen before using

real data from the welding machines.

The neural network model which gave the least error prediction was used in the
development and design of the predictive controllers. This was used for predicting
effective current required to achieve desired weld diameter in any resistance spot welding
machine with materials type, electrode type and thickness specified as the boundary

conditions.

In summary the contributions of this work to the pool of knowledge are as follows:

e The application of an approximate empirical mathematical function to model the
dynamic resistance curve and to use the generated parameters to train the neural
network for predicting sample resistance.

e Use of feedforward multi layer perceptron algorithm for developing resistance
spot welding process model and inversing the initial feedforward network
architecture, such that effective current can be predicted and controlled in the
welding process for desired weld quality (weld diameter). The selection of the
neural network type is based on least error minimization and other criteria.

e Use of this model to optimize welding parameters for best quality of weld in any
resistance spot welding machine.

e The development and design of a controller, such that for a desired weld diameter,
required effective current will be predicted.

e Present an appropriate controller for use in this application based on prediction

accuracy.



e Accurately predict the current that will be used to achieve a desired weld diameter
without identifying the welding machine in the model.

e Show that electrical characteristics and applied electrode force data alone are
enough to predict weld quality. This will help resolve the debate on the real
importance of electrical characteristics data to mechanical characteristics data in
the resistance spot welding process and weld quality determination.

e Based on findings to present electrical characteristics data alone as sufficient data
to use in modelling and developing controller for predicting weld quality output.

e Show that it is possible to use data generated from the welding machines to train
the neural network and then validate its ability to generalise using any of the spot

welding machines to accurately predict output.

1.4 Thesis Outline

To address the research hypothesis, two approaches are used. First approach deals with
the qualitative theory and development of the resistance welding process, dynamic
resistance theory, neural network types and applications and the numerical techniques
required for applying the theory to practical applications. The second part deals with
quantitative development and design process, from the analysis of the problem
specification, to the choice of appropriate neural network type for the process model, and

finally to the actual neural network controller design using the models.

The dynamic resistance concept, mechanical characteristics, historical development of
real time control methodology discussed in Chapter 2 forms a crucial part of the
modelling methodology. Chapter 3 deals with the literature review on neural network
types and design steps for the process controller. Chapter 4 discusses the experimental
procedure for process data generation. Chapter 5 presents the Results and Discussions of
the data generated. Chapter 6 discusses the modelling of the welding process parameters.
Controller design implementation is presented in Chapter 7. Chapter 8 presents the final

conclusions relating to this study.



CHAPTER 2

BACKGROUND AND HISTORICAL DEVELOPMENT OF
RESISTANCE SPOT WELDING PROCESS MODELLING

2.1 Introduction

This section consists of a review of the analysis of resistance spot welding process
parameters. A proper theoretical understanding of the resistance spot welding techniques
and process parameters is very crucial for the development of process model and
predictive controller. The work of researchers who developed mathematical models and
simulation of the resistance spot welding process are explored so as to identify the
parameters that critically affect weld quality and their relationships to one another. The
section begins with the primary definition of the welding process, progressing to more
detailed description of the concepts and theories around the process. This review will also
include discussion on electrode degradation and the views of researchers on the effect of

mechanical characteristics on weld quality.

2.2 Resistance Spot Welding

Work by Gupta et al ¥ as cited by Aravinthan et al ' mentioned that the resistance
welding process was invented in 1877 by Elihu Thomson, but only put to use in
manufacturing by E.G.Budd ®. This process has since then been used as a joining
process in the manufacturing industries, particularly in the automobile and aircraft

(15)

industry *~’. Some of the advantages of resistance spot welding over other joining

techniques are the ease of automating the process, high energy efficiency, and high speed
(16)



Spot welding is a joining process in which coalescence of sheet metals is produced
between the surfaces of two or more metal parts by the application of heat and pressure in
a localized area '%. Figure 2.1, shows the sequence of a typical resistance spot welding
process cycle. It consists of squeeze stage, weld stage and forge stage. At the beginning
of the welding process, the workpiece (metal sheet) to be joined are placed in-between
the two copper electrodes shown. The electrodes are subsequently closed onto the
workpiece and optimum pressure is applied such that the electrodes exert some
compressive stress on the workpiece. The applied pressure causes an increase in the
electrical contact of the surfaces in contact. The copper electrodes also provide support

and pass current to the work piece, when the current is applied.
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Figure 2.1: Resistance spot welding cycle '



With electrical contact achieved by the effect of the electrode force, current is passed
through the sheet metals for a set time period. Heat is generated between the surfaces of
the sheet metals by the resistance offered to the flow of current. During this time a nugget
is formed in-between the plate samples ' and grows further to become the spot weld as
heat generated by the resistance effect is sustained. After the weld is formed the applied
pressure is maintained to enhance solidification of the weld and to prevent expulsion. The

pressure is subsequently released and the electrodes are lifted away from the work piece
a7

During the welding process, once the specified cycle time which marks the process
completion is reached, the current supply is switched off and the weld (nugget) is allowed
to solidify by slow cooling under pressure '®. The applied electrode force and the
surrounding solid metal help to contain the molten pool '®. The effect of the applied
electrode pressure under plastic deformation on the heated metal sealing creates a ring on
the surface of the metal. This effect can lead to corona (part with the ring impression)
bonding '?. Expulsion occurs when this sealed ring ruptures suddenly during the welding

process such that some of the molten nugget metal is spewed out from between the sheets
(16)

Expulsion is accelerated when welding close to an edge due to bad fit or lack of
mechanical supports or low applied electrode force !®. Expulsion can also occur at the
electrode work interface if the generation of heat is too quick and excessive '®. This can
happen when scales which build up high resistance are present on the surfaces of the
sheets to be welded or when low resistivity metals are used '©.

The parameters which are considered in the spot welding process are electrode force,
diameter of the electrode contact surface, squeeze time, weld time, hold time and weld

current '®. These parameters will each be briefly discussed.
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2.2.1 Electrode

The copper electrodes used during the resistance spot welding process plays a very
important role. The specific roles played by the electrode in the welding process are as

follows:

2211 Electrode Force

The electrode force is obtained by the compressive effect of the two electrodes applied to
the sheet metals thereby squeezing the metal sheets to be joined together '¥. Adequate
electrode force is necessary to achieve good weld. The applied electrode force has some
inverse relationship with heat energy "®. Too low an applied force is inadequate for
achieving good weld quality. Excessively increasing the applied electrode force can lead
to expulsion '*. Optimum value of applied electrode force has to be determined for best

output.

2.2.1.2 Electrode Diameter

Diameter of the electrode contact surface is used to determine the weld diameter. Weld
diameter is a measure of weld quality. As the welding progresses the diameter of the
electrode will change due to effect of wear. Weld diameter (nugget diameter) is
determined based on the number of spot welds that has been made with the electrode.

Generally the nugget diameter is slightly less than the contact electrodes diameter ¥

(18)

A general recommendation * *’ is that the weld should have a nugget diameter of greater

than 44/t , (S\E is recommended as appropriate), “t” being the thickness of the steel
sheet. However, the work done by Weber et al ') gave further wear classes of electrodes
based on the number of weld spots made with the electrode. Such that the nugget
diameter should be based on wear state of the electrode. The wear classes, the number of

corresponding spot welds and the nugget diameter that the weld should have as given by

11



Weber et al ' findings are presented in Table 2.1. Transition state 1 presented in the
Table 2.1 indicates the state of mild wear while transition state 2 is the state of rapid wear
of the welding electrode. In this research the electrode to be used is the one that has made

more than 900 number of spot welds but less than 1700 (Wear class V1). So an achieved

weld diameter of 4+t <d <5yt will be considered satisfactory. Optimisation of the
resistance spot welding process however is to maximise the size of the weld diameter for

a given set of input parameters.

Table 2.1: Definition of the wear classes 1

Wear class Number of spot Quality Remark
welds

VO — non-wear state <900 d > 54t Spot weld 1is
“good”.

V1 — transition state 1 | 900 ... 1700 At <d <54t Spot weld is
“satisfactory”.

V2 — transition state 2 | 1700 ... 2000 3Jt <d <44t Spot weld is
“adequate”.

V3 —worn state > 2000 d <34t Spot weld is
“inadequate”.

2.2.1.3 Effect of Electrode Degradation

Many research and studies have been carried out on the degradation of electrodes during
resistance spot welding ?*. Particularly because of the rapid wear of these electrodes
with the increased usage of Zinc coated steels in manufacturing ** 2. This has raised
production cost in the areas of frequent electrode change over time, cost of replacing
electrodes and high possibility for poor weld joint quality ®". Zinc coated steel protects

the steel sheet from corrosion ?°.

12



(20)

Dupuy et al reported a study on degradation of electrodes when spot welding zinc

coated steels. The main findings of the study were that degradation of electrodes was

characterized by an enlargement of the electrode tip

. This enlarged electrode tip
causes current density passing through the electrode to drop and can get to a point where

the weld current is not sufficient to achieve a weld @,

1 29 12D

Dupuy et a and De et a in their respective studies mentioned that the actual cause
of electrode enlargement is still not very clear however, a number of phenomena are
given as the likely causes of the enlargement of the electrode tip. This ranges from
possibility of diffusion of zinc into copper, possibility of pitting erosion, cracking of

electrode tip, mushrooming and other reasons %,

The importance of this electrode wear to this study is the fact that changes in the tip size
and topography of the electrode governs the nugget size and shape formation during the
welding process ?°. Also, zinc coated metal sheet which is known to wear the copper
electrodes away so quickly are used for the experiment in this research. Electrode
condition is therefore an important quality consideration in the development of the

process model.

2.2.2 Squeeze time

Squeeze time as shown in Figure 2.1, is the time at which the required level of the
pressure is set and no current flowing through the circuit '®. This is done to achieve good
electrical contact between the electrodes and the work piece, and between the two

surfaces of the work piece 7 '¥.

2.2.3 Weld time

Weld time is the duration in which the welding current is applied to the sheet plates after
the squeeze time is completed as shown in Figure 2.1. Weld time is giving in weld cycles

with peaks and troughs such that one peak and a trough give a complete wave length. In a

13



50 Hz power system one cycle is given as 1/50 of a second '¥. The welding time is
represented as half wave cycle time in the welding process. Two half wave cycles gives

one cycle time ¥

, a number of halfwave cycle time are required to successively make a
spot weld. The total welding process time (program) to make a number of spot welds are
further divided into a number of small time steps ®. Typically the time steps are planned
(arranged) in such a way that they fall within the entire welding current window range

that will be used to spot weld a number of samples.

2.2.4 Forge time (cooling-time)

Hold time is the period from when the weld time is completed, the current switched off,
and the electrodes still applied to the welded metal sheet for cooling. This period helps
the weld to chill "® as the nugget solidifies as shown in Figure 2.1. Optimum hold time is
necessary to prevent the electrode in contact with the hot spot weld heating up, or the

weld spot cooling too fast as it can alter the metallurgical property of the metal '¥.

2.2.5 Weld current

The weld current is made available in the welding circuit during spot welding by setting
the transformer tap switch to a level that allows a maximum amount of current to be
made available '®. The effective current used during the welding cycle is based on the
percentage of current set (current window) for making the weld. Most spot welding
machine current tap switch are set so that between seventy and ninety percent current are
utilized . Determining actual current to use, is usually by trial and error, the guide is
that weld current should be kept as low as possible to reduce excessive heat input into the
sheet metal, but has to be sufficiently high enough to achieve good weld ¥ (should

achieve good weld diameter size as is practically possible).

When determining the current to be used, the current is gradually increased until weld
expulsion (splatter) occurs between the metal sheets '®. This indicates that the correct

weld current has been exceeded. The lower boundary is the current that will be enough to

14



exceed the stick limit ®. Stick limit is the threshold weld diameter that is sufficient to
form a welded joint. This trial and error approach introduces much variability in the spot

weld quality and presents difficulty with reproducibility of the desired quality.

Having established the welding sequence in the resistance spot welding process, it is
important to investigate the previous techniques and methods that have been used for

modelling the process parameters.

2.3 Development of Resistance Spot Welding Process Control Models

This section presents the modelling and control approach used by previous researchers in
this area of study. Several techniques and procedures have been suggested for welding
process modelling, monitoring and control, involving routine or continuous monitoring of
the process variables.

Investigations on the development of real time control methodology by Tsai et al *?,
found that the initial approach to resistance spot welding modelling in the fifties was
based on observing the electrodes movement during the welding process. Electrode
displacements were assumed to relate to the achieved weld size. Monitoring and control
equipment developed then was based on thermal expansion rate or maximum expansion
displacement *?. Other researchers continued to try improving on this model *?. This
lead to a number of monitoring and control equipment produced in this area but with little

Or nO SuccCess (22,23, 24).

Progressing from the fifties to the sixties Tsai et al **

reported J.A. Greenwood as having
developed a model that correlates the surface temperatures of spot welds to maximum
temperature at the nugget centre during the welding process @2 n order to determine
temperature of the weld nugget using infrared emission from the metal surface,
thermocouples were mounted on either the workpiece or the electrodes “?. This approach

was reported as unsuccessful because the welding operation had to be interrupted to

attach the thermocouples with an additional problem of spurious feedback signals and
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erroneous temperature reading from the thermocouple due to variations in infrared

emissitivity ¢?.

Tsai et al ??

mentioned that to improve the monitoring and control process an automatic
load adjusting system was developed in the seventies by Johnson and Needham. This
system was based on the observation that by combining electrode force, weld current and
welding duration it will be possible to determine weld quality, provided a critical value of
applied electrode force was used. This system was able to restrict weld expansion during
welding ®®. A linear relationship was said to exist between the subsized nugget and the
expulsion limit “?. Electrode force was at that stage presented as the most important
control parameter necessary to achieve good weld quality ®?. The drawback as reported
@2 was that while trying to use the thermal expansion curve to adjust weld current, weld
time and electrode force, the electrode displacement in a number of cases were
insensitive and sometimes had no response to the expansion signal in the initial expansion

rate based control system %,

Further and more advanced techniques like ultrasonic signals and acoustic emission
techniques were employed to detect weld size “. However, cost and complexity made

these systems unsuitable for use in most applications **.

Feng et al ® gave a different perspective to the modelling and performance development
of the resistance spot welding process. He proposed an “integrated interdisciplinary
modelling approach to simulate the performance properties of resistance spot weld
joints”. The approach used basic physical phenomena such as the physics, mechanics and
metallurgy of the process, which occur during the welding process and in service under
loading conditions. However, this optimisation procedure was limited and could not be
effectively applied to high-strength steels because weldment properties depend on

. 3
microstructure ( ).

Further work in resistance spot welding process was in using numerical simulation

techniques to predict pattern and size of nugget during the welding cycle *¥. In most of

the earlier investigations temperature and pattern of formation of nuggets were calculated

16



without accounting for varying contact diameters at the electrode-workpiece surface and
the faying (surface of member that is in contact with another member to which it is

joined) surface between the sheet metals .

@3 reviewed the research work done in the mid eighties by Nishiguchi in

Matsuyama
which the study produced a numerical simulation of nugget formation for estimating
contact diameters at the electrode-sheet interface. The review concluded that it was
possible to predict with some accuracy the nugget formation process without including

the electrical contact resistance at the faying surfaces @3,

In 2000, Matsuyama ** developed a numerical simulation procedure to predict the
nugget formation process using varying contact diameter concept and observed interface
contact resistance on the nugget formation process. The study applied varying contact
diameter model without incorporating contact resistance model and concluded that the
interface contact resistance can be ignored in normal resistance spot welding as it is not
very important. The research work presented varying contact diameter alone as adequate

for estimating the nugget formation process @9

An improvement to an earlier method that used a heat conduction differential equation
was the recent work in 2002, by Matsuyama et al **. In this new approach an algorithm
based on an integral form of an energy balance model for monitoring and control of the
resistance spot welding process was developed. The simulation was set to calculate the
average temperature of a weld during the welding cycle by using measured parameters
which are welding voltage, welding current and total plate thickness. This was used to

(25)

predict both weld diameter and expulsion occurrence Current and voltage

measurements made across the electrodes were processed according to equation 2.1, to

provide dynamic resistance, given as *”:

R=V/I 2.1

Where R is the dynamic resistance (ohms), V is voltage (Volts) and | is current

(Ampere).
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Only peak values of voltage and current were used in order to avoid the effect of

inductance (effect due to voltage drop in the circuit) on the value of these parameters *>.

Tsai et al ® mentioned that the use of electrical parameters for monitoring and control of
the resistance spot welding process are considered the most successful of all in-process

(22), which are;

quality control systems. However, there are a number of limitations
1. The method is mostly suitable for uncoated mild steels, compared to other metal
alloys and coated mild steels because of electrode wear during the welding
process, which makes reproducibility of same weld quality with the same machine
setting difficult “?. This can though be accounted for in a model, by using the

wear state of the electrodes to set boundary conditions.
2. The voltage clip position on the electrode to capture data during the welding

process gets on the way 2.

In these techniques, trial and error and experience still dominates its effective use **
particularly in the determination and setting of the welding machine for achieving desired
spot weld quality. Use of artificial intelligence applications like the artificial neural
networks are been used to model the resistance spot welding process ). This application
technique is further explored in this research for overcoming weld quality prediction
uncertainty. Work by previous researchers in developing neural network application in

resistance spot welding are presented and extensively discussed in Chapter 3.

2.4  Effect of Machine Mechanical Characteristics on Weld Quality

Many researchers agree that welding machine mechanical characteristics does affect weld
quality with explanations on how. However, the extent has not been quantified in terms
of what quantity (value) of mechanical characteristics affects weld diameter ®. Tang et al
® stated that the resistance spot welding machine is made up primarily of electrical and
mechanical subsystems which are believed to affect weld quality in some ways ®. Lipa ©

mentioned that the resistance spot welding machine had always been viewed as a
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transformer and its importance as far as influence on weld quality is concerned has been

the object of debates by many authors ).

A recent work in 2003 by Tang et al ® was carried out by experimental investigation on
welding machines using modified mechanical characteristics, which were welding force,
electrode displacement, and other process characteristics, such as electrode alignment.
The identified characteristics were then linked to weld quality through process signature
analysis ®. Emphasis was placed on the signals during welding stage when electric weld
current is applied. Subsequently the hold stage was analyzed to see how it influenced the

solidification of the liquid nuggets .

From their study they found that machine stiffness (refers to the rigidity of the upper and
or lower arm of the welding machine part) slightly improves weld quality in terms of

weld strength and significantly raises welding expulsion limits ®

. Further analysis as
reported ® was made on the influence of the machine stiffness on the characteristics of
the welding force, electrode displacement, and electrode alignment. The work concluded
based on the analysis carried out that “due to thermal expansion of the weldment, in a
stiff machine, the electrode force increases higher than its preset value to accommodate
the stiffness” ®. The increased electrode force imposes a forging force on the nugget,

which is beneficial for preventing welding expulsion ®.

The study ® also revealed that friction (condition of moving parts of the welding
machine) was unfavourable for both steel and aluminium welding. And in some
combinations of parameters because data ranges do overlap, the reduction in strength is
not statistically significant. The influence of friction was reported to vary with welding
conditions . The findings ® were that the tensile-shear strength of welds and welding
expulsion limits, were not significantly influenced by machine moving mass (weight of
the cylinder head) for steel and aluminium welding alloys that were used for the
experiment. However machine stiffness and friction do affect welding processes and weld

quality ®.
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(26)

Similar work was done by Satoh et al “®® and Dorn et al “”. These researchers have made

valuable contributions to the understanding of the effects of machine characteristics on

resistance welding. However, the results of these studies had been mainly descriptive .

The expressions of the influence are not explicit, but mostly comparative .

2.5 Concluding Remarks

25 and others is

Dynamic resistance as presented by the recent work of Matsuyama
intimately related to the progress of the welding operation. It is possible to obtain
information regarding the nugget growth by monitoring the parameters that are related to
this variable. Dynamic resistance (varying contact diameter) therefore is a suitable and
appropriate parameter that can be used for modelling and estimating the nugget formation

process.

The effect of mechanical characteristics on weld quality has been descriptive, not very
concrete and of some debate among researchers. Considering the unclear speculations
and debate around this issue, this research will investigate the possibility of using only
electrical characteristics data to accurately predict weld diameter (weld quality).
Electrical characteristic parameters data is thought to in some ways reflect the welding

state and mechanical characteristics of the welding machine.
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CHAPTER 3

NEURAL NETWORKS

3.1 Introduction

The chapter introduces the fundamentals of neural networks, neural network types,
learning rules, optimisation techniques and application in resistance spot welding process.
Neural networks controllers and the theoretical steps for the design of the process
controller are included in this chapter. Sensitivity analysis which is typically carried out
in neural network modelling for determining the contributory effect of inputs to outputs

in a neural network model is discussed.

3.2 Background

Artificial Intelligence (AI) provides several techniques that are used in manufacturing
systems ®®. In the 1980’s, knowledge based expert systems were the most popular
artificial intelligence techniques, they have however become less effective with the
continuously changing, complex and open environment of manufacturing systems “*.
Neural networks are identified as capable techniques that can be used in increasing
manufacturing system’s predictability because of its ability to learn, adapt and do parallel
distributed computation Y. Neural networks are robust systems ®®. Smith “” mentioned
that applying neural networks techniques in manufacturing systems creates potential to

increase product quality, improve system reliability and reduce the reaction time of a

manufacturing system.

Nelson et al ®” gave the historical trend of neural networks development as having
started at conceptual level around 1890 with investigation and insights into brain activity.
The development progressed to 1936 with the successful explanation of the brain as a

computing paradigm by Alan Turing ©®”. This explanation gave a deeper insight into
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neural network concept. In 1943 Warren McCulloch and Walter Pitts presented a work
(9 explaining how neurons might work by modeling a simple neural network using
electrical circuits. This discovery by Warren McCulloch and Walter Pitts was used by
John von Neumann for teaching theory of computing machines ©®. In 1949, Donald
Hebb presented the connection between psychology and physiology and explained how
neural pathway is reinforced each time it is used ©”. Following the improvement on
hardware and software capability in the 1950s, research in this area progressed further.
The period 1969 to 1981 recorded stunted growth because of reduced funding and
diverted attention to artificial intelligence that looked more promising at that time ©%.
However from 1982 to date there was a marked turn around and renewed interest in
research in the field of neural network and a period of unfolding application possibilities
mostly due to the availability of capable computer hardware and better understanding of

neural network capability %

Literature “® *" described the basic components of a neural network as nodes (or
neurons, adapted from a biological neuron) and adaptable weights G These neurons are
also referred to as processing elements * 3", Weight in neural network refers to the
adjustable parameter on each connection that scales the data passing through it ®". The

GD as corresponding to biological synapses.

weights were presented by Hassoun
Identified inputs referred to as signals are accumulated and put through the networks,
adapted by the weights, and the sum passed to an activation function that determines the
neurons response Y. Neural networks learn by example ©. Hung et al %) presented
neural networks as having the capability to solve problems without a detailed, explicit

algorithm available for the solution procedure.

GD mentioned that a neural network is configured for a specific application, such

Hassoun
as pattern recognition or data classification, through a learning process. The research
further described the neural network as having a remarkable ability to derive meaning
from complicated data and is able to extract patterns and detect trends which are too

complex to be noticed by either humans or other computer techniques ©".
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Martin ¢?

reported two breakthroughs in neural networks use in the late 80's that have
made growth of the application possible in the process industries. The first was reduction
in training time even with large number of inputs. This was achieved by the basic change

in the learning algorithm. The second was a deeper insight by the work of Caudill et al ©*

(32)

on the development of “inverted” or “reversed” neural networks “~. These two

mentioned breakthroughs have helped with solutions for large scale problems involving

time series models and nonlinear multiple-input-multiple-output (MIMO) models ©* .

Principe et al and other authors ®* ¥ listed what makes a neural network unique as
follows:
* Nonlinear models
— Many nonlinear models exist, but the mathematics required is usually
involved or nonexistent.
— Neural networks are a simplified nonlinear system (combinations of
simple nonlinear functions).
* Trained from the data
— No expert knowledge is required a priori
— Each task does not need to be completely specified in code
— They can learn and adapt to changing conditions online
* Universal approximators
— They can learn any model given enough data and processing elements and

time

3.2.1 How Artificial Neural Networks (ANN) Work

Leondes ¢

reported the work carried out on universal approximation theorem in 1984 by
the research group in San Diego which described neural networks as a heuristic technique
used to perform various task within the supervised or unsupervised learning paradigm.
This consists of optimized training, selection of appropriate size of a network and

prediction of how much data that are required to achieve particular generalization
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performance. The sequence in using artificial neural networks consists of determining the
input and output signals ®* *. This is followed by using generated data set to train and
validate the network. A neural network architecture made up of inputs, network layers
with hidden layers and output is shown in Figure 3.1. Hidden layers are the layers in-

between the input and output layers.

Hidden layers

"

Input —‘

Output

Figure 3.1: A neural network architecture [adapted @91

At the training stage, the data is presented to the network “*. Figure 3.2 shows the

adaptive process which takes place during the training stage of the neural network.

Desired
7
Input Adaptive Cutput
L IEEEEEEE—
systemmn { w)
- Cost
Chatge parammeters
; Tramng
algorithim Error -.\\_/

Figure 3.2: Neural Network Adaptive process ©*
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The network computes an output which is compared to the desired output. Based on the
level of error (difference between computed output and desired output) referred to as cost
in neural network terms, the network weights are modified (adapted) to reduce the error
G% see Figure 3.2. The weight modification is done by passing the epoch through an
iteration process. An epoch is a complete set of input/output data made up of elementary
and exemplar. An exemplar is one individual set of input/output data while elementary is

a complete set of input row. Presented in Figure 3.3 is a single neural network structure

showing these terms.

Inputs Weights
Elementary| s, 3,7, 53 |.
3 312053 Outputs
1, 00,1, O
5, 302,12, 1
Exemplar

Figure 3.3: Single Layer Neural Network Structure [adapted ©]

To use the network a new set of data different from a test set are used to validate the

network. The network then computes the output based on its training ®*. The various

aspects of the Neural Network models are as follows ©*3:

e Neurons

e A state of activation for every unit, equivalent to the output of the unit.

e Connection between the units: each connection is defined by a weight which
determines the signal of the unit.

e A propagation rule: determines the effective input of a unit from its external
inputs.

e An external input or bias (threshold) for each unit.

e A learning rule and an environment within which the system should operate.
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In a neural network structure as is shown in Figure 3.4, the processing element (neuron)

has one scalar input (p) transmitted through a connection that multiplies its strength by

the scalar weight (w), to form the product (wp), again a scalar 36),

Inputs General Neuron

N N

w
P @———

|2
lb

/1 J
a=f(wp+b>b)

Figure 3.4: The Simple Neuron Model %

(36)

Here the weighted input plus the scalar bias (b) are the only argument >’ of the transfer

function (f), which produces the scalar output (a) such that:
a=f(wp+b) (3.1)

This sum is the argument of the transfer function f . The parameters w and b are

adjustable scalar parameters of the neuron ©°.

It is possible for a single neuron to have more than one input and thus more than one
weight such that the parameters can be adjusted for the network to exhibit some desired
behaviour ®®. This creates the possibility for a network to be trained to do a particular job

by adjusting the weight or bias parameters ©®.
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Many artificial neural networks (ANN) can be considered function approximator % *%.

Function approximation approximates the function f when y = f(x), given y and x (input
& output respectively) ®*. Examples are:

— Linear regression

— Classification, where the output function is binary (on or off)
Artificial neural networks are good for function approximation because

— they are universal approximators

— they are efficient approximators

— they can be implemented as learning machines

Artificial neural networks use ensembles of simple functions to approximate complex
functions ®*. For example in multilayer perceptron (MLP) and radial basis function
(RBF) which will be discussed in later section, the MLPs approximates input-output
function using a combination of functions like logistic or tanh while RBFs approximates

input-output function using a combination of Gaussians “.

3.2.2 Benefits and Applications of Neural Networks

Huang et al @

mentioned that neural networks are being applied in many fields. Some of
the benefits as given by Huang et al ® are as follows:

e High processing achieved through massive parallelism.

o Efficient knowledge acquisition through learning and adapting ability.

e [tis robust, accurate and can operate in real time.

e Compact processors for space-constrained and power-constrained applications.

e Data analysis tasks time is significantly reduced.

e [t is able to quickly and accurately solve difficult process problems that cannot be

solved with conventional methods.
e In the presence of noise the nets are robust such that small changes in an input

signal will not drastically affect a node's output.

e (an generalise from training data set.
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Smith @ reported that neural networks have been implemented in broad areas in
manufacturing, including the design phase, process planning, scheduling, process

monitoring and quality assurance.

Artificial neural networks have specifically been applied in the following areas 7%

Business
e Used to evaluate the probability of oil geological formations
e For Identifying corporate candidates for specific positions

e Recognition of hand written signatures

Environmental

e Used for weather forecasting

Financial
e For assessment of credit risk
e Identifying forgeries

¢ Analysing portfolios and rating investments

Manufacturing

e Automating robots and control systems (with machine vision and sensors for
pressure, temperature, gas, etcetera)

e Controlling production line processes

e Inspecting for quality

e Selecting parts on an assembly line

Medical

e Analysing speech in hearing aids for the profoundly deaf
e Diagnosing/prescribing treatments from symptoms

e Monitoring surgery

e Predicting adverse drug reactions

e Reading X-rays

e Understanding cause of epileptic seizures
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Military

e C(lassifying radar signals

e Creating smart weapons

e Optimising the use of scarce resources

e Recording and tracking targets

3.2.3 Neural Networks Limitations

1 ” mentioned that it is only recently, that neural network techniques are

Stergiou et a
finding its way into the industries ®”. According to Stergiou et al ®”, one of the major
problems with neural networks in the early times was that neural network programs were
unstable when applied to large scale problems “?. This as explained by Yalcinoz “* was
due to the “network solution having a local minimum which depends on the initial
conditions and inefficient mapping method used to determine weights in the energy

function”. Yalcinoz “¥

explained that the limitation was however overcome by an
improvement in the energy function. This was done by modifying the algorithm, such that
reliable feasible solutions were produced and various methods developed to escape from

the local minima.

Presently, a limitation that is yet to be overcome is that neural networks function as black
boxes whose rules are unknown. Results are presented as output without giving
explainable mathematical function that was used to arrive at the answer “". What this
means is that while it presents an accurate output result, the knowledge representation is

unclear and is not yet well understood .

(29, 37)

Some other disadvantages of neural networks , which hinder the optimal application

of neural networks in certain areas, are:
1. Use of trial and error methods to find the proper neural network architecture for a

given problem. This makes it usually time-consuming; this is though improved

with the use of genetic algorithm.
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2. Sometimes a particular neural network learning algorithms for a given problem
may not be efficient enough for network convergence.
3. Acquisition of an optimal training set for a specific neural network application
continues to be a challenge.
For neural networks to be used more effectively, there should be improvements in the

following areas ©”:

1. In knowledge representation, non-numerical operations, and symbolic reasoning
which are areas that basic neural networks cannot deal with.

2. The determination of number of nodes, number of layers, connections, and initial
weights of a neural network should be easier.

3. Possibility for determining the optimal network architecture while training by

controlling the minimal number of nodes, weights, and layers during training.

While these limitations do not pose an immediate problem, overcoming them will

make the technique more usable ©7.

3.3  Neural Networks versus Other Methods

In this section neural network technique is compared with other methods used for the
analysis and design of models and control systems. Specifically compared to the neural
network techniques are the traditional linear statistics method that has been in use for
long and the more recent techniques like fuzzy set theory and program algorithm. The
reason for comparing, is to justify the appropriateness of the use of neural network
techniques in solving the complex non linear resistance spot welding process modelling

and control problem.

A very useful capability of a predictive modelling tool in a chaotic, non linear and

dynamic process like the resistance spot welding process is the ability to learn and track
changes @D Linear statistics are able to model nonlinear variables but do not have

learning capability to track dynamic systems, compared to neural networks that are able
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to learn and recognise patterns in complex, dynamic and chaotic events “D Neural

networks can create their own organization or representations of the information received

during learning, with additional ability to represent any function and learn from

representative examples @D This capability has made neural network useful and superior

to linear statistics and many other non-statistical techniques @D In addition to this

capability, neural networks because of its robustness can tolerate partial destruction of its

network, though this could lead to a corresponding degradation of performance, some
network capabilities can however, still be retained even with major network damage 42),

This robustness is absent in linear statistics method.

Fuzzy set theory is a technique that can be used like the neural network. Fuzzy set theory

was developed with the capacity to deal with problems which were not solvable with
traditional statistical methods **. However, the use of fuzzy set theory requires a good
knowledge of rules for modelling a process, and sometimes closed-loop systems

developed using fuzzy logic are unstable ) This burden of the knowledge of rules is

(

absent with neural networks techniques 1-42) Neural network systems are stable.

Neural networks models are predictive (models are accurate with reality) even though
they are not descriptive @D 1t is possible with neural networks to go straight from data to
the model without the need for extra tools like recoding or simplification. This is not
possible with other methods @ Additional superiority of neural networks to other
methods is the fact that it is extremely sensitive to noise or unreliable data. There is no

restriction on the output type @D Neural networks can output results of complex
processes in a short computational time and can be done in real time 3 Neural networks

are able to generalise @D That is when a trained neural network is presented with data

that it has not seen before, it generates a reasonable response. Most methods are not able
to accurately generate a reasonable response in most non linear, complex and chaotic

relationships (41, 43)
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Other methods on handling data have many drawbacks which neural networks do not
possess ). For instance statistical techniques imposes restrictions on the number of input
data compared to neural network that can accept as much inputs and outputs as possible
in a single network architecture. The regressions performed with statistical methods
mostly uses simple dependency functions (linear and logarithmic), which are quite

unrealistic (43).

Statistical techniques require intensive mathematical methods to transform data; this is
not needed in the use of neural network techniques. Neural networks are non-linear hence

are better able to account for complexity of human behaviour and real life situations ),

And they can give tolerance to missing values “n

3.4 Classification of Neural Networks

The two major kinds of network structures for the neurons making up the neural networks
are feedforward and feedback network structures “*. Feedforward neural networks are
biologically inspired classification algorithm made up of a number of simple neurons
organised in layers “Y. The signals can only travel in one direction from input to output.
There is no feedback ©?. Presented in Figure 3.5 is an example of a simple feedforward

neural network.

Hidden layer Qutputs

Figure 3.5: A Simple Feedforward Neural Network Diagram ©°.
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The layers arrangements are such that every unit layer is connected to all the units in the
previous layer and each connection has a different strength or weight “¥. The weights on
these connections encode the knowledge of a network “¥. There is no feedback between
layers when it acts as a classifier Y. This is because data enters at the inputs and passes
through the network, layer by layer, until it arrives at the output (s). Feedforward neural
networks usually produce a response to an input quickly “*. Most feedforward neural
networks can be trained using a wide variety of efficient conventional numerical methods

in addition to algorithms invented by neural network researchers **).

Feedback neural networks are network structures where every neuron is potentially joined

46 such that the output of one layer routes back to a previous layer

43)

to every other neuron

@9 forming cycles among the neurons in the network connections as is shown in

Figure 3.6. They have signals travelling in both directions “*.

Feedback

-~

Hidden

layer
HO< .
Inputs \'\ Outputs

Feedback

Feedback

Figure 3.6: Simple Feedback Network Diagram [Adapted ']
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Another unique behaviour of feedback neural network is its ability to update the
activation of all neurons in parallel “?. In some feedback neural networks, each time an
input is presented, the neural network must iterate for a potentially long time before it
produces a response > 7. Feedback neural networks are usually more difficult to train
than feedforward neural networks “¥. It is possible to control the connections between
the neurons “?. Also, by changing the parameters that controls the connections > the

neuron in the network can be excited or inhibited.

Neural networks are also classified as supervised or unsupervised based on the training
(teaching) method used “?. In supervised learning the inputs and outputs are provided,
and an input — output relationship is established. What this means is that the network
processes the inputs and compares the resulting outputs against the desired output. While
for unsupervised learning, only inputs are provided with no desired output. The neural
network then decides for itself through a process of adaption or self organization what

features it will use to group the input data (42, 48)

There are many classes of neural networks “?. Several distinct neural network models
can be distinguished both from their internal architecture and from the learning
algorithms that they use **. Neural network architectures, learning algorithms, training

and neural network controller model are further discussed.

3.4.1 Neural Network Architectures

Different kinds of neural network architectures exists “®. The most commonly used ones
are Multilayer Perceptron (MLP), Radial Basis Function (RBF), Self Organising Map
(SOM) and Recurrent Neural Network (RNN). These are discussed in this section.

34.11 Multi-layer Perceptron (MLP)

Multilayer perceptron (MLP) architecture is a supervised neural network type with

feedforward network structure where each unit receives inputs only from a lower layer
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unit ®**?. The network is termed supervised because desire targets are presented to the
network during training. MLP are powerful models for solving nonlinear mapping

problems.

The simplest network architecture consists of a single layer with directed inputs and
weighted connections to the output unit “”. The network is trained with standard
backpropagation (simple learning algorithms which finds the weights for linear and
binary activation functions) algorithm “*. However, these algorithms can only work for a
limited number of functions. The limitations are overcome by adding one or more layers,
¢ (44.49)

known as hidden layers which are nonlinear units between the input and the outpu

Presented in Figure 3.7 is a typical architecture of a multilayer perceptron network.

Input Layer

Hidden Layer

Output Layer

Figure 3.7: Architecture of a multi-layer perceptron network ©*

As shown in Figure 3.7, in the hidden layer is a nonlinear node with an elementwise

nonlinearity function and the output layer with linear node. The computations performed
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by the network with a single hidden layer with nonlinear activation functions and a linear

output layer can be written mathematically as ®*:

x=1(5)=B ¥ (As+a)+b (3.2)

where S is a vector of inputs and X a vector of outputs. A is the matrix of weights of the
first layer, a is the bias vector of the first layer. B and b are the weight matrix and the
bias vector of the second layer respectively, ¥ is the weight parameter.

Hagan et al (36)

explained that the principle of the network operation is that the network
nodes perform calculations in successive layers until an output value is computed at each
of the output nodes. This happens when data from an input pattern is presented at the
input layer. Each layer of neurons may have a different number of neurons and a different
transfer function ®®. The output of the MLP is expected to indicate the appropriate class
of the input data. That is there should be a high output value represented with ones on the

correct class node and a low output value on all the rest represented with zeros ©°.

The error function generally used in the neural network computation is the squared
difference between the actual and desired outputs. The activities for each unit are
computed by forward propagation through the network, for various training cases.
Starting with the output units, backward propagation (chain rule) through the network is
used to compute the derivatives of the error function with respect to the input received by

each unit ¢%%,

The learning algorithm and number of iterations determines how good the error on the
training set is minimized while the number of learning samples determines how good the

(36)

training samples represent the actual function . The different kinds of activation

functions with their equations are shown in Table 3.1.

36



Table 3.1: Different Types of Activation Functions 36),

Name Linear Sigmoid Tanh Softmax
Function A 1 e® —e™ e
—a -
1+e e’ +e 2.6
J

Perceptron learning rule is used in MLP. This learning rule is a method used for finding
the weights in the network *. The perceptron has the property of searching for the
existence of a set of weights which it uses to solve a problem “”. This rule follows a
linear regression approach, that is, given a set of inputs and output values, the network
finds the best linear mapping from inputs to outputs “. Based on training, the network
can predict the most likely output value “*. This ability to determine the output for an

input the network was not trained with is known as generalization ©**.

Multilayer perceptron networks are known as approximators (two-layer networks with a
sigmoid transfer function in the hidden layer and linear transfer functions in the output
layer) and can approximate any function provided a sufficient number of hidden units are
available ®®. These hidden units make use of non-linear activation functions “®. The
performance of MLP function approximation does not degrade with increased input
dimensionality unlike polynomial based function approximators ®*. Linear output is used
for the multilayer perceptrons for function approximation with BiasAxon or LinearAxon
as the transfer function. Each processing element in the Multilayer Perceptron
architecture contributes to the global function of the network. A change in one weight

may greatly affect the global function ©¥.

The back-propagation algorithm used for solving learning problem of the MLP can take
two forms; the forms are either forward pass or backward pass “®*”. In the forward pass

(50) (50) “that

, given inputs are used to predict output. In the backward pass, it is explained
the partial derivatives of the cost function with respect to the different parameters are

propagated back through the network”.
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The same chain rule of differentiation which gives similar computational rules for the
forward pass is same one for backward pass °”. The network adapts weights by using

(50)

any gradient-based optimisation algorithm and the iteration of the whole process is

continued until the weights have converged ©?.

Though the MLP is a supervised neural network type, it can also be used for
unsupervised learning. This is done by using auto-associative structure, a process of
setting the same values for both the inputs and the outputs of the network 49 such that
the extracted sources can emerge from the values of the hidden neurons. This process

approach is however computationally intensive ©°.

3.41.2 Radial Basis Function Networks

The radial basis function (RBF) neural network is a universal approximator for
continuous functions given a sufficient number of hidden units. RBF have proven to be
valuable alternative to multilayer perceptrons (MLPs) in many real world tasks ®". The
tasks include speech recognition, data classification and chaotic time series prediction 2.
The RBF architecture consists of two-layer fully connected network, with an input layer

performing no computations ©'>?. See Figure 3.8.

Input layer

Hidden layer

Output layer

Figure 3.8: Radial basis function (RBF) network (52)
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RBF is a commonly used neural network type ©2) The computation nodes of the hidden
layers of radial base function network are different and serve a different purpose from the
output layer of the network as opposed to the MLP where the hidden and output layers
share a common neuron model ®?. The hidden layer of the RBF network is non-linear
while the output layer is linear. This makes the network unable to approximate non-linear

functions compared to MLP in which both hidden and output layers are non-linear ' 2.

Radial basis function networks are feedforward neural networks. The distinguishing
feature of an RBF network from other networks is that RBF network uses radial functions
(i.e. the transfer functions of the hidden units) while other neural network types does not
42 In the RBF structure each of the components of the input vector (&) feeds forward to
the basis function (K). The outputs are linearly combined with weights, wi, Wy,
...Wp,...Wg, in the output layer of the network, f(&) ®*. The general output of a RBF

network is thus ©?:

(W) =D w,s, (&) (3.3)

where & is the vector applied to the input neurons and S, represents the transfer function
(basis function) b. RBF hidden layer neurons have a receptive field which has a centre:
that is, a particular input value at which the neurons have a maximum output ©®. Their
output tails off as the input value moves away from this point ©". The most commonly
applied transfer function of an RBF network is the Gaussian and the output of the

network is given by ©?:

2
f(&,w)= bﬁlwb[MJ (3.4)

20'§
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where each hidden node is parameterized by two quantities: a centre m in input space and
width oy, ©?. Generally radial basis network requires more neurons than most other neural

network types ©%. Its simple structure and fast learning ability makes it very unique ©*.

3.4.1.3 Self-Organizing Maps (SOM)

Self-Organizing Map (SOM) was introduced by Teuvo Kohonen in 1982 ©¥. The SOM
(also known as the Kohonen feature map) algorithm is one of the best known artificial

©Y In contrast to many other neural networks using

neural network algorithms
supervised learning, the SOM is based on unsupervised learning ®*. In this unsupervised
learning the network performs some kind of data compression, such as dimensional
reduction or clustering “® by visualising high-dimensional data and converting it into

simple low — dimensional display as is shown in Figure 3.9.

Figure 3.9: Dimensional Reduction of Data by Self-organising map [adapted (31)]

The SOM can thus serve as a clustering tool of high-dimensional data. And can construct
a topology preserving mapping from the high-dimensional space onto map units in such a
way that relative distances between data points are preserved 48 The map units, or
neurons, usually form a two-dimensional regular lattice where the location of a map unit

(55,

. o . 56 . .
carries semantic information ), See Figure 3.9. It is made of a number of neurons
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that are arranged in a predefined structure 4% In most cases this structure is a regular

grid of neurons of 1-, 2- or 3-dimensions (56)

SOM neural network type is relatively easy to implement and evaluate, and is
computationally not expensive Y However, it has the problem of overcrowding and

underutilization of the neurons in the network due to the size and shape of the network
that are fixed before the training phase begins (159 presented in Figure 3.10 is a Self-

Organising Map architecture.

Neighbors

}

PEs

weights

inputs

Figure 3.10: Self-organising map architecture @D

The weight of each processing element (PE) represents the center of its cluster as is

shown in the Figure 3.10. Neighboring PEs has similar weights.

The SOM identifies a mapping from high dimensional input data space onto a regular

54 . . . . . .
array of neurons 9, Every neuron I of the map is associated with an n-dimensional

reference vector m, = [m”,... m ]T , where m denotes the dimension of the input vectors

> n
54 . :
©% In essence the reference vector consists of the weights of the neurons. The reference

vectors together form a codebook. The neurons of the map are connected to adjacent

41



neurons by a neighbourhood relationship, which dictates the topology, or the structure of
the map G The most common topologies in use are rectangular and hexagonal topology
©7) SOM is most suitable for classification problems as such will not be used for the

application problem being investigated in this research.

3414 Recurrent Neural Networks

Recurrent networks can have an infinite memory depth and thus find relationships
through time as well as through the instantaneous input space G Most real-world data

contains information in its time structure. Recurrent networks are the state of the art in

nonlinear time series prediction, system identification, and temporal pattern classification

(34). The human brain is a form of recurrent neural network (58).

Recurrent neural networks are a kind of network with feedback connections ~°. They are
computationally powerful and because of their ability to implement almost arbitrary

behaviour they have found good use in adaptive robotics, music composition, speech
recognition and other applications 8, Backpropagation algorithm which is one of the

best learning algorithms can not be easily used in the recurrent neural network

architectures. This is because to use backpropagation algorithms in a network, the
architecture has to be of feed-forward form “* °". This adds some computational

expense.

The inputs and outputs of this architecture are lengthy sequence of vectors making
handling of the input and outputs sometimes difficult to follow through ©D presented in

Figure 3.11 is a fully recurrent neural network.
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Figure 3.11: Fully recurrent neural networks ©*

Fully recurrent networks provide two-way connections between all processors in the
neural network ©”. They are typically complex, dynamical systems, and exhibit
instability ®”. Having, discussed the classification and architecture of neural networks.

The next section is about how neural networks are trained.

3.4.2 Neural Network Training Methods

Training the neural network entails finding the network parameters (weights and biases)
which would best approximate a given function “®. Neural networks have the ability to
learn from examples by adapting the weights on its connections in order to achieve a
desired specification using specific learning rules *®. During the learning process, the
network embodies the complex relationships between the network inputs/explicative data
and the network outputs/explained data “®. This learning process produces a statistical
model which can determine an estimation of the likely outcome when fed with an input

variable %

When training the neural network, care is taken to ensure that they do not overfit the

(43)

training data as this can prevent the network from generalizing The process is as
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follows: Each example (data) is entered as input in the neural network. The values are
propagated towards the output through a function. These are activation functions which

are either the linear, logistic and softmax “**.

The prediction obtained at the network’s
output is called an error or cost function “¥. As explained earlier, the error value which is
the difference between the expected value (real output) and the actual output value (what
the network gives) are computed. This error value is then backpropagated by going
upwards in the network and modifying the weights of each hidden unit based on the error

contribution of each to the total error value. This mechanism is repeated for each value in

the learning set “®.

Neural network uses trial and error method of learning and finds the patterns associating
inputs and outputs using a large set of training data where both inputs and outputs are
known “®_ 1t initially begins with random weights and corrects mistakes by modifying
the weight that it has given each input item “¥. The network works in feedback network
form, whereby a given node output can be transmitted back to itself or to other previous
nodes as another input “¥. The learning process is done using models and rules “¥. These
rules are as follows:

- Biologically based rule such as Hebb’s rule — one of the learning rules in
which changes in synaptic strengths (weights) are proportional to the
neuron activation (input) ©0),

- Grossberg Learning — a learning rule based on self-training and self-
organisation which allows networks to adapt to changes in input data over
time ©V).

- Kohonen’s Learning Law — an unsupervised learning rule, used when
breaking down a system, via the Kohonen clustering algorithm, which

takes a high-dimensional input and clusters .

The practical approach to training a neural network is to know how to set stopping
criteria during the training of the network @9 Common stopping criteria include 39,
— Using fixed number of epochs.

— Stop when the mean square error (MSE) gets below a certain point.
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— Use of cross validation criteria to monitor performance. Cross validation
helps to store best weights that gives best performance and not necessarily

for stopping the network.

The aim during the training process is to maximize generalization **. The following can
be done to achieve this **:
* Trying many possible networks and using the smallest network that meets the
design criteria.
» Use of weight decay — a method that forces weights (discriminant functions) that
are not necessary to zero.
* Use of cross validation by :
— setting aside a subset of data to test the network
— Monitoring the network to avoid memorizing. Memorizing occurs when

the training set mean square error (MSE) continue to fall while the cross

validation mean square error starts to rise.

The learning process is a trade-off made between the training speed and the weight

quality (degree of error or convergence) “¥.

e [ftoo fast, weights may not be effective for new data.

e [ftoo slow, network will not be able to make accurate predictions.

There are two approaches to learning in supervised training “¥. The approaches depend

on the nature of the target values which are “**:

1). Based on the correctness of the decision (how accurate the results are
compared to the target values).
2). Based on the optimization of a training cost function. (The least square error

method).

In decision based neural networks, the target determines the correctness of the

classification for each training pattern ", The objective of the learning process is to find
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a set of weights that gives an accurate classification “?. In the first phase (retrieving
phase) the objective is to determine which class the pattern belongs to based on the output
values. The output values are function of the input values and network weights *'**. The
learning process sequence consists of the input data propagated through the network to
compute the system output. Error is computed and propagated backward through the

network. Depending on the level of error the weights are modified accordingly .

In optimisation based neural networks, the correctness of the training pattern is
determined when the error or cost function has been minimised. This function is
minimised by using the least square error method of optimisation “**?. The optimisation

(44, 49)

technique is used to find a set of design parameters , that can be defined as optimal

44 . . o - : .
“ This could be in order to minimise or maximise a particular function such as an error
function which is dependent on another variable. However, the function to be minimised

might be subjected to constraints in the form of equality constraints or bounds (47, 62)

The optimization techniques used include the following (44, 49).
e Inverse Neural Network

e Brute-Force Method

e Fminbnd

e Descent Optimization

¢ Quasi-Newton Methods

A discussion of each of these optimisation techniques are given below.

3.4.2.1 Inverse Neural Network

The role of an inverse neural network is to predict the unknown inputs to a system such
that it can produce a desired output. Psaltis et al “ proposed mathematical algorithms
that can learn the inverse of target system mappings for the purpose of predicting

unknown system inputs to produce the desired outputs.
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Psaltis et al “ explained that in many real cases, learning the inverse of the system by
mathematical algorithms was very difficult and time consuming. This complexity of
modelling direct inverse systems has led to the derivation of inverse nonlinear mapping
from a simple neural network multilayer perceptron (MLP) or radial basis function (RBF)
which is trained as a simulator of a given system ©®* 9.

Williams ©®® and Linden et al ®” developed the first methods of inverting feed forward
neural networks. It was an inversion algorithm of feedforward neural networks which is
based on numerical gradient descent search method (similar to back-propagation) in
which a candidate inverse is iteratively refined to decrease the error between its output

and the target ©* 7.

The use of inverse neural networks has over the years emerged as a useful technique in
neural network application ®*. Inverse neural network models are used for solving
process optimization and product quality control problems as well as simple predictions
G To use inverse neural networks the target values take the role of the input while the
input takes the role of the target values. Upon training the network a relationship of the
output-to-input is obtained rather than input-to-output. This can then be used to adapt the
network to correct the output to the required output. The algorithm is as shown below ©*:
e Desired output value, yq is entered

e The current position, y, is also entered

e The difference between the two, y, =y, — Y, 1S obtained

e The absolute of this difference is y, = abs(y,) required to update the position.

This absolute is passed through the inverse neural network to get the required
input, x; which gives this position.

e This input is then passed through the neural network to get the position, y;.

e s is compared with y, while updating the input value, until the point where the
two are equal or less than an error value. This input is then returned as the
required input value which would set the actual output value to the required
output hence minimizing the difference between the two, which is the

optimization process.
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An obvious problem associated with network inversion arises when a many-to-one
function must invert from one to many targets ' ®* . What this means is that in a
typical neural network structure a number of input variables are used to generate one

output @1

, Whereas in Inverse neural networks model it is required that the output be used
to determine the inputs. While this is possible it could be very difficult “®. The
manipulation requires a large computational cost to find an exact inverse of the target
even on neural networks of moderate size ®"" . Inversion therefore, only yields estimate

inverses which approximate the inverse of the target to a certain degree ).

Additionally, the use of inverse neural network optimisation technique takes a long time
to find the optimal position, hence would not be practical for a large data training set .
The reason it takes a lot of time could be attributed to the fact that if the signal is a
random signal or a non-linear relationship the value could lie within a small range such
that the method keeps fluctuating around this point (due to the gradient of search) ' .
This disadvantage makes this technique inappropriate in the resistance spot welding

process modelling problem.

There are though several techniques or algorithms that have been developed for
improving inverse neural network accuracy @® These algorithms are based on fields

such as numerical optimization methods (e.g. gradient descent search method and

nonlinear programming) and other methods such as fuzzy logic and evolutionary methods
(28)

3.4.2.2 Brute Force Method

In this method input arrays and values are defined from the start of the data range set to
the end of the data range set “Y. Different values of the input are then tested until at the
point where a particular input value gives the required output or an output less or greater
than the input by the error value “**”. One major drawback of this technique is that in

the algorithm an array of input values are created with incremental steps chosen as a
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result if the increments are too large the solution would be skipped and if it is too small

the method would converge too slowly 7.

Similarly, if there are too many inputs in the array, it would take a lot of time before
finding the possible solution and if the input in the array is too small the solution would

not be found for small accuracies “”. It is for this reason that this method is discouraged.

3.4.2.3 Bounded Minimisation Technique (Fminbnd)

This method is from the MATLAB 6.2 toolbox . The optimisation technique is a mean

@) The function is minimised by finding the

square error minimisation function
optimum parameter that gives the minimum turning point(s) of the function to be
minimised or the minimum point of the function within bounds specified for the

parameter @7 Such that 47

[X, Fval, Exitflag, Options]| = fminbnd(@ Fun, x, , X, ,Options) (3.5)

where:
e Fun is the function to be minimized
e X is the lower bound for the parameter
e Xy is the upper bound for the parameter
e Options can be used to specify the accuracy and displays what the function should
do.
e X is the optimum value
e Fval is value of the function

o Exitflag is a convergence criterion.

This optimisation technique returns the optimum value onto X, the value of the function

at this optimum value is also returned to fval. It is reported “7 that the Exitflag takes on a
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value of 1 if the method converges, 0 if it does not converge and -1 if the number of
iterations is exceeded.

This method however has the following limitations 7

e The function to be minimized must be continuous.

¢ Fminbnd may only give local solutions.

e Fminbnd often exhibits slow convergence when the solution is on a boundary of

the interval.

¢ Fminbnd only handles real variables.

The Fminbnd uses either the Line search, Golden search or Parabolic search techniques to
determine optimum values “” 7. In using line search techniques, the search starts from a
point with an assumption that the function should decrease along the line 7". This
assumption is sometimes misleading and can yield inaccurate results. With the Golden
search method no assumption is made about the function “”. The interval is divided in
the ratio of 1:t where t is a number greater than 1, which ensures that best reduction
occurs within the interval per step “ 7. A principle of scale similarity (dividing the
interval in the same manner at each stage) is then used. This method of search is very
effective because it is robust 7”. It however requires a continuous function in order to
work properly. It has linear convergence properties and as a result may take a long time
to converge. The parabolic method makes use of the assumption that the function is able

to find the optimum point by itself ’”). The algorithm is as follows 7*:

e Divide the interval into three points
e The method fits a parabola to the three values which have the values fi, fm, fu.
The parabola to be fitted takes a function of the form:

f(x)=m(x-X,,,) +cC (3.6)

where m is the gradient and ¢ the intercept.
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The new point X,y then becomes the minimum of the function. The point Xy, is

then given by:

o L[ RXE XA ()= xg ) B (X2 - X7
2 fL(XU_Xm)+fm(XL_XU)+fU(Xm_XL)

(3.7)

The value of the function at this new value, f (Xyew) is then calculated.

Say the interval X; to X, was the larger interval, if f(Xew)>f(Xy) then the new
interval becomes (Xr, X, Xnew), otherwise the new interval is (X, Xnew, Xv)-
The accuracy is then checked. If f(X,ew) has the accuracy required, the method
stops otherwise the method returns to the second step and goes through all the

steps again until an accurate value is obtained.

The parabolic search method on its own becomes inaccurate when there are two solutions

because it tries to oscillate between the two solutions 7”. Another problem is that

sometimes the points may lie on the function but the middle interval may not really lie on

the lowest point on the function to be minimised so the parabolic search would get stuck

on this point "?. To cater for the two problems above, the parabolic search is combined

with the golden search method 7).

3.4.2.4 Descent Optimisation Methods

In this method, the optimisation approach is to minimise the function along a particular

direction . The algorithm for the descent methods is as follows

1

2
3
4

(49).

Start at some given point X;

Assigni=1,

Choose a search direction D;

Use line minimization techniques such as golden search method to minimize
f(Xi + AD;) by varying the scalar A.

Update X1 = Xi + Amin Di
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6 Check for convergence. If no convergence return to point 3.
There exist three kinds of descent methods, which are “9).
1. Alternating variables,

2. Steepest Descents
3. Conjugate Gradient methods.

The alternating variable method is an iterative method for minimizing a function jointly
over all variables. It is limited by the fact that even though the step sizes get smaller and

smaller as the minimum point is approached, this value is never reached, hence the

method is deemed to be non-convergent @ For the steepest descent method, the

function is minimized along the direction with the greatest slope 9 The steepest
gradient descent methods have a fast convergence initially, but convergence slows down

as the minimum point is reached. It also, needs an infinite number of steps in order to
. (49)
converge on a quadratic surface " .

In the steepest descent method the function is minimized along the direction with the
greatest slope which is the negative gradient. The steepest gradient descent method has a
fast convergence initially but slows down close to the minimum point. These methods

need an infinite number of steps in other to converge on a quadratic surface.

The conjugate gradient method makes use of search directions %) The search directions

are chosen based on information gained from previous searches @9 1t should be noted
that for an n-dimensional space quadratic surface, conjugate gradient method would
converge in n steps or less ) 1 conjugate gradient methods, the directions are
conjugate to the Hessian matrix (a matrix and the determinant of that matrix) but do not
need to be calculated “”. The draw back in this method is that the gradient of the error
function with respect to the inputs and thus the weights at times requires complex

mathematical computations ),
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3.4.25 Quasi-Newton Method

Quasi-Newton method 9 is the most used optimisation method. The curvature of the
function is computed at each iteration, in order to formulate the quadratic model of the

problem of the form (49,

min%XT Hx+c'x+b, (3.8)

where H is the Hessian matrix, which is a positive definite matrix, c is a constant vector
and b is a constant. The optimal solution is reached when the partial derivative of
equation 3.8 goes to zero “9)

The conventional Newton method calculates H and proceeds in a direction of descent to

minimise the function after a number of iterations (49). This method is, however

computationally intensive for calculating the Hessian matrix @9 The BFGS (Broyden
Fletcher Goldfarb and Shanno) methods are used to update the Hessian matrix, so

reducing the computational time ),

Learning rate and learning algorithms which affects the performance of neural networks

are further discussed.

3.4.2.6 Learning Rates

The learning rate determines by how much the weights at each step has to be changed and

how long it takes the network to converge B9 Learning rates can be set based on the

following (39,

— Normalized learning rates — achieved by dividing the number of exemplars
per update. This provides consistent learning between batch and online.
— The closer the processing elements (PE) are to the output PE, the lower

should the learning rate be set because of error decay.
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— NeuralExpert (programmed software) can be used to pick theoretically

best initial weights.

An alternative to determining learning rate is to use adaptive learning rates GY An

example is the delta-bar-delta adaptive learning rate. What this does is that if there are
consecutive errors of same sign the delta-bar-delta will increase the learning rate (add)

and if they are of different signs it will decrease the learning rate G4

3.4.2.7 Learning Algorithms

Neural networks fundamentally use two kinds of learning algorithms, namely; supervised
and unsupervised learning *®. In supervised learning as earlier explained, the known
target values or desired outputs (correct results) are presented to the neural network
during training. The neural network adjusts its weights and tries to match its outputs to
the target values “®. The learning algorithms are further classified under four kinds of
learning algorithms, these are:
a. Backpropagation Algorithm
b. Conjugate Gradient Algorithm

¢. Quasi-Newton Algorithm and

&~

Levenberg-Marquardt (LM) Algorithm.

(a) Backpropagation Algorithm

Backpropagation algorithm is a gradient descent optimization procedure whereby the
mean square error performance index is minimized ) This method makes use of a set
of data which includes the input and output of the actual plant to be modelled by the
neural network . As the inputs are applied to the network, the network output is

computed and is compared with the actual plant output. The algorithm then adjusts the

network parameters such that the sum of the squared error between the actual plant
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output, and the neural network output can be minimized (72 73),

(72).

The numerical

performance of the backpropagation method depends on these three

(1) The frequency of update which can be done in two ways; Block adaptive, or Data
adaptive.
(2) The direction of update which is either first order or second order methods.

(3) The data adaptive method used.

(b) Conjugate Gradient Algorithm

In conjugate gradient algorithm, a search is performed along conjugate directions 7
This method generally produces faster convergence compared to the steepest descent
directions . A search is made along the conjugate gradient direction to determine the
step size that minimizes the performance function along that line ) The first step of the
conjugate gradient algorithms is to search in the steepest direction, and then a line search
is performed along the current search direction which optimizes the function ) The

next search is done such that it is the conjugate of the previous search direction. The

general procedure for determining the new search direction is to combine the new
steepest descent direction with the previous search direction ) The Scaled Conjugate
Gradient (SCG) algorithm is however now being used to avoid this time consuming
nature of the line search "* ™. The key principle of this algorithm is to combine the
model trust region approach (where the solution is likely to be found) with the conjugate

gradient approach 73),

(¢) Quasi-Newton Algorithm

Newton’s method is an alternative to Conjugate Gradient Algorithm methods for fast

optimization (7 Newton’s method uses the following formula (7).

X1 :Xk_Ak_lgk 3.9
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where Ay is a matrix of the second derivatives of the performance index at the current
weight values. Newton’s method converges faster than the conjugate gradient methods
but it is computationally intensive (73- 79 1 Quasi-Newton algorithm, an approximate

second derivative matrix is updated at each iteration of the algorithm 7),

(d) Levenberg-Marquardt (LM) Algorithm

The LM algorithm was designed to approach second order training speed without having

to compute the Hessian Matrix ) When the performance function has the form of the

sum of squares, the Hessian matrix can be approximated to (7).

H=J"J 3.10
and the gradient is

g=J"e 3.11
Where J is the Jacobian matrix, which contains first derivatives of the network errors with
respect to the weights, and e is a vector of network errors 73),
3.5 Neural Network Design Formulation

It is important to select and organise the neural network architecture in such a way that
the production process problem would be solvable by neural network techniques. This
section deals with the approach for formulation of the neural network architecture in

order to apply it in this problem area.

Hagan ©© pointed out that it is sometimes misbelieved that neural networks can be used
to learn anything, and that they can do all the work related to an application. His
suggestion is that the neural network application developer must make a number of

decisions and perform a number of activities related to the application prior to making a
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decision ®®. The choices made will affect the quality of the results achieved. Hagan ©®

summarizes these choices as follows:

1. Determination of the task to be performed by the network in the application.
Analysis of the data available for the application.
Choice of the inputs to the neural network.

Proper pre-processing of the data for input to the network.

PN CIS

Choice of the desired outputs of the network, including post-processing of the

outputs.

6. Choice of the neural network learning method and algorithm (learning rule) to
be used for training. Setting of the parameters associated with the network chosen,
including number of processing elements in each layer, type of processing
elements and learning constants.

7. Training of the neural network on the training data.

8. Verification of the trained network on test data.

9. Analysis of the results and possible retraining of the network or modifications of

parameters or pre-processing.

In formulating neural network architecture, the input data to the network are determined
and pre-proposed in order to achieve accurate output. Discussed below are classes of

data, input data selection and pre-processing techniques.

3.5.1 Input Data Processing

According to Freeman et al **, the single best way to handle data in a neural network
task is to study it. If a neural network is expected to learn and generalize from a set of
training data, a user should, in a general way, be able to also do that to some extent. The
goal in this analysis is to learn more about the problem, and to improve the representation
of the data to the network. In general the smaller the neural network is the less data that is

needed to achieve good generalization and overall network performance 7.

57



Neural networks differ in the kinds of data they accept 3 There are two major kinds of

data, namely categorical and quantitative data 3), Categorical variables take only a finite
number of possible values, and they are usually several or more cases falling into each
category. Categorical variables may have symbolic values ** (e.g., "male" and "female",
or "red", "green" and "blue") that must be encoded into numbers before being given to the
network. Both supervised learning with categorical target values and unsupervised
learning with categorical outputs are called "classification." * Quantitative variables are
numerical measurements of some attribute, such as length in metres “¥. The
measurements have to be made in such a way that at least some arithmetic relations
among the measurements reflect analogous relations among the attributes of the objects

3)

that are measured . A supervised learning with quantitative target values *® is called

"regression."

Some variables can be treated as either categorical or quantitative, such as number of
children or any binary variable . Most regression algorithms can also be used for
supervised classification by encoding categorical target values as 0 or 1 binary variables

and using those binary variables as target values for the regression algorithm “*.

Having studied the available data, certain variables should appear more important than
others ©®. In addition there is a trade off between having a lot of inputs and therefore a
large network and having a small number of inputs at the expense of reduced
performance due to information loss. However there is no easy way to handle this trade-

off as explained by Hagan ©®.

As pointed out by Hush et al “®, for generalization purposes, the number of training
samples should be approximately ten times the number of weights in the multi-layer
propagation network. For a three-layer back-propagation network with inputs (I), outputs
(O), neurons (A) in the hidden layer and training samples (P), the number of weights can

be estimated thus ©?:

W=[(I+1) * A+ (A+1) * O] (3.12)
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And

10 * [(I+1) * A + (A+1) * O] =P (3.13)

With this information, a more intelligent choice of architecture can be made.

Hagan (36)

state that any operation, which linearizes the input data, is usually beneficial.
By studying the available data, such characteristics and improvements can be discovered.
The learning rule in a processing element (neuron) usually employs each input in the
calculation of the gradient with respect to the weights ®®. As a result, if the dynamic
range of an input is large, the weight adjustments associated with that input are also large
5% However, in some cases the adjustments are too large, causing the neurons to saturate

(36)

its output ®®. When this happens, the neuron stalls ®®, making learning extremely slow if

not impossible. If some inputs have very small dynamic ranges, their information content

may be lost or not effectively used by the network ®*).

The solution to this problem is to pre-process all inputs so that they have the same
dynamic range. This can usually be achieved without loss of information and with

improved performance of the trained network in almost every case ©%.

In determining the network output, one of the best ways is to analyze how the
performance of the network will be judged in the particular application it was designed
for. As in what exactly should the output be doing and the measures that will show that it

is doing well @9,

There are some variations like statistical noise and overfitting that can affect the
performance of the neural network ©”. The next section discusses these variations and
their effect on neural network performance. This is followed by the application of neural

networks in resistance spot welding and the process controller model design.
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3.6  Noise and Generalization

‘Statistical noise’ refers to the variation in the target values that is unpredictable from the
inputs of a specific network, regardless of the architecture or weights . ‘Physical noise’
refers to variation in the target values that is inherently unpredictable regardless of what
inputs are used . Noise in the inputs usually refers to measurement and data capturing
error Y. Noise in the actual data is not a good thing, since it limits the accuracy of
generalization that can be achieved ¥, no matter how extensive the training set was ).
On the other hand, injecting artificial noise (jitter) into the inputs during training is one of
the several ways to improve generalization for smooth functions when only small training

sets are present /> 7,

. . . . 8
Certain assumptions about noise are necessary for theoretical results 7®. Usually, the
noise distribution is assumed to have mean and finite variance " ™. The noise in

different cases is usually assumed to be independent or to follow some known stochastic

1 7® such as an autoregressive process ”. The more that is known about the noise

(78)

mode
distribution, the more effective the network can be
If the noise is present in the target values, what the network learns depends mainly on the
error function "®. For example, if the noise is independent with finite variance for all
training, a network that is well-trained using least squares will produce outputs that

approximate the conditional mean of the target values 7* 7.

Noise in the inputs limit the accuracy of generalization in a more complicated way than
noise in the targets . In a region of the input space where the function (weight, bias and

activation function) being learned is fairly flat, input noise will have little effect . In

regions where that function is steep, input noise can degrade generalisation severely 7.

Furthermore, if the target function is Y = {(X), but noisy inputs X + D are observed;

(where D represents noise and X represents actual input values) it is unlikely that the

network obtain an accurate estimate of the function f(X) given X+D, no matter how large
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(79

the training set is. The network will according to White *"”’ not learn f(X), but will instead

learn a convolution of f(X) with the distribution of the noise D.

3.7 Overfitting

When developing neural networks it is imperative that the network is able to generalize,
that is ensuring that the network will accurately predict output for cases that are not
included in the training set "”. A problem usually arises when a network is not complex
enough to detect the signal in a complicated data set. This can lead to underfitting. Also,
when a network is too complex that it fits the signal and the noise in the signal it will lead

(79, 80)

to overfittting Overfitting is a major problem in that it can cause the network to

give predictions that are beyond the training data set range ®”. Overfitting leads to
excessive variance in the outputs whereas underfitting produces excessive bias 7.
Overfitting can however be avoided by using a large set of training data. If there are only

few training data set available, any of the following can be done %%

e Model Selection (selecting the right number of weights, that is, the number of
hidden units and layers). This is done by trial and error.

e Early stopping during the training. Using the cross validation curve to see when
the curve is turning away from the normal downward trend and stopping it
immediately.

e Weight decay plot and monitoring of performance. A drop down curve of the plot
indicates good performance.

e Combining networks to improve performance.

e Using Bayesian Learning to improve learning performance.

It is important to ensure that there is no underfitting or overfitting of the training data set
by the network. The easiest way to do this is by choosing the appropriate number of
hidden units and hidden layers " *”. This is done by trial and error and by comparing the

network architecture to obtain the combination that presents the least mean square error.
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3.8  Reconditioning of Neural Networks

Overfitting as discussed in the previous section is a condition that occurs when the
trained neural network follows the actual outputs perfectly ®”. This results in the network
being unable to predict future behaviour. Another problem is when the network is not

properly trained such that the neural network is not a representation of the true output ®*.

This usually results due to ill-conditioning of the network ®°.

Depending on the application problem the network is usually trained using standard
gradient descent methods ®?. These methods make use of learning rates (). If this rate is
too slow, the network will take a long time to converge to the error tolerance and may not
converge within the specified training steps ®”. The Training steps are adjusted by trial
and error in an attempt to obtain an optimal learning rate. If the rate is too fast the
network will diverge and will not give accurate result as well ®”. A network therefore is
seen as ill-conditioned when the global learning rate can not be used to train the network.
That is each weight requires different learning rates that differ so much from one another
that a global rate can not be used to train the entire network ®”. The major causes of ill-
conditioning are ®*:
e Network architecture (when there are both large and small layers in the network,
the learning rate difference would be significant).
e Initial weights (if the initial weights are too large or too small that there are
significant differences in the learning rates of the weights).

The above causes of ill-conditioning can be catered for as follows %

Large inputs and outputs values are normalized ®”. Normalizing the values would make
them lie between 0 and 1. Normalizing the input ensures that it has an average of zero
and a standard deviation of 1 ®”. When dealing with large values small learning rate
should be used. This would means using a lot of steps to move the bias across the
network ®”. The outputs and the hidden units are normalized as well ®?, this help to
adjust the weight condition to suit the network intended performance. The reason for this

is that if the initial values of the weights are too small, the activation and error signals
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will fade out as they go through the network ®? and if they are too large, the activation
function which is the tanh with a maximum of +1 would be saturated giving a derivative

close to zero ®”. This prevents the error signal from being backpropagated through the

nodes, a phenomenon known as paralysis

(80)

. The appropriate learning rate can be

computed mathematically

3.9 The application of Neural Networks in Resistance Spot Welding

The use of neural networks to predict weld quality in resistance spot welding has gained
attention because of the highly non-linear processes prevalent in resistance spot welding
process and the ability of neural networks to model such phenomena * ¥, The common
factor in these methods is the relation of pertinent information to weld quality @ The
quality of a model depends directly on the parameters selected and the dataset used.

Aravinthan et al ¥

carried out research in which he selected dynamic resistance as the
only input to the neural network model to predict weld strength. The weld strength was
taken as the value of the shear stress at the point of the spot weld failure. The accuracy of

the prediction and repeatability of weld quality was not given in the findings ).

®) conducted similar research to estimate nugget size and to detect the

Matsuyama
occurrence of expulsion during welding using neural network prediction. The research
involved the use of welding current values and reducing rate of dynamic resistance.
Uncoated steel sheet of 1 mm thickness was used. Electrode force and weld time were not
included as inputs in the neural network. The research concluded that neural network can
predict nugget formation and detect the occurrence of expulsion during welding, on the
condition that the adaptable range for accurate output should be within the training
dataset range.

The outcome of the findings by Matsuyama ©

created the possibility for using neural
networks to predict a variable in the resistance spot welding process which will help
control expulsion. However, difficulty still exists with getting an accurate weld quality

prediction in the use of dataset not used in the training of the neural network. This is
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mostly due to the extreme inconsistent nature of the dynamic resistance variable during
the welding process ©*?. Also these variables change from one machine to another . If
this dynamic resistance variable is modelled (made linear), managing it and using it to
predict weld quality for any resistance spot welding machine will be possible and the

accuracy should improve by using neural network capability.

The need therefore is to further the research and to accurately determine the effective
weld current that can be used to achieve a desired weld diameter, with possibility for

reproducibility of same level of weld quality in any resistance spot welding machine.

Exploring more literature in this application area, an earlier study was carried out by
Monari et al ¥ on extracting physical features from the three phases of welding based on
statistical verification of the pertinence of each feature of the welding process. These

phases are ¥

. positioning, welding and forging. Different input parameters were
identified in these phases and used as inputs in a neural network model . The research
concluded by suggesting that future work in using neural network techniques should
concentrate on obtaining a model that can predict the quality of spot welds for a given
machine under a reasonable range of welding conditions ”. Emphasis was on adapting a

welding parameter which can be controlled towards achieving good joint quality V.

On the issue of selecting the best inputs to the neural network, Brown et al ®" proposed a
method of optimising the process of selecting the inputs. In their investigations, data
associated with each weld nugget diameter was collated and features of the various
electrical signals extracted as potential neural network inputs. A feature extraction
method was then used to statistically analyse and rank the inputs according to their ability
to distinguish between different weld sizes ®". The features which were observed to give
the best performance were selected for use as inputs to the neural network models V.
The features were value of the electrode to electrode resistance, rate of rise of resistance
at different half cycle of current flow, the difference between the minimum and

maximum resistance value, the resistance drop from the peak to the last half cycle value

of current flow, the areas under the energy curve and the resistance curve respectively.
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The study concluded that by using an extracted feature of the input data it was possible to
predict weld diameter more accurately than using the entire resistance waveform ®V.
They also found that there were practical difficulties associated with accurately
approximating the rate of change of resistance over small regions of the dynamic
resistance curve, as such only few input combinations were selected ®". The prediction

accuracy using this model was inconclusive.

This research will concentrate on the development of an empirical model for curve fitting
the inconsistent dynamic resistance variable. The dynamic resistance output from the
empirical model will be trained using neural networks. This output in combination with
other identified input parameters generated from the resistance spot welding process will
be used to create the neural network model for predicting weld quality (weld diameter)
and for the design of the process controller. The next section will discuss the choice and

methodology for designing the process controller.

3.10 Neural Network Process Controller Model Design

Process controller can be described as a device that is used to monitor and control the

activity and resources of a system “”. Berenji ¢?

mentioned that Fuzzy logic and neural
networks provide new methods for designing control systems. Most of the proposed
approaches to control applications use neural networks (typically feedforward neural
networks) as black-box representations of plants and/or controllers trained using

supervised learning ®*. These approaches are justifiable for control of nonlinear systems
(83)

(84)

Hines " in reviewing the work of Werbos mentioned that there are five general methods

for implementing neural network controllers. These are ®:
(a) Model based Controller (predictive control)

(b) Direct Inverse Control

(c) Neural Adaptive Control

(d) Back-Propagation Through Time (BPTT)
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These methods are further discussed below:

3.10.1Model based controller (Predictive Control)

This is a neural network based method that is used to implement advance industrial

algorithm "

. A Model Predictive Control Toolbox controller automates a target system
(the plant) by combining a prediction and a control strategy “”. An approximate plant
model provides the prediction. The control strategy compares predicted plant signals to a
set of objectives and then adjusts available actuators to achieve the objectives within the
plant's constraints 7).
Soeterboek ** mentioned that predictive controllers are used to control a wide variety of
processes like non minimum phase and unstable processes and in the design the designer
does not have to take special precautions. Predictive controllers are easy to tune and
process constraints can be handled systematically ®>. Predictive controller belongs to the
class of model-based controller design concept and has four major features in common as
given by Soeterboek ®*. They are **:
1. A developed model of the process to be controlled. The model is used to predict
the process output over the prediction horizon.
2. The criterion function that is minimized in order to obtain the optimal controller
output sequence over the prediction horizon. Usually, a quadratic criterion which
weights tracking error and controller output is used.

3. The reference trajectory for the process output.

4. The minimization procedure itself.

In order to predict the process output over the prediction horizon an i-step-ahead
predictor is required. An i-step-ahead prediction of the process output is the function of
all the data up to t = k (defined as the vector /), the future controller output sequence
and a model of the process V. Such an i-step-ahead predictor can be described by the

equation given below ®¥:
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Y (k+i)= f(u0,V) (3.14)

where f is a function. Clearly, i-step-ahead predictors depend heavily on the model of

the process.

The model predictive controller will be the most appropriate control model in this
problem area because it uses a model of the process. The starting point is to develop an
appropriate model of the process to be controlled by the controller. Of equal importance
is that it is predictive and accepts set points from the controlled variables ®*. It is robust
and can compensate an inaccurate model such that the model will not tremendously affect

the performance of the controller ®°.

The selection of a model predictive controller design technique in neural networks is
based on evaluation of the applicability of other techniques ®”*¥. For instance there exist
conventional techniques like the Continuous Frequency Domain Techniques for the
design of controller ®”. A lot of research done shows that the frequency domain method
is very stable and robust ®”. However due to the fact that there is currently exceeding
needs for adaptive designs which are able to learn and store data, these methods are being
replaced by artificial intelligent related methods. There exist quite a number of
continuous control techniques. Amongst these are prominent techniques such as % *:
¢ Quantitative Feedback Theory (QFT),

e H-infinity Controller Designs, and

e Fuzzy-Logic Designs.

These techniques are more appropriate for the design of controllers for a linear plant and

need specifications which the overall system must meet in terms of stability and

responses V. Real time controllers become difficult to design with these methods .

3.10.2Direct Inverse Control

Here the neural network is trained to model the inverse of a plant (target system) ®*. First

the neural network learns the inverse model which is used as a forward controller. This
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methodology only works for a plant that can be modeled or approximated by an inverse

function (F ). Since F (F") = 1, the output (y(k)) approximates the input (u(k)) ®*.

An inverse model neural network controller is implemented as an approximation of an
inverse nonlinear function, where the neural network is employed to approximate the
inverse function ®*. The neural network is trained off-line with system states as network
input and system inputs as network output. The training continues until either the learning
error is below a specific goal or the learning curve flattens with no further decrease in
learning error. Once the network is trained, it is used to calculate the input signal to the

system so that the system follows a desired state space trajectory %

Presented in Figure 3.12 is a Neural Inverse Controller “*.

Input To Device,

Output
System | Patient, P | Inverse
Machine, etc. Model
to be controlled
\
Adapt Model
(34)

Figure 3.12: Neural Network Inverse Controller

The Figure shows an inverse model of the system to be controlled being trained. The
inverse model then finds the input that created the system output. The inverse model
is the “optimal” controller and determines the system input required to create the

desired system behavior as is shown in Figure 3.13.

Desired System Inverse Control Signal, Device, System
Output Input to system Patient, Output
> Model >

Machine, etc.

Controller to be controlled
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Figure 3.13: Inverse Model Optimal Controller ®¥

Disturbance could be a problem in inverse model controller. This is because Inverse
controller do not have direct feedback (feedback is only through training). To correct
a disturbance therefore in inverse model controller the difference between the plant
(target system) and model of the plant is passed through the inverse model in order to
determine how much control is required for correction. An inverse model controller

with disturbance correction is shown in figure 3.14.

Desired Output
3 ( R ) 3 Inverse Model >|  Plant+effort Disturbance =
Controller + effort + model error
A + plant noise

1 Model of Plant

with unit delay

Figure 3.14: Inverse controller with disturbance correction **

3.10.3 Neural Adaptive Control

Neural adaptive control may be the best technique to use for a plant model that changes

&Y mentioned that Model

with time due to wear, temperature effects, etc. Hines
Referenced Adaptive Control (MRAC) which is a class of neural network adaptive
control is known to have the capability to adapt the controller characteristics so that the

controller/plant combinations perform like a reference plant (target system) ®.
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The plant lies between the neural network and the error term such that there is no method
to directly adjust the controller weights in order to reduce the error. This leaves the option
of using indirect control. In indirect adaptive control, an artificial neural network (ANN)
identification model is used to model a non-linear plant ®¥. If necessary, this model may
be updated to track the plant. The error signals can then be backpropagated through the
identification model to train the neural controller so that the plant response is equal to that
of the reference model. This method uses two neural networks, one for system

identification and one for MRAC ®,

3.10.4 Back-Propagation Through Time (BPTT)

BPTT is a neural network controller that can be used to move a system from one state to
another state in a finite number of steps (if the system is controllable). First a system
identification neural network model is trained so that the error signals can be propagated
through it to the controller. Next the controller is trained with BPTT paradigm ®*. BPTT
training takes place in two steps; the plant motion stage, where the plant takes k time
steps, secondly the weight adjustment stage, where the controller’s weights are adjusted
to make the final state approach the target state. In BPTT there is only one set of weights

to adjust because there is only one controller ®¥.

3.10.5Adaptive Critic Methods (ACM)

In the ACM method, a critic evaluates the results of the control action: if it is good, the
action is reinforced, if it is poor, the action is weakened. This is a trial and error method
and uses active exploration when the gradient of the evaluation system in terms of the
control action is not available. This is an approximate method and is only used when a
more exact method is not available ®*. Often a decision has to be made without an exact

conclusion as to its effectiveness (e.g. chess), but an approximation of its effectiveness

70



can be obtained. This approximation can be used to change the control system ®¥. This

type of learning is called reinforcement learning.

There are three classes of learning that can be used in neural network control ®”. These
are supervised, unsupervised and reinforcement learning ®”. In supervised learning, at
each time step, a teacher provides the desired control objective to the learning system. In
unsupervised learning, the presence of a teacher or a supervisor to provide the correct
control response is not assumed ®9 In reinforcement learning, the teacher’s response is
not as direct and informative as in supervised learning and it serves more to evaluate the
state of the system. Once a neural network has been trained with a set of data, it can

interpolate and produce answers for the cases not present in the data set ®”.

The task of neural network based system identification is to build mathematical model of
a dynamic system based on empirical data. In neural network based system identification,
the internal weights and biases of the neural network are adjusted to make the model
outputs similar to the measured outputs ®.

The resistance spot welding process control problem is considered a sampled-data control
system which is characterized (perhaps only approximately) by the first-order difference
equation where the output variable is a specified real and single valued function of the
state variable ®¥. The control variable (decision variable) is indicative of time, but not
necessarily directly proportional to time 9 The control variable is constrained to be an
element of a given set of values. In order for a solution to exist to the problem, it is
necessary that control actions exist which drive the values of the function of the state
variable and the control variable to zero as the integer approaches infinity ®”. An optimal
controller produces the absolute minimum of the sum of the function of the state variable

and the control variable ©.

3.11 Pole Assignment (Placement) in Control Systems

Pole assignment is the placement of pole for the synthesis of feedback control systems

O Tt is relevant in this research because of the control system that will be designed for
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the synthesis of the neural network feedback system that will be used for predicting the
resistance spot welding parameter. Previous research ®" has confirmed that when all of
the state variables of a system are completely controllable and measurable, the closed —
loop poles of the system (the roots of characteristic equation) can be placed at the desired

locations on the complex plane with state feedback through appropriate gains ©V.

Whereas the transient behaviour of a feedback control system is largely determined by its
closed-loop poles, pole placement is a very effective state-space approach for designing

feedback control systems, especially for multivariable systems ©".

In some specific applications, some states in the linear system may not be available for
feedback, because they are not measurable or such a measurement is too slow, too costly,
or some other reason. In this case, a state estimator (observer) has to be used to estimate
the unavailable states ©". A state estimator (observer) estimates the state variable of a
dynamic system based on the measurements of the output and input (control) variables.
For linear dynamic systems, the state estimator design task can be reduced to finding an
output gain matrix. The output matrices in most linear state estimators are time-invariant.
For time-varying dynamic systems, state estimators with time-invariant output matrices
cannot follow the variation of system parameters, hence real-time gain updating of the

output matrices of state estimators is necessary ©".

In conventional approaches to state estimator synthesis for linear dynamic systems via
pole assignment, the output gain matrix L is usually obtained through off-line
computation ®". In many real-time applications, the system dynamics are time-varying.
In such applications, the time-varying nature of the plants entails on-line state estimation

and hence complicates the computation ©".

3.12 Design Steps for the Neural Network Predictive Controller

In this design linear neural network and Scaled Conjugate Gradient algorithm as the

(8%)

optimization algorithm are chosen “. The network was trained using multi layer
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perceptron. The input and output values were normalized before training the network so

as to decrease the errors and also to enhance generalization.

After training the neural network, the network was validated using data which was not
used to train the network. The best performing neural network architecture was employed
in the development and design of the controller. An example of a predictive controller
where optimization block and a neural network model block were used is shown in

Figure 3.15.

Neural Network
Input ——» Model

Yd

Learning Algorithm | Error

Figure 3.15: Data Generation and Training of Neural Network Diagram *®

The optimization is implemented by minimizing the function ®®.

f =Yy~ Ym)’ (3.15)

The point of optimizing this function is in order to get the input value, which ensures that

the error function f gets minimized, that is, the error between the desired value and the

actual neural network process output is close to zero ®®.

3.13 Sensitivity Analysis
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Sensitivity defines the relative importance of each input to the output ®*. Sensitivity
analysis is a procedure used to access sensitivity of the outcome of an alternative to

©2) " Sensitivity analysis is used to check the quality of a model.

changes in its parameters
The effect of the input parameters to the output is measured by the response of the output

to small changes in the input .

Sensitivity analysis allows the determination of inputs that are important to the output
solution. It is used to reduce the number of inputs that are of real importance in the model

@Y The essence is that inputs that do not contain useful information can then be

eliminated ©¥.

To test for input parameters sensitivity about mean ©*:
— Each input is varied independently between its mean +/- a user defined
number of standard deviations.
— A report is generated relating the variation of each output with the
variation in each input:
* A table and three dimensional column plot of the sensitivity of
each input is made.
* A plot is created for each input showing the network output(s) over

the range of the varied input.

3.14 Concluding Remarks

This section has discussed the different neural network architectures. These are
Multilayer Perceptron (MLP), Radial Basis Function (RBF), Recurrent Neural Network
(RNN) and Self Organising Map (SOM). Each of these neural network architectures
except self organising maps (SOM) were tested in this application to find the most
appropriate neural network architecture. The SOM which is based on unsupervised
learning is considered inappropriate for this problem, because supervised learning is

applied to this problem.
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The inverse neural network optimisation method would be used based on theoretical
applicability to this problem area. The fminbnd (bounded minimization technique) is
limited by its instability and the requirement to define boundary parameters and
condition. The brute force method is discouraged due to the fact that it is very uncertain
and lies on extremes. Quasi-Newton is considered computationally expensive and for
Conjugate Gradient methods the gradient of the error function with respect to the inputs
and thus the weights were going to be required which is quite complex to calculate and is

therefore not used in this application problem.

The required inputs and output for the neural networks, methodology for structuring the
neural network, based on the choice of the number of neurons (processing elements) and
hidden layers are considered in the modelling. There is some trial and error used to
determine the most appropriate and optimal number of hidden layers that would be most
suitable in the selected neural network type that would be used. To optimize the training
convergence the network would be trained with different number of iterations while
checking the error function. If that function converges before the iterations have been
exceeded, then the network will be retrained with the number of iterations being
decremented to the value of the iteration at which the error function converged.
Sensitivity Analysis will be carried out to give the contributions of each input to the

output. It will also show the importance of each input parameter to the output.

Neural networks techniques are presented by previous researcher ® as an application that
can be applied in the resistance spot welding process, with the ability to learn the pattern
in the welding process data such that it can predict desired variable. In this research
neural network will be trained with the identified welding process parameters to
accurately predict effective weld current required to achieve any desired weld diameter.
This is because effective weld current is a parameter that can be controlled in the welding
process in other to achieve desired weld. Same electrode and material type used in the

welding process will be used to set the boundary conditions for the model prediction.
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CHAPTER 4

TEST CONDITION

4.1 Introduction:

The aim of the test was to generate relevant (identified) process parameter data from the
resistance spot welding process. This data was used for the modelling of the welding
process. Four different welding machines with instrumentation for capturing the welding
process data were used. The data captured during the welding process were peak values
of dynamic voltage and corresponding peak values of dynamic current for twenty half
wave cycles (weld time) of each of the welded plate samples. These values were then
used to calculate peak dynamic resistance generated from each of the welded sample. The
other data captured are effective current (RMS) and applied electrode force. After the
spot weld is made the weld diameter which is the measure of weld quality achieved
during the welding process was determined. The same thickness of metal plate was used

for the entire samples welded.

4.2  Materials Selection

Galvanized low carbon steel designated DC04 was selected ®® for this investigation,
following ISO 14373 standards . The specific chemical composition and mechanical

properties of the material are shown below in Tables 4.1 and 4.2 respectively.

Table 4.1: Chemical Composition of the galvanised plain Carbon Steel

%C %Si | %Mn | %P %S %Al | %N %Cu | %Cr | %Ni | %Nb | %Ti

%B

0.003 | 0.009 | 0.114 | 0.007 | 0.008 | 0.027 | 0.0038 | 0.031 | 0.039 | 0.031 | 0.002 | 0.06

0.0002

Table 4.2: Mechanical properties of the galvanised plain Carbon Steel ©¥
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Yield Strength Ultimate Tensile Strength % Elongation
(MPa) (MPa)

139 298 46

A copper electrode with rounded tip, defined as electrode material A16 by DIN ISO 5821

9 specification, of electrode cap type A, width diameter 16mm and length 20mm was

selected ¥,

4.3 Welding of Plate Samples

Prewelding preparation was first carried out by cutting up the galvanized low carbon steel

sheet into plates of 60mm by 40mm of 0.88mm thickness, as shown in Figure 4.1 below.

=
-

o]

0.88 mm

Figure 4.1: Shape and size of the sample plates welded
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The sheets were cleaned with dry rags. Two separate plates of equal dimension were
selected and placed together in-between two electrode tips '” (upper and lower electrode

pick-ups) of the welding machine (centralized adequately).

Using ISO 669 as a guide ©®, the welding of the samples was performed on four 50 Hz

power supply ¥

alternating current electric resistance spot welding machines made
available by the Federal Institute of Materials Research (BAM) and Technical University
(TU) Berlin, Germany. Four different resistance spot welding machines were used in
order to have a range of variability for the quality process modelling and to investigate
the effect of the welding machines on weld quality. The machines were C-Gun, Dalex
Gun 25, Dalex PMS 14-4, and Dalex Gun 35. These machines were one mobile (Dalex
Gun 25) and three stationary resistance spot welding machines (C-Gun, Dalex-25, PMS

14-4, and Dalex Gun 35) with settings for simultaneous reading of weld time and

effective current (RMS).
The stationary machines were fixed in one place while the mobile can be moved around

and can be attached to a robot should the need arise. Figures 4.2 and 4.3 respectively

show the pictures of the stationary and mobile resistance spot welding machines.
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Figure 4.2: PMS-stationary Resistance spot welding machine
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Figure 4.3: Dalex-25, Mobile Resistance spot welding machine

The welding parameters consisting of the welding period, applied electrode force
(pressure), current level and squeeze time were set before commencement of the welding.
The electrode force was set at the required value by using a pneumatically operated force
gauge. To establish the effect of electrode force changes on weld quality in the process
modelling, three force ranges which were 2.2 kN, 2.6 kN and 3.0 kN were selected for all
four welding machines. These applied electrode force range are typically within the range
used in these machine types for making spot welds for this material type and thickness ®*
929 However to be able to see how a small deviation from this range will affect the
weld quality output, particularly in validating the neural network model that was
developed, an additional range of values of 1.76 kN, 2.16 kN and 2.46 kN of applied

electrode forces were selected for Dalex-25 welding machine.
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The setting of the effective current range was by trial and error. This is because the
effective weld current required to give the best weld quality is not known. The guide was
to select a current range that meet and at least exceed the stick limit value of weld
diameter by a value greater than 4Vt or equal/less than 5Vt where t is weld thickness.
With t = 0.88mm, stick limit is expected to be > 3.7 mm, while maximum boundary is the
effective current that can maximize weld diameter before an expulsion occurs. The choice
of current was by finding the range that gives a weld diameter of at least 3.7 mm as the
lower limit and the current range before expulsion as the upper limit. Similarly the
number of welding cycles was determined by trial and error. The selection was to
determine the welding cycle period that would give a good weld quality for a given

welding current range.

So pre-welding preparations of the plate samples and setting of the welding machine
parameters was done and the welding was then carried out. The value of the parameters
used to achieve each weld diameter was noted. In some cases there was expulsion
indicating a poor weld quality. Similarly achieved weld diameters less than 3.7 mm were

classified as poor weld quality ‘%',

The welding of the samples involved a selection of combination of the parameters from
the ranges of applied electrode force and weld current. Welding time was fixed for 20
cycle periods for the welding of each specimen. The predetermined current range
between stick limit and expulsion limit was divided into six welding steps for every
selected applied electrode force. This is a grouping of the effective welding current into
six ranges from low to high. The opinion of the operator based on experience, work from
previous researchers on achieving good weld quality and some suggestions from the ISO

8166 ©7* were useful guides for making some of these selections and decisions.

The welding program was made up of six time steps for each specified applied electrode
force category (value). Time steps explained in the literature is the total welding process
time required to make a number of spot welds. In each time steps eight plate samples
were spot welded. Twenty halfwave cycles time explained in the literature were required

to weld each of the plate samples.
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Instrumentation was set up for monitoring the welding process. This was done by
connecting one end of the instrumentation wire to the electrode head of the welding
machine and the other end to a computer for capturing the dynamic values of half wave
voltage between electrodes and sheet. Also captured on the computer display is the value
of the applied electrode force used in the welding operation. Effective current (RMS) is
similarly picked up by a sensor device; the signal is amplified, converted and displayed as
effective current on a recorder. The obtained potential difference value for each of the
welded sample was converted to an equivalent dynamic current value (kilo ampere) by
multiplying each of the halfwave potential difference value with 6.4483 (this is an
instrument correction factor) Y. Peak values of halfwave dynamic voltage and
corresponding peak halfwave dynamic current were captured and displayed on the
computer screen. Peak halfwave dynamic values of voltage and current were taken to
avoid the effect of inductance (inaccurate resistance in the circuit due to voltage drop) .
The peak values of the dynamic current and dynamic voltage waveforms were used to

calculate the halfwave dynamic resistance for the entire welded sample.

After welding, each single spot welded plate sample was opened up using Instron torsion
machine. The Torsion machine generated the torque stress needed for separating the
joined plates, exposing the fracture surface of the spot weld (formed nugget). ISO
14324-2003 was used as guide '°”. The type of fracture after shear of each sample was
observed, fracture types were either plug failure (A) or shear fracture (S). Plug and shear
failure describes the fracture surface failure mode. A plug failure mode also called button
failure typically looks like a button as shown in Figure 4.4 while a shear failure is an

interface failure shown in Figure 4.5.
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Figure 4.4: Plug failure [adapted '°"] Figure 4.5: Shear failure [adapted 1°"]

The opening of the spot welded plates was to determine the achieved weld diameter
(weld quality) by measuring the cross section of the exposed nugget surface using
calibrated magnified ruler. Randomly selected samples from each welding step were
taken for metallographic examination and estimation of nugget size. This was necessary,
as a means of comparing weld diameter results obtained using the calibrated magnified
ruler to the labour intensive metallographic nugget estimated result. Figures 4.6 and 4.7

shows the Instron torsion machine and one of the spot welded plates.
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Figure 4.6: Instron torsion machine

oﬂ&ﬂﬁ:ﬁ!

Figure 4.7: Double Plate with welded spot
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Estimation of nugget size by metallographic examination was done using opened
(separated) spot welded double plate samples with exposed nuggets. The exposed nugget
was polished using emery paper and then etched (acid attack). The etching was done
using 2 percent nital. The acid attack on the surface exposed the fusion and heat-affected
zones of the weld as is shown in Figure 4.8. The image of the nugget was scanned into a
computer and the nugget size and weld depth measured by drawing a line across the
nugget and measuring. In each sample several measurements were taken and the average

of these was considered as the final nugget diameter for a particular sample.

Figure 4.8: Microstructure of a spot weld nugget

4.4  Concluding Remarks

In this experiment electrical characteristics made up of halfwave dynamic voltage,
halfwave dynamic current and effective current (RMS) were obtained. Equally
corresponding weld diameter for each spot welded sample was determined and applied

electrode force used for the welding of the samples was recorded.
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CHAPTER 5

RESULTS: DATA SET GENERATED

5.1 Introduction

Presented in this chapter is the data obtained from the resistance spot welding process.
These are dynamic voltage (peak halfwave voltage), dynamic current (peak halfwave
current), calculated halfwave dynamic resistance, effective weld current (RMS)
(Instantaneous current) and the weld diameter of each welded sample. A table showing
the selection of the weld diameter used to determine good weld quality range based on
observed expulsion limits is included in this Chapter. Also presented are micrographs of

some spot welded samples. The micrographs were used for determining nugget size.

5.2 Dynamic Voltage and Dynamic Current Data

Dynamic halfwave voltage and dynamic halfwave current data were obtained in the
welding process by instrumentation readings as described in chapter 4. The welding
program as previously explained, consists of twenty halvewave welding cycles (HW) for
each sample welded. Eight samples were welded under each time step and there were six
time steps for each applied electrode force used. Dynamic voltage and dynamic current
dataset therefore consists of twenty halfwaves made up of ten troughs (negative values)

and ten peaks (positive values), for each welded sample.

The dynamic halfwave values of voltage and current for time step 1 to step 6 using
applied electrode force of 2.2 kN obtained using C-Gun welding machine are presented in
Appendix A. Figure 5.1 show a plot of dynamic voltage for Dalex-25 Gun machine at an
applied electrode force of 2.2 kN. Corresponding values of halfwave dynamic current of

same applied electrode force with same welding machine are presented in Figures 5.2.
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Similar results were obtained for the welding steps one to six for the entire samples

welded in all the four welding machines for all the applied electrode forces used.

Dynamic Voltage

1.8
—Step 1
——Step 2
1 .
Step 3
\% P
08 - Step 4
—Step 5
0.6 —Step 6
0.4
0.2
O T T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Halfwaves

Figure 5.1: Dynamic Voltage step 1- 6 for Dalex-Gun 25 applied force 2,2kN.

The dynamic voltage values of steps 5 and 6 are higher than the dynamic voltage values
of steps 1 and 2, with step 3 and 4 in-between as can be seen in Figure 5.1. The higher
time steps 5 and 6 are carried out at higher welding current compared to the lower time
steps of 1 and 2, hence higher dynamic voltage. The dynamic voltage at between the first
two halfwave cycles was high (steep), with a sudden drop and then incremental rise to a
peak at about halfwave four before gradually lowering down as shown in Figure 5.1. This
behaviour typically shows the response of the welded material to the effect of increasing
voltage during the welding process. This behaviour will be extensively discussed under
the dynamic resistance modelling section in the next Chapter.

The higher dynamic current values for the higher time steps 5 and 6 and lower dynamic

current values for the lower time steps 1 and 2, with time steps 3 and 4 in-between as
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shown in Figure 5.2. The dynamic current for each of the time steps in Figure 5.2 showed
an initial increase up to the second halfwave, then a sharp drop to halfwave four and

gradual increase from that point to the twentieth halfwave.

Dynamic Halfwave Current
16
14 -
12
— Step 1
10 - ——Step 2
KA 8 | Step 3
Step 4
6 - —Step 5
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2 .
O T T T T T T T T T T T T T T T T T T T
1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Number of Halfwave

Figure 5.2: Dynamic Current step 1- 6 for Dalex-Gun 25 applied force 2,2kN.

5.3 Dynamic Resistance Data

The generated peak halfwave dynamic voltage and peak halfwave dynamic current values
were used to calculate peak halfwave dynamic resistance values for the entire welded

samples using the relationship:

V =IR (5.1
where V is peak dynamic voltage (V), I is peak dynamic current (kA) and R is peak
dynamic resistance (m€2). Dynamic resistance calculated using the dynamic voltage and

current obtained from C-Gun welding machine at applied electrode force of 2.2 kN is
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presented in Figure 5.3. Similar values obtained for the entire applied electrode force and

for all four welding machines used are presented in Appendix B.

Dynamic Resistance
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Figure 5.3:  C-Gun (2.2 kN) steps 1-6, Dynamic Resistance plot

Figure 5.3 shows a common trend in the dynamic resistance behaviour of the welded
samples generated from the C-Gun welding machine, at 2.2 kN force, and time steps 1 to
6. The plots of each of the sample dynamic resistance graph showed an initial high
dynamic resistance value at the first halfwave, followed by sudden sharp drop at about
the second halfwave and gradual increase in resistance from the second halfwave point to
a peak point and then a gradual decrease from the peak point. The initial high dynamic
resistance at the first halfwave is due to the effect of the contact resistance of the material,
this effect is not sustained and within the second halfwave with increase in heat generated
the contact resistance effect is overcome '°?. The dynamic resistance due to the solid

state effect of the material resistance and inter-contact resistance effect between the
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welded material (plates) causes the dynamic resistance to increase to the peak point, with
a change of state from solid to a mixture of solid and liquid, the dynamic resistance drops
(19) This state accounts for the sudden change in dynamic resistance. The liquid state of
the weld accounts for a decease in dynamic resistance as is noted with the downward

trend of the dynamic resistance curve '*2.

It was observed from the graphs of the dynamic resistance curves shown in Appendix B,
that the dynamic resistance curves of all the welded sample have similar trend like the
ones in Figure 5.3, with some samples however showing some slight deviation. The slight
variation is expected because of some variability that may have arisen from the machine

. . . . 3.10
or machine settings or instrument readings etcetera @.10)

It is observed that the peak points in the dynamic resistance curve of Figure 5.3 did not
all occur at the same halfwave cycle time in all the time steps. Some of the peak points
are seen to be reached at earlier halfwave cycles times than others. The peak point of the
dynamic resistance curves for welding time steps 4-6 occurred at about the fourth
halfwave cycle (HW 4) and welding time steps 1-2 at about the sixth halfwave cycle (HW
6). This can be explained as the effect of increased welding current at the higher time
steps, such that the peak dynamic resistance are reached within the first few cycle times,
compared to the reduced welding current of steps 1-2 which takes longer halfwave cycle
time to reach the peak points ?. This observation will be further discussed in modelling

section of Chapter 6.

5.4 Effective Weld Current (RMS) and Weld Diameter Dataset

The modelling of the resistance spot welding process parameters will require dynamic
resistance, effective weld current (RMS), weld diameter and applied electrode force.
Having determined dynamic resistance values for given applied electrode forces from the
previous section, this section presents effective weld current and weld diameter data
needed for the modelling process. Presented in Table 5.1 are effective weld current and

weld diameter dataset for C-Gun welding machine at an applied electrode force of 2.2kN.
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Similar results were obtained for the entire samples welded. Figures 5.4 and 5.5 shows

the effective weld current (RMS) and weld diameter achieved for time steps 1 and 6.

Table 5.1: Additional Generated Data for Step 1 and 6, of C-Gun Machine at
2.2kN Force

-

g

£ | FedN) | L(kA) | dy(mm) | dy(mm) | | Win. | BA | Step

g (Nm) | O

£ (Deg)

]

a

N
15-1 2.2 5.75 4.8 3.8 6.6 2.9 S Step 1
15-2 2.2 5.76 4.8 3.6 7.0 34.4 S Step 1
15-3 2.2 5.76 4.8 3.6 6.8 14.2 S Step 1
15-4 2.2 5.73 4.8 3.7 7.4 12.7 S Step 1
15-5 2.2 5.73 4.8 34 6.8 33.9 S Step 1
15-7 2.2 5.74 4.9 3.5 8.0 15 S Step 1
15-8 2.2 5.76 4.9 4 6.7 6.7 S Step 1
17-1 2.2 7.27 5.7 4.2 13.6 78.6 S Step 6
17-2 2.2 7.32 5.6 4.4 14.4 65.7 A Step 6
17-4 2.2 7.6 4.9 4 9.6 64.8 A Step 6
17-5 2.2 7.34 5.9 4.4 14.3 62 A Step 6
17-6 2.2 7.59 5 3.4 11.7 67.9 A Step 6
17-7 2.2 7.37 5.7 4 18.1 68.4 A Step 6
17-8 2.2 7.34 5.6 4.1 14.4 66.8 A Step 6

Abbreviation terms as used in the table are as follows: Fe: Electrode force (kN), Is:

Welding current (kA), dp: spot diameter with corona zone (mm), dpk: spot-diameter

(mm), BA: fracture type, A: plug failure, S: Interface fracture.
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Figure 5.4: C-Gun (2.2 kN) Average Values of Effective Weld Current for steps 1 and 6

Weld Diameter
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Figure 5.5:  C-Gun (2.2 kN) Average Values of Weld Diameter for steps 1 and 6
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The results of effective weld current and weld diameter in Figures 5.4 and 5.5 show that,
the average size of the achieved weld diameter is larger in samples made at time step 6
than time step 1. The increase in weld diameter from step 1 to step 6 is because of the
increase in current used from step 1 to step 6. Similarly, micrographs were obtained for a
number of the samples welded. Presented in Figures 5.6 and 5.7 are micrographs of the

nugget of some samples welded with Dalex PMS welding machine for step 1 and step 6

respectively.

1 mm

Figure 5.6: Metallography of weld spot nuggets of step 1, welded sample, Dalex PMS

Figure 5.7: Metallography of weld spot nuggets of step 6, welded sample, Dalex PMS
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These represent the two extremes of the time steps. The Figures show that the nugget

sizes produced in step six are bigger in size (Figure 5.7) than the nugget sizes from step

one (Figure 5.6). This agrees with the direct relationship between effective weld current

and achieved weld diameter.

The selection of the good weld quality range using weld diameter cut off value based on

observed expulsion limit is presented in Table 5.1.

Table 5.1: Observed Maximum Values: weld diameter, effective current and

observed expulsion weld diameter

Machine | Applied | Maximum. | Corresponding | Maximum | Corresponding | Expulsion

Type | Electrode Weld Effective Effective | Weld diameter Weld
Force Diameter | Current (kA) Current (mm) Diameter
(kN) achieved (kA) (mm)

(mm)

22 5.9 7.34 7.51 5.6 5.6

C-Gun 2.6 6.1 8.32 8.41 6.0 None
3.0 6.2 8.62 8.66 6.1 None
22 5.6 7.41 7.43 5.3 None

Dz 2.6 6.0 8.39 8.39 6.0 None
3.0 6.6 9.39 9.42 6.2 None
22 6.60 8.33 8.58 6.15 5.8

PMS 2.6 6.50 8.76 8.84 6.2 None
3.0 6.80 9.24 9.34 6.3 None
1.76 5.4 7.04 7.04 5.4 5.25

Dalex 2.16 5.9 7.69 7.69 5.9 5.4
2.2 6.0 7.63 7.73 5.7 5.5
2.46 5.9 7.85 7.85 5.9 None
2.6 6.1 7.95 7.95 6.1 None
3.0 6.3 8.55 8.57 59 None
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In defining weld quality, weld diameter less than 3.7 mm was considered a bad weld
because it is below the stick limit. Theoretically, the weld diameter is expected to be
between 3.7mm and 4.7mm to be considered a satisfactory weld quality for the electrode
wear class used . Maximising the size of the weld diameter to a possible large size

before expulsion point will give better weld quality (weld diameter).

Based on observation as shown in Table 5.1, weld diameter between 3.7 mm and less
than 5.25 mm was considered good weld. With less than 5.25 mm weld diameter as the
better spot weld quality. Less than 5.25 mm weld diameter was taken as a cut-off point
because an expulsion was observed to occur at 5.25 mm during the welding process as
shown in the Table. This observation shows that there is no guarantee that expulsion will

not occur at a weld diameter above 5.25 mm.

55 Concluding Remarks

By using the equation ' 4t <d <54t , it was possible to have a guide to what defines
a good or poor quality weld. The nugget sizes produced in step six are bigger in size than
the nugget sizes from step one because of higher current range applied. This agrees with
the direct relationship between effective weld current and achieved weld diameter.

Effective weld current achieved, in the time steps 6 are higher than in the steps one.

No expulsion was observed at below 5 mm weld diameter. This means that high chance
exist to push the current up to the point of producing this weld diameter without
expulsion. The earliest expulsion was with Dalex 25 welding machine with a weld
diameter of 5.25 mm at an applied electrode force of 1.76 kN. Expulsions were frequent
as noticed at the lower applied electrode force than at higher applied electrode force. This
may be because at the lower applied electrode force, larger gap exist between the plates
contact surfaces which creates higher resistance. During the welding process with fast
heat generation mostly due to higher resistance and rapid growth of the nugget “**,

without adequate constraints chance for expulsion occurring will be very high.
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The non linear nature of dynamic resistance variables makes it difficult to use in
predicting weld quality. It is therefore important to model this variable in other to use it

for predicting weld quality.
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CHAPTER 6

MODELLING THE PROCESS PARAMETERS

6.1 Introduction

Presented in this Chapter are the models used for estimating the process parameters in the
resistance spot welding process. These process parameters are dynamic resistance,
applied electrode force, effective weld current and weld diameter. Dynamic resistance
generated from each welded sample showed non linear and complex behaviour in having
twenty halfwave dynamic resistance values per sample. An empirical model was
developed and used to curve fit the dynamic resistance curve, such that the twenty
halfwave dynamic resistance per sample was reduced to just one resistance value for each
sample welded. This estimated resistance per sample will be referred to as sample
resistance in this thesis. The level of error in the estimation was determined for each of

the samples using the root mean square error and sum of square criteria '**.

The prediction capability of the empirical model was improved by passing the outputs
from the model through neural network learning for intelligent and accurate prediction.
The predicted sample resistance from the neural network with applied electrode force and
effective weld current were used as in inputs in a second neural network model to predict

weld diameter.

Four neural network types which are generalized feed forward, multilayer perceptron
(MLP), radial basis function (RBF) and recurrent neural network (RNN) types were
trained and tested to find the one with least error and best generalization capability, for
predicting sample resistance and the weld diameter. Such that for any desired weld
diameter it was possible to determine the optimum parameters that will be needed to

achieve the weld diameter.
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6.2 Empirical Model for the Dynamic Resistance Parameter

An empirical (mathematical) model that explains the pattern of the dynamic resistance

behaviour %%

was developed. The purpose was to use it to linearise the nonlinear
dynamic resistance curve and to be able to estimate a resistance value for each welded
sample. This is because a linear input parameter to the neural network model would help
improve the neural network prediction accuracy as discussed earlier in the literature
section. In developing this model the dynamic resistance curve was broken up into three

stages as is shown in Figure 6.1.

Dynamic Resistance Curve
0.14 l;g;te Second
Stage Third
Stage
0.12
0.1 1
R(mMQ)
0.08
0.06 1
0.04 +
0.02 1
0 T T T T T T T T
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Number of Halfwaves

Figure 6.1: Trend Pattern of Dynamic Resistance Curve

The first stage is the early stage of the resistance change from its initial value up to the
peak point. The second stage is the peak point and the third stage is the dynamic

resistance from the peak point to welding completion.

6.2.1 First Stage
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Figure 6.1 shows that in the first few initial halfwave cycle times there is significant drop
in the dynamic resistance followed by a gradual increase. Peak point is reached after few
time halfwave cycles depending on the welding current intensity '°®. With the dynamic
resistance there is a corresponding increase in temperature and amount of energy

(23, 102)

generated . This is because resistivity increases with temperature. It can be

concluded that changes in welding cycle time corresponds to changes in temperature and

generation of heat energy as the dynamic resistance progresses up to the peak point.

Based on observation of the dynamic resistance curve, it can be stated that the dynamic
resistance behaviour of the spot welded sample from the first halfwave cycle time to the
peak point is directly related to the number of halfwave cycles plus the initial resistance

at first halfwave cycle time. Expressed mathematically:

Rioc N, + R, (6.1)
Such that

Ri=MxN,_+R, (6.2)

where R, is a function that accounts for the resistance from first time cycle up to the
resistance at the peak point. N, is the number of half waves. R is the surface resistance
of the sample. Parameter M is a function of temperature which depends on the material

(94, 102)

resistance (R) during current flow , expressed by

R, =/— (6.3)
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with S = specific electrical resistance (temperature dependant), | = length of current

flow in work piece and A = current area (electrode contact area). As is shown in Figure

6.2.

Relationship between Parameter M and Resistance
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Figure 6.2: Influence of Parameter M on Resistance

The figure shows that increasing the input parameter M generates an increase in the
value of the sample resistance (R) . The effect of the initial resistance which is due to the
contact resistance between the surfaces of the welded plate in contact disappears after the
first few welding halfwave cycles. This agrees with Matsuyama ¥ findings in which he
concluded that the resistance due to the interface contact resistance is not very important

in normal resistance spot welding.

6.2.2 Second Stage

The second phase is the peak point of the dynamic resistance curve. This peak point is

referred to by most researchers as the B peak ©*'°®. In explaining the formation of the

(102)

S peak, De et al ®¥ in reviewing the work by Dickinson in this area mentioned that
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at the peak point there is decreased interface resistance which is influenced by the
increased bulk resistivity with temperature. This eventually leads to an overall decrease in
the sample resistance away from the peak point ©¥, such that the peak point stands out.

This view is consistent with the views of other researchers '*>. However, at this £ peak

there is no change in dynamic resistance and welding cycle time hence:

dr
dN,.

=0

With the change in dynamic resistance to the change in welding cycle time being equal to

Zero =0 at this f peak it is possible to estimate the parameter M . The parameter

C
M in equation (6.2) is determined by taking the second order partial derivative of the

same equation (6.2).

6.2.3 Third Stage

The third phase corresponds to the downward slope from the B peak of the dynamic

resistance curve, Figure 6.3.

Dynamic Resistance

0.132

mQ
0.128 -

0.124

0.12

1 2 3 4 5 6 7 8

Halfwave Cycle Time

Figure 6.3: Dynamic resistance trend from the peak point downwards

Slightly away from the /£ peak is a marked decrease in dynamic resistance sloping

downwards as the welding cycle time progresses. The drop in dynamic resistance is due
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to a change in contact diameter (contact resistance) because of the change of state from

solid to liquid of the sheet surfaces in contact and increase in the cross sectional area >

94)

Estimating the change in cross sectional area of the contact surfaces is difficult because

23 ysed simulation

the contact diameter is not constant during welding **, Matsuyama
method to determine contact diameter but only at a particular time (t). Contact diameter
change at plate interface *® during the welding process is dependent on time. The
change in cross sectional area (contact diameter) affects the downward slope of the curve

from the S peak %%,

The downward slope of the dynamic resistance curve from the £ peak is observed to

follow a mathematical function of inverse relationship between the dynamic resistance
downward slope (R2) and the welding cycle time ( Nc) raised to power index “n” ( n is
an index that ranges between 0 and 1) and strongly influences the downward slope from

the f peak .

Represented thus:
R2oc N," (6.4)
Such that,
K
R2 = (6.5)
N n

Where R: is the dynamic resistance of the downward slope from the B peak, N is the

welding cycle time, n is power index and K is a constant. The power index n describes
the steepness of the slope. The physical cause of the downward slope is due to drop in
interface resistance as a result of change of state from solid to liquid as the faying surface
melts Y. K directly influences the sample resistance. Increasing K leads to an increase

in sample resistance as is shown in Figure 6.4.
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Relationship between Parameter K and Resistance
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Figure 6.4: Influence of Parameter K on Resistance

6.2.4 Total Resistance

The mathematical function that describes the dynamic resistance will then be the total of

Riand R:acting in parallel, such that

11 1 (6.6)
R R, R,
R is total resistance; Riand R:are defined earlier.
Substituting equations (6.2) and (6.5) into equation (6.6), the expression becomes;
N n
1 ! < (6.7)

= +
R (MxN, +R,) K
such that,
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iz K+(N" )x(MxN_+R,))

(6.8)
R K(MxN_,+R,))
By making R the subject of the equation;
KxM xNc+ K xRo (6.9)

" (K +(Nc" xM x N¢)+ (Nc" x Ro))

R, and N_are known for each sample welded, K and M can be estimated. To determine

the unknown parameter n (power index), the effect of change of n on the slope of the
dynamic resistance curve was evaluated by taking n values from 0 to 1 and substituting

into a plot of equation 6.9.

The value of n is incrementally increased to see the effect on the model. By increasing n
to 0.2, the drop in resistance is noticeable but far from actually fitting the dynamic

resistance curve. Further increasing n to 0.5 correctly fits the curve as is shown in Figure

6.5.
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Figure 6.5: Curve fitted Model at n = 0.5

The power index n was taken as 0.5 in this model due to best fit. It is observed that the
dynamic resistance curve fitting model responds to this power index n by some unknown
non linear relationship function. This relationship is assumed to be depending on the

contact area of the sheet surfaces during the welding process **.

To calculate sample resistance R, the parameters K and M have to be determined. M and

N can be estimated by taking partial derivatives of equation (6.7) at the S peak where

d—R =0, such that;
dN

C
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~(1/R)dR _ —(M /M xN_+R)*)+N""
dN B nK

c

M
dR:R2/4MxNC+&f—Nm”
dN, nK

Maximum atddTR:O,when N.=N,, N

c

o 18 the cycle number at S peak

I\y 2 (n=1)
(MxN, +R)*=N,""

nxK -

Np(n—l) ~ M
nx K (I\/Ipr+R0)2

i nxM
K Np><(n—1)(M><Np+R0)2

=N;HBquNp+&y
nxM

K

The equation will be

2MxN, +R,)’
VNP

Similarly parameter M will be

(6.10)

6.11)

(6.12)
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(KN, —2R))
2N

p

(6.13)

Such that once parameter M is estimated K can be determined and vice versa. The total

resistance (R) can therefore be determined by the equation:

R= T(X '\?I\: N;\|+1 5)0 +Ryx N, (6.14)
+ XN -

This equation is the model that can be used for curve fitting the dynamic resistance curve

and for determining the sample resistance(R), once the parameters K and M are

estimated. This model equation (6.14) was used to test one hundred and seventy samples
per machine for all four machines used. This was to confirm the model suitability for
curve fitting the dynamic resistance curves and for estimating the resistance of welded

samples.

The curve fitting and estimation of the unknown parameters were done for each welded
sample in MATLAB "%, This was done by first making a plot of the dynamic resistance
curve in MATLAB, followed by the equation (6.14) of the model being written in the
MATLAB curve fitting custom solution option '°”. The confidence interval was set at
95%. Initial parameter values were assumed and supplied ' before starting iteration
process for determining the final value of the parameters. Assuming initial parameter
values were because the iteration process can not proceed without some initial values
supplied. These initial values were randomly generated in MATLAB, and the correct
parameter values were determined through the iteration process %%,

Through the iterative process the K and M parameters which curve fitted (best fits) the

dynamic resistance curve were determined. With the parameters K and M known it was
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possible to determine the sample resistance for each of the welded samples. This was
done by substituting the values of the parameters K and M generated, and R, which is

the initial dynamic resistance value into the model expression of equation (6.14).
Presented in Figure 6.6 is the result of the curve fitting of the dynamic resistance curve

for one of the samples taken from DZ machine under applied electrode force of 3.0 kN,

using the model (equation 6.14) to make the fit.
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Model Fitted Dynamic Resistance Curve
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Figure 6.6:  Fitted Dynamic Resistance Curve: DZ machine at 3.0 kN Force.
Similar results were obtained for all the welded samples. Presented in Appendix C are the

results of the curve fit of some samples taken from all four welding machines, for

different applied electrode force.

6.3 Applying the Empirical Model

The primary purpose of the empirical model (equation 6.14) was to linearise the
inconsistent nonlinear dynamic resistance parameter. Additionally, the model is being

explored for estimating sample resistance in an unknown welding condition.
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The empirical model is applied by determining the parameters K, M

and R, and

substituting these values into the model equation to estimate sample resistance. The sum

of square error and root mean square error in each of the sample resistance estimated

. 1
were determined *®. In all the cases the sum of square error and root mean square error

were significantly less than one . This shows a good estimation. Presented in Table

6.1 are the K, M and R; values determined for some samples welded in C-Gun machine

which were used to determine the sample resistance (R).

Table 6.1: Estimated sample resistance (R)

Effective Weld K M Sum of RMSE

Current | Diameter Squares Ro(mQ) | R(MQ)
(kA) (mm)
6.48 3.7 0.5391 0.029 0.001 0.008 0.106 0.101
6.48 3.7 0.6395 0.021 0.0002 0.004 0.085 0.11
6.52 3.7 0.5928 0.022 0.0005 0.005 0.091 0.104
6.5 3.7 0.5886 0.023 0.0005 0.005 0.092 0.105
6.53 3.9 0.5961 0.021 0.0003 0.004 0.086 0.105
6.52 3.7 0.5845 0.023 0.0004 0.005 0.089 0.104
6.52 3.7 0.5942 0.022 0.0005 0.005 0.091 0.105
6.51 3.7 0.6391 0.019 0.0004 0.004 0.086 0.108
6.99 4 0.5125 0.029 0.0004 0.005 0.093 0.097
7.01 4 0.5598 0.024 0.0526 0.054 0.087 0.102
6.99 4 0.5394 0.024 0.0529 0.054 0.085 0.099
6.97 4 0.5507 0.025 0.0003 0.004 0.086 0.101
6.93 4 0.5823 0.024 0.0002 0.004 0.085 0.105
6.96 4 0.5394 0.026 0.0003 0.004 0.083 0.1
6.97 4 0.5164 0.025 0.1194 0.081 0.089 0.096

7 4 0.5598 0.024 0.0005 0.006 0.092 0.102

7.35 4 0.5536 0.027 0.0002 0.003 0.082 0.102
7.34 4.4 0.5164 0.031 0.0002 0.004 0.089 0.099
7.36 4.4 0.5132 0.029 0.0002 0.004 0.087 0.097
7.33 4.3 0.537 0.027 0.0002 0.003 0.083 0.1
7.28 4.5 0.5536 0.031 0.0632 0.059 0.084 0.105
7.31 4.5 0.5628 0.027 0.0002 0.003 0.085 0.104
7.36 4.5 0.5281 0.028 0.0002 0.003 0.082 0.099
7.39 4.5 0.5267 0.028 0.0002 0.003 0.083 0.099
7.71 5.7 0.5334 0.03 0.0001 0.002 0.081 0.101

Effective Weld K M Sum of RMSE | Ro(mQ) | R(MQ)

Current Diameter Squares
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(kA) (mm)

7.74 5.5 0.5123 0.032 0.0001 0.003 0.085 0.098
7.7 5.5 0.4893 0.035 0.0564 0.056 0.083 0.096
7.7 5.6 0.5003 0.033 0.0577 0.057 0.082 0.097

7.75 5.6 0.489 0.035 0.0002 0.003 0.086 0.096

7.73 5.6 0.4893 0.035 0.0002 0.003 0.088 0.096

7.73 5.5 0.489 0.035 0.0003 0.004 0.091 0.096

7.776 5.5 0.5003 0.033 0.0002 0.003 0.085 0.097

8.18 6 0.4944 0.036 9.80E-05 0.002 0.083 0.097
8.2 59 0.4709 0.042 0.0490 0.052 0.084 0.094

8.14 5.9 04721 0.039 0.0001 0.002 0.084 0.094

8.15 59 0.4702 0.039 8.68E-05 0.002 0.084 0.093

8.13 5.9 0.46 0.036 0.1166 0.08 0.084 0.091

8.12 5.8 0.4709 0.04 8.08E-05 0.002 0.084 0.094

8.16 6 0.4552 0.042 0.0001 0.003 0.086 0.092

8.18 6 0.46 0.041 0.0001 0.002 0.084 0.092

8.59 6 0.4348 0.042 0.0001 0.003 0.079 0.088

8.62 6 0.4128 0.046 0.0001 0.002 0.081 0.084

8.61 59 0.4186 0.046 9.16E-05 0.002 0.081 0.085
8.6 5.6 0.4358 0.046 0.0028 0.013 0.08 0.089

8.66 6.1 0.4095 0.045 9.56E-05 0.002 0.083 0.084

8.63 6 0.4186 0.042 0.0415 0.048 0.079 0.085

8.62 6.2 0.4256 0.043 9.66E-05 0.002 0.079 0.086

8.59 6.2 0.4358 0.043 6.81E-05 0.002 0.081 0.088

As is shown in Table 6.1, it is possible to use the empirical model to estimate sample
resistance once K and M parameters are determined through an iteration process and

R, known.

To predict sample resistance R without going through an iteration process, graphs of
values of the parameters are plotted and used for estimation needed values of M and K

and R, for a desired weld diameter. Presented in Figure 6.7 is a plot of the parameters

M and K of one of the welding machines.
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Figure 6.7: Machine C-Zange — Parameters M and K and Applied electrode force 2.2KN

To test if this is able to estimate sample resistance.

The parameters are estimated from the graph of Figures 6.7 at a desired weld diameter of
5.3 mm. The values for M and K were determined from the graph as K = 0.6561, M =
0.02623. Initial dynamic resistance RO at first halfwave for this welding machine

average is 0.094448.

Substituting these values into the model equation (6.13);

R = (K *(M *Nc + R0)) /(K + (M * Nc”1.5)) + (Ro* (Nc”0.5)))

R = (0.6561%(0.02623*20+0.007563))/((0.6561+(0.02623*20"1.5))+(0.007563*(20"0.5)))

R=0.101 mQ

To validate the above estimate, this value was compared to the actual value of the
dynamic resistance at weld diameter of 5.3 mm for this machine and applied electrode

force. Four values of sample resistance (R) were obtained. The values were 0.116201,
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0.115402, 0.115902 and 0.112434. Percentage accuracy in estimating was 85%, 86%,
85.5% and 88.9% respectively.

Similarly compared for weld diameters of 5.9 mm, the parameters were estimated from
the graphs of Figures 6.7, the value of R obtained was 0.1013 mQ . Compared to actual
value of R which was 0.10126 mQ, a percentage accuracy of 99.98%. This was done for

all the samples and the accuracies were all above 85%.

The applicability of this model was further verified to any of the welding machines
without an identifier using data set generated from all the welding machines. The essence
of this was to see how the graph can be used to accurately estimate sample resistance for
a desired weld diameter in an unknown situation (unknown machine). Graphs were
developed using the data generated from the model expression for different weld

diameters. Presented in Figure 6.8 and 6.9 are the plots of K , M and R, parameter

values for different weld diameters for a number of samples welded at different applied
electrode force using the four welding machines. These parameters were used for

estimating sample resistance for a desired weld diameter in unknown welding machines.
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The obtained result of the sample resistance was compared with the actual values of
sample resistance obtained. Presented in Figure 6.10 is the estimation of sample

resistance for samples welded in an unknown welding machine.
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Figure 6.10: Predicted Resistance to actual in Dalex Machine

The Figure shows the actual resistance compared to the predicted. The predicted is not
following the actual. Similar estimations were made without identifying (unknown) the
welding machines. The percentage difference (error) of the predicted to the actual ranged
between 16% to 149%. The large prediction error as is shown in figure 6.10 may be
because the model can only track linear changes and is not able to follow nonlinear
dynamic and complex changes in new situation. Statistical analysis will be carried out to
determine the relationships between the parameters. If nonlinear relationships are
confirmed to exist between the parameters and the sample resistance then neural network

techniques will be the most appropriate method to use in modelling the process.
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The cause of this error was investigated by carrying out correlation analysis and multiple
regression analyses between the parameters and sample resistance R. Presented in Table

6.2 is the correlation of the parameters to one another.

Table 6.2: Correlations Matrix

Current Weld Diameter K M Ro R
(kA) (mm)
Current (kA) 1.000
Weld Diameter 0.951 1.000
(mm)
K -0.943 -0.884 1.000
M 0.959 0.921 - 1.000
0.956

Ro (mQ ) -0.648 -0.569 0.457 | -0.479 | 1.000
R ( mQ ) -0.912 -0.830 0.979 | -0.922 | 0.466 | 1.000

The table shows significant linear correlation between the parameters. Strong linear
correlation exists between current and all the parameters and between weld diameter and
all the parameters with slight reduction with Ro. The linear correlation coefficient
between the parameters K, M and Ro are about 0.5 and are considered significant. The
prediction error is therefore not due to lack of linear correlation between the parameters.
Further investigation was done using multiple linear regression analysis to ascertain the
relationship between the predicted variable R (sample resistance) to the other variables.

Presented in Table 6.3 is the result of the multiple regression for sample resistance (R).

Table 6.3: Multiple Correlations Matrix

Results of multiple regression for R (MQ)
Summary measures
Multiple R 0.9840
R-Square 0.9683
Adj R-Square 0.9645
StErr. of Est. 0.0012
ANOVA Table
Source df SS MS F p-value
Explained 5 0.0020 0.0004 | 256.6746 0.0000
Unexplained 42 0.0001 0.0000
Regression
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coefficients

Lower Upper

Coefficient Std Err t-value p-value limit limit

Constant 0.0146 0.0215 0.6797 0.5004 | -0.0287 0.0579
Current (KA) 0.0001 0.0019 0.0759 0.9399 | -0.0038 0.0041
Weld Diameter (mm) 0.0014 0.0007 2.1295 0.0391 0.0001 0.0027

K 0.1279 0.0124 | 10.2839 0.0000 0.1028 0.1531

M 0.0146 0.1090 0.1336 0.8944 | -0.2055 0.2346
Ro 0.0996 0.0757 1.3159 0.1954 | -0.0531 0.2523

The R-Square, adjusted R-Square, high F value and low standard error shows good
estimation accuracy. The p-value gives indication of clear linear relationship existing
only between the sample resistance (R) and weld diameter, K and Ro. While the
relationship between R and current and M parameter are not seen as linear as indicated by
the high p value. The relationships were combinations of linear and non linear
relationships among the parameters. The level of estimation error in the result obtained
by using the graph suggests that the technique is not appropriate for an accurate result.
The values were further linearised using logarithm function ®” but the improvement in

estimation accuracy was little.

It can be concluded that the sample resistance of a desired weld diameter in an unknown
welding machines can be predicted using the graphs. This is however with high level of
prediction inaccuracy mostly because of the nonlinear and complex relationship that
exists between the sample resistance R and some of the parameters. To improve the
prediction accuracy neural network technique will be employed to learn the pattern in the

data and to be able to make accurate prediction .

6.4  Improving the Empirical Model using Artificial Neural Networks

The generated parameters from the empirical model were passed through neural network
learning in other to improve the prediction accuracy. Such that for any desired weld
diameter in any of the welding machines the sample resistance will be determined

(known), without the need to conduct the welding experiment or going through the
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iteration process of determining the parameters K , M and R,. The inputs are weld
diameter and parameters K , M and R, . Sample resistance was the output. The result

was validated (tested) and further cross validated on dataset not used for the training and

then used to make prediction on dataset not seen before.

Four neural network types which are generalized feed forward, multilayer perceptron
(MLP), recurrent network and radial basis function (RBF) were tested to find the best

predictor to be used for improving the empirical model.

6.4.1 Training using Generalized feed forward neural network

Generalized feedforward networks are a generalization of the MLP such that connections
can jump over one or more layers ®¥. The inputs for this network as mentioned earlier are
desired weld diameter and applied electrode force, while linearised sample resistance

from the empirical model is the output.

The dataset were randomised to achieve even spread. Then the columns were tagged as
inputs and outputs. 70% of the data set (exemplars) was set apart (tagged) for training,
15% for training and another 15% for cross validation. 20 exemplars were kept as

production data for production testing.

The generalized feed forward network design was made up of 2 inputs processing
elements, 1 output processing element, 502 exemplars, 3 hidden layers, with first hidden
layer made up of 16 processing elements, TanhAxon transfer function, with momentum
learning rule. The second hidden layer was made up 8 processing elements, TanhAxon
transfer function and momentum learning rule. The third hidden layer was made up of 5
processing elements, TanhAxon transfer function and momentum learning rule also. The
outer layer consists of one processing element, BiasAxon transfer function and

conjugated gradient learning rule. 3000 epochs were specified for the training iterations.
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The generated architecture design showing input and out put files with the hidden layers

and transfer functions is presented in Figure 6.11.
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T

Figure 6.11: Generated generalized feedforward network architecture design

The results of the training and cross validation are presented in Figure 6.12.

@

Mean Square Error versus

0.6

05 L

04 |
MSE

Trainina

03 L

Cross Validation

02 L

01 L

e ——————— L .

T T T 1 T ¥
1 200 399 598 797 996 1195 1394 1593 1792 1991

Epoc

Figure 6.12: Training performance of the generalized feedforward network
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The result of the training performance shows a good performance and a small error of
about 0.05 at training epochs of 2000. The training was therefore stopped at 2000 epochs.
The mean square error MSE curve showed a downward slope (weight decay) indicative
of good performance. The network was tested to validate the consistency of the

performance.

The testing error is measured by the linear correlation coefficient (r), mean absolute error
(MAE), normalised mean squared error (NMSE) and mean squared error (MSE). These
statistical parameters give an acceptable measure of the level of control and performance
quality of the network ©*. How closely the predicted resistance lines are following the

actual resistance was determined as is shown in Figure 6.13.
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Figure 6.13: Testing performance of the generalized feedforward network.
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The result of the testing performance gave a mean sum of squares of 0.001, and mean
absolute error (MAE) of 0.03. This indicates a good performance. The normalised mean
squared error (NMSE) was about 0.83 and the linear correlation coefficient was 0.52. A
linear correlation coefficient of 0.52 shows that the set of point are not close to a straight
line, which indicates a poor correlation. The graph in Figures 6.13 shows that estimated
resistance is not closely following the actual resistance value. The performance of the
network will be further validated by presenting data not seen before by the network to see
how well it can generalize. Table 6.4 shows the predicted resistance (R) to the estimated

resistance, and the estimation accuracy using the generalized feedforward neural network

type.

Table 6.4: Predicted Resistance to Actual Resistance using generalized feedforward

Neural Network type.
Machine | Applied Weld R predicted R actual Difference %
Type Force | diameter mQ mQ Difference
(kN) (mm)

PMS 3 3.7 0.1186 0.1079 0.0107 9.9222
C-Gun 3 4.4 0.117 0.1662 -0.049 -29.591
Dalex-35 3 4 0.1191 0.089 0.03 33.741
Dalex-25 2.46 5.7 0.0986 0.0716 0.0271 37.799
Dalex-35 3 4 0.1191 0.1017 0.0174 17.116
PMS 2.2 5.3 0.0959 0.1154 -0.019 -16.88
Dalex-25 2.46 4 0.1123 0.0739 0.0384 51.949
Dalex-25 3 3.7 0.1186 0.1015 0.0171 16.892
C-Gun 2.2 4.4 0.1063 0.1178 -0.012 -9.8047
Dalex-25 2.46 3.6 0.1115 0.084 0.0275 32.693
Dalex-25 2.46 5.5 0.0991 0.0714 0.0277 38.754
C-Gun 2.2 3.5 0.1087 0.1053 0.0035 3.3057
Dalex-25 2.46 3.8 0.1124 0.0828 0.0295 35.67
Dalex-35 3 6.3 0.1079 0.1378 -0.03 -21.708
Dalex-25 2.16 54 0.1001 0.0578 0.0423 73.055
C-Gun 3 6.5 0.1103 0.1408 -0.031 -21.665
Dalex-25 2.46 3.6 0.1115 0.0889 0.0226 25.467
PMS 2.6 3.8 0.1167 0.1262 -0.009 -7.5071
Dalex-25 1.76 4 0.1034 0.0966 0.0068 7.0807

Table 6.4 shows marked differences between the predicted resistances to the actual, with

prediction error of about 3% to 73%. The prediction output of this network using real

122



data not used for training the network is presented in Figure 6.14. This is to further

evaluate how well the network is able to generalize.
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Figure 6.14: Validation performance of the generalized feedforward network.

The graph showed that the generalisation is very poor. The network was not able to
predict accurate output for data that it has not seen before. Though a large error of 3% to
73%, it is an improvement from the earlier estimation error of about 16% to 149%. To
achieve reliable and usable process model this error is considered high and unacceptable.

Other neural network types will be tested.

6.4.2 Training using Multilayer Perceptron neural network type

Multilayer perceptrons (MLP) are layered feedforward networks architecture which is
typically trained with static backpropagation ®*. In this network architecture there are 2
input processing elements (desired weld diameter and applied electrode force), 1 output

processing elements (linearised sample resistance), 487 exemplars and 1 hidden layer.
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The hidden layer has 16 processing elements, TanhAxon transfer function with
momentum learning rule. The output layer uses BiasAxon transfer function with
conjugate gradient learning rule. The hidden layer and the process elements were
determined by trial and error and by comparing the error output. The generated network

architecture is shown in Figure 6.15.

(106)

Figure 6.15: Generated multilayer perceptrons (MLP) network architecture design

The levels of errors for the training and cross validation are shown in Figures 6.16.
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Figure 6.16: Training performance of the multilayer perceptrons (MLP) network
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Similar to the generalised feedforward neural network type, the result of the training
performance of the multilayer neural network showed good performance with an error
output of about 0.05 at training epochs of 3000 and cross validation error of 0.06 at same
epoch of 3000. The downward slope (weight decay) however did not indicate a good
training and cross validation performance, as the slope did not show a significant drop.
The overall network performance was confirmed by the testing performance result. The
testing performance of the multilayer perceptron neural network used is presented in

Figure 6.17.
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Figure 6.17: Testing performance of the multilayer perceptrons (MLP) network.
The test performance result gave a mean sum of squares of 0.008, mean absolute error

(MAE) of 0.02 indicating good performance. Normalised mean squared error (NMSE) of
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0.67 and linear correlation coefficient of 0.6. In the graph of Figure 6.17, the estimated

resistance is not closely following the actual resistance value, it is however performing

better than the feedforward neural network type. The performance of the network will be

validated using data set not seen before by the multilayer perceptron neural network.

Table 6.5 shows the predicted resistance (R) to the estimated resistance, and the

estimation accuracy using the multilayer perceptron neural network type.

Table 6.5: Predicted Resistance to Actual Resistance using multilayer perceptron

neural network type.

R actual

Machine | Applied Weld R predicted Difference | % Difference
Type Force (kN) diameter (mQ) (MQ)
(mm)

PMS 3 3.7 0.1134 0.1079 0.0055 5.1089
C-Gun 3 4.4 0.1212 0.1662 -0.045 -27.09
Dalex-35 3 4 0.1175 0.089 0.0285 32.023
Dalex-25 2.46 57 0.0766 0.0716 0.005 7.0184
Dalex-35 3 4 0.1175 0.1017 0.0159 15.612
PMS 2.2 5.3 0.0837 0.1154 -0.0317 -27.446
Dalex-25 2.46 4 0.0951 0.0739 0.0212 28.619
Dalex-25 3 3.7 0.1134 0.1015 0.0119 11.773
C-Gun 2.2 4.4 0.1042 0.1178 -0.0136 -11.527
Dalex-25 2.46 3.6 0.0877 0.084 0.0037 4.3658
Dalex-25 2.46 55 0.0758 0.0714 0.0044 6.1602
C-Gun 2.2 3.5 0.0998 0.1053 -0.0054 -5.1532
Dalex-25 2.46 3.8 0.0918 0.0828 0.009 10.833
Dalex-35 3 6.3 0.1077 0.1378 -0.0301 -21.858
Dalex-25 2.16 5.4 0.096 0.0578 0.0381 65.951
C-Gun 3 6.5 0.1129 0.1408 -0.0279 -19.828
Dalex-25 2.46 3.6 0.0877 0.0889 -0.0012 -1.3175
PMS 2.6 3.8 0.1229 0.1262 -0.0033 -2.6032
Dalex-25 1.76 4 0.0978 0.0966 0.0012 1.285

Table 6.5 shows a prediction error of 1% to 65% using real data not used for training the

network. This generalization is presented in graph form in Figure 6.18. The graph showed

that the generalisation is slightly improved from the generalized feedforward neural

network type. It is still considered generally poor.
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Figure 6.18: Validation performance of the multilayer perceptrons (MLP) network

Redial basis neural network type and Recurrent neural network were explored to see if

there will be further improvement in the prediction of sample resistance.

6.4.3 Training with Redial Basis Function Neural Network

Radial basis function (RBF) networks are nonlinear hybrid networks typically containing
a single hidden layer of processing elements (PEs). This layer uses gaussian transfer
functions. The centres and widths of the gaussians are set by unsupervised learning rules,
and supervised learning is applied to the output layer. These networks tend to learn much

faster than MLPs ©?,

The radial basis function network architecture design to be used here is made up of 2

input processing element with 1 output processing element, 487 exemplars, with no
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hidden layer, 10 cluster centres, using consciencefull competitive learning with Euclidean
metrics ©?. The output layer uses the conjugate gradient learning rule and Bias Axon
transfer function. 100 epochs of iteration is done for the unsupervised learning with a set
rate of decay and 1000 epochs for the supervised learning. The generated network

architecture design is shown in Figure 6.19.

(106)

Figure 6.19: Generated Radial basis function (RBF) network architecture design

This Radial basis function network architecture was trained and cross validated. The

result of the training performance and cross validation is shown in Figure 6.20.
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Figure 6.20: Training performance of the Radial basis function (RBF) network
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The Radial basis function training performance result shows a mean square error output
of about 0.07 at a training epoch of 180 and cross validation error of 0.09 at an epoch of
117. The downward slope (weight decay) did not indicate a good training and cross
validation performance. The network will be tested to confirm overall performance of the
network. The Radial basis function network was further validated by testing its

performance. The result of the test performance is presented in Figure 6.21.
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Figure 6.21: Testing performance of the Radial basis function network

The test performance result is poor. Though with a good mean sum of squares of 0.001,
and mean absolute error (MAE) of 0.02. The performance is not consistent as the
normalised mean squared error (NMSE) was 0.98 and linear correlation coefficient was
0.24. The graph (Figure 6.21) shows the estimated resistance is not closely following the

actual resistance value at all. The performance of the network validated using data set not
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seen before by the Radial basis function neural network is presented in Table 6.6 and

Figures 6.22 respectively.

Table 6.6: Predicted Resistance to Actual Resistance using Radial basis function

neural network type.

R actual

Machine | Applied Weld R predicted Difference | % Difference
Type Force (kN) diameter mQ mQ
(mm)

PMS 3 3.7 0.1174 0.1079 0.0095 8.8182
C-Gun 3 4.4 0.1156 0.1662 -0.0506 -30.429
Dalex-35 3 4 0.1175 0.089 0.0285 32.024
Dalex-25 2.46 5.7 0.0945 0.0716 0.023 32.088
Dalex-35 3 4 0.1175 0.1017 0.0159 15.612
PMS 2.2 5.3 0.1037 0.1154 -0.0117 -10.143
Dalex-25 2.46 4 0.1215 0.0739 0.0475 64.314
Dalex-25 3 3.7 0.1174 0.1015 0.016 15.718
C-Gun 2.2 4.4 0.116 0.1178 -0.0018 -1.4936
Dalex-25 2.46 3.6 0.1089 0.084 0.0249 29.596
Dalex-25 2.46 5.5 0.0899 0.0714 0.0184 25.808
C-Gun 2.2 3.5 0.1161 0.1053 0.0109 10.34
Dalex-25 2.46 3.8 0.1152 0.0828 0.0324 39.089
Dalex-35 3 6.3 0.1037 0.1378 -0.0341 -24.738
Dalex-25 2.16 54 0.1045 0.0578 0.0466 80.637
C-Gun 3 6.5 0.1029 0.1408 -0.0379 -26.924
Dalex-25 2.46 3.6 0.1089 0.0889 0.02 22.539
PMS 2.6 3.8 0.1171 0.1262 -0.0091 -7.2037
Dalex-25 1.76 4 0.1186 0.0966 0.022 22.776

The table shows the predicted resistance (R) to the estimated resistance, and the

estimation accuracy. Table 6.6 shows a prediction error of about 1.5% to 80% using real

data not used for training the network. The graph of Figure 6.22 shows that the

generalisation is poor, as the predicted resistance is not following the actual resistance.

130




Predicted Resistance to Actual

0.2
0.15 -
mq2 — R predicted
0.1 -
— Ractual
0.05 -
O I I I I I I I I I I I I I I I I I I I I

1 3 5 7 9 11 13 15 17 19 21

Exemplar

Figure 6.22: Validation performance of the Radial basis function (RBF) network

6.4.4 Training with Recurrent Network

Recurrent neural networks was used for training the data set and for predicting output.
Recurrent neural networks can have an infinite memory depth ©® and thus find
relationships through time as well as through the instantaneous input space ©. Most real-
world data contains information in its time structure. Recurrent networks are the state of
the art in nonlinear time series prediction, system identification, and temporal pattern
classification “*. Though the set of data presented to the network is not a typical time

series prediction dataset, it is however a time dependent variable event.

The recurrent network architecture used here is made up of 2 input processing elements
with 1 output processing element as in other earlier architectures used. There are 480
exemplars, with 1 hidden layer and an input layer Axon. There are 16 processing
elements in the hidden layer and uses TanhAxon transfer function and momentum

learning rule. The output layer consists of BiasAxion Transfer function and conjugate
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gradient learning rule. 1000 epochs was used for the supervised learning. The network

architecture design is shown in Figure 6.23.

)
[

Figure 6.23: Generated Recurrent network architecture design '*®

This Recurrent network architecture was trained and cross validated. The result of the

training performance and cross validation is shown in Figure 6.24.
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Figure 6.24: Training performance of the Recurrent neural network

132



The recurrent network training performance result gave a mean square error output of
about 0.08 at a training epoch of 830 and cross validation error of 0.08 as well at an
epoch of 910. The downward slope (weight decay) is substantial but not very good. The
network was further tested to confirm overall performance. The testing performance of

the Recurrent network is presented in Figure 6.25.
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Figure 6.25: Testing performance of the Recurrent network architecture.

The test performance result is considered generally poor like with the radial basis
function. It though showed a good mean sum of squares of 0.001, and mean absolute
error (MAE) of 0.03. The performance is however not consistent, as the normalised mean
squared error (NMSE) achieved was 0.96, with linear correlation coefficient of 0.2. The
graph (Figure 6.25) shows the estimated resistance not closely following the actual
resistance value. The performance of the network validated using data set not seen before

by the Recurrent neural network is presented in Table 6.7 and Figures 6.26 respectively.

Table 6.7: Predicted Resistance to Actual Resistance using Recurrent
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neural network type.

Machine Applied Weld R predicted R actual Difference %
Type Force (kN) diameter mQ mQ Difference
(mm)

PMS 3 3.7 0.118 0.108 0.01 9.238
C-Gun 3 4.4 0.106 0.166 -0.0603 -36.3
Dalex-35 3 4 0.11 0.089 0.0213 23.93
Dalex-25 2.46 5.7 0.101 0.072 0.0294 41.06
Dalex-35 3 4 0.116 0.102 0.0146 14.31
PMS 2.2 5.3 0.109 0.18 -0.0715 -39.7
Dalex-25 2.46 4 0.11 0.115 -0.0058 -5
Dalex-25 3 3.7 0.119 0.074 0.0449 60.68
C-Gun 2.2 4.4 0.115 0.101 0.0137 13.47
Dalex-25 2.46 3.6 0.108 0.118 -0.01 -8.52
Dalex-25 2.46 5.5 0.118 0.084 0.0335 39.88
C-Gun 2.2 35 0.104 0.071 0.0326 45.66
Dalex-25 2.46 3.8 0.121 0.105 0.016 15.2
Dalex-35 3 6.3 0.116 0.083 0.0329 39.71
Dalex-25 2.16 5.4 0.1 0.138 -0.0377 -27.4
C-Gun 3 6.5 0.115 0.058 0.0571 98.68
Dalex-25 2.46 3.6 0.118 0.185 -0.0665 -36
PMS 2.6 3.8 0.101 0.141 -0.0397 -28.2
Dalex-25 1.76 4 0.127 0.089 0.0379 42.7

The results in Table 6.7 shows a prediction error of about 5% to 98% using real data set

not used for training the network. The graph of Figure 6.26 confirms this high prediction

inaccuracy. It is seen in the graph (Figure 6.26) that the predicted resistance is not

following the actual resistance accurately.
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Figure 6.26: Validation performance of the Recurrent network

A summary of the performance of all four neural network architectures used are

presented in Table 6.8. Of the four neural network architectures compared here the

multilayer perceptron (MLP) is the best performer, though with high prediction

inaccuracy. To further reduce this substantial error in the prediction of the sample

resistance, the neural network architecture will be refined by increasing the number of

input parameters

(33)

Table 6.8: Comparism of performance results of the four neural network types used.

Neural Training MSE | Testing MSE Linear %Error Range
Network Type Correlation Predicting
Coefficient (r) Production Data
Generalized 0.045 0.001 0.52 3% -73%
Feed Forward
Multilayer 0.047 0.008 0.60 1% - 65%
Perceptron
Redial basis 0.067 0.001 0.24 1.5% - 80%
Function
Recurrent 0.079 0.001 0.52 5% - 98%
Network
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6.5 Improving Prediction Accuracy using Multilayer Perceptron

Neural Network Architecture

To further reduce the prediction error, the number of parameters to be used as inputs to
the neural network architecture was increased by including the parameters K, M and Ro
from the empirical model to the earlier inputs which were desired weld diameter and
applied electrode force. Linearised sample resistance is the output. The multilayer
perceptron architecture considered a better performer of the four neural network

architectures tested was selected.

The architecture design is a 5 input processing elements, 1 output processing elements,
488 exemplars and 1 hidden layer Multilayer perceptron architecture. The hidden layer
has 8 processing elements with TanhAxon transfer function, using momentum learning
rule. The output layer uses BiasAxon transfer function with conjugate gradient learning

rule. The architecture is shown in Figure 6.27.

(106)

Figure 6.27: Generated Multilayer perceptron network with more input parameters

The network was trained and cross validated. The result of the training performance and

cross validation is shown in Figure 6.28.
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Figure 6.28: Training performance of the MLP network with more input parameters.

Training performance result of this multilayer perceptron architecture is better than the
previous. The training mean square error output was 0.0004 at a training epoch of 3000
and 0.0004 for the cross validation error output at an epoch of 3000. The downward slope
(weight decay) is very good. The network will be further tested to confirm overall
performance. The testing performance of the multilayer perceptron with more input

parameters is presented in Figure 6.29.
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Figure 6.29: Testing performance of the MLP network with more input parameters.

The test performance result of this network is consistent with the training performance.

The Mean sum of squares is 2.28614E-06, mean absolute error (MAE) is 0.001173088.

The normalised mean squared error (NMSE) is 0.00234, with linear
coefficient of 0.99884. The performance is outstanding. The graph (Figure 6

correlation

.29) shows

the estimated resistance is accurately following the actual resistance. The performance of

the network was validated using data set not seen before by the multilayer perceptron.

The result is presented in Table 6.9 and Figures 6.30 respectively.

138



Table 6.9: Predicted Resistance to Actual Resistance using Multilayer perceptron with

more input parameters.

R %
Machine | Force | Diameter K M RO predicted | R Actual | pifference
Type (KN) (mm) mQ mQ
PMS 3 5.9 0.46 0.0356 | 0.0841 | 0.0908 0.09076 0.04676
C-Gun 3 4.2 0.697 0.0148 | 0.0837 | 0.113799 0.11102 2.50259
Dalex-35 3 4.4 0.516 0.0314 | 0.0891 | 0.097824 0.09886 -1.0435
Dalex-25 3 4.4 0.61 0.0213 | 0.0847 | 0.107378 0.10787 -0.45268
Dalex-25 | 2.46 3.6 0.428 0.047 | 0.1268 | 0.088637 0.08736 1.45592
PMS 2.6 3.3 1.1 0.0384 | 0.2107 | 0.194962 0.19403 0.48232
Dalex-35 3 4 0.554 0.0266 | 0.0818 | 0.100916 0.10237 -1.41895
PMS 3 3.7 0.455 0.0332 | 0.0898 | 0.088333 0.08914 -0.90842
C-Gun 2.6 4 0.879 | 0.0345 | 0.1695 | 0.159946 0.15926 0.43179
PMS 3 3.9 0.464 | 0.0299 | 0.0981 | 0.088331 0.08964 -1.45683
Dalex-25 | 2.16 54 0.38 0.0646 | 0.1102 | 0.080149 0.08 0.18339
Dalex-25 | 1.76 5.1 0.39 0.0644 | 0.1475 | 0.083353 0.08199 1.65961
C-Gun 2.2 4.5 0.693 0.0197 | 0.0961 | 0.119565 0.11796 1.3594
Dalex-35 2.2 3.7 0.78 0.025 | 0.1002 | 0.110687 0.11458 -2.88982
Dalex-25 | 2.16 3.8 0.448 | 0.0438 | 0.1301 | 0.091104 | 0.09091 0.21214
C-Gun 3 5.6 0.436 0.0459 | 0.08 0.087492 0.08862 -1.27284
Dalex-25 2.2 5.6 0.55 0.0332 | 0.093 | 0.106392 0.10591 0.45528
PMS 2.6 6 0.402 0.0607 | 0.1182 | 0.085126 0.08402 1.31829
Dalex-25 | 1.76 5.3 0.388 | 0.0702 | 0.1323 | 0.083277 0.08194 1.63661
Dalex-25 | 2.16 4.5 0.398 | 0.0564 | 0.1203 | 0.083765 0.08306 0.85326

The network was validated using real data set not used for training the network. The

result in Table 6.9 shows a good prediction with error of 0.1% to 2.9%. Similarly the plot

of the actual predicted resistance to the predicted gave a very good match as is shown in

Figure 6.30.
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Figure 6.30: Validation performance of the Multilayer perceptron neural

Network Using Production Dataset.

This neural network model for predicting sample resistance accurately tracked the actual
sample resistance. The performance of the network was outstanding with a prediction
accuracy of 97% to 99.9%. Sensitivity Analysis will be conducted carried out, to

establish the contribution of each of these inputs to the output.

6.6 Sensitivity analysis of the Result

Sensitivity analysis of these parameters (weld diameter, applied electrode force, K, M and
Ro parameters) was carried out to determine the influence of these parameters to the
sample resistance. Sensitivity Analysis ¥

» First, train the network with all inputs

* Second, compute the relative importance of each input to the overall response --

called sensitivity
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* In NeuroSolutions, this is done by fixing the weights, adding a dither to each
input, and computing the difference in the result
— Controller has a sensitivity button
— Criterion has a sensitivity access point
* This is the sensitivity for the current solution. Should average over multiple
training runs.
p
)3

0
_ peli=l
Sy =

(yip - yip )2

2
Oy

An output y(k) at an arbitrary time step k influences both the plant dynamics and the

inverse dynamics “*. The Delta Rule was used for computing the sensitivity of the output

to each weight using the chain rule as follows ®*:
y = f(net) = f(zwixi)
oy _ 0oy g
— f 9G9_NAE
y=T1g0) —> ox og ox
El
ow;
>(1
a_‘] = a_‘]ﬂ@ =—¢c f '(net)xi
ow, oy onet ow, X,
X.

The performance index (J) for each possible value of the system parameters (weights) is
computed. New update equation is same as old one with derivative of nonlinearity

included, such that:

w,(n+1)=w,(n)+7¢, (n)x,, (n)f '(net, (n))
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This equation was used for computing the relative importance of each input to the overall
response and determining the difference in the result using neurosolution software

package ©?. The result of the sensitivity analysis is presented in Figure 6.31.

Sensitivity about the Mean

OForce (1.1%)

@ Diameter (0.7%)
OK (32.7%)

OM (60%)

B Ro (5.5%)

Figure 6.31: Sensitivity Analysis of the Input Parameters to the Output.

The result shows the contribution of each input to the overall resistance output. The
parameters estimated from the empirical model are shown to have strong influence on the
output, Figure 6.31. Applied electrode force contributed 1.1% to the output sample
resistance. Desired weld diameter 0.7% and parameter Ro 5.5%. The parameters K and M
estimated from the empirical model (equation 14) show large contributions of 32.7% and
60% respectively to the output (sample resistance). These two parameters are considered

critical for estimating the sample resistance.

Having developed a model that can predict sample resistance, the intension of this
research is to be able to use this predicted sample resistance in combination with applied
electrode force to determine the effective weld current (RMS) that will be required for a
desired weld diameter. The overall welding process will therefore be modelled using

these mentioned process parameters.
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6.7 Modelling the Overall Welding Process

The overall welding process was modelled in other to determine required effective weld
current needed to achieve desired weld diameter in any of the resistance spot welding
machines. First step in modelling the overall process model was to determine the
capability of the neural network to predict weld quality (weld diameter) using the process
parameters which are predicted sample resistance (predicted from dynamic resistance),
applied electrode force and effective weld current. Based on the performance of the
neural network, the same neural network model feedforward architecture was inversed to
be able to predict the effective weld current needed to achieve desired weld quality (weld
diameter) in any welding machine. Such that the output of the neural network model is
effective weld current and the inputs are predicted sample resistance, applied electrode
force and desired weld diameter. This inversed feedforward neural network model was
used for predictive estimation and control of the resistance spot welding process. So that
for any desired weld diameter it was possible to determine the required effective weld

current to achieve the weld quality.

Result of sensitivity analysis carried out to establish the relationship between the inputs to

the output parameters is also presented.

6.7.1 Neural Network Model for the Overall Welding Process

Four neural network types which are generalized feed forward, multilayer perceptron
(MLP), radial basis function (RBF) and recurrent neural network architectures as
previously used were trained and tested using input process parameters which are
predicted sample resistance, applied electrode force and effective weld current to output
weld diameter. The neural network architectures were validated using similar dataset not

used for the training or testing to confirm prediction accuracy of the network. The best

143



performing neural network architecture using least error and prediction accuracy criteria

was selected .

Presented in Table 6.10 is a summary of the performance of each of the neural network

types considered.

Table 6.10: Comparism of performance results of four neural network types.

Neural Training MSE | Testing MSE Linear %Error
Network Correlation Predicting
Type Coefficient (r) Production Data
Generalized 0.0129 0.127 0.92 11.5
Feed Forward
Multilayer 0.0067 0.050 0.972 7.05
Perceptron
Redial basis 0.0146 0.1412 0.91 12
Function
Recurrent 0.0154 0.1618 0.91 12
Network

From the performance result shown in Table 6.10, the multilayer perceptron (MLP)
outperformed the other four neural network types. It is therefore chosen as the neural
network that will be used for developing the predictive controller model for the welding
process. This multilayer perceptron neural network architecture consists of 3 inputs
which are predicted sample resistance, applied electrode force and effective weld current,
with output as weld diameter. There were 474 exemplars and 2 hidden layers. The first
hidden layer has 11 processing elements, TanhAxon transfer function with momentum
learning rule, the second hidden layer has 5 processing elements, TanhAxon transfer
function with momentum learning rule. The output layer uses BiasAxon transfer function

with conjugate gradient learning rule. The learning iteration was 3991 epochs, this was
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because no lower epoch could give a good performance. The figure of the generated

network architecture is shown in Figure 6.32.

(106)

Figure 6.32: Generated multilayer perceptron (MLP) network architecture design

Result of the network training performance and cross validation is shown in Figure 6.33.
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Figure 6.33: Training performance of the multilayer perceptron (MLP) network design.
The training epoch for best result was at 3991 epochs with a mean square error output of
0.0067 for the training and 0.008 for the cross validation as is shown in Figure 6.33.

Weight decay (downward slope) of the training and cross validation plot is substantial.

145



The network test performance result using data set not seen before by the network is

presented in Figure 6.34.
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Figure 6.34: Testing performance of the multilayer perceptron network

The result of the testing shown in Figure 6.34 gives a mean sum of squares of 0.05, mean
absolute error (MAE) 0f 0.18, normalised mean squared error (NMSE) of 0.06, and linear
correlation coefficient is 0.97. This performance is outstanding and consistent with the
training performance result. The graph in Figure 6.34 shows the estimated weld diameter
is closely tracking the actual weld diameter. The validated performance result of the

network using production dataset not known to the network is presented in Figures 6.35.
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Figure 6.35: Validation performance of the multilayer perceptron network

The result confirms the good performance result of the training and testing of the

network, with the predicted weld diameter seen to be tracking the actual weld diameter.

The prediction error of the estimated weld diameter to the actual weld diameter is

presented in Table 6.11.

Table 6.11: Predicted Weld Diameter to Actual Weld Diameter using multilayer

Perceptron network

Machine | Force | Current Diameter Diameter | Difference %
Type (kN) (kA) Resistance | Predicted Actual Difference
(mm) (mm)
Dalex-25 | 2.16 7.36 0.0716 5.656 5.8 -0.144 -2.483
C-Gun 2.2 7.57 0.0874 5.737 5.5 0.237 4.3089
Dalex-35 3 6.71 0.1813 3.9558 3.8 0.1558 4.1002
PMS 3 8.18 0.0967 5.8585 6 -0.141 -2.358
Dalex-25 2.6 8.3 0.0895 5.9558 6 -0.044 -0.737
PMS 2.6 6.74 0.1001 3.9277 3.9 0.0277 0.7105
Dalex-25 | 2.46 6.57 0.0796 4.1165 4 0.1165 2.9116
Dalex-25 | 2.46 6.91 0.0749 5.2619 5.4 -0.138 -2.557
C-Gun 3 6.39 0.108 3.6963 3.6 0.0963 2.6764
PMS 2.2 6.6 0.1797 3.9005 3.9 0.0005 0.0126
Dalex-25 3 8.12 0.1101 5.8079 5.45 0.3579 6.567
Dalex-25 | 2.16 6.89 0.0792 5.4285 5.6 -0.172 -3.063
C-Gun 2.6 6.79 0.1253 3.8974 4 -0.103 -2.564
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Dalex-25 | 2.46 7.85 0.063 5.8313 5.9 -0.069 -1.165
Dalex-35 2.6 6.29 0.1949 3.7818 3.7 0.0818 2.2111
C-Gun 2.6 7.89 0.1119 5.8775 5.6 0.2775 4.9548
Dalex-25 2.2 5.75 0.1129 3.6247 3.9 -0.275 -7.06
PMS 3 7.73 0.0955 5.3371 5.5 -0.163 -2.962
Dalex-25 2.6 7.04 0.1021 4.6689 4.5 0.1689 3.7525
Dalex- 25 3 7.7 0.0956 5.2567 55 -0.243 -4.423
Dalex-25 3 7.02 0.1073 3.928 4 -0.072 -1.8
C-Gun 3 7.72 0.0832 5.4812 5.8 -0.319 -5.497
Dalex-35 3 6.95 0.1076 3.8958 3.9 -0.004 -0.108
PMS 2.2 7.41 0.1098 5.6851 5.6 0.0851 1.519
Dalex-25 | 1.76 6.17 0.0857 4.9997 5.2 -0.2 -3.852
PMS 2.6 5.92 0.1077 3.5941 3.5 0.0941 2.6889
Dalex-25 2.6 7.15 0.1636 4.254 4.5 -0.246 -5.466
Dalex-25 | 2.16 6.78 0.0811 5.3311 5.5 -0.169 -3.071
C-Gun 2.6 6.38 0.1255 3.6919 3.85 -0.158 -4.107
PMS 2.6 6.29 0.1948 3.7816 3.8 -0.018 -0.484
Dalex-25 2.2 7.77 0.1676 5.9859 5.8 0.1859 3.2054
Dalex-25 | 2.16 5.77 0.0908 3.6378 3.6 0.0378 1.0499
C-Gun 3 7.75 0.079 5.5707 5.8 -0.229 -3.953
Dalex-25 2.2 7.11 0.1139 5.494 5.4 0.094 1.74
Dalex-35 2.2 5.98 0.1238 3.6449 3.6 0.0449 1.2471
Dalex-25 | 2.46 7.24 0.0741 5.6291 5.5 0.1291 2.3467
Dalex-25 3 9.29 0.0865 6.1245 6.3 -0.175 -2.785
PMS 2.6 7.47 0.0983 5.6617 5.5 0.1617 2.9405
Dalex-25 3 6.39 0.108 3.6963 3.6 0.0963 2.6764
Dalex-25 | 2.2 7.17 0.0938 5.5707 5.9 -0.329 -5.582

It is seen from the table that the prediction error is between 0.01% to 7.05%. That is an

accuracy of about 99.99% to 93% in the prediction.

6.7.2 Relationship Analysis of the Process Parameters

Sensitivity analysis of the input parameters which are effective current, estimated sample
resistance determined from the dynamic resistance and applied electrode force are tested
to determine their contribution and relationship to the achieved weld diameter (quality
measure). This is necessary to confirm the importance of the inputs to the output
(solution). The neural network was first trained using the selected input parameters,
followed by computing the relative importance of each input to the overall response.
Presented in Figure 6.36 is a graph showing the sensitivity of the selected input

parameters to the output. The result is however based on data correlation, which is a
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linear function and does not necessarily show the true physical importance of the inputs

to the outputs ©*.

Sensitivity about the Mean

OForce (12.9%)
B Current (9.2%)
O Resistance (77.9%)

Figure 6.36: Sensitivity of the selected inputs parameters to the output.

The result shows that sample resistance significantly influenced the output (weld
diameter). The input parameters used to determine the output in this neural network
model are further analyzed to show the relationship between each of the input to the
output (weld diameter).

6.7.2.1 Effect of Dynamic Resistance on Weld Quality

Presented in Figure 6.37 is the relationship between sample resistance and weld diameter.
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Figure 6.37: Sensitivity Result of the Varied Input Resistance to Weld Diameter

Figure 6.37 shows that, in comparing the two parameters, sample resistance contributed
the most to the achieved weld diameter. This extreme influence of the resistance to the
achieved weld diameter means that a small change in dynamic resistance during the spot
welding process affects the weld diameter achieved. An increase in dynamic resistance

leads to a decrease in achieved weld diameter.
To further analyse the effect of resistance on the welding process quality. Calculated

sample resistance for applied electrode forces 2.2kN, 2.6kN and 3.0kN carried out on all

the four welding machines over the six welding time steps are presented.
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Figure 6.38: Calculated Sample Resistance welded with C-Gun Machine

The result of Figures 6.38 shows that resistance generated in using lower applied
electrode force of 2.2kN was higher compared to the other two applied electrode forces
2.6kN and 3.0kN. This is expected because at lower applied electrode force less contact
exists between the plate surfaces to be welded such that the resistance offered is higher
compared to the surface under higher applied electrode force “* % like the 2.6 and 3.0kN
applied electrode forces. This trend is similar to the sample resistance generated in the

DZ welding machine in Figure 6.39.
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Figure 6.39: Calculated Sample Resistance welded with DZ Machine

With high resistance is a higher chance for generation of heat and fast nugget growth
which can lead to expulsion of the nugget formed. It is therefore not necessarily
advantageous to weld at a low applied electrode force. Equally at very high applied
electrode force, less resistance is offered by contact surface between the plates with lower
heat generation and slower nugget growth. This is also not an advantage as achieving
maximum nugget size takes longer and the electrodes in contacts will have enough time
to absorb some of the heat generated. It is important to use an optimal applied electrode
force for best results. As shown in Figure 6.39 the resistance achieved in using applied
electrode force of 2.6kN and 3.0kN for the C-Gun welding machine are very close. This
is suggestive of an optimal point between 2.6kN and 3.0kN in welding with C-Gun

machine.

152



Applied Electrode Force to Resistance
0.14
Resistance
0.12
mQ g1
0.06
0.04
0.02
—2.2kN 0
——2.6kN 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46
3.0kN Exemplar

Figure 6.40: Calculated Sample Resistance welded with Dalex Machine

The calculated sample resistance trend in Dalex machine Figure 6.40 and Figure 6.41 are
slightly different from the previous figures. Figure 6.40, welding using Dalex machine,
there was close overlap between welding at an applied electrode force of 2.2kN and

2.6kN.
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Figure 6.41: Calculated Sample Resistance welded with PMS Machine

In Figure 6.41, welding with PMS machine, the gap between all three applied electrode
forces of 2.2kN, 2.6kN and 3.0kN are very close and overlapping at some points. In all
the four welding machines, the calculated sample resistance decreases at the later welding

time steps.

To investigate the effect of welding machines on the sample resistance (calculated), the
calculated sample resistance at specific applied electrode forces of 2.2kN, 2.6kN and
3.0kN are compared in all the four welding machines used. Presented in Figures 6.42,
6.43 and 6.44 respectively are the sample resistance generated at specific applied

electrode forces in all four welding machines.
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Figure 6.42: Calculated Sample Resistance in all four Machines at 2.2kN Force

Welding Machines at 2.6kN Force
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Figure 6.43: Calculated Sample Resistance in all four Machines at 2.6kN Force
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Figure 6.44: Calculated Sample Resistance in all four Machines at 3.0kN Force

The Figures show consistent behaviour of all the four machines under the applied
electrode forces of 2.2kN, 2.6kN and 3.0kN. Sample resistance generated with the use of
the PMS welding machines showed higher sample resistance in all the three applied force
cases considered. The sample resistance in using PMS welding machine is substantial as
can be seen by the large gap between the sample resistance lines from this machine
compared to the other three welding machines. DZ machine, C-Gun and Dalex closely

followed one another.

The plots of sample resistance in Figures 6.42 to 6.44 shows that for same applied
electrode force, using same type of sample material and thickness it was not possible to
generate the same value of dynamic resistance in all the welding machines. This means
that each welding machine maintained unique but consistent dynamic resistance

behaviour under particular applied electrode force.

With this unique behaviour it is possible to say that the resistance generated in each

welding machine is able to provide some information about the welding machine from
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which it was generated. This is very important as it shows that the resistance (electrical
characteristic parameter) has some machine characteristics information, justifying the fact
that in using sample resistance to model the welding process, reasonable information on
the welding machine characteristics are provided as well in the model. Reasonable
amount of information in the dynamic resistance data therefore exists to be able to give a
give a good indication about mechanical characteristics of the welding machine, without
having to generate specific mechanical characteristics data. The calculated sample
resistance from the nonlinear halfwave dynamic resistance is considered a strong signal
and will be used as one of the inputs in the neural network architecture for modelling and

predicting weld diameter (weld quality).

6.5.2.2 Effect of Applied Electrode Force on Weld Quality

Applied electrode force affects weld diameter in some ways *. Presented in Figure 6.45

is the effect of varied input force on weld diameter.
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Figure 6.45: Result of the Varied Input Force to Weld Diameter
The Figure shows, that the varied input force to the weld diameter had almost no
significant effect on the weld diameter at a low applied electrode force. By increasing the

applied electrode force to a certain point at about 2.3 kN -2.45 kN the weld starts to
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respond to the change. Increasing the applied electrode force to above a certain value
leads to decrease in the achieved weld diameter size. This was explained by De et al ©¥
in welding two plate surfaces at high applied electrode force, a large area of interface is
established, which reduces the initial contact resistance, thereby reducing the heating and

4

nugget growth . This means that above an optimum point of applied electrode

application, the effect becomes detrimental to the weld diameter produced.

6.5.2.3 Effect of Weld Current on Weld Diameter

Effective weld current is a process parameter that affects weld diameter. Presented in

Figure 6.46 is a graph showing the effect of varied weld current on weld diameter.
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Figure 6.46: Result of the Varied Input Current to Weld Diameter
Figure 6.46 shows some direct relationship between weld diameter and weld current as is
expected. Increasing the effective weld current leads to an increase in the size of weld

diameter achieved. This creates opportunity to maximise the size of weld diameter that
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can possibly be achieved. Increase in the welding current brings about increase in heat
supply to plate sample welded, leading to a corresponding nugget growth. The graph
shows that in the welding process increasing the weld current initially had a mild effect
on the weld diameter with a sudden upward change. This point of change corresponds to

the point of high resistance drop away from the S peak point ' (Figure 6.1). To

continue increasing the effective weld current above a particular weld diameter will lead
to expulsion. Optimum welding current that gives good weld quality has to be determined

and selected in the resistance welding process.

6.8 Concluding Remarks

An empirical model that best fits the dynamic halfwave resistance curve was developed.
The best fit parameters M and K for the dynamic resistance cure fit were estimated and
goodness of fit was carried out to determine the level of error, using the least sum of
square and root mean square error criteria. This agrees with Ratowinski ® findings that
the least sum of squares using an iterative method beginning with a set of initial
parameter estimates is appropriate for non linear regression expression models. Using the

model expression the parameters M and K was determined through an iterative process.

In all cases the curve fitting of each of the dynamic resistance curves for each welded
sample and estimation of the parameters using the model yielded good results. By
plotting a graph using these parameters M, K and Ro for given weld diameter and applied
electrode force, it was possible to estimate the resistance for each sample welded. Plotting
this graph and using it to predict sample resistance for any desired weld diameter in any
welding machine did not yield accurate result. Neural network technique was employed
in the prediction to improve the prediction accuracy. Different neural network types and
architectures were investigated. The multilayer perceptron neural network using the
parameters M, K and Ro as inputs yielded good result such that it was possible to
accurately predict resistance for any of the welded sample in an unknown welding
machine. Sensitivity analysis confirmed the contributory effect of these parameters on the

output.
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Relationship analysis was carried out on the identified input process parameters that are
strong signals that affect weld quality. These input parameters are sample resistance,
effective weld current (RMS) and applied electrode force. Weld diameter was taken as
the output. Sample resistance showed the strongest influence on weld diameter, followed
by effective current. Applied electrode force did not have much influence on the weld

quality and above a certain point in the application of the force the effect was detrimental.

Each of the resistance spot welding machine used gave unique dynamic resistance curve.
This shows that the electrical characteristics parameter particularly dynamic resistance is
able to provide some information on the mechanical behaviour of the machine. This
behaviour was confirmed using sensitivity analysis carried out to determine the influence
of these three input parameters (applied electrode force, effective weld current and

predicted sample resistance) on the output (weld diameter).

Four neural network types which were generalised feed forward neural network type,
multilayer perceptron neural network, radial basis function neural network and recurrent
neural network were trained, tested, validated and compared, in other to determine the
most appropriate for modelling the welding process. Of all four neural networks tested,
the multilayer perceptron (MLP) neural network which out performed the other three was
selected and used to model the overall process for predicting weld diameter. Using this
network architecture, prediction accuracy of about 93% to 99.99% was obtained. The

next Chapter will present implementation of the predictive controller.
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CHAPTER 7

DESIGN AND IMPLEMENTATION OF THE PREDICTIVE
CONTROLLER

7.1 Introduction

In this chapter, the selected neural network which showed best performance in training,
testing and accurately predicting outcome was used for designing the predictive
controller. The best performing neural network of all the neural network types tested as
discussed in Chapter 6 was the feedforward multilayer perceptron (MLP) neural network.
The inputs were predicted sample resistance, effective weld current and applied electrode
force and output was weld diameter. However, because effective current is what must be
controlled in the welding process, the neural network architecture was inversed and used
in the controller model. This implies that for any desired weld diameter (based on choice
of good weld) '”, given applied electrode force, and estimated (predicted) sample
resistance, the effective weld current (RMS) to achieve the desired weld diameter can be
predicted using this controller. The controller can be applied online such that the neural
network training is done in real time and predictive control and adjustment of effective

weld current also done in real time.

7.2 Design and Development of MLP Neural Network Model

The selected MLP network architecture was used for the design of the predictive
controller. The feedforward neural network architecture consists of 3 input processing
elements, 1 output processing element, 474 exemplars with 2 hidden layers. The
architecture was designed such that desired weld diameter which is usually an output was
made an input and effective current (originally an input) was made as output. Typically in

the welding process weld diameter is the output from the combination of the process
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parameters used. Effective current is a parameter that can be controlled to give a desired
weld quality (weld diameter), hence the need to know what effective current that will be
required for a desired weld diameter. The first hidden layer of the network architecture
has 11 processing elements and uses TanhAxon transfer function with momentum
learning rule. The second hidden layer has 5 processing elements, TanhAxon transfer
function with momentum learning rule. The output layer uses BiasAxon transfer function

with conjugate gradient learning rule. The learning iteration was 3000 epochs.

The multilayer perceptron network architecture is shown in Figure 7.1

(106)

Figure 7.1: Generated Inverse MLP network architecture

Presented in Figure 7.2 are the performance results of the network training and cross

validation.
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Figure 7.2: Testing performance of the multilayer perceptron (MLP) network design.
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Figure 7.3: Testing performance of the inverse multilayer perceptron network
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The mean square error output of 0.0063 at 3000 epochs was obtained for the training and
0.007 at same epochs for the cross validation as is shown in Figure 7.3. Weight decay
(downward slope) of the training and cross validation plot is good. To determine overall
performance of the network, the network was tested with data set not used for training the

network. Presented in Figure 7.3 is the performance result of the network test.

The result of the testing shown in Figure 7.3 gives a mean sum of squares of 0.08, mean
absolute error (MAE) 0f 0.23, normalised mean squared error (NMSE) of 0.11 and linear
correlation coefficient is 0.94. This performance is quite good and consistent with the

training performance result.

Predicted Effective Current to Actual

10

9,

8,

74

6 - .

Predicted Current

kA 5

4 | Actual Current

3,

2,

1,

1 3 5 7 9 11 1315 17 19 21 23 25 27 29 31 33 35 37 39
Exemplar

Figure 7.4: Validation performance of the multilayer perceptron network

This is collaborated by the result of the graph in Figure 7.4 showing the predicted
effective weld current output closely following the actual effective weld current. The
validated performance result of the network using production dataset not known to the
network is presented in Figure 7.4. The result confirms the good performance result of
the training and testing, with the predicted effective weld current seen to be tracking the
actual effective weld current. The prediction error of the estimated effective weld current

to the actual effective weld current is presented in Table 7.1.
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Table 7.1: Predicted Effective Weld Current to Actual Effective Weld Current using

Multilayer Perceptron (MPL) network

Machine | Force | Resistance Diameter Predicted Actual Difference %
Type (KN) (mQ) (mm) Current Current Difference
(kA) (kA)
Dalex-25 2.16 0.072 5.8 7.329 7.36 -0.031 -0.421
C-Gun 2.2 0.087 55 7.140 7.57 -0.430 -5.685
Dalex-35 3 0.181 3.8 6.863 6.71 0.153 2.287
PMS 3 0.097 6 8.520 8.18 0.340 4,159
Dalex-25 2.6 0.089 6 7.981 8.3 -0.319 -3.838
PMS 2.6 0.100 3.9 6.499 6.74 -0.241 -3.574
Dalex-25 2.46 0.080 4 6.485 6.57 -0.085 -1.291
Dalex-25 2.46 0.075 5.4 7.318 6.91 0.408 5.909
C-Gun 3 0.108 3.6 6.600 6.39 0.210 3.281
PMS 2.2 0.180 3.9 6.522 6.6 -0.078 -1.178
Dalex-25 3 0.110 5.45 8.036 8.12 -0.084 -1.030
Dalex-25 2.16 0.079 5.6 7.173 6.89 0.283 4.108
C-Gun 2.6 0.125 4 6.673 6.79 -0.117 -1.729
Dalex-25 2.46 0.063 5.9 7.655 7.85 -0.195 -2.486
Dalex-35 2.6 0.195 3.7 6.567 6.29 0.277 4411
C-Gun 2.6 0.112 5.6 7.771 7.89 -0.119 -1.510
Dalex-25 2.2 0.113 3.9 6.076 5.75 0.326 5.678
PMS 3 0.096 55 7.955 7.73 0.225 2.905
Dalex-25 2.6 0.102 45 7.009 7.04 -0.031 -0.447
Dalex- 25 3 0.096 55 7.955 7.7 0.255 3.312
Dalex-25 3 0.107 4 7.007 7.02 -0.013 -0.179
C-Gun 3 0.083 5.8 8.121 7.72 0.401 5.190
Dalex-35 3 0.108 3.9 6.913 6.95 -0.037 -0.533
PMS 2.2 0.110 5.6 7.296 7.41 -0.114 -1.538
Dalex-25 1.76 0.086 5.2 6.536 6.17 0.366 5.930
PMS 2.6 0.108 3.5 6.115 5.92 0.195 3.301
Dalex-25 2.6 0.164 4.5 7.176 7.15 0.026 0.361
Dalex-25 2.16 0.081 5.5 7.106 6.78 0.326 4814
C-Gun 2.6 0.125 3.85 6.524 6.38 0.144 2.257
PMS 2.6 0.195 3.8 6.631 6.29 0.341 5.420
Dalex-25 2.2 0.168 5.8 7.549 7.77 -0.221 -2.843
Dalex-25 2.16 0.091 3.6 5.783 5.77 0.013 0.217
C-Gun 3 0.079 5.8 8.082 7.75 0.332 4,282
Dalex-25 2.2 0.114 5.4 7.175 7.11 0.065 0.919
Dalex-35 2.2 0.124 3.6 5.906 5.98 -0.074 -1.234
Dalex-25 2.46 0.074 5.5 7.374 7.24 0.134 1.846
Dalex-25 3 0.087 6.3 8.810 9.29 -0.480 -5.162
PMS 2.6 0.098 55 7.586 7.47 0.116 1.559
Dalex-25 2.6 0.122 4.9 7.350 7.4 -0.050 -0.675
Dalex- 25 2.2 0.094 5.9 7.463 7.17 0.293 4.085
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The table shows that the prediction error is between 0.17% and 5.9%. That is an accuracy
of about 99.83% to 94% for the prediction. This inverse multilayer neural network

architecture was used as the process model for the controller design.

7.3 Design and Implementation of the Predictive Process Controller

The multilayer perceptron neural network architecture model developed previously was
used for the design and implementation of the overall predictive process controller.
Presented in Figure 7.5, is the design of the predictive controller using the inverse of the
feedforward neural network model for predicting the effective weld current for desired
weld diameter. The design was made by integrating this inversed MLP model and an
earlier neural network model discussed in Chapter 6. The initial model was used for
predicting sample resistance given the input parameters M, K and Ro. The predicted
sample resistance was then used as an input with weld diameter and applied electrode

force to predict the effective weld current in the controller model.

Controller
Diameter Desired | 7 ' Weld
—> . I

Force 3| MLP Neural | Diameter ¥ jpyerse MLP + Current
M — 3| Network > Neural !
K - » Model Sample Network oo
Ro - > Resistance Model

Electrode

Force

Figure 7.5: Neural Network Controller Design for Predicting Effective Current
To make this controller usable, a dialogue box was designed such that it was possible to

input values into the predictive controller and by the push of a command button obtain
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the output. This controller form was embedded into an excel application with input values
from an original neurosolutions '°” breadboard that have been loaded into an 'Input'
worksheet, generated from the trained and tested neural network models. The network
output is generated from a digital link library (DLL). On pressing the command button,
the code used for running the controller becomes active such that the embedded controller
form automatically calls up (predict) output(s) from the digital link library (DLL). The

code for running the controller is presented in Appendix D.

Presented in Figure 7.6 is the controller designed form for capturing the inputs; force,

weld diameter, and parameters K, M and Ro, for predicting sample resistance. (m<2)

Force_ EEE
Diameter (56 (mm)
. [oam7
" EE
Ro [ o5t (mQ)

output 5.521339E-0 26 19) CommandButton

Figure 7.6: Controller Model form for predicting Sample resistance

167



Fress the buttons ta run the zample functions

Train Metwork, | Mot tested.

v Feset Network Before Training

Get Metwork Dutput ‘ Mot tested.

Claze ‘

Figure 7.7: Controller form for generating network output.

In online situation new input can trained such that most recent data are used. Figure 7.7
presents this option of retesting the inputs of the network or just calling up an already

trained neural network as shown.

To predict effective weld current the generated (predicted) sample resistance from this
controller form was combined with applied electrode force and desired weld diameter as

(107)

inputs into another controller form also embedded in an excelXP application for

predicting effective current as is shown in Figure 7.8.

Force 3.0 (kN)

Resistance 0.10143 (mQ)
Diameter 37 (mm)

éCDmmandButton Current 6.703784 KA

Figures 7.8: Effective Current Predicted for C-Gun Machine 3.0kN Applied Force
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The design of the embedded controller used for predicting the effective current (RMS) for

the welding process is presented in Figure 7.9.

Effective
Current

U

Embedded Predicted
Processor and | Resistance
display

Force, Desired
Weld Diameter

Update/Train Training
Embedded Data
Processor

PC Based Neural
Network Software
e

i

O OO O

| |E

Z Y
|

Figure 7.9: Embedded Controller for Predicting Effective Weld Current [Adapted ©¥]

The code used for running the controller form is attached in Appendix E. The inputs
values which are used for the training, validation and testing were used to create an
original neurosolutions breadboard loaded into the 'Input' worksheet and used to generate
outputs from the neural network digital link library (DLL). Like in the first controller the
'Output' worksheet receives the output values generated by the DLL.

By entering the inputs which are applied electrode force, desired weld diameter and

sample resistance predicted and pressing the command button it automatically outputs
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effective weld current required to achieve the desired weld diameter, called up from the

digital link library stored in a breadboard.

The controller forms are tested with real production data to further confirm their

performance in terms of prediction accuracy. Data sets which are not known to the neural

networks were randomly selected from all the machines and effective weld current for the

desired weld diameter were predicted using the neural network predictive controller form.

The predicted result was compared to the actual production data obtained for the desired

weld diameter. The prediction accuracy in predicting the effective current was

determined for all the welding machines and applied electrode forces used. The results of

the prediction grouped by the machine types, for different applied electrode forces are

presented Table 7.2.

Table 7.2: Prediction of Effective Weld Current for Different Machines and Applied
Electrode Force

Applied Electrode Welding Predicted Weld | Actual Weld | Prediction
Force (kN) Machine Type Current (kA) Current Accuracy
(kA)
3.0 C-Gun 6.704 6.48 96.55%
2.6 C-Gun 7.985 8.29 95.29%
2.2 C-Gun 7.122 7.10 99.66%
1.76 Dalex 5.383 5.18 96.86%
2.46 Dalex 6.388 6.58 97.04%
3.0 Dalex 8.359 8.49 97.97%
2.2 PMS 6.475 6.35 98.08%
2.6 PMS 7.986 7.68 95.28%
3.0 PMS 8.963 9.36 93.88%
3.0 DZzZ 7.326 7.61 95.61%
2.6 Dz 8.089 8.32 96.43%
3.0 DZ 6.074 6.49 93.58%

The forms (dialogue box) of the neural networks on which each of the result was

generated are presented in Appendix F.
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7.4  Concluding Remarks

Predictive controller design was developed for the sample resistance neural network
model needed for predicting the sample resistance. This sample resistance was used as an
input in the overall process predictive controller. The multilayer neural network type was
used, as it was the best performer of the four neural networks tested. The network
architecture consists of five inputs and one output. The inputs were applied electrode
force, weld diameter and the parameters M, K and Ro. M, K and Ro were determined
using the model expression that curve fitted the non linear dynamic resistance curve. The
controller was embedded in an ExcelXP and calls up an output when an input is entered

and command button pressed (activated).

Implementing the neural network model for predicting effective weld current output was
similar to the sample resistance prediction controller. A multilayer perceptron type neural
network, which was the best performing neural network, was selected and embedded into
an excelXP application. The initial network architecture consists of three inputs and one
output. The inputs were applied electrode force, effective weld current and predicted
sample resistance. The output was the weld diameter. This network architecture was
inverse such that applied electrode force, predicted sample resistance and weld diameter
were used as inputs and effective weld current as output such that for any desired weld
diameter, the effective weld current to achieve it can be determined. This is because the

weld current is the parameter that can be controlled during the welding process.

This inverse neural network was used for implementing the predictive controller, such
that by entering the inputs which are applied electrode force, desired weld diameter and
sample resistance predicted and pressing the command button it automatically outputs
effective current required to achieve the desired weld diameter, called up from the digital
link library stored in a breadboard. Accuracy of the prediction was checked by predicting
weld current output for production data set not known to the neural network. The
prediction accuracy ranged between about 93.5% and 99.6%. The next Chapter presents

full conclusion of the findings in this research.
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CHAPTER 8

CONCLUSIONS

8.1 Introduction

This final chapter highlights the major conclusions made in this study and the future work
that could be attempted as a direct result of this study. The work is seen as having a
positive influence on the future of resistance spot welding and application of neural
network in developing predictive controller for desired spot weld quality reproducibility.
Work directly pertaining to this study includes four articles that have been developed and

are being reviewed for publication. The abstracts are presented in Appendix G, H, I and J.

8.2  Conclusion on Findings

The conclusions arising from this study are as follows:

1. Electrical parameter data set generated from the resistance spot welding process was
sufficient data in combination with applied electrode force for modelling the welding
process and predicting weld quality. The model developed was used in a predictive
process controller to determine required effective current for desired weld diameter (weld
quality) in any of the resistance spot welding machines. The input parameters used were
predicted sample resistance from the half wave peak dynamic resistance generated,
applied electrode force and the desired weld diameter, outputting required effective

current (RMS).

The relationship analysis shows that the sample resistance generated in each welding
machine used maintained consistent behaviour for all the applied electrode force ranges.
This gives unique indication of the mechanical characteristic of the welding machine. It is
concluded that the electrical parameter data have information on mechanical

characteristic enough to model the resistance spot welding process and to good accuracy

173



predict weld quality (weld diameter). Using the electrical parameter data in the process
model and in the predictive controller precludes the need to generate additional costly
mechanical parameter data from the resistance spot welding machines for the process
modelling. This verifies the argument in literature as to which of electrical and
mechanical parameter data are most appropriate for modelling the resistance spot welding

process.

2. The nonlinear dynamic resistance plot was curve fitted using an empirical three

parameter equation expression given as:

R KxM xNc+Ro
K + (M x Nc'?)

+Rox N¢c*? (6.14)
R is the sample resistance for each sample welded, Ro is the initial dynamic resistance

value at step one welding halfwave cycle. N, is the number of halfwave cycles, K and

M are unknown parameters that are determined through an iterative process of the curve

fitting. It can also be calculated at the f peak point of dR/dNc =0and by taking the
second order partial derivative of the equation. The sample resistance (R) can be

estimated using this model equation. Estimating sample resistance using plots of the

parametersM , K and R, for a given weld diameter and applied electrode force read off

from developed graphs made of these parameters for a specific machine yielded an
accuracy of about 85% to 99%. However, when machine identifiers were excluded so that
sample resistance can be predicted for any unknown welding machine, maximum

prediction error of about 149% was observed.

3. Neural network capability was employed to improve the prediction accuracy of the
empirical model for estimating sample resistance. Four neural network types which are
generalized feed forward neural network, multilayer perceptron (MLP), recurrent network
and radial basis function (RBF) neural network were trained and tested to find the one

with least error and best prediction capability to use for the estimation.

174



The networks architecture which consists of two inputs and one output which were weld
diameter and applied electrode force as inputs and sample resistance as the output were
trained tested and validated. The best performing neural network type with this
architecture was the multilayer perceptron (MLP) with maximum estimation error of

about 65%, an accuracy of about 35%.

To overcome this unacceptable prediction level, multilayer perceptron neural network

with inputs made up of weld diameter, applied electrode force, M, K and R, parameters

from the empirical model expression was used to train and test the network. Multilayer
perceptron neural network architecture prediction performance was excellent. It yielded a
mean square error in training and cross validation of 0.00037 and 0.000390 with linear
correlation coefficient in testing of 0.999 and maximum estimation error of about 0.1% to
3%. This is an accuracy of about 99.9% to 97%. This model was selected for the design
and implementation of the controller for predicting overall sample resistance. Sensitivity
analysis carried to confirm the influence of the parameters to the output (sample
resistance) shows that the parameter M from the model expression is the most

contributor, followed by K and R,. Applied electrode and weld diameter had little effect.

Development of the models and accurately predicting sample resistance in the resistance

spot welding process is a unique contribution of this work to the body of knowledge.

4. Applied electrode force, dynamic resistance and effective weld current are presented as
useful and strong input signals that can be used to model the resistance spot welding
process as they all have significant relationship with weld diameter (weld quality). The
effect of applied electrode is not so significant up to a point. Above a certain point the
effect is significant and detrimental to the achieved weld diameter. Optimum applied
electrode force value does exist for best yield, for this range of forces considered above
about 2.45 kN the effect is seen as detrimental. There is direct relationship between
effective current and achieved weld diameter. Increasing effective current achieves bigger
size weld diameter all other conditions kept constant. Sample resistance has very
significant effect on weld diameter. There is inverse relationship between the weld
diameter and resistance. This work further verifies this understanding in the literature, on

the relationship between these spot welding parameters.
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5. Four neural network types were trained, tested and validated to determine the best
performing neural network to use for the resistance spot welding process model. The
Multi layer perceptron (MLP) neural network type used outperformed the others. The
Multi layer perceptron (MLP) neural network architecture used as the process model
consists of three inputs which are applied electrode force, dynamic resistance and
effective weld current with weld diameter as the output. The performance result gave a
mean square error in training and cross validation of 0.0067 and 0.05 with linear
correlation coefficient in testing of 0.972 and maximum estimation error of about 7%.
The predicted output from this model closely followed the actual observation. However
because the parameter that can be easily controlled which affects weld diameter is
effective current, the neural network architecture was inverse such that applied electrode
force, weld diameter and sample resistance were used as inputs and effective current as
output. So for any desired weld diameter, using a particular applied electrode force and

sample resistance, the required effective current can be predicted.

6. The two multilayer perceptron neural network architectures, a forward form and an
inverse form developed was employed for the design of the controllers. One controller
was for predicting sample resistance using the parameters from the empirical model and
another for predicting effective weld current required for any desired weld diameter. The
controllers were implemented by embedding both controller forms in an excelXP
application. When the inputs are entered and the command button on the controller form

applied, it generates outputs from the neural network digital link library (DLL).

The controller designed using the inverse neural network model was tested with data
which was not used during the training process and for data it had not seen before. The
result yielded accurate, reliable, and repeatable prediction. The controller was found to be
predicting well to an accuracy of about 93.5 to 99.9%. This controller is appropriate in
this application problem. This is a unique contribution that has not been done before.

This work presents the possibility of employing the developed empirical model used for
predicting sample resistance and the inverse multilayer perceptron neural network

predictive controller model for predicting effective weld current (RMS) for any desired
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weld diameter in any new resistance spot welding machine. Boundary condition will be
the use of the same material (galvanised low carbon steel) with thickness of 0.88 mm.
Other unique identifiers like mechanical characteristic need not be known to be able to
predict weld quality using this controller for any new resistance spot welding machine,

for this material type and thickness.

To obtain an accurate prediction using this controller it should be ensured that use of
worn out electrodes are avoided, as data from completely worn out electrodes were not
used in building and designing the process model and predictive controller. Copper
electrode of material type Al6 with electrode wear class V1 (transition state 1)
corresponding to 900 to 1700 spot welds made with the electrode is the range used in this
research. The welding cycle time used in the design of this model is 20 halfwave cycles.

The controller can be used online or off-line.

8.3 Future Work

During the investigation undertaken in this study some other alternatives and ideas have

emerged but unfortunately not all these could be investigated in this study

These alternative suggestions are:

1. The need to investigate the effect of other types of materials and thickness on the
resistance spot welding process and to develop model(s) for predicting weld quality for
such conditions. This will help confirm the effect of material types and changes in
material thickness on weld quality and will give flexibility in the selection of materials

types and thickness for use in the resistance spot welding.
2. There is the need to investigate and model the relationship between the failure modes

of the welded samples to shear stress and the torque angle at the point of failure. This is

because resistance spot welds under shear stress fails at different angles. A model should
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be used to establish these relationships and to predict the shear stress and torque angle at

which a spot weld can fail.
3. The developed predictive controller design from this work should be implemented on

actual welding machine in other to evaluate and confirm its design performance in real

welding condition.
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APPENDIX A

DYNAMIC VOLTAGE AND CURRENT DATASET

Table Al: Step-1 (HW 1-20): Halfwave Voltage Values for C-Gun Machine at Applied

Force of 2.2kN
Voltage
values
step-1 HW 1 (V) HW 2 (V) HW 3 (V) HW 4 (V) HW 5 (V) HW 6 (V)
Specimen 1 1.008455 | -1.0869723 | 1.03544545 -1.239099 1.18021 -1.39123
Specimen 2 | 1.0403527 | -1.0845186 | 1.02808439 -1.236645 1.17776 -1.39368
Specimen 3 | 1.05507469 | -1.1066015 | 1.03299177 -1.24155 1.18267 -1.40104
Specimen 4 | 1.09678697 | -1.1458602 | 1.06979668 -1.29799 1.22192 -1.43785
Specimen 5 1.001094 | -1.1115089 1.04526 -1.2587286 1.19493 -1.4084
Specimen 6 1.04771 -1.1016943 1.0379 -1.2513676 1.19003 -1.41086
Specimen 7 1.0747 -1.121323 1.04526 -1.2660897 1.2072 -1.43539
Specimen 8 | 1.06488931 | 1.12132358 | 1.05507469 -1.26854 1.20966 -1.42803
Average: | 1.04863283 | -1.1099753 | 1.04372662 | -1.2575012 1.1955475 -1.41331
Standard
Deviation 0.0301 0.0187 0.0126 0.0190 0.0149 0.0172
step-1
(Continue) HW 7 (V) HW 8 (V) HW 9 (V) HW 10 (V) HW 11 (V) | HW 12 (V)
Specimen 1 1.26364 -1.44766 1.31271 -1.4722 1.32498 -1.46974
Specimen 2 1.271 -1.46238 1.32988 -1.49919 1.35197 -1.50409
Specimen 3 1.28817 -1.47465 1.3397 -1.50655 1.35688 -1.50655
Specimen 4 1.31271 -1.49919 1.35197 -1.51391 1.35688 -1.50164
Specimen 5 1.29553 -1.47465 1.33234 -1.48447 1.33725 -1.4771
Specimen 6 1.28817 -1.48201 1.34951 -1.52372 1.3716 -1.52618
Specimen 7 1.31026 -1.50655 1.36669 -1.5409 1.38877 -1.54581
Specimen 8 1.3078 -1.50164 1.35933 -1.53354 1.37896 -1.53599
Average: 1.29216 -1.4810912 | 1.34276625 -1.50931 1.35841125 | -1.5083875
Standard
Deviation 0.0170 0.0192 0.0164 0.0221 0.0198 0.0250
step-1
(Continue) | HW 13 (V) | HW 14 (V) | HW 15 (V) HW 16 (V) HW 17 (V) | HW 18 (V)
Specimen 1 1.32498 -1.45993 1.32498 -1.44521 1.32007 -1.43294
Specimen 2 1.35688 -1.48937 1.34951 -1.46974 1.34215 -1.45748
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Specimen 3 1.35688 -1.49183 1.34951 -1.4722 1.3397 -1.45502
Specimen 4 1.34951 -1.48201 1.3397 -1.45993 1.32498 -1.4403
Specimen 5 1.32988 -1.45748 1.32007 -1.4403 1.31026 -1.42312
Specimen 6 1.37405 -1.51391 1.36914 -1.49673 1.35688 -1.47465
Specimen 7 1.39123 -1.53354 1.38632 -1.51636 1.38141 -1.50409
Specimen 8 1.37896 -1.52372 1.3765 -1.509 1.36914 -1.49673
Average: | 1.35779625 | -1.4939737 | 1.35196625 | -1.47618375 | 1.34307375 | -1.4605412
Standard
Deviation 0.0217 0.0262 0.0223 0.0266 0.0231 0.0274
step-1
(Continue) | HW 19 (V) | HW 20 (V)
Specimen 1 1.31516 -1.42067
Specimen 2 1.33234 -1.44275
Specimen 3 1.32988 -1.4403
Specimen 4 1.31516 -1.42558
Specimen 5 1.30044 -1.41086
Specimen 6 1.34951 -1.46238
Specimen 7 1.37405 -1.49183
Specimen 8 1.36424 -1.48201
Average: 1.3350975 | -1.4470475
Standard
Deviation 0.0240 0.0274

Table A2: Step-2 (HW 1-20): Halfwave Voltage Values for C-Gun Machine at Applied

Force of 2.2kN

Voltage

values

step-2 HW 1 (V) HW 2 (V) HW 3 (V) HW 4 (V) HW 5 (V) HW 6 (V)
Specimen 1 1.09678 -1.21702 1.23665 -1.50409 1.44275 -1.65131
Specimen 2 1.0894259 -1.19248 1.14095 -1.38141 1.32007 -1.53599
Specimen 3 1.109055 -1.19248 1.15567 -1.40349 1.33725 -1.55562
Specimen 4 1.1262309 -1.194933 1.15322 -1.39859 1.33725 -1.55808
Specimen 5 | 1.13604557 -1.21947 1.16058 -1.39859 1.3397 -1.56053
Specimen 6 1.104147 | -1.1998407 1.15322 -1.39613 1.3397 -1.56298
Specimen 7 | 1.08451867 | -1.1703968 1.12868 -1.38141 1.33234 -1.55071
Specimen 8 | 1.12623095 | -1.1998407 1.15077 -1.39368 1.33234 -1.56544
Average: | 1.10905425 | -1.1983076 | 1.1599675 | -1.40717375 1.347675 | -1.5675825
Standard
Deviation 0.0176 0.0144 0.0304 0.0374 0.0364 0.0328
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step-2
(Cont?nue) HW 7 (V) HW 8 (V) HW 9 (V) HW 10 (V) HW 11 (V) | HW 12 (V)
Specimen 1 1.509 -1.69303 1.53109 -1.68812 1.52863 -1.67585
Specimen 2 1.41086 -1.59488 1.44275 -1.60224 1.4403 -1.58752
Specimen 3 1.41822 -1.6096 1.45502 -1.61696 1.45502 -1.60224
Specimen 4 1.41822 -1.61206 1.45257 -1.61451 1.45011 -1.59979
Specimen 5 1.42558 -1.61942 1.46729 -1.63414 1.46974 -1.62187
Specimen 6 1.43049 -1.62432 1.46974 -1.62678 1.46238 -1.6096
Specimen 7 1.42312 -1.61206 1.45748 -1.61206 1.45011 -1.59243
Specimen 8 1.42067 -1.62923 1.45993 -1.6415 1.46484 -1.62678
Average: 1.43202 -1.624325 | 1.46698375 | -1.62953875 | 1.46514125 -1.61451
Standard
Deviation 0.0296 0.0277 0.0255 0.0251 0.0256 0.0264
step-2
(Continue) | HW 13 (V) | HW 14 (V) | HW 15 (V) HW 16 (V) HW 17 (V) | HW 18 (V)
Specimen 1 1.51882 -1.65622 1.52127 -1.6415 1.51146 -1.61206
Specimen 2 1.43539 -1.56789 1.42803 -1.55071 1.41576 -1.53354
Specimen 3 1.44766 -1.58507 1.44275 -1.56298 1.43049 -1.54581
Specimen 4 1.44766 -1.58507 1.44521 -1.57034 1.43785 -1.55562
Specimen 5 1.46484 -1.60224 1.45748 -1.58261 1.45502 -1.56544
Specimen 6 1.45502 -1.59243 1.44766 -1.5728 1.43539 -1.55071
Specimen 7 1.4403 -1.57034 1.42803 -1.54581 1.41331 -1.52372
Specimen 8 1.45993 -1.6096 1.45011 -1.58752 1.43785 -1.56544
Average: 1.4587025 | -1.5961075 | 1.4525675 | -1.57678375 | 1.44214125 | -1.5565425
Standard
Deviation 0.0245 0.0263 0.0277 0.0279 0.0290 0.0250
step-2
(Continue) | HW 19 (V) | HW 20 (V)
Specimen 1 1.48692 -1.58261
Specimen 2 1.4084 -1.51146
Specimen 3 1.42558 -1.52863
Specimen 4 1.44521 -1.54826
Specimen 5 1.45257 -1.54826
Specimen 6 1.42803 -1.53599
Specimen 7 1.39859 -1.50409
Specimen 8 1.42803 -1.54826
Average: | 1.43416625 -1.538445
Standard
Deviation 0.0258 0.0230

Table A3: Step-3 (HW 1-20): Halfwave Voltage Values for C-Gun Machine at Applied
Force of 2.2kN
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Voltage

values
step-3 HW 1 (V) HW 2 (V) HW 3 (V) HW 4 (V) HW 5 (V) HW 6 (V)
Specimen 1 1.1286845 -1.271 1.28081 -1.54581 1.4722 -1.68321
Specimen 2 1.12132 -1.28817 1.28081 -1.5409 1.47465 -1.69057
Specimen 3 | 1.09924066 -1.26364 1.27345 -1.53599 1.45748 -1.67094
Specimen 4 1.1458601 -1.29308 1.30044 -1.56544 1.48692 -1.70039
Specimen 5 1.153221 -1.29799 1.29553 -1.55808 1.48447 -1.69548
Specimen 6 1.1286845 -1.27836 1.28572 -1.54335 1.47465 -1.68812
Specimen 7 1.1605821 -1.28327 1.29553 -1.55317 1.47465 -1.67585
Specimen 8 1.11887 | -1.2685433 1.28327 -1.54581 1.47465 -1.69057
Average: | 1.13205786 -1.280506 1.286945 | -1.54856875 | 1.47495875 | -1.6868912
Standard
Deviation 0.0188 0.0115 0.0087 0.0091 0.0083 0.0092
step-3
(Continue) HW 7 (V) HW 8 (V) HW 9 (V) HW 10 (V) HW 11 (V) HW 12 (V)
Specimen 1 1.53599 -1.7102 1.54335 -1.68812 1.52863 -1.65868
Specimen 2 1.54335 -1.71756 1.54826 -1.69793 1.53599 -1.67094
Specimen 3 1.52863 -1.70039 1.53109 -1.67585 1.51391 -1.64395
Specimen 4 1.54581 -1.71511 1.54581 -1.69303 1.52863 -1.66604
Specimen 5 1.54826 -1.7102 1.54335 -1.68076 1.52127 -1.65131
Specimen 6 1.5409 -1.70775 1.53845 -1.6783 1.51636 -1.64641
Specimen 7 1.53599 -1.70284 1.5409 -1.67585 1.50655 -1.6415
Specimen 8 1.53599 -1.70284 1.53599 -1.6783 1.51636 -1.64641
Average: 1.539365 | -1.7083612 1.5409 -1.6835175 | 1.5209625 -1.653155
Standard
Deviation 0.0060 0.0057 0.0052 0.0079 0.0090 0.0102
step-3
(Continue) | HW 13 (V) HW 14 (V) HW 15 (V) HW 16 (V) HW 17 (V) HW 18 (V)
Specimen 1 1.509 -1.62678 1.48692 -1.59488 1.46484 -1.57034
Specimen 2 1.52863 -1.6415 1.51882 -1.61696 1.50409 -1.58752
Specimen 3 1.49673 -1.61451 1.47465 -1.58507 1.45748 -1.56298
Specimen 4 1.51882 -1.63659 1.509 -1.61206 1.49183 -1.58507
Specimen 5 1.49919 -1.61942 1.48447 -1.58997 1.46484 -1.56053
Specimen 6 1.49428 -1.61451 1.47465 -1.58507 1.45748 -1.55562
Specimen 7 1.48692 -1.60715 1.46974 -1.58016 1.45748 -1.56053
Specimen 8 1.49673 -1.61696 1.4771 -1.58752 1.45748 -1.56298
Average: 1.5037875 | -1.6221775 | 1.48691875 | -1.59396125 1.46944 | -1.5681962
Standard
Deviation 0.0131 0.0111 0.0166 0.0126 0.0170 0.0111
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step-3

(Continue) | HW 19 (V) | HW 20 (V)
Specimen 1 1.44766 -1.54826
Specimen 2 1.48201 -1.56298
Specimen 3 1.4403 -1.5409
Specimen 4 1.4771 -1.56053
Specimen 5 1.45011 -1.5409
Specimen 6 1.43785 -1.53354
Specimen 7 1.4403 -1.53599
Specimen 8 1.4403 -1.5409
Average: | 1.45195375 -1.5455
Standard

Deviation 0.0164 0.0102

Table A4: Step-4 (HW 1-20): Halfwave Voltage Values for C-Gun Machine at Applied

Force of 2.2kN
Voltage
values
step-4 HW 1 (V) HW 2 (V) HW 3 (V) HW 4 (V) HW 5 (V) HW 6 (V)
Specimen 1 1.138499 -1.36424 1.4084 -1.66358 1.59488 -1.774
Specimen 2 1.1556748 -1.39368 1.43785 -1.68321 1.60224 -1.78872
Specimen 3 | 1.14831387 -1.41331 1.46484 -1.71756 1.63169 -1.82062
Specimen 4 1.1581284 -1.39368 1.45011 -1.70039 1.60715 -1.78872
Specimen 5 1.1679431 -1.40595 1.45993 -1.71511 1.61451 -1.79363
Specimen 6 | 1.16058218 -1.41331 1.46238 -1.71756 1.62187 -1.80344
Specimen 7 1.1703968 -1.39613 1.44275 -1.69548 1.61206 -1.78627
Specimen 8 | 1.14831387 -1.40595 1.44766 -1.68567 1.61206 -1.78872
Average: 1.1559815 | -1.3982812 1.44674 -1.69732 1.6120575 -1.793015
Standard
Deviation 0.0100 0.0149 0.0170 0.0181 0.0106 0.0129
step-4
(Continue) | HW 7 (V) HW 8 (V) HW 9 (V) HW 10 (V) | HW 11 (V) | HW 12 (V)
Specimen 1 1.62678 -1.77154 1.61206 -1.74701 1.59243 -1.71756
Specimen 2 1.63169 -1.77891 1.61942 -1.74946 1.59243 -1.71266
Specimen 3 1.66358 -1.81816 1.65377 -1.79853 1.64395 -1.77154
Specimen 4 1.63414 -1.77891 1.61206 -1.7421 1.58507 -1.70039
Specimen 5 1.63414 -1.77891 1.61942 -1.74946 1.60469 -1.71266
Specimen 6 1.63659 -1.77645 1.61696 -1.7421 1.58016 -1.70284
Specimen 7 1.62678 -1.76664 1.60715 -1.73229 1.59243 -1.70284
Specimen 8 1.63659 -1.77645 1.61942 -1.7421 1.59243 -1.70775
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Average: | 1.63628625 | -1.7807462 | 1.6200325 | -1.75038125 | 1.59794875 -1.71603
Standard

Deviation 0.0109 0.0147 0.0134 0.0189 0.0186 0.0217

step-4

(Continue) | HW 13 (V) | HW 14 (V) | HW 15 (V) HW 16 (V) HW 17 (V) | HW 18 (V)
Specimen 1 1.58016 -1.68321 1.56298 -1.64641 1.52863 -1.60224
Specimen 2 1.56789 -1.68076 1.54335 -1.64395 1.51391 -1.60469
Specimen 3 1.6096 -1.72492 1.54826 -1.65622 1.49428 -1.58752
Specimen 4 1.55808 -1.65622 1.52127 -1.6096 1.48692 -1.56789
Specimen 5 1.58261 -1.67094 1.54581 -1.62678 1.51146 -1.58261
Specimen 6 1.55071 -1.66113 1.52372 -1.61696 1.49183 -1.58016
Specimen 7 1.57034 -1.66358 1.55071 -1.62187 1.509 -1.57525
Specimen 8 1.57034 -1.6734 1.54581 -1.63659 1.51636 -1.60224
Average: | 1.57371625 -1.67677 | 1.54273875 -1.6322975 | 1.50654875 -1.587825
Standard

Deviation 0.0167 0.0202 0.0130 0.0151 0.0133 0.0129

step-4
(Continue) | HW 19 (V) | HW 20 (V)

Specimen 1 1.47956 -1.56298

Specimen 2 1.48447 -1.57034

Specimen 3 1.46484 -1.54581

Specimen 4 1.45011 -1.53354

Specimen 5 1.46729 -1.54826

Specimen 6 1.46484 -1.54581

Specimen 7 1.46238 -1.53109

Specimen 8 1.49428 -1.5728

Average: | 1.47097125 | -1.5513287

Standard

Deviation 0.0132 0.0148

Table AS5: Step-5 (HW 1-20): Halfwave Voltage Values for C-Gun Machine at Applied
Force of 2.2kN

Voltage
values

HW 1 (V)

HW 2 (V)

HW 3 (V)

HW 4 (V)

HW 5 (V)

HW 6 (V)
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step-5

Specimen 1 1.180211 -1.49919 1.56053 -1.78136 1.6783 -1.83289
Specimen 2 1.1703968 -1.48692 1.55562 -1.77645 1.67585 -1.82062
Specimen 3 1.1679431 -1.49183 1.56544 -1.78627 1.6783 -1.83043
Specimen 4 1.14586 -1.45257 1.52618 -1.75437 1.6734 -1.83043
Specimen 5 | 1.16548955 -1.48447 1.55071 -1.774 1.6734 -1.82307
Specimen 6 | 1.16303586 -1.4771 1.56544 -1.77891 1.6783 -1.82307
Specimen 7 | 1.17285048 -1.49183 1.57034 -1.78872 1.68321 -1.84025
Specimen 8 | 1.18021142 -1.48937 1.56053 -1.78136 1.68321 -1.84025
Average: | 1.16824978 -1.48416 | 1.55684875 -1.77768 | 1.67799625 | -1.8301262
Standard
Deviation 0.0103 0.0134 0.0129 0.0099 0.0036 0.0071
step-5
(Continue) HW 7 (V) HW 8 (V) HW 9 (V) HW 10 (V) HW 11 (V) | HW 12 (V)
Specimen 1 1.68076 -1.8059 1.65377 -1.76418 1.62432 -1.71266
Specimen 2 1.66604 -1.78627 1.61942 -1.73229 1.5728 -1.66849
Specimen 3 1.66604 -1.79117 1.62678 -1.7421 1.24646 | -1.2955335
Specimen 4 1.68812 -1.80344 1.65131 -1.76173 1.61451 -1.71756
Specimen 5 1.65622 -1.77645 1.60715 -1.72247 1.55808 -1.66113
Specimen 6 1.66849 -1.78627 1.63169 -1.73719 1.58997 -1.68567
Specimen 7 1.69548 -1.8108 1.65868 -1.76418 1.61942 -1.72492
Specimen 8 1.69303 -1.8108 1.64886 -1.75191 1.60224 -1.69548
Average: 1.6767725 | -1.7963875 1.6372075 | -1.74700625 1.553475 | -1.6451804
Standard
Deviation 0.0136 0.0122 0.0174 0.0149 0.1180 0.1339
step-5
(Continue) | HW 13 (V) | HW 14 (V) HW 15 (V) HW 16 (V) HW 17 (V) | HW 18 (V)
Specimen 1 1.55071 -1.6415 1.50164 -1.58997 1.46729 -1.54826
Specimen 2 1.52618 -1.61206 1.48201 -1.56053 1.44766 -1.51636
Specimen 3 1.1924 -1.278357 1.1998407 -1.275904 1.190026 -1.22928
Specimen 4 1.5777 -1.66604 1.53599 -1.61206 1.49428 -1.57034
Specimen 5 1.51146 -1.60469 1.47465 -1.55562 1.44275 -1.51882
Specimen 6 1.5409 -1.61696 1.49183 -1.56544 1.43785 -1.51146
Specimen 7 1.58752 -1.66358 1.51391 -1.60224 1.4771 -1.56053
Specimen 8 1.56053 -1.6415 1.48692 -1.56789 1.44766 -1.52863
Average: 1.505925 | -1.5905858 | 1.46084884 | -1.54120675 1.425577 -1.49796
Standard
Deviation 0.1208 0.1199 0.1003 0.1021 0.0908 0.1035
step-5
(Continue) | HW 19 (V) | HW 20 (V)
Specimen 1 1.43785 -1.51882
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Specimen 2 1.41576 -1.48692
Specimen 3 1.145806 -1.21947
Specimen 4 1.45993 -1.53845
Specimen 5 1.41822 -1.48937
Specimen 6 1.4084 -1.48201
Specimen 7 1.43785 -1.51146
Specimen 8 1.42067 -1.49428
Average: | 1.39306075 | -1.4675975
Standard

Deviation 0.0947 0.0955

Table A6: Step-6 (HW 1-20): Halfwave Voltage Values for C-Gun Machine at Applied

Force of 2.2kN
Voltage
values
step-6 HW 1 (V) HW 2 (V) HW 3 (V) HW 4 (V) HW 5 (V) HW 6 (V)
Specimen1 | 1.20720172 -1.60224 1.66358 -1.86724 1.74946 -1.88687
Specimen 2 | 1.24400663 -1.63169 1.68567 -1.88196 1.75437 -1.88441
Specimen 3 1.2587286 -1.65622 1.7102 -1.90159 1.774 -1.90895
Specimen 4 | 1.22683107 -1.60469 1.66849 -1.8746 1.75191 -1.88932
Specimen5 | 1.31761658 -1.65868 1.71266 -1.9114 1.78872 -1.93103
Specimen 6 | 1.31025553 -1.68321 1.72983 -1.93103 1.77645 -1.91386
Specimen 7 | 1.29307997 -1.65622 1.71266 -1.9114 1.77891 -1.90404
Specimen 8 | 1.32988489 -1.69057 1.74701 -1.94821 1.8059 -1.95311
Average: 1.27345062 -1.64794 1.7037625 | -1.90342875 1.772465 | -1.9089487
Standard
Deviation 0.0426 0.0307 0.0272 0.0262 0.0184 0.0223
step-6
(Continue) | HW 7 (V) HW 8 (V) HW 9 (V) HW 10 (V) | HW 11 (V) | HW 12 (V)
Specimen 1 1.70775 -1.81816 1.63169 1.7421 1.56544 1.65868
Specimen 2 1.7102 -1.82062 1.62923 -1.73719 1.56544 -1.66113
Specimen 3 1.75682 -1.85742 1.67585 -1.78136 1.60469 -1.69303
Specimen 4 1.71511 -1.82798 1.63905 -1.74455 1.56053 -1.65868
Specimen 5 1.76909 -1.88196 1.68567 -1.79363 1.61942 -1.7102
Specimen 6 1.72983 -1.84025 1.6415 -1.74701 1.56053 -1.66113
Specimen 7 1.72247 -1.82062 1.62187 -1.72002 1.54581 -1.63414
Specimen 8 1.80835 -1.91386 1.73719 -1.84025 1.68321 -1.75928
Average: 1.7399525 | 1.84760875 | 1.65775625 | -1.76326375 | 1.58813375 | -1.6795337
Standard
Deviation 0.0331 0.0325 0.0368 0.0367 0.0428 0.0372
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step-6

(ContFi)nue) HW 13 (V) HW 14 (V) HW 15 (V) HW 16 (V) HW 17 (V) HW 18 (V)
Specimen 1 1.49919 -1.58752 1.45257 -1.53354 1.41576 -1.49183
Specimen 2 1.509 -1.59243 1.45748 -1.53845 1.42067 -1.49673
Specimen 3 1.53845 -1.61942 1.48692 -1.56053 1.44275 -1.51882
Specimen 4 1.50409 -1.59243 1.45257 -1.53354 1.40595 -1.48447
Specimen 5 1.56053 -1.63905 1.50409 -1.57525 1.45748 -1.52863
Specimen 6 1.50164 -1.59488 1.45502 -1.53599 1.41331 -1.49183
Specimen 7 1.47956 -1.56298 1.42803 -1.50164 1.38632 -1.46238
Specimen 8 1.58507 -1.66604 1.52127 -1.60469 1.47956 -1.56298
Average: | 1.52219125 | -1.6068437 | 1.46974375 | -1.54795375 1.427725 | -1.5047087
Standard

Deviation 0.0335 0.0307 0.0292 0.0294 0.0283 0.0291

step-6

(Continue) | HW 19 (V) HW 20 (V)

Specimen 1 1.38877 -1.46238

Specimen 2 1.39368 -1.4722

Specimen 3 1.41822 -1.48937

Specimen 4 1.3765 -1.45257

Specimen 5 1.42558 -1.49919

Specimen 6 1.39123 -1.46729

Specimen 7 1.35442 -1.42558

Specimen 8 1.45011 -1.52618

Average: | 1.39981375 -1.474345

Standard

Deviation 0.0282 0.0287

Table A7: Step-1 (HW 1-20): Halfwave Current Values for C-Gun Machine at Applied

Force of 2.2kN

Current

values

step-1 HW 1 (kA) | HW 2 (kA) | HW 3 (KA) | HW 4 (kA) | HW5 (kA) | HW 6 (kA)
Specimen 1 | 10.5345877 | -12.262022 | 11.4065268 | -12.2620228 | 11.2956161 | -12.135313
Specimen 2 | 10.4877086 | -12.357070 | 11.4382525 | -12.3095468 | 11.2956161 | -12.166974
Specimen 3 | 10.5035069 | -12.341272 | 11.4699136 | -12.293684 | 11.3273417 | -12.119450
Specimen 4 | 10.4243218 | -12.29368 | 11.3907285 | -12.2303616 11.216431 | -12.103588
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Specimen 5 | 10.6144177 | -12.420457 | 11.4857764 | -12.4363203 | 11.3748657 | -12.181677
Specimen 6 | 10.7094656 | -12.372933 | 11.4540508 | -12.3254096 | 11.3590029 | -12.198636
Specimen 7 | 10.4877086 | -12.341272 | 11.4699136 | -12.3729336 | 11.2956161 | -12.166974
Specimen 8 | 10.5827565 | -12.388796 | 11.4382525 | -12.293684 | 11.3114789 | -12.182837
Average: | 10.5430592 | -12.347188 | 11.4441768 12.3154953 | 11.309496 | -12.156931
Standard
Deviation 0.0838 0.0475 0.0306 0.0603 0.0451 0.0315
step-1
(Continue) | HW 7 (kA) | HW 8 (kA) | HW9 (kKA) | HW 10 (kA) | HW 11 (kA) | HW 12 (kA)
Specimen1 | 11.121383 | -11.992677 | 11.0579962 | -11.9451533 | 11.0263351 | -11.913492
Specimen 2 | 11.0579962 | -11.992677 | 10.9154243 | -11.8659682 | 10.8995615 | -11.786783
Specimen 3 | 11.0263351 | -11.92935 | 10.9154243 | -11.8659682 | 10.9312871 | -11.818444
Specimen 4 | 11.0263351 | -11.929355 | 10.9470855 | -11.881831 | 10.8995615 | -11.865968
Specimen 5 | 11.0897219 | -12.056064 | 10.9946094 | -11.9134922 | 10.9470855 | -11.881831
Specimen 6 | 11.1372458 | -12.056064 | 11.0579962 | -12.0085401 | 11.1055202 | -11.992677
Specimen 7 | 11.0579962 | -11.976879 | 10.9312871 | -11.8501054 | 10.8995615 | -11.834307
Specimen 8 | 11.0579962 | -12.040265 | 10.9470855 | -11.929355 | 10.9312226 | -11.897629
Average: | 11.0718762 | -11.996667 | 10.9708636 | -11.9075517 | 10.9550169 | -11.873891
Standard
Deviation 0.0384 0.0480 0.0554 0.0494 0.0691 0.0598
step-1
(Continue) | HW 13 (kA) | HW 14 (kA) | HW 15 (kA) | HW 16 (kA) | HW 17 (kA) | HW 18 (kA)
Specimen1 | 11.0421334 | -11.865968 | 11.0421334 | -11.9134922 | 11.073859 | -11.929355
Specimen 2 | 10.9946094 | -11.802581 | 10.9946094 | -11.8659682 | 10.9788111 | -11.897629
Specimen 3 | 10.9788111 | -11.850105 | 10.9788111 | -11.8659682 | 11.0421334 | -11.865968
Specimen 4 | 11.0104723 | -11.897629 | 11.0104723 | -11.9610162 | 11.0421334 | -11.961016
Specimen 5 | 11.0421334 | -11.929355 | 11.0421334 | -11.9451533 | 11.0579962 | -11.929355
Specimen 6 | 11.1847698 | -11.992677 | 11.1847698 | -12.0402658 | 11.2480921 | -12.103588
Specimen 7 | 10.9788111 | -11.802581 | 10.9788111 | -11.881831 | 10.9946094 | -11.834307
Specimen 8 | 11.0263351 | -11.897629 | 11.0263351 | -11.8976294 | 11.0263351 | -11.913492
Average: | 11.0322594 | -11.879815 | 11.0322594 | -11.9214155 | 11.0579962 | -11.929338
Standard
Deviation 0.0617 0.0600 0.0623 0.0555 0.0776 0.0756
step-1
(Continue) | HW 19 (kA) | HW 20 (kA)
Specimen1 | 11.121383 | -11.913496
Specimen 2 | 10.9788111 | -11.897629
Specimen 3 | 11.073859 | -11.913492
Specimen 4 | 11.1055202 | -12.040201
Specimen5 | 11.121383 | -11.945153
Specimen 6 | 11.2956161 | -12.103588
Specimen 7 | 11.0421334 | -11.834307
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Specimen8 | 11.073859 | -11.945153
Average: | 11.1015706 | -11.949127
Standard

Deviation 0.0856 0.0795

Table AS8: Step-2 (HW 1-20): Halfwave Current Values for C-Gun Machine at Applied

Force of 2.2kN
Current
values
step-2 HW 1 (kA) | HW 2 (kA) | HW 3 (kA) HW 4 (kA) HW 5 (kA) | HW 6 (kA)
Specimen 1 | 11.5333004 | -13.371001 | 12.3254096 | -12.974946 11.976879 | -12.800649
Specimen 2 | 11.1372458 | -12.848173 | 11.9451533 -12.68980 11.6758723 | -12.578892
Specimen 3 | 11.0104723 | -12.848173 | 11.9134922 | -12.721464 | 11.6916707 | -12.563029
Specimen 4 | 11.0104723 | -12.816512 | 11.881831 -12.673940 | 11.6916707 | -12.531368
Specimen 5 | 10.9946094 | -12.800649 | 11.881831 -12.705601 | 11.6758723 | -12.547166
Specimen 6 | 11.0579962 | -12.848173 | 11.8976294 | -12.658077 | 11.6916707 | -12.483844
Specimen 7 | 11.0897219 | -12.911560 | 11.9451533 -12.73732 11.7075335 | -12.515505
Specimen 8 | 10.9788111 | -12.800649 | 11.8501054 | -12.705601 | 11.6441467 | -12.515505
Average: | 11.1015787 | -12.905611 | 11.9550757 -12.733345 | 11.7194145 | -12.566995
Standard
Deviation 0.1706 0.1791 0.1432 0.0943 0.0989 0.0926
step-2
(Continue) | HW 7 (kA) | HW 8 (KA) | HW 9 (kA) HW 10 (kA) | HW 11 (kA) | HW 12 (kA)
Specimen1 | 11.7867831 | -12.673940 | 11.7075335 | -12.6264162 | 11.7709203 | -12.705601
Specimen 2 | 11.4857764 | -12.420457 | 11.4540508 | -12.3729336 | 11.4382525 | -12.420457
Specimen 3 | 11.5649616 | -12.436320 | 11.4223897 | -12.3729336 | 11.4223897 | -12.404594
Specimen 4 | 11.4065268 | -12.372933 | 11.3590029 | -12.3095468 11.34314 -12.277885
Specimen 5 | 11.4540508 | -12.372933 | 11.4065268 | -12.3095468 11.34314 -12.293684
Specimen 6 | 11.4382525 | -12.341272 11.34314 -12.2620228 11.34314 | -12.309546
Specimen 7 | 11.4857764 | -12.388796 | 11.4223897 | -12.3887964 | 11.4065268 | -12.357070
Specimen 8 | 11.4540508 | -12.388796 11.34314 -12.3254096 | 11.4223897 | -12.388796
Average: | 11.5095223 | -12.424431 | 11.4322717 | -12.3709507 | 11.4362374 | -12.394704
Standard
Deviation 0.1134 0.0982 0.1109 0.1043 0.1319 0.1275
step-2
(Continue) | HW 13 (kA) | HW 14 (kA) | HW 15 (kA) | HW 16 (kA) | HW 17 (kA) | HW 18 (kA)
Specimen 1 | 11.8501054 | -12.68980 | 11.9134922 | -12.7056014 | 11.8976294 | -12.768988
Specimen 2 | 11.5174376 | -12.420457 | 11.5649616 | -12.4679815 | 11.6124855 | -12.531368
Specimen 3 | 11.5333004 | -12.404594 | 11.5174376 | -12.3887964 | 11.5649616 | -12.420457
Specimen 4 | 11.4065268 | -12.293684 | 11.4382525 | -12.293684 | 11.4699136 | -12.357070
Specimen 5 | 11.3907285 | -12.277885 | 11.4699136 | -12.2778856 | 11.4857764 | -12.262022

201




Specimen 6 | 11.4223897 | -12.357070 | 11.4699136 | -12.3254096 | 11.5015748 | -12.404594
Specimen 7 | 11.4857764 | -12.388796 | 11.5333004 | -12.4521187 | 11.6441467 | -12.467981
Specimen 8 | 11.4540508 | -12.404594 | 11.4540658 | -12.3412724 | 11.5332359 | -12.372933
Average: | 11.5075395 | -12.404610 | 11.5451672 | -12.4065937 | 11.5887155 | -12.448177
Standard
Deviation 0.1381 0.1186 0.1449 0.1303 0.1299 0.1421
step-2
(Continue) | HW 19 (kA) | HW 20 (kA)
Specimen1 | 11.929355 | -12.832374
Specimen 2 | 11.7075335 | -12.499642
Specimen 3 | 11.5808244 | -12.420457
Specimen 4 | 11.4382525 | -12.309546
Specimen 5 | 11.4857764 | -12.325409
Specimen 6 | 11.5649616 | -12.357070
Specimen 7 | 11.7075335 | -12.499642
Specimen 8 | 11.5333004 | -12.388796
Average: | 11.6184422 | -12.454117
Standard
Deviation 0.1475 0.1579

Table A9: Step-3 (HW 1-20): Halfwave Current Values for C-Gun Machine at Applied

Force of 2.2kN

Current

values

step-3 HW 1 (kA) | HW 2 (kA) | HW 3 (kA) HW 4 (kA) HW 5 (kA) | HW 6 (kA)
Specimen 1 | 11.5808244 | -13.402662 | 12.3570707 | -13.1491799 | 12.0877897 | -12.927422
Specimen 2 | 11.6758723 | -13.371001 | 12.293684 -13.006608 | 12.0560641 | -12.927422
Specimen 3 | 11.6124855 | -13.418525 | 12.3254096 | -13.0699948 | 12.0085401 | -12.879898
Specimen 4 | 11.5649616 | -13.355138 | 12.293684 | -13.0224708 | 12.0719269 | -12.911560
Specimen 5 | 11.5808244 | -13.355138 | 12.3095468 | -13.054132 | 12.1035881 | -12.927422
Specimen 6 | 11.5649616 | -13.339340 | 12.3254096 | -13.1175188 | 12.1035881 | -12.911560
Specimen 7 | 11.4699136 | -13.228429 | 12.2144988 | -12.9908097 | 11.9926773 | -12.78485
Specimen 8 | 11.6441467 | -13.386864 | 12.3570707 | -13.054132 12.151112 | -12.911560
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Average: | 11.5867488 | -13.357137 | 12.3095468 | -13.0581057 | 12.0719108 | -12.897712
Standard
Deviation 0.0576 0.0546 0.0427 0.0506 0.0488 0.0451
step-3
(Continue) | HW 7 (kA) | HW 8 (kA) | HW9 (kA) | HW 10 (kA) | HW 11 (kA) | HW 12 (kA)
Specimen1 | 11.881831 | -12.848173 | 11.881831 | -12.8798989 | 11.9451533 | -12.927422
Specimen 2 | 11.8976294 | -12.832374 | 11.881831 | -12.8165121 | 11.976879 | -12.864036
Specimen 3 | 11.8659682 | -12.848173 | 11.929355 | -12.8956972 | 11.9451533 | -12.974946
Specimen 4 | 11.881831 | -12.800649 | 11.881831 | -12.8640361 | 11.929355 | -12.864036
Specimen5 | 11.976879 | -12.911560 | 11.976879 | -12.9115601 | 12.0560641 | -12.974946
Specimen 6 | 11.9451533 | -12.879898 | 11.929355 | -12.8956972 | 12.0402658 | -12.959084
Specimen 7 | 11.8501054 | -12.753125 | 11.8501054 | -12.8323749 | 11.9768145 | -12.959084
Specimen 8 | 11.9293357 | -12.848173 | 11.9610162 | -12.9274229 | 12.0085401 | -13.006608
Average: | 11.9035916 -12.84026 | 11.9115255 | -12.8778999 | 11.9847781 | -12.941270
Standard
Deviation 0.0403 0.0448 0.0415 0.0358 0.0434 0.0491
step-3
(Continue) | HW 13 (kA) | HW 14 (kA) | HW 15 (kA) | HW 16 (kA) | HW 17 (kA) | HW 18 (kA)
Specimen 1 | 12.0560641 | -12.927422 | 12.1353137 | -12.9749468 | 12.1669749 | -13.069994
Specimen 2 | 12.0560641 | -12.879898 | 12.0560641 | -12.9115601 | 12.1035881 | -12.959084
Specimen 3 | 12.0877897 | -12.990809 | 12.2303616 | -13.006608 | 12.2778856 | -13.101655
Specimen 4 | 12.0402658 | -12.864036 | 12.0719269 | -12.8956972 | 12.1035881 | -12.974946
Specimen 5 | 12.1669749 | -13.069994 | 12.2620228 | -13.054132 | 12.3095468 | -13.117518
Specimen 6 | 12.0877897 | -12.974946 | 12.1828377 | -13.0224708 | 12.2778856 | -13.149179
Specimen 7 | 12.0560641 | -12.959084 | 12.151112 | -13.006608 | 12.2303616 | -13.069994
Specimen 8 | 12.0877897 | -13.022470 | 12.2144988 | -13.1175188 12.24616 | -13.133381
Average: | 12.0798503 | -12.961083 | 12.1630172 | -12.9986927 | 12.2144988 | -13.071969
Standard
Deviation 0.0372 0.0651 0.0689 0.0677 0.0752 0.0660
step-3
(Continue) | HW 19 (kA) | HW 20 (kA)
Specimen1 | 12.293684 | -13.085857
Specimen 2 | 12.2303616 | -12.990809
Specimen 3 | 12.3095468 | -13.117518
Specimen 4 | 12.1986554 | -12.990777
Specimen 5 | 12.3412724 | -13.101655
Specimen 6 | 12.2778856 | -13.133381
Specimen7 | 12.198636 | -13.054132
Specimen 8 | 12.3570707 | -13.133381
Average: | 12.2758891 | -13.075939
Standard 0.0574 0.0548
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Deviation

Table A10: Step-4 (HW 1-20): Halfwave Current Values for C-Gun Machine at

Applied Force of 2.2kN
Current
values
step-4 HW 1 (kA) | HW 2 (kA) HW 3 (kA) HW 4 (kA) HW 5 (kA) HW 6 (kA)
Specimen 1 | 12.3887964 | -13.925490 | 12.8006493 | -13.4185254 | 12.5788923 | -13.323477
Specimen 2 | 12.3254096 | -13.877966 | 12.8006493 | -13.3710014 | 12.5471666 | -13.339340
Specimen 3 | 12.293684 | -13.909627 | 12.737327 | -13.3393403 | 12.4996427 | -13.355138
Specimen 4 | 12.2620228 | -13.925490 | 12.8481733 | -13.4501866 | 12.5946906 | -13.355138
Specimen 5 12.24616 -13.925490 | 12.7214642 | -13.4185254 | 12.5788923 | -13.386864
Specimen 6 | 12.2778856 | -13.877966 | 12.7689881 | -13.4501866 | 12.6105534 | -13.371001
Specimen 7 | 12.1669749 | -13.798717 | 12.737327 | -13.3551386 | 12.5155055 | -13.339340
Specimen 8 | 12.3095468 | -13.877966 | 12.7056014 | -13.3710014 | 12.5471666 | -13.323477
Average: 12.28381 | -13.889839 | 12.7650224 | -13.3967382 | 12.5590637 | -13.349222
Standard
Deviation 0.0603 0.0402 0.0453 0.0403 0.0361 0.0209
step-4
(Continue) | HW 7 (kA) | HW 8 (kA) HW 9 (kA) HW 10 (kA) | HW 11 (kA) | HW 12 (kA)
Specimen 1 | 12.4679815 | -13.418525 | 12.5788923 | -13.4185254 | 12.6264162 | -13.450186
Specimen 2 | 12.4521187 | -13.386864 | 12.5313683 | -13.4501866 | 12.6264162 | -13.481912
Specimen 3 | 12.4045947 | -13.355138 | 12.4521187 | -13.3393403 | 12.4679815 | -13.402662
Specimen 4 | 12.4679815 | -13.450186 | 12.5155055 | -13.4977105 | 12.5946906 | -13.545234
Specimen 5 | 12.4838443 | -13.386864 | 12.5313683 | -13.4501866 | 12.5946906 | -13.481912
Specimen 6 | 12.5313683 | -13.434388 | 12.6264162 | -13.4977105 | 12.6739402 | -13.576960
Specimen 7 | 12.4045947 | -13.402662 | 12.5788923 | -13.4185254 | 12.5788923 | -13.466049
Specimen 8 | 12.4838443 | -13.355155 | 12.5313038 | -13.4343882 | 12.5947203 | -13.545234
Average: 12.462041 | -13.398723 | 12.5432332 | -13.4383217 | 12.5947185 -13.49376
Standard
Deviation 0.0396 0.0324 0.0487 0.0473 0.0555 0.0542
step-4
(Continue) | HW 13 (kA) | HW 14 (kA) | HW 15 (kA) | HW 16 (kA) | HW 17 (kA) | HW 18 (kA)
Specimen1 | 12.642279 | -13.513573 | 12.7531253 | -13.5610973 | 12.8481733 | -13.703669
Specimen 2 | 12.689803 | -13.545234 | 12.8006493 | -13.6244841 | 12.8640361 | -13.656145
Specimen 3 | 12.5630294 | -13.466049 | 12.7531253 | -13.6244841 | 12.8956972 | -13.798717
Specimen 4 | 12.784851 | -13.640346 | 12.8481733 | -13.7036692 | 12.9749468 | -13.798717
Specimen 5 | 12.6580774 | -13.576960 | 12.8165121 | -13.6720081 | 12.9274229 | -13.798717
Specimen 6 | 12.737327 | -13.656145 | 12.8640361 | -13.7036692 | 12.9274229 | -13.767056
Specimen 7 | 12.6264162 | -13.497710 | 12.737327 -13.592823 | 12.8798989 | -13.735394
Specimen 8 | 12.7056014 | -13.529436 | 12.7689881 | -13.6086213 | 12.8640361 | -13.656145
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Average: 12.6759231 -13.55318 | 12.7927421 -13.636357 | 12.8977043 | -13.739320
Standard

Deviation 0.0646 0.0629 0.0441 0.0487 0.0400 0.0575
step-4

(Continue) | HW 19 (kA) | HW 20 (kA)

Specimen1 | 13.006608 -13.81458

Specimen 2 | 12.9908097 | -13.767056

Specimen 3 | 13.054132 | -13.909627

Specimen 4 | 13.0699948 | -13.862104

Specimen 5 | 13.054132 | -13.893829

Specimen 6 | 13.054132 | -13.877966

Specimen 7 | 12.9749468 | -13.893829

Specimen 8 | 12.959084 | -13.735394

Average: | 13.0204799 | -13.844298

Standard

Deviation 0.0399 0.0606
Table A11: Step-5 (HW 1-20): Halfwave Current Values for C-Gun Machine at

Applied Force of 2.2kN

Current

values

step-5 HW 1 (kA) | HW 2 (kA) | HW 3 (kA) | HW 4 (kA) | HW5 (KA) | HW 6 (kA)
Specimen 1 | 12.7214642 | -14.210634 | 13.1016559 | -13.7511932 | 12.9432857 | -13.687870
Specimen 2 | 12.7214642 | -14.147247 | 13.006608 | -13.6403469 | 12.8481733 | -13.672008
Specimen 3 | 12.7056014 | -14.131449 | 12.959084 | -13.6720081 | 12.8956972 | -13.751193
Specimen 4 | 12.7214642 | -14.194771 | 12.9749468 | -13.6561453 | 12.7689881 | -13.640346
Specimen 5 | 12.7214642 | -14.226497 | 12.9432857 | -13.5769601 | 12.8481733 | -13.687870
Specimen 6 | 12.7214642 | -14.194771 | 12.9908097 | -13.6244841 | 12.8323749 | -13.672008
Specimen 7 | 12.737327 | -14.131449 | 12.9432857 -13.592823 | 12.8640361 | -13.608621
Specimen 8 | 12.689803 | -14.147247 | 13.0224708 | -13.7036692 | 12.8323749 | -13.735394
Average: | 12.7175065 | -14.173008 | 12.9927683 | -13.6522037 | 12.8541379 | -13.681914
Standard

Deviation 0.0131 0.0354 0.0491 0.0536 0.0475 0.0433
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step-5

(Continue) | HW 7 (kA) | HW 8 (kA) | HW 9 (kA) HW 10 (kA) | HW 11 (kA) | HW 12 (kA)
Specimen 1 | 12.8481733 | -13.719532 | 12.8798989 | -13.7511932 | 12.9274229 | -13.877966
Specimen 2 | 12.8798989 | -13.767056 | 13.054132 | -13.8779668 | 13.0858576 | -13.973014
Specimen 3 | 12.8956972 | -13.81458 | 12.9908097 | -13.9096279 | 13.7987172 | -14.876034
Specimen 4 | 12.8006493 | -13.767056 | 12.9432857 | -13.7829188 | 12.9432857 | -13.798717
Specimen 5 | 12.8165121 | -13.81458 12.959084 | -13.8779668 | 13.0699948 | -14.004675
Specimen 6 | 12.8006493 | -13.719532 | 12.8481733 | -13.7511932 | 13.006608 | -13.941353
Specimen 7 | 12.7689881 | -13.719532 | 12.8481733 | -13.719532 | 12.9115601 | -13.767056
Specimen 8 | 12.784851 | -13.719532 | 12.8798989 | -13.7987172 | 12.9432857 | -13.893829
Average: | 12.8244274 | -13.755175 12.925432 | -13.8086395 | 13.0858415 | -14.016581
Standard
Deviation 0.0427 0.0394 0.0693 0.0662 0.2763 0.3336
step-5
(Continue) | HW 13 (kA) | HW 14 (kA) | HW 15 (kA) | HW 16 (kA) | HW 17 (kA) | HW 18 (kA)
Specimen 1 | 13.1491799 | -14.068062 | 13.3234775 | -14.1789734 | 13.4185254 | -14.242360
Specimen 2 | 13.2600907 | -14.115586 | 13.3393403 | -14.2264974 | 13.5294362 | -14.321545
Specimen 3 | 14.0364015 | -14.923558 | 14.0363796 | -14.8918975 | 14.1314495 | -15.018606
Specimen 4 | 13.0858576 | -13.941353 | 13.1809055 | -14.0997238 | 13.3234775 | -14.210634
Specimen 5 | 13.2442279 | -14.083925 | 13.2918163 | -14.1789734 | 13.4501866 | -14.337408
Specimen 6 | 13.1175188 | -14.020538 | 13.3868642 | -14.1789734 | 13.4343882 | -14.321545
Specimen 7 | 12.9749468 | -13.941353 | 13.2125667 | -14.1155866 | 13.3710014 | -14.226497
Specimen 8 | 13.1016559 | -14.083925 | 13.3551386 | -14.1947718 | 13.5135733 | -14.369069
Average: | 13.2462349 | -14.147288 | 13.3908111 | -14.2581747 | 13.5215048 | -14.380958
Standard
Deviation 0.3104 0.2997 0.2527 0.2426 0.2391 0.2469
step-5
(Continue) | HW 19 (kA) | HW 20 (kA)
Specimen 1 | 13.5769601 | -14.305682
Specimen 2 | 13.5769601 | -14.416593
Specimen 3 | 14.2264974 | -15.050267
Specimen 4 | 13.4501866 | -14.226497
Specimen 5 | 13.6244841 | -14.416593
Specimen 6 | 13.6244841 | -14.416593
Specimen 7 | 13.4977105 | -14.305682
Specimen 8 | 13.5769601 | -14.384932
Average: | 13.6442804 | -14.440355
Standard
Deviation 0.2271 0.2395
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Table A12: Step-6 (HW 1-20): Halfwave Current Values for C-Gun Machine at

Applied Force of 2.2kN
Current
values
step-6 HW 1 (kA) HW 2 (kA) | HW 3 (kA) HW 4 (kA) HW 5 (kA) | HW 6 (kA)
Specimen 1 | 13.2759535 | -14.590890 | 13.4185254 | -14.0839255 | 13.3393403 | -14.147247
Specimen 2 | 13.1809055 | -14.511641 | 13.4343882 | -14.0205387 | 13.3393403 | -14.163110
Specimen 3 | 13.2284295 | -14.479980 | 13.3710014 | -13.9413536 | 13.3710014 | -14.115586
Specimen 4 | 12.9746244 | -14.416593 | 13.2284295 | -13.9096279 | 13.1967039 | -14.036401
Specimen5 | 12.959084 | -14.305682 | 13.1808862 | -13.8779668 | 13.1809055 | -13.973014
Specimen 6 | 12.8640361 | -14.305682 | 13.1016559 | -13.81458 13.1491799 | -13.973014
Specimen 7 | 12.9908097 | -14.353206 | 13.3393403 | -13.9096279 | 13.3076146 | -14.131449
Specimen 8 | 12.8956972 | -14.305682 | 13.1809055 | -13.7829188 | 13.1967039 | -13.973014
Average: 13.0461925 | -14.408669 | 13.2818916 | -13.9175674 | 13.2600987 -14.06410
Standard
Deviation 0.1482 0.1024 0.1167 0.0931 0.0820 0.0787
step-6
(Continue) | HW 7 (kA) | HW 8 (kA) | HW9 (kA) | HW 10 (kA) | HW 11 (KA) | HW 12 (kA)
Specimen 1 | 13.4185254 | -14.337408 | 13.6244841 | -14.5116412 | 13.7511932 | -14.701737
Specimen 2 | 13.4026626 | -14.305682 | 13.5452345 | -14.4641172 | 13.7036692 | -14.622552
Specimen 3 | 13.3076146 | -14.210634 | 13.4977105 | -14.3690693 | 13.6720081 | -14.606689
Specimen 4 | 13.2125667 | -14.163110 | 13.3710014 | -14.3056825 | 13.5294362 | -14.479980
Specimen 5 | 13.2125667 | -14.083925 | 13.3393403 | -14.2106346 | 13.4660494 | -14.353206
Specimen 6 | 13.1967039 | -14.178973 | 13.4026626 | -14.3532065 | 13.5294362 | -14.495778
Specimen 7 | 13.3868642 | -14.305682 | 13.592823 | -14.5116412 | 13.7987172 | -14.733462
Specimen 8 | 13.1175188 | -14.004675 | 13.3076146 | -14.1155866 | 13.3868642 | -14.305682
Average: | 13.2818779 | -14.198761 | 13.4601089 | -14.3551974 | 13.6046717 | -14.537386
Standard
Deviation 0.1054 0.1088 0.1131 0.1331 0.1376 0.1458
step-6
(Continue) | HW 13 (kA) | HW 14 (kA) | HW 15 (kA) | HW 16 (kA) | HW 17 (kA) | HW 18 (kA)
Specimen 1 | 13.9413536 | -14.876034 | 14.1314495 | -14.9869454 | 14.3215453 | -15.113654
Specimen 2 | 13.8462411 | -14.796785 | 14.0680627 | -14.9076958 | 14.1947718 | -15.081993
Specimen 3 | 13.8462411 | -14.812647 | 14.1155866 | -14.8918975 | 14.2423602 | -15.050267
Specimen 4 | 13.7353949 | -14.701737 | 13.9730147 | -14.7809867 | 14.0839255 | -14.923558
Specimen 5 | 13.6403469 | -14.543366 | 13.8462411 | -14.7017371 | 13.9730147 | -14.828510
Specimen 6 | 13.767056 | -14.670075 | 13.8938296 | -14.7492611 | 14.0839255 | -14.907695
Specimen 7 | 13.9413536 | -14.860171 | 14.1314495 | -14.9710826 | 14.3056825 | -15.161178
Specimen 8 | 13.6720081 | -14.575028 | 13.9096279 | -14.7492611 | 14.0364015 | -14.812647
Average: | 13.7987494 | -14.729480 | 14.0086577 | -14.8423584 | 14.1552034 | -14.984938
Standard
Deviation 0.1069 0.1187 0.1094 0.1031 0.1209 0.1251

207




step-6

(Continue) | HW 19 (kA) | HW 20 (kA)
Specimen 1 | 14.4165933 | -15.192904
Specimen 2 | 14.2898842 | -15.113525
Specimen 3 | 14.3849321 | -15.113654
Specimen 4 | 14.2423602 | -15.034469
Specimen 5 | 14.1314495 | -14.923558
Specimen 6 | 14.1947718 | -14.971082
Specimen 7 | 14.3532065 | -15.145380
Specimen 8 | 14.1314495 | -14.907695
Average: | 14.2680809 | -15.050283
Standard

Deviation 0.1042 0.1002

CALCULATED SAMPLE DYNAMIC RESISTANCE PLOTS

APPENDIX B
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C-Zange (2.6kN)
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Figure B1:  C-Gun (2.6 kN) steps 1-6, Dynamic Resistance plot
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C-Zange (3.0kN)
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Figure B2:  C-Gun (3.0 kN) steps 1-6, Dynamic Resistance plot
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PMS - (2.2kN)

(mQ)
0.3
0.25
0.2 —Step 1
—— Step 2
0.15 Step 3
' ——Step 4
——Step 5
0.1 ——Step 6

0.05

HV HW HW HW HW HW HW HW HW HW
1 3 5 7 9 11 13 15 17 19

Halfwave

Figure B3:  PMS (2.2 kN) steps 1-6, Dynamic Resistance plot
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PMS - (2.6kN)

(mQ)
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0
HW HW HW HW HW HW HW HW HW HW
1 3 5 7 9 11 13 15 17 19
Halfwave

Figure B4:  PMS (2.6 kN) steps 1-6, Dynamic Resistance plot
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PMS - (3.0kN)
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Figure BS5: PMS (3.0 kN) steps 1-6, Dynamic Resistance plot
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Dalex-25 (1.76kN)
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Figure B6:  Dalex-25 (1.76 kN) steps 1-6, Dynamic Resistance plot
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Dalex-25 (2.16kN)

(mQ)
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Figure B7:  Dalex-25 (2.16 kN) steps 1-6, Dynamic Resistance plot
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Dalex-25 (2.2kN)
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Figure B8:  Dalex-25 (2.2 kN) steps 1-6, Dynamic Resistance plot
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Dalex-25 (2.46kN)
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Figure B9:  Dalex-25 (2.46 kN) steps 1-6, Dynamic Resistance plot
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Dalex-25 (2.6kN)
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Figure B10:  Dalex-25 (2.6 kN) steps 1-6, Dynamic Resistance plot
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Dalex-25 (3.0kN)
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Figure B11: Dalex-25 (3.0 kN) steps 1-6, Dynamic Resistance plot
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DZ-35 (2.2kN)
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Figure B12: DZ-35 (2.2 kN) steps 1-6, Dynamic Resistance plot
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DZ-35 (2.6kN)
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Figure B13: DZ-35 (2.6 kN) steps 1-6, Dynamic Resistance plot
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DZ-35 (3.0kN)
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Figure B14: DZ-35 (3.0 kN) steps 1-6, Dynamic Resistance plot
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APPENDIX C

FITTED DYNAMIC RESISTANCE CURVES

Data and Fits
' : . Dynamic Resistance] |
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Figure C1:  Fitted Dynamic Resistance Curve: C-Gun machine at 2.2kN applied

Force.
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Figure C2:  Fitted Dynamic Resistance Curve: PMS machine at 2.2 kN Force.
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Figure C3:  Fitted Dynamic Resistance Curve: PMS machine at 2.6kN Force.
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Figure C4:  Fitted Dynamic Resistance Curve: Dalex-35 machine at 2.2kN Force.
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Figure C5 Fitted Dynamic Resistance Curve: Dalex-25 machine at 3.0kN Force.

225



Data and Fits
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Figure C6:  Fitted Dynamic Resistance Curve: Dalex-25 machine at 1.76 kN Force.
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Figure C7:  Fitted Dynamic Resistance Curve: Dalex-25 machine at 2.16 kN Force.
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Figure C8: Fitted Dynamic Resistance Model Sample:

C-Zange machine (3.0kN).
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Figure C9:  Fitted Dynamic Resistance Curve: Dalex-25 machine at 2.6kN Force.
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APPENDIX D

CODE FOR RUNNING EMBEDDED NEURAL NETWORK MODEL.:
PREDICTING SAMPLE RESISTANCE

Private Sub CommandButtonl Click()

Step by step instructions are given on how to use the 'generated DLL for this purpose.

This function returns the network ‘response’.

'Step 1: Create a new neural network object of the NSRecallNetwork type.

'Step 2: Set the pathName of the generated network DLL.

1

The DLL PATH_NAME below is defined in the Globals module as the 'path to the
newly generated DLL.
nn.dlIPathName = DLL PATH NAME

'Step 3: Load the saved network weights.

'"The initial best weights file is an exact copy of the weights file that was saved
'when the DLL was generated. However, the best weights file will change with each
'run of the TrainNetwork function if the network is reset before training.

nn.loadWeights BEST WEIGHTS PATH NAME

'Step 4: Define the input data.

1

"The original breadboard's training input data has been added to this

'workbook in the 'Input' worksheet. This step retrieves the data from this worksheet
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into an array then 'transposes this array to get it in the right format for input into the
generated DLL.
'"The number of inputs in the input data must match the number of inputs

'expected by the generated DLL.

" Dim inputDataTransposed As Variant, inputData As Variant
" inputData = Array(ForceText.Value, DiamterText.Value, KText.Value,
MText.Value, RoText.Value)

Dim inputData(0 To 4, 0 To 0) As Variant
inputData(0, 0) = CSng(ForceText.Value)
inputData(1, 0) = CSng(DiamterText.Value)
inputData(2, 0) = CSng(KText.Value)
inputData(3, 0) = CSng(MText.Value)
inputData(4, 0) = CSng(RoText.Value)

" With ThisWorkbook.Sheets("Input")

' If .Cells(2, 1).CurrentRegion.Columns.Count = 1 Then

' inputDataTransposed = .Range(.Cells(2, 1), .Cells(2, 1).End(x]Down)).Value
' Else

' inputDataTransposed = .Range(.Cells(2, 1), .Cells(2,
1).End(xIToRight).End(x]Down)).Value

' End If

' End With

1

inputData = TransposeArray(inputDataTransposed)

'Step 5: Send the input data to the network DLL.

1

nn.inputData = inputData

'Step 6: Get the network response (output).

1
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'"The network response is assigned to the return value of GetNetworkResponse
'function.
Dim netout As Variant

netout = nn.getResponse

outputText.Value = netout(0, 0)

'Step 7: Release the neural network object.

1

Set nn = Nothing
End Sub
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APPENDIX E

CODE FOR RUNNING EMBEDDED NEURAL NETWORK MODEL.:
PREDICTING OVERALL PROCESS PARAMETER

Private Sub CommandButtonl Click()

Step by step instructions are given on how to use the 'generated DLL for this purpose.

This function returns the network ‘response’.

'Step 1: Create a new neural network object of the NSRecallNetwork type.

'Step 2: Set the pathName of the generated network DLL.

1

The DLL PATH_NAME below is defined in the Globals module as the 'path to the
newly generated DLL.
nn.dlIPathName = DLL PATH NAME

'Step 3: Load the saved network weights.

'"The initial best weights file is an exact copy of the weights file that was saved
'when the DLL was generated. However, the best weights file will change with each
'run of the TrainNetwork function if the network is reset before training.

nn.loadWeights BEST WEIGHTS PATH NAME

'Step 4: Define the input data.

1

'"The original breadboard's training input data has been added to this

'workbook in the 'Input' worksheet. This step retrieves the data from this worksheet
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into an array then 'transposes this array to get it in the right format for input into the
generated DLL.

'"The number of inputs in the input data must match the number of inputs

'expected by the generated DLL.

1

Dim inputDataTransposed As Variant, inputData As Variant

inputData = Array(ForceText.Value, ResistanceText.Value, DiameterText.Value)

Dim inputData(0 To 2, 0 To 0) As Variant
inputData(0, 0) = CSng(ForceText.Value)
inputData(1, 0) = CSng(ResistanceText.Value)
inputData(2, 0) = CSng(DiameterText.Value)

" With ThisWorkbook.Sheets("Input")

' If .Cells(2, 1).CurrentRegion.Columns.Count = 1 Then

' inputDataTransposed = .Range(.Cells(2, 1), .Cells(2, 1).End(xIDown)).Value
' Else

' inputDataTransposed = .Range(.Cells(2, 1), .Cells(2,
1).End(xIToRight).End(x]Down)).Value

' End If

' End With

1

inputData = TransposeArray(inputDataTransposed)

'Step 5: Send the input data to the network DLL.

1

nn.inputData = inputData

'Step 6: Get the network response (output).

1

'"The network response is assigned to the return value of GetNetworkResponse
'function.

Dim netout As Variant
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netout = nn.getResponse

CurrentText.Value = netout(0, 0)

'Step 7: Release the neural network object.

1

Set nn = Nothing
End Sub
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APPENDIX F

PREDICTION OF EFFECTIVE CURRENT FOR DESIRED WELD
DIAMETER USING CONTROLLER FORM

C-gun Machine with an applied force of 3.0 kN

UserForm1 @
Farce 2.0

Resistance 0.10148
Diameter 3.7

CommandButton Current &.703784

Predicted = 6.703784
Actual = 6.48
Prediction accuracy = 96.55%

F1: Effective Current Predicted for C-Gun Machine 3.0kN Applied Force

C-gun Machine with an applied force of 2.6 kN
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X]

UserForm1

Force | 75
Resistance | 0.08%83

Diameter | 6.0

CommandButton Current 7.58468

Predicted = 7.98468
Actual = 8.29
Prediction accuracy = 95.29%

Figures F2: Effective Current Predicted for C-Gun Machine 2.6 kN Applied Force

C-gun Machine with applied force of 2.2 kN

UserForm1 ['5_(|

Farce 27
Resistance 0.1158

Diameter 5.3

CommandButton Current 7.121758

Predicted = 7.121756
Actual =7.1
Prediction accuracy = 99.66%

F3: Effective Current Predicted for C-Gun Machine 2.2 kN Applied Force

Dalex Machine with an applied force of 1.76 kN
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x]

UserForm1

Farce 175
Resistance 0.024025

Diameter 35

CommandButton Current 5.383358

Predicted = 5.383359
Actual =5.18
Prediction accuracy = 96.86%

F4: Effective Current Predicted for Dalex Machine 1.76 kN Applied Force

Dalex Machine with an applied force of 2.46 kN

UserForm1 r‘>_(|

Farce IHE—
Resistance 0.0815243

Diameter 3.9

éCDmmandButton Current 5.38831

Predicted = 6.38831
Actual = 6.58
Prediction accuracy = 97.04%

F5: Effective Current Predicted for Dalex Machine 2.46 kN Applied Force

Dalex Machine with an applied force of 3.0 kN
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X)

UserForm1

Farce 3.0
Resistance 0.0728734

Diameter 6.1

CommandButtan Current 8.358552

Predicted = 8.358552
Actual = 8.49
Prediction accuracy = 97.97%

F6: Effective Current Predicted for Dalex Machine 3.0 kN Applied Force

PMS Machine with an applied force of 2.2 kN

UserForm1 [‘5_<|

Farce IM—
Resistance 0. 1863675

Diameter 3.8

CommandButton Current Ll

............................................

Predicted = 6.474659
Actual = 6.35
Prediction accuracy = 98.08%

F7: Effective Current Predicted for PMS Machine 2.2 kN Applied Force

PMS Machine with an applied force of 2.6 kN
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UserForm1

Farce llﬁ—
Resistance 0. 162920004

Diameter 5.85

X

CommandButton Current S Ll

............................................

Predicted = 7.986079
Actual = 7.68
Prediction accuracy = 95.28%

F8: Effective Current Predicted for PMS Machine 2.6 kN Applied Force

PMS Machine with an applied force of 3.0 kN

UserForm1 [‘5_(|

Farce |3EI—
Resistance 0.1331025

Diameter 6.2

CommandButton Current i it

............................................

Predicted = 8.963214
Actual =9.36
Prediction accuracy = 93.88%

F9: Effective Current Predicted for PMS Machine 3.0 kN Applied Force

DZ Machine with an applied force of 3.0 kN
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UserForm1

Farce l:"":'—
Resistance 0.10806

Diameter 4.4

CommandButton Current 7.325883

............................................

X

Predicted = 7.325683
Actual =7.61
Prediction accuracy = 95.61%

F10: Effective Current Predicted for DZ Machine 3.0 kN Applied Force

DZ Machine with an applied force of 2.6 kN

UserForm1 [‘5_(|

Farce ll'ﬁ—
Resistance 0.09952

Diameter 6.0

CommandButton Current Sl

............................................

Predicted = 8.088946
Actual = 8.32
Prediction accuracy = 96.43%

F11: Effective Current Predicted for DZ Machine 2.6 kN Applied Force

DZ Machine with an applied force of 2.2 kN
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X]

UserForm1

Farce 22
Resistance 0.13469

Diameter 3.7

CommandButton Current 8L

Predicted = 6.073895
Actual = 6.49
Prediction accuracy = 93.58%

F12: Effective Current Predicted for DZ Machine 2.2 kN Applied Force
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APPENDIX G

PAPER SUBMISSION 1

MODELLING DYNAMIC RESISTANCE VARIABLE IN
RESISTANCE SPOT WELDING

Pius Nwachukwu Oba, Professor D. Chandler and Dr. S. Oerder
(University of the Witwatersrand, Johannesburg, South Africa)

Prof. Dr.-Ing. Dr. h.c.L. Dorn and Dr. Ing. Kevin Momeni

(Technical University Berlin, Germany)

Abstract

The non linear and complex nature of dynamic resistance variables makes it difficult to
predict weld quality. Presented in this paper is the method used to obtain appropriate

models for predicting weld resistance from dynamic resistance halfwaves.

An empirical three parameter approximate mathematical function model with dependent
and independent variables was developed for curve fitting the nonlinear halfwave
dynamic resistance curve. The values of the parameters were used for determining overall
resistance for any desired weld diameter. The prediction capability of the empirical model
for predicting resistance in any welding machine was improved by passing the outputs
from the empirical model through neural network learning. By using the multilayer
perceptron (MLP) neural network architecture, resistance of each sample was predicted
with an accuracy of about 99.9% to 97%. This estimated resistance can be used for

predicting weld quality with good reproducibility.
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APPENDIX H

PAPER SUBMISSION 2

MODELLING RESISTANCE SPOT WELDING PARAMETERS
FOR PREDICTING EFFECTIVE WELD CURRENT

Pius Nwachukwu Oba, Professor D. Chandler and Dr. S. Oerder
(University of the Witwatersrand, Johannesburg, South Africa)

Prof. Dr.-Ing. Dr. h.c.L. Dorn and Dr. Ing. Kevin Momeni

(Technical University Berlin, Germany)

Abstract

Presented in this paper is a model used for predicting effective weld current (RMS) for
desired weld diameter (weld quality) in the resistance spot welding process. Electrical
parameters namely effective weld current and dynamic resistance with applied electrode
force, are identified as the strongest input signals necessary to predict the output weld
diameter. These input parameters are used for developing a neural network process model

for predicting effective weld current.

An initial empirical model developed by the authors as was used for predicting sample
resistance which was integrated with this model for predicting required effective weld
current for any desired weld diameter. The prediction accuracy of this model was in the
range of 94% to 99%. This neural network process model was designed by optimising
the squared error between the neural network output and the desired output. The neural
network process model delivers effective current for any desired weld diameter. The

model is observed to predict the desired output accurately.
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APPENDIX |

PAPER 3 DEVELOPED FOR PUBLICATION

CASE STUDY ON IMPROVING NEURAL NETWORK PREDICTIVE CAPABILITY
APPLICATION IN RESISTANCE SPOT WELDING QUALITY MODELLING

Pius Nwachukwu Oba, Professor D. Chandler and Dr. S. Oerder

(University of the Witwatersrand, Johannesburg, South Africa)

Prof. Dr.-Ing. Dr. h.c.L. Dorn and Dr. Ing. Kevin Momeni

(Technical University Berlin, Germany)

Abstract

A three parameter approximate mathematical function model with dependent and
independent variables was used for curve fitting nonlinear halfwave dynamic resistance
curve generated from the resistance spot welding process. The value estimates of the
parameters were used to develop charts for determining overall resistance of samples for

any desired weld diameter. The prediction error in estimating sample resistance using the

charts was 16% to 167%.

The empirical model prediction accuracy was improved using neural network artificial
intelligency to learn the pattern in the dataset. The two inputs used were applied electrode
force and weld diameter while calculated sample resistance from the empirical model was
the output. These dataset were used to train four neural network types. These were the
Generalised feed forward neural network, Multilayer perceptron network, Redial basis
function and Recurrent network. Of all the four network types, the multilayer perceptron
had the least mean square error for training and cross validation with prediction error of

65%. Prediction improvement from previous 167%.
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The number of input parameters in the multilayer perceptron architecture was increased
from the initial two inputs to five inputs by including all the estimation parameters from
the mathematical model. This Multilayer perceptron neural network architecture yielded a
mean square error in training and cross validation of 0.00037 and 0.000390 with linear
correlation coefficient in testing of 0.999 and maximum estimation error of about 0.1% to

3%. An accuracy of 99.9% to 97%.
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APPENDIX J

PAPER 4 DEVELOPED FOR PUBLICATION

DESIGN AND IMPLEMENTATION OF PREDICTIVE CONTROLLER FOR THE
RESISTANCE SPOT WELDING PROCESS.

Pius Nwachukwu Oba, Professor D. Chandler and Dr. S. Oerder
(University of the Witwatersrand, Johannesburg, South Africa)

Prof. Dr.-Ing. Dr. h.c.L. Dorn and Dr. Ing. Kevin Momeni

(Technical University Berlin, Germany)

Abstract

Presented in this paper is the method used for the design of a predictive controller for
predicting effective weld current in the resistance spot welding process using a developed
process model. A suitable process model forms an important step in the development and

design of process controller for achieving good weld quality with good reproducibility.

The process model developed by the Authors consists of three parameter empirical model
with dependent and independent variables used for curve fitting the nonlinear halfwave
dynamic resistance curve. To improve the prediction accuracy of this empirical model,
the data generated from the model were used to train four different neural network types.
Of the four network types trained, the MLP had the least mean square error for training
and cross validation of 0.00037 and 0.000390 respectively with linear correlation
coefficient in testing of 0.999 and maximum estimation error range from 0.1% to 3%.
This model was selected for the design and implementation of the controller for
predicting overall sample resistance. Using this predicted overall sample resistance, and
applied electrode force, a similar model was developed for predicting required effective

weld current for any desired weld diameter. The prediction accuracy of this model was in
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the range of about 94% to 99%. The controller outputs effective current for any desired
weld diameter. This controller is observed to track the desired output accurately with
same prediction accuracy of the model used which was about 94% to 99%. The controller
works by utilizing the neural network output embedded in Microsoft Excel as a digital

link library.
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