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Abstract ii

ABSTRACT 
 
 

Attainable Region analysis is a chemical process synthesis technique that 

enables a design engineer to find process unit configurations that can be 

used to identify all possible outputs, by considering only the given feed 

specifications and permitted fundamental processes. The mathematical 

complexity of the attainable regions theory has so far been a major 

drawback in the implementation of this powerful technique into standard 

process design tools. In the past five years researchers focused on 

developing systematic methods to automate the procedure of identifying 

the set of all possible outputs termed the Attainable Regions.   

  

This work contributes to the development of systematic numerical 

formulations for attainable region analysis. By considering combinations 

of fundamental processes of chemical reaction, bulk mixing and heat 

transfer, two numerical formulations are proposed as systematic 

techniques for automation of identifying optimal process units networks 

using the attainable region analysis. The first formulation named the 

recursive convex control policy (RCC) algorithm uses the necessary 

requirement for convexity to approximate optimal combinations of 

fundamental processes that outline the shape of the boundary of the 

attainable regions. The recursive convex control policy forms the major 

content of this work and several case studies including those of industrial 

significance are used to demonstrate the efficiency of this technique. The 

ease of application and fast computational run-time are shown by 

assembling the RCC into a user interfaced computer application contained 

in a compact disk accompanying this thesis. The RCC algorithm enables 

identifying solutions for higher dimensional and complex industrial case 
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studies that were previously perceived impractical to solve.  

 

The second numerical formulation uses singular optimal control 

techniques to identify optimal combinations of fundamental processes. 

This formulation also serves as a guarantee that the attainable region 

analysis conforms to Pontryagin’s maximum principle. This was shown by 

the solutions obtained using the RCC algorithm being consistent with 

those obtained by singular optimal control techniques.  
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Chapter 1: Introduction 
 

1

 CHAPTER 1 

 INTRODUCTION 
 

1.1 Introduction 

The procedure of reactor networks synthesis, as a subtask of chemical 

process synthesis, is concerned with identifying reactor types, layouts and 

flow configurations as well as key design parameters for given feed 

conditions and underlying reaction kinetics, that will optimise a specific 

objective function. This objective function might, for example, relate to the 

rate of production of a desired product(s). The objective function may 

include cost effectiveness, product yield and selectivity, and environmental 

concerns, among others. 

The principal aim in reactor network synthesis is to develop a design that 

constitutes combinations of fundamental processes, flowsheet layouts and 

operation configurations that can be applied to transform a feed with 

specified conditions to the intended product(s). The types of fundamental 

processes concerned are generally reaction, mixing, separation, heating, 

cooling and compression. Commonly, many designs for attaining the same 

output are possible but there is generally only one optimal design to satisfy a 

specific objective. 

For a steady state process, reactor network design establishes an optimal 

process layout with flow interconnections of material and energy between 

the process units. The unit operations that are considered include types of 
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reactors, heat transfer equipment and mass transfer equipment. In addition 

to the specifications for a steady state process listed above, the optimal 

control sequence and operation can be identified for a dynamic or transient 

system.  

Fundamental processes are essentially necessitated by the primary 

transformation objective of the process that is being designed. However, it is 

common that a process can be required to prepare the condition of the 

available feed. In the case of impure feed, upstream separation may be 

required. Preheating is commonly necessary in many processes. In some 

cases, a fundamental process is dictated by preceding processes, an example 

of this is the separation of a product from by-products due to side reactions.  

Each unit operation in the design utilises a respective fundamental process or 

combinations of fundamental processes. For a system where the fundamental 

process is reaction, batch and plug flow reactors are possible choices, for 

example. Distillation columns, membrane separators and flash drums are 

used for separation processes and heat exchangers for heating and cooling. 

Reactive distillation columns and membrane reactors will be considered for 

combinations of reaction and separation. Thus, by considering only 

permitted fundamental processes, it is possible to synthesise a process 

network that can be further interpreted as a system of interconnected unit 

operations with design parameters. 

From a different perspective, the essence of reactor network synthesis is to 

determine the configuration of fundamental processes and/or combinations 

thereof that will optimise some objective function for the transformation of a 

given feed to a desired product(s). Key design parameters such as process 

flows, residence times, temperatures and pressures also need to be specified 
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for such an optimal operation. The interpretation of these specifications into 

interconnected unit operations becomes a simple and straightforward task, 

from which a complete process flowsheet arises. The Attainable Region 

analysis applies a systematic consideration of all feasible combinations of 

permitted fundamental processes to obtain a set of all possible product states 

for a given feed. Equipped with a set of all possible product states, termed 

the Attainable Region (AR), optimisation of a given objective function can be 

carried out with ease to obtain the optimal product. A set of interconnected 

processes used to attain the optimal product is then interpreted as a network 

of unit operations with flow configurations and key design parameters. 

Obtaining a set of all possible products that can be realised for a given feed 

by applying all feasible combinations of all permitted processes can be an 

exhaustive and mathematically complex exercise. This can limit the use of a 

potentially powerful process synthesis technique such as Attainable Region 

analysis to specialists only. 

The advent of powerful computers has recently stimulated interest in 

developing automated process synthesis techniques. These techniques 

combine complex numerical methods with the power of fast computers to 

produce tools that can be made available for use by process synthesis 

engineers to generate optimal unit operations structures and also optimise 

existing processes.           

 

1.2 Aim of the study   

This research focuses on further developing attainable region analysis and 

formulating numerical methods to ease the complexity surrounding the 
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application of these methods to the design of optimal reactor networks. 

Combining these formulations with the increased power of computers, the 

research proceeds to develop algorithms that automate and speed-up the 

procedure of reactor network synthesis. These algorithmic tools will enhance 

the relevance of AR analysis to the chemical process industry. Currently, the 

AR analysis is limited to only a few feed and product components and 

fundamental processes due to the unavailability of tools that can handle 

computational complexities inherent in systems with multiple feed and 

product components and multiple fundamental processes. In this study we 

develop tools to remedy these drawbacks by performing tasks listed below: 

• Revising the basic ideas governing AR analysis and the construction 

of ARs. 

• Introducing a new systematic method of generating ARs and further 

formulating this method into an algorithmic tool. 

• Demonstrating the robustness of the new algorithmic tool by studying 

complex systems that were previously considered impossible to solve. 

• Showing how the currently known optimisation techniques can be 

used in AR analysis. 

• Applying the newly developed tool to classical optimisation problems 

to validate outcomes. 

• Finally, compiling the new tool into a user friendly computer software 

package that can be used to solve problems and teach AR analysis. 
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These topics will be addressed with the aid of study cases ranging from very 

simple ideal systems to complex well-known industrial ones. As we continue 

with the study of AR analysis for various process systems, exploring 

combinations of permitted fundamental processes, extensively intricate 

networks will ensue including the ones that transcend current 

understanding.  

 

1.3 Thesis Outline   

Chapter 2 

Process synthesis literature is reviewed to provide insight on the latest 

progress in the development on the techniques involved. The evolution of 

process design is followed from exhaustive hands-on traditional approaches 

to the sophisticated modern techniques such as computer algorithmic tools 

and simulation packages. The role played by attainable region analysis in 

process synthesis is also highlighted with its progression tracked from its 

origin to the current status. The key points in the AR theory that are relevant 

to the focus of this thesis are then revised with additional features developed 

in the course of the research. Emphasis is placed on demonstrating the 

competence of AR analysis in generating optimal process synthesis solutions 

for systems of virtually any complexity. 

Analytical methods that have been derived by researchers over the years are 

revised and their application in solving attainable regions problems is 

demonstrated. The key issue emphasised in this chapter is the need for 
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systematic techniques to automate the application of AR analysis to solving 

process synthesis problems by taking advantage of the power of computers.   

However, this chapter does not conclude the literature survey for the entire 

thesis as every chapter begins with literature review specific to its focus of 

study.  

Chapter 3 

This chapter starts by demonstrating how analytical methods can be used to 

identify optimal process configurations by use of a simple ideal case study. 

The objective of the demonstration is to show that even for a simple ideal 

case study; the analytical methods can develop into a very intricate algebraic 

exercise. Once again the need for systematic algorithmic computer 

techniques to identify attainable regions is highlighted.  

The second section reviews the literature specific to the previous 

development of systematic tools for AR analysis to date. The limitations and 

the need for improvement of these tools are also detailed. These limitations 

include long computational run-times and the incapability to handle higher 

dimensional problems. 

The third section proposes a new robust and easy apply technique. The 

theory that supports the foundation of this new technique is revised with 

mathematical definitions. The recursive convex control policy (RCC) 

technique is then introduced by detailing its approach to solving AR 

problems. The first application of the RCC algorithm is demonstrated with 

the use of a simple case study that has previously been solved with analytical 
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methods. The solution obtained is shown to be spot-on with that obtained 

using analytical formulations.  The easy plug and play solution procedure is 

acknowledged without the need to carry out any algebraic calculations prior 

to implementing the algorithm. Clear cut advancement to a four-dimensional 

case study is demonstrated and the results are proved to conform to the 

necessary conditions of optimality as required by the analytical methods 

derived from AR theory. Visualisation of a four-dimensional candidate AR is 

demonstrated using a number of lower dimensional projections. An objective 

function is optimised to illustrate how an optimum point that lie on the 

boundary of the four-dimensional AR can appear be in the interior when 

projected in lower dimensional space.  

In conclusion, emphasis is placed on the capability of the RCC algorithm to 

solve higher dimensional problems that previously could only be speculated 

on. 

Chapter 4 

In this chapter the RCC algorithm is packaged as a complete AR analysis 

application and teaching tool with an easy to use graphic interface. User-

manual style is adopted to describe the features of the user interfaced tool. 

The package uses a built-in theoretical example that allows the user to 

change parameters and identify candidate attainable regions at the click of a 

button. This software package is included in a compact disk attached to this 

thesis. 
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Chapter 5 

The robustness of the RCC algorithm is demonstrated by application to 

identifying candidate attainable regions (ARCs) for industrial case studies. 

This is achieved by solving a generic model for first order exothermic 

reversible reactions that has previously been studied using analytical 

methods.  This case study considers processes of reaction, mixing and heat 

transfer.   

In the second example the RCC algorithm is used to identify an optimal 

process configuration for the industrially important ammonia synthesis via 

attainable regions analysis. This case study has also been studied using the 

previously developed automated AR techniques.  

Chapter 6 

The optimal reactor configuration for a more complex industrial process of 

methanol synthesis is identified via attainable region analysis. The methanol 

synthesis reaction scheme and kinetics are mathematically complex and it 

would be impractical to attempt to identify candidate attainable regions 

(ARCs) from analytical formulations.  The geometric guidelines that have 

traditionally been used to identify optimal reactor networks for exothermic 

reversible reactions do not hold for the methanol process as more than one 

reaction is involved.     

The RCC algorithm is applied to solve candidate attainable regions for 

methanol synthesis and further interpreted in terms of reactor networks with 

process parameters.  
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Chapter 7 

In this chapter, classical optimisation techniques are used to identify optimal 

combinations of processes that outline the shape of the attainable regions. In 

this section, attainable regions problems are formulated as singular optimal 

control problems that can be solved using techniques that are based on 

traditional optimisation theory such as Pontryagin’s maximum principle. 

The classical optimisation technique is acknowledged as one of the 

systematic tools that can be used to automate the construction of candidate 

attainable regions. The water-gas shift reaction is used as an industrial case 

study and the results obtained using singular optimal control techniques are 

proven to be consistent with solutions from other automated techniques.    

In conclusion emphasis is placed on demonstrating that the attainable region 

analysis conforms to the necessary condition of optimality as required by 

Pontryagin’s maximum principle. This is demonstrated by the results 

obtained from both methods being consistent with one another.     

Chapter 8 

The RCC technique is applied to solve unsteady state optimisation problems 

that have traditionally being solved by methods based on Pontryagin’s 

maximum principle. The main objective of the chapter is not to accurately 

compute the solution profiles for optimisation problems, but to indicate that 

the control sequence and switching times can be quickly established using 

the RCC algorithm.    
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Chapter 9 

This chapter concludes the thesis by summarising the conclusions of all 

chapters. The contribution of this thesis to knowledge is stated and the 

relevance of the thesis title is verified by confirming that the objectives have 

been achieved. Possible areas of future research that are consequent to this 

study are also proposed.          
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 CHAPTER 2 

 ATTAINABLE REGION ANALYSIS:  
BACKGROUND LITERATURE AND THEORY 

2.1 Introduction 

In this chapter we review the literature and theory of attainable regions relevant 

to the focus area of this research. We start with an introductory summary and 

some definitions, followed by a review of research literature in the field which is 

covered in the next section. The theory pertinent to this study is then presented in 

the third section.    

As defined by Horn (1964) and subsequent researchers; Glasser et al., (1987), 

Hildebrandt et al., (1990) Glasser et al., (1992) and Feinberg and Hildebrandt 

(1997), the Attainable Region (AR) is a set of all possible outcome states that can 

be realised from all or any feasible combination of all permitted fundamental 

processes for a given input, subject to specified constraints. The boundary of the 

AR sets limits to the achievable states and it is therefore of special interest as it is 

where the optimal operating policies are usually located (Horn 1964). The 

boundary of the attainable region is characterised by certain necessary conditions 

that ensure that there are no possible extensions pertaining to these known 

necessary conditions (Feinberg and Hildebrandt, 1997). It should be emphasised 

that there are no sufficiency conditions to guarantee that the nominated region 

contains all possible outcomes from all possible combinations of all of the 

permitted fundamental processes and that no possibilities have been excluded 

(Feinberg and Hildebrandt, 1997). In the light of this indeterminacy, a region that 
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satisfies all the known necessary conditions is termed the Candidate Attainable 

Regions (ARC).  

The Attainable Region analysis method can be used to identify optimal reactor 

types, flow configurations and key design parameters which will optimise the 

objective function.  

2.2 Background Literature   

The process synthesis procedure involves identifying optimum process 

specifications for a given system. The traditional methods of process synthesis 

were based on heuristics that are generally derived from years of practical 

experience (Douglas, 1985). These traditional methods use well understood 

behaviours of simple systems to explain higher level complex systems which are 

generally difficult to simplify. To design a process using these traditional 

methods, experts in the field propose a large number of flowsheets based on their 

experience.  These flowsheets are then entered into a decision making procedure 

as potential candidates.  The heuristics handle the complexity of problems by 

multilevel decomposition, thus, identifying promising candidate processes while 

eliminating unpromising ones in a hierarchical decision making procedure 

(Douglas, 1985). This process often results in heuristics contradicting each other as 

indicated by Douglas, (1985) and later Shah and Kokossis (1997).  

To overcome the contradictory nature of heuristics, Shah and Kokossis (1997) 

proposed an idea of conceptual programming for a reactor-separator system. The 

authors used shortcut methods to identify possible designs, which were followed 

up with a mathematical program to evaluate the trade-offs between the processes.  



Numerical Formulations for Attainable Region Analysis                      Tumisang G. Seodigeng  
 

Chapter 2: Attainable Region Analysis: Background Literature and Theory 
 

13

Another process synthesis technique based on mathematical programming is the 

superstructure optimisation method (Kokossis and Floudas, 1990, 1991, 1994). A 

superstructure is a complex generalised process that comprises a number of 

processing units connected together by a large number of interlinking streams. By 

eliminating various processing units and streams, a large number of alternative 

process layouts can be obtained from the superstructure optimisation. A 

superstructure optimisation problem can be formulated as a mixed integer non-

linear programming (MINLP) problem. Integer variables are used to signify the 

presence or absence of processing units or streams while non-linear variables are 

used for controls such as temperature, pressure, reactor volumes and stream 

flowrates. The disadvantages of this technique include the fact that it relies on the 

assumption that the superstructure is sufficiently general to include the optimum 

process layout, although that may not be the case and cannot be proven in 

advance.        

Papalexandri and Pistikopoulos (1994, 1996) proposed an alternative method to 

superstructure optimisation. The structure in this case was more generalised and 

consisted of mass exchanger and heat exchanger modules instead of specific 

processing units as in the superstructure. The authors also included complete 

connectivity by ensuring that the feed to any particular module can be a 

combination of products of all modules and system feeds. Combinations of these 

modules were used to represent known complex structure such as distillation 

columns. These combinations could also result in novel processing units, but, 

could however not represent nor distinguish between reaction and mass transfer.      

The concept of representing all possible states that can be reached by a system of 

reactions was first proposed by Horn (1964) four decades ago. Horn (1964) argued 

that the objective variables associated with a chemical reactor, formed a space 
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whose components can be divided into attainable and non-attainable regions. In 

particular, Horn described the attainable region as the set of all possible outcome 

states that can be realised in a reactor system. He further suggested that the 

optimal operating policies would generally correspond to the boundary of the 

attainable region. Without stating any general technique for determining the 

attainable region boundary, Horn pointed out a number of its important 

characteristics. These characteristics stated that the attainable region would not 

necessarily include all stoichiometrically possible compositions as it would be 

restricted to sets of compositions that can be realised in all possible reactor 

configurations.     

More than two decades after Horn proposed the concept of Attainable Regions, 

Glasser et al. (1987) and Hildebrandt (1989) suggested a general technique for 

determining the boundary of the AR for isothermal reactor systems with constant 

density.  Their method represented the processes of reaction and mixing 

geometrically as vectors. Working from a graphical basis and using a number of 

examples, Hildebrandt (1989) derived a set of necessary conditions arising from 

geometric interpretations of the process vectors which must be satisfied by any 

ARC.  

Hildebrandt et al. (1990) further developed somewhat more general geometric 

techniques for finding ARs. In this case the systems were no longer restricted to 

isothermal or constant density. A more sophisticated contribution on these 

geometric techniques was made by Glasser et al. (1992). It was only then that clear 

conjectures about optimal process combinations were asserted. Though at a very 

intuitive level, they suggested geometric principles governing the occurrence of 

the optimal trajectories for combination of reaction and mixing on the AR 

boundary. This optimal structure, termed the differential side-stream reactor 
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(DSR), represents a reactor in which reaction and mixing occur simultaneously in 

a controlled ratio (Glasser et al., 1992). It is practically possible to realise this 

reactor as a plug flow reactor (PFR) with mixing of fresh feed material along its 

length. 

Love (1995) formalised the mathematical ideas governing the properties of the AR 

boundary in three dimensions. Godorr (1998) presented a set of application 

examples where the attainable regions method was used to solve chemical reactor 

optimisation problems. Nicol (1998) extended the AR technique to solve problems 

with heat transfer and also attempted to address four dimensional problems. A 

more general study was done by McGregor (1998) by applying attainable regions 

analysis to systems with reaction and mass transfer.  McGregor further outlined 

guidelines that could be used as a systematic procedure for finding ARCs.  

Feinberg and Hildebrandt (1997) presented a rigorous and more universal set of 

proofs of geometric principles of the AR boundary for reaction and mixing. In 

particular, the necessary conditions for the AR boundary were formally detailed 

and proved. A powerful result of this work, although not explicitly stated, was 

that optimal combinations of permitted fundamental processes provide access to 

regions where single processes operate on the boundary of the AR. This result is 

of high importance as it suggests that, for a given system, the ARC can primarily 

be identified by solving optimal combinations of permitted fundamental 

processes. Feinberg and Hildebrandt (1997) also introduced the Complement 

Principle, which is a general theory of the overall mass balance that can be applied 

to any reactor system. This principle was instrumental in geometrically proving 

the completeness of the ARC and it was not clear if it could be used beyond that.  
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Feinberg (2000a) derived, from the optimal geometric control ideas, the analytical 

equations governing the optimal control policies for trajectories of combinations 

of reaction and mixing. These optimal trajectories were interpreted as differential 

side-stream reactors (DSRs) as defined by Glasser et al. (1992). Feinberg 

demonstrated how these optimal trajectories served as precursors from which 

plug flow reactor curves and mixing surfaces emanated, providing final access to 

the boundary of the attainable regions. The analytical formulations for optimal 

process combinations were derived for processes of reaction and mixing. There 

were no stated dimensional limitations of these formulations as there were 

illustrations for three to six dimensions, to claim dimensional generality.  

In a third paper, Feinberg (2000b) communicated special analytical equations that 

the continuous flow stirred tank reactors (CFSTRs) should conform to in order to 

occur on the attainable region boundary.   These special reactors were called 

critical CFSTRs. Once again these were derived for a class of steady state 

isothermal designs involving only reaction and mixing, and the derivations 

showed dimensional generality. However, these analytical equations required 

algebraically intensive derivations resulting in complex mathematical expressions 

(Feinberg 2000a &b).  

 

2.3 Background Theory   

The theory of the attainable regions has been progressively assembled over the 

years. The most recent is the work of Feinberg and Hildebrandt (1997) and the 

subsequent articles by Feinberg (2000 a & b).      



Numerical Formulations for Attainable Region Analysis                      Tumisang G. Seodigeng  
 

Chapter 2: Attainable Region Analysis: Background Literature and Theory 
 

17

2.3.1 The Necessary Conditions 

A candidate attainable region (ARC) should satisfy a set of necessary conditions as 

detailed below, (Feinberg and Hildebrandt, 1997): 

1. The AR should include all defined input states. 

 The AR by definition encompasses all possible output states. Any input to 

the system is a possible output if neither process nor combinations thereof 

are applied to it. 

2. No permitted fundamental process vectors on the boundary of the AR are 

allowed to extend outside of the AR unless the operation of such a process 

beyond the boundary results in the violation of the stated system constraints.  

 
  (a)       (b) 

 Figure 2.1:  Illustration of boundary extension via a process vector  

   pointing outwards the candidate region 

To illustrate this we consider the boundary of the candidate AR shown in 

Figure 2.1, where processes P1, P2 and P3 are permitted fundamental 

processes. If a point existed on the AR boundary such that the vector 

P1  
P2 
P3 

P1  
P2 
P3 
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describing process P3 points out of the region (Figure 2.1 a), the existing 

region can be extended further by applying P3 (Figure 2.1 b). But if the 

application of P3 results in exceeding the maximum constraints placed on 

the system, such process cannot be undertaken due to the resulting 

constraint violation.   

3. For systems where the variables of the construction space obey linear mixing 

and where mixing is also a permitted fundamental process, the AR should be 

convex.  

  
 
     (a)      (b) 
 
 Figure 2.2:  Illustration of filling the concavities on the candidate 
    AR boundary with mixing  

This condition is a direct result of the second condition. Any concavities on 

the boundary (Figure 2.2 a), will result in a manifold of points from which a 

set of mixing vectors will emanate and to all other points on the manifold, 

thus filling the concavity (Figure 2.2 b).  

4. No fundamental process vectors in the constrained complement of the AR 

boundary may intersect the AR boundary itself when negatively extrapolated. 

mixing 
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To illustrate this we will restrict our system to consider fundamental 

processes of reaction and mixing only. The constrained complement of the 

AR is the non-attainable region and is bounded by the operational 

constraints. If there are such negative extensions of vectors that intersect 

the AR boundary, those vectors by combination with mixing could 

represent a point of CFSTR operation.  This condition constrains the set of 

vectors that may be present in any steady state unit operations for systems 

permitting only processes of reaction and mixing.    

 In the absence of a sufficiency condition, the above-stated necessary conditions 

serve as guidelines for testing ARCs for completeness, although it cannot be 

exhaustively demonstrated that regions have no possible extensions. As already 

defined, a region that satisfies all the necessary conditions is termed the candidate 

attainable region (ARC).  

2.3.2 Elements of Attainable Region Analysis 

In this section we review the traditional guidelines of the AR technique. These 

were first detailed by Hildebrandt (1989) and later appeared in a series of 

publications with minor amendments (Godorr, 1998; Nicol, 1998). The most 

elaborate correspondence detailing these guidelines was made by McGregor 

(1998). 

We start with the problem statement describing the system with its physical and 

mathematical descriptions. All input states, permitted fundamental processes, 

system constraints and objective functions are stated in the problem statement. 

The aim is to apply attainable regions analysis to obtain all possible outcome 

states in order to later find process specifications that optimise the given objective. 
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I. Fundamental Processes 

The permitted fundamental processes will generally be specified in the problem 

statement as physical phenomena that can be applied to effect a change in the 

state of the system input(s). These processes can include, for reactor network 

synthesis; reaction, mixing, separation, heating and cooling as well as 

compression and decompression among others.  

II. Choice of State Variables 

The state variables are chosen to adequately describe all permitted fundamental 

processes and the system objective functions. Typical state variables include the 

system reactants and products concentrations, reaction conversions, partial 

pressures and temperatures. State variables that arise from the objective functions 

may be cost variables that are in most cases some functions of reaction residence 

time. It is often at this point where the geometry of the AR is determined. The 

number of variables that fully describes the system determines the geometric 

dimensionality of the problem. The geometric dimensionality of the problem 

dictates the dimension of the space in which the AR is going to be identified, i.e. if 

the AR is going to be two, three or four dimensions in Euclidian space. In most 

cases, it is imperative to choose state variables that obey convex mixing, such that 

the region to be constructed is characterised by conditions detailed in the 

preceding section.  

III. Mathematical Definition of the Fundamental Process Vectors 

After the fundamental processes have been selected and the state variables 

chosen, appropriate mathematical vector descriptions for the fundamental 

processes in terms of the state variables can be formulated. These vectors 
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represent the instantaneous state change when the processes are applied to their 

respective input.  

For the system where isothermal reaction takes place, the reaction vector defined 

at concentration C is r(C). This vector represents the instantaneous change in C 

due to the fundamental process of reaction. For exothermic adiabatic systems 

where the reaction takes place in the gas phase, and where there is a change in the 

total number of moles as given in the balanced chemical reaction equation which 

results in the total pressure (PT) change, the reaction vector can be represented as 

r(P, T) defined at the partial pressures of components, P, and temperature T.       

 For a system where a number of fundamental processes are permitted to occur 

simultaneously, the overall process vector can be described as a convex 

combination of all fundamental processes. Consider a system where M processes 

are permitted to occur. The fundamental processes (p) depend on the state of the 

system c, and possibly some other achievable state or combinations of achievable 

states within the system, c*. The fundamental processes for this case may be 

represented as p1(c,c*), p2(c,c*)..., pM(c,c*). The overall net effect of the system due 

to all processes can be expressed as 

  ( ) ( )∑
=

∗∗ =
M

j
jjNET

1

,, ccpccp α        (2.1) 

defining the operating control policy for the fundamental process j as αj which 

specifies the degree to which the  fundamental process j occurs relative to other 

fundamental processes. It is possible that each fundamental process depends on 

its individual achievable state cj*, in which case equation 2.1 can be accordingly 

modified to be as shown below: 
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( ) ( )∑
=

∗ =
M

j
jjjNET

1

*,, ccpccp α      (2.1 b) 

IV. Specifying the System Constraints 

The system constraints represent the physical restrictions placed on the system. 

These restrictions may be a function of the state variables and/or fundamental 

processes.  A state variable such as temperature may be confined within the lower 

and upper bounds as Tmin ≤ T ≤ Tmax. The process operating policy may also be 

constrained as maxmin
jjj ααα ≤≤ .       

V. Verification of the Necessary Conditions 

Based on the state variables, process vectors and system constraints, the 

applicability of the necessary conditions for the system may be verified. These 

conditions will be a modification of the necessary conditions stated in section 

2.2.1.  For example, in cases where there are system constraints such as maximum 

temperature, process vectors will be allowed to extend out of the ARC if following 

such process vectors results in constraint violation. 

VI. Construction of the Attainable Region 

McGregor (1998) suggested a trial and error approach to the construction of 

attainable regions. The fundamental processes are applied to all system feeds and 

the resulting set of outcome states is checked for violations of the necessary 

conditions. Wherever a necessary condition is broken, fundamental processes or 

combinations thereof are applied to expand the region. This procedure is 

performed iteratively until all necessary conditions are satisfied by all state points 

on the candidate AR boundary. This technique of construction is a typical 

example of constructing the attainable regions from the interior, where a small 
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region is grown outwards by extensions arising from application of fundamental 

processes and/or combinations thereof.  

VII. Optimisation of the Objective Function 

The objective function is now evaluated over the region to obtain the optimum 

operating point. 

VIII.  Interpretation of the Boundary   

Once the optimum operating point has been established it can further be 

interpreted in terms of optimal operating policies. Any point on the boundary can 

be interpreted as a result of an application of a sequence of fundamental processes 

applied to achieve it from the input states. This network of processes, together 

with the optimal operating policies, can be further construed to represent unit 

operations with flow configurations and key design parameters. If the optimum 

operating point is in the interior of the attainable regions boundary there will be 

an infinite number of ways of achieving it (Glasser et al., 1992).  

2.4 Structure of the Attainable Region Boundary 

2.4.1 Background 

McGregor (1998) derived a number of postulates to simplify the exhaustive nature 

of the traditional trial and error method for identify candidate attainable regions.  

Without giving any proofs or specific guidelines, McGregor (1998) intuitively 

suggested that the postulates will ease the complexities surrounding the 

procedure of identifying and interpreting the ARCs. These postulates were later 

validated by the universal properties of the AR boundary derived by Feinberg 

and Hildebrandt (1997) for the specific case of steady-state systems involving the 
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fundamental processes of isothermal reaction and mixing. McGregor (1998) used 

numerous examples and Pontryagin’s maximum principle to substantiate the 

validity of these postulates in general.  

In this study the relevance of these postulates to expedite the procedure of 

systematic identification and interpretation of ARCs will be demonstrated. In 

conjunction with and supported by the latter work of Feinberg (2000a & b), 

McGregor’s postulates form a foundation of this study.  

2.4.2 McGregor’s Postulates 

Consider a system in Section 2.3 above with M permitted fundamental processes 

that can be represented by a net effect resultant process expressed as;  

( ) ( )∑
=

∗ =
M

j
jjjNET

1

*,, ccpccp α      (2.1 b) 

The boundary of the AR of this particular system can be generalised using the 

McGregor’s postulates (McGregor, 1998). A summary of some of these postulates 

is detailed below.  

Postulate 1: The boundary of the attainable region consists of distinct process surfaces 

that are a union of process trajectories where all of the control policies are common and at 

either their lower or upper bounds.   

This postulate was confirmed by the results of Feinberg and Hildebrandt for 

systems with reaction and mixing, that the AR boundary comprised reaction 

trajectories and mixing lines. The mixing control policy is at zero (lower bound) 

along the reaction surface and infinite (upper bound) along the mixing plane.  
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Postulate 2: The junctions between various process surfaces, termed intersectors, 

represent either change in one or more of the control policies or termination of two 

different process trajectories or lines that intersect. 

The importance of the intersectors was first acknowledged by Glasser et al. (1992). 

The authors asserted that the optimal process combination intersectors played a 

significant role in outlining the structure of the AR boundary for systems 

considering processes of reaction and mixing.  

Recently the work of Feinberg (2000a & b) demonstrated with mathematical 

proofs how the intersectors that are optimal combinations of processes outline the 

shape of the AR boundary from which distinct process surfaces emanate. These 

optimal process combination intersectors are studied in detail in Section 2.5.6. 

Postulate 2 can be divided into several sub-postulates that characterise different 

types of intersectors that may occur on the boundary of the AR.  

Postulate 2.1:  The smooth trajectory intersectors may exist on the boundary of the AR, 

where one or more of the operating policies are trajectories defined by functions taking 

intermediate values between the upper and lower bounds. 

This type of intersectors is a union of distinct process trajectories.  Consider a 

system with two permitted fundamental processes r and v, and a net effect 

process vector defined by, 

    vrp vNET α+=   

A smooth trajectory intersector is a union of process r and v trajectories. Along 

this trajectory intersector the operating policy is defined by a function that takes 
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intermediate values between zero and infinity. For the case where process r 

represents reaction and v representing mixing, the smooth trajectory intersector 

that occurs on the boundary of the AR will be an optimal combination of reaction 

and mixing (Feinberg, 2000a) as shown in Figure 2.3. This optimal combination 

represents a DSR (Glasser et al., 1992). 

     
 
Figure 2.3: Local AR Boundary structure for the smooth trajectory intersector for 
 a system with processes of reaction and mixing.  

The smooth trajectory intersector can also occur for systems with reaction (r) and 

heat transfer (q).  In this case the intersector represents the optimal combination of 

reaction and heat transfer as shown in Figure 2.4.  

       
Figure 2.4: Local AR Boundary structure for the smooth trajectory intersector for 
 a system with processes of reaction and heat transfer.  

r r/q 
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Postulate 2.2:  The smooth intersectors may exist on the boundary of the AR, that are not 

the union of trajectories. These intersectors may represent the locus of stationary points 

that include mixing. 

Illustrated in Figure 2.5 is an example of a smooth intersector that is a locus of 

stationary points that represents stationary points where reaction and mixing 

process vectors are collinear. This union represents a well stirred unit where 

reaction and mixing are combined optimally as in a CFSTR. Feinberg (2000a) 

demonstrated the significance of these intersectors in outlining the structure of the 

AR boundary. These optimal combinations of reaction and mixing are termed 

critical CFSTRs. 

 
Figure 2.5: Local AR Boundary structure for the smooth intersectors that are the 
 locus of stationary points for a system with reaction and mixing  

Postulate 2.3:  The non-smooth intersectors may exist on the boundary of the AR that is 

not the union of trajectories. These intersectors may represent the union of points where 

two process surfaces intersect and/or terminate.  

For a system considering fundamental processes of reaction r, mixing v and heat 

transfer q, a non-smooth ridge may exists where the process surfaces of mixing 

and heat transfer intersect. This case may be due to the initiating of a new 

r 

r/v 

v 



Numerical Formulations for Attainable Region Analysis                      Tumisang G. Seodigeng  
 

Chapter 2: Attainable Region Analysis: Background Literature and Theory 
 

28

trajectory on the boundary, such as the smooth trajectory intersector that is a 

union of reaction and heat transfer as illustrated in Figure 4.6.  

 
 
Figure 2.6: Local AR Boundary structure for the non-smooth intersectors that are 
 ridges of the intersection of mixing and heat transfer process surfaces.    

The non-smooth intersectors are essentially the intersections of two distinct 

process surfaces and cannot be characterised as a single process unit or 

combinations thereof. As these intersectors are neither trajectories nor a locus of 

points they do not have any mathematical description governing their occurrence 

on the boundary of the AR. This conjecture is asserted without any proof and will 

later be clarified with the use of examples (Chapters 5 and 6).     

From the postulates derived by McGregor (1998), it can be suggested that the 

structure boundary of the attainable regions is essentially outlined by smooth 

intersectors that are either trajectories or stationary points from which distinct 

surfaces formed by the union of process trajectories emanate. The non-smooth 
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intersectors will be identified on the AR boundary consequent to the intersection 

of process surfaces.   

2.5 Mathematical Models for Idealised Processes 

In this section we review mathematical models used to describe fundamental 

processes. We further extend the theory of overall process combination vectors 

such as intersectors, and finally interpret the mathematical model in terms of 

processing units such as reactor structures and the conditions of optimality 

governing the occurrence of these structures on the boundary of the attainable 

regions. 

2.5.1 The Reaction Vector 

Let c represent the state of process components such as reactants and products. 

The state c will provide information such as concentrations, mass fractions or 

partial pressures. Consider a reaction vector space comprising instantaneous 

reaction vector at c as r(c). The instantaneous change in the system state, c due to a 

change in the process residence time, τd can be expressed as 

( ) τdd crc =         (2.2 a) 

The reaction rate vector r(c) will contain information about the kinetics of the 

reaction taking place. The scalar process residence time in this example is denoted 

by τ , which gives a measure of the duration of the application of the reaction 

process. For non-isothermal reactions, the process instantaneous change in the 

reacting system temperature T, due to the reaction process can be given as 

  ( ) τdT
Cp
H

dT rxn ,cr
Δ

=       (2.2 b)  
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The average isobaric specific heat capacity, Cp  of the reaction mixture is assumed 

to be constant. rxnHΔ  is the enthalpy of reaction.        

2.5.2 The Mixing Vector 

If we mix state c with another achievable state c* in a linear mixing space, the 

resulting state lies along the mixing vector v, described by 

  ( )ccv −= ∗           (2.3) 

2.5.3 The External Heat Exchange Vector 

External heat exchange can be carried out between material at the state of 

temperature T and constant temperature utility with the temperature Tc. The heat 

exchange process is described by a heat transfer coefficient, ho.  The process vector 

representing heating can be described as (Nicol, 1998); 

  ( )TThw co −=        (2.4) 

If we consider a heat transfer unit such as a heat exchanger with some heat 

transfer constant kc, relating the residence time and the heat exchange area of the 

heat exchange unit. Assuming that ho and Cp remain constant over the 

temperature range of interest; the rate of change of temperature in the heat 

exchange unit can be expressed as: 

 ( ) ( ) ττ dTTKdTT
Cp

kh
dT ccc

co −=−=     (2.5)  

Cp is defined as the isobaric specific heat capacity of the material being processed.     
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2.5.4 The Overall Reaction, Mixing and Heating Vector 

For a process unit where reaction, mixing and heating or cooling are allowed to 

occur as fundamental processes, the variables of interest are defined in the state 

characteristic vector, c = [x, T, τ ], comprising the reactants and products 

compositions, temperature and residence time. The overall process rate vectors 

are defined as a controlled combination of the fundamental processes;    

( ) ( ) τατ ddd ∗+= xxvxrx ,       (2.6 a) 

( ) ( ) ( ) τβτατ dTTdTTxxdTx
Cp
H

dT c
rxn −++

Δ
= ∗∗ wvr ,,,,   (2.6 b) 

The process combination control policies for mixing and heat transfer are 

represented as α and β respectively.  

2.5.5 Idealised Reactor Structures 

The objective of attainable region analysis is usually to be able to interpret the 

boundary as a process network structure. It is therefore an essential step to review 

idealised mathematical models describing some reactor units in order to signify 

their relationship with the process vectors that outline the geometry of the AR 

boundary.       

i. The Plug Flow Reactor 

The equation governing a plug flow reactor (PFR) is that of reaction occurring as 

the only process. This process vector can be derived from reaction rate vector (2.2 

a) as follows.   
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( )crc
=

τd
d  c(τ = 0) = c0     (2.2 c) 

The state space curve describing a PFR in the AR state space is a trajectory such 

that the reaction vector is tangential to it at each state point c. The fundamentals of 

differential algebra define trajectories as being directional. The unique nature of 

the rate vector at any point means that these trajectories progress such that they 

cannot cross each other (Love 1995). There exists one unique PFR trajectory for 

any given initial feed point c0. 

ii. Continuous Flow Stirred Tank Reactor 

In a continuous flow stirred tank reactor (CFSTR), reaction and mixing occur 

simultaneously, such that the reaction vector is collinear and directionally 

opposite to the mixing vector. A CFSTR curve is a locus of stationary points as a 

function of the scalar τ , satisfying equation 2.7;  

( ) ( )cccr −=− 01
τ

          (2.7) 

where τ  is the residence time of the reactor and c0 is the feed state. 

The CFSTR locus is obtained by varying the residence time and solving for the 

corresponding state, c.  

iii. The Differential Sidestream Reactor 

A differential sidestream reactor (DSR) can be conceptualised as a PFR with 

differential feed along the length. This structure arises when reaction and mixing 

occur simultaneously and the relative action of the process is governed by the 
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equation defining the rate of controlled combination of reaction and mixing (2.6a). 

On the boundary of the attainable region a DSR is a smooth trajectory intersector 

tangential to the plane containing both fundamental process vectors of reaction 

and mixing at each point along the trajectory (Section 2.4); 

( ) ( )∗+= ccvcrc ,α
τd

d   c(τ = 0) = c0 

The state of the mixing stream c*, may be constant in the case of a fixed mixing 

point or it may vary along the length of the reactor (varying with τ ) in which case 

it is referred to as a varying mixing point, c*( τ ). It should be noted that the DSR 

equation is analogous to that of the CFSTR when the rate equals zero, 

  0=
τd

dc  →  ( ) ( )cccr −−= ∗α  

   →  ( ) )(1 crcc
α

=− ∗  

   with  
α

τ 1
=  

 

iv. Differentially Cooled Reactor 

The differentially cooled reactor (DCR) arises when reaction and cooling are 

incorporated in the same unit. The structure can be conceptualised as a PFR with 

differential cooling along the length. Similar to the DSR, the curve representing a 

DCR is a smooth trajectory intersector such that the reaction vector and the 

cooling vector form a tangential plane to the trajectory at any state c =[x, T] 
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(Section 2.4).  The equations representing the rate changes of the state variable are 

therefore given by; 

 ( )T
d
d ,xrx

=
τ

        (2.8 a)       

 ( ) ( )TTT
Cp
H

d
dT

c
rxn −+

Δ
= wxr β

τ
,       (2.8 b) 

The same argument as for the DSR holds, stating that the cooling temperature Tc 

may be fixed or vary along the length of the reactor. In the case where heating not 

cooling occurs the structure obeys the same equations and the structure is termed 

a differentially heated reactor (DHR).  

v. More Complex Structures 

As we continue to combine the fundamental processes, more and more reactor 

structures will be formed. In higher dimensional space the complexity of the ARCs 

structure increases yielding intricate geometric forms. The DSR trajectories that 

are tangential to surfaces comprising both reaction and mixing in three 

dimensions become DSR family surfaces that are tangential to hyper-planes that 

contain surfaces of reaction and mixing in four dimensions.  

As a number of processes combined reaches three and beyond, more complex 

structures will arise including the ones that surpass our current practical 

imagination. For example we may have a structure for controlled combination of 

reaction, differential mixing, differential heating, and differential compression to 

carry out an endothermic gas phase reaction, where a reaction forming an 

undesirable by-product also takes place.  It is important to note that a structure or 
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a reactor configuration arises from the solution, and not the imagination of the 

designer or optimiser. 

2.5.6 Optimal Process Combination 

Feinberg and Hildebrandt (1997) proved that the boundary of the AR consists of 

optimal combinations of fundamental processes that give rise to pathways to 

navigate to extreme points of single process operation forming the boundary of 

the AR. On the AR boundary these optimal combinations are smooth trajectory 

intersectors and smooth locus intersectors as defined in Section 2.4. Feinberg 

(2000a) further demonstrated this geometric property of the attainable region 

boundary for combined processes of reaction and mixing. The smooth trajectory 

intersector curve representing the controlled combination of reaction and mixing 

is a DSR trajectory. It was stated in the work of Glasser et al. (1992), that for a DSR 

curve to lie on the boundary of the AR, it must lie on the surface described by; 
 

( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) 0,,, =−×⋅= ∗∗∗ crccvcrccvccvcrc ddϕ   (2.9)  

where dx is the Jacobian matrix of vector x, r(c) and v(c, c*) are the 
 reaction and the mixing vectors respectively as defined earlier.  

This condition is true only for a three dimensional AR for an isothermal system 

considering only reaction and mixing. The mixing control policy α, that ensures 

that the DSR (2.9) remains in the ϕ  surface in three dimensions can therefore be 

computed as; 

 ( )
( )*,ccv

cr
⋅∇
⋅∇−

=
ϕ
ϕα        (2.10) 

Feinberg (2000a) proved these assertions from the ideas of geometric control and 

advanced a theory to derive conditions for higher dimensional problems. With 
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rigorous mathematical proofs Feinberg illustrated that, in fact, a more 

fundamental mathematical requirement exists for a DSR to lie on the boundary of 

the AR. He further proved that the DSR should lie in the ϕ  surface that satisfies 

the following determinant condition;   

 ( ) ( )( ){ }crccvccvcrcrccv ),(),()(,),,(det ∗∗∗ −= ddϕ    (2.11) 

The required mixing control policy to ensure that the DSR remain in the ϕ  surface 

was then derived as; 

 ( ) ( )( ){ }
( ) ( )( ){ })()()()()(,,det

)()()()()(,,det
vrrvvvvrrrv
vrrvrrvrrvrv

dddddvd
dddddd

−−−
−−−

−=α   (2.12) 

Feinberg (2000a) further derived the mixing control policy for higher dimensions 

to indicate the dimensional generality of his postulates. The derivation for a four 

dimensional system considering only reaction and mixing arrives at a control 

policy described by;   

( )( ) ( ) ( )( ){ }
( ) ( ) ( )( ){ })()()()()(,)()(,,det

)()()()()(,)(,,det
vrrvvvvrrvvrrvrv
vrrvrrvrrvvrrvrv

dddddddd
dddddddd

−−−−
−−−−

−=α   

         (2.13) 

Feinberg (2000a) further derived the control policies for stoichiometric space in 

five and six dimensions to demonstrate the dimensional generality of his proofs.  

It should be noted that these conditions of optimality apply only if α > 0 

(Feinberg, 2000a).  
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In a subsequent publication, Feinberg (2000b) derived the necessary conditions 

required for a CFSTR output state to lie on the AR boundary. As shown in Section 

2.4, the CFSTR that occur on the AR boundary is a smooth intersector that is a 

locus of stationary points that include mixing (McGregor, 1998).   Once again, we 

will emphasise that a CFSTR is a special class of the DSR. Mathematically a 

CFSTR is equivalent to a DSR with these properties: 

• The rate vector is collinear and in opposite direction to the mixing vector. 

• The overall rate vector is zero, i.e. the sum of the reaction and mixing 

vectors equals zero.   

Using geometric optimal control derivations Feinberg (2000b) proved that for an 

isothermal system considering only reaction and mixing, the condition required 

for the effluent state of the CFSTR to occur on the AR boundary in three 

dimensions is described by, 

 ( ){ } 0)(),(,det =vrrvrv ddd        (2.14) 

For a four dimensional space the CFSTR effluent is required to conform to the 

condition (Feinberg (2000b), 

 ( ) ( )( ){ } 0)(,)(),(,det =vrrrvrrvrv dddddd     (2.15) 

Feinberg (2000b) called these types of CFSTRs critical CFSTRs. Using these 

necessary conditions it is possible to evaluate the residence times and further 

evaluate the effluent states of such CFSTR that reside on the AR boundary. 
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2.6 Discussion 

Attainable Region analysis background and theory have been presented, from 

which it is evident how significant this technique is as process synthesis tool. The 

theory is clearly introduced with discussion on how fundamental process 

networks can profile the boundary of the AR. A set of necessary conditions that 

are used as check points for any possible extensibility on candidate ARs have also 

been presented together with elements of attainable regions analysis which are 

essentially sequential traditional guidelines developed by previous researchers on 

how to identify candidate ARs. From the postulates derived by McGregor (1998), 

a theory was suggested to generalise the structure of the AR boundary. This 

theory stipulates that the AR boundary comprises mainly of distinct process 

surfaces formed by process trajectories that emanate from and connected by 

intersectors. These intersectors were interpreted as optimal combinations of 

permitted fundamental processes. 

 

We further discussed how fundamental processes can be idealised for AR 

analysis, illustrating using fundamental processes of reaction, bulk mixing, and 

heat transfer as well as combinations thereof. The optimal process combinations 

that shape the boundary of ARs have also been asserted using analytical 

derivations from the work of Feinberg (2000 a & b). These analytical derivations 

have strong mathematical foundations based on the theory of geometric control 

but however have a shortcoming of being hard to solve due to imbedded 

algebraic complexity. It is this intricacy that limits attainable region analysis 

applications to reactor network synthesis. Alternative techniques to generate ARC 

will greatly improve its relevance and broaden its use by giving non-specialist 

users access.      
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Throughout the background theory and literature review emphasis was placed on 

the fact that the boundary of the attainable regions can be established by 

identifying the optimal process combination intersectors that give rise to distinct 

process surfaces that form the final shape of the AR boundary.   

 

In the next chapter we propose an automated systematic method of solving 

candidate attainable regions by identifying the optimal process combination 

trajectories. The method offers full automation of construction without the need 

for prior analytical solutions of algebraic expressions. The procedure also 

promises automated interpretation of the boundary in terms of reactor structures.   
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2.8 List of Symbols  

Abbreviations  

AR   Attainable Regions 

ARC  Candidate Attainable Regions 

CFSTR Continuous Flow Stirred Tank Reactors 

DCR  Differentially Cooled Reactor 

PFR  Plug Flow Reactor 

DHR  Differentially Heated Reactor 

DSR  Differential Side-stream Reactor 

 MINLP Mixed Integer Non-Linear Programming 

 
Symbols 
α  Combination control policy for fundamental processes (mixing) 

β  Combination control policy for heat transfer 

c  State variable of the system 

co  State variable of the system at the feeding point 

c*  Mixing state variable of the system 

c  State vector comprising all variables describing the system 

C  Concentration of the reacting components 

Cp  Isobaric specific heat capacity of the material 

ΔHrxn  Enthalpy of reaction 

ho  Heat Transfer coefficient 

kc  Heat Transfer constant 

p  Fundamental processes taking place in the system 

pNET  Overall net effect of the system due to all processes 

P  Partial pressure of the reacting components 

r(c)  Reaction rate vector defined at c 
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r(C)  Reaction vector defined at C 

r(P,T)  Reaction vector defined at P and T 

T  Temperature of reaction 

T*  Temperature of mixing 

Tc  Cooling or Heating utility temperature 

τ  Residence time 

υ  Mixing vector, mixing c with c* 

w  Heat Exchange vector 

x  Reactants and Products  state compositions 

x*  Reactants and Products  mixing compositions 

φ(c)  The optimum process combination surface (phi surface) 
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CHAPTER 3 

RCC ALGORITHM FOR ATTAINABLE 
REGION ANALYSIS 

 

3.1 Introduction 

A general theory such as AR analysis can handle a problem with any 

number of fundamental processes, feed and product components, design 

parameter variability, and virtually any system complexity. This is 

important as it allows for the consideration of complicated systems that 

have previously been considered impossible to be studied.  

“A general theory, such as this, is required for the future development of 

an algorithm to automate the construction of attainable region boundaries. 

A computer programme that can determine attainable regions would 

greatly enhance the relevance of attainable region analysis to the chemical 

process industry." McGregor (1998)  

3.2 Background  

In the absence of a sufficiency condition, finding a region that contains all 

possible outcomes from all possible combinations of all permitted fundamental 

processes without exclusion of any possibility cannot be conclusively shown. The 

traditional methods for constructing the ARC use the necessary conditions as 

guidelines (McGregor, 1998). The fundamental processes are applied to all 

system feeds and the resulting region of outcome states is checked for violation 

of the necessary conditions. Wherever a necessary condition is broken, 

fundamental processes or combinations thereof are applied to achieve the 
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identified expansion. This procedure is performed iteratively until all necessary 

conditions are satisfied by all output state points on the ARC boundary. This 

method of construction is limited only to known necessary conditions and cannot 

ensure the identification of the full AR, but only a candidate subset ARC.  This 

traditional method suggested by McGregor (1998) constructed the ARC from the 

interior. Thus, a region is constructed from the feed and further extended 

outward by application of fundamental processes until some convergence 

criterion is met and the outer bounds of the ARC are approximated.  

Recently, research work has focused on automating the construction of 

candidate ARs. Rooney et al. (2000) communicated the Iso-state Algorithm, 

one of the first contributions in the search for the automated techniques 

for construction of ARs. The ARCs in this case, were also generated from 

the interior as in the traditional methods suggested by McGregor (1998). 

The algorithm generated 2D planes in orthogonal subspaces which are 

fused into higher dimensional ARs. This technique worked well for three 

dimensional problems with two fundamental processes, but due to its 2D 

plane decomposition it required long computational runtimes in higher 

dimensions.    

Burri et al. (2000) proposed a method called IDEAS for automated AR 

construction. This method constructed two-dimensional regions using 

linear programming formulations based on CFSTRs, PFRs, and mixing 

lines. The technique arose from a relaxation of an infinite dimensional 

state space formulation. The problem was broken down into two phases; a 

distribution network and a process operator. All mixing, splitting, 

recycling, and bypassing occurred in the distribution network and all 

fundamental unit operations took place in the process operator.  

Another systematic method to construct candidate ARs was the Linear 

Programming (LP) formulations proposed by Kauchali et al. (2001). This 
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method used what the authors called the total connectivity model, which 

applied all possible combinations of CFSTRs and mixing patterns to 

represent any known reactor structure for the fundamental processes of 

reaction and mixing. The authors then considered a rate vector field in 

concentration spaces with a large grid of points from which several LPs 

were derived to solve for the ARC. This method also generated ARCs from 

the interior by outward extensions.   

Abraham and Feinberg (2004) proposed a method of Bounding 

Hyperplanes which constructed the ARC from the exterior. The 

construction is carried out using a polygon bound by hyperplanes in 

composition space, within which all the attainable compositions must 

reside. The procedure of this technique entails progressive increment in 

the number of hyperplanes bounding the polygon, and eliminaton of the 

non-attainable compositions from the interior of the bounds. As the 

number of hyperplanes increases, the bounding polygon approximates the 

upper bound of the attainable regions. This method is different from other 

techniques due to its approach of approximating the ARC boundary form 

the outside.  

In this work another systematic method for automated attainable regions 

construction is proposed. The method constructs ARCs from the interior by 

applying combinations of fundamental processes to find outward 

extensions on the boundary attained from application of the fundamental 

processes on the given feed. In the following section, we illustrate with the 

aid of an example, how complicated the analytical solution for optimal 

reactor structures that contour the boundary of the AR can be, even for a 

simple idealised kinetic system. The analytical computations are then 

followed by the introduction of a relevant theory and formulations for the 

proposed algorithm and the technique is then demonstrated by a number 
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of study cases for illustration including the one solved using analytical 

methods.  

3.3 Example: Analytical Solution 
 
In this section we consider an example with the intention of obtaining the 

ARC via analytical methods reviewed in the preceding sections. We 

present a case study with Van de Vusse type kinetics for the underlying 

network of chemical reactions shown in Figure 3.1 with the corresponding 

rate expressions,  
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Figure 3.1: Van de Vusse Reaction Scheme with Kinetics 
 
 
The case study is of an isothermal type and considers only reaction and 

bulk mixing. The reaction occurs in the liquid phase at constant density. 

We consider a feed of 1 mol/litre of pure A. The objective is to construct 

an ARC in a three dimensional A-B-D stoichiometric space.   

 

As discussed in Chapter 2, the procedure for generating the AR boundary 

is to first solve for optimal process combination trajectories that will give 

final access to the manifolds of extreme points that form the boundary. In 

this example the optimal DSR profiles will serve as precursors, giving 

access to manifolds of extreme PFR trajectories and mixing planes that 

make up the boundary of the AR. The critical CFSTRs may also need to be 

computed as they also play the same role as DSRs. 
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To solve for the optimal DSR(s) we start by deriving the optimal control 

policy α described from derivations of Feinberg(2000a) by (2.12), 

 

  ( ) ( )( ){ }
( ) ( )( ){ })()()()()(,,det

)()()()()(,,det
vrrvvvvrrvrv
vrrvrrvrrvrv

dddddd
dddddd

−−−
−−−

−=α   (2.12) 

 
 

We start with the mathematical definition of the fundamental process 

vector. The state variables are determined from the dimensionality of the 

AR to be determined. For the 3D A-B-D stoichiometric space the state 

vector is denoted by, 

 
 [ ] [ ]421 ,,,, cccCCC DBA ==c        (3.1) 
 
The fundamental processes have to be defined as vectors in the c space, for 

the processes of reaction and mixing in the vector space as in (3.1) we 

express, 
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The derivation of the optimal control policy α, is an algebraically 

exhaustive task resulting in a complex mathematical expression given in 

Figure 3.2.       
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     α =  
5 k4 c13 k12 2 k4 k22 c23 10 k42 c14 k1 2 k4 c12 k12 4 k42 c13 k1 +  +  −  − 

10 k1 c4 k4 c12 k2 c2 5 k4 c12 c22 k2 k1 4 k4 c13 k1 k2 c2 2 k4 c13 k3 c2 k1 +  +  +  + 

6 k42 c15 k1 3 k4 c14 k12 8 k3 c2 c4 k42 c13 8 k2 c2 c4 k42 c13 −  −  +  + 

4 k22 c22 c4 k4 c1 k4 c12 k3 c22 k2 4 k3 c22 c4 k4 c1 k2 −  −  − 
4 k3 c2 c4 k4 c12 k1 2 k32 c4 k4 c12 c2 2 k4 c13 k2 k3 c2 2 k4 c12 k2 k1 +  +  +  − 

2 k4 c1 k32 c2 2 k4 c12 k3 k1 2 k4 k3 c2 k1 c1 4 k4 c1 k2 k3 c2 +  −  +  + 

2 k4 c1 k22 c2 2 k3 c4 k4 c13 k1 4 k42 k2 c2 c12 4 k4 c1 k1 k2 c2 +  −  +  + 

2 k4 k22 c22 4 k42 k3 c2 c12 2 k4 k3 c22 k2 2 k2 c4 k4 c13 k1 −  +  −  − 
4 k3 c4 k4 c12 k2 c2 2 k22 c4 k4 c12 c2 4 k42 k2 c22 c12 4 k12 c4 k4 c12 +  +  −  + 

4 k4 c12 k3 c2 k1 2 k4 c1 k3 c22 k2 8 k1 c4 k4 c1 k2 c2 8 c4 k2 c2 k42 c12 −  +  −  − 

4 c4 k3 c2 k4 k1 c1 4 c4 k3 c22 k4 k2 8 c4 k3 c2 k42 c12 4 k4 k2 c22 k1 c1 −  +  −  − 

7 k4 c12 k1 k2 c2 6 k4 c12 k2 k3 c2 c4 k3 k1 k2 c2 4 c4 k2 k4 c12 k1 −  −  −  + 
8 c4 k2 k4 c1 k3 c2 4 c4 k22 k4 c1 c2 4 c4 k3 k4 c12 k1 4 c4 k32 k4 c1 c2 −  −  +  − 

2 k4 c1 k22 c22 4 k42 c13 c2 k1 2 k4 c12 c2 k12 4 c4 k22 c22 k4 +  +  +  + 

8 k1 c4 k42 c13 12 k1 c4 k42 c14 6 k12 c4 k4 c13 8 k42 c13 k3 c2 +  −  −  − 

8 k42 c13 k2 c2 4 k42 c14 k2 c2 k4 c12 k22 c22 6 k42 c14 c2 k1 −  +  −  − 
3 k4 c13 c2 k12 4 k42 c13 c22 k2 2 k4 c1 c23 k22 4 k42 c14 k3 c2 −  +  −  + 

c4 k32 k1 c2 c4 k3 k12 c1 3 k4 c12 k32 c2 3 k4 c13 k3 k1 3 k4 c12 k22 c2 −  +  −  +  − 

3 k4 c13 k2 k1 k4 c13 k32 c2 k4 c14 k3 k1 k4 c13 k22 c2 k4 c14 k2 k1 +  +  −  +  −  

8 c4 k3 c2 k4 c12 8 c4 k2 c2 k4 c12 16 c4 k3 c2 k4 c1 16 c4 k2 c2 k4 c1−  −  +  + 

2 k4 c1 k1 10 k4 c13 k1 8 k4 c12 k1 2 k4 k2 c2 2 k4 k3 c2 2 k4 k2 c22 −  −  +  +  +  − 

4 k4 c14 k1 6 k4 c12 c2 k1 12 k1 c4 k4 c12 4 k1 c4 k4 c1 2 k4 c1 c2 k1 +  −  −  +  + 

8 k4 c1 c22 k2 10 k4 c1 k2 c2 10 k4 c1 k3 c2 4 c4 k2 c2 k4 4 c4 k3 c2 k4 +  −  −  −  − 
2 c4 k3 c2 k1 12 k4 c12 k2 c2 12 k4 c12 k3 c2 4 k4 c13 k3 c2 +  +  +  − 

4 k4 c13 k2 c2 4 k4 c12 c22 k2 8 k1 c4 k4 c13 4 k4 c13 c2 k1 −  −  +  + 

 

 
Figure 3.2: Optimal Control Policy for 3D A-B-D Van de Vusse Example 
 

Using the optimal control policy, the optimal DSRs can be computed using 

(2.6a). Once the DSRs that reside on the AR boundary have been 

established, the boundary can now be completed using PFR highways and 

mixing lines.  The candidate AR boundary for the case study is solved a 

depicted in Figure 3.3. The boundary is also interpreted in terms of reactor 

structures.  
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        PFR from feed   CFSTR from feed PFR from feed with by-pass 
 

 
                                                                               
 
 

CFSTR followed by a DSR    DSR from feed  
 

 
 
 
 

CSFTR – DSR – PFR sequence      DSR followed by a PFR 
 
 
 

 
 
           CFSTR – DSR sequence with bypass         DSR with bypass 
 
Figure 3.3: 3D ARC for a Van de Vusse Example 
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The structure of the candidate AR boundary for this example consists of 

reaction and mixing process surfaces that are formed by the unions of 

reaction trajectories (PFRs) and mixing lines respectively.  These process 

surfaces can be envisaged as connected by or emanating from the smooth 

connectors. These connectors are the optimal DSR trajectories 1 and 2, and 

optimal CFSTR point denoted by number 3.  

 

3.4 Recursive Convex Control Policy (RCC) 
Algorithm  

3.4.1 Mathematical Definitions 

In this section we review some mathematical definitions pertaining to the 

convexity of the AR boundary. We review the points that are of special 

significance such as mixing points and points from which optimal process 

combination trajectories emanate. Some ideas discussed herein are arrived 

at in the light of the work of Feinberg and Hildebrandt (1997). The 

definitions in this section are specific and may lack some generality as 

they are based on finite discretised points in space.    

 

Convexity 

In the Euclidean space RN, a set C is termed convex if and only if any two 

points x1 and x2 where x1, x2 ∈  C  are such that λ x1 + (1 – λ )x2 ∈  C 

wherever 0 ≤ λ ≤  1.  Thus, C is convex if and only if a convex combination 

of any two of its elements lies entirely in C.  In simple geometric terms a 

set is convex if it contains all the line segments connecting any pair of its 

points (Lay, 1982).  

 

Convex Hull 

A convex hull of a set C, conv C, is the smallest convex set containing all 

points of C. In geometric terms, a convex hull in RN is a finite convex 
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polytope enclosed by a finite number of hyperplanes.  A convex hull in 3D 

is the smallest polyhedron enclosed by triangular planar facets such that 

all the elements lie on or in the interior of the polyhedron.  In four 

dimensions, a convex hull is a polychoron enclosed by quadrilateral 

hyperplanar facets. We will call the points forming the vertices of the 

facets vertex points. Convexifying a set C finds the vertices of the convex 

hull of C. Each vertex point on a 3D convex hull is connected to a 

minimum of 3 other vertex points by line segments such that each vertex 

point serves as a vertex to at least 3 triangular facets that enclose the 

convex hull. In 4D a vertex point is connected to a minimum of four vertex 

points and this progression carries on to higher dimensions (Kelley and 

Weiss, 1979).    

 

Lower Dimensional Projection 

An N-dimensional convex hull when projected into M-dimensional space 

with M<N remains a convex polytope enclosed by facets with N edges 

(Barvinok, 2002).  However not all of the extreme points of the N-

dimensional polytope will remain on the convex hull of the M-

dimensional projection (Barvinok, 2002).  An example of this theory is that 

of a three-dimensional sphere that becomes a circle when projected into 

two dimensions, with some of the sphere’s extreme points lying in the 

interior of the circle.     

 

Extreme Points 

A point x is an extreme point if it is a vertex of the convex hull. An 

extreme point does not lie in the interior of any line segment bounding the 

facets of the polytope. In particular, x ∈  C is extreme if there exists no 

points x1, x2 ∈  C, such that λ x1 + (1 – λ )x2 =x with 0 < λ < 1.           
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Generating Extreme Points 

A generating extreme point in Euclidean space RN, is an extreme point that 

forms a vertex to M facets such that M > N. In three dimensional space a 

generating extreme point forms a vertex to more that three triangular 

facets and the progression is carried on to higher dimensions (Kelley and 

Weiss, 1979; Manning, 1956).  

3.4.2 Theory and Formulations 

Consider a system with two permitted fundamental processes in some 

state space c, made up of all system state variables such as compositions 

and temperature. If we denote two process to be  

Fundamental process one:  p1(c)  

Fundamental process two:  p2(c, c*)  

The second process p2, also depends on some other state c*, which should 

be attainable, thus it is a state that has already been attained or will be attained 

later by a fundamental process or a combination thereof.  

The two processes can be combined with the use of a control policy α, to 

obtain a generalised net process vector that describes how state c changes 

with residence time as; 

 ( ) ( )∗+== ccpcpcp ,21 α
τd

d       (3.3) 

τ is the residence time of the processes.  

For a given system with feed conditions c0, the attainable regions can be 

found by obtaining the optimal combination of fundamental processes 

described by equation 3.3 as previously explained in Chapter 2. Once the 
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optimal control policies for the combinations of fundamental processes 

have been identified, their optimal trajectories can be used to navigate 

along the ARC boundary to provide pathways to manifolds and surfaces of 

single process operation that make up the AR boundary such as reaction 

extreme high-ways, and mixing and heat exchange surfaces.  

In the next section we provide a conceptually simple but powerful 

technique of finding optimal control policies for combinations of 

processes.  

3.4.3 The Algorithm: Modus Operandi  

The recursive convex control policy (RCC) algorithm uses non-negative 

scalar values for the process combination control policy, α to identify 

convex combinations of two processes. The novelty of this approach lies in 

the use of combinations of fundamental processes applied to the available 

feed to construct candidate attainable regions for a system with given 

kinetics, without the use of known necessary conditions. Also this 

approach interprets the structure of the AR boundary to primarily consist 

of optimal processes combinations, which once identified the shape of the 

boundary can be completed by separate process surfaces. The RCC 

algorithm grows the boundary of the ARC from the interior as in the 

systematic techniques proposed by McGregor (1998), Rooney (2000), Burri 

(2000), and Kauchali (2001). Thus, the lower or inner bounds of the ARC is 

approximated when compared to the upper bounds AR method suggested 

by Abraham and Feinberg (2004), where the candidate boundary was 

grown from the exterior.   

The RCC algorithm uses scalar values to delineate instantaneous α values 

along the optimal process combination trajectories. These scalar values can 

be an arbitrarily chosen grid of values ranging from zero to very large 
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value, depending on the system. In the case where the control policy is 

bounded, the grid is chosen between the lower and upper boundaries. For 

reaction and mixing, the optimal control profile represents the differential 

side stream reactor (DSR). A DSR with an α value that equals zero is 

equivalent to a PFR and as previously stated in the preceding chapter, 

when the overall rate turns to zero the DSR becomes a stationary point, 

mathematically equivalent to a CFSTR. 

The algorithm comprises steps as detailed below,  

1. The initialisation stage: This stage generates the starting state 

points. The single process operation trajectories are generated 

from all system feed states and convexified to locate all extreme 

state points that form the convex hull and eliminate all interior 

state points. Convexification is carried out in the dimension which 

the candidate AR is targeted to be built in. From the resulting 

structure, a grid of extreme points is selected for use as starting 

points and some to use as c* points which process p2 in 3.1 

depends on. For a case where fundamental process p2 represents 

mixing, these points will be mixing points. 

The class of c* points include all feed states and all state points that are 

generating extreme points as defined in section 3.3.1. To illustrate this we 

consider process p2 being the mixing process, the state c* will connect all 

mixing vectors v = (c* - c) forming the mixing surface. As the mixing 

surface may contain infinitely many mixing vectors, all connecting to the 

mixing point, the point c* which is a mixing point will serve as a vertex to 

infinitely many facets.    



Numerical Formulations for Attainable Region Analysis                      Tumisang G. Seodigeng
  
  
  

Chapter 3: R.C.C Algorithm for Attainable Regions Analysis                                                                        57  
 

The optimal process combination profiles can only start from state points 

that satisfy conditions of optimality φ = 0 (Chapter 2 section 2.5.6 equation 

2.11) as the starting points themselves must be on the profile. From the set 

of states generated in the initialisation stage the starting points include all 

points where process vectors are zero; 

p1(c)  = 0 

p2(c, c*)  = 0 

These points satisfy the condition for optimality,  φ = 0 as can be seen that 

the determinant below will be fixed at zero for if the two process vectors 

p1 and p2 take zero values; 

 ( ) ( )( ){ }cpccpccpcpcpccp 122112 ),(),()(,),,(det ∗∗∗ −= ddϕ   

For a combination of reaction and mixing processes, the potential starting 

points include all reaction equilibrium points where the reaction vector 

r(c) = 0 and all mixing points where the mixing vector v(c,c*) = 0. 

2. Growth Stage: This stage generates a grid of process operation 

control policy values such that α = [ 0, α1, α2, … αlarge]. It is also 

possible to define the values of the control policy such that  

0 ≤  α ≤ 1. The control bounds should be used in cases where they 

are provided. From each starting point, for each control policy 

value using each of c* states, a number of process combination 

profiles are generated. The structure is then convexified to 

eliminate all interior points. From all extreme points that are 

process combinations output states, single process trajectories are 

generated and the resulting data set is convexified. Only the 

extreme points that are output state results from combinations of 
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processes are stored for the next stage. In cases where the objective 

is evident, as in single reversible reaction processes where the AR 

is constructed to maximise conversion, instead of using 

convexification, the process combination profiles are generated to 

optimise the objective function. Those states where the objective 

function is optimal are taken as extreme points.    

At this point the existence of process combination profiles on the 

boundary of the convex hull can be readily observed from the resulting 

structure. This stage serves satisfactorily for approximate calculations of 

finding reactor structures where accurate process parameters are not 

crucial or in the more usual cases where there is considerable uncertainty 

in the kinetic data.  In the case where the growth stage results in an empty 

incremental set the algorithm is terminated and the candidate AR 

boundary comprises only single process operation regions. 

3. Iteration Stages: From each extreme point that is an output state 

from combinations of fundamental processes, for each in c* class, 

two process combination profiles are generated. From an extreme 

point where the control policy is αi, the first process combination 

profile should have a control policy with a value of (αi-1 + αi)/2 

and the second profile should have control policy with a value of 

(αi+1 + αi)/2. This step refines using mid-point interpolation and as 

a result populates the control policy grid with more values. The 

data set is then convexified to locate all extreme state points that 

enclose the convex hull and eliminate all interior state points. 

The iteration stage is repeated until the termination criterion is satisfied. 

The termination criterion cannot be generalised as it depends on the type 

of problem being solved. Volume percentage growth can be used for some 
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problems and for others it cannot be exclusively used as the volume 

reaches 99% of the expected candidate region after stage 2 and the growth 

rate drops below 0.2% for the first iteration. Standard deviation techniques 

can also be coupled into the termination criterion for some problems, 

specifically for those where the accuracy of the optimal profile is a 

concern. The use of different termination criteria for different cases will be 

illustrated with the use of case studies in subsequent chapters.   

4. Final Stage: From all extreme points that are output states 

to combinations of fundamental processes combinations 

output states, single process trajectories are generated to 

complete the ARC. For a system where the permitted 

fundamental processes are reaction and mixing, the simple 

process trajectories will be PFR highways, reaction surfaces 

and mixing lines. 

 

For a system with feed states 
 

C0 = [c1, c2 ...cM] 
 

The permitted fundamental processes are p1 and p2 which can be 
combined to form the general process combination p defined by (3.3). 
 
The mathematical model of the algorithm can be written out as 
 
 
Stage 1: Initialisation Stage 

For i = 1…M 
Solve ci1(τ) and ci2(τ) 

subject to 

  ( ) ( ))(1
1 τ
τ
τ

cp
c

=
d

d  given c = C0(i), τ = 0 

 
( ) ( ))(2

2 τ
τ
τ

cp
c

=
d

d  given c = C0(i), τ = 0 

 end 
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],....,,,,....,[ 2
1
2

1
21

2
2

1
1

MM ccccccC =  

C =Cextreme = conv (C)  or  ( ) )(_)()( CfoptimumExtreme ττ CC =  

    where f(c) is the objective function 

 C* = [C0, generating_extreme(C)] 

Cstart = [C(p1=0), C(p2=0)] 

 
Stage 2: Growth Stage 
 α = [ 0, α1, α2, … αlarge] 
   
 For all α, for all C*, for all Cstart 
    Solve c subject to 

    ( ) ( )∗+= ccpcpc ,21 α
τd

d  

 C = [all c] 
 C =Cextreme = conv(C) or  ( ) )(_)()( CCC foptimumExtreme ττ =  

    where f(c) is the objective function 

Stage 3: Iteration Stage 
Repeat 

For all Cstart,  for all C* 
   For  α = (αi+1+ αi)/2 and α = (αi-1+ αi)/2 

Solve c subject to 

    ( ) ( )∗+= ccpcpc ,21 α
τd

d  using c0 = ci, τ0=τi 

 C = [all c] 
 C =Cextreme = conv(C) or  ( ) )(_)()( CfoptimumExtreme ττ CC =  

    where f(c) is the objective function 

Stage 4: Final Stage 
 
For all C 

Solve ci1(τ) and ci2(τ) 
subject to 

   ( ) ( ))(1
1 τ
τ
τ

cp
c

=
d

d   c = C (i), τ0=τi 

 
( ) ( ))(2

2 τ
τ
τ cpc

=
d

d  c = C (i), τ0=τi 

 
To demonstrate the systematic formulation of the RCC algorithm we will 

consider an example we solved in section 3.3 of this chapter.  
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3.5 3D Example: Numerical Solution 

3.5.1 Formulation 

 

The example studied here considers fundamental processes of reaction 

and mixing in an isothermal system with constant density. The objective of 

this example is to identify a three-dimensional A-B-D candidate AR by 

solving a four dimensional stoichiometric A-B-C-D system.  From the Van 

de Vusse kinetics depicted in Figure 3.1 the algorithm formulation can be 

detailed as follows. We first start by defining the feed state and 

fundamental process as shown below: 
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The formulation of the algorithm is detailed below along with the 

resulting structures after every stage. 
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Stage 1 

Solve the PFR trajectory ( ) [ ])(),(),(),(1 τττττ DCBA cccc=c  

Subject to 

( ))(1 τcrp =   given 0)0( cc ==τ   
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( ) [ ]0
11 ),(),( cccC τττ =  

( ) ( ))()( τττ CCC convExtreme ==   

( ))(_,[ 0 τCcC extremegenerating=∗  

( ) ( )[ ]0),(,0)( === ∗ccvCcrCC start  

 

In this stage, four differential equations were solved to attain the PFR 

trajectory from the specified system feed. The differential equation solver 

method used in the RCC formulation is the MATLAB® built-in ODE45 

algorithm based on explicit Runge-Kutta (4, 5) formula. The differential 

equations were solved over a residence time span ranging from the feed at 

τ = 0, to the equilibrium point where all four differential equations 

diminished to zero. For each composition variable, 397 points were solved 

and the equilibrium point was approximated at τ = 18.19 minutes. 

 

For set of four non-linear equations describing the CFSTR locus was 

solved using the standard Newton’s method to evaluate 500 

logarithmically spaced points with residence time span ranging from the 
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feed (τ = 0) to τ = 200 minutes. The upper residence time was chosen 

sufficiently large to approximate the equilibrium point.  In total, 897 

points were solved for stage 1.  

 

The convex hull was solved using the MATLAB® built-in convhull solver 

based on the Qhull algorithm (Barber et al., 1996). Upon convexification 

the number of points was reduced to 491 extreme points.  

 

The convex hull resulting from the convexification of the output states of 

the PFR and CFSTR is shown in Figure 3.4. The triangular facets forming 

the three dimensional convex hull can be visualised on the boundary of 

the structure with extreme points forming vertices to the facets. The feed 

point is indicated as a generating extreme point forming a vertex to more 

than 3 facets.     
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Figure 3.4: A convex hull resulting from stage 1 of the 3D AR construction 

 

Figure 3.5 depicts and rotation of Figure 3.4 to expose the equilibrium 

point where the reaction vector diminishes to zero. This point is also a 

generating extreme point as it is a vertex to more than three facets. 

Feed = Generating 
extreme point 
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Figure 3.5: A convex hull resulting from stage 1 of the 3D AR construction 

 

As discussed earlier the feed and equilibrium points are the potential 

starting points for the DSR profiles as they both satisfy the condition of 

optimality. These points are also generating extreme points and will 

therefore be considered as the DSR starting points and mixing points.   

 

Stage 2 
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For stage 2, 20 logarithmically spaced points between 0 and 500 were 

selected for the α-grid. This grid will be automatically refined and the 

bounds will be adjusted as may be necessary during the computation by 

the RCC algorithm (Section 3.4.2).  

 

The convex hull obtained at the end of stage 2 is depicted in Figure 3.6 

below. In this figure all the outputs states that remain on the boundary of 

the convex region are shown. Only the output states resulting from 

combination of reaction and mixing using the feed as the mixing point 

remain on the boundary of the convex hull. The output states resulting 

from the combination of reaction and mixing using the equilibrium point 

lie in the interior. At this stage the equilibrium point is omitted as a 

potential mixing point even though it is still a generating extreme point of 

the convex hull as it does not result in the extension of the boundary. 
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Figure 3.6: A convex hull resulting from stage 2 of the 3D AR construction 

 

Figure 3.7 shows only the output states from the combinations of reaction 

and mixing that are extreme points of the convex hull. 
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Figure 3.7: A DSR convex hull resulting from stage 2 of the 3D AR   

       construction 

 

At this stage it can be noted that the DSR structure is clearly identifiable 

and resembles that solved used analytical methods.   

 

Using the feed point as the mixing point and the equilibrium and feed 

points as DSR starting points, the iteration stage can be started and the 

final candidate AR be obtained once the termination criteria are satisfied.   

 

For this example the convex hull volume growth rate is used as the 

stopping criterion. The algorithm iteration step is terminated when the 

volume growth rate drops below a value of 0.1% of the total volume. The 

above RCC formulations were implemented in MATLAB® to solve the 

candidate AR in the A-B-D space.  
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3.5.2 Results 
 

The candidate AR generated using the AR algorithm is shown in Figure 

3.8. The ARC boundary matches the one obtained via analytical methods in 

section 3.3, showing the same reactor structures.  
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Figure 3.8: 3D Van de Vusse ARC Constructed with the RCC Algorithm  

 

The optimal trajectory for combination of reaction and mixing, i.e. the 

optimal DSR trajectory is delineated by points as indicated in Figure 3.8. 

The optimal CFSTR is also identified on the candidate AR boundary as 

was the case with the analytical computations.   

 

Figure 3.9 shows how the RCC results approximate the analytical 

computation for optimal DSR profiles. The RCC algorithm returns a 

smooth approximate DSR profile with no scattered points.  

DSR Trajectory 
points 

CFSTR point 

Union of reaction 
trajectories 

Union of mixing 
lines
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Figure 3.9: Optimal DSR Profile: Comparison of Techniques 

 

For this example the algorithm run-time on a Pentium 4 2.5 GHz Intel 

computer with 256MB RAM is broken down as follows: 

• Initialisation stage and Growth stage – 7 seconds 
• First Iteration - 8 seconds  
• Second Iteration - 15 seconds 
• Third – Tenth Iteration – 4 min 
• Polish Stage – 6 seconds 
 

The ARC volume growth rate dropped below 0.1% after the fifth iteration 

(2 minutes run-time). More iterations were performed to improve the 

accuracy of the DSR delineation and the results for ten iterations are 

shown in Figure 3.9. To quantify the deviation of the approximate optimal 

DSR profile from the analytical optimal profile, the percentage deviation 

error method was applied. The method uses the equation below to 

calculate the deviational error. 

( ) ( )
( )∑

=

=

×
−

=
iNi

i ianal

approxanal

N
Error

1

100%
C

CC

α

αα
      (3.4) 

× - 1st Iteration; -◊- 3rd Iteration; -×- 10th Iteration;            Analytical 
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Figure 3.10 shows how the value of the percentage deviational error 

diminishes with an increasing number of iterations. The error rapidly 

reduces in the early stages of the algorithm run and asymptotes to a low 

value of about 1% as the number of iterations increases further. 

 

   
Figure 3.10: Algorithm Accuracy with Number of Iterations 

 

3.6 4D Example 
 

3.6.1 Background and Kinetics  

In this example we demonstrate the straightforward application of the 

RCC algorithm to higher dimensional problems. This is illustrated using a 

four dimensional Van de Vusse type kinetics. The reaction scheme 

considered in this example is shown in Figure 3.11. 
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Figure 3.11: 4D Van de Vusse reaction scheme with kinetics 
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Attainable regions analysis in four dimensions has so far been a research 

area that could only be speculated on. Nicol (1998) made some conjectures 

on the structure of four dimensional AR boundaries. Using the results 

from the quadrilateral hyper-planar facets of a four dimensional convex 

hull, Nicol (1998) stipulated that the CFSTR locus will lie entirely on the 

boundary of the AR.  Feinberg (2000a & b) derived some groundbreaking 

analytical formulations for higher dimensional ARs. Feinberg (2000b) 

demonstrated with mathematical proofs that only special types of CFSTRs 

lie on the AR boundary. However due to the difficulty associated with 

starting different optimal DSR trajectories from a known stationary point, 

Feinberg (2000a & b) could not demonstrate graphically how the unions of 

optimal DSR trajectories formed hyper-surfaces in four or higher 

dimensions. The relationship between critical CFSTRs and unions of DSR 

trajectories could also not be asserted.    

 

3.6.2 RCC Formulation Modifications  
A convex hull four-dimensional space is enclosed by quadrilateral hyper-

planar facets with four vertices. Each extreme point is connected to at least 

four other extreme points. Thus every extreme point forms a vertex to a 

minimum of four facets. The generating extreme points form vertices to 

more than four quadrilateral facets.  

 

In four dimensions unions or families of smooth trajectory intersectors 

that are optimal process combination trajectories are expected to form 

hyper-surfaces from which four dimensional manifolds of reaction and 

mixing emanate. In this case, the RCC algorithm is expected to return a 

surface of points that demarcate families of optimal process combination 

trajectories not single trajectory curves as was for the three-dimensional 

example.  
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The algorithm formulation for this example is clear-cut and analogous to 

that of a three dimensional example studied in section 3.5. The intended 

AR is to be constructed in a four dimensional A-B-D-E space. Using the 

kinetic information in Figure 3.11 the algorithm was formulated and 

implemented in MATLAB®.  

 

3.6.3 Results 

In four-dimensional space the structure of the AR boundary can only be 

visualised by projecting into three dimensions. The 4D ARC is visualised 

using four three-dimensional projections namely, A-B-D, A-B-E, A-D-E 

and B-D-E. From the properties of the AR boundary it is known that the 

4D A-B-D-E structure has to be convex and the laws of convexity state that 

all four 3D projections of a 4D polychoron have to be convex polyhedrons 

(Barvinok, 2002). A three dimensional A-B-D projection of the candidate 

4D A-B-D-E AR is shown in Figure 3.12.   

 

 
Figure 3.12: A Three Dimensional A-B-D Projection of the 4D A-B-D-E ARC 
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The optimal DSR of this four dimensional example is not a single 

trajectory as is for a three dimensional example. In this case a family of 

curves forming a surface is observed in three dimensional projections. 

However in three dimensional projections most of this family of curves lie 

in the interior of the ARC. Only specific curves of the family appear on the 

boundary as single trajectories connecting the mixing and the reaction 

surfaces.  

 

The 3D A-B-E projection of the ARC is depicted in Figure 3.13. This 

structure is convex as expected and also shows single trajectories of the 4D 

DSR family on the boundary, smoothly connecting the reaction and 

mixing surfaces. The A-D-E projection shown in Figure 3.14 and B-D-E 

projection in Figure 3.15 also exhibit the same properties.   

 

  
Figure 3.13: A Three Dimensional A-B-E Projection of the 4D A-B-D-E ARC 
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Figure 3.14: A Three Dimensional A-D-E Projection of the 4D A-B-D-E ARC 

 

 
Figure 3.15: A Three Dimensional B-D-E Projection of the 4D A-B-D-E ARC 

 

For this example the occurrence of critical CFSTRs on the boundary of the 

ARC is observed in four occasions corresponding to [CA (mol/l), τ  (min)] 

= [0, ∞τ ]; [0.11, 1.55]; [0.22, 0.35] and [1, 0]. The point τ = 0 is simply the 

system feed which is also used as the mixing point and τ = ∞τ is the infinite 
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residence time CFSTR. This is indicated by the fact that the value of the 

determinant of the eigenvectors of the Jacobian matrix of the process 

vectors takes a zero value (equation 2.14 in section 2.5). This behaviour is 

displayed in Figure 3.16 where the determinant is evaluated along the 

locus of CFSTR stationary point and plotted against the concentration of 

component A.  

 

These critical CFSTRs do not all appear on the boundary of the 3D ARC 

projections. For example, the critical CFSTR labelled M in Figure 3.16 does 

not appear on the boundary of the A-B-D projection as it lies interior to the 

boundary of this projection. However, the critical CFSTR M lies on the 

boundary of the B-D-E projection.    

  

Figure 3.16: The Determinant Value along the CFSTR locus. 
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Figure 3.17: A 2D Map Showing the Topology of the Optimal DSR Family. 

 

Figure 3.17 shows a 2D projection map of the family of optimal DSRs 

along with the critical CFSTRs. The critical CFSTRs play a vital role on the 

topology of the optimal DSR map. The critical CFSTR point O acts as an 

unstable (generating) node as all the optimal DSRs emanate from it. The 

CFSTR M is a stable (terminating) node. This behaviour can be seen in all 

projections of the A-B-D-E ARC.  

 

To fortify this observation the rules of topology are used. The optimal 

DSRs in the family are described by equation 2.6a in section 2.5.4. 

 

( ) ( ))()()( ττατ
τ iii

i CCCr
d
dC

−+= ∗         (2.6 a) 

 

From the qualitative theory of ordinary differential equations, singular 

points or nodes are characterised as the points where the vector space 
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disappears. This occurrence is observed when the right hand side of 

equation (2.6a) takes a zero value for all components such that equation 

(3.5) below is satisfied.  (Eells, 1967) 

 

( ) ( ) 0)()()( =−+ ∗ ττατ iii CCCr      (3.5) 

 

Point M, in Figure 3.17 exhibits this behaviour. The individual terms in 

equation (3.5), r(Ci(τ)) and α(τ)(Ci* – Ci(τ)) do not necessarily take zero 

values but their summation amounts to zero. At point O, the reaction 

term, r(Ci(τ)) is fixed at zero for all components as this is an equilibrium 

point and the value of the optimal mixing policy, α(τ) is fixed at zero for all 

optimal DSRs. This results in the mixing term, α(τ)(Ci* – Ci(τ)) taking a zero 

value and equation (3.5) being satisfied.  The two points M and O are 

therefore clearly singular points.  

 

To further classify the singular points M and O we take another look at 

the theory of differential equations. The Jacobian matrix J, of the set of 

four differential equations (3.6)   
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is given by a 4-by-4 matrix of partial derivatives in equation (3.7) below; 
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         (3.7) 

The eigenvalues of matrix J are four values contained in a 4-by-1 matrix λ ,   

such that the determinant relationship in equation (3.8) below is satisfied;      

  

 det (J – λ I) = 0       (3.8) 

 

where I is a 4-by-4 identity matrix.  

 

Eells (1967) states that 

• If the vector field terminates at a singular point (all eigenvalues of  

the Jacobian matrix are negative), that singular point is a stable 

node 

• A singular point from which a vector field emanates (all 

eigenvalues of the Jacobian matrix are positive) is termed an 

unstable node. 

• A singular point from which some vectors emanate and others 

terminate (eigenvalues of the Jacobian matrix have mixed signs) is 

called a saddle point.  
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Evaluating all four eigenvalues for a differential equation set  
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The rate expressions are as shown in Figure 3.11 with corresponding rate 

constants and mixing policy values are as computed by the RCC 

algorithm.  

  

The four eigenvalues for point O are found to be all positive classifying 

the singular point as an unstable node. This is supported by the behaviour 

of the optimal DSR curves originating from point O. Point M has all four 

eigenvalues negative and therefore it is a stable node and is made evident 

by all optimal DSR curves terminating there. Points L and N are singular 

points in the same way point M is. The singularity of these points is as 

discussed in section 2.5.5 that the reaction vector is collinear and points in 

the opposite direction to the mixing vector. The condition is such that  

( ) ( )cccr −=− 01
τ

          (3.8) 

With the mixing policy taking a value
τ

α
1

= , condition 3.5 is satisfied. The 

eigenvalues evaluated at the two points, L and N take mixed signs as two 

in each are positive and two negative. This gives a classification of the two 

points as saddle points.    
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The computational aspects of the RCC algorithm for the above four-

dimensional example are detailed below. The computation was carried out 

on a Pentium 4 2.5 GHz Intel computer with 256MB RAM.  

 

• Initialisation and growth stage – 57 seconds 

• First Iteration – 50 seconds 

• Second to Fourth Iteration – 182 seconds 

• Fifth Iteration – 74 seconds 

• Final Stage – 31 seconds 

 

   Total – 6 minutes 34 seconds 

 

The termination criterion used in this case was the hyper-volume growth 

rate which dropped below 0.1% after the fourth iteration.  

 

To validate the results, analytical formulations for conditions required for 

optimality were checked for consistency (Chapter 2, Feinberg 2000 a & b). 

The ϕ  condition for four dimensions considering only reaction and 

mixing was computed. The results are shown in Figure 3.18. The ϕ  value 

was computed for each iteration to illustrate how the RCC algorithm 

arrives at the solutions. As the results show the ϕ  value effectively 

remained fixed at zero after the 5th iteration, indicating that the DSR points 

computed lies on the ϕ  surface as required by conditions of optimality. 
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Figure 3.18: The Variation of the Phi Condition with the Number of  

  Iterations   

 

3.6.4 4D Objective Function Optimisation  
Once the boundary of the AR has been identified it is often necessary to 

find a reactor network that optimises a given objective function. 

Optimisation of an objective function for two-dimensional ARs has been 

demonstrated to be straightforward (McGregor, 1998). In this work we 

demonstrate how to find a reactor network structure that optimises a 

given objective function in four–dimensional space using the RCC 

algorithm.  

 

Consider a reaction scheme given in Figure 3.11 and the resulting three-

dimensional projections of the four-dimensional candidate AR depicted in 

Figures 3.12 – 3.15. The feed to the system is pure A and the valuable 

products from the system are considered to be B, D and E. Component C 

is a valueless by-product that should be minimised. Consider an objective 
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function of the system that represents some profit generated from 

products B, D and E and loss of reactant A due to formation of C. The 

profit function can be given as some theoretical function of concentration 

as follows; 

 
5.05.05.0

CAEDBprofit CCCCCP −++=      (3.9) 

 

This profit function is hypothetical and does not necessarily have realistic 

significance as it is for demonstration purposes.  

 

The profit is expected to be maximised at the point where the profit curve 

intersects the boundary of the A-B-D-E attainable region. As it is 

impossible to visualise this in four dimensions, three-dimensional 

projections will be used with the understanding that the maximum profit 

point may lie in the interior of the projections (Barvinok, 2002).  

 

The point that gives the highest value of the profit function given by (3.9) 

is found to be an extreme point on the ARC at concentrations of  

 

 [CA, CB, CC, CD, CE] = [0.1005, 0.07789, 0.0055, 0.4022, 0.01171]     

 

At this point the profit value is 0.8128. The reactor network layout that can 

be used to attain this maximum profit concentration is that of a CFSTR-

DSR-PFR sequence  

 

 

 

The sequence of unit operations is obtained by tracing the fundamental 

processes used to attain the maximum profit state point from the feed state 

point. 
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Figure 3.19 illustrates how the profit function intersects the boundary of 

the AR at the maximum profit point on the A-B-D projection. By 

coincidence this point lies on the boundary of the three-dimensional A-B-

D projection as it can be observed from the two boundaries tangentially 

intersecting at one point. 
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Figure 3.19: A-B-D Projection of the intersection of the AR boundary with the 

profit function   

 

Figure 3.20 shows the intersection of the profit surface with the ARC 

boundary on the A-B-E projection. In case the point of intersection is 

located in the interior of the ARC projection. This is observed by the profit 

surface purportedly cutting through the projection boundary. However it 

should be noted that the profit function surface does not slice through the 

ARC boundary as it intersect the 4D boundary tangentially at one point. 

The geometric orientation illustrated by the A-B-E projection in Figure 

3.20 is due to lower dimensional transformation.   

 

Profit 

ARC 
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Figure 3.21 also shows that the maximum profit point resides in the 

interior of the A-D-E projection of the 4D A-B-D-E ARC. The profit surface 

in this case also appears to cut through the boundary of the projection.     
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Figure 3.20: A-B-E Projection of the intersection of the AR boundary with the 

profit function   
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3.7 Discussion 
  

We have managed to formulate a brute force type algorithm for 

identifying the attainable regions boundary. The recursive convex control 

policy algorithm uses simple mathematical ideas, enabling easy and rapid 

formulation even for problems with intricate reaction schemes, complex 

kinetic system and high stoichiometric dimensionality. The analytical 

methods demonstrated in this chapter proved a successful but rather 

complex procedure to attain ARCs. The 3D illustration carried out resulted 

in a very complex algebraic process and results, notwithstanding the fact 

that the kinetics were relatively simple when compared to practical 

industrial reactions. The same example was solved in a simple and 

straightforward manner using the RCC algorithm and the results were 

proven to be consistent.  

 

Higher dimensional problems have not been previously demonstrated due 

to their algebraically exhaustive nature when approached analytically. 

Nicol (1998) made some speculations about 4D AR structures. From 

intuitive grounds, Nicol stated that the entire CFSTR locus is likely to 

reside on a 4D ARC for systems with reactions and mixing. The comments 

turned out to be erroneous after Feinberg (2000b) derived the necessary 

conditions of optimality that govern the occurrence of the effluent of 

CFSTR on the boundary of the ARC. Feinberg (2000b) demonstrated that 

only special types of CSFTRs, termed critical CSFTRs occur on the ARC 

boundary. However, with the intricacy associated with the analytical 

derivations Feinberg (2000a & b) could not demonstrate the role optimal 

DSRs and critical CFSTRs played in shaping the AR boundary.  

 

With the use of the RCC algorithm we have managed to illustrate, for the 

first time, how the critical CFSTR occur on the ARC boundary and the role 
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they play on shaping the boundary. Families of optimal DSRs were also 

shown and all the speculations about the role these DSRs play in shaping 

the 4D ARC boundary can be affirmed.   

 

The RCC algorithm only satisfies the conditions of convexity as it uses the 

convex-hull in the computation to identify ARCs and does not guarantee 

optimality in its formulation. However, we have demonstrated using a 4D 

example that the necessary conditions of optimality as derived by 

Feinberg (2000a& b) can be closely approximated by increasing the 

number of iterations in the algorithm computation.  

 

Optimisation of a four dimensional objective function using attainable 

regions analysis has, for the first time, been demonstrated. By use of lower 

dimensional projections, the intersection of the objective function and the 

ARC boundary at the optimum point has also been illustrated and 

interesting postulates asserted.   

 

The RCC algorithm approximates optimal processes combinations that 

outline the boundary of the ARC by growing all possible extensions from 

the interior. Therefore, the ARCs that are generated, within some numerical 

error, represent the lower bounds of the AR. There exists an area of future 

research where the RCC technique could be coupled with another method 

that approximates the outer or upper bounds of the ARC from the outside, 

such as the Method of Bounding Hyperplanes (Abraham and Feinberg, 

2004). A procedure that incorporates these two techniques would 

approach the AR boundary solution from both the interior and exterior to 

guarantee more accurate results and could provide a very powerful 

technique to identify actual AR boundaries.      
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3.9 List of Symbols  
 
Abbreviations  

AR   Attainable Regions 

ARC  Candidate Attainable Regions  

CFSTR Continuous Flow Stirred Tank Reactors 

CSTR  Continuous Stirred Tank Reactors 

DSR  Differential Side-stream Reactor 

LP  Linear Programming 

PFR  Plug Flow Reactor 

RCC  Recursive Constant Control Policy algorithm 

 
 
Symbols 
α  Control policy for  combination of reaction and mixing 

c  State variable of the system 

co  State variable of the system at the feeding point 

c*  Mixing state variable of the system 

c  State vector comprising all variables describing the system 

C  Concentration of the reacting components 

p  Fundamental processes taking place in the system 

r(c)  Reaction rate vector defined at c 

RN  Euclidean space of dimension N 

τ  Residence time 

T  Temperature of reaction 

T*  Temperature of mixing 

v   Mixing vector, mixing c with c* 

x  Reactants and Products  state compositions 

x*  Reactants and Products  mixing compositions 

ϕ (c)  The optimum process combination surface (phi surface) 
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CHAPTER 4 

RCC ALGORITHM USER INTERFACE: 

TEACHING AND APPLICATION TOOL 
 

4.1 Introduction 

In this chapter we demonstrate how the RCC algorithm can be completed 

as a fully automated and easy to use attainable regions analysis tool by use 

of MATLAB® graphic user interface (GUIDETM). We develop a complete 

and easy to use software package by under-laying the graphic user 

interface (GUI) to interface the user with the underlying RCC code. The 

GUI provides users with an easy to apply graphic interface for input of the 

required data and output of the results after computation.  

This illustration is carried out by developing a customised GUI package 

for a three-dimensional Van de Vusse type kinetics case study that has 

been solved in Chapter 3. The elemental problem in this study is fixed, as 

the underlying reactions and the kinetic models are preset within the 

software code for the user; however the user has the liberty of changing 

the rate constant parameters by choosing values from a preset list.  

The GUI package shows how the RCC algorithm can be used to solve 

attainable regions problems by non-specialist users without the need for 

expertise in the field. This tool can also be used to teach the attainable 

regions theory to first time users without the complications of using 

iterative techniques that do not guarantee solutions or solving intricate 
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algebra arising from analytical derivations. This will also enhance the 

understanding of different AR structures by use of a number of diverse 

AR boundaries that result from alternative kinetic parameters. The GUI 

presents the AR results that are fully colour coded to differentiate and 

simplify interpretation of the boundary in terms of fundamental processes 

or combinations thereof that can be further interpreted as a network of 

unit operations.     

The full software package for the RCC that allows the user input of the 

examples of their choice which also contains a variety of problems 

including industrial problems studied in Chapters 5, 6, 7 and 8 has been 

developed during the course of this research. This complete package will 

not be illustrated in this thesis due to the confidentiality concerns 

surrounding its commercial viability and will therefore remain in 

safekeeping of the Centre of Material and Process Synthesis research 

group at the University of the Witwatersrand.   

4.2 The Preset Example 

The case study pre-programmed for the illustration of the graphic user 

interface package is the Van de Vusse kinetic type studied in Chapter 3 

using analytical tools derived by Feinberg (2000a & b). The reaction 

scheme involved comprises mass action kinetics shown in Figure 4.1 

below;  
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Figure4.1: Reaction scheme for Van de Vusse mass action kinetics 
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The rate constants k1, k2, k3, and k4 are allowed to have any of the values 0; 

0.1; 0.5; 1; 10 and 100 which can be chosen from the preset list. The 

software code uses the values as selected by the user to solve three-

dimensional candidate attainable regions in the A-B-D concentration 

space. The permitted fundamental processes are that of reaction and 

mixing. The reaction is isothermal and occurs in the liquid phase at 

constant density. The feed is a liquid of 1 molar concentration of reactant 

A and contains no B, C or D.    

4.3 Components of the GUI 

The graphic user interface software is not a stand-alone computer 

application as it is programmed using MATLAB® and can be used with 

versions 6.1 or later on a Microsoft®  Windows® operating system. A 

compact disk (CD) containing the source code files for the software 

package illustrated herein is attached to the back cover of this thesis.   

To run the RCC GUI application, the source code files should be loaded 

into the working directory of MATLAB®. The application can be activated 

by typing ‘vdvgui’ in the MATLAB® command prompt (>>). The GUI 

window shown in Figure 4.2 will be launched as the active window. The 

components of the GUI window are labelled in Figure 4.3. To discuss these 

components we will carry out a demonstration on how to solve a 

candidate AR in the A-B-D stoichiometric space using the rate constant 

values: k1 = 0.1, k2 = 0.5, k3 = 1, and k4 = 100.   
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Figure 4.2: The RCC GUI interface window for the Van de Vusse Example  

 

Rate Constant Values Drop Down Menu   Candidate AR Plot Window 

 
Application Action Buttons   Run Status and Duration Display 
Figure 4.3: Component of the RCC interface window 
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4.3.1 The Rate Constant Input Drop-down Menu 

This component of the GUI allows the user access to key in values of the 

rate constants of the Van de Vusse reaction by selecting values from the 

list provided within the drop-down menu. As shown in Figure 4.4, each 

reaction is catalogued alongside its corresponding rate constant and the 

drop-down menu for the selection of the respective rate constant value. 

          
 (a)     (b) 

    
(c) (d) 

Figure 4.4: Rate constant input drop-down menu  

 

Figures 4.4 (a), (b) and (c) show how the values of constants k1; k2 and k3 

can be selected to the desired values. Figure 4.4 (d) displays how a 

completed selection of all rate constants.   
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4.3.2 Action Button Console 

Figure 4.5 below shows a panel of action buttons that can be applied by 

the user to execute the desired actions. The actions available to the user in 

the illustration are; 

• Execute:  This button allows the user to run the RCC algorithm 

  application to solve candidate ARs after the desired  

   input is keyed in. 

• Terminate:  This action button can be used to terminate the  

   execution of the RCC application at any time. This 

       action is useful in the case where the user realises the 

   need to change input after executing the application. 

•  Save Results : In the case where the user needs to save the  

   computational numeric results for later use with other  

   applications, this action button can be used to save the  

   results into a MATLAB® data file ‘results.mat’ and 

   into a text file ‘results.txt’ ASCII format delimited  

   with a  tab character.   

 
Figure 4.5: Action button console 
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4.3.3 Run Status Display Panel 

The run status window informs the user about the progress of the 

execution of the application as shown in Figure 4.6. The default status 

displayed indicates that the application is awaiting input from the user 

shown in Figure 4.6 (a). After the desired rate constants input is keyed in 

and the execute button pressed to run the application, the run status 

window displays ‘Initializing’ showing that the code is performing the 

initialisation stage (Figure 4.6 (b)). As the application progresses to solve 

the ARC, going through the RCC algorithm stages, the run status window 

reports the completed stage. The accumulated duration from the start of 

the execution to the completion of that particular stage is reported in the 

duration window. This progressive reporting is depicted in Figure 4.6 (c) – 

(f).  

 

   
  (a)      (b) 

   
  (c)      (d) 

   
  (e)      (f) 

   
(g)      (h) 

Figure 4.6: Run status and duration display panel 
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At the end of the computation, the solution which is the ARC figure is 

displayed in the plot window and the run status display reports that the 

application run is completed and the duration display indicates the time 

taken to complete the entire calculation from start to plotting of the 

results. If the user chooses to save the numeric results to a file by clicking 

on the ‘Save Results’ button on the action button console, the application 

saves the results into files as stated in section 4.3.2. The run status display 

in this case will indicate that the results have been saved and the duration 

window will report the name of the file into which the numeric results 

have been saved. This property is shown in Figure 4.6 (g). The user can 

choose to terminate the application execution at any time during the run 

and the status display window will report the progress of the application 

as terminated as shown in Figure 4.6 (h). In this case the ARC plot window 

will be blank as there will be no results to display.  

4.3.4 The Plot Window 

The plot window shown in Figure 4.7 displays the solution of the AR as 

returned by the RCC algorithm. When the GUI is loaded, the plot window 

shows a default candidate AR structure as shown by the application GUI 

window in Figure 4.2. This candidate AR figure is the result of the 

previous solution computed by the RCC algorithm which is automatically 

saved in a file named ‘defaultplot.fig’. The plot window displays text that 

informs the user that, by clicking anywhere on the plot window area the 

figure can be pulled off as a standalone MATLAB® figure window. After 

the ARC figure window is pulled out, it can then be manipulated by the 

user with MATLAB® built-in tools such as rotation, editing, formatting, 

etc.  
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Figure 4.7: Candidate AR plot window 

4.4 Results and Interpretations 

At the completion of the application execution, the results are shown in 

the ARC plot window and the run status display will report the 

application run as completed and the duration will also be displayed. For 

the example used in this illustration, the GUI window shows the results at 

the end of the execution to be as depicted in Figure 4.8. 

By using the mouse cursor to click on the plot window area, the ARC 

figure can be pulled out to be a standalone MATLAB® figure window as 

shown in Figure 4.9. The ARC figure can then be manipulated by a rotation 

tool to enable view from different projections. Figure 4.9 (a) shows one of 

the many 3D projections while Figure 4.9 (b) shows a 2D projection in the 

A-B concentration space.  

Rotation of the ARC figure allows the user to identify fundamental 

processes and/or combinations thereof that occur on the boundary. This 

property is made possible by the differentiating colour coding performed 

by the algorithm.   
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Figure 4.8: Application GUI window showing the completed results  

 

  
  (a)      (b) 

Figure 4.9: ARC solution in a standalone MATLAB® figure window 

The fundamental processes and combinations of fundamental processes 

that occur on the boundary are distinguished by colours as shown on the 

ARC solution depicted in Figure 4.10.  These colours make it easy to study 

how different fundamental processes and combinations thereof form the 

shape of the boundary of the attainable regions.    
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Figure 4.10: ARC solution illustrating colours used for differentiation 

The colour coded figure makes it simple and straightforward to interpret 

different regions of the ARC boundary in terms of fundamental processes. 

This property, however, does not alleviate complications relating to the 

interpretation of the product states on the ARC boundary in terms of a 

sequence of unit operations and key design parameters, which can be 

construed into a flowsheet with unit operations specifications. The RCC 

GUI software package offers an application that simplifies the task of 

interpreting any product state on the ARC boundary into a network of unit 

operations applied to attain it.  

After the results have been obtained from the execution of the RCC GUI 

application and the ARC figure pulled out into a standalone MATLAB® 

figure window, the user can then execute a command termed ‘infer’. By 

keying in ‘infer’ at the command prompt, the application activates a built-

Yellow: Mixing lines (mixing 
feed with PFR product) 

Magenta: PFR highways 
(Reaction surface) 

Blue: Combination of 
reaction and mixing (DSR) Green: Mixing lines (mixing 

feed with DSR product) 

Red: CFSTR 
(reaction and 
mixing) 
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in MATLAB® function that can read off data from the figures. The mouse 

cursor will then be equipped with a cross-pointer that the user can apply 

to read off any output state point state on the ARC boundary. Once the 

data from the output state point has been read and interpreted by the 

application, a new figure window is activated, graphically showing a 

sequence of unit operations that can be used to attain it, along with 

specification such as residence times for each unit. 

To demonstrate this function, we will use the ARC as solved above. By 

pointing on the ARC using the cross pointer as shown in Figure 4.11, the 

application returns the window showing the information about the 

product state at the point of interest and the network of reactor structures 

used to attain it, as portrayed in Figure 4.12.  

 
Figure 4.11: Illustration of a cross-pointer used to read off a point   

Also shown along with the network of reactor structures, are the residence 

times of each of the reactors.  
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Figure 4.12: Interpretation of product as reactor structures network  

 
 Figure 4.13: 2nd Illustration of a cross-pointer used to read off a point of    

                     interest 
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Figure 4.13 shows another illustration of how a product state can be 

interpreted into a network of unit operations used to achieve it. The 

network used in this case is shown in Figure 4.14. 

 

 
Figure 4.14: Interpretation of the 2nd point as reactor structures network  
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4.5 Discussion 

The graphic user interface (GUI) of the RCC algorithm has been 

successfully illustrated. A step by step demonstration has been used to 

introduce the components and functions of the customised GUI 

application by solving an example.  The usefulness of this software 

package relies mainly on the rapid solutions of ARC computed by the 

under-lying RCC algorithm as well as its data tracking capabilities that 

enabled interpretation of the results as networks of reactor structures.  

The application presumes no prior knowledge of attainable regions 

analysis for the end users. By providing the required kinetic information, a 

full ARC is provided and any point on the boundary as chosen by the end 

user, can be interpreted at the speed of a mouse click.  

The RCC algorithm is continually proving to be a powerful process 

synthesis technique using attainable regions analysis. With the use of 

simple theoretical examples, we have so far, demonstrated a fully 

automated reactor network synthesis procedure starting with the given 

feed and reaction kinetics to yield a complete solution of unit operations 

sequence with design parameter.  

At this point, it is evident that with the use of automated algorithms, AR 

analysis can be included in computer simulation packages that are 

extensively used by chemical engineers to synthesise new processes as 

well as to optimise existing ones. In the next chapters we will start to 

tackle practical industrial case studies using the RCC algorithm to solve 

optimal process specifications. 
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4.7 List of Symbols 
 
Abbreviations  
AR   Attainable Regions 

ARC  Candidate Attainable Regions 

CFSTR Continuous Flow Stirred Tank Reactors 

DSR  Differential Side-stream Reactor 

GUI  Graphical User Interface 

PFR  Plug Flow Reactor 

RCC  Recursive Constant Control Policy algorithm 

 
Symbols 
C  Concentration of the reacting components 

k  Reaction Rate constant 

r(c)  Reaction rate vector defined at c 
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CHAPTER 5 

RCC ALGORITHM: APPLICATION TO 

INDUSTRIAL CASE STUDIES 
 

5.1   Introduction 

Up to now we have developed the RCC algorithm and demonstrated its 

applications with theoretical case studies. The examples considered 

isothermal systems with fundamental processes of reaction and mixing 

only. More importantly, we illustrated the straightforward advancement 

of the algorithm to handle higher dimensional problems.  

In this chapter we apply the RCC algorithm to study more practical 

examples with chemical reactions of industrial nature. The systems to be 

considered will consist of reaction kinetics, fundamental processes of 

reaction, mixing, heating and cooling and some specified constraints. The 

first case to be studied will be a generic first order exothermic reversible 

system with a single reaction occurring. The second example will 

investigate a more practical and specific exothermic reversible reaction, 

which is the industrially important ammonia synthesis system. In Chapter 

6 we will perform a detailed study of a more complex industrial system 

with a network of reactions and will derive the optimal reactor networks 

for methanol synthesis. The RCC formulations will be used to generate 

candidate attainable regions for all these examples from which the optimal 

reactor network structures will be arrived at. 
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5.2 Exothermic Reversible Reaction  

5.2.1 Background  

A wide range of industrial exothermic reactions such as oxidation, 

polymerisation, isomerisation and esterification reactions have been 

shown to exhibit characteristics that can be described by first order 

reversible kinetics (Omoleye, et al., 1989).  Systems with exothermic 

reversible reactions have always presented challenging reactor network 

synthesis due to the fact that the optimum reactor requires both high 

temperatures to favour high initial reaction rates and low temperatures to 

achieve high equilibrium conversions.  

Traditional methods of optimising exothermic reversible reactions place 

emphasis on developing techniques for identifying the required falling 

temperature progressions. Denbigh (1944) demonstrated for a wide range 

of exothermic reaction schemes, how to determine the theoretical 

optimum temperature profiles from which more practical temperature 

progression could be determined. This method falls apart when the costs 

of cooling start to play a role and reactor residence times and cooling 

utilities trade-offs have to be considered as the best temperature profiles 

are not so obvious.  

To achieve the decreasing temperature progression two cooling methods 

are commonly employed in practise. The direct cooling method uses cold 

feed addition to cool the reaction mixture while indirect cooling utilizes 

heat exchange to cool the reaction mixture. Research to optimise cold feed 

addition in cold shot reactors with direct cooling methods has been carried 

out by many researchers (Hellinckx and Rompay, 1968; Burghardt and 

Patzek, 1978). Glasser et al. (1992) used AR analysis to identify optimal 
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cold shot reactor profiles. Ravella and de Lasa (1987); and Beckett and 

Evans (1989) studied the methods of indirect cooling, and the practical 

applications of these methods can be seen in methanol and ammonia 

synthesis reactors. The reactor network in these cases involves adiabatic 

reactor stages with inter stage coolers.  

Further work involving AR analysis to identify optimal cooling profiles 

for exothermic reactions was carried out by Godorr (1998). Godorr’s study 

permitted only direct cooling as it considered an adiabatic reaction scheme 

allowing only reaction and mixing processes. Hausberger (2003) applied 

an automated AR analysis technique, called the iso-state algorithm to 

identify an optimal reactor structure for ammonia synthesis. Although this 

study allowed for both direct and indirect methods of cooling, the costs to 

be incurred for heat transfer were not taken into consideration. 

Hausberger also investigated the effects of internal heat exchange as a 

means of indirect cooling. This study revealed that the optimal cold shot 

reactor and optimal cooled reactor (internal heat exchange) form the 

optimal reactor network for ammonia synthesis. Research carried out by 

Kauchali et al. (2004) focused on finding ARC’s for the water gas shift 

reaction. This study allowed for both methods of cooling to be 

investigated. The heat transfer costs were not considered for indirect 

cooling and the cooling profiles for this reaction scheme appeared 

straightforward.    

Nicol et al. (1997, 2001) studied ARC’s for exothermic reversible reactions 

with both internal and external cooling. The authors also investigated 

cases where cost incurred for heat transfer were incorporated. Nicol et al. 

(1997) considered cases where the cost of external heat exchange is zero, 

less, equal and greater than the cost of reaction. The ARC’s for this study 

revealed interesting reactor networks comprising isothermal cold fed 
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reactors, optimum cold fed reactors, and optimum cooled reactors 

(internal and external heat exchange).  

In this study we apply the automated RCC algorithm to case studies 

similar to those investigated by Nicol et al. (1997, 2001). In our study we 

will use the same reaction scheme and kinetics as in Nicol et al. (1997, 

2001).      

5.2.2 The system 

A generic first order exothermic reversible reaction considered herein has 

the following reaction where reactant A is converted to product B as 

A↔B       (5.1) 

The reversible rate of formation of B takes the Arrhenius type kinetics 

defined by 

( ) ( ) x
T
EAx

T
EATxrx ⋅⎟

⎠
⎞

⎜
⎝
⎛ −−−⋅⎟

⎠
⎞

⎜
⎝
⎛ −= 2

2
1

1 exp1exp,    (5.2) 

where x is defined as conversion (fraction of A that has reacted) and T is 

the reaction temperature. The rate constants A1 and A2 have values of 

5×105 and 5×108 respectively. The Arrhenius constants related to the 

activation energies of both the forward and reverse reactions, E1 and E2 are 

taken to have values of 4000 and 8000 with corresponding units 

respectively. The assumptions made in this example are that the pressure, 

density and heat capacity of the reaction system remain constant as the 

reaction mixture and temperature change. It is also assumed that mixing 

occurs ideally such that the heat of mixing is insignificant in comparison 
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with the reaction enthalpy (ΔHrxn). Subsequently, the energy balance of 

the system can be derived such that the adiabatic reactor effluent 

temperature is a linear function of conversion; 

xTTT ado ⋅+=        (5.3) 

where Tad is the adiabatic temperature gradient equal to ΔHrxn/Cp. The 

value for Tad will be taken to be 200 for all cases studied in this section. To 

is the basis temperature from where the adiabatic reaction is started (x = 

0), and would correspond to the feed temperature of the reactor. If pre-

heating is undertaken prior to reaction, To will correspond to the pre-

heating temperature. The feed temperature to the system in this example 

is taken to be 300K. 

External cooling can be done with a constant temperature utility where the 

temperature of the utility is Tc. For a process stream of temperature T 

being cooled with a cooling utility of temperature Tc, the rate of cooling 

per unit heat exchange area can be defined as: 

 ( ) ( )TThTTw coc −=,         (5.4)  

Equation (5.4) does not consider the cost of cooling. The heat transfer 

coefficient ho, is assumed to be constant for simplification. 

5.2.3 System State Variables and Process Vectors  

The fundamental processes allowed in this example are reaction, mixing 

and cooling. The variables involved with these processes are conversion, 

temperature and residence time. Residence time is generally used as a cost 

indicator for a reactor as it gives an indication of the reactor size for a 
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given flow capacity. For heat transfer, the heat transfer area is normally 

used as a cost indicator. Nicol et al. (1997) combined the two different costs 

by assuming a linear cost relationship between heat transfer area and 

reactor residence time such that the resulting cost variable obeys linear 

mixing.  

 To consider the cooling duty, heat transfer cost can be linearly related to 

the cost of reaction using reaction residence time τ r, and some constant 

factor kc such that the combined cost for reaction and cooling is given by: 

ω+τ=τ cr k         (5.5) 

where ω  the heat exchange area per unit flow of heat exchange (Nicol et 

al., 1997). The rate of change of temperature can now be revised with the 

relative cost integrated in, when allowing only cooling as the fundamental 

process and is given by: 

 ( )TT
C

kh
d
dT

c
P

co −=
τ

       (5.6) 

Equation (5.6) can be rewritten as: 

( )TTK
d
dT

cc −=
τ

 with  
P

co
c C

kh
K =     (5.6) 

Kc gives some measure of cooling costs in relation to the cost of reaction 

(Nicol et al. (1997)). The relation of Kc to the heat transfer costs is such that, 

very small values of Kc signify high costs or expensive heat transfer, while 

very large values (Kc = ∞ ) correspond to cheap or very low cost of cooling.   
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The state variables that can be used to describe our system at this point 

are; a variable associated with the process of reaction x, secondly, a 

variable relating to changes in temperature of the system T, and thirdly, 

the cost variable τ . The characteristic vector of the system can now be 

defined as c = [x, T, τ ]. 

The fundamental processes can be defined as vectors in the c space. The 

process of reaction r(c) is described by a vector; 

( )
( )
( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅=

1
x,TrT

x,Tr

xad

x

cr       (5.7 a) 

The mixing process can be performed using a mixing state c0 = [x0, T0, τ 0] 

such that mixing is characterised by; 

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
ττ 0

0

0

0, TT
xx

ccv        (5.7 b)  

Cooling is carried out using a constant temperature cooling utility at Tc.    

This fundamental process can be described by a vector given by;  

( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

1

0
TTK ccck        (5.7 c) 

Kc is as defined in equation (5.6) to be some measure relating the cost of 

cooling to the cost of reaction.  At this stage the system variables have 

been fully defined and the fundamental processes occurring are 

characterised as vectors in the state variable space.  
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The overall processes combination vector for this system can be written as: 

( ) ( ) ( )cTT ,,)( 0 kccvcrcP βα ++=    0, ≥βα   (5.8a) 

In Chapter 2, we asserted from the postulates derived by McGregor (1998) 

that the smooth intersector that are optimal combinations of fundamental 

processes for this case are formed by the combinations of reaction and 

mixing and combinations of reaction and cooling. The intersectors of 

mixing and cooling form non-smooth ridges that are not trajectories and 

do not have generalised mathematical descriptions. This problem can 

therefore be formulated with two process combination vectors for the 

combination of reaction and mixing; 

( ) ( )01 ,)( ccvcrcP α+=    0≥α     (5.8b) 

And the combination of reaction and cooling as;  

( ) ( )cTT ,)(2 kcrcP β+=    0≥β     (5.8c) 

The above formulation solves for the optimal process combinations that 

are known to be smooth trajectory intersectors. These intersectors give 

pathways to manifolds of distinct process trajectories that give rise to the 

final shape of the AR boundary (Chapter 2 & 3, Feinberg 2000 a & b). The 

optimal combination of reaction and mixing is a DSR trajectory and that of 

reaction and cooling is a differentially cooled reactor (DCR) trajectory.  

The non-smooth intersectors that are not trajectories but intersections of 

terminating process manifold such as the mixing and cooling intersectors 

will be automatically established on the boundary of the AR if there are 

such points that exist.  
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5.2.4 System Constraints and Limits 

Before the construction of the ARC we need to state the constraints and the 

limits placed on the system. We will restrict the maximum preheating 

temperature to 450K. This constraint could in reality be limited by the 

temperature of the preheating media. Furthermore, the minimum cooling 

utility temperature in this case is limited to a minimum of 300K. For 

interest we will further state that the catalyst activity requires 

temperatures above 450K, placing a minimum reaction temperature 

bound of 450K on the system. 

5.2.5 RCC Formulation 

5.2.5.1 The Boundary Objective 

The problem is then formulated using the objective as maximisation of 

reaction conversion for a given system residence time. Alternatively, the 

objective can be written out as minimising the residence time for a given 

conversion. At this stage it becomes evident that the problem can be 

solved in two-dimensions as the objective function involves identifying 

the convex boundary in reaction conversion and residence time (cost) 

space. The problem can be solved by identifying a two-dimensional 

convex structure of fundamental processes and/or combinations thereof 

that will give the highest conversion of product x, at a given overall 

system residence time τ  or the lowest system residence time to reach a 

given conversion. 
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5.2.5.2 The Termination Criterion 

The boundary objective states that the problem will be completely solved 

by finding a two-dimensional convex boundary of combinations of 

processes in the conversion-residence time space. The area percentage 

growth of the two-dimensional region can be used as a termination 

criterion in this case if accuracy is not crucial. The solution in this case 

serves satisfactorily in situations where the aim is to quickly identify 

reactor structures that occur on the ARC boundary. Percentage deviational 

error methods can be coupled with a number of iterations to terminate the 

algorithm in cases where high accuracy of parameters such as residence 

times and optimal process combination policies are required. The 

deviational error gives an indication of how the boundary is improving or 

not improving towards the solution after every iteration. In the light of the 

fact that the approximate boundary solution as returned by the algorithm 

at the end of each iteration is a set of points that continually change with 

the number of iterations, linear interpolation is used for comparison. 

Consider a boundary contained in data set Cj returned by iteration j. For a 

two-dimensional τ -x region, Cj will contain Nj number of state points 

defined as;  

];...;;[ ,2,1, jNjjjj cccC =   such that cj,i = [ τ j,i, xj,i( τ j,i)] for i=1,2,…Nj  

          (5.9) 

 

The preceding iteration would have the outcome Cj-1, with Cj-1 taking a 

definition analogous to equation (5.9) with corresponding subscripts. It 

should be noted that Nj ≠  Nj-1, in fact it is more likely that Nj > Nj-1 as the 
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boundary set gets populated with more data as the number of iterations 

progresses (Chapter 3, section 3.4.3).  

Linear interpolation can be carried out to evaluate xj,i( τ j-1,i) as shown in 

Figure 5.1.  

 
Figure 5.1: Illustration of linear interpolation of boundary results 

It should be noted that linear interpolation is performed as Cj-1 into Cj due 

to the fact that Cj is populated with more data points, and therefore will 

yield more accurate interpolation results as compared to interpolation of 

Cj into Cj-1. Percentage deviational error methods can be then applied to 

the interpolated results to compare the solutions of two sequential 

iterations as shown by equation (5.10) below;   

 

( ) ( )[ ]
( )[ ]∑

−=

= −−

−− ×
τ

τ−
=
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1 1,1
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100jNi

i jijj
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E      (5.10) 

τ  

x( τ ) 

( )ijijijij x ,1,1,1,1 ,[ −−−− = ττc  

( )[ ]ijjij xinterp ,1,1 ,[ −− ττ  



Numerical Formulations for Attainable Region Analysis                      Tumisang G. Seodigeng
  
  
  

Chapter 5: R.C.C Algorithm: Application to Industrial Case Studies     117

 

The termination criterion used in the two cases of this example is such that 

the algorithm terminates when E% < 1 or the number of iterations exceeds 

20.  

 

5.2.5.3 The Algorithm 

Using the system specifications, constraints and the termination criterion, 

the RCC algorithm for the exothermic reversible reaction can be 

formulated as detailed in Chapter 3 (section 3.4.2).  

Stage 1 

The algorithm is formulated the AR in three-dimensional conversion-

residence time-temperature space. Pre-heating is applied to the maximum 

pre-heating temperature and minimum catalyst activity temperature of 

450K. PFR trajectories and CFSTR locus are generated from the preheated 

feed. The points that optimise the objective function in this case are taken 

as extreme points.  

Stage 2 

The cooling utility is fixed at 300K for this example (Section 5.2.4). The 

mixing points are selected as points satisfying conditions detailed in 

Section 3.4.3. The process combination trajectories given by (5.8 b) and (5.8 

c) are generated from the generating extreme mixing and cooling at 

respective mixing and cooling points.  
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Stage 3 

The iteration stages are performed to refine the control policies for 

combinations given by (5.8 b) and (5.8 c) and grow the region until the 

termination criterion is satisfied (Section 5.2.5.2).   

Stage 4 

Once the termination criterion is met, the boundary can be completed 

using single process combination trajectories. From the optimal 

combinations of reaction and mixing, reaction trajectories and mixing lines 

are generated to complete the boundary of the ARC. Similarly, from 

reaction and cooling intersectors, the ARC boundary is completed with 

single process operation surfaces that are either unions of reaction 

trajectories or cooling lines.  

 

5.2.5.4 Traditional Methods Review 

The traditional methods used by Nicol et al., (1997, 2001) to solve this 

problem involved the algebraically exhaustive procedure of deriving the 

optimal control policy equations for combinations (5.8 b) and (5.8 c). 

Another difficulty in these methods lies in identifying points on the 

boundary where these optimal combinations initiate, switch and/or 

terminate. These two steps require intervention by a specialist in the field 

of AR analysis.  
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5.2.6 Results 

5.2.6.1 Case 1  

In this case the cost of cooling was not taken into consideration, thus 

allowing free cooling. The RCC algorithm was formulated and 

implemented in MATLAB®. The termination criterion was satisfied and 

the boundary completed after five (5) iterations. Figure 5.2 depicts a two-

dimensional temperature-conversion projection of a 3D temperature-

extent-residence time ARC for this case. 

 
Figure 5.2:A 2D temperature-conversion projection of case 1 ARC 

The different process surfaces with their corresponding vectors are shown. 

Fundamental process layouts for this case are tabulated in Table 5.1 

showing the main process pathways and regions as indicated on the ARC 

in Figure 5.2.  The main process pathways are outlined with numbering 

from [1] to [6]. 
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Table 5.1: Process Layout for Exothermic Reversible Reaction Case 1  

Process Curve Process Pathway Process Layout 
 
 

1 - 5 

The general process 
layout for the  ARC 

 

Surface Occurring Processes  Process Layout 

 
         A 

Pre-heater -  CFSTR 
with by-pass  

 

 
         B 

Pre-heater – CFSTR –  
PFR with by-pass 
 

 

 
         C 

Pre-heater – CFSTR –  
PFR – DCR-Cooler with 
by-pass 

 

 
          D 

Pre-heater – CFSTR –  
PFR – DCR - Cooler 

 

 
          E 

Pre-heater – CFSTR –  
PFR – DCR - PFR 

 

 
          F 

Pre-heater – CFSTR –  
PFR – DCR – PFR - 
Cooler 

 

The general process layout utilises the permitted free pre-heating,[1], to 

the maximum allowable temperature of 450K. The preheated feed is then 

followed by an optimum adiabatic reactor sequence. This sequence 

comprises a CFSTR [2] followed by a PFR [3]. Initially the CFSTR locus 

yields higher conversion per residence time compared to the PFR. 

However there is a switching point from which the PFR begins to yield 

higher conversions per residence time. This switch point is indicated by × 

on Figure 5.2.  Regions of mixing and heat transfer are also shaded and 

1 3 4 52 
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indicated using v for mixing and k for heat transfer. There also exists an 

optimal process combination path for reaction and cooling [4] or a DCR 

smooth trajectory intersector on the boundary of this ARC. There are no 

DSR intersectors found on the boundary of this structure. In this case the 

costs of cooling are not considered and the reactor is maintained at 

optimum cooling rates for high reaction rates.  

The non-smooth intersectors that are not trajectories are also identified on 

the boundary of the ARC. The first non-smooth ridge indicated in Figure 

5.2 is the v/v intersector for the intersection of two mixing surfaces due to 

the switch in the main reaction pathway from a CFSTR [2] to a PFR [3]. 

The second ridge on the boundary is the k/v intersector where cooling 

surface intersects the mixing surface due to the reaction and cooling 

intersector [4] that initiates on the boundary. The third ridge on the 

boundary is the k/k non-smooth intersector indicating the intersection of 

two cooling boundaries due to the termination of the reaction and cooling 

intersector [4] at the minimum catalyst reaction temperature limit.  The 

occurrence of these non-smooth intersectors on the boundary serves as 

evidence of the postulate in Section 5.2.4 that their occurrence is not 

governed by mathematical expressions but as a result of the intersection of 

two distinct surfaces.  

 

5.2.6.2 Case 2 

In this case the cost of cooling was considered to enable the comparison 

with the cost of reaction.  The value of Kc was taken to be 150. This value 

was chosen randomly without any basis and therefore, there are no 

presumptions on whether the cooling costs are very high or low relative to 

the reaction costs. The RCC algorithm was formulated and implemented 
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in MATLAB®. The termination criterion was satisfied and the boundary 

completed after thirteen (13) iterations. Figure 5.3 shows a 2D 

temperature-extent projection of the ARC as returned by the RCC 

algorithm. In this case, both combinations of reaction and mixing and 

reaction and cooling are observed on the boundary of the ARC.  

In section 5.2.5 we stated that the objective when solving the ARC of this 

exothermic reversible reaction will be to find combinations of processes 

that form a convex boundary of the highest conversion at a given 

residence time. To further illustrate this, we show, in Figure 5.4, a two-

dimensional τ -x projection of the structure of combinations of 

fundamental processes that forms the main outline of the ARC boundary 

from which single process regions such as reaction, mixing and cooling 

emanate.   

 
Figure 5.3: A 2D temperature-conversion projection of case 2 ARC 
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Figure 5.4: The Convex boundary showing combinations of fundamental  

         processes that outlines the ARC. 

The combinations of fundamental processes are linked into a continuous 

boundary by switching processes; in this case reaction is a switching 

process as shown by the PFR curves in Figure 5.4. 

The 3D temperature-conversion-residence time ARC is shown in Figure 

5.5. The occurrence of non-smooth intersectors on the ARC boundary is 

still acknowledged in this case. Figure 5.3 shows different mixing and 

cooling surfaces as indicated by colour coding. The intersection of these 

surfaces at the ridges is clearly demarcated by the change in colour.  

τ

Combination of 
reaction and mixing 

CFSTR locus 

Switching 
Adiabatic PFR 

Switching 
Adiabatic PFR 

Combination of 
reaction and mixing 

DSR Combination of 
reaction and cooling 

DCR

Minimum Reaction 
Temperature (450K) 
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Figure 5.5: A 3D temperature-conversion-residence time ARC for case 2 

Table 5.2 details the interpretation of the ARC in terms of process layouts. 

The general process layout is given in numbers [1] to [7]. The sequence 

starts with free pre-heating of feed to 450K, [1]. Second in series is the 

adiabatic CFSTR, [2] followed by the adiabatic PFR, [3]. Process [4] is the 

DSR structure where the combination of reaction and mixing occurs 

optimally. From DSR [4], the reaction is used to switch from a reaction and 

mixing combination to a reaction and cooling combination curve DCR as 

can be seen in Figure 5.3 by the PFR [5] connecting to the DCR [6] where 

the combination of reaction and cooling occurs optimally. The DCR [6] 

continues until the minimum reaction temperature is reached at 450K. 

From the DCR at minimum reaction temperature, the process is switched 

to reaction [7] until chemical equilibrium is reached. 

Shown also in Figure 5.3 are the mixing and cooling surfaces A to G. 

surfaces A, B and C are mixing surfaces as denoted by v. Cooling surfaces 

D, E, F and G are labelled k. Mixing is performed using the feed indicated 
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as point O in Figure 5.3 and is carried to a temperature of 300K as stated 

earlier to be limited by the feed temperature.   

Table 5.2: Process Layout for Exothermic Reversible Reaction Case 2  

Process Curve Process Pathway Process Layout 
 
 

1 - 7 

The general process 
layout for the  ARC 

 

Surface Occurring Processes  Process Layout 

 
         A 

Pre-heater -  CFSTR 
with by-pass  

 

 
         B 

Pre-heater – CFSTR –  
PFR with by-pass 
 

 

 
         C 

Pre-heater – CFSTR –  
PFR – DSR with by-pass 

 

 
          D 

Pre-heater – CFSTR –  
PFR – DSR - Cooler 

 

 
          E 

Pre-heater – CFSTR –  
PFR – DSR – PFR-cooler 

 

 
          F 

Pre-heater – CFSTR –  
PFR – DSR – PFR – 
DCR-Cooler 

 

 
          G 

Pre-heater – CFSTR –  
PFR – DSR – PFR – 
DCR-PFR-Cooler 

 

 

 

1 3 4 52 6 7
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5.2.7 Computational Aspects for Example 1 

Another impressive aspect of identifying ARC boundaries using the RCC 

algorithm is the reduced computational runtimes. Although this example 

has not being solved using systematic attainable regions methods before, 

the computational run-times proves the feasibility of including the RCC 

algorithm in standard simulation packages.  

For case 1 of this example the stage-wise algorithm run-times on a 

Pentium 4, 2.5GHz Intel computer with 256MB RAM are as follows; 

• Initialisation Stage:- 12 seconds 

• First Iteration:- 31 seconds 

• Second Iteration:- 13 seconds 

• Third – Fifth Iteration:- 127 seconds 

• Polish Stage:- 69 seconds 

   Total Time: 4 min 12 seconds  

For case 2 of this example the stage-wise algorithm run-times are as 
follows; 

• Initialisation Stage:- 13 seconds 

• First Iteration:- 37 seconds 

• Second Iteration:- 26 seconds 

• Third – Fifth Iteration:- 183 seconds 

• Polish Stage:- 94 seconds 

   Total Time: 5 min 53 seconds 
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5.2.8 Discussion: Example 1 

The RCC Algorithm has been successfully implemented to identify the 

candidate AR structures for this exothermic reversible reaction example 

and handled the system constraints without any difficulties. The two cases 

investigated showed how the optimum process structures changed when 

the relative cost parameters were changed.  

In the first case (case 1), the costs of cooling were not considered and the 

boundary comprised mainly of reaction and cooling as the optimum 

combination of processes. The ARC structure comprises of the optimal 

cooling profile as the optimum combination of processes. This solution 

could have been arrived at using traditional methods of finding the 

theoretical optimum cooling profile (Denbigh 1944).  

As the costs of cooling were introduced in case 2, other optimal 

combinations started to appear on the boundary. The optimum 

combination of reaction and mixing (DSR trajectory intersector) was 

observed along with that of reaction and cooling (DCR trajectory 

intersector). This indicates that as the cooling costs are considered, the 

trade-offs between combinations of reaction and mixing and combinations 

of reaction and cooling start to play a role and the optimal reactor 

structures can no longer be determined from theoretical profiles.  

The computational run-times were also detailed to show the robustness 

and expediency of the RCC algorithm as a process synthesis tool. The 

optimal reactor structures were identified in minutes, and more 

importantly without preceding complex algebraic computations as in 

other techniques (Nicol et al., 1997 & 2001, Hausberger 2003, Kauchali, 
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2004). The procedure was simple plug and play without the need for a 

specialist in the field.   

 

5.3 Ammonia Synthesis 

In this section we study ammonia synthesis as a more specific example of 

exothermic reversible reactions. Ammonia synthesis exhibits similar 

characteristics to the generic example studied in section 5.2 as there is only 

one reaction occurring. However, a number of modifications have to be 

considered because ammonia synthesis involves a number of reacting 

components and there is an overall change in the number of moles in the 

balanced chemical reaction resulting in the reduction in the total flow.   If 

the total pressure of the system is assumed constant, the ammonia system 

can be fully modelled as in example 1 in section 5.2. 

 

5.3.1 System kinetics 

The reaction governing ammonia synthesis is given out as 

322 23 NHHN ↔+               (5.11) 

Temkin and Pyzhev, 1940 give the rate of this reaction as 
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Pi is the partial pressure of component i in the reacting gas mixture. The 

rate constant of the reaction is given by the Arrhenius type equation as: 

 
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ Δ−=

0
)0(

11exp
TTR

E
kk k      (5.13) 

The equilibrium constant Keq can be related to the change in the Gibb’s free 

energy of the reaction ΔGrxn, as 

⎭
⎬
⎫

⎩
⎨
⎧ Δ−

=
RT
GK rxn

eq exp
       (5.14) 

The change in the Gibb’s free energy of the reaction is given as a function 

of temperature below (Temkin and Pyzhev, 1940); 

RTTTTTGrxn 07.121035.21069.3ln46.79130)( 3723 −×+×−+−=Δ −−

 
          (5.15) 

T is temperature in K and R is the universal gas constant in units 

corresponding to that of ΔGrxn and T. 

 

5.3.2 System State Variables and Process Vectors  

As we have already remarked that, the ammonia synthesis problem has 

the same description as the generic problem in section 5.2. Variables were 

chosen to fully describe the system. The selected variables were 

temperature, partial pressure of reacting components, and residence time. 

If the reaction is assumed to occur at constant pressure, partial pressures 



Numerical Formulations for Attainable Region Analysis                      Tumisang G. Seodigeng
  
  
  

Chapter 5: R.C.C Algorithm: Application to Industrial Case Studies     130

of reaction components can be expressed in terms of the conversion of the 

limiting reagent for a fixed feed, in which case the state variable vector 

becomes 

 ],,[ τTx=c          (5.16) 

The fundamental processes considered in the system are that of reaction, 

mixing and cooling. These processes can be expressed as mathematical 

vectors as derived in section 5.2. For a reaction the process vector is 

described as; 

( )
( )
( )

⎥
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⎥

⎦

⎤

⎢
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⎢

⎣

⎡
⋅=

1
x,TrT

x,Tr

xad

x

cr       (5.17 a) 

The mixing process is characterised by; 

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
ττ 0

0

0

0, TT
xx

ccv       (5.17 b)  

The fundamental process of cooling can be described by a vector given by;  

( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

1

0
TTK ccck       (5.17 c) 

All the symbols carry the same definitions as in section 5.2.   
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5.3.3 System Specifications, Constraints and Assumptions  

A stoichiometric gaseous mixture with a mole ratio of 3:1 hydrogen and 

nitrogen is provided at 300K as the system feed. The operating pressure is 

200atm and assumed to remain constant as the reaction occurs. Pre-

heating is free to a maximum temperature of 550K, as this is limited by the 

heating utility. The cooling utility is available to a minimum temperature 

of 300K. The catalyst used is taken to be active in the temperature range 

500-800K, placing temperature constraints on the system.  

 

5.3.4 RCC Formulation 

The RCC formulations were derived and implemented in MATLAB® to 

obtain the ARC for ammonia synthesis. The boundary objective was 

formulated as that of the generic exothermic reversible reaction detailed in 

Section 5.2.5. The percentage deviational error used in Section 5.2.4.2 was 

adopted as a termination criterion for this example and the tolerance was 

set to E% < 1.  

The ammonia synthesis problem is similar to the example in Section 5.2 as 

they are both exothermic reversible with a single reaction. The ammonia 

synthesis problem was therefore also formulated with two process 

combination vectors for the combination of reaction and mixing; 

( ) ( )01 ,)( ccvcrcP α+=    0≥α     (5.8b) 

And the combination of reaction and cooling as;  

( ) ( )cTT ,)(2 kcrcP β+=    0≥β     (5.8c) 
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Stage 1 

One modification in this part was that the minimum catalyst activity 

temperature is 500K and the maximum pre-heating temperature is set at 

550K. Thus, the pre-heating range to be exploited is from 500-550K, not a 

fixed point as it was for the previous example. The pre-heating range was 

divided into 5 points from which PFR trajectories and CFSTR loci were 

generated. An allowance was made to refine this temperature grid 

wherever a need arises. However, this was later deemed unnecessary as 

only the points from the pre-heating temperature of 550K remained on the 

boundary when the objective function of optimising product conversion 

was applied.  

Stage 2 

The cooling utility temperature was fixed at 300K for the combinations of 

reaction and cooling (5.8c). For the combinations of reaction and mixing, 

mixing with feed within the range of 300K to 550K was considered.  

Iteration Stages 

After stage 2, only mixing with feed at 300K resulted with extreme points 

on the boundary. Therefore, the other feed temperatures (>300K) were 

discarded as mixing points.  Once the termination criterion is met, the ARC 

boundary was completed with manifolds of reaction trajectories, mixing 

lines and cooling lines. The results at the end of the computations are 

detailed in the next section. 
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5.3.5 Results  

5.3.5.1 Introductory Discussions 

Using the rate expression given by equation (5.12), the constant rate 

contours can be mapped out on a temperature-conversion (T-x) diagram 

as shown in Figure 5.6 below. 

 

 
Figure 5.6: Isorate map for ammonia synthesis 

These rate contours are called isorates. The T-x diagram with isorates has 

extensively been used by process engineers as a tool to identify the 

theoretical optimal cooling and mixing profiles. The optimal cooling 

profile can, on a T-x diagram, be identified as a locus of points of highest 

conversion per isorate curve as shown by the blue curve in Figure 5.6. In 

section 5.2, we observed this optimal cooling profile being the outlining 

structure of the ARC for exothermic reversible reactions permitting 

processes of reaction, mixing and cooling; when the cost of heat transfer is 
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not considered (free cooling).  This occurrence is also observed when 

mixing is not allowed as a fundamental process.  

The optimal mixing profile can also be outlined on a T-x diagram as locus 

of points where the mixing vector is tangential to the rate of reaction. This 

profile is shown as the red curve in Figure 5.6. The optimal mixing profile 

forms a part of the outlining structure of the ARC boundary when the cost 

of cooling is considered. For cases where the cost of cooling is very high 

when compared to that of reaction (e.g. when refrigeration is used), the 

outlining occurrence of the optimal cooling profile on the ARC boundary 

diminishes and the optimal mixing profile outlines the boundary. This 

incidence is also observed when cooling is not allowed as a fundamental 

process. 

 

5.3.5.2 Case 1: Free Heat Transfer with no External Cooling 
 

The first case considered is that of a system which permits no external 

cooling and heat transfer costs are assumed insignificant when compared 

to reaction cost. Without external cooling or heating, heat exchange is 

allowed only between the process streams and the overall system is 

adiabatic. Given a feed at 300K, the final product has to lie on the adiabatic 

energy balance curve AB on Figure 5.7. The two-dimensional temperature-

conversion projection of a candidate AR obtained using the RCC 

algorithm is shown on Figure 5.7. 
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Figure 5.7: A 2D projection of ARC for case 1 of ammonia synthesis 

 

An optimal reactor network for this case is shown in Figure 5.8 below. The 

DCR is cooled using cold feed at 300K which in turn gets pre-heated to 

550K. 

 

  
Figure 5.8: The optimal reactor structure for case 1 of ammonia synthesis 
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5.3.5.3 Case 2: Free Heat Transfer with External Cooling 
 

The second case allows external heat exchange with free heat transfer. 

Reaction is bounded by a lower temperature limit of 500K. A two 

dimensional projection of case 2 is shown in Figure 5.9. 

      

 
Figure 5.9: A 2D projection of ARC for case 2 of ammonia synthesis 

 

An optimal reactor network for the second case is shown below. 

 
Figure 5.10: The optimal reactor structure for case 2 of ammonia synthesis 
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5.3.5.4 Case 3: Considering the Cost of Heat Transfer 
 

In the third case, external heat exchange is still allowed and heat transfer 

costs are taken into consideration. Figure 5.11 shows a two-dimensional 

projection of the ARC.  

 
Figure 5.11: A 2D projection of ARC for case 3 of ammonia synthesis 

 

An optimal reactor network for this case is shown below. In this case, both 

DSR and DCR are observed to appear on the boundary of the ARC 

connected by PFRs. 

  

 
   Figure 5.12: The optimal reactor structure for case 3 
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5.3.5.5 Computational Aspects 

The summary of the computational run-times on a Pentium 4, 2.5GHz 

Intel computer with 256MB RAM for the three cases investigated for 

ammonia synthesis are shown below 

Case 1  

• Number of iterations:- 9 

• Total computational time:- 7 minutes 36 seconds 

 

Case 2  

• Number of iterations:- 6 

• Total computational time:- 5 minutes 14 seconds 

 

Case 3  

• Number of iterations:- 14 

• Total computational time:- 9 minutes 47 seconds 

 

The speed of the RCC algorithm shows significant improvement when 

compared to other systematic techniques solving the same problem. The 

Iso-state algorithm run-times were well above five (5) hours when applied 

to identify candidate attainable regions for the ammonia synthesis 

problem (Hausberger 2003).    
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5.3.5.6 Discussion: Ammonia Synthesis Example 
 

We have identified optimal reactor networks for ammonia synthesis via 

attainable regions. These networks are as might be expected from the 

solution of the generic exothermic reversible reaction example. In this case 

we have included the use of isorates on a T-x diagram as a traditional tool 

used to solve optimal cooling and mixing profiles for exothermic 

reversible reactions. The RCC algorithm successfully solved optimal 

reactor structures as expected from the use of a T-x diagram for simple 

cases where the costs of heat transfer were not considered for cooling.  We 

further solved a complex case where the costs of cooling were 

incorporated and once again found the optimal reactor structures 

successfully. 

 

The most important aspect in solving the ammonia synthesis problem is 

the computational speed. By comparison, the RCC algorithm proves to be 

the fasted systematic AR analysis tool to date.  
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5.4 Discussion 
 

In this chapter we have started using the RCC algorithm to solve 

candidate attainable regions for practical examples of industrial nature 

with real kinetic models. These problems were not restricted to be 

isothermal as the kinetics were temperature dependent and heat transfer 

was included as a fundamental process along with reaction and mixing.  

 

The problems addressed in this chapter were all of exothermic reversible 

nature with a single reaction occurring. We have indicated how traditional 

methods have been used to solve these problems where simple cases are 

considered and how these methods fall apart as the problems become 

more of a practical nature, when the costs of cooling were considered. The 

RCC algorithm formulations were implemented to solve the ARC 

boundaries for these problems which were further interpreted as 

sequences of fundamental processes and combinations of fundamental 

processes. The sequences of fundamental processes and combinations 

thereof were further interpreted as reactor networks. These interpretations 

were clear cut due to colour coding differentiating sections of the ARC as 

made possible by the data tracking capabilities of the RCC algorithm.  

 

The RCC algorithm has also shown fast computational run-times when 

compared to other systematic attainable regions tools. Another aspect that 

can be highlighted for the RCC algorithm is the ease of changing 

parameters and investigating different scenarios of the same problem as 

was done for the two examples studied in this chapter. The results 

obtained in all cases are discernible and interpretable, showing the 

robustness of this tool.   
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5.6 List of Symbols  
 
Abbreviations  
AR   Attainable Regions 

ARC  Candidate Attainable Regions 

CFSTR Continuous Flow Stirred Tank Reactors 

DCR  Differentially Cooled Reactor 

PFR  Plug Flow Reactor 

DSR  Differential Side-stream Reactor 

RCC  Recursive Constant Control Policy   

 
Symbols 
α  Combination control policy for fundamental processes  

  (mixing) 

A1, A2  Arrhenius constants 

β  Combination control policy for heat transfer 

c  State variable of the system 

co  State variable of the system at the feeding point 

c*  Mixing state variable of the system 

c  State vector comprising all variables describing the system 

Cp  Isobaric specific heat capacity of the material 

E1, E2  Arrhenius constants 

ho  Heat Transfer coefficient 

kc  Heat Transfer constant 

Kc  A measure of cooling costs relative to reaction costs 

P  Partial pressure of the reacting components 

r(c)  Reaction rate vector defined at c 

r(P,T)  Reaction vector defined at P and T 

R  Universal Gas constant 

T  Temperature of reaction 

Tad  Adiabatic temperature gradient 



Numerical Formulations for Attainable Region Analysis                      Tumisang G. Seodigeng
  
  
  

Chapter 5: R.C.C Algorithm: Application to Industrial Case Studies     144

Tc  Cooling utility temperature 

To  Feed temperature 

T*  Temperature of mixing 

τ   Residence time 

τr  Reaction residence time 

υ   Mixing vector, mixing c with c* 

w  Heat Exchange vector 

x  Conversion of limiting reactant 

ω   Residence time for the cooling process 

ΔGrxn  Gibbs free energy of the reaction 

ΔHrxn  Enthalpy of the reaction 
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CHAPTER 6 

ATTAINABLE REGION ANALYSIS 
FOR METHANOL SYNTHESIS 

 

6.1 Introduction 
 

In this section we will identify optimal reactor networks for low-pressure 

methanol synthesis. Unlike in the previous industrial examples which 

comprised a single exothermic reversible reaction, methanol synthesis is a 

more complex system with three reactions occurring. Low pressure 

methanol synthesis is done by the reaction of carbon monoxide and 

hydrogen. This has been studied by many researchers such as Natta, 

(1955); Bakemeier et al., (1970); Leonov et al., (1973); and Monnier et al., 

(1984) among others. The reaction for methanol synthesis from CO is 

given by,  

 

CO + 2H2 ↔  CH3OH  ΔH˚298  =  -90.64 kJ mol-1 (I) 

 

For this proposed reaction route the role of CO2 in methanol synthesis was 

considered to be and restricted to competitive adsorption on the active 

sites of the catalysts. Contrary to this some researchers (Chinchen et al., 

(1984); Dybkjaer, (1985)) claimed that methanol is formed from CO2 only 

due to its strong adsorption power, subduing and inhibiting the co-

adsorption of CO. It was only in the past two decades that researchers 

started to assimilate the role of CO2 together with that of CO in methanol 

synthesis reaction models. Denise and Sneeden (1982) and Klier et al., 

(1982) proposed a kinetic model incorporating both CO and CO2 reactions 
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from conclusions based on kinetic experiments. Liu et al., (1985) came to 

the same conclusion based on experiments with labelled oxygen in CO2. 

Graaf et al., (1988) proposed a kinetic model which considered the two 

reactions over a Cu-Zn-Al catalyst. This catalyst is also known to promote 

the water-gas-shift (WGS) reaction as the third reaction as considered by 

Graaf et al., (1988) in their model. Struis and Stucki (1996 and 2001) 

reviewed the kinetic models proposed by Graaf et al., (1988) with 

modifications for their study of a membrane reactor concept for methanol 

synthesis.  

 

In this work we apply attainable regions analysis to the modified Graaf et 

al., (1988) kinetic models to identify optimal reactor networks for methanol 

synthesis. We start by first studying the kinetics in detail to investigate if 

there are any evident optimal structures to be expected and then apply 

automated techniques to identify optimal reactor structures which can 

further be compared to prior expectations.     

 

6.2 Methanol Synthesis: The Kinetics  
 

The kinetic model used in this study is that of Graaf et al., (1988) as 

modified by Struis and Stucki (2001). Methanol synthesis comprises three 

equilibrium limited reactions as shown below    

 

CO + 2H2 ↔  CH3OH  ΔH˚298  =  -90.64 kJ mol-1 (I) 

CO2 + H2 ↔  CO + H2O   ΔH˚298  =  41.17 kJ mol-1 (II) 

CO2 + 3H2 ↔  CH3OH + H2O ΔH˚298  =  -49.47 kJ mol-1 (III) 

 

The two reactions for methanol formation (I) and (III), are exothermic as 

written, and are influenced towards the product side by high pressures.  
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The WGS reaction, (II) is endothermic and its equilibrium is not a function 

of pressure as the number of moles does not change as the reaction occurs. 

For reactions (I) and (III), high temperatures are required for high rates of 

reaction whilst high equilibrium conversion is favoured by low 

temperatures, a general trend observed with exothermic reversible 

reactions. However, the WGS reaction is endothermic as written and 

therefore favours high temperatures for both reaction rates and high 

equilibrium conversion.  

 

Graaf et al., (1988) derived the kinetic rate expressions for each of the three 

reactions, by defining chemical reaction as the rate controlling step and 

advocated the adsorption mechanism to be a dual-site Langmuir-

Hinshelwood mechanism, where CO, CO2, 2H  and OH 2  can all adsorb 

competitively.  The rates of formation of species in the reaction system are 

given by Graaf et al., (1988) as; 
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The gas composition is given by fugacities (fi) for each gas species i (in 

pressure units: bar). For the purpose of this study the fugacities will be 

considered to be adequately approximated by partial pressures and this 

assumption will be carried henceforth. The adsorption equilibrium 
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constants are symbolised by COK , 2COK , 
2HK  and OHK

2
 respectively, and 

chemical equilibrium constants for the three reactions are denoted by 0
1pK , 

0
2pK  and 0

3pK ,  respectively, with subscripts pj indicating that these 

constants are based on partial pressure. Each reaction rate, rj, is 

characterised by a rate constant, '
, jpsk , where subscript j refers to the 

consigned reaction (viz. j = 1, 2, 3 for reaction (I), (II), (III) respectively). 

The chemical equilibrium constants are reported by Struis and Stucki 

(2001) as  

 

20.1010953.210499.2)log(971.7)/3921( 27310

1
10 +××−××+×− −−

= TTTT
pK ο    (6.4) 

 

)/103.2(106.6)log(565.1)/2489(959.6 24510

2
10 TTTT

pK ×+××+×−− −

=ο    (6.5) 

 
000

213 ppp KKK ⋅=        (6.6) 

 

The modified parameters for the Graaf et al., (1988) kinetic model were 

resolved by Struis and Stucki (2001) as the following; 

 

)/3110104430exp(10)17.023.1( 6'
1, RTk ps ±−×±=    (6.7) 

)/1450123500exp(10)13.021.2( 10'
2, RTk ps ±−×±=   (6.8) 

)/43065250exp(10)080.0390.3( 3'
3, RTk ps ±−×±=   (6.9) 

)/59057260exp(10)38.072.9( 7 RTKCO ±×±= −    (6.10) 

)/67066710exp(10)050.0190.1( 7
2

RTKCO ±×±= −   (6.11) 

)/525104500exp(10)10.014.4()/( 112/1
22

RTKK HOH ±×±= −   (6.12) 

 

The model parameters were fitted for the experimental conditions within 

the range of T =200-260˚C and P = 30-60 bar. However, the Cu-Zn-Al 
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catalyst is known to be active for the three methanol synthesis reactions in 

the temperature range T = 400 – 600K (Twigg, 1996).  

 

For a feed mixture of CO and CO2 in mole ratio of 1:1 and the 

stoichiometric amount of H2, the following chemical equilibrium curves 

can be established at various outlet pressures as indicated in Figure 6.1. 

The molar composition of the feed for this case can be evaluated as 

[CH3OH  CO  CO2  H2  H2O] = [0  0.14  0.14  0.72  0]. 
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Figure 6.1: Variation of chemical equilibrium with pressure 

 

In agreement with the expectations, the equilibrium conversion of 

methanol increases with increasing pressure at a specified temperature. 

This behaviour is as stated earlier, due to the fact that the methanol 

forming reactions; (I) and (III), both result in decreased total number of 

moles and therefore high pressure will favour conversion towards the 

product. Figure 6.2 shows how the equilibrium composition of methanol 

changes as the mole ratio of CO2: CO is varied. The observed trend is that 

the equilibrium amount of methanol decreases as the ratio of CO 
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decreases. This observation could be attributed to the fact that CO has a 

higher tendency to react to form methanol than CO2. To investigate this 

proposal the average rate contours are used to study the kinetics in more 

detail. The rate contour study is carried out at a fixed pressure of 50 bar 

using the feed gas composition as stated above. 
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Figure 6.2: Variation of chemical equilibrium with CO2:CO mole ratio 

 

The average rate contours for formation of methanol are shown in Figure 

6.3. The rate contours plotted are the summed individual rates of 

formation of methanol from reaction (I) and (III) as defined by expressions 

(6.1) and (6.3) respectively. In this case, the WGS reaction (II) is not 

considered. The rates as quoted are in units of mol s-1 kg-catalyst-1.  Figure 

6.4 depicts contours for the rate of formation of methanol from CO 

(reaction I). By comparison of magnitude with rate of formation of 

methanol from both CO and CO2 (Figure 6.3), it appears that methanol is 

likely to form mainly from CO through reaction (I).  This observation is 

supported by the low rate values of formation of methanol from CO2 as 

shown in Figure 6.5, which are in the range of one-tenth of the combined 

effect in Figure 6.3. 
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Figure 6.3: Average isorate contours for methanol formation  

       (r = rCH3OH,1 + rCH3OH,3 ) 
 

510 520 530 540 550 560 570 580 590 600
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Temperature [K]

M
ol

es
 o

f 
M

et
ha

no
l

Equilibrium 

0.004
0.005
0.007
0.008
0.01
0.015
0.02
0.03

 
Figure 6.4: Isorate contours for methanol formation from reaction (I) 

      (r = rCH3OH,1) 
 
To investigate the effect of the WGS reaction, the contours for the rate of 

reaction of CO from reactions (I) and (II) are shown in Figure 6.6. The 

contours show an oval shape as compared to the S-shape of Figure 6.4.  It 
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can be seen from the slightly reduced rate of consumption of CO when 

compared to the trend in Figure 6.4 that the WGS reaction effects the 

formation CO. In the case where the WGS reaction is redundant, the 

contours in Figure 6.6 would resemble that in Figure 6.4.  
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Figure 6.5: Isorate contours for methanol formation from reaction (III) 

       (r = rCH3OH,3 ) 
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Figure 6.6: Average isorate contours for CO reaction from reactions (I) 

       and (II)       (r = rCO,2 - rCO,1) 
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It is evident from the observation of the plots of rate contours that the 

determination of optimal reactor structures for methanol synthesis will not 

be clear-cut from a theoretical aspect as the optimum profiles of all three 

reactions have to be considered. In theory, the rate contours in Figure 6.3 

for the average formation of methanol from reaction (I) and (III) could be 

used if the effect of the water gas shift reaction is considered insignificant. 

However, it can be noted in Figure 6.6 that the WGS reaction affects the 

reaction scheme in a considerable manner.   

 

Depicted in Figure 6.7(a) are the adiabatic plug flow reactor profiles at 

varying feed temperature. These profiles show how the temperature 

changes with the mole fraction of methanol formed as the reaction system 

progresses. At low temperatures the reaction is exothermic as shown by 

the increase in temperature with increasing methanol conversion, giving 

an indication that the methanol forming reactions (I) and (III) are clearly 

dominating. As the reaction occurs the system gets more exothermic as 

indicated by the flattening of the PFR curves. At low methanol 

conversions and high temperatures (high feed temperature) the methanol 

reaction system becomes endothermic as indicated by the shaded area 

where the slope of the adiabatic PFR is negative indicating a decrease in 

temperature with increasing methanol conversion. In this region the 

endothermic WGS reaction (II) dominates. This behaviour is the expected 

trend with endothermic reactions as high temperatures favour both high 

rates of reaction and high equilibrium conversions. Figure 6.7(b) shows 

the expansion of this endothermic region. 

 

This mixed exothermic-endothermic behaviour of the methanol synthesis 

system asserts that, the theoretical methods of determining optimum 

reaction-cooling and reaction-mixing profiles cannot be used to solve 

optimal reactor networks.   
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Figure 6.7(a): Methanol synthesis adiabatic plug flow reactor profiles  
 

 
500 520 540 560 580
0

0.004

0.008

0.012

0.016

0.02

Temperature [K]

M
ol

es
 o

f M
et

ha
no

l

 
Figure 6.7(b): Methanol synthesis adiabatic plug flow reactor profiles  

  (Endothermic region expansion) 

 

In the next section we will formulate the RCC algorithm to solve the 

candidate AR for methanol synthesis using Graaf kinetics, from which the 

optimal profiles will be identified. 

 

Equilibrium 

Figure 6.7 (b) 

Exothermic 

Endothermic 
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6.3 Methanol Synthesis: Problem Formulation  

6.3.1 Process Vectors  
 
The permitted fundamental processes in this formulation of methanol 

synthesis are reaction, cooling, heating and mixing. The feed is provided 

at a temperature of 300K and is considered to be that of a 1:1 mixture of 

CO:CO2 with the stoichiometric amount of hydrogen.   

 

For the fundamental process of reaction all components that partake in the 

reaction are considered. A vector describing the rates of reaction of each 

component is given in (6.13). A vector associated with the rate of reaction 

of components is given by equation (6.13a) 
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The rates rI, rII and rIII are that of reactions (I), (II) and (III) as described in 

section 3.1 with expressions given by equations (6.1), (6.2) and (6.3) 

respectively. To describe the composition state, mass fraction of 

components, m is used as a variable.  

 

The rate of change of temperature as the reactions occur is given by the net 

effect of all three chemical reactions as shown by equation (6.13b) below; 

 

}{
IIIIII adadadT TrTrTrTr ⋅+⋅+⋅= IIIIII),,( τm   (6.13b) 
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And the rate associated with the change in residence time, τ  is as 

described in the earlier chapters; 

{ }1)( =ττr         (6.13c) 

The general reaction vector for the system becomes 
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       (6.14) 

The characteristic vector of the system containing all variables that fully 

describe the system can now be defined as; 
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Mixing, cooling and heating vectors as previously shown are characterised 

by equations (6.16), (6.17) and (6.18) respectively (Chapter 5).  
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Where mixing is performed with the mixing state c0 = [m0, T0, 0τ ] and 

cooling is assumed to be carried out using a constant temperature cooling 

utility at Tc. The heating utility temperature is symbolised as Th. Kc is as 
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defined in equation (5.6) of Chapter 5 to be a measure of the relative cost 

of cooling in comparison to cost of reaction. Kh takes the analogous 

definition for heating.   

 

The process combination vectors considered in this study are limited to 

smooth trajectory intersectors that always include reaction as one of the 

fundamental processes. Thus, the fundamental process of reaction will be 

included in all combinations. The reasoning for these combinations is 

based on the conjecture we asserted in Chapter 2 when reviewing the 

postulates pertaining to the structure of the AR boundary derived by 

McGregor (1998) and the results obtained in Chapters 3 and 5 to prove this 

conjecture.  The conjecture stated that the occurrence on the AR boundary 

of non-smooth intersectors is not governed by mathematical expressions 

but by intersection of two or more distinct process surfaces. The vectors 

describing the combinations of processes that are smooth trajectory 

intersectors are discussed in equation set (6.19) as follows. 

 

Reaction and mixing are combined using the combination control policy α, 

as represented in equation (6.19a) below; 

( ) ( )0, ,ccvcrg ⋅+= αvr         (6.19a) 

The process vector in equation (6.19b) shows the combination of 

fundamental processes of reaction and cooling using the control policy 

symbolised by β,  

( ) ( )ckr TTk ,, ⋅+= βcrg         (6.19b) 

The combination control policy θ , combines the processes of reaction and 

heating as represented by the combination vector given in equation (6.19c) 

below; 

( ) ( )hhr TT ,, hcrg ⋅+= θ         (6.19c) 
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The general process vector for combination of all permitted fundamental 

processes in the system can then be expressed by as; 

 

( ) ( ) ( ) ( )hGcGGhkvr TTTT ,,, 0,,, hkccvcrg ⋅+⋅+⋅+= θβα     (6.20) 

 

 However, this general net process vector will not be used in the RCC 

algorithm formulation as stated above.  

 

The subscript ‘G’ in the control policies indicates that the control policies 

are for the general process vector and not for the paired combinations as 

in (6.19). This will help differentiate between the general process vector 

and the paired combinations. 

 

6.3.2 The RCC Algorithm  
 

Given the problem specifications such as variable constraints, feed 

specifications, heating and cooling relative cost factors, utility limitations, 

etc, the RCC algorithm for the problem can now be formulated and 

implemented in MATLAB® to solve the optimal profiles of combinations 

of permitted fundamental processes and complete ARC for the methanol 

synthesis problem. The ARC boundary can further be interpreted as a 

sequence of application of fundamental processes and/or combinations 

thereof, which are applied to the feed states to attain the product states 

that shape the boundary.  This interpretation is useful as the sequences of 

applied fundamental process and/or their combinations can be further 

interpreted into unit operations with design key parameters that 

essentially specify the optimal process flowsheet.  
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The reaction vector for methanol synthesis system as formulated in 

Section 6.3.1 comprises seven state functions. These functions are; five that 

represent the rate of change in the states of reaction components, the rate 

of change of reaction system temperature and the rate associated with the 

change in residence time of the system as given by equations (6.13) and 

(6.14). The methanol synthesis problem is therefore formulated as a seven-

dimensional system.  

 

The objective of this problem is to maximise the conversion of carbon (C) 

in the form of CO and CO2 to methanol (CH3OH). This objective is 

attained by exploiting combinations of reaction with mixing, cooling 

and/or heating in order to attain reaction temperatures that yield 

maximum rates of reactions and maximum equilibrium conversions of 

carbon to methanol at the minimum possible residence time. Thus, the 

attainable regions for this problem can be constructed in three-

dimensional space using the variables that describe the system objective. 

These variables are conversion of carbon to methanol, temperature and 

residence time.  

 

The RCC algorithm is formulated to solve the methanol synthesis problem 

using seven system variables. The AR boundary construction, 

convexification and optimisation of the objective function are carried in 

three-dimensional space. This transformation simplifies a complex seven-

dimensional problem into a geometrically representable three-dimensional 

problem.  

 

The feed to the system is, as stated earlier, to be a  mixture of CO and CO2 

in mole ratio of 1:1 and the stoichiometric amount of H2 resulting in molar 

composition of [CH3OH  CO  CO2  H2  H2O] = [0  0.14  0.14  0.72  0]. The 

feed is available at the temperature of 300K. The system pressure is taken 
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to be 50bar and assumed to remain constant as the reaction occurs for 

simplification purposes. The catalyst activity range is adopted from Twigg 

(1996) to be between 400K and 600K. Cooling can be carried out to a 

minimum temperature of 300K as may be limited by the cooling utility 

temperature. Heating is similarly limited to a maximum of 600K.  

 

Using these system specifications and constraints the RCC algorithm can 

be formulated as summarised below. 

 

Stage 1 

PFR trajectories and CFSTR loci are generated from feed temperature 

within the temperature range of 300K to 600K. Pre-heating is used as the 

initial process to heat the feed mixture from 300K. The resulting structure 

is convexified and the starting points for smooth trajectory intersectors 

that are combinations of reaction and mixing, reaction and cooling and 

reaction and heating are selected along with the corresponding mixing, 

cooling and heating points.   

 

Stage 2 

Trajectories that are combinations of processes are initiated at selected 

starting points. The resulting structure is convexified to eliminate all states 

that are not extreme points on the convex boundary. The starting points, 

mixing, cooling and heating points that did not yield any extreme points 

on the convex boundary are discarded.  

 

Iteration Stage 

Stage 2 is performed iteratively until the termination criterion is satisfied. 

The termination criterion is formulated as the percentage deviational error 

given in Section 5.2. For this example the tolerance is set to E% < 10%. This 
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relatively high tolerance value is revised as a result of the complexity and 

computational intensity of the methanol synthesis problem.  

  

In the next section we present the results for the two case studies 

investigated. The details of the mathematical programming of the RCC 

algorithm is not detailed herein as they are analogous to the presentations 

outlined in Chapter 3. 

 

6.4 Results 
 

The primary objective of the two case studies detailed herein is to 

investigate the effect of cooling and heating relative cost factors on the 

shape of the ARC boundary and the occurrence of combinations of 

fundamental processes on the boundary.  

   

6.4.1 Case 1  
 

The cooling and heating relative cost factors Kc and Kh, are taken to be 

equal at a fixed value of 500 with corresponding time units. This value is 

arbitrarily chosen. The reasoning behind the choice of this value is that the 

study does not aim at comparing the costs of heating and cooling to that of 

reaction, but instead investigates how the ARC boundary changes as the 

relative (to one another) costs of cooling and heating change. 

 

Using the process specifications the ARC was solved in the 3D carbon 

conversion-residence time-temperature space and the results are show in 

Figure 6.8 on a Temperature-Conversion (T-X) 2D projection.  
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Figure 6.8: A 2D T-X ARC Projection of Methanol Synthesis Case 1 

 

Carbon conversion is defined as the mole fraction of carbon atoms (from 

both CO and CO2) that reacted to form methanol.  

 

The boundary of the candidate attainable region is outlined by trajectory 

intersectors that are optimal combinations of reaction and mixing, reaction 

and cooling, and reaction and heating. The characterisation of the optimal 

intersectors is carried out in Figure 6.9. From these intersectors manifolds 

that are unions of reaction trajectories, mixing lines, cooling lines, and 

heating lines emanate. Once again we will emphasise the occurrence of 

non-smooth ridges that are intersection of different process surfaces. These 

ridges are indicated in Figure 6.8 by v/v, k/v, h/v for the intersection of 

mixing and mixing, cooling and mixing, heating and mixing surfaces 

respectively.  
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The interpretation of the ARC boundary as a sequence of unit operations is 

enabled by a fully labelled boundary depicted in Figure 6.9. 
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Figure 6.9: A Labelled ARC Projection of Methanol Synthesis Case 1 

 

The product states in the regions labelled on the ARC boundary can be 

attained by using the following unit operations sequence in Table 6.1; 

 

Table 6.1: ARC Boundary interpretation for Methanol Synthesis (Case 1) 

A Isothermal DHR 

 

B Isothermal DHR with by-pass feed mixing 

 

C Isothermal DHR followed by a DHR (non-isothermal) 

 

 

 

D Isothermal DHR - DHR –PFR 
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Table 6.1: ARC Boundary interpretation for Methanol Synthesis (Cont..) 

 

E Isothermal DHR - DHR –Cooler 

 

 

F Isothermal DHR - DHR –Cooler - By-pass feed mixing 

 

 

G Isothermal DHR - DHR –Cooler - PFR 

 

 

H Isothermal DHR - DHR –Cooler - DSR 

 

 

I Isothermal DHR - DHR –Cooler – DSR – By-pass feed mixing 

 

 

J Isothermal DHR - DHR –Cooler – DSR – PFR 

 

 

 

K Isothermal DHR - DHR –Cooler – DSR – Cooler 

 

 

L Iso DHR - DHR –Cooler – DSR – Cooler - By-pass feed mixing 

 

 

M Isothermal DHR - DHR –Cooler – DSR – Cooler - PFR 
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Table 6.1: ARC Boundary interpretation for Methanol Synthesis (Cont..) 

 N Isothermal DHR - DHR –Cooler – DSR – Cooler - DCR 

 

 

 O Isothermal DHR - DHR –Cooler – DSR – Cooler – DCR –By-pass  feed mixing 

 

 

 

 P Isothermal DHR - DHR –Cooler – DSR – Cooler – DCR –PFR 

 

 

 

 Q Isothermal DHR - DHR –Cooler – DSR – Cooler – DCR – Isothermal DCR 

 

 

 

 R Isothermal DHR - DHR –Cooler – DSR – Cooler – DCR – Isothermal DCR – By-

pass feed mixing 

 

 

 S Isothermal DHR - DHR –Cooler – DSR – Cooler – DCR – Isothermal DCR – PFR 

 

 

 

At low conversions (corresponding to the feed), high temperatures are 

required to influence the dominating water gas shift reaction which is 

endothermic. This is achieved by an isothermal differentially heated 

reactor (DHR) operating at a temperature of 600K. An isothermal DHR is 

essentially a DHR operating with a very large control policy θ , such that 

the heating process is dominating the reaction process in the combination 

ISO 

ISO 

ISO 

ISO IS

ISO ISO 

ISO ISO 
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vector given by equation (6.19c). There exists a point where there is a 

switch from isothermal to a non-isothermal DHR. This switching point is 

characterised by a sudden decline in the control policy θ , from very large 

values to moderately low values. This behaviour in the DHR control 

policy is shown in Figure 6.10. 
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Figure 6.10: Variation of the DHR Control Policy with Residence Time 

 

The control policy of this DHR bang-singular in nature as the control policy 

is kept at the largest value (isothermal region) and suddenly drops to a 

continuous variation of moderate values (non-isothermal). In the 

continuous region, the control seems to follows a singular arc.  The control 

policy plot is non-smooth with fluctuations, a factor which can be 

attributed to the inaccuracies of the RCC algorithm computation. These 

inaccuracies are common when solving ill-conditioned singular control 

problems (Brenan et al., 1989). Such problems generally require some 

regularisation when solved with classical optimisation techniques.  Such 

regularization techniques would require reformulation in the RCC 

algorithm and are therefore focus for future research. 

Isothermal 
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The cooling processes are used to switch from a DHR to a differential side 

stream reactor (DSR). At this stage the dominating reactions are reactions I 

and III of methanol formation and the overall reaction system is 

exothermic. The reaction mixture is optimally cooled by mixing with cold 

feed to maintain optimum balance between fast rates of reaction and high 

equilibrium conversion. The DSR control policy α , varies with residence 

time as depicted in Figure 6.11. 
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Figure 6.11: Variation of the DSR Control Policy with Residence Time 

 

The DSR control policy seems to follow a continuous residence time 

varying profile. The perturbations in the profile are due to inaccuracies 

from the RCC algorithm, and as stated above are associated with the ill-

conditioned nature of the problem. 

 

The cooling process is applied to switch from a DSR to a differentially 

cooled reactor (DCR). The DCR follows the optimum cooling profile by 

combining reaction and cooling such that at any given conversion, 
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reaction occurs at the highest possible rate. The DCR control policy β, is 

shown in Figure 6.12. The non-isothermal DCR control policy follows a 

smooth continuous arc throughout its entire operation until the minimum 

catalyst activity temperature is reached. At this point, the control policy 

takes a sharp discontinuous bend into another continuous arc. This second 

arc is the isothermal DCR control policy for reaction occurring at a fixed 

temperature of Tmin = 400K      
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Figure 6.12: Variation of the DCR Control Policy with Residence Time 

 

The variation of carbon conversion with residence time as the optimal 

process combinations are applied is depicted in Figure 6.13. The structure 

shown in Figure 6.13 forms the spine of the ARC boundary as it gives 

process combinations for the set of highest carbon conversions at the 

lowest residence times. All other process operations and/combinations 

will fall below the convex curve in Figure 6.13. However, this behaviour is 

characteristic of the shown projection and is not necessarily true for other 

projections. .  The convex process combination curve is formed by the arcs 

Isothermal 
Region 
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of combinations of reaction and heating (DHR), reaction and mixing (DSR) 

and reaction and cooling (DSR). 
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Figure 6.13: Carbon Conversion along the Optimal Process Combinations 

 

6.4.2 Case 2  
 

In the second case we formulate the problem with a varied value of 

factors, Kc and Kh. The factors are still kept equal in magnitude and their 

value is varied to 10000. This value indicates that the cooling and heating 

costs are much cheaper than that of case 1 (Nicol et al., 1997, 1999).  The 

two dimensional temperature–carbon conversion projection of the ARC for 

this case is depicted in Figure 6.14.  The ARC shows that a DCR operates in 

the regions that were previously DSR regions. As the cooling cost 

decreases, a DCR is preferred to a DSR as it provides lower residence time 

pathways. There are no visible changes in the DHR profile. 

 

DHR 

DSR 

DCR 
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Another visible difference between the two cases is that the switch from a 

DSR to a DCR in the second case is no longer a cooling process but 

reaction.   
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Figure 6.14: A 2D T-X ARC Projection of Methanol Synthesis Case 2 

 

6.4.3 Computational Aspects 

The of the computational run-times on a Pentium 4, 2.5GHz Intel 

computer with 256MB RAM for the two cases investigated for methanol 

synthesis are summarised below 

Case 1  

• Number of iterations: 17 

• Total computational time: 23 minutes 17 seconds 
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Case 2  

• Number of iterations: 11 

• Total computational time: 16 minutes 21 seconds 

Due to the numerical complexity of the methanol synthesis example 

arising from the number of reactions occurring, the number of 

components handled in the calculations and the kinetic intricacy, the RCC 

algorithm required longer run-times to identify the candidate attainable 

regions. However, it should be emphasised that it would be impractical to 

solve the methanol synthesis example using analytical methods. The 

previously known systematic techniques would on comparison require 

days of computational run-time to solve this example (Hausberger, 2003; 

Kauchali, 2004).   
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6.5 Discussion 
 

We have used the RCC algorithm to solve the ARC for methanol synthesis. 

The product states that shape the ARC boundary were then interpreted in 

terms of processes and combinations of processes that are applied to the 

feed to attain such product states. The control policies for combinations of 

processes were also obtained by the computation. The methanol synthesis 

problem has very complex kinetic models and it will not be viable to attain 

the control policies and solve the ARC via analytical methods used to 

study simple problems by Feinberg (2000a &b) and Nicol et al., (1997, 

1999), among others.    

 

For a feed of 1:1 CO:CO2 mole ratio, conversion is generally limited by the 

low rates of conversion of CO2 to methanol. In section 6.2 we 

demonstrated with the aid of constant rate curves that the reaction rates of 

CO2 to methanol are in the order of one-tenth of the rates of CO to 

methanol. The optimal reactor structure obtained via AR analysis takes 

advantage of the high water-gas-shift activity of the Cu-Zn-Al catalyst. 

CO2 is shifted to a more active CO by a high temperature DHR.  The CO is 

then converted to methanol by a sequence of DSR and DCRs.  

 

By changing the relative costs of cooling and heating, we showed that the 

optimal reactor sequence shifts to the favoured application of the lower 

rate DCR as opposed to DSR. Thus, we have conversely inferred that, as 

the cooling costs increases, the DSR becomes a more economical (lower 

residence time) pathway of reaction and cooling as compared to the DCR. 

As the heating costs are varied, the application of a DHR remains 

unaffected as it is the only optimal process pathway for combination of 
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reaction and heating to perform the high temperature water-gas-shift of 

CO2 to CO.  

 

The obtained reactor sequence achieves a 92% conversion of carbon to 

methanol without the use of excess hydrogen. An advantage that will 

eliminate the costs associated with excess hydrogen in methanol synthesis 

processes such as separation and recycling. This also reduces the volume 

of the reactor as there will be no volume occupied by the excess hydrogen. 

 

The computational run-times of the RCC algorithm for the numerically 

complex methanol synthesis system are still faster when compared to that  

of the other systematic AR techniques applied to solving simpler examples 

such as the ammonia synthesis example (Hausberger, 2003).  
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6.7 List of Symbols  
 
Abbreviations  
AR   Attainable Regions 

ARC  Candidate Attainable Regions 

CFSTR Continuous Flow Stirred Tank Reactors 

DCR  Differentially Cooled Reactor 

DHR  Differentially Heated Reactor 

DSR  Differential Side-stream Reactor 

PFR  Plug Flow Reactor 

RCC  Recursive Constant Control Policy   

 

Symbols 
α   Combination control policy for fundamental processes  

  (mixing) 

β  Combination control policy for cooling 

θ   Combination control policy for heating 

c  State variable of the system 

co  State variable of the system at the feeding point 

c*  Mixing state variable of the system 

fi  Fugacity of gas species i 

g(c)  General process vector defined at c 

h(c)  Heating process vector defined at c 

k(c)  Cooling process vector defined at c 

Kc  A measure of cooling costs relative to reaction costs 

Ki  Adsorption equilibrium constant of species i  

K0p,j  Chemical equilibrium constant of reaction j based on partial  

  pressure 

kps,j  Rate constant of reaction j  

m  Mass fraction of reaction componets 
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P  Partial pressure of the reacting components 

r(c)  Reaction rate vector defined at c 

r’i,j  Rate of reaction of species i from reaction j [mol.s-1.kg-cat-1] 

R  Universal Gas constant 

T  Temperature of reaction [K] 

Tad  Adiabatic temperature gradient 

Tc  Cooling utility temperature [K] 

Th  Heating utility temperature [K] 

To  Feed temperature [K] 

τ   Residence time 

v   Mixing vector, mixing c with c* 

∆Hrxn  Enthalpy of the reaction 
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CHAPTER 7 

SINGULAR OPTIMAL CONTROL 
TECHNIQUES FOR ATTAINABLE 

REGION ANALYSIS  
 

7.1 Introduction 
 

In this work, singular optimal control methods are applied to identify 

candidate attainable regions boundaries. This procedure involves using 

optimal control techniques to identify optimum profiles of combinations 

of fundamental processes that outline the boundary of the ARC. As 

demonstrated in the previous chapters, once the optimum profiles of 

combinations of fundamental processes have been identified, the 

boundary of the ARC can be completed by the extreme surfaces and planes 

that are of single process operations. These extreme surfaces and planes 

originate from optimum profiles of combinations of fundamental 

processes. This work considers the class of problems that address linear 

time optimal control. The theory of such problems is discussed in section 

7.3 following the background literature review in section 7.2.    

 

This work was completed in collaboration with Shivakumar Kameswaran 

under the supervision of Prof. Biegler at Carnegie Mellon University. The 

formulations for solving differential algebraic equations (DAE) using 

Radau quadrature discussed in section 7.4 were derived as part of 

Shivakumar’s research. We will apply the formulations to solve problem 

formulated as attainable region. This is demonstrated through the use of 

the industrially important water-gas-shift (WGS) reaction as a case study. 
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The results are then compared to that of Kauchali et al., (2004a & b) 

obtained using the iso-state and RCC algorithms for attainable regions.  

 

7.2 Background Literature  
 

Singular optimal control problems form a large part of optimisation 

challenges in chemical process engineering. In the past six decades most 

researchers focused their work on developing numerical algorithms to 

solve singular optimal control problems.  Sienbenthal and Aris (1964a & b) 

used Pontryagin’s maximum principle to solve for the optimal control 

profiles of stirred tank, batch and tubular reactors. Hermes (1964) applied 

the maximum principle to solve singular control problems. Hermes (1964) 

defined a vector as “totally singular” when the maximum principle yields 

no information in the time optimal problem for any of the components of 

the optimal control set.   

 

In a series of publications, researchers formulated algorithms using the 

maximum principle to solve the singular optimal control problems that 

are encountered in chemical engineering systems. Among the researchers 

responsible for this work were; Jackson (1968); Jackson and Senior (1968), 

Jackson et al. (1971); Ko and Stevens (1971 a & b); King et al. (1972); King 

and Glasser (1973), to mention only a few.   

 

More recently, Modak et al., (1989) developed a unidirectional method to 

solve optimal singular control problems. The authors proposed an 

algorithm that uses the maximum principle and a unidirectional scheme to 

reduce the iterations required to solve a two-point boundary value 

problem. Cuthrell and Biegler, (1989) presented a method for solving 

optimal control problems using discretisation of the state functions. The 
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method was successfully demonstrated for a fed batch reactor system. 

 

7.3 Theory 
 

The theory of the class of singular optimal control problems that this study 

focuses on is detailed below as adopted from Bryson and Ho (1969) and 

Hermes (1969). The control problems considered in this work are those of 

linear time optimal control systems, described by a generic vector 

differential equation 

  

( ) ( ) ( )( ) ( )( )tutt
dt
dt xgxfxx +==&      (7.1) 

with given initial conditions,  

( ) 00 xx == tt     

   

The state vector x, will be n-dimensional and is given by  
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The control u is a time measurable scalar that can be constrained by 

bounds 

bua ≤≤  
 
The functions f and g are n-dimensional vector functions given by  
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We will be focusing on a class of problems where the objective is to 

minimise the performance index of this form; 
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( ) ( )[ ] ( )[ ]f

t

t
u

tdtxu
f

xgxf φ++∫
0

00min        (7.2) 

 

The approach used by the Pontryagin’s Maximum Principle to solve 

optimisation problems requires that the constraints of the control be 

adjoined to the performance index (Pontryagin, 1962). Thus, determining 

the constrained Hamiltonian, H defined as; 

 

( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )buuauutu T −+−++++=Η 210021 ,,,,, μμμμ xgxfλxgxfλx  

          (7.3) 

Where λT is known as the co-state vector, which is the transpose vector of 

the adjoint variables vector λ (Lagrange multipliers for the system state 

equations), 1μ  and 2μ  are the Lagrange multipliers for the control path 

constraints. As can be noted in equation (7.3), the Hamiltonian is linear in 

control variable u.  

 

The necessary conditions required for optimality are derived as follows. 

For a dynamic system with the state function as given by equation (7.1) 

 

( ) ( )( ) ( )( )tutt
dt
d xgxfx +=   ( ) 00 xtt ==x     (7.1) 

  

Pontryagin’s maximum principle states that for u and x to be optimal it is 

necessary that the co-state vector, λT which is a non-zero and continuous 

function should satisfy the following equations; 

 

 ( )
x

λxλ
∂

∂
−=

tuH
dt
d ,,,,, 21 μμ        (7.4a) 

and 
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The necessary conditions of optimality are such that (Pontryagin 1962), 

 

( ) ( ) ( ) ( )[ ] 0
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,,,, 210
21

21 =+−+=
∂

∂
= μμ

μμ
μμ xgλxg

λxH
λxH T

u u
t

t  

         (7.5)  

over a non-zero time interval [t0, tf]. All the time derivatives of ∂H/∂u are 

also required to remain fixed at zero.  

 

Kelly et al., (1967) states that to determine a singular optimal control in 

terms of variables x, λT and t, successive even derivatives of ∂H/∂u with 

respect to t should be fixed at zero as given by condition (7.6) below; 

 

( )
0,,,, 21

2

2
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∂
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u
t

dt
d

m

m μμλxH  m = 0, 1, 2,…   (7.6) 

 

Condition (7.6) is a useful quantity necessitated by the fact that the 

Hamiltonian is linear in the control variable u, therefore the necessary 

condition (7.5) is not an explicit function of the control variable. Thus the 

maximum principle yields no sufficient information on determining an 

optimal control of the system. These type of problems are termed high-

index problems (Brenan et al., 1989).   In order to determine the expression 

for the singular optimal control, the necessary condition (7.5) should be 

differentiated successively with respect to t until the control variable u 

appears explicitly in one of the even derivatives given by (7.6) (Kelly et al., 

1967).  

 

Another necessary condition that should be satisfied along an optimal 
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singular control arc is the generalised Legendre-Clebcsh condition given 

by equation (7.7) below (Aly, 1978); 
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m μμλxH  m = 0, 1, 2,…  (7.7) 

 

The maximum principle requires that condition (7.8) below holds, 

otherwise the method fails to identify the optimal control solution.   

 

    ( ) ( )[ ] 00 ≠+ xgλxg T       (7.8) 

 

For condition (7.5) to be established without violating condition (7.8), at 

least one of the Lagrangian multipliers; 1μ  or 2μ  of the control should 

remain nonzero (Aly, 1978).   

 

However it is not always possible to guarantee the satisfaction of 

conditions (7.6) and (7.7) as the state function and the Hamiltonian are not 

explicit functions of t. Their differentiation with respect to time will 

therefore yield no useful information about the problem.  

 

The problem commonly encountered with solving singular optimal 

control problems using the maximum principle is that the solution is often 

oscillatory and unstable. These perturbations in the solutions are 

consequential to the condition called matrix ill-conditioning which occurs 

when the standard maximum principle methods are applied to solve high 

index problems (Brenan et al., 1989).  
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7.4 Case Study: The Water-Gas Shift Reaction 
 

7.4.1 Reaction Kinetics 
 

The kinetics for the water-gas-shift reaction was presented by Podolski 

and Kim (1974). They adopted the Langmuir-Hinshelwood models to 

describe the kinetic behaviour of the WGS reaction over an iron-based 

catalyst. The reaction rate models were derived for experiments carried 

out at atmospheric pressure. The exothermic reversible WGS reaction for 

the production of hydrogen is characterised by an equation given below; 

 

 CO  +  H2O  ↔  CO2  + H2   ∆H˚298  =  - 41.17 kJ mol-1 (7.9) 

 

The Langmuir-Hinshelwood model for the rate of reaction allowing 

adsorption of all reaction species is given by; 

 

[ ]
[ ]2

222222

2222

1 HHCOCOOHOHCOCO

pHCOOHCOOHCO
CO PKPKPKPK

KPPPPKkK
r

++++

−
=   (7.10) 

 

The reaction rate and adsorption constants used in the rate expression are 

modelled to vary with temperature as shown in equation (7.11) below; 

 

  ⎟
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RT
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K ii
i exp      (7.11) 

 

The corresponding parameters for the rate expression constants are given 

by Podolski and Kim(1974) as shown in Table 7.1.  
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Table 7.1: Parameters for the Kinetics (Podolski and Kim, (1974)) 

Constant   ∆H   ∆S 
k             29 364          40.32  

COK             -3 064          -6.74 

OHK
2

            6 216          12.77 

2COK                                       -12 542          -18.45 

 

7.4.2 The Process State Function 
 

The fundamental processes considered in this example are limited to that 

of reaction and mixing. The state variables used in this system to describe 

the system are the conversion of CO, temperature and residence time with 

corresponding symbols X, T and τ, respectively. These variables are given 

in a state vector c as; 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

τ
T
X

c        (7.12) 

 

 The reaction state function vector is described by; 
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For mixing, the state function vector is given by; 
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Where mc  is the mixing state, which in this case is the cold feed at a 

temperature of 300K. 
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The general process state function is given by the controlled combination 

of reaction and mixing using control policy α, as shown below; 

 

 ( ) ( ) ( )mvr d
d ccvcrccy ,, ⋅+== α
τ

     (7.15) 

 

Equation (7.15) above has the same form as the generic singular control 

problem state function given by equation (7.1). Another description is that 

equation (7.15) represents the combination of reaction and mixing and 

therefore is essentially a differential sidestream reactor expression (Glasser 

et al., (1992); Chapter 3 & 5). Thus, the DSR equation is by its nature, an 

optimal singular control problem. In general, the DSR, DCR, DHR and any 

combinations of these reactor models are representative of singular control 

problems.  

 

7.4.3 Process Specifications and Constraints 
 

The initial conditions for this problem are given as a feed of stoichiometric 

mixture of pure CO and H2O at a temperature of 300K. As stated earlier 

cold feed will be used as a mixing state, therefore cm becomes;  

⎥
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mc         (7.16a) 

Free preheating of feed is allowed to a temperature of 823K. Thus, the 

initial conditions of a DSR will be given by; 
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The catalyst activity is constrained to operate within the temperature 

range of 500K – 823K (Kauchali et al., 2004 a). Conversion is known to take 

values between 0 and 1, representing the feed and complete reaction 

conversion of CO, respectively. Thus, the state variables are constrained 

within minimum and maximum bounds as follows; 

 

minmax

minmax

TTT

XXX

≥≥

≥≥

 =>  

KTK

X

500823

01

≥≥

≥≥

   (7.17a) 

 

The control policy α, is bounded within the limits 0 and 20,000 as shown 

below. The upper bound of 20, 000 in the control policy is not fixed and 

can be revised during computation if is later discovered not to be 

sufficiently large. 

 

 minmax ααα ≥≥  => 200000 ≤≤ α    (7.17b) 

 

7.4.4 Method Formulation 
 

The differential algebraic equation (DAE) vector describing the state 

functions given by equation (7.15) was discretised using a two-point 

Radau quadrature. Discretisation is carried out forward in time, not 

backwards in time as in the conventional methods (Cuthrell and Biegler, 

1989). The two collocation points for Radau quadrature used in this 

formulation, as scaled on element length, are 1/3 and 1, allowing the end 

of an element to be a collocation point. Continuity is emphasised for all 

state and co-state functions by enforcing the end of an element to be equal 

to the beginning of the next element. 
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The problem was solved using 100 finite elements and was assumed to 

remain fully singular for the entire residence time interval of [0, 109].   

 

The objective is to maximise the conversion of CO. The objective function 

was then formulated as follows; 

 ( )( )∑
=

−
N

i
iX

1
1min

α
 i = 1, 2, …., N     (7.18) 

 

Where N is the number of finite elements.  

 

The formulation was implemented in AMPL® using IPOPT® solver and 

the obtained solution is discussed in the next session. 

 

7.4.5 Results 
 

The control profile obtained from the solution is shown in Figure 7.1. The 

profile appears to form a singular arc throughout the entire time interval. 

However, there are small perturbations towards each end of the arc that 

are not visible in the scale Figure 7.1 is presented in. Figure 7.2 shows such 

a bend for the upper residence time end. These perturbations occur at the 

maximum and minimum temperature bounds and indicate a transition to 

isothermal operation.  

 

The bend shown in Figure 7.2 is calculated at the temperature of 500K, 

where the main arc (Figure 7.1) changes to the isothermal arc. Figure 7.3 

shows how CO conversion changes along the singular control arc. The 

different segments representing isothermal and non-isothermal control 

arcs are not distinguishable in this figure as the profile is fully convex. 

This convexity is necessary for an optimal solution (Section 7.3).       
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Figure 7.1: The Main Control Profile for Reaction and Mixing 
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Figure 7.2: The Isothermal Control Profile (T = 500K) 
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Figure 7.3: Variation of Conversion along the Control Profile 

 

As stated, the singular control arcs represent the optimal combination of 

reaction and mixing which is a DSR profile on the attainable regions 

boundary. The boundary of the attainable regions can then be completed 

using plug flow reactor trajectories and mixing lines that emanate from 

the optimal DSR profile.  The completed candidate attainable region for 

the WGS reaction is shown on a two-dimensional temperature-conversion 

projection in Figure 7.4 and three-dimensional structure is shown in 

Figure 7.5.  

 

The general process sequence and its interpretation as a network of 

operations unit is given by; 

 

       A         B         C                    D                   E 

 ISO (500K) ISO (823K) 
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Preheating of the feed is carried from 300K to 823K (A), followed by an 

isothermal DSR (B) operating at a fixed temperature of 823K. The 

isothermal DSR then switches to a non-isothermal DSR (C), which 

navigates along the ARC boundary from 823K to 500K. At 500K the non-

isothermal DSR switches to an isothermal DSR (D) which operates at a 

fixed temperature of 500K. Plug flow reactor profiles (E) completes the 

ARC boundary.  
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Figure 7.4: 2D ARC Projection for the WGS System 

 

The boundary of the ARC, together with the sequence of reactors that 

occur on it, agrees with the results obtained by Kauchali et al., (2004a & b) 

using the Iso-state algorithm (Rooney et al., 2000) and the RCC algorithm.   

B 

A 

C 

D E 
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Figure 7.5: 3D ARC Boundary for WGS System 

 

Figures 7.4 and 7.5, show a non-smooth and ‘wiggly’ projections of the 

optimal control profile or DSR profile. This condition is due to the fact that 

the DSR is a very ill-conditioned singular control problem and some sort 

of regularization should be used to smooth-out the profile and remove the 

wiggles. Shivakumar Kameswaran’s work focuses of addressing ill-

conditioned singular optimal control problems.  
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7.5 Discussion 
 

We have demonstrated a relationship between the maximum principle 

and attainable region analysis by solving a candidate AR using optimal 

singular control techniques that are based on Pontryagin’s maximum 

principle theory. As McGregor (1998) has shown from analytical 

derivations, the attainable regions analysis conforms to the requirements 

of Pontryagin’s maximum principle. This was confirmed by the ARC 

generated using optimal control applications being in concurrence with 

the candidates generated by Kauchali et al., (2004 a & b) using AR analysis 

tools.    

 

A useful outcome of this demonstration is the formulation of singular 

optimal control technique as systematic tools for identifying candidate 

attainable regions.  This adds up to the assembly of AR analysis tools that 

can be used to synthesise optimal chemical processes. 
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7.7 List of Symbols 
 
Abbreviations  
AR   Attainable Regions 

ARC  Candidate Attainable Regions 

CFSTR Continuous Flow Stirred Tank Reactors 

DAE  Differential Algebraic Equations 

DCR  Differentially Cooled Reactor 

DSR  Differential Side-stream Reactor 

PFR  Plug Flow Reactor 

RCC  Recursive Constant Control Policy  

WGS  Water-Gas Shift Reaction  

 
 
Symbols 
 
α  Combination control policy for fundamental processes  

  (mixing)  

c  State variable of the system 

co  State variable of the system at the feeding point 

cm  Mixing state variable of the system 

f  Some time dependent vector function 

f0  Initial state of the vector function, at t = 0 

g  Some time dependent vector function 

g0  Initial state of the vector function, at t = 0  

g(c)  General process vector defined at c 

H  The constrained Hamiltonian 

Hu  Partial derivative of the constrained Hamiltonian with  

  respect to control u  

∆Hrxn  Enthalpy of the reaction 

k  Rate constant of reaction  

Ki  Adsorption equilibrium constant of species i  
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Kp  Chemical equilibrium constant of reaction based on partial  

  pressure  

λ  Lagrange multiplier of the system state equations 

λT  Co-state vector of the system state equations 

μ1, μ2  Lagrange multipliers for the control path constraints 

Pi  Partial pressure of the reacting component i 

R  Universal Gas constant  

r(c)  Reaction rate vector defined at c 

ri  Rate of reaction of species i [mol.s-1.kg-cat-1] 

∆S  Change in entropy 

t  time  

T  Temperature of reaction [K] 

Tad  Adiabatic temperature gradient 

Tm  Mixing material temperature [K] 

To  Feed temperature [K]  

τ  Residence time 

u  A time measurable scalar control  

υ  Mixing vector, mixing c with c* 

Vmin  Lower bound of the constrained variable V 

Vmax  Upper bound of the constrained variable V 

 x  Some time dependent vector equation 

 x0  Initial state of the vector equation, at t = 0 
•

x   Some differential of a time dependent vector equation x  

X  Conversion of the limiting reagent 
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CHAPTER 8 

SOLVING UNSTEADY STATE  
PROBLEMS  

 

8.1 Introduction 
 

In the previous chapters we have demonstrated how the convex control 

policy technique can be applied to identify solutions for conventional 

steady state AR problems. The solution to these problems were all 

characterised by the necessary conditions of the AR boundary such that  

 

• All variables used to characterise the AR boundary should obey 

linear mixing 

• The AR boundary is always convex 

  

In this chapter we apply the RCC technique to solve unsteady state 

optimisation problems that are not essentially characterised by the 

necessary conditions of the AR boundary stated above. We focus on the 

Differential Algebraic Optimisation Problems (DAOP) that have 

previously been solved using computational optimisation algorithms 

(Jackson and Senior 1968; Lim et al. 1986; Modak et al. 1986; Cuthrell and 

Biegler 1989). These solution methods are known to be problem specific 

and numerically intense.  
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8.2 Background Literature  
 

The set of problems this study focuses on, generally comprise of a number 

of DAE that describe a given system, similar to the generic time optimal 

control problem given by equation (7.1) in chapter 7. The aim is, in most 

cases to optimise the objective function described in a performance index 

equation by varying the control policy, U(t). The final time at which the 

objective is optimised can, depending on a problem, be specified or open 

ended. An example of these DAOP’s that is commonly encountered in 

chemical engineering is the feed profile optimisation problem. Feed profile 

optimisation problems involve finding optimal feed profiles that maximise 

the production of a product via some reaction. These problems are, in 

many cases, batch reactors with slow rates of production and/or low yield 

of high valued product. This class of problems known as the fed-batch 

reactor problem uses the controlled feed over time as a control policy to 

maximise the product yield at final time.  

 

Over the past years, a number of publications appeared in the literature 

that proposes numerical techniques that can be applied to identify optimal 

feed profiles of fed-batch reactors. Jackson and Senior (1968) used 

Pontryagin’s Maximum Principle (Pontryagin et al., 1962) to derive an 

optimum reactant addition policy for a batch reactor with delayed reactant 

addition. Using theoretical mass action kinetics as a study case, the 

authors identified singular and bang-bang segments that form an 

optimum control policy profile. The difficulty in their methods was in 

finding bounds for the singular segments.  San and Stephanopoulos (1981) 

identified an optimal feed addition policy for substrate inhibited kinetics 

with enzyme deactivation. The optimum feed addition policy was 

approximated using a quasi-steady state solution. Hong (1986) derived 

analytical solutions for the fed-batch fermentation reactor. The control 
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profile comprised of mixed singular and non-singular (bang-bang) arcs. 

The conjunction points between control arcs were determined using 

Kelley’s transformation theory (Kelly et al., 1967). 

 

Modak et al. (1986) studied the general characteristics of optimal feed 

profiles for various fed-batch fermentation processes. The authors 

deduced that for fed batch processes, the most general optimal control 

sequence comprises; an interval of maximum feed rate segment, an 

interval of minimum feed rate segment (batch period), an interval of 

singular feed rate segment, and an interval of minimum feed rate segment 

(batch). Depending on the optimisation objective, Modak et al. (1986) 

proposed two control modes. If maximisation of the product yield is 

critical and the fermentation time not the key issue, the singular control 

can be utilised to achieve maximum net yields. Only when the 

fermentation time becomes important that the trade-offs between 

fermentation duration and product yield are balanced by a sequence of 

singular, maximum feed and minimum feed control segments.  

 

Lim et al. (1986) derived somewhat generalised computational methods 

based upon the general characteristics proposed by Modak et al. (1986). 

These methods were illustrated using the penicillin fermentation and 

bacterial cell mass case studies.  The authors placed emphasis on the fact 

that once the sequencing of segments of an optimal control is known, the 

determination of an optimal feed rate profile gets reduced to a problem of 

identifying switching times between segments. 

 

Cuthrell and Biegler (1989) developed a simultaneous optimization and 

solution method based on successive quadratic programming and 

orthogonal collocation on finite elements. Their method showed improved 

solution accuracy and stability when illustrated by solving the penicillin 
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fermentation problem studied by Modak et al., (1986).  

 

This work proposes the use of the recursive convex control policy (RCC) 

formulations to approximate the solution of a fed-batch reactor problem. 

This solution is approximated by satisfying only the necessary of 

convexity as required by the Hamiltonian equation (Chapter 7, 

Pontryagin, 1962). 

  

8.3 Optimal Substrate Feeding Policy for a Fed-Batch 
Fermentation Process 

 

For a case study, we will consider a problem of finding an optimal time-

varying control strategy for a fed-batch reactor involving the biosynthesis 

of penicillin as studied in a series of publications by Modak et al. (1986), 

Lim et al. (1986) and Cuthrell and Biegler (1989). We start by stating the 

problem and outlining some of its features. The RCC technique will then 

be applied to identify an optimal control strategy of the problem. We will 

provide an analytical based solution for a specific case study (Lim et al. 

1986) and apply the convex control policy formulations to compute the 

numerical solution. This will permit comparison of the solution with 

previous results.  

 

8.3.1 The Fed-Batch Fermenter Problem 
 

The kinetic model and associated parameters for the Batch Fermenter 

Problem (BFP) were taken from Lim et al. (1986) and Cuthrell and Biegler 

(1989). The fermenter of hold-up volume (V in l) is considered to contain 

biomass (X), substrate (S) and product (P) at concentrations given in (g/l). 

The mass of product, MP at time, t can be related to the reactor hold-up 
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volume and product penicillin concentration as; 

 )()()( tVtPtM P ⋅=        (8.1) 

 

The objective is to maximize the mass of product penicillin at final time (tf) 

by manipulating the control policy (U in g/hr), which is the substrate feed 

rate. The set of differential algebraic equations describing the mass balance 

of species over time can be stated as follows. 

 

The rate of change of the biomass concentration in the reactor is related to 

the biomass growth rate, μ(X, S) and the dilution factor due to substrate 

feed addition as; 

( ) U
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dt
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⎛
−= ,μ             

 (8.2) 

The rate of change of penicillin concentration in the reactor is given by the 

net effect of production rate ρ(S), degradation rate due to hydrolysis Kdegr 

and dilution rate due to substrate addition as;   

( ) U
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The concentration of substrate in the reactor is governed by the differential 

equation relating biomass growth rate, penicillin production and dilution 

rate as; 
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The rate of change of hold-up volume is related to substrate addition as 

follows;  

FS
U

dt
dV

=
         (8.5) 
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The biomass growth rate (h-1) is defined by     

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
SXK

SSX
X

max, μμ         (8.6) 

 

The penicillin production rate (g-P/(g-X h)) is given by 

 

          ( ) ( )⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=
inP KSSK

SS
/1maxρρ    

          (8.7) 

 

Lim et al., (1986) detailed the rate constants, initial conditions and 

substrate concentration for this case study as listed below; 

 

μmax = 0.11 h-1  ρmax = 0.0055 g-P/(g-X h) KX = 0.006 g-S/(g-X) 

 

KP = 0.0001 g-S/l  Kin = 0.1 g-S/l  Kdegr = 0.01 h-1  

 

Km = 0.0001 g-S/l  ms= 0.029 g-S/(g-X h) YX/S = 0.47 g-X/g-s 

 

YP/S = 1.2 g-X/g-s  SF=500 g-S/l      

          (8.8) 

 

This type of problem is a numerically complex DAOP because of the 

bounds on the state and control profile as well as the linear appearance of 

the control policy in the state equations and objective function. For 

problems with linear response to the control, the optimal control profile is 

either bang-bang in nature or contains singular control arcs (Chapter 7).  
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8.3.2 Numerical Solutions for the BFP 
 

The RCC algorithm was applied to the problem to obtain the numerical 

approximation of the solution. In this case an optimal time-varying feed 

profile that optimises the product yield at an unspecified final time, tf is 

solved. This requires that the optimal feed rate to yield the maximum 

amount of product at the end of the batch period must be determined. The 

product yield can be calculated using, 

 

)()()( tVtPtM P ⋅=        (8.1) 

 

The objective function in this case can be expressed as  

 

)()(max
),( ffttu

tVtP
f

×=Φ       (8.9) 

 

The problem is solved for the maximum amount of product at an 

unspecified final time, tf given initial conditions as 

   

X(0) = 1.5 g/l ; P(0) =  0.0 g/l;  

 

S(0) = 0.0 g/l;  V(0) = 7 l      (8.10) 

 

and boundary conditions 

0 ≤ X(t) ≤ 40 g/l 0 ≤ S(t) ≤ 100 g/l  0 ≤ V(t) ≤ 10 l   

0 ≤ U(t) ≤ 50 g-S/h 72 ≤ tf ≤ 200 h,   

         (8.11) 
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The RCC formulation for computing the optimal control sequence for a 

fed-batch penicillin reactor is written as follows; 
 

u = [umin…umax] discretised over five hundred points 

 

Maximise, for all ui’s  

)()( tVtPi ×=Φ   

subject to differential equations set (8.2) to (8.5)  

initial conditions (8.10) and boundary conditions (8.11) 

  

The problem was first solved for the analytically-based control profile as 

presented by Lim et al. (1986). The authors stated that the analytical 

computations of the optimal feed profile comprises sequentially, a 11.21 hr 

(t1) period of maximum flow rate (100 g/hr), a batch period of 17.58 hr (t2 = 

28.79) and a singular flow rate period of 95.11 hr (t3 = 124.9).   

 

8.3.3 Results 
 

The convex control policy formulation was implemented to solve the 

problem using MATLAB®.  The tenth iteration solution profiles are 

obtained and presented together with the analytical solutions in Figures 

8.1 – Figures 8.5.  

 

The values for points of control profile discontinuity, final time and 

optimal time value of the objective functions agree closely with the 

analytical computations.  Figure 8.1 shows that the control policy U, 

remains fixed at the upper bound for the first time segment. In the second 

segment the control policy switches to zero indicating full batch with no 

feed. The third segment is a singular profile showing a linear dependence 

of the control policy on time.   
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Figure 8.1: Analytically-Based and Numerically Solved Control Profile 

 

The singular arc approximation accuracy improves as the number of 

iteration increases. However, as for most singular control problems, more 

and more iterations are needed as the computation gets closer to the 

solution and therefore achieving the exact profile becomes impractical.   

 

 
Figure 8.2: Product Concentration Profiles  

 

Figure 8.2 shows how the penicillin production changes with time. In the 

first time segments of the problem control, the production rate of 
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penicillin remains passive and starts to increase in the third time segment. 

The initial delay in production awaits the biomass build-up to a threshold 

level at which penicillin production becomes active as shown in figure 8.3.    

  

The inaccuracies in the approximation of optimal control profile along the 

singular segment are more visible in Figure 8.2 and 8.3.  

 

 
Figure 8.3: Biomass Concentration Profiles  
 

 

Figure 8.4: Substrate Concentration Profiles 
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Figure 8.4 shows how the substrate concentration increases in the reactor 

due to the controlled addition.  

 

Figure 8.5: Reactor Contents Volume Profiles  

 

The change in the volume hold-up depends only on the substrate addition 

as Figure 8.5 shows. During the full batch segment the hold-up volume 

remains unchanged and only increases during substrate feed addition. 
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8.4 Discussion and Conclusion 
 

We have shown how the convex control policy algorithm can be used to 

solve problems that are not conventional attainable regions problems. 

Although we have not emphasised the computational aspects of the case 

study, such as computational time comparison we have demonstrated that 

by simply including the objective function and problem bounds, the 

algorithm can be transformed into an optimisation tool. The example used 

in the study was solved in an easy plug and play fashion without complex 

mathematics in the preparation.   

 

It should be emphasised that the RCC algorithm does not satisfy any of 

the conditions of optimality as it assures only the requirements for 

convexity. The solution obtained herein will therefore only serve as an 

approximation as neither the maximum principle nor the Legendre-

Clebcsh condition could be affirmed (Aly, 1978). However, the application 

of this technique as a simple optimal control sequence calculator should be 

acknowledged. As it was shown in chapter 3, the results of the 

computation closely approximate the conditions of optimality as the 

number of iterations in the computation is increased.  
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8.6 List of Symbols  
 
Abbreviations  
AR   Attainable Regions 

BFP  Batch Fomenter Problem  

DAE  Differential Algebraic Equations 

DAOP  Differential Algebraic Optimisation Problem 

RCC  Recursive Constant Control Policy   

 
 
Symbols 
 
Kdegr  Penicillin hydrolysis rate constant   

Kin  Substrate inhibition rate constant 

Km  Substrate- Biomass inhibition rate constant 

KP  Substrate- Product inhibition rate constant 

ms  Biomass -Substrate inhibition rate constant 

μ  Biomass growth rate (h-1) 

P  Product penicillin concentration ( g/l) 

Φ  Objective function 

ρ  Penicillin production rate (g-P (g-X h)-1) 

S  Substrate concentration (g/l) 

SF  Substrate concentration in feed (g/l) 

t  time (hr) 

tf  Final time (hr) 

U  Control policy, Substrate feed rate (g/h)   

V  Reactor hold-up volume (l) 

YP/S  Penicillin mass to substrate yield (g- Penicillin /g-Substrate) 

YX/S  Biomass mass to substrate yield (g-Biomass/g-Substrate) 
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CHAPTER 9 

CONCLUSIONS  
 
 

The aim of the thesis was to contribute to the development of systematic 

attainable region analysis tools that are based on numerical formulations. 

These systematic tools would be implemented as computer algorithmic 

techniques to automate the procedure of reactor network synthesis using 

attainable region analysis.  

 

The theory has been revised to illustrate the power of attainable regions as 

a process synthesis method. By use of a simple case study, a 

demonstration was carried out to show how analytical techniques of AR 

analysis can be applied to synthesise optimal reactor networks. The 

boundary of the candidate attainable region was interpreted in terms 

fundamental processes and/or combinations of fundamental processes 

which were in turn translated into process equipment network with flow 

configurations and design parameters. Although the procedure was 

straightforward, it required strong background knowledge in the theory 

of AR analysis. Also the studied simple theoretical example with ideal 

kinetic model resolved into an exhaustive algebraic exercise of deriving 

equations of optimal fundamental processes as required by the necessary 

conditions of attainable regions theory.  

 

From the theory it was indicated that the boundary of the attainable 

regions, which is of the highest importance in generating candidate ARs, is 

outlined by optimal combinations of fundamental processes. These 

optimal process combination trajectories give pathway to extreme surfaces 
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of single process operation that shape the AR boundary, such as mixing 

planes and reaction surfaces. The algebraic complexity of attainable 

regions lies in identifying these optimal process combination trajectories 

from analytical methods.  

 

A new systematic formulation for attainable regions called the recursive 

convex control policy has been developed to ease the complexity 

surrounding the application of AR analysis as a process synthesis 

technique. The recursive convex control policy applies iterative convex 

combinations of fundamental processes to approximate optimal 

combinations of fundamental processes that outline and provide access to 

extreme surfaces that complete the AR boundary. The RCC technique does 

not apply the necessary conditions in its method, and therefore does not 

limit the achieved solutions to the known necessary conditions.   

 

A theoretical case study that has previously been studied using analytical 

methods was solved to demonstrate how the RCC formulations can be 

implemented as an algorithmic tool to simplify the procedure of 

identifying ARCs. The RCC formulation proved to be clear cut in 

application as it required no specialised knowledge in the theory of AR 

analysis. The results were successfully verified to be consistent with the 

necessary conditions of optimality. The RCC technique proved to be the 

quickest automated AR technique known to date as it exhibited 

computational run-times in the order of 1/10th of previously known 

techniques.  

 

A four-dimensional case study was studied to demonstrate the 

straightforward advancement of the RCC technique to solving 

multidimensional problems. The obtained results conformed to the 

necessary conditions derived from AR analysis theory. This demonstration 
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proved the RCC algorithm to be a breakthrough in the AR theory. Prior to 

this research work, higher dimensional implementation of AR analysis 

could only be speculated on due to the intricacy arising from the use of 

analytical methods. The previously developed systematic techniques fell 

short in attempting solution of multi-dimensional problems due to long 

computational runtimes. 

 

The RCC technique is formulated from the necessary requirement for 

convexity and therefore is not pre-programmed to satisfy other necessary 

conditions of optimality. However, this is in no way a limitation as it was 

shown that by increasing the number of iterations the results converged to 

the optimal solution that satisfied all known necessary conditions. This 

remedial action was proven successful for both three and four-

dimensional case studies considering only fundamental processes of 

reaction and mixing. 

 

The ease of incorporating the attainable regions into process synthesis 

software packages was illustrated by assembling the RCC algorithm into a 

fully user-interfaced computer application. The application used a built-in 

theoretical example that allows the user to change reaction parameters and 

identify candidate ARs at a click of a button. The package displays a 

graphical output of the ARC which can be manipulated by the user. Any 

point on the boundary of the ARC can be translated into an optimal 

process flowsheet with flow configurations and key design parameters by 

a simple click with a mouse cursor. The easy interpretation of the 

boundary into process unit networks is facilitated by data tracking 

capability of the RCC algorithm. This is by far the most advanced and easy 

to use implementation of an automated ARC technique to identify optimal 

reactor networks to enable use by non-specialists. This could have not 

been practical with the previously developed slow systematic techniques.     
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To consider more fundamental processes, a number of industrial type 

examples were demonstrated. The study used exothermic reversible 

reactions which over the years have been a challenge to process synthesis 

engineers due to their divergent need for high temperatures to promote 

fast kinetics and low temperatures to achieve high equilibrium 

conversions. The RCC algorithm was successfully applied to identify an 

optimal reactor configuration for a generic exothermic reversible system 

where the costs of cooling and reaction were compared. Numerous cases 

were considered where the two costs were contrasted and trends were 

identified. The results obtained were proven consistent with those 

obtained using analytical methods. In this study the RCC algorithm was 

used to handle systems with fundamental processes of reaction, mixing 

and cooling. A much more practical case study of ammonia synthesis was 

also studied to identify its optimal reactor networks.   

 

The efficiency of the RCC algorithm was further demonstrated with a 

detailed study of a more complex methanol synthesis system. The reaction 

scheme of methanol synthesis comprises of three chemical reactions that 

exhibit a mixed endothermic-exothermic nature. The analytical methods 

cannot be used to solve this example as they require the case to be either 

fully exothermic or endothermic. With the aid of rate contour study, 

postulates were derived from which expectations on the behaviour of the 

optimal reactor network for this system were drawn. The reaction scheme 

was found to be endothermic at high temperatures and exothermic at low 

temperatures, an aspect that was identified to make the optimal reactor 

structure even more complex.    

 

The RCC algorithm was applied to identify an optimal reactor network for 

methanol synthesis using attainable region analysis. Although the 

resulting reactor network was complex, the method of solution was easy 
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plug and play in nature. The interpretation of the AR boundary into 

process unit network was also straightforward due to the inherent data 

tracking capability of the RCC algorithm. In this case study the RCC 

algorithm was applied to handle a system considering fundamental 

processes of reaction, mixing, cooling and heating.    

 

Another systematic technique to identify ARCs using singular optimal 

control tools was developed. As the RCC algorithm, the method relied on 

identifying the optimal combinations of processes that outline the AR 

boundary. The extreme surfaces and planes that shape the boundary of the 

attainable region originate from these optimal combinations of processes. 

In this technique the optimal combinations of processes are formulated 

and solved as singular optimal control problems. Singular optimal control 

solution methods apply Pontryagin’s maximum principle to solve for 

optimal control of combinations of processes. This technique will therefore 

also serve as a check to guarantee that the attainable region analysis 

method is consistent with the maximum principle. The water-gas shift 

system was used to demonstrate the use of optimisation techniques in 

identifying candidate attainable regions. The obtained ARC for the water-

gas shift system was found to be consistent with that identified using RCC 

algorithm.  

 

The application of the RCC algorithm was extended to solving unsteady 

state optimisation problems. The case study used in this demonstration 

was the fed batch penicillin fermentation reactor. Optimisation methods 

based on Pontryagin’s maximum principle have previously been used to 

find the control sequence of the fed batch reactor problems.  These 

methods require specialised optimisation knowledge and are known to be 

problem specific notwithstanding the fact that they are efficient and the 

most accurate. The RCC algorithm was shown to be very easy to apply in 
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approximating a control sequence for the fed penicillin fermentation 

reactor. Although the solution is known to satisfy the requirement for 

convexity only, the method proved to be efficient as a pre-calculator for 

the control sequence. The control profile identified using the RCC 

technique was not highly accurate; it however, showed a clear control 

sequence.  This can be use to simplify the procedure of solving control 

sequences of fed batch reactor as it is known that,  once the control 

sequence is known the optimisation problem reduces to a simple task of 

finding the switching times. 

 

The two numerical methods have been successfully developed and 

demonstrated with the use a number of case studies. The main objective 

focused on the RCC algorithm as the core content of the thesis. A number 

of case studies that were solved using the RCC algorithm have proved the 

technique to be robust, reliable and consistent.   

 

A future research area has been identified in which the RCC algorithm is 

coupled with other numerical techniques to compile a more powerful tool 

that will accurately identify candidate attainable regions boundaries. 

Currently, research is ongoing to incorporate the RCC algorithm with the 

Method of Bounding Hyperplanes to produce a tool that will guarantee 

quick and more accurate results by constructing the attainable regions 

from both the exterior and interior. In order to improve the stability and 

accuracy of the RCC algorithm, investigation of application of 

regularization methods to handle ill-conditioned problems is underway as 

the complete software package is being assembled.  

 

In addition, a post doctoral research that investigates the application of the 

RCC algorithm to solving distillation synthesis problems has already been 

started and the preliminary stages show promising results. The success of 



Numerical Formulations for Attainable Region Analysis                      Tumisang G. Seodigeng  

Chapter 9: Conclusions   220

this implementation could lead to a powerful tool that can be used to solve 

reactive distillation problems.   

 

In conclusion, we claim that the contribution of the RCC algorithm as the 

core content of the study and the number of case studies demonstrated as 

well as the singular optimal control technique developed, are a significant 

contribution to the development of numerical formulations for attainable 

region analysis. The title of this thesis promises the development of such 

formulations. This contribution is not only to the development of 

attainable region analysis as a process synthesis technique. The RCC 

algorithm does also contribute to the field of dynamic optimisation as it 

has been demonstrated to be applicable to the field of unsteady state 

optimisation.  

 

The numerical formulations developed in this study will enable the 

inclusion of attainable region analysis in chemical process simulation and 

optimisation tools. This will help in the synthesising of new optimal 

chemical process and optimisation of existing ones and therefore be an 

invaluable tool to the filed of process synthesis and chemical engineering 

as a whole.  This contribution gives easy access to the power of the 

attainable region analysis to the chemical engineering community without 

the need for specialised knowledge to help studying chemical processes of 

industrial significance.  It can therefore be anticipated that this 

contribution will be important to chemical engineering research and 

industry for many years to come. 
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