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Chapter 1

Introduction

The over-the-counter (OTC) interest rate derivative market is large and rapidly developing. In
March 2005, the Bank for International Settlements published its “Triennial Central Bank Survey”
which examined the derivative market activity in 2004 (http://www.bis.org/publ/rpfx05.htm).
The reported total gross market value of OTC derivatives stood at $6.4 trillion at the end of June
2004. The gross market value of interest rate derivatives comprised a massive 71.7% of the total,
followed by foreign exchange derivatives (17.5%) and equity derivatives (5%). Further, the daily
turnover in interest rate option trading increased from 5.9% (of the total daily turnover in the
interest rate derivative market) in April 2001 to 16.7% in April 2004. This growth and success of
the interest rate derivative market has resulted in the introduction of exotic interest rate products
and the ongoing search for accurate and efficient pricing and hedging techniques for them.

Interest rate caps and (European) swaptions form the largest and the most liquid part of the
interest rate option market. These vanilla instruments depend only on the level of the yield curve.
The market standard for pricing them is the Black (1976) model. Caps and swaptions are typically
used by traders of interest rate derivatives to gamma and vega hedge complex products. Thus an
important feature of an interest rate model is not only its ability to recover an arbitrary input yield
curve, but also an ability to calibrate to the implied at-the-money cap and swaption volatilities.
The LIBOR market model developed out of the market’s need to price and hedge exotic interest
rate derivatives consistently with the Black (1976) caplet formula. The focus of this dissertation
is this popular class of interest rate models.

The fundamental traded assets in an interest rate model are zero-coupon bonds. The evolution
of their values, assuming that the underlying movements are continuous, is driven by a finite
number of Brownian motions. The traditional approach to modelling the term structure of interest
rates is to postulate the evolution of the instantaneous short or forward rates. Contrastingly, in the
LIBOR market model, the discrete forward rates are modelled directly. The additional assumption
imposed is that the volatility function of the discrete forward rates is a deterministic function of
time. In Chapter 2 we provide a brief overview of the history of interest rate modelling which led
to the LIBOR market model. The general theory of derivative pricing is presented, followed by
a exposition and derivation of the stochastic differential equations governing the forward LIBOR
rates.

The LIBOR market model framework only truly becomes a model once the volatility functions
of the discrete forward rates are specified. The information provided by the yield curve, the cap and
the swaption markets does not imply a unique form for these functions. In Chapter 3, we examine
various specifications of the LIBOR market model. Once the model is specified, it is calibrated
to the above mentioned market data. An advantage of the LIBOR market model is the ability to
calibrate to a large set of liquid market instruments while generating a realistic evolution of the
forward rate volatility structure (Piterbarg 2004). We examine some of the practical problems that
arise when calibrating the market model and present an example calibration in the UK market.

The necessity, in general, of pricing derivatives in the LIBOR market model using Monte Carlo
simulation is explained in Chapter 4. Both the Monte Carlo and quasi-Monte Carlo simulation
approaches are presented, together with an examination of the various discretizations of the forward
rate stochastic differential equations. The chapter concludes with some numerical results comparing
the performance of Monte Carlo estimates with quasi-Monte Carlo estimates and the performance
of the discretization approaches.

In the final chapter we discuss numerical techniques based on Monte Carlo simulation for
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pricing American derivatives. We present the primal and dual American option pricing problem
formulations, followed by an overview of the two main numerical techniques for pricing American
options using Monte Carlo simulation. Callable LIBOR exotics is a name given to a class of
interest rate derivatives that have early exercise provisions (Bermudan style) to exercise into various
underlying interest rate products. A popular approach for valuing these instruments in the LIBOR
market model is to estimate the continuation value of the option using parametric regression and,
subsequently, to estimate the option value using backward induction. This approach relies on the
choice of relevant, i.e. problem specific predictor variables and also on the functional form of the
regression function. It is certainly not a “black-box” type of approach.

Instead of choosing the relevant predictor variables, we present the sliced inverse regression
technique. Sliced inverse regression is a statistical technique that aims to capture the main features
of the data with a few low-dimensional projections. In particular, we use the sliced inverse regression
technique to identify the low-dimensional projections of the forward LIBOR rates and then we
estimate the continuation value of the option using nonparametric regression techniques. The
results for a Bermudan swaption in a two-factor LIBOR market model are compared to those in
Andersen (2000).



Chapter 2

LIBOR Market Model Theory

Mathematics possesses not only truth, but beauty - a beauty cold and austere, like that
of a sculpture.

– Bertrand Russell

The London Inter-Bank Offered Rates or LIBOR are benchmark short term simple interest rates
at which banks can borrow money from other banks in the London interbank market. LIBOR
rates are fixed daily by the British Bankers’ Association.1 They are quoted for various maturities
and currencies.

USD GBP CAD EUR JPY

O/N 3.53688 4.79750 2.80000 2.09500 0.03813
1WK 3.62563 4.66375 2.80000 2.10150 0.03938
2WK 3.69250 4.60500 2.80000 2.10375 0.04000
1MO 3.74000 4.59125 2.80667 2.11300 0.04438
2MO 3.79000 4.59125 2.85500 2.12425 0.05063
3MO 3.85000 4.59000 2.90417 2.13363 0.05750
4MO 3.90000 4.57250 2.92667 2.14713 0.06000
5MO 3.95000 4.56063 2.95667 2.15038 0.06500
6MO 3.99000 4.55000 2.98417 2.15200 0.06813
7MO 4.02000 4.54000 3.00000 2.15950 0.07625
8MO 4.05000 4.53125 3.02000 2.16113 0.07813
9MO 4.07750 4.52625 3.03833 2.16725 0.08188

10MO 4.10163 4.52000 3.05833 2.17438 0.08563
11MO 4.12213 4.51563 3.08000 2.18288 0.08875
12MO 4.14625 4.51375 3.10167 2.19000 0.09375

Table 2.1: British Bankers’ Association LIBOR rate quotes on 9 September 2005 (source: Reuters)

The LIBOR market model is an approach to modelling the term structure of interest rates
based on simple rather than instantaneous rates. It was developed by Miltersen, Sandmann &
Sondermann (1997), Brace, Ga̧tarek & Musiela (1997), Musiela & Rutkowski (1997) and Jamshid-
ian (1997). However, this approach was certainly used by practitioners even before the first three
references appeared as working papers in 1995. Quoting Rebonato (2002) on the LIBOR market
model:

“. . . before any of the now-canonical papers appeared, it was simultaneously and in-
dependently ‘discovered’ by analysts and practitioners who, undaunted by the ex-
pected occurrence of the log-normal explosion, went ahead and discretized a log-normal
forward-rate-based HJM implementation.”

We briefly trace the history of modelling the discretely compounded interest rates that led to the
development of the LIBOR market model.

1The rates are based on an arithmetic average of the offered interbank deposit rates - the deposit rates are ranked
and the second and third quartiles are averaged to produce LIBOR rates (http://www.bba.org.uk).
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In the early 1990’s, an important feature of an interest rate model was not only its ability
to recover an arbitrary input yield curve, but also an ability to calibrate to the implied at-the-
money cap and (European) swaption volatilities (Rebonato 2004). Caps and swaptions comprise
the largest and the most liquid part of the interest rate derivative market. They are typically
used by traders of interest rate derivatives to gamma and vega hedge complex products. The
LIBOR market model developed out of the need to price and hedge exotic interest rate derivatives
consistently with the Black caplet formula.

The traditional approach to modelling the term structure of interest rates was to postulate
the evolution of instantaneous short or instantaneous forward rates. A tractable class of models,
allowing “Black-like” closed-form formula for caplets, are the Gaussian instantaneous short rate
and the Gaussian instantaneous forward rate models. An example of the former is the extended
Vasicek model of Hull & White (1990), while an example of the latter is the Gaussian Heath,
Jarrow & Morton (1992) (HJM) model developed by Brace & Musiela (1994). The problem with
Gaussian models is that they lead to theoretical arbitrage opportunities - interest rates can become
negative with positive probability. While the most natural way to exclude negative interest rates is
through the lognormal distributional assumption, this too has difficulties. In the lognormal short
rate models, such as Black, Derman & Toy (1990) and Black & Karasinski (1991), the expected
value of the accumulation factors is infinite over a finite time horizon, i.e. Eτ

[
B(t, T )−1

]
=∞ for

any 0 ≤ τ < t < T , where B(t, T ) is the price at t of a zero-coupon bond maturing at T (Sandmann
& Sondermann 1997). The lognormal structure for the instantaneous forward rates leads to rates
exploding to positive infinity with positive probability (Heath et al. 1992).

Sandmann & Sondermann (1993, 1994, 1997) noticed that the problems with the lognormal
assumption arise as a consequence of modelling the instantaneous rates. The focus was shifted from
modelling the instantaneous short rate r(t) to modelling the effective annual rate re(t), defined by
the formula er(t) = 1 + re(t). The authors proposed a binomial model for the effective annual
rate re(t), whose limiting dynamics are geometric Brownian motion with time dependent drift and
volatility functions.2 For this limit model, the instantaneous short rate r(t) follows a combination of
normal and lognormal diffusions - it approaches the lognormal diffusion for small values of r(t) and
a normal diffusion for large values of r(t). Goldys, Musiela & Sondermann (1994, 2000) extended
these results in the HJM framework. The specification of the volatility structure was shifted from
the instantaneous forward rates f(t, T ) to rates j(t, T ) defined by the formula ef(t,T ) = 1+ j(t, T ).
A deterministic volatility function for the rates j(t, T ) was proposed and the authors proved that
the resulting model has a unique positive solution, with no dreaded explosion of the instantaneous
forward rates. The breakthrough came in Sandmann, Sondermann & Miltersen (1994), when the
effective annual forward rates fa(t, T, δ) at time t for the interval [T, T + δ], defined by

(
1 + fa(t, T, δ)

)δ
= exp

(∫ T+δ

T

f(t, u)du

)

were modelled with a deterministic volatility function. It was shown that for δ = 1, closed-
form solutions for zero-coupon bond options were computable. This exciting observation led to the
Miltersen, Sandmann & Sondermann (1994, 1997) papers, where the simple forward rates fs(t, T, δ)
at time t for the interval [T, T + δ], defined by

1 + δ fs(t, T, δ) = exp

(∫ T+δ

T

f(t, u)du

)

were modelled with a deterministic volatility function. A closed-form expression for an option
with exercise date T , written on a zero-coupon bond with maturity date T + δ, was obtained.
In particular, caplets were priced according to the market standard Black caplet formula. Brace
et al. (1997) derived the dynamics of the simple forward rates fs(t, T, δ) under the risk-neutral
measure and proved the existence and uniqueness of a solution to the resulting stochastic differential
equations.

An interest rate model implied by the assumption of a deterministic volatility function for the
simple forward rates is known as the LIBOR market model (LMM) or the Brace-Ga̧tarek-Musiela
(BGM) model. The construction of this model is presented in Section 2.2. In the following section
we review the general theory of derivative pricing.

2Suppose that W is a standard Brownian motion and that X satisfies dX(t)/X(t) = µ(t)dt + σ(t)dW (t). We
refer to µ(t) as the drift function and σ(t) as the volatility function. For a more general process X satisfying
dX(t) = µ(t, ω)dt + σ(t, ω)dW (t), we refer to µ(t, ω) as the drift coefficient and σ(t, ω) as the diffusion coefficient.
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2.1 Theory of Derivative Pricing

The history of modelling risky asset prices can be traced back to 1900, when French mathematician
Louis Bachelier, under the supervision of Henri Poincaré, proposed arithmetic Brownian motion
for the movement of stock prices in his PhD thesis, “Théorie de la Spéculation”. To be more
precise, 29 March 1900, the date on which Bachelier defended his thesis is considered to be the
birth of mathematical finance (Courtault et al. 2000). The problem with Bachelier’s construction
is that arithmetic Brownian motion is not a plausible model for asset prices because, amongst
other things, it allows the asset prices to become negative. Sixty-five years later, Brownian motion
was reintroduced in finance by Paul Samuelson in a paper written with Henry P. McKean Jr.
(Samuelson 1965). Here he postulated that stock prices follow geometric Brownian motion, which
circumvents the problems associated with Bachelier’s model.3

The breakthrough in derivative pricing came in the seminal papers of Black & Scholes (1973)
and Merton (1973). The authors assumed geometric Brownian motion for the dynamics of the
stock price and noted that a long position in a stock combined with a specific short position in a
European call option on the stock will have a riskless return over an infinitesimally small period
of time. To avoid arbitrage, the return must equal the prevailing risk-free rate. This observation
led to the Black-Scholes partial differential equation for the derivative price, with explicit solutions
for European call and put options. What is truly surprising about their result is the fact that a
European option can be replicated by trading in the underlying stock and a riskless asset.

The Black-Scholes partial differential equation is independent of the expected return on the
stock. This interesting property led to the discovery of risk-neutral valuation by Cox & Ross
(1976). The concept was formalized and extended by Harrison & Kreps (1979) and Harrison &
Pliska (1981, 1983). In accordance with J. Michael Harrison and Stanley R. Pliska’s seminal work,
we now present the theory of derivative pricing in a frictionless market with continuous trading up
to some fixed (finite) time horizon T .4

2.1.1 Model of the Financial Market

Consider a financial market with a fixed trading horizon [0, T ]. The uncertainty in the economy is
modelled by a filtered complete probability space

(
Ω,F ,F,P

)
, where the filtration F = {Ft}0≤t≤T

satisfies the usual hypotheses.5 Assume that FT = F and that F0 is trivial, i.e. for A ∈ F0,
P(A) ∈ {0, 1}. The only role of a probability measure P is to determine the null sets. As the
choice of a measure is arbitrary, the uncertainty in the economy can alternatively be modelled
by a family of filtered probability spaces

(
Ω,F ,F,P

)
, P ∈ P, where P is a class of equivalent

probability measures on
(
Ω,FT

)
(Musiela & Rutkowski 2005).6 The financial interpretation of

the assumption of a class P is that investors agree on which outcomes are possible, but their
probability assessments of these outcomes differ.

The financial market consists of n primary securities (traded assets). Denote the price process

of the primary securities by S = {St, 0 ≤ t ≤ T }, where St =
(
S1

t , . . . , S
n
t

)′
. We model these

3Jarrow & Protter (2004) provided a fascinating description of the history of stochastic integration.
4To avoid inserting the same reference every few lines, we note that all the mathematical definitions in the

following sections are taken directly from Protter (2004).
5A filtered complete probability space (Ω, F , F, P) is said to satisfy the usual hypotheses if F0 contains all the

P-null sets of F and Ft =
T

u>t Fu, for all 0 ≤ t < T .
6Consider a measurable space (Ω, F ) with measures P and Q defined on this space. P is absolutely continuous

with respect to Q, written P ≪ Q, if P(A) = 0 whenever Q(A) = 0 for all A ∈ F . If P << Q and Q << P, written
P ∼ Q, then P and Q are called equivalent measures.
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processes as strictly positive continuous semimartingales. A semimartingale, to be defined below,
is the most general stochastic process for which the stochastic integral can be reasonably defined
(Bichteler 1981). The semimartingale model is also quite a natural assumption, as it can be shown
that, loosely speaking, the semimartingale model for asset prices is implied by the existence of an
equivalent martingale measure (Delbaen & Schachermayer 1994b, Theorem 7.2). In this general
model, both the arrival of random market information and deterministic components, such as the
pull-to-par effects of zero-coupon bonds, can be incorporated. We now define these two components
mathematically, followed by the definition of a semimartingale.

Definition 2.1.1. An adapted, càdlàg process M = {Mt, 0 ≤ t ≤ T } is a local martingale if
there exists a sequence of stopping times Tm, with limm→∞ Tm = T , almost surely, such that the
stopped process {Mt∧Tm , 0 ≤ t ≤ T } is a uniformly integrable martingale for each m.7

Definition 2.1.2. An adapted, càdlàg process A = {At, 0 ≤ t ≤ T } is a finite variation process

if, almost surely, the paths of A have finite variation on each compact interval of [0, T ].

Definition 2.1.3. An adapted, càdlàg process X = {Xt, 0 ≤ t ≤ T } is a semimartingale if there
exist processes M , A with M0 = A0 = 0 such that

Xt = X0 +Mt +At (2.1)

where M is a local martingale and A is a finite variation process.

Decomposition (2.1) is not always unique because there exist finite variation martingales. IfX is
a continuous semimartingale, then the decomposition is unique, and then both the local martingale
and the finite variation process in the decomposition are continuous (Protter 2004, page 130).

In addition to the primary securities in the market, we have a European contingent claim
maturing at time T that we want to price and hedge.8 The payoff of the contingent claim may
depend on the entire path of the primary securities up to and including the option maturity T .
Thus, the contingent claim is modelled as a nonnegative, FT -measurable random variable ϑ.

The pricing and hedging of contingent claims is based on the concept of a replicating portfolio.
Suppose that we can construct a trading strategy, using the primary securities, which requires no
cash inflow or outflow, except at inception, such that the final value of this portfolio matches the
value of the contingent claim for all ω ∈ Ω almost surely. Then, by no-arbitrage arguments, the
value of the contingent claim must equal the value of the portfolio at inception.

To formulate the contingent claim pricing problem formally, we need to define predictable and
locally bounded processes. These technical assumptions are sufficient to ensure that the stochastic
integral of a process satisfying these restrictions, with respect to a semimartingale, exists.

Definition 2.1.4. Let L denote the space of adapted processes with càglàd (left continuous with
right limits) paths. The predictable σ-algebra P on [0, T ] × Ω is P = σ{X : X ∈ L}, the σ-
algebra generated by all the processes in L. A process is predictable if it is measurable with respect
to P.

Definition 2.1.5. A process X = {Xt, 0 ≤ t ≤ T } is said to be locally bounded if there exists a
sequence of stopping times Tm, with limm→∞ Tm = T , almost surely, such that the stopped process
{Xt∧Tm , 0 ≤ t ≤ T } is bounded for each m.

Definition 2.1.6. An adapted n-dimensional stochastic process φ = {φt, 0 ≤ t ≤ T }, where

φt =
(
φ1

t , . . . , φ
n
t

)′
, is a trading strategy if φ is locally bounded and predictable.

A trading strategy φt represents the number of assets held at time t, which is revised continu-
ously through time. In a frictionless market, any quantity of assets can be both bought and sold
at zero cost. The assumption that the process φ is predictable has a financial interpretation: one
establishes the portfolio just before time t and rebalances after the prices of the primary securities
at time t have been observed. The assumption that a predictable process φ is locally bounded has
two implications. Firstly, the stochastic integral of a locally bounded (predictable) process with

7A stochastic process X = {Xt, 0 ≤ t ≤ T} is said to be adapted if Xt ∈ Ft for each t ∈ [0, T ]. It is càdlàg if
it almost surely has sample paths which are right continuous with left limits. The process is uniformly integrable if
limm→∞ sup0≤t≤T

R
|Xt|≥m

|Xt|dP = 0.
8Risk-neutral valuation of American derivatives was developed by Bensoussan (1984) and Karatzas (1988, 1989).

The American option pricing problem will be formulated in Chapter 5.
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respect to a local martingale is itself a local martingale, a statement that is not true in general
(Protter 2004, page 171). Secondly, the stochastic integral can be defined component-wise, that is
the stochastic integral of a trading strategy with respect to a semimartingale is equal to the sum
of the stochastic integrals of the relevant vector components (cf. equation (2.3) below) (Musiela &
Rutkowski 2005, page 281).

Associated with each trading strategy φ is the value process V (φ) = {Vt(φ), 0 ≤ t ≤ T },
defined by

Vt(φ) = φt · St =

n∑

i=1

φi
t S

i
t, (2.2)

Assuming that the primary securities do not generate any cashflows such as dividends, the gains
process G(φ) = {Gt(φ), 0 ≤ t ≤ T } is defined by

Gt(φ) =

∫ t

0

φu · dSu =
n∑

i=1

∫ t

0

φi
u dS

i
u, (2.3)

The gains process is adapted and continuous, because it is a stochastic integral with respect to a
continuous semimartingale. It represents the total capital gain when trading strategy φ is followed.
A trading strategy that requires no external cashflows is termed a self-financing trading strategy.

Definition 2.1.7. A self-financing trading strategy is a trading strategy φ whose value process
satisfies

Vt(φ) = V0(φ) +Gt(φ), 0 ≤ t ≤ T (2.4)

Equation (2.4) can be written in a more familiar form as d (φt · St) = φt · dSt. Note that the
self-financing condition ensures that the value process is continuous.

Let us restate the pricing problem in terms of the introduced notation: we are looking for a self-
financing trading strategy φ such that VT (φ) = ϑ, almost surely. If we can find such a φ, then by
no-arbitrage arguments, the value of the claim at any time t must be Vt(φ). However, it turns out
that one cannot naively allow all self-financing trading strategies. There are two problems that need
to be addressed. Firstly, we need to remove doubling strategies that turn “nothing into something”
because they represent arbitrage opportunities. A classical example of a doubling strategy is the
coin toss game, where if heads comes up, the payout is two times the bet amount. A player bets
one unit of currency on the first bet and if he looses he doubles his bet. The player stops at the
time of the first win, which is inevitable, even if the coin is not fair. However, one needs to be able
to fund arbitrarily large losses until the eventual win. It is possible to construct these strategies in
the current framework because trading takes place continuously, and hence infinitely many times
in the interval [0, T ].9 Secondly, we need to remove suicide strategies that turn “something into
nothing” because they lead to non-unique pricing. If suicide strategies are permitted, one may
find two self-financing trading strategies for a claim whose value processes have different initial
values.10 The necessary modifications to a class of self-financing trading strategies depend on the
notion of an equivalent martingale measure.

2.1.2 Equivalent Martingale Measures

At the heart of mathematical finance is the assumption that there are no arbitrage opportunities
in well-functioning markets.

Definition 2.1.8. A self-financing trading strategy φ is called an arbitrage opportunity if the
value process satisfies the following set of conditions

V0(φ) = 0, P(VT (φ) ≥ 0) = 1, P(VT (φ) > 0) > 0

The “no-arbitrage pricing” approach postulates that there are no arbitrage opportunities in
the market. In the Black-Scholes model, the assumption of an arbitrage-free market implies, and
is implied by, the existence of a unique equivalent measure such that the stock prices normalized
by the money-market account are martingales under this measure. In the general framework one
needs to choose an asset, called the numéraire, to normalize the other assets in the market.

9For an example of a doubling strategy in the Brownian motion setting, see Duffie (1996, Chapter 6.C).
10For an example of a suicide trading strategy, see Harrison & Pliska (1981, Section 6).
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Definition 2.1.9. A numéraire is a price process X = {Xt, 0 ≤ t ≤ T } that is, almost surely,
strictly positive for all t ∈ [0, T ].

All the price processes of the primary securities are strictly positive by assumption. Without loss
of generality, choose security S1 to be the numéraire.11 The deflator process Y = {Yt, 0 ≤ t ≤ T }
is a strictly positive semimartingale, defined by Yt = 1/S1

t through Itô’s formula for continuous
semimartingales (Karatzas & Shreve 1991, page 149). The normalized asset price process is denoted

by Z = {Zt, 0 ≤ t ≤ T }, where Zt =
(
1, Z2

t , . . . , Z
n
t

)′
and Zi

t = Yt S
i
t for i = 1, . . . , n. The

normalized value process V ∗(φ) and the normalized gains process G∗(φ) of a trading strategy φ
are defined by

V ∗
t (φ) = YtVt(φ) = φt · Zt = φ1

t +

n∑

i=2

φi
tZ

i
t , 0 ≤ t ≤ T (2.5)

G∗
t (φ) =

∫ t

0

φu · dZu =

n∑

i=1

∫ t

0

φi
u dZ

i
u =

n∑

i=2

∫ t

0

φi
u dZ

i
u, 0 ≤ t ≤ T (2.6)

Self-financing trading strategies were defined as trading strategies whose value processes satisfy
equation (2.4). To show that self-financing trading strategies remain self-financing after a numéraire
change, we need to define the quadratic covariation process.

Definition 2.1.10. Let X and Y be semimartingales. The quadratic covariation of X, Y , also
called the (square) bracket process, is defined by

[X,Y ]t = XtYt −
∫ t

0

Xu− dYu −
∫ t

0

Yu− dXu (2.7)

where X−(Y−) is the left-continuous version of X(Y ). The quadratic variation of X is [X,X ].

Equation (2.7) is also known as the integration by parts formula. To obtain a better under-
standing of the quadratic covariation process, suppose X and Y are continuous local martingales.
Then the process

XtYt − [X,Y ]t =

∫ t

0

Xu dYu +

∫ t

0

Yu dXu

is a continuous local martingale. Heuristically, d[X,Y ]t is the conditional expectation just before t
of d(XY )t (Back 2001). For a standard Brownian motionW , which is a continuous local martingale,
we know that [W,W ]t = t for all t ≥ 0.

Consider a self-financing trading strategy φ. We now show that self-financing trading strategies
remain self-financing after a numéraire change, i.e. that d (φt · Zt) = φt · dZt.

d
(
YtVt(φ)

)
= YtdVt(φ) + Vt(φ)dYt + d[Y, V (φ)]t

= Yt (φt · dSt) + (φt · St) dYt + d[Y,φ · S]t

= φt ·
(
YtdSt + StdYt + d[Y,S]t

)

= φt · d (YtSt)

Thus
V ∗

t (φ) = V ∗
0 (φ) +G∗

t (φ), 0 ≤ t ≤ T (2.8)

Substituting equations (2.5) and (2.6) into (2.8), we see that φ1 can be used to form a self-financing
trading strategy from an arbitrary trading strategy φ, by setting

φ1
t = V ∗

0 (φ) +

n∑

i=2

∫ t

0

φi
u dZ

i
u −

n∑

i=2

φi
t Z

i
t , 0 ≤ t ≤ T

Let P∗ be the set (possibly empty) of equivalent martingale measures, defined as a set of equiva-
lent measures such that, for P∗ ∈P∗, the normalized asset prices Z are P∗-martingales. The link
between equivalent martingale measures and the absence of arbitrage is known as the Fundamental
Theorem of Asset Pricing. This theorem states that, for a stochastic process Z, the existence of

11In the general equity market setting, security S1 is assumed to be the money-market account.
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an equivalent martingale measure is essentially equivalent to the absence of arbitrage opportuni-
ties (Delbaen & Schachermayer 1994b). It is extremely difficult to prove the exact mathematical
conditions that the normalized asset price process Z needs to satisfy for the absence of arbitrage
to imply the existence of an equivalent martingale measure. These restrictions have been estab-
lished in a series of papers by Delbaen (1992) and Delbaen & Schachermayer (1994a,b, 1998), for
increasingly general classes of processes. We will assume that P∗ is non-empty and examine the
reverse implication of the existence of an equivalent martingale measure implying the absence of
arbitrage opportunities.

To remove the doubling strategies discussed in the previous subsection, one can require that
the value processes be bounded from below. Harrison & Pliska (1981) defined Φ as a class of
self-financing trading strategies φ whose value process satisfies

Vt(φ) ≥ 0, 0 ≤ t ≤ T

For φ ∈ Φ, the normalized value process V ∗(φ) is also nonnegative. This is due to the fact that
the deflator is a strictly positive process. Note that φ1 can still be used appropriately to define a
self-financing trading strategy, as long as the constructed normalized value process is nonnegative.

In order to eliminate suicide strategies, Harrison & Pliska (1981) fixed a measure P∗ ∈ P∗

and defined a class of admissible trading strategies Φ(P∗) as self-financing trading strategies φ ∈ Φ
whose normalized value processes V ∗(φ) are P∗-martingales. This restriction is sufficient to remove
suicide strategies because due to the martingale property, V ∗

T (φ) cannot be zero, almost surely, if
V ∗

0 (φ) is positive.

Theorem 2.1.1. Assume that P∗ is non-empty. Then the model is arbitrage-free.

Proof. The proof is given in Appendix A.

The question that we now address is, “How do we construct an equivalent martingale measure
P∗ when dealing with semimartingale processes?”

2.1.3 Construction of Equivalent Measures

In this section we examine the construction of a probability measure Q on (Ω,FT ) that is equivalent
to the underlying probability measure P. Following Protter (2004), we know that if Q ≪ P,
there exists a nonnegative P-integrable random variable ζT , called the Radon-Nikodým derivative,
satisfying EP[ζT ] = 1, such that for all A ∈ FT

Q(A) =

∫

A

ζT dP

The Radon-Nikodým derivative ζT is denoted by dQ
dP

. The Radon-Nikodým derivative process is
the càdlàg version of the following uniformly integrable martingale12

ζt = EP [ζT |Ft] , 0 ≤ t < T (2.9)

If P≪ Q as well, then dP
dQ

=
(

dQ
dP

)−1
. Thus if we can construct the Radon-Nikodým derivative, we

can construct an equivalent probability measure.
The construction of an equivalent probability measure when the underlying processes are semi-

martingales is due to Christopeit & Musiela (1994). Note that in general, even if the underlying
processes are continuous semimartingales, the Radon-Nikodým derivative process may be discon-
tinuous because the underlying filtration is not necessarily Brownian (Musiela & Rutkowski 2005,
page 295). We now introduce the Doléans-Dade exponential.

Definition 2.1.11. The Doléans-Dade exponential E (D) is the unique solution of the stochas-
tic differential equation

dE (D)t = E (D)t−dDt , E0(D) = 1 (2.10)

The explicit solution to (2.10) is given by

E (D)t = exp

(
Dt −

1

2
[D,D]ct

) ∏

0≤u≤t

(1 + ∆Du)e−∆Du (2.11)

12One of the consequences of the usual hypotheses is that every martingale has a version that is càdlàg (Protter
2001).
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where ∆Dt = Dt −Dt− and [D,D]c is the path-by-path continuous part of the quadratic variation
process [D,D]

[D,D]ct = [D,D]t −
∑

0≤u≤t

(∆Du)2

Theorem 2.1.2. Consider Q ∼ P and the Radon-Nikodým derivative process ζ, as defined. Sup-
pose that there exists a P-local martingale D with D0 = D0− = 0 satisfying

∆Dt > −1, 0 ≤ t ≤ T (2.12)

EP [E (D)T ] = 1 (2.13)

where ∆Dt = Dt−Dt− and E (D) is the Doléans-Dade exponential. Then there exists a one-to-one
correspondence between ζ and D, given by

ζt = E (D)t , 0 ≤ t ≤ T

Theorem 2.1.2 states that the Radon-Nikodým derivative process is the Doléans-Dade exponen-
tial of a local martingale satisfying certain conditions. Firstly, condition (2.12) is a condition on
the jump sizes. From equation (2.11), it is easily seen that this restriction makes the Doléans-Dade
exponential strictly positive. Secondly, the Doléans-Dade exponential is a uniformly integrable
martingale if and only if condition (2.13) is satisfied.

Girsanov’s Theorem, also known as the Girsanov-Meyer Theorem, provides us with the semi-
martingale decomposition under an equivalent probability measure Q.

Theorem 2.1.3. Let X be a continuous semimartingale under P with the decomposition

Xt = X0 +Mt +At, 0 ≤ t ≤ T

where M is a continuous local martingale and A is a continuous finite variation process. Let Q be
an equivalent measure and let the Radon-Nikodým derivative dQ

dP
be defined by the Doléans-Dade

exponential of a local martingale D (cf. Theorem 2.1.2). Since M has bounded jumps (∆Mt = 0),
the cross-variation process 〈M,D〉 exists (Christopeit & Musiela 1994, Corollary 1).13 Then X is
a continuous semimartingale under Q with the decomposition

Xt = X0 + Lt + Ct, 0 ≤ t ≤ T (2.14)

where L is a Q-local martingale

Lt = Mt − 〈M,D〉t, 0 ≤ t ≤ T

and C is a Q finite variation process

Ct = At + 〈M,D〉t, 0 ≤ t ≤ T

In particular, X is a local martingale under Q if and only if

At + 〈M,D〉t = 0, 0 ≤ t ≤ T (2.15)

The Black-Scholes Model

The two theorems presented above can be made more intuitive in the familiar framework of Black
and Scholes. The normalized asset price process Z is the discounted stock price process. Under P,
Z satisfies

dZt = (µ− r)Ztdt+ σZtdWt (2.16)

where µ is the expected return on the asset, σ is the return volatility, r is the risk-free continuously
compounded rate of interest and W is a standard Brownian motion. The parameters µ, r and σ
are constants. The Martingale Representation Theorem (Karatzas & Shreve 1991, Theorem 4.2)
is a beautiful result that demonstrates how one can represent martingales in terms of Brownian
motion, a fundamental continuous martingale.

13The cross-variation process 〈X, Y 〉, also called the conditional quadratic covariation, is defined to be the com-
pensator of [X, Y ], i.e. a unique predictable finite variation process such that [X, Y ] − 〈X, Y 〉 is a local martingale.
If X and Y are continuous semimartingales, [X, Y ] = 〈X, Y 〉.
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Theorem 2.1.4 (Martingale Representation Theorem). Suppose W = (W 1, . . . ,Wn)′ is
a n-dimensional Brownian motion and let FW be its completed natural filtration. Then every
continuous local martingale M for FW has a representation

Mt = M0 +
n∑

i=1

∫ t

0

Hi
udW

i
u

where Hi are measurable adapted processes satisfying P

[∫ t

0

(
Hi

u

)2
du <∞

]
= 1 for all 0 ≤ t ≤ T

and i = 1, . . . , n. Further, if L and N are two continuous local martingales for FW with the
representations

Lt = L0 +

n∑

i=1

∫ t

0

Hi
udW

i
u

Nt = N0 +

n∑

i=1

∫ t

0

H̃i
udW

i
u

where Hi
u and H̃i

u satisfy the condition stated above, then

〈L,N〉t =

n∑

i=1

∫ t

0

Hi
uH̃

i
udu (2.17)

In the Black-Scholes model, the underlying filtration is the augmented filtration generated by
the Brownian motion W . In particular, this implies that the Radon-Nikodým derivative process is
a continuous martingale. From the Martingale Representation Theorem

ζt = 1 +

∫ t

0

HudWu

where ζ0 = 1, due to the condition EP[ζT ] = 1. Following Protter (2004), we assume that ζ is “well
behaved enough” to define a process λ = {λt, 0 ≤ t ≤ T } through the formula Ht = λtζt. The
dynamics of ζ become

dζt
ζt

= λtdWt (2.18)

The explicit solution of the stochastic differential equation (2.18) is

ζt = exp

(
−1

2

∫ t

0

λ2
udu+

∫ t

0

λudWu

)
(2.19)

Theorem 2.1.2 states that the Radon-Nikodým derivative process is the Doléans-Dade exponential
of a local martingale D satisfying conditions (2.12) and (2.13). It follows from equation (2.19) that

the local martingale D is given by Dt =
∫ t

0
λudWu. This can easily be verified: the jump sizes of

the continuous process D are zero, ∆Dt = 0, and the Doléans-Dade exponential of D is

E (D)t = exp

(∫ t

0

λudWu −
1

2
[D,D]t

)

= exp

(∫ t

0

λudWu −
1

2

∫ t

0

dDudDu

)

= exp

(∫ t

0

λudWu −
1

2

∫ t

0

λ2
udu

)

Hence

EP [E (D)T ] = exp

(
−1

2

∫ T

0

λ2
udu

)
EP

[
exp

(∫ T

0

λudWu

)]

= 1

The last equality follows from the fact that if a random variable X is normally distributed with
mean µ and variance σ2, written X ∼ N(µ, σ2), its moment generating function is given by
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E
[
etX
]

= eµt+ 1
2σ2t2 . The mean of the normal random variable

∫ T

0
λudWu is zero, because an Itô

integral is a martingale, while the variance of
∫ T

0
λudWu is

∫ T

0
λ2

udu, by Itô isometry.

In particular, from Theorem 2.1.2, the local martingale Dt =
∫ t

0
λdWu defines an equivalent

probability measure for any constant λ ∈ R. What we are really interested in is an equivalent
martingale measure. For this we turn to Theorem 2.1.3.

The normalized asset price process Z is an Itô process and hence a continuous semimartingale
under P. In particular, using the notation of Theorem 2.1.3, we have Z = Z0 +Mt +At where

Mt =

∫ t

0

σZudWu and At =

∫ t

0

(µ− r)Zudu

For an equivalent probability measure Q to be an equivalent martingale measure, Z must be a
Q-martingale. Theorem 2.1.3 states that Z is a local martingale under Q if and only if

At + 〈M,D〉t = 0

Substituting in for A, M and D, and using equation (2.17)

∫ t

0

(µ− r)Zudu+

∫ t

0

σZuλudt = 0

⇒ (µ− r)Ztdt+ σZtλtdt = 0

⇒ λt = −µ− r
σ

Given this choice of λt, the Q-local martingale Z has the decomposition Z = Z0 + Lt, where

Lt = Mt − 〈M,D〉t

=

∫ t

0

σZudWu −
∫ t

0

σZu

(
−µ− r

σ

)
du

=

∫ t

0

σZudWu +

∫ t

0

(µ− r)Zudu

=

∫ t

0

σZu

(
dWu +

µ− r
σ

du

)

is a Q-local martingale. Following Protter (2004), let

dWQ
u = dWu +

µ− r
σ

du

denote this local martingale. By Lévy’s Theorem, WQ is Brownian motion because 〈WQ,WQ〉t =
〈W,W 〉t = t. Under Q, Z satisfies

dZt = σZtdW
Q
t

As σ is a constant, hence bounded, Z is a Q-martingale. Thus, as expected, only when λt is the
negative of the market price of risk does Dt =

∫ t

0
λudWu define an equivalent martingale measure.

2.1.4 Arbitrage-free Pricing

A contingent claim ϑ is said to be attainable if there exists φ ∈ Φ(P∗) such that VT (φ) = ϑ.
Assuming that the random variable YTϑ is P∗-integrable (termed integrable claim), the arbitrage-
free price of the attainable contingent claim ϑ is given by

Vt(φ) =
1

Yt
V ∗

t (φ)

=
1

Yt
EP∗

[V ∗
T (φ) |Ft]

=
1

Yt
EP∗

[YTϑ |Ft]

for all 0 ≤ t ≤ T . This is the fundamental pricing equation: the normalized contingent claim price
YtVt(φ) is a martingale under an equivalent martingale measure P∗.
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Theorem 2.1.5. Suppose that the contingent claim ϑ is attainable in P∗
1 ∈ P∗ and P∗

2 ∈ P∗.
Then the arbitrage-free prices will be equal, i.e.

EP∗
1 [YTϑ |Ft] = EP∗

2 [YTϑ |Ft] , 0 ≤ t ≤ T

Proof. The proof follows Musiela & Rutkowski (2005) and is given in Appendix B.

The question of whether every integrable claim is attainable, termed market completeness,
depends on the class of admissible trading strategies.

2.1.5 Market Completeness

A market is referred to as complete if every integrable claim is attainable. Thus far, the trading
strategies identified turn out to be too restricted if one wants to replicate all integrable claims. In
particular, the assumption of locally bounded processes is problematic. Harrison & Pliska (1983)
extended the set of trading strategies to a larger class L (Z), the set of vector-valued, predictable
processes that are integrable with respect to a semimartingale Z.14 The main result of Harrison &
Pliska (1981, 1983) follows.

Theorem 2.1.6. Let Z denote the normalized asset price process and let M denote the set of all
P∗-martingales. Then the following statements are equivalent:

1. The market is complete under P∗.

2. Every martingale M ∈M can be represented as

M = M0 +

∫
φ · dZ, for some φ ∈ L (Z)

3. P∗ is a singleton, i.e. there is only one equivalent martingale measure P∗ ∈P∗.

According to Protter (2001), few martingales possess the second property in the previous theo-
rem. In fact, the only examples given in the paper are Brownian motion, the Compensated Poisson
process and Azéma martingales.

Theorem 2.1.6 shows that prefect hedging of a contingent claim is possible only if the integral
representation of the normalized claim price (a martingale) exists. In particular, suppose that a
contingent claim ϑ is integrable. Then ϑ is attainable if the normalized claim price

Mt = EP∗

[YTϑ |Ft] , 0 ≤ t ≤ T
admits the integral representation

Mt = M0 +

n∑

i=2

∫ t

0

φi
udZ

i
u, 0 ≤ t ≤ T

In a complete market, the equivalent martingale measure P∗ is unique and every integrable claim
is attainable. In an incomplete market, the problem of hedging non-attainable claims becomes one
of selecting an equivalent martingale measure that is optimal in some sense. Musiela & Rutkowski
(2005) provide a brief introduction to this active area of current research.

2.2 LIBOR Market Model Theory

In this section we construct the LIBOR market model under the assumption that there are no
“smile effects” in the interest rate market. This means that the caplet and swaption implied
volatility surfaces are assumed to be, for a fixed expiry, a flat function of the strike.15

14Jarrow & Madan (1994) examined the distinction between vector- and component-wise stochastic integrals in
the Brownian motion setting. They note that the earlier paper, Harrison & Pliska (1981), misspecified the class
L (Z). The class implicitly assumed by Harrison & Pliska (1983), this being the set of vector-valued, predictable
processes that are integrable with respect to a semimartingale Z, is the correct one for Theorem 2.1.6 to be valid.

15Note that there is an implied swaption volatility surface for each individual underlying swap length.
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2.2.1 Brace-Ga̧tarek-Musiela Model

Motivated by the lack of an arbitrage-free term structure model consistent with the market practice
of pricing caps and floors (which generally comprise the largest part of any interest rate derivative
book), Brace et al. (1997) set out to construct such a model in the HJM framework. We provide an
overview of the HJM framework, followed by details of the BGM construction of the market model.

Heath-Jarrow-Morton Framework. Heath et al. (1992) developed a framework for mod-
elling the term structure of interest rates based on an exogenous specification of the evolution of
the instantaneous forward rates. Interest rate modelling is assumed to take place in continuous
time over the interval [0, T ∗], on a probability space (Ω,F ,P). The probability space is equipped
with a filtration F = {Ft}0≤t≤T∗ , the augmented filtration generated by a d-dimensional Brownian

motion W =
(
W 1, . . . ,W d

)′
. Each component of the vector Brownian motion W represents an

independent, exogenous source of uncertainty in the financial market.

Assumption (Heath et al. 1992, C.1). For fixed T ∈ [0, T ∗] define the instantaneous, contin-
uously compounded forward rate at time t for maturity T , f(t, T ), by

f(t, T ) = − ∂

∂T
logB(t, T )

where B(t, T ) is the price at t of a zero-coupon bond maturing at T . Then, under P, the instanta-
neous forward rates f(t, T ) satisfy

df(t, T ) = α(t, T, ω)dt+

d∑

i=1

σi(t, T, ω)dW i
t

where ω ∈ Ω and

1. the initial forward rate curve, f(0, ·) : [0, T ∗]→ R is a Borel-measurable function,

2. α : {(t, s) : 0 ≤ t ≤ s ≤ T } × Ω → R and σi : {(t, s) : 0 ≤ t ≤ s ≤ T } × Ω → R are adapted
processes such that, almost surely,

∫ T

0

|α(u, T, ω)|du+

∫ T

0

|σi(t, T, ω)|2dt <∞, for i = 1, . . . , d

Some extra conditions are needed for the regularity of the zero-coupon bond price processes
and the money-market account (Heath et al. 1992, C2 and C3). The money-market account is
defined as

B∗(t) = exp

(∫ t

0

r(u)du

)
(2.20)

where r is the instantaneous, continuously compounded short rate, r(t) = limT→t f(t, T ).
The primary securities are zero-coupon bonds of different maturities. Heath et al. (1992)

identified the restrictions that the assumption of an arbitrage-free market imposes on the evolution
of the term structure of interest rates. In particular, after constructing a portfolio consisting of
a finite number of zero-coupon bonds, the authors derived the necessary and sufficient conditions
on the drift of the instantaneous forward rates for the existence of a unique equivalent martingale
measure Q, corresponding to the money-market account numéraire. Under Q, the instantaneous
forward rates f(t, T ) satisfy

df(t, T ) = σ(t, T ) · σ∗(t, T )dt+ σ(t, T ) · dWQ
t , σ∗(t, T ) =

∫ T

t

σ(t, u)du (2.21)

where σ(t, T ) = (σ1(t, T, ω), . . . , σd(t, T, ω))′ and WQ is a d-dimensional Q-Wiener process. Under
Q, the zero-coupon bond prices B(t, T ) satisfy

dB(t, T )

B(t, T )
= r(t)dt − σ∗(t, T ) · dWQ

t (2.22)

The assumption of no arbitrage implies that the drift coefficient of the instantaneous forward rates
is uniquely determined once the diffusion coefficient is specified. This is in great contrast to in-
stantaneous short rate models, where the drift coefficient can be specified independently of the
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diffusion coefficient and is in fact used to calibrate the model to the initial yield curve. In the HJM
framework, the initial condition for the stochastic differential equation (2.21) is the initial forward
rate f(0, T ). The calibration to the initial yield curve is automatic because the current yield curve

is a function of the initial instantaneous forward rates, B(0, T ) = exp(−
∫ T

0 f(0, u)du).

Brace-Gatarek-Musiela Construction. Brace et al. (1997) considered a simple interest
rate defined over a finite accrual period δ > 0. Denote the simple forward rate at time t for the
time interval [T, T + δ] by fs(t, T ), for 0 ≤ t ≤ T ≤ T ∗ − δ. Using no-arbitrage arguments, the
simple forward rates fs(t, T ) are defined in terms of the zero-coupon bond prices

1 + δfs(t, T ) =
B(t, T )

B(t, T + δ)
(2.23)

or, equivalently, in terms of the instantaneous forward rates

1 + δ fs(t, T ) = exp

(∫ T+δ

T

f(t, u)du

)
(2.24)

Brace et al. (1997) derived the dynamics of the simple forward rates under the equivalent martingale
measure Q using the dynamics of the instantaneous forward rates. However, it is much easier to
identify the dynamics of the simple forward rates using relationship (2.23) and equation (2.22).

Lemma 2.2.1. Suppose that X and Y are two Itô processes satisfying

dXt

Xt
= µX

t dt+ σX
t dWt,

dYt

Yt
= µY

t dt+ σY
t dWt

where the adapted functions µX
t , µ

Y
t , σ

X
t and σY

t satisfy the conditions needed for the existence and
uniqueness of strong solutions of the above stochastic differential equations.16 Then

d

(
Xt

Yt

)
=

(
Xt

Yt

)((
µX

t − µY
t

)
dt+

(
σX

t − σY
t

) (
−σY

t dt+ dWt

) )

The proof is a straightforward application of Itô’s formula. Applying this result in equation
(2.23), together with equation (2.22), we see that under Q, the simple forward rates satisfy

dfs(t, T ) =
1

δ
d

(
B(t, T )

B(t, T + δ)

)

= δ−1

(
B(t, T )

B(t, T + δ)

)(
σ∗(t, T + δ)− σ∗(t, T )

)
·
(
σ∗(t, T + δ)dt+ dWQ

t

)

= δ−1
(
1 + δfs(t, T )

)(
σ∗(t, T + δ)− σ∗(t, T )

)
·
(
σ∗(t, T + δ)dt+ dWQ

t

)
(2.25)

This is the HJM model for the simple forward rates fs(t, T ). Brace et al. (1997) postulated that
the simple forward rates have a deterministic volatility function

dfs(t, T ) = ζt dt+ fs(t, T )λ(t, T ) · dWQ
t (2.26)

with some (to be determined) drift function ζt and a deterministic, bounded, piecewise continuous
function λ : R2

+ → Rd. The volatility function λ(t, T ) is exogenously specified.
The motivation for this assumption was the Black caplet formula. As we shall show in the

following chapter, the assumption of a deterministic volatility function for the simple forward rates
is consistent with the Black model, meaning that the resulting model caplet pricing formula agrees
with the market standard Black caplet formula.

Equating the diffusion coefficients of equations (2.25) and (2.26), we obtain

σ∗(t, T + δ)− σ∗(t, T ) =
δfs(t, T )

1 + δfs(t, T )
λ(t, T ) (2.27)

16These conditions are measurability, Lipschitz condition, linear growth and the initial value condition (Kloeden
& Platen 1999, Section 4.5).
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To determine σ∗(t, T + δ), we can use as a recursion relationship (2.27)

σ∗(t, T + δ) = σ∗(t, T ) +
δfs(t, T )

1 + δfs(t, T )
λ(t, T )

= σ∗(t, T − δ) +
δfs(t, T − δ)

1 + δfs(t, T − δ)
λ(t, T − δ) +

δfs(t, T )

1 + δfs(t, T )
λ(t, T )

= σ∗(t, T − kδ) +

k∑

j=0

δfs(t, T − jδ)
1 + δfs(t, T − jδ)

λ(t, T − jδ)

where k =
⌊

T−t
δ

⌋
and t ≤ T − kδ < t + δ.17 To start the recursion one needs to assign values to

σ∗(t, T − kδ), this being the volatility function of zero-coupon bonds with maturities shorter than
δ (cf. equation (2.22)). Brace et al. (1997) assumed that σ∗(t, T ) = 0 for 0 ≤ T − t < δ. Then

σ∗(t, T + δ) =

⌊δ−1(T−t)⌋∑

j=0

δfs(t, T − jδ)
1 + δfs(t, T − jδ)

λ(t, T − jδ) (2.28)

Substituting equations (2.27) and (2.28) in (2.25), we obtain the dynamics of the simple forward
rates fs(t, T ) under Q

dfs(t, T ) = fs(t, T )λ(t, T ) ·




⌊δ−1(T−t)⌋∑

j=0

δfs(t, T − jδ)
1 + δfs(t, T − jδ)

λ(t, T − jδ)dt+ dWQ
t


 (2.29)

Brace et al. (1997) proved the existence and uniqueness of a solution to the stochastic differential
equation (2.29). Note that in the BGM model, it is the forward rate volatility function λ(t, T )
that is exogenously specified, not the zero-coupon bond price volatility function σ∗(t, T ).

The technical problem with this analysis is that in the HJM framework, the zero-coupon bond
price volatility function σ∗(t, T ) has to be sufficiently smooth for the instantaneous forward rates
to exist. From the definition of this function in equation (2.21), we see that it must be differentiable
with respect to T . This restricts the choice of a deterministic simple forward rate volatility function
λ(t, T ) because of its relationship with the zero-coupon bond price volatility function, equation
(2.28). In particular, Brace et al. (1997) parameterized the simple forward rate volatility function
as piecewise continuous, which is not a differentiable function. Thus, theoretically, the piecewise
continuous specification cannot be analyzed in the HJM framework. As the assumption of the
existence of instantaneous forward rates is not convenient, we now examine an alternate approach
of modelling the zero-coupon bond price process without any reference to the instantaneous forward
rates.

2.2.2 Forward Measures

The existence of a unique equivalent martingale measure Q associated with the money-market
account numéraire implies, and is implied by, an arbitrage-free and complete interest rate system.
Under Q, the value of any traded asset normalized by the money-market account is a martingale.
Thus the current value of a traded asset is the expected value, under Q, of the discounted terminal
asset value. This is the so-called risk-neutral valuation.

When pricing interest rate derivatives, it is frequently convenient to use a zero-coupon bond as
a numéraire.18 The measure associated with the zero-coupon bond maturing at time T is called the
T-forward measure. Geman, El Karoui & Rochet (1995) showed that the T -forward measure QT

is a probability measure on
(
Ω,FT

)
, equivalent to Q, defined by the Radon-Nikodým derivative

dQT

dQ
=

1

B(0, T )B∗(T )

where B∗ is the money-market account.19 Under QT , any traded asset normalized by the zero-
coupon bond maturing at time T is a martingale. We can reformulate the opening statement as

17⌊x⌋ is the largest integer less than or equal to x.
18For example, when an option has a payoff at time T , it is convenient to use the zero-coupon bond maturing

at time T as the numéraire because the value of this numéraire at T is one. This avoids having to derive the joint
distribution of the payoff and the numéraire.

19In an arbitrage-free and complete market there exists one equivalent martingale measure associated with each
numéraire.
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follows: the existence of a unique equivalent martingale measure QT associated with the zero-
coupon bond maturing at time T as a numéraire implies, and is implied by, an arbitrage-free and
complete interest rate system.

A modern interest rate model consists of a numéraire and a set of stochastic differential equa-
tions that a family of zero-coupon bonds satisfy. Following Musiela & Rutkowski (1997), we define
an interest rate system by imposing the following assumptions.

Assumption 1. The family of zero-coupon bond prices B(t, T ), 0 < t ≤ T ≤ T ∗, are modelled
as strictly positive, continuous semimartingales. A deterministic initial term structure of interest
rates B(0, T ), T ∈ [0, T ∗], is exogenously specified.

Assumption 2. There exists a unique equivalent martingale measure QT∗

such that for every
T ∈ [0, T ∗), the forward process

F (t, T, T ∗) =
B(t, T )

B(t, T ∗)
, 0 ≤ t ≤ T

is a strictly positive, continuous martingale under QT∗

.

The first assumption is a fairly general specification of the zero-coupon bond price processes.
We will further assume that the underlying filtration is Brownian (cf. Section 2.2.1). The second
assumption implies that the interest rate system is arbitrage-free and complete.

By the Martingale Representation Theorem 2.1.4, for every T ∈ [0, T ∗), the forward process
F (t, T, T ∗) has the following representation under QT∗

dF (t, T, T ∗) = F (t, T, T ∗)γ(t, T, T ∗) · dWQT∗

t , 0 ≤ t ≤ T (2.30)

where WQT∗

is a d-dimensional QT∗

-Wiener process and γ(t, T, T ∗) is a Rd-valued, adapted process

satisfying QT∗
[∫ T

0
||γ(u, T, T ∗)||2du <∞

]
= 1.

From here one could construct an interest rate model given an exogenous specification of the
volatilities of the forward processes γ(t, T, T ∗). However, we are interested in modelling the simple
forward rates fs(t, T ) with an exogenously specified volatility function λ(t, T ). Define

F (t, T, T + δ) =
F (t, T, T ∗)

F (t, T + δ, T ∗)
=

B(t, T )

B(t, T + δ)
, 0 ≤ t ≤ T

Using Lemma 2.2.1 and equation (2.30), under QT∗

, the forward process F (t, T, T + δ) satisfies

dF (t, T, T + δ) =
F (t, T, T ∗)

F (t, T + δ, T ∗)

(
γ(t, T, T ∗)− γ(t, T + δ, T ∗)

)
·
(
−γ(t, T + δ, T ∗)dt+ dWQT∗

t

)

= F (t, T, T + δ)γ(t, T, T + δ) ·
(
−γ(t, T + δ, T ∗)dt+ dWQT∗

t

)

where γ(t, T, T + δ) = γ(t, T, T ∗) − γ(t, T + δ, T ∗). Define the T + δ-forward measure QT+δ on(
Ω,FT+δ

)
by the Radon-Nikodým derivative

dQT+δ

dQT∗ = exp

(
−1

2

∫ T+δ

0

||γ(t, T + δ, T ∗)||2dt+

∫ T+δ

0

γ(t, T + δ, T ∗) · dWQT∗

t

)

By Girsanov’s Theorem,

W
QT+δ

t = W
QT∗

t −
∫ t

0

γ(u, T + δ, T ∗)du, 0 ≤ t ≤ T + δ

is a d-dimensional QT+δ-Wiener process. Under QT+δ, the forward process F (t, T, T + δ) satisfies

dF (t, T, T + δ) = F (t, T, T + δ)γ(t, T, T + δ) · dWQT+δ

t (2.31)

The simple forward rates fs(t, T ) are defined as (cf. equation (2.23))

fs(t, T ) =
1

δ

(
F (t, T, T + δ)− 1

)
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Under QT+δ, the simple forward rates fs(t, T ) satisfy

dfs(t, T ) =
1

δ
F (t, T, T + δ)γ(t, T, T + δ) · dWQT +δ

t (2.32)

=
1

δ
(1 + δ fs(t, T ))γ(t, T, T + δ) · dWQT+δ

t

= fs(t, T )λ(t, T ) · dWQT+δ

t (2.33)

where the forward rate volatility function is given by

λ(t, T ) =
1 + δ fs(t, T )

δfs(t, T )
γ(t, T, T + δ) (2.34)

In practice, a finite number of simple forward rates is modelled, not a continuum of forward rates
with a fixed compounding period δ. In the following subsection we construct a discrete-tenor
LIBOR market model from the interest rate system defined by Assumptions 1 and 2.

2.2.3 Discrete-tenor LIBOR Market Model

The simple forward rates that are usually modelled are the three month rates (e.g. GBP, USD) or
the six month rates (e.g. EUR). From now on we use the generic term forward LIBOR rates for any
family of simple forward rates. The tenor is typically chosen to match the convention in the cap
market. The tenor structure T = {T1, T2, . . . , Tn−1} is a set of reset times for a family of spanning
forward LIBOR rates, with 0 = T0 < T1 < T2 < . . . < Tn−1 < Tn = T ∗.20 For i = 1, . . . , n− 1, the
forward LIBOR rate at time t for the interval [Ti, Ti+1] is denoted by Li(t) and defined in terms
of the forward process F (t, Ti, Ti+1) as

1 + δiLi(t) = F (t, Ti, Ti+1), 0 ≤ t ≤ Ti

where δi is the year-fraction for the interval [Ti, Ti+1], using a prespecified day-count convention.
Following Musiela & Rutkowski (1997), we construct a discrete-tenor LIBOR market model by
backward induction.

Define an interest rate system by imposing Assumptions 1 and 2 discussed in the previous
subsection. Under the Tn-forward measure QTn (previously denoted by QT∗

) the forward LIBOR
rate Ln−1(t) satisfies (cf. equation (2.33) and (2.34))

dLn−1(t) = Ln−1(t)λ(t, Tn−1) · dWQTn

t , 0 ≤ t ≤ Tn−1 (2.35)

where WQTn
is a d-dimensional QTn-Wiener process and

λ(t, Tn−1) =
1 + δn−1Ln−1(t)

δn−1Ln−1(t)
γ(t, Tn−1, Tn) (2.36)

Assumption 3. The volatility functions λ(t, Ti), Ti ∈ T, are exogenously specified, Rd-valued,
bounded and deterministic functions of t and Ti.

The exogenously specified volatility function λ(t, Tn−1) completely determined the dynamics of
the forward LIBOR rate Ln−1(t). We now construct the family of forward LIBOR rate processes
using a backward induction procedure.

Define an equivalent martingale measure QTn−1 on (Ω,FTn−1) by the Radon-Nikodým derivative

dQTn−1

dQTn
= exp

(
−1

2

∫ Tn−1

0

||γ(t, Tn−1, Tn)||2dt+
∫ Tn−1

0

γ(t, Tn−1, Tn) · dWQTn

t

)

Then, by Girsanov’s Theorem

WQ
Tn−1

t = WQTn

t −
∫ t

0

γ(u, Tn−1, Tn)du, 0 ≤ t ≤ Tn−1 (2.37)

20A family of spanning forward LIBOR rates means that the maturity date of the first forward LIBOR rate is
the reset date of the second forward LIBOR rate. The maturity date of the second forward LIBOR rate is the reset
date of the third forward LIBOR rate and so on.
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is a d-dimensional QTn−1-Wiener process. Under the QTn−1, the forward LIBOR rate Ln−2(t)
satisfies

dLn−2(t) = Ln−2(t)λ(t, Tn−2) · dWQ
Tn−1

t , 0 ≤ t ≤ Tn−2

Using equations (2.37) and (2.35) it is easy to see that the forward LIBOR rate Ln−1(t) satisfies

dLn−1(t) = Ln−1(t)λ(t, Tn−1) · dWQTn

t

= Ln−1(t)λ(t, Tn−1) ·
(
γ(t, Tn−1, Tn)dt+ dWQ

Tn−1

t

)

= Ln−1(t)λ(t, Tn−1) ·
(

δn−1Ln−1(t)

1 + δn−1Ln−1(t)
λ(t, Tn−1)dt+ dWQ

Tn−1

t

)

We repeat this backward procedure until we have constructed the entire family of forward LIBOR
processes, such that, under QTi+1 , for i = 1, . . . , n− 1

dLi(t) = Li(t)λ(t, Ti) · dWQ
Ti+1

t , 0 ≤ t ≤ Ti (2.38)

and for j = i+ 1, . . . , n− 1

dLj(t) = Lj(t)λ(t, Tj) ·
(

j∑

k=i+1

δkLk(t)

1 + δkLk(t)
λ(t, Tk)dt+ dWQ

Ti+1

t

)
, 0 ≤ t ≤ Tj (2.39)

where W
Q

Ti+1

t is a d-dimensional QTi+1-Wiener process. To fully specify the dynamics of the
forward LIBOR rates under each measure QTi+1 , it remains to derive the dynamics of Lj(t) for
j = 1, . . . , i − 1. This can easily be achieved using “forward” induction. Under QT2 , the forward
LIBOR rate L1(t) satisfies

dL1(t) = L1(t)λ(t, T1) · dWQT2

t , 0 ≤ t ≤ T1

The measure QT2 is defined by the Radon-Nikodým derivative

dQT2

dQT3
= exp

(
−1

2

∫ T2

0

||γ(t, T2, T3)||2dt+

∫ T2

0

γ(t, T2, T3) · dWQT3

t

)

where

γ(t, T2, T3) =
δ2L2(t)

1 + δ2L2(t)
λ(t, T2)

Since QT2 and QT3 are equivalent measures, dQT3

dQT2
=
(

dQT2

dQT3

)−1

and hence under QT3 , by Girsanov’s

Theorem, L1(t) satisfies

dL1(t) = L1(t)λ(t, T1) ·
(
dWQT3

t − δ2L2(t)

1 + δ2L2(t)
λ(t, T2)dt

)
, 0 ≤ t ≤ T1

This generalizes under QTi+1 to

dLj(t) = Lj(t)λ(t, Tj) ·


dWQ

Ti+1

t −
i∑

k=j+1

δkLk(t)

1 + δkLk(t)
λ(t, Tk)dt


 , 0 ≤ t ≤ Tj (2.40)

for all j = 1, . . . , i− 1. This concludes the construction of forward LIBOR rates under the forward
measures QTi+1 , i = 1, . . . , n− 1. Note that for the purpose of pricing interest rate derivatives, one
would choose a single measure. However, as mentioned previously, depending on the derivative in
question, some choices are more convenient than others.

Spot LIBOR Measure

There is one particular self-financing trading strategy that is analogous to the money-market
account. This trading strategy is as follows: at t = 0, invest one unit of currency in a zero-
coupon bond maturing at T1. At t = T1, invest the proceeds in a zero-coupon bond maturing
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at T2 and so on. The value at time t of this self-financing trading strategy, termed the simply
compounded money-market account is

B∗(t) = B
(
t, Tη(t)

) η(t)−1∏

k=0

(
1 + δkLk(Tk)

)
, 0 ≤ t ≤ Tn (2.41)

where L0(T0) is the spot (current) LIBOR rate and η is the index of the next tenor date, a
left-continuous function η : [0, Tn) → {1, . . . , n} such that η(t) is the unique integer satisfying
Tη(t)−1 ≤ t < Tη(t) with η(Tn) = n. For i = 1, . . . , n, the normalized bond prices

B(t, Ti)

B∗(t)
=

B
(
t, Tη(t)

)∏i−1
j=η(t) (1 + δjLj(t))

−1

B
(
t, Tη(t)

)∏η(t)−1
k=0

(
1 + δkLk(Tk)

) , 0 ≤ t ≤ Ti

=




η(t)−1∏

k=0

(
1 + δkLk(Tk)

)−1






i−1∏

j=η(t)

(
1 + δjLj(t)

)−1


 (2.42)

are functions of the forward LIBOR rates only.21

The spot LIBOR measure Q∗ is a unique measure on (Ω,FTn), equivalent to QTn , such that
the normalized bond prices are martingales under Q∗. By the Martingale Representation Theorem
2.1.4, for all i = 1, . . . , n, there exist a Rd-valued process νi =

{
νi(t), 0 ≤ t ≤ Ti

}
satisfying

Q∗
[∫ Ti

0 ||νi(u)||2du <∞
]

= 1, such that

d

(
B(t, Ti)

B∗(t)

)
=

(
B(t, Ti)

B∗(t)

)
νi(t) · dWQ∗

t (2.43)

where WQ∗

is a d-dimensional Q∗-Wiener process. It remains to determine ν. By Itô’s formula

d ln

(
B(t, Ti)

B∗(t)

)
= − 1

2
||νi(t)||2dt+ νi(t) · dWQ∗

t (2.44)

From the definition of the normalized bond price process, equation (2.42), we have

d log

(
B(t, Ti)

B∗(t)

)
= −

i−1∑

j=η(t)

d log (1 + δjLj(t)) (2.45)

because
∑η(t)−1

k=0 log (1 + δkLk(Tk)) is constant with respect to t. Girsanov’s Theorem states that
for an equivalent measure change, the diffusion coefficient of the process remains unchanged. From
equations (2.38), (2.39) and (2.40), the diffusion coefficient of the forward LIBOR rate Lj(t),j =
1, . . . , n − 1, under any measure is Lj(t)λ(t, Tj). By Itô’s formula, the diffusion coefficient of the
process log (1 + δjLj(t)) is

δj
1 + δjLj(t)

Lj(t)λ(t, Tj)

Equating the diffusion coefficients of equations (2.44) and (2.45) yields

νi(t) = −
i−1∑

j=η(t)

δjLj(t)λ(t, Tj)

1 + δjLj(t)
(2.46)

Now that we have obtained an expression for the processes ν, using Lemma 2.2.1 we can derive
the stochastic differential equations that the forward LIBOR rates satisfy under the spot measure

21Note that the simply compounded money market account at time t is a function of the realized forward LIBOR
rates, while the zero-coupon bond price is a function of the still-alive forward LIBOR rates at time t.
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Q∗. For i = 1, . . . , n− 1 and 0 ≤ t ≤ Ti we have

dLi(t) =
1

δi
d

(
B(t, Ti)

B(t, Ti+1)

)
(2.47)

= δ−1
i d

(
B(t, Ti)

B∗(t)

/B(t, Ti+1)

B∗(t)

)

= δ−1
i

(
B(t, Ti)

B(t, Ti+1)

)(
νi(t)− νi+1(t)

)
·
(
−νi+1(t)dt+ dWQ∗

t

)

= δ−1
i

(
1 + δiLi(t)

)(δiLi(t)λ(t, Ti)

1 + δiLi(t)

)
·




i∑

j=η(t)

δjLj(t)λ(t, Tj)

1 + δjLj(t)
dt+ dWQ∗

t





= Li(t)λ(t, Ti) ·




i∑

j=η(t)

δjLj(t)λ(t, Tj)

1 + δjLj(t)
dt+ dWQ∗

t



 (2.48)

for 0 ≤ t ≤ Ti. This completes the construction of the discrete-tenor LIBOR market model. We
summarize the LIBOR market model stochastic differential equations under the various measures
in the box below.

Under the Ti+1-forward measure QTi+1 , i = 1, . . . , n− 1

dLj(t) = Lj(t)λ(t, Tj) ·



−
i∑

k=j+1

δkLk(t)

1 + δkLk(t)
λ(t, Tk)dt+ dWQ

Ti+1

t



 , j = 1, . . . , i− 1

dLi(t) = Li(t)λ(t, Ti) · dWQ
Ti+1

t

dLj(t) = Lj(t)λ(t, Tj) ·
(

j∑

k=i+1

δkLk(t)

1 + δkLk(t)
λ(t, Tk)dt+ dWQ

Ti+1

t

)
, j = i+ 1, . . . , n− 1

where W
Q

Ti+1

t is a d-dimensional QTi+1-Wiener process.

Under the spot measure Q∗

dLi(t) = Li(t)λ(t, Ti) ·




i∑

j=η(t)

δjLj(t)λ(t, Tj)

1 + δjLj(t)
dt+ dWQ∗

t



 , i = 1, . . . , n− 1

where W
Q∗

t is a d-dimensional Q∗-Wiener process.

2.2.4 Arbitrage-free Interpolation

The discrete-tenor LIBOR market model framework presented in the previous subsection does
not determine a continuum of zero-coupon bond prices. Because of this, there are interest rate
instruments that do not fit into the framework. An example is a trigger swap that triggers whenever
a certain LIBOR rate passes a reference level, where the trigger can occur at any time (Joshi 2003).

Musiela & Rutkowski (1997) fix a compounding period δ and extend the model to a continuous-
tenor case. They apply the assumptions that Brace et al. (1997) imposed in their derivation, namely
that all the forward rates with a compounding period of δ are lognormally distributed and that the
zero-coupon bonds with maturities less than δ have zero volatilities. Musiela & Rutkowski (1997,
page 289) show that if a family of zero-coupon bond prices is constructed using these assumptions,
it cannot be guaranteed that zero-coupon bond prices will not exceed unity.

Schlögl (2001) presented an arbitrage-free interpolation of the discrete-tenor model. The value
of a zero-coupon bond, for 0 ≤ t1 < t2 ≤ Tn, is given by

B(t1, t2) = B
(
t1, Tη(t1)

)



η(t2)−1∏

j=η(t1)

(1 + δjLj(t1))
−1



(

B(t1, t2)

B
(
t1, Tη(t2)

)
)
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The forward process B(t1,t2)

B(t1,Tη(t2))
is a martingale under the Tη(t2)-forward measure. Hence

B(t1, t2) = B
(
t1, Tη(t1)

)



η(t2)−1∏

j=η(t1)

(1 + δjLj(t1))
−1


EQ

Tη(t2)

[
B(t2, t2)

B
(
t2, Tη(t2)

)
∣∣∣Ft1

]

= B
(
t1, Tη(t1)

)



η(t2)−1∏

j=η(t1)

(1 + δjLj(t1))
−1


EQ

Tη(t2)
[
B
(
t2, Tη(t2)

)−1
∣∣∣Ft1

]

This means that to determine the continuum of zero-coupon bonds from the discrete forward
LIBOR rates, we only need to determine a way of calculating the value of short-dated bonds,
B
(
t, Tη(t)

)
, 0 ≤ t ≤ Tn.

The interpolation method presented here is based on the assumption that the volatility of the
short-dated bonds is zero. This means that the short-dated zero-coupon bonds are interpolated
from the spot LIBOR rate. In the simplest case of linear interpolation

B
(
t, Tη(t)

)
=
(
1 +

(
Tη(t) − t

)
Lη(t)−1

(
Tη(t)−1

) )−1

we obtain monotonically increasing family of zero-coupon bond prices over [Tη(t)−1, Tη(t)] satisfying

B
(
Tη(t)−1, Tη(t)

)
=
(
1 +

(
Tη(t) − Tη(t)−1

)
Lη(t)−1

(
Tη(t)−1

) )−1

and
B
(
Tη(t), Tη(t)

)
= 1

The linear interpolation scheme produces an explicit solution for the expectation

EQ
Tη(t2)

[
B
(
t2, Tη(t2)

)−1
∣∣∣Ft1

]
= 1 +

(
Tη(t2) − t2

)
EQ

Tη(t2)
[
Lη(t2)−1

(
Tη(t2)−1

) ∣∣∣Ft1

]

= 1 +
(
Tη(t2) − t2

)
Lη(t2)−1(t1)

since the forward rate Lη(t2)−1 is a martingale under QTη(t2) .



Chapter 3

Calibration of the LIBOR Market

Model

It’s not the least use to me to foresee the future; I have never known how to avoid it.

– Jean-Jacques Rousseau

The specification of the LIBOR market model relies on the specification of the deterministic volatil-
ity functions λ(t, Ti), Ti ∈ T. These functions determine both the volatility level of the forward
rates and the correlation between the rates. The selected covariance structure should match the
observable dynamics of the forward rates, such as the number and shape of the underlying princi-
pal components (James & Webber 2000). Once the forward rate volatility functions are specified
(parameterized), the chosen model is calibrated to the current forward rate curve and to liquid
interest rate derivatives, namely caps and swaptions. The calibration to the current forward rate
curve is automatic because the current forward rates are initial conditions, and hence inputs, for
the LIBOR market model stochastic differential equations. Calibration to the cap and swaption
prices is achieved by choosing the forward rate volatility functions such that the model prices of
these derivatives match the market prices as closely as possible. The result of a successful cali-
bration is that the pricing and hedging of exotic or less liquid LIBOR derivatives can be achieved
consistently with the market data.

The two main advantages of the LIBOR market model that are often stated in the literature
are, firstly, the ability of the model to calibrate to a large set of liquid market instruments and
secondly, the ability of the model to generate a realistic evolution of the forward rate volatility
structure (Piterbarg 2004). However, this is not always seen as a real advantage over modelling
the instantaneous forward rates directly. Quoting Andreasen (2004):

“In my view, the best thing about the ‘LMM movement’ is that it got us thinking about
using closed-form approximations for caps and swaptions in calibration of models.”

As we will show in Section 3.3, while the LIBOR market model is consistent with the Black caplet
formula, there is no closed-form formula for swaption prices. This is an extremely undesirable
model feature because without a closed-form formula, swaption prices will have to be calculated
using Monte Carlo simulation at each iteration step in the calibration procedure.1 This results in
an unstable and lengthy calibration process. Fortunately, many approximate closed-form swaption
formulas have been developed (Andersen & Andreasen 2000, Daniluk & Ga̧tarek 2005, Hull &
White 2000, Jäckel & Rebonato 2003, Kawai 2003). This is an important point because accurate
approximations to the prices of liquid interest rate derivatives make implementation of more com-
plex models possible in practice (for example the stochastic volatility separable HJM models of
Andersen & Andreasen (2002) and Andreasen (2004, 2005)).

In Section 3.1 we discuss the choice of the number of factors in the LIBOR market model. In
Section 3.2 we deal with a related issue of rank reduction of correlation matrices. The set of market
data commonly used for calibration is discussed in Section 3.3. Model specifications are described
in the final section, together with an example calibration of the LIBOR market model.

1The necessity, in general, of pricing derivatives in the LIBOR market model using Monte Carlo simulation will
be examined in the following chapter.
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3.1 Model Dimension

In the previous chapter we derived the no-arbitrage dynamics for a family of spanning forward
LIBOR rates under various measures. In the literature (Brigo & Mercurio 2001, Rebonato 2002),
the dynamics of the n−1 forward LIBOR rates are frequently formulated in terms of n−1 correlated
Brownian motions (full-factor formulation). For example, under Q∗, for i = 1, . . . , n− 1

dLi(t)

Li(t)
=

i∑

j=η(t)

δjLj(t)σ(t, Tj)σ(t, Ti)ρij(t)

1 + δjLj(t)
dt+ σ(t, Ti)dWi(t), 0 ≤ t ≤ Ti (3.1)

where σ(t, Ti) is the instantaneous volatility function of the forward LIBOR rate Li(t), a R-valued,
bounded and deterministic function of t and Ti, ρ(t) ∈ R(n−1)×(n−1) is a time-dependent instan-
taneous correlation matrix and W = (W1, . . . ,Wn−1)

′ is a vector of correlated Brownian motions
(under Q∗) satisfying

dWi(t)dWj(t) = ρij(t)dt

To relate formulation (3.1) to the previous formulation (2.48), we need to express the former
in terms of n − 1 independent Brownian motions. From the properties of multivariate normal
distributions, if X = (X1, . . . , Xm)′ is N(0, I) and Y = (Y1, . . . , Ym)′ is given by Y = DX for some
m ×m matrix D of rank ≤ m then Y is N(0,DD′) (Grimmett & Stirzaker 2001). Thus given
a decomposition of the correlation matrix ρ(t) = Q(t)Q(t)′, where Q(t) ∈ R(n−1)×(n−1),2 we can
express formulation (3.1) as

dLi(t)

Li(t)
=

i∑

j=η(t)

δjLj(t)σ(t, Tj)σ(t, Ti)qj(t) · qi(t)

1 + δjLj(t)
dt+ σ(t, Ti)qi(t)dZ(t) (3.2)

where qi(t) is the i’th row of Q(t) and Z = (Z1, . . . , Zn−1)
′ is a vector of independent Brownian

motions under Q∗. The relationship between the two formulations is now clear:

σ(t, Ti)qi(t)
′ ≡ λ(t, Ti) (3.3)

if the dimension d = n−1.3 The factor loadings λ(t, Ti) can be “decomposed” into two components:
the instantaneous volatility of the forward LIBOR rate, σ(t, Ti), and a vector qi(t) determining
the instantaneous correlation between the forward rates.

The forward LIBOR rates that are modelled are typically the three or the six month forward
rates. The maturity of an interest rate derivative may be as long as twenty or thirty years.
This means that in the full-factor formulation (3.1), the number of driving Brownian motions
may become rather large. In the US government bond market, Litterman & Scheinkman (1991)
identified three main factors that describe the variation in the returns. They termed these level,
steepness and curvature and together, according to their study, they explain at least 96% of the
variability. Knez, Litterman & Scheinkman (1994) found that three factors explain, on average,
86% of the variation of short-dated money market instruments and that a fourth factor was needed.
Morini & Webber (2004) estimated a historical correlation matrix for the annual EUR forward rates,
going out to 20 years. Their results show that 61.6% of the variance is explained by the first factor,
79.1% by the first three and 88.5% by the first six. It seems safe to say that 3 to 6 factors are
needed to explain most of the variation in the forward rates. Interest rate models employed in
practice, in South Africa, are typically one or two-factor models.

To reduce the full-factor formulation to a formulation with d << n− 1 independent Brownian
motions, d being the required number of factors, we need to find a rank-d correlation matrix that
is close to ρ(t) in some sense. The problem is to find a (n−1)×d matrix Q̃(t) such that Q̃(t)Q̃(t)′

is a correlation matrix that is close to ρ(t). Possible approaches will be reviewed in the following
section. Then the d-factor dynamics are

dLi(t)

Li(t)
=

i∑

j=η(t)

δjLj(t)σ(t, Tj)σ(t, Ti) q̃j(t) · q̃i(t)

1 + δjLj(t)
dt+ σ(t, Ti) q̃i(t)dX(t) (3.4)

2A possible way to decompose a correlation matrix is by using a singular value decomposition or through a
Cholesky factorization - see Golub & Van Loan (1996).

3Note that in formulation (2.48), the instantaneous correlation between forward rates Li and Lj is defined as

ρij(t) =
d〈Li, Lj〉(t)p

d〈Li, Li〉(t)d〈Lj , Lj〉(t)
=

λ(t, Ti) · λ(t, Tj)

||λ(t, Ti)|| ||λ(t, Tj)||
, 0 ≤ t ≤ min{Ti, Tj}

This is consistent with equation (3.3).
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where q̃i(t) is the i’th row of Q̃(t) and X = (X1, . . . , Xd)
′ is a vector of d independent Brownian

motions under Q∗. This is equivalent to the general d-factor formulation (2.48)

σ(t, Ti) q̃i(t)
′ ≡ λ(t, Ti) (3.5)

3.2 Rank Reductions

A correlation matrix is a symmetric, positive semidefinite matrix with a unit diagonal.4 When
modelling interest rate derivatives, we are often faced with the problem of finding a low-rank
correlation matrix to best approximate some exogenous correlation matrix. For example, it is
frequently assumed that the instantaneous correlation matrix ρ(t) is constant as a function of time
ρ(t) = ρ. The matrix ρ is then estimated either from historical yield curve data or implied from the
current market data. If ρ is estimated from historical data, the estimated matrix will, in general,
be a full-rank matrix. If ρ is implied from the market data, the rank of the implied matrix will
depend on the chosen parametrization. However, as discussed in the previous section, the required
interest rate model is typically two dimensional. This corresponds to ρ being a rank-two matrix.
In general, the estimated instantaneous correlation matrix will not have the required rank. We are
then faced with the problem of finding a rank-two correlation matrix closest to ρ in some sense.
This problem is termed rank reduction.

Let us state the problem formally. Suppose that we have an exogenousm×m correlation matrix
C and that we are interested in finding the closest rank-r < m correlation matrix. To measure
distance on the space of matrices, we require a matrix norm. The most frequently used norm is
the Frobenius matrix norm

||A||2F = trace(AA′)

=

m∑

i=1

m∑

j=1

|aij |2

From now on, when we refer to the “closest” matrix it should be interpreted as the closest matrix
in the Frobenius norm. The closest rank-r correlation matrix Cr is given by Cr = QrQ

′
r, where

Qr is a solution to the following problem

min
Q∈Rm×r

||C−QQ′||2F
subject to diag(QQ′) = diag(I) (3.6)

The solution QrQ
′
r will automatically be positive semidefinite. Thus the constraint need not be

incorporated explicitly. We now briefly discuss various methods that have been proposed for finding
an approximate solution to this problem, followed by a simple comparison test.

One of the most widely used rank reduction technique in practice is the normalized principal
components method of Rebonato & Jäckel (1999) and Brigo (2002). This is certainly due, in
part, to its conceptual simplicity and rapid computation. Principal components analysis (PCA)
is a technique that linearly transforms a group of variables into orthogonal variables (principal
components) which then form an orthogonal basis for the data space. PCA is based on the following
result from linear algebra, known as the singular value decomposition (Golub & Van Loan 1996).

Theorem 3.2.1. Suppose S ∈ Rm×m is a symmetric positive semidefinite matrix. The singular
value decomposition of S is given by

S = Udiag(λ1, . . . , λm)U′

a product of a m × m column-orthonormal matrix U, a m × m diagonal matrix of eigenvalues
diag(λ1, . . . , λm), ordered in descending order, and the transpose of U. Then the Eckart-Young
decomposition

Sr = Udiag(λ1, . . . , λr, 0, . . . , 0)U′

is the closest rank-r symmetric positive semidefinite matrix. Further,

||S− Sr||2F =

m∑

i=r+1

λ2
i

4This implies that |aij | ≤ 1, because a positive semidefinite matrix satisfies |aij | ≤ √
aiiajj , i 6= j.
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The Eckart-Young decomposition of a correlation matrix C will not necessarily have a unit
diagonal. Suppose that Udiag(λ1, . . . , λm)U′ is the singular value decomposition of C and let C̃

be the Eckart-Young decomposition C̃ = Udiag(λ1, . . . , λr, 0, . . . , 0)U′. To ensure that C̃ is a valid

correlation matrix, we normalize it by pre- and post-multiplying C̃ by the scaling matrix S

S = diag

(
1√
c̃11

, . . . . . . ,
1√
c̃mm

)

where c̃ii is the i’th diagonal element of C̃. Then SC̃S is a rank-r correlation matrix. However,
it is exactly in this normalization that we lose the optimality of the solution. That is, SC̃S is not
the closest rank-r correlation matrix.

The second rank reduction technique that we discuss is the angles parametrization method
of Rebonato & Jäckel (1999), Brigo (2002) and Rapisarda, Brigo & Mercurio (2002). The unit
diagonal constraint in the problem formulation (3.6) can be expressed as

q2i1 + q2i2 + . . .+ q2ir = 1, for all i = 1, . . . ,m

As a consequence, Rebonato & Jäckel (1999) noted that, for each i, (qi1, qi2, . . . , qir)
′ is a r-tuple

defining a r-hypersphere with unit radius. Each element of the r-tuple can be expressed in terms
of spherical coordinates as

qik =

{
cos (θik)

∏k−1
j=1 sin(θij) 1 ≤ k < r∏k−1

j=1 sin(θij) k = r

Rebonato & Jäckel (1999) parameterized each row of the matrix Q using the above spherical coor-
dinates. The angles {θi1, . . . , θi(r−1)}mi=1 are optimized until an exogenously specified convergence
criterion is reached.5 In general, the angles parametrization method produces an estimate of the
rank-r correlation matrix with smaller error than the normalized principal components method.

Another rank reduction technique is the extension of the alternating projections method of
Higham (2002). Higham (2002) applied the alternating projections theory to find the nearest
rank-m correlation matrix to an exogenously given approximate correlation matrix in Rm×m. An
approximate correlation matrix arises in, for example, stress-testing situations in which some part
of the existing correlation matrix is altered, leading to a matrix that is not positive semidefinite.
This theory has been extended to the problem of rank reduction by Weigel (2004) and Morini
& Webber (2004). Before we describe this approach we must stress that the extension proposed
by latter authors is no longer guaranteed to converge. However, numerical results on historical
forward rate correlation matrices have indicated that the convergence of the algorithm is fast and
that accurate results are obtained.

We first state the underlying theory. Consider a Hilbert space H and a subset K of H . The
projection of x onto K is a point in K closest to x ∈ H , i.e. a map PK : H → K , defined by
PK (x) = {y ∈ K : y = argminu∈K ||u− x||}. von Neumann (1950) proved that for x ∈ H and
S and U closed subspaces of H , iteratively projecting onto subspaces

x← PU (PS (x))

converges to a point in the intersection of U and S that is closest to the starting point x. Higham
(2002) formulated the problem of finding a rank-m correlation matrix on the Hilbert space H of
symmetric m×m matrices, where the constraint set S is the set of positive semidefinite matrices
S =

{
A ∈ H : A � 0

}
while the constraint set U is the set of matrices with the diagonal

elements equal to one U =
{
A ∈ H : aii = 1, i = 1, . . . ,m

}
. However, the constraint sets S

and U are closed convex sets and not subspaces (see Grubǐsić (2002) for a proof of this statement
and a thorough examination of this algorithm). For the alternating projections to converge to an
optimal point, Higham (2002) showed that Dykstra’s algorithm (Dykstra 1983) can be applied.
This modifies the iteration so that every time the projection onto a convex set is applied, the
changes made by the projection at the last iteration are added back. Higham (2002) derived the
projections of A ∈ H onto S and onto U in the (weighted) Frobenius norm. In particular, in
the Frobenius norm, the projection of A ∈H onto S is given by

PS (A) = Udiag
(
λ11{λ1≥0}, . . . , λm1{λm≥0}

)
U′

5Starting values for the angles can be backed out of the normalized principal components estimate SeCS of the
closest rank-r correlation matrix.
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where 1B is the characteristic function of a set B and Udiag(λ1, . . . , λm)U′ is the singular value
decomposition of A. The projection of A ∈H onto U is the matrix A with the diagonal elements
replaced by ones.

Finding the closest rank-r correlation matrix requires projection onto the constraint set Kr of
rank-r matrices, as well as projections onto S and U . From Theorem 3.2.1, we know that in the
Frobenius norm, projection of A ∈H onto Kr is given by

PKr (A) = Udiag(λ1, . . . , λr, 0, . . . , 0)U′

where Udiag(λ1, . . . , λm)U′ is the singular value decomposition of A. However, the constraint set
Kr is only closed, not convex (Grubǐsić 2002). This means that the existing alternating projections
theory does not apply, and the algorithm is not guaranteed to converge. Weigel (2004) experimented
with iteratively projecting forward rate correlation matrices onto S , Kr and U . The results
indicate that the convergence is fast. Morini & Webber (2004, Algorithm 2) presented a similar
algorithm, the eigenvalue zeroing by iteration (EZI) method. The approach is to iteratively project
the exogenous correlation matrix onto Kr and U . Once the convergence criterion is reached, for
example the changes in the projections onto Kr are small, the normalized principal components
method is applied to the output.

The fourth rank reduction algorithm that we describe is the Lagrange multipliers method of
Zhang & Wu (2003) and Wu (2002). The authors reformulated the rank reduction problem (3.6)
as a minimization problem under constraints and approached it using Lagrange multipliers. In
particular, the problem was cast as a minimization-maximization problem

min
d

max
X∈Kr

L (X,d) (3.7)

where d = (d1, . . . , dm)′ is a vector of multipliers and the Lagrange function L (X,d) is given by

L (X,d) = −||C−X||2F − 2d′diag(C−X)

= −





m∑

i,j

(cij − xij)
2 + 2

m∑

i=1

di(cii − xii)





= −






m∑

i=1

(cii − xii + di)
2 −

m∑

i=1

d2
i +

m∑

i,j: i6=j

(cij − xij)
2






= −||C + D−X||2F + ||d||2

where D = diag(d1, . . . , dm). Problem (3.7) was solved in two steps. Firstly, for a fixed value of the
Lagrange multiplier d, the inner maximization problem involves minimizing ||C + D−X||2F . From
Theorem 3.2.1, we know that the minimum is achieved when X is the Eckart-Young decomposition
of C + D, PKr (C + D). Zhang & Wu (2003, Theorem 4.1) prove that the local minimum of the
inner maximization problem is a global minimum if the r’th and (r + 1)’th eigenvalues of C + D

are not equal. This means that the method lacks guaranteed convergence, which is a main criticism
of the approach. Secondly, the outer minimization over the Lagrange multipliers d is solved using
gradient-based descending methods, such as the method of steepest descent.

The final rank reduction algorithm that we describe is the iterative majorization method of
Pietersz & Groenen (2004). Suppose that we need to minimize an objective function f . The idea
presented in Pietersz & Groenen (2004) is to construct a function, the majorization function, that
is equal to the objective function at a certain point and greater than or equal to the objective
function at all the other points in the domain. The majorization function is constructed so that
it is easier to minimize than the objective function. Given a starting point, the minimum of the
majorization function produces the next point in the iteration.

Problem (3.6) requires minimization of the objective function f(Q) = ||C−QQ′||2F , subject
to the unit diagonal constraint. Pietersz & Groenen (2004) derive the majorization function for
each row of the matrix Q (for this and a more general objective function). The algorithm is,
starting with the first row, to find the minimum of the majorization function, replace the row by
the calculated minimum and loop over all the rows until convergence is achieved. The authors
also provided MATLAB code containing the implementation of their algorithm. The algorithm is
globally convergent and has a sub-linear local rate of convergence.
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3.2.1 Numerical Comparison

To compare the various rank reduction methods, we estimated a historical forward rate correlation
matrix for quarterly log forward rates going out to ten years. The data used is the Bank of England’s
daily commercial bank liability spot curve data from 9 September 2004 to 9 September 2005,
obtained from http://www.bankofengland.co.uk/statistics/yieldcurve/index.htm. The quarterly
spot rates were available out to five years and thereafter semi-annual rates were interpolated to
complete the dataset.

The first principal component explained 80.8% of the variation in the term structure while the
second and the third components explained 12.4% and 3% respectively. The historical correlation
matrix and its first three principal components are displayed in Figure 3.1.
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Figure 3.1: GBP historical forward rate correlation matrix (quarterly forward rates) and its first
three principal components.

Rank-two, rank-three and rank-four approximations of the historical correlation matrix were
examined. The rank reduction methods that were applied were the normalized principal compo-
nents method (NPCA), the angles parametrization method (Angles), the eigenvalue zeroing by
iteration method (EZI), Lagrange multipliers method (Lagrange) and the iterative majorization
method (Major). The errors of the various methods are summarized in Table 3.1 below.

NPCA Angles EZI Major Lagrange

Rank-two 8.1971 6.3053 6.3145 6.3053 6.3053

Rank-three 2.9529 1.7729 1.8727 1.7729 1.7729
Rank-four 0.7126 0.3614 0.3647 0.3614 0.3614

Table 3.1: Frobenius norm rank reduction errors.

The normalized principal components method performs poorly. The angles parametrization,
the iterative majorization and the Lagrange multipliers methods produced the same errors and
virtually identical correlation matrices. However, the computational time of the latter two methods
was significantly less than the angles parametrization method. The eigenvalue zeroing by iteration
method was very fast and produced good results. Due to the lack of guaranteed convergence of
the eigenvalue zeroing by iteration and Lagrange multipliers method, the majorization algorithm
seems to be the best performing approach.

Figure 3.2 compares the historical correlations with the reduced rank matrix correlations. This
graph clearly demonstrates the major drawback of lower-dimensional models on the forward rate
dynamics: too large correlation between neighboring forward rates. The final figure, Figure 3.3, plots
the rank-three correlation matrix obtained when the iterative majorization method is employed to
reduce the rank of the historical correlation matrix.
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Figure 3.2: A comparison of historical correlations and rank-three correlations. Graph (a) displays
correlations between the forward rate maturing in three months time and the rest of the forward
rates. Graph (b) displays correlations between the forward rate maturing in four years time and
the rest of the forward rates.
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Figure 3.3: Rank-three forward rate correlation matrix, obtained using the iterative majorization
algorithm.

3.3 Calibration Instruments

The minimum requirement of an interest rate model is the exact recovery of an arbitrary exogenous
yield curve. In the LIBOR market model, the initial forward rates are model inputs.

Interest rate caps and swaptions comprise the largest and the most liquid part of the interest
rate derivative market. As they are “similar” products to exotic LIBOR derivatives, caps and
swaptions are routinely used in the gamma and vega hedging of these products. Consequently,
interest rate models are calibrated to cap and swaption volatilities. This ensures the recovery of
these second-order hedging instruments.

3.3.1 Yield Curve

There is no unique way of obtaining a yield curve, even if the input instruments are exogenously
specified. One of the main requirements of a desirable bootstrap method is that it correctly prices
the instruments used in the construction of the curve. Another vital criterion is that the forward
rate curve is positive. Based on these and a few other requirements concerning the stability
and localness of the interpolation method, Hagan & West (2005) examined various interpolation
algorithms and proposed monotone convex spline interpolation. This method is attractive since,
in particular, it overcomes the problem of negative forward rates which appears in the popular
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cubic spline interpolation. GBP yield curve inputs and the bootstrapped forward rates, using the
monotone convex spline interpolation method, are presented below. The bootstrap was performed
using PriceWorX, financial software developed by RiskWorX.

3MO LIBOR 4.590% 5Y swap 4.428%
3X6 FRA 4.455% 6Y swap 4.443%

6X9 FRA 4.320% 7Y swap 4.453%
9X12 FRA 4.285% 8Y swap 4.510%

2Y swap 4.455% 9Y swap 4.463%

3Y swap 4.415% 10Y swap 4.463%
4Y swap 4.417%

Table 3.2: GBP market rates on 9 September 2005 (source: Reuters).
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Figure 3.4: GBP bootstrapped quarterly forward rates on 9 September 2005.

GBP swaps have a tenor of six months, while GBP caps have a tenor of three months. The strike
of the at-the-money cap is the swap rate for a forward starting swap, starting in three months,
with a tenor of three months. A quick check of the bootstrap method is to compare the market
quoted strikes with the forward swap rates implied by the bootstrap. Table 3.3 shows that, with
the exception of the 2-year cap strike, the bootstrapped results are very good.

1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y 10 y

M 4.35% 4.41% 4.37% 4.38% 4.39% 4.41% 4.42% 4.48% 4.43% 4.43%
B 4.35% 4.35% 4.37% 4.37% 4.39% 4.40% 4.42% 4.43% 4.43% 4.44%

Table 3.3: Comparison of market cap strikes (M) with the forward swap rate implied by the
bootstrapped forward rates (B).

3.3.2 Cap Volatilities

Caplets are call options on forward LIBOR rates. These instruments have explicit solutions in the
LIBOR market model. Consider a caplet written on the forward LIBOR rate resetting at time Ti,
with strike K. From equation (2.38), we know that under the Ti+1-forward measure, the forward
rate Li is lognormally distributed

Li(t) = Li(0) exp

{
−1

2

∫ t

0

||λ(u, Ti)||2du+

∫ t

0

λ(u, Ti) · dWQ
Ti+1

u

}
, 0 ≤ t ≤ Ti (3.8)
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If the value of the caplet at time t is ϑ(t), then, using risk-neutral pricing,

ϑ(t)

B(t, Ti+1)
= EQ

Ti+1

[
ϑ(Ti+1)

B(Ti+1, Ti+1)

∣∣∣Ft

]

= δi EQ
Ti+1 [

max
{
Li(Ti)−K, 0

}
|Ft

]

It is well known that if a random variable V is lognormally distributed with the constant variance
of logV being σ2, then

E
[
max

{
V −K, 0

}]
= E[V ]Φ

(
log (E[V ]/K) + 1

2σ
2

σ

)
−KΦ

(
log (E[V ]/K)− 1

2σ
2

σ

)
(3.9)

where Φ is the cumulative distribution function of a N(0, 1) random variable. Now

EQ
Ti+1 [

Li(Ti)
]

= Li(0)
(
e−

1
2

R Ti
0 ||λ(u,Ti)||

2du
)

EQ
Ti+1

[
e
R Ti
0 λ(u,Ti)·dW

Q
Ti+1

u

]

= Li(0) (3.10)

EQ
Ti+1 [

logLi(Ti)
]

= logLi(0)− 1

2

∫ Ti

0

||λ(u, Ti)||2du (3.11)

VarQ
Ti+1 [

logLi(Ti)
]

= EQ
Ti+1

[(
logLi(Ti)− EQ

Ti+1
[logLi(Ti)]

)2
]

=

∫ Ti

0

||λ(u, Ti)||2du (3.12)

where equation (3.10) follows from the fact that if a random variable X is distributed N(µ, σ2),

its moment generating function is given by E
[
etX
]

= eµt+ 1
2σ2t2 . The mean of the normal random

variable
∫ Ti

0 λ(u, Ti) · dWQ
Ti+1

u is zero, because an Itô integral is a martingale. The variance

of
∫ Ti

0 λ(u, Ti) · dWQ
Ti+1

u is
∫ Ti

0 ||λ(u, Ti)||2du, which follows from Itô isometry. The latter facts
explain equations (3.11) and (3.12) as well.

Using equations (3.9), (3.10) and (3.12), the value of a caplet at t = 0 is given by

ϑ(0) = δiB(0, Ti+1)
[
Li(0)Φ(d1)−KΦ(d2)

]
(3.13)

where

d1 =
log(Li(0)/K) + 1

2

∫ Ti

0 ||λ(u, Ti)||2du√∫ Ti

0
||λ(u, Ti)||2du

, d2 =
log(Li(0)/K)− 1

2

∫ Ti

0 ||λ(u, Ti)||2du√∫ Ti

0
||λ(u, Ti)||2du

If we define σBlack(Ti) as the market implied caplet volatility for the forward LIBOR rate Li(t), we
require the following relation to hold in order to calibrate the LIBOR market model to the market
caplet volatilities ∫ Ti

0

||λ(u, Ti)||2du = σ2
Black(Ti)Ti (3.14)

As mentioned in Section 3.1, the factor loadings are often “decomposed” into the instantaneous
volatility component and a vector determining the instantaneous correlations (cf. equations (3.3)
and (3.5)). In this case, the caplet calibrating equation (3.14) becomes

∫ Ti

0

σ(u, Ti)
2du = σ2

Black(Ti)Ti (3.15)

because ||qi(t)||2 = ||q̃i(t)||2 = 1.
The discrete set of equations (3.15) for i = 1, . . . , n − 1 cannot determine the instantaneous

volatility function uniquely. Additional assumptions need to be imposed. It is important to
note that the choice of the instantaneous volatility function, or equivalently the norms of the
factor loadings, affects the correlation of the forward rates at future points in time. One can
lower the correlation, without increasing the number of factors, by judiciously redistributing the
instantaneous volatility over time. In fact, authors such as Brigo, Mercurio & Morini (2005) stated
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that “two factors are usually enough, provided one chooses a flexible volatility structure”. A
straightforward clarification of this point was given by Sidenius (2000):

Consider a single-factor model over the next six months, and 12×15 and 15×18 forward rates.
Suppose that it is a two-period model with two, independent, random shocks driving the interest
rates: one in the first three months and one in the last three months. Assume that the 12 × 15
forward rate has a very large volatility for the first three months and a very small volatility for the
following three months. Suppose that the volatility of the 15 × 18 forward rate behaves exactly
the opposite. Then the value of the 12× 15 forward rate will be determined mainly by the random
shock in the first three months and the value of the 15 × 18 forward rate mainly by the random
shock in the last three months. As these shocks are independent, in six months time, the two rates
should have low correlation. While simplistic, this example demonstrates that one can obtain low
correlation between the forward rates even when they are perfectly instantaneously correlated.

Different choices for the volatility structure are discussed in Section 3.4. We now examine possi-
ble approaches to determining caplet volatilities σBlack(Ti) from the market quoted cap volatilities.

Stripping Caplet Volatilities

The market quotes flat cap volatilities from which we need to extract volatilities of the underlying
caplets. To fix ideas, let ϑ(σ,K, Ti) be the price of a cap with maturity date Ti, volatility σ and
strike K. Let ϑj(σ,K, Tj) be the price of the j’th caplet in this cap. By definition, the cap price
is a linear sum of the caplet prices

ϑ(σ,K, Ti) =

i−1∑

j=1

ϑj(σ,K, Tj) (3.16)

We are looking for the so-called forward-forward volatilities σj such that

ϑ(σ,K, Ti) =
i−1∑

j=1

ϑj(σj ,K, Tj) (3.17)

Hull & White (2000) described the following approach for calculating caplet volatilities: Given flat,
at-the-money cap volatilities, one can interpolate between these volatilities to obtain an estimate
of the flat cap volatilities for all maturities.6 Caplet prices for each forward LIBOR rate Li(t) can
be obtained by calculating the value of Ti and Ti+1-year caps, with strike equal to the current
forward rate Li(0), and subtracting one from the other. The caplet volatilities are then backed out
from the caplet prices by inverting Black’s caplet formula (equation (3.13)) using, for example, the
Newton-Raphson algorithm.

Alexander (2004) proposed an alternative approach for obtaining individual caplet volatilities
given flat cap volatilities for all maturities. A first order Taylor expansion of ϑj(σj ,K, Tj) around
σ yields

ϑj(σj ,K, Tj) = ϑj(σ,K, Ti) + (σj − σ)υj(σ)

where υj(σ) =
∂ϑj

∂σj
(σ) is the vega of the j’th caplet, evaluated at σj = σ. This approximation

combined with equations (3.16) and (3.17) yields

i−1∑

j=1

ϑj(σ,K, Tj) =
i−1∑

j=1

(
ϑj(σ,K, Tj) + (σj − σ) υj(σ)

)

Therefore

σ =

∑i−1
j=1 σjυj(σ)
∑i−1

j=1 υj(σ)
(3.18)

To first order, the flat cap volatility is approximately equal to the vega-weighted sum of caplet
volatilities. When flat cap volatilities are known for all maturities, equation (3.18) defines a recur-
rence relation for backing out caplet volatilities.

6Note that even though each cap has a different strike, interpolating across maturities is not a problem because
we are assuming no “smile effects” - the estimated volatility applies to all caps of that maturity irrespective of the
strike.
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James & Webber (2000) suggested that a parametric form be imposed on the caplet volatilities.
The parameters are fitted such that the at-the-money cap prices are recovered as closely as possible.
An example of this parametric form is the Nelson & Siegel (1987) family, more commonly known
as the “Rebonato form”

σBlack(Ti) = β0 + (β1 + β2Ti)e
−κTi

or the Svensson (1994) extension of the Nelson & Siegel (1987) family

σBlack(Ti) = β0 + (β1 + β2Ti)e
−κ1Ti + β3Tie

−κ2Ti (3.19)

We now examine stripped caplet volatilities produced by these various approaches, using the GBP
at-the-money cap volatility data displayed in Figure 3.5.

1 2 3 4 5 6 7 8 9 10
0.1

0.11

0.12

0.13

0.14

0.15

0.16

Cap Maturity (years)

B
la

ck
 V

ol
at

ili
ty

Figure 3.5: GBP at-the-money cap volatilities on 9 September 2005 (source: Reuters).

We interpolate the flat cap volatilities (across maturity) using two common methods: linear
interpolation and cubic splines. As an alternative to interpolation, we fit a flexible parametric
form to the cap volatilities. The chosen parametrization is the Svensson functional form (3.19),
which has six free parameters. Because we have ten input cap volatilities, this parametric form
has enough free parameters to be almost seen as an “interpolation”.

Once the flat cap volatilities have been obtained for all maturities, caplet volatilities can be
obtained using the two methods described earlier, which we now term cap iteration and vega
iteration. The former approach obtains caplet prices by subtracting one cap price from the other.
The latter approach uses equation (3.18) to back out individual caplet volatilities from flat cap
volatilities.

Figure 3.6 (a) displays the results for the cap iteration approach, using linear and cubic splines to
interpolate flat cap volatilities. The stripped caplet volatilities are very sensitive to the interpolation
algorithm and the resulting oscillations are a result of the interpolation method rather than the
data. Identical results are obtained when the vega iteration approach is used. Even though the
interpolation approach recovers the input flat cap volatilities exactly, it produces undesirable caplet
volatility curves.

Figure 3.6 (b) displays the caplet volatilities obtained using cap iteration and vega iteration
methods when the Svensson functional form (3.19) is fitted to the flat cap volatilities. The stripped
caplet volatilities are almost identical, but the vega iteration approach seems slightly more stable.
The curves produced display the “hump shape” that is typically observed worldwide, with the
hump occurring at around two years.

To judge the accuracy of the two approaches presented in Figure 3.6 (b), we compared flat cap
volatilities implied by the stripped caplet volatilities with the market quoted volatilities. From
Table 3.4 we see that both methods produce good results, but that the vega iteration approach
does perform better.

The last approach that we considered was to impose a parametric form onto the caplet volatil-
ities and optimize the parameters to recover at-the-money cap prices as closely as possible. Since
the implied cap volatility fits were inferior to those obtained when a parametric form was fitted to
cap volatilities, we do not present those results.
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Figure 3.6: Graph (a) displays the stripped caplet volatilities obtained using the cap iteration
approach combined with two different interpolations of the flat cap volatilities. Graph (b) displays
the stripped caplet volatilities obtained using cap iteration and vega iteration approaches, when
the Svensson functional form (3.19) is fitted to the flat cap volatilities.

Maturity 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

Market 10.6% 13.7% 14.8% 15.3% 15.5% 15.4% 15.4% 15.3% 15.2% 15.1%

CI 10.7% 13.8% 14.9% 15.4% 15.5% 15.5% 15.4% 15.3% 15.2% 15.1%
VI 10.6% 13.7% 14.8% 15.3% 15.4% 15.4% 15.4% 15.3% 15.2% 15.1%

Table 3.4: Comparison of market quoted cap volatilities (Market) with the cap volatilities implied
by the cap iteration (CI) and vega iteration (VI) methods, in conjunction with fitting the Svensson
functional form (3.19) to the flat cap volatilities.

3.3.3 Swaption Volatilities

Swaptions are options on interest rate swaps. These instruments are frequently used by debt issuers
to preserve flexibility throughout their financing cycles, by providing optionality to enter into swaps
at some date in the future or to cancel existing swaps (Longstaff et al. 2001). These instruments
are sufficiently liquid and standardized to be regarded as “vanilla”.

Consider a payer swaption maturing at Tp, written on a forward swap, with coupon κ, also
starting at Tp with maturity date Tq. This is referred to as a Tp × (Tq − Tp) payer swaption. If
the swap is entered into, the holder will pay a fixed rate κ on reset dates Tp+2, Tp+4, . . . , Tq and
receive the floating LIBOR rate corresponding to that tenor.7 The fair swap rate at time t, Sp,q(t),
is given by

Sp,q(t) =
B(t, Tp)−B(t, Tq)∑(q−p)/2
j=1 τjB(t, Tp+2j)

(3.20)

where τj is the year fraction for the period [Tp+2(j−1), Tp+2j]. By no-arbitrage arguments, the value
of the payer swaption at expiry Tp, PS(Tp), is

PS(Tp) = max
{
Sp,q(Tp)− κ, 0

} (q−p)/2∑

j=1

τjB(Tp, Tp+2j)

Denote by QBp,q the measure associated with Bp,q(t) =
∑(q−p)/2

j=1 τjB(t, Tp+2j) as the numéraire.
The process Bp,q(t) is a valid numéraire because it is a portfolio of zero-coupon bonds, and hence
its value is always positive. The measure QBp,q is known as the forward swap measure.

Since B(t, Tp) −B(t, Tq) is a portfolio of traded assets, and the value of any traded asset nor-
malized by the numéraire is a martingale in the appropriate measure, the swap rate is a martingale

7In practice, caps and swaps have a different tenor. As mentioned in the previous chapter, the LIBOR market
model tenor structure T = {T1, T2, . . . , Tn−1} is chosen to match the convention in the cap market.
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under QBp,q . Using risk-neutral valuation, the value of the payer swaption at t < Tp is

PS(t)

Bp,q(t)
= EQBp,q [

max
{
Sp,q(Tp)− κ, 0

} ∣∣Ft

]
(3.21)

The market convention is to price swaptions using the Black model, i.e. by assuming that the
swap rate Sp,q(Tp) is lognormally distributed under the forward swap measure with the variance of
logSp,q(Tp) being (σBlack

p,q )2Tp. The quantity σBlack
p,q is the market quoted Black swaption volatility

for a Tp × (Tq − Tp) swaption. Under this assumption, and using equations (3.9) and (3.21), the
price of the swaption at t = 0 is

PS(0) = Bp,q(0) [Sp,q(0)Φ (d1)− κΦ (d2)]

where

d1 =
ln(Sp,q(0)/κ) + 1

2 (σBlack
p,q )2 Tp

σBlack
p,q

√
Tp

, d2 = d1 − σBlack
p,q
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Figure 3.7: GBP swaption volatilities on 9 September 2005 (source: Reuters).

We now examine approximate swaption pricing in the LIBOR market model. The fair swap
rate, equation (3.20), can be expressed in terms of forward LIBOR rates as

Sp,q(t) =
1−∏q−1

j=p
1

1+δjLj(t)∑(q−p)/2
j=1 τj

∏p+2j−1
k=p

1
1+δkLk(t)

(3.22)

Using Itô’s formula, the fair swap rate satisfies

dSp,q(t) =

q−1∑

i=p

∂Sp,q

∂Li
(t) dLi(t) +

1

2

q−1∑

i=p

q−1∑

j=p

∂2Sp,q

∂Li∂Lj
(t) dLi(t)dLj(t)

The (conditional) quadratic variation of the swap rate is given by

d〈Sp,q, Sp,q〉(t) =

q−1∑

i=p

q−1∑

j=p

∂Sp,q

∂Li
(t)
∂Sp,q

∂Lj
(t)dLi(t)dLj(t)

=

q−1∑

i=p

q−1∑

j=p

∂Sp,q

∂Li
(t)
∂Sp,q

∂Lj
(t)Li(t)Lj(t)λ(t, Ti) · λ(t, Tj)dt

The partial derivatives are easily obtained by differentiating equation (3.22). For i = p, . . . , q − 1

∂Sp,q

∂Li
(t) =

δiψi(t)

1 + δiLi(t)
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where

ψi(t) =

∏q−1
j=p

1
1+δjLj(t)∑(q−p)/2

j=1 τj
∏p+2j−1

k=p
1

1+δkLk(t)

+

(
1−∏q−1

j=p
1

1+δjLj(t)

)(∑(q−p)/2
j=x τj

∏p+2j−1
k=p

1
1+δkLk(t)

)

(∑(q−p)/2
j=1 τj

∏p+2j−1
k=p

1
1+δkLk(t)

)2

and x =
⌈

i+1−p
2

⌉
is the ceiling of i+1−p

2 , the smallest integer greater than or equal to i+1−p
2 .

Define the volatility of the swap rate σp,q(t) by the formula

d〈Sp,qdSp,q〉(t) = σp,q(t)
2Sp,q(t)

2dt

Then

σp,q(t)
2 =

1

Sp,q(t)2




q−1∑

i=p

q−1∑

j=p

δiψi(t)

1 + δiLi(t)

δjψj(t)

1 + δjLj(t)
Li(t)Lj(t)λ(t, Ti) · λ(t, Tj)


 (3.23)

The volatility of the swap rate is a function of the forward LIBOR rates and is consequently
stochastic. In particular, the forward LIBOR rates and swap rates cannot both be lognormal under
their respective measures.

The fact that the swap rate has a stochastic volatility precludes closed-form solutions to equa-
tion (3.21). Hull & White (2000) and Jäckel & Rebonato (2003) assume lognormality by set-
ting the stochastic quantities to their t = 0 values i.e. Li(t) ≈ Li(0), for i = p, . . . , q − 1 and
Sp,q(t) ≈ Sp,q(0). A model that assumes that the forward LIBOR rates and swap rates are both
lognormal under their respective measures is not arbitrage-free. Rebonato (1999a) examined the
pricing discrepancies when swap rates are assumed lognormal and reached the following conclusion:
“. . . even if and when detectable, the pricing discrepancy is certainly too small to be arbitraged
away.”

The swaption calibration requirement is equivalent to equation (3.14)

(
σBlack

p,q

)2
Tp =

∫ Tp

0

||σp,q(t)||2dt

=
1

Sp,q(0)2

q−1∑

i=p

q−1∑

j=p

δiψi(0)

1 + δiLi(0)

δjψj(0)

1 + δjLj(0)
Li(0)Lj(0)

∫ Tp

0

λ(t, Ti) · λ(t, Tj)dt

(3.24)

We conclude this section with an important note on the difference between caps and swaptions.
A cap is a portfolio of options on forward rates while a swaption is an option on a portfolio of
forward rates. The value of the latter instrument depends on both the instantaneous volatility and
instantaneous correlation of the forward rates. This should be obvious from equation (3.23).

3.4 Model Choice

The general form of the LIBOR market model is merely a framework. It becomes a model once the
forward rate factor loadings λ(t, Ti), Ti ∈ T are specified. The information provided by cap and
swaption volatilities does not imply a unique form for these loadings. Furthermore, a good cali-
bration to current market prices does not guarantee a good interest rate model. The performance
of the model is really determined by how close the model specified evolution of the instantaneous
volatility and correlation functions is to the actual evolution. A great advantage of the LIBOR
market model is that, due to deterministic forward rate volatility functions, the future evolution
of key model structures is deterministic. For example, one can calculate future caplet volatilities
once the model is calibrated. These so-called “model diagnostics” are important when it comes to
assessing the quality of the model.

Various versions of the piecewise constant factor loadings specification have been proposed by
Pedersen (1998), Sidenius (2000) and Hull & White (2000), amongst others. The approach that we
have examined is based on the decomposition of factor loadings into two separate components, the
instantaneous volatility of the forward rate and a vector determining the instantaneous correlation
between the forward rates.
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The instantaneous volatility of the forward rate maturing at Ti, σ(t, Ti), is by assumption a
square-integrable deterministic function of t and Ti. A stationary specification of the instantaneous
volatility function, σ(t, Ti) = f(Ti−t), is considered to be very desirable. This specification implies
that the forward rates with the same time to maturity have the same volatility and that the future
caplet volatilities are the same as the current ones. Rebonato (2002, Chapter 6) provides empirical
evidence demonstrating that structural features of the implied at-the-money caplet volatility curve
remain more or less unchanged through time. Furthermore, De Jong et al. (2004) noted that all
the standard interest rate models, for example the affine models of Duffie & Kan (1996), imply
that the volatility and correlation parameters are time-homogenous.

It is interesting to note that a stationary instantaneous volatility function can only exist if
σ2

Black(T )T is an increasing function of T . To prove this, recall that the relationship between
the Black caplet volatility σBlack(Ti) and the instantaneous volatility function σ(t, Ti) is given by

σ2
Black(Ti)Ti =

∫ Ti

0
σ(t, Ti)

2dt (equation (3.15)). Then, if σ(t, Ti) = f(Ti − t), we obtain

σ2
Black(Ti+1)Ti+1 − σ2

Black(Ti)Ti =

∫ Ti+1

0

f(Ti+1 − t)2dt−
∫ Ti

0

f(Ti − t)2dt

=

∫ Ti+1−Ti

0

f(Ti+1 − t)2dt

The right-hand side of the above equation is strictly positive, being the integral of a strictly positive
quantity. If the left-hand side is not strictly positive, i.e. if σ2

Black(T )T is not an increasing
function of T , one will end with imaginary instantaneous volatilities. This means that a stationary
instantaneous volatility function can only exist if σ2

Black(T )T is an increasing function of T .
As stationarity of the volatility structure is important in interest rate modelling, a particularly

popular form for the instantaneous volatility function is

σ(t, Ti) = h(Ti)f(Ti − t) (3.25)

This specification splits the instantaneous volatility into two components: a component that de-
pends on the residual maturity of the forward rate f(Ti− t) and a forward rate specific component
h(Ti). The inclusion of the forward rate specific component allows all possible market implied
caplet volatilities to be recovered, not just ones for which σ2

Black(T )T is an increasing function of
T . In particular, a perfect fit to the caplet market is always achieved if we set

h(Ti)
2 =

σ2
Black(Ti)Ti∫ Ti

0
f(Ti − t)2dt

(3.26)

The function f(Ti − t) is fitted to market caplet volatilities and possibly to market swaption
volatilities as well. Then the forward rate specific factor is used to ensure a perfect fit to the caplet
market through equation (3.26). However, for formulation (3.25) to be more or less stationary, the
forward rate specific factors need to be close to one. If the fitted h(Ti) are significantly varying
across maturities Ti, the resulting model would imply that the forward rates with the same time to
maturity will have very different responsiveness to the Brownian motion shocks. Rebonato (2002)
advises that if this situation arises, specification (3.25) should not be used.

Brigo et al. (2005) considered the following flexible parameterizations of the instantaneous
volatility function

σ(t, Ti) = ζiψi−η(t) (3.27)

σ(t, Ti) = ζi

[
(a(Ti − t) + d)e−b(Ti−t) + c

]
(3.28)

where ζi is the forward rate specific constant, ψi−η(t) is the constant volatility applicable when a
forward rate has i− η(t) full periods between the next reset date and its maturity date and a, b,
c, d are simply constants.

The second component in the decomposition of the factor loadings is a vector which determines
the instantaneous correlation between the forward rates. From recent research, it would seem that
the number of factors used in the model has an extremely important role in accurately pricing exotic
options, especially spread options and reset caps. Sidenius (2000) provides numerical examples
demonstrating large relative differences in prices when employing a one-factor model, as opposed
to a three-factor model. This is due to the restrictions on the dynamics that the lower-dimensional
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models typically impose: too large correlation between neighboring forward rates, and too small
correlation between forward rates that are further apart. This effect has been mentioned in Section
3.2.1 and can also be found in Rebonato (1999b), amongst others.

Rebonato (1999b) calibrated the LIBOR market model by extracting correlation information
from historical data. Given an exogenously specified forward rate correlation matrix ρ, a rank-d
correlation matrix ρ̂ can be obtained by any one of the methods described in Section 3.2. Principal
component analysis is then used to decompose ρ̂ into ρ̂ = QQ′, where Q ∈ R(n−1)×d. The factor
loadings are then given by

λ(t, Ti) = σ(t, Ti)(qi1, . . . , qid)
′

where the function σ(t, Ti) has already been calibrated.
Alexander (2004) demonstrated that the historical forward rate correlations, particularly for

short dated forward rates, are very volatile. An alternative to using historical data is to imply
the instantaneous correlations from liquid market instruments. In the ideal case, one would like
to calibrate the model to correlation sensitive derivatives, such as spread options. However, they
lack the liquidity to do so and swaption volatilities have to be used. Of course, there are criticisms
against fitting correlations to swaption volatilities. The swaption data may be stale because it is
unlikely that the entire swaption matrix is updated uniformly. The second criticism is that there
has been evidence (Choy et al. 2004, Rebonato 2002) that swaption values are not very sensitive
to instantaneous correlations.

If the instantaneous correlations are extracted from the swaptions matrix, a fully nonparametric
approach requires estimation of n(n−1)/2 parameters, which is certainly going to lead to overfitting
and instability. Before we discuss the parametric approach, let us state the additional properties
of the forward rate instantaneous correlation matrix.

The forward LIBOR rate correlation matrix should satisfy certain economic constraints. For-
ward rate correlations should decrease as the maturities between the rates increase. Equally spaced
(in terms of the maturities) forward rates should become more correlated as their maturities in-
crease. Mathematically, for a forward LIBOR rate correlation matrix ρ ∈ R(n−1)×(n−1), we require

1. ρij ≥ ρi,j+1 for j ≥ i

2. ρi,i+k is an increasing function of i, for each k

Schoenmakers & Coffey (2003) constructed parsimonious parametric structures for the in-
stantaneous correlation matrix. Given a sequence of positive, strictly increasing real numbers,
{b1, . . . , bn−1}, satisfying b1 = 1 and bi/bi+1 strictly increasing in i, the instantaneous correlations
are given by

ρij =
min(bi, bj)

max(bi, bj)
(3.29)

This formulation satisfies the economic constraints mentioned above. Schoenmakers & Coffey
(2003) then show that the sequence bi can be represented, in the general form, as

bi = exp

(
n−1∑

l=2

min(l − 1, i− 1)∆l

)

for any non-negative sequence of real numbers {∆2, . . . ,∆n−1}. Substituting into equation (3.29)
yields

ρij = exp

(
−

n−1∑

l=i+1

min(l − i, j − i)∆l

)
, i < j

There are n − 2 parameters {∆2, . . . ,∆n−1} that need to be estimated. Schoenmakers & Cof-
fey (2003) proposed a few examples of parsimonious correlation structures. Based on parameter
stability and practical experiments, the following two-parameter structure for the instantaneous
correlation matrix is suggested

ρij = exp

{
−|i− j|
n− 2

(
− log(θ) + η

i2 + j2 + ij − 3
(
(n− 1)i+ (n− 1)j − i− j

)
+ 2(n− 1)2 − n− 3

(n− 3)(n− 4)

)}

(3.30)
where θ and η and are the two free parameters satisfying η > 0 and 0 < η < − log(θ).
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3.4.1 Market Calibration

We now present an example LIBOR market model calibration. The data consists of GBP market
closing prices on 9 September 2005, obtained from Reuters. Tables and graphs of the data used can
be found throughout this chapter. The bootstrapped forward rate curve is presented in Figure 3.4.
Market implied caplet volatilities, stripped by fitting the Svensson functional form to cap volatilities
and applying the vega iteration algorithm, are presented in Figure 3.6. Market swaption volatilities
are displayed in Figure 3.7. We will only calibrate to a subset of these swaptions, presented in
Table 3.5 below, with the sum of the option maturity and swap length not exceeding ten years. In
total, we are fitting 39 caplet and 56 swaption volatilities.

1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y

3M Opt 13.1% 14.8% 14.1% 13.7% 13.3% 13.1% 12.9% 12.8% 12.6%

6M Opt 14.4% 15.1% 14.5% 14.1% 13.7% 13.5% 13.3% 13.1% 12.9%
1Y Opt 15.6% 15.6% 15.2% 14.6% 14.1% 13.9% 13.8% 13.6% 13.4%

2Y Opt 15.9% 15.9% 15.3% 14.8% 14.2% 14.0% 13.9% 13.7%

3Y Opt 15.9% 15.7% 15.2% 14.7% 14.2% 14.0% 13.8%
4Y Opt 15.5% 15.2% 14.8% 14.4% 13.9% 13.7%

5Y Opt 15.0% 14.7% 14.4% 14.1% 13.6%
7Y Opt 14.6% 14.3% 14.0%

Table 3.5: GBP market swaption volatilities used for calibrating the LIBOR market model.
Columns indicate the length of the underlying swap, while rows indicate swaption maturity.

We fit the instantaneous volatility specification (3.28) to the caplet and swaption volatilities,
while simultaneously fitting the parameterized instantaneous correlation matrix, equation (3.30),
to swaption volatilities.8 We have chosen to present the fitting results for a three-factor LIBOR
market model, because we found that while a three-factor formulation does not result in significantly
smaller fitting errors, it does produce a slightly better evolutions of caplet volatilities and a more
satisfactory instantaneous correlation matrix. Note that the two-parameter correlation matrix
formulation suggested by Schoenmakers & Coffey (2003), equation (3.30), results in a full-rank
correlation matrix. During the optimization it will always be reduced to a rank-three correlation
matrix. The chosen rank reduction method is the majorization algorithm.

The parametrization (3.28) is realized by first fitting the stationary part of the instantaneous
volatility function, f(Ti − t) = (a(Ti − t) + d)e−b(Ti−t) + c, to the swaption volatilities. The
parameters of the instantaneous correlation matrix (3.30) are fitted simultaneously. The parameters
are fitted such that the squared errors between the market and the model swaption volatilities are
minimized. To calculate the model swaption volatilities, we use the lognormal approximation
(3.24). A perfect fit to the caplet volatilities is then enforced using the forward rate specific factors
ζi. The swaption fitting errors are presented in Table 3.6. In Figure 3.8 (a), the fitted forward
rate specific factors ζi are displayed. Current model caplet volatilities, together with future model
caplet volatilities are displayed in Figure 3.8 (b). The rank-three instantaneous correlation matrix
implied by the swaption volatilities is displayed in Figure 3.9.

With the exception of the swaptions whose underlying swap length is one year, the fitting seems
satisfactory. When expressed as percentage errors, they seem to be in accordance with the errors
presented in Brigo et al. (2005, Table 3), which were deemed to be “actually small”. However, in
our calibration the instantaneous correlation matrix also seems satisfactory.

The graphs in Figure 3.8 indicate that the forward rate specific factors needed to ensure a
perfect fit to the caplet market are not all close to one. As a result, the evolution of the caplet
volatilities is no longer strictly stationary. However, from Figure 3.8(b) we see that this departure
from stationarity is minimal. We found that if we require a more stationary structure, we have to
sacrifice the quality of the swaption fitting.

8Experiments with unconstrained optimization of parametrization (3.27) did not produce good results. Even
when constraints were imposed, the evolution of the caplet volatilities was rather noisy.
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Figure 3.8: Graph (a) plots the forward rate specific factors obtained when parametrization (3.28)
is fitted to swaption volatilities together with the instantaneous correlation matrix parameterized
by (3.30). Graph (b) plots the evolution of caplet volatilities over time.

1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y

3M Opt 0.2% 0.5% 0.0% 0.0% -0.2% -0.2% -0.2% -0.1% -0.3%

6M Opt 0.1% 0.1% 0.0% 0.0% -0.1% 0.0% 0.0% -0.1% -0.1%
1Y Opt -0.3% -0.1% 0.2% 0.1% 0.0% 0.1% 0.3% 0.2% 0.1%

2Y Opt -0.7% 0.0% 0.1% 0.2% -0.1% 0.1% 0.2% 0.2%

3Y Opt -0.5% 0.1% 0.2% 0.2% 0.1% 0.1% 0.1%
4Y Opt -0.5% -0.1% 0.1% 0.2% -0.1% -0.1%

5Y Opt -0.6% -0.3% 0.0% -0.1% -0.3%

Table 3.6: Absolute errors in swaption calibration, defined by (Market vol - Model vol).
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Figure 3.9: Schoenmakers & Coffey (2003) two-parameter instantaneous correlation matrix, fitted
to swaption volatilities. The rank-three matrix displayed here was obtained using the majorization
algorithm.



Chapter 4

Monte Carlo Basics

Computers are incredibly fast, accurate, and stupid. Human beings are incredibly slow,
inaccurate, and brilliant. Together they are powerful beyond imagination.

– Albert Einstein

Systematic development of Monte Carlo methods took place around 1944. These methods stem
from the work on the atomic bomb during the second world war, where they were applied to
simulation of probabilistic problems regarding the neutron diffusion in fissile material (Hammersley
& Handscomb 1964). Monte Carlo simulation was introduced in derivative pricing by Boyle (1979)
and is an indispensable valuation tool in the LIBOR market model. While lattice methods are
the standard implementation tool for short rate models, the full state-dependence of the drift
term of LIBOR rates results in a non-recombining tree (Jäckel 2000), which in general is not a
computationally feasible approach. If the instantaneous volatility structure is a separable function
of time and maturity of the forward rate, the model can be approximated as a low-dimensional
Markovian model and PDE methods applied (Pietersz et al. 2004). However, Piterbarg (2004)
argues that the main advantage of the LIBOR market models, namely the ability to calibrate to
a large set of instruments whilst maintaining a realistic evolution of the volatility structure, is
“severely hampered” when one restricts the volatility function to be separable. Thus, in general,
derivative prices in the LIBOR market model are computed using Monte Carlo simulation. This
chapter discusses Monte Carlo and quasi-Monte Carlo methods and examines the discretization of
the LIBOR market model’s stochastic differential equations.

4.1 Monte Carlo Methods

Monte Carlo (pseudo-Monte Carlo) methods and quasi-Monte Carlo methods are designed for the
problem of evaluating integrals of the form

I(f) =

∫

[0,1)d

f(x)dx (4.1)

where f is a square-integrable function1 and x = (x1, . . . , xd)
′. These methods approximate the

value of the integral by

Î(f) =
1

n

n∑

i=1

f(xi) (4.2)

where the function f is averaged over the point set Pn = {x1, . . . ,xn} ∈ [0, 1)d. The difference
between Monte Carlo and quasi-Monte Carlo methods lies in the construction of the point set Pn.

Monte Carlo methods are based on the observation that approximating the integral (4.1) is
equivalent to approximating the expectation of a function of a multivariate uniform random vari-
able. Suppose X is a d-variate uniform random variable. Then I(f) = E [f(X)] and an unbiased

1In the Brownian motion setting, the function f transforms uniform random variables to normal random variables,
constructs the process for the underlying state variables and calculates the normalized payoff of the derivative.
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estimate of the expectation is given by (4.2), where Pn is a set of realizations of independent identi-
cally distributed uniform random variables over [0, 1)d. The uniform random numbers are generated
using deterministic algorithms, the most well known being the linear and nonlinear congruential
generators. A classical reference for analysis of these algorithms is Niederreiter (1992).

Two celebrated theorems in probability theory are used to analyze the Monte Carlo estimate
of the integral: the law of large numbers and the central limit theorem. By the strong law of large
numbers

1

n

n∑

i=1

f(Xi)→ E[f(X)] almost surely, as n→∞

when X1,X2, . . . are independent, identically distributed uniform random variables. By the Central
Limit Theorem

(
1

n

n∑

i=1

f(Xi)− E[f(X)]

)
→ σ√

n
z in distribution, as n→∞

where z ∼ N(0, I) and σ = Var[f(X)] (Grimmett & Stirzaker 2001). The latter theorem shows
that the standard error of the estimator tends to zero as n−1/2. When d = 1, the convergence
rate of O(n−1/2) is not particularly appealing, considering that the convergence rate for a simple
trapezoidal rule is O(n−2). However, the Monte Carlo convergence rate is independent of the
dimension of the problem and becomes competitive when the dimension is greater than or equal
to three or four.

Various approaches can be applied to reduce the variability of the Monte Carlo estimate, many of
which are reviewed by Boyle, Broadie & Glasserman (1997). The two variance reduction techniques
that are frequently used in the LIBOR market model are antithetic variates and control variates.
Briefly, antithetic variates are based on the observation that if xi is uniformly distributed, so is
x∗

i = 1− xi. The estimator of the integral using antithetic variates is

Î(f)av =
1

n

n∑

i=1

(
f(xi) + f(x∗

i )

2

)
(4.3)

Constructing antithetic pairs (xi,x
∗
i ) leads to a more uniformly distributed sample over [0, 1)d

than simply doubling the sample size. Boyle et al. (1997) showed that antithetic variates lead to
a guaranteed reduction in the variance of the estimator if the payoff function of the derivative is
monotone in the underlying state variables.

Control variates rely on the estimate of an integral of another function, say Î(g), whose value

I(g) is known, to control the estimate Î(f). The estimator of the integral using control variates is

Î(f)cv = Î(f) +
(
I(g)− Î(g)

)
(4.4)

For the control variates method to reduce the variance of the estimate we require

Var
(
Î(g)

)
< 2 Cov

(
Î(g), Î(f)

)

In a financial setting, a good control variate is one whose payoff is highly correlated with the
payoff of the option under valuation. When pricing American options, the control variate that is
frequently chosen is the corresponding European option. In general, a hedge portfolio should be a

good control variate. Boyle et al. (1997) further discuss the estimator Î(f) + β
(
I(g)− Î(g)

)
and

the choice of β for which this estimator is guaranteed not to have a larger variance than Î(f).
The cause of the slow O(n−1/2) convergence is the fact that random and pseudo-random num-

bers tend to cluster and not fill the space uniformly. One possible way of speeding up the conver-
gence rate is to use low-discrepancy sequences, sequences constructed to avoid gaps and clustering.

4.2 Low-Discrepancy Sequences

The idea behind low-discrepancy sequences is to choose integration points that are well dispersed
throughout the integration region. Discrepancy is a notion from number theory that is used
to analyze deterministic sequences. It is a measure of how close the empirical distribution of
the sequence is to the uniform distribution on [0, 1)d. The most researched measure is the star
discrepancy.
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Definition 4.2.1. The star discrepancy D∗
n of a sequence x1, . . . ,xn ∈ [0, 1)d is given by

D∗
n = sup

u∈[0,1)d

∣∣∣∣∣

∑n
i=1 1Qd

j=1[0,uj)
(xi)

n
−

d∏

i=1

ui

∣∣∣∣∣

where 1A is the characteristic function of a set A. The first term is the proportion of points that
fall in the hypercube [0, u1)× · · · × [0, ud), while the second term is the volume of this hypercube.
The interpretation of the star discrepancy is that if a sequence is uniformly distributed in [0, 1)d,
then the star discrepancy of the sequence will be zero in the limit as n→∞.

Niederreiter (1992) stated that it is widely believed, although only proved for d = 1, that the
star discrepancy of the first n points of any sequence of numbers in [0, 1)d satisfies

D∗
n ≥ B(d)

(log n)d

n

where B(d) is a constant that depends only on the dimension d. Low-discrepancy sequences are

sequences with a small star discrepancy, namely O

(
(log n)d

n

)
, n ≥ 2. Low-discrepancy sequences

are also known as quasi-random, which is misleading as they do not attempt to be random at all.
The Koksma-Hlawka inequality provides deterministic (worst) error bounds for quasi-Monte

Carlo approximations. This inequality shows that the absolute value of the integration error is
less than or equal to a product of two functions, one being the star discrepancy and the other a
function depending on the smoothness of the integrand

|Î(f)− I(f)| ≤ D∗
nV (f)

where V (f) is the total variation of the function in the sense of Hardy and Krause (see Niederreiter
(1992) for a technical specification of V (f)). Thus, effectiveness of quasi-Monte Carlo methods
depends on both the chosen low-discrepancy sequence and on the integrand. Caflisch, Morokoff
& Owen (1997) found that, in practice, only a minimal amount of smoothness of the integrand
is necessary for effectiveness of quasi-Monte Carlo. However, they warn that the effectiveness of
these methods diminishes for discontinuous integrands.

The presence of the (log n)d factor in the convergence rate is a cause for concern when dealing
with high-dimensional integration problems. The problems that arise in a financial settings are
often high dimensional. For example, in single-factor interest rate models, the number of steps
taken to evolve the underlying state variables is the dimension of the problem. In multi-factor
models, the number of steps taken multiplied by the number of factors is the dimension of the
problem. Brately, Fox & Niederreiter (1992) examined the effectiveness of two low-discrepancy
sequences, Niederreiter and Sobol’, for integration problems in 12 dimensions or more. Quoting
Brately et al. (1992):

“In high-dimensional problems (say> 12), quasi-Monte Carlo seems to offer no practical
advantage over pseudo-Monte Carlo because the discrepancy bound for the former is
far larger than N1/2 for N = 230, say.”

A problem that arises with high-dimensional low-discrepancy sequences is that not all of their
two-dimensional projections are uniform. This is a necessary (but not sufficient) condition for
uniformity of the sequence (Caflisch et al. 1997). In particular, lower dimensions have better
uniformity properties as illustrated in Figure 4.1.

Paskov & Traub (1995) examined the pricing of collateralized mortgage obligations, involving
integration in up to 360 dimensions. They found that Halton and Sobol’ sequences outperform
standard Monte Carlo even in such high dimensions, with the latter low-discrepancy sequence
outperforming the former. This result caused quite a stir and studies have tried to provide answers
to this outperformance by quasi-Monte Carlo methods in high-dimension. Boyle et al. (1997)
attributed this contrasting result to the fact that the integrands in finance are better behaved than
the ones examined in Brately et al. (1992), which were highly periodic. A second explanation is
the effective dimension hypothesis which will be discussed in Section 4.3.

The performance of Halton sequence is not regarded as competitive with Faure and Sobol’
sequences, both in low and high dimensions. There is no conclusive answer on which of the latter
two sequences has better performance, but it seems that the financial community prefers Sobol’
sequence. In the tests that we performed, which compared the convergence of quasi-Monte Carlo
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Figure 4.1: Projections of 1000 Sobol’ points in 50 dimensions.

cap prices to their closed form solutions, both the Faure and the generalised Faure sequences
performed worse than the Sobol’ sequence.2 For this reason, we only discuss the latter sequence.

4.2.1 Sobol’ Sequences

Sobol’ sequences belong to a class of digital nets. We will not attempt to present the theoretical
underpinnings of this method and only present the algorithm following Brately & Fox (1988).

The generation of a Sobol’ sequence begins with a choice of a primitive polynomial over Z2.

Definition 4.2.2. A primitive polynomial of degree d in Z2 is

p(x) = xd + a1x
d−1 + . . . + ad−1x+ 1

where the coefficients are in the field Z2 = {0, 1} and p(x)|x2d−1 + 1.

The coefficients of the primitive polynomial {a1, . . . , ad−1} are used to generate a sequence
{m1,m2, . . .}. Each element of the sequence is an odd integer satisfying 0 < mi < 2i. The first
d elements of the sequence, {m1, . . . ,md}, need to be initialized. The performance of a Sobol’
sequence seems to be very dependent on the choice of these initialization numbers. For i ≥ d+ 1,
the sequence is generated using the following recursion relation

mi = 2a1mi−1 ⊕ 22a2mi−2 ⊕ · · · ⊕ 2d−1ad−1mi−d+1 ⊕ 2dmi−d ⊕mi−d

where ⊕ is the bitwise exclusive-or (XOR) operation, applied to the binary representations of the
operands. The bitwise XOR is defined as 0⊕ 0 = 1 ⊕ 1 = 0 and 0 ⊕ 1 = 1 ⊕ 0 = 1. For example,
3 ⊕ 7 = 0112 ⊕ 1112 = 1002 = 4. Once the sequence {m1,m2, . . .} is generated, the direction
numbers {v1, v2, . . .} are defined by

vi =
mi

2i

Then the Sobol’ sequence {x1, x2, . . .} is generated by

xn = b1v1 ⊕ b2v2 ⊕ . . .

where (. . . b2b1)2 is the binary representation of n. We will generate the sequence using the method
of Antonov and Saleev suggested in Brately & Fox (1988). Utilizing Gray codes,3 they showed that
a Sobol’ sequence can be generated using the following recursion relation

x0 = 0

xn+1 = xn ⊕ vc(n)

2L’Ecuyer & Lemieux (2002) provided a nice exposition of the Faure and the generalised Faure sequence algo-
rithms.

3Some interesting history of Gray codes and their definition can be found in Press et al. (2002).
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where c(n) is the position of the rightmost zero-bit in the binary representation of n (e.g. c(3) =
c(112) = 3). This method is considerably faster than the former - Galanti & Jung (1997) reported
a 20% increase in speed.

Brately & Fox (1988) discussed additional uniformity properties that Sobol’ provided in order
to suitably choose the initial values {m1, . . . ,md}, known as Property A and Property A′. The
authors provide implementation for integrals in up to 40 dimensions. In the financial setting, and
in the LIBOR market model in particular, we frequently need to evaluate integrals in an even
higher dimension than 40.

To generate a Sobol’ sequence in more than one dimension, one needs a different primitive
polynomial for each dimension. Joe & Kuo (2003) advise that the chosen primitive polynomial
should be of as low a degree as possible and that the initial values {m1, . . . ,md} should be chosen
differently for any two primitive polynomials of the same degree. Joe & Kuo (2003) provided initial
values to evaluate integrals up to 1111 dimensions, using primitive polynomials of degree 13 or less
that satisfy Property A. We will use these initial values and primitive polynomials to generate
multidimensional Sobol’ sequences.

The final comment that we make about Sobol’ sequences concerns the chosen number of runs.
Brately & Fox (1988) stated that the Sobol’ sequence has theoretical uniformity properties whenever
the sample size is 2k, k ≥ max{2d, τd +d−1}, where d is the dimension and τd is a constant defined
by Sobol’. Due to the high-dimensionality of the problems encountered in finance, even a sample
size of 22d is far too large. In experiments with multidimensional Sobol’ sequences, we found that,
ignoring the zeroth draw,4 a sample size of 2m − 1, m = 2, 3, . . ., is desirable. The reason is that
the mean of the sampled normal random numbers, generated using the inverse cumulative normal
function, is zero (for each dimension) if the sample size is 2m− 1. The fact that the first moments
of the sample and the distribution are matched, results in a more regular sample. This is exactly
the intuition behind antithetic variates.

4.3 Effective Dimension

The Paskov & Traub (1995) paper sparked a lot of interest because it showed that Sobol’ sequences
can and do outperform Monte Carlo methods even in up to 360 dimensional integration problems.
To explain the empirically observed fact that quasi-Monte Carlo methods can accurately estimate
high-dimensional integrals for practical sample sizes, Paskov (1997) introduced the notion of prob-
lem’s effective dimension. The basic argument is that the integrands encountered in finance have a
lower effective dimension than the actual dimension of the problem. However, while it is an inter-
esting and useful concept, recent research by Tezuka (2005) has shown that low effective dimension
is not even a necessary condition for quasi-Monte Carlo to outperform Monte Carlo.

Consider the integral I(f) in equation (4.1). When viewed as a function of independent random
variables, f(x) can be decomposed into “main effects”, “interactions” and “higher-order interac-
tions” (Efron & Stein 1981). The functional ANOVA decomposition of f is a decomposition of f
into orthogonal functions

f(x) =
∑

u⊆{1,...,d}

fu(x)

where u is a subset of {1, . . . , d} and fu(x) depends only on {xi, i ∈ u}. For the empty set ∅,
f∅(x) = µ, a constant. The random variables fu(x) are constructed to have a mean of zero and
be mutually uncorrelated, i.e.

∫
[0,1)d fu(x)dx = 0, u 6= ∅ and

∫
[0,1)d fu(x)fk(x)dx = 0, u 6= k. A

recurrence relationship for defining these functions is given by Owen (1998). The variance of f is

σ2
f =

∫

[0,1)d

(
f(x)− I(f)

)2
dx =

∑

u

∫

[0,1)d

(
fu(x) − I(f)

)2
dx =

∑

u

σ2
fu

which is reminiscent of the ANOVA in statistics, where the decomposition of the total sum of
squares is examined.

Caflisch et al. (1997) define effective dimension in the truncation sense as the smallest integer
dT such that ∑

u⊆{1,...,dT }

σ2
fu
≥ 0.99σ2

f

4The zeroth draw is a vector of zeros. It is removed because the uniform random numbers are used to simulate
a normal distributions using the inverse cumulative normal distribution function. This function is zero at minus
infinity.
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The choice of the 99’th percentile is arbitrary. The integer dT is interpreted as an indicator
of which variables are needed. In particular, if the first dT random variables, X1, . . . , XdT , are
uniformly distributed, approximation (4.2) should be good. In financial applications, frequently
all the variables are important. The effective dimension in the superposition sense is the smallest
integer dS such that ∑

0<|u|≤ds

σ2
fu
≥ 0.99σ2

f

where |u| is the cardinality of u. The integer dS indicates the size of the subsets that are significant
in the ANOVA decomposition - the function f is well approximated with a sum of 1 to dS-
dimensional functions. If the dS-dimensional projections of X1, . . . , Xd have low discrepancy, the
estimate of the integral should be accurate (Caflisch et al. 1997).

To further reduce the effective dimension, Brownian motion sample paths can be constructed
using a Brownian bridge. The Brownian bridge algorithm constructs paths using an initial point of
the process and a point at a terminal time T . The construction places most of the paths’ variance
in the first few steps. This implies that the variance will be determined by the first few dimensions
of a low-discrepancy sequence, which are well distributed.5

4.3.1 Brownian Bridge Construction

Brownian bridge is a technique for constructing Brownian motion paths. Let Wt be a Brownian
motion at time t ≥ 0. The Brownian bridge technique relies on the generation of Wtj given Wti

and Wtk
, ti < tj < tk. From the definition of conditional distributions, the conditional density f

of W = Wtj given Wti and Wtk
is

f(W |Wti = wti ,Wtk
= wtk

) =

1√
(2π)3|Σ3|

exp

{
− 1

2 (wti w wtk
)Σ−1

3

(
wti w wtk

)′
}

1√
(2π)2|Σ2|

exp

{
− 1

2 (wti wtk
)Σ−1

2 (wti wtk
)
′

}

where

Σ3 =




ti ti ti
ti tj tj
ti tj tk


 , Σ2 =

(
ti ti
ti tk

)

After considerable simplification, we can rewrite the conditional expectation as

f(W |Wti = wti ,Wtk
= wtk

) =
1√

2πσ2
exp

{
− 1

2σ2
(w − µ)2

}
(4.5)

where

σ2 =
(tk − tj)(tj − ti)

tk − ti
, µ =

(
tk − tj
tk − ti

)
wti +

(
tj − ti
tk − ti

)
wtk

For simulation purposes, the generation of Wtj , given realizations Wti = wti and Wtk
= wtk

,
ti < tj < tk, is given by the linear interpolation

Wtj =

(
tk − tj
tk − ti

)
wti +

(
tj − ti
tk − ti

)
wtk

+

√(
(tk − tj)(tj − ti)

tk − ti

)
Z (4.6)

where Z is a N(0, 1) random variable. It is easy to see that the interpolation (4.6) preserves the
conditional distribution (4.5).

Consider simulating a Brownian motion path over [0, T ], with n steps Wt1 , . . . ,Wtn . The
Brownian bridge algorithm first generates the endpoint Wtn =

√
TZ, where Z is a N(0, 1) random

variable, and then “fills in” the path, conditional on this realization. The next sample point is
Wt⌊n/2⌋

, generated using wt0 = 0 and the realized wtn . The sequence is generated in the following
order, using the closest two points to the one that is being generated

Wtn ,Wt⌊n/2⌋
,Wt⌊n/4⌋

,Wt⌊3n/4⌋
,Wt⌊n/8⌋

, . . .

5Note that this is not a universally more desirable construction. Papageorgiou (2002) demonstrated a case of a
digital option where the Brownian bridge construction performed worse than the standard construction of Brownian
motion.
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For example, if n = 10, the sequence will be generated in the following order

Wt10 ,Wt5 ,Wt2 ,Wt7 ,Wt1 ,Wt3 ,Wt6 ,Wt8 ,Wt4 ,Wt9

To understand how this approach to generating Brownian motion reduces the effective dimension,
recall that the standard way of generating Brownian motion is to generate Wtj given the realization
Wti = wti , ti < tj , as

Wtj = wti +
√

(tj − ti)Z (4.7)

where Z is a N(0, 1) random variable. Comparing the variance of (4.6) with (4.7), we see that the
variance of the latter approach is

(tj − ti) ≥
(tk − tj)(tj − ti)

tk − ti
Furthermore, most of the variance of the Brownian bridge path is contained in the first few steps.

4.4 Discretizations of the LIBOR Market Model

Forward LIBOR rates can be simulated under any of the forward measures or the spot measure. If
one of the forward measures is chosen, the derivative payoff will be normalized by the appropriate
zero-coupon bond. If the forward rates are simulated under the spot measure, the discretely
compounded money-market account will be used. When the simulated forward rates get very large,
the values of the zero-coupon bonds will become very small. This will result in the normalized
payoff values under the forward measure becoming very large. Under the spot measure, the value
of the money-market account is at least one. For this reason, Glasserman & Zhao (2000) found
that simulating forward rates under the spot measure leads to a smaller variance of the caplet
prices. To avoid the possible inflation of the variances of the estimators, we will always simulate
under the spot measure.

Recall that under the spot measure Q∗, the forward LIBOR rates satisfy equation (2.48)

dLi(t) = Li(t)λ(t, Ti) ·




i∑

j=η(t)

δjLj(t)λ(t, Tj)

1 + δjLj(t)
+ dWQ∗

t


 , 0 ≤ t ≤ Ti

for i = 1, . . . , n−1 and η(t) a left-continuous function, Tη(t)−1 ≤ t < Tη(t). The simplest simulation
scheme is the Euler scheme. The standard approach is to apply the Euler scheme to the log of the
forward rates, as this ensures that the forward rates remain positive. The Euler approximation has
a strong order of convergence of 0.5 (Kloeden & Platen 1999). In mathematical finance, we are
interested in calculating the derivative price as an expectation of the discounted terminal payoff.
This does not require pathwise approximation of the Itô processes but simply an approximation
of the terminal distribution of the underlying variables. The notion of weak convergence is more
relevant in this case. The Euler scheme has weak convergence of order 1.

Fixing a grid of times 0 = t0 < t1 < . . . < tm, most commonly taken to be the reset dates, the
Euler scheme, applied to logLi(t), is given by

L̃i(tk+1) = L̃i(tk) exp

{
i∑

j=η(tk)

δjL̃j(tk)λ(tk, Ti) · λ(tk, Tj)

1 + δjL̃j(tk)
(tk+1 − tk)

− 1

2
||λ(tk, Ti)||2(tk+1 − tk) +

√
tk+1 − tkλ(tk, Ti) · Zk+1

}
(4.8)

for i = 0, 1, . . . ,m − 1, where Z1, . . . ,Zm are independent d-dimensional standard multivariate
normal random variables.

The assumption of the Euler scheme (4.8) is that over the interval [tk, tk+1], the values of
Lj(t) and λ(t, Tj), j = η(tk), . . . , i, are approximately equal to their values at the beginning of
the interval, Lj(tk) and λ(tk, Tj). It is easy to relax the latter assumption of λ(t, Tj) ≈ λ(tk, Tj),
t ∈ [tk, tk+1] (see Hunter et al. (2001)). The former assumption of Lj(t) ≈ Lj(tk), t ∈ [tk, tk+1],
is the main source of error. The industry standard for improving the discretization error is not to
reduce the step size, but to use the methods of Glasserman & Zhao (2000) and Hunter, Jäckel &
Joshi (2001) which we now discuss.
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4.4.1 Arbitrage-free Discretization

Glasserman & Zhao (2000) regarded a discretization to be arbitrage-free if the discrete normalized
bond-prices are martingales. The discrete normalized bond-price processes are not necessarily
martingales for the discretization (4.8). Glasserman & Zhao (2000) proposed simulating suitable
martingales directly, and recovering forward LIBOR rates from these martingales.

Consider simulating over a grid of times 0 = t0 < t1 < . . . < tm. We define the discrete
normalized bond-price process,

{
Di(t1), . . . , Di(tm)

}
, for each i = 1, . . . , n, as

Di(tk) =

{
B(tk,Ti)
B∗(tk) 0 ≤ tk < Ti

1
B∗(Ti)

tk ≥ Ti
(4.9)

where B∗ is the simply compounded money-market account defined by equation (2.41). A simple
approach to keep the discretization arbitrage-free is to simulate the normalized bond-price process
itself. Glasserman & Zhao (2000) found that this approach results in approximately the same bias
as the Euler scheme application. Instead, they suggested simulating the following transformation

Vi(t) =
Di(t)−Di+1(t)

B(0, T1)

To find the dynamics of the process Vi(t) under Q∗, recalling equations (2.43) and (2.46) we have

dDi(t)

Di(t)
= −

i−1∑

j=η(t)

δjLj(t)λ(t, Tj)

1 + δjLj(t)
· dWQ∗

t (4.10)

The normalized bond-price process D1(t) is a constant D1(t) = B(0, T1), t ∈ [0, Tn], because the
value of the simply compounded money market account at t = 0 is one. For i = 2, . . . , n

Di(t) = Di−1(t)−B(0, T1)Vi−1(t)

= Di−2(t)−B(0, T1)Vi−2(t)−B(0, T1)Vi−1(t)

= D1(t)−B(0, T1) (V1(t) + · · ·+ Vi−1(t))

= B(0, T1)(1 − V1(t)− · · · − Vi−1(t)) (4.11)

Extend the definition of the forward LIBOR rates over the whole interval [0, Tn] by defining the
forward LIBOR rate after reset date to equal the reset rate i.e. Li(t) = Li(Ti) for t ∈ [Ti, Tn].
Then

δiLi(t) =
Di(t)−Di+1(t)

Di+1
=

Vi(t)

1− V1(t)− · · · − Vi(t)
(4.12)

Substituting equations (4.12) and (4.11) into (4.10), we obtain the dynamics of D in terms of V

dDi(t) = B(0, T1)(1− V1(t)− · · · − Vi−1(t))



−
i−1∑

j=η(t)

Vj(t)λ(t, Tj)

1− V1(t)− · · · − Vj−1(t)



 · dWQ∗

t

where 1− V1(t)− · · · − Vj−1(t) = 1 for j = 1. The dynamics of V , for i = 1, . . . , n− 1, are

dVi(t) = Vi(t)



 1− V1(t)− · · · − Vi(t)

1− V1(t)− · · · − Vi−1(t)
λ(t, Ti)−

i−1∑

j=η(t)

Vj(t)λ(t, Tj)

1− V1(t)− · · · − Vj−1(t)



 · dWQ∗

t

remembering the convention that 1− V1(t) − · · · − Vj−1(t) = 1 for j = 1 and that the empty sum
is zero. If the forward rates are non-negative, the zero-coupon bond prices will be non-increasing
functions of time-to-maturity, i.e. 0 ≤ Di+1(t) ≤ Di(t). From equation (4.11), we have

1− V1(t)− · · · − Vi(t)

1− V1(t)− · · · − Vi−1(t)
=
Di+1(t)

Di(t)
,

Vj(t)

1− V1(t)− · · · − Vj−1(t)
=
Dj(t)−Dj+1(t)

Dj(t)

Both of these quantities should not exceed 1 or be negative. To improve computational efficiency
in discrete time, Glasserman & Zhao (2000) suggested that these quantities are replaced by

γ

(
1− V1(t)− · · · − Vi(t)

1− V1(t)− · · · − Vi−1(t)

)
and γ

(
Vj(t)

1− V1(t)− · · · − Vj−1(t)

)

respectively, where γ(x) = min{1, x+}. This does not effect the continuous time limit. The process
V is simulated by applying an Euler discretization to logVi and the LIBOR rates are backed out
using equation (4.12).
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4.4.2 Predictor-Corrector Method

Hunter, Jäckel & Joshi (2001) proposed a very simple and effective algorithm for correcting the

state-dependent drift: evolve the rates according to (4.8) to obtain the predicted values L̃i(tk+1)
and recalculate the drift using these evolved LIBOR rates,

µ(tk)c =

i∑

j=η(tk)

δjL̃j(tk+1)λ(tk, Ti) · λ(tk, Tj)

1 + δjL̃j(tk+1)
(tk+1 − tk)

To “correct” the drift of the predicted values, average the initial and calculated drifts

µ(tk)pc =
1

2



µ(tk)c +

i∑

j=η(tk)

δjL̃j(tk)λ(tk, Ti) · λ(tk, Tj)

1 + δjL̃j(tk)
(tk+1 − tk)





Using the same random numbers, re-evolve the forward rates using the average drift µ(tk)pc

L̃i(tk+1) = L̃i(tk) exp

{
µ(tk)pc − 1

2
||λ(tk, Ti)||2(tk+1 − tk) +

√
tk+1 − tkλ(tk, Ti) · Zk+1

}

4.5 Numerical Results

Consider a three-factor LIBOR market model calibrated to the GBP market on 9 September 2005
(see Section 3.4.1). Cap prices are chosen as benchmark instruments because an explicit price for
these instruments is given by the Black formula. The instruments that we examine are six year
at-the-money, in-the-money and out-of-the-money caps. The grid of times that we simulate over
are the reset dates of the forward rates (23 timesteps). Hence the dimension of the problem is
23× 3 = 69 (23 timesteps and 3 factors).

In the first test we simulate forward rates under the spot measure using the standard discretiza-
tion (4.8). The normal random variates are generated using pseudo- and quasi-random numbers.
Figure 4.2 shows that for the six year at-the-money cap, Sobol’ sequences do not seem to outper-
form antithetic Monte Carlo. However, convergence to a stable value is achieved for a relatively
small number of sample paths. The same results were obtained when Sobol’ sequences were used
in conjunction with the Brownian bridge construction of Brownian motion.
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Figure 4.2: Comparison of Monte Carlo and quasi-Monte Carlo cap prices for a six year at-the-
money cap.

We now fix the sample size at 5,000 antithetic samples for pseudo-Monte Carlo and at 212−1 =
4095 samples for quasi-Monte Carlo. Define the error in cap price as

Error in price = Black price - Monte Carlo price
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Table 4.1 shows the cap price errors for a six year at-the-money, in-the-money and out-of-the-money
cap. The strike for in-the-money and out-of-the-money caps is the at-the-money strike minus 50
basis points and at-the-money strike plus 50 basis points respectively. The predictor-corrector
approach of Hunter et al. (2001) did not seem to make any visible difference to the standard
simulation approach. The Glasserman & Zhao (2000) approach resulted in a slight discretization
error reduction. Using the standard discretization (4.8) combined with Sobol’ sequences resulted
in the smallest cap price errors.

in-the-money at-the-money out-of-the-money

HJJ -2.7 -6.1 -4.7

GZ -3.5 -5.5 -3.7
Sobol’ -0.7 -3.5 -2.3

Table 4.1: Pricing errors for a six-year cap, in basis points, when the predictor-corrector approach
of Hunter et al. (2001) (HJJ), the arbitrage-free discretization approach of Glasserman & Zhao
(2000) (GZ) and the standard discretization combined with Sobol’ quasi-random numbers (Sobol’)
are used to evolve the forward rates.



Chapter 5

American Options

When its a question of money, everybody is of the same religion.

– Voltaire

American options grant the holder the additional right to exercise the option at any time up to
the expiry date. The holder of the option should choose their exercise strategy in such a way as to
optimize the expected discounted payoff of the option. At every point in time, the state space of the
underlying variable(s) can be divided into two regions: the continuation region, where it is optimal
to continue holding the option and the exercise region, where it is optimal to exercise the option.
The exercise region is closed while the continuation region is open. The boundary between these
two regions is termed the early exercise boundary or the optimal stopping boundary. American
option pricing problems are interesting and complicated because the early exercise boundary must
be determined as part of the solution.

The first analysis of this problem appeared in an appendix to Samuelson (1965), where Henry P.
McKean Jr. transformed the American option pricing problem into a free boundary problem. The
American option value and the early exercise boundary can be formulated as a solution to a system
of partial differential equations. This is known as a free boundary problem. McKean analyzed the
problem under the real-world probability measure, due to the fact that the paper was written
before the seminal works of Black & Scholes (1973) and Merton (1973), and before the discovery
of risk-neutral valuation. His analysis was extended by van Moerbeke (1976), who characterized
the price of an American option as a solution to a free boundary problem. A rigorous treatment of
the American option pricing problem using arbitrage arguments was given by Bensoussan (1984)
and Karatzas (1988, 1989). Myneni (1992) provided an excellent summary of these results. The
American option pricing problem is formulated in Section 5.1.

Explicit solutions for American option prices do not exist, except for special cases such as the
infinite time horizon problems, where the early exercise boundary degenerates to a constant. As
a result, numerical procedures have been developed to approximate values of American contin-
gent claims. For the purpose of pricing American options in the LIBOR market model, the only
numerical techniques of interest to us are those which are based on Monte Carlo simulation.

Numerical algorithms for pricing American options are typically based on dynamic program-
ming, applied backward-recursively from the final payoff. At expiry, the option value is equal to its
payoff. At every other exercise date, the option value is the maximum of the immediate exercise
value and the continuation value. This is the dynamic programming principle, explained in more
detail in Section 5.1. In contrast to this, Monte Carlo entails simulation of the underlying asset(s)
path(s) forward in time. Until recently, “conventional wisdom” advocated that this mismatch in
principle approach meant that pricing American derivatives using Monte Carlo was impossible.

In the mid 1990’s several authors challenged this conclusion. The first numerical technique
for pricing American options using Monte Carlo was proposed by Tilley (1993), who combined
dynamic programming with a partitioning algorithm. The so-called bundling algorithm partitions
the asset price state space by bundling similarly valued asset prices. The continuation value for each
bundle is estimated to be the discounted average of the option prices at the next exercise date. In an
extension, Barraquand & Martineau (1995) proposed an algorithm based on partitioning the payoff
space, the advantage being that the payoff space is one-dimensional irrespective of the dimension
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of the underlying state space. Boyle et al. (1997) provided a summary and comparison of these two
algorithms. While these papers were encouraging first steps, a paradigm shift only occurred when
the papers by Carriere (1996), Tsitsiklis & Roy (2001), Longstaff & Schwartz (2001), Ju (1998),
Andersen (2000) and Garćıa (2003) were written. The latter three authors approached the problem
of approximating the American option value by approximating the early exercise boundary using
a parametric form. The parameters of the early exercise boundary are estimated by maximizing
the option value over the relevant parameter space. This approach is examined in Section 5.2.
On other hand, the first three authors approached the problem by approximating the continuation
value of the option using a parametric form. Carriere (1996) approximated the continuation value
using nonparametric regression techniques while Tsitsiklis & Roy (2001) and Longstaff & Schwartz
(2001) used parametric regression. These regression-based algorithms are analyzed in Section 5.3.

Our opinion is that the ideas in the paper by Carriere (1996) have not been explored. Non-
parametric regression techniques are regarded as being very slow when compared to parametric
regression techniques. In Section 5.4 we examine penalized regression splines, an approach which
is only slightly slower than parametric regression, yet allows us to utilize the advantages of non-
parametric regression.

The accuracy of the regression-based Monte Carlo methods depends on the choice of predictor
variables. As an alternative to choosing appropriate predictor variables, which is not a trivial
exercise, we propose the sliced inverse regression technique in Section 5.5. The aim of sliced inverse
regression is to capture the main features of the data with a few low-dimensional projections. We
use this technique to identify the low-dimensional projections of the forward LIBOR rates and
subsequently estimate the continuation value of the option using nonparametric regression. In the
final section we compare the Bermudan swaption pricing results obtained using this approach to
those published in Andersen (2000).

5.1 Primal and Dual Problem Formulations

Consider an American option maturing at time T , written on some underlying Markov (vector)
process. We first fix some preliminary notation. Let ft and ζt be the intrinsic value and the value
of the numéraire at time t, respectively. The measure associated with the numéraire ζ is denoted
by Qζ . The normalized process ft/ζt is known as the discounted reward process.

Following Myneni (1992), from the general theory of optimal stopping, the Snell envelope J
of the discounted reward process is the smallest supermartingale which dominates the discounted
reward process. It is given by1

Jt = ess sup
τ∈St,T

EQζ

[
fτ

ζτ

∣∣∣Ft

]
, 0 ≤ t ≤ T (5.1)

where Su,v is a collection of stopping times τ of the filtration {Ft} with values in [u, v], {Ft}
being the augmented filtration generated by the underlying process. The optimal stopping time,
i.e. the solution to problem (5.1), is given by

τ∗t = inf

{
t ≤ u ≤ T

∣∣∣Ju =
fu

ζu

}
, 0 ≤ t ≤ T

It can be shown that the stopped process {Ju∧τ∗
t
, t ≤ u ≤ T } is a martingale.

Define a process V as Vt = ζtJt. Karatzas (1988), and later Myneni (1992), proved that V
perfectly hedges the American option, meaning that Vt ≥ ft for t ∈ [0, T ) and VT = fT , almost
surely. Consequently, the value of the American option cannot exceed V0. More importantly, these
authors also proved that, in an arbitrage-free market, V0 cannot exceed the value of the American
option. The value of the American option is thus equal to V0. The primal formulation of the
American option pricing problem is

V0

ζ0
= sup

τ∈S0,T

EQζ

[
fτ

ζτ

]

= EQζ

[
fτ∗

ζτ∗

]
(5.2)

1Given an arbitrary collection of measurable functions, F = {fi}i∈I , the function G(ω) = ess sup F is a measur-
able function which satisfies (i) G(ω) ≥ fi(ω) for all i ∈ I and ω ∈ Ω and (ii) for any function satisfying ϕ(ω) ≥ fi(ω)
for all i ∈ I and ω ∈ Ω, ϕ(ω) ≥ G(ω). The difference between a supremum and an essential supremum of a collection
of measurable functions is that an essential supremum is defined to be a measurable function.
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where the optimal stopping time is given by

τ∗ = inf
{
0 ≤ t ≤ T |Vt = ft

}
(5.3)

The primal formulation suggests that one can estimate the price of a derivative by approximating
the optimal stopping rule τ∗. The resulting estimate, for a finite sample size, will be biased low,
meaning that the expected value of the estimator is less than or equal to the true option value.
The reason for this bias is that any stopping rule cannot be better than the optimal stopping rule.

To implement Monte Carlo based numerical methods, one needs to replace the continuous
exercise feature of American options with a finite set of exercise times. Options that can be
exercised at a discrete set of times are known as Bermudan options. By discretizing the continuous
exercise feature of American options, we are approximating the American option price with a
Bermudan option price.

A solution of the discrete optimal stopping problem can be obtained using the dynamic pro-
gramming principle. Consider a Bermudan derivative with m exercise times, T = {t1, . . . , tm},
where 0 = t0 ≤ t1 < . . . < tm = T . The primal formulation of the Bermudan option pricing
problem is given by equation (5.2) where now S0,T is the set of stopping times taking values in T

and τ∗ = inf{ti ∈ T |Vti = fti}. Lamberton & Lapeyre (1996) provided a detailed examination of
the Snell envelope in discrete time. In particular, they showed that the Bermudan price process
V = {Vti , i = 0, . . . ,m} is given by the following dynamic programming formulation

Vtm = ftm

Vti = max

{
fti , EQζ

[
ζti

ζti+1

Vti+1

∣∣∣Fti

]}
, for i = 1, . . . ,m− 1 (5.4)

Vt0 =
ζt0
ζt1
Vt1

The conditional expectation in recursion (5.4) is known as the continuation value or the holding
value. The dynamic programming formulation states that at every exercise time, the option value
is equal to the maximum of immediate exercise value and the continuation value. In the following
sections we examine the possible approaches for estimating the continuation value.

As mentioned previously, the American option price estimates for a finite sample size are gen-
erally biased low. One requires a method to assess the accuracy of the lower bound approximation.
Rogers (2002) constructed a so-called dual formulation of the American option pricing problem.
The dual formulation was introduced independently and simultaneously by Haugh & Kogan (2004),
in an earlier working paper version of this reference. Let Ψ be the space of Qζ-martingales M sat-
isfying sup0≤t≤T |Mt| ∈ L 1, that are null at 0. Then, for M ∈ Ψ

V0

ζ0
= sup

τ∈S0,T

EQζ

[
fτ

ζτ
−Mτ +Mτ

]

= sup
τ∈S0,T

EQζ

[
fτ

ζτ
−Mτ

]
+M0

≤ EQζ

[
sup

0≤t≤T

(
ft

ζt
−Mt

)]

where the second equality is the Optional Sampling Theorem and the last inequality is Jensen’s
inequality. Since M ∈ Ψ was chosen arbitrarily

V0

ζ0
≤ inf

M∈Ψ

{
EQζ

[
sup

0≤t≤T

(
ft

ζt
−Mt

)]}

This is an infinite-dimensional minimization problem over a space of martingales. What is quite
remarkable is that the relationship holds with equality for a special martingale. The normalized
American option price process V/ζ is a Snell envelope, which has a Doob-Meyer decomposition2

Vt

ζt
=
V0

ζ0
+Nt −At (5.5)

2The Snell envelope is a càdlàg supermartingale with the relevant integrability properties to admit a Doob-Meyer
decomposition. It is regular and of class D - see Karatzas & Shreve (1991) and Myneni (1992) for details.
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where N is a square-integrable martingale and A is a continuous non-decreasing process, both
processes being null at 0. Now

inf
M∈Ψ

{
EQζ

[
sup

0≤t≤T

(
ft

ζt
−Mt

)]}
≤ EQζ

[
sup

0≤t≤T

(
ft

ζt
−Nt

)]

≤ EQζ

[
sup

0≤t≤T

(
Vt

ζt
−Nt

)]

= EQζ

[
sup

0≤t≤T

(
V0

ζ0
−At

)]

=
V0

ζ0

so that when the martingale part of the normalized American option price process is used, the
infimum is attained. The dual formulation of the American option pricing problem is

V0

ζ0
= inf

M∈Ψ

{
EQζ

[
sup

0≤t≤T

(
ft

ζt
−Mt

)]}

where the infimum is attained by the martingale part of the Doob-Meyer decomposition of the
normalized American option price process.

The dual formulation suggests that an upper bound for the option price can be computed from
an arbitrary martingale M ∈ Ψ. However, to produce a tight bound we need to find a “good”
martingale. Rogers (2002) suggested that as an approximation to the optimal martingale, one
should use the martingale part of the corresponding European option. A natural way to define the
martingale part M of a European option price process V E is to set

Mt =
V E

t

ζt
− V E

0

ζ0

However the main difficulty of calculating an upper bound for the option price remains choosing a
suitable martingale. Haugh & Kogan (2004) and Andersen & Broadie (2004) suggested an alterna-
tive approach to calculating an upper bound for the option price. The method uses the calculated
lower bound to extract the martingale component of the approximated normalized American op-
tion price process. These methods are computationally very intensive. Jensen & Svenstrup (2005)
discussed approaches for enhancing the numerical efficiency of these algorithms.

5.2 Parametric Early Exercise Boundary

It has been observed (Ju 1998) that the value of American equity options is not very sensitive
to the exact position of the early exercise boundary. This suggests that one can accurately price
American options by approximating the boundary using a parametric function, such as piecewise
linear or piecewise exponential. The parameters of the early exercise boundary are estimated by
maximizing the option value over the relevant parameter space. Garćıa (2003) proved that the
value of an American option with a parametric early exercise boundary converges to an optimal
value within the parametric class. Again, as any stopping rule cannot be better than the optimal
stopping rule, this approach underestimates the option value.

Following Garćıa (2003), we now state the problem formally. Consider an underlying Markov
vector process X = {Xt ∈ Rn, 0 ≤ t ≤ T }. Approximate the optimal stopping time τ∗, defined in
equation (5.3), by

τ∗(θ) = inf
{
0 ≤ t ≤ T |Xt ∈ Et(θ)

}

where Et(θ) is the closed subset of Rn where early exercise is optimal at time t (the exercise region),
parameterized by θ ∈ Θ ⊂ Rk, for some constant k. An estimate of the optimal option value within
the parametric class provides an estimate of the American option price.

The optimal option value within the parametric class is given by

V p
0 = ζ0 sup

θ∈Θ

{
EQζ

[
fτ∗(θ)

ζτ∗(θ)

]}

The algorithm for estimating V p
0 is straightforward. We simulate a set of m sample paths of the

underlying vector process. Given an initial guess of the parameter values θguess, we calculate the
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American option value using the simulated paths and the early exercise boundary at parameter
θguess. This option value is given by

ζ0

(
1

m

m∑

i=1

fτ∗(θguess)(ωi)

ζτ∗(θguess)(ωi)

)
(5.6)

where fτ∗(θguess)(ωi) and ζτ∗(θguess)(ωi) are the intrinsic value and the value of the numéraire re-
spectively, at the exercise time of the i’th sample path. The parameter values θguess are then
varied using a multidimensional optimization algorithm until the maximum option value is found.
Garćıa (2003) suggested the simplex method for the optimization, details of which can be found
in Press et al. (2002). Fortunately, the optimization problem frequently decomposes into a series
of subproblems, which allows one to avoid the suggested high-dimensional “brute-force” approach.
We shall see an example of this in Subsection 5.2.1.

Once the optimal parameter values θopt, and hence the early exercise boundary is estimated,
another set of sample paths, independent of the first set, is simulated. An approximate American
option value is determined using the second set of sample paths and the estimated early exercise
boundary. The reason that we do not price the option using the same set of sample paths that
were used to estimate the early exercise boundary is due to mixing of bias. To understand this,
suppose that we approximate the American option value using the same set of m sample paths that
were used to the calculate the optimal parameter values θopt. Then the estimator of the American
option value is

ζ0 max
θ∈Θ

(
1

m

m∑

i=1

fτ∗(θ)(ωi)

ζτ∗(θ)(ωi)

)
= ζ0

(
1

m

m∑

i=1

fτ∗(θopt)(ωi)

ζτ∗(θopt)(ωi)

)
(5.7)

Jensen’s inequality states that for a convex function u and a random variable X with a finite mean,
E[u(X)] ≥ u(E[X ]). Hence the expected value of estimator (5.7) is greater than or equal to optimal
value within the parametric class V p

0 , because the maximum function is convex. However, as V p
0 is

less than or equal to the American option value, the overall bias of estimator (5.7) is unknown. To
ensure that the estimator is biased low, we use a second set of sample paths to approximate the
American option value.

When the underlying process is multidimensional, it becomes even more difficult to determine
the structure of the early exercise region. In those situations, the current approach is fruitful
only if we have a financial understanding of what determines the early exercise decision. In the
LIBOR market model, the number of state variables is equal to the number of forward rates being
modelled. The dimension of the problem can sometimes be reduced by recognizing that the exercise
decision depends mainly on a one-dimensional function of the state vector rather than the state
vector itself. We now examine the application of the parametric early exercise boundary approach
to pricing Bermudan swaptions in the LIBOR market model.

5.2.1 Application: Bermudan Swaption Pricing

Bermudan swaptions are one of the most liquid exotic interest rate derivatives. It is important to
have an accurate and efficient algorithm to price these instruments in the LIBOR market model.

A payer (receiver) Bermudan swaption provides the holder with the option to enter into a payer
(receiver) interest rate swap. Two dates characterize a Bermudan swaption: the lockout date Tloc,
the date before which one cannot exercise the option and the maturity date of the underlying swap,
Tend. The Bermudan swaption can be exercised on the reset dates of the underlying swap. By
exercising a payer Bermudan swaption at time Tex, where Tloc ≤ Tex < Tend, the holder enters
into a payer swap maturing at time Tend. This is called the Tend no-call Tloc (TendNCTloc) payer
Bermudan swaption.

Let us fix some notation. Consider a European payer swaption maturing at Tp, written on a
forward swap, with coupon κ, also starting at Tp, with maturity date Tq. Denote the value of this
option by PSp,q(t), 0 ≤ t ≤ Tp. This payer swaption gives the owner the right to enter into an
interest rate swap to pay the fixed rate κ at times Tp+1, . . . , Tq, and receive the floating LIBOR
rate corresponding to that tenor. Let the value of the corresponding TqNCTp Bermudan swaption
be BSp,q(t). All the dates Tp, . . . , Tq−1 coincide with the reset dates of the forward LIBOR rates.

At each exercise date, the decision to exercise the Bermudan swaption will depend on the values
of the forward rates underlying the interest rate swap. However, Andersen (2000) noted that the
exercise decision relies mainly on the values of the still-alive European swaptions. In particular,
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by no-arbitrage arguments, the value of a Bermudan swaption can never be less than the most
expensive European swaption component. Andersen (2000) assumed that the early exercise rule
is a function of the still-alive European swaptions and a single, time-dependent parameter. Thus,
at each exercise date Ti, Ti ∈ {Tp, Tp+1, . . . , Tq−1}, the early exercise boundary is parameterized
by a single parameter θTi . In particular, Andersen (2000) proposed three early exercise rules. The
simplest early exercise rule is to exercise the Bermudan swaption at time Ti if the intrinsic value
is above some level θTi

fTi > θTi (5.8)

where the intrinsic value fTi is the value at time Ti of a European swaption maturing at Ti,
PSi,q(Ti). A more complex (and more realistic) exercise rule is to exercise the Bermudan swaption
at time Ti if the intrinsic value is above some level θTi and the intrinsic value is larger than the
most expensive still-alive European swaption

fTi > θTi and fTi > max
j=i+1,...,q−1

{
PSj,q(Ti)

}
(5.9)

The final proposed exercise rule is to exercise the Bermudan swaption at time Ti if the intrinsic
value is above some level θTi plus the value of the most expensive still-alive European swaption

fTi > θTi + max
j=i+1,...,q−1

{
PSj,q(Ti)

}
(5.10)

The three early exercise rules (5.8), (5.9) and (5.10) reduce the problem of estimating a high-
dimensional early exercise boundary to a series of recursive low-dimensional optimization prob-
lems. The vector of parameters θ = (θTp , θTp+1 , . . . , θTq−1)

′ is found using the following recursive
procedure. We simulate a set of forward rate sample paths. At the final exercise date Tq−1, the
Bermudan swaption will be exercised if the consequential FRA is in-the-money. This means that
we set θTq−1 = 0 (in any of the three formulations stated above). The value of θTq−2 is then calcu-
lated to maximize the value of the Bermudan swaption at time Tq−2.

3 This backward procedure
is repeated until θTp is found.

Interestingly, Andersen (2000) found that, when pricing using strategy (5.8), the dependence
of the Bermudan swaption prices on the exact location of the early exercise boundary is quite
weak. As a result, the early exercise boundary can be estimated using only a small number of
simulations. Once the early exercise boundary is estimated, the Bermudan swaption price can be
estimated using a new set of simulations. This ensures that the estimate is biased low. The number
of simulations used to value the Bermudan swaption is typically much larger than the number of
simulations used to determine the early exercise boundary.

Andersen (2000) performed various tests using additional time-dependent parameters. The
tests indicate that one parameter specification produces accurate results and that strategy (5.10)
outperforms the other two strategies. However, both strategy (5.9) and strategy (5.10) are compu-
tationally burdensome because they require approximation of all the still-alive European swaption
prices. Jensen & Svenstrup (2005) noted that the most valuable swaption is almost always the
first to mature, because its underlying swap is the longest. They proposed that the maximum
of the still-alive European swaptions, maxj=i+1,...,q−1{PSj,q(Ti)}, in equations (5.9) and (5.10) be
approximated by the value of the first European swaption PSi+1,q(Ti). Finally we note that an
alternative parametrization of the early exercise rule has been proposed by Jäckel (2002) that does
not require approximation of European swaption prices at all. Instead, the exercise rule is param-
eterized as a function of the difference between the first forward rate and the forward swap rate
starting at the next reset date. The financial intuition behind this choice is that the short rate and
the long swap rate are good proxies for the slope and the level of the yield curve, respectively.

To conclude, the Bermudan swaption pricing problem has a rich structure which allows the use
of the parametric early exercise boundary approach. In the following section we will review an
alternative valuation approach: The least-squares Monte Carlo proposed by Longstaff & Schwartz
(2001). When pricing Bermudan swaptions, Jäckel (2002) stated that the approach of Andersen
(2000) was superior to the approach of Longstaff & Schwartz (2001). The main contribution
of Longstaff & Schwartz (2001) is the ease of use of least-squares Monte Carlo to price path-
dependent products when there are multiple driving factors, and when stochastic variables follow
general stochastic processes.

3The value of the Bermudan swaption at Tq−2 is estimated as the average of the sample Bermudan swaption
values, these being the intrinsic (if exercise occurs) or the present value of the terminal payoff (if no exercise occurs).
The exercise rule at Tq−2 is determined by θTq−2

, a parameter that we are calculating. Andersen (2000) suggested
the golden section algorithm be used for the optimizations.
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5.3 Parametric Continuation Value

The dynamic programming formulation for the Bermudan option price, equation (5.4), relies on
the estimation of the continuation value. This conditional expectation can be interpreted as the
best prediction of the discounted Bermudan option value one time-step ahead given the current
market conditions. Regression estimation is a statistical technique for predicting the value of one
(response) variable given the values of other (predictor) variables. Carriere (1996), Tsitsiklis & Roy
(2001) and Longstaff & Schwartz (2001) proposed the use of regression techniques for estimation
of continuation values in the Monte Carlo framework.

5.3.1 Parametric Regression

Regression estimation is one of the most commonly used statistical techniques. It is believed that
it was first thought of by Galileo Galilei in 1632, when he constructed a procedure which can
be interpreted as fitting a linear relationship to contaminated observed data (Györfi et al. 2002).
Regression estimation is a set of techniques that are used to predict the value of the response
variable Y ∈ R given the value of a random vector X ∈ Rn. The problem is to find a measurable
function f : Rn → R, such that, typically, the squared error E

[
(f(X)− Y )2

]
is minimized. The

minimum is achieved when f(x) = E(Y |X = x) (Grimmett & Stirzaker 2001, page 346). The
conditional mean is denoted by m(x) = E(Y |X = x) and is termed the regression function. The
aim of regression estimation is to use the data to estimate the regression function.

The classical approach to estimating a regression function is to assume that the structure of
the regression function is known and takes a certain parametric form. This is known as parametric
regression. The most frequently encountered example of parametric regression is linear regression

m(x) = β0 +

n∑

i=1

βi xi (5.11)

where x = (x1, . . . , xn)′ and β = (β0, . . . , βn)′ is a vector of regression coefficients. In many cases,
the relationship between the response and the predictor variables is not linear. A popular approach
for capturing nonlinearities in the data is to generalize the above model to

m(x) = β0 +

k∑

i=1

βi ψi(x) (5.12)

where ψi : Rn → R is a transformation of the inputs. Typical examples of the functions ψ are
linear, polynomial and trigonometric expansions. Formulation (5.12) is flexible and, given that the
structure of the data is known, parametric regression can capture many nonlinearities in the data.
The regression coefficients β = (β0, β1, . . . , βk)

′
are estimated using the principle of least squares

β̂ = argmin
β∈Rk+1





1

m

m∑

j=1

(
yj − β0 −

k∑

i=1

βi ψi(xj)

)2


 (5.13)

where {(xj , yj), j = 1, . . . ,m} is the observed dataset. The solution to problem (5.13) is the least
squares estimator

β̂ =
(
ψ(X)′ψ(X)

)−1
ψ(X)′y (5.14)

where ψ(X) = (1 ψ1(X) ψ2(X) . . . ψk(X)), ψ1(X) = (ψ1(x1), . . . , ψ1(xm))′ and y = (y1, . . . , ym)′.
Problems encountered in mathematical finance typically require only a small number of functions
ψ. As such, the sample size does not have to be very large for a reliable estimate β̂.

The main drawback of parametric regression is that the best estimate of the regression function
is restricted to the closest function with the specified parametric form.

5.3.2 Least Squares Monte Carlo

A method that has become very popular with practitioners for pricing Bermudan instruments in
the LIBOR market model is the least squares Monte Carlo (LSMC) method proposed by Longstaff
& Schwartz (2001). The LSMC approach uses parametric regression techniques to estimate the
continuation value.
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We first present the mathematical underpinnings of the LSMC approach. Recall the dynamic
programming formulation (5.4). Suppose that the conditional expectation

Cti = EQζ

[
ζti

ζti+1

Vti+1

∣∣∣Fti

]

for i = 1, . . . ,m− 1 belongs to a (Hilbert) space of square integrable functions. The Hilbert space
representation states that such a function can be represented as a linear combination of basis
vectors for the space (Royden 1968, page 212)

Cti =

∞∑

v=0

βvψv (Xti)

where X = {Xtj ∈ Rn, j = 0, . . . ,m} is the underlying Markov chain and {ψv}∞v=0 forms a basis.
Longstaff & Schwartz (2001) approximated the continuation value using the first M terms

Cti ≈
M−1∑

v=0

βvψv (Xti)

The choice of basis functions ψ can be different at each time-step ti. We suppress this dependence
for notational simplicity. The suggested basis functions are polynomials such as Laguerre, Hermite
or Legendre, although in practice simple monomials are frequently used. When pricing an American
put option, numerical studies conducted by Moreno & Navas (2003) resulted in many different
polynomials yielding almost identical prices.

We now refer to the LSMC algorithm. Consider a Bermudan derivative with m exercise times,
T = {t1, . . . , tm}, where 0 = t0 ≤ t1 < . . . < tm = T . We simulate a set of independent paths of
the underlying process. Using the dynamic programming algorithm, at the terminal time we set
the estimated option value to equal to the intrinsic value (for each path)

V̂tm = ftm

We now apply backward induction. At time tm−1, we choose lm−1 basis functions ψ1, . . . , ψlm−1 .
Regression coefficients β = (β1, . . . , βlm−1)

′ are estimated using the principle of least squares,
equation (5.14). Longstaff & Schwartz (2001) suggested that only the paths for which the option
is in-the-money at time tm−1 be used in the regression. This allows for better estimation of the
function in the in-the-money region, where exercise matters. A natural estimate of the option value
at time tm−1, for each sample path, is the estimator

V̂tm−1 = max
{
ftm−1 , Ĉtm−1

}

= max




ftm−1 ,

lm−1∑

v=1

β̂vψv

(
Xtm−1

)



 (5.15)

This is the approach suggested by Tsitsiklis & Roy (2001). Longstaff & Schwartz (2001) proposed
using the realized option value instead of the estimated conditional expectation

V̂tm−1 =






ftm−1 if ftm−1 ≥
lm−1∑

v=1

β̂vψv

(
Xtm−1

)

ζtm−1

ζtm

Vtm if ftm−1 <

lm−1∑

v=1

β̂vψv

(
Xtm−1

)

Either way, the procedure is repeated recursively until the first exercise date is reached. To ensure
that the estimator is biased low, once all the regression coefficients are generated, a new set of
sample paths can be simulated to approximate the value of the Bermudan option.

The LSMC algorithm involves two approximations. Firstly, the continuation value is approx-
imated by projections onto a finite number of functions. Secondly, least-squares regression using
simulated sample paths is used to estimate these projections. Clément, Lamberton & Protter
(2002) and Stentoft (2004) proved the convergence of the Longstaff & Schwartz (2001) approach.
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Choice of Basis Functions

The choice of basis functions when pricing Bermudan derivatives in the LIBOR market model is
crucial. Longstaff & Schwartz (2001) considered the pricing of Bermudan swaptions in a class of
models called string models with deterministic zero-coupon bond price volatility functions. This
is in contrast to the LIBOR market model, where discrete forward rate volatility functions are
deterministic. However, there is often equivalence between these models and the LIBOR market
model, as shown by Kerkhof & Pelsser (2002).

At each exercise date of the Bermudan swaption, Longstaff & Schwartz (2001) used the following
set of basis functions: 1 (for the intercept), the still-alive zero-coupon bonds, the underlying
swap rate and the underlying swap rate squared and cubed. The problem with this choice of
basis functions is that they are highly correlated, leading to possible multi-collinearity problems.
Numerical inaccuracies could arise due to almost singular matrices, and the estimation of regression
parameters (5.14) becomes more difficult. In practice, for Bermudan swaptions, the net present
value of the underlying swap is typically taken to be the single explanatory variable.

For general Bermudan derivative pricing, Piterbarg (2004) stated that almost universally, the
two most useful variables are the ones representing the level and the slope of an interest rate curve.
The proxy for the former is the “core” swap rate, defined by Piterbarg (2004) as the rate that fixes
on the exercise date of the option and matures when the whole deal matures. The proxy for the
slope of the interest rate curve is taken to be the six-month or one-year LIBOR rate that fixes on
the exercise date.

To conclude, parametric regression-based Monte Carlo methods are a flexible approach to pric-
ing Bermudan options using Monte Carlo simulation. The choice of basis functions, which is not a
trivial exercise, determines the accuracy of this approach.

5.4 Nonparametric Continuation Value

The LSMC approach presented in the previous section relies on both the appropriate choice of pre-
dictor variables and the appropriate choice of a parametric relationship between the response vari-
able and the predictor variables. The number of exercise times for a Bermudan option is typically
too large for one to examine the quality of the regressions at each time-step. When a parametric
structure of the regression function is not known, flexibility can be gained using nonparametric re-
gression function estimation. The estimation of continuation value using nonparametric regression
was proposed by Carriere (1996). Following Györfi et al. (2002), we present the “four paradigms”
of nonparametric regression. In particular, we focus on the penalized regression splines approach,
which is both flexible and, more importantly, computationally fast.

5.4.1 Paradigms of Nonparametric Regression

In contrast to parametric regression techniques, nonparametric regression does not assume a global
functional form of the relationship between the response variable and the predictor variables.
Instead it “allows” the data to determine the regression function.

Suppose that we are given a dataset {(xi, yi), i = 1, . . . ,m}. A simple and intuitive approach
for estimating the conditional expectation of Y , given a point X = x is to average the observed yi’s
whose corresponding xi’s are close to x in some metric. This is known as local averaging. Local
averaging methods were first introduced in the 1960’s by Loftsgaarden & Quesenberry (1965). They
proposed the k-nearest neighbors (k-NN) estimator

m̂(x) =

m∑

i=1

wi(x) yi

where the weights wi(x) are either 1, if xi is one of the k points closest to x in the Euclidean
metric, or 0, otherwise.4 The smoothness of the resulting regression curve is controlled by the
parameter k. This estimator led to the partitioning estimator, where the state space of X, i.e. Rn,

4An important question that arises in nonparametric regression is whether the estimators are universally con-
sistent, meaning that the estimates are valid for all distributions and as the sample size increases the estimator
converges to the conditional expectation. Precise definitions of consistent estimators, as well as the consistency
proofs, are provided in Györfi et al. (2002).
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is partitioned into p sets P = {P1, P2, . . . , Pp} and the regression function is estimated by

m̂(x) =

∑m
i=1 1{xi∈Pj} yi∑m

i=1 1{xi∈Pj}
for x ∈ Pj (5.16)

where 1A is the characteristic function of a set A and m̂(x) = 0 if the denominator is zero.
An extension of the partitioning estimate is the Nadaraya-Watson kernel regression estimator

(Nadaraya 1964, Watson 1964)

m̂(x) =

∑m
i=1K

(
x−xi

h

)
yi∑m

i=1K
(
x−xi

h

)

where m̂(x) = 0, if the denominator is zero, and K : Rn → R+ is a kernel function, used to control
the influence of points close to and far away from x. Typically the kernel function is chosen to have
either compact support or to be a quickly decaying function. An example of the kernel function is
the Epanechnikov kernel K(x) = max{1 − ||x||2, 0}. The constant h > 0 is called the bandwidth,
a number which controls the size of the neighborhood over which the averaging is taken. It can be
shown (Györfi et al. 2002) that this kernel estimator is locally fitting a constant to the data

m̂(x) = argmin
β∈R

{
1

m

m∑

i=1

K

(
x− xi

h

)
(yi − β)2

}

While various kernel functions K have been proposed, Fan (1992) demonstrated that the Nadaraya-
Watson kernel regression estimator suffers from severe (asymptotic) bias. A generalization of local
averaging that eliminates this problem is local modelling. The idea behind local modelling is that
instead of locally fitting a constant, we fit a more general function. From a Taylor expansion,
we know that any smooth function can be represented by a low-degree polynomial in a small
neighborhood. The most widely used algorithm for fitting a low-degree polynomial locally is
the LOcally WEighted Scatter plot Smoothing (LOWESS) proposed by Cleveland (1979) and its
extension LOESS by Cleveland & Devlin (1988). Analysis of these procedures is given by Fan &
Gijbels (1996). We will not examine local polynomial regression as it is computationally a relatively
slow procedure.

The third paradigm of nonparametric regression, global modelling, is based on the fact that the
regression function m(x) satisfies

E
[
(m(X)− Y )2

]
= inf

f :Rn→R
E
[
(f(X)− Y )2

]

The infimum is taken over all measurable functions f : Rn → R. An estimate of the L 2 error of a
function f is

Ê
[
(f(X)− Y )2

]
=

1

m

m∑

i=1

|f(xi)− yi|2

The idea behind global modelling is to search for a function that minimizes the square error. The
regression function is estimated as

m̂(·) = argmin
f∈F

{
1

m

m∑

i=1

|f(xi)− yi|2
}

where F is a class of functions, typically a set of piecewise polynomials with respect to some
partition P = {P1, P2, . . . , Pp} of Rn.5 However, the selection procedures for the partitions can be
cumbersome. The penalized regression splines method that we present in the following subsection
is a global modelling technique which circumvents this problem of partition selection.

Finally we mention the penalized modelling approach, an alternative to global modelling that
does not restrict the class of functions. Instead, the idea is to penalize for overparametrization or
the “roughness” of the function. These approaches were explored in Green & Silverman (1994).

5We cannot minimize over all measurable functions, because this leads to a function that interpolates the data.
One needs to restrict the choice of functions. This choice may depends on the data and on the sample size.
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5.4.2 Penalized Regression Splines

Penalized regression splines were introduced by Ruppert & Carroll (1997) and made computation-
ally efficient by Ruppert (2002). In this section we present the methodology for the univariate case.
The extension to the multivariate case is the tensor product penalized regression splines (Ruppert
& Carroll 1997). We discuss the problems associated with multivariate nonparametric regression
techniques in the following section.

Consider the problem of estimating the regression function m(x) = E(Y |X = x) where X is
univariate. The regression function can be estimated using a regression spline of degree p

m(x) = β0 + β1x+ . . .+ βpx
p +

K∑

k=1

βp+k(x− κk)p
+ (5.17)

where p ≥ 1 is an integer, the function (x)p
+ = (max{x, 0})p, κ1 < . . . < κK are fixed knots

and β = (β0, . . . , βp+K)′ is a vector of regression coefficients. This produces functions that are
piecewise polynomials of degree p between the knots and joined up by continuity of p − 1 at the
knots. The number and location of the knots controls the degree of smoothness of the regression
function. The knots are typically placed at locations where the curvature of the function changes.

Ruppert & Carroll (1997) suggested that instead of using automatic knot selection procedures,
which are very time-consuming, one keeps a fixed number of knots but limits their influence by
shrinking the relevant regression coefficients. This approach renders the exact location of the knots
not as crucial. The authors recommend setting 5 ≤ K ≤ 40 and letting the knots be the equally
spaced sample quantiles i.e. κk is the k/(K + 1)’th sample quantile of the predictor variable.

Given a data-set {(xi, yi), i = 1, . . . ,m}, let y = (y1, . . . , ym)′ and let X be the design matrix
for the regression spline

X =




1 x1 . . . xp
1 (x1 − κ1)

p
+ . . . (x1 − κK)p

+
...

...
...

...
...

1 xm . . . xp
m (xm − κ1)

p
+ . . . (xm − κK)p

+




The least-squares estimate of the regression coefficients is

β̂(α) = argmin
β∈Rp+1+K

{
||y −Xβ||2 + α

K∑

k=1

ρ(βp+k)

}
(5.18)

where ρ is a nonnegative function α is a smoothing parameter. The larger α is, the smaller
the estimate of the regression coefficients {βp+k}k=1,...,K . This means that the regression spline
approaches a global pth degree polynomial fit as α → ∞. When the penalty function ρ(x) = x2,
the least-squares estimate of the regression coefficients is

β̂(α) = argmin
β∈Rp+1+K

{
||y −Xβ||2 + αβ′Dβ

}
(5.19)

where D is a diagonal matrix with the first (1 + p) diagonal elements equal to 0, and remaining
diagonal elements equal to 1. The explicit solution of equation (5.19) is given by

β̂(α) = (X′X + αD)
−1

X′y (5.20)

The quality of the regression function estimate relies on an appropriate selection of the smoothing
parameter α. Ruppert & Carroll (1997) stated that if the smoothing parameter is selected appro-
priately and if p ≥ 2, different values of K produce similar regression function estimates. Thus the
choice of α is much more crucial than either the choice of the degree p of the polynomial basis or
the number and location of the knots.

The appropriate choice of α is one that leads to a “good fit”. From standard regression theory,
we know that the quality of the regression is judged by the residual sum of squares

RSS(α) = ||y − ŷ(α)||2

where ŷ(α) = Xβ̂(α). This criterion cannot be used directly to choose α, because direct mini-
mization of the residual sum of squares favours functions that interpolate the data. Ruppert &
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Carroll (1997) suggested the use of the generalised cross-validation (GCV) statistic. When applied
to bandwidth selection in kernel regression, GCV leads to highly variable choices of smoothing
parameters and has a tendency to undersmooth (Hurvich, Simonoff & Tsai 1998). We will use the
corrected Akaike’s information criterion (AICC) proposed by Hurvich et al. (1998). Let

H(α) = X (X′X + αD)
−1

X′

be the hat matrix, also known as the smoother matrix. The former name stems from the fact that
the hat matrix puts a hat on y , ŷ = H(α)y. The AICC is given by

AICC = 2 log
(
||y −H(α)y||

)
+

2
{
tr (H(α)) + 1

}

m− tr (H(α))− 2
(5.21)

The value of α is chosen to minimize the corrected Akaike’s information criterion. Following
Ruppert (2002), we choose the default grid of 100 equally spaced values between -10 and 12 of
log10(α). If the corrected Akaike’s information criterion is minimized at the endpoints, then the
grid is expanded at that end.

Demmler-Reinsch Algorithm

We choose the smoothing parameter α by computing the corrected Akaike’s information criterion
for a range of α values and choosing the one that minimizes this criterion. This requires ma-
nipulation of the matrices H in equation (5.21), a procedure which is in general both costly and
numerically unstable. To eliminate both of these problems, Ruppert (2002) proposed a variation
of the Demmler-Reinsch algorithm.

Consider β̂(α) as defined in equation (5.20). If X′X is symmetric and positive definite,6 then
it admits the Cholesky factorization

X′X = B−1B−T

where B−1 is a unique lower triangular m×m matrix, with positive diagonal elements (Golub &
Van Loan 1996). Construct a symmetric matrix BDBT and its singular value decomposition

BDBT = UCU′

where U is orthogonal and C is a diagonal matrix. This implies that D = B−1UCU′B−T, because
the inverse of the transpose is the transpose of the inverse. Hence

H(α) = X
(
X′X + αD

)−1
X′

= X
(
B−1B

−T
+ αB−1UCU′B−T

)−1

X′

= X
(
B−1U (I + αC)U′B−T

)−1
X′

= X
((

U′B−T
)−1

(I + αC)
−1 (

B−1U
)−1
)
X′

= X (B′U) (I + αC)
−1

U′BX′

= Z (I + αC)
−1

Z′

where Z = X (B′U). Finally, since Z′Z = U′BX′X (B′U) = I

trace(H(α)) = trace
(
Z (I + αC)−1

Z′
)

= trace
(
(I + αC)

−1
Z′Z

)

= trace
(
(I + αC)

−1
)

=

m∑

i=1

(1 + αcii)
−1

This algorithm requires the calculation of Z and C only once.

6Ruppert (2002) noted that when using power basis the matrix X′X may not be numerically positive definite.
He advises the addition of 10−10D to the matrix X′X to increase stability, if X′X is ill-conditioned.
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5.5 Dimension Reduction

Generalizations of the univariate nonparametric regression techniques to multivariate regression
problems break down when the dimension of the predictor variables is more than two. The problem
that arises when there are several variables is known as the curse of dimensionality, a term first
used by Bellman (1961). This refers to the fact that the sample size required to estimate a function
of several variables accurately can grow exponentially in the number of variables. The reason that
the estimators of functions in high dimensions have large variance is the fact that high dimensional
spaces are empty. A local neighborhood in high dimensions is not in fact “local”. To illustrate
this phenomenon, we restate the following example from Hastie et al. (2001): Consider uniformly
distributed inputs in a d-dimensional hypercube. Suppose that we wanted to capture r% of the
observations. We would expect r% of the observations to lie in a hypercube containing r% of
the unit volume. The expected edge length of the hypercube will be (r/100)1/d. Hence in 10
dimensions, to find 1% of the data, one needs to cover 0.010.1 = 63% of the range of each input
variable. This leads to problems when trying to estimate multivariate densities.

To deal with the curse of dimensionality, we need to impose additional assumptions on the re-
gression functions to reduce the dimensionality of the problem. The number of possible approaches
is extensive (Hastie et al. 2001). For example, one of the first simplifying assumptions was to extend
the linear multiple regression model (5.11) by removing the linearity assumption, while retaining
the assumption that the regression function is an additive function of its components

m(x) =

n∑

i=1

mi(xi)

where x = (x1, . . . , xn)′ and m1, . . . ,mn are univariate functions, which are obtained using some
nonparametric regression technique. This is the class of additive models, described in detail in
Hastie & Tibshirani (1990).

In this section we present the sliced inverse regression technique introduced by Li (1991) and
Duan & Li (1991). Sliced inverse regression is a tool for reducing the dimensionality of the data.
The idea behind this approach is that the “interesting” features of high-dimensional data are
retrievable from low-dimensional projections. The sliced inverse regression technique has been
successfully applied in the marketing environment, where it outperformed other data reduction
techniques (Naik et al. 2000).

5.5.1 Sliced Inverse Regression

Sliced inverse regression (SIR) is a technique that aims to capture the main features of the data
with a few low-dimensional projections. In the ideal situation, the projection of a n-dimensional
predictor variable X onto a L-dimensional subspace, where L is smaller than n, captures all the
information about the response variable Y , i.e. the regression function is given by

m(x) = f (γ′
1x, . . . , γ

′
Lx) (5.22)

where x = (x1, . . . , xn)′, f is an arbitrary unknown function f : RL → R and {γ1, . . . ,γL} are L
unknown n-dimensional column vectors. Li (1991) termed the linear space generated by vectors
γ1, . . . ,γL the effective dimension reduction (e.d.r) space. The main contribution of the paper is
the use of sliced inverse regression to estimate the vectors γ1, . . . ,γL.

The name of the approach stems from the fact that the method is based on the inverse regression

ξ(y) = E (x | y) (5.23)

This function is simple to estimate, because y is a scalar - each coordinate of x is regressed against
y. The resulting function ξ(y) is a n-dimensional function. However, Li (1991) proved that under
the model assumption (5.22), if the distribution of x is elliptically symmetrical,7 then the centered
inverse regression curve

E (x | y)− E
(
E (x | y)

)
= E (x | y)− E (x)

7The elliptically symmetrical condition can be replaced by a weaker condition that the distribution of x is such
that for all b ∈ Rn, E(b′

x |γ′
1
x, . . . , γ′

Lx) = c0 + c1(γ′
1
x) + . . . + cL(γ′

Lx), for some constants c0, c1, . . . , cL.
Elliptically symmetrical distributions, such as the normal distribution, satisfy this condition.
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is contained in the L-dimensional subspace spanned by Σxγ1, . . . ,ΣxγL, where Σx is the covariance
matrix of x. Let ηi = Σxγi, i = 1, . . . , L. Then Li (1991) showed that the covariance matrix

Ση = Cov
(
E (x | y)− E(x)

)

is degenerate in any direction orthogonal to the ηi’s. Hence η1, . . . ,ηL are the eigenvectors asso-
ciated with the L nonzero eigenvalues of the covariance matrix Ση.8 The vectors in the e.d.r space
are given by the transformation Σ−1

x η1, . . . ,Σ
−1
x ηL.

We now discuss the implementation of the SIR algorithm. Suppose that we have a dataset
{(xi, yi), i = 1, . . . ,m}. To estimate the inverse regression function ξ(y), the simple partition-
ing estimator (5.16) is used. In particular, we partition the sample range of y into H intervals
P1, . . . , PH . Li (1991) suggested that the range of y should be partitioned such that the number
of observations in each interval P1, . . . , PH are approximately equal. However, the number of in-
tervals is not crucial to the performance of the SIR algorithm. We follow Duan & Li (1991), who
recommended that ten intervals are “probably good enough for most purposes”. The partitioning
estimate of the inverse regression function is given by

ξ̂(y) = ξ̂j =

∑m
i=1 1{yi∈Pj} xi∑m

i=1 1{yi∈Pj}
for y ∈ Pj

where 1A is the characteristic function of a set A. Duan & Li (1991) proved that the optimal
estimate of the covariance matrix Ση is given by the n× n weighted covariance matrix

Σ̂η =

H∑

j=1

p̂j

(
ξ̂j − µx

)(
ξ̂j − µx

)′

where p̂j is the sample proportion of yi’s in the interval Pj and µx is the sample mean of x.

Then the vectors η1, . . . ,ηL are the eigenvectors of the matrix Σ̂η associated with the L largest
eigenvalues. Li (1991) and Ferre (1998) proposed various tests for determining the number of
components L that one should retain. Estimates of the vectors in the e.d.r space are given by the

transformations Σ̂
−1

x η1, . . . , Σ̂
−1

x ηL, where Σ̂
−1

x is the inverse of the sample covariance matrix of
x.

The only restriction of this algorithm is that it fails if the function f is symmetric about the
mean of x. An example is if y = x2

1 and x1 is symmetric about its mean, where x1 is the first
coordinate variable in x (Li 1992). However, Li (1992) stated that the chi-square test (Li 1991) for
determining the number of factors to retain will conservatively show that no interesting directions
were found. In this case one needs to consider alternative approaches such as the ones presented
in Li (1992).

5.6 Numerical Results

We now price Bermudan swaptions in a two-factor LIBOR market model presented in Andersen
(2000). The initial quarterly forward rates (δi = 0.25 for all i) are flat at 10% and the factor
loadings are given by

λ(t, Ti) =

[
0.15

0.15−
√

0.009(Ti − t)

]

A range of Bermudan swaptions with different strikes and maturities is considered. The results are
compared with those in Andersen (2000), where the parametric early exercise boundary approach
was used.9

We price Bermudan swaptions using two approaches. The first approach is the least-squares
Monte Carlo method of Longstaff & Schwartz (2001). The chosen predictor variable is the net
present value (NPV) of the underlying swap. It has been observed that the value of Bermudan
swaptions increases almost linearly with the value of the underlying swap (Pietersz et al. 2004).
Thus we will assume the simple linear regression model

m(x) = β0 + β1x

8Under the model assumption (5.22), the covariance matrix Ση has L nonzero eigenvalues.
9The Bermudan swaption values displayed in Table 5.1 are results obtained using the third exercise rule (5.10).
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where x is the NPV of the underlying swap. The second approach relies on the sliced inverse
regression technique to project the yield curve (vector of forward rates) at each point in time
onto a one-dimensional subspace. Penalized regression splines are then fitted to estimate the
continuation value of the option.

The results are presented in Table 5.1. The Bermudan swaption values are calculated using
10,000 antithetic Monte Carlo simulations to estimate the early exercise boundary and another
10,000 antithetic Monte Carlo simulations to value the option. The prices of the corresponding
European swaptions are also presented. With the exception of the long dated 11NC1 Bermudan
payer swaption, the sliced inverse regression technique combined with penalized regression splines
produces results that are in line with the parametric early exercise boundary and the parametric
continuation value approaches.

European Swaption Bermudan Swaption
Tloc Tend Strike Andersen MC Andersen LSMC SIRPSMC

0.25 1.25 8% 183.6 183.6 184.0 183.8 183.9

0.25 1.25 10% 31.6 30.6 43.2 42.4 42.5

0.25 1.25 12% 0.6 0.5 5.6 5.1 5.1
1 3 8% 332.2 332.2 339.4 340.4 338.8

1 3 10% 101.1 100.3 125.7 126.4 125.6
1 3 12% 16.7 16.2 36.6 37.1 37.3

1 6 8% 719.8 721.4 751.6 749.7 758.34

1 6 10% 211.3 213.7 319.4 320.04 318.81
1 6 12% 31.6 32.8 129.2 128.3 129.66

1 11 8% 1163.7 1165.9 1253.7 1272.4 1292.4

1 11 10% 352.5 356.7 633.2 643.9 644.9
1 11 12% 56.8 58.1 337.0 338.4 341.5

3 6 8% 429.8 431.8 445.2 445.4 440.1
3 6 10% 199.9 202.2 227.5 226.3 223.3

3 6 12% 79.5 80.3 107.6 106.8 106.7

Table 5.1: Bermudan swaption price comparison between the parametric early exercise boundary
approach of Andersen (2000) (Andersen), the parametric continuation value approach of Longstaff
& Schwartz (2001) (LSMC) and the proposed nonparametric continuation value approach, com-
bined with sliced inverse regression (SIRPSMC). All the prices are in basis points.



Appendix A

Proof of Theorem 2.1.1

As P∗ is nonempty by assumption, fix P∗ ∈ P∗. Consider φ ∈ Φ(P∗) with V0(φ) = 0. Since
V ∗

0 (φ) = Y0V0(φ), we have V ∗
0 (φ) = 0. The nonnegativity of the normalized value process V ∗(φ)

yields P∗(V ∗
T (φ) ≥ 0) = 1. From the martingale property of V ∗(φ), EP∗

[V ∗
T (φ)] = 0 and hence

P∗(V ∗
T (φ) > 0) = 0. As P∗ ∼ P, we obtain

P(VT (φ) ≥ 0) = 1 and P(VT (φ) > 0) = 0

Thus there are no arbitrage opportunities among the trading strategies φ ∈ Φ(P∗).
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Appendix B

Proof of Theorem 2.1.5

Consider two trading strategies, φ ∈ Φ(P∗
1) and ψ ∈ Φ(P∗

2) such that VT (φ) = ϑ and VT (ψ) = ϑ.
From equation (2.8)

V ∗
T (φ) = V ∗

t (φ) +G∗
T (φ)−G∗

t (φ), 0 ≤ t ≤ T (B.1)

Under P∗
2, G

∗(φ) is a local martingale because it is a stochastic integral of φ with respect to a
P∗

2-local martingale Z. Further, G∗(φ) is nonnegative under P∗
2 because V ∗(φ), hence G∗(φ), is

nonnegative under P∗
1 and P∗

1 and P∗
2 are equivalent probability measures. We now show that a

nonnegative local martingale is a supermartingale. For 0 ≤ s ≤ t ≤ T we have

EP∗
2
[
G∗

t (φ) |Fs

]
= EP∗

2

[
lim

n→∞
G∗

t∧Tn
(φ) |Fs

]

= EP∗
2

[
lim inf
n→∞

G∗
t∧Tn

(φ) |Fs

]
(B.2)

≤ lim inf
n→∞

EP∗
2
[
G∗

t∧Tn
(φ) |Fs

]
(B.3)

= lim inf
n→∞

G∗
s∧Tn

(φ)

= G∗
s(φ)

Equation (B.2) follows from the property that for a convergent sequence lim and lim inf coincide
and equation (B.3) follows from Fatou’s Lemma. Hence under P∗

2, G
∗(φ) is a supermatingale.

From the assumption VT (φ) = ϑ = VT (ψ) and equation (B.1) we obtain

V ∗
t (ψ) = EP∗

2 [V ∗
T (ψ) |Ft]

= EP∗
2 [V ∗

T (φ) |Ft]

= V ∗
t (φ) + EP∗

2 [G∗
T (φ)−G∗

t (φ) |Ft]

≤ V ∗
t (φ)

Similarly V ∗
t (φ) ≤ V ∗

t (ψ). Hence V ∗
t (φ) = V ∗

t (ψ) for all 0 ≤ t ≤ T .
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Choy, B., Dun, T. & Schlögl, E. (2004), ‘Correlating market models’, Risk 17(9), 124–129.

Christopeit, N. & Musiela, M. (1994), ‘On the existence and characterization of arbitrage-free
measures in contingent claim valuation’, Stochastic Analysis and Applications 12(1), 41–63.

Clément, E., Lamberton, D. & Protter, P. (2002), ‘An analysis of a least squares regression method
for American option pricing’, Finance and Stochastics 6(4), 449–471.

Cleveland, W. S. (1979), ‘Robust locally weighted regression and smoothing scatterplots’, Journal
of the American Statistical Association 74(368), 829–836.

Cleveland, W. S. & Devlin, S. J. (1988), ‘Locally weighted regression: an approach to regression
analysis by local fitting’, Journal of the American Statistical Association 83, 597–610.

Courtault, J., Kabanov, Y., Bru, B., Crépel, P., Lebon, I. & Le Marchand, A. (2000), ‘Louis
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Grubǐsić, I. (2002), Interest rate theory: The BGM model, Master’s thesis, Leiden University.
http://www.math.uu.nl/people/grubisic/publications.html.
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