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ABSTRACT 

 

HIV-1 gains entry into host cells by binding to CD4 and a coreceptor, predominantly 

CCR5 or CXCR4.  Viruses that use CCR5 are termed R5, those able to use CXCR4 are 

termed X4 while viruses able to use both coreceptors are referred to as R5X4.  

Accelerated CD4 decline and disease progression within an infected HIV-1 subtype B 

infected individual is often associated with the emergence of viruses able to use CXCR4.  

However, CXCR4 coreceptor usage appears to occur less frequently among HIV-1 

subtype C viruses, the most predominant strain circulating globally, including South 

Africa.  The aim of this study was to investigate the genetic determinants of CXCR4 

usage in HIV-1 subtype C isolates.  

 

The V3 region of the envelope glycoprotein is the major determinant of coreceptor usage.  

In Chapter 2, 32 subtype C isolates with known phenotypes (16 R5, 8 R5X4 and 8 X4 

isolates) were assessed using a subtype C specific V3-heteroduplex tracking assay. 

Results indicated that there were sufficient genetic differences to discriminate between 

R5 viruses and those able to use CXCR4 (both R5X4 and X4).  In general, R5 isolates 

had a mobility ratio >0.9 whereas CXCR4-using isolates were usually <0.9.  Sequence 

analysis of the V3 region showed that CXCR4-using viruses were often associated with 

an increased positive amino acid charge, insertions and loss of a glycosylation site, 

similar to HIV-1 subtype B.  In contrast, where subtype B consensus V3 has a GPGR 

crown motif irrespective of coreceptor usage, all 16 subtype C R5 viruses had a 

conserved GPGQ sequence at the tip of the loop, while 12 of the 16 (75%) CXCR4-using 

viruses had substitutions in this motif, most commonly arginine (R).  Thus, the rare 

occurrence of CXCR4-using viruses in subtype C may be due to the highly conserved 
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nature of the GPGQ crown that may limit the potential for the development of X4 

viruses.   

 

The usefulness of available genotype-based methods for predicting viral phenotypes in 

subtype C was explored in Chapter 3. Results indicated that commonly used prediction 

methods could detect R5 viruses, but were not very sensitive at identifying X4 viruses. 

We therefore developed a subtype C specific predictor based on position specific scoring 

matrices (PSSM).  Similar methodology, as used in developing the subtype B PSSM, was 

applied on a training set of 280 subtype C sequences of known phenotype (229 

NSI/CCR5 and 51 SI/CXCR4).  The C-PSSM had a specificity of 94% (C.I. [92%-96%]) 

and sensitivity of 75% (C.I. [68%-82%]), indicating that the C-PSSM had improved 

sensitivity in predicting CXCR4 usage.  This method also highlighted amino acid 

positions within V3 that could contribute differentially to phenotype prediction in 

subtypes B and C.  A reliable phenotype prediction method, such as the C-PSSM, could 

provide a rapid and less expensive approach to identifying CXCR4 variants, and thus 

increase our knowledge of subtype C coreceptor usage.   

 

In Chapter 4 we examined the genetic changes in full-length gp160 envelope genes of 23 

sequential isolates from 5 patients followed for two to three years.  Three of the patients' 

isolates used CCR5 at all time points while 2 patients underwent a coreceptor switch with 

disease progression.  The genetic changes observed over time indicated changes in length 

of variable loops particularly the V1, V4 and V5 and shifting N-glycosylation sites, 

particularly in the 2 patients that used CXCR4.  Changes in the V3 were only noted in the 

2 patients’ that used CXCR4 which included substitutions of specific amino acids 

including those in the crown and increased amino acid charge in the V3 region.  Both of 
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these patients were dually infected suggesting that recombination may contribute to the 

rapid emergence of X4 viruses.  

 

The in vitro and in vivo development of CXCR4 usage was analysed in a pediatric patient 

that experienced a coreceptor switch during disease progression (Chapter 5).  Biological 

and molecular clones were generated and the V1-V5 regions sequenced.  Analyses of the 

V3 region indicated that the evolution to CXCR4 usage happens in a step-wise manner 

that included increased charge and changes in the crown motif.  The intermediate variants 

with predicted dualtropism were also associated with increased V1-V2 lengths, 

suggesting that other regions may contribute to coreceptor switching.  Furthermore, the 

development of CXCR4 usage within this patient was due to two mutational pathways, in 

which one resulted in R5X4 viruses and the other X4 variants.  

 

In Chapter 6, the impact and treatment of acute TB on HIV-1 diversity in co-infected 

patients was investigated, specifically to determine the genetic characteristics of the viral 

populations present before, during and after TB treatment.  Plasma samples from 18 HIV-

1 infected patients were analysed using the C2V3 region, six of whom showed a high 

degree of variation using a V3-HTA and were selected for further analyses. All patients 

were predicted as R5 with no evidence of coreceptor switching over time. There was no 

correlation between the degree of genetic diversity and viral load, although both showed 

fluctuations over time.  Phylogenetic and pairwise genetic distance analysis indicated that 

there was amplification of existing variants in 3 patients while in the other 3 patients 

there were dramatic shifts in viral populations suggesting selection of viral sub-

populations over time.  Thus in some co-infected patients, TB can affect HIV-1 genetic 
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heterogeneity although there was no evidence of a shift towards CXCR4 usage despite 

the presence of an AIDS defining illness.    

 

Observations in this study have shown that the V3 region is the major determinant of 

coreceptor usage within HIV-1 subtype C, similar to HIV-1 subtype B.  Characteristics 

such as increased charge length variability of the V3 region and loss of the glycosylation 

site within this region are associated with CXCR4 usage.  The limited number of X4 

viruses in subtype C does suggest some restricting mechanisms for CXCR4 usage.  In 

this study we looked at genetic determinants and found that the rare occurrence of 

CXCR4-using viruses in subtype C, may be due to the highly conserved nature of the 

GPGQ crown that may limit the potential for the development of subtype C X4 viruses.  

Furthermore, the development of CXCR4 usage happened in a step-wise manner, with 

R5X4 viruses intermediates, in which an increased V1-V2 was observed suggesting that 

other regions within the envelope protein do contribute to coreceptor usage.  Thus, 

regions such as V1-V2 and V4-V5 did contribute to coreceptor usage, but the V3 region 

remained the most important determinant of coreceptor usage in HIV-1 subtype C 

isolates. Collectively these findings have provided important data on the genetic 

determinants of CXCR4 usage in HIV-1 subtype C and an understanding of how they 

might evolve within a patient.  

 
 

 

 

 v



DECLARATION 

 

 

 

 

I declare that this thesis is my own work unless specified and submitted for the degree of 

Doctor of Philosophy at the University of the Witwatersrand, Johannesburg.  It has not 

been submitted for any other degree or examination at any other university. 

 

 

 

   ____ day of ________, _____ 

 

 

 

   ________________________ 

 

Maria Elizabeth (Mia) Coetzer 

 

 

 

 

 

 vi



 

 

 

 

 

 

 

I would like to dedicate this thesis to my parents, Riaan and Alet, as well as my sister 

Elmien and brother Riaan for your faithful support and boundless love. 

 

 vii



TABLE OF CONTENTS 

 

           Page 

ABSTRACT          ii 

DECLARATION         vi 

DEDICATION         vii 

ACKNOWLEDGMENTS        xv 

PUBLICATIONS AND MANUSCRIPTS FROM THIS THESIS   xvi 

OTHER PUBLICATIONS        xvii 

PRESENTATIONS AT MEETINGS       xviii 

LIST OF FIGURES         xix 

LIST OF TABLES         xxii 

LIST OF ABBREVIATIONS        xxiii 

 

 

CHAPTER 1 - INTRODUCTION       1 

 

1.1 BACKGROUND         2 

1.2 ENTRY OF HIV-1 INTO THE HOST CELL     5 

1.2.1 Viral genome and structure      5 

1.2.2 Viral entry        6 

1.2.3 Coreceptors        8 

1.2.4 Minor receptors        10 

1.2.5 Phenotype and tropism       10 

1.2.6 Importance of coreceptor determination    11 

 viii



1.2.7 Coreceptors and entry inhibitors     12 

1.2.8 Coreceptor usage of South African subtype C isolates   13 

1.3 HIV-1 ENVELOPE GLYCOPROTEIN      14 

1.3.1 Structure of the envelope protein     14 

1.3.2 Glycosylation of the envelope protein     15 

1.3.3 Genetic diversity of the envelope glycoprotein    16 

1.3.4 Envelope protein diversity and disease progression   17 

1.3.5 Conformational changes during entry     18 

1.3.6 The V3 region as a major determinant of coreceptor usage  19 

1.3.7 Other regions involved in coreceptor usage    22 

1.4 PHENOTYPE PREDICTION METHODS BASED ON THE V3 REGION 23 

1.4.1 The 11/25 rule        23 

1.4.2 Briggs method        24 

1.4.3 Pillai method        25 

1.4.4 Neural networks        26 

1.4.5 Geno2Pheno method       26 

1.4.6 Position specific scoring matrix method (PSSM)   27 

1.4.7 Prediction of subtype C data sets     27 

1.5 NATURAL HISTORY OF HIV-1 INFECTION     28 

1.5.1 Immune activation       29 

1.5.2 Tuberculosis        31 

1.5.2.1 Interaction between TB and HIV-1     31 

1.6 OBJECTIVES OF THIS STUDY       32 

 

 

 ix



CHAPTER 2 - WHAT GENETIC CHANGES IN V3 ARE ASSOCIATED WITH 

CXCR4 USAGE IN HIV-1 SUBTYPE C ISOLATES?    33 

 

2.1 INTRODUCTION        34 

2.2 MATERIALS AND METHODS       36 

2.2.1 Isolation and coreceptor usage of HIV-1 subtype C viruses  36 

2.2.2. Viral RNA isolation and RT-PCR     36 

2.2.3 V3-HTA         37 

2.2.4 Cloning of single populations      38 

2.2.5 Sequence analysis       38 

2.3 RESULTS          39 

2.3.1 Investigation of sample complexity using a V3-HTA   39 

2.3.2 Analysis of isolates with multiple variants    43 

2.3.3 V3 sequence variability of CCR5- and CXCR4-using variants  45 

2.3.4 Determining subtype C V3 characteristics associated with CXCR4 usage 

          49 

2.4 DISCUSSION        52 

 

 

CHAPTER 3 - A RELIABLE PHENOTYPE PREDICTOR FOR HIV-1 SUBTYPE 

C BASED ENVELOPE V3 SEQUENCES      58 

 

3.1 INTRODUCTION        59 

3.2 MATERIALS AND METHODS       61 

3.2.1 Data set compilation       61 

 x



3.2.2 Performance of four genotypic algorithms on subtype C sequences 61 

3.2.3 How is a PSSM matrix constructed?     62 

3.2.4 Determining the PSSM score for a target sequence   63 

3.2.5 Development and validation of a C-PSSM    64 

3.2.6 Overlap coefficient analysis determining differences between subtypes B 

and C          66 

3.2.7 Comparison between predictions from V3-HTA and C-PSSM  68 

3.2.8 C-PSSM for public use       68 

3.3 RESULTS          69 

3.3.1 HIV-1 subtype C sequences      69 

3.3.2 Predicting phenotypes from genetic sequence data   70 

3.3.3 Performance of C-PSSM prediction     71 

3.3.4 Site-wise differences in phenotype between subtypes B and C  74 

3.3.5 Comparison of C-PSSM scores with a genotype-based assay  76 

3.4 DISCUSSION         77 

 

 

CHAPTER 4 - CHARACTERISATION OF THE gp160 REGION FROM HIV-1 

SUBTYPE C ISOLATES AND CORRELATION TO CORECEPTOR 

SWITCHING         81 

 

4.1 INTRODUCTION        82 

4.2 MATERIALS AND METHODS       83 

4.2.1 Isolation and coreceptor usage of HIV-1 subtype C viruses  83 

4.2.2 Viral RNA isolation and gp160 sequencing    83 

 xi



4.2.3 Sequence analysis       84 

4.3 RESULTS          85 

4.3.1 Clinical information of patients      85 

4.3.2 Phylogenetic analysis       87 

4.3.3 Genetic variation within a patient during disease progression  89 

4.3.4 Variable loops V1-V5       96 

4.3.5 Predicted N-glycosylation sites      97 

4.3.6 V3 region and coreceptor usage      98 

4.3.7 Monoclonal antibody recognition sites     99 

4.4 DISCUSSION         100 

 

 

CHAPTER 5 - MOLECULAR AND BIOLOGICAL HETEROGENEITY IN 

SEQUENTIAL HIV-1 ISOLATES FROM A PATIENT THAT ACQUIRED THE 

ABILITY TO USE CXCR4        104 

 

5.1 INTRODUCTION        105 

5.2 MATERIALS AND METHODS       107 

5.2.1 Viral isolation and coreceptor usage     107 

5.2.2 Generating biological clones      107 

5.2.3 Amplification of the V1-V5 region     107 

5.2.4 Generating molecular clones      108 

5.2.5 Sequencing and analysis      109 

5.2.6 Phenotype prediction       109 

5.3 RESULTS          110 

 xii



5.3.1 Coreceptor determination of biological clones    110 

5.3.2 True coreceptor usage versus predicted phenotype   112 

5.3.3 Phenotype prediction of molecular clones    113 

5.3.4 Distribution of phenotypes at different time points   114 

5.3.5 Sequence analysis of the V3 region     115 

5.3.6 Evolution of CXCR4 usage within the V3 loop   117 

5.3.7 Other regions contributing to coreceptor usage    119 

5.4 DISCUSSION         120 

 

 

CHAPTER 6 - THE IMPACT OF ACTIVE TUBERCULOSIS ON HIV-1 

SUBTYPE C GENETIC DIVERSITY      124 

 

6.1 INTRODUCTION        125 

6.2 MATERIALS AND METHODS       127 

6.2.1 Patient information        127 

6.2.2 Viral RNA isolation and RT-PCR     127 

6.2.3 C2V3-HTA        128 

6.2.4 Cloning         129 

6.2.5 Subtyping        129 

6.2.6 Phenotype prediction       130 

6.3 RESULTS          131 

6.3.1 Characterization of HIV-1 populations in HIV/TB patients  131 

6.3.2 Screening of HIV/TB patients for genetic diversity   134 

6.3.3 Molecular clone analysis of viral populations    134 

 xiii



 6.3.3.1 Genetic diversity within patient samples   135 

 6.3.3.2 Phylogenetic analysis within a patient   137 

 6.3.3.3 Sequence analysis of patients with sub-populations  145 

6.4 DISCUSSION         150 

 

 

CHAPTER 7 - CONCLUSION       154 

 

 

APPENDICES         161 

Appendix A: Ethical clearance      162 

Appendix B: Additional ethical clearance     163 

Appendix C: Amino acid abbreviations     164 

Appendix D: Reagents and recipes      165 

Appendix E: HTA probe sequences      166 

Appendix F: Vector map       167 

Appendix G: Determining coreceptor usage in transfected cell lines  168 

 

 

CHAPTER 8 - REFERENCES       169 

 

 xiv



AKNOWLEDGEMENTS 

 

I would like to thank Prof Lynn Morris for giving me this incredible opportunity, and 

allowing me the freedom to discover.  Thank you for your support and guidance! 

 

I would also like to thank the following people who contributed to this thesis: 

Viral isolation, coreceptor determination and generating of biological clones - Mary 

Phoswa, Dr Tonie Cilliers and Melene Smith. 

Development and script writing of C-PSSM - Mark Jensen. 

Prof Salim Abdool Karim and Dr Quarraisha Abdool Karim for providing sponsorship 

though the Fogarty Training Program to visit Dr Ronald Swanstrom's laboratory at 

University of North Carolina, Chaplin Hill, USA and Dr Jim Mullins laboratory at 

University of Washington, Seattle, USA. 

 

I would like to thank, Drs Ronald Swanstrom, Angelique van't Wout, Mark Jensen and 

Jim Mullins for allowing me to visit their laboratories and sharing their knowledge, they 

were instrumental in this study.  I would also like to thank Sue Herrmann and Sheila 

Doig for their support and help through these years, as well as Sarah Cohen, and my 

fellow colleagues at the AIDS Unit.  Hazel Saevitzon and Sandy Hutchinson in the 

library, and Prof Schoub for allowing me to study at the National Institute for 

Communicable Diseases. 

Thank you to Elsie for your support.  All glory to Jesus Christ. 

 

This work was funded by: South African AIDS Vaccine Initiative, Poliomyelitis 

Research Foundation, Fogarty International Center (TWO-0231) and Wellcome Trust. 

 xv



PUBLICATIONS AND MANUSCRIPTS FROM THIS THESIS 

 

1.  COETZER, M., Cilliers, T., Swanstrom, R. and Morris, L.  What genetic changes in 

V3 are associated with CXCR4 usage in HIV-1 subtype C isolates?  SUBMITTED. 

 

2.  Jensen*, M.A., COETZER*, M., Van‘ t Wout, A.B., Morris, L. and Mullins, J.I.  A 

reliable phenotype predictor for HIV-1 subtype C based on envelope V3 sequences.  

Journal of Virology Volume 80, Number 10, pp 4698-4704.  *Joint first authors. 

 

3.  COETZER, M., Cilliers, T., Papathanasopoulos, M., Ramjee, G., Abdool Karim, S. 

and Morris, L.  Characterisation of the gp160 region from HIV-1 subtype C isolates and 

correlation to coreceptor switching.  (In preparation). 

 

4.  COETZER, M., Smith, M., Cilliers, T., Myers, T. and Morris, L.  Molecular and 

biological heterogeneity in sequential HIV-1 isolates from a patient that acquired the 

ability to use CXCR4.  (In preparation). 

 

5.  COETZER, M., Grant, A., Day, J., Charalambous, S., Puren, A., Fielding, K., 

Churchyard, G. and Morris, L.  The impact of active tuberculosis on HIV-1 subtype C V3 

genetic diversity.  (In preparation). 

 

 

 xvi



OTHER PUBLICATIONS 

 

Bredell, H., Hunt, G., Casteling, A., Cilliers, T., Raudemeyer, C., COETZER, M., 

Miller, S., Johnson, D., Tiemessen, C., Martin, D., Williamson, C. and Morris, L.  HIV-1 

subtype A, D and G sequences identified in South Africa. 2002.  AIDS Research and 

Human Retroviruses Volume 18, Number 9, pp 681-683. 

 

Cilliers, T., Nhlapo, J., COETZER, M., Orlovic, D., Ketas, T., Olson, W.C., Moore, J.P., 

Trkola, A. and Morris, L.  The CCR5 and CXCR4 coreceptors are both used by human 

immunodeficiency virus type 1 primary isolates from subtype C. 2003.  Journal of 

Virology Volume 77, Number 7, pp 4449-4456. 

 

Cilliers, T., Willey, S., Sullivan, M., Patience, T., Pugach, P., COETZER, M., 

Papathanasopoulos, M.A., Moore, J.P., Olson, W.C., Trkola, A., Clapham, P. and Morris, 

L.  Use of alternate coreceptors on primary cells by two HIV-1 isolates.  2005.  Virology 

339, pp136-144. 

 

Cilliers, T., Moore, P.L., COETZER, M., and Morris, L.  In vitro resistance of HIV-1 

isolates to Enfuvirtide.  2005.  AIDS Research and Human Retroviruses Volume 21, 

Number 9, pp 776-783. 

 

 

 

 xvii



PRESENTATIONS AT MEETINGS 

 

COETZER, M., Cilliers, T., Papathanasopoulos, M.A., Ramjee, G., Abdool-Karim, S., 

Williamson, C. and Morris, L.  Analysis of co-receptor usage among sequential HIV-1 

subtype C isolates from acutely infected sex workers in South Africa. 2001.  AIDS 

VACCINE Conference, Philadelphia:  (Poster). 

 

COETZER, M., Cilliers, T., Papathanasopoulos, M.A., Ramjee, G., Abdool-Karim, S., 

Williamson, C. and Morris, L.  Analysis of co-receptor usage among sequential HIV-1 

subtype C isolates from acutely infected sex workers in South Africa.  2001.  IUBMB / 

SASBMB Special meeting on the Biochemical & Molecular basis of disease, Cape Town.  

(Poster). 

 

COETZER, M., Jensen, M.A., Van‘ t Wout, A.B., Mullins, J.I. and Morris, L.  Genetic 

determinants of co-receptor usage of HIV-1 subtype C isolates from South Africa.  2004.  

HIV Pathogenesis Program, Biennial Conference, Durban, South Africa.  (Oral 

presentation). 

COETZER, M., Grant, A., Day, J., Charalambous, S., Puren, A., Fielding, K., 

Churchyard, G. and Morris, L.  Impact of TB on HIV genetic diversity in co-infected 

patients. 2004.  Aurum Scientific Review Meeting, Johannesburg, South Africa.  (Oral 

presentation). 

 

 

 xviii



LIST OF FIGURES 

 

           Page 

1.1: Global distribution of adults and children living with HIV-1.   2 

1.2: The evolutionary history of the primate lentiviruses.    3 

1.3: Global distribution of the predominant HIV-1 subtypes and recombinants. 4 

1.4: HIV-1 viral genome and structure.        5 

1.5: A model for HIV-1 entry into the target host cell.      6 

1.6: Key aspects of HIV-1 viral life cycle.        7 

1.7: Two-dimensional structure of CCR5 and CXCR4.    9 

1.8: HIV-1 phenotype determined by coreceptor usage.    11 

1.9: Three-dimensional structure of the gp120 glycoprotein.     14 

1.10: A schematic diagram of the gp120 envelope glycoprotein and potential 

glycosylation sites.        15 

1.11: A schematic representation of the V3 loop within gp120 envelope  protein. 20 

1.12: Modeled trimer and coreceptor schematic.     21 

1.13: Decision tree constructed of amino acid position 12.      25 

1.14: The natural history of HIV-1 infection.       28 

1.15: Consequences of immune activation on the biology of HIV-1 infection. 30 

 

 

2.1: V3-HTA of HIV-1 subtype C isolates with different biological  phenotypes. 41 

2.2: Comparison of mobility ratio and coreceptor usage of subtype C isolates. 42 

2.3: Analysis of molecular clones from HIV-1 subtype C isolates with multiple 

variants.          44 

2.4: Comparison of V3 length and charge of HIV-1 subtype C isolates.  46 

2.5: Variation in the V3 region of CCR5- and CXCR4- using isolates.  47 

2.6: Distribution of amino acids in the V3 region.     48 

2.7: Consensus V3 sequences from CCR5- and CXCR4-using isolates.  49 

2.8: Comparison of amino acid variation in the V3 crown of subtype C isolates. 51 

 

 xix



3.1: Constructing a PSSM matrix.       62 

3.2: Calculating the PSSM score.         63 

3.3: Determining sensitivity and specificity of the PSSM.    65 

3.4: Determining the overlap coefficients within V3.    67 

3.5: Sequence logos of HIV-1 subtype C V3 sequences used in this study.   69 

3.6: Comparison of C-PSSM score distribution of 229 NSI and 51 SI subtype C 

sequences.           72 

3.7: Comparison of C-PSSM on a subtype C data set with B-PSSM on a subtype B data 

set.          73 

3.8: Effect of sample size on sensitivity and specificity of the C-PSSM.  74 

3.9: V3 overlap coefficient p-values for subtypes C and B.      75 

3.10: The HTA mobility ratio compared to the C-PSSM score.   76 

 

 

4.1: Neighbor joining tree of HIV-1 gp120 and gp41.      88 

4.2: Recombination analysis using of Du151(JUN99) using SimPlot.  89 

4.3 A: Du123 amino acid alignment of the gp160 region.     90 

4.3 B: Du151 amino acid alignment of the gp160 region.    91 

4.3 C: Du179 amino acid alignment of the gp160 region.    92 

4.3 D: Du368 amino acid alignment of the gp160 region.    93 

4.3 E: Du422 amino acid alignment of the gp160 region.    94 

4.4: Percentage genetic variability of the envelope region within a patient.  95 

4.5: Frequency and position of N-glycosylation sites over time.   97 

4.6: Changes in the V3 amino acid sequence alignment correlated to isolate biotype and 

amino acid charge.          98 

 

 

5.1: Comparison between experimentally determined and predicted phenotypes of the 

biological clones.        112 

5.2: Selection of molecular clones within TM18 A-C.    113 

5.3: Distribution of phenotypes within the molecular and biological clones at various 

time points.         114 

5.4: Schematic phylogenetic tree showing the evolution of CXCR4-using viruses. 118 

 xx



6.1: Phylogenetic analysis of 18 HIV/TB and 5 HIV infected patients.    132 

6.2: C2V3-HTA profiles of 6 HIV/TB patients over time.    135 

6.3: CD4 count and viral load compared to genetic diversity over time.  136 

6.4 A:  Phylogenetic tree of variants from PC0122 in the C2V3 region.    139 

6.4 B: Phylogenetic tree of variants from PC0261 in the C2V3 region.    140 

6.4 C: Phylogenetic tree of variants from PC0703 in the C2V3 region.    141 

6.4 D: Phylogenetic tree of variants from PC0137 in the C2V3 region.    142 

6.4 E: Phylogenetic tree of variants from PC0213 in the C2V3 region.    143 

6.4 F: Phylogenetic tree of variants from PC0614 in the C2V3 region.    144 

6.5 A: Consensus sequences and distribution of viral variants within PC0137. 146 

6.5 B: Consensus sequences and distribution of viral variants within PC0213. 148 

6.5 C: Consensus sequences and distribution of viral variants within PC0614. 148 

6.6 Summary of results from the 6 HIV/TB patients.     151 

 

 xxi



LIST OF TABLES 

 

           Page 

2.1: Clinical information of 16 R5, 8 R5X4 and 8 X4 HIV-1 subtype C isolates. 40 

3.1: Comparison of the performance of available prediction methods.  71 

4.1: Clinical information of the five patients followed longitudinally.  86 

4.2: The length of the variable loops and number of predicted N-glycosylation sites 

within the gp160 region of each patient.     96 

5.1: Clinical information of patient TM18 followed for 2 years.   110 

5.2: Biological clones of TM18B and TM18C and the experimentally determined 

coreceptor usage.          111 

5.3: Predicted phenotype of 18 V3 sequences representing identical molecular and 

biological clones.          116 

5.4: Variations within V1-V2 and V4-V5 that may contribute to phenotype switching. 

          119 

6.1: Phenotype prediction based on the V3 region of 18 HIV/TB patients.  133 

6.2: The pairwise genetic distance for 6 HIV/TB patients.    138 

 

 

 xxii



LIST OF ABBREVIATIONS 

 

ag Antigen 

AIDS Acquired immunodeficiency syndrome 

ARV Antiretroviral therapy 

bp Base pair 

B-PSSM Subtype B specific-PSSM 

C Constant region 

CRF Circulating recombinant form 

C2 Second constant region 

C2V3-HTA Second constant region-third variable region specific-heterodupplex tracking assay

CD4 Cluster differentiation four 

cDNA Complementary deoxyribonucleic acid 

C-PSSM Subtype C specific-PSSM 

CTL Cytotoxic T-lymphocytes 

ECL extracellular loop  

ENF Enfuvirtide 

Env Envelope protein 

env Envelope gene 

gag Group-specific antigen gene 

gp Glycoprotein 

GPR1 G-protein receptor 1 

HAART Highly active antiretroviral therapy 

HIV-1 Human immunodeficiency virus type 1 

 xxiii



HIV-2 Human immunodeficiency virus type 2 

HR-1 First heptad repeat region 

HR-2 Second heptad repeat region 

HTA Heteroduplex tracking assay 

IL-2 Interleukin 2 

k Mobility ratio from the V3-HTA  

kb Kilo base 

Mab Monoclonal antibody 

MEGA Molecular Evolutionary Genetic Analysis 

mg Milligram 

min minute 

MIP-1α Macrophage inflammatory protein type 1 alpha 

MIP-1β  Macrophage inflammatory protein type 1 beta 

ml Millilitre 

ng Nanogram 

NH Amino terminus 

NSI Non-syncytium inducing 

nt Nucleotide 

OC Overlap coefficient 

ºC  Degrees Celsius 

PBMC Peripheral blood mononuclear cells 

PCR Polymerase chain reaction 

PHA Phytohemagglutinin 

pol Polymerase protein 

 xxiv



r5 Predicted CCR5 usage 

R5 CCR5-using virus 

R5-like Suggestive of R5 virus 

R5X4 CCR5- and CXCR4-using virus 

r5x4 Predicted R5X4 virus 

RANTES Regulated upon activation, normal T-cell expressed and secreted 

RNA Ribonucleic acid 

RT-PCR Reverse transcriptase polymerase chain reaction 

SI Syncytium inducing 

SIV Simian immunodeficiency virus 

SVM Support vector machines 

TB Tuberculosis 

µl Microlitre 

V Variable region 

V3-HTA Third variable region specific-heteroduplex tracking assay 

x4 predicted CXCR4 usage 

X4 CXCR4-using virus 

X4-like Suggestive of CXCR4 usage 

  
 
 

 

 xxv



 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 1



1.1 BACKGROUND 

 

The Acquired Immune Deficiency Syndrome (AIDS), was first described in 1981 

among young homosexual men who presented with rare opportunistic infections, such 

as pneumonia caused by Pneumocystic carinii (Gottlieb, Schroff et al. 1981).  This led 

to the isolation of the causative agent human immunodeficiency virus (HIV) in 1983 

(Barre-Sinoussi, Chermann et al. 1983).  HIV is a retrovirus that infects and replicates 

in human CD4+ T cells and macrophages, causing immune deficiency and ultimately 

death over many years.  Presently, about 40 million people are infected with this virus 

of which 70% live in sub-Saharan Africa (Figure 1.1). 

 

 

Source: www.unaids.org, AIDS epidemic update, December 2004 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1.1: Global distribution of adults and children living with HIV-1 at the end of 
2004. 
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The origin of HIV has been linked to the simian immunodeficiency viruses (SIV) from 

the genus Lentiviruses, belonging to the Retroviridae family.  SIV is found in a variety 

of African primates, but these viruses do not cause disease in their primate hosts.  In the 

human population there are two types of genetically distinct circulating HIV (HIV-1 and 

HIV-2).  HIV-1 is closely related to SIVcpz isolated from a sub-species of chimpanzee 

(Gao, Bailes et al. 1999; Santiago, Rodenburg et al. 2002), and HIV-2 is related to 

SIVsm found in sooty mangabey monkeys (Gao, Yue et al. 1992; Rambaut, Posada et 

al. 2004) (Figure 1.2). 

 

Rambaut et al. (2004) 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 1.2: The evolutionary history of the primate lentiviruses.  HIV-1 and HIV-2 
lineages (red branches) group with SIVcpz and SIVsm respectively, representing 
independent cross-species transmission events. The tree also indicates that HIV-1 
groups M, N and O originated from separate transfers of SIVcpz. 
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HIV-1 is further divided into three groups (M, N and O), of which group N and O are 

mostly restricted to West Africa.  Group M consist of 9 subtypes (A - J) and 18 

circulating recombinant forms (CRFs), and this group is more globally distributed 

(Figure 1.3). 

 

In South Africa, HIV-1 subtype C is the most predominant circulating strain with an 

estimated 5.3 million infected people (www.unaids.org).  The primary route of 

transmission is through heterosexual intercourse and from mother to child.  This 

subtype has some genotypic and phenotypic characteristics that differ from other 

subtypes, such as the predominant use of CCR5 as a coreceptor (Bjorndal, Sonnerborg 

et al. 1999; Ping, Nelson et al. 1999; Cilliers, Nhlapo et al. 2003).  The genetic changes 

within HIV-1 that influence viral phenotype and cell tropism are focused on the 

envelope glycoprotein of the virus. 

 

 

IAVI, 2003 

 
Figure 1.3: Global distribution of the most predominant HIV-1 subtypes and 
recombinants. 
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1.2 ENTRY OF HIV-1 INTO THE HOST CELL 
 

1.2.1 Viral genome and structure 

HIV-1 has a 9.8kb genome that encodes structural and enzymatic proteins (gag, pol and 

env), RNA-binding regulatory proteins (tat, rev and nef) and accessory proteins (vif, 

vpr, vpu) (Figure 1.4 A).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

A 

C 

www.niaid.nih.gov 

Fields (1990) 

B 

Figure 1.4: HIV-1 viral genome and structure.  A, schematic representation of the HIV-
1 genome depicting the structural and enzymatic proteins.  B, Electron microscopy of 
viral particles and C, schematic picture of HIV-1 virion indicating the glycoproteins 
gp120 and gp41 that are non-covalently linked on the virion surface as trimers. 
 

 5



The gag (group-specific antigen) gene encodes the components of the inner capsid 

protein, the pol (polymerase) gene produces the enzymes such as reverse transcriptase 

and protease that are used in viral replication, and the env (envelope gene) encodes for 

the glycoprotein precursor gp160.  The glycoprotein precursor gp160 is cleaved 

intracellularly to form the functional gp120 and gp41 subunits, that are non-covalently 

linked on the virion surface as trimers (Chan, Fass et al. 1997; Wyatt and Sodroski 

1998) (Figure 1.4 B-C).  These subunits are involved in viral entry and play a pivotal 

role in coreceptor usage. 

 

1.2.2 Viral entry 

The entry of HIV-1 into a host cell is facilitated by the gp120 subunit that binds to the 

primary receptor, the CD4 glycoprotein (Figure 1.5).  CD4 is expressed on the surface 

of T lymphocytes, monocytes, dendritic cells and brain microglia, all of which are 

infected by HIV-1.  This binding leads to conformational changes in the gp120 that 

results in the exposure and/or formation of a binding site for a chemokine receptor 

(Kwong, Wyatt et al. 1998).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Adapted from Moore et al. (2003) 

Figure 1.5: A model for HIV-1 entry into the target host cell.  The variable loops cover 
the coreceptor binding sites, which are exposed through conformational changes.  The 
gp120 then binds to CD4, followed by coreceptor binding and the formation of a 6-helix 
bundle and fusion of the cell and viral membranes. 
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The two major coreceptors involved in HIV-1 entry are CCR5 and CXCR4 (Deng, Liu 

et al. 1996; Dragic, Litwin et al. 1996; Feng, Broder et al. 1996).  Most HIV-1 isolates 

that are transmitted and predominate during early infection use CCR5 as coreceptor 

(Michael, Chang et al. 1997).  The gp41 subunit undergoes conformational changes that 

result in the fusion of the viral and host membranes (Sattentau, Zolla-Pazner et al. 1995; 

Chan, Fass et al. 1997).  RNA and enzymes needed for viral replication are injected 

from the viral core to the host cell cytoplasm where it undergoes reverse transcription to 

cDNA (Figure 1.6).  The cDNA is incorporated into the host genome followed by a 

series of events including viral replication and budding from the host cell to infect new 

cells (Greene 1993). 

 

 

Zolla-Pazner et al. (2004) 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 1.6: Key aspects of HIV-1 viral life cycle.  Shown are the binding and entry of 
HIV-1 into the host cell, uncoding of the viral RNA and integration of proviral DNA 
into the host genomic DNA.  This results in the amplification and transcription of viral 
RNA followed by viral processing, assembly of new virions and budding from the host 
membrane. 
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1.2.3 Coreceptors 

The two major coreceptors involved in HIV-1 binding, CCR5 and CXCR4 are seven-

transmembrane molecules from the G-protein-coupled receptor family (Berger 1997) 

(Figure 1.7).  Both receptors consist of 352 amino acids with three extracellular loops 

on the cell surface, but have different functions within the immune system (Berson, 

Long et al. 1996).  CXCR4 plays an important role in re-circulation of lymphoid cells 

from tissues to secondary lymphoid organs, whereas CCR5 is a key component of 

inflammatory processes during immune defence mechanisms (Loetscher, Moser et al. 

2000).   

 

Studies have shown different regions of these coreceptors to be involved in gp120 

binding and entry.  A cluster of residues, in particular tyrosine at the N-terminal of 

CCR5, participates in entry of R5 and R5X4 viruses (Rucker, Samson et al. 1996; 

Dragic, Trkola et al. 1998; Farzan, Choe et al. 1998; Rabut, Konner et al. 1998).  

Dispersed residues from the extracellular region of CXCR4 are involved in entry of 

HIV-1, especially the second extracellular loop (ECL-2) (Lu, Berson et al. 1997; 

Kajumo, Thompson et al. 2000).  These receptors also have different cell surface 

charges with CCR5 almost neutral, while CXCR4 is negatively charged, suggesting 

charge-related interaction between the coreceptor and gp120, with higher positive 

charge of gp120 associated with CXCR4 usage (Moore and Stevenson 2000).  Of note, 

is that most chemokine receptors described to date have negatively charged regions in 

their extracellular domains, but do not mediate HIV-1 entry and the specific features 

that make these receptors permissive for HIV-1 remain unknown (Cormier and Dragic 

2002). 
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Figure 1.7: Two-dimensional structure of CCR5 (Doranz, Rucker et al. 1996) and 
CXCR4 (Berson, Long et al. 1996).  These coreceptors are seven-transmembrane 
molecules from the G-protein-coupled receptor family and the major coreceptors 
involve in viral entry.  The extracellular loops (ECL) are indicated, and cysteine 
residues are shown in red. 
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1.2.4 Minor receptors 

Some rare HIV-1 isolates are able to use other coreceptors for entry such as CCR1, 

CCR2b, CCR3, CCR8, Bonzo (STRL33), BOB (GPR15) and GPR1 (Edinger, Hoffman 

et al. 1998; Zhang, Dragic et al. 1998).  The use of minor coreceptors has more 

commonly been reported among HIV-2 and SIV isolates (Guillon, van der Ende et al. 

1998; McKnight, Dittmar et al. 1998; Willey, Reeves et al. 2003).  In subtype C, a few 

HIV-1 isolates have been identified that are able to use these receptors (Choge, Cilliers 

et al. 2005; Cilliers, Willey et al. 2005).  However, sequence analysis of the gp160 

region of these isolates provided no clues as to what genetic changes within the 

envelope might give the virus the ability to use these minor receptors (Cilliers, Willey et 

al. 2005).  The use of minor receptors is infrequent and associated with late stage 

disease and their role in vivo is still unclear (Pohlmann, Krumbiegel et al. 1999).  

Nevertheless, they could complicate the efficacy of entry inhibitors that focus on CCR5 

and CXCR4 coreceptors. 

 

1.2.5 Phenotype and tropism 

HIV-1 isolates can be differentiated based on their ability to use particular coreceptors 

R5 viruses (formerly known as non-syncytium-inducing or NSI viruses) utilising CCR5, 

X4 viruses using CXCR4 and R5X4 viruses able to use both receptors (collectively 

know as syncytium-inducing or SI isolates) (Berger, Doms et al. 1998) (Figure 1.8).  

CCR5 is most commonly used during transmission and early infection (Michael, Chang 

et al. 1997).  Viruses able to use CXCR4 emerge later in the course of infection in about 

50% of individuals infected with subtype B viruses (Richman and Bozzette 1994; 

Connor, Sheridan et al. 1997; Scarlatti, Tresoldi et al. 1997).   
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Figure 1.8: HIV-1 phenotype determined by coreceptor usage.  R5/NSI viruses (blue) 
use CCR5 for entry, X4/SI viruses (red) use CXCR4 for entry and R5X4 viruses (green) 
use CCR5 and/or CXCR4 for entry into the host cell. 
 

The ability of HIV-1 to use CXCR4 as a coreceptor is associated with accelerated 

disease progression (Koot, Keet et al. 1993; Glushakova, Grivel et al. 1998; Berkowitz, 

Alexander et al. 2000), therefore the evolution of R5 viruses to X4 viruses may have 

important implications for pathogenesis.  Dualtropic viruses are seen as the intermediate 

step in the transition from R5 to X4, as these viruses have the ability to use both CCR5 

and CXCR4 as receptors.  There seems to be a fitness cost involved in being able to use 

more than one receptor; as dualtropic viruses gain the ability to utilise CXCR4 

interaction with CCR5 becomes less efficient and more sensitive to entry inhibitors (Lu, 

Berson et al. 1997).  Investigating the probability and dynamics of an R5 virus to X4 

virus switch, could assist in understanding what genotypic adaptations within the 

envelope are required for specific coreceptor usage. 

 

1.2.6 Importance of coreceptor determination 

Identification of the coreceptors used in HIV-1 entry is important because it is 

indicative of viral tropism and pathogenicity of HIV-1 in vivo (Koning, van Rij et al. 

2002).  Coreceptor utilisation also needs to be considered in drug treatment strategies.  
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It has been shown that the presence of X4 viruses in patients on HAART is suggestive 

of a poor response to treatment (Brumme, Dong et al. 2004).  In addition, antiretroviral 

treatment may create an environment for the emergence of CXCR4-using HIV-1 viruses 

(Johnston, Zijenah et al. 2003).  This might be due to the increasing survival of patients 

with low CD4 cells on ARV (Gervaix, Nicolas et al. 2002; Pierdominici, Giovannetti et 

al. 2002), the reduced expression of CCR5 on PBMC during ARV treatment 

(Nicholson, Browning et al. 2001) or pre-existing X4 variants in naive CD+4 T cells 

(Delobel, Sandres-Saune et al. 2005).  In countries, such as South Africa, where ARV is 

not accessible to most HIV-1 infected persons, there is a low prevalence of X4 viruses.  

Whether there is a direct correlation between ARV treatment and the emergence of X4 

viruses is unclear and requires further study.  With the increased availability of ARV, it 

will be important to investigate the determinants of coreceptor usage as well as other 

factors that might contribute to the development of X4 viruses. 

 

1.2.7 Coreceptors and entry inhibitors 

Natural ligands for CCR5 and CXCR4 exist that can block HIV-1 infection.  The CCR5 

chemokine ligands MIP-1α, MIP-1β and RANTES block R5 viruses, while SDF-1, the 

ligand for CXCR4, block X4 viruses from entering T-cells (Cocchi, DeVico et al. 1995; 

Oberlin, Amara et al. 1996).  This has lead to the design of synthetic ligands that target 

viral entry.  Entry inhibitors that act at all three steps in this process have been 

developed.  The CD4-gp120 interaction is inhibited by PRO542, a CD4-immunoglobin 

fusion protein (Allaway, Davis-Bruno et al. 1995).  PRO140 (an anti-CCR5 monoclonal 

antibody) and TAK779 (a small molecule that binds to ECL2 of CCR5) prevent the 

binding of HIV-1 to the coreceptor CCR5 (Wu, LaRosa et al. 1997; Baba, Nishimura et 

al. 1999) and AMD3100 inhibits the binding to CXCR4 (Bleul, Farzan et al. 1996; 
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Labrosse, Brelot et al. 1998).  T-20 (based on the HR-2 region of gp41), also known as 

Enfuvirtide or Fuzeon, is the first entry inhibitor used as an antiretroviral drug in 

humans (Kilby, Hopkins et al. 1998; Lazzarin, Clotet et al. 2003).  It binds to the HR-1 

region of gp41 and prevents fusion of the viral and host membranes (Wild, Shugars et 

al. 1994).  Some studies have shown that V3 sequences influence the sensitivity of HIV-

1 to T-20, and on average that X4 viruses were more sensitive than R5 isolates 

(Derdeyn, Decker et al. 2000; Reeves, Gallo et al. 2002), although Cilliers et al. (2004) 

did not observe this in subtype C isolates tested. 

 

1.2.8 Coreceptor usage of South African subtype C isolates 

Subtype C is the most prevalent subtype globally and R5 viruses dominant at all stages 

of disease, including late stage AIDS.  To date only limited numbers of CXCR4-using 

viruses have been described and characterised (Abebe, Demissie et al. 1999; Ping, 

Nelson et al. 1999; Batra, Tien et al. 2000; Cilliers, Nhlapo et al. 2003; Johnston, 

Zijenah et al. 2003).  This suggests there may be factors limiting the development of X4 

viruses in subtype C.  Whether this is due to host immune or virological constraints 

remains unknown.  Determining what defines a subtype C X4 virus might increase the 

likelihood of identifying these viruses, improve understanding of the factors involved in 

their development, as well as the role CXCR4 usage plays in disease progression of 

subtype C HIV-1. 
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1.3 HIV-1 ENVELOPE GLYCOPROTEIN 

 

1.3.1 Structure of the envelope protein 

The envelope glycoprotein is organised into oligomeric, most probably trimeric spikes 

on the virion surface anchored into the viral membrane by the gp41 transmembrane 

envelope protein (Kwong, Wyatt et al. 1998).  The gp120 protein structure consists of 

three domains, an inner and an outer domain, connected by a third domain, called the 

bridging sheet (Figure 1.9).   

 

Wyatt et al. (1998) 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.9: Three-dimensional structure of the gp120 glycoprotein.  The inner domain 
(in red) with the variable loops V1-V2, outer domain and V3-V5 loops (yellow) and 
bridging sheet (blue) that are involved in binding of gp120 to a chemokine receptor. 
 

The inner domain that contains the N- and C-termini, is thought to interact with gp41 

and is inaccessible to antibodies (Cao, Bergeron et al. 1993).  The outer domain consists 

of the variable regions (V1-V5) interspaced between the conserved regions (C1-C5) and 

is exposed on the surface of the trimer (Wyatt and Sodroski 1998).  The variable regions 
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form surface exposed loops and are important for virus binding to the host cell 

receptors.  The conserved regions are involved in interaction with gp41 and the 

receptors on the target cell (Kwong, Wyatt et al. 1998).  The bridging sheet consists of 

four anti-parallel β-strands and is involved in the binding of gp120 to the chemokine 

receptor (Kwong, Wyatt et al. 1998). 

 

1.3.2 Glycosylation of the envelope protein 

The gp120 protein is highly glycosylated with complex glycans in the variable regions 

and high-mannose or hybrid glycans present in the conserved regions of gp120 

(Leonard, Spellman et al. 1990; Zhu, Borchers et al. 2000) (Figure 1.10). 

 

Zolla-pazner et al. (2004) 

 
Figure 1.10: A schematic diagram of the gp120 envelope glycoprotein and potential 
glycosylation sites.  High mannose-type and/or hybrid-type oligosaccharide 
glycosylation indicated by the branched structures, and complex-type oligosaccharide 
glycosylation sites indicated by the U-shaped branches.  The variable loops are 
indicated (V1–V5).  Epitopes able to induce neutralising antibodies are highlighted in 
color including the V2 loop (orange) and the V3 loop (blue). 
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Glycosylation is essential for correct folding and processing of the viral envelope 

protein (Land and Braakman 2001).  It also provides protection from recognition by 

neutralising antibodies (known as a glycan shield) (Wei, Decker et al. 2003).  The 

number and position of potential glycosylation sites varies over time and are thought to 

be an escape mechanism.  Some glycans within the envelope regions have been 

correlated to viral phenotype, in particular the presence of a glycosylation site within the 

V3 region associated with CCR5 usage (Zhang, Gaschen et al. 2004). 

 

1.3.3 Genetic diversity of the envelope glycoprotein 

HIV-1 is characterised by a high degree of genetic diversity particularly in the envelope 

gene.  HIV-1 populations within an individual are continually evolving and can differ 

by as much as 10% in sequence at end-stage disease (Shankarappa, Margolick et al. 

1999).  Viral diversity is influenced by various factors.  These include viral 

characteristics such as error-prone reverse transcriptase and high viral turnover, host 

factors such as HLA type of patient as well as cellular and humoral immune responses 

to HIV-1.  External influences such as opportunistic infections can also contribute to 

viral diversity by promoting viral replication.  The rapid viral turnover (1010 viral 

particles/day) in an HIV infected individual, as well as the high rate of incorrect 

nucleotide substitutions during HIV reverse transcription (10-4/nt, resulting in one 

nucleotide miss-incorporation per replication cycle within a 10kb genome) in the 

absence of proof-reading mechanisms, results in extensive viral heterogeneity (Preston, 

Poiesz et al. 1988; Keulen, Nijhuis et al. 1997; Drosopoulos, Rezende et al. 1998).  

Under the selective pressure of immune responses, neutralising antibody and CTL 

escape variants with mutations in the gp120 and gp41 regions arise (Wolfs, Zwart et al. 

1991; Hogervorst, de Jong et al. 1995; Yoshida, Nakamura et al. 1997).  Characterising 
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these viral genetic adaptations within the envelope might shed some light on the 

biological consequences of this genetic diversity, as well as its impact on cellular and 

humoral responses in an infected host. 

 

1.3.4 Envelope protein diversity and disease progression 

Various studies have investigated the correlation between disease progression and viral 

heterogeneity, focusing on the envelope protein and in particular the V3 region as this 

region contains recognition sites for humoral and cellular immune responses as well as 

cell tropism (Goudsmit, Debouck et al. 1988; Safrit, Lee et al. 1994).  HIV-1 has 

various adaptive methods to escape this immune response resulting in viral 

heterogeneity which is an important determinant of disease progression (Lukashov and 

Goudsmit 1998; Kalpana, Srikanth et al. 2004).  Transmission of HIV-1 is associated 

with the transfer of relatively homogenous populations to the recipient.  (Korber, 

Wolinsky et al. 1992; McNearney, Hornickova et al. 1992; Zhang, MacKenzie et al. 

1993).  This indicated that there might be selection for specific variants during 

transmission influenced by cell tropism (as most HIV-1 viruses transmitted are CCR5-

using).   Primary infection is associated with low sequence diversity, which rapidly 

increases with disease progression and as the host immune response deteriorates, 

diversity decreases in late stage disease (Delwart, Pan et al. 1997).  Genotypic 

adaptations within the gp160 region, include change in length and charge of variable 

loops, as well as changes in the number and position of potential glycosylation sites 

(Wei, Decker et al. 2003).  Derdeyn et al. (2004) showed in a heterosexual cohort (with 

donor and recipient pairs), that the transmitted variants had significantly shorter V1-V4 

regions, suggesting that loop length increases with disease progression.  Longer V2 

length has also been correlated to slower disease progression (Shioda, Oka et al. 1997; 
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Masciotra, Owen et al. 2002).  It has been proposed that longer variable loops provide a 

sheild to the more neutralising sensitive regions in V3 and the bridging sheet (Wolinsky, 

Korber et al. 1996; Delwart, Pan et al. 1997).   

 

1.3.5 Conformational changes during entry 

During entry of HIV-1 into a host cell, gp120 interacts with CD4.  This interaction takes 

place within a cavity of gp120 formed by the three domains (inner domain, outer 

domain and bridging sheet) that are very conserved with no carbohydrates.  The cavity 

is also close to the base of the V3 and V1-V2 loops that could mask the gp120 site 

before CD4-gp120 interaction, possibly explaining their involvement in coreceptor 

preferences.  The actual CD4-gp120 contact is between 22 CD4 amino acid residues 

(concentrated between residues 25-64) and 26 gp120 amino acid residues distributed 

within gp120 (Kwong, Wyatt et al. 1998).  This binding orientates the viral spike and 

induces conformational changes within gp120.  This includes movement of the V2 loop 

that results in exposure of the V3 loop.  Sattentau et al. (1993) suggested that the CD4 

binding also changes the V3 region, making it more susceptible to proteolytic activity.  

The uncovered V3 region participates in the coreceptor binding and variation in this 

region determine which coreceptor is used. 

 

The coreceptor binding causes further conformational changes in the HIV-1 envelope 

that exposes the gp41 ectodomain (Weissenhorn, Dessen et al. 1997; Kwong, Wyatt et 

al. 1998).  The HIV-1 gp41 ectodomain has a trimeric coiled coil structure that consists 

of a fusion peptide and 2-terminal heptad regions (HR-1 and HR-2), which fold into 

each other to form a six-helical bundle.  This results in a hydrophobic gp41 NH2-
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terminus that is inserted into the target cell membrane, leading to target cell and viral 

membrane fusion (Sattentau, Zolla-Pazner et al. 1995; Chan, Fass et al. 1997). 

 

1.3.6 The V3 region as a major determinant of coreceptor usage 

The third variable loop (V3) of gp120 is generally 35 amino acids long (Figure 1.11) 

and the major determinant of coreceptor usage (Hartley, Klasse et al. 2005).  Within the 

V3 region, variation of specific amino acids, increased positive amino acid charge and 

glycosylation are some of the characteristics that have been identified as influencing 

coreceptor usage in subtype B.  In particular, the amino acids at positions 11 and 25 are 

used to distinguish between NSI- (R5) and SI-like (R5X4 and X4) viruses with SI 

viruses often having a positive amino acid at these positions (De Jong, De Ronde et al. 

1992; Fouchier, Brouwer et al. 1995; Hoffman, Seillier-Moiseiwitsch et al. 2002).  As a 

result, the net V3 charge is often a good indicator and determinant of viral tropism, with 

a high positive charge correlating with CXCR4 usage.  Another factor influencing 

CCR5 usage appears to be the predicted N-linked glycosylation site at positions 6-8 

within the V3 region, as loss of this glycan is associated with less efficient usage of 

CCR5 and in some cases enhanced ability to use CXCR4 for entry (Ogert, Lee et al. 

2001; Polzer, Dittmar et al. 2002). 

 

The role of these V3 genetic characteristics and the influence they may have on subtype 

C coreceptor usage remain to be evaluated, as to date only a few isolates able to use 

CXCR4 have been identified (Abebe, Demissie et al. 1999; Batra, Tien et al. 2000; 

Cilliers, Nhlapo et al. 2003; Johnston, Zijenah et al. 2003).  Presently, R5 (NSI) subtype 

C HIV-1 is characterised by a GPGQ crown motif, an overall charge of +3 to +5 and 35 

amino acids in length.  The X4 viruses have an increased charge from +6 to +9, with 
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some variation in the crown and in some cases an insertion between positions 13 and 14 

of mostly isoleucine and glycine (Coetzer, Cilliers et al. 2005; Huang, Tang et al. 

2005).   
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Figure 1.11: A schematic representation of the V3 loop.  This region usually consists of 
35 amino acids indicated inside the loop and positions 11 and 25 also highlighted as 
these positions play a role in coreceptor usage. 
 

 

The conformation of the V3 domain might also be an important determinant of 

tropism/biological properties of gp120 (Fouchier, Groenink et al. 1992; Shioda, Levy et 

al. 1992).  Predicted secondary structure based on neural network modelling, suggests 

that the V3 folds into a structure containing two antiparallel β-strands and a short 

carboxyl-terminal α-helix (LaRosa, Davide et al. 1990).  The role of the V3 loop during 

viral entry into the host cell is not clear, as there is no consistent evidence that the V3 
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loop interacts directly with the primary gp120-CD4 binding step (Hartley, Klasse et al. 

2005).  The positively charged V3 suggests that it does interact with the anionic 

phospholipid head-groups on the cell membrane to reduce the repulsion effect between 

membranes, but this is still unproven (Callahan, Phelan et al. 1991).  Therefore, it is not 

necessarily sequence-specific requirements that influence coreceptor usage, but the 

overall conformation of the V3 that define to which coreceptor the CD4-gp120 complex 

will interact, either CCR5 of CXCR4 (Hartley, Klasse et al. 2005). 

 

A crystal structure of gp120 with the V3 region intact has recently been described 

(Huang, Tang et al. 2005).  This model shows that the V3 loop extends from the gp120 

structure and the base of the loop interacts with the N-terminus of CCR5 and the tip 

binds to ECL2 (Figure 1.12).  The author propose that V3 acts as a 'molecular hook' to 

engage CCR5 (Huang, Tang et al. 2005).  Therefore the amino acids within the base and 

tip of the V3 are important factors in coreceptor selection. 

 

 

 

 
Figure 1.12: Modeled trimer and coreceptor schematic
orientation of the V3 region (in red) towards the targe
interaction between coreceptor (in green) with V3 loop (in r
coreceptor binds to the base of the V3 and V3 tip reaching th

 

(Huang, Tang et al. 2005)
.  (A) A trimer with the 
t cell.  (B) Schematic of 
ed).  The N-terminus of the 
e ECL2 of CCR5. 
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1.3.7 Other regions involved in coreceptor usage 

Other regions have also been implicated in the efficiency of coreceptor usage, such as 

the V1-V2 loop and the constant regions.  In particular glycosylation sites near the V1-

V2 have been identified, although these are less important than the glycosylation site in 

V3.  The V2 regions of X4 variants have been associated with length variation and 

charge increases (Groenink, Fouchier et al. 1993; Cornelissen, Mulder-Kampinga et al. 

1995; Fouchier, Broersen et al. 1995; Jansson, Backstrom et al. 2001).  Position 440 in 

the C4 region of gp120 has also been linked to viral tropism in some isolates (Carrillo 

and Ratner 1996; Milich, Margolin et al. 1997; Hoffman, Seillier-Moiseiwitsch et al. 

2002).  In this case R5 genotype is associated with arginine and lysine at position 440 

(HXB2 numbering) and X4 genotype over represented with glutamic acid and serine, as 

well as glycine, threonine and glutamine.  The V4-V5 region has been shown to 

contribute to viral tropism, but usually in addition to changes within other regions of the 

envelope protein (Smyth, Yi et al. 1998; Hu, Barry et al. 2000). 
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1.4 PHENOTYPE PREDICTION METHODS BASED ON THE V3 REGION 

 

Phenotype predictions are increasingly being applied to identify and understand HIV-1 

biological phenotypes.  As a major determinant of coreceptor utilisation, the V3 region 

has been used in various studies to predict viral phenotype (Jensen and van 't Wout 

2003).  These bioinformatic methods are very applicable in various research aspects, 

such as the identification of X4 viruses, relating their presence to disease status and 

increased understanding of the R5 to X4 transition and the evolution of X4 viruses 

(Jensen, Li et al. 2003).  Prediction methods are also applicable in studies where 

information of coreceptor utilisation within a patient, for example those receiving ARVs 

or small molecule inhibitors, will facilitate improved treatment.  Pharmaceutical 

companies are also focusing on faster / easier methods in determining coreceptor usage 

particular with the increased interest in developing coreceptor inhibitory drug therapy.  

Coreceptor phenotypic assays are expensive and very laborious and a reliable phenotype 

prediction method, based on sequence, could provide for rapid and less expensive 

screening.  There are numerous methods to predict HIV-1 phenotype from genotype and 

each has its own advantages and disadvantages, some of which are described below.  It 

should be noted that predicting phenotype based on only 35 amino acids (from the V3 

region) underscores the importance of other determinants for coreceptor usage within 

the gp120.   

 

1.4.1 The 11/25 rule 

This method is based on the presence of basic amino acids (R and K) at positions 11 and 

or 25, associated with the SI phenotype, and neutral or acid amino acids (D and E) for 

NSI viruses (highlighted in Figure 1.11) (Fouchier, Groenink et al. 1992).  This method 
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was developed using subtype B sequences and has been used extensively in studies to 

differentiate between the NSI and SI phenotype (De Jong, De Ronde et al. 1992; 

Fouchier, Groenink et al. 1992; Hoffman, Seillier-Moiseiwitsch et al. 2002).  Resch et 

al. (2001) have shown this method to be the most reliable predictor of phenotype 

(NSI/SI), but loses sensitivity when predicting X4 tropism. 

 

1.4.2 Briggs method 

This is a multiple regression method based on positive, negative and net V3 charge to 

determine phenotype and coreceptor usage (Briggs, Tuttle et al. 2000).  This method 

was developed using 43 subtype B sequences with known phenotype.  Four genotype 

variables were identified as predictors of phenotype, (i) the number of positively 

charged amino acids, (ii) number of negatively charged amino acids, (iii) the net V3 

charge, and (iv) an isoleucine residue at position 292 (amino acid 30 in V3 loop).  An 

equation to predict viral phenotype based on these genetic variables was calculated as: 

 

 

Predicted phenotype = 0.94 + [1.68 X (V3 net charge)] 
                - [1.37 X (total positive  charges)] 
               + [1.54 X (total negative charges)] 
                - [1.19, if aa292 = I] 
 
 
Values         Phenotype 
0.5 - 1.4            R5 
1.5 - 2.4          R5X4 
2.5 - 3.4             X4 
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1.4.3 Pillai method 

This is a machine-learning method, using phenotype classifiers (Pillai, Good et al. 

2003).  Classifiers are rules generated from a data set using decision tree methodology 

(Figure 1.13).  Various classifiers were tested but the support vector machines (SVM) 

performed the best in determining phenotype.  These classifiers were trained to make 

the distinction between viruses able to use CXCR4 versus those unable to use CXCR4, 

and hence dualtropic viruses could not be identified.  This method is a web based 

method (http://genomiac2.ucsd.edu:8080/wetcat/v3.html). 

 

 

aa12 

= R = G = K = S = R 

= R else 

ccr5 

ccr5 

cxcr4 cxcr4 

cxcr4 

aa8 ccr5 

 

 

 

 

 

 

 

 
 
 
Figure 1.13: Decision tree constructed of amino acid position 12.  Depending on the 
amino acid at position 12 the sequence is classified as 'ccr5' or 'cxcr4', but other 
positions can also influence the decision at this site, as indicated for amino acid position 
8.  'ccr5' indicated that the particular amino acid was associated with CCR5 viruses, 
similarly 'cxcr4' suggest that the same for the CXCR4-using isolates. 
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1.4.4 Neural networks 

Neural network method is similar to the machine learning method where classifiers are 

compiled from data with a specific characteristic, in this case coreceptor usage.  Neural 

networks were trained using subtype B data sets with known coreceptor usage (Resch, 

Hoffman et al. 2001).  Two networks were developed, an R5/X4 network and a NSI/SI 

network.  The NSI/SI network had similar reliability to the 11/25 rule in predicting 

phenotype.  The R5/X4 network had increased sensitivity in predicting X4 viruses.  

Resch et al. (2001) thus suggested that phenotype may be largely determined by 

changes at position 11 and 25, but coreceptor usage is more complex and other regions 

such as V1-V2 and C4 might be involved (Groenink, Fouchier et al. 1993; Carrillo and 

Ratner 1996; Milich, Margolin et al. 1997). 

 

1.4.5 Geno2Pheno method 

This support vector machine (SVM) learning method was developed for coreceptor 

prediction, and similar methodology was also applied to phenotypic drug resistance 

prediction (Beerenwinkel, Daumer et al. 2003; Sing, Beerenwinkel et al. 2004).  This is 

a web-based tool available at (http://www.genafor.org).  The majority of the V3 

sequences used in developing this method were obtained from the Los Alamos 

sequences database (http://www.hiv.lanl.gov) and included different subtypes.  SVM is 

a two-class classification method trained to differentiate between CXCR4 versus CCR5 

usages.  This tool is different from the Pillai method, in that it includes the possibility of 

choosing the prediction stringency (significance level) and confidence levels (p-value) 

are given for each prediction.  In comparison with other methods the developers of the 

Geno2Pheno method did observe that this method does perform significantly worse than 
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the support vector or PSSM methods, but comparable to neural networks (Sing, 

Beerenwinkel et al. 2004). 

 

1.4.6 Position specific scoring matrix method (PSSM) 

PSSM detects a non-random distribution of sequences at a specific site within an 

alignment (Jensen, Li et al. 2003) and has been used to identify DNA or protein motifs 

in various studies (Gribskov, McLachlan et al. 1987; Henikoff, Wallace et al. 1990).  A 

target sequence is compared to a group of sequences with a known property (in this case 

CXCR4 or CCR5) and a score is obtained that indicates how closely the target sequence 

resembles that property.  Therefore the higher the score the more X4-like the sequence.  

This method was demonstrated to have improved predictive power, as well as increased 

applicability in understanding the transition between R5 to R5X4 to X4 development in 

subtype B (Jensen and van 't Wout 2003).  The method is available at 

http://ubik.microbiol.washington.edu/computing/pssm. 

 

1.4.7 Predictions on subtype C data sets 

Most of these prediction methods have been developed with subtype B sequences, and 

whether they are applicable to other subtypes such as subtype C is not known.  In 

particular, with the low prevalence of CXCR4 usage in subtype C and not enough 

sequences available, these methods might not be sensitive enough to detect these X4 

viruses in subtype C.  Therefore the prediction methods need to be tested on all 

available subtype C sequences with known coreceptor usage. 
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1.5 NATURAL HISTORY OF HIV-1 INFECTION 

 

The clinical course of HIV infection can be divided into three stages: primary/acute 

infection, chronic/asymptomatic and AIDS (Figure 1.14).  The primary phase is 

associated with high levels of viral replication and a decrease in CD4+T cell count 

(Cooper, Tindall et al. 1988; Daar, Moudgil et al. 1991; Mellors, Rinaldo et al. 1996). 
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Figure 1.14: The natural history of HIV-1 infection.  Viral load increases dramatically 
in the acute phase and the CD4 T-cells. Within a few weeks, an immune response to 
HIV develops which curtails viral replication and a return of CD4 T-cell numbers to 
near normal levels occurs. The control of viremia is attributed to the CTL response and 
to a lesser extent the neutralising antibody response, which takes longer to develop. As a 
result of these responses individuals remain clinically well for many years.  
 

 

Cytotoxic T-lymphocytes are the first immune response to HIV-1, and occur within 

days of primary infection.  It is thought that the decline in viremia after primary 

infection is due to CTL response (Koup, Safrit et al. 1994).  Binding antibodies (usually 
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against gag) appear within weeks after infection and are used in diagnosing HIV-1 

within an individual (using an ELISA assay).  The CTL defence is followed by 

neutralising antibodies that block the infection of HIV-1 to host cells (Moore, Sattentau 

et al. 1994; Moore and Sodroski 1996).  These antibodies can take up to three months to 

develop, and although they can neutralise the infecting virus, they often have little to no 

activity against other strains of virus.  It is only during the course of infection, that more 

broadly neutralising antibodies appear (Wyatt and Sodroski 1998; Richman, Wrin et al. 

2003; Wei, Decker et al. 2003).  Due to the HIV-1 specific cellular immune response, 

viral loads decline and the asymptomatic period follows (Koup, Safrit et al. 1994; 

Moore, Cao et al. 1994).  During this period there is a gradual deterioration of the 

immune system and progressive loss of CD4+T cells.  Viral load remains relatively 

constant at a set-point that is indicative of a patient's clinical outcome (Mellors, Rinaldo 

et al. 1996).  Most HIV-1 infected individuals develop AIDS after a median of 11 years 

(Munoz, Wang et al. 1989), although this is two to three years shorter in developing 

countries such as South Africa (Grant and De Cock 2001).  This phase is associated 

with increased viral replication, further loss of CD4+ T cells (below 200) and the onset 

of opportunistic infections. 

 

1.5.1 Immune activation 

There is a complex balance between viral and host factors within a HIV-1 infected 

individual, as reflected by steady-state level of plasma viremia during the asymptomatic 

phase.  Exogenous immune-activating stimuli such as immunisation, viral, bacterial and 

parasitic infections in HIV-1 infected patients can disrupt this balance.  This disruption 

is usually associated with transient increases (viral bursts) in HIV-1 viral load (Goletti, 

Weissman et al. 1996; Sulkowski 1998) (Figure 1.15).  Immune activation due to 
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opportunistic infections not only impacts on the dynamics of viral replication, but could 

promote the expression of variants with specific tropisms (Ostrowski, Krakauer et al. 

1998).  Clerici et al. (2000) suggest that the predominance of HIV-1 R5 variants in 

Africa were immunologically driven due to environmental factors (such as bacterial and 

parasitic infections) that promote macrophage stimulation.  These macrophages contain 

CCR5 coreceptors increasing potential target cells, and therefore creating a suitable 

environment that promotes HIV-1 viral replication and disease progression.   
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Figure 1.15: Consequences of immune activation on the biology of HIV-1 infection.  
The subsequent effect of immune activation on HIV-1 transmission, disease progression 
and survival in HIV-1 infected persons. 
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1.5.2 Tuberculosis 

Tuberculosis (TB) is the most common opportunistic infection in HIV-1 infected 

patients in South Africa.  Mycobacterium tuberculosis (MTB) is a slow growing acid-

fast bacillus, transmitted primarily by the respiratory route and although it can cause 

disease in most organs, pulmonary tuberculosis is the most common form (Flynn and 

Chan 2001).  It is estimated that one third of the worlds population will react positively 

when given a purified protein derived (PPD) skin test, indicating that these individuals 

have been or still are infected with the latent or chronic phase of TB (Russell 2001).  

Most people develop an immune response to TB.  However HIV-1 infected individuals 

are unable to mount an effective immune response because of a compromised immune 

system and are susceptible to TB infection. (Flynn and Chan 2001). 

 

1.5.2.1 Interaction between TB and HIV-1 

HIV-1 infection influences the probability, severity and frequency of a tuberculosis 

infection (Porco, Small et al. 2001).  The stage of HIV infection and degree of 

immunodeficiency influences the clinical picture of tuberculosis.  In early HIV 

infection, TB is associated with characteristics of post-primary TB (due to reactivation 

or re-infection), whereas advanced stages of HIV-1 are associated with an increased 

frequency of pulmonary disease resembling primary pulmonary tuberculosis and 

extrapulmonary disease (Raviglione, Harries et al. 1997). 

 

In contrast, the effect of TB on HIV-1 infection is less clear, but there is a general 

consensus that tuberculosis enhances HIV-1 replication (Whalen, Horsburgh et al. 1995; 

Goletti, Weissman et al. 1996; Del Amo, Malin et al. 1999; Toossi, Johnson et al. 

2001).  As the host immune responses to TB infection, T cells and macrophages are 
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activated and these may harbour reservoirs of HIV-1 (Wallis, Vjecha et al. 1993).  HIV-

1 entry is dependant on the receptors expressed on host cells and immune activation 

(due to opportunistic infection) can change the expression of coreceptors, making these 

cells more susceptible to HIV-1 infection (Lawn, Shattock et al. 1999).  This might 

result in the preferential amplification of specific variants with increased fitness, 

resistance to antiretroviral treatment, neutralising antibodies or expansion of coreceptor 

usage and these factors could contribute to HIV-1 disease progression. 

 

 

1.6 OBJECTIVES OF THIS STUDY 

 

The aim of this study was to investigate the in vivo and in vitro diversity of HIV-1 

subtype C isolates from South Africa and correlate genotype with biological phenotype, 

in particular focusing on the genetic determinants that influence coreceptor usage in 

subtype C.  In this study the envelope gene (and specifically the V3 region) was used 

for these analyses to determine (1) the criteria for CXCR4 usage and whether it is the 

same as has been reported in subtype B, (2) the applicability of prediction methods, as 

well as development of a subtype C specific PSSM, (3) changes in the gp160 region 

including those regions outside the V3 in patients, some of whom have acquired the use 

of CXCR4 over time, (4) the evolutionary pathways in coreceptor switching from R5 to 

X4 within a single patient, and (5) the effect of TB and TB treatment on HIV-1 genetic 

diversity, particularly the influence of this selection pressure on viral populations and 

coreceptor usage. 
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CHAPTER 2 

 

 

WHAT GENETIC CHANGES ARE ASSOCIATED WITH CXCR4 USAGE IN 

HIV-1 SUBTYPE C ISOLATES? 
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2.1 INTRODUCTION 

 

HIV-1 enters the host cell by binding to CD4 and a coreceptor.  The two major 

coreceptors involved are CCR5 and CXCR4 (Deng, Liu et al. 1996; Dragic, Litwin et 

al. 1996; Feng, Broder et al. 1996), with CCR5 being the most commonly used during 

transmission and early infection (Michael, Chang et al. 1997).  HIV-1 isolates can be 

differentiated based on their ability to use these coreceptors with R5 viruses utilising 

CCR5, X4 viruses using CXCR4 and R5X4 viruses able to use both receptors (Berger, 

Doms et al. 1998).  In subtype C R5 viruses dominate at all stages of disease, including 

late stage AIDS.  Limited numbers of CXCR4-using viruses have been described 

(Abebe, Demissie et al. 1999; Bjorndal, Sonnerborg et al. 1999; Ping, Nelson et al. 

1999; Batra, Tien et al. 2000; Cilliers, Nhlapo et al. 2003; Johnston, Zijenah et al. 

2003), suggesting that there may be obstacles that prevent or limit the development of 

X4 viruses in this subtype.  Defining the molecular factors that contribute to CXCR4 

usage within this subtype will assist in identifying viruses with these phenotypes, as 

well as understand the role CXCR4 usage plays in disease progression of subtype C 

HIV-1. 

 

The third variable loop (V3) of gp120 is generally 35 amino acids long, highly variable 

and a critical determinant of coreceptor usage (Hartley, Klasse et al. 2005).  Within the 

V3 region the variation of specific amino acids (such as positions 11 and 25), increased 

positive amino acid charge and glycosylation are some of the characteristics that have 

been identified as influencing coreceptor usage in subtype B.  Whether these 

characteristics are also important in subtype C coreceptor usage remain to be evaluated. 
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The V3-specific heteroduplex tracking assay (V3-HTA) has been used to rapidly 

identify V3 variants that are frequently associated with CXCR4 usage in subtype B 

(Nelson, Fiscus et al. 1997).  This assay is based on the formation of heteroduplexes 

between the isolate V3 sequence and a consensus V3 sequence (probe).  Divergence 

from the consensus sequence is then measured by the mobility ratio of the 

heteroduplexes formed and represents the variation within the V3 region, with CXCR4-

using viruses usually the most divergent (Nelson, Fiscus et al. 1997; Nelson, Baribaud 

et al. 2000).  A subtype C-specific V3-HTA has previously been applied to subtype C 

samples, but no CXCR4-using viruses were identified due to the low frequency of X4 

viruses in this subtype (Ping, Nelson et al. 1999).  In this study we selected 32 subtype 

C isolates with experimentally determined coreceptor usage profiles (16 R5 and 16 

R5X4 or X4) and used the V3-HTA to screen for sequence diversity and population 

complexity of these biological variants.  Furthermore, the sequences of these isolates 

were studied to determine if there were any distinct changes in the V3 region that might 

be used to predict CXCR4 usage in subtype C. 
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2.2 MATERIALS AND METHODS 

 

2.2.1 Isolation and coreceptor usage of HIV-1 subtype C viruses 

Viral isolates were selected from previously described cohorts from our laboratory.  

This included isolates from adult patients with advanced HIV-1 disease  [SW, CM, 

PCP] (Cilliers, Nhlapo et al. 2003), sex workers with acute HIV-1 infection [Du] 

(Williamson, Morris et al. 2003) and one patient failing response to anti-retroviral 

treatment (Cilliers, Patience et al. 2004).  Some isolates originated from a paediatric 

cohort of slowly progressing (TM) and rapidly progressing children (RP) (Choge, 

Cilliers et al. 2005) (for ethical clearance see Appendix A).  Levels of virus in plasma 

were measured using the Versant HIV-1 RNA 3.0 assay (bDNA from Bayer Nucleic 

Acid Diagnostics) and CD4 counts were determined using a FACS count (Becton 

Dickinson, San Jose, CA).  Viral isolates were tested for their ability to replicate in 

U87.CD4 cells transfected with either CCR5 or CXCR4, as previously described 

(Morris, Cilliers et al. 2001; Cilliers, Nhlapo et al. 2003). 

 

2.2.2. Viral RNA isolation and RT-PCR 

Viral RNA of each isolate was extracted from PBMC culture supernatant using a 

MagnaPure LC Isolation station and the Total Nucleic Acid isolation kit (Roche Applied 

Science, Penzberg, Germany).  RT-PCR was performed with primers C+V3 (5'- ATA 

GTA CAT CTT AAT CAA TCT GTA GAA ATT -3') and C-V3 (5'- CCA TTT ATC 

TTT ACT AAT GTT ACA ATG TGC -3'), generating a 159 bp product as described 

(Nelson, Fiscus et al. 1997; Ping, Nelson et al. 1999).  PCR products were purified 

using the High Pure PCR Product Purification kit (Roche Diagnostics GmbH, 

Mannheim, Germany). 
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2.2.3 V3-HTA 

V3-HTA probe construction and labelling was done as previously described by Nelson 

et al. (Nelson, Fiscus et al. 1997) and Ping et al. (Ping, Nelson et al. 1999).  The probe 

from the plasmid (D516-11) originating from a subtype C R5 virus and with only three 

nucleotide differences from the subtype C V3 consensus was used (Ping, Nelson et al. 

1999).  Single stranded probe labelling was done by digesting plasmid D516-11 with 

BamH1 (Amersham Pharmacia Biotech, UK), end-labelling at room temperature with a 

mixture containing 12.5µCi 35S-dATP (Amersham Pharmacia Biotech, UK), unlabeled 

dGTP and Klenow DNA polymerase I (Amersham Pharmacia Biotech, UK).  The probe 

was removed from the vector by digestion with SpeI (Amersham Pharmacia Biotech, 

UK) and purified using the High Pure PCR purification kit (Roche Diagnostics GmbH, 

Mannheim, Germany) into a final volume of 50 µl.  Heteroduplexes were formed 

between the probe and PCR product in a 10 µl reaction containing 5 µl PCR product, 3 

µl labelled probe, 1 µl annealing buffer (1M NaCl, 100mM Tris-HCL [pH7.5], 20mM 

EDTA) and 1 µM of the C+V3 primer denatured at 95°C for 2 minutes.  The reactions 

were then cooled at room temperature for 10 minutes.  The heteroduplexes were 

separated in non-denaturing 12% polyacrylamide gels as described by Nelson et al. 

(Nelson, Fiscus et al. 1997).  The dried gels were exposed to autoradiograms (BioMax 

MR, Kodak).  Heteroduplex mobility ratio was determined by measuring the mobility of 

the slowest heteroduplex (highest band in a gel) of each sample and dividing it by the 

mobility of the probe homoduplex.  The PCR product from samples with single bands 

was sequenced using an ABI PRISM 3100 genetic analyser with ABI PRISM BigDye 

Terminator v3.1 Cycle Sequencing kit (Applied Biosystems). 
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2.2.4 Cloning of single populations 

Isolates with multiple variants were selected for cloning.  Purified PCR product was 

cloned into the pGEMTeasy vector (Promega, USA) and individual molecular clones 

were screened by HTA and sequenced as described above. 

 

2.2.5 Sequence analysis 

All sequences were aligned with ClustalX, predicted protein translations were 

performed using BioEdit (version 5.0.9), phylogenetic analysis and genetic distances 

were determined using the MEGA program (version 2.1).  The consensus sequences for 

isolates that used CCR5 and CXCR4 were determined using BioEdit. Additional 

subtype B and C V3 sequences were downloaded from the Los Alamos database 

(http://www.hiv.lanl.gov).  The subtype B data set contained 129 sequences with known 

coreceptor usage (99 CCR5 and 30 CXCR4) representing only one sequence per patient.  

The subtype C data set represented single patient sequences from 91 CCR5 viruses and 

17 SI viruses, since limited numbers of subtype C CXCR4 viruses were available. 
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2.3 RESULTS 

 

2.3.1 Investigation of sample complexity using a V3-HTA 

To investigate the variants present within the V3 region of CCR5- and CXCR4-using 

viruses a V3-HTA was used.  Sixteen R5 isolates, eight R5X4 and eight X4 isolates 

from patients at various stages of disease, including late stage AIDS, were selected for 

analysis (Table 2.1).  Two isolates were obtained from a single patient (Du179) that 

were one year apart and were included as they showed different coreceptor profiles.  

The V3 region from all isolates was amplified and hybridised to a subtype C R5 

radiolabelled probe and resolved on a polyacrylamide gel.  In general, the 

heteroduplexes that formed between the probe and the R5 viruses migrated faster 

through the gel, close to the probe homoduplex, while the R5X4 and X4 viruses 

migrated more slowly through the gel at variable distances and often closer to the single 

stranded probe (Figure 2.1).  At the extreme, one R5X4 (SW30) and one X4 (TM2) had 

heteroduplexes that were above the single-stranded probe suggestive of a high degree of 

genetic difference and/or an insertion or deletion relative to the probe.  Apart from one 

R5 isolate (SW4) and one X4 isolate (SW7) all the R5 and X4 isolates had single bands 

indicative of homogeneous populations within the V3 region.  In contrast, 5 of the 8 

R5X4 isolates had multiple variants often migrating at different distances between the 

single strand and homoduplex probe, indicative of heterogeneous mixtures. 
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Isolate Clinical status CD4 count Viral load Biotype Isolate Clinical status CD4 count Viral load Biotype
(cells/µl) (copies/ml) (cells/µl) (copies/ml)

Du151(11-98) Acute 367 >500 000 R5 CM9 AIDS 24 NA R5X4
PCP1 AIDS 2 NA R5 Du179(05-99) Chronic 279 2 640 R5X4
CM1 AIDS 43 146 514 R5 Du36 Acute 25 54 944 R5X4
CM4 AIDS 47 163 755 R5 RP1 Rapid progressor 7 178 830 R5X4
SW2 AIDS 84 157 150 R5 SW20 AIDS 2 43 595 R5X4
SW3 AIDS 53 261 880 R5 SW30 AIDS 2 73 860 R5X4
SW4 AIDS 76 1 496 620 R5 TM1 Slow progressor NA 190 000 R5X4
SW5 AIDS 40 1 374 235 R5 TM18b Slow progressor 202 500 000 R5X4
SW8 AIDS 67 1 198 880 R5 DR28 AIDS, on treatment 173 269 000 X4
SW9 AIDS 65 301 605 R5 Du179(05-00) Chronic 231 2 228 X4
TM3 Slow progressor 329 11 178 R5 Du55 Acute 13 6 589 X4
TM4 Slow progressor 692 25 815 R5 SW12 AIDS 27 68 410 X4
TM5 Slow progressor 1378 22 488 R5 SW7 AIDS 10 NA X4
TM6 Slow progressor 846 108 716 R5 TM2 Slow progressor NA 25 156 X4
TM10 Slow progressor 1158 685 R5 TM46b Slow progressor 4 28 613 X4
TM12 Slow progressor 976 21 976 R5 TM9 Slow progressor 11 296 865 X4

R5 isolates R5X4/X4 isolates

Table 2.1: Clinical information of the 16 R5, 8 R5X4 and 8 X4 HIV-1 subtype C isolates used in this study. 

NA: Not available 
Slow progressor - child diagnosed with HIV-1 >5 years 
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Figure 2.1: V3-HTA of HIV-1 subtype C isolates with different biological phenotypes.  
PCR products from viral isolates were hybridised to a radiolabelled subtype C R5 probe 
and separated on a polyacrylamide gel.  Heteroduplexes formed between the isolate and 
probe usually migrated between the single stranded probe and probe homoduplex as 
shown in four separate gels. 
 

A heteroduplex mobility ratio (k) was calculated for each isolate based on the rate of 

migration of heteroduplex bands.  In isolates with multiple bands, the mobility ratio for 

each variant was calculated, although for the purposes of analysis the lowest k value 

was used.  The majority of R5 isolates clustered closer together with a median mobility 

ratio of 0.94 (range 0.76 - 0.96) (Figure 2.2A).  The three R5 isolates (TM3, CM4 and 

TM10) with low mobility ratios (k<0.90) had a single deletion within the V3 region at 

amino acid positions 23, 24 and 25 respectively compared to the probe sequence, thus 

resulting in retarded migration through the gel.  The mobility ratios of R5X4 and X4 

isolates showed a broader range (0.52 - 0.91) with a median of 0.64.  There was no 

significant difference in k values between R5X4 and X4 isolates, although almost all 

fell below 0.90.  The one isolate with a mobility ratio above 0.90 (DR28) was from a 

drug treated patient and had 35 amino acids similar to the probe.  A graphical display of 
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these data relative to coreceptor usage is shown in Figure 2.2B.  A dashed line at 0.90 

separated most R5 isolates (samples above the line) from the R5X4 and X4 (p<0.001). 

 

 
A 
 

Isolate Mobility ratios # amino acids Charge Isolate Mobility ratios # amino acids Charge
Du151(11-98) 0.96 35 3.5 CM9 0.85/0.9* 35 5.5
PCP1 0.96 35 3.5 Du179(05-99) 0.78 34 4.5
CM1 0.94 35 2.5 Du36 0.68/0.71/0.76/0.77/0.91* 35, 36 6.5, 7.5
CM4 0.8 34 2.5 RP1 0.62/0.84* 35, 37 4.5, 7.5
SW2 0.96 35 3.5 SW20 0.58 37 5.5
SW3 0.9 35 3.5 SW30 0.54/0.93* 35,37 7.5, 8
SW4 0.92/0.94 35 4* TM1 0.61/0.68 37 7.5
SW5 0.95 35 3.5 TM18b 0.88 35 6
SW8 0.93 35 3.5 DR28 0.91 35 7.5
SW9 0.94 35 3.5 Du179(05-00) 0.61 32 5
TM3 0.76 34 3 Du55 0.83 34 6
TM4 0.96 35 4.5 SW12 0.61 37 7.5
TM5 0.91 35 4 SW7 0.65/0.78 36 7.5
TM6 0.95 35 3.5 TM2 0.52 37 5.5
TM10 0.81 34 4.5 TM46b 0.72 34 6
TM12 0.95 35 2 TM9 0.54 37 7
Median 0.94 35 3.5 Median 0.64 35 6

R5 isolates R5X4/X4 isolates
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Figure 2.2: Comparison of mobility ratio and coreceptor usage of subtype C isolates.  
(A) V3-HTA mobility ratio, number of amino acids and charge in V3 of the variants 
present within the R5, R5X4 and X4 isolates.  In isolates with multiple bands, all the 
mobility ratios are listed.  (B) Association between mobility ratio (k) and biotype.  Only 
the lowest mobility ratio was used for samples with multiple bands.  The dashed line at 
0.90 separated most R5 from R5X4/X4 viruses. 
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2.3.2 Analysis of isolates with multiple variants 

Seven isolates in this study had multiple variants in the V3 region that were clearly 

distinguishable on a V3-HTA.  This included one R5 isolate (SW4), 5 R5X4 isolates 

(CM9, Du36, RP1, SW30, TM1) and one X4 isolate (SW7).  In order to analyse the 

different variants, molecular clones were selected from five of these isolates (TM1 and 

SW7 were not cloned).  The V3 nucleotide (not shown) and amino acid alignment for 

each of the variants were then compared.  The phenotype of individual clones were 

predicted based the V3 amino acid charge, sequence analysis and mobility ratio (where 

k>0.90 was considered R5-like and a k<0.90 considered to be X4-like). 

 

A total of five variants were present in the dualtropic isolate Du36 (Figure 2.3A).  These 

variants were present in different proportions with variants 3 and 5 being the most 

common.  The amino acid charge for all 5 variants was between 6.5 and 7.5, indicative 

of CXCR4 usage, however, the mobility ratio of variant 1 was 0.91 suggesting it was 

more R5-like.  A lack of a predicted N-glycosylation site at the N-terminus of the V3 

region was noted in 3 of the X4-like variants (2, 3 and 5).  Collectively the X4-like 

variants were genetically more similar to each other than to the R5-like variant (data not 

shown).  This patient was previously shown to be dually infected with two subtype C 

viruses, which might explain the high degree of genetic divergence between the 

different populations in this sample (Grobler, Gray et al. 2004). 

 

Sequence analysis of clones from 1 R5 and 3 R5X4 isolates with multiple bands were 

also investigated (Figure 2.3B).  The amino acid sequences from both clones of SW4 

were identical with high mobility ratios consistent with an R5 phenotype and this was  

 43



A  

Clone nr 11 25 aa Charge k pp
Du36 5 D K I N M K G R 36 7.5 0.68 X4-like

(R5X4) 4 I T M G K 36 6.5 0.71 X4-like
3 D K I S M K G K 36 7.5 0.76 X4-like
2 D R I S M K G K 36 7.5 0.77 X4-like
1 C T R P N N N T R - K R I K - I G P G R A F V A T N N I I G D I R Q A H C 35 6.5 0.91 R5-like

5 
4 

2 
3 

1 

Population 
 

 

 

 

 

 

 

 

 

 
B 

 

11 25 aa Charge k pp
SW4 2 * * 35 4 0.92 R5-like
(R5) 1 C T R P S N N T R K S I R - - V G P G Q S F H A T G E I I G D I R Q A H C 35 4 0.94 R5-like

CM9 2 I R T I 35 5.5 0.85 X4-like
(R5X4) 1 C T R P G N N T R K R I R - - I G P G Y A F Y A K E A I V G D I R Q A H C 35 5.5 0.9 R5-like

SW30 2 N K I G R H K V 37 8 0.54 X4-like
(R5X4) 1 C T R P K N N T R R S V R - - I G P G Q A F Y A T G R S I G N I R Q A H C 35 7.5 0.93 R5-like

RP1 2 R L G R R 37 7.5 0.62 X4-like
(R5X4) 1 C T R P G N N T R K S V R - - I G P G Q T F Y A T G Q V I G D I R Q A H C 35 4.5 0.84 R5-like

 

 

 

 

 
 
 
 (*) Indicates the synonymous changes responsible for the variants in SW4 

(-) Indicates amino acids not present 
(aa) Number of amino acids 
 

 
 
 
 
Figure 2.3: Analysis of molecular clones from HIV-1 subtype C isolates with multiple 
variants.  The variants were labelled from the bottom (highest mobility ratio) to the top 
of the gel.  (A) Amino acid alignment of 5 populations present in Du36, as seen in 
accompanying gel.  Amino acid alignments indicating only the differences within these 
populations, number of amino acids and charge of the V3 region are shown.  Predicted 
phenotype according to charge, sequence analysis and mobility ratio is also indicated.  
(-) Indicates amino acids not present, (aa) number of amino acids in the V3 region and 
positions 11 and 25 are highlighted.  (B) Amino acid alignments of variants present in 1 
R5 and 3 R5X4 isolates. 
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supported by the charge and length, which were typical of R5 viruses.  Thus, the 

differences between these 2 variants of SW4 visible on the V3-HTA were due to 

synonymous nucleotide changes.  Among the 3 R5X4 isolates amino acid differences 

were seen between the 2 clones of each isolate, suggestive of a mixture of R5-like and 

X4-like variants.  Predicted CXCR4 usage was associated with different genetic 

characteristics in each case although some commonalities in the positions were noted.  

In one patient there were positively charged amino acids at positions 11 and 25 in the 

X4-like variant only.   Changes in the crown motif were seen in two and insertions were 

observed in all X4-like variants from the 3 patients. There were also differences in the k 

ratios between the 2 clones from the same patient, with the X4-like variant having lower 

k values compared to the R5-like variant.  

 

2.3.3 V3 sequence variability of CCR5- and CXCR4-using variants 

Two data sets were compiled representing CCR5- and CXCR4-using sequences.  The 

CCR5-using data set was obtained from the 16 patients with R5 viruses that had single 

populations as seen in the V3-HTA (SW4 had 2 populations and the sequence with the 

highest mobility ratio was used).  The CXCR4-using data set contained sequences from 

the 6 patients with X4 viruses and 3 dualtropic patients (that had homogenous 

populations), as well as two population-based sequences (SW7 and TM1).  To increase 

the number of sequences in the CXCR4 data set, single sequences from the five 

dualtropic patients, with multiple variants were also included.  The sequences with the 

highest mobility ratios were selected as representative of the CXCR4-using variant 

within a patient.  These V3 sequences from the 16 CCR5- and 16 CXCR4-using 

variants were compared for length and charge.  The majority of CCR5-using sequences 

had 34-35 amino acids with no insertions, whereas CXCR4-using sequences consisted  
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Figure 2.4: Comparison of (A) V3 length and (B) V3 charge of HIV-1 subtype C 
isolates able to use CCR5 and CXCR4. 
 

of 32-37 amino acids due to insertions and deletions (Figure 2.4A).  The V3 net amino 

acid charge between CCR5 and CXCR4 usage were distinct with little overlap (Figure 

2.4B).  The CCR5-using viruses had an amino acid charge between +2 and +4.5, with 

the majority of samples having +3.5.  CXCR4-using variants ranged between +4.5 and 

+8 with the highest frequency of variants having a charge of +7.5.  Thus, CXCR4 usage 

in subtype C was associated with an increased V3 length and increased number of 

positively charged amino acids. 
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Entropy plots were performed to compare the amount of sequence variability between 

the CCR5- and CXCR4-using variants (Figure 2.5).  Entropy plots graphically measure 

the amount of variability at a specific site of an alignment, with higher entropy 

indicative of more variation at a specific site.  In general, the CXCR4 variants were 

more variable across the V3 region at each specific site, with high variation at positions 

11, 12, 24 and 25.  The predicted N-glycosylation site (at positions 6-8) associated with 

CCR5 usage was conserved in all 16 R5 isolates but highly variable in the CXCR4-

using samples.  Similarly, the crown motif within the V3 for all R5 isolates was GPGQ, 

compared to CXCR4-using variants that showed variation in this motif (Fischer exact 

test, p<0,0001). 
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Figure 2.5: Variation in the V3 region of CCR5 and CXCR4-using isolates of HIV-1 
subtype C.  (A) Entropy plot representing the variation at each amino acid site for 
CCR5 usage and CXCR4 usage.  The potential N-glycosylation site N-[X]-T, amino 
acid positions 11 and 25, and crown motif are indicated. 
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The frequency and type of amino acid substitutions at each site was determined for the 

CCR5- and CXCR4-using isolates (Figure 2.6).  Although these results represent small 

numbers (16 CCR5- and 16 CXCR4-using isolates), CCR5 usage was associated with 

less amino acid substitutions compared to CXCR4 usage.  In particular, a variety of 

amino acids were seen at positions 11 and 25 within CXCR4-using viruses, and these 

were not necessarily positively charged.  Nine of the 16 CXCR4-using viruses had 

insertions between amino acid positions 13 and 14.  These insertions were either T/K/L 

or more commonly I at the first position and if a second insertion followed, it was 

usually glycine (G).  Twelve of the 16 CXCR4-using viruses (75%) had changes in the 

crown motif (GPGQ).  These changes were mostly at position 18, but amino acid 

substitutions were also seen at positions 16 and 17. 
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Figure 2.6: Distribution of amino acids in the V3 region of 16 CCR5- and 16 CXCR4-
using variants (numbers indicate frequency in total of 16 viruses). 
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2.3.4 Determining subtype C V3 characteristics associated with CXCR4 usage 

Consensus sequences were compiled for these 16 CCR5 and 16 CXCR4 representative 

sequences investigated in this study.  There was sequence homology for 26 of the 35 

amino acids between the CCR5- and CXCR4-using isolates (Figure 2.7).  Amino acid 

substitutions associated with the CXCR4-using data set were seen at position 5 with N 

being replaced by G and position 19 associated with either A or T.  The consensus 

sequence of CXCR4-using viruses had a 2 amino acid insertion between positions 13 

and 14, as well as a further seven variable (X) amino acid positions (11, 12, 18, 23, 24, 

25 and 34) compared to the CCR5 consensus.  The crown motif of the CXCR4 

consensus changed from GPGQ to GPGX, where X was usually a charged amino acid 

such as R, Y, K and H.   

 

1 5 11 19 25 35 Amino acids
CCR5 usage C T R P N N N T R K S I R - - I G P G Q T F Y A T G D I I G D I R Q A H C 35

CXCR4 usage . . . . G . . . . . X X . X X . . . . X a/t . . . X X X . . . . . . . . X . 37

1 5 11 19 25 35 Amino acids
CCR5 usage C T R P N N N T R K S I R - - I G P G Q T F Y A T G D I I G D I R Q A H C 35

CXCR4 usage . . . . G . . . . . X X . X X . . . . X a/t . . . X X X . . . . . . . . X . 37

 
Figure 2.7: Consensus V3 sequences from CCR5- and CXCR4-using HIV-1 subtype C 
isolates.  Amino acids within the CXCR4-using consensus that differ from the CCR5 
consensus are highlighted and the crown motif is boxed.  Variable (X) and identical (.) 
amino acids are indicated.   
 

Further analysis of the crown revealed additional genetic differences between CCR5 

and CXCR4-using isolates that were of particular interest as such differences have not 

previously been fully explored (Figure 2.8A).  In order to extend this analysis we 

combined this data with previously published subtype C sequences from the Los 

Alamos database.  These included 91 single patient sequences with determined CCR5 

coreceptor usage and 17 sequences of which the majority only had an SI phenotype 

determined and were assumed to be CXCR4-using.  Using this larger data-set (n=107) 
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the GPGQ consensus remained highly conserved among the CCR5-using viruses 

(Figure 2.8B).  Similarly, we noted a significant correlation between CXCR4 usage and 

changes in the crown motif in 33 HIV-1 subtype C isolates (p<0.0001, Fisher's exact 

test). 

 

Given that CXCR4-usage is more common in subtype B and that sufficient data is 

available we performed a comparison with HIV-1 subtype B sequences from isolates 

with known coreceptor usage (obtained from Los Alamos database). The consensus for 

both CCR5 and CXCR4-using subtype B isolates was GPGR.  Data showed that while 

there was some variation at positions 16 (P) and 18 (R), this did not differ significantly 

between isolates that used CCR5 and those that used CXCR4 (Figure 2.8C). This is in 

contrast to HIV-1 subtype C CXCR4-using isolates which showed marked variation 

particularly at position 18 from the subtype C GPGQ consensus. 
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Figure 2.8: Comparison of amino acid variation in the V3 crown of subtype C isolates from this study (16 CCR5 and 16 CXCR4) (p>0.0001) 

(A); subtype C isolates from Los Alamos and this study (106 CCR5 and 33 SI) (p<0,0001) (B) and subtype B isolates from Los Alamos (99 

CCR5 and 30 CXCR4) (C). 
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2.4 DISCUSSION 

 

A subtype C specific V3-HTA was used to examine 32 subtype C isolates with known 

biological phenotypes (16 R5 and 16 R5X4 or X4 isolates).  Results indicated that 

there were sufficient genetic differences to discriminate between R5 viruses and those 

using CXCR4 (both R5X4 and X4).  Sequence analysis of the V3 region showed that 

CXCR4-using viruses were often associated with an increased number of positively 

charged amino acids and an increased length due to amino acid insertions.  Compared 

to HIV-1 subtype B V3 sequences, where the consensus sequence at the GPGR crown 

did not differ between CCR5 and CXCR4-using isolates, the GPGQ subtype C 

consensus was heavily substituted in CXCR4-using viruses. 

 

The V3-HTA has proven to be a rapid genotype-based method to detect V3 

evolutionary variants of HIV-1 subtype B and C viruses (Nelson, Fiscus et al. 1997; 

Ping, Nelson et al. 1999; Nelson, Baribaud et al. 2000).  This assay measures distinct 

genetic features such as insertions, deletions or clustered amino acid changes that 

influence the mobility of the V3 heteroduplex.  These characteristics are frequently 

associated with the X4-like phenotype, and using this assay it has been possible to 

screen for X4 variants (Nelson, Fiscus et al. 1997).  In a previous study of subtype C 

(Ping, Nelson et al. 1999) no X4-like subtype C isolates were identified using a V3-

HTA.  This is because this study did not focus on subjects with low CD4 cell counts 

where X4 variants are more likely to be found even in subtype C where such variants 

are rare.  Here we selected subtype C viruses with experimentally determined 

phenotypes including a large collection of X4 variants.  Using a subtype C V3-HTA 

most R5 isolates had homogeneous populations with mobility ratios above 0.90.  This 
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included R5 isolates from patients with advanced disease where more heterogeneous 

sequences might be expected (McNearney, Hornickova et al. 1992).  The highly 

conserved nature of subtype C V3 R5 isolates was also noted in the study by Ping and 

others (1999).  The R5X4 and X4 isolates had a broader range of mobility ratios that 

were generally lower than 0.90.  The X4 isolates had homogenous populations in the 

V3-HTA, whereas the R5X4 isolates were associated with multiple variants as 

evidenced by multiple bands.  Further analysis of these dualtropic isolates indicated 

that they usually comprised of mixtures of CCR5- and CXCR4-like viruses.  Thus, we 

confirmed that the V3-HTA assay could be used to identify genetic variants 

associated with R5 and X4-like variants in subtype C.    

 

A limiting factor within this study was the biased selection of samples that may have 

influenced the sensitivity and specificity of this assay.  The ratio of R5 and X4 

variants selected in this study is not reflective of prevalence of these viruses within 

the general populations of HIV-1 subtype C.  Among 231 HIV-1 subtype C viral 

isolates in our laboratory, 10% were found to be CXCR4-using and this was 

significantly correlated with a CD4 count of <200 cells/µl (p = 0.0021, Fisher's exact 

test, unpublished).  Although V3-HTA was sensitive in detecting most of the slower 

migrating X4 variants, this sensitivity would decrease with larger data sets due to the 

low abundance of these variants, as well as the increase sampling of CCR5 variants 

with genotypic characteristics that cause slow migration (such as deletions and 

insertions).  Similarly the frequency of false positives (i.e. slow migrating R5 

variants) would decrease the specificity.  Thus, since the V3-HTA is more reflective 

of sample complexity the mobility ratio criteria could vary if a larger data set was 

used.  Despite these considerations these data suggest that the V3-HTA was an 
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applicable screening tool to evaluate sample complexity and could assist in cloning 

strategies to investigate the V3 differences between CCR5- and CXCR4-using 

viruses.  

 

Comparisons between the representative CCR5 and CXCR4 data sets revealed 

differences in charge and length between CCR5- and CXCR4-using subtype C 

viruses.  The V3 loops of CXCR4-using viruses were usually longer and more 

positively charged, previously shown to be associated with CXCR4 usage (De Jong, 

De Ronde et al. 1992).  The increased length was usually due to one or two amino 

acid insertions between position 13 and 14, with amino acids I and G being the most 

common.  Almost all CXCR4-using isolates had a high V3 charge above +4.5.  This 

was due to the presence of increased numbers of K and R residues that were scattered 

throughout the V3 of CXCR4-using viruses, including positions 11 and 25 which are 

indicative of SI viruses in subtype B (Fouchier, Groenink et al. 1992).  Although the 

11/25 rule is used for tropism determination, it is not clear whether basic amino acid 

substitutions at these sites are sufficient or necessary for CXCR4 usage (Kuiken, de 

Jong et al. 1992; Nelson, Baribaud et al. 2000).  In this study, these positions were not 

necessarily associated with positively charged amino acids in CXCR4-using viruses, 

although there was increased variation at these positions compared to R5 viruses.  

Nevertheless, similar to subtype B, CXCR4 usage in subtype C was rarely due to a 

single amino acid change but rather to changes in 3-5 amino acids that increased the 

length and charge of the V3 loop (Shioda, Levy et al. 1992). 

 

All the R5 isolates in this study had a potential N-glycosylation site at positions 6-8 

within the V3 region.  Most early viruses, able to use CCR5, have this glycan, 
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suggesting that it is needed for CCR5 interaction (Polzer, Dittmar et al. 2002).  As 

immune pressure decreases with disease, viruses lacking this glycan that are able to 

use CXCR4 have been shown to emerge (Polzer, Dittmar et al. 2002; Pollakis, Abebe 

et al. 2004).  The loss of this glycan has also been shown to assist in more efficient 

use of CXCR4, and thus might be an important factor in the switching of R5X4 to X4 

viruses (Polzer, Dittmar et al. 2002; Nabatov, Pollakis et al. 2004).  Four of the 16 

CXCR4-using viruses in this study lacked this potential glycosylation site suggesting 

that in subtype C this site may play a similar role.  The highly conserved nature of this 

glycan in R5 subtype C viruses suggests it is crucial to CCR5 interaction possibly by 

masking surrounding positively charged amino acids at the N-terminus of the V3 

region (Hartley, Klasse et al. 2005).  Pollakis and others (2001) have speculated that 

the high frequency of V3 glycosylation within subtype C viruses might constrain the 

envelope structure promoting the use of CCR5 and thereby increasing its transmission 

efficiency. 

 

Most subtype C isolates had a GPGQ crown motif, whereas the consensus subtype B 

generally contains a GPGR motif irrespective of coreceptor usage (Milich, Margolin 

et al. 1997).  In this study, CCR5-using viruses had the expected GPGQ crown, 

whereas this changed to GPGX, with X being R, K, H or Y in CXCR4-using isolates.  

Although changes within the crown of subtype C viruses have been noted previously, 

the possible importance of this for coreceptor usage has not been highlighted due to 

the limited numbers of CXCR4-using viruses in this subtype C (Abebe, Demissie et 

al. 1999; Bjorndal, Sonnerborg et al. 1999; Ping, Nelson et al. 1999; Batra, Tien et al. 

2000; Cilliers, Nhlapo et al. 2003; Johnston, Zijenah et al. 2003).  The inclusion of 

additional subtype C sequences within this analysis resulted in no changes within the 
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consensus CCR5 usage sequence, suggesting that CCR5 sequences are homogenous 

despite disease status.  There were very limited viruses with biologically determined 

CXCR4 coreceptor usage available with most of the sequences annotated as SI 

phenotype (which are suggestive of R5X4 and X4 viruses).  Nevertheless the changes 

in the crown motif associated with CXCR4 usage were confirmed in the larger 

dataset.  Secondary structure prediction suggests that the GPGX forms a beta turn and 

amino acid changes within this motif are critical determinants of coreceptor usage 

(Shimizu, Haraguchi et al. 1999; Hu, Trent et al. 2000; Cormier and Dragic 2002; 

Suphaphiphat, Thitithanyanont et al. 2003; Pollakis, Abebe et al. 2004; Hartley, 

Klasse et al. 2005).  Position 18 in the crown of subtype B (GPGR) was found to be 

less variable in X4 viruses, suggesting a functional role for R in CXCR4 usage 

(Resch, Hoffman et al. 2001).  In subtype C arginine (R) was the most frequent amino 

acid at position 18 in CXCR4-using isolates. Thus one route to CXCR4-usage may 

require GPGQ to first undergo a change at position 18 to arginine (R) increasing the 

charge and/or altering the conformation of V3, as proposed by Hartley (Hartley, 

Klasse et al. 2005).  Previous studies have shown that the transition from a R5 to X4 

requires few genetic changes (at least within the V3) although these transitional 

intermediates may be less fit, accounting for the low frequency of X4 viruses in 

subtype C (Pastore, Ramos et al. 2004).  Conversely the presence of GPGR may 

predispose subtype B viruses to CXCR4 usage. Although the numbers in this study 

are limited, these data are suggestive of the crucial role of GPGQ in restricting HIV-1 

subtype C viruses from using CXCR4.  The fact that mutations occur in this region in 

vitro as well as in vivo suggests that it is not immune-mediated.  Whether this is a 

cause or consequences of the predominant use of CCR5 by HIV-1 subtype C is 

unclear and can only be addressed with further studies. 
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In conclusion, changes within the V3 region such as increased amino acid charge, 

insertions, specific amino acid variation and loss of the potential glycosylation site, 

are all factors that play a role in the use of CXCR4 by subtype C viruses.  The most 

noteworthy difference between CCR5- and CXCR4-using viruses observed in this 

study was changes within the crown motif.  This suggests that increased virological 

adaptation within subtype C viruses, in particular within the crown, allows these 

viruses to acquire the ability to use CXCR4 as a coreceptor.  The highly conserved 

crown motif in subtype C R5 viruses might also have a restrictive characteristic, 

limiting the development of CXCR4 using viruses. 
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CHAPTER 3 

 

 

A RELIABLE PHENOTYPE PREDICTOR FOR HIV-1 SUBTYPE C BASED 

ON ENVELOPE V3 SEQUENCES 
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3.1 INTRODUCTION 

 

Viruses establishing HIV-1 infection generally use CCR5 as a coreceptor for entry 

into host cells (Deng, Liu et al. 1996; Dragic, Litwin et al. 1996).  In some 

individuals, viruses are transmitted or viral genetic changes arise over time that permit 

the virus to use other coreceptors, in particular CXCR4.  The ability to screen large 

subtype C infected cohorts for CXCR4-using viruses is vital to better understand why 

these viruses are far less common, even in individuals with more advanced disease 

(Bjorndal, Sonnerborg et al. 1999; Ping, Nelson et al. 1999; Cilliers, Nhlapo et al. 

2003; Coetzer, Cilliers et al. 2005).  However, coreceptor phenotypic assays are 

expensive, labor intensive and require specialized laboratories not always available in 

the developing countries where subtype C predominates.  A reliable phenotype 

prediction method, based on genetic sequence analysis, could provide for rapid and 

less expensive screening. 

 

Distinct genetic differences within the V3 region, between CCR5- and CXCR4-using 

viruses have been described that influence coreceptor usage (Shioda, Levy et al. 1991; 

De Jong, De Ronde et al. 1992; Fouchier, Groenink et al. 1992).  These differences 

have been used with varying degrees of success to predict tropism using bioinformatic 

approaches and were recently reviewed by Jensen and van 't Wout (2003) using 

subtype B data sets.  They include the 11/25 rule to distinguish between NSI and SI-

like viruses (Fouchier, Groenink et al. 1992), a multiple regression method based on 

positive, negative and net V3 charge (Briggs, Tuttle et al. 2000), a neural network 

strategy (Resch, Hoffman et al. 2001), a machine-learning method (Pillai, Good et al. 

2003), and a subtype B position specific scoring matrix (B-PSSM) (Jensen, Li et al. 
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2003).  Another program that has recently been developed is Geno2Pheno (Sing, 

Beerenwinkel et al. 2004), although the PSSM showed improved predictive power 

over all these methods, and was also useful in the analysis of the transition between 

R5 to X4 in subtype B. 

 

In this chapter, we tested 4 of these predictors on a subtype C data set of V3 

sequences with known phenotypes to determine the applicability of these methods to 

subtype C sequences.  The poor performance of these methods in predicting 

SI/CXCR4 usage suggested that a predictor based on subtype C sequences was 

necessary.  Given that the B-PSSM was shown to have improved positive predictive 

value (Jensen and van 't Wout 2003), we therefore developed such a predictor using 

V3 sequences from subtype C isolates of known phenotype.  Predictions based on the 

C-PSSM, exhibited increased reliability and sensitivity over subtype B-based 

predictors. 
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3.2 MATERIALS AND METHODS 

 

3.2.1 Data set compilation 

A training set of 280 HIV-1 subtype C V3 sequences was compiled from the Los 

Alamos HIV database (http://hiv-web.lanl.gov) and from our own laboratory 

[(Cilliers, Nhlapo et al. 2003; Choge, Cilliers et al. 2005; Coetzer, Cilliers et al. 2005) 

and unpublished data].  Only sequences for which the corresponding biological 

phenotypes were determined on coreceptor-transfected cell lines (for CCR5 and/or 

CXCR4 usage) or MT-2 cells (for NSI/SI phenotypes) were used in this study.  Where 

only coreceptor usage data was available, R5 viruses were assumed to be NSI while 

R5X4 and X4 viruses were assumed to be SI.  In some cases only MT-2 data was 

available therefore, the training set was divided into NSI (R5) and SI (R5X4 and X4) 

viruses.  There were 229 NSI V3 sequences (from 200 subjects) and 51 SI V3 

sequences (from 20 subjects).   

 

3.2.2 Performance of four genotypic algorithms on subtype C sequences 

A subset of the data set representing only the unique sequences from 220 subjects 

(200 with NSI and 20 with SI viruses) was submitted to the following four prediction 

methods: the 11/25 rule (Fouchier, Groenink et al. 1992); a multiple regression 

method referred to as Briggs' method (Briggs, Tuttle et al. 2000); a machine-learning 

method referred to as the Pillai method (Pillai, Good et al. 2003), and the B-PSSM 

(Jensen, Li et al. 2003) as discussed in Chapter 1.  The percentage of sequences with 

correctly predicted phenotype was calculated for each algorithm.  To compare the 

effectiveness of these methods on subtype C sequences with each other and to the C-
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PSSM, a correct overall prediction value (percentage specificity X percentage 

sensitivity) was determined. 

 

3.2.3 How is a PSSM matrix constructed? 

PSSM detects non-random distributions of amino acids at a specific site within a 

group of aligned sequences that has a desired property, such as NSI/R5 or 

SI/X4/R5X4 phenotype (Gribskov, McLachlan et al. 1987; Henikoff, Wallace et al. 

1990; Jensen, Li et al. 2003).  A matrix or profile is compiled from a data set of 

sequences by determining the likelihood ratio of a specific amino acid at a specific 

site (Figure 3.1).  This site-specific score reflects the difference in abundance of a 

particular amino acid at a specific site in a group of SI sequences, compared to that 

same site in a group of NSI sequences. 
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Figure 3.1: Constructing a PSSM matrix, specifically for the likelihood ratio of 
amino acid arginine (R) at position 11 in R5 and X4 viruses.  Arginine was observed 
in 4% of the R5 viruses and in 40% of X4 viruses at position 11.  The log ratio is then 
determined for R at this position, also indicating that R is more prevalent at position 
11 in X4 viruses.  This ratio (2.3) is then placed at position 11 for R in the matrix.  
The ratios for all possible amino acids at this position are calculated.  This process is 
then repeated for each position within the V3 region thus compiling a PSSM matrix. 
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3.2.4 Determining the PSSM score for a target sequence 

A target sequence is compared to this group of aligned sequences (matrix) with 

known properties.  The ratio at each site for the target sequence is added to get a final 

score.  This score indicates the likelihood that the target sequences have the property 

of interest, in this case, SI phenotype.  Therefore, the higher the score (more positive), 

the more likely the target sequence is a SI virus (Figure 3.2).  An optimal cut-off score 

is calculated from this dataset that differentiate between SI and NSI sequences, in 

such a manner that the best specificity (number of NSI samples correctly predicted) 

compared to the best sensitivity (number of SI samples correctly predicted) is 

obtained.  But sensitivity and specificity are not independent of each other and 

increased sensitivity would result in lower specificity and visa versa.  

 

 
C T R P H N N T R K S I H I G P G R A F Y T T G E I I G D I R Q A H C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
A 1.1 0.0 1.1 1.1 1.1 1.1 1.1 1.8 1.1 1.1 1.1 1.1 1.1 1.8 -0.9 1.1 1.1 -0.5 -0.5 1.1 1.1 -0.6 1.8 0.4 -0.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 -0.3 1.1 1.1
C -0.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 -0.2
D 1.1 1.1 1.1 1.1 0.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 -0.8 1.1 1.1 1.1 -0.5 1.1 1.1 1.1 1.1 1.1 1.1
E 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.4 -1.1 1.1 1.1 0.4 0.4 1.1 1.1 1.1 1.1 1.1 1.1
F 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.4 1.1 1.1 1.1 1.1 1.1 -0.3 -0.3 0.3 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
G 1.1 1.1 1.1 1.1 -1.2 1.1 1.1 1.1 0.4 0.4 -0.7 1.1 0.4 1.1 -0.2 1.8 -0.3 -0.3 0.0 1.1 1.1 1.1 1.1 -0.4 0.6 1.1 1.8 -0.3 1.8 1.1 1.1 1.1 1.1 1.1 1.1
H 1.1 1.1 1.1 1.1 0.4 0.4 1.1 1.1 1.1 1.1 1.1 1.1 -0.6 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.1 0.4 1.1 1.8 1.1 1.1 1.1 0.4 1.1 1.1 1.1 1.1 -0.4 1.1
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.....+ (-0.3) + (-0.2) +........ Final score for target sequence = -11.9

Obtained from Mark Jensen 

 
Figure 3.2: Calculating the PSSM score.  A target sequence is compared to the PSSM 
and the likelihood score for each site is determined (highlighted in yellow).  These 
scores are then added together to determine the likelihood of the target sequence to 
have the specific property, in this case X4 phenotype characteristic.  If the score is 
more than the optimal cut-off, it is predicted as X4 and below the cut-off as R5. 
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3.2.5 Development and validation of a C-PSSM 

We derived a predictor from position specific scoring matrices (PSSM), calculated as 

described in (Jensen, Li et al. 2003), based on the subtype C training set of 280 V3 

sequences. 

 

To determine the optimal cut-off score to differentiate between a R5 and X4 

sequence, distributions of specificity (fraction of NSI sequences correctly predicted) 

and sensitivity (fraction of SI sequences correctly predicted) were estimated by 

combining data set bootstrapping with leave-one-out cross-validation.  The PSSM is 

dependant on which sequences were used in making the matrix, therefore the 

bootstrapping analysis test the effect of sequence sampling on the performance of the 

PSSM.  Because all the sequences in the data set were used to develop the PSSM, the 

matrix might be biased towards this set of data.  Thus cross validation is done to 

determine if the matrix can predict the phenotype of a sequence not used in its 

development.  Previously in the B-PSSM, the data set was randomly partitioned into 

subsets, but in the C-PSSM this analysis was improved by combining of the bootstrap 

analysis with leave-one-out cross-validation (Jensen, Li et al. 2003). 

 

In this procedure, a target sequence was removed from the data set, and single 

sequences from the remaining individuals were randomly sampled with replacement 

(Figure 3.3).  The randomly selected samples were used to calculate a PSSM 

predictor, and the PSSM was used in turn to predict the phenotype of the target 

sequence (that was removed).   
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Figure 3.3: Determining sensitivity and specificity of the PSSM.  Combining the 
leave-one out cross validation and data set bootstrapping to determine the variability 
of scores as well as the optimal cut-off score whereby (specificity X sensitivity) is 
maximised.  A target sequences was removed from the data set, the remaining 
sequences resampled (100X) and a PSSM matrix calculated for each.  The target 
sequence was then predicted with these matrices, as well as sensitivity and specificity 
for each prediction. 
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Resampling was repeated 100 times to obtain an empirical prediction probability for 

the target sequence.  Each sequence in the data set was treated as a target in turn.  The 

phenotype prediction for the target sequence was made by comparing the score of this 

sequence to a cut-off score: an SI prediction was called if the target score was greater 

than the cut-off, and an NSI prediction was called if the score was less than the cut-

off.  Therefore, the optimum cut-off score was calculated as that score which 

maximised the product of the sensitivity and specificity (sensitivity X specificity) of 

predictions. 

 

For between-subtype comparison, we performed this analysis on a HIV-1 subtype B 

data set described in Resch et al. (Resch, Hoffman et al. 2001), consisting of 187 NSI 

and 70 SI sequences from 107 infected subjects. 

 

3.2.6 Overlap coefficient analysis determining differences between subtypes B 

and C 

To investigate the potential differences between subtypes B and C we examined the 

overlap coefficient [OC, (Dybul, Daucher et al. 2003)] between SI and NSI V3 amino 

acid profiles.  The training sets described the amino acid frequency distribution for 

each site.  The OC, in this context, is a site-wise measure of the difference between 

the SI and NSI amino acid distributions for V3 (equations for the OC are given in 

(Dybul, Daucher et al. 2003).  If the OC = 0, the distributions are identical, and if OC 

= 1, there is no amino acid overlap between the distributions (i.e., the SI amino acids 

at a site are completely distinct from NSI amino acids at that site) (Figure 3.4).  Thus, 

the OC is a measure of the ability of a V3 site to discriminate between the two 

phenotypes, based on the training set. 
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To determine whether an OC is significantly high, we compared it to a distribution of 

OCs generated by randomly assigning training set sequences to SI or NSI categories.  

OCs were calculated for 250 random permutations, and the p-value of the training set 

OC was reported as 1 minus its percentile within the random OC distribution. 
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Figure 3.4: Determining the overlap coefficients within V3.  A simplified example to 
show how OC is a measure of the ability of a V3 site to discriminate between the two 
phenotypes, based on the training set.  The OC difference between NSI and SI for 
each site is highlighted in yellow (positions 1, 11 and 18 shown).  OC=0, indicated 
identical distributions and OC=1 that there are no amino acid distribution overlap.  
The V3 overlap coefficient p-values for subtypes C (above X-axis) and B (below X-
axis) were then compared to determine if different amino acids contribute to 
phenotype in these subtypes. 
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3.2.7 Comparison between predictions from V3-HTA and C-PSSM 

The V3-based heteroduplex tracking assay (V3-HTA) has been used as a rapid 

genotype-based method to identify genetic variation associated with NSI- and SI-like 

viruses in subtypes B and C (Nelson, Fiscus et al. 1997; Ping, Nelson et al. 1999).  

The mobility of the heteroduplex reflects the differences between the probe and the 

sample sequence.  This is measured by the mobility ratio, which is the distance 

traveled by the heteroduplex divided by the distance traveled by the homoduplex.  

The greater the genetic difference between the probe and the sample, the slower the 

migration of the heteroduplex and the smaller the mobility ratio.  HTA mobility ratios 

were available for 13 NSI and 8 SI subtype C viral isolates from South Africa using a 

NSI probe (Coetzer, Cilliers et al. 2005).  The C-PSSM score of each of these isolates 

was calculated and correlated to the V3-HTA mobility ratio to determine the 

relationship between the genotypic algorithm and a genotype-based molecular assay. 

 

3.2.8 C-PSSM for public use 

We have made a C-PSSM predictor available online based on the computational 

techniques presented in this chapter at the URL (and available for public use upon 

publication of the manuscript): 

http://ubik.microbiol.washington.edu/computing/pssm/. 
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3.3 RESULTS 

 

3.3.1 HIV-1 subtype C sequences 

The data set compiled for this study consisted of 280 HIV-1 subtype C V3 sequences 

with known biological phenotypes consisting of 229 NSI V3 sequences (from 200 

subjects) and 51 SI V3 sequences (from 20 subjects).  A graphical representation of 

these sequences using sequence logos (Schneider and Stephens 1990) is shown in 

Figure 3.5. 

 

 

 
Figure 3.5: Sequence logos of HIV-1 subtype C V3 sequences used in this study.  
The character and size of each logo represents the proportion of an amino acid at the 
specific site.  The subtype C NSI data set is represented by 229 NSI V3 sequences, 
and the SI data set corresponds to 51 SI V3 sequences. 
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There was a high degree of amino acid variation within the V3 region of subtype C SI 

sequences that distinguished them from the NSI sequences.  Overall 29 of the 35 

amino acid loci among SI viruses showed variation compared to only 12 in NSI 

viruses.  Given the fact that more than 4 times the number of NSI sequences was 

available, the limited V3 variability of NSI as compared to SI viruses is unlikely to 

result from sampling error.  The GPGQ crown motif, typical of subtype C, was highly 

conserved among the NSI sequences but showed variation at positions 16 and 18 

among SI sequences; in particular the Q at position 18 was heavily substituted.  There 

was also increased variation at positions 11, 13 and 25 and 27 in the SI sequences.  In 

subtype B, positions 11 and 25 are often positively charged amino acids in SI viruses 

(Hoffman, Seillier-Moiseiwitsch et al. 2002), but in this subtype C data set this was 

less evident. 

 

3.3.2 Predicting phenotypes from genetic sequence data 

The performance of 4 commonly used phenotype predictors was evaluated on a subset 

of 220 sequences, representing unique sequences (one randomly selected from each 

individual) from the data set (Table 3.1).  All algorithms predicted the NSI phenotype 

with a high degree of accuracy (99.5%), except for the Briggs method where only 

52% of the NSI sequences were correctly identified.  For SI viruses all 4 algorithms 

performed poorly in predicting biological phenotypes.  This may be due to the fact 

that all four algorithms were developed largely with subtype B sequences.  Of these 

algorithms the PSSM had increased predictive power compared to other methods 

(Jensen and van 't Wout 2003) and we therefore chose this method to develop a 

subtype C specific predictor. 
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Table 3.1: Comparison of the performance of available prediction methods to 
determine viral phenotype of the subtype C unique data set.  Pillai method and B-
PSSM are web-based tools and the pre-trained classifiers selected for analysis are in 
brackets. 
 

 % Phenotype correctly 

predicted 

Correct overall prediction 

value  

(% specificity X % sensitivity) 

Method NSI (n=200) SI (n=20)  

11/25 99.5 47.8 0.48 

Briggs 52.0 34.8 0.18 

Pillai (SVM)* 99.5 52.0 0.52 

B-PSSM (sinsi)# 99.5 52.0 0.52 
  * http://genomiac2.ucsd.edu:8080/wetcat/index.html 
  # http://ubik.microbiol.washington.edu/computing/pssm/ 
 

 

3.3.3 Performance of C-PSSM prediction 

A subtype C PSSM was derived using the data set from 280 V3 sequences containing 

35 amino acids.  The C-PSSM scores of the NSI viruses ranged from –27.7 to –9.0 

(median of –24.8), while for SI viruses the range was –28.1 to 9.3 (median of –9.8) 

(Figure 3.6).  The median C-PSSM score distributions for NSI and SI differed 

significantly (p<10-15) by the Kruskal-Wallis test. 
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Figure 3.6: Comparison of C-PSSM score distribution of 229 NSI and 51 SI subtype 
C sequences.  Score is the median PSSM score over 100 bootstrapped data sets, as 
described in Materials and Methods.  Box boundaries: interquartile range; central line; 
median over sequences; error bars extend from the 2.5th and 97.5th percentiles; beyond 
these, sequences are represented as outlier points.  Kruskal-Wallis test: chi-
squared=78.9, p < 10-15. 
 

 

The performance of the C-PSSM on the subtype C data set was compared to that of 

the B-PSSM on a subtype B data set (Jensen, Li et al. 2003), (Figure 3.7).  The C-

PSSM had a specificity of 94% (C.I., [92%-96%]) and sensitivity of 75% (C.I., [68%-

82%]).  Comparison with the B-PSSM in Table 1 showed the C-PSSM to have a 

lower specificity but a higher sensitivity.  The correct overall prediction value for the 

C-PSSM was higher (0.71; 94% x 75%) than the B-PSSM predictor on subtype C 

sequences (0.52; 99.5% x 52%). The B-PSSM, applied to subtype B targets within the 

Resch et al. (2001) data set. 
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Figure 3.7: Comparison of C-PSSM on a subtype C data set with B-PSSM on a 
subtype B data set, using leave-one-out/bootstrap predictions. 
 

 

To determine whether the sensitivity and specificity might be significantly improved 

by increasing the number of training sequences, we performed leave-one-

out/bootstrap analysis on subsets of the data set.  Total size of the subsets was 

increased incrementally, and unique SI and NSI sequences were randomly selected in 

a ratio of 1:10, comparable to the ratio in the total data set (Figure 3.8).  The 

specificity of the C-PSSM for predicting NSI phenotypes was high at even the 

smallest total sample size, and it did not improve significantly when the sample 

number was increased.  The sensitivity of the C-PSSM for predicting SI phenotypes at 

low sample numbers was poor but appeared to approach a limit as the sample size 

increased to approximately 100. 
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Figure 3.8: Effect of sample size on the sensitivity and specificity of the C-PSSM.  
oxes as in Figure 3.6. 

.3.4 Site-wise differences in phenotype between subtypes B and C 

an subtype B 

 

 

B
 

 

3

Because SI viruses are so much less prevalent in subtype C th

populations, it is possible that different, less evolutionarily labile sites influence the 

manifestation of phenotype in subtype C.  The availability of both subtype B and 

subtype C training sets afforded us a chance to investigate potential differences using 

overlap coefficients (OC).  Figure 3.9 displays the p-values for the OC for each V3 

site, comparing subtype B [based on the SI/NSI data set of Resch et al. (2001)] and 

subtype C using our data set.  Sites with OCs that exceed the 95th percentile of the 

random permutation distribution (depicted in Figure 5 as bars that extend beyond the 

dotted lines) have amino acid distributions that are significantly different between SI 

and NSI viruses.  Sites with non-significant OCs are less informative for purposes of 
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discriminating between SI and NSI viruses by genotype.  Under this interpretation, the 

OC analysis highlights sites that are potentially different in their influence on 

phenotype between the two subtypes. In particular, V3 sites 12, 15, 16, 26, 27, 28, 33, 

and 34 (highlighted in grey in Figure 3.9) have significant OC values in one but not 

the other subtype.   

 

 

 

igure 3.9: V3 overlap coefficient p-values for subtypes C (above X-axis) and B 
(below X-axis).  Dotted line: p = 0.05; dashed line: p = 0.01. X-axis: V3 site, labelled 

ith subtype C NSI consensus residue.  Grey pairs: sites in which the measured OC 
was significant in one subtype and non-significant in the other. 

F

w
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3.3.5 Comparison of C-PSSM scores with a genotype-based assay 

V3 heteroduplex tracking assays (V3-HTA) have been used to identify NSI- and SI-

like viruses when hybridised with a R5 probe (Nelson, Fiscus et al. 1997; Ping, 

Nelson et al. 1999; Coetzer, Cilliers et al. 2005).  Samples with a similar sequence to 

the probe have a high mobility ratio (k>0.90) and are usually NSI whereas samples 

with a low mobility ratio (k<0.90) are different from the probe and are frequently SI 

(Coetzer, Cilliers et al. 2005).  The mobility ratio of 8 SI (5 R5X4 and 3 X4) and 13 

NSI isolates were compared to their C-PSSM scores (Figure 3.10).  There was a 

highly significant correlation between the mobility ratio and PSSM score of the 

samples (p < 0.0001; r2: 0.53).  NSI viruses had a high mobility ratio and decreased 

PSSM score and most of these clustered tightly together.  The two NSI samples that 

had a lower mobility ratio (0.76 and 0.80) had amino acid deletions that probably 

accounted for this, but this did not affect the C-PSSM score.  The SI samples had a 

broader distribution of mobility ratios and C-PSSM scores. 

Figure 3.10: The HTA mobility ratio compared to the C-PSSM score for 13 NSI and 
8 SI isolates.  The NSI samples had high mobility ratio and very low PSSM score, 
whereas the SI samples had variable mobility ratios (but usually below 0.90) and 
higher PSSM scores (above optimal cut-off of -21.64).  Dotted line: linear regression 
(p < 0.0001; r2: 0.53). 
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3.4 DISCUSSION 
 

We tested 4 available phenotype prediction methods developed for HIV-1 subtype B, 

on HIV-1 subtype C sequences with known phenotypes and found them to be highly 

accurate in predicting NSI usage, but less so in predicting CXCR4 usage.  We 

therefore derived a subtype C specific phenotype predictor that performs nearly as 

well on subtype C V3-loops as do existing subtype B-specific methods on subtype B 

V3-loops.  This correlated well with a genotype-based method for detecting NSI and 

SI viruses (V3-HTA) suggesting that the C-PSSM can be applied to subtype C V3 

sequences of unknown coreceptor usage. 

 

Sequence logos highlighted appreciable differences between V3 sequences of NSI and 

SI subtype C viruses.  The NSI data set was very homogenous with little or no 

variation at many of the amino acid sites, while in the SI data set there was greater 

variation at most sites.  These data suggested that sufficient genetic variation between 

NSI and SI subtype C sequences exists that can be used to differentiate these 

phenotypes. However, none of the available prediction methods were adequately able 

to exploit these differences in differentiating NSI from SI viruses. The 11/25 rule is 

based on the presence of positively charged amino acids at positions 11 and/or 25 

(Fouchier, Groenink et al. 1992; Milich, Margolin et al. 1993).  However, more than 

50% of the subtype C SI sequences in this study did not have a positively charged 

amino acid at these positions. Furthermore, while this method is considered to be a 

reliable sequence-based phenotype predictor, other studies have shown that more than 

two amino acid positions need to be considered when assigning phenotype (Resch, 

Hoffman et al. 2001).  The Briggs' method performed the least well of all the 

algorithms evaluated.  This method is based on genotype variables in the V3 region 
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derived from subtype B sequences with NSI viruses having a net charge <+4 and SI 

viruses >+4.  The net charge of the subtype C NSI data set ranged from +0 to +6 and 

the SI data set had a net charge between +3 to +9 which probably explains the poor 

performance of this algorithm.  The Pillai method is a two-way classification method 

that differentiates between viruses able or unable to use CXCR4.  Limitations of this 

method include the fact that it misclassifies R5X4 viruses (Pillai, Good et al. 2003).  

These dual tropic viruses represent an intermediate stage of coreceptor evolution in 

subtype B, (Jensen, Li et al. 2003; Yi, Shaheen et al. 2005) and are usually grouped 

into the SI data set, as was done in this study.  Our SI data set contained 9 dual tropic 

viruses of which 6 were incorrectly predicted as NSI, indicative of the low predictive 

power of the Pillai method on this data set.   

 

While most methods could accurately identify NSI viruses it was clear that a new 

method was needed to improve the sensitivity of prediction of SI viruses from subtype 

C.  The PSSM method has proven to be a simple yet reliable phenotype method based 

on V3 amino acids with multiple applications (Jensen, Li et al. 2003; Jensen and van 

't Wout 2003).  The subtype C specific PSSM addressed some of the limitations of 

other prediction methods including the B-PSSM (Jensen, Li et al. 2003).  In 

particular, the C-PSSM identified SI viruses more reliably than other methods 

resulting in a major increase in sensitivity.  However, the sensitivity and specificity in 

the PSSM are not independent of each other, but are determined by the cutoff value 

that differentiates between NSI and SI sequences.  Thus the specificity of the C-PSSM 

was slightly less than other prediction methods as show in Table 3.1.  We therefore 

compromised specificity for increased sensitivity in identifying SI viruses.  To 

compare all the various prediction algorithms we multiplied the specificity and 
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sensitivity to give an overall correct prediction value.  For all the methods described 

in Table 1 the values were less than 0.52.  For the C-PSSM this value was 0.71 similar 

to the subtype B PSSM on subtype B sequences. Overall, the C-PSSM gives better 

prediction for subtype C sequences than all other methods including the B-PSSM, but 

is similar to the B-PSSM using subtype B sequences.  

 

It was previously shown by Jensen et al. (2003) that the PSSM score represents the 

“X4 potential” of a sequence and intermediate scores correlate well with the evolution 

of viruses within an individual.  This method has also contributed to a better 

understanding of the role of intermediates (R5X4) in the transition of R5 to X4 in 

subtype B (Jensen, Li et al. 2003) and can now be applied to subtype C viruses where 

this transition has not often been reported.  To improve the prediction quality of the 

C-PSSM vigorous sampling of more patients will be required, at least in the present 

ratio of SI to NSI sequences.  Therefore, future sampling should focus on acquisition 

of more X4 sequences from new individuals.   

 

Potential site differences between subtype B and C within the V3 region were 

investigated using current training sets by overlap coefficient analysis. This suggested 

that changes in the crown at site 15 will influence coreceptor usage in subtype B, but 

changes at site 16 will have more influence in subtype C.  Other sites that had 

significant OC values in one but not the other subtype were 12, 16, 26, 27, 28, 33, and 

34.  These are unlikely to be simple artifacts of sampling, since the majority of sites 

are congruent (either both significant or non-significant) between the subtypes, and 

both possibilities (B significant, C non-significant, and vice versa) are represented at 

the incongruent sites.  However, we are not claiming that incongruent sites constitute 
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a rejection of any explicit null model.  Rather, this simple analysis suggests the 

possibility of differential phenotypic effects of mutations at certain sites that could be 

evaluated in future studies. 

 

The C-PSSM represents an improvement over currently available methods for 

predicting SI viruses in subtype C. This could aid in the better identification and 

understanding of subtype C coreceptor usage.  With the increased availability of small 

molecule fusion inhibitors and use of antiretroviral therapy in patients infected with 

subtype C, there is concern that certain therapies may increase the risk of developing 

X4 viruses during subtype C infections. PSSM scores may be a useful tool for 

assessing baseline risk (Jensen and van 't Wout 2003).  Although the number of HIV-

1 subtype C SI viruses available is a limiting factor, this study has shown that 

currently available data provide a good initial basis for subtype C coreceptor usage 

predictor. 
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CHAPTER 4 

 

 

CHARACTERISATION OF THE gp160 REGION FROM HIV-1 SUBTYPE C 

ISOLATES AND CORRELATION TO CORECEPTOR SWITCHING 
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4.1 INTRODUCTION 

 

HIV-1 is characterised by extreme genetic diversity that lends the virus the ability to 

escape from selective forces such as host immune response or antiretroviral drugs, 

thus the virus is continually adapting and evolving.  This genetic diversity in turn, 

contributes to the lack of immune control and increased disease progression.  

Understanding the complex interaction between virus and host immune system are 

very necessary, in particular characterisation of the viral genetic adaptations, in the 

development of vaccine and drug strategies. 

 

Although the CD4 and coreceptor binding sites are not very accessible and only 

exposed for brief periods of time during viral entry, they are very neutralisation 

sensitive (Derdeyn, Decker et al. 2004).  This has resulted in high genetic diversity of 

these envelope regions to escape immune pressure.  The diversity within HIV is the 

result of mutations during replication (due to the high error-prone rate), as well as 

recombination between viral genomes (Preston, Poiesz et al. 1988; Perelson, 

Neumann et al. 1996; Rambaut, Posada et al. 2004).  The genetic adaptations of the 

envelope gene include changes within the variable loops, net amino acid charge, 

tropism, and glycosylation sites. 

 

In this study the genetic diversity over time within the gp160 region in five patients 

infected with HIV-1 subtype C were investigated.  In particular, we aimed to 

determine if other regions or specific sites within gp160 could be associated with 

coreceptor changes in HIV-1 subtype C isolates. 
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4.2 MATERIALS AND METHODS 

 

4.2.1 Isolation and coreceptor usage of HIV-1 subtype C viruses 

Five female commercial sex workers, from Kwa-Zulu Natal, South Africa 

participating in a Phase III clinical trial of vaginal microbicide (N9) were followed for 

between two to four years.  Ethical clearance was obtained from the University of 

Witwatersrand Committee for Research on Human Subjects (see Appendix A).  

Twenty-three samples were collected for virus isolation, viral load and CD4 counts, as 

previously described in Chapter 2.2.1.  Viral isolates were tested for their ability to 

replicate in U87.CD4 cells transfected with either CCR5 or CXCR4, as previously 

described (Morris, Cilliers et al. 2001; Cilliers, Nhlapo et al. 2003). 

 

4.2.2 Viral RNA isolation and gp160 sequencing 

Viral RNA from the 23 isolates was extracted from PBMC culture supernatant using a 

MagnaPure LC Isolation station and the Total Nucleic Acid isolation kit (Roche 

Applied Science, Penzberg, Germany).  A reverse transcription step was performed 

and the cDNA was used to amplify the gp160 region with primers envA and envM as 

previously described (Gao, Morrison et al. 1996).  PCR products were purified using 

the High Pure PCR Product Purification kit (Roche Diagnostics GmbH, Mannheim, 

Germany). Sequencing reactions were done in a MicroAmp 96 well optical reaction 

plate using the ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction kit 

(Applied Biosystems, Foster City, CA) and resolved on an ABI 3100 automated 

genetic analyser. 
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4.2.3 Sequence analysis 

Sequences were assembled and edited using Sequencher (version 4.0) software 

(Genecodes, Ann Arbor, MI).  The envelope sequences were aligned with CLUSTAL 

X (version 1.8.1) (Thompson, Gibson et al. 1997) and manually edited in BioEdit 

(version 5.0.9).  Phylogenetic trees were constructed from the gp120 and gp41 regions 

using MEGA (version 2.1) (Kumar, Tamura et al. 2001).  Subtype reference 

sequences were downloaded from the Los Alamos database (www.hiv.lanl.gov).  

Predicted N-glycosylation sites were determined with the web base program N-

GLYCOSITE (www.hiv.lanl.gov).  Recombination within samples from Du151 was 

investigated with the SimPlot program (version 2.5). 
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4.3 RESULTS 

 

4.3.1 Clinical information of patients 

Twenty-three samples from five patients were investigated in this study.  These 

patients had acute HIV-1 infection and were followed for two to four years (Table 

5.1).  During this follow-up period all patients had a decline in CD4 count.  The viral 

load declined over time as these patients were entering the steady-state phase, except 

in Du151 who maintained a very high viral load.  Three patients (Du123, Du368 and 

Du422) had R5 viruses at all stages and two patients (Du151 and Du179) underwent 

coreceptor changes.  Du151 switched coreceptor usage from R5 to R5X4, while 

Du179 had an R5X4 virus at the time of first isolation (19.8 months) and then lost the 

ability to use CCR5.  These two patients (Du151 and Du179) were also dually 

infected as they were found to have two genetically distinct viruses (Gottlieb, Nickle 

et al. 2004; Grobler, Gray et al. 2004).  Du151 was a rapid progressor and died within 

2 years of infection.  Isolates from patients Du151 and Du422, have been selected as 

vaccine strains based on their similarity to a derived South African consensus 

sequence (Williamson, Morris et al. 2003).   
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Table 4.1: Clinical information of the five patients followed longitudinally for 
between two to four years. 

Isolate Biotype Months of 
infection

CD4 
(cells/µl)

Viral load 
(copies/ml)

Du123
Nov-98 R5 3.5 841 19 331
Mar-00 R5 20 546 6 558
May-00 R5 21.6 779 2 568
Sep-00 R5 25.6 340 6 018
Nov-00 R5 28.2 616 3 695
Du151
Oct-98 R5 1.1 NA NA
Nov-98 R5 2.1 367 >500 000
Jun-99 R5 8.8 239 >500 000
Mar-00 R5X4 18.6 143 >500 000
May-00 R5X4 19.9 66 >500 000
Du179
Mar-99 R5X4 19.8 435 4 895
May-99 R5X4 21.9 279 2 640
Feb-00 R5X4 31.2 259 3 131
May-00 X4 33.8 231 2 228
Oct-03 X4 74 NA NA
Du368
Nov-98 R5 8.3 670 13 933
Feb-00 R5 24 628 NA
Aug-00 R5 30 531 11 247
Du422
Jan-99 R5 4.4 397 67 982
May-99 R5 8.2 NA 16 098
Mar-00 R5 17.7 355 11 346
May-00 R5 20.4 325 6 717
Sep-00 R5 24.5 220 8 114

NA: not available 
Months of infection determined from midpoint between last antibody negative and 
antibody positive sample 
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4.3.2 Phylogenetic analysis 

Phylogenetic analysis based on gp160 sequences showed that all samples clustered 

with subtype C references (Figure 4.1).  In four of the patients, isolates from a patient 

grouped together in the gp120 and gp41 trees.  Although isolates from Du151 

clustered within the subtype C group, some of the time points were separated by 

unlinked sequences, indicating dual infection with two different subtype C viruses.  

Comparable results were seen in the gp41 tree.  Thus the Du151(JUN99) isolate 

clustered in the gp120 tree with the earliest isolates of Du151 and in the gp41 tree 

with the later isolates of Du151, indicating inter-patient recombination of the subtype 

C strains within Du151.  Although Du179 was found to be dually infected (Grobler, 

Gray et al. 2004), this was not observed in these phylogenetic trees probably due to 

selective growth of viral populations in our culture system.  

 

Further recombination analysis was done to determine the breakpoint within the 

Du151(JUN99) (Figure 4.2).  This analysis showed that there was a single breakpoint 

at amino acid position 680 situated within the gp41 region.  The first part of 

Du151(JUN98) sequence showed high similarly with the OCT98 and NOV98 

sequences.  After the break point the JUN98 sequence was more similar to the 

MAR00 and MAY00 sequences. 
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Figure 4.1: Neighbor joining tree of HIV-1 gp120 (left) and gp41 (right).  Reference 
sequences from Los Alamos database (available at http://www.hiv.lanl.gov) were also 
included.  Bootstrap values (1000 replicates) >80% are shown and scale denotes 5% 
divergence.  Dual infected patient Du151 in bold.  Arrow denotes Du151(JUN99) 
with inter-patient recombination. 
 

 88



 
Figure 4.2: Recombination analysis of Du151(JUN99) using SimPlot.  
Du151(JUN99) sequence is a recombinant with the most similarity to Du151(OCT98) 
and Du151 (NOV98). After the breakpoint (indicated with an arrow) at amino acid 
position 680 the Du151(JUN99) sequence has more similarity with Du151(MAR00) 
and Du151(MAY00). 
 

 

4.3.3 Genetic variation within a patient during disease progression 

The gp160 sequences from various time points within a patient were compared 

(Figure 4.3 A-E) to investigate genetic changes during disease progression and 

whether these changes could be associated with coreceptor switching.  This 

investigation focused on the genetic variation of different regions within gp160, 

variable loop length differences and predicted N-glycosylation sites.  Genetic changes 

that might influence MAb (monoclonal antibody) recognition sites over time were 

also studied. 
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Figure 4.3 A: Du123 amino acid alignment of the gp160 region from five follow-up 
samples.  Variable loops shown with yellow boxes, MAb epitopes 2F5 and 4E10 in 
blue and gp41 region indicated. 
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Figure 4.3 B: Du151 amino acid alignment of the gp160 region from five follow-up 
samples.  Variable loops shown with yellow boxes, MAb epitopes 2F5 and 4E10 in 
blue and gp41 region indicated. 
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Figure 4.3 C: Du179 amino acid alignment of the gp160 region from five follow-up 
samples.  Variable loops shown with yellow boxes, MAb epitopes 2F5 and 4E10 in 
blue and gp41 region indicated. 
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Figure 4.3 D: Du368 amino acid alignment of the gp160 region from three follow-up 
samples.  Variable loops shown with yellow boxes, MAb epitopes 2F5 and 4E10 in 
blue and gp41 region indicated. 
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Figure 4.3 E: Du422 amino acid alignment of the gp160 region from five follow-up 
samples.  Variable loops shown with yellow boxes, MAb epitopes 2F5 and 4E10 in 
blue and gp41 region indicated. 
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The genetic variability within a patient was calculated for the V1-V2, V3, V4-V5 and 

gp41 region to determine the degree of genetic variation within the envelope region 

over time (Figure 4.4).  As expected, the gp120 region was more variable than gp41.  

Comparing the different regions within gp120, V1-V2 and V4-V5 loops had the most 

genetic variation (both median 9%, range 5-31% and 3-20% respectively,) between 

patients, compared to the V3 region with the least (median 6%, range 3-26%).  

Individual analysis showed that Du151 had the most variable sequences in all the 

different regions, followed by Du179. 
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Figure 4.4: Percentage genetic variability of the envelope region within a patient over 
time.  Du151 had overall the highest genetic variability in all regions (green bars).  
The V1-V2 and V4-V5 had the most genetic variable within gp160. 
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4.3.4 Variable loops V1-V5 

Changes within the length of the variable loops (V1-V5) were determined within each 

patient over time (Table 4.2).  In four patients (Du123, Du151, Du179 and Du368) the 

total number of amino acids within V1-V5 increased.  The V1 and V4 loops had the 

most length variation between and within patients, ranging from median 17-30 amino 

acids, whereas the V2 to V5 had relatively constant length within a patient over time.  

The V3 region remained constant in all patients at all time points.  There were no 

obvious differences noted in sequences from patients able to use CXCR4 as 

coreceptor. 

 
Table 4.2: The length of the variable loops and number of predicted N-glycosylation 
sites within the gp160 region of each patient. 
 
 

V1 V2 V3 V4 V5 V1-V5
Du123
Nov-98 30 40 35 23 12 140 28
Mar-00 30 40 35 23 15 143 30
May-00 30 40 35 23 12 140 29
Sep-00 30 40 35 20 13 138 29
Nov-00 27 40 35 31 14 147 31
Du151
Oct-98 18 45 35 22 11 131 29
Nov-98 18 45 35 22 11 131 28
Jun-99 18 44 35 30 11 138 29
Mar-00 28 44 35 30 13 150 29
May-00 28 44 35 30 13 150 28
Du179
Mar-99 17 38 34 24 10 123 30
May-99 15 38 34 25 10 122 28
Feb-00 17 38 34 26 10 125 29
May-00 17 38 34 26 10 125 28
Oct-03 29 38 34 25 10 136 29
Du368
Nov-98 27 41 35 23 9 135 27
Feb-00 27 41 35 23 14 140 31
Aug-00 28 41 35 28 7 139 29
Du422
Jan-99 27 44 35 28 9 143 27
May-99 24 44 35 22 10 135 27
Mar-00 24 39 35 27 10 135 28
May-00 28 42 35 27 10 142 30
Sep-00 28 42 35 27 10 142 30

Isolate Length Predicted N-
glycosylation 

sites
(nr of amino acids) 
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4.3.5 Predicted N-glycosylation sites 

The number and location of the predicted N-glycosylation sites within the envelope 

glycoprotein were investigated using a web base program N-GLYCOSITE 

(www.hiv.lanl.gov) (Table 4.2).  The number of sites within a patient varied slightly 

during disease progression, with a median number of 29 predicted N-glycosylation 

sites within a patient.  The position of these glycosylation sites was mostly conserved 

in the V3 and gp41 region, with most of the shifting glycans observed in V1-V2 and 

V4-V5.  The most noteworthy differences were seen in Du151 and Du179 with 

glycans in the gp41 region, which were not observed in the other patients (Figure 4.5). 

Du123

Du368

Du422

Du151

Du179

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 8500

Amino acid positions
V1-V2 V3 V4-V5 gp41

Du123Du123

Du368Du368

Du422Du422

Du151Du151

Du179Du179

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 8500

Amino acid positions
V1-V2 V3 V4-V5 gp41

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 8500

Amino acid positions
V1-V2 V3 V4-V5 gp41

 
Figure 4.5: Frequency and position of N-glycosylation sites within HIV-1 subtype C 
patients over time.  Arrows in Du151 and Du179 indicated predicted N-glycosylation 
sites in gp41 not observed in the other patients.  Conserved glycosylation sites have a 
fraction of 1, and shifting glycan positions have variable fractions, as not all samples 
within a patient were glycosylated at that specific site. 
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4.3.6 V3 region and coreceptor usage 

Amino acid variation and net amino acid charge within the V3 region was correlated 

with isolate biotype (Figure 4.6).  The R5 isolates (Du123, Du368 and Du422) had 

very few amino acid changes per time point compared to the consensus subtype C 

sequence, with a low net V3 amino acid charge (between 2.5 and 4.5).  The CXCR4-

using samples from Du151 and Du179 had various changes to the consensus subtype 

C V3 sequence.  Most of these amino acid variations were due to substitutions that 

resulted in positively charged amino acids and increased net V3 charge.  These two 

patients also had changes in the crown motif at later time points, as well as loss of 

potential glycosylation site with change in coreceptor usage.   

 

 

(-) Indicates a deletion 

Biotype 1 11 25
Consensus C C T R P N N N T R K S I R I G P G Q T F Y A T G D I I G D I R Q A H C

DU123
Nov-98 R5 P N 3
Mar-00 R5 N 3
May-00 R5 A N 3
Sep-00 R5 I N 3
Nov-00 R5 N 3

DU151
Oct-98 R5 A N E 4.5
Nov-98 R5 E N E 3.5
Jun-99 R5 M S E 2.5
Mar-00 R5X4 S K R G V L S F R K 8.5
May-00 R5X4 S K R G V L A F R K 8.5

DU179
Mar-99 R5X4 G A - N H Y 5
May-99 R5X4 G A - N H 4.5
Feb-00 R5X4 G K R A - T N T S 5
May-00 X4 G K I R L A - N K - - S 6
Oct-03 X4 G K I R R - N K - - Y 7

DU368
Nov-98 R5 I N A 4.5
Feb-00 R5 G G N A 3.5
Aug-00 R5 N A 4.5

DU422
Jan-99 R5 V E E 2.5
May-99 R5 V E 2
Mar-00 R5 V E 2
May-00 R5 N E 3.5
Sep-00 R5 N E 3.5

35 Charge

.5

.5

.5

.5

.5

.5

.5

Figure 4.6: Changes in the V3 amino acid sequence alignment correlated to isolate 
biotype and amino acid charge.  Sequences were aligned with a subtype C consensus 
sequence, position 11 and 25, as well as the crown motifs have been highlighted. 
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4.3.7 Monoclonal antibody recognition sites 

Epitope sites recognised by the monoclonal antibodies 2G12, 2F5 and 4E10 were 

investigated to determine if any sequence changes occured at these sites with disease 

progression, which might influence the neutralisation sensitivity of these viruses.  

2G12 is directed at the outer region of gp120 and depends on glycans at residues in 

positions N295, N332, N339, N386 and N392 (according to HXB2 numbering) 

(Moulard, Phogat et al. 2002; Sanders, Venturi et al. 2002; Scanlan, Pantophlet et al. 

2002).  2F5 recognise the conserved sequence ELDKWA (Muster, Steindl et al. 1993; 

Zwick, Jensen et al. 2005), and 4E10 (close to the 2F5 epitope) recognises the 

sequence NWF(D/N)IT) (Stiegler, Kunert et al. 2001).  Previous studies have shown 

that the initial isolate from these five patients were resistant to 2G12 and 2F5, and 

sensitive to 4E10 [(Bures, Morris et al. 2002), Montefiori, unpublished].  This 

correlated with the absence (2G12 and 2F5) or presence (4E10) of these epitopes 

(Gray, unpublished).  Analysis of the sequences from later isolates in this study (see 

Figure 4.3) showed that these epitopes did not change with disease progression in four 

patients, suggesting that the sensitivity to the MAbs remain unchanged.  However, 

Du151 showed a change in the 2F5 epitope over time that would predict neutralising 

sensitivity to this Mab. 
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4.4 DISCUSSION 
 

In this study the genetic changes within the gp160 region of five patients followed 

longitudinally for two to four years were investigated and correlated to changes in 

viral phenotype.  This analysis showed that although there were variations within the 

gp160 associated with disease progression, changes within regions other than the V3 

could not be linked to coreceptor switching. 

 

Phylogenetic analysis indicated that all the samples were subtype C, which is the most 

predominant subtype is South Africa.  Previous studies have shown that Du151 and 

Du179 were dually infected and Du151 experienced rapid disease progression 

(Gottlieb, Nickle et al. 2004; Grobler, Gray et al. 2004).  Interestingly, viruses from 

these patients also had the ability to use CXCR4 as a coreceptor.  The correlation 

between dual infection and ability to use CXCR4 is unclear, but both factors influence 

disease progression.  Although CXCR4 usage is not necessary for disease progression 

(de Roda Husman, van Rij et al. 1999), the ability of the virus to use this coreceptor is 

more commonly seen is late disease (Richman and Bozzette 1994; Connor, Sheridan 

et al. 1997; Scarlatti, Tresoldi et al. 1997).  In this study, dual infection in Du151 was 

confirmed in both the gp120 and gp41 phylogenetic trees.  The OCT98 and NOV98 

samples clustered together (both CCR5-using), but separate from the MAR00 and 

MAY00 sample clustering (CXCR4 usage), indicative of infection with two 

genetically different viruses.  Clustering of the JUN99 sample was suggestive of 

recombination between the two infecting strains as was seen in the recombination 

analysis.  This sample had the most sequence similarity with the CCR5 samples 

(OCT98 and NOV98) and the breakpoint was determined at amino acid position 680 

within the gp41 region.  This similarity was also reflected in the viral phenotype of 
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JUN99 that was CCR5-using.  Although Du179 was reported as dually infected, all 

isolates in this study grouped together in both trees.  This discrepancy might be due to 

the population based sequencing of cultured isolates used in this study, whereas the 

previous study was based on molecular clones derived from plasma of a smaller 

region (C2-C3) (Grobler, Gray et al. 2004).  When sequences from this smaller region 

were used in phylogenetic analysis, we did not detect dual infection either.  This 

might suggest that the virus from the second infection was lost during co-culture. 

 

The variable loops play an important role in viral binding and entry, and are 

constantly changing to escape the immune response.  It has been observed that viruses 

with shorter V1-V4 are preferentially transmitted or grow out in recipients, and are 

more sensitive to antibody neutralisation (Derdeyn, Decker et al. 2004).  This might 

be because shorter loops influence the orientation and packaging of glycans resulting 

in increased exposure of the CD4 binding domain.  The number and sites of glycans 

also play an important role in viral adaptation.  A glycan can mask epitopes or a loss 

of glycan can result in tighter packaging of the envelope protein, thereby preventing 

recognition by neutralising antibodies (Ye, Si et al. 2000).  Thus changes in length of 

variable loops, as well as the number and sites of glycans are strategies that the virus 

uses to escape the host immune responses.  We found increases in length of the 

variable loop during disease progression in two patients.  Both patients were dually 

infected and provided the opportunity for recombination between the different strains, 

as was seen with patient Du151.  HIV-1 is known for its high recombination rate (at 

least 2.8 crossovers during each cycle of replication) (Zhuang, Jetzt et al. 2002).  

Recombination is a method to increase genetic diversity during immune pressure and 

this process might be used to increase the length of variable loops during a coreceptor 
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switch, ensuring survival of these variants.  The number of glycosylation sites did not 

vary significantly within or between patients and ranged from 27 - 31 within the 

gp160 region.  The V1-V2 length from transmitted viruses could not be compared 

between donor and recipient in this study, but patients infected for <6 months (Du123, 

Du151 and Du422) did not have significantly shorter V1-V2 loops when compared to 

isolates later in infection.  There was also no difference in the number of predicted N-

glycosylation sites in samples from patients infected less than 6 months compared to 

samples from infections of more than 2 years. 

 

Both Du151 and Du179 changed coreceptor usage over time.  This was associated 

with changes in the V3 loop including increase in charge, amino acid substitutions, 

loss of the glycosylation site and changes within the crown as they acquired the ability 

to use CXCR4 either together with CCR5 (Du151) or exclusively (Du179).  This 

supports observations in Chapters 2 and 3 showing that such changes occur in R5X4 

and X4 envelopes and probably facilitates gp120 interaction with the CXCR4 

coreceptor.  However in both cases neither showed an increase in V3 length, which is 

often typical of CXCR4-using isolates (see Chapter 2).  Both viruses did however 

show increases in length in other variable loops.  For Du151 there were an additional 

19 amino acids mostly in the V1, V4 and V5 loops while Du179 had an additional 13 

amino acids almost all in V1. Furthermore only Du151 and Du179 had glycosylation 

sites in gp41.  Whether or not these features are involved in CXCR4 usage remains to 

be explored by analysis of gp160 genes of other CXCR4-using viruses and by site-

directed mutagenesis. 
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A previous study determined the sensitivity of the early isolates from Du123, Du151, 

Du179 and Du422 to the monoclonal antibodies (MAbs) 2G12, 2F5 and 4E10 (Bures, 

Morris et al. 2002).  2G12 and 2F5 were found to be ineffective against these isolates.  

In this study, sequence analysis of later isolates showed similar results with all 

samples lacking the glycosylation site at amino acid 295 that is important for 

recognition by 2G12 (Binley, Wrin et al. 2004).  Similarly 2F5 is also likely to be 

ineffective against later viruses due to the natural polymorphism associated with 

subtype C (Binley, Wrin et al. 2004).  There were no changes in the epitope for 4E10 

and all isolates would be expected to be sensitive to this MAb. 

 

In conclusion, there were changes in length of the variable loops from samples over 

time and these changes were associated with patients that were dually infected and 

switched coreceptor usage.  There were no significant changes in the number of 

predicted N-glycosylated sites within a patient over time.  No genetic changes that 

could result in loss of sensitivity to these MAbs were observed with disease 

progression.  An increase in the net V3 amino acid charge were associated with the 

ability to use CXCR4 as a coreceptor by HIV-1 subtype C, but the impact of other 

regions remains to be explored.  Thus, coreceptor switching was largely influenced by 

changes in the V3 region and therefore used in further analysis to investigate viral 

tropism of HIV subtype C isolates. 
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CHAPTER 5 

 

 

MOLECULAR AND BIOLOGICAL HETEROGENEITY IN SEQUENTIAL 

HIV-1 ISOLATES FROM A PATIENT THAT ACQUIRED THE ABILITY TO 

USE CXCR4 
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5.1 INTRODUCTION 

 

HIV-1 viral diversity within an individual increases with time and can result in the 

appearance of viruses with different biological phenotypes (Delwart, Pan et al. 1997; 

Shankarappa, Margolick et al. 1999).  The evolution of viral quasispecies from R5 to 

X4 has been described previously, with R5X4 variants seen as an intermediate 

between these phenotypes (Doranz, Rucker et al. 1996).  Due to the rare occurance of 

CXCR4-using isolates described within HIV-1 subtype C, the sequential development 

of CXCR4 usage within a single individual has not previously been described. 

 

Although the V3 region is the major determinant of viral tropism, other regions such 

as V1-V2 and V4-V5 have also been implicated (Koito, Harrowe et al. 1994; Carrillo 

and Ratner 1996).  Changes within the variable loops associated with phenotype 

switching included increased length, loss of potential N-glycosylation sites and 

positively charged amino acids.  However, it has been shown that an increase in 

charge of the V3 region is not sufficient for CXCR4 utilisation, but that changes in 

V1-V2 as well as the loss of an N-glycosylation site in V3 is also necessary (Pollakis, 

Kang et al. 2001; Nabatov, Pollakis et al. 2004).  In the absence of the loss of this 

glycosylation site, changes within the V1-V2 region resulted in R5X4 tropism.  

Similarly deletion of charged amino acids, loss of glycosylation sites and specific 

amino acid substitutions in the V4-V5 region have also been shown to impact on 

coreceptor usage (Carrillo and Ratner 1996; Smyth, Yi et al. 1998; Hu, Barry et al. 

2000). 
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The aim of this study was to investigate the variants present within a patient that had 

switched coreceptor usage from CCR5 to CXCR4 during disease progression.  

Biological and molecular clones were generated and clones were screened using a V3-

HTA.  The V1-V5 region of selected clones were sequenced and analysed to 

determine which genetic changes were associated with coreceptor switching.  We also 

hypothesised whether the X4 viruses present were evolutionary variants of the R5 

viruses with R5X4 as the intermediates. 
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5.2 MATERIALS AND METHODS 

 

5.2.1 Viral isolation and coreceptor usage 

The patient (TM18) was part of a cohort of perinatally infected children who had 

survived for >4 years and was classified as a slow progressor.  This patient received 

no anti-retroviral therapy, developed advanced AIDS and has subsequently died.  

Three samples were obtained (TM18 A-C) at one-year intervals during 1999 - 2002.  

Ethical clearance was obtained from the University of Witwatersrand Committee for 

Research on Human Subjects (see Appendix A).  Levels of virus in plasma were 

measured using the Versant HIV-1 RNA 3.0 assay (bDNA from Bayer Nucleic Acid 

Diagnostics) and CD4 counts were determined using a FACS count (Becton 

Dickinson, San Jose, CA).  Viral isolates were made from all three time points using 

phytohemagglutinin (PHA) and IL-2 stimulated PBMC and tested for their ability to 

replicate in U87.CD4 cells transfected with either CCR5 or CXCR4, as previously 

described (Morris, Cilliers et al. 2001; Cilliers, Nhlapo et al. 2003). 

 

5.2.2 Generating biological clones 

Biological clones of HIV-1 isolates were generated by limiting dilution as described 

(Schuitemaker, Koot et al. 1992; Berger 1997).  Briefly, 24 wells of a 96 well plate at 

each dilution of 1:200, 1:400 and 1:800 were established in complete medium and co-

cultured with PHA stimulated healthy donor PBMC at 2 X 106 cells/plate and 

incubated at 37ºC for two weeks.  Culture supernatants were tested weekly using an 

in-house p24 antigen assay (Cilliers, Nhlapo et al. 2003).  Cells were assumed to be 

clonal if fewer than 37% of wells were positive (i.e. 8/24 wells).  These clones were 

expanded in 12 well plates with PBMC and tested for their ability to replicate in 
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U87.CD4 cells transfected with either CCR5 or CXCR4, mentioned earlier.  Biotype 

was assigned based on whether or not the clone grew in the CCR5 (R5) or CXCR4 

(X4) cell lines.  Clones able to use both coreceptors with comparable efficiencies or 

within 10% of the major coreceptor were considered dualtropic (R5X4) (Berger, 

Doms et al. 1998). 

 

5.2.3 Amplification of the V1-V5 region 

Viral RNA was extracted from plasma or cultured supernatant from the biological 

clones, using a MagnaPure LC Isolation station and the Total Nucleic Acid isolation 

kit (Roche Applied Science, Penzberg, Germany).  The V1-V5 region was amplified 

using primers ED5 (5'-ATG GGA TCA AAG CCT AAA GCC ATG TG-3') and ES8 

(5’-CAC TTC TCC AAT TGT CCC TCA-3’).  Briefly, RNA was reverse transcribed 

with Reverse Transcriptase AMV (Roche Molecular Biochemicals) at 42ºC for 60 

minutes.  Amplification followed with Super-Therm Polymerase (Southern Cross 

Biotechnologies) for 30 cycles of 94ºC 1 minute, 55ºC 45 seconds and 72ºC for 1 

minute. 

 

5.2.4 Generating molecular clones 

PCR products (V1-V5 region) from the plasma samples were purified using the High 

Pure PCR Product Purification kit (Roche Diagnostics GmbH, Mannheim, Germany) 

and cloned into the pGEMTeasy vector (Promega, USA).  Molecular clones were 

screened by V3-HTA (as described in Chapter 2). 
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5.2.5 Sequencing and analysis 

The V1-V5 region of the selected molecular and biological clones was sequenced 

using an ABI PRISM 3100 genetic analyzer with ABI PRISM BigDye Terminator 

v3.1 Cycle Sequencing kit (Applied Biosystems).  Sequences were aligned with 

ClustalX and predicted protein translations were performed using BioEdit.  

Phylogenetic analysis and genetic distances were determined using MEGA (version 

2.1; Molecular evolution Genetic Analysis). 

 

5.2.6 Phenotype prediction 

Viral phenotypes of the molecular and biological clones were predicted from the 

sequenced V3 region using various prediction methods: V3 charge, 11/25 rule 

(Fouchier, Brouwer et al. 1995), observed changes in the crown motif (Coetzer, 

Cilliers et al. 2005) and C-PSSM (Jensen, Coetzer et al. 2005).  A sample was then 

predicted as r5 or x4 based on the results from these four methods.  However, the C-

PSSM score was used as the primary method for phenotype prediction.  Those with 

intermediate C-PSSM scores were considered to have an r5x4 phenotype.  To 

differentiate between predicted and known phenotypes, 'R5' (in capital letters) depicts 

experimentally determined phenotypes and 'r5' indicates predicted phenotypes. 
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5.3 RESULTS 

 

An HIV-1 infected child (TM18), followed for two years who underwent a switch in 

coreceptor usage from CCR5 to CXCR4 was investigated in this study.  Three 

samples were obtained at one-year intervals and during this time both the CD4 and 

viral load decreased (Table 5.1).  The coreceptor usage was determined for the three 

viral isolates, which showed a coreceptor switch over the two-year period from R5 to 

R5X4 and to X4. 

 
Table 5.1: Clinical information of patient TM18 followed for 2 years.   

Samples Age (years, months) CD4 count CD4% CD4:CD8 ratio Viral Load Biotype
TM18A 5.0 1 239 20 0.31 699 740 R5
TM18B 6.6 202 11 0.13 500 000 R5X4
TM18C 7.4 7 1 0.01 177 797 X4

 

 

5.3.1 Coreceptor determination of biological clones 

Biological clones were generated from TM18B and TM18C isolates and coreceptor 

usage was determined (Table 5.2).  For time point B all 10 biological clones used both 

CCR5 and CXCR4, five of them efficiently.  Thirty-three biological clones were 

generated from time point C (14 R5, 10 R5X4 and 9 X4 viruses).  The majority of the 

R5X4 viruses could use both receptors efficiently.  Twenty-seven clones (8 R5X4 

from TM18B, 8 R5, 4 R5X4 and 7 X4 from TM18C) were randomly selected for 

further investigation (asterisked in Table 5.2). 
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Table 5.2: Biological clones of TM18B and TM18C and the experimentally 

determined coreceptor usage.  Clones selected for further analysis are indicated with 

(*). 

Clone U87-CCR5 U87-CXCR4 Biotype

(p24 ng/ml) (p24 ng/ml)
TM18B (n=10) 

4* 6.7 57.5 R5X4
5 22.2 16.6 R5X4

7* 1.5 0.56 R5X4
8* 70.1 77.5 R5X4
9 13.8 15.7 R5X4

11* 42.2 42.9 R5X4
12* 16.7 5.6 R5X4
13* 33.9 2.1 R5X4
14* 13.9 4.1 R5X4
15* 13.9 24.8 R5X4

TM18C (n=33)
7* >100 <0.3 R5
8* >100 1.3 R5

14* >100 <0.3 R5
17* >100 <0.3 R5
18* >100 <0.3 R5
23* >100 <0.3 R5
24* 73.9 <0.3 R5
27* >100 <0.3 R5
29 >100 <0.3 R5
30 >100 <0.3 R5
31 5.3 <0.3 R5
33 >100 <0.3 R5
35 >100 <0.3 R5
36 >100 <0.3 R5
9 11.1 >100 R5X4

10* 45.8 >100 R5X4
11* 5.6 26.7 R5X4
15 >100 >100 R5X4
20 39.8 >100 R5X4
25 10.8 >100 R5X4

21* 14.9 37.5 R5X4
28* 24.8 >100 R5X4
34 >100 12.2 R5X4
39 26.6 >100 R5X4
1* 1.4 10.4 X4
2 0.5 89.2 X4
4 <0.3 19.6 X4

12* 1.5 60.2 X4
16* 0.3 7.9 X4
19* 3.5 >100 X4
26* 0.5 4.7 X4
37* 0.8 6.8 X4
38* 7.7 >100 X4

Clone U87-CCR5 U87-CXCR4 Biotype

(p24 ng/ml) (p24 ng/ml)
TM18B (n=10) 

4* 6.7 57.5 R5X4
5 22.2 16.6 R5X4

7* 1.5 0.56 R5X4
8* 70.1 77.5 R5X4
9 13.8 15.7 R5X4

11* 42.2 42.9 R5X4
12* 16.7 5.6 R5X4
13* 33.9 2.1 R5X4
14* 13.9 4.1 R5X4
15* 13.9 24.8 R5X4

TM18C (n=33)
7* >100 <0.3 R5
8* >100 1.3 R5

14* >100 <0.3 R5
17* >100 <0.3 R5
18* >100 <0.3 R5
23* >100 <0.3 R5
24* 73.9 <0.3 R5
27* >100 <0.3 R5
29 >100 <0.3 R5
30 >100 <0.3 R5
31 5.3 <0.3 R5
33 >100 <0.3 R5
35 >100 <0.3 R5
36 >100 <0.3 R5
9 11.1 >100 R5X4

10* 45.8 >100 R5X4
11* 5.6 26.7 R5X4
15 >100 >100 R5X4
20 39.8 >100 R5X4
25 10.8 >100 R5X4

21* 14.9 37.5 R5X4
28* 24.8 >100 R5X4
34 >100 12.2 R5X4
39 26.6 >100 R5X4
1* 1.4 10.4 X4
2 0.5 89.2 X4
4 <0.3 19.6 X4

12* 1.5 60.2 X4
16* 0.3 7.9 X4
19* 3.5 >100 X4
26* 0.5 4.7 X4
37* 0.8 6.8 X4
38* 7.7 >100 X4
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5.3.2 True coreceptor usage versus predicted phenotype 

The PSSM score for each of the biological clones was calculated and compared to the 

experimentally determined coreceptor usage (Figure 5.1).  All 27 biological clones 

were predicted to use CXCR4 as a coreceptor.  The eight R5 viruses (from TM18C) 

had intermediate C-PSSM scores between (-27.45 to -15.55).  This suggested that 

these late stage R5 viruses might be similar in the V3 region to CXCR4-using viruses 

or that regions outside of V3 might be involved in CXCR4 usage.  The 12 R5X4 

viruses (from time points B and C) were predicted as x4 and in some cases had higher 

C-PSSM scores than the X4 clones.  The C-PSSM failed to predict the r5x4 as the 

method was not optimised for this.  The seven X4 viruses from time point C were 

correctly predicted by the C-PSSM.  Overall, 70% of the biological clones were 

correctly predicted as CXCR4-using  

 
 

igure 5.1: Comparison between experimentally determined and predicted 
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F
phenotypes (PSSM score) of the biological clones.  Samples with C-PSSM scores >-
15.55 were predicted as x4. 
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5.3.3 Phenotype prediction of molecular clones 

In order to access the in vivo genetic diversity a V3-HTA was performed on plasma 

samples from the three time points.  The V3-HTA profiles showed a large degree of 

genetic diversity over the two-year period.  Three variants were present at time point 

A.  Time points B and C shared a variant with A (slowest migrating band indicated by 

arrow in Figure 5.2A).  Time point B also had three variants at different mobilities, 

whereas time point C had only a single variant.  Molecular clones were made from 

each sample representing the variants present in vivo over time.  Using a V3-HTA, 44 

molecular clones (20 from TM18A, 16 from TM18B and 8 from TM18C) were 

selected for further analysis.  Results from prediction methods based on the V3 

region, indicated that the 16 TM18A clones (from lowest two bands) were r5 and the 

slowest migrating band (shown with arrow in Figure 5.2A) presented r5x4 (3 clones) 

and x4 (1 clone) variants.  Similarly, this top band in the TM18B clones was predicted 

as either r5x4 (4 clones) or x4 (2 clones).  The other 10 clones representing the lower 

bands were r5.  All eight clones from time point C were predicted as CXCR4 using. 
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Figure 5.2: Selection of molecular clones within TM18 A-C.  (A) V3-HTA of 
variants present in plasma of TM18 A-C (arrow depicts slowest migrating bands).  (B) 
Schematic representation of plasma variants (blue bands) and number of clones 
selected with predicted phenotype.  (C) An example of V3-HTA of molecular clones 
selected for further analysis. 
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5.3.4 Distribution of phenotypes at different time points 

The distributions of phenotypes at the three time points were compared between 

molecular and biological clones (Figure 5.3).  Only molecular clones were available 

for TM18A and were mostly r5 with a few r5x4 and x4 variants.  The fact that 

CXCR4-using variants were not present in the original viral isolate from TM18A 

(Table 5.1) suggests they may not be highly infectious or were outgrown by the R5 

variants in culture.  Most of the molecular clones at time point B were predicted as r5 

with a few r5x4 and x4 viruses.  However, all the biological clones at this time point 

were dualtropic, concordant with the biotype of the original viral isolate (Table 5.1).  

Time point C contained CXCR4-using molecular and biological clones, but the R5 

variants were only observed in vitro.  The molecular clones were largely dualtropic, 

whereas the biological clones within this time point were more diverse despite the fact 

that only X4 variants were detected in the original viral isolate. 

 
 

igure 5.3: Distribution of phenotypes within the molecular and biological clones at 
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5.3.5 Sequence analysis of the V3 region 

The V3 sequences from all 44 molecular and 27 biological clones were aligned and 

identical sequences grouped to give 18 representative V3 sequences from the different 

time points.  These sequences thus represented all the variants present within TM18 

over time.  The sequences were labelled as a sequence type (1 - 18) and consisted of 

either molecular or biological clones from a specific time point, except sequence 8 

that represented sequences from both time points A and C, as well as 15 and 17 that 

contained both molecular and biological clones.   

 

Phenotypes were predicted for these 18 sequences based on the V3 region using 

various methods such as the V3 charge, 11/25 rule, crown motif and C-PSSM (Table 

5.3).  The 18 sequences were listed based on their C-PSSM score and showed 

increased amino acid changes compared to the subtype C CCR5 consensus.  

Sequences 1 - 14 had a low amino acid charge (+3 or +4) and sequences 15 - 18 had a 

much higher charge (+6 and +7).  Sequences 14 - 18 had an R at position 11, but no 

changes at position 25.  Variations of the crown motif (GPGQ) associated with 

CXCR4 usage were seen in sequences 7 - 18.  Sequences 1 - 3 were predicted as r5 

and sequences 14 - 18 as x4 using the C-PSSM.  Sequences 4 - 13 could not be 

accurately predicted with the C-PSSM due to the transitional score (highlighted in 

grey in Table 5.3) and were considered r5x4.  Phenotypes were assigned when three 

or four of the prediction methods concurred.  Thus, variants similar to sequences 1 - 6 

were CCR5-using (r5), sequences 7 - 11 CCR5- and CXCR4 using (r5x4) and 

sequences 12 - 18 CXCR4-using (x4). 

 



Sequence Nr of Time point O rigin 1 11 25 35
type identical of of 

 clones clones clones+ C T R P N N N T R K S I R I G P G Q T F Y A T N D I I G D I R Q A H C Charge 11/25 Crown  *
1 3 B m S V 3 S/D GPGQ -29.49 r5 r5 4/4
2 12 A m 3 S/D GPGQ -29.44 r5 r5 4/4
3 3 B m T 3 S/D GPGQ -26.42 r5 r5 4/4
4 3 B m V T 3 S/D GPGQ -25.87 x r5 3/4
5 1 B m A T 3 S/D GPGQ -25.01 x r5 3/4
6 4 A m L A N Y 3 S/D GPGQ -22.34 x r5 3/4
7 2 A m I A N 3 S/D

116 

 
Table 5.3: Predicted phenotype of 18 V3 sequences representing identical molecular and biological clones.  Sequences were aligned with a 
subtype C CCR5 sequence and listed according to their PSSM score, which was associated with increased ability to use CXCR4 as coreceptor.  
Predictions shown in red are associated with CXCR4 usage. 

GPGI
GPGT
GPGT
GPGT
GQGT
GPGA
GPGA

R GPGY -11.8 x4
6 R GPGY -10.31 x4
6 R GPGY -7.14 x4
6 R GPGY -4.64 x4
7 R GPRY -3.54 x4

-22.12 x r5x4 2/4
8 1 / 6 A / C m T A N 3 S/D -22.12 x r5x4 2/4
9 2 B m R T A N Y 3 S/D -20.75 x r5x4 2/4

10 2 B m T A I N Y 3 S/D -19.31 x r5x4 2/4
11 1 C m Q T A N 3 S/D -19.24 x r5x4 2/4
12 1 C b R A A Y N 3 S/D -17.16 x r5x4 2/4
13 7 C b R A A Y N Y 3 S/D -16.86 x r5x4 2/4
14 1 A m Y R L Y A N 4 /D x4 3/4
15 2 / 8 B m / b Y R L Y A K K Y /D x4 4/4
16 9 C b Y R L K Y A K K Y /D x4 4/4
17 1 / 1 C m / b Y K R L K Y A K K Y /D x4 4/4
18 1 C b Y R L K R Y A K K Y /D x4 4/4

Prediction methods

C-PSSM

Predicted
phenotype

+ Origin of clones: m = molecular clone, b = biological clone 
C-PSSM: Scores <-27.45 were predicted as r5, scores >-15.55 were predicted as x4.  Those with intermediate scores (x) (highlighted in grey) are assumed to be r5x4. 
Predicted phenotype (*): phenotypes were predicted based on four methods, and the number of methods with concordant phenotype indicated. 
 

 



5.3.6 Evolution of CXCR4 usage within the V3 loop 

The 18 representative sequences were used to draw a schematic phylogenetic tree to 

determine the genetic relationships between these different V3 sequences (Figure 5.4).  

Variation in the different time points, predicted and known phenotype, amino acid 

charge, 11/25 rule and changes within the crown motif are also shown.  The tree topology 

suggested two main lineages: lineage A consisted of sequence types 1 - 5 representing 

molecular clones from TM18A and TM18B.  They were characterised by a GPGQ crown 

motif, V3 amino acid charge of +3 and S/D at position 11 and 25, typically seen in CCR5 

using isolate.  In lineage B, consensus sequence 6 was of particular interest as this r5 

predicted sequence might have provided the basis from which CXCR4-using strains 

evolved.  Variants from this consensus were present in TM18A and had all the 

characteristics of CCR5 usage.  In this lineage there were two routes to developing 

CXCR4 usage (indicated as B-1 and B-2 on tree).  The first (B-1) was associated with 

increased V3 charge (to +7) and change in the crown motif to GPGY.  These changes 

resulted in dualtropic viruses but also X4 viruses as shown within sequence 16 (that 

contained X4 biological clones), thus suggesting that changes within the V3 region were 

sufficient to confer CXCR4 usage.  The second possibility of development towards 

CXCR4 usage (B-2) contained r5x4 predicted sequences.  These consensus sequences 

were associated with various crown changes, but no increase in charge, and this might 

have been the main obstacle in preventing exclusive CXCR4 usage.  The PSSM score of 

these predicted dualtropics increased with time (as reflected in the colour of the 

branches), with the sequences closer to the root more r5-like and moving towards the tips 

of the tree more x4-like.  Although sequence 12 and 13 were predicted r5x4, biologically  
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Figure 5.4: Schematic phylogenetic tree showing the evolution of CXCR4-using viruses.  
Evolutionary relationships between the 18 consensus sequences were used.  Two lineages 
are shown, with lineage A R5 viruses and lineage B indicating two possible methods of 
CXCR4 development.  Lineage B-1 switches from R5X4 to X4, whereas lineage B-2 
remains mostly dualtropic. 
 

 118



they were shown to be R5.  This suggested that although the V3 regions were possibly 

able to use CXCR4, other regions might have played a role in the preferential use of 

CCR5 in vitro of these late stage variants as has been shown previously. 

 

5.3.7 Other regions contributing to coreceptor usage 

While the V3 region is the major determinant of viral phenotype, various studies have 

indicated that other regions within the envelope contribute to phenotype.  We therefore 

investigated the number of amino acids, the charge of the variable loops and number of 

predicted N-glycosylation sites within the V1-V2 and V4-V5 regions (Table 5.4).  The 

V1-V2 length increased in CXCR4-using viruses, but were even longer in dualtropic 

viruses.  The opposite was seen in the V4-V5 loop that shortened as viruses switched to 

X4.  The median V1-V2 amino acid charge in R5 viruses were +4 but decreased to +1 in 

CXCR4-using viruses, whereas the V4-V5 loop charge stayed relatively unchanged.  The 

number of glycosylation sites within V1-V2 and V4-V5 remained constant with more 

glycans in V1-V2.  Phylogenetic trees were constructed for the V1-V2 and V4-V5 

sequences showing similar clustering of CCR5- and CXCR4-using viruses as in the V3 

tree (data not shown).  These data suggest that the transition from R5 to X4 may require 

an increase in V1-V2 and a decrease in V4-V5 lengths. 

 
Table 5.4: Variations within V1-V2 and V4-V5 that may contribute to phenotype 
switching of HIV-1 subtype C.  These variations include the number of amino acids, 
amino acid charge and number of glycosylation sites. 

Phenotype
V1-V2 range V4-V5 range V1-V2 V4-V5 V1-V2 V4-V5

r5 65 61-73 84 78-87 4 1 6 4.5
r5x4 77.5 69-82 81 77-86 1 2.5 6 5
x4 73 72-85 74 74-84 1 1 6 3

Number of amino acids Amino acid charge Number of N-glycosylation sites
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5.4 DISCUSSION 
 

The development of CXCR4 usage within a patient, that initially had CCR5-using 

viruses, provided the opportunity to study the evolution of X4 viruses within HIV-1 

subtype C.  Although this patient was infected by mother-to-child transmission, similar 

phenotypic changes have been reported in HIV-1 infected children as in adults (Scarlatti, 

Tresoldi et al. 1997).  Furthermore, Nowak et al. (2002) has shown that although there 

are differences in the immune system between adults and children, this does not result in 

significant differences in the viral evolution rate as reflected within the V3 region.  Thus, 

to determine which genetic changes were associated with coreceptor switching and 

whether X4 viruses were evolutionary variants of R5 viruses, the envelope V1-V5 region 

of molecular and biological clones from this patient were investigated. 

 

The coreceptor switch from R5 to X4 in this patient was associated with a dramatically 

reduced CD4 count and viral load.  Similar reductions in CD4 count have been shown in 

other patients undergoing coreceptor switching, suggesting that X4 viruses have 

increased pathogenicity (Sheppard, Celum et al. 2002).  The loss of CD4 target cells 

probably account for the reduction in viral load.  However there are still significant viral 

replication suggesting the virus gained the ability to use other target cells by broadening 

its coreceptor usage.  Differences between the original isolate and biological clones 

suggested that some variants were lost or outgrown due to culture adaptations.  

Therefore, the molecular clones were included in the analysis as these were more 

representative of the circulation variants, but unfortunately lacked the experimentally 

determined coreceptor usage.  For example, comparing the biological and molecular 
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clones within time point B showed that no R5 biological clones were isolated at that time 

point, but they were observed in the molecular clones.  A possible reason for this might 

be that in vivo R5 viruses are better adapted, but in vitro X4 viruses are preferentially 

amplified (van 't Wout, Blaak et al. 1998; Koning, van Rij et al. 2002).  By combining 

the molecular and biological clones we hoped to capture the full spectrum of variants 

present in this patient. 

 

Phenotypes were predicted for the 71 clones (27 biological and 44 molecular) using 

various methods.  These methods were developed to differentiate between r5 and x4 

phenotypes based on the V3 genotype (Chapter 3).  The C-PSSM was the most 

informative prediction method because in addition to predicting a phenotype, it also 

indicated sequences with intermediate scores (-27.45> x >-15.55).  These intermediate 

scored-sequences suggested that the sample did not fit the criteria (score) of an r5 or x4 

virus.  It has previously been showed that samples with intermediate scores correlated 

well with R5X4 viruses (Jensen, Li et al. 2003) and therefore, in combination with the 

other prediction methods these variants were phenotyped as r5x4.  Interestingly, the 

PSSM scored late stage R5 viruses (from time point C) as r5x4, indicating that although 

these viruses had CXCR4-using V3's, they used CCR5 as coreceptor.  Genotypic 

characterisation of the different phenotypes suggested that there were two types of R5 

viruses, isolated early in infection and from late infection.  The early R5's had the typical 

low charge, S/D amino acids at positions 11/25 and GPGQ crown associated with CCR5 

usage.  The late stage R5's and X4 variants were very similar with increased charge, 

positive amino acid at position 11 and changes in the crown motif.  The dualtropic 
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variants had a combination of these characteristics, such as changes in the crown, but low 

amino acid charge.  Therefore, the ability of a virus to broaden coreceptor usage occurred 

in a step-wise manner, implying that an R5 virus acquires the ability to use CXCR4, 

while retaining the ability to use CCR5 as a coreceptor (Pantaleo, Graziosi et al. 1993).  

This is possible because HIV-1 interacts with different parts of CCR5 and CXCR4 during 

entry into the host cell (Rucker, Samson et al. 1996; Lu, Berson et al. 1997).  Although 

only a few amino acid changes are needed for coreceptor switching as was shown in this 

study, it usually takes years, indicating that there might be obstacles to prevent phenotype 

switching.  Pastore et al. (2004) suggested that this delay in switching might be due to 

loss of replication fitness, sub-optimal use of coreceptor and limited transitional pathways 

within these intermediate variants. 

 

While R5 variants are responsible for persistent infection and found throughout disease, 

X4 variants are either a cause of or evolve in response to the progressive immune 

suppression (Schuitemaker, Koot et al. 1992; Tscherning, Alaeus et al. 1998).  In this 

study there were two possible routes for variants to obtain the ability to use CXCR4.  

Firstly, changing within the crown to GPGY as well as the increase in V3 charge resulted 

in X4 viruses.  In a second route, most variants gained the ability to use CXCR4 but 

could also use CCR5 (dualtropic).  It has been suggested that a CCR5 variant needs 

certain characteristics to evolve to using CXCR4, but once it mutates beyond these 

characteristics, it is unable to develop the ability to use CXCR4 (van 't Wout, Blaak et al. 

1998). 
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Studies have shown that other regions in the envelope contribute and/or influence 

coreceptor usage.  This has also been observed in this study in particular with the 

dualtropic viruses, where some had an R5-like V3 loop, but were able to use CXCR4 in 

addition.  Various studies have suggested that the V1-V2 region contribute to CXCR4 

usage (Groenink, Fouchier et al. 1993; Fouchier, Broersen et al. 1995), the combination 

of changes within the V3 and V1-V2 increases the efficiency of CXCR4 usage (Cho, Lee 

et al. 1998).  Others have suggested that this extension of the V2 loop might render a 

virus less fit or provide the basis for subsequent mutations in the V3 that are essential for 

phenotype switching (Fouchier, Groenink et al. 1992; Pastore, Ramos et al. 2004).  

Similar to these studies, the V1-V2 loop length within the X4 variants were longer than 

the R5 viruses but the R5X4 variants had the longest loops, further suggesting that this 

increased length might be necessary during the switch but also to maintain the X4 

phenotype.  The opposite was seen within the V4-V5 region, with shorter loops in 

CXCR4-using variants, possible as a compensatory response in order to maintain the 

overall structure of the envelope protein. 

 

In conclusion the molecular and biological heterogeneity in sequential HIV-1 isolates 

from a patient that gained the ability to use CXCR4 showed that the X4 variants evolve 

from the R5 viruses in a step-wise manner with the R5X4 viruses intermediate in this 

process.  Although changes within the V1-V2 region contributed, the V3 region of 

envelope was the major determinant of phenotype switching. 
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CHAPTER 6 

 

 

THE IMPACT OF ACTIVE TUBERCULOSIS ON HIV-1 SUBTYPE C GENETIC 

DIVERSITY 
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6.1 INTRODUCTION 

 

Opportunistic infections in HIV-1 infected patients are often associated with transient 

increases (viral bursts) in HIV-1 viral load due to immune activation (Sulkowski, 

Chaisson et al. 1998) and studies suggest that this impacts on viral diversity (Ostrowski, 

Krakauer et al. 1998; Collins, Mayanja-Kizza et al. 2000).  Tuberculosis (TB) is the most 

common opportunistic infection in developing countries and is the leading cause of death 

among HIV positive people (www.unaids.org).  Unlike most opportunistic infections, 

which are acute and usually occur late in HIV-1 infection, TB is a chronic condition, 

which can occur at all stages of HIV-1 infection.  In a small study of seven patients by 

Goletti et al. (1996), active TB was shown to increase HIV-1 viral load, although this was 

not substantiated in a larger study that forms the basis of this investigation (Day, Grant et 

al. 2004).  However, in this latter study an episode of TB did result in viral fluctuations 

and patients with higher viral levels were more prone to developing TB (Day, Grant et al. 

2004).  Furthermore, another study showed that the viral load increased marginally 

during the first month of TB treatment, but then declined to baseline levels (Morris, 

Martin et al. 2003).  Collectively these data suggest that TB impact on HIV-1 replication 

in HIV/TB co-infected patients. 

 

Viral bursts in patients with opportunistic infections may be due to non-specific 

amplification of existing populations, selected expansion of sub-populations or the 

emergence of new variants.  In some instances this could lead to the appearance of 

variants with increased fitness as a result of viral escape from immune responses or 
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viruses with altered phenotypes.  Opportunistic infections often occur late in disease 

where X4 variants are more likely to appear.  However, since Mycobacterium 

tuberculosis infects macrophages, it is likely that active TB will promote the replication 

of macrophage-tropic viruses (which use CCR5).  Furthermore, TB is associated with an 

increased pool of activated CD4 T cells that express CCR5 during co-infection, that could 

promote replication of these R5 viruses (Ostrowski, Krakauer et al. 1998).  This was 

shown in a study where viral isolates from TB patients were found to use CCR5 and not 

CXCR4 (Morris, Cilliers et al. 2001).   

 

The aim of this study was to determine the effect of active TB and TB treatment on HIV-

1 heterogeneity.  Plasma samples were obtained from HIV-1 infected patients who 

developed active TB and were then treated.  Patients were selected if TB was the only 

AIDS-defining illness.  Sequence analysis of viral quasispecies at different time points 

within an individual were performed to examine whether viral load fluctuations were 

associated with genetic shifts in viral populations. 
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6.2 MATERIALS AND METHODS 

 

6.2.1 Patient information  

Plasma samples were selected from a previously described cohort of asymptomatic HIV-

1 infected individuals working at a gold-mining company in the Free State, South Africa 

who attended a TB Prevention Clinic between 2000-2002 (Day, Grant et al. 2004).  

Ethical clearances were obtained from the University of Witwatersrand Committee for 

Research on Human Subjects and London School of Hygiene and Tropical Medicine 

Ethics Committee (see Appendices A and B).  These patients were seen routinely every 

six months, during which data were collected on symptoms and physical signs, as well as 

blood taken.  Eighteen participants who had an episode of TB (and no other AIDS 

defining illness) were included in this study, six of whom were selected for in-depth 

analysis.  Samples were labelled according to the weeks before or after the start of TB 

treatment, with pre-TB treatment samples denoted with (-), post-TB treatment labelled 

with (+) and the sample collected at the start of TB treatment labelled as (0).  Five HIV-1 

patients who did not have an episode of TB were included as controls.  Levels of virus in 

plasma were measured using the Versant HIV-1 RNA 3.0 assay (bDNA from Bayer 

Nucleic Acid Diagnostics, with >0.5 logs as clinical significant difference) and CD4 

counts were determined using a FACScount (Becton Dickinson, San Jose, CA).  

 

6.2.2 Viral RNA isolation and RT-PCR 

Viral RNA was extracted from plasma using a MagnaPure LC Isolation station and the 

Total Nucleic Acid isolation kit (Roche Applied Science, Penzberg, Germany).  The 
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C2V3 env region was amplified using primers as described (Grobler, Gray et al. 2004).  

Briefly, RNA was reverse transcribed with Reverse Transcriptase, AMV (Roche 

Molecular Biochemicals) and amplified with Super-Therm Polymerase (Southern Cross 

Biotechnologies), using primers BF (5'-TAA CAC AAG CCT GTC CAA AGG-3') and 

BR (5'-AAT TCT AGG TCC CCT CCT GA-3').  PCR products were purified using the 

High Pure PCR Product Purification kit (Roche Diagnostics GmbH, Mannheim, 

Germany).  Population-based PCR products were sequenced using an ABI PRISM 3100 

genetic analyser with ABI PRISM BigDye Terminator v3.1 Cycle Sequencing kit 

(Applied Biosystems). 

 

6.2.3 C2V3-HTA 

A C2V3-HTA was used to screen the 18 patients with samples from various time points.  

HTA probe construction and labelling was done as previously described by Nelson et al. 

(1997) and Ping et al. (1999), using a plasmid with the C2V3 region originating from a 

subtype C R5 virus, very similar to the subtype C consensus (Grobler, Gray et al. 2004).  

Single stranded probe labelling was done by digesting plasmid DNA with BamH1 

(Amersham Pharmacia Biotech, UK), end-labelling at room temperature with a mixture 

containing 12.5µCi 35S-dATP (Amersham Pharmacia Biotech, UK), unlabeled dGTP and 

Klenow DNA polymerase I (Amersham Pharmacia Biotech, UK).  The probe was 

removed from the vector by digestion with SpeI (Amersham Pharmacia Biotech, UK) and 

purified using the High Pure PCR purification kit (Roche Diagnostics GmbH, Mannheim, 

Germany) into a final volume of 50 µl.  Heteroduplexes were formed between the probe 

and PCR product in a 10 µl reaction containing 5 µl PCR product, 3 µl labelled probe, 1 
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µl annealing buffer (1M NaCl, 100mM Tris-HCL [pH7.5], 20mM EDTA) and 1 µM of 

the BR-primer denatured at 95°C for 2 minutes.  The reactions were then cooled at room 

temperature for 10 minutes.  The heteroduplexes were separated in non-denaturing 6% 

polyacrylamide gels as described by Grobler et al. (2004).  Dried gels were exposed to 

autoradiograms (BioMax MR, Kodak). 

 

6.2.4 Cloning 

Purified PCR product was cloned into the pGEMTeasy vector (Promega, USA) and 

individual molecular clones were screened by C2V3-HTA to select all variants within a 

sample which were then sequenced as described above.  Generally, 20 clones per patient 

were selected, except in PC0137 where 51 clones were available. 

 

6.2.5 Subtyping 

Sequences were aligned with ClustalX and predicted protein translations were performed 

using BioEdit.  Phylogenetic analysis as well as genetic distances were determined using 

MEGA (version 2.1; Molecular evolution Genetic Analysis).  To root the sequences, total 

population sequencing was performed on the 5 control patients who did not experience an 

episode of TB.  The probe sequence of the C2V3 region (CONSENSUS C) was also 

included in the analysis. 
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6.2.6 Phenotype prediction 

Viral phenotypes were predicted from the sequenced V3 region, using four prediction 

methods: V3 charge, 11/25 rule (Fouchier, Brouwer et al. 1995), observed changes in the 

crown motif [(Coetzer, Cilliers et al. 2005), Chapter 2], and the C-PSSM [(Jensen, 

Coetzer et al. 2005), Chapter 3].  A sample was predicted as r5 or x4 based on the results 

from the four methods.  However, the C-PSSM score was used as the primary method for 

phenotype prediction.  Those with intermediate C-PSSM scores were considered to have 

an r5x4 phenotype.   
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6.3 RESULTS 

 

6.3.1 Characterisation of HIV-1 populations in HIV/TB patients 

Samples were obtained over a 2-year study period from 18 HIV-1 infected patients at 

different time points during pre- and post-TB diagnosis and treatment.  A single sample 

(close to the TB diagnosis) from each patient was selected to characterise HIV-1 present 

within this cohort.  Population-based sequencing was performed on plasma samples in 

the C2V3 region to determine the genetic subtypes and perform phenotype predictions.  

All the samples, including the 5 control sample clustered with subtype C references 

(Figure 6.1), indicating that these patients were infected with HIV-1 subtype C.   

 

The viral phenotype was predicted based on the V3 region using the following methods: 

V3 charge, 11/25 rule, GPGQ crown motif and C-PSSM (Table 6.1).  The V3 charge was 

similar to other HIV-1 subtype C CCR5-using isolates (Chapter 2), with the exception of 

PC0074 which had a +5.5 charge, more commonly seen in CXCR4-using viruses.  All 

samples had either negative (D/E) or neutral (A/G/S) amino acids at positions 11 and 25, 

except PC0074 and PC0261.  These samples had an R at position 25 or 11 respectively, 

indicative of CXCR4-using viruses.  All samples had a GPGQ crown motif, except for 

PC0284 that had a GPGR crown motif also more frequently found among CXCR4-using 

viruses.  The C-PSSM program predicted one sample to be x4 (PC0261), but could not 

predict with confidence the phenotype of two other samples due to their intermediate 

scores (PC0074 and PC0284). 
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Figure 6.1: Phylogenetic analysis of 18 HIV/TB and 5 HIV infected patients.  The 
HIV/TB patients shown in blue and HIV-1 infected control samples in green.  Subtype 
clustering shown on right.  Reference samples were obtained from the Los Alamos 
database (http://www.hiv.lanl.gov). 
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For 15 samples all four prediction methods predicted r5 variants, while three (PC0074, 

PC0261 and PC0284) were predicted as CXCR4-using based on two or more of the tools.  

PC0261 was predicted as x4 based on the C-PSSM score.  However, whether or not these 

three samples are able to use CXCR4 as a coreceptor can only be determined 

experimentally. 

 

Table 6.1: Phenotype prediction based on the V3 region of 18 HIV/TB patients.  Viral 
phenotype was predicted using various methods based on V3 population sequencing of a 
sample close to the TB diagnosis.  Red highlighted characteristics are associated with 
CXCR4 usage.  Samples selected for further analysis are bolded. 

Patient ID Subtype V3 Charge 11/25 Crown motif
score *

PC0074 C 5.5 /R

R/E G x4
GPGR

G GPGQ (-18.93) x r5x4 3/4
PC0104 C 3.5 S/D GPGQ r5 r5 4/4
PC0122 C 3.5 S/D GPGQ r5 r5 4/4
PC0137 C 3 S/E GPGQ r5 r5 4/4
PC0204 C 3.5 S/D GPGQ r5 r5 4/4
PC0213 C 4.5 S/A GPGQ r5 r5 4/4
PC0215 C 2.5 S/D GPGQ r5 r5 4/4
PC0261 C 3.5 PGQ x4 2/4
PC0284 C 3.5 S/D (-18.64) x r5x4 2/4
PC0285 C 3.5 S/D GPGQ r5 r5 4/4
PC0473 C 3.5 S/E GPGQ r5 r5 4/4
PC0506 C 3.5 S/D GPGQ r5 r5 4/4
PC0576 C 3.5 S/D GPGQ r5 r5 4/4
PC0581 C 4 S/A GPGQ r5 r5 4/4
PC0614 C 3.5 S/D GPGQ r5 r5 4/4
PC0624 C 3 S/D GPGQ r5 r5 4/4
PC0703 C 3 S/D GPGQ r5 r5 4/4
PC0707 C 3.5 S/D GPGQ r5 r5 4/4

C-PSSM Predicted phenotype

C-PSSM: Scores <-27.45 were predicted as r5, scores >-15.55 were predicted as x4.  Those with 
intermediate scores (x) (highlighted in grey) are assumed to be r5x4. 
Predicted phenotype (*): phenotypes were predicted based on four methods, and the number of methods 
with concordant phenotype indicated. 
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6.3.2 Screening of HIV/TB patients for genetic diversity 

The 18 patients were screened using a C2V3-HTA to investigate sample complexity 

within a patient (such as number of variants) present during and after a TB episode.  

Variation of populations within a sample was correlated to the shifts and number of bands 

present.  The mobility ratios of these bands were classified as low or high shifts, and the 

number of bands as single or multiple bands (data not shown). 

 

Seven patients had low mobility bands of which two had single populations present at all 

time points and five had multiple bands in one or more samples, suggesting a 

homogenous population not influenced by TB or TB treatment.  Eleven patients had 

variants with higher mobility ratios and / or multiple bands, suggesting more complex 

variants.  Six patients were selected for further analysis to characterise the variants 

present within these patients during an episode of TB and TB treatment. 

 

6.3.3 Molecular clone analysis of viral populations 

Six patients (PC0122, PC0137, PC0213, PC0261, PC0614 and PC0703) were selected for 

further analysis based on their C2V3-HTA profiles (Figure 6.2).  Four patients showed 

expansions of variants (of these two had high mobility shifts, PC0137and PC0213).  In 

one patient the variants did not change over time (PC0261) and in one the V3-HTA 

profiles suggested a selection of specific variants (PC0614). 

 

Viral populations from at least three different time points from each patient were cloned 

and random clones were picked and screened with the C2V3-HTA.  A median of 7 clones 
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was selected from each time point for each patient, representative of the different variants 

present in the sample.  These clones were sequenced and used to calculate the genetic 

diversity within and between samples. 

PC0213 PC0261 PC0614 PC0703PC0137

-80   –51  +3  +24 -22  +11  +63 -12  +0    +31 -42 –11  +14  +40 -32   +0    +31

PC0122

-20  +27   +76

PC0213 PC0261 PC0614 PC0703PC0137

-80   –51  +3  +24 -22  +11  +63 -12  +0    +31 -42 –11  +14  +40 -32   +0    +31

PC0122

-20  +27   +76

PC0213 PC0261 PC0614 PC0703PC0137

-80   –51  +3  +24 -22  +11  +63 -12  +0    +31 -42 –11  +14  +40 -32   +0    +31

PC0122

-20  +27   +76

 
Figure 6.2: C2V3-HTA profiles of 6 HIV/TB patients over time.  Weeks before and after 
TB treatment indicated at bottom.  The red arrow depicts the start of TB treatment.   
 

 

6.3.3.1 Genetic diversity within patient samples 

The genetic diversity within each sample was compared to the CD4 count and viral load 

for each patient (Figure 6.3).  In 5 of the 6 patients CD4 counts decreased and were lower 

compared to the CD4 counts before TB treatment.  Two patients showed a decrease in 

viral load while four patients had higher viral loads than pre-TB treatment (PC0122, 

PC0213, PC0614 and PC0703).  The degree of genetic diversity fluctuated over time 

within a patient.  In four patients there was a trend towards an increase in genetic 

diversity, whereas two patients showed no changes (PC0122 and PC0703).  Patient 

PC0137 showed the highest level of diversity, which was clearly evident on the C2V3-
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HTA.  Patients PC0213 and PC0614 had 3 - 4% diversity at the last time points.  All 

other patients had less than 3% diversity at all the time points.  There appeared to be no 

correlation between genetic diversity and viral load fluctuations. 
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Figure 6.3: CD4 count and viral load compared to genetic diversity pre- and post-TB 
treatment.  The percentage genetic diversity shown as coloured bars with pre-TB 
treatment in blue and green, start of TB treatment in pink and post-TB treatment in 
yellow and red, as indicated in the colour-time line. 
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6.3.3.2 Phylogenetic analysis within a patient 

Phylogenetic trees based on the C2V3 region were drawn to reflect the relationship 

between the different variants present at each time point within a patient (Figure 6.4 A-

F).  Five control samples from patients that did not have TB were also included in the 

analysis, but only shown in Figure 6.4 A.  In all the phylogenetic trees patient-variants 

clustered together in a monophyletic group compared to the control samples indicating 

that these variants were more closely related to each other than to other HIV-1 infected 

control samples. 

 

The pairwise genetic distance was used to determine if the clustering of sequences within 

a phylogenetic tree were similar enough to classify them as a group of closely related 

variants, that could be differentiated from other variants within the tree.  The pairwise 

genetic distance for each patient ranged from 0.017 - 0.071 [median 0.029] (Table 6.2).  

This reflects the amount of genetic diversity within a patient at all time points.  If the 

overall genetic distance within a patient was less than the median of 0.029, it suggested 

that the variants were closely related (and any observed grouping of sequences was not 

significant) as seen in PC0122, PC0261 and PC0703.  If the genetic distance was greater 

than 0.029 (such as in PC0137, PC0213 and PC0614), the genetic distance of the 

observed clusters within the tree were calculated separately.  In these patients, variants 

could be differentiated into two groups (A and B) within a tree.  The variation between 

groups A and B was >0.029, indicating significant variation between the groups. 
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Table 6.2: The pairwise genetic distance for 6 HIV/TB patients.  In three patients genetic 
distance was >0.029, that separated variants into two distinct groups A and B.  
 
 Patient Pairwise  genetic distance Group A Group B A vs B

122 0.026 - - -
137 0.071 0.027 0.023 0.12
213 0.03 0.011 0.026 0.039
261 0.017 - - -
614 0.03 0.014 0.03 0.039
703 0.028 - - -
Median 0.029

 
 
 
 
 
 
 

 

Comparing the topology of the phylogenetic tree and pairwise genetic distance showed 

that the variants within PC0122, PC0261 and PC0703 were genetically similar (Figure 

6.4 A-C).  Although PC0122 and PC0703 showed some clustering of pre-TB and post-

TB variants respectively in the phylogenetic trees, the overall genetic distance of variants 

within these patients were less than 0.029, indicating that the sequences of these variants 

were not significantly different.  This suggested that there was amplification of existing 

variants in these patients, with no evidence of new populations emerging. 

 

Phylogenetic analysis of the three remaining patients (PC0137, PC0213 and PC0614) 

showed clustering of variants from various time points (Figure 6.4 D-F).  These clusters 

formed two groups within a tree.  The genetic distance between the two groups (A vs B, 

Table 6.2) was > 0.029, suggesting that a group A had sufficient genetic differences from 

group B within the same patient.  These groups consisted of variants from pre-TB and 

post-TB, pointing towards selective amplification of variants at various time points.   
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Figure 6.4 A:  Phylogenetic tree of variants from PC0122 in the C2V3 region.  The 5 
HIV control samples and C2V3 probe consensus C sequence are indicated.  The colour 
blocks reflect the time of samples, with blue and green pre-TB, pink diagnosis of TB and 
start of TB treatment, yellow and red post-TB treatment.  Bootstrap values indicate 
confidence of tree topology and values above 75% shown on tree.  Although pre-TB 
treatment (green) clustered closer together it was not significantly different from other 
variants in tree as intra patient genetic distance <0.029. 
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Figure 6.4 B: Phylogenetic tree of variants from PC0261 in the C2V3 region.  The 
branch that linked control samples is indicated with (//).  Variants within this patient were 
genetically similar, showing no clustering and therefore suggestive of non-specific 
amplification of variants. 
 

 140



 

Figure 6.4 C: Phylogenetic tree of variants from PC0703 in the C2V3 region.  The 
ranch that linked control samples is indicated with (//).  Variants within this patient 
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b
show clustering within the tree topology but the overall pairwise genetic distance within 
this patient indicated that these groups were not significantly different. 
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Figure 6.4 D: Phylogenetic tree of variants from PC0137 in the C2V3 region.  Controls 
were included in analysis but they are not shown, hence the branch that linked the 
controls is indicated with (//).  Variants within this patient clustered into 2 groups (A and 
B) and were genetically distinct. 
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Figure 6.4 E: Phylogenetic tree of variants from PC0213 in the C2V3 region.  The 
branch that linked control samples is indicated with (//).  Variants within this patient 
clustered into 2 groups (A and B) pointing towards selective amplification of variants 
from pre-TB treatment.  A single variant isolated post-TB treatment (yellow) did not 
cluster within these groups, suggestive of a new variant. 
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Figure 6.4 F: Phylogenetic tree of variants from PC0614 in the C2V3 region.  The 
branch that linked control samples is indicated with (//).  Variants within this patient 
clustered into 2 groups (A and B) suggesting selective amplification of variants. 
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6.3.3.3 Sequence analysis of patients with sub-populations 

Consensus sequences were compiled for group A and B for each patient to investigate the 

genetic characteristics of these variants.  The frequency of A and B variants was also 

calculated to quantify the presence of each group at different time points (Figure 6.5 A-

C). 

 

Analyses of variants from PC0137 showed that group A predominated at the time of TB 

treatment (time 0).  Group B predominated during pre-TB and post-TB treatment, 

indicative of expansion of a minor population and then reversal to variants more similar 

to those present pre-TB.  Consensus sequence analysis showed that group A had 2 

potential glycosylation sites that were lacking in group B (at amino acid positions 123 

and 128), and group B had one site not present in group A (amino acid position 79).  

Group B also had a deletion at amino acid position 124.  There was a notable difference 

in the V3 charge between these groups; group A containing variants with charge of +3, 

whereas group B variants have a charge of +4 and an R at amino acid position 25.  This 

further suggests 2 genetically different populations predominating at different time points 

within this patient.  Hence, this patient experienced selection of a specific population 

during an episode of active TB infection, but with treatment the population profile 

returned to variants similar to those at pre-TB diagnosis. 
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Figure 6.5 A: Consensus sequences and distribution of viral variants within PC0137 over 
time.  Dots within amino acid sequence alignment indicate similar sequence and X depict 
variable amino acids.  The V3 region is blocked in red, with position 11 and 25 indicated 
and the V3 charge in brackets.  Potential glycosylation sites that are present in one 
consensus but not the other are boxed in blue.  Distribution of these groups at the 
different time points are shown in the graph, indicating that group A expanded during TB 
treatment, but declines post-TB treatment. 
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The variants from PC0213 clustered into two sub-populations with most of the pre-TB 

treatment and 11 weeks post-TB treatment variants clustering in group A (Figure 6.5B).  

Variants at 63 weeks post-TB treatment clustered in group B with a few pre-TB variants, 

suggesting that the increased viral load post-TB treatment resulted in the amplification of 

a subpopulation that were not detected at 11 weeks post-TB treatment.  There is also the 

possibility that the low viral levels at 11 weeks (Figure 6.3) might have resulted in group 

B not being sampled.  Group A and B shared some potential glycosylation sites, but only 

group A had one at amino acid position 66.  The consensus sequences for group A and B 

had similar V3 charges of +3.  One clone representing a variant at 11 weeks post-TB did 

not cluster in either of these groups and had a V3 charge of 4.5.  Sample mix-up or 

contamination was ruled out as this clone clustered with other sequences from this patient 

(Figure 6.4 E).  This could be a new variant that developed at 11 weeks post-TB 

treatment, that was not seen at later time points. 

 

The variants within patient PC0614 clustered into two significantly different groups A 

and B (Figure 6.5C, genetic distance 0.039), with eight amino acid sites of variability 

between them.  The V3 charge was the same for both subpopulations, including a 

deletion at amino acid 109.  Despite these few differences between the groups, group A 

variants were more predominant post-TB treatment.  These analyses suggest selection of 

specific variants around TB diagnosis and treatment, but with the increased viral load 

earlier variants seen at pre-TB time points were also amplified. 
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Figure 6.5 B: Consensus sequences and distribution of viral variants within PC0213 over 
time.  The V3 region is blocked in red, with position 11 and 25 indicated and the V3 
charge in brackets.  Potential glycosylation sites that are present in one consensus but not 
the other are boxed in blue.  Distribution of these groups at the different time points are 
shown in the graph, indicating that although 11 weeks post-TB treatment had only group 
B variants, variants from group A were present at 63 weeks post-TB treatment. 
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Figure 6.5C: Consensus sequences and distribution of viral variants within PC0614 over 
time.  The V3 region is blocked in red, with position 11 and 25 indicated and the V3 
charge in brackets.  Potential glycosylation sites that are present in one consensus but not 
the other are boxed in blue.  Distribution of these groups at the different time points are 
shown in the graph, indicating that group B were predominant at 42 week pre-TB 
whereas group A consist of variants present at 14 weeks post-TB treatment. 
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 150

6.4 DISCUSSION 

 

In this study we explored the effects of active TB on HIV-1 heterogeneity by determining 

the genetic characteristics of viral populations present over time in HIV-1 co-infected 

patients.  Eighteen HIV-1 infected patients were followed for 2 years in which samples 

were obtained pre- and post-TB diagnosis and treatment.  Six patients with a high degree 

of genetic diversity were selected for further analysis of which three showed an 

expansion of existing populations and three showed selection of a subpopulation, 

suggesting that TB can influence viral heterogeneity in some patients.  A summary of the 

findings in this chapter is shown in Figure 6.6. 

 

Genetic characterization of HIV-1 within this cohort showed that these patients were 

infected with HIV-1 subtype C strains.  Phenotype prediction methods indicated that 

most of the samples contained R5 viruses.  For three samples (PC0074, PC0261 and 

PC0284) the prediction methods gave discordant results.  This included positively 

charged amino acids at positions 11/25, or mutations in the crown motif that resulted in 

variation in the GPGQ motif and intermediate PSSM scores suggestive of CXCR4 usage.  

However, these prediction discrepancies can only be addressed by determining the 

coreceptor usage experimentally with cell lines expressing either CCR5 or CXCR4.  The 

finding that the majority of HIV/TB patients harbour CCR5-using variants support earlier 

studies on similar cohorts where all isolates were also reported to be R5 (Morris, Cilliers 

et al. 2001; Morris, Martin et al. 2003). 
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Figure 6.6:  Summary of results from the 6 HIV/TB patients.  The variability of variants present in the C2V3-HTA profiles of a 
patient over time is described.  Increase, decrease or no change in CD4 count, viral load and genetic diversity are shown with arrows.  
If the variants within a patient formed subpopulations, the distribution of these populations at each time point are indicated, with the 
dominant group at that time point in capital. 
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In this study most of these patients had a decrease in CD4 count over time.  Two 

patients had no change in genetic diversity although the viral load increased, 

suggestive of amplification of existing populations over time.  Four patients had an 

increase in viral diversity of which two were associated with an increase in viral load.  

Two patients had a decrease in viral load while the genetic diversity increased, 

suggesting that minor populations were selectively amplified or there was selective 

amplification of a very diverse population.  Previous studies have shown a correlation 

between increased fitness during disease with increased viral load and HIV-1 C2V3 

diversity (Troyer, Collins et al. 2005).  In this study the genetic diversity did increase 

over time suggestive of the selection of more fit variants, but it was not necessarily 

associated with increased viral load.  

 

Phylogenetic and sequencing analyses were used to determine if increased replication 

resulted in amplification of non-specific variants, selection of a specific population or 

emergence of new variants.  For three patients (PC0122, PC0261 and PC0703) there 

appeared to be non-specific amplification of existing variants as sequences from 

different time points were mixed in the tree topologies with no significant clustering 

of specific variants.  Three patients had selective amplification of specific variants as 

reflected in the grouping of variants in the phylogenetic trees.  Selection of a specific 

population usually created a cluster that was separated from other variants.  These 

groups were determined based on the pairwise genetic distance within a patient as 

well as the distance between the selected groups.  Therefore, PC0137, PC0213 and 

PC0614 had sufficient genetic diversity within their populations to suggest that (with 

some degree of confidence) a cluster of sequences was different from another as 

indicated by the increase genetic distance between group A and B within a patient.  
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Sequence analysis showed that some of these groups had different characteristics, 

such as different V3 amino acid charge and predicted glycosylation sites, further 

proving that they represent independent variants within a patient.  The distribution of 

these groups also differed within a patient indicating that some groups were more 

adaptable at certain times e.g. pre-TB or post-TB treatment. 

 

TB and HIV-1 infection are chronic conditions, which results in constant immune 

activation within a patient, and complicates studying the effect of TB on HIV-1.  

Nevertheless, in this study it was observed that different variants dominated at certain 

stages within some patients.  To ascertain whether the selection of these specific 

variants were due to TB or TB treatment can only be determined with further 

investigations that include analysis of variants present in a control group of patients 

that experienced no TB infection.  In conclusion, amplification of existing populations 

as well as selective amplification of variants were observed in this study, therefore TB 

and TB treatment did impact on viral heterogeneity but mostly by selective 

amplification of specific variants at certain time point and this was not necessarily due 

to the increased viral replication. 
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CHAPTER 7 

 

 

CONCLUSION 
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7.1 CONCLUSION 

 

In this study the in vitro and in vivo diversity of HIV-1 subtype C envelope proteins 

were investigated and correlated to the biological phenotype of viral isolates.  During 

entry of HIV-1 into a target host cell, the virion binds to CD4 and a coreceptor.  The 

major coreceptors are CCR5 and CXCR4 with CCR5 used more frequently.  CXCR4 

usage is usually seen in later stages of disease, but in subtype C only a few viruses 

have been isolated able to employ this coreceptor.  The ability to use these different 

coreceptors is largely influenced by genetic changes in the envelope glycoprotein.  

Selective pressures due to the host immunological response, as well as the error prone 

reverse transcriptase contribute to variation within the envelope region and 

specifically the V3 region (Bebenek, Abbotts et al. 1989; Watkins, Reitz et al. 1993; 

Burns and Desrosiers 1994).  This diversification lends HIV-1 the ability to expand its 

coreceptor utilisation during the course of HIV-1 infection, and provides the virus 

access to a spectrum of potential target cells within the host (Hu, Barry et al. 2000).  

Determining viral phenotype is important in many different research aspects, as 

coreceptor usage impacts on the pathogenicity, tissue tropism and transmissibility of a 

virus in vivo. 

 

Understanding and identifying the differences in coreceptor utilisation of subtype C is 

important as this subtype predominates worldwide.  Recently more focus has been 

placed on blocking the entry stage of the viral life cycle and preventing the sequelae 

of infection and provirus integration.  Entry inhibitors, that bind to CCR5 or CXCR4 

and prevent binding of the gp120, are being tested in human clinical trials and may 

prove particularly useful as part of a microbicide formulation to prevent infection at 
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mucosal sites.  However, HIV-1 can escape from these inhibitors by mutation 

allowing gp120 to still bind in the presence of the inhibitor (Hartley, Klasse et al. 

2005).  Escape from CCR5 inhibitors could also select for CXCR4-using variants.  

Therefore, insight into the evolution of X4 viruses is crucial to understanding the 

interaction between the immune system and the virus, immune escape and drug 

resistance, as these will assist in better vaccine strategies, drug development and 

treatment.   

 

The reason why X4 viruses emerge in some patients is uncertain.  It is not clear, for 

instance, whether X4 viruses are the cause or consequence of disease progression, 

how common X4 viruses are in vivo, or whether there are virological and/or 

immunological constraints selecting against these viruses early in infection 

(Kuhmann, Pugach et al. 2004; Moore, Kitchen et al. 2004).  The infrequency of X4 

viruses in subtype C suggests virological differences compared to other subtypes or 

possibly host differences since subtypes are generally geographically distributed.  

Clearly, X4 viruses are not required for disease progression in subtype C infections as 

most patients with advanced AIDS do not develop them (Tscherning, Alaeus et al. 

1998; Ping, Nelson et al. 1999; Cilliers, Nhlapo et al. 2003).  This gives rise to 

important questions.  Is pathogenesis in subtype C infections fundamentally different 

from that of subtype B infections?  If not, does the rarity of X4 virus in progressive 

subtype C infection support the idea that X4 development in B infections is a by-

product and not a cause of end-stage disease?  It has been suggested that the low 

frequency of X4 viruses in subtype C infection has more to do with the later onset of 

the epidemic in developing countries, where subtype circulates; i.e. that the virus has 

not yet evolved CXCR4 usage.  Since the time to AIDS is often shorter in individuals 
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residing in developing countries, it has also been suggested that X4 variants have 

simply not had sufficient time to evolve in vivo (Cilliers, Nhlapo et al. 2003).  

However this would not explain patients in Uganda infected with subtype D viruses 

where X4 viruses are frequently found (De Wolf, Hogervorst et al. 1994).  This latter 

observation suggests that CXCR4 usage is mainly a virus-driven process. 

 

To address these questions we investigated the development and characteristics of 

CXCR4 viruses in HIV-1 subtype C infection (Chapters 2, 4, and 5).  Comparing the 

V3 region of CCR5 and CXCR4 using isolates it was clear that there were genetically 

distinct.  R5 viruses were more conserved irrespective of disease stage, whereas the 

CXCR4-using viruses were variable in the stem and crown of the V3 region.  

Characteristics of CXCR4 usage included the loss of the N-glycosylation site, 

increased charge and specific amino acid changes in particular at positions 11 and 25 

in the V3 region, similar to subtype B.  The most noteworthy difference between the 

subtypes was the highly conserved crown motif GPGQ in subtype C R5 viruses, 

whereas X4 viruses had mutations in this region, particularly Q changing to R.  The 

consensus crown motif in subtype B (for both CCR5 and CXCR4) is GPGR.  Thus, 

we suggest that the conserved GPGQ crown motif of subtype C R5 viruses might 

restrict the development of X4 viruses.  Although some subtype C CXCR4-using 

viruses have a GPGQ motif and have therefore overcome this restriction, mutations in 

the crown might be just one of the many ways for subtype C viruses to develop 

CXCR4 usage.  The importance of the V3 crown in coreceptor binding has recently 

been shown in a study of the crystal structure of the core of gp120 containing the V3.  

The authors propose that the N-terminus of the coreceptor binds to the V3 base and 

the V3 crown interacts directly with the second extracellular loop of CCR5 (Huang, 
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Tang et al. 2005).  Similar studies on subtype C envelopes and CXCR4-using 

envelopes need to be done.  Such studies will help us in understanding how genetic 

variation in the crown affects interaction with HIV-1 coreceptors. 

 

The genetic differences between R5 and X4 viruses within the small region of V3 

(consisting of an average of 35 amino acids), has made it a suitable region for 

phenotype prediction methods based on genotype.  Most prediction methods are based 

on subtype B sequences, as these are more readily available.  In this study, we have 

provided to our knowledge, the largest number of unlinked subtype C sequences and 

this has provided the opportunity to test these prediction methods for subtype C.  

Although the 'gold standard' for phenotyping is experimentally determined coreceptor 

usage of viral isolates, in vitro culture probably skews the coreceptor profiles by 

selecting variants as was seen in Chapter 5.  In particular CXCR4-using viruses are 

often better adapted for growth in vitro.  Future studies should focus on cloning 

envelope genes from plasma RNA for accessing coreceptor usage and comparing this 

with genotypic predictors.  Of the four different prediction methods used in this study, 

all had high specificity (correctly predicting R5 viruses) but low sensitive for X4 

viruses (Chapter 4).  We therefore developed a subtype C specific prediction method 

based on position specific scoring matrix (PSSM).  This method was more sensitive in 

detecting X4 viruses as well highlighting that certain positions within the V3 

contribute differently to phenotype in subtype B and subtype C. 

 

Dualtropic viruses, seen as the intermediate step in the transition from R5 to X4, are 

of particular interest, as these viruses have the ability to use both receptors.  Jensen 

and colleagues have shown that R5X4 viruses had intermediate PSSM scores, with 
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some viruses more R5-like, while others had a higher score and were more X4-like 

(Jensen, Li et al. 2003), and this was confirmed in this study.  Better understanding of 

this process might clarify the changes that lead to a virus switching coreceptor usage.  

The rare occurrence of CXCR4-using viruses in subtype C makes it difficult to 

identify patients who have undergone a coreceptor switch.  We identified and 

analysed three such patients (Chapters 4 and 5).  In these studies it was shown that 

coreceptor switching happened in a step-wise manner dependent on multiple changes 

within the V3 region that differed between isolates.  Two of the patients were dually 

infected suggesting that 'genetic leaps' as a result of recombination facilitated rapid 

emergence of X4 usage (Chapter 4).  Reconstructing the development of X4 viruses 

within a single patient that has undergone a coreceptor switch indicated two routes to 

CXCR4 development (Chapter 5).  In one pathway, viruses developed dualtropism 

and were characterised with changes in the crown motif, but low V3 charge and no 

positive amino acids at positions 11 or 25.  The second route resulted in X4 viruses, 

which were associated with changes in the crown motif, as well as positive amino 

acids at position 11 that resulted in an increased charge.  Thus, the development of 

CXCR4 usage within a patient can follow different mutational pathways and does not 

necessarily lead to X4 only viruses.  Pastore et al. (2004) suggested that this 

mutational pathway not only differs between samples, but that the mutational distance 

(number of mutations necessary) from CCR5 to CXCR4 usage (although relatively 

small) differs between samples as well.  Given that R5 to X4 switching requires so 

few changes it is not clear why these viruses don't occur more frequently.  In vitro 

they are readily generated in weeks.  Pastore et al. (2004) suggest that the changes 

required to undergo a coreceptor switch renders them unfit and sensitive to coreceptor 

inhibitors. 
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This study has shown that similar to subtype B, the V3 region is the major contributor 

of phenotypic expression of coreceptor tropism in subtype C.  The same 

characteristics such as the loss of the N-glycosylation site, increased charge and 

specific amino acids contributed to the development of CXCR4 usage.  In addition, 

this study has highlighted another route of CXCR4 development involving changes 

within the crown motif of subtype C viruses.  Therefore, pathogenesis in subtype C 

infections resulting from the broadening of coreceptor usage to CXCR4 is not 

fundamentally different from that of subtype B infections.  Although known X4 

viruses in subtype C are rare, with the increased understanding of their development 

and improved detection methods, the likelihood of identifying these viruses will 

increase.  The rarity of X4 virus in progressive subtype C infection suggests that X4 

development in subtype B infections is a by-product and not a cause of end-stage 

disease.  However, the appearance of X4 variants is associated with rapid depletion of 

circulating CD4 T-cells as shown in chapter 5 and so future studies are needed to 

explore the pathogenicity of CXCR4-using viruses.  In conclusion, this study has 

contributed to a better understanding of the development and role of CXCR4 in HIV-

1 subtype C infection. 
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Appendix A: Ethical clearance 

 

Ethical clearance was obtained from the University of Witwatersrand Committee for 

Research on Human Subjects (Medical) protocol number M990327. 
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Appendix B: Additional ethical clearance 

 

Ethical clearance was also obtained from the London School of Hygiene and Tropical 

Medicine Ethics Committee for research work done in Chapter 6, protocol number 

792: The impact of active TB on HIV-1 subtype C evolution. 
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Appendix C: Amino acid abbreviations 

 

Amino acid Abbreviation 

Alanine A 

Arginine R 

Asparagine N 

Aspartic acid D 

Cysteine C 

Glutamic acid E 

Glutamine Q 

Glycine G 

Histidine H 

Isoleucine I 

Leucine L 

Lysine K 

Methionine M 

Phenylalanine F 

Proline P 

Serine S 

Threonine T 

Tryptophan W 

Tyrosine Y 

Valine V 

Any amino acid X 
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Appendix D: Reagents and recipes 

 

10XTBE 

108g Tris-HCL 

55g Boric acid 

20ml 1.5M EDTA 

Made to one litre with dH2O. 

 

HTA Annealing Buffer 

1M NaCl 

100mM Tris-HCL [pH7.5] 

20mM EDTA 

 

LB Broth 

10g NaCl 

5g Yeast extract 

10g Tryptone 

Made to one litre with dH2O. 

 

X-Gal, IPTG, Ampicillin LB agar plates 

10g tryptone 

5g yeast extract 

10g NaCl 

15g agar 

Made up to one litre dH2O. 
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Appendix E: HTA probe sequences 

 

The V3-HTA and C2V3-HTA probes were obtained from HIV-1 subtype C R5 viruses. 

 

>V3-HTA probe 

TGTACAAGACCCAACAATAATACAAGAAAAAGTATGAGGATAGGACCAGG

ACAAACATTCTATGCAACAGGAGACATAATAGGAAACATAAGACAAGCAC

ATTGT 

 

>C2V3-HTA probe 

GGTTATGCGATTCTAAAGTGTAATAATAAGACATTCAATGGGACAGGACC

ATGCAATAATGTCAGCACAGTACAATGTACACATGGAATTAAGCCAGTGG

TATCAACTCAATTACTGTTAAATGGTAGCCTAGCAGAAGAAGAGATAATA

ATTAGATCTGAAAATCTGACAAACAATATCAAAACAATAATAGTCCACCT

TAATAAATCTGTAGAAATTGTGTGTACAAGACCCAACAATAATACAAGAA

AAAGTATAAGGATAGGACCAGGACAAACATTCTATGCAACAGATGCAAT

AATAGGAAACATAAGAGAAGCACATTGTAACATTAGTAAAAGTAACTGG

ACCAGTACTTTAGAACAGGTAAAGAAAAA 
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Appendix F: Vector map 

 

pGEMTeasy vector map 

pGEMTeasy vector map showing multiple cloning sites (Promega Corporation, 

USA).  Amplicons were inserted between EcoRI and SpeI. 
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Appendix G: Determining coreceptor usage in transfected cell lines 

 

Viral isolates were tested for their abilities to replicate in U87.CD4 cells transfected 

with either CCR5 or CXCR4.  Cells were plated in 12-well plates 105 cells/well in 2 

ml of selection medium [Dulbecco's modified eagle's medium (DMEM)] containing 

10% FCS, antibiotics plus 500ug/ml G418 (Boehringer Mannheim GmbH) and 

1ug/ml puromycin (ICN Biomedicals Inc., Ohio, USA).  The following day, 1 000 

TCID50 (50% tissue culture infectious doses) of virus was added.  After incubation 

overnight, the cultures were washed three times with DMEM plus 10% FCS to 

remove unbound virus, then monitored for syncytium formation and p24 antigen 

production on days 4, 8 and 12.  Isolates that induced syncitia formation and 

generated increasing concentrations of p24 antigen were considered to be replication 

positive.  (Performed by Tonie Cilliers and Melene Smith). 

 

` 
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