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Abstract 

 

Recent high-resolution numerical studies of weak shock reflections have shown that a complex 

flow structure exists behind the triple point which consists of multiple shocks, expansion fans and 

triple points. This region had not been detected earlier in experimental observations or numerical 

studies of weak shock reflections due to the small size of this region. New components were 

designed and built to modify an existing large-scale shock tube in order to obtain experimental 

observations to validate the numerical results. The shock tube produced a large, expanding 

cylindrical incident wave which was reflected off a 15° corner on the roof of the section to 

produce a weak shock Mach reflection with a large Mach stem in the test section. The shock tube 

was equipped with PCB high-speed pressure transducers and digital scope for data acquisition, 

and a schlieren optical system to visualise the region behind the triple point. The tests were 

conducted over a range of incident wave Mach numbers (M12 = 1.060-1.094) and produced Mach 

stems of between 694 mm and 850 mm in length. The schlieren photographs clearly show an 

expansion fan centered on the triple point in all the successful tests conducted. In some of the 

more resolved images, a shocklet can be seen terminating the expansion fan, and in others a 

second expansion fan and/or shocklet can be seen. A ‘von Neumann reflection’ was not 

visualised experimentally, and hence it has been proposed that the four-wave reflection found in 

these tests be named a ‘Guderley reflection’. The experimental validation of Hunter & Tesdall’s 

(2002) work resolves the ‘von Neumann Paradox’. 
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1. Objectives 

 

1. Determine whether Hunter & Tesdall’s (2002) theoretical results can be proved 

experimentally by observing a second or subsequent shock or expansion region behind 

the triple point. This would require the following to be undertaken: 

 

a. Design and build or modify a large-scale shock tube using the existing large 

shock tube available at the Mechanical Engineering Laboratory. 

 

b. Test the new shock tube and determine the characteristics of the tube. 

 

c. Obtain photographs of the triple point region of a large-scale von Neumann 

Reflection. 
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2. Introduction 

 

2.1. Background Theory 

 

The following section gives a brief outline of the theory used throughout the analysis of the 

physical processes. 

 

Mach number is a measure of the speed of a shock wave or gas relative to the speed of sound in 

ambient conditions. It is a dimensionless parameter and is defined as: 

 

sa

v
M =  

 

where:  v is the velocity of the shock wave or gas [m/s] 

  as is the ambient speed of sound [m/s] 

 

 

The speed of sound in a compressible gas is defined as: 

 

1s RTa γ=  

 

where:  γ is the ratio of specific heats of the gas 

  R is the gas constant 

  T1 is the ambient temperature of the gas [K] 

 

 

For the subsonic case, where M < 1, the particles of gas flow smoothly around any disturbances 

and anticipate changes in flow. For the supersonic case, where M > 1, the particles undergo 

almost discontinuous adjustments of fluid properties (pressure, temperature and density). These 

discontinuities are shock waves and adjust the fluid properties instantaneously. 
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The inverse Mach slope (a) is given by the following equation for uniform, plane incident waves 

off a reflecting surface: 

 

1M2
a w

−

θ
=  

 

where:  θw is the reflection wedge angle in radians 

  M is the Mach number of the incident wave 

 

 

2.2. Shock Wave Reflections 

 

The first scientist to discover the phenomenon of shock wave reflections was Ernst Mach, as far 

back as 1878 (Ben-Dor 1992). He identified two types of reflection, namely a two-shock 

reflection and a three-shock reflection. These have since become known as a regular reflection 

and a Mach reflection respectively. Research into shock reflection was re-initiated in the 1940’s 

by von Neumann, and since then the basic wave configurations have been divided into more 

specific structures. 

 

The reflection of shock waves is generally divided into two categories: regular reflection and 

irregular reflections. The type of reflection depends on (MS,γ, θw) parameter space, where MS, γ 

and θw are the incident shock wave Mach number, the gas specific heat ratio and wedge angle 

respectively. For shallower wedge angles, and moderate Mach numbers, the reflection point 

detaches from the reflecting surface and forms a three-shock configuration, or irregular reflection. 

 

A regular reflection consists of two shocks, an incident wave, and a reflected wave; which 

intersect on the reflecting surface at a reflection point and is generally observed for large wedge 

angles. 
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Figure 2.1 – Schematic diagram of a regular reflection 

 

 

All other reflections which occur when an incident wave reflects off a surface are termed 

irregular reflections and are divided into two categories: Mach reflection and von Neumann 

reflection. A Mach reflection consists of three shocks which intersect at a single discontinuity 

called the triple point which follows a trajectory along the angle χ from the leading edge of the 

wedge. The structure is made up of an incident wave, a reflected wave, a Mach stem, and a 

slipstream. The reflecting point is now at the point where the Mach stem contacts the reflecting 

surface.  

 

 

 

Figure 2.2 – Schematic diagram of a Mach reflection 
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Shock waves that are moving at a constant velocity can be analyzed by attaching a frame of 

reference to the shock wave. In this frame of reference, the shock wave is stationary, while the 

flow field is moving, and is known as pseudo-steady flow. The transformation from an inertial to 

a moving frame of reference is known as Galilean transformation. 

 

 

 

Figure 2.3 – Schematic diagram of Galilean Transformation 

 

 

In Figure 2.3(a), the constant velocity shock wave is transformed into a stationary shock wave in 

Figure 2.3(b). In Figure 2.3(a) the moving shock wave has a constant velocity Vs, which is 

moving into a flow field with velocity Vi, and inducing a flow field of velocity Vj behind the 

wave. In Figure 2.3(b) the flow moves towards the stationary shock wave with a velocity Ui = Vs 

– Vi, and is reduced to Uj = Vs – Vj after leaving the shock wave. 
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In pseudo-steady shock reflection, a single Mach reflection from a wedge would have the 

following configuration: 

 

 

 

Figure 2.4 – Single Mach Reflection from a wedge 

 

 

As the incident wave moves towards the wedge, a Mach stem develops and increases in length as 

it propagates up the wedge surface, causing the triple point to follow a straight line trajectory 

from the leading edge of the wedge angle, at angle χ to the wedge surface. The reflected wave 

expands in all directions.  
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A von Neumann reflection is a weak incident shock Mach reflection over a small wedge angle, 

where the reflected wave degenerates into a band of compression waves in the region behind the 

triple point, as defined by Colella & Henderson (1990) in Figure 2.5. 

 

 

 

Figure 2.5 – von Neumann Reflection from a wedge 

 

 

Comparing schlieren photographs of a single Mach reflection with a von Neumann reflection, it 

can be seen that the slope of the incident waves and Mach stem are discontinuous for a Mach 

reflection, whilst the slopes are almost continuous for a von Neumann reflection. The slipstream 

is also very distinct in a single Mach reflection, but appears as a distributed shear layer in von 

Neumann reflections. The triple point is also not a defined single point in a von Neumann 

reflection. 

 

The equations which describe the regular and Mach reflections are known as two and three-shock 

theory respectively, and were formulated by von Neumann (1943). The analysis applies the 

oblique shock wave equations for the regions near the reflection or triple point, along with 

geometrical and boundary conditions. Basic assumptions are that the fluid is inviscid, that all 

waves are infinitely thin and plane, and that the regions between waves are uniform. 
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The theory produces results which are agreeable with experimental observations for regular and 

Mach reflection, except for the fact that regular reflection persists slightly beyond what theory 

suggests as its limit. This has since been attributed to thermal and viscous boundary layers on the 

wedge surface. The three-shock theory breaks down for weak shock reflections (von Neumann 

reflection). 

 

 

2.3. Importance of the study 

 

Experimental observations of an irregular reflection of a weak shock from a wedge have shown a 

three-shock reflection which meet at a triple point (Bleakney & Taub 1949). This type of 

reflection closely resembles a single Mach reflection, even though it has been shown that a 

standard triple point reflection for sufficiently weak shocks is theoretically impossible (Bleakney 

& Taub 1949; von Neumann 1963; Henderson 1987). This conflict between theoretical and 

experimental results for weak shock reflections has been in dispute for more than fifty years, and 

is referred to as the “von Neumann Paradox” (Birkhoff 1950). 

 

Guderley (1947) proposed that a supersonic region behind the triple point existed, and hence an 

expansion fan is generated behind the triple point. Initial experimental observations did not show 

any evidence of such a supersonic region or expansion fan, nor did any numerical results show 

such evidence. This work had not been followed for almost half a century, the main reason why 

no real progress had been made can be attributed to the very small region under study, which was 

generally beyond the resolution of numerical studies until higher performance computers became 

available. Any experimental study would not have been able to resolve such a small region 

optically, due to the small scale of the supersonic patch in conventional shock tubes. 

 

Various approaches have been made in studying the von Neumann paradox, some of which 

concentrated on the reflected wave angle and the triple point trajectory angle, but did not examine 

the flow field near the triple point. 

 

Colella & Henderson (1990) used a numerical code to resolve detailed structures of the 

discontinuities in the vicinity of the triple point. Their solutions indicated that the reflected shock 

wave behind the triple point was not a single shock wave, but a smoothly distributed self-similar 
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band of compression waves of finite thickness, which was too small to have been detected 

experimentally. Colella & Henderson termed this type of reflection a von Neumann reflection.  

 

They concluded that the transition from simple Mach reflection to von Neumann Reflection 

occurred when the angle between the reflected wave and slipstream (β) reached π/2, as this was 

where the experimental and theoretical results diverged. 

 

Olim & Dewey (1992) tried to obtain better agreement between the theory and experiment by 

relaxing the conditions that the flow either side of the triple point should not be parallel, and that 

the pressures could be different. They achieved better results, although evidence to support their 

assumptions is quite suspect. 

 

Sandeman (1997) used the extensive experiments undertaken by Olim & Dewey (1992) as well as 

those by Sasoh et al. (1992), which together with his own predictions (Sandeman 2000), 

calculated wave angles at the triple point using three and four-shock geometry. He concluded that 

neither model was suitable but suggested that this could be attributed to a lack of sufficient 

resolution. 

 

In 1992 Brio & Hunter began examining Mach reflection by using the Burgers equation. Čanić & 

Keyfitz (1995) revealed the existence of a complex square-root singularity at the wave 

confluence, by using a new theoretical approach. Their solution implied the existence of a 

complex flow structure near the triple point. 

 

Vasil’ev & Kraiko (1999) were the first to show, from their high-resolution numerical studies 

using the Euler equations that a four-wave configuration, as suggested by Guderley, does exist. 

They show that for a wedge angle of 12.5° and a Mach number of 1.47 the angle between the 

slipstream and the reflected shock exceeds π/2 and a fan of rarefaction waves is centered on the 

triple point. The flow immediately behind the reflected wave is subsonic and convergent, and 

passes through sonic velocity, forming a small supersonic patch as proposed by Guderley (1947). 
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The supersonic patch is outlined by the dotted sonic line in Figure 2.6, where evidence of an 

expansion fan can also be seen emanating from the triple point. 

 

 

 

Figure 2.6 – from Vasil’ev & Kraiko (1999) an expansion fan can be seen centered on the triple 

point, as well as a supersonic patch outlined by the dotted sonic line. 

 

 

When the wedge angle was increased to 20°, the supersonic patch shrunk to such a degree that it 

could no longer be detected even with additional grid refinement. For this case, the angle between 

the slipstream and the reflected wave again exceeded π/2. In another example they demonstrated 

that the size of the region consisting of the fourth wave is several thousandths of the dimension of 

the perturbed flow, supporting the reason why Guderley’s work had not received due recognition 

was simply because of insufficient resolution being achievable. 

 

Vasil’ev & Kraiko’s (1999) work also implies that a number of distinctions of flow types exist 

within the domain of the von Neumann Paradox (where β > π/2), and finds no evidence of the 

structure described by Colella & Henderson (1990). 
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Hunter & Brio (2000) obtained a numerical solution for the unsteady transonic small-disturbance 

equations, which gives an asymptotic description of weak shock reflection, clearly showed a 

supersonic region behind the triple point of a weak shock reflection. They estimated this region to 

be 0.05 to 1% of the height of the Mach stem. This result has confirmed that Guderley’s structure 

was in fact correct, as can be seen from Figure 2.7. 

 

 

 

Figure 2.7 – The Guderley (1947) structure confirmed by Hunter & Brio (2000) 

 

 

The authors speculated that, analogous to the supersonic region on a transonic airfoil being 

terminated by a shock, a small shock may exist behind this supersonic patch, and there may be 

series of such patches. 

 

Zakharian et al.(2000) then went on to show the supersonic region existed for the full Euler 

equations, and supported the existence of an expansion fan at the triple point. By choosing a 

similar parameter space as used in Hunter & Brio (2000), they were able to validate the results 

previously obtained with the transonic small-disturbance equations. It was also argued that the 

supersonic patch was too small to be resolved in previous numerical solutions, such as those 

obtained by Colella & Henderson (1990). 
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For an incident shock Mach number of 1.04, and a wedge angle of 11.46°, Zakharian et al. (2000) 

estimated the size of the patch to be 0.5 % the height of the Mach stem. The reflected shock 

would also be much weaker than the incident wave, with a Mach number of only 1.003 at the 

triple point. In their conclusion, it was stated that boundary conditions should not affect the size 

of the supersonic region, the main effect viscosity would have is the thickness of the shocks. It 

was shown that for the parameter space described, that a Mach stem height of 1 m would produce 

a supersonic patch an order of magnitude larger than the reflected shock thickness. 

 

Both of these numerical results were not, however, resolved enough to determine the detailed 

structure of the flow behind the triple point. 

 

 

   (a)                       (b) 

 

Figure 2.8 – From Hunter & Tesdall (2002):          (a) Plot of u near the triple point 

                                                              (b) Complex flow of expansion fans,  

                                                   shocks and sonic lines. 

 

 

Tesdall & Hunter (2002) then went on to obtain results from a new numerical scheme for a 

stationary Mach reflection of weak shocks, which were similar to those obtained previously, 

except that the solutions were more resolved and showed a structure involving a sequence of 

supersonic patches formed by the reflection of shock and expansion waves between the sonic line 

and Mach shock. Each of the reflected shocks then intersects the Mach shock, forming a sequence 
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of triple points behind the leading triple point. These results have supported the notion that, from 

theoretical considerations, an infinite number of triple points exist in an inviscid weak shock 

Mach reflection. The existence of an expansion fan at each triple point would resolve the “von 

Neumann Paradox”. 

 

Hunter & Tesdall (2002) further resolved their solutions using steady and unsteady transonic 

small disturbance equations. It was also shown that the size of the supersonic patch decreased 

rapidly with an increase in the inverse Mach slope (a), with the most refined solution being at a = 

0.5.  

 

These recent studies have been under way to increase understanding and to hopefully put to rest 

the paradox, especially with the use of the latest computers to obtain very high-resolution 

numerical solutions of the flow structure in the region behind the triple point. There, however, 

have been no further attempts to observe this small supersonic region experimentally, mainly due 

to the size of the shock tube required to observe such a small region. 

 

Hunter & Brio (2000) estimated that, from their asymptotic equations, an incident Mach number 

of 1.04, a wedge angle of 11.5°, and if the shock propagated 1 m along the wedge the Mach stem 

would be 0.1 m high. The supersonic patch would then be 1 mm high, normal to the wedge, and 

0.1 mm wide. Such lengths are not achievable in conventional shock tubes, and would generally 

be one-fifth the size, resulting in a Mach stem length of 20 mm and a patch roughly 0.2 x 0.02 

mm in size. 

 

This puts the University in a unique position, having a disused large section shock tube in the 

Laboratory. The shock tube had a test section height of 1105 mm and 100 mm wide, and was 

almost 4 m long. The existing shock tube could be modified to observe the supersonic region 

experimentally, with sizes possibly up to four times larger than that described in Hunter & Brio 

(2000), and hence validate the theoretical analysis and finally put the “von Neumann Paradox” to 

rest. 
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3. Design Development 

 

3.1. Existing Shock Tube Test Section 

 

In order to keep costs down, it was decided from the outset to utilise an existing large aspect-ratio 

(1:11.05) shock tube. The rig had been designed and built in the mid 1970’s, and was 

subsequently abandoned due to the difficulty in obtaining plane waves due to the non-uniform 

rupture of the diaphragm inherent of a large aspect-ratio driver section. The shock tube was 

complete with a test section which incorporated a circular, rotating wall section with circular 

windows that allowed a large area of the test section height to be examined at the downstream 

end. 

 

The existing driver section would have to be removed, and a new driver section designed to 

eliminate the diaphragm rupture problems. Since the existing shock tube had a constant cross-

section area, a large wedge would have to be introduced into the test section to produce the 

required weak shock reflection, either from the floor or the roof of the test section. 

 

After considering these two necessary modifications it was decided that adding a new divergent 

section, which would be mated at the old driver-channel interface, would produce a corner at the 

entrance to the test section similar to the effect of a wedge angle. The new divergent section 

would not be plagued by poor diaphragm rupture as the incident wave would be expanding from a 

low strength, small-aspect ratio, plane wave at the inlet, to a weaker, large-aspect ratio, 

cylindrical wave at the outlet. The incident wave for the weak shock reflection would therefore be 

a large-radius cylindrical wave and not a planar wave. The use of a uniform, non-planar wave was 

regarded as being sufficient as it is the area around the triple point that is of prime interest, and 

not necessarily the wave reflection pattern. 

 

Upon exit of the divergent section, the expanding incident wave would become nearly planar at 

the exit of the test section as opposed to a more conventional planar wave to be reflected at a 

corner into a contracting section. In this latter example it would be difficult to obtain the small 

region we are looking for since its size is dependent on the Mach stem length, and therefore the 

test section height must be as large as possible. For a test section the size of that obtainable here, 
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a conventional planar shock tube would require a section nearly 2 m high at the introduction of 

the wedge angle. 

 

The new shock tube would have to be relocated to accommodate the new rig, which would be 

more than double its original length, and the existing rig had been placed across two rooms with 

no room for expansion on either side. The original rig had been designed to serve as a large-scale 

shock tube to produce large planar waves for testing of Mach reflections from a wedge, and was 

designed to withstand an overpressure up to 1 bar. 

 

The original large aspect-ratio shock tube had the following dimensions: 

 

 

Length (excluding driver):      3993 mm 

Internal Width:        100 mm 

Internal Height:        1105 mm 

Wall Thickness:        20 mm 

Roof/Floor Thickness:       5 mm 

External Width (including ribs)      290 mm 

External Height (including supports):     1500 mm   

 

        

 

 

Figure 3.1 – Schematic diagram of original large-scale shock with dimensions in mm. 
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3.2. Identified Design Tasks 

 

The following components would therefore have to be designed and built, in order to operate the 

new, large-scale shock tube: 

 

1. A new sloping divergent section, in order to provide a corner for reflection, and to 

improve the diaphragm rupture characteristics of the shock tube. 

 

2. A new driver section would have to be built for the smaller aspect-ratio inlet of the 

divergent section. The driver should be easily moved for re-fitting of the diaphragm. 

 

3. A mechanism to rupture the diaphragm. 

 

4. Various supports would have to be designed to support the large existing and new 

structures. 
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3.3. CFD Investigation 

 

3.3.1 Importance of the CFD Investigation 

 

Since the geometry of the problem is unknown, it was decided that an investigation into the 

problem using a low to mid-resolution CFD package was needed. There was no investigation into 

the region around the triple point using this approach, since such results would be far too low in 

resolution compared to the results obtained by Hunter & Tesdall (2002) and previous high-

resolution studies, but rather a study on what geometries of the new divergent section would be 

optimal in maximising the Mach stem height for low incident Mach numbers. 

 

Luke Feltun’s C++, Euler – based 2D code was used to investigate different shock tube 

geometries, by altering the corner angle (the wedge angle θw) of the new divergent section, and 

the Mach number at the driver exit/divergent inlet. 

 

 

3.3.2. CFD Results 

 

A range of wedge angles were investigated, from 10° to 20°, and the entry Mach number was also 

varied from Minitial = 1.1 - 1.5. The resolution was determined by the cfl number, which is set by 

the user. The cfl is the number of initial cells per characteristic length. 

 

 

 

Figure 3.3.1 – CFD contour plot of ρ showing the expanding cylindrical wave 
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The results of these simulations were processed using Amtec Tecplot 9.0 ©, to display plots of 

the fluid properties at different run intervals. From these plots, the reflected wave and triple point 

were not clearly distinguished, and an estimate of the position of the triple point was taken for a 

variety of runs. The fluid properties of the flow ahead and behind the incident wave and Mach 

stem, were recorded in order to determine the Mach number of the incident shock wave and Mach 

stem. 

 

 

 

Figure 3.3.2 – CFD contour plot of ρ of the wave structure in the test section 

 

 

The reflection structure and triple point is not very clear in the CFD results, but the configuration 

of the waves can be estimated from the geometry of the tube and of the incident wave and Mach 

stem geometry.  
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Figure 3.3.3 – Schematic representation of the reflection structure once it reaches the test section 

 

 

Figure 3.3.3 shows the wave reflection configuration as it reaches the test section window, with 

the Mach stem (A), incident wave (B), triple point (C) and reflected wave (D). The incident wave 

and Mach stem at the test section have become almost planar, and the reflected wave has 

rebounded off the floor of the tube. 
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Plots of the estimated triple point trajectory, Mach number of the incident wave and Mach stem 

versus position were plotted for various entry Mach numbers and wedge angles. An estimate of 

the inverse Mach slope (a) was also plotted for various wedge angles and initial entry Mach 

numbers.  
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Figure 3.3.4 – Triple Point Trajectory of CFD runs with varying initial Mach number and wedge 

angles 

 

 

As expected, the triple point trajectory follows a parabolic path shown in Figure 3.3.4, and not a 

linear path as for a planar incident wave. The data points (not shown) are curve-fitted with 

second-order polynomials, passing through the origin, for various entry Mach numbers and 

wedge angles. It is important to note that the origin of this figure is the reflection corner on the 

roof of the shock tube, hence the trajectory is inverted relative to Figure 3.3.3. 
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The decay of the incident wave was also plotted from the CFD results and estimated by using a 

1/R
2 relationship, since the expanding cylindrical wave can be regarded as a 2D blast wave. In the 

actual shock tube there would be losses due to the inefficiencies of the rupture of the diaphragm 

and other effects. 
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Figure 3.3.5 – Incident wave Mach number decay versus the displacement from the reflection 

corner 

 

 

As can be seen in Figures 3.3.5 & 3.3.6, the incident wave Mach number decays rapidly from the 

inlet as it expands to the outlet (Xw = 0) of the divergent section. The expanding wave decayed 

roughly 7-20%, depending on the initial Mach number entering the divergent inlet to the corner of 

the reflection. The decay is then much less in the test section, decreasing by approximately 0.01-

0.04 over the range of Mach numbers or 0.1-4% from the corner of the reflection. 
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Incident Shock Mach Number Decay with Displacement
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Figure 3.3.6 – Incident wave decay with displacement. The reflection corner is at Xw = 0. 

 

 

From Hunter & Tesdall (2002), for the problems considered, the supersonic region was largest for 

values of a = 0.5 to 0.67. It is noted that the inverse Mach slope would not necessarily be the 

same as that achieved for a similar, planar incident wave Mach reflection, but was used in order 

to predict the best chance of maximising the supersonic region behind the triple point by 

calculating the value of a at various intervals during the reflection. 
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Inverse Mach Slope (a) vs. Xw
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Figure 3.3.7 – Plot of the inverse Mach slope (a) with displacement from the reflection corner (Xw 

= 0) for various initial Mach numbers and wedge angles 

 

 

From Figure 3.3.7 it can be seen that an initial Mach number of 1.25 and a wedge angle of 15° 

could produce promising results, similar to those achieved numerically by Hunter & Tesdall 

(2002). 

 

Further CFD Simulations were performed to compare with the experimental results obtained. The 

new CFD simulations were setup with the final geometry of the completed shock tube, and were 

once again over a range of Mach numbers and resolutions. The results of these simulations were 

once again processed to determine the various graphs for the triple point trajectory, inverse Mach 

slope (a), etc. These results were used to predict the position of the triple point when taking 

photos, and to validate the experimental results. 
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It can be seen from Figure 3.3.8 that Mach stem lengths of between 500 and 800 mm could be 

achievable using initial driver Mach numbers of 1.1-1.5, corresponding to incident Mach numbers 

in the test section of around 1.02-1.15, for the final shock tube geometry. The data points are 

curve fitted with second order polynomials in the figure below. 
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Figure 3.3.8 – Triple Point Trajectories from final CFD results for the shock tube 

 

 

Further graphical results are included along with some of the readings tabulated in the CFD 

results section in the Appendix A – CFD Results.  
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3.4. New Divergent Section 

 

As described before, a new tapering section would have to be designed and built, which would 

have a roughly square inlet that would expand to the test section height of the old section. The 

best inlet aspect ratio for efficient diaphragm rupture is 1:1, so the height of the inlet was set 

equal to the width of the downstream test section (100 mm). 

 

Since the outlet height, inlet height and width were fixed, the only variable to be determined was 

the angle of the sloping wall (which in turn fixed the length of the section). A steep angle would 

cause a strong reflection, and hence the triple point (the area under investigation) would not 

appear in the test windows, approximately 3.6 m downstream of the reflection. A small angle 

would mean the Mach stem height would be low, and it has been shown that the size of the area 

under investigation is dependant on the height of the Mach stem. A shallow angle would also 

make the placement and manufacture of the section more problematic due to its length. 

 

From the initial CFD results, it was decided that the angle of the sloping wall should be fixed to 

15 degrees as this showed promising results, and the angle could be set to a smaller angle by 

inserting a ramp/plug if necessary. 

 

 

 

Figure 3.4.1 – Isometric View of Divergent Section 
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The design was based on that of the existing test section, and has similar ribs along the outside 

walls of the entire section, in order to increase the stiffness of the large walls. The section is 

therefore stronger than required, which leaves room open for other higher Mach number shock 

tests. 

 

The overall dimensions of the divergent section are given in the diagram below: 

 

 

 

Figure 3.4.2 – Dimensions of Divergent Section (mm) 

 

 

Detailed engineering drawings of the section are filed and some of these are reproduced in the 

Appendix B – Divergent Section Engineering Drawings. 
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3.5. Driver Section 

 

The driver section was designed using standard mild steel tubing as the pressure chamber, 

strengthened at the ends with steel flanges. The end cover can be removed to increase the length 

of the driver section if required. The tube is standard Schedule 80 mild steel, round tubing with a 

10.97 mm wall thickness, 1500 mm length and an external diameter of 168 mm. Two support 

rings were welded around the tube to mount the height-adjustable support wheels (described 

under Chapter 3.7 – Supports) which also function as ribs to strengthen the tube. 

 

The driver section length was chosen after plotting the wave reflection from the diaphragm 

rupture, in order to delay the effect of the reflected wave on the incident wave.  
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Figure 3.5.1 – Plot of the displacement versus time for the rarefaction and compression waves 

caused by the driver section, as well as the CFD plot of the shock wave, at an initial Mach 

number of 1.2 
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It is noted that the plots were produced for a constant cross-section tube, and a tapering section 

such as used on the actual tube would not drastically change the effects of rarefaction waves. This 

can be seen from the data points taken from the CFD results, which shows only a slight deviation 

from the linear curve. From these plots, it was decided that a driver section length of 1.5 m would 

be adequate. 

 

The driver section was designed to take pressure differentials up to 6 bar, although in the weak 

shock tests to be conducted a maximum pressure differential of only 4 was required. The 

maximum pressure differential supplied by the low-pressure compressor available in the 

laboratory is 6 bar. 

 

In order to have a ‘clean’ rupture of the diaphragm, it was decided to make the internal diameter 

of the driver section larger than the diagonal of the square-cross section of the downstream 

plunger section. 

 

The internal diameter of the driver should therefore be larger than: 
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Two sections of round mild steel tubing with outer diameter of 168 mm were available, with wall 

thicknesses of the Schedule 40, 6 mm and Schedule 80, 10.97 mm. The Schedule 80 tubing was 

selected, as this would give an internal diameter of 146.06 mm. 

 

Detailed design equations and explanations, as well as the engineering drawings of the driver 

section can be found in the Appendix C – Driver Section Design and Engineering Drawings. 
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Figure 3.5.2 – Completed driver section of the shock tube 
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3.6. Plunger Section 

 

A separate plunger section was designed to make the entire rig more modular, and therefore 

easily expandable. It was also considered to be easier to manufacture a separate section to mount 

the plunger than to machine extra holes in the large divergent section side wall. The plunger 

section is designed as in the same way as the original test section for commonality. The plunger 

consists of a simple, stainless steel needle, which is fired by a spring. The spring is first 

compressed and is kept in position by a simple catch. The plunger is triggered by the manual 

release of the catch, which then pricks the swollen diaphragm, causing it to rupture. Engineering 

drawing of the complete plunger section and mechanism can be found in the Appendix D – 

Plunger Section Engineering Drawings. 

 

 

 

Figure 3.6 – Plunger Section showing separated driver section to the left, the armed plunger in the 

centre, and divergent section to the right. 
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3.7. Supports 

 

The old shock tube supports were used to support the existing section, to prevent swaying during 

testing. The new divergent section was bolted to the original driver interface of the old section 

using 24 M14 bolts, which firmly secured the divergent section. A similar double-channel support 

was designed and constructed to act as a footprint for the new divergent section and as well as 

rails for the new driver section. Two new L-shaped supports were built to support the divergent 

section at its tapered end, by adjusting two M21 bolts which are in contact with the support rails.  

 

Since the support channels had warped significantly from the welding process, two new 

adjustable supports were also built for the driver section. The driver supports consist of two 

wheels each, supported on a bracket which is differentially height-adjustable to compensate for 

the warping. Engineering drawings for the new supports are included in the Appendix E – 

Supports and Ports Engineering Drawings. 

 

 

 

Figure 3.7 – Solid Edge © isometric view showing support ring of driver with wheel support 
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3.8. Completion of the Shock Tube Rig 

 

The entire rig was complete by the end of July, 2004. The difficulty of moving the large sections 

became apparent, and if alterations or modifications on the existing sections are required in the 

future, some form of system to move the heavy (almost 1400 kg) divergent section will be 

needed. 

 

The pressure transducer system was installed in August and preliminary tests were conducted to 

test different diaphragms and the suitability of the plunger and driver sections. A shadowgraph 

optical system was installed during September, and initial testing carried on through to October. 

This optical system did not reveal any promising results, and was thought to be not sensitive 

enough to reveal the region behind the triple point. During inspection of the driver section 

between test firings, cracks were found on the inner corners of the initial square tube section, thus 

halting any testing before a replacement round driver section was designed and built. 

 

A far more sensitive schlieren optical system was installed in November during the halt in testing. 

The new driver section was completed and installed in early January 2005, and preliminary 

testing resumed immediately. Testing continued until May, during which far more consistent and 

promising results were obtained from the more sensitive optical system and improved driver. 

These results are presented later in Chapter 5 – Results. 
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4. Experimental Equipment and Procedures 

 

4.1 The Shock Tube 

 

The shock tube was designed for large-scale reflections using a cylindrical incident wave, and 

was built purposely for this project. The design and modification of the different sections are 

outlined in the previous chapter, Design Development. The complete shock tube consists of a 

driver section, plunger section, expanding divergent section, a constant area expansion section, 

and a constant area test section. 

 

Below is a schematic diagram showing the internal dimensions (in mm) of the complete shock 

tube, as well as the position of the test section window centre. 

 

 

 

Figure 4.1.1 – Schematic of internal dimensions of the complete shock tube  

 

 

In the above diagram:  A is the driver section/compression chamber 

    B is the plunger section 

    C is the divergent section 

    D is the constant area expansion chamber 

    E  is the constant area test section 

 

The diaphragm is located between A and B. 
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The complete shock tube is 9.8 m long, stands 1.5 m high, and is approximately 1.5 m wide 

including supports.  

 

The control console is located on the expansion section (D), close to the test section for 

convenience. The driver is supplied with compressed air from a low-pressure compressor, with a 

maximum 6 bar pressure differential, used in the Laboratory, via a control board: 

 

 

 

Figure 4.1.2 – Control console 

 

 

The Control board consists of: 

 

• An inlet hose from the low-pressure compressor 

• A global-type ‘317’ variable inlet valve to control the flow of compressed air into the 

system 

• An air filter, to filter any contaminants to the system 

• A pressure gauge, to read the gauge pressure in the driver system 

• A ball control valve, to open or close air to the pressure gauge 

• A ball release valve, to release pressure from the system after tests or in an emergency 

• An outlet hose which runs straight to the driver section. 
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The expansion chamber is open to atmospheric air, and is closed at the end of the test section with 

a hinged baffle. The test section consists of a rotating wall which houses two 312 mm diameter 

windows. Mach numbers ranging from 1.02 to 1.2 in the test section were achieved. 

 

A more detailed explanation of each section can be found in the previous Chapter 3 – Design 

Development. 

 

 

 

Figure 4.1.3 – Photograph of complete shock tube with the author standing next to the rig to 

demonstrate the scale of the equipment. The driver can be seen in the foreground. 
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Figure 4.1.4 – Another view of the completed shock tube. The test section windows can be seen 

to the far right. 

 

 

 

 

Figure 4.1.5 – Top view of the complete rig. The driver can be seen at the top left corner and the 

test section windows at the bottom right corner of the picture 



 37 

4.2. Data Acquisition and Instrumentation 

 

4.2.1. Pressure Measurement System 

 

Pressure measurements inside the shock tube were measured using fast response PCB ICP sensor 

piezo-electric pressure transducers (Model 113A21). The signal from the pressure transducers 

were amplified by a PCB ICP sensor signal conditioner (Model 482A22) and the output signals 

were then sent to a Yokogawa DL708E digital scope where the signal voltage was plotted against 

time, and recorded for data processing.  

 

 

 

Figure 4.2.1 – Equipment setup, from left to right: Time Delay Unit, Signal Conditioner and 

Digital Scope. Pressure transducers for Channels 1 and 2 can be seen in the background 
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Four pressure transducers were placed in port positions just ahead of window test section as 

shown in the diagrams below: 

 

 

 

Figure 4.2.2 – Configuration of pressure transducer channels on shock tube 

 

 

 

 

Figure 4.2.3 – Position of transducer ports and test window with respect to the reflection corner 
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New removable ports were designed to accommodate the pressure transducers. Channels 1 and 2 

were used to measure the pressure of either the incident wave or Mach stem, depending on 

whether the triple point passed above or below the transducers. Similarly, channels 3 and 4 were 

used to measure the pressure of the Mach stem as it passed by the transducers. 

 

 

4.2.2 Output Signal 

 

The oscilloscope was also used to send a trigger output to a time delay unit. The time delay was 

set to a specific time (around 2000 µs), after which time the unit would send an output signal to 

the optical system once a shock had been detected at channel 1. 
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4.3. Optical System 

 

A shadowgraph system was initially used to obtain photographs of the shock wave reflection as it 

passed the test section window. Later a schlieren system was used, which differs from a shadow 

graph by passing light past a carefully positioned knife-edge. 

 

A schlieren system displays changes in the refractive index distribution of transparent media such 

as the flow of air. The refractive index distribution can be related to changes in the density, 

temperature, or pressure distributions in the flow. Since the density and pressure change abruptly 

across the interface of a shock wave, a shock wave is distinctly identified in such a system.  

 

A 1 µs xenon flash lamp was used as a light source and passed through a thin vertical slit, and 

then collimated (light rays made parallel) by parabolic mirrors. The collimated light was passed 

through the test section windows (and hence through the flow under investigation) and brought to 

a focus. A vertical knife-edge was placed at the focus point, and carefully positioned so some of 

the light is blocked. The light which passes the knife-edge is once again collimated with the use 

of a lens and is photographed directly with a camera. Vertical slits and knife-edges were used, 

since this configuration produces higher sensitivity, and therefore more defined images for 

vertical shock waves, which are predominant in the reflection under study. The flash lamp was 

triggered by the output signal of the time delay box. 

 

If the flow is uniform, the resulting image will be uniformly bright. If however, there are changes 

in density, temperature, or pressure; the light which passed through these refractive index 

variations would be either be blocked by the knife-edge, rendering dark areas on the image, or 

cause more light to pass the knife-edge, rendering lighter areas on the image. 

 

A Nikon MF-12 35mm Analogue Camera was used to obtain photographs of the shock reflection 

as it passed the test section window. 
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Figure 4.3.1 – Schematic of a basic Z-configuration schlieren system 

 

 

 

 

Figure 4.3.2 - Optical system showing the large parabolic mirrors (protected with grey PVC 

covers) in the fore- and back-ground, and the camera setup to the right of the window. 
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4.4. Operation of the Shock Tube 

 

The atmospheric temperature was measured using a standard mercury thermometer, with a 

resolution of ± 0.5°C. The atmospheric air pressure was recorded using a digital barometer with 

an accuracy of ±0.01 kPa. 

 

4.4.1. Testing Procedure 

 

The following procedure was used for each test of the shock tube: 

 

1. All the instrumentation was switched on and given sufficient time to reach operating 

conditions (for calibration of the oscilloscope etc.) 

2. The driver section was moved back and the test section exit buffer was opened. The test 

section was then blown with high-pressure air to remove any diaphragm fragments from 

previous test firings. This was accomplished by detaching the hose connected to the 

control board and feeding it down the test section from the divergent section inlet. The 

hose is then re-connected and the exit buffer is closed. 

3. The lights were switched off and the knife-edge of the schlieren optical system was 

adjusted to obtain the required sensitivity and light conditions for the photographs. 

4. The lights were switched back on and the inlet valve to the system was closed to prevent 

air flow to the driver section. 

5. The plunger was compressed back and the catch was positioned in the cocked position. A 

section of cellophane material was taped to the open end of the driver section to act as a 

diaphragm. The driver section was then moved forward and bolted to the inlet of the 

plunger section. 

6. The camera was armed, the camera-flash trigger delay was selected, and the oscilloscope 

was set to record the pressure traces at the passing of a shock wave past the first 

transducer. 

7. The inlet valve was opened, and the driver section was pressurized to the required 

internal pressure. The lights were turned off, a whistle was blown to warn of a test firing 

(giving passers-by adequate time to block their ears), the camera shutter was opened, and 

the plunger catch was released, triggering the shock test. 

8. After a successful test, implied by the observation of a flash of the camera-flash 

equipment, the camera shutter was closed and the lights were switched back on.
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5. Results 

 

5.1 Data Processing 

 

Before each test was conducted, a test run table was filled in, which recorded the date, ambient 

temperature (Tatm) and pressure (Patm or P1), the driver internal pressure (P4), the selected camera-

flash trigger delay, test-, film- and photograph-number. All these are required for data processing 

at a later stage, and to correlate data with the photographs obtained. 

 

Pressure traces were obtained from the pressure transducers and displayed on a Yokogawa digital 

scope. These traces were saved to disc according to a specific filename sequence, ‘Ammddxxx’, 

where: 

 

mm is the month of the test 

dd is the day of the test, and 

xxx is the number of the test conducted on that day 

 

 

These output files were then converted into MS Excel spreadsheet data tables, and processed in 

order to determine the Mach number of the Mach stem shock waves. 

 

The triple point was required to pass through the test section window and therefore the test 

section wall was rotated so that the window was closest to the floor of the test section, in order to 

achieve maximum Mach stem length. This meant that on most successful tests, the triple point 

passed just below the first and second channels. Since all the tests were conducted with very 

weak, almost planar shocks (M = 1.023 - 1.129 in the test section), the Mach stem Mach number 

recorded at channels 1 and 2 would be approximately equal to the Mach number of the incident 

wave. 
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The actual values of the Mach numbers of the waves would be slightly less at the point where the 

reflection reaches the test window, as this is 950 mm and 900 mm downstream of channels 1 & 2 

respectively. From the CFD results, it can be seen that this decay is very slight, and would be in 

the order of ∆M = -0.01. 

 

Summarized versions containing the resultant shock Mach numbers of the Mach stem for values 

of approximate initial driver Mach number were plotted. 

 

Photographs were taken for every test, where possible. Cotton threads were fixed across the test 

window at 260 mm and 340 mm from the shock tube floor to accurately determine the height of 

the triple point as it passed the test windows. 

 

Triple point heights were then plotted against the Mach numbers at channels 1 & 2, and channels 

3 & 4. 
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5.2. Sample Test Run Calculation 

 

Date:  21 April 2005 

Test:  005 (6th test that day) 

Film:  #8 

Photo:  #9 

Filename: A0421005.asd   (raw data) 

A0421005.xls  (processed data) 

 

Patm (P1) = 82.98 kPa 

Tatm (T1) = 19.5°C = 292.7 K 

Pinitial  (P4) = ~140 kPa 

Delay time  = 2000 µs 

 

The differential pressure ratio the driver section is pressurized to is: 

 

6872.2

P

PP
P

1

14
41

=

+
=

 

 

 

The Mach number across a shock is given by: 

 

7

61
M s
s

λ+
=  

 

where:  Ms is the Mach number across the shock 

λs is the pressure ratio across the shock 
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From this we can approximate the Mach number of the plane shock wave entering the divergent 

section using the theoretical equation: 

 

( )
( )

7

s
ss41 617

1
11P

−























λ+
−λ−λ=  

 

so for P41 = 2.6872, 

 

λs = 1.6097 

 

∴Ms = 1.234 (Minitial) 

 

In reality the initial Mach number would be approximately 10% less due to inefficiencies. 

 

 

Ambient speed of sound (for Mach 1): 

 

( )( )( )
s/m9.342

7.2922874.1a s
=

=
 

 

The output voltages from the four channels are tabulated and converted to pressures using the 

following formula: 

 

k

1000V
P n
n

×
=  

 

where:  Pn  is the dynamic (recorded) pressure at channel n [kPa] 

Vn is the voltage recorded at channel n [mV] 

k is the calibration constant unique to each pressure transducer [mV/kPa] 
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The pressure ratio across a shock at each channel was then calculated using the formula: 

 

1

n1
n P

PP +
=λ  

 

where:  λn is the pressure ratio at channel n 

 

 

The Mach number at each channel was then determined: 

 

7

61
M n
n

λ+
=  

 

where:  Mn is the Mach number at channel n 

 

 

These values were all tabulated, and plots of the pressure traces, and Mach number of the four 

channels were plotted in the spreadsheets. An example of the Mach number traces is given 

overleaf in Figure 5.2. 
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Figure 5.2 – Shock Mach number traces for four channels versus time, showing time elapsed 

between channels 1 & 2 in red. 

 

 

The Mach number of the actual shock passing the channels was determined by obtaining the 

elapsed time between observed step rises in the voltages of two grouped channels (shown in red), 

and working out the corresponding speed of the shock between the two channels. Taking the ratio 

of this speed with the ratio of the speed of sound in the ambient conditions, the Mach number of 

the shock was determined.  

 

Continuing with the current example, 

 

t1 = 202.6 µs 

t2 = 338.8 µs 

∆x12 = 50 mm 
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A similar procedure is used to determine M34. 

 

Channels 1 and 2 were used to determine the Mach number of the Mach stem Shock wave just 

above the triple point, while channel 3 and 4’s pressure traces were used in a similar way to 

determine the Mach number of the Mach stem close to the roof of the test section. The difference 

between these two values was generally between 1 and 2%. 
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5.3 Data Results Tables and Figures 

 

The complete set of quantitative data is tabulated and plotted below. Although all these 

experiments had corresponding schlieren photographs of the test section, not all of the photos 

captured the triple point. 

 

Table 5.3 – Table of results 

 

P4 Minitial DataFile M12 M34 

200 1.297 A0425002 1.113 1.129 

200 1.297 A0421004 1.113 1.129 

200 1.297 A0329001 1.109 1.128 

200 1.297 A0329002 1.094 1.114 

200 1.296 A0323002 1.105 1.124 

200 1.296 A0323001 1.107 1.124 

180 1.277 A0426005 1.090 1.113 

180 1.277 A0421002 1.094 1.116 

180 1.276 A0428000 1.092 1.114 

170 1.268 A0425001 1.089 1.108 

170 1.267 A0426004 1.089 1.110 

170 1.267 A0421001 1.087 1.109 

170 1.266 A0428001 1.084 1.110 

160 1.257 A0425004 1.084 1.108 

160 1.257 A0425005 1.082 1.105 

160 1.256 A0426003 1.084 1.107 

150 1.246 A0309003 1.073 1.100 

150 1.245 A0309000 1.074 1.099 

150 1.245 A0309001 1.074 1.099 

150 1.245 A0309002 1.073 1.093 

150 1.245 A0426002 1.078 1.103 

150 1.245 A0413001 1.075 1.101 

150 1.244 A0503000 1.075 1.100 

150 1.244 A0428002 1.079 1.102 

140 1.235 A0425000 1.073 1.098 

140 1.235 A0412006 1.069 1.097 

140 1.234 A0309005 1.073 1.097 

140 1.234 A0309004 1.069 1.097 

140 1.234 A0421005 1.071 1.100 

140 1.234 A0426001 1.074 1.099 

140 1.234 A0421000 1.071 1.099 

140 1.233 A0414002 1.075 1.099 

130 1.223 A0425003 1.065 1.097 

130 1.222 A0426000 1.066 1.096 

130 1.222 A0413004 1.065 1.094 
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130 1.222 A0413005 1.063 1.094 

130 1.222 A0310002 1.066 1.095 

130 1.222 A0310000 1.064 1.096 

130 1.222 A0310001 1.064 1.095 

130 1.221 A0503001 1.065 1.095 

130 1.221 A0503002 1.064 1.094 

130 1.221 A0414001 1.065 1.096 

120 1.210 A0412004 1.060 1.090 

120 1.210 A0310003 1.063 1.094 

120 1.210 A0310004 1.063 1.094 

120 1.210 A0310005 1.062 1.094 

120 1.210 A0315000 1.063 1.095 

120 1.209 A0413000 1.062 1.091 

120 1.209 A0413002 1.062 1.091 

100 1.184 A0412005 1.057 1.084 

100 1.184 A0315002 1.057 1.085 

100 1.184 A0315003 1.057 1.084 

100 1.184 A0413003 1.054 1.082 

100 1.183 A0315001 1.057 1.084 

80 1.155 A0412002 1.047 1.076 

80 1.155 A0315004 1.049 1.077 

80 1.155 A0404000 1.050 1.076 

80 1.155 A0404002 1.047 1.078 

80 1.155 A0404001 1.044 1.078 

80 1.152 A0414000 1.048 1.078 

70 1.140 A0411000 1.045 1.070 

60 1.124 A0412001 1.038 1.065 

60 1.123 A0411001 1.042 1.068 

60 1.123 A0411002 1.042 1.067 

50 1.106 A0411003 1.033 1.057 

40 1.088 A0412000 1.032 1.054 

40 1.088 A0411005 1.029 1.053 

40 1.088 A0411004 1.027 1.048 

30 1.069 A0411006 1.027 1.047 

20 1.047 A0411007 1.023 1.039 
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M12 vs. Minitial
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Figure 5.3.1 – Mach number recorded between Channels 1 and 2 versus the initial Mach number 
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Figure 5.3.2 - Mach number recorded between Channels 3 and 4 versus Mach number recorded 

between Channels 1 and 2 



 53 

M34 vs. Minital
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Figure 5.3.3 – Mach number recorded between Channels 3 and 4 versus the initial Mach number 

 

 

M12 vs. P4

1.000

1.020

1.040

1.060

1.080

1.100

1.120

0 50 100 150 200 250

P4

M
1
2

 

 

Figure 5.3.4 – Mach number recorded between Channels 1 and 2 versus driver initial pressure 
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M34 vs. P4
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Figure 5.3.5 – Mach number recorded between Channels 3 and 4 versus driver initial pressure 
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5.4. Results from the Schlieren Photographs 

 

The schlieren photographs were used to visualize the triple point region. This was the most 

important part of the study, since it was the main objective of the project. 

 

From the photographs, the height of the triple point, and hence the Mach stem, was determined. It 

is important to note the weak reflection is ‘upside down’ compared to the schematic diagrams 

conventionally produced in textbooks. In this shock tube, the roof acts as the wedge surface. 

 

In the table below, only the data sets where a triple point was pictured are presented, along with 

the photo identification and an estimation of the triple point position relative to the reflection 

corner. 

 

Table 5.4 – Summarised results of test runs with triple point visualisation 

 

Photo P4 [kPa] Minitial M12 M34 Datafile 
MS Length 
(Y) [mm] 

X Position 
[mm] 

C21 180 1.277 1.090 1.113 A0426005 836 3642 

C6 180 1.277 1.094 1.116 A0421002 850 3646 

C22 180 1.276 1.092 1.114 A0428000 842 3644 

C7 170 - - - A0421003 821 3643 

C11 170 1.268 1.089 1.108 A0425001 820 3641 

C20 170 1.267 1.089 1.110 A0426004 825 3642 

C5 170 1.267 1.087 1.109 A0421001 819 3642 

C23 170 1.266 1.084 1.110 A0428001 815 3640 

C14 160 1.257 1.084 1.108 A0425004 801 3640 

C15 160 1.257 1.082 1.105 A0425005 797 3639 

C19 160 1.256 1.084 1.107 A0426003 798 3638 

A9 150 1.246 1.073 1.100 A0309003 769   

A6 150 1.245 1.074 1.099 A0309000 773   

A7 150 1.245 1.074 1.099 A0309001 772   

A8 150 1.245 1.073 1.093 A0309002 766   

C18 150 1.245 1.078 1.103 A0426002 774 3636 

B29 150 1.245 1.075 1.101 A0413001 765 3637 

C25 150 1.244 1.075 1.100 A0503000 772 3635 

C24 150 1.244 1.079 1.102 A0428002 774 3638 

C10 140 1.235 1.073 1.098 A0425000 759 3637 

B27 140 1.235 1.069 1.097 A0412006 755 3631 

A11 140 1.234 1.073 1.097 A0309005 766   

A10 140 1.234 1.069 1.097 A0309004 762   

C9 140 1.234 1.071 1.100 A0421005 754 3635 

C17 140 1.234 1.074 1.099 A0426001 754 3633 
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C4 140 1.234 1.071 1.099 A0421000 755 3635 

B36 140 1.233 1.075 1.099 A0414002 757 3637 

C13 130 1.223 1.065 1.097 A0425003 730 3631 

C16 130 1.222 1.066 1.096 A0426000 724 3628 

B32 130 1.222 1.065 1.094 A0413004 731 3633 

B33 130 1.222 1.063 1.094 A0413005 728 3633 

A14 130 1.222 1.066 1.095 A0310002 746   

A12 130 1.222 1.064 1.096 A0310000 744   

A13 130 1.222 1.064 1.095 A0310001 732   

C26 130 1.221 1.065 1.095 A0503001 727 3629 

C27 130 1.221 1.064 1.094 A0503002 715 3626 

B35 130 1.221 1.065 1.096 A0414001 723 3632 

B25 120 1.210 1.060 1.090 A0412004 711 3668 

A15 120 1.210 1.063 1.094 A0310003 727   

A16 120 1.210 1.063 1.094 A0310004 727   

A17 120 1.210 1.062 1.094 A0310005 715   

A20 120 1.210 1.063 1.095 A0315000 722   

B28 120 1.209 1.062 1.091 A0413000 695 3626 

B30 120 1.209 1.062 1.091 A0413002 694 3628 
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Figure 5.4.1 – Triple point position, relative to the reflection corner for various initial driver 

pressures 
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Mach Stem Length vs. M12
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Figure 5.4.2 – Mach Stem Length versus Mach number recorded between Channels 1 and 2 
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Figure 5.4.3 – Mach Stem Length versus initial driver Mach number 
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The configuration of the reflection is described by the schematic diagram given below. 

 

 

 

Figure 5.4.4 – Schematic representation of the reflection in the test window 

 

 

The following photographs are examples of the photographs taken for a few of the test runs. All 

the enhanced images from the test runs are given in the Appendix F – Schlieren Photographs. 
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Figure 5.4.5 – Photograph number B29, M12 = 1.075, M34 = 1.101, Mach stem length = 765 mm 

 

 

 

 

Figure 5.4.6 – Photograph number C17, M12 = 1.074, M34 = 1.099, Mach stem length = 754 mm 
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Figure 5.4.7 – Photograph number C5, M12 = 1.087, M34 = 1.109, Mach stem length = 819 mm 

 

 

The photographs, together with the triple point trajectory plots from the CFD data, were used to 

obtain the angles of the waves relative to the flow fields around the triple point. Three sets of data 

were investigated over the parameter space tested: one at a higher Mach number of the range (M12 

= 1.094), one at a lower Mach number of the range (M12 = 1.060), and one midway at M12 = 

1.073.  

 

 

5.4.1 Sample Calculation of the Wave Interaction Angles for Photograph C6 

 

C6: Minitial = 1.277  M12 = 1.094   Triple Point Position = (3.646; 0.850) m 

 

From CFD results, the triple point trajectory for Minitial = 1.25 can be approximated by: 

 

x1199.0x0312.0y 2 +=  

 

So for x = 3.646 m, y = 0.852 m. A difference in the height of 0.2 % 
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The slope of the trajectory at this point is given by: 

 

( ) 3474.01199.0x0312.02
dx

dy

646.3x

=+=
=

 

 

The triple point trajectory angle at this point is therefore: 

 

( ) °==χ 2.193474.0arctan  

 

From the schematic diagram of the schlieren photograph C6, the incident angles of the flow 

relative to the waves can be calculated: 

 

 

 

Figure 5.4.8 – Schematic diagram of wave interaction angles near the triple point. 
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From the photographs is it can be seen that the slopes of the incident wave and Mach stem are 

almost continuous near the triple point, i.e. φ1 ≈ φ3. 

 

φ3 = 68.8° 

 

The angle of the flow behind the Mach stem can be calculated from the equation for the 

conservation of tangential momentum: 

 

( )33330 tantan θ−φρ=φρ  

 

where, 

 

2
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ρ
 

 

which gives, 

 

θ3 = 3° 

 

 

The angle between the flow field and the reflected wave can therefore be approximated as, 

 

β = 76° + χ + θ3 = 98.2° 

 

which is beyond the transition point of β ≥ π/2, where according to Colella & Henderson (1990), 

the three-shock theory breaks down. 
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6. Discussion 

 

6.1 Discussion of Quantitative Data 

 

The Figures 5.3.1-5.3.5 were used to determine the characteristics of the shock tube, i.e. to 

determine the Mach numbers of the Mach stem (M12 & M34) and an approximation of the incident 

wave Mach number (≈M12) for given initial driver pressures (P4) and Mach numbers (Minitial). It 

can be argued that the incident wave Mach number is approximately equal to the Mach number 

recorded at channels 1 & 2, as the triple point passes very close to this point, and the slopes of the 

Mach stem and the incident wave are continuous near the triple point, suggesting similar values 

for Mach number. 

 

Figure 5.3.1 shows that the Mach number achievable in the test section is dependant on the initial 

Mach number by a squared relationship, and by increasing the initial Mach number, the Mach 

stem and incident wave Mach number would increase, as expected. An initial Mach number of 

Minitial = 1.2 would produce an incident wave Mach number of approximately M12 = 1.060, and 

Minitial = 1.3 would produce M12 ≈ 1.15. 

 

A similar representation is given by Figures 5.3.4 and 5.3.5, which plot the Mach number 

achievable in the test section with the initial driver pressure (P4). Over such a small range, it can 

be seen that increasing the driver pressure increases the Mach number almost linearly. An initial 

pressure of P4 = 200 kPa, which is the natural bursting pressure for the diaphragm used, 

corresponded to an incident wave Mach number of 1.09-1.12 and a Mach stem Mach number 

near the roof of 1.11-1.13. Higher Mach numbers were obtained by doubling the diaphragm or by 

using a thicker material. 

 

From Figure 5.3.2 it can be seen that the Mach stem Mach number recorded near the triple point 

(M12) follows an almost linear relationship with the Mach stem Mach number recorded near the 

roof of the test section (i.e. the base of the Mach stem). The differences in values are generally 

small (between 1 and 3 %), with the value recorded near the roof being higher than that near the 

triple point. For example, for M12 = 1.07, the value of M34 would be approximately 1.10, a 

difference of 3%. 
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When plotting the Mach stem Mach number near the roof of the section (M34) with the initial 

Mach number from the driver, again an almost linear relationship can be seen, as in Figure 5.3.3. 

An increase in the initial Mach number would provide a smaller increase in the Mach stem Mach 

number. 
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6.2 Discussion of Results from Schlieren Photographs 

 

The Mach stem lengths were measured by scaling the triple point position relative to the to cotton 

thread markers placed across the test window. Some of the earlier tests did not have the markers 

and hence the Mach stem lengths were estimated by using the height of the portion of the test 

section window visible in the photograph. 

 

The position of the triple point was plotted for various initial driver pressures in Figure 5.4.1, for 

the photographs which had the cotton markers across the window. It is clear that the Mach stem 

length increases with increasing initial pressure in the driver, and hence initial Mach number. The 

displacement of the triple point along the test section from the reflection corner also naturally 

increases for increasing driver pressure. The triple point was visualised in the test section window 

for values of P4 = 120-180 kPa and yielded Mach stem lengths of 680-850 mm. The resulting 

Mach stem lengths are very reproducible to within a range of 20 mm. 

 

Figure 5.4.2 shows the triple point heights (for all the tests where the triple point was visible) 

plotted against the incident wave Mach number, showing the Mach stem length ranged from 

approximately 700 mm for M12 = 1.060 to around 850 mm for M12 = 1.094 in an almost linear 

dependence. 

 

A similar graph is presented in Figure 5.4.3 which plots the Mach stem length with the initial 

Mach number exiting the driver section. Again the relationship is squared, but over such a small 

range it almost resembles a linear curve. 

 

From the calculations done of the angle between the flow field behind the Mach stem and the 

reflected wave (β), it was found that over the parameter space tested, the angle was greater than 

π/2. For the lower Mach number (M12 = 1.060), β = 93°; for the mid-range value (M12 = 1.073), β 

= 93.2°; and for the higher Mach number (M12 = 1.094), β = 98.2 °. It can also be assumed that 

since the incident wave and Mach stem have an almost continuous slope near the triple point, the 

flow field behind the incident wave and Mach stem are very nearly parallel, which would result in 

a very weak reflected wave close to being a sonic wave. This can be validated by the numerical 

results achieved by Zakharian et al. (2000), where they showed that for an incident wave Mach 

number of 1.04 and a wedge angle of 11.46°, the reflected wave had a Mach number of only 

1.003. This explains why a slipstream is not seen in any of the schlieren photographs produced. 
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There may, however, be a slipstream which develops further downstream of the triple point, as 

both the Mach stem and incident wave are perpendicular to the roof and floor at their respective 

reflection points. 
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6.3 Discussion of Structures Observed in Schlieren Photographs 

 

As was established in Chapter 2 - Introduction, the supersonic region behind the triple point was 

given as a percentage of the Mach stem length, and hence a larger Mach stem would produce a 

larger region to visualize with the optical system. 

 

From all the forty-plus schlieren photographs, with incident wave Mach numbers (M12) ranging 

from 1.062-1.090, an expansion fan can clearly be seen in the region behind the triple point. It is 

not surprising that this expansion fan had not been detected in earlier experiments, as the region 

in which it occurs is extremely small compared to the length of the Mach stem. These 

experimental results compare very well to the numerical results obtained by Vasil’ev & Kraiko 

(1999) and Zakharian et al. (2000) and prove that Guderley’s (1947) proposal of a supersonic 

region behind the triple point was in fact correct. It can be deduced that a four-wave geometry 

with an expansion fan behind the triple point is a real phenomenon for weak shock wave 

reflections which occur over the parameter space covered in these tests. 

 

The expansion fan can be seen in Figures 5.4.5-5.4.7, which are random examples of the 

unprocessed photographs of the test section window, as well as the following Figures 6.1-6.13 

which are rotated 90° clockwise and mirrored relative to the test section. 

 

 

 

Figure 6.1 – Photograph number A16, M12 = 1.063, M34 = 1.094, Mach stem length = 727 mm 
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Figure 6.2 – Photograph number A20, M12 = 1.063, M34 = 1.095, Mach stem length = 722 mm 

 

 

In the above two figures a distinct, lighter, contrasting line can be seen immediately behind the 

expansion region, indicating the existence of a terminating shock. The suggestion by Hunter & 

Brio (2000) that a shock may terminate the expansion wave, as occurs on a transonic airfoil, 

seems to prove true. This shock is referred to as the first shocklet, and was estimated to be 15 mm 

in length, or roughly 2% of the Mach stem length. A fairly strong density gradient can be seen 

behind the shocklet, which weakens along the length of the Mach stem, but no more evidence of 

other features can be clearly distinguished. 

 

 

 

Figure 6.3 – Photograph number C18, M12 = 1.078, M34 = 1.103, Mach stem length = 774 mm 

 

 

Figure 6.3 clearly shows the density gradient (dark patch) existing from behind the expansion 

wave up to behind and along the Mach stem. This density gradient can be seen on all the forty-

plus photographs taken. 
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The immediate region behind the triple point was enlarged and the image contrast was adjusted in 

order to highlight any additional structures behind the first shocklet. The image enhancements 

were made by using Corel Photo-Paint © and Jasc Paint Shop Pro©. Examples of the original 

scan and the processed images are given below. 

 

 

 

Figure 6.4 – Photograph A08, M12 = 1.073, M34 = 1.093, Mach stem length = 766 mm 

 

 

 

 

Figure 6.5 – Photograph A08 with adjusted contrast 

 

 

From Figure 6.5, the first expansion region is clearly defined as the dark region immediately 

behind the reflected wave, centered on the triple point. In this image, the first shocklet is clearly 

visible as a bright line behind the reflected wave and first expansion fan. A second expansion fan 

can be seen immediately behind the first shocklet, and is followed by a lighter area. This implies 

that a second shocklet should therefore terminate the second expansion fan, a third shocklet 
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terminate the third expansion fan and so on, as shown by Hunter & Tesdall (2002). Any features 

behind the second expansion fan seem to be smoothed out in the density gradient behind the 

Mach stem (the larger light area behind the second expansion fan). The leading triple point is also 

very distinct as there is no band of compression waves from the reflected wave behind the triple 

point, as described by Colella & Henderson (1990), and hence by definition, this reflection is not 

a von Neumann reflection. 

 

 

 

Figure 6.6 – Photograph number A07, M12 = 1.074, M34 = 1.099, Mach stem length = 772 mm 

 

 

 

 

Figure 6.7 – Photograph A07 with adjusted contrast 

 

 

Figure 6.7 again clearly shows the first shocklet behind the first expansion fan, but also shows 

clear evidence of the second shocklet behind the second expansion fan, as the lighter region 

behind the light region of the first shocklet. This implies that the flow structure behind the triple 

point may then include an infinite sequence of expansion fans, shocklets and triple points of 

decreasing size, as proposed by Hunter & Tesdall (2002). The subsequent shocklets and 
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expansion fans are not distinguishable either due to viscous effects, knife-edge cutoff or a 

combination of these and other effects. 

 

The first shocklet can also be seen in the following examples of magnified images with enhanced 

contrast, as well as some evidence of a second shocklet. All the adjusted images are included in 

the Appendix F – Schlieren Photographs. 

 

 

 

Figure 6.8 – Photograph number A11, M12 = 1.073, M34 = 1.097, Mach stem length = 766 mm 

 

 

 

 

Figure 6.9 – Photograph number A15, M12 = 1.063, M34 = 1.094, Mach stem length = 727 mm 

 

 

 

 

Figure 6.10 – Photograph number C15, M12 = 1.082, M34 = 1.105, Mach stem length = 797 mm 
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Figure 6.11 - Photograph number A16, M12 = 1.063, M34 = 1.094, Mach stem length = 727 mm 

 

 

 

 

Figure 6.12 – Photograph number A20, M12 = 1.063, M34 = 1.095, Mach stem length = 722 mm 

 

 

 

 

Figure 6.13 – Photograph number B33, M12 = 1.063, M34 = 1.094, Mach stem length = 728 mm 
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Figure 6.14 – Schematic representation of the observed wave structure behind the triple point 

 

 

The diagram above gives an indication of the flow structure that can be distinguished from the 

photographs of the region behind the triple point. Not all of the photographs clearly showed the 

existence of a second shocklet or even a second expansion fan, and these effects seem to be 

variable due to the varying sensitivity of the optical system and other factors. 

 

It is important to note that all the numerical studies yielding a complex flow structure, have been 

inviscid models. Zakharian et al. (2000) estimated that for a Mach stem length of 1 m (similar to 

this investigation) the patch would be an order of magnitude larger than the reflected shock 

thickness. It is not known, however, whether the small high density gradients in the complex flow 

structure would be smoothed out due to viscous effects. 

 

The slipstream was not distinct in any of the photographs obtained, and hence the angle between 

the reflected wave and the slipstream (β) could not be measured directly from the photographs.  

 

Although a von Neumann reflection was not observed, it is not certain whether such complex 

structure such as observed here is prevalent in other parameter spaces, or whether a von Neumann 

reflection occurs at other parameter spaces. It is clear that this type of reflection is different from 

the von Neumann reflection in that no band of compression waves were observed, and it may be 

appropriate to name this reflection, where a supersonic patch exists, as Guderley reflection in 

recognition of his prediction over fifty years ago. 
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The four-wave geometry has been shown to exist for plane incident waves from numerical results 

as well as experimentally in this work for cylindrical shock waves, and is therefore likely to be a 

common occurrence. It is likely that this geometry exists for spherical blast waves as well. 

 

The results resolve the so-called “von Neumann Paradox” by showing that experimentally, the 

leading triple point is distinct, the region behind the triple point has an expansion/compression 

structure as described by Hunter & Brio (2000) and in some cases, multiple 

expansion/compression structures as described by Hunter & Tesdall (2002). 



 75 

7. Conclusions 

 

For the parameter space tested, a supersonic region clearly exists behind the triple point of a weak 

shock reflection, as originally proposed by Guderley (1947). The reason why this region had not 

been observed experimentally earlier is due to the very small size relative to the Mach stem 

length (roughly 2% of the Mach stem). The experimental results are consistent with recent 

findings of numerical studies of weak shock reflections. 

 

An expansion fan can be seen emanating from the triple point, similar to the numerical results by 

Vasil’ev & Kraiko (1999) and Zakharian et al. (2000), in all forty-plus tests presented here. It is 

therefore apparent that a four-wave weak shock reflection is indeed a real physical phenomenon. 

A shocklet terminating the expansion fan can be seen in most of the tests, similar to the flow 

structure as described by Hunter & Brio (2000). In the cases where a shocklet can be seen, a 

second expansion fan be clearly observed behind the first shocklet. In some cases a second 

shocklet was observed terminating the second expansion fan. It is suggested that subsequent 

shocklets and expansion fans may be smoothed by viscous effects in the supersonic region. The 

high-resolution experiments of the reflection of weak shock waves have shown the existence of a 

very small complex flow structure similar to a sequence of expansion fans, shocklets, and triple 

points behind the leading triple point as described by Hunter & Tesdall (2002).  

 

A von Neumann reflection as defined by Colella & Henderson (1990), consisting of a band of 

compression waves near the triple point, could not be reproduced experimentally. Instead, a new 

type of four-wave weak shock reflection was observed, as described by Tesdall & Hunter (2002). 

It has been proposed that such a reflection be termed a ‘Guderley reflection’. 

 

The results of this investigation finally resolve the von Neumann Paradox, by experimentally 

validating the numerical studies of Hunter & Tesdall (2002) and similar recent studies, as well as 

establishing the existence of an expansion fan behind the reflected shock, as proposed by 

Guderley (1947). 
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8. Recommendations 

 

It is suggested that the parameter space should be expanded to cover a larger range of incident 

wave Mach numbers, perhaps up to the maximum allowable test section Mach number of 1.25. 

The wall angle of the test section should also be changed by attaching a ramp to the roof of the 

divergent section, thereby decreasing the wedge angle, although this will require a major 

modification to the current setup. 

 

Some tests should be conducted in order to reproduce the results obtained by Colella & 

Henderson (1990) to observe the flow structure and hence determine the experimental existence 

of a von Neumann reflection. 

 

The installation of additional pressure transducers in the test section to determine the incident 

wave Mach number, the decay of the incident wave Mach number, and the Mach number of the 

expanding cylindrical wave in the vicinity of the reflection corner would be very useful to 

improve the quantitative data. 

 

It would be advantageous to have ultra-high resolution numerical analysis of the current shock 

tube geometry in order to determine the optimum range of experimental conditions as well as 

improve the resolution of the size of the supersonic patch and the strength of the waves in the 

system.  

 

A high-resolution numerical study of the weak shock reflection using viscous codes should be 

investigated to determine the effects of viscosity on the flow structure in the supersonic patch. 

 

The modification of the current schlieren optical system to increase sensitivity as well as 

magnifying the image may prove useful in resolving any additional features in the supersonic 

patch. 
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Appendix A – CFD Results 

 

Overall results from Initial CFD simulations to optimise shock tube 

geometry 
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Figure A 1 – Pressure ratio across expanding wave up to reflection corner (Xw < 0) and across 

Mach stem (Xw > 0), plotted against displacement. 
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Triple Point Trajectory (Minitial = 1.25)
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Figure A 2 – Triple Point Trajectory for Minitial = 1.25 for various wedge angles 
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Figure A 3 – Triple Point Trajectory for Minitial = 1.5 for various wedge angles 
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Example Data Set for Minitial = 1.25, θw = 15° 
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Incident Wave Mach Number (MS(i)) vs. Displacement
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Figure A 4 - Incident wave Mach number from CFD results plotted with 1/R2 decay rate versus 

displacement. 

 

 

Inverse Mach Slope (a) versus Displacement
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Figure A 5 – Inverse Mach slope versus displacement from the reflection corner 
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Mach Stem Length versus Displacement from Reflection Corner
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Figure A 6 – Mach stem length versus displacement from reflection corner 
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Example Data Set from Final CFD Results for Minitial = 1.2 
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Table A 3 – Triple point position estimated from CFD results 

 

Triple Point Position     

       

Run Time TPx TPXw  TPy TPYw 

       

147 0 4.0573 0.00659  1.09796 0.00704 

155 8 4.36074 0.31003  1.06657 0.03843 

160 13 4.5526 0.50189  1.02307 0.08193 

165 18 4.74557 0.69486  1.00267 0.10233 

170 23 4.93569 0.88498  0.948982 0.156018 

175 28 5.12255 1.07184  0.933276 0.171724 

180 33 5.31547 1.26476  0.844171 0.260829 

185 38 5.51921 1.4685  0.84115 0.26385 

190 43 5.70855 1.65784  0.80596 0.29904 

195 48 5.89442 1.84371  0.779728 0.325272 

200 53 6.07934 2.02863  0.746032 0.358968 

205 58 6.26423 2.21352  0.691039 0.413961 

210 63 6.45279 2.40208  0.649229 0.455771 

215 68 6.63154 2.58083  0.619113 0.485887 

220 73 6.81772 2.76701  0.564318 0.540682 

225 78 7.00091 2.9502  0.52436 0.58064 

230 83 7.18276 3.13205  0.480516 0.624484 

235 88 7.36574 3.31503  0.435202 0.669798 
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Expanding Wave Mach Number Decay versus Displacement
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Figure A 7 – Mach number decay of the expanding wave as a function of displacement leading up 

to the reflection corner 

 

 



 88 

Mach Stem Length versus Displacement
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Figure A 8 – Mach stem length versus displacement from the reflection corner 
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Inverse Mach Slope (a) vs. Displacement
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Figure A 9 – Inverse Mach slope as a function of displacement leading up to the reflection corner 
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Appendix B – Divergent Section Engineering Drawings 

 

The following engineering drawings are reproduced here: 

 

Divergent Section Isometric view  91   

Divergent section Flange Front view 92   

Divergent-Test section holes (2) 93 

Side Panel 95 

Side Panel Threaded Holes (2) 96 

Top Channel 98 

Bottom Channel 99 
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 100 

Appendix C – Driver Section Design and Engineering 

Drawings 

 

The following engineering drawings are reproduced here: 

 

Cylindrical Pressure Vessel Equations 101 

Pressure Testing 102   

Driver Assembly 104   

Round Tube 105 

Inlet Plug 106 

Support Ring 107 

Driver Flange 108 

End Flange 109 
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Cylindrical Pressure Vessel Equations 

 

Hoop Stress:      Longitudinal Stress: 

 

t

pr
1 =σ

      t2

pr
2 =σ

 

 

Radial Stress: 

 

( ) pmax3 =σ  

 

where:  p is the pressure applied 

r is the inner radius of the pressure vessel 

t is the wall thickness of the pressure vessel 

 

 

Dimensions of the driver tube: 

 

do: outer diameter = 168 mm 

di: inner diameter = 146.06 mm 

t: wall thickness = 10.97 mm 

l: length = 1500 mm 

 

Let p = 600 kPa (limit of low-pressure compressor) 

Factor of Safety (F.S.) = 10. 

 

∴(p)max = 6 MPa  

 

( )( )
( )

MPa94.39

1097.102

1006.146106

t2

pd
3

36
i

1

=

×

××
==σ

−

−
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MPa97.19
t4

pd i
2

=

=σ

 

 

( ) MPa6max3 =σ  

 

 

The yield-stress (σy) of mild steel is approximately 200 MPa; therefore the driver is much stronger 

than required.  

 

 

Pressure Testing 

 

The driver section (pressure chamber) was not certified with the relevant ASME code for pressure 

vessels, since it does not require certification due to its low volume, as well as internal diameter. 

 

The volume of the driver section is: 

 

3

2

m0252.0

m5.1m0168.0

LAV

=

×=

×=

 

 

or 25.2 litres, and the internal diameter is 146 mm. 

 

From Chuse (1960), (‘Table 2.23 – Vessels exempt from inspection’): 

 

Vessels not within code jurisdiction: 

 

• Vessels having inside diameter of 6 in. (152.4 mm) or less  
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From ‘ASME Boiler and Pressure Vessel Code, Section VIII, Division 2’ (1968)): 

 

A-121 Classifications Outside Jurisdiction of this Division of Section VIII: 

 

(b) Vessels with a nominal water-containing capacity of 120 gallons (0.4542 m3) or less for 

containing water under pressure, including those containing air, the compression of which 

serves only as a cushion; 

 

(e) Vessels having an inside diameter not exceeding 6 in. (152.4 mm), with no limitation on 

pressure. 
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Appendix D – Plunger Section Engineering Drawings 

 

The following engineering drawings are reproduced here: 

 

Plunger Section Assembly Isometric View 111 

Plunger Section Assembly (2) 112 

Plunger Side Panel 114 

Pricker Arm 115   
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Appendix E – Supports and Ports Engineering Drawings 

 

The following engineering drawings are reproduced here: 

 

Wheel Support Isometric View 117 

Wheel Assembly  118 

Shock Tube Support Isometric View  119 

Shock Tube Support Side View  120 

Removable Port (2) 121 
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Appendix F – Schlieren Photographs 

 

Contrast-adjusted images are presented here. 

 

Film A 

 

 

 

Figure F 1 – A06 with adjusted contrast 

 

 

 

 

Figure F 2 - A07 with adjusted contrast 
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Figure F 3 – A08 with adjusted contrast 

 

 

 

 

Figure F 4 – A09 with adjusted contrast 

 

 

 

 

Figure F 5 – A10 with adjusted contrast 
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Figure F 6 – A11 with adjusted contrast 

 

 

 

 

Figure F 7 – A12 with adjusted contrast 

 

 

 

 

Figure F 8 – A13 with adjusted contrast 

 

 

 

 

Figure F 9 – A14 with adjusted contrast 
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Figure F 10 – A15 with adjusted contrast 

 

 

 

 

Figure F 11 – A16 with adjusted contrast 
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Figure F 12 – A17 with adjusted contrast 

 

 

 

 

Figure F 13 – A20 with adjusted contrast 
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Film B 

 

 

 

Figure F 14 – B29 with adjusted contrast 

 

 

 

 

Figure F 15 – B32 with adjusted contrast 

 

 

 

 

Figure F 16 – B33 with adjusted contrast 
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Figure F 17 – B35 with adjusted contrast 

 

 

Film C 

 

 

 

Figure F 18 – C04 with adjusted contrast 
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Figure F 19 – C05 with adjusted contrast 

 

 

 

 

Figure F 20 – C06 with adjusted contrast 
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Figure F 21 – C07 with adjusted contrast 

 

 

 

 

Figure F 22 – C09 with adjusted contrast 

 

 

 

 

Figure F 23 – C10 with adjusted contrast 
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Figure F 24 – C11 with adjusted contrast 

 

 

 

 

Figure F 25 – C13 with adjusted contrast 

 

 

 

 

Figure F 26 – C14 with adjusted contrast 
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Figure F 27 – C15 with adjusted contrast 

 

 

 

 

Figure F 28 – C16 with adjusted contrast 

 

 

 

 

Figure F 29 – C17 with adjusted contrast 
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Figure F 30 – C18 with adjusted contrast 

 

 

 

 

Figure F 31 – C19 with adjusted contrast 

 

 

 

 

Figure F 32 – C20 with adjusted contrast 
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Figure F 33 – C21 with adjusted contrast 

 

 

 

 

Figure F 34 – C22 with adjusted contrast 

 

 

 

 

Figure F 35 – C23 with adjusted contrast 
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Figure F 36 – C24 with adjusted contrast 

 

 

 

 

Figure F 37 – C25 with adjusted contrast 

 

 

 

 

Figure F 38 – C26 with adjusted contrast 
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Figure F 39 – C27 with adjusted contrast 

 


