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Abstract 
 

 

Techniques for the design and analysis of simple column separations are well 

established. Shortcut design techniques have been employed in the initial design of 

these “traditional” distillation systems for a number of years and these columns are 

well understood. However, few currently available techniques are useful in the 

design of novel or complex configurations.  The techniques that are available tend 

to be configuration specific. An all inclusive or universal, design and analysis tool, 

that can be applied to any and all configurations, is required. 

 

Tapp et al (2004) introduced Column Profile Maps (CPMS) as a means of 

addressing this issue. These are maps of composition profiles for column sections 

with defined net-molar-flow and reflux ratio. It is suggested that by producing 

CPMs for a configuration a designer can essentially superimpose these, determine 

feasible operating profiles and hence column operating parameters. 

 

In this thesis we show that this technique can be used to, not only produce quick 

and easy complex column designs but gain a comprehensive understanding of the 

steady-state operation of these arrangements. We demonstrate this analytical 

potential first by application of the CPM technique to the two-product feed 

distribution problem. It is shown that feed distribution can lower the minimum 

required reflux ratio for non-sharp separations and in some cases produce feasible 

separations from previously infeasible product specifications. A composition 

region of operation for all distributed feed policies is also found. 

 

The potential for detailed analysis, design and optimisation of complex 

configurations is demonstrated via application of the CPM procedure to the fully 

thermally coupled (Petlyuk) distillation column at both sharp and non-sharp split 



 

  

conditions. A detailed design methodology for any configuration results from this. 

It is found that the Petlyuk column can operate under five possible bulk/net flow 

conditions and that very interesting and counter-intuitive net-molar-flows are 

possible. A feasible column parameter region equivalent to the optimality region 

(Halvorsen and Skogestad, 2001) is found for zeotropic systems. Importantly a 

minimum reflux condition for the Petlyuk column is found. This condition can be 

applied to all zeotropic systems for all product specifications. It is also 

demonstrated that the CPM technique can be used for design optimisation of 

separation systems. 
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1 Chapter 1: 1 

Introduction 
 
Distillation is one of the most utilised large scale industrial methods of mixture 

separation. It is a very energy intensive process and accounts for a significant 

percentage of plant utility costs. A survey (Ognisty, 1995) conducted in the mid 

1990’s estimates that energy inputs to distillation columns in the United States 

accounts for approximately 3% of the countries entire energy consumption. It is 

clear that the efficiency of the separation can have a substantial influence on the 

profitability of a process and methods of improving the energy efficiency of 

distillation systems are, therefore, constantly sought. 

 

Recently, much interest has been shown in complex distillation configurations for 

their potential to reduce the energy requirements of separations. The term 

complex is often used in connection with configurations that involve some degree 

of thermal coupling. These configurations include side-rectifiers, side-strippers, 

dividing wall columns, Petlyuk columns and Kaibel columns (Kaibel, 1987).  

 

Despite the significant advantages that complex configurations offer, simple (one 

feed two product) distillation columns are overwhelmingly more utilised. One 

factor contributing to the under-utilisation of the complex arrangements is, 

possibly, a lack of understanding of these columns. Simple columns, by 

comparison, are extremely well understood. The graphical separation synthesis 

methodologies, in particular, have been very successful in providing insight into 

simple column operation. Extensive work on residue curve and distillation line 

maps (Schreinemakers (1902), Ostwald (1902), Doherty and Perkins (1978a), 

Hausen (1952) and Rishe (1955), Zharov (1967; 1968c), Stichlmair (1989), 

Widago and Seider (1996), Serafimov (1968a; 1968d)) as well as operation leaves 

(Wahnschafft et al. (1992); Castillo et al. (1998)) has led to a comprehensive 

understanding of these columns and the feasibility of simple separations. 

Synthesis methodologies for complex arrangements, on the other hand, can not be 
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generalised for all configurations and graphical methodologies, which 

comprehensively cover simple separation synthesis, have not been extended 

adequately to include all complex configurations. 

 

The advent of powerful chemical engineering design packages such as ASPEN 

PlusTM and Pro 2TM despite their unquestioned modelling capabilities have not 

aided in the general understanding of complex configurations, much, either. 

Separation synthesis too often reverts to a trial and error procedure using these 

tools. For some configurations, such as the Petlyuk column, advance knowledge 

of the solution is required for simulation initialisation. This cannot possibly be 

done effectively without understanding the nature of the column dynamics and 

solution. 

 

An all inclusive, graphical, design and analytical tool is required for application to 

the complex configuration problem. This tool should extend the existing 

graphical, simple distillation, design and analysis methodologies. The graphical 

nature of such a tool would allow insight into the operation of any distillation 

structure and remove the necessity for trial and error design procedures. 

 

This thesis will illustrate the use of Column Profile Maps (CPMs) as a 

comprehensive analytical and synthesis tool for all distillation column 

configurations. We will initially present the derivation of and theory relating to, 

CPMs. This work was introduced by Tapp et al (2004) and Holland et al (2004a). 

We will then illustrate the potential of CPMs for column analysis by investigating 

the pros and cons of distributed feed addition. Finally, a detailed design 

methodology will be produced, through an investigation into the operation of the 

Petlyuk/thermally-coupled column. Through this investigation a thorough 

understanding of the operation of these columns will be gleaned. 

 

An outline of the material covered in each chapter is discussed in the overview 

below. 
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Thesis overview: 

 

Most of the chapters of this thesis have either been published as journal articles or 

prepared as papers for future publication. Because CPMs are not a well 

established distillation tool yet, there is a degree of repetition in the introductions 

to each chapter. This repetition specifically covers the derivation of column 

profile maps, but should serve to strengthen the readers understanding.  

 

Chapter 2 covers the detailed derivation of column profile maps (CPMs). This 

work was done together with Michaela Tapp and was published as the first part of 

a CPM series, in Industrial and Engineering Chemistry Research (see Tapp et al, 

2004). I was involved in the preliminary fundamentals, but she is responsible for 

all the pinch point loci analyses and classifications which constitute the major 

portion of the work.  

 

Chapter 3 deals with the underlying mathematics and topology of both ideal and 

non-ideal CPMs. The use of singular point eigenvectors and eigenvalues for 

further understanding the thermodynamics of vapour-liquid-equilibrium systems 

and CPMs is explored. This work was published as the second part of a CPM 

series, in Industrial and Engineering Chemistry Research (see Holland et al, 2004 

a). Although my name appears as first author on this paper, the work is almost 

exclusively Michaela Tapp’s. 

 

Chapter 4 presents the first application of CPMs for distillation configuration 

analysis. This work is unpublished and details the topological effects of feed 

distribution in two product distillation columns. Attainable composition regions 

are found and the pros and cons of feed distribution are discussed. Both Michaela 

Tapp and I have tackled this problem, but from different perspectives. This 

approach is my own. 

 

Chapter 5 presents the first application of CPMs for complex distillation column 

modelling and design. The work was published in Computers and Chemical 
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Engineering in 2004 (see Holland et al, 2004 b). A coupled column section 

system is used to gain insight into possible design approaches for and operation of 

the Petlyuk column. Composition regions of feasible operation at overall infinite 

reflux are found. Michaela Tapp offered valuable insight in the development of 

this work, but it is almost exclusively my own. 

 

Chapter 6 presents a comprehensive analysis and design methodology for the 

Petlyuk column at sharp-split conditions and ideal thermodynamics using CPMs. 

The purpose of the work is to illustrate the use of the CPM technique for the 

comprehensive analysis and design of complex distillation configurations. 

Parameter regions containing all column solutions for a given feed composition 

are found for the Petlyuk column. This chapter is as yet unpublished. Much of the 

guidance in this work was offered by Prof Steiner Hauan, of Carnegie Mellon 

University, for which I am extremely grateful.  

 

Chapter 7 expands on the sharp-split Petlyuk results of chapter 6 to incorporate 

general product specifications. A general minimum reflux ratio condition is found 

for the Petlyuk column. It is shown that very interseting and counter-intuitive 

component net-molar-flows are possible. Parameter regions containing column 

solutions are also found.  This work, also, is as yet unpublished. 



 

 5 

2 Chapter 2: 

Column Profile Maps 

1. Derivation and Interpretation 
 

 

This work was done together with Michaela Tapp and was published as the first 

part of a CPM series, in Industrial and Engineering Chemistry Research (see 

Tapp et al, 2004). I was involved in the preliminary fundamentals, but she is 

responsible for all the pinch point loci analyses and classifications which 

constitute the major portion of the work. 

 

 

Abstract 

 

The use of ordinary differential equations (ODE) as a short – cut technique for the 

description of distillation columns has been well established over the last three 

decades. Residue curve maps (RCM) have been employed as a graphical 

representation tool in the analysis and interpretation of the behaviour of 

distillation systems. However, RCM’s enable one to gain insight into infinite 

reflux column behaviour only. This paper will be the first part of a series that 

looks at column profile maps (CPM) obtained by using the difference point 

equation (DPE). CPM’s represent the finite reflux case, and the map depends on 

the values of the difference point and the net flowrate. This paper focuses on 

analysing the behaviour of distillation systems for ideal thermo and shows how 

using CPM’s one can devise more creative designs. The focus of the second part 

lies in analysing systems with non-ideal behaviour and develops tools for 

synthesis of distillation.  
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2.1 Introduction 
 

Graphical representation is an extremely useful tool in the analysis and 

interpretation of the behaviour of distillation systems. The thermodynamic 

topological analysis is based on the classical works of Schreinemakers (1902) and 

Ostwald (1902), where the relationship between the vapour-liquid equilibrium of a 

mixture and the behaviour of open evaporation residue curves for ternary mixtures 

was established. The residue curve (Doherty and Perkins (1978a)) is defined as 

the locus of liquid compositions remaining un-evaporated from a simple 

distillation process. Schreinemakers established that the interior of the 

composition space is filled with residue curves to form a residue curve map 

(RCM). The pure components and azeotropes are end and starting points of the 

residue curves and the edges of the composition space between the singular points 

are also residue curves. Residue curve maps provided one of the first graphical 

methods of understanding the volatility and compositional changes of (3 

component) batch evaporative systems. Residue curve maps are not restricted in 

their usefulness to simple boiling experiments. Hausen (1952) and Rishe (1955) 

showed that the residue curve can represent the composition profile of a packed 

distillation column at infinite reflux. A residue curve map therefore represents all 

possible operational composition profiles in a packed column at infinite reflux. 

Although only directly useful in ternary and quaternary systems, great insights 

into higher order systems can be gleaned by the analysis of various groups of 

ternary (or quaternary) mixtures comprising the system. In the late 1960s Zharov 

(1967; 1968c) gave a more rigorous mathematical foundation of the residue curve 

map analysis and expanded it to multicomponent mixtures. Similar maps, termed 

distillation line maps, were produced for staged columns (Stichlmair (1989), 

Widago and Seider (1996)). The distillation line maps and residue curve maps 

have slightly different curvature. Unlike the residue curves, the distillation lines 

are not continuous, but defined at discreet points or stages. The overall topology 

of the maps is the same however. 

 



2.1 Introduction  7 

 7

Serafimov (1968a; 1968d) proposed to use structural information of VLE 

diagrams to predict feasible separations. Residue curve maps are useful in the 

determination of infinite reflux split feasibility and provide an understanding of 

the thermodynamics of the vapour-liquid-equilibrium; however, they are less 

useful when applied to finite reflux separations. Finite reflux split feasibility has 

been addressed through the use of operation leaves (Wahnschafft et al. (1992); 

Castillo et al. (1998)). The operation leaves, defined as the total attainable 

composition region in a column section (for a defined product composition), are 

useful not only for feasibility tests, but the determination of minimum reflux as 

well. The limitation of the operation leaf method is that it is essentially limited to 

simple one feed two product distillation columns. It, also, is limited to a maximum 

of, 4 component mixtures. 

 

Tapp et al. (2003) addressed this problem with the use of the difference point 

equation (DPE), an adaptation of Doherty’s (1978) original rectifying and 

stripping differential equations (DE’s). The use of difference points in the design 

of non-reactive and extractive cascades has been presented in textbooks and 

papers over several decades, i.e. Hoffmann (1964), Hauan (1998). In accordance 

with the definition of the difference point presented in Hauan’s work, Tapp et al. 

defined the difference point as a pseudo net-molar-flow composition within a 

column section. The difference point was not restricted to product compositions or 

indeed values within the Gibbs or mass balance triangle (MBT). The column 

section was redefined as a length of column between points of addition or removal 

of material or heat. This definition includes the rectifying and stripping column 

sections, but is not limited to them. New operation leaves were defined, all 

extended from a chosen composition within the column section (XT), with a set 

net-molar-flow (difference point). These operation leaves extended to areas 

untouched by the original operating leaves. Because the net fluxes have a 

direction associated with them, internal mass balances for a series of column 

sections can be achieved by simple addition (or subtraction) of the net fluxes 

within the column sections. Any distillation process can therefore be modelled 
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including multiple feed addition, side-stream withdrawal (Tapp et al. (2003)) and 

column coupling. 

The idea of producing composition trajectories from points other than the product 

point was first introduced by Franklin (1986). Franklin used Underwood’s (1948) 

Z –transformation method to transform the total reflux composition trajectories 

(distillation lines) for partial/finite reflux conditions. He showed that the 

composition space could be populated with trajectories and that these trajectories 

all had a common “fixed point” for a defined reflux. This “fixed point” is 

analogous to the difference point. Petlyuk (2001) put forward a concept very 

similar to Franklins when he proposed the use of “trajectory bundles” for the 

design of sharp split separations. 

This work, although developed independently, will essentially be an extension of 

Franklin’s work. It will be shown that the entire composition space can be 

populated with composition profiles using the difference point equation. These 

sets of trajectories with common difference points and reflux ratios will be 

referred to as column profile maps (CPMs). It will be shown that the CPM is 

simply a transformation of the residue curve map as the DPE is a linear transform 

of the residue curve equation apparently. Physically irrelevant residue curves 

(outside the MBT) can be shifted into the “real” space (MBT) when transformed 

with certain parameters.  

 

This paper will be the first in a series of papers that outlines the nature of and 

theory behind column profile maps as well as their potential use in distillation 

column design. 

 

2.2 Derivation of column profile maps 

2.2.1 The difference point equation 
 

The difference point equation (see Equation 2.1) was introduced by Tapp et al 

(2003) for the modelling of the generalised column section (See Figure 2.1). 

Instead of being limited to rectifying or stripping column sections it can model 
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any vapour liquid equilibrium cascades, including absorption and stripping 

columns. A detailed derivation is given in Appendix I. 
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with X∆ being the difference point. The limits on the value of R∆ and its physical 

relevance will be discussed later. The mathematical properties of the equation can 

be analysed further. 

 
Figure 2.1: Generalised column section 

 

2.2.2 Infinite reflux 
 

Positive integration 

Under the conditions of L = V and XT = YT (Total reflux), the equation collapses 

to the following: 

 

( ))(xYx
dn
dx

−=
  (2.2) 

 

This form of the DE is mathematically identical to the residue curve equation: 
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  (2.3) 

 

Note: All composition profiles and residue curves will be generated for a system 

with constant relative volatility with α12 = 3, α22 = 1 and α32 = 1.5. Subscript 1 

refers to the lowest boiling component, subscript 2 to the highest boiling 

component and subscript 3 to the intermediate boiling component throughout the 

thesis. 

 

The only difference between Equation 2.2 and Equation 2.3 is that the residue 

curve equation differentiation variable is time dependent while in the DPE it is a 

variable representing stages. They are in fact identical in x1 vs. x2 space. It is 

therefore evident that profiles can be generated from any point in the space in the 

same way that residue curve trajectories are modelled. i.e. integration can be 

performed from arbitrary initial conditions from n = 0 to values of n > 0. See 

Figure 2.2. 

 
Figure 2.2: Solutions of the difference point equation 

at arbitrary initial conditions as n → + ∞. 
 

For ideal thermodynamics, these column section profiles pinch at the high boiling 

(heavy) pure component composition (for n → + ∞).  

 

Negative integration 

The DE can be integrated in the negative direction as well. (i.e. integration can be 

performed from arbitrary initial conditions from n = 0 to values of n < 0). This 

0.50 1

1 

0.5 

X1 

X2 
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process is equivalent to determining the composition profile in a column section 

from the bottom to the top. See Figure 2.3. 

 

 
Figure 2.3: Solutions of the difference point equation 

at arbitrary initial conditions as n → - ∞ and n → + ∞. 
 

For ideal thermodynamics the column section profiles pinch at the lowest boiling 

(light) pure component composition as n → - ∞. 

 

Negative initial conditions 

The mathematics, of the DPE at infinite reflux (or residue curve equation), is not 

bound by any physically relevant initial conditions. It is possible to evaluate the 

DE at initial values of x1, x2 and x3 greater than 1 and less than 0 (see Appendix J 

for a discussion of the validity of this). Any point in x1-x2-x3 space can be 

populated with trajectories arising from the DPE. If an arbitrary initial condition 

of Xo = [0.6; -0.2; 0.6]* is chosen and integration is performed in both the positive 

and negative directions, (as demonstrated above) the additional profile of Figure 

2.4 results. In this case, the profiles again terminate at the pure heavy component 

composition (as n → + ∞) and the light pure component composition (as n → - 

∞). 

 

                                                 
* It should be noted that all vectors are of the form [x1 , x2 , x3]. Subscript 1, 2 and 3 represent the 

light, heavy and intermediate components respectively. 
 

X2 

X1 

0 0.5 1
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Figure 2.4: Solutions of the difference point equation at 
arbitrary initial conditions inside and outside the MBT. 

 

If the entire space surrounding physically relevant compositions (0 ≤ x1, x2, x3 ≤ 1 

- the Gibbs or Mass Balance Triangle (MBT)) is populated in this way, integrating 

both in the positive and negative directions, Figure 2.5 results (for the constant 

relative volatility system). 

 

 
Figure 2.5: Entire Residue curve map for an ideal system. 
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Figure 2.5 can be divided into a number of different regions. The behaviour in 

these regions represents all possible profile solutions for a constant relative 

volatility system. Table 2.1 below summarises some of the properties of these 

regions. 

 

 X1 X2 X3 

Termination 

n → + ∞ 

[x1,x2,x3] 

Termination 

n → - ∞ 

[x1,x2,x3] 

Region 1 0 ≤ x1 ≤ 1 0 ≤ x2 ≤ 1 0 ≤ x3 ≤ 1 [0,1,0] [1,0,0] 

Region 2 0 < x1 <+∞ 0 < x2 <+∞ -∞ < x3 < 0 [0,1,0] [1,0,0] 

Region 3 -∞ < x1 < 0 1 < x2 <+∞ -∞ < x3 < 0 [0,1,0] ∗Discontinuity 

Region 4 -∞ < x1 < 0 0 < x2 <+∞ 0 < x3 <+∞ [0,1,0] *Discontinuity

Region 5 -∞ < x1 < 0 -∞ < x2 < 0 1 < x3 <+∞ [-∞,-∞,∞]  *Discontinuity

Region 6 0 < x1 <+∞ -∞ < x2 < 0 0 < x3 <+∞ [∞,-∞,∞] [1,0,0] 

Region 7 1 < x1 <+∞ -∞ < x2 < 0 -∞ < x3 < 0 [∞,-∞,-∞] [1,0,0] 

Table 2.1: Summary of Residue Curve Map regional behaviour on the MBT side of the 
discontinuity. 

 

Solutions of the difference point equation (Equation 2.1), generated in this way 

will be referred to as column profile maps (CPMs). The pinch points or nodes of 

the CPM can be categorised in the same way as the residue curve map. At infinite 

reflux the pure light component corresponds to an unstable node, the pure heavy 

component to a stable node; and the intermediate pure component to a saddle 

point.  

 

Note: the behaviour of the trajectories outside the MBT shown in Figure 2.5 is 

unique to the constant relative volatility system. Non-constant relative volatility 

systems result in different topologies in the same way, as the RCM for an ideal 

system shows different behaviour than the RCM for non - ideal systems. In non- 

ideal systems stationary points occur inside and outside the MBT, this leads to 

very interesting topologies (see chapter 3.3).  

 

                                                 
∗ A discontinuity arises from the equilibrium function and will be discussed in more detail later. 
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Different thermodynamic models (i.e. Wilson, NRTL) predict the same number of 

stationary points occurring in the topology of the system, although the predicted 

curvature differs and the exact position of the stationary points within the 

topology outside the MBT differs as well. It might be possible to determine the 

best model for a particular system by looking at their prediction of the position of 

the stationary points outside the MBT. But this is beyond the scope of this thesis. 

 

Discontinuity 

A discontinuity in the constant relative volatility system arises from the structure 

of the function describing the vapour-liquid equilibrium. 

 

( )
332222112

2

xxx
xxy ii

i ααα
α

++
=  (2.4) 

 

We can see from Equation 2.4 that this function is indeterminate when the 

denominator is zero. It is therefore possible to determine the discontinuity by 

setting this denominator to zero.  

( ) 01     
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( )3212

3222232
1 αα

ααα
−

−−
=

xx  (2.5) 

 

The discontinuity for this system is a straight line intersecting the x1-axis at –

α32/(α12 - α32) and the x2-axis at α32/(α32 - α22). Because α32 (the volatility of the 

intermediate) is always larger than α22 (the volatility of the heavy) the x2 intercept 

is always positive and larger than 1, hence, only profiles of region 2, 3, 4 and 5 

will be affected by the discontinuity. See Figure 2.6. 

In general, because of the models describing the VLE, most if not, all real systems 

will contain discontinuous regions. Models such as Wilson, NRTL and Unifac are 

indeterminate at certain values of x1, x2 and x3. These discontinuities are inherent 
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to the thermodynamic model and their position depends on the model used.  

Discontinuous regions can not be moved and they always occur outside the MBT. 

 
Figure 2.6: Discontinuity for constant relative volatility 

system α12 = 2, α22 = 1 and α32 = 1.5. 
 

2.2.3 Finite reflux 
 
If the difference point and reflux, are arbitrarily set (say [0.9; 0.05; 0.05] and 9), 

the space can be populated with composition profiles or trajectories, in exactly the 

same way that the residue curve map was produced, by integrating the difference 

point equation at arbitrary initial conditions (as n → + ∞ and n → - ∞). Both MBT 

and “outside”/negative space can be populated with profiles. 

 

 
Figure 2.7: Column Profile Map X∆ = [0.9; 0.05; 0.05], R∆ = 9. 
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From Figure 2.7 it is apparent that the CPM solutions have the same geometry as 

the residue curve map (Figure 2.5).All the original singularities are present but 

have been shifted in the composition space. A section of the topology from region 

4 (see Figure 2.6) representing physically irrelevant composition profiles (at 

infinite reflux) has been shifted into the MBT and these solutions are valid 

composition profiles. That is to say that any column section operating at a reflux 

ratio of 9 with this difference point (or net-molar-flow) could in fact operate on 

one of these trajectories. The CPM is in fact a simple transform of the RCM. For 

constant relative volatility systems, the boundaries of the mass balance triangle 

(representing particular residue curve solutions) are also transformed at finite 

reflux maintaining their straightness to form a “transformed” triangle. This fact 

has led to the phenomenon being described as “transformed” or “moving” 

triangles, this will be discussed in more detail in section 3.3.1.2. Under very 

extreme conditions, however, the singularities of the system merge and the 

transformed triangle collapses. Under these conditions the entire topology of the 

system changes. Figure 2.8 to Figure 2.13 illustrate CPM solutions for difference 

points in each of the remaining 6 regions at a reflux of 9. It is interesting to note, 

that the resulting trajectories inside the MBT follow very different paths, 

depending on the position of the difference point. The XΔ in Figure 2.12 for 

instance shifts a saddle and an unstable node inside the MBT, this changes the 

path and the directions of the profiles dramatically. All profiles around the 

singularities are either running towards the node (stable node in the bottom right 

corner) or away from it (saddle node in the bottom left corner). 

 

It is important to note that the discontinuity present in the residue curve map does 

not move and is still fixed in its original position. This is due to the fact that, at the 

discontinuity, the thermodynamics of the system are not defined and the 

thermodynamics are not changed by the linear transformation of the DE.  In 

principle the topology from all 7 original regions may be utilised in the design of 

both simple and complex distillation columns. In this paper we discuss constant 

relative volatility systems only. This has been done for illustrative purposes. The 

objective of this paper is to present a new approach for designing separation 
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systems by looking at the theory and nature of CPM’s. Non-constant relative 

volatility systems show a much more complex behaviour, i.e. the transformed 

boundaries of the MBT are no longer straight, azeotropes occur outside the MBT 

changing the topology. The technique to analyse the behaviour is not analytic 

anymore, as the temperature is not obtainable as an explicit function. However, 

non-ideal systems have been analyzed (i.e. methanol/ethanol/acetone-system, 

chloroform/benzene/acetone-system) and these results agree in principle with the 

results obtain for the ideal system (see chapter 3.3). 
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Figure 2.8: Column profile map 
X∆ = [0.7; 0.7; -0.4], R∆ = 9, region 2. 

 

Figure 2.9: Column profile map 
X∆ =[ -0.2; 1.4, -0.2], R∆ = 9, region 3. 

Figure 2.10: Column profile map 
X∆ =[ -0.3; 0.5; 0.8], R∆ = 9, region 4. 

 

Figure 2.11: Column profile map 
X∆ = [-0.3;- 0.3; 1.6], R∆ = 9, region 5. 

Figure 2.12: Column profile map 
X∆ = [0.5;-0.3; 0.8], R∆ = 9, region 6. 

Figure 2.13: Column profile map 
X∆ = [1.4;-0.2; -0.2], R∆ = 9, region 7. 
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2.3 Column profile map pinch locus 
 

Pinch point loci have been defined as the locus of all pinch points obtained by 

varying the reflux ratio R. They are unique for a fixed distillate composition XD. 

Pinch points can be determined mathematically by solving the differential 

equation for dx/dn = 0 or graphically by finding the line from either the distillate 

XD or bottoms composition XB tangent to the residue curves. The difference point 

equation is mathematically identical to the differential equations describing the 

rectifying or stripping sections in a distillation column (Doherty 1978) hence for a 

fixed X∆ there is a unique pinch point locus obtainable by varying R∆. As X∆ does 

not need to lie inside the MBT, pinch point loci show vastly different behaviour 

depending on the position of the difference point in the x1-x2-space. Pinch loci 

help describe the path that the triangles take as R∆ is varied as the nodes for every 

CPM have to lie on the respective pinch curve. In this section we will show how 

the behaviour of the pinch point loci affects the topology of CPM’s. This will be 

shown again for a constant relative volatility system. However the overall theory 

holds for real systems as well. See chapter 3.3. 

 

2.3.1 Pinch loci for difference points inside the MBT 
 
A difference point inside the MBT has only positive values, i.e. X∆ = [0.2 0.5 0.3], 

which have to sum up to 1. However, if the flowrate difference point ∆ is 

negative, the net-molar flowrate ∆X∆, can become negative. Some typical pinch 

point loci for different X∆ inside the MBT are shown in Figure 2.14. Remember 

that one can find a pinch point by finding a point on a residue curve such that the 

line from the initial point is tangent to the residue curve. This is equivalent to 

saying that the separation vector (x-y*) is collinear to the mixing vector (XD – x). 
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Figure 2.14: Pinch point loci inside the MBT for different X∆ 

 

The position of X∆ determines the path of the pinch point loci, see Figure 2.14. 

Pinch loci do not stop at the pure components as there are composition profiles 

outside the MBT (see Figure 2.5) and one can find tangents that meet the 

collinearity condition. This is shown in Figure 2.15. 

 
Figure 2.15: Pinch point loci in the expanded space for different X∆. 
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Figure 2.15 shows that the pinch point loci determined by x∆ consists of two 

branches. Any choice of X∆ inside the MBT results in two pinch point loci 

branches with one branch connecting the highest and lowest boiling component 

and one branch running through the intermediate boiler.  

 

Pinch loci and the reflux ratio R∆ 

Now where do pinch point loci start and end? To answer this question we have to 

look at the effect of the reflux ratio R∆ in more detail. Every point of the pinch 

point locus has a unique R∆. For R∆→ + ∞ the difference point equation reduces to 

the residue curve equation. The resulting pinch points are the pure components 

and form the MBT. Hence every set of pinch point loci must run through the 

vertices as the residue curve equation is independent of X∆, see Figure 2.15. 

Different values of R∆ result in different positions of the singularities on the pinch 

locus. Figure 2.16 shows the position of singularities for R∆→ + ∞, R∆=2 and 

R∆→ 0.  

 
Figure 2.16: Position of singularities on the pinch point locus for positive 

R∆ in the range from R∆→ + ∞  to R∆→ 0. 
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From Figure 2.16 one can deduce, the smaller the reflux, the further away the 

singularities move from the MBT. The limiting case R∆→ 0 moves two of the 

singularities to positive infinity values in the x1,x2-space along the pinch curve 

while the third one reaches a boundary value, as shown in Figure 2.16. R∆→ 0 

represents a “switching over” point, as a further decrease in R∆ makes it become 

negative. This change of sign can be interpreted as changing from rectifying into 

stripping mode, ∆X∆ changes from being all positive to all negative due to the fact 

that negative R∆ changes the sign in the differential equations. In analogy to the 

above, Figure 2.17 shows the movement of the singularities along the pinch point 

locus for negative R∆ ranging from R∆→ 0 to R∆→ - ∞. 

 

 
Figure 2.17: Position of singularities on the pinch point locus for 

negative  R∆ in the range from R∆→ 0 to R∆→ - ∞. 
 

Approaching R∆→ 0 from the negative side moves the two singularities to 

negative infinity values in the x1,x2-space while the third one reaches the 

boundary value. It is interesting to note that at R∆= -1, X∆ becomes the only 

singularity that occurs, as the differential equation reduces to x- X∆ = 0. Hence X∆ 

always lies on the pinch point locus. The pinch locus region between R∆→ 0 and 

R∆= -1 is for counter-current flow patterns is only of mathematical interest, as the 
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V/L ratio has to be negative in order to attain reflux ratios in that range. However 

if one would adopt that negative values of the V/L ratio correspond to co-current 

flows this methodology could be applied to both counter current and co-current 

cascades. We can now interpret the pinch point locus with respect to the sign of 

the reflux ratio. This is shown in Figure 2.18.  

 

 
Figure 2.18: Classifying the pinch point locus with respect 

to the sign of the reflux ratio. 
 

Positive values of R∆ result in all pinch points being positioned somewhere on the 

dotted part of the pinch curve, see Figure 2.18, and negative values of R∆ 

positions all the pinch points on the solid part of the pinch locus. We can conclude 

now, that pinch loci have no start or end point. They describe a circular path as 

they switch from +∞ to -∞ in the x1, x2-space as R∆→ 0. 

 

Note: The statement, that pinch curves follow a circular path seems to be 

incorrect, as there is a discontinuity in the form of a straight line apparent in the 

system, see Figure 2.6. What happens to the pinch locus if it meets the 

discontinuity? Pinch points exist for -1 < R∆ < 0 (although they are only attainable 

for negative V/L ratios). This implies that the triangles do move from -∞ in the x1, 

x2-space for R∆→ 0 towards the MBT by decreasing R∆. As mentioned earlier, R∆ 

= -1 results in only one pinch point. The reason for this lies in the existence of the 

X∆ 

R∆ → 0 

+∞ > R∆ > 0 
   0 > R∆ > -1 
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discontinuity. By approaching the value of -1, the triangle moves closer to the 

discontinuity until, for R∆ = -1, the triangle collapses into XP = X∆. In conclusion, 

we might restate that the pinch locus follows a closed circular path as long as its 

path does not cross the discontinuity in the system. If it crosses the discontinuity 

there is an undefined point on the pinch curve for R∆ = -1. The collapsing of the 

triangle can also explained by looking at the flowrates. At R∆ = -1 the internal 

vapour flow rate V goes to zero. Obviously nothing happens with the liquid 

flowing through an empty tube without contact with the vapour. Similarly if R∆ = 

0 the internal liquid flowrate L goes to zero and nothing happens with the vapour 

rising up through an empty tube. Thus the difference point has to be the only 

singularity in both cases leading to the collapsing triangle for these conditions. 

 

Moving triangles 

To understand how pinch loci are helpful in understanding the topology of 

systems we have to look at the pinch loci in terms of the kind of singularity (pinch 

point) that occurs. As mentioned earlier, the nodes of the MBT (pure components) 

can be classified as an unstable node (highest boiler), stable node (lowest boiler) 

and a saddle point (intermediate boiler). Now by fixing X∆ we can investigate the 

kind of node that occurs for different R∆ and split the pinch loci into an 

unstable/stable node branch and a saddle branch.  

 
Figure 2.19: Classifying the pinch point locus with respect 

to kind of singularities that occur. 
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To understand the usefulness of this for understanding the topology, we will look 

at an example. Let us pick a reflux ratio, i.e. R∆=2 and plot the nodes, as done in 

Figure 2.20a. 

 

 
Figure 2.20a: Singularities for R∆=2 and 

their position on the pinch locus. 
Figure 2.20b: The triangular region for 

R∆=2 and the respective CPM. 
 

By looking at the position of the nodes on the pinch locus, we can classify the 

nodes as stable, unstable and saddle point. As the profiles connecting the nodes 

are straight lines, we can construct a triangular region and draw the CPM for 

R∆=2, as shown in Figure 2.20b. Different R∆ result in different triangular regions; 

Figure 2.21 shows the movement of the triangular regions for R∆=8, R∆=2, R∆=-3 

and R∆=-7. Decreasing R∆ from +∞ moves the triangle away from the MBT as 

indicated in Figure 2.21a. As R∆ becomes negative, the triangles appear from 

negative infinity values in the x1,x2-space and with further decrease move towards 

the MBT until R∆ = - ∞, see Figure 2.21b. We can conclude that, the higher the 

absolute value of R∆, the closer the triangle to the MBT.  
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Figure 2.21a: Moving of the triangles for 
R∆=2 and R∆=8. 

Figure 2.21b: Moving of the triangles for 
R∆=-3 and R∆=-7. 

 

Summary 

Difference points inside the MBT have only positive values. The path of the pinch 

locus depends on the position of X∆. They can be extended outside the MBT and 

they do not have a start or end point as they describe a circular path. Pinch loci for 

this case consist always of two branches with one branch connecting the highest 

and lowest boiling component and the other running through the intermediate 

boiler. Every set of pinch loci has the vertices as a common pinch point as for R∆ 

→ ±∞ the difference point equation reduces to the residue curve equation and the 

only singularities are the vertices. X∆ is a singularity on the pinch locus. The 

branches of pinch loci can be classified in regions of positive and negative reflux, 

with R∆→ 0 as the “switching over” point. The branches of the pinch locus can 

also be classified with respect to the kind of singularity occurring. This allows 

predicting the topology of the system by determining the position of the nodes on 

the pinch locus. The pinch loci trace the path the triangles move for a fixed X∆ by 

varying R∆.  
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2.3.2 Pinch loci for difference points outside the MBT 
 

To be able to examine the behaviour of the pinch loci for difference points outside 

the MBT, we have to define regions of similar behaviour. These regions are 

characterised by regions in which the values of difference point have the same 

sign.  

 

Pinch loci for regions of similar X∆ 

In section 2.2.2 we introduced seven regions, see Figure 2.5. One of these regions 

has been discussed in the previous section (all values of X∆ are positive). What 

about the other cases? Figure 2.22a-f each show one set of pinch loci for an 

arbitrarily chosen X∆ in the remaining six different regions. The notation of the 

respective difference point is as follows: X∆ = [- + +]. This represents a difference 

point with the lowest boiling component having a negative sign, while the highest 

boiling and the intermediate component have positive signs. 
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a) X∆ = [+ + -]:  b) X∆ = [+ - +]: 

 

c) X∆ = [+ - +]:  d) X∆ = [- - +]: 

 

e) X∆ = [- + +]:  f) X∆ = [- + -]: 

 
Figure 2.22a-f: All sets of different pinch loci for fixed X∆ in the six different regions. 
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Figure 2.22a-f show vastly different behaviour of pinch loci depending on the 

region in which the X∆ is. Looking at Figure 2.22a we can see the one branch runs 

through the unstable node, whereas the other branch connects the stable and the 

saddle point. However there are cases, such as Figure 2.22c and Figure 2.22f with 

one pinch locus going through all three nodes. Figure 2.22c also shows that it is 

possible that there is only one branch in the system. Any other choice of X∆ within 

these regions only changes the curvature of the pinch loci. The overall pattern (the 

way the branches connect the nodes and the number thereof) of the pinch loci 

remain. In other words: choosing a different X∆ within the region shown in Figure 

2.22c, always results in an elliptic pinch locus although their position and size 

differs from the one shown in Figure 2.22c. As there is such a variety of pinch 

loci, one might ask, what is actually happening to the pinch loci as X∆ moves 

through the regions?  

 

 
Figure 2.23a: Shifting of the pinch curve branches by moving 

x∆ from region 1 to region 2. 
 

Figure 2.23a shows the residue curve map and the pinch loci defined by X∆ = [0.6 

0.4 0]. Now moving X∆ inside the MBT shifts the branches of the pinch locus as 

indicated by the dashed line arrows in Figure 2.23a. This results in pinch loci as 

discussed in the previous section. Moving X∆ into region 2 shifts the pinch loci in 

exactly the opposite direction, shown as the full line arrows in Figure 2.23a, this 
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result in pinch loci shown in Figure 2.22c. To understand the shifting of the 

branches for the other regions, we have to look at a few more figures. 

 

 
Figure 2.23b: Shifting of the pinch locus branches by 

moving X∆ from region 1 to the regions 4, 5 and 6. 
 

Figure 2.23c: Shifting of the pinch locus branches by moving X∆ from region 1 to region 3 
and from region 1 to region 7. 

 

In analogy to the above, Figure 2.23b shows the shifting of the pinch curve 

branches defined by X∆ = [0 0 1] by moving x∆ from region 1 to regions 4, 5 and 

6, which results in pinch loci shown in Figure 2.22a, Figure 2.22e and Figure 

2.22f. Finally we are left with moving X∆ from region 1 to the regions 3 and 7. 

This is shown in Figure 2.23c with X∆1 = [1 0 0] and X∆2 = [0 1 0]; the respective 

pinch loci are shown in Figure 2.22b and Figure 2.22d. 
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Effect of pinch loci on the topology of the system 

So what is the effect of the position of the pinch loci on the topology of the 

system? Figure 2.24a shows an example of how the triangles can be situated on 

the pinch locus defined by X∆ = [-0.3 -0.3 1.6] for R∆ = 8 and R∆ = -1.5.  

 
Figure 2.24a: Position of triangular regions on a pinch point 
locus defined by X∆ = [-0.3 -0.3 1.6], for R∆ = 8 and R∆ = -1.5. 

 

 

The respective topology of the CPM’s is shown in Figure 2.24b and Figure 2.24c. 

R∆ = 8 

R∆ = -1.5 

MBT 
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Figure 2.24b: CPM for R∆=8 and 
X∆ = [-0.3 -0.3 1.6]. 

Figure 2.24c: CPM for R∆=-1.5 and 
X∆ = [-0.3 -0.3 1.6]. 

 

 

The implication of the movement of the triangles along the pinch locus shown in 

Figure 2.24a is not immediately obvious, but extremely important as the resulting 

topologies show vastly different behaviour, see Figure 2.24b and Figure 2.24c. 

These figures show no singularity inside the MBT is that a problem? What 

happens if the two feeds XT and y to the column sections are controlled and the 

column section height would be enlarged up to infinity in a system where all 

singularities are situated outside the MBT? For a constant XΔ there is a set number 

of stages to achieve the two wanted compositions (XT and y). Adding more and 

more stages changes the composition of the passing streams YT and x. This results 

in a change of XΔ and therefore changes the entire CPM and the position of the 

singularities as well. In other words adding more stages moves the singularity 

until they are shifted inside the MBT. This also means that CPM’s without a 

singularity inside the MBT produce feasible profiles. 

To be able to understand how the singularities move for a fixed X∆ outside the 

MBT we have to look at the mathematics involved on how to determine the kind 

of singularity occurring. As this is quite complex, we shall devote an entire paper 

looking at how the system behaviour can be characterized by the study of singular 

points (stationary points). However the purpose of this paper is to create an 
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understanding of the behaviour of CPM’s. Through novel and creative design 

these topologies can be used in order to achieve a desired separation initially 

thought impossible.  

 

In honour of Reuel Shinnar we have used these ideas to generate a column section 

configuration that writes “Reuel”. In this case we assumed any needed feedstream 

to be available. The first column section needs to operate as a rectifying section 

with XΔ1 = XD thus the profile has to start at the difference point composition this 

is represented as the dashed red line in Figure 2.25a. 

 

 
Figure 2.25a: First profile of the sequence of column profiles that 

show the word “Reuel”. 
 

The second column section needed to have a profile that runs at a 90° angle to the 

first profile starting at the composition X01. This has been realized by using a 

difference point XΔ2 in region 7 with a high reflux ratio of RΔ = 10.2. This results 

in a CPM shown in Figure 2.25b. The bold line in Figure 2.25b represents the 

second part of the letter “R”. 
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Figure 2.25b: First and second profile of the sequence of 
column profiles that show the word “Reuel”. 

 

In analogy to the above it is possible to assemble the whole word “Reuel” with 

column profiles, see Figure 2.25c. The entire column section configuration with 

the respective XΔ and RΔ is shown in Figure A.1 in Appendix A. The colours used 

for the column sections matches the column profiles in Figure 2.25c. 

 

Figure 2.25c: Sequence of column profiles that show 
the word “Reuel”. 
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2.4 Discussion and Conclusions 
 

The development of graphical tools to gain insight into simulation procedures is 

always of great interest. In this paper we showed how to generate CPM’s for 

constant relative volatility systems by using the difference point equation. CPM’s 

give great insight into the system behaviour, as they are the plot of all possible 

profiles achievable in a column section, defined by the difference point X∆ and the 

reflux ratio R∆. This is a great advantage over the traditional approach, which 

results in just a single profile (stripping or rectifying profile). The designer can 

now for instance choose the optimal profile for the desired separation, by having 

an understanding of the overall behaviour of the system, from the topology of the 

CPM’s. Once the determination of the optimal profile has been done by the 

designers, this technique enables them to choose the right operating parameters 

and the column configuration to achieve the desired separation i.e. if the designer 

decides to build a column network that writes “Reuel” in the form of 

concentration profiles, this approach makes it possible.  

 

The knowledge of the behaviour of the overall system can also be very useful in 

terms of the stability in a column section. CPM’s are defined by their stationary 

points (singularities, pinch points, nodes) and it is relatively quick and cheap to 

determine the topology qualitatively and classify regions of instability, such as 

operating the column close to the triangular region. This might result in profiles 

going in the opposite direction from that desired.  

 

Mathematically CPM’s as well as RCM’s are not bounded by the MBT, although 

only profiles inside the MBT are realistic concentration profiles. However the 

knowledge of the behaviour of the outside topology can be of great use. We have 

shown that transforming the space by changing the transformation parameters X∆ 

and R∆ outside profiles can be shifted inside the MBT, to become realistic 

concentration profiles. We also showed that the vertices of the triangles move 

along the pinch locus and how this is a powerful tool for understanding the 

shifting of the topology. It is now up to the designer to transform the space such 
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that the separation becomes optimal. This could revolutionise the way separation 

processes are designed. The designer now has the freedom to dictate the system 

behaviour as opposed to being constrained by it. There are of course limitations 

for the designing of separation processes. These include mass balance constraints 

and energy requirements. However we have shown that there are vastly different 

topologies attainable even for constant relative volatility systems, by choosing the 

respective transformation parameters. One can expect a lot more diversity for 

azeotropic systems, but this is beyond the scope of this paper. 

 



 

 37 

3 Chapter 3:  

Column Profile Maps 

2. Singular Points and Phase Diagram 

Behaviour in Ideal and Non-Ideal Systems 
 

 

This work was published as the second part of a CPM series, in Industrial and 

Engineering Chemistry Research (see Holland et al, 2004 a). Although my name 

appears as first author on this paper, the work is almost exclusively Michaela 

Tapp’s. 

 

 

 

Abstract 

 

Column Profile Maps.1. Derivation and Interpretation, (see chapter 2) analysed 

the behaviour of distillation systems by using column profile maps which are 

generated by using the difference point equation. Ideal thermo was assumed and it 

has been shown how using CPM’s one can devise more creative designs. Part B 

focuses on extending the ideas to non – ideal thermo and develops tools for 

synthesis of distillation for ideal and non – ideal systems by looking at 

eigenvalues and eigenvectors and how one can characterize, explain and 

manipulate the behaviour of systems by moving the singular points. 

 



 Chapter 3: Column Profile Maps 2. Singular Points and Phase Diagram… 38 

 38 

3.1 Introduction 
 

Early attempts to explain the nature of separation processes began in the 1900’s 

when Schreinemakers (1902) developed an experimental technique to measure 

residue curves. He formally defined the residue curve as the locus of the liquid 

composition remaining from a simple distillation process. By starting with 

different liquid compositions, a set of unique residue curves is formed. This set of 

residue curves that falls in the mass balance constraint space is called a residue 

curve map. For ternary mixtures, these features can be represented by means of a 

ternary diagram. Hausen (1952) and Rishe (1955) showed that the residue curve 

can represent the composition profile of a packed distillation column at infinite 

reflux. A residue curve map therefore represents all possible operational 

composition profiles in a packed column at infinite reflux. Although only directly 

useful in ternary and quaternary systems, great insights into higher order systems 

can be gleaned by the analysis of various groups of ternary (or quaternary) 

mixtures of which the system comprises. In the late 1960s Zharov (1967; 1968c) 

gave a more rigorous mathematical foundation for the residue curve map analysis 

and expanded it to multicomponent mixtures.  

 

In the 1980’s Van Dongen & Doherty (1985) introduced the concept of nonlinear 

autonomous ordinary differential equations (ODE’s) as a shortcut design tool to 

determine the composition profiles along the length of a distillation column. The 

differential approximation models the liquid phase composition profile in both the 

rectifying and the stripping sections of the column. Vogelpohl (1964) showed that 

the set of differential equations describing the simple distillation process is 

identical to the one for the concentration profiles of packed columns operated at 

total (infinite) reflux when the mass transfer coefficient is unity. Van Dongen and 

Doherty (1985) also demonstrated that the results yielded by a differential column 

model and by stage by stage calculation are very similar. Moreover, the simplicity 

and the accuracy of the first order differential approximation make it the preferred 

model for design calculations. While these ODE’s model the rectifying and the 

stripping sections of a distillation column, they do not describe the transition from 
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the rectifying to stripping sections and are therefore no longer valid at the feed 

stage. (Doherty (1977) used the mathematical approach on ODE’s to determine 

the occurrence of singularities in ideal and azeotropic RCM’s.)  

The use of the stage by stage or the differential approximation model helps to 

solve specific design problems involving multi-component separation, by 

numerical calculation. Such calculations usually involve rigorous iteration. They 

do not contribute very much to our ability to produce generalisations or an 

analytical theory of multi-component separation neither do they provide an 

intellectual framework to better understand the options in designing separation 

processes. In this paper we will use original ideas developed by Franklin (1986). 

He interpreted the z-transformation method used by Underwood (1948). Based on 

Underwood’s equations and the assumptions of constant relative volatility and 

constant molar flows he analysed counter-current cascades. He showed that 

composition profile maps for finite reflux columns are transforms of the infinite 

case.  

 

This paper is the second of the series Column Profile Maps (CPM’s). The 

objective of the first part: Column Profile Maps Part. 1. Derivation and 

Interpretation, (see chapter 2) was to analyze the behaviour of column profile 

maps for ideal systems and to show that CPM’s are maps describing the topology 

for finite reflux conditions and they are in fact transforms of the residue curve 

map as the difference point equation (DPE) is a linear transform of the residue 

curve equation. In this paper we will explore ODE’s, and in particular the 

difference point equation, and develop synthesis tools for ideal and non-ideal 

systems which can be of great use for column design. This approach will enable 

us to characterize, explain and manipulate the behaviour of systems by moving the 

singular points. It will create a better understanding of multi-component 

separation, i.e. systematic finding of operating conditions corresponding to a 

specific behaviour of the mathematical model. Vogelpohl (1999) mentioned 

composition profiles which extend beyond the composition triangle (Gibbs 

triangle or mass balance triangle). These profiles have no physical meaning, but 

we will show how they can be used in order to achieve a desired separation. 
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3.2 Ideal systems 
 

The objective of this paper is to show that system behaviour can be characterized 

by the study of singular points (stationary points) - see Doherty (1977). Therefore, 

it is necessary to look at these points in more detail. Singular points in distillation 

are pure components, azeotropes and pinch points. These points are defined by 

dx/dn = 0. It has been shown in Appendix B that at every point in the space XS, 

one can calculate a set of eigenvalues and eigenvectors. The eigenvalues 

characterise the type of singularity that can occur at that point in space while the 

eigenvectors characterise the asymptotic direction of the trajectories in the 

neighbourhood of the singularity. 

 

Assuming constant relative volatilities αi and equimolar overflow, yi(x) can be 

expressed as: 

 

( )

componentheavy   theofindex   theis N where
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  (3.1) 

 

There exists a unique eigenvector map for each system i.e. in this case for a 

particular set of αI (for detailed information see Appendix B). The eigenvector 

map can be obtained by plotting the eigenvectors over a range of x, as shown in 

Figure 3.1 with α12 = 2, α22 = 1 and α32 = 1.5. 
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Figure 3.1: Eigenvector map for an ideal system. 

The compositions x1 and x2 range from xi = [-1..2]. 
 

The region of complex eigenvectors in Figure 3.1 is a result of complex roots of 

the characteristic equation. There is no determinable asymptotic direction in the 

real space. Hence this region has stationary points that comprise of midpoints and 

stable/unstable foci only, whereas in the region of determinable eigenvectors in 

the real space there are stable/unstable nodes, saddles and half nodes. To make use 

of the eigenvectors we have to determine the number, position and the kind of the 

singularities occurring. Singular points are defined by dx/dn = 0 hence the number 

of singularities is defined by the order of the thermodynamic model used. Ideal 

systems are modelled by a cubic function (see Equation 3.1) thus the number of 

singularities is always three. The kind and the positions of these three singularities 

depend on the choice of the parameters XΔ and RΔ in the difference point equation 

(Equation 2.1). 

 

3.2.1 Infinite reflux  

 

We will start with the case R∆→ ± ∞. In analogy to the eigenvector map there 

exists an eigenvalue map, as shown in Figure 3.2. 
 

Region of 
complex 
eigenvectors 



 Chapter 3: Column Profile Maps 2. Singular Points and Phase Diagram… 42 

 42

 
Figure 3.2: Eigenvalue map for an ideal system for R∆→ ± ∞ . 

The compositions x1 and x2 range from xi = [-1..2]. 
 

The eigenvalue map in Figure 3.2 shows discrete regions of node types in the x1, 

x2-space. A singularity occurring at x1=1, x2=0 would be of the stable node kind, 

while a singularity at x1=0, x2=0 results in a saddle point. The eigenvalues in the 

x1 - x2 space are continuous, hence the border between these regions is uniquely 

defined. The border between the unstable and the saddle point region is 

characterized by λ1 = 0, λ2 > 0. This describes an unstable half node-saddle. In 

analogy to the above, a singularity appearing at the saddle point/stable node 

border would be of the stable half node-saddle kind, with λ1 < 0, λ2 = 0 These 

points can be calculated for the condition that for the entries of the n x n matrix 

J(XS) = [aij] holds: a11 a22 = a12 a21 . The border between the unstable and the 

stable focus region shows interesting behaviour as well. A singularity in the 

unstable/stable focus region is defined by p + iq, λ2 = p – iq, with p > 0, q ≠ 0 

(unstable) or p < 0, q ≠ 0 (stable). A continuous change of eigenvalues leads to a 

border region, that is defined by p = 0, q ≠ 0 this classifies the singularity 

occurring at the border between the two complex regions as a midpoint. These 

points can be calculated for the condition that for the entries of the n x n matrix 

J(XS) = [aij] as defined in Appendix B holds: a11 = -a22 . 
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Solving Equation 3.2 for RΔ →∞ leads to leads to three distinct and real solutions 

Xs = {ℝ1≠ℝ2≠ℝ3}. This is not surprising, as these solutions represent the three 

pure components however, it is interesting to note, that this applies for the entire 

space x∈ ℝ. By entire space we refer to profiles outside the mass balance triangle; 

see Figure 3.3.  

 

 
Figure 3.3: Entire Residue curve map for ideal systems with the 

respective classification of the nodes. 
 

As mentioned in the introduction, these profiles have been introduced by 

Vogelpohl (1964). They have no physical meaning, however they play an 

important role in understanding the system behaviour, as parts of it can be shifted 

inside the MBT, but this will be discussed at a later stage. 

Doherty and Perkins (1977), showed, that for ideal c–component mixtures there 

are exactly c singular points. Evaluating J(Xs) and solving the roots of the 

characteristic equation lead to a stable, unstable node and a saddle, with the 

respective eigenvectors pointing along the axes of the composition triangle; see 
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Figure 3.3. Extending the axis of the mass balance triangle shows, that there exist 

two eigenvectors that are collinear on each axis and we therefore can conclude, 

that the axes are straight. This appears as a natural observation due to the mass 

balance constraint. However the lines connecting the singularities are straight for 

ideal systems. Knowing the direction of the eigenvectors, the kind, number and 

position of the singularities enables us to draw any ideal system CPM 

qualitatively. Doherty and Perkins (1977) also stated that there is exactly one 

stable node (corresponding to the least volatile component) one unstable node 

(corresponding to the most volatile component) and (c-2) saddles. This is not 

always true, as we will now show.  

 

3.2.2 Finite reflux 
 
Solving the difference point equation for an ideal ternary mixture, with a specified 

R∆ and X∆, leads to three solutions. However depending on the choice of R∆ and 

X∆ there are certain types of solutions that occur. The cases of singularities Xs 

with the resulting roots λ1, λ2 for ideal ternary mixtures are listed in Table 3.1: 

 

 Nature of 

solutions 
Type of Nodes occurring 

No of 

nodes 

Case 1 Xs = {ℝ1≠ℝ2≠ℝ3} 

Unstable (λ1<0, λ2<0) 

Stable (λ1>0, λ2>0) 

Saddle point (λ1>0, λ2<0)  

1 

1 

1 

3 

Case 2 Xs = {ℝ1≠ℝ2=ℝ3} 

stable/unstable (λ1=λ2> / <0) 

half unstable-saddle/ half stable- saddle (λ1=0, 

λ2<0 / λ2>0) 

1 

1 2 

Case 3 Xs = {ℝ1, ℂ2, ℂ3
*} 

stable/ unstable focus (p<0, q ≠ 0 / p>0, q ≠ 0) 

or 

midpoint (p = 0, q ≠ 0)  

1 1 

Table 3.1: The three different cases of solutions for an ideal ternary system and the resulting 
type and number of nodes occurring in the phase diagram. 
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The phase diagrams for finite reflux ratios are called column profile maps 

(CPM’s). They are linear transforms of the RCM and thus consist of a triangular 

region if singularities of case 1 occur. The triangular region is determined by the 

direction of the eigenvectors at Xs. Examples of the phase diagrams for the 

different cases with the respective R∆, X∆ and the eigenvectors are shown in 

Figure 3.4 to Figure 3.6. 

 

 
Figure 3.4: Example for case 1 singularities 
with the respective eigenvectors for R∆→ ∞. 

 
 

 
Figure 3.5: Example for case 2 singularities with the 

respective eigenvectors for R∆ = 5 and X∆= [-0.35 1.00]. 
 

Eigenvectors 
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Figure 3.6: Example for case 3 (midpoint) 
singularities with R∆ = 5 and X∆= [-0.74 2]. 

 

The design parameters R∆ and X∆ in ideal systems 

The parameters R∆ and X∆ play an important role in determining the occurrence 

and the type of singularities and therefore the behaviour of the system. In addition, 

they are design parameters for separation processes. By varying the flowrate ratio 

R∆ in column sections, the designer shifts the eigenvalues of the system 

independently of the difference point composition X∆. This is because the 

eigenvalues are a function of the thermodynamic data and R∆ only. Let us look at 

the eigenvalue map changes for different R∆. Figure 3.7 and Figure 3.8 show 

eigenvalue maps for R∆ = 4 and R∆ = -2.  

 

Eigenvalue maps apply for every column that runs at that particular reflux ratio 

R∆, hence there are an infinite number of difference points X∆ available for the 

eigenvalue maps shown in Figure 3.7 and Figure 3.8. Figure 3.7a and Figure 3.8a 

each show one possible CPM for a specific X∆. 
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Figure 3.7: Eigenvalue map for R∆ = 4 
and x = [-1..2]. 

 

 
Figure 3.8: Eigenvalue map for R∆ = -2 

and x = [-1..2]. 
 

 

Figure 3.7a:  CPM for R∆ = 4, 
X∆ = [0.4 -0.1] and x = [-1..2]. 

Figure 3.8a: CPM for R∆ = -2, 
X∆ = [0.4 -0.1] and x = [-1..2]. 

 

R∆ = 4 shifts the whole eigenvalue map “upwards” with respect to the eigenvalue 

map for R∆ = ∞, as indicated by the arrow in Figure 3.7. It is important to note, 

that the regions shift as a whole and the neighbouring relationships remain. The 

area inside the mass balance triangle still consists of an unstable, stable and saddle 

point region, however the size of the stable node region has increased, whereas the 

size of the unstable node region has decreased. R∆ = -2 shifts the map 

“downwards”, see Figure 3.8. In this case the mass balance triangle is almost 

covered completely by the stable node region. In conclusion, a positive R∆ shifts 

the map upwards, while a negative R∆ shifts it downwards. Due to mass balance 

constraints and the thermodynamic models it is not possible to shift the complex 

region of eigenvalues into the mass balance triangle. Thus no midpoint or spiral 
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can be placed inside the MBT, although the profiles do get affected by singular 

points outside the MBT. However saddle points, nodes and half-nodes can be 

placed inside the MBT which results in a great variety of different CPM’s.  

 

Consider placing a saddle point at XS = [0.1 0.2]. This would require a reflux ratio 

of approximately 4. To operate a column section the designer has to specify the 

second design parameter X∆. What impact does the choice of the difference point 

have on the above requirement and how can one manipulate it?  

 

In chapter 2 we showed that the pinch point curve solely depends on the value of 

X∆. The pinch curve is the path that the singularities move in the space (inside and 

outside the MBT) and we established eight regions of different pinch point curve 

behaviour, depending on the position of X∆ (see Figures 2.22a-f in chapter 2.3.2). 

By varying the difference point X∆, the difference in composition on top of the 

column section changes and the designer shifts the pinch point curve without 

changing the flowrate ratio necessarily inside the column section. In order to meet 

the above requirement, the designer has now to find the right pinch curve by 

choosing the appropriate X∆. According to the Figures 2.22a-f in chapter 2.3.2 

pinch curve behaviour of the regions 3, 4, 6 and 7 would meet the requirements. 

(Only these pinch curves ran inside the MBT and connect the saddle point with 

either a stable or unstable node.) Figure 3.9 shows a difference point in region 6 

that met the requirement.  
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Figure 3.9: CPM with a saddle point at XS = [0.1 0.2] and the 

design parameters R∆ = 4 and X∆= [-0.08 0.5]. 
 

Once the composition of one singularity and the pinch curve is known, the CPM 

can be easily and quickly drawn qualitatively by determining the eigenvectors at 

the singularities and extending their directions until they cross the pinch curve. 

This determines the triangular region and therefore the CPM.  

 

How is this helpful for design? The designers are in principle able to generate any 

profile they want. As they can influence the type of singularity occurring by the 

flowrate ratio and they can shift the pinch curves such that the position of the 

singularity suits their design. We are going to demonstrate this on two examples. 

Example 1 is a problem to sample the intermediate boiler in ideal systems. As the 

node is described as a saddle point traditional design techniques require an infinite 

number of stages for 100% purity. The objective is to generate a profile that runs 

straight into the corner. This can be performed by transforming the system such, 

that the resulting singularities offer a column profile map that achieves the desired 

separation. This is shown in Figure 3.10. 
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Figure 3.10: CPM with the parameters RΔ = 8 and XΔ = [-0.3 -0.3]. 

The bold profile inside the circle runs direct into the intermediate boiler. 
 

The bold line in Figure 3.10 represents the one profile that runs directly into the 

corner. In other words, looking at the liquid profiles only it seems to be possible 

to sample the intermediate component with a finite number of stages and 100% 

purity. However a feasible design needs to be checked with respect to the vapour 

phase as well and in this particular case the corresponding vapour profile runs 

outside the MBT. Is this specific for this case or is it in principal impossible 

because of thermodynamic limitations? We do not know the answer to this 

question yet although using this technique almost everything seems to be possible. 

 

Example 2: For illustrative purposes we were asked to put a column section 

configuration together where the profiles show the word “Wits”. In this case we 

could assume any needed feedstream to be available. The first column section 

needs to operate as a rectifying section with XΔ1 = XD thus the profile has to start 

at the difference point composition while the profile is represented by the dashed 

blue line in Figure 3.11.  
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Figure 3.11: First profile of the sequence of column profiles 

that show the word “Wits”. 
 

 

The second column section needs to have a profile that runs in the opposite 

direction this has been realized by placing a saddle node close to the composition 

X01 (the difference point XΔ2 for this CPM lies in region 6). The profile starting at 

X01 shows the second part of the “W”, this is represented as the dashed blue line in 

Figure 3.12.  

 

 

 
Figure 3.12: First and second profile of the sequence of 

column profiles that show the word “Wits”. 
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In analogy to the above it is possible to assemble to whole word “Wits” with 

column profiles, see Figure 3.13. The entire column section configuration with the 

respective XΔ and RΔ is shown in Figure C.1 in Appendix C. The colours used for 

the column sections match the column profiles in Figure 3.13. 

 

 
Figure 3.13: Sequence of column profiles that show 

the word “Wits”. 
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3.3 Non-ideal systems 
 
For non-constant relative volatility systems yi(x) can be expressed as: 

 
 (3.2) 
 

The total pressure Ptot of the system was set to one bar for all examples. The 

vapour pressure Pvap for each pure component can be calculated by using the 

Antoine equation: 

 

 
 (3.3) 
 

The NRTL (Non Random Two Liquid) model has been used to determine the 

liquid activity coefficient γ:  

 

 

 
 (3.4) 

 

Where ( )( )ijijijij KTdcG τ15.273exp −+−=  and TfTe
T
b

a ijij
ij

ijij +++= lnτ  

The binary parameters aij , bij , cij , dij , eij and fij  for the NRTL model can be 

determined from VLE and/or LLE data regression. ASPEN PLUS has a large 

number of built-in binary parameters. They have been regressed using the data 

from the Dortmund Databank.  

 

Although the determination of the vapour composition in equilibrium with the 

liquid composition yi(x) for non-ideal systems is not as easy as for the ideal case, 

the eigenvectors for non-ideal systems are still a function of the thermodynamics 

only (v =f(yi(x))) whereas the eigenvalues are a function of the thermodynamics 

and the reflux ratio (λ =f(yi(x), R∆)). In this paper we look at the acetone / benzene 

/ chloroform system.  
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3.3.1 The benzene / chloroform / acetone system 
 
Figure 3.14 shows the eigenvector map for the benzene / chloroform / acetone 

system.  

 
Figure 3.14: Eigenvector map for the benzene/chloroform/acetone 

system. The compositions x1 and x2 range from xi = [-1..2]. 
 

The empty spaces in Figure 3.14 correspond to region of complex eigenvectors 

and the resulting singularities are foci and midpoints. As a result of the 

thermodynamics, there is a great change in direction of the eigenvectors in some 

areas along the x1 – axis. Hence changing the position of the nodes by 

transforming the space will result in a great variety of phase diagrams. The 

number of singularities in ideal systems is three, as the vapour in equilibrium is 

expressed by a cubic function. The determination of the order of the 

thermodynamic model used for non-ideal systems is not as easy, as this equation 

can not be solved algebraically.  

 

Infinite reflux  

The eigenvalue map for this system is shown in Figure 3.15. This system has three 

pure component singularities and one azeotrope on the chloroform acetone axis 

inside the MBT. The eigenvalue map shows that these are one unstable, one stable 

and two saddle points. And again the only possible singularities occurring inside 

the MBT are nodes, saddle points and half nodes as the complex regions can not 

be shifted inside the MBT. 

Acetone Chloroform 

Benzene 
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Figure 3.15: Eigenvalue map for the 
benzene/chloroform/acetone system for R∆→ ± ∞. 
The compositions x1 and x2 range from xi = [-1..2]. 

 

 

 

 

 

Superimposing the eigenvector and the eigenvalue map would show that the 

empty spaces in Figure 3.14 are filled with complex eigenvalues. It is also 

interesting to note, that the regions of great change in direction of the eigenvectors 

in Figure 3.14 correspond to regions in Figure 3.15 where small changes of x1 

creates large changes in eigenvalues. This is an indication of highly unstable 

regions. Comparing the eigenvalue map of Figure 3.15, with the eigenvalue map 

for ideal systems shown in Figure 3.2 shows that the maps can look quite 

different. However similar conclusions can be drawn. Singularities can be 

characterized with respect to the region in which they occur. The bordering 

regions indicate half nodes and midpoints occurring in the system. The border 

between the unstable (λ1, λ2 > 0) and the stable (λ1, λ2 < 0) region does not 

introduce a new singularity as both eigenvalues λ1 and λ2 have to be zero. The 

RCM of the benzene / chloroform / acetone system consists of three pure 

component nodes and a binary maximum boiling azeotrope node on the 

chloroform / acetone axis that are situated inside the MBT. However solving the 

differential equation for dX/dn = 0 gives more than four solutions. For x1 and x2 

ranging from -1 to 2 seven solutions can be found. The eigenvalues and 

eigenvectors can be calculated and the phase diagram drawn; see Figure 3.16. 

Unstable node region 
 
Stable node region 
 
Saddle point region 
 
Unstable focus region 
 
Stable focus region 
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Figure 3.16: RCM for x1 and x2 ranging from -1 to 2 for the benzene/chloroform/acetone 

system with the eigenvectors and the eigenvalues at the nodes. 
 

Figure 3.16 shows two regions in the phase diagram where the profiles are 

discontinuous. These regions correspond to the border region of stable and 

unstable singularities on the eigenvalue map. They also seem to affect the regions 

around it, as that is where the highly unstable regions occur. Discontinuities are 

inherent to the thermodynamic model. However they can not be moved by 

changing the parameters. This gives a limitation on what areas of the outside 

phase diagram can be shifted inside the MBT. It is also important to note, that the 

lines connecting the singularities are no longer straight. The only exceptions are 

the connectors of singularities that lie on the MBT or the extensions of the MBT. 

 

Finite reflux 

The ideal thermodynamic data dictated three singularities for every choice of XΔ 

and RΔ. Based on that, these singularities could be classified into three types of 

solutions, depending on the choice of XΔ and RΔ. The benzene/chloroform/acetone 

system has seven singularities, of which three are saddle points, two unstable 

nodes, one stable node and one stable focus; see Figure 3.16. As the differential 

Discontinuity 

Benzene 

Unstable 
node 

Acetone Chloroform 

Saddle point 

Stable node 

Unstable 
node

Stable half 
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equation cannot be solved algebraically for dx/dn = 0, the different cases 

occurring in this system have been established by looking at the phase diagrams 

by varying RΔ. These cases are listed in Table 3.2.  

 

 Nature of solutions Type of Nodes occurring No of nodes 

Case 1 Xs = {ℝ1≠ℝ2≠ℝ3≠ℝ4≠ℝ5≠ℝ6≠ℝ7} 

Unstable 

Stable 

Saddle point 

Stable focus 

2 

1 

3 

1 

7 

Case 2 Xs = {ℝ1≠ℝ2≠ℝ3≠ℝ4≠ℝ5≠ℝ6=ℝ7} 

Unstable  

Stable 

Saddle point 

Stable focus 

Unstable(Stable) half 

node saddle 

1 (2) 

1 (0) 

2 

1 

1 

6 

Case 3 Xs = {ℝ1≠ℝ2≠ℝ3≠ℝ4≠ℝ5, ℂ6, ℂ7
*} 

Unstable 

Stable 

Saddle point 

Stable focus 

1 (2) 

1 (0) 

2 

1 

5 

Case 4 Xs = {ℝ1≠ℝ2≠ℝ3≠ℝ4=ℝ5, ℂ6, ℂ7
*} 

Unstable 

Stable (focus) 

Saddle point 

Stable(Unstable) half 

node saddle 

1 

1 

1 

1 

4 

Case 5 Xs = {ℝ1≠ℝ2≠ℝ3, ℂ4 ℂ5
*, ℂ6, ℂ7

*} 
Unstable (focus) 

Stable 

Saddle point 

1 

1 

1 

3 

Case 6 Xs = {ℝ1≠ℝ2=ℝ3, ℂ4 ℂ5
*, ℂ6, ℂ7

*} 
Unstable 

Stable half node saddle 

1 

1 
2 

Case 7 Xs = {ℝ1, ℂ2 ℂ3
*, ℂ4 ℂ5

*, ℂ6, ℂ7
*} Unstable 1 1 

Table 3.2: Cases of nodes occurring in the benzene/chloroform/acetone system. 
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A fixed XΔ results in a unique pinch curve this is shown in Figure 3.17. Every 

point on the pinch curve is associated with a particular RΔ and a certain 

eigenvalue and hence a certain node type. This is represented by the different 

colours in Figure 3.17. The RCM shown in Figure 3.17 would be an example of a 

phase diagram for case 1 in Table 3.2. All seven singularities are real and distinct.  

 

 
Figure 3.17: RCM with the respective singularities 
and pinch curve defined by XΔ = [0.3 0.4] for the 

benzene/chloroform/acetone system. 
 

Decreasing the reflux ratio moves the nodes along the directions indicated by the 

red arrow in Figure 3.18. Note: not all the nodes move in the same direction. At 

RΔ = RΔ1 one unstable node merges with one saddle point to form an unstable half 

node saddle (Case 2).  

XΔ 
Unstable node 
Stable node 
Saddle point 
Stable focus 
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Figure 3.18: The movement of the singularities by decreasing the reflux 

ratio from RΔ →+∞ to RΔ →-∞. 
 

 

Decreasing RΔ further causes the non-elementary singularity to disappear into the 

complex space and Case 3 solutions occur until RΔ = RΔ2 another saddle point 

merges with a stable node to form a stable half node saddle (Case 4). (In this 

example the stable focus changed into a stable node to merge with the saddle 

point. Further decrease to RΔ2 > RΔ > 0 results in solutions of case 5, the system 

consists of one unstable, one stable and one saddle point. At RΔ →0 the saddle 

point and the unstable node moved to infinity in the x1-x2 space and further 

movement changes the nature of the unstable node into a stable node and vice 

versa. RΔ = -1 results in XΔ being the only solution. Further decrease shows one 

singularity moving along the unstable branch, this is captured as case 7 in Table 

3.2. At RΔ = RΔ3 a stable half node saddle emerges and two nodes determine the 

system (Case 6). The half node saddle separates by further reducing the reflux 

(Case 5). For RΔ = RΔ4 another unstable half node saddle emerges (Case 4) and 

separates (Case 3). Finally for RΔ = RΔ5 the last node emerges (Case 2) and 

separates (Case 1) until RΔ →- ∞. Cases 5, 6 and 7 correspond to the three cases 

introduced for ideal systems. Examples of phase diagrams for cases 2-7 with the 

respective XΔ and RΔ are shown in Figures 3.19a-d and Figures 3.19e-f. 

XΔ 

RΔ →0

RΔ =-1

RΔ1 
RΔ2 

RΔ3 

RΔ4 

RΔ5 
RΔ1>RΔ2> RΔ→0 > RΔ=-1 
>RΔ3 >RΔ4 >RΔ5 

Stable/Unstable half node 
saddle  
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a) Case 2:  

X∆=[0.54 -0.1 0.54], R∆=2.74 System 

with six singularities 

 b) Case 3:  

X∆ = [0.3 0.4 0.3], R∆ =10.9 

System with five singularities 

 
c) Case 4:  

X∆ = [0.3 0.4 0.3], R∆ =-11.7 

System with four singularities 

 d) Case 5:  

X∆ = [1.2 -0.1 -0.1], R∆ =3 

System with three singularities 

 
Figures 3.19a-d: Examples of phase diagrams for cases 2-5. 
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e) Case 6: 

X∆ = [0.54 -0.1 0.54], R∆ = 2.74 

System with two singularities 

 f) Case 7: 

X∆ = [1.2 0.5 -0.7], R∆ =3 

System with one singularity 

 
Figures 3.19 e-f: Examples of phase diagrams for cases 6 and 7. 

 

All systems which comprise seven singularities can be divided into seven cases, 

however the types of nodes occurring is unique to the particular system being 

studied. 

 

The design parameters R∆ and X∆ in non-ideal systems 
Changing the flowrate ratio of a column section changes the value of R∆. As 

demonstrated for ideal systems, negative values of R∆ shift the eigenvalue map 

downwards, whereas the eigenvalue map gets shifted upwards by positive values 

of R∆. This is shown in Figure 3.20a and Figure 3.20b. Placing a half node saddle 

inside the MBT would require a R∆ of the order of two. Now to be able to create 

this singularity there the designer has to find an appropriate X∆ in other words a 

pinch point curve that runs through that area. 
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Figure 3.20a: Eigenvalue map for 
R∆ = 2 and x = [-1..2]. 

Figure 3.20b: Eigenvalue map for 
R∆ = -2 and x = [-1..2]. 

 

Ideal systems could be divided into eight regions of different X∆ each of which 

show similar behaviour of the pinch point curves. These regions could be easily 

determined as they depend on the signs of X∆ only and X∆ changes sign as it 

crosses the lines obtained by connecting the singularities along the direction of the 

eigenvectors. This could be done, as all the profiles connecting the singularities 

are in fact straight lines, see Figure 3.4. We will refer to them as X∆ - boundaries. 

X∆ - boundaries divide regions of similar pinch curve behaviour, they cannot be 

crossed by pinch curves. 

 

Non-ideal systems have lines and curves connecting singularities. These curves 

are called distillation boundaries. The benzene/chloroform/acetone system has 

five distillation boundaries, see Figure 3.21. Distillation boundaries are not X∆ - 

boundaries as pinch curves can cross them. Current research is looking for ways 

to determine X∆ - boundaries. Up to now these boundaries can only be determined 

by a parametric trial and error procedure which finds that X∆ which results in a 

different pinch curve behaviour.  

15 regions of similar pinch curve behaviour could be established for the 

benzene/chloroform/acetone system, this is shown in Figure 3.21. 

 

Unstable node region 
Stable node region 
Saddle point region 

Unstable focus region  
Stable focus region 
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Figure 3.21: The 15 regions of similar X∆ for the benzene/chloroform/acetone system. 

 

 

The resulting pinch curves in these regions are shown in Figures 3.22a-o. The 

different colours show the kind of singularity occurring on the pinch point curve.  

 

Ia 

Ib 

IIa 

IIb 

IIIa 

IIIb 
IVa 

IVc 

IVb IVd 

V 

VIa 

VIb 

VIIa 
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a) Region Ia : X∆ = [0.1 0.2 0.7]  b) Region Ib : X∆ = [0.3 0.4 0.3] 

 
c) Region IIa : X∆=[0.05 1.05 -0.1]  d) Region IIb : X∆ = [1.2 0.5 -0.7] 

 

e) Region IIIa : X∆= [1.2 -0.1 -0.1]  f) Region IIIb : X∆ = [1.4 -0.3 -0.1] 

 
Figures 3.22a-f: All sets of different pinch loci for fixed X∆ in the 15 different regions. 
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g) Region IVa : X∆ = [0.1 -0.2 1.1] h) Region IVb : X∆ = [0.54 -0.1 0.56] 

 
i) Region IVc : X∆ = [1.1 -0.4 0.3]  j) Region IVd : X∆ = [0.97 -0.15 0.18] 

 

k) Region V : X∆ = [-0.1 -0.1 1.2]  l) Region VIa : X∆ = [-0.2 0.2 1] 

 
Figures 3.22 g-l: All sets of different pinch loci for fixed X∆ in the 15 different regions 
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m) Region VIb:X∆=[-0.14 0.9 0.24]  n) Region VIIa : X∆ = [-0.1 1.2 -0.1] 

 
o) Region VIIb : X∆ = [-0.2 1.7 -0.5] 

 
Figures 3.22m-o: All sets of different pinch loci for fixed X∆ in the 15 different regions. 

 
What importance do X∆ - boundaries have and how can they be used for a better 

understanding of the system and for designing separation processes? These 

questions will be answered in the next section. 

 

Crossing distillation boundaries 
Let us first understand how this knowledge can be used to get a greater 

understanding for designing separation processes. There has been much 

discussion in the literature regarding whether column profiles can cross 

distillation boundaries and by how much. Wahnschafft (1992) showed that it was 



3.3 Non-Ideal Systems  67 

 67

possible to cross distillation boundaries for infinite and finite reflux ratios. 

Crossing boundaries at infinite reflux requires a sequence of columns and a 

curved distillation boundary. Crossing boundaries at finite reflux can be done in a 

single rectifying or stripping section of a column, but it is only possible, if the 

boundary is sufficiently curved, the distillate or bottoms composition lies close 

and on the convex side of it and the distillation column operates over a certain 

range of reflux ratios. If these criteria are met the profiles “flip over” the 

distillation boundary; see Figure 3.23. This phenomenon has been known for 

more than a decade, but there is now explanation on why it happens and on how to 

determine the critical reflux ratio that makes the profiles flip over. 

 

 
Figure 3.23: ”Flipping over” of profiles for certain reflux ratios which cross 

the distillation boundary from region Ib to region Ia. 
 

 

How can we explain this phenomenon? XD lies close to the boundary on the 

concave side. The pinch curve shows pinch curve behaviour of type Ib (the pinch 

curve crossed the distillation boundary). The residue curve through XD pinches at 

the pure chloroform node. Decreasing the reflux ratio moves the unstable 

chloroform node and the saddle node (azeotrope on the chloroform-acetone axis) 

towards each other along the pinch curve. At R = -4 the CPM has shifted so far up 

the pinch point curve, that the distillation boundary for the CPM runs through the 

distillate composition XD. Figure 3.24 shows the column profile map for R = -4 

(XD = [0.02 0.5]).  

R = -3 R = -4 
R = -5 

R = -7 

XD 
Ib

Ia
Chloroform Acetone 

Benzene 

Distillation boundary 
for R →∞ 
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Figure 3.24: Column profile map inside the MBT for XD/XB = [0.02 0.5] and 
R = -4. The respective pinch curve is shown as the red line. The dashed lines 

represent the distillation boundaries for R →∞ (blue) and R = -7 (green). 
 

 

This represents the last reflux ratio that crosses the distillation boundary for R 

→∞.Every smaller R results in profiles that pinch in region Ia. What happens if 

XD2 moves further away from the distillation boundary for R →∞.? An XD2 of 

[0.01 0.5] results in a type Ia pinch curve behaviour, this is shown as the green 

line in Figure 3.25. 

 

Distillation boundary 
for R →∞ 
Distillation boundary 
for R = -4 

XD Ib

Ia 
Chloroform Acetone 

Benzene 
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Figure 3.25: Pinch curves inside the MBT for XD = [0.01 0.5] (type Ia) 

and XD2 = [0.02 0.5] (type Ib). 
 

An X∆ - boundary has been crossed. This case shows a flipping over of the 

profiles as well, although they do not cross the distillation boundary for R →∞. A 

distillate composition on the X∆ - boundary is the last one where a flipping over to 

region Ib of the profiles could occur. A flipping over of profiles through XD 

occurs if the residue curve through the distillate or bottoms composition intersects 

the pinch curve.  

 

In summary: Distillation boundaries for R →∞ are not boundaries for the 

transformed system defined by the parameters X∆ and R∆. If XD/XB = X∆ the 

difference point equation is mathematically identical to the traditional rectifying 

or stripping equation. For this case distillation boundaries can only be crossed if: 

 

- the distillation boundary is sufficiently curved 

- the top or bottom composition and the X∆ - boundary lie on the concave 

side of the distillation boundary  

- the top or bottom composition lies close to the distillation boundary 

between the distillation boundary for R →∞  and the X∆ - boundary. 

XD2 

XD

Ib

Ia 

Distillation boundary 
for R →∞ 

Chloroform Acetone 

Benzene 
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- the distillation column runs with reflux ratios low enough to shift the 

distillation boundary for the transformed system past the top or bottoms 

composition. 

 

The operating region for columns where this flipping over occurs is small, as a 

result this phenomenon was more of academic interest. However the case 

discussed is a very constrained case of crossing distillation boundaries, as the 

difference point equation (Equation 2.1) has been reduced to a rectifying or 

stripping equation, with XT = YT or XD = X∆. This means the difference point has 

to lie inside the mass balance triangle, as it represents real compositions and the 

column profile has to start from this composition. These constraints do not exist if 

the idea of the difference point is employed. Thus many more profiles of various 

column profile maps can be used. An example is shown in Figure 3.26. 

 

 
Figure 3.26: Column profile that crosses the distillation boundary for 

R →∞ from an initial condition X0 = [0.39 0.45] with X∆ = [1.2 0.5] 
(type IIb pinch curve) and R∆ = 3. 

 

 

The difference point in this example lies in region IIb. The composition X0 lies far 

from the distillation boundary and the resulting profile still crosses the boundary 

and terminates close to the pure chloroform node.  

 

Benzene 

Chloroform Acetone 

X0 
X∆ 
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3.4 Conclusions 
 

The design of distillation systems can be based on differential equations and 

column profiles. The knowledge of the curvature and the path of the trajectories 

on phase diagrams is essential for every successful design. In this paper we have 

shown, based on the difference point equation, that the phase diagram behaviour 

can be described by the singular points occurring in the system. To determine the 

phase diagram one needs to know the position of the singularities occurring in the 

x1- x2 space and the type thereof. The type of singularity can be expressed in 

terms of the eigenvalue and be manipulated by the flowrate difference point R∆. 

Changing the value of R∆ shifts entire regions up and down the x1- x2 space. The 

position of the singularities depends solely on the difference point X∆ itself. Hence 

pinch point curves can be used to determine the path that singularities move in the 

space. As X∆ does not need to lie inside the MBT we have shown that depending 

on the position of X∆ in the space there exist regions of similar pinch curve 

behaviour. It has been shown previously that ideal systems comprise seven 

regions of different X∆ whereas the non – ideal system acetone-benzene-

chloroform comprises 15 regions. The number of regions and the resulting pinch 

point curve behaviour is unique for each system. The more variety there is the 

more options there are for designing the optimal process.  

 

Eigenvalue maps, pinch point curves and eigenvector maps introduced in this 

paper for distillation are powerful tools for synthesis of distillation as the use of 

the whole variety of pinch point curves as well as eigenvalue maps, enables the 

designer in principle to create an optimal system behaviour (phase diagram, 

column profile) as the type of singularities can be manipulated and placed in 

space. I.e. sampling the intermediate boiler in ideal systems requires an infinite 

number of stages, as this node is of the saddle point type. With our approach 

profiles can be generated that run straight into the intermediate boiler. We also 

showed that distillation boundaries in non – ideal systems can be crossed from far 

off the boundary by choosing the appropriate X∆ and R∆.  
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The determination of the optimal system behaviour is up to the designer. This 

approach just enables the determination of the design parameters X∆ and R∆ for a 

specific purpose. 

 

The tools presented in this paper are in addition extremely helpful for the design 

of complex distillation configurations such as Petlyuk, divided wall columns, 

columns with multiple feeds and side rectifiers etc. Every complex column can be 

broken down into column sections and CPMs can be used to describe the change 

of composition within each of these. This will be discussed in the following 

chapters. 
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4 Chapter 4: 

The Topological Effects and Advantages of 

Distributed Feed Addition 
 

 

This chapter covers the analysis of feed distribution from a CPM perspective. 

Both Michaela Tapp and I have tackled this problem from different perspectives. 

This approach is my own 

 

 

Abstract 

 

Despite the apparent maturity of distillation research, relatively little work has 

been focused on the effect of feed distribution on a separation. In this work we 

demonstrate the potential of column profile maps (CPMs) for analysing and 

understanding distillation configurations by applying the CPM technique to the 

feed distribution problem. It is shown that feed distribution can produce feasible 

separations from infeasible non-sharp (simple column) product compositions if 

the transformed triangles (TTs) of the rectifying and stripping CPMs overlap. This 

is analogous to reducing the minimum reflux ratio for these non-sharp splits. It is 

also shown that, from a topological perspective, feed distribution offers no 

advantages for two-product sharp-split separations. 
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4.1 Introduction 
 
In distillation column design a significant amount of time is put aside for design 

optimisation. The most obvious optimisation variables are the reflux ratio and the 

total number of required stages as these variables impact directly on the cost and 

feasibility of a separation. Another important factor to consider, however, is the 

column feed policy. This includes not only the feed quality and placement but also 

the use of a single feed tray or distributed feed addition.  

 

The first significant work done addressing the feed placement and quality issue 

was done by McCabe and Thiele (1925) for binary systems. This work showed 

that, from a total stages perspective, for saturated vapour or saturated liquid feeds, 

the optimal point at which to introduce this material is on the tray at which the 

composition is most similar to that of the feed. Adding feed at a different stage 

increases the total number of required stages for the separation.  

 

The McCabe-Thiele construction has been very successful in designing and 

understanding binary separation systems. For multi-component systems, however, 

the column tray compositions need not be at all similar to the feed material 

composition and hence this placement strategy no longer holds. Most of the 

current design rules for the placement of the feed tray are based on heuristics 

(Akashah et al. (1979), Fenske (1932), Hengstebeck (1961), Kirkbridge (1944)). 

None of these rules even address the distributed feed case.  

 

Despite the “maturity” of the field of distillation, relatively little is understood 

about the effects of distributing feed over a number of stages. The topological 

implications, in particular, have received very little attention by researchers. In 

this work we will address the effects of feed distribution on the column 

composition profiles by making use of column profiles maps (CPM). The effect 

on feasibility and (for certain cases) total required stages will also be studied. It 

will be shown that in certain situations feed material distribution can reduce the 

number of required stages and in others make infeasible separations feasible. It 
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will be shown that an attainable composition region exists for a set of specified 

products and column reflux ratio. This attainable region contains all solutions for 

all feed distribution policies. The optimal point at which to add feed, for single 

feed point columns, will also be found. A comprehensive understanding of the 

effects on all major column parameters will be gleaned. 

 

Assumptions: 

 
We will address the three component problem in this work, although the results 

can be generalised for any number of components. Constant molar overflow is 

assumed for all distillation modelling. An assumption of constant relative 

volatility is also made. The results are, however, applicable to all three component 

zeotropic thermodynamics. For convenience feed material is assumed to be 

saturated vapour. The results are, however, applicable to any feed quality.  Perfect 

mixing is assumed over all mixing points. 

 

4.2 Column Profile Maps as a Tool for Modelling and 
Design 

 
The analysis of distributed feed addition and feed location, in this work, relies 

completely on the use of Column Profile Maps (CPM). It is therefore useful to 

summaries/emphasise some of the important properties of CPMs and outline the 

general CPM design procedure. 

 

Tapp et al (2004) introduced the CPM, which is a map of column section (CS) 

composition trajectories. They defined a column section as a length of column 

between points of addition or removal of material and/or energy. These CPMs are 

generated using the difference point equation - Equation 2.1 - (Tapp et al, 2004) 

and are therefore defined for a single difference point (X∆) and reflux ratio (R∆). 

X∆ is the pseudo composition of the net flow through a column section. For a 

rectifying section X∆ = XD, while for a stripping section X∆ = XB.  
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Holland et al (2004 b) showed that a full distillation configuration can be designed 

by simply overlaying the CPMs of each column section of a configuration and 

choosing appropriate operating profiles. For synthesis purposes only the liquid 

profiles need be tracked as the vapour profiles can be determined by material 

balance. 

 

Tapp et al (2004) showed that the qualitative form of the CPM is dependent on the 

position of X∆ in composition space. They identified seven regions of X∆ 

placement that resulted in qualitatively different CPMs. These regions can be seen 

in Figure 4.1 below. The CPM was also shown to be a simple transform of the 

residue curve map. The topology present in each of the seven regions of 

qualitatively different X∆ placement is simply shifted around the composition 

space when a column section is operated at finite reflux (Figure 4.2).  

 

Because the different topology of the residue curve map corresponds to the 

regions of X∆ placement we can track the shifted topology by referring to 

“transformed regions”. A transformed region (TR) simply represents topology that 

is qualitatively similar to topology present in the residue curve map within a 

particular X∆ region. 

 

 

 
Figure 4.1: Difference point regions of 

Residue Curve Map 

 
Figure 4.2: Transformed regions of 

Column Profile Map 

 

The transformed triangle (TT) is the triangle produced by straight lines between 

the stationary points of the CPM. It is defined by the set of boundaries which, at 
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infinite reflux, define the MBT and it forms the boundary of TR1. TTs retain all 

the qualitative topological information of the CPM because straight lines through 

the stationary points divide regions of qualitatively different CPM topology. We 

can, therefore, understand topological changes in a CPM (for varying reflux or 

difference point) by simply producing a TT instead of an entire CPM.  

 

4.3 Column Section Breakdown for Distributed Feed 
Column 

 
 
Before CPMs can be produced and an analysis 

of the distributed feed column performed, we 

need to break the configuration into column 

sections.  

 

Consider a two product distillation column 

terminated at the top by a condenser and at the 

bottom by a reboiler (see Figure 4.3). If the 

feed stream to this column is of flow rate FT 

and is divided among N feed points we can – 

using the column section breakdown approach 

of Tapp et al (2004) – identify N+1 individual 

column sections. The uppermost column 

section, terminated by the condenser, is a 

standard rectifying section while the 

bottommost CS, terminated by the reboiler, is a 

standard stripping section. The column sections 

between these are neither rectifying nor 

stripping sections but can operate in rectifying-

like mode or stripping-like mode. 

Figure 4.3: Distributed Feed 
Column Sectional Breakdown 
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4.4 The Effect of Distributing Feed on the Net Flow and 
Reflux Ratio 

 

4.4.1 Net Flow 
 
The net flow of the rectifying section is equal to the distillate product flow rate. 

Addition of feed material reduces the magnitude of the net flow from one CS to 

another down the column. See Equation 4.1. 

kkk F−Δ=Δ +1   (4.1) 

While the total addition of feed material (∑
k

kF
1

) is smaller than ∆1 (the rectifying 

section net flow), ∆k is greater than zero and we can say that the CS operates in a 

rectifying-like mode. If 1
1

Δ=∑
k

kF  then ∆k+1=0. In this case, there is no bulk flow 

of material in CSk+1. Once ∑
k

kF
1

exceeds ∆1 the net flow of subsequent column 

sections changes sign and the bulk flow of material is down the CS. At these 

conditions we can say that the CS operates in a stripping-like mode. The CS 

below the last feed point is a standard stripping section and the magnitude of the 

net flow is equal to the bottoms flow rate. 

 

4.4.2 Reflux Ratio 
 
The reflux ratio of a CS is defined as: 

k

k
k

L
R

Δ
=Δ   (4.2) 

 Its magnitude is inversely proportional to the net flow in the column section. 

When the net flow is positive the reflux ratio is positive and similarly when the 

net flow is negative, the reflux ratio is also negative. The reflux ratio of CSk+1 can 

also be described in terms of the conditions of CSk and the quantity of feed 

material added between these column sections. Below is a, feed-phase 

independent, expression for the reflux ratio of CSk+1; Equation 4.3. 
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11

2
1

1
+Δ+

+Δ
+Δ −
=

kkkkk

kk
k LRFLL

LR
R   (4.3) 

 
The reflux ratio is increased from one section to another, down the column, as 

more feed is added. While 1
1

Δ<∑
k

kF , the reflux ratio is positive. When 

1
1

Δ=∑
k

kF  and ∆k+1=0 the reflux ratio of CSk+1 is infinite. Further addition of feed 

material now results in negative reflux ratios as ∆k becomes negative. The 

magnitudes of these negative reflux ratios then decrease as more feed is added 

until R∆k+1 = RB when T

N

k FF =∑
1

. 

 

4.5 The Effect of Distributing Feed on the Difference 
Point 

 
Each CS difference point (X∆k) must obey linear mixing rules with respect to the 

feed composition and the difference point, of the CS, above or below it. See 

(Equation 4.4) below. 

Fkkkkk XFXX +Δ=Δ +Δ+Δ 11   (4.4) 

This means that adjacent CS difference points represented in composition space 

must exist on a straight line running through the feed composition added between 

the column sections. For a column with a single feed composition every difference 

point will exist on a single straight line. See Figure 4.4. 

For two sections operating at positive net flow, material balance dictates that the 

upper column section difference point lies between the lower section difference 

point and the feed composition. The uppermost column section is of course the 

rectifying section. The difference point for this section is a specified variable – it 

is a product composition. The difference points for sections below the rectifying 

section must exist on the opposite side of the distillate composition to the feed (in 

composition space) while the net flow is positive. As incremental amounts of feed 

are added to the column the difference points, for positive net flow sections, will 

move towards the boundaries of the mass balance triangle (MBT). The net-molar-
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flow of individual components, in the corresponding column sections, is up 

because the net flow is positive and the difference points are within the MBT. 

After a sufficient quantity of feed has been added the resulting difference points 

will move outside the MBT. These feed requirements can be calculated using 

Equation 4.5 below.  

2

22

−

−∑ ==
F

D
k

BoundaryX

X
DXFF   (4.5) 

Beyond this point the heavy component net-molar-flow will change sign and it 

will effectively move down the column. If the orientation, of the material balance 

line (in composition space), is such that it intersects the x3=0 line (zero 

intermediate axis), between regions 6 and 7, the net-molar-flow direction of the 

intermediate component will change while the net flow is positive and it too will 

flow down the column after sufficient addition of feed material. This feed quantity 

can be calculated using Equation 4.6. 

( )
( )21

213

1
1

−−

−−

−−
−−

== ∑
FF

DD
k

BoundaryX

XX
XXDFF   (4.6) 

 Subsequent addition of feed material will shift the difference points ever further 

from the MBT such that the elements of the difference point (X∆k-i) tend to 

positive or negative infinity. (See Figure 4.4). Once the total feed addition exceeds 

the distillate flow rate the net flow, of subsequent column sections, changes sign. 

The elements of the difference point (X∆k-i) also change sign and “appear from 

infinity”, at the opposite end of the material balance line, moving closer to the 

MBT as further feed material is added to the column. If the intermediate 

component net-molar-flow direction does not changed while the net flow of 

column sections is up, it will change at some point after sufficient feed material is 

added to change the direction of the net flow. At this point in the column the net-

molar-flow of the intermediate and heavy components is down and the light 

component net-molar-flow is up. The difference points of lower sections can now 

enter the MBT. This occurs when: 

 
1

11

−

−∑ ==
F

D
k

BoundaryX

X
DX

FF   (4.7) 

 These column sections exhibit net-molar-flow of all components down the 

column. When the total feed addition is equal to FT, the resulting difference point 
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is the bottoms product composition and the associated column section is a 

standard stripping section.  

 

 
Figure 4.4: Distributed difference points obey 

linear mixing rules –hence they lie on a straight line. 
 

There are two net-molar-flow change sequences that summarise all possibilities in 

the distributed feed column. These are associated with the value of FX3Boundary. If 

DF BoundaryX >3 , the difference point locus will cross the intermediate component 

axis in positive heavy component space and the case in Figure 4.5 will result, 

while if DF BoundaryX <3 , it will cross the intermediate axis in negative heavy 

component space and the case in Figure 4.6 will be obtained. In both Figure 4.5 

and Figure 4.6 the direction of change of the difference points down the column is 

represented by the directions of the arrows along material balance lines. Both 

cases are summarised in the Table 4.1 and Table 4.2 below. The ∆k column of 

Table 4.1 and Table 4.2 represents the direction of the net-molar-flow at various 

points on these lines corresponding to qualitatively different X∆ regions. The 

component net-molar flow directions are represented in the ∆X∆k-i column. The 

corresponding difference point placement is represented by the region of its 

occurrence. 
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Figure 4.5: Line of possible difference point 

change - DF BoundaryX >3  

 
Figure 4.6: Line of possible difference point 

change - DF BoundaryX <3  
  

Table 4.1: Summary of Net-Molar Flow Change ( DF BoundaryX >3 ) Figure 4.5 

∆ R∆ ∆X∆k-i 
X∆ 

Region 

Unstable 
Node 

Region 

Saddle 
Point 

Region 

Stable 
Node 

Region 

 
+ve  1 7 6 1 

 
+ve  6 2 1 1 

 
-ve  3 2 1 1 

 -ve 
 

4 1 1 2 

 
-ve  1 1 3 4 

 

 

Table 4.2: Summary of Net-Molar Flow Change ( DF BoundaryX <3 ) Figure 4.6 

∆ R∆ ∆X∆k-i 
X∆ 

Region 

Unstable 
Node 

Region 

Saddle 
Point 

Region 

Stable 
Node 

Region 

 
+ve  

1 7 6 1 

 
+ve  

6 2 1 1 

 
+ve  

7 1 1 2 

 -ve 
 

4 1 1 2 

 
-ve  

1 1 3 4 
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4.6 Topological Effects of Feed Distribution 
 
We have discussed the effect of distributing feed on the net-molar-flow, reflux 

ratio and difference point. However, we have not discussed the topological 

implications of the shifting difference points and varying reflux ratio. The form of 

the CPM is dependent on both of these variable – reflux ratio and difference point. 

If we are to fully understand the effect of feed distribution we need to understand 

the qualitative form of distributed feed solutions. This essentially means that we 

need to understand the regions of each CPM that can be sampled in each column 

section. 

 

Note: Transformed Triangle Boundary Definitions 

For the following sections it will be convenient to label the boundaries of the TTs. 

A boundary defined between an unstable node and a saddle point of TT “k” will 

be referred to as boundary “Ak”. A boundary defined between a stable node and a 

saddle point of TT “k” will be referred to as boundary “Bk”. The final boundary 

defined between an unstable node and a stable node will be referred to as 

boundary “Ck” of the TT. Figure 4.7 below illustrates these boundary definitions. 

Unless otherwise stated this will always refer to liquid TT boundaries. Vapour TT 

boundaries will be referred to as “vapour boundary Ak”, … etc. 

 

Net Flow Direction 

Light Component Net –
Molar-Flow Direction 
Intermediate Component 
Net –Molar-Flow Direction 

Heavy Component Net –
Molar-Flow Direction 



Chapter 4: The Topological Effects of Distributed Feed Addition 84 

 84

 
Figure 4.7: Transformed triangle boundary definitions 

 
 

Distributed Feed Pinch Point Curves 

The potential to sample the various regions of a CPM depends on the feasibility of 

producing a continuous (composition profile) path - for either the vapour or liquid 

profiles - from the rectifying composition to the stripping composition through 

these regions. This ultimately depends on the “movement” of the stationary points 

from one section to another because the stationary points dictate the positioning of 

all topological regions. By “movement” we are referring to the relative position of 

the nodes of column sections when we add feed material between them. The 

nodes appear to move as we shift our attention from one section to another.  

 

The simplest way to analyse this “movement” is to produce a pinch point curve. 

This pinch point curve will not be produced in the conventional way - varying the 

reflux ratio at a set difference point value - but will be the loci of stationary points 

produced by varying the difference point and reflux ratio in a manner consistent 

with differential feed addition along the length of a distributed feed column. This 

means that each difference point will lie on a material balance line through the 

feed composition and the chosen product compositions and that the reflux ratio 

will be varied differentially from the rectifying reflux ratio to the stripping reflux 

ratio. Each point on the (pinch point) curve will be associated with a different 

column section, reflux ratio and difference point value. 

 

Figure 4.8 shows a distributed feed pinch point curve produced – for a feasible 

separation - in this manner. The pinch point curve has three branches 
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corresponding to the three stationary points of constant-relative-volatility CPMs. 

Each branch has finite length with a “starting” point corresponding to the 

rectifying CPM stationary points and an “end” point corresponding to the 

stripping CPM stationary points.  Notice that the pinch points “move” in a 

direction of increasing heavy component and decreasing light component 

composition, from section 1 to section N+1. This means that the Bk boundaries of 

the TTs shift in a direction of decreasing light component value, while the Ak 

boundaries move in a direction of increasing heavy component value down the 

length of the column. 

 

The pinch point curves span multiple difference point regions. The unstable node 

“moves” from region 7 through region 2 to region 1. The saddle point “moves” 

from region 6 through region 1 to region 4.  The stable node “moves” from region 

1 through region 2 to region 3. This “movement” from one region to another is 

dictated by the “movement” of the X∆, along the material balance line through 

each difference point region. While X∆ is inside the MBT and the reflux is 

positive, the forms of the CPMs are similar to the rectifying CPM; the stationary 

points of the TT are in the same regions - the saddle point is in region 6, the 

unstable node is in region 7 and the stable node is in region 1. When the 

difference points shift into region 6, the unstable node and saddle points of 

subsequent column sections cross over the light-intermediate axis. The saddle 

moves into region 1 and the unstable node shifts into region 2, while the stable 

node remains within region 1. A comprehensive summary of all possible 

stationary point placements is presented in Table 4.1 and Table 4.2.  

 

Feasible Topology 

The “movement” of the TTs in this way brings very different topology into the 

MBT. However, only a very limited area of this topology can be sampled. From 

the pinch point curve in Figure 4.8, we see that because the Bk boundaries 

decrease in light component value, the composition profile of column section k 

can only ever sample transformed regions 1 and 6 of column section k+1. This is 

illustrated in Figure 4.9. All seven transformed regions, for a column section 



Chapter 4: The Topological Effects of Distributed Feed Addition 86 

 86

(below the rectifying section) with a difference point in region 6, have been 

superimposed over a rectifying profile. The rectifying profile is only able to 

sample transformed regions 1 and 6.  

 

Similarly, if we analyse the movement of the Ak boundaries from the stripping TT 

up the column, we notice that CS k+1 can only sample TR 1 and 4 of CS k. 

 

 
Figure 4.8: Distributed feed pinch point 

curves 

 
Figure 4.9: Transformed regions for X∆ in 
difference point region 6 at positive reflux 

with superimposed rectifying profile 
 

A CS operating on a profile within TR 6 can intersect the rectifying profile but not 

the stripping profile, while a CS operating on a profile within TR 4 can intersect 

the stripping profile but not the rectifying profile. Because TR 1 is the only 

common region sampled, from one section to another, up and down the column, 

we can conclude that it is the only feasible region of operation for distributed feed 

columns.

 

The TTs for a distributed feed column with five feed points of equal magnitude 

are illustrated in Figure 4.10. Notice how each corner of the TTs correspond to 

points along distributed feed pinch point curves.  
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Figure 4.10: Distributed feed column with 

five feed points of equal magnitude 

Figure 4.11: Choosing operating profiles 
from CPM/TT 

 
 

We can easily choose operating profiles for each column section from the 

transformed triangles as we know the form of the topology within TR 1. This 

process is illustrated by Figure 4.11, where we can choose a number of operating 

profiles from within the pink TT along which to run the column. 

 

4.7 Operating Regions 
 
Five feed points have been used to generate the TTs for the example in Figure 

4.10. Depending on the feed point placement in the column, an infinite number of 

different operating profiles within the blue, black, pink and yellow TTs could be 

sampled. It is theoretically possible for a column to be designed such that the 

operating profile ran from the rectifying profile along the boundaries  of the blue, 

black, pink and yellow TTs (through the saddle points) to the stripping profile. 

This would require an infinite number of stages in all sections other than the 

rectifying and stripping sections. 

 

What operating profiles could be sampled if, instead of a finite feed policy, we 

added infinitesimal quantities of feed at infinitely many feed points? As in the 

previous example an infinite number of solutions exist. Also, as in the previous 

example, we can choose profiles that run through the saddle points of TTs. 

However, as there are infinitely many TTs, in this case, the profile could run 

continuously along the saddle branch of a distributed feed column pinch point 
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curve. Such an operating profile could actually run along a TT boundary passing 

through the distillate composition, then along the saddle branch of a pinch point 

curve and finally along a TT boundary through the bottoms composition. An 

example of such a profile is seen in Figure 4.12 below. The column sections 

corresponding to the pinch point curve would all require infinitely many stages.  

 

This composition profile is of more than just academic interest. Because only TR 

1 can be sampled in distributed feed columns, this profile represents a bound on 

attainable compositions within the composition space. It represents the highest 

intermediate component compositions that can be achieved, at any particular light 

or any particular heavy composition, using distributed feed.  

 

 
Figure 4.12: Composition profile path 
running along pinch point curve 

 

It is interesting to notice that the intermediate compositions, achievable along this 

boundary can be significantly higher than any composition achievable along the 

rectifying and stripping profiles. In fact, if we consider the movement of the TT 

boundaries (from column section to column section) discussed in section 4.6 and 

Figure 4.11, it would appear that no path exists, between the rectifying and 

stripping profiles, that can sample a lower intermediate composition (at given 

heavy or light compositions) than these profiles. Rate vectors along profiles, for 

column sections between the rectifying and stripping sections, seem to point in 

directions that increase the intermediate composition (see Figure 4.13). It is 

postulated that the rectifying and stripping profiles represent lower bounds (for 
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feed distribution) on achievable intermediate compositions at any particular light 

or any particular heavy composition. 

 

If the two above mentioned boundaries are superimposed a region containing all 

attainable solutions can be found. Figure 4.14 illustrates such an attainable or 

feasible composition region. This region contains the solutions for distributed 

feed columns at a set reflux ratio and for set product specifications with any 

(saturated vapour) feed policy. 

 

The two composition profiles forming the attainable region boundaries can be 

deconstructed into five qualitatively different boundaries in this case. These are:   

• saddle pinch point curve boundary 

• rectifying profile boundary 

• stripping profile boundary 

• TT boundary through XD 

• TT boundary through XB 

 

 
Figure 4.13: Rate vectors of trajectories 
from CPMs for CSs below the rectifying 

section 

Figure 4.14: Feasible operating region 
for all feed policies 
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4.8 The Benefits of Distributed Feed Addition 
 

4.8.1 Stage Reduction 
 
It is well known that distributing feed material of a single composition does not 

hold any particular advantages for binary separations. The number of required 

stages for a binary distributed feed column is actually larger than that of a single 

feed column. Figure 4.15 and Figure 4.16 illustrate this using the McCabe-Thiele 

constructions. The distributed feed construction in Figure 4.16 requires 7 stages 

while the single feed construction in Figure 4.15 requires only 6. Are distributed 

feed columns for multi-component systems similarly limited?  

 

Because the stage requirement is a hidden variable in a CPM this is a little more 

difficult to ascertain using the CPM technique than it was using the McCabe-

Thiele construction. There are points on the CPM where the total stages required 

are known, however. Near the stationary points (corners of the TT) the number of 

stages required approaches infinity. If a, single feed point, separation initially 

requiring infinite stages can be effected with distributed feed without pinching we 

can conclude that feed distribution can, depending on the feed policy, lower the 

number of required stages for multi-component separations. 

 

 
Figure 4.15: McCabe-Thiele construction 

for single feed point 

 
Figure 4.16: McCabe-Thiele construction 

for six feed points 
 

Figure 4.17 illustrates a non-sharp separation with a single feed point. From the 

position of the stripping section TT we can see that the stripping profile reaches a 
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pinch point. The pinch point intersects the rectifying profile so this is, in fact, a 

minimum reflux separation for the chosen products. By distributing the feed over 

two or three feed points we can produce profiles which “bypass” this pinch point.  

 

Figure 4.18 shows the TTs for the same separation in a distributed feed column 

with three feed points. Profiles for the blue TT of Figure 4.18 can be initiated 

from any point along the rectifying profile between point “A” (intersection with 

the blue unstable-node/saddle-point TT boundary) and point “B” (intersection 

with the stripping profile pinch composition). A profile initialised at point “A” 

would still require infinite stages as it would have to pass through the saddle 

point. Clearly, profiles initialised at the stripping pinch composition would also 

require infinite stages. However, profiles started between these points (say point 

“C”) would require finite stages and would intersect the stripping profile well 

away from the pinch composition. If the third feed point was incorporated and 

profiles of the black TT were sampled, these would intersect the stripping profile 

even further from the (stripping profile) pinch composition.  

 

It is clear, therefore, that distributing feed in multi-component separations can 

reduce the number of required stages. In some cases, such as this, the stage saving 

can be quite significant.  

 
Figure 4.17: Non-sharp separation with 

single feed point requiring infinite stages. 

 
Figure 4.18: Distributed feed reducing 

number of required stages for non-sharp 
split 
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4.8.2 Separation Feasibility 
 
It is interesting to note that in the previous example the unstable-node/saddle-

point and saddle-point/stable-node boundaries of both the blue and black TTs 

extend quite far beyond the rectifying and stripping profiles respectively i.e. large 

sections of these boundaries extend into the feasible operating region. It would be 

useful if this fact could be put to some practical purpose.  

 

Figure 4.19 depicts an infeasible non-sharp separation. The rectifying and 

stripping profiles do not intersect at the chosen reflux ratio; hence this (single feed 

point) separation is not possible at these conditions. The obvious way to produce a 

feasible split from this set of product compositions is to increase the reflux ratio. 

If the feed addition is changed from a single feed point to a distributed feed 

policy, however, this infeasible separation can be made feasible at the current 

value of the reflux ratio.  

 

This is clearly illustrated in Figure 4.20 where a three feed point column provides 

profiles that allow a path between the non-intersecting rectifying and stripping 

profiles. A first feed point allows a transition from the rectifying profile to a 

profile within the blue TT. A second feed point allows a transition from the blue 

TT to a profile within the black TT. This black profile intersects the stripping 

profile where the final feed addition is made. This separation could actually have 

been performed with only two feed points. If enough feed had been added further 

down the rectifying section to produce the black TT, one of these profiles could 

have been sampled directly without introducing the blue TT. 
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Figure 4.19: Infeasible non-sharp 

separation 

 
Figure 4.20: Distributed feed makes non-

sharp infeasible separation feasible 
 

An analogous result of producing feasible  splits in this way, from non-

intersecting non-sharp rectifying and stripping profiles is that the minimum reflux 

ratio, for these splits, using one feed point, can be reduced by distributing the feed 

material over a number of trays. This is only possible for non-sharp separations 

under very specific conditions as we will see later. 

 

Producing a feasible separation through distributed feed, from a previously 

infeasible set of products, we introduce another boundary in the feasible operating 

region. This boundary is comprised of a stable-node pinch point curve extending 

from the rectifying TT stable node to the stripping profile (see Figure 4.21). In 

other circumstances it is possible to introduce an unstable-node pinch point curve 

boundary between the stripping section TT unstable-node and the rectifying 

profile. 
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Figure 4.21: Feasible operating region for distributed 

feed column with non-intersecting rectifying and 
stripping profiles 

 

4.9 The Benefits of Distributed Feed Addition – Limiting 
Conditions 

 
There are two separate conditions that limit the potential benefits of feed 

distribution. The first condition is a sharp product split specification. The closer 

the distillate or bottoms compositions are to the boundaries of the MBT, the closer 

one of the boundaries of their respective TTs is to these axes. In the limit, when 

the product point is essentially on an axis, the corresponding composition profile 

runs along the boundary of the TT. This results in an infinite number of stages 

being required as the profile must pass through a saddle point (see Figure 4.22). 

No feed distribution policy can prevent this occurrence; therefore feed distribution 

for sharp-product specifications is pointless. Reduction of the number of required 

stages under these circumstances is impossible (see Figure 4.23). 

 

At sharp-split conditions, the attainable/feasible composition region shrinks to a 

single path between the distillate and bottoms compositions. 
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Figure 4.22: Sharp-split TTs require 

infinite stages 

 
Figure 4.23: Distributed feed does not 

reduce the number of required stages for 
sharp split. 

 

The second condition is associated with lowering the minimum reflux ratio or 

making infeasible separations feasible. If the column reflux ratio is such that the 

boundaries of the rectifying and stripping TTs border each other, a situation is 

reached where reduction of the reflux ratio will prevent any feasible separation 

(see Figure 4.24).  

 

This condition is, in fact, the true two-product column minimum reflux ratio. It 

represents the smallest reflux ratio at which infeasible separations can be made 

feasible (see Figure 4.25). The only reason that distributed feed could produce a 

feasible separation from “infeasible” conditions was that there was an overlap of 

the rectifying and stripping TTs (see Figure 4.20).   

 

It is the TT and not the profile itself that dictates minimum reflux for two-product 

distillation columns. The infeasible separation in Figure 4.20 has a non-sharp 

product specification.  The composition profiles and boundaries of the TTs 

therefore do not coincide. Distributing the feed, in this case, produces a path 

between the rectifying and stripping profiles because the additional TTs, 

introduced, can overlap them both. This cannot occur when the reflux ratio is 

below true minimum and the rectifying and stripping TTs do not overlap as Figure 

4.26 and Figure 4.27 illustrate. Infeasible sharp split separations can never be 

made feasible without increasing the reflux ratio. 
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Figure 4.24: Non-sharp-split TTs at true 

minimum reflux 

 
Figure 4.25: Distributed feed non-sharp-

split TTs at true minimum reflux 

 
Figure 4.26: Rectifying and stripping TTs 
and profiles below true minimum reflux 

 
Figure 4.27: Rectifying and stripping TTs 

and profiles with additional distributed 
feed TT below true minimum reflux 

 

4.10  Discussion 
 
The decision of whether or not to make use of feed distribution is largely 

dependent on the “sharpness” of the required separation. Because all potential 

benefits are nullified when the split is sharp, feed distribution is pointless at these 

conditions. If, however, a non-sharp split is satisfactory, then using many feed 

points has the potential to lower the operating reflux ratio as well as reduce the 

required number of stages. Understanding the effects of feed addition quantities at 

each point as well as positioning of the feed points is of utmost importance. Ill 

placement of feed points can actually increase the number of required stages 

instead of reducing them. Consider figure 3.9 for example. If the first feed point 

(F1) was placed on the stage where the composition on the tray was equal to that 

at the intersection of the red rectifying profile and the boundary of the pink TT 

0 1 
0

1

x1

x2

XB 

XD 

XF 

0 1 
0

1

x1

x2

XD 

XF 

XB 

0 1

0 

1 

x1

x2

XD 

XF 

XB 

0 1

0 

1 

x1

x2

XD 

XF 

XB 



4.10 Discussion 97 

 97

and the quantity of feed added to the column produced the pink TT, an infinite 

number of stages would be required in the CS below that feed point. Feed point 

placement dictates the position in composition space where the column 

composition profile leaves one CPM for another. Tracking the required stages 

along a trajectory is obviously very important. Although the number of stages is a 

hidden variable within a CPM, tracking it is fairly simple. Once operating profiles 

have been chosen for the separation we simply track variable n in the difference 

point equation when producing the profiles. Integration is started using the 

upper/top liquid composition of each CS as an initial condition. These are 

determined from the intersection of desired operating profiles in the CPMs. In the 

same way, the optimal feed stage for a single feed tray column can be determined.  

 

When designing a distributed feed column, the designer must take cognisance of 

the effects of feed addition quantities at each feed point. Feed quantities dictate 

the form of the resulting CPMs. The designer must therefore add the correct 

quantity of feed to produce a desired set of composition trajectories. This can only 

be done with a comprehensive understanding of the topological effects of feed 

addition. It is hoped that this work will arm the designer with this required 

understanding. 
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5 Chapter 5:  

Novel Separation System Design Using 

“Moving Triangles” 
 

 

This work was published in Computers and Chemical Engineering in 2004 (see 

Holland et al, 2004 b). The original paper contained an error regarding the 

feasibility of one half of the “bow-tie” region (defined later). This is corrected 

here. Michaela Tapp offered valuable insight in the development of this work, but 

it is almost exclusively my own. 

 

 

Abstract 

 

Shortcut design techniques have been employed in the initial design of traditional 

distillation systems. Current techniques are not useful in the design of novel or 

complex configurations however. We will show that by using column profile 

mapping "moving triangles" to model the behaviour of column sections (CS), any 

distillation configuration, no matter how complex, can be modelled and its behaviour 

more thoroughly understood. As an example, a thermally coupled column will be 

modelled using column profile maps. It is suggested that by gaining an 

understanding of the behaviour of the configuration quickly and easily, using 

column profile maps, time and money can be saved by avoiding poor initial 

decisions and designs. 
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5.1 Introduction 
 
The synthesis of feasible distillation columns for multi-component mixtures is a 

primary objective in the field of distillation and shortcut design techniques have 

been employed in the design of traditional distillation systems for a number of 

years. Some of these techniques use the differential equations (DE’s) introduced 

by Doherty (Doherty & Perkins, 1978). These DE’s are based on the Underwood 

(Underwood, 1948) equations and are used to determine the composition profiles 

along the length of the rectifying and stripping sections in a distillation column. A 

separation was considered to be feasible if these liquid profiles intersected. 

Operation leaves have been defined by Wahnschafft (Wahnschafft et al, 1992) and 

Castillo (Castillo et al, 1998). They represent the total attainable composition 

region in a distillation column section for defined product compositions. The 

limitation of the operation leaf method is that it is essentially limited to simple one 

feed two product distillation columns and a maximum of 4 component mixtures. 

In addition, as these techniques are all based on the afore mentioned DE’s they are 

no longer valid near the feed stage as the DE’s do not describe the transition from 

the rectifying to the stripping section. Until now there has been no simple 

technique to determine the optimal placement of the feed. When we consider the 

literature for multi-component systems, most of the current design rules for the 

placement of the feed tray are based on heuristics (i.e. Akashah (1979), 

Hengstebeck (1961), Kirkbridge (1944)). The effect of the composition of the 

feed or even modelling multiple feed trays is almost always performed by 

rigorous design simulations, (i.e. Yeomanns, 1998b) which provide no overall 

insight into the operation of the columns. In fact the general failing of most 

existing shortcut techniques is that they fail to adequately describe any separation 

system more complex than the two column section configuration and also do not 

offer insights into problems such as feed placement. No currently available 

shortcut design technique can properly model configurations such as multiple feed 

columns, side-draw columns, coupled columns etc. To address this problem a 

more creative design approach needs to be employed. 
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Franklin (1986,1988) examined the Underwood equations more extensively and 

discovered that these equations could be used to generate a family of liquid 

profiles with a common compositional offset from their respective vapour profiles 

in ternary and quaternary systems. He suggested that these “maps” of profiles 

could be used to model counter-current vapour-liquid equilibrium systems 

including not only distillation, but also absorption or stripping columns. Tapp et al 

(2004) showed that similar three component maps (tracking liquid profiles) 

termed Column Profile Maps (CPM's) could be produced using the difference 

point equation (Hoffman, 1964; Hauan, 1998) (see equation (1) below) to model 

individual column sections. 

 

 Tapp et al (2004) defined a column section (CS) as a length of column between 

points of addition or removal of material and/or energy. 

 

The Difference Point Equation: 

[ ] [ ]XX
R

XYX
Rdn

dX
−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= Δ

ΔΔ

1)(11
 (5.1) 

 

To produce a CPM for a CS an R∆ (reflux) and an X∆ (difference point) are 

defined. This constraint is equivalent to setting a scaled net-molar-flow for the 

column section. Choosing arbitrary initial conditions, integration is performed 

both as n → ∞ and n → - ∞. Using this technique the entire ternary space (x1 vs. 

x2) can be populated with column profile trajectories with common net-molar-

flow. Tapp et al (2004) showed that the CPM’s at finite reflux are simply 

transforms of the residue curve maps. The transform shifts the fixed points of the 

system in the space, maintaining (in constant relative volatility systems) the shape 

of the boundaries initially defined by the mass balance triangle (∗MBT) i.e. the 

profiles connecting the fixed points are straight. This has resulted in the 

phenomenon being referred to as “Moving Triangles” (See Figure 5.1 and Figure 

5.2). 

 

                                                 
∗ The MBT is defined by: 0 < x1 < 1 ; 0 < x2 < 1 ; 0 < x3 < 1  
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It will be shown that by making use of the CS breakdown approach for columns 

as well as CPM’s, introduced by Tapp et al (2004), any configuration of column, 

no matter how complex can be effectively designed and a general understanding 

of the interaction of parameters achieved. As an illustration, a thermally coupled 

(Petlyuk) column will be broken down into column sections and designed (for a 

ternary constant relative volatility system) using CPM’s. Due to the complexity of 

this problem, two simplifying scenarios where the system is at overall infinite 

reflux will be analysed. In the first, all vapour flow rates will be set equal to their 

respective liquid flow rates in a column section. In the second case these flow 

rates will have different values in the feed and side-draw column sections. While 

Tapp et al (2004) introduced CPMs and discussed their topological properties, the 

emphasis of this paper will be to introduce CPMs as a design and analysis tool for 

distillation. It is not the authors’ objective to completely solve the Petlyuk 

problem but simply show how CPMs may be used to begin to understand and 

design these and other complex columns. A full design and analysis of the Petlyuk 

column, using CPMs, will be presented in future work. 
 

 
Figure 5.1: Residue Curve Map 

 
Figure 5.2: Transformed Profile Map 

for  XΔ = [0.3, -0.2] and R∆ = 9 
* It should be noted that all vectors are of the form [x1 , x2 , x3] 
 Subscript 1, 2 and 3 represent the light, heavy and intermediate components respectively. 
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5.2 Complex Column Configuration Design 
 

One of the most difficult to design and least understood distillation columns is the 

Petlyuk column. Its complexity arises due to the thermal coupling of a large main 

column and a smaller pre-fractionator. Without the constraints of condensers and 

reboilers on the pre-fractionator, the multiple degrees of freedom in design lead to 

many solutions, which are difficult to determine without the CPM technique. It is 

now convenient to outline this design procedure.  

 

The general design methodology using CPM’s is as follows: 

 

• Break column configuration into CS's - All columns can be broken down 

into a number of column sections by simply identifying lengths of column 

between areas of addition or removal of material and/or energy (Tapp et al, 

2004). The Petlyuk, although more complicated than most arrangements, 

is no different. It can be broken down into six column sections. This 

breakdown is illustrated in Figure 5.3 below.  

• Set X∆ for the CS which will meet the primary product’s specification. The 

most important products are quite often the distillate or bottoms. In this 

case, the value of X∆ will be equal to the product composition for these 

sections. The choice of difference point will be discussed in greater detail 

later.  

• Choose an operating R∆ for this section.  

• Determine by mass balance, the X∆ and/or R∆ of the remaining section(s). 

X∆ (or R∆) may need to be set for other sections in the configuration, 

depending on the total degrees of freedom. 

• Produce the CPM’s for all CS’s and superimpose these to determine 

feasible operating profiles. If no feasible solutions are found or the other 

products do not meet required specifications, the entire process must be 

repeated with different choices of X∆ and or R∆. 
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Figure 5.3: Column section breakdown for 

a Petlyuk column 
Figure 5.4: Infinite reflux Petlyuk column 

breakdown  

5.2.1 Difference Points and Feasibility Criteria for Petlyuk Column 
Sections 

 

To design any separation configuration it is necessary to understand which 

difference points as well as profiles of the resulting CPM are feasible for steady 

state operation. The former problem is not a trivial matter and is the subject of 

ongoing research. We can, however, make some preliminary statements about X∆.  

 

− In general, the difference point for a CS need not be a composition in the 

column (Tapp et al, 2004).  The only case where the difference point 

composition has to exist within the column is for sections with total 

condensers and total reboilers (sections 1 and 6 in the Petlyuk column). 

These sections behave in the same way as standard rectifying and standard 

stripping sections respectively, no matter what CS or operation they are 

attached to. The difference point equations for these examples simply 

reduce to the DE's defined by Doherty (1978). For these column sections 

only one composition profile is valid and the rest of the column profile 

map is superfluous.  

− An arbitrary CS not terminated by a condenser or reboiler can operate 

anywhere in composition space (Tapp et al, 2004). Negative X∆i’s are 

perfectly valid. Absorption columns or sections between feed points in a 

distributed feed column quite often operate under these conditions. This 

means that the remaining four CS’s of the Petlyuk column (sections 2-5) 

1 

6 

2 3 
4 5 

1

2 3

4 5

6

D 

A 

B C 



Chapter 5: Novel Separation System Design Using “Moving Triangles” 104 

 104

can operate at any difference points (even those outside the MBT) subject 

only to mass balance constraints.  

 

Not all choices of ∆, R∆ and X∆ that satisfy the overall mass balance of the Petlyuk 

column are feasible design parameters. The choice of X∆ and R∆ for each of the 

column sections and the interaction between them is not trivial. In fact there are a 

number of criteria regarding the profiles of each CPM that need to be satisfied for 

a feasible design. These include: 

• Intersection of feasible liquid profiles in the CPM’s for sections 1,2 and 3 

at a point 

• Intersection of feasible liquid profiles in the CPM’s for sections 2 and 4. 

• Intersection of feasible vapour profiles corresponding to the CPM’s for 

sections 4, 5 and 6 at a point. 

 

Due to the complexities mentioned above, we will simplify the problem by 

looking at two special cases of Petlyuk column operation. In the first of these 

cases, all sections will operate at infinite reflux, while in the second case the 

reflux for sections 2-5 will be finite.  

 

5.2.2 Simplified Problem: All sections at infinite reflux  
 

5.2.2.1 The infinite reflux Difference Point Equation 
 

The intuitive initial response when considering the infinite reflux Petlyuk column 

is to assume that all sections operate on a residue curve as ∆ is 0. If we expand the 

difference point equation (Equation 5.1) we find that this is not necessarily the 

case. 
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If XT≠ YT when L = V , the difference point equation becomes: 

 

( )[ ] [ ]TT XYXYX
dn
dX

−+−=  

 

[ ] δ+−= )(XYX
dn
dX

 (5.3) 

 

where δ = YT - XT 

 

δ is the difference in composition between the vapour and liquid streams and is 

called the difference vector for the CS. The difference vector is constant all along 

the length of a CS. 

 

For CS 1 and 6 XT= YT and L = V. These sections operate on a residue curve as δ 

= 0. Sections 2-5 need not have XT= YT and can be described by Equation 5.3. 

  

At these conditions the column section breakdown of Figure 5.3 can be simplified. 

Because no or infinitesimal amounts of material are removed at the side-draw or 

added at the feed, the operation of CS 2 is identical to CS 4 and operation of CS 3 

is identical to CS 5. For these sections δ2 = δ4 and δ3 = δ5. The new CS breakdown 

is seen in Figure 5.4.  

 

Because any material entering section A must leave at the same point, this CS is 

identical in performance to a total condenser mixing material from sections B and 

C liquefying and then returning it to these sections at a different composition. 

Analogously, section D behaves like a reboiler. Sections B and C in the already 

simplified Figure 5.4 and this even more simplified representation will be shown 

to be helpful in understanding the interaction of the two columns sections. Since 

we already know that A and D operate on residue curves running from their 

respective mixing points to the product compositions, the determination of the 

behaviour of the so-called “coupled column” system (B and C) is our only 

interest. 
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Figure 5.5: Coupled column sections 

 
 

5.2.2.2 Properties of the Difference Vector (δ) 
 

• If δi >0 There is a net flow of component i up the column. Component i is 

said to be in rectifying mode. 

• If δi <0 There is a net flow of component i down the column. Component i 

is said to be in stripping mode. 

• ∑δi = ∑ (YT
i - XT

i) = ∑ YT
i - ∑ XT

i = 0. 

This suggests that not all components can move in the same direction in a 

CS. (Unlike normal columns at finite reflux). Some components move up 

while others move down. 

 

5.2.2.3 Mass Balance for the coupled column system 
 

Material balance over the condenser yields: 

 

VBYB + VCYC = LBXB + LCXC 

δB = -δC 

The CS difference vectors have equal magnitude but opposite sign. Components 

moving up the CS B have to move down CS C and vice versa. Once the value of δ 

is chosen for one half of the coupled column system, the value for the other half is 

set. 
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5.2.2.4 Qualitative effects of δ direction 
 

Because δ is a vector, behaviour of the resulting CPM’s can be characterised by 

its direction and magnitude. We can identify three different directions that result 

in qualitatively different behaviour of the CPM (see Figure 5.6). These directions 

correspond to changes of sign of the components of the system i.e. to the axes. A 

summary of δi in these directions can be seen in Table 5.1. Each region is split 

into two sub-regions. Sub-region b has opposite sign to sub-region a. If δ lies in 

sub-region a for CS C then δ for CS B is in sub-region b of the same region ( I, II, 

III). 

 

 
Figure 5.6: Schematic representation of regions of δ characterising CPM 

behaviour and corresponding component axes. 
 

Direction Ia Ib 
Component 1 +ve -ve 
Component 2 -ve +ve 
Component 3 -ve +ve 

 IIa IIb 
Component 1 +ve -ve 
Component 2 -ve +ve 
Component 3 +ve -ve 

 IIIa IIIb 
Component 1 +ve -ve 
Component 2 +ve -ve 
Component 3 -ve +ve 

 
Table 5.1: Summary of δi behaviour in each of the 3 defining regions 

 

The overall difference of qualitative behaviour can be summarised using pinch 

point curves. Figure 5.7 to Figure 5.9 illustrate how the pinch point curves and 

therefore general form of the CPM’s differ along each direction of δ. These loci of 
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points were constructed by solving for the stationary solutions of the infinite 

reflux difference point (Equation 5.3) at constant arbitrary δ vector orientations 

within each region while varying the vector magnitude. 

  

 
Figure 5.7: Pinch curve 

Region δ in  I 
Figure 5.8: Pinch curve 

Region δ in  II 
Figure 5.9: Pinch curve 

Region δ in  III 
                   a   
                   b   
 

5.2.2.5 Design of the coupled system using CPM’s 
 

The methodology for design of the coupled column system is virtually the same as 

that described for the full Petlyuk configuration. Firstly a difference vector is 

chosen for either of the CS’s. The CPM’s for both are then generated by 

populating the composition space with trajectories produced by integrating the 

infinite reflux difference point equation (Equation 5.3). The CPM’s are then 

superimposed and the feasible operating profiles determined.  It is useful to 

reinforce what these feasibility criteria for the system are. 

 

• Liquid profiles must intersect at the top of the CS’s as both are fed the 

same composition by the condenser.  

• Vapour profiles must intersect at the bottom of the CS’s as both are fed the 

same composition by the reboiler.  

 

The second criterion highlights an important point. For a full representation, of the 

composition profiles of the coupled system, both liquid and vapour profiles should 

be produced. CPM’s typically track liquid profiles as they are generated using the 
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difference point equation (Equation 5.1). If vapour and liquid maps of both CS’s 

are generated and superimposed, the effectiveness of the technique is diminished 

because the “density” of profiles makes them impossible to interpret. We can, 

however, ensure that the second criterion is satisfied by simply using the liquid 

trajectories. Mass balance dictates that the curvature, of vapour profiles, be very 

similar to that of the liquid profiles. This is due to the constant compositional 

offset represented by δ. It can be concluded that if two liquid profiles (of different 

column sections) intersect, the corresponding vapour profiles will also intersect 

(see Figure 5.10). The overall system will be satisfied wherever the superimposed 

profiles intersect twice (once for the first criterion and a second time for the 

second criterion). 

 

The general form of any solution can be seen in Figure 5.10below. 

 

 
Figure 5.10: General form of solutions for coupled system 
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Now that the general form of the solutions is known, we can choose an arbitrary δ 

for one of the CS’s and generate the CPM’s. Below are CPMs produced with δB = 

[0.02;-0.06] and δC = [-0.02; 0.06] (region II); Figure 5.11 and Figure 5.12 

respectively. 

 

 
Figure 5.11: CPM for δB =  [0.02;-0.06] 

 
Figure 5.12: CPM for δC =  [-0.02;0.06] (-δB) 

 
Figure 5.13: Superimposed CPM’s 
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After superimposing the CPM’s for each CS, it is simple to find the regions of 

double intersection of liquid profiles. This region is bound on two sides by the 

borders of the transformed triangle of the CS B (δB = [0.02;-0.06]). There is 

another boundary defined by the CS C profile running through the stable pinch 

point of the CS B CPM. The shaded region of Figure 5.13 covers all double 

intersections of liquid profiles for this choice of δB and δC. In general this region 

has a “bow-tie” shape. The smaller of the two shaded regions of the “bow-tie” 

(shown in the corner of the MBT in Figure 5.13 above) is, in fact, infeasible. If we 

consider the topology sampled here, we see that the direction of increasing stage 

number along the two sets of profiles is opposite between any two double 

intersecting points. That is to say the first intersection represents the top of one 

column section and the bottom of the other and vice versa for the second 

intersection. Therefore, this area of double intersections cannot produce feasible 

operating profiles  

 

It is worth noting that even for the extremely simplified case of overall infinite 

reflux, the Petlyuk column exhibits multiplicity of steady state solutions. 

Although the number of stages may vary from one solution to another it is clear 

that the potential for multiplicity exists. 

 

In general only values of δ chosen in regions I and II result in double intersections 

and therefore feasible solutions of the coupled column system. δ’s chosen in 

region III never produce double intersection and consequently no feasible 

solutions. 

 

5.2.3 Simplified Problem: Overall infinite reflux 
 

The second simplifying case of the Petlyuk column we will look at is one of 

overall infinite reflux with finite operation of the coupled columns, i.e. a column 

that draws infinitesimal product flows, but does not necessarily operate with L=V 

in sections 2, 3, 4 and 5. For this scenario, we can once again refer to the 

simplified column section representations of Figure 5.4 and Figure 5.5.  
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The section breakdown in this case is the same as in the previous example, 

because the product draw and feed do not affect the difference point of the 

sections, as they are infinitesimal.  

In this case, as in the previous one, sections A and D operate on residue curves, 

because all the vapour fed to a condenser must return as liquid (and vice versa for 

the reboiler) hence L must equal V and the difference point equation becomes:  

[ ])(XYX
dn
dX

−=   (5.4) 

(This is equivalent to the residue curve differential equation.) 

 

The split of liquid and vapour flows from sections A and D, respectively, does not 

have to be equal and therefore LB is not necessarily equal to VB and hence 

sections B and C need not operate on residue curves or the infinite reflux 

difference point equation curves defined by Equation 5.3. There are however, 

analogous mass balance constraints on the operating values of ∆B, ∆C, rΔB, rΔC, 

X∆B and X∆C.  

 

5.2.3.1 Mass Balance and Reflux Ratios for Column Sections B and C 
 

Mass balance over mixing points: 

LAXA + VBYB + VCYC = VAYA + LBXB + LCXC 

However  LA = VA and XA = YA  

Therefore  ∆BX∆B = -(∆CX∆C) and  ∆B = -∆C 

From the mass balance it can be concluded that both sections must operate with 

the same difference point with equal magnitude but opposite directional net 

fluxes. This suggests, as in the previous example that components in rectifying 

mode in CS B will be in stripping mode in CS C. 

 

The variables governing the operation of the coupled sections (B and C) include 

rΔB, rΔC, βL (the ratio of liquid flow rates) and βV (the ratio of vapour flow rates). 
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There are two degrees of freedom i.e. two of these variables can be set. It is 

convenient as well as useful to set the reflux ratios of each of the coupled sections. 

This is due to the fact that the topology of the column profile map is dependent on 

the reflux ratio chosen for a section. From mass balance it can be shown that the 

relative liquid flow rates i.e. the split ratio is: 

βL= LB/LC = - rΔB / rΔC  (5.5) 

 

5.2.3.2 Design using CPM’s 
 

To design the coupled column system (sections B and C) we must determine 

which design criterion is most important. Using this criterion a basis for the 

choice of R∆ and X∆ for sections B and C can be found. For this example, we will 

set an intermediate product specification of 90%. Achieving this specification will 

be the primary concern when designing for X∆. Because this design specification 

can be achieved by any residue curve passing through the product spec region, the 

problem is purely academic but does allow insights into the more complicated 

finite reflux six-section design. 

 

For constant relative volatility ternary systems, Tapp et al (2004) showed that 

CPM’s have three fixed points corresponding to solutions of the difference point 

equation when the derivative is zero. These fixed or pinch points can be found by 

solving the resulting algebraic equations for XP (as seen below) if the values of R∆ 

and X∆ are specified. 
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This implies that the “transformed triangle” and hence the CPM can be produced 

without integrating the difference point equation because the CPM is known to be 

a simple transform of the residue curve map (except in the case of bifurcation of 

the solutions). See Figure 5.14  below. 
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Figure 5.14: Transformed triangle 

for  X∆ = [0.3, -0.3] rΔ = 19 

 
Figure 5.15: Transformed 

triangle satisfying spec with 
X∆ =[0.1083, -0.0583] 

 
If the transformed triangle can be found algebraically by simply specifying the R∆ 

and X∆, then the reverse must also be true. By knowing the fixed points of a CPM 

we must be able to determine R∆ and X∆. In fact, if we take the liberty of 

specifying R∆, only the value of one fixed point is required to determine the 

difference point, X∆.  

 

( )[ ])(1 PPP XYXRXX −+−= ΔΔ  (5.7) 

 

This result is very powerful, as it indicates that the designer can actually position 

the transformed triangle as required. Column section B of the infinite reflux 

Petlyuk column can be designed to meet the 90% intermediate product 

specification by positioning the saddle point of the transformed triangle within the 

product spec region. The fixed point should not be positioned on the product line, 

as the profile running around the corner of the transformed triangle requires 

infinite stages to do so. In effect, the design must be capable of doing “better” 

than what is theoretically required to satisfy the specification (See Figure 5.15). 

All profiles running through this product region will be feasible composition 

profiles for column section B. The column profile that is tangential to the product 

specification line at a point is the last trajectory that will satisfy the intermediate 

product requirements. 

 

Now that the design parameters for section B can be determined, we can design 

column section C. By mass balance, both sections operate at the same X∆. The 
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values of ∆, however, must have opposite sign but equal magnitude. To design the 

CPM, all that needs to be specified, is the reflux ratio for section C and it can then 

be determined if the overall separation is feasible. The criteria for feasible column 

profiles in the coupled sections are the same as in the previous example: 

 

• Intersection of liquid profiles at the top of column sections B and C (both 

are fed by the liquid from section A). 

• Intersection of vapour profiles at the bottom of column section B and C 

(both are fed by the vapour from section D). 

 

Again we can make use of the superimposition of the CPM’s to find intersecting 

profiles. We also need only utilise the liquid trajectories as similar conclusions 

can be drawn, about the shape of the vapour trajectories, to those from the 

previous example. i.e. we once again need to find liquid profiles in the two CPM’s 

that intersect twice. 

 

Below is an illustration of superimposed CPM’s satisfying the intermediate 

product specification with all areas of double intersecting profiles highlighted 

(Figure 5.16). The corner side of the “bow-tie” region has been omitted. 

 

 
Figure 5.16: Superimposed transformed triangles for 

coupled column system 
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5.2.3.3 Finalising the design 
 

We now have all sets of solutions for the coupled column sections of the infinite 

reflux Petlyuk column. All that is required now is the determination of the 

operating profiles. The full column profiles will be of the form seen in Figure 5.17 

below. 

 

 
Figure 5.17: Finalised operating liquid column profiles 

 
5.3 Discussion 
 

The true power of the column profile map technique for distillation column design 

is the graphical insight it gives into the behaviour of proposed column 

configurations. Many other techniques involved trial and error and are based on 

rules of thumb which do not improve the designers understanding of the 

interaction of design parameters. All feasible CPM designs can be used very 

effectively as initialisation tools for rigorous design packages such as ASPEN 

Plus or Pro2. In fact the results from rigorous simulations vary only slightly from 

those achieved through the CPM design despite the fact that an assumption of 

equimolar overflow is made when using the difference point equation. The CPM’s 

also allow insight into the control and operability of various configurations.  

Designs such as those illustrated here have many solutions as can be seen in 

Figure 5.13 and Figure 5.16. All profiles within the shaded areas (excluding the 

smaller half of the “bow-tie” region of Figure 5.13) are potential steady state 

liquid composition profiles. Because there are so many steady state solutions there 
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is potential for control problems for this particular configuration. Not all solutions 

that are possible, meet the intermediated product requirement, so there may 

potentially be trouble maintaining this specification.  

 

Although the finite reflux problem has not been solved here, the results of this 

design allow insights into the finite problem. The curvature of profiles on either 

side of the coupled sections will not vary greatly, so the form of the solution will 

be similar. The same operability challenges will be evident in the finite column as 

there are also regions of profiles that satisfy the mass balance and result in 

feasible columns. Although the choice of difference point for each coupled 

column section is more difficult at finite reflux, it can be done systematically by a 

choice of the general form of profiles required, acceptable refluxes and placement 

of fixed points. Any vapour-liquid equilibrium separation configuration can be 

addressed in this way and modelled successfully. A full finite reflux Petlyuk 

column design procedure using CPMs will be detailed in future work. 

 

 
5.4 Conclusions 
 

The CPM / “moving triangle” technique is a very powerful shortcut design tool. 

Any vapour-liquid equilibrium separation configuration, no matter how complex, 

can be modelled by simple addition of the column sections and hence CPM’s 

comprising the configuration. The CPM’s allow an understanding of the 

behaviour of parameters involved in the design. The design does not need to be 

performed “blind” in a trial and error approach as often results when the designer 

resorts to rules of thumb or rigorous design packages. The final CPM design, 

however, can be used to initialise rigorous simulation packages when more 

accurate results are required. Ultimately, because a greater understanding of the 

design process is achieved and because the technique is quick and simple, the 

designer can make good decisions early on in the design process thereby saving 

time and money which could otherwise have been wasted on a poor initial design. 
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6 Chapter 6:6 

Petlyuk Column Design 

Sharp Split 
 

 

This work has been prepared in the form of a paper for future publication. Much 

of the guidance in this work was provided by Prof Steiner Hauan of Carnegie 

Mellon University for which I am extremely grateful  

 

 

Abstract 

 

Currently employed short-cut design techniques tend to be configuration specific. 

Few can be employed on complex distillation configurations. In this work we will 

demonstrate, in detail, the use of column profile maps (CPMs) for the 

comprehensive analysis and design of complex distillation systems by applying 

the CPM technique to the design of the fully thermally coupled (Petlyuk) 

distillation column at sharp-split conditions. It is shown that for set product 

composition specifications and set reflux ratio, only a small region of key 

parameters (vapour and liquid split ratios) result in feasible separations. These 

results and hence the CPM design procedure are validated by the work of 

Halvorsen and Skogestad (2001). It is also shown that the minimum reflux 

solution can be found using the methodology. The results are valid for all 

zeotropic separation synthesis  
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6.1 Introduction 
 

Distillation is one of the most utilised large scale industrial method of mixture 

separation. It is a very energy intensive process and accounts for a significant 

percentage of plant utility costs. A survey (Ognisty, 1995) conducted in the mid 

1990’s estimates that energy inputs to distillation columns in the United States 

accounts for approximately 3% of the countries entire energy consumption. It is 

clear that the efficiency of the separation can have a substantial influence on the 

profitability of a process and methods of improving the energy efficiency of 

distillation systems are, therefore, constantly sought. 

 

One alternative, to the energy intensive, traditional distillation configurations, 

which has offered promise, are the thermally coupled distillation columns. These 

include side-strippers, side-rectifiers and fully thermally coupled configurations 

also known as Petlyuk columns. The energy demand of these and traditional 

columns has been well studied over the years: Petlyuk et al (1965); Stupin and 

Lockhart (1972); Hendry et al (1973); Doukas and Luyben (1978); Tedder and 

Rudd (1978); Westerberg (1985); Fidkowski and Krolikowski (1987); Glinos and 

Malone (1988); Carlberg and Westerberg (1989); Rudd (1992); Triantafyllou and 

Smith (1992); Wolff and Skogestad (1995); Westerberg and Wahnschafft (1996); 

Finn (1996). It has been shown analytically (Fidkowski and Krolikowski, 1987) 

that for three component zeotropic separations, the Petlyuk column has the lowest 

overall energy demand. The other thermally coupled configurations also require 

less energy than the traditional direct and indirect splits.  

 

Thermally coupled configurations offer, not only, the potential for utility savings 

but for capital savings as well. Traditional direct and indirect configurations 

require two shells, two condensers and two reboilers for three component 

zeotropic separations. Side-rectifiers and side-strippers eliminate the requirement 

of one reboiler and one condenser respectively, while the Petlyuk column 

eliminates the requirement of one of each. Furthermore the two shell Petlyuk 

arrangement can be replaced with a single shell containing an internal divider or 
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wall. This is known as the dividing wall (Wright, 1949) or partitioned column and 

is thermodynamically equivalent to the Petlyuk column if there is no heat transfer 

through the dividing wall. 

 

Clearly the Petlyuk column has many qualities which make it an attractive 

alternative to traditional configurations and yet relatively few have actually been 

employed industrially. Until fairly recently BASF was the sole industrial 

proponent of the dividing wall column (Kaibel, 1988, 1995). In the last few years, 

Sumito Heavy Industries Co. together with Kyowa Yuka (Parkinson, 1998) and 

MW Kellogg Limited together with BP Amoco (Lestak et al, 1999) have 

employed dividing wall columns. Other recent examples include German (Kolbe 

and Wenzel, 2002), American (Schultz, 2002) and South African companies. The 

major concern over the use of Petlyuk or dividing wall columns appears to be 

related to the efficient design and control of these arrangements.  

 

The standard Petlyuk arrangement, of prefractionator and main column, suffers 

from the drawback that the pressure in the prefractionator is neither uniformly 

higher nor uniformly lower than the pressure in the main column. The vapour 

draw in the main column is required to be at a higher pressure than that at the 

bottom of the prefractionator while the vapour feed from the top of the 

prefractionator is required to be at a higher pressure than at the corresponding feed 

point in the main column (see Figure 6.4). New arrangements have been 

suggested (Agrawal and Fidkowski, 1998) that remove this issue by having 

unidirectional vapour flow either from the first to the second shell or vice versa. In 

these arrangements either the bottoms or the distillate is taken from the feed 

column.  The dividing wall column can also suffer controllability problems due to 

the pressure differential across the dividing wall. This issue can be resolved by 

simply making use of equal stages on either side of the partition and hence 

enforcing an equal pressure drop on either side of the divide. A number of studies 

(Wolff and Skogestad 1995; Halvorsen and Skogestad, 1997, 1999; Abdul 

Mutalib and Smith, 1998a, 1998b) have been performed on the control and 

operation of the dividing wall column. Theoretical studies (Halvorsen and 
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Skogestad, 1997, 1999) suggest that maintaining column product specifications 

while operating close to the minimum column energy requirement is difficult 

without good control strategies. A pilot plant study (Abdul Mutalib and Smith, 

1998b) of the control issue reported stable column responses, to feed disturbances, 

using temperature control. A product purity offset was reported, however. 

 

The industrial reservations regarding the efficient design of the Petlyuk and 

dividing wall columns are likely related to the difficulty involved in rigorous 

simulation. Due to the thermal coupling of the prefractionator and main column a 

number of internal variables such as flows and compositions are required to be 

estimated when using iterative simulation packages. This requires advance 

knowledge of the solution output in order to achieve the solution. The less 

accurate the estimate of the unknown parameters, the less likely the iterative 

routine will converge to a solution. This issue, as well as general design issues, 

have been addressed in literature (Fonyo et al, 1974; Tedder and Rudd, 1978; 

Spadoni and Stramigioli, 1983; Triantafyllou and Smith, 1992; Amminudin et al, 

2001), with varying success, but without a comprehensive understanding of the 

form of the Petlyuk solution and operating parameters. 

 

One of the fundamental breakthroughs regarding the understanding of the 

dynamics and steady state operation of the Petlyuk column was the development 

of the analytical solution for minimum vapour requirement for sharp-splits 

(Fidkowski and Krolikowski, 1987). The solution makes use of the Underwood 

equations (Underwood, 1948) and the “carry-over” of the Underwood roots from 

one column section to another. This methodology, used to derive the minimum 

vapour flow equations, was then used to derive the Petlyuk “optimality region” 

for infinite stages and sharp splits (Halvorsen and Skogestad, 1997). The 

“optimality region” is a section of parameter space defined by the Petlyuk’s 

vapour and liquid split ratios containing all feasible split ratios for set sharp/pure 

product specifications and set reflux ratio. The form of the “optimality region” 

was studied at various reflux ratios, feed compositions, feed qualities and relative 

volatilities. In terms of a general understanding of the column dynamics and 
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steady state, the study of the “optimality region” has been very successful. In 

terms of its use for design purposes, however, the methodology does suffer a 

number of drawbacks when put to practical use. It is only directly applicable to 

constant relative volatility systems as the Underwood equations are only valid for 

this set of thermodynamics. The generation of individual Petlyuk solutions from 

values within the “optimality region” still requires iterative solving methods. The 

non-sharp “optimality region” cannot be generated without extensive direct 

simulation.  

 

It is our intention in this work to detail the use of Column Profile Maps (CPMs) 

(Tapp et al, 2004) as a design and optimisation tool for the Petlyuk column and to 

generate the “optimality region” for all zeotropic thermodynamics and product 

specifications. We will, however, refer to the “optimality region” as the “feasible 

region” as it is the set of split ratios resulting in feasible Petlyuk separations. The 

generation of the feasible region will be performed from a topological perspective 

and the net flow of components within the Petlyuk column will be analysed in 

detail. Although we will also make use of constant relative volatility assumptions, 

the graphical nature of the procedure will allow for the methodology’s 

applicability to all zeotropic thermodynamics. The sharp-split solution and 

topological phenomena will be used to generate non-sharp split solutions where 

infinite stages are not necessarily required. The non-sharp minimum reflux 

solution will be detailed with reference to the sharp-split minimum reflux 

solution. This chapter will deal, solely, with the sharp-split solution and will lay 

down fundamental concepts and definitions which will be employed in the 

following chapter which addresses the non-sharp Petlyuk problem. By employing 

the CPM technique it will be shown that all required design parameters, even total 

required stages, feed stage and side-draw stage come “naturally” from the 

solution. 
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Assumptions: 

 

• We will address the three component problem in this work.  

• Constant molar overflow is assumed for all distillation modelling.  

• An assumption of constant relative volatility is also made although the 

results are applicable to all three component zeotropic thermodynamics.  

• Feed material is assumed to be at saturated liquid or saturated vapour 

conditions.  

• Perfect mixing is assumed over all mixing points. 

 

 

6.2 Column Profile Maps 
 
CPMs, which were introduced by Tapp et al (2004), are maps of composition 

trajectories generated for a column section with constant net-molar-flow using the 

difference point equation (see Equation 6.1 below). The difference point equation 

(DPE) for column section (CS) k is defined as follows: 
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• X is a liquid phase composition vector 

• Y*(X) is the equilibrium vapour composition vector 

• R∆k is the reflux ratio of CS k 

• Vk is the vapour flow rate of CS k 

• Lk is the liquid flow rate of CS k 

• ∆k is the net flow of CS k defined as ∆k=Vk-Lk 

• n is a stage number equivalent 

• XT is the liquid composition vector at the top of the CS 

• YT is the vapour composition vector at the top of the CS 

• X∆k is the difference point of CS k 
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To produce a CPM, the DPE is solved at various initial conditions, throughout 

composition space (for n→∞ and n→-∞), after the selection of constants X∆k and 

R∆k. A CPM can be seen in Figure 6.1 below. The solutions or composition 

profiles/trajectories tend to infinity or terminate at stationary points. For three-

component, constant relative volatility, systems there are three stationary point 

solutions present in a CPM. These are characterised as unstable, saddle point or 

stable nodes (see Figure 6.1). The stationary points of a system are equivalent to 

pinch point compositions in a CS. We can draw straight lines through the 

stationary points of the system. The boundaries thus formed separate regions of 

qualitatively different topology. 

 

The position of these stationary points (and boundaries) and subsequently the 

qualitative form of the CPM, for a particular system, is dependent on X∆k and R∆k. 

For a set reflux ratio (R∆k), the stationary points can be “shifted” around 

composition space by varying X∆k. Similarly, for a constant X∆k value the 

stationary points can be “shifted” around composition space (along pinch point 

curves) by varying R∆k. As R∆k→∞, the stationary points tend to the pure 

component values of the mass balance triangle (*MBT) and the DPE collapses to 

the residue curve equation (see Equation 6.2). At these conditions, the boundaries 

of the CPM lie on the axes and the CPM becomes topologically equivalent to the 

residue curve map (RCM).  

 

[ ])(XYX
dn
dX ∗−=  (6.2) 

 
The CPM is in fact a simple transform of the RCM. The topology present in each 

region of the RCM (defined between the axes) is “transformed” at finite reflux 

and shifted around composition space (see Figure 6.2 and Figure 6.3).  

 

By analysing the position of the stationary points, Tapp et al (2004) identified 

seven regions of X∆k placement that resulted in qualitatively different CPMs. 

These seven regions correspond to regions of the RCM with differing topology 

                                                 
*  The MBT is defined by: 0 < x1 < 1 ; 0 < x2 < 1 ; 0 < x3 < 1 
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(seen Figure 6.2). Because the different topology of the residue curve map 

corresponds to the regions of X∆ placement and the form of this topology is 

retained in the CPM, we can identify the shifted topology by referring to 

“transformed regions”. A transformed region (TR) simply represents topology 

that is qualitatively similar to topology present in the residue curve map within a 

particular difference point region. Figure 6.3 shows the seven transformed regions 

of a CPM. 

 

The fact that the form of the RCM topology is retained at finite reflux implies that 

we do not need to solve the DPE to determine the qualitative form of the CPM. 

We need only solve for the stationary points. This is computationally simple and 

can in fact be done analytically for three component constant relative volatility 

systems. By extending straight lines between the points we can produce a 

“transformed triangle” (TT). The TT retains all the qualitative topological 

information of the CPM (see Figure 6.1).  

 

 
Figure 6.1: Column Profile Map for  XΔ = [0.3, -0.2] and R∆ = 9 

 
 
Note: x1 – Light Component, x2 – Heavy Component, x3 – Intermediate Component 
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Figure 6.2: Difference point regions of 

Residue Curve Map 
 

 
Figure 6.3: Transformed regions of 

Column Profile Map 
 

 

6.3 Properties of ∆k, X∆k and R∆k 

 

∆k which is defined as the difference between the vapour and liquid flows in CS k 

is a net flow of material within the column section. This net flow can be thought 

of as a pseudo stream flowing up or down the CS. If Vk > Lk, then ∆k > 0 and we 

have a net flow or pseudo stream flowing up the CS. But if Vk < Lk, then ∆k < 0 

and we have a net flow or pseudo stream flowing down the CS. The value of ∆k is 

the same at any point along the length of the CS.  

 

The difference point (X∆k) can be thought of as the pseudo composition vector of 

∆k, and is physically valid anywhere in composition space – both inside and 

outside the MBT. Because X∆k is a pseudo composition, the elements sum to 1 i.e. 

1
3

1
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ikX .  X∆k-i, is the composition of element i in the pseudo stream ∆k and 

∆kX∆k-i is the net flow of component i within CS k. A positive value is a net flow 

of component i up and a negative value is a net flow of component i down the 

column section. If X∆k-i is negative, the direction of the net flow of component i is 

opposite to that of the ∆k and the sum of the remaining components is greater than 

1. 
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The reflux ratio is defined as the ratio of liquid flowing down the CS to the net 

flow in the CS. Because of its dependence on ∆k, R∆k can be either positive (when 

∆k>0) or negative (when ∆k<0). CPMs generated for a fixed difference point and 

positive reflux ratios are qualitatively different from those generated with the 

same difference point and negative reflux ratio.  

 

6.4 CPM Design Methodology 
 

Holland et al (2004 b) first introduced the methodology for distillation system 

design using CPMs. They illustrated the design of the Petlyuk column at overall 

infinite reflux. The outline for the methodology they introduced is as follows: 

 

• Break column configuration into column sections. 

• Choose difference points(X∆)  and reflux ratio (R∆) for the most important 

column sections 

• By material balance determine the difference points and reflux ratios of 

the remaining sections. 

• Produce column profile maps (CPMs) for each of the sections and 

superimpose them to determine feasible operating profiles (if they exist). 

 

We will address the finite reflux problem in a similar way. The above procedure 

cannot be employed directly due to the difficulty involved with choosing 

operating parameters (such as reflux ratios) for the prefractionator. It is very 

difficult to intuitively choose reflux ratios for the prefractionator column sections 

that will result in feasible designs. The general idea, nevertheless, is fundamental 

to our methodology. The column will be broken into column sections in the same 

way. Difference points will be chosen for the most important column sections – 

when the degrees of freedom are available. Feasibility of designs will always be 

determined by the superimposition of CPMs for each section.  

 

To simplify the task a sharp-split specification on all products will be made i.e. 

the distillate product is assumed to contain effectively no heavy component 
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material, the bottoms product is assumed to contain effectively no light 

component material and the side-draw product is assumed to be effectively pure 

intermediate component material. The non-sharp split problem will be addressed 

in future work. 

 

It will be shown that, by employing this design methodology, it is possible to find 

all solutions (if they exist) for a particular overall column reflux ratio (rectifying 

reflux ratio) and product choice. An understanding of column parameter dynamics 

can also be gleaned. When feasible solutions do not exist, the method allows the 

designer to determine when or why they do not exist. Furthermore, analysis of the 

column using the method allows a minimum overall column reflux ratio to be 

determined. 

 
 
6.5 Column Section Breakdown and Net Flow 
 

We shall begin the design process by breaking the Petlyuk column down into 

column sections.  A schematic representation of the column can be seen in Figure 

6.4 below. We can apply the column section breakdown approach used by Tapp et 

al (2004) to identify individual column sections within the configuration. Tapp et 

al (2004) defined column sections as lengths of column between points of addition 

or removal of material and/or energy. Using this definition, we can identify six 

column sections in the configuration. The column section breakdown is seen in 

Figure 6.5 below.  

 

Column section 1 (CS 1) is a standard rectifying section terminated by a total or 

partial condenser. Column section 6 (CS 6) is a standard stripping section 

terminated by a total or partial reboiler. Column sections 2-5 will be referred to as 

the “coupled column sections”. 
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Figure 6.4: Petlyuk column (main column 

with prefractionator) 
 

Figure 6.5: Column section breakdown for the 
Petlyuk column 

 
 

6.5.1 Net Flow and Difference Point Material Balances in the Petlyuk 

Column 

 

∆k is a pseudo stream within a column section. Because of this ∆k has to obey the 

material balance in the same way that real streams do. This can be seen by 

performing a material balance at the point where feed material is added between 

to column sections (CS 3 and CS 5). See Figure 6.6 below. 
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As mentioned above, ∆k can be positive or negative depending on the magnitude 

of the vapour and liquid flow rates. Equation 6.3 can be satisfied by various 

combinations of, positive and negative, ∆3 and ∆5 values. For example certain 

positive values of both ∆3 and ∆5 would satisfy Equation 6.3, as would certain 

negative values.  ∆3 could also be positive and ∆5 negative. Negative ∆3 and 

positive ∆5 values, however, would violate the material balance. These net flow 

scenarios are illustrated in Figure 6.7a-d below. 
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CS 3 and 5: 

    
Figure 6.7a: 

Feasible net flow 
pattern 

(∆3>0, ∆5>0 ) 

Figure 6.7b: 
Feasible net flow 

pattern 
(∆3<0, ∆5<0 ) 

Figure 6.7c: 
Feasible net flow 

pattern 
(∆3>0, ∆5<0 ) 

Figure 6.7d: 
Infeasible net flow 

pattern 
(∆3<0, ∆5>0 ) 

 

This may seem like a trivial result, unless we recall that the reflux ratio for a 

column section is a function of ∆k and can be positive or negative. This result 

suggests that there are multiple reflux ratio combinations possible in the Petlyuk 

configuration. These combinations result in multiple, qualitatively different, 

CPMs that may be employed for the design. Some of the available combinations 

may provide more efficient separations. This implies that the net flow within the 

configuration may be advantageous or disadvantageous to the separation.  

 

Let us now analyse the net flow combinations of the remaining mixing points in 

the configuration. 

 

CS 1, 2 and 3: 

Column section 1 (CS 1) is a standard rectifying section. It produces a product - 

the distillate. The distillate flow is equal to the net flow in CS 1 because these 

streams are defined in the same way. To produce a product V1 is always greater 

than L1; hence the net flow can only be positive in CS 1. The net flows in CS 2 

and 3 can be either positive or negative. The various combinations are seen in 

Figure 6.8a-d below.  

  
 

Figure 6.8a: 
Feasible net flow 

pattern 
(∆2>0, ∆3>0 ) 

 

Figure 6.8b: 
Feasible net flow 

pattern 
(∆2>0, ∆3<0 ) 

Figure 6.8c: 
Feasible net flow 

pattern 
(∆2<0, ∆3>0 ) 

Figure 6.8d: 
Infeasible net flow 

pattern 
(∆2<0, ∆3<0 ) 
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CS 4, 5 and 6: 

Column section 6 (CS 6) is a standard stripping section. It produces a product - 

the bottoms. The bottoms flow has equal magnitude but opposite sign to the net 

flow in CS 6 because the bottoms is defined as L6-V6. Since L6 must be greater 

than V6 to produce a product, the net flow can only be negative in CS 6. The net 

flows in CS 4 and 6 can be either positive or negative. The various combinations 

are seen in Figure 6.9a-d below.  

  
 

Figure 6.9 a: 
Feasible net flow 

pattern 
(∆4<0, ∆5<0 ) 

Figure 6.9b: 
Feasible net flow 

pattern 
(∆4<0, ∆5>0 ) 

Figure 6.9c: 
Feasible net flow 

pattern 
(∆4>0, ∆5<0 ) 

Figure 6.9d: 
Infeasible net flow 

pattern 
(∆4>0, ∆5>0 ) 

 

CS 2 and 4: 

The net flows in CS 2 and 4 can be either positive or negative. The various 

combinations are seen in Figure 6.10a-d below.  

   
 

Figure 6.10 a: 
Feasible net flow 

pattern 
(∆2>0, ∆4>0 ) 

Figure 6.10b: 
Feasible net flow 

pattern 
(∆2<0, ∆4>0 ) 

Figure 6.10c: 
Feasible net flow 

pattern 
(∆2<0, ∆4<0 ) 

Figure 6.10d: 
Infeasible net flow 

pattern 
(∆2>0, ∆4<0 ) 

 

By combining the feasible net flow scenarios in each column section and 

disregarding those that are infeasible we see that there are, in fact, five possible 

net flow patterns in the Petlyuk column. This result is quite surprising in light of 

the single flow pattern possible in a two product column (up in the rectifying 

section and down in the stripping section). These five flow patterns will, 

undoubtedly, allow profiles from a much wider range of qualitatively different 

CPMs to be sampled. The five scenarios are named net flow pattern 1 through 5 

and are illustrated in Figure 6.11a-e. 
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Figure 6.11a: 

Net flow 
pattern 1  

 

Figure 6.11b:  
Net flow  
pattern 2 

Figure 6.11c: 
Net flow  
pattern 3 

Figure 6.11d: 
Net flow  
pattern 4 

Figure 6.11e: 
Net flow 
pattern 5 

 

Physically these flow patterns are induced by control on the vapour and liquid 

split ratios into the coupled column sections (CS 2-5) from the stripping and 

rectifying sections, respectively. The net flow of material within the column can 

also be thought of in terms of the distributions of feed material. 

 

The feed material in Figure 6.11c is distributed between the top and bottom halves 

of the column, so that there is net flow of material in both directions. If the net 

amount of material directed to the bottom half of the column is increased, the case 

in Figure 6.11d is achieved. In this case, in order to maintain material balance, the 

material must be directed upwards, on the product side, in both CS 2 and 4. This 

is due to the fact that the side-draw flow rate is not large enough to change the 

direction of the net flow from CS 4 to CS 2. If the net amount of material directed 

to the top half of the column is increased, however, the case in Figure 6.11b is 

achieved. This case is the exact opposite of that in Figure 6.11d. The net flow of 

material on the product side is downwards for the same reasons given above. By 

increasing the material directed to the top half even further, the material 

eventually circulates (anti-clockwise in Figure 6.11a) within the coupled sections, 

flowing upwards in CS 5 instead of downwards. Conversely, if the material 

directed downwards on the feed side is increased further, the case in Figure 6.11e 

is achieved where material is circulated in the opposite direction (clockwise in 

Figure 6.11e).  
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The largest drawback to the configuration being operated with the net flow 

patterns 1, 2, 4 and 5 (Figure 6.11a, b, d and e) is that the net flow in the column 

sections at the side-draw (CS 2 and CS 4) is in the same direction. This results in 

the reflux ratios of the sections having the same sign. The side-draw has the effect 

of lowering the reflux from one column section to the other. If both refluxes are 

negative, the reflux of CS 4 will have a larger magnitude than that of CS 2. If the 

magnitude of the reflux of CS 2 is to be large enough to have the column 

operating on specification, the CS 4 reflux must be very high. This ultimately 

means that CS 1 and CS 6 must operate at a fairly high reflux and the column will 

be energy intensive. This is also true if both refluxes are positive.  The net flow 

pattern 3 (Figure 6.11c) does not have this drawback and is therefore likely to be 

the most energy efficient operating mode. 

 

6.5.2 Difference Points and the Material Balance 

 

Because difference points are like pseudo compositions, they obey linear mixing 

rules. This can be shown by performing a component material balance at the feed 

point between CSs 3 and 5. See Figure 6.12.  

 
Figure 6.12: 
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Geometrically this is equivalent to difference points X∆3 and X∆5 lying on a 

straight line through XF, in composition space. Their relative positions will depend 
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on the sign and magnitude of ∆3 and ∆5. Table 6.1 summarises the various 

possibilities for CS 3 and 5.  

 

The dependence of the difference point positions on the net flow implies that there 

will be as many relative difference point placement scenarios as there are net flow 

patterns. This is, indeed, the case and these will be explored in more detail later. 
 

Table 6.1: Geometric Interpretation of Material Balance over 
CS 3 and 5 
Net 
Flow 
Pattern 

∆3 ∆5 
Relative Positions of 
Difference Points 

1 + + 
 

2, 3, 4 + - 
 

5 - - 
 

 - + Infeasible 

 

X∆5 X∆3 XF 

XF X∆5 X∆3 

X∆3 X∆5 XF 
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6.6 Composition Matching Criteria 
 

The approach of treating the Petlyuk column as a number of column sections and 

piecing the solutions to these (the CPMs) together, as apposed to finding the 

solution to the entire column through iteration, results in the designer having to be 

mindful of certain composition matching criteria which need to be satisfied. 

Composition matching is required at all points where column sections meet. We 

will now discuss the required criteria at each of these four mixing points.  

 

Composition Matching Criterion 1:  

 
Figure 6.13a: 

 

The liquid profiles from CS 1, CS 2 and CS 3 must all 

intersect if they are to be considered as possible operating 

profiles. This is simply due to the fact that the liquid 

leaving the bottom of CS 1 is divided between CS 2 and 

CS 3; hence this composition must exist on all three 

profiles. If CS 1 was not a standard rectifying section and 

the CPMs of all three column sections were 

superimposed, any three intersecting profiles from these 

maps could be thought of as possible solutions to the 

three-column 

section system. The situation is somewhat simplified by the fact that CS 1 is a 

rectifying section as only one profile on this CPM is valid. Rectifying sections 

have to operate on profiles that pass through the distillate composition or the 

composition in equilibrium with this stream, hence only one profile is valid. Any 

profiles from the CPMs of CS 2 and CS 3 intersecting on this solution are valid 

however. 
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Composition Matching Criterion 2:  

 

The vapour profiles of the CS 4, CS 5 and CS 6 must all 

intersect because CS 4 and CS 5 are both fed vapour by 

CS 6, which is a standard stripping section. Only one 

profile of the CS 6 vapour CPM is valid as the vapour 

stripping profile must pass through either the bottoms 

composition or composition in equilibrium with this 

stream. Any profiles from the vapour CPMs of CS 4 and 

CS 5 intersecting on this solution are valid. 

Composition Matching Criterion 3:  

 

Both the liquid and vapour profiles of CS 2 and CS 4 

must intersect. There is no composition change in either 

the vapour or liquid material from the bottom of CS 2 to 

the top of CS 4. This is because material is removed 

from, not added to, the liquid or vapour streams. Valid 

profiles must intersect at the side-draw composition. 

Composition Matching Criterion 4: 

 

The liquid or vapour profiles of CS 3 and CS 5 must 

intersect. If the feed material is vapour then we assume 

that it mixes perfectly and instantly with the vapour 

stream from CS 5 to produce the bottom vapour stream of 

CS 3. It is assumed that there is no mass transfer to the 

liquid stream leaving CS 3 and that this composition is 

the same as the top liquid composition in CS 5. Similarly 

if the feed is liquid, it is assumed that the vapour 

composition at the top of CS 5 is the same as that at the 

bottom of CS 3.  
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Figure 6.13c: 

1 

2 3

4 5

6 

Figure 6.13b: 

Figure 6.13d: 
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It is important to note that if the composition at which the matching criterion, of 

one phase is satisfied, is identified on CPM k and CPM k+1 and the difference 

points used to generate the two CPMs satisfy the material balance, the 

compositions of associated passing streams will satisfy the material balance 

required of that phase. This means that if we superimpose CPMs to determine 

where the matching criteria are satisfied, we need not worry about satisfying the 

material balance and finding associated compositions of the other phase. These 

will automatically be satisfied and can easily be calculated, if required, using the 

definitions of the difference point and net flow of the particular CS. 

 
 
6.7 Feasible Topology 
 

It would be very useful during the design process to be able to determine ranges of 

feasible column parameters (such as reflux ratio etc) without generating every 

possible solution in doing so. Unfortunately, however, there is no analytical way 

of tracking arbitrary solutions within each CPM and determining whether or not 

they produce feasible Petlyuk column solutions, unless an explicit function exists 

for these profiles.  

 

In this chapter, to bypass this problem, we will look at the case where there is a 

sharp-split on all the products. Restricting ourselves to this class of solution 

enables us to determine the exact position of all viable column section profiles for 

any set of parameters. We will now investigate why this is possible by analysing 

the effects of each sharp product specification. 

 

Firstly, however, we must clarify the definition of individual sharp product 

specifications. 

• A sharp distillate product specification is one in which the light and 

intermediate components appear in finite quantities, but the heavy 

component appears in infinitesimal quantities. 
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• A sharp bottoms product specification is one in which the heavy and 

intermediate components appear in finite quantities, but the light 

component appears in infinitesimal quantities. 

• The side-draw product can be sharp in terms of the light component 

(infinitesimal light component material but finite intermediate and heavy 

component material), sharp in terms of the heavy component (infinitesimal 

heavy component material but finite intermediate and light component 

material) or sharp in terms of the light and heavy components (effectively 

pure intermediate component material). For this work, a sharp side-draw 

product specification will be taken as one which is sharp in terms of both 

the light and heavy components. 

 

With clarified definitions we are now in a position to analyse the topological 

effects of the sharp product specifications. 

 

6.7.1 Implications of Sharp Distillate Product Specifications 

 
A sharp distillate product specification means that the distillate product (XD) is 

effectively confined to the light-intermediate axis (x1 axis).  

But 1
1111

Δ=
−

= X
D

XLYVX
TT

D    i.e. the difference point of CS 1 (X∆1) is equal to 

the distillate composition. This means that X∆1 is a real composition in the column 

and is confined to the light-intermediate axis.  

 

If we analyse the rectifying profile as well as the movement of the CS 1 

transformed triangle (TT) - which is equivalent to analysing the movement of the 

stationary points – while varying X∆1 (at constant R∆1), we notice that as the 

difference point is moved closer to the light-intermediate axis, the profile and one 

of the TT boundaries approach the axis as well. The TT boundary, defined 

between the unstable node and the saddle point, approaches the axis from negative 

heavy component space, while the rectifying composition profile approaches from 

positive heavy component space. When the difference point is effectively on the 
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axis, the afore-mentioned TT boundary lies here too and the rectifying profile runs 

along the boundaries of this triangle. Figure 6.14a-c illustrate this phenomenon. 

 
Figure 6.14 a-c: Rectifying profiles for difference points at varying distances from the light-

intermediate axis.Implications of Sharp Bottoms Product Specifications 
 
A sharp bottoms product specification means that the bottoms product (XB) is 

effectively confined to the heavy-intermediate axis (x2 axis).  

But 6
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B    i.e. the difference point of CS 6 

(X∆6) is equal to the bottoms composition. This means that X∆6 is a real 

composition in the column and is confined to the intermediate-heavy axis.  

 

If we analyse the stripping profile and CS 6 TT, in the same way as we did for the 

sharp distillate specification, we notice that as we move X∆6 towards the 

intermediate-heavy axis the stripping profile and one of the TT boundaries move 

towards each other and the axis as well. When X∆6 lies effectively on the axis, the 

TT boundary defined between the saddle-point and stable node lies here too and 

the stripping profile runs along the boundaries of this triangle. Figure 6.15a-c 

illustrate this phenomenon. 

 
Figure 6.15: Stripping profiles for difference points at varying distances from the 

intermediate-heavy axis. 
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6.7.2 Implications of Sharp Side-Draw Product Specifications 

 
Analysis of the CS 2 and 4 TTs is not possible until we have discussed the 

feasible placements of X∆2 and X∆4. For now, however, it will suffice to state that 

because the CS 2 profile has to satisfy matching criteria 1 and 3 it will run 

effectively on the light-intermediate axis and also along the boundaries of the CS 

2 TT. Similarly, the CS 4 profile has to satisfy composition matching criteria 2 

and 3 and will run effectively on the intermediate-heavy axis and the CS 4 TT 

boundaries. 

 

6.7.3 Implications of Sharp Product Specifications for CS 3 and CS 5 

 
Because the product placement forces composition matching criteria 1 and 2 to be 

satisfied close to the axes, the CS 3 and CS 5 profiles, respectively, will be forced 

to satisfy these compositions too. We will see later that the difference points of 

these sections must also lie on the axes and these profiles therefore run along the 

boundaries of their respective TTs. 

 
6.7.4 Summary of the Topological Effects of Sharp-Split Specifications 

 
The topological effect of a sharp product specification is, clearly, to force the 

composition profile of the CS, from which the product is drawn, to operate on the 

boundary of its associated TT. By specifying all products as sharp we force, not 

only the composition profiles of these product CSs but all the configuration 

composition profiles to operate on their associated TTs. 

 
This means we need only produce the TTs, instead of the entire CPM, for any set 

of parameters, to immediately determine whether or not all the column section 

solutions will satisfy the Petlyuk matching criteria and therefore produce a 

feasible column design. Instead of focusing on the intersection of many individual 

solutions, we can simply focus on the overlap of the TTs concerned. We need, in 

fact, only analyse the liquid TT. It is a product of the vapour-liquid equilibrium 

that if a TT for one phase overlaps, the other will overlap also (see Appendix D 

for details).  
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6.8 General form of the Petlyuk Composition Profiles 
 

If the development of a design tool is to be successful, we need a qualitative 

understanding of the form Petlyuk composition profiles would take for ideal 

systems. We can look at each of the six column sections separately and postulate 

what an efficient well designed profile would look like. 

 

 CS 1 is a rectifying section. Profiles for this section will run from the distillate 

composition, along the light-intermediate axis, getting rapidly richer in the 

intermediate component and slowly richer in the heavy component. We know that 

these profiles run along the boundaries of their TTs (for sharp-splits) and should 

therefore run through the saddle point composition. At the saddle point, they will 

“tear” away from the light-intermediate axis (x1 axis) and quickly gain in the 

heavy component until the composition profile pinches within the MBT. We 

know that the profiles must pinch within the MBT by analysing the, positive 

reflux, pinch point curves for qualitatively different X∆k placement produced by 

Tapp et al. (2004). The stable nodes of CPMs, produced for difference points 

within difference point region 1, always lie within the MBT (for ideal systems). 

The probable form of the liquid and vapour solutions can be seen in Figure 6.16a 

below. Using the profiles as a basis, the probable form of the TTs will be similar 

to that seen in Figure 6.16b. 

 

Solutions for the stripping section (CS 6) will behave in the same way with 

respect to the intermediate composition moving away from the product (in this 

case the bottoms composition) and will “tear” away from the intermediate-heavy 

axis (x2 axis) at a saddle point but now becoming rapidly richer in the light 

component. The stripping profiles will pinch at unstable nodes within the MBT. 

This is ascertained, again, by consulting the pinch point curves (for negative 

reflux ratios) produced by Tapp et al (2004).  The stripping profiles can be seen in 

Figure 6.17a. Again using the profiles as a basis the probable form of the TTs will 

be similar to that of Figure 6.17b. 
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The main purpose of CS 2 is to transport the intermediate component from the top 

half of the column to the side-draw. The amount of heavy component transported 

here should be minimal. The composition trajectories for CS 2 must, therefore, 

run (along the light-intermediate axis) from the side-draw composition (high 

purity intermediate composition) gaining in the light component until they reach 

the rectifying trajectories and satisfy composition matching criterion 1. It is 

possible for these profiles to pinch at the top of the CS. If this were to happen, the 

pinch point would be an unstable node. The probable form of the trajectories 

would be similar to those seen in Figure 6.18a. The TTs are likely of the form 

seen in 6.18b. 

 

CS 4 transports the intermediate from the bottom half of the column to the side-

draw. Very little light component material should be transported in this section. 

The profiles for CS 4 should run from the side-draw, along the intermediate-heavy 

axis, to meet up with the stripping section profiles and satisfy composition 

matching criterion 2. It is feasible for these profiles to pinch at the bottom of the 

CS. In this case the pinch point would be a stable node. The resulting profiles 

would look like those in Figure 6.19a and the corresponding TTs would likely be 

of the form seen in Figure 6.19b. 

 

CS 3 is required to transport both light-component material to CS 1 and 

intermediate material to CS 2. As these sections must process as little heavy-

component material as possible (for product purity purposes) this material must be 

minimised in CS 3 as well. Potential profiles for CS 3 will run from the point 

where CS 2’s profile meets the rectifying profile, along the light-intermediate 

axis, towards a saddle point and then tear away from the boundary towards the 

feed composition, where either the liquid or vapour profile will intersect the CS 5 

profile as shown in Figure 6.20a and Figure 6.20b. 

 

CS 5 must transport heavy component material to CS 6 and intermediate 

component material to CS 4 with minimal light material. Potential profiles will 

run from the point where CS 4’s profile meets the stripping profile, along the 
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intermediate-heavy axis, towards a saddle point and then tear away from the 

boundary towards the feed composition, where they meet up with the CS 3 

profiles as shown in Figure 6.21a and Figure 6.21b. 

 

The complete set of composition profiles and corresponding TTs for the Petlyuk 

column can be seen in Figure 6.22a and Figure 6.22b, respectively. Figure 6.22b, 

clearly shows how all composition matching criteria (required for a feasible 

design) are satisfied by the overlap of the liquid TTs concerned.  

 

With an understanding of the probable form of Petlyuk solutions we are now in a 

position to test column parameters for potential feasibility. Values for these 

parameters which result in dramatically different topological phenomena, for each 

CS, from that discussed above and do not result in the satisfaction of the 

composition matching criteria required can be discarded. 

 

Note: Unless otherwise stated, within composition diagrams a solid line will 

denote the liquid phase while a dotted line will denote vapour phase (except lines 

CLL1 and CLL2 – defined later). Red lines (within composition diagrams) are 

associated with CS 1, pink with CS 2, green with CS 3, black with CS 4, blue with 

CS 5 and yellow with CS 6. The light component composition (x1) will always be 

represented on the y-axis while the heavy component composition (x2) will be 

represented on the x-axis. The MBT will always be represented by a blue triangle. 

 

Legend: Composition Diagrams 

 Liquid composition CS 1  Vapour composition CS 1 

 Liquid composition CS 2  Vapour composition CS 2 

 Liquid composition CS 3  Vapour composition CS 3 

 Liquid composition CS 4  Vapour composition CS 4 

 Liquid composition CS 5  Vapour composition CS 5 

 Liquid composition CS 6  Vapour composition CS 6 
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Figure 6.16a: Rectifying composition 

profiles 
Figure 6.16b: Rectifying section TTs 

 

 
Figure 6.17a: Stripping composition 

profiles 
Figure 6.17b: Stripping section TTs 

 

Figure 6.18a: CS 2 composition profiles Figure 6.18b: CS 2 TTs 
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Figure 6.19a: CS 4 composition profiles Figure 6.19b: CS 4 TTs 

 

 
Figure 6.20a: CS 3 composition profiles Figure 6.20b: CS 3 TTs 

 

 
Figure 6.21a: CS 5 composition profiles Figure 6.21b: CS 5 TTs 
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Figure 6.22a: Petlyuk composition 

profiles 
Figure 6.22b: All six column section 

TTs 

 
 

6.9 Degrees of Freedom and Variable Selection 
 

6.9.1 Degrees of Freedom 

 

The Petlyuk column, due to the thermal coupling of the main column with a 

prefractionator, is a fairly complicated column to design. This complication arises 

as a result of the multiple degrees of freedom (DOF) introduced to the design by 

the coupling. In distillation systems, for simplicity, we can divide these DOF into 

composition variables, overall material balance variables and internal material 

balance variables. With simple distillation columns, for a given feed, there are 

only three degrees of freedom - one of the product composition variables may be 

specified (i.e. XD or XB), one overall material balance variable may be specified 

(i.e. distillate or bottoms rate) and one of the internal material balance variables 

may be specified (i.e. reflux ratio or boil-up ratio).  

 

For the Petlyuk column, however, for a given feed there are two product 

compositional DOF, two overall material balance DOF, one internal 

compositional DOF and three internal material balance DOF (two in the coupled 

sections and one in either the rectifying or stripping sections). In total eight DOF. 

This, clearly, adds many levels of complexity to the design process.  
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It is important to note that the total required stages, feed stage and side-draw stage 

are not considered as degrees of freedom when designing using the CPM 

technique. These variables result as a solution from the process once all other 

DOF have been specified. They can be determined by tracking variable n in the 

difference point equation (Equation 6.1) for any particular Petlyuk solution. 

 

Some of the possible design variables include: 

R∆k CS k reflux ratio 

X∆k  CS k difference point 

D Distillate flow rate 

B Bottoms flow rate 

S Side-draw flow rate  

Lk  CS k internal liquid flow rate 

Vk CS k internal vapour flow rate  

ΦV Vapour split ratio (V2/V1)  

ΦL Liquid split ratio (L2/L1)  

ΦV
’ Vapour split ratio (V4/V6)  

ΦL
’ Liquid split ratio (L4/L6) 

 

Of the multiple possible design variables only eight may be specified. We will 

now discuss the selection of these variables and their effects on the design. 

 

6.9.2 Variable Selection 

 

It is important in this geometric based design process to work with, where 

possible, variables whose effects on the entire configuration are understood. 

Variables such as the reflux ratio, for instance, are useful when analysing a single 

column section, as we can intuitively comprehend its effects on the composition 

profile. However, the influence of changes of reflux ratio in one column section 

on the composition profile of another column section may be more difficult to 

understand. Generally, the interaction of variables becomes more and more 

complex as they are coupled by the connection of column sections. For this reason 
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the design approach we will take, although fairly intuitive, will be used in an 

attempt to “uncouple” the rectifying and stripping sections from the remainder of 

the column by specifying either of these sets of variables independently. 

 

As mentioned previously we shall be dealing with sharp splits on all products. The 

distillate will be chosen to contain almost no heavy material, the bottoms product 

will be chosen to contain effectively no light material and the flow rates of these 

product streams will be chosen such that the side-draw will, effectively, be pure 

intermediate product. Specifying these variables (∆1, X∆1, ∆6, X∆6) satisfies four 

DOF; two compositional and two overall material balance DOF. If we now 

specify an internal variable (e.g. reflux) of either the rectifying (CS 1) or stripping 

sections (CS 6), both sections will be completely satisfied and no freedom will 

exist for the selection of other variables in either. We will specify the reflux of CS 

1 (R∆1), as apposed to that of CS 6, although this is completely arbitrary. Once RΔ1 

is specified the reflux of CS 6 can be determined by material balance. Five DOF 

have now been specified. The conditions within the coupled sections (CS 2-5) are 

dependant on the conditions of the rectifying and stripping sections and the 

remaining three DOF. 

 

Of the three remaining DOF, one is a compositional DOF and two are internal 

material balance DOF. As CS 1 and CS 6 are completely specified, these 

remaining variables must be specified in CS 2 to CS 5. The choice of 

compositional variable will be discussed in greater detail later, but for now it will 

suffice to state that we will specify the difference point of CS 2 (X∆2). The 

remaining variables, both internal material balance variables, are the most difficult 

to choose. As mentioned above working with reflux, although convenient for 

single column sections, becomes less useful when multiple sections are connected. 

If we decided to work with the reflux ratio of one of the coupled column sections 

it would not be obvious what effect changes to this variable would have on the 

other sections. Another issue would be the choice of column section to work with. 

Although this may be more obvious for other variables, it does present an issue 

here. 
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The variables we will choose to work with are ΦV and ΦL, which are defined, 

respectively, as the ratio of vapour and liquid in CS 2 to that in CS 1. We will 

refer to these variables as split ratios although ΦV is, in fact, a mixing ratio. 

Similar variables can be defined in terms of vapour and liquid flow rates in CS 6. 

The decision to work with the CS 1 definition is simply a matter of convenience. 

The use of ΦV and ΦL will lead to a very useful representation of coupled column 

section variables as well as feasible column solutions. 

 

6.10  Difference Point Placement for the Petlyuk Column 
 

With all the external DOF specified we must now turn our attention to the 

remaining internal DOF. We are required to specify one internal composition 

variable. The available composition variables are the difference points (XΔk) of 

the coupled column sections, the placement of which are critical to the feasibility 

of the design. The behaviour of the TT is dependent on two variables, namely the 

difference point (X∆) and the reflux ratio (R∆). The form of the CPM changes as 

the placement of the difference point changes. It is crucial that the difference point 

for a column section is placed correctly so that the resulting CPM satisfies all 

required feasible column criteria. It is, however, impossible to have all difference 

points in the Petlyuk configuration placed optimally as only one DOF remains but 

we can place one point such that it facilitates the composition matching of the 

others.  

 

In making the choice of difference point, it is necessary to identify sections for 

which the required design specifications are more difficult to achieve with 

arbitrary parameter sets. If we consider that CS 2 and CS 4 are required to achieve 

a product specification, it is logical that the difference point of either of these two 

sections is chosen such that the intermediate product composition can be 

achieved. We will arbitrarily choose to place the difference point of CS 2 

(although placing X∆4 would be just as effective).  
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To determine the optimal placement of X∆2 the requirements of this column 

section must be understood. Firstly, CS 2 is required to achieve a particular 

composition, specifically the side-draw composition; therefore the CPM for CS 2 

must provide trajectories which intersect this composition point. Secondly, the 

profile is required to intersect the rectifying profile; therefore it should run from 

the side-draw composition, close to the light-intermediate axis and cross the 

rectifying profile.  

 

From a material transport perspective the main purpose of CS 2 is the transport of 

the intermediate component to the side-draw. If the side-draw composition is 

required to be very “pure”, CS 2 should not transport large quantities of light or 

heavy component material i.e. the pseudo composition of the net flow (X∆2) 

should have a high intermediate component percentage. This does not exclude 

difference points with non-zero light and heavy components, however. High 

purities are possible in a column section even if the net flow does involve large 

“impurity” flows because a single phase can be sampled. This can be explained if 

we consider that at a difference point the vapour and liquid compositions are equal 

(this is shown in Equation 6.6), but as compositions away from the difference 

point are sampled a “gap” opens up between the vapour and liquid compositions 

(as shown in Equation 6.7).  Difference points associated with large impurities 

can, therefore, generate trajectories of one phase achieving high purities while the 

other does not. An illustration of this is seen in Figure 6.23 below.  
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Minimising difference point impurities should improve overall performance 

though, by the simple logic that if there is a smaller net flow of “impurity” 

material through the section, there is less to be separated from the intermediate 

component. If we consider this argument only, the difference point for CS 2 

should be placed near the intersection of the x1 and x2 axes (pure intermediate).  

 

 
Figure 6.23: Low intermediate purity 

difference point with liquid profile 
sampling high intermediate purity 

 

 
Figure 6.24: Mixing and separation 

vector co-linearity 
 

 

It is possible to use geometrical ideas to confirm our intuitive net flow arguments 

above. Tapp et al (2004) illustrated that a qualitative understanding of the CPM 

could be achieved by studying the pinch point curves resulting from difference 

points placed arbitrarily in each of the 7 qualitatively different regions of the 

composition space that were identified (see Figure 6.2). By noting where the 

nodes of the system move, we can identify which (difference point) regions of the 

space would result in favourable trajectories at the side-draw. As mentioned above 

the required profile in CS 2 needs to intersect the rectifying profile. The rectifying 

profile will run close to the light-intermediate axis (see Figure 6.16a), so any 

profile running from a high purity side-draw composition to the rectifying profile 

will do likewise (see Figure 6.18a and b). If the column section operates at 

negative reflux the profile will reach an unstable node stationary point close to the 

light-intermediate axis of the MBT (see Figure 6.18b). If it is operated at positive 

reflux, the profile will terminate outside the MBT but also close to the axis (see 

Figure 6.25a and b). X∆2 must produce a pinch point curve that runs close to this 
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boundary. We can determine areas of possible X∆2 placement geometrically by 

using the co-linearity condition of the mixing and separation vectors at the pinch 

point. Pinch points only occur in composition space when the mixing vector (X∆ - 

X) is collinear with the separation vector (X – Y*(X)) (see Figure 6.24).  

  
Figure 6.25a: CS 2 profile pinching outside 

MBT for RΔ2>0 
Figure 6.25b: TT for CS 2 for RΔ2>0 

 

All that is required is to choose (desirable) potential pinch points on the residue 

curve map and extend lines along the direction of the tangent of individual residue 

curves at these points (separation vectors are tangential to the residue curve at 

their liquid composition). If we extend straight lines, from points close to the 

light-intermediate axis, along the residue curve tangents we can find lines of 

possible X∆2 values. Figure 6.26 illustrates lines of X∆2 values that satisfy three 

arbitrarily chosen pinch points. Pinch points chosen close to the axis produce lines 

of X∆ close to the axis, therefore if the X∆2 is placed close to the light-intermediate 

axis the pinch point curve will run very close to this boundary and consequently 

so will potential profiles. This will satisfy the side-draw composition requirement 

as well as the rectifying profile intersection.  

 

As was illustrated previously, difference points obey linear mixing rules. The CS 

2 and CS 4 difference points must lie on a straight line running through the side-

draw composition. If the placement of X∆2 is to be finalised we must determine 

the implications of this placement on X∆4. If X∆2 is placed at an arbitrary position 

along the light-intermediate axis and XS is placed very close to the pure 
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intermediate composition, linear mixing rules will force X∆4 to lie along the light-

intermediate axis as well. However, if X∆4 was chosen independently we would, 

by the same logic applied to the placement of X∆2, position X∆4 along the 

intermediate-heavy axis (CS 4 profiles must run from the side-draw composition 

along this axis to the stripping profile). The only possible way to satisfy the 

requirements for both difference points, for sharp-splits on the side-draw, is if X∆2 

and X∆4 are placed very close to both axes i.e. close to the pure intermediate 

component. Because the side-draw is placed very close to the pure intermediate 

component all three points must in fact exist at the same composition. This result 

agrees with the intuitive net flow arguments made above. Suitable difference point 

placements for each of the column sections, for each net flow pattern, are seen in 

Figure 6.27a-e. The relative positioning of the difference points is dependent on 

the net flow in each column section and subsequently the final positioning of X∆3 

and X∆5 is a function of the remaining internal material balance variables which 

will be discussed next. Because difference points obey linear mixing rules, X∆3 is, 

however, constrained to the material balance line though the distillate composition 

(X∆1) and X∆2, while X∆5 is constrained to the material balance line through the 

bottoms composition (X∆6) and X∆4. 

 

It fascinating to note, that for net flow patterns 1, 2, 4 and 5 XΔ3 or XΔ5 must 

operate outside of the MBT. This forces the net flow of some of the components 

within CS 3 and CS 5 to flow in opposite directions. The fact that these difference 

points operate outside the MBT also introduces the potential for interesting 

topology to be shifted into the MBT for these column sections. 
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Figure 6.27a: Material balance – net flow 

pattern 3 
 

  
Figure 6.27b: Material balance – net flow 

pattern 1 
Figure 6.27c: Material balance – net flow 

pattern 2 

 
 

Figure 6.27d: Material balance – net flow 
pattern 4 

Figure 6.27e: Material balance – net flow 
pattern 5 

 
Legend Figure 6.27a-e: 
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6.11  Variable Representation in ΦV vs. ΦL Space 
 

The split ratios were introduced in our discussion of variable selection above and 

are the internal material balance variables chosen for the design process. Our 

choice of other variables was largely based on our intuitive understanding of their 

effects. Because we do not have this advantage with our choice of ΦV and ΦL we 

shall represent coupled-column-section variables we do understand in split ratio 

space. We shall also define boundaries in this space that represent physical limits 

on the column section internal flows. These representations will help effect an 

intelligent selection of the liquid and vapour splits. 

 

6.11.1 Net Flow Regimes in ΦV vs. ΦL Space 

 

The various net flow patterns can be controlled or achieved by manipulating the 

split ratios. The regimes can readily be visualised, in ΦV vs. ΦL space, by 

producing lines of zero net flow for the coupled column sections (see Figure 

6.28). The dependence of the net flow, for each of the coupled column sections, 

on the vapour and liquid split ratios from CS 1 can be seen in the Equation 6.8-

6.11 below. The split ratios for both the liquid and vapour are defined, as 

mentioned previously, in terms of the respective flows from CS 1.  As a 

consequence, all the equations below are functions of the reflux ratio in CS 1. The 

CS 4 and CS 5 zero net flow lines are both functions of the distillate flow rate as 

well as the side-draw flow rate and feed flow rate respectively. 
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By dividing up the ΦV vs. ΦL space with lines of zero net flow for each of the 

coupled sections, we can identify regions within the space of different overall net 

flow pattern. These are labelled 1 to 5 in Figure 6.28. Above the ∆5 = 0 line (blue) 

values of ΦV and ΦL produce values of ∆5 > 0, while below the line values of ∆5 < 

0 are produced. Similarly for the ∆3 = 0 line (green), above the line are values of 

∆3 > 0, while below are values of ∆3 < 0. The inverse is true for lines ∆2 = 0 (pink) 

and ∆4 = 0 (black). Above these lines negative values are produced, while below 

positive values are produced.  

 

Each of the regions between these lines and between the lines and the boundaries 

of the space produce a different net flow pattern in the coupled sections. These are 

the flow patters illustrated in Figure 6.11a-e. This behaviour, described above, is 

summarised in Table 6.2 below. 

 
Figure 6.28: Net Flow Regimes in ΦV vs. ΦL 
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Region 
From 

Figure 6.28 

∆ 
Direction 

CS2 

∆ 
Direction 

CS3 

∆ 
Direction 

CS4 

∆ 
Direction 

CS5 

Illustrated 
By 

1 - ve + ve - ve + ve Figure 6.11a 

2 - ve + ve - ve - ve Figure 6.11b 

3 - ve + ve + ve - ve Figure 6.11c 

4 + ve + ve + ve - ve Figure 6.11d 

5 + ve - ve + ve - ve Figure 6.11e 

Table 6.2: Summary of net flow regions illustrated in Figure 6.28 
 
6.11.2 Physical Limits on ΦV and ΦL 

 

Because of the definition of the split ratios, there are values of both ΦV and ΦL, 

which cannot be produced. The vapour split ratio, at which the vapour flow in CS 

3 is equal to the feed rate, represents an upper physical limit on the value of ΦV 

for a column with vapour feed. The exact value of this limit can be calculated 

using Equation 6.12. 
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Material balances calculated with values of ΦV greater than this upper limit will 

produce negative vapour flow values in CS 5. Similarly, for a column with liquid 

side-draw, if the liquid split ratio is specified such that the value for the liquid 

flow in CS 2 is smaller than the side-draw rate, negative liquid flows in CS 4 will 

result in any material balance. The split ratio value at which the liquid flow in CS 

2 is equal to the side-draw rate, therefore, represents a lower limit on the value of 

ΦL. This limiting value can be calculated with Equation 6.13. 
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Both these limits are illustrated in Figure 6.28. 
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6.11.3 Reflux Ratio in ΦV vs. ΦL Space 

 

The reflux ratio of the coupled sections can also be conveniently represented in 

the ΦV vs. ΦL space. Because of the definitions of the split ratios, lines of constant 

reflux are straight. The equations for the constant reflux lines for each of the 

coupled column sections are seen below (Equations 6.14-6.19). These equations 

are also all functions of R∆1. The form of the R∆4 and R∆5 equations are dependant 

on the phase of the side-draw and feed material respectively. 
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R∆4 - Liquid side-draw (6.16) 
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R∆4 - Vapour side-draw   (6.17 ) 
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R∆5 - Liquid Feed:  (6.18) 
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R∆5 - Vapour Feed: (6.19) 
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Figure 6.29: Constant reflux lines in ΦV vs. ΦL 

 

The sign of the reflux is dependent on the sign of the net flow, therefore the 

regions of the space corresponding to positive and negative net flow, for each of 

the sections, correspond to positive and negative reflux for those sections as well. 

Infinite reflux lines originate from the zero net flow lines (both positive and 

negative infinite reflux). The lines fan out, away from their respective zero net 

flow lines, as the absolute value of the reflux is reduced (see Figure 6.29). These 

representations enable us to intuitively determine the effects of a particular choice 

of ΦV and ΦL on the reflux of coupled sections.  

 

6.11.4 Constant X∆ in ΦV vs. ΦL Space 

 

It is possible to find split ratio lines that result in constant X∆k-i for the coupled-

column-sections i.e. varying the split ratios along these lines does not shift the 

difference points. This can be useful if we wish to design a column that directs 

individual components within the coupled column sections in a specific way. We 

are confined to values for the variable difference points (X∆3, X∆5) along straight 

lines between the distillate and bottoms product compositions and X∆2 (see Figure 

6.27a-e above), but we can control exactly where along these lines a particular 

difference point lies. Below is an expression for one of these constant X∆ lines 

(Equation 6.20) – this equation has been generated for CS 3, but similar 

expressions can be derived for CS 5.  
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where iX −Δ3  is a control on component i for the difference point of CS 3. 

 

Again we notice that this line is straight. Its slope is of equal gradient to the zero 

net flow expressions generated above. Figure 6.30 below illustrates an example of 

a constant X∆ line at an X∆3-1 value of 0.6 (light component). We can see that in 

this particular case this value is only satisfied in region 3 of split ratio space. 

 

 
Figure 6.30: Constant X∆ lines in ΦV vs. ΦL space. 

 
 

6.12  Constructing Split Ratio Regions of Feasibility 
 

The design procedure thus far has involved the allocation of product composition 

and flow, the reflux ratio of CS 1 as well as the difference point of CS 2. Let us 

assume for now that our arbitrary choice of R∆1 will result in a potentially feasible 

Petlyuk solution i.e. solutions exist for this reflux ratio. Following the discussion 

of the representation of net flow pattern regions and reflux ratios in ΦV vs. ΦL 

space we are now in a position to choose values for the vapour and liquid split 

ratios. We have a number of tools at our disposal. We can generate the net flow 

regions for our choice of R∆1 and products. This immediately allows us to narrow 

down our range of choice of values for ΦV and ΦL by deciding on our region of 

operation. Furthermore we now have an understanding of the effects of our choice 

on the reflux ratios of the coupled column sections.   
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Note: Transformed Triangle Boundary Definitions 

 

For the following sections it will be convenient to label the boundaries of the TTs. 

A boundary defined between an unstable node and a saddle point of TT “k” will 

be referred to as boundary “Ak”. A boundary defined between a stable node and a 

saddle point of TT “k” will be referred to as boundary “Bk”. The final boundary 

defined between an unstable node and a stable node will be referred to as 

boundary “Ck” of the TT. Figure 6.31 below illustrates these boundary 

definitions. Unless otherwise stated this will always refer to liquid TT boundaries. 

Vapour TT boundaries will be referred to as “vapour boundary Ak”, etc. 

 

 

6.12.1 Coupled Column Section Minimum Reflux 

 

Let us assume that we have allocated all variables including ΦV and ΦL and that 

the resulting solutions are the superimposed TTs of Figure 6.22b. For this solution 

we can see that all the required matching criteria are satisfied.  

• TTs of CS 1, CS 2 and CS 3 overlap.  

• TTs of CS 2 and CS 4 overlap.  

• TTs of CS 3 and CS 5 overlap.  

• TTs of CS 4, CS 5 and CS 6 overlap. 

The reflux ratios of CS 1 and CS 6 are specified parameters and as such their TTs 

are fixed. The TTs of CS 2 and CS 4 produce a substantial overlap with these, so 
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Figure 6.31: Transformed triangle boundary 
definitions 
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it is clear that their reflux ratios are higher than is required for feasibility. These 

refluxes are set by our choice of ΦV vs. ΦL. If we allowed these values to be 

changed we could vary other parameters. If we were to reduce R∆2, until boundary 

C2 just touched boundary B1 (see Figure 6.32) a minimum reflux ratio for CS 2 

could be found. This is possible because X∆2 is fixed and the corresponding TT is 

only a function of R∆2. The same is true for CS 4. X∆4 is fixed because X∆2 was 

placed at the side draw composition – hence X∆4 is constrained to this value for all 

choices of R∆4 and ΦV and ΦL. We can reduce R∆4 until the boundary C4 just 

touches boundary A6 (see Figure 6.33) and find a minimum R∆4. These minima 

can both be represented in ΦV vs. ΦL space as illustrated before (see Figure 6.36). 

The R∆2MIN defined above is always < 0 and R∆4MIN is always > 0. 

 

Any value of ΦV and ΦL between the minimum R∆2 line (dashed pink) and the CS 

2 zero net flow line (solid pink) will produce an overlap of TT 2 and TT 1 with a 

value of R∆2<0. No ΦV and ΦL values above the minimum R∆2 line will ever 

produce an overlap and hence a feasible Petlyuk design for our chosen R∆1 and 

products, so we can discard this entire region when choosing our split ratios. 

Similarly, the region between the minimum R∆4 line (dashed black) and the CS 4 

zero net flow line (solid black) will produce an overlap of TT 4 and TT 6. The 

value of R∆4 here is >0. Values of ΦV and ΦL below the minimum R∆4 line can be 

discarded.  

 

It should be noted that we cannot immediately discard the regions below the CS 2 

or above CS 4 zero net flow lines. These regions produce reflux ratios with 

opposite sign (R∆2 > 0, R∆4 < 0) to the minima discussed above as they are in 

different net flow regions. Because of this both sets of matching criteria are 

satisfied. The overlap of TT 2 and TT 1 is automatically satisfied because the 

unstable node of CPM 2 lies outside the MBT above the unstable node of CPM 1 

(see Figure 6.34). This topological phenomenon is always true for CPMs 

produced from positive differences points with positive reflux ratios.  The overlap 

of TT 4 and TT 6 is also satisfied because the stable node of CPM 4 lies outside 

the MBT beyond the stable node of CPM 6 (see Figure 6.35). This topological 
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phenomenon is always true for CPMs produced from positive differences points 

with negative reflux ratios. Although these guaranteed overlaps might seem like 

an advantage, they cannot be achieved simultaneously - the resulting net flow 

pattern is infeasible (up in CS 2 and down in CS 4). One of the CSs must operate 

with a reflux ratio of the same sign as its minimum reflux ratio. This means that 

the only region of ΦV vs. ΦL space that will satisfy both matching criteria and 

produce feasible net flow patterns in sections 2 and 4 is between the minimum 

reflux ratio lines of both CSs (above R∆4MIN and below R∆2MIN).  No value picked 

outside this range will ever produce a feasible Petlyuk solution, whether the split 

is sharp or not. 

 
Figure 6.32: TT for CS 1 and CS 2 at 

minimum R∆2 
 

 
Figure 6.33: TT for CS 4 and CS 6 at 

minimum R∆4 
 

 

 
Figure 6.34: TT for CS 1 and CS 2 for 

positive R∆2 
 

 
Figure 6.35: TT for CS 4 and CS 6 for 

negative R∆4 
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Figure 6.36: Minimum R∆2 and R∆4 in ΦV vs. ΦL space 

 

6.12.2 Limiting Conditions for Overlap of TT 3 and TT 5  

 

We have substantially reduced the range of possible split ratio choices by 

identifying regions (in ΦV vs. ΦL space) resulting in negative vapour or liquid 

flows, categorising regions of differing net flow patterns and producing lines of 

minimum reflux ratio for CS 2 and CS 4 based on two of the required matching 

criteria. We will now turn our attention to another of the matching criteria – the 

overlap of TT 3 and TT 5. The split ratios chosen for the example in Figure 6.22b 

produced a large overlap of these TTs. If we start at these split ratios and increase 

the vapour split incrementally at constant liquid split, the TTs of CS 3 and CS 5 

will shift as seen in Figure 6.37a-b below. At a certain value, boundaries B3 and 

C5 of TT 3 and TT 5 respectively will actually be collinear. This represents the 

final ΦV value at the constant ΦL value, previously chosen, that will produce an 

overlap of these TTs. Conversely, if we incrementally increase ΦL at constant ΦV 

the TT will shift as seen in Figure 6.38a-b. Eventually a value of ΦL will be 

reached at which boundary C3 and boundary A5 just touch and are also collinear. 

Another remarkable property of the material balance is that these collinear 

boundaries will, in fact, always pass through the feed composition for constant-

relative-volatility systems (vapour TT boundaries for vapour feed and liquid TT 

boundaries for liquid feed). Consequently, we immediately have an idea of their 

placement for all values of ΦL and ΦV. 

 

ΦV 0 1
0

1

ΦL 
R∆4MIN 

R∆2MIN 



6.12 Constructing Split Ratio Regions of Feasibility 165 

 165

Holland et al (2004 b) discussed the eigenvector fields underlying systems whose 

vapour-liquid-equilibrium can be modelled using the separation vector: 

S = (X-Y*(X)) (6.21) 

The eigenvectors of the difference point equation and the residue curve equation 

are only a function of the separation vector and completely independent of the 

difference point and reflux ratio. The eigenvector field, therefore, is the same for 

all CPMs of a particular system. Any liquid composition profile terminating at a 

stationary point approaches (the node) along the direction of the eigenvector at the 

point. Holland et al (2004 b) demonstrated that the eigenvectors at the 

singularities, of constant-relative-volatility systems, always point along the 

direction of the TT boundaries. Because the boundaries are straight in these 

systems, the eigenvectors at each singularity point directly at the other 

singularities. Any point chosen along one of these boundaries will have 

eigenvectors that point directly at the singularities, which define it. If we calculate 

the direction of the two eigenvectors at the feed composition we can immediately 

determine the two lines of co-linearity of the boundaries of TT 3 and TT 5. We 

will name the co-linearity line of smaller (absolute) gradient, Co-Linearity Line 1 

(CLL1) (see Figure 6.39) and the line of larger (absolute) gradient, Co-Linearity 

Line 2 (CLL2) (see Figure 6.40). Once we know these two lines we can solve for 

all values of ΦL and ΦV that result in TT 3 and TT 5 bordering each other. This is 

done by simply choosing points along the co-linearity lines and, realising that 

these points must be satisfied by nodes of either of the TTs, determining the 

associated values of ΦL and ΦV. These values can be plotted in ΦL vs. ΦV space. 

Figure 6.41 illustrates an example of these lines of ΦL and ΦV solutions, which 

divide values resulting in TT 3 and TT 5 overlap from those resulting in no 

overlap. There are of course two lines of solutions corresponding to the two co-

linearity lines through the feed point. These lines are straight due to the linearity 

of CLL1, CLL2 and the material balance. The red line represents all points 

resulting in the lining-up of boundaries B3 and C5 of TT 3 and TT 5 respectively 

(i.e. generated from CLL1). We will refer to this line generated from CLL1 as 

Phi-Eigenvector-Boundary-1 (PEB1). To the left of PEB1 the boundary B3 will be 

below CLL1 and boundary C5 will be above it – a potential overlap. This is only a 
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potential overlap because the stable node of TT 3 might lie further “left” than the 

unstable node of TT 5 – i.e. closer to the light-intermediate axis. To the right of 

PEB1 the relative positions of boundary B3 and boundary C5 will be inverted - 

hence no potential overlap. The blue line represents all points resulting in the 

lining-up of boundaries C3 and A5 (i.e. generated from CLL2). We will refer to 

this line generated from CLL2 as Phi-Eigenvector-Boundary-2 (PEB2).  Below 

PEB2 boundary C3 will lie to the right of CLL2 and boundary A5 will lie to the 

left – potential overlap. Again this is only a potential overlap because the unstable 

node of TT 5 might lie “below” the stable node of TT 3 (closer to the 

intermediate-heavy axis). Above PEB2 boundary C3 will lie to the left of CLL2 

and boundary A5 will lie to the right – hence no potential overlap. If we focus our 

attention on the area between PEB1 and PEB2, on the side of potential overlaps 

for both, we find that the uncertainty in this region for one line is removed by the 

other. An overlap of TT 3 and TT 5 is guaranteed for values of ΦL and ΦV chosen 

here. 

 

Note: CLL1 and CLL2 (and consequently PEB1 and PEB2) are phase dependent. 

If vapour feed is added to the column, vapour boundaries B3 and C5 will line up 

along CLL1 while vapour boundaries C3 and A5 will line up along CLL2. The 

eigenvector directions in this case are not the eigenvectors of the standard 

separation vector as vapour profiles do not approach their pinch points along these 

directions. Vapour profiles approach pinch points along, and vapour TT 

boundaries line up along, eigenvectors of the differential equations which have 

separation vectors expressed in terms of the vapour composition.  

i.e. S = (X*(Y) - Y) 

 

6.12.3 Satisfying the Remaining Matching Criteria 

 
In our development of the minimum reflux line for CS 2 we neglected the third 

column section involved in the required composition matching. TT 3 must overlap 

not only TT 5 but also TT 2 and TT 1. An intersection with TT 1 is always 

guaranteed in region 1, 2 and 3, however, as X∆3 is within the MBT and operates 

with a positive reflux ratio. The same reasoning, as discussed previously for 



6.12 Constructing Split Ratio Regions of Feasibility 167 

 167

positive reflux in CS 2, prevails (see Figure 6.34). TT1/TT3 overlaps, as we will 

see later, only occur in regions 4 and 5 under specific circumstances. The overlap 

of TT 3 with TT 2 is more difficult to guarantee. What we can show, though, is 

that when a node of TT 2 (unstable) lies on top of a node from TT 1 (saddle), a TT 

3 node (saddle) must lie at this same point and the respective boundary lines must 

then be collinear (Appendix E). It can also be shown that when these nodes lie on 

top of each other and the split ratios are adjusted along lines of constant X∆ (i.e. 

making the changes of the TT’s only a function of the changes to R∆), R∆3 

decreases, shifting boundary B3 away from the intermediate boiler and towards 

the light boiler. The rate at which R∆3 decreases is smaller than the rate at which 

R∆2 increases, however, and we can therefore infer that TT 1, 2 and 3 will overlap 

for all split ratio values in regions 1, 2 and 3 below the minimum R∆2 line (see 

Appendix F for details). If we assume that this movement of TTs is true not only 

for situations in which nodes are directly on top of each other, but also for 

situations when boundaries touch we can be certain that if TT 2 and TT 1 overlap, 

all three TTs will overlap. 

 

Similar logic to that used above for the matching criteria of CS 1, 2 and 3 can be 

used for that of CS 4, 5 and 6. TT 5 is always guaranteed of overlapping TT 6, in 

region 3, 4 and 5, by the same reasoning used for the overlap of TT 4 with TT 6 at 

negative R∆4 (see Figure 6.35). X∆5 lies within the MBT and R∆5 is negative in 

region 3, 4 and 5. Also using reflux arguments, as above, it can be shown that TT 

4 overlaps TT 5 for all values of split ratio space in regions 3, 4 and 5 above the 

minimum R∆4 line. 

 

The final matching criterion is the requisite overlap of the TTs of CS 2 and CS 4. 

This criterion is automatically satisfied because the difference points of CS 2 and 

CS 4 have the same value. For ideal systems, positive difference points always lie 

within their respective transformed triangles. As these points are the same for both 

sections, the TTs have to overlap by default.  
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6.12.4 Overall Column Feasibility in ΦV vs. ΦL Space 

 

We have considered all the required composition matching criteria and found 

regions of split ratio space that satisfy them. We are now in a position to 

determine if there are regions that satisfy all requirements simultaneously and 

hence yield feasible Petlyuk designs. Figure 6.42 below illustrates examples of the 

PEB1 and PEB2 lines. Superimposed on these lines are the minimum reflux lines 

for CS 2 and CS 4. If we consider all these lines together and the individual 

regions of feasibility for each matching criterion, we can see that there is a region 

that satisfies all matching criteria for our selection of R∆1 and products. Any 

choice of ΦL and ΦV within this region will result in a feasible Petlyuk column 

design. This is extremely powerful because we no longer have to guess values for 

the split ratios. We have a method to actually calculate feasible split ratio 

combinations and understand their implications, for the design. From a very large 

range of potential split ratio values (0 to 1 for both), we have reduced the possible 

choices to a very small region. It is clear that, for this choice of reflux ratio, it is 

very difficult to arbitrarily choose split ratios that would result in a feasible 

design. We will discuss the effects of R∆1 in depth later, but for now it will suffice 

to say that this region grows in size if R∆1 is increased and shrinks if R∆1 is 

decreased. This result holds with our intuitive understanding of distillation, which 

is that separations are more difficult at low reflux than at high reflux. 

 

The feasible region of split ratios is bound on each side by one of the lines 

generated from the matching criteria. Because these boundaries represent limiting 

conditions for certain column sections it is useful to explore the conditions along 

these boundaries further.  

 

Along the R∆2MIN line, TT 2 borders TT 1. If we disregard the default infinite 

stage requirement of sharp-split separations, we can immediately conclude that, in 

this special case, it will take an infinite number of stages for the CS 2 composition 

profile to reach the rectifying profile because the unstable node pinch point lies on 

the boundary of TT 1. All split ratios chosen along the section R∆2MIN line 
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between point “A” and “B”, in Figure 6.42, will result in an infinite number of 

required stages for CS 2 and hence an unstable pinch point at the top of CS 2. 

Similarly, all split ratios chosen between points “A” and “D” along the R∆4MIN line 

will result in an infinite number of required stages for CS 4. This condition results 

in a stable pinch at the bottom of the CS.  

 

The intersection of the R∆2MIN line and the R∆4MIN line is more interesting. This 

specific choice of split ratios is denoted the “balanced main column”. This 

operating point is characterised by minimum feasible vapour flow through CS 2 

and CS 4. At these conditions TT 2 borders TT1 and TT 4 borders TT 6. There are 

two pinching column sections – an unstable node at the top of CS 2 and a stable 

node at the bottom of CS 4.  

 

Between points “B” and “C” along PEB2, boundary C3 borders boundary A5. CS 

3 is at minimum reflux conditions along this line. The line does not result in a 

single minimum reflux value as in R∆2MIN and R∆4MIN, but a series of minimum 

R∆3 values corresponding to different values of X∆3. This minimum reflux is 

characterised by a stable node pinch point at the bottom of CS 3 (in the middle of 

the prefractionator).  

 

At the intersection of PEB2 and the R∆2MIN line (point “B”) both CS 2 and CS 3 

will pinch (an unstable node at the top of CS 2 and a stable node at the bottom of 

CS 3).  

 

Between points “C” and “D” along PEB1, boundary C5 borders boundary B3. CS 

5 is at minimum reflux along this line. The line, also, does not result in a single 

minimum reflux value but a series of minimum R∆5 values corresponding to 

different values of X∆5. The top of CS 5 will terminate at an unstable pinch point.  

 

At the intersection of PEB2 and the R∆4MIN line (point “D”), CS 4 will pinch in a 

stable node at the bottom and CS 5 will terminate in an unstable pinch point at the 

top.  



Chapter 6 Petlyuk Column Design: Sharp-Splits 170 

 170

At point “C”, PEB1 and PEB2 intersect. This point is denoted the “preferred split” 

and is characterised by minimum feasible vapour flow through the prefractionator. 

This particular set of split ratio values will result not only in a stable pinch point 

for CS 3 and an unstable pinch point for CS 5, but in these points coinciding, at 

the feed composition, in a “double-feed-pinch” point. Figure 6.43 illustrates the 

TTs of a “double-feed-pinch” Petlyuk column. The “double-feed-pinch” point is 

of course phase dependent. Vapour feed columns will exhibit a vapour profile 

“double-feed-pinch” point - although it should be noted that both phases in both 

cases will pinch. 

 

Figure 6.37a: Liquid TT 3 and TT 5 shift at 
constant ΦL varying ΦV 

Figure 6.37b:: Zoom of highlighted area 
from figure 6.37a 

 

 
Figure 6.38a: Liquid TT 3 and TT 5 shift at 

constant ΦV varying ΦL 
Figure 6.38b: Zoom of highlighted area 

from figure 6.38a 
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Figure 6.39: Triangles bordering along 

CLL1 
 

 
Figure 6.40: Triangles bordering along 

CLL2 
 

Figure 6.41: PEB1 and PEB2 
 

 
Figure 6.42: Region of ΦL and ΦV space 

resulting in feasible Petlyuk solutions. 
 

 

 

6.13  Overall Minimum Reflux 
 
Throughout this work so far we have assumed that the overall column reflux ratio, 

R∆1, is large enough to produce a feasible solution. The design procedure 

described above is a waste of time if the column reflux ratio is not high enough. A 

trial and error approach of choosing a reflux ratio and testing for feasible solutions 

is definitely not desirable. Fidkowski and Krolikowski (1987) derived analytical 

expressions for the sharp-split Petlyuk column minimum reflux ratio with 

saturated liquid feed. Halvorsen and Skogestad (2001) modified these expressions 

to include feed material of any quality. It was shown that the overall column 

minimum reflux for sharp splits is equal to the maximum of two sharp simple 

column splits namely: light component to the intermediate-heavy axis and heavy 
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component to light-intermediate axis. These expressions are applicable to constant 

relative volatility systems only. It would be useful to gain an understanding the 

topological implications of the minimum reflux solution so that any zeotropic 

system may be handled. We will now revisit two of the composition matching 

criteria and try and understand their implications for minimum column reflux 

ratio. 

 

Earlier we showed that if TT 2 and TT 1 touch, boundary B3 must be collinear 

with C2 and B1 (see Appendix E) – the matching criteria of these column sections 

is then satisfied. We also showed that the last overlap of TT 3 and TT 5 occurs 

when boundaries of these triangles are collinear and run through the feed point (at 

CLL1 and CLL2). It is clear that we cannot satisfy both these situations with any 

arbitrary choice of column reflux ratio (R∆1). If R∆1 is too small TT 3 will not be 

able to simultaneously overlap TT 1 and 2 as well as TT 5 (see Figure 6.44, 

Figure 6.45 and Figure 6.46). The same problem is evident in the required 

composition matching at the bottom half of the column i.e. the matching of 

compositions in CS 4, 5 and 6 (see Figure 6.47, Figure 6.48 and Figure 6.49). The 

main problem is that the two sets of collinear lines – the first set being the CS 2 

and 4 minimum reflux collinear boundaries and the second being CLL1 and CLL2 

- will occur in the wrong position relative to each other in composition space. The 

CS 2 minimum reflux line will lie “above” CLL1, closer to the light component. 

This means that any adjustment of split ratios in favour of satisfying the TT 3 and 

TT 5 overlap will reduce the reflux of CS 2 at a higher rate than the reflux of CS 3 

and hence make satisfying the TT 1, 2, 3 matching criterion impossible (the 

inverse argument to that made in Appendix F). In this case the minimum R∆2 line 

will lie below PEB1 in split ratio space, so overall column feasibility is impossible 

(see Figure 6.50). The key to resolving the minimum R∆1 issue lies with boundary 

B1 (or boundary A6) and the feed composition point.  

 

Let us attempt to resolve the issue of satisfying matching criteria at the top half of 

the column. Boundary B1 acts as a “watershed”, with intersection of the TTs on 

one side and no intersection on the other. When R∆2 is reduced from the 
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minimum, TT 1 and 2 will not overlap and neither will TT 2 and 3. TT 3, 

however, shifts “down” and must shift in this direction to overlap TT 5. The 

“watershed” needs therefore to be shifted down far enough that when TT 3 is 

shifted to overlap TT 5 for the “first time”, in the co-linearities CLL1 and CLL2 at 

the feed point, it has not yet reached the point when its boundary is collinear with 

boundary B1. This indicates that boundary B1 must be closer to the intermediate-

heavy boundary than the feed composition – the feed point must be contained 

within the boundaries of the TT 1. The minimum column reflux ratio will then be 

the value resulting in boundary B1 running through the feed point. Obviously, 

because the matching criteria of CS 3 and 5 is feed phase dependent, the relevant 

CS 1 TT defining the column overall minimum reflux is also phase dependent – if 

the feed is vapour, the vapour boundary B1 will run through the feed composition. 

We can conclude, by similar logic that the feed point must lie within the TT 6 (of 

relevant phase). The true minimum column reflux ratio will be the smallest value 

that allows the feed to be contained within both TT 1 and 6 – i.e. contained within 

one and situated on the border of the other. The TTs for a column at minimum 

reflux is shown in Figure 6.51. This topological observation explains, from a 

composition profile perspective, why the sharp-split Petlyuk minimum reflux ratio 

is equal to the maximum of the two simple column splits.  

 

 

 
Figure 6.43: Double feed pinch column 

TTs – saturated liquid feed 
 

 
Figure 6.44: Matching criterion 1 

satisfied but criterion 4 is not 
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Figure 6.45: Matching criterion 4 satisfied 

along CLL1 but criterion 1 is not. 
 

 
Figure 6.46: Matching criterion 4 satisfied 

along CLL2 but criterion 1 is not. 
 

 

 
Figure 6.47: Matching criterion 2 satisfied 

but criterion 4 is not 
 

 
Figure 6.48: Matching criterion 4 satisfied 

along CLL1 but criterion 2 is not. 
 

 

 
Figure 6.49: Matching criterion 4 satisfied 

along CLL2 but criterion 2 is not. 
 

 
Figure 6.50: No overlap of feasible regions 

in split ratio space below min column 
reflux. 
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Figure 6.51: TT for column at minimum 

reflux 
 

 
Figure 6.52: Region of feasibility shrinks 

to line at minimum reflux 
 

 

 

6.14  The Effect of Varying R∆1 

 
Halvorsen and Skogestad (2001) performed an extensive analysis of the feasible/ 

optimality region at various reflux ratios, feed qualities and relative volatilities. 

We will now outline the more common feasible region effects for saturated liquid 

feed as well as changes to the zero net flow lines and negative flow boundaries 

upon variation of reflux ratio.  

 

6.14.1 CS 2 and CS 4 minimum reflux 

When the value of R∆1 is increased the area of TT 1 inside the MBT increases, as 

boundary B1 moves away from the light component. The value of R∆2MIN required 

for TT 2 to border TT 1 is, therefore, reduced as boundary C2 is much closer to 

X∆2. We find that R∆4MIN is similarly reduced because R∆6 is increased the moment 

R∆1 is increased - to maintain material balance. The net result of the reduction in 

the values of R∆2MIN and R∆4MIN is that these lines, in split ratio space, now fan out 

further from their respective zero net flow lines (infinite reflux lines). See Figure 

6.53 below. For of our choice of relative volatilities and product points, the R∆2MIN 

line shifts much slower than the R∆4MIN line. 
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6.14.2 Negative Flow Boundaries 

The negative flow boundaries are described by Equation 6.6 and Equation 6.7. It 

is clear that the value of ΦV, in Equation 6.6, must increase as R∆1 increases, 

because the second term in this equation is negative and its magnitude decreases. 

The negative flow boundary in split ratio space must therefore shift to the right - 

closer to ΦV = 1. The value of ΦL, in Equation 6.7, on the other hand, must 

decrease as the denominator increases. The negative flow boundary, described by 

Equation 6.7, will shift downwards towards ΦL = 0 as R∆1 increases. (See Figure 

6.54) 

 

6.14.3 Zero Net Flow Boundaries 

Each of the zero net flow lines shifts towards the ΦL = ΦV line as rΔ1 is increased. 

This occurs because the gradients of these straight lines, described by Equation 

6.2 to Equation 6.5, tend to 1 and the ΦL-intercepts tend to 0 as RΔ1 → ∞. As a 

consequence the area of net flow regions 2,3 and 4 decrease. (See Figure 6.56 and 

Figure 6.57) 

 

6.14.4 PEB1 and PEB2 

With increasing RΔ1 the slope of PEB1 decreases slightly and its ΦL-intercept 

shifts downwards. The slope of PEB2 also decreases, but its ΦL-intercept 

increases, moving upwards along the ΦL axis. For our choice of products and 

constant relative volatilities, we again see a marked difference in the rate of 

change of two boundaries of the same type, in split ratio space. PEB1 shifts far 

more rapidly than PEB2. (See Figure 6.55) 

 

6.14.5 Feasible ΦL and ΦV regions 

The shifting of the various boundaries in split ratio space combine to increase the 

overall area of the feasible ΦL and ΦV region as RΔ1 is increased (see Figure 6.58). 

This effectively makes the separation easier as a larger range of split ratios result 

in feasible designs than before. At minimum overall column reflux the feasible 

region has zero area (see Figure 6.52). The region effectively “grows” from this 

zero area at minimum reflux as R∆1 is increased - as would be expected. The most 
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interesting effect of the increase of the feasible region area is that at high enough 

RΔ1 values, the region crosses into the four remaining net flow regions (see Figure 

6.59 and Figure 6.62). The associated net flow patterns can therefore be produced 

in feasible designs if RΔ1 is sufficiently large. We have now confirmed the 

intuitive arguments about the required magnitude of the column reflux ratio for 

net flow patterns 1, 2, 4 and 5 discussed previously. These flow patterns are 

indeed only possible at high reflux ratio. Figure 6.60, Figure 6.61, Figure 6.63 and 

Figure 6.64 each show the six liquid TTs of a feasible Petlyuk design for net flow 

patterns 1, 2, 4 and 5. 

 

 

 
Figure 6.53: R∆2MIN and R∆4MIN at varying 

reflux 
 

 
Figure 6.54: Negative flow boundaries 

varying reflux 
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Figure 6.55: PEB1 and PEB2 varying reflux 
 

 
Figure 6.56: ∆5 and ∆2 zero net flow lines 

varying reflux 
 

 

 
Figure 6.57: ∆3 and ∆4 zero net flow lines 

varying reflux 
 

 
Figure 6.58: Feasible region varying reflux 
 

 

 
Figure 6.59: Feasible solutions in region 2, 3 

and 4 
 

 
Figure 6.60: Feasible TTs for net flow 

pattern 2 
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Figure 6.61: Feasible TTs for net flow 

pattern 4 
 

 
Figure 6.62: Feasible solutions in region 1, 

2, 3, 4 and 5 
 

 

 
Figure 6.63: Feasible TTs for net flow 

pattern 1 
 

 
Figure 6.64: Feasible TTs for net flow 

pattern 5 
 

 

6.15  Discussion 
 

In this work we have successfully modelled the Petlyuk column. The column is 

broken down into column sections and a CPM is produced for each of these 

sections using the difference point equation. These CPMs can then be 

superimposed and feasible operating profiles found.  

 

This design procedure is graphical but can be performed quickly and with little 

computational effort. Instead of producing entire CPMs, the procedure can be 

performed by simply tracking the stationary solutions of the difference point 
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equation. Using these stationary solutions a transformed triangle can be produced 

that enables us to track all regions of CPM topology without solving the 

difference point equation. 

 

The importance of the reflux ratio to the qualitative form of the CPM/TT has led 

to a comprehensive analysis of the feasible net flow patterns in the Petlyuk 

configuration. We have shown that there are five possible net flow patterns. These 

are flow patterns 1 to 5. The net flow pattern within the column is determined by 

the choice of vapour and liquid split ratios. Regions, of split ratio space, resulting 

in each of these flow patterns can be found by producing zero net flow lines for 

the coupled column sections. 

 

Net flow pattern 3 is the most efficient mode of operation. Feasible column 

solutions can be produced at lower reflux ratio for this flow pattern than for the 

other four patterns. This fact leads to a very useful analytical test of Petlyuk 

operation. If the operating split ratios result in flow patterns other than net flow 

pattern 3 we can immediately conclude that the column is operating inefficiently.   

 

Variables other than net flow can be represented in split ratio space. In fact, the 

representation of variables in split ratio space is a very powerful tool for analysing 

and understanding Petlyuk column parameters. We can very simply produce lines 

of split ratios corresponding to coupled-column section reflux ratios, lines of 

constant difference point values and also generate regions corresponding to 

negative internal flow rates. However, the most powerful result is that by 

producing PEB 1 and 2 as well as minimum reflux ratio lines for CS 2 and 4 we 

can construct a region of split ratios that result in feasible Petlyuk column designs. 

These regions contain all feasible split ratios values that allow the design 

specifications to be met. 

 

The feasible region, of split ratio solutions, is exactly equivalent to the optimality 

region defined by Halvorsen and Skogestad (2001). The CPM methodology is 

broader in scope, however, as it can be applied to all zeotropic systems. Although 
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the topological boundaries, between stationary points, of non-ideal systems have a 

degree of curvature, straight lines offer very good approximations to these 

boundaries. As such feasible regions can be generated for these systems with a 

fair degree of accuracy. The methodology also allows the generation of individual 

solutions containing all the required design parameters as well as composition 

profiles. 

 

Feasible regions illustrate that the choice of vapour and liquid split ratios, in the 

Petlyuk column, cannot be made arbitrarily. For reflux ratios above the minimum, 

only a very small region of split ratio space results in feasible designs. The 

designer would be very fortunate to arbitrarily choose a feasible split ratio pair. 

The choice of split ratios within this feasible region can also not be made 

arbitrarily. Values, chosen along the boundaries of the region, result in an infinite 

number of required stages. Although we have analysed sharp-split separations in 

this work, which, by their nature, require infinite stages, the feasible region 

boundaries can be generated for non-sharp-splits as well. This will be performed 

in the next chapter. These non-sharp-split boundaries also coincide with an 

infinite number of required stages.  

 

From a stage number and split ratio perspective it is clear why producing Petlyuk 

designs, for desired separations, is difficult using iterative solving methods. 

Convergence problems aside, without an understanding of the effects of 

parameters such as reflux ratio and the split ratios it is exceedingly difficult to 

determine the required number of stages for a separation. For a set number of 

stages the designer would typically choose arbitrary split ratios and reflux ratios. 

These are very unlikely to produce the desired separation and the designer must 

resort to trial and error. If we now couple this trial and error approach with 

iterative convergence problems it is evident that current design methods are not 

particularly efficient. The CPM approach on the other hand has allowed us to not 

only generate individual solutions, but find all possible solutions for a set of 

column parameters (reflux ratio and product flow rates). For non-sharp splits, 

parameters like the total number of required stages, feed stage and side-draw stage 
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are a natural product of the process. These can be determined by tracking variable 

n along each composition profile of a column section. 

  

Determining column minimum reflux ratio, for any zeotropic thermodynamics, is 

one of the most powerful results of the methodology. We can determine this value 

directly by analysing the position of the feed point relative to the boundaries of 

TT 1 and TT6 as described previously. We can, however, also determine if a 

design is infeasible by analysing the boundaries in split ratio space. If the 

boundaries of the split ratio feasible region occur in the wrong position relative to 

each other, the designer can immediately infer that the design at the chosen 

parameters is infeasible. In this case, either the column reflux ratio or product 

flow rates must be altered in order to make the separation feasible.  

 

At minimum reflux the feasible region has zero area. It is simply a line at these 

conditions. As the reflux is increased, the area of the feasible region increases i.e. 

more split ratios become feasible for operation. This holds with the intuitive 

understanding that separation by distillation becomes easier as the reflux ratio is 

increased. If the designer wishes to operate the column with net flow patterns 1, 2, 

4 or 5, it is simple to determine the minimum column reflux ratio required. When 

the feasible region crosses into the relevant net flow region (of split ratio space), 

after increasing R∆1, this flow pattern becomes feasible. Although these flow 

patterns hold no obvious advantages for zeotropic systems, they do, in fact, hold 

very exciting advantages for azeotropic systems.  These flow patterns allow for 

the sampling of very “unusual” difference points which quite often allow 

distillation boundaries to be crossed.  

 

In summary the CPM methodology for Petlyuk design is very powerful and 

efficient. The procedure for generating the feasible/optimality region and 

minimum reflux is not quite as elegant as the analytical methods employed by 

Halvorsen and Skogestad (2001), but does allow the determination of all feasible 

solutions and minimum reflux ratio, for all zeotropic systems. On selecting a 

reflux ratio and split ratio pair, individual column solutions can be generated 
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without requiring iteration. Parameters such as feed stage placement, side-draw 

stage placement, total required stages, column section stage requirements as well 

as internal vapour and liquid traffic are a natural outcome of the procedure. The 

solutions generated from the procedure can be used for the effective initialisation 

of rigorous iterative simulation packages such as ASPEN Plus and do not vary 

drastically from the solutions generated using these packages. 

 

In the following chapter we will detail the determination of the feasible region for 

non-sharp separations. This will include difference point selection as well as 

minimum reflux determination. Minimum reflux cannot be determined the same 

way as detailed here, or via the use of the Underwood equations, for sharp 

separations. Rather an understanding of the system topology and topological shifts 

is required. 
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7 Chapter 7: 7 

Petlyuk Column 

Design for Non-Sharp Product Specifications 
 

 

This work has been prepared in the form of a paper for future publication and 

follows on from that presented in Chapter 6. In the previous chapter an analysis 

of sharp-product Petlyuk separations was performed. The results of this work are 

now extended to include non-sharp product specifications 

 

 

Abstract 

 

Halvorsen and Skogestad (2001)  comprehensively studied the Petlyuk column at 

sharp-split conditions In this work we apply the column profile map (CPM) 

technique to the design and analysis of the Petlyuk column at non-sharp product 

specifications. It is shown that very interesting and counter-intuitive net-molar-

flows are feasible in the Petlyuk column. At these conditions the net-molar-flow 

of the intermediate boiling component in a column section can be opposite to that 

of the light and heavy boiling components. We also analyse the “feasible region” 

of column parameters for the non-sharp separation in relation to that of the sharp-

split Furthermore a minimum reflux condition is found for all product 

specifications. 
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7.1 Introduction 
 
The analysis of sharp split separations in the Petlyuk column, performed in the 

previous chapter, gives very useful insight into its operation and a general 

understanding of the interaction of design parameters. The generation of a feasible 

region of split ratios for these separations is very powerful when beginning the 

design process. The sharp split is, however, a special mode of operation and does 

not allow a complete understanding of the column. From a practical design 

perspective it is hampered by the infinite stage assumption. Another drawback is 

that these design methods are essentially based on the composition of stationary 

points which give rise to the infinite stage assumption. The composition of saddle 

points, unstable and stable nodes play equally important roles in these methods. 

However, for many systems, the thermodynamics prevent composition profiles 

from running close to their saddle points even if the product selection is 

essentially pure. This results in significant solution, prediction errors. The method 

therefore encounters serious problems with these systems. A more comprehensive 

understanding of the column behaviour and possible design strategies is required.  

 

In this chapter we will investigate the operation of the Petlyuk column at non-

sharp split conditions. We will see that the difference point placement for non-

sharp separations can be drastically different from the sharp split case. Very 

interesting and counterintuitive component net-molar-flows result as a 

consequence of this. We will also produce a non-sharp feasible region and show 

how this can be very different from that of the sharp-split. Finally, we will 

determine an optimum split ratio pair for any particular reflux ratio choice. This 

solution results in the smallest stage requirement and hence lowest capital 

investment for the separation. The ultimate aim of this work is to produce a 

comprehensive Petlyuk design tool for zeotropic systems and all operating 

conditions.
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7.1.1 Assumptions 
 

We will address the three component problem in this work. Constant molar 

overflow is assumed for all distillation modelling. An assumption of constant 

relative volatility is also made although the results are applicable to all three 

component zeotropic thermodynamics. Feed material is assumed to be at saturated 

liquid or saturated vapour conditions. Perfect mixing is assumed over all mixing 

points. 

 

7.1.2 Composition Diagram Legend 
  

Composition Diagram Legend: Unless otherwise stated, within composition 

diagrams a solid line will denote the liquid phase while a dotted line will denote 

the vapour phase (except lines CLL1 and CLL2). Red lines (within composition 

diagrams) are associated with CS 1, pink with CS 2, green with CS 3, black with 

CS 4, blue with CS 5 and yellow with CS 6. The light component composition 

(x1) will always be represented on the y-axis while the heavy component 

composition (x2) will be represented on the x-axis. The MBT will always be 

represented by a blue triangle. Arrows on composition profiles indicate the 

direction of increasing n i.e. the direction down the length of a column section. 

 

Transformed Triangle Boundary Definitions: We will label the TT boundaries in 

the same way as the previous chapter. A boundary defined between an unstable 

node and a saddle point of TT “k” will be referred to as boundary “Ak”. A 

boundary defined between a stable node and a saddle point of TT “k” will be 

referred to as boundary “Bk”. The final boundary defined between an unstable 

node and a stable node will be referred to as boundary “Ck” of the TT. Figure 7.1 

below illustrates these boundary definitions. Unless otherwise stated this will 

always refer to liquid TT boundaries. Vapour TT boundaries will be referred to as 

“vapour boundary Ak”, etc. 
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Figure 7.1: Transformed triangle boundary 

definitions 

 

7.1.3 Relaxing Sharp Split Constraints 
 
There are a number of important results from the previous chapter which will be 

useful to emphasise. These include the following: 

• For sharp-splits X∆2=X∆4=XS. This is true for all operating reflux ratios 

and all net flow patterns. 

• XS lies essentially on the origin for sharp-splits. Because X∆2 and X∆4 must 

operate at this composition too, all the Petlyuk column section difference 

points lie effectively on an axis in composition space. 

• Because all difference points lie on an axis and because of the effect of 

difference point placement on the form of the column profile map (CPM), 

each of the column section transformed triangles (TTs) is positioned with 

at least on boundary on an axis too. 

• Operating composition profiles run effectively on the boundaries of their 

associated TTs. Therefore the “movement” of TTs when varying column 

parameters matches the “movement” of operating composition profiles. 

 

These results emphasise the convenience of the sharp-split specification. Instead 

of tracking individual composition profiles, when varying column parameters, 

only the TT and hence stationary points needed to be tracked. When the sharp-

split constraint is lifted it becomes very difficult to determine feasible operating 

profiles and hence construct feasible parameter regions.  
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In order to simplify this task, when constructing feasible split ratio regions, we 

will relax the constraints on each product composition separately. The results of 

the product specification change will be compared to the sharp-split results.   

 

We will adjust the side-draw product first followed by the distillate and bottoms 

products. It is important to note that the side-draw product must remain non-sharp 

if either the distillate or bottoms product is non-sharp, in order for the separation 

to be feasible; profiles from the side-draw product have to intersect the rectifying 

and stripping profiles. This will be explored in greater detail later.  

 

Before feasible split ratio regions can be constructed the effect of non-sharp 

product specifications on the columns difference points must be analysed. 

Relaxing the sharp-split assumption on the side-draw product introduces design 

complications that were not encountered previously. When “impurities” are 

introduced in the side-draw, X∆2 and X∆4 need not operate at this composition. In 

fact, for non-sharp splits, having both these values at the side-draw composition, 

in general, only produces feasible designs for net flow pattern 3. Each net flow 

pattern requires specific (and different) placements of the difference points.  

 

We will investigate the required region of operation of each column section 

difference point. Once these have been found we will determine which 

combinations of X∆2 and X∆4 placement result in feasible placement for the 

remaining coupled column sections. 

 

 

 

 

 

 

 

 



7.2 Difference Point Selection  189 

 189

7.2 Difference Point Selection 
 

7.2.1 Feasible Difference Point Regions 
 
Using the design approach and variable selection discussed in the previous 

chapter, we have the freedom to assign one difference point value. Previously we 

selected X∆2 to fulfil this degree of freedom. However, it was shown that for 

sharp-splits X∆2 can only operate at the side-draw composition. This confines 

boundaries of each of the coupled column section TTs to the axes. This is not the 

case for non-sharp splits. We now have considerable freedom in the placement of 

difference points and consequently considerable freedom of movement of the 

associate TTs. It would be very useful if we could narrow down our choice of 

difference point placement to particular regions in composition space. 

 

All coupled column section difference points are linked through material balance. 

Placement of one difference point affects the placement of all others. It does not 

confine them to specific values until the split ratios have been selected but does 

confine them to certain ranges of values or regions of operation. The difference 

point region of operation has a fundamental effect on the qualitative topology a 

column section can sample.    

 

Selection of a difference point value should fulfil a number of requirements. 

Firstly, it should satisfy the requirements of the associated column section. For 

example, if placing X∆2, we must ensure that the difference point is positioned 

such that it allows CS 2 to achieve/sample the side-draw composition and satisfy 

matching criterion 1. Secondly, the difference point placement should allow a 

range of values for the remaining difference points that, in turn, allow the other 

coupled sections to satisfy the matching criteria. 

 

Before any difference point value can be selected we must determine which 

ranges of values for each difference point allow the satisfaction of the matching 

criteria. This is equivalent to determining which difference point regions result in 

“useful” topology for each of the coupled column sections.  
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The term “useful” topology is qualitative but is based on column section matching 

criteria requirements and the general form of Petlyuk solutions that was discussed 

in our analysis of sharp-splits. The non-sharp solution form will not vary 

dramatically from that of the sharp-split but because of the additional topological 

freedom (introduced by the freedom of difference point selection) will require 

additional constraints. By determining the form of and constraints on each 

section’s composition profile, we can determine the qualitative placement of each 

TT and hence determine the required placement of each difference point.  

 

We will now summarise the qualitative requirements of any candidate TT for each 

coupled column section. 

 

7.2.1.1 Topological Requirements of Coupled Column Sections 
 

• CS 2: The CS 2 solutions must satisfy matching criteria 1 and 3 i.e. run from 

the side-draw composition to the rectifying profile. “Useful” topology in this 

case will include trajectories that originate from the unstable node and gain 

rapidly in the intermediate component and gradually in the heavy component, 

down the length of the column section. This refers exclusively to TR 1. 

However, because the boundaries of TT 2 are no longer confined to the axes – 

as in the sharp-split case – ill chosen X∆2 values can result in TTs with 

trajectories that leave physically relevant composition space and that, therefore, 

do not satisfy matching criterion 1 (see Figure 7.3). We will therefore impose 

the following condition: Boundary A2 must lie in positive heavy component 

space – to the right of the light-intermediate axis. See Figure 7.2. This ensures 

that if the reflux magnitude is large enough, composition matching will be 

guaranteed. 

 

• CS 3: The CS 3 solutions must satisfy matching criteria 1 and 4 i.e. run from 

the intersection of the rectifying and CS 2 profiles to the CS 5 composition 

profile. “Useful” topology for TT 3 is defined here as topology that gains in the 

heavy component down the length of the column section. This refers, 
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specifically, to TR 1 and TR 4. However, because the boundaries of TT 3 are 

no longer confined to the axes – as in the sharp-split case – ill chosen X∆3 

values can result in CS 2 trajectories potentially running to the left of the TT 3 

saddle point and not intersecting useful topology (see Figure 7.5). We therefore 

impose the following condition: Boundary A3 must lie in negative heavy 

component space - to the left of the light-intermediate axis. See Figure 7.4. 

This ensures that if the reflux magnitude is large enough, composition 

matching will be guaranteed. 

 

• CS 4: The CS 4 solutions must satisfy matching criteria 2 and 3 i.e. run from 

the side-draw composition to the stripping profiles. “Useful” topology in this 

case will include trajectories that originate from the stable node and gain 

rapidly in the intermediate component and gradually in the light component, up 

the length of the column section. This refers exclusively to TR 1. However, 

because the boundaries of TT 4 are no longer confined to the axes – as in the 

sharp-split case – ill chosen X∆4 values can result in TTs with trajectories that 

leave physically relevant composition space and that, therefore, do not satisfy 

matching criterion 2 (see Figure 7.7). We will therefore impose the following 

condition: Boundary B4 must lie in positive light component space - above the 

intermediate-heavy axis. See Figure 7.6. This ensures that if the reflux 

magnitude is large enough, composition matching will be guaranteed. 

 

• CS 5: The CS 5 solutions must satisfy matching criteria 2 and 4 i.e. run from 

the intersection of the stripping and CS 4 profiles to the CS 3 composition 

profile. “Useful” topology for TT 5 is defined here as topology that gains in the 

light component up the length of the column section. This refers, specifically, 

to TR 1 and TR 6. However, because the boundaries of TT 5 are no longer 

confined to the axes – as in the sharp-split case – ill chosen X∆5 values can 

result in CS 4 trajectories potentially running below the TT 5 saddle point and 

not intersecting useful topology (see Figure 7.9). We therefore impose the 

following condition: Boundary B5 must lie in negative light component space – 
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below the intermediate-heavy axis. See Figure 7.8. This ensures that if the 

reflux magnitude is large enough, composition matching will be guaranteed. 

 

 

Figure 7.2: CS 2 profile satisfying 
matching criterion 1 

 

 
Figure 7.3: CS 2 profile not satisfying 

matching criterion 1 
 

Figure 7.4: CS 2 profile sampling 
“useful” TT 3 topology 

 

 
Figure 7.5: CS 2 profile does not sample 

“useful” TT 3 topology 
 

Figure 7.6: CS 4 vapour profile 
satisfying matching criterion 

 

 
Figure 7.7: CS 4 vapour profile not 

satisfying matching criterion 
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Figure 7.8: CS 4 profile sampling 

“useful” TT 5 topology 

 

 
Figure 7.9: CS 4 profile does not sample 

“useful” TT 5 topology 
 

7.2.1.2 Net Flow Pattern and the Difference Point Placement 
 
It is not only the region of difference point placement that determines the 

qualitative form of a TT. The reflux ratio and hence net flow in a column section 

also has a significant influence. TTs produced from positive and negative reflux 

are qualitatively dissimilar. Therefore the selection of a particular difference point 

region of operation - to produce a desire qualitative form of TT - is only valid for 

a particular reflux sign or net flow direction. This implies that difference point 

placement is dependent on the net flow pattern of operation i.e. each net flow 

pattern requires different placement of the difference points for the coupled 

column sections.  

 

This is clearly illustrated by a simple example. Consider a column to be operated 

at net flow pattern 1.  If X∆2 was placed at the side-draw composition, material 

balance would result in X∆4 also being positioned at this point (see Equation 7.1 

below).  
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For net flow pattern 1, the refluxes of both CS 2 and 4 are negative. A pinch point 

curve for negative reflux with X∆ placed in difference point region 1 can be seen 

in Figure 7.10 below.  

 

As discussed in section 7.2.1.1 above, the topological feasibility requirement of 

TT 2 is that boundary A2 lie in positive heavy component space. We can see, from 

the positions of the unstable and saddle branches of the pinch point curve of 

Figure 7.10, that A2 would, indeed, lie in positive heavy component space if X∆2 

was placed in difference point region 1 and the column section was operated at 

negative reflux. The placement of X∆2, in this region, is acceptable for net flow 

pattern 1.  

 

 
Figure 7.10: Pinch point curve for difference 

point region 1 at negative reflux 

 
Figure 7.11: Pinch point curve for difference 

point region 1 at positive reflux 
 

The topological feasibility requirement of TT 4 is that boundary B4 lie in positive 

light component space. However, the saddle and unstable branches of the pinch 

point curve in Figure 7.10 lie below the intermediate-heavy axis. Therefore B4 

would lie in negative light component space. Difference point region 1 is clearly 

an unacceptable region of operation for X∆4, if CS 4 is operated at negative reflux. 

Hence, a column can not be operated at net flow pattern 1 with X∆2 = X∆4 = XS. 

 

If we maintain the desired difference point selection of X∆2 = X∆4 = XS but operate 

the column at net flow pattern 3, instead of net flow pattern 1, the reflux of CS 2 

would still be negative but the reflux of CS 4 would now be positive. The results 

for CS 2 described above are still valid for net flow pattern 3. X∆2 can operate in 
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difference point region 1 for net flow pattern 3. We must now consult a pinch 

point curve for difference point region 1 at positive reflux to determine if the 

placement of X∆4 is acceptable. Figure 7.11 shows such a pinch point curve. The 

stable and saddle branches of this pinch point curve are above the intermediate-

heavy axis i.e. in positive light component space. Therefore, boundary B4 will lie 

in light component space. Hence, difference point region 1 is an acceptable region 

of placement for X∆4 when the column is operated at net flow pattern 3. 

 

This example illustrates that, in general, each net flow pattern requires different 

placement of the difference points. By considering each difference point 

separately, we can determine which regions of placement are acceptable, for that 

point, for each net flow pattern. By combining the results for each of the coupled 

column sections we can find combinations of difference point placement that 

produce feasible topology and potential Petlyuk solutions. 

 

7.2.1.3 Regions of Feasible X∆2 and X∆4 Placement 
 
As X∆2 and X∆4 selection is critical for achieving the side-draw composition, we 

will now analyse which difference point regions of placement produce feasible 

topology for CS 2 and 4. By combining the results for both column section 

difference points we can narrow down the options of possible placement. We will 

consider these difference points completely independently of the remaining 

coupled section difference points. 

 

Figures G.1-14 (in Appendix G) below show pinch point curves at positive and 

negative reflux, for difference points placed in each of the seven difference point 

regions. By considering the topological requirements for CS 2 and CS 4 in 

conjunction with these figures we can analyse the feasibility of each qualitatively 

different X∆ placement, in the same manner as in the above example (section 

7.2.1.2).  
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Specifically the methodology is as follows: 

• Determine the operating reflux of the CS (i.e. +ve or -ve). 

• Select a candidate difference point region. 

• Consult the pinch point curve for the candidate difference point region and 

operating reflux. 

• Determine if the topological requirements of the CS are met by the 

selected pinch point curve. If the topological requirements are met the 

difference point region is deemed feasible. 

• Construct combinations of X∆2 and X∆4 placement. These will be net flow 

dependent.  

• If both placement scenarios in the combination are feasible, the 

combination is deemed feasible. If either is infeasible the combination is 

deemed infeasible.  

 

Tables 7.1, 7.2 and 7.3 summarise the results for potential combinations of 

placement of X∆2 and X∆4 for all net flow patterns.  Each combination is 

illustrated graphically on a material balance line. The overall material balance is 

given by Equation 7.2. 

 

SSXXX +Δ=Δ ΔΔ 2244  (7.2) 

 

Graphically, Equation 7.2 dictates that for net flow patterns 1 and 2, X∆2 must lie 

between X∆4 and XS, for net flow pattern 3, XS must lie between X∆4 and X∆2 and 

for net flow patterns 4 and 5, X∆4 must lie between X∆2 and XS. The feasibility of 

each point is reported separately in Table 7.1, 7.2 and 7.3. These feasibilities are 

then used to report an overall feasibility of the combination. 
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Note: CS 2 and CS 4 require significant flows of the intermediate component, to 

satisfy the side-draw demand, so we have only considered difference point regions 

1, 4, 5, and 6 here. 

 

Legend (Tables 7.1, 7.2 and 7.3):  

 XS  
Light Component Net Flow 
Direction 

 X∆2 
Intermediate Component Net Flow 
Direction 

 X∆4  
Heavy Component Net Flow 
Direction 
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Table 7.1: Summary of X∆2 and X∆4 placement for Net Flow Patterns 1 & 2 
Net Flow 

Pattern 1&2 
XΔ2 Position CS 2  

Net Flow 
Direction 

XΔ4 Position CS 4  
Net Flow 
Direction 

Overall 
Feasibility 

 

Acceptable 

 

Unacceptable 
 

Infeasible 

 

Acceptable 
 

Acceptable 
 

Feasible 

 

Acceptable 
 

Acceptable 
 

Feasible 

 

Acceptable 
 

Unacceptable 
 

Infeasible 

 

Acceptable 
 

Acceptable 
 

Feasible 

 

Acceptable 
 

Acceptable 
 

Feasible 

 

Unacceptable
 

Acceptable 
 

Infeasible 

 

Unacceptable
 

Acceptable 
 

Infeasible 

 

Unacceptable
 

Unacceptable 
 

Infeasible 

 

X2 

X1 

X1 

X2 

X1 

X2 

X1 

X2 

X2

X1 

X2 

X1 

X1 

X2 

X1 

X2 

X1 

X2 
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Table 7.2: Summary of X∆2 and X∆4 placement for Net Flow Pattern 3 
Net-Molar-

Flow Pattern  
3 

XΔ2 Position CS 2  
Net Flow 
Direction 

XΔ4 Position CS 4  
Net Flow 
Direction 

Overall 
Feasibility 

 

Acceptable 

 

Acceptable 

 

Feasible 

 

Acceptable 

 

Unacceptable 

 

Infeasible 

 

Acceptable 

 

Unacceptable 

 

Infeasible 

 

Acceptable 

 

Acceptable 

 

Feasible 

 

Acceptable 

 

Acceptable 

 

Feasible 

 

Unacceptable

 

Acceptable 

 

Infeasible 

 

Unacceptable

 

Acceptable 

 

Infeasible X1 

X2 

X1 

X2 

X1 

X2 

X1 

X2 

X1 

X2 

X2

X1 

X2 

X1 
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Table 7.3: Summary of X∆2 and X∆4 placement for Net Flow Patterns 4 & 5 
Net-Molar-

Flow Pattern 
4&5 

XΔ2 Position CS 2  
Net Flow 
Direction 

XΔ4 Position CS 4  
Net Flow 
Direction 

Overall 
Feasibility 

 

Unacceptable

 

Acceptable 

 

Infeasible 

 

Unacceptable

 

Acceptable 

 

Infeasible 

 

Acceptable 

 

Acceptable 

 

Feasible 

 

Acceptable 

 

Acceptable 

 

Feasible 

 

Unacceptable

 

Unacceptable 

 

Infeasible 

 

Acceptable 

 

Unacceptable 

 

Infeasible 

 

Acceptable 

 

Unacceptable 

 

Infeasible 

 

Acceptable 

 

Acceptable 

 

Feasible 

 

Acceptable 

 

Acceptable 

 

Feasible 

 

X1 

X2 

X2 

X1 

X1 

X2 

X2 

X1 

X1 

X2 

X1 

X2 

X1 

X2 

X2 

X1 

X2 

X1 
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7.2.2 Overall Material Balance for Feasible Difference Points – 
Determining X∆3 and X∆5 Placement Feasibility 

 

Now that we have determined the feasible placement of difference points, for CS 

2 and CS 4, for all of the possible net flow patterns, we must determine the effect 

of these possible placements on the remaining coupled column section difference 

points. We can then determine which difference point placement combinations 

produce feasible topology for all the coupled column sections. 

 

Let us make use of the first feasible combination from Table 7.1 as an example. In 

this combination, X∆2 is situated in difference point region 1 and X∆4 is situated in 

difference point region 4. Table 7.1 presents all the results for net flow pattern 1 

and 2. Let us consider only net flow pattern 1 for now.  

 

We need to determine the regions of operation, of X∆3 and X∆5, dictated by 

material balance. The material balance at the bottom of the rectifying section is 

given by Equation 7.3. 

332211 ΔΔΔ Δ+Δ=Δ XXX  (7.3) 

For net flow pattern 1 ∆1>0, ∆2<0 and ∆3>0. Therefore, X∆3 must lie between X∆2 

and X∆1 in composition space.  

 

The material balance at the top of the stripping section is given by Equation 7.4. 

554466 ΔΔΔ Δ+Δ=Δ XXX  (7.4) 

For net flow pattern 1 ∆6<0, ∆4<0 and ∆5>0. Therefore, X∆4 must lie between X∆5 

and X∆6 in composition space.  

 

Finally, the material balance over the feed stage is given by Equation 7.5. 

FFXXX +Δ=Δ ΔΔ 5533  (7.5) 

As stated above, for net flow pattern 1 ∆3>0 and ∆5>0. Therefore, X∆3 must lie 

between X∆5 and XF in composition space. 

 

If we now produce a material balance construction for each of the above material 

balances with X∆2 in difference point region 1 and X∆4 in difference point region 4 
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(with suitable choices for the distillate, bottoms and side-draw composition) we 

can determine the possible regions of X∆3 and X∆5 placement. 

 

Figure 7.12 illustrates the results of such a material balance construction. The 

relative position of the difference points is a function of the column split ratio 

choices. The difference points can be shifted by changing the operating choice for 

the split ratios.  For this construction, regardless of split ratio changes, X∆5 is 

constrained to difference point region 5 if X∆2 is considered fixed. The point 

cannot move into positive light component space because it is constrained by the 

material balance with X∆4 (which for the example has been placed in difference 

point region 4). X∆5 is constrained to this region for all but the most extreme 

choices X∆2 (high heavy component value). At extreme conditions X∆5 could shift 

into difference point region 4. X∆3 is constrained to difference point region 1 for 

all split ratio choices in this example. 

 

We must now determine the feasibility of X∆3 and X∆5 placement. By consulting 

the relevant pinch point curves (Figures AI.1 and AI.5), we can see that both 

difference points produce feasible topology for CS 3 and CS 5. All the regions of 

difference point placement for the coupled column section are therefore 

acceptable. A feasible Petlyuk design is possible for these difference point 

choices. 

 

 

 

Legend: Figure 7.12 to Figure 
7.16 

 X∆2 

 X∆3 

 X∆4 

 X∆5 
Figure 7.12: Material balance construction for 

net flow pattern 1 

1

2 

4 5

6

X∆1 

X∆6 XS 

XF 
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 Figure 7.13 to Figure 7.14 illustrate examples of material balance constructions 

for net flow patterns 1, 2, 4 and 5 with two, qualitatively different, feasible 

placements of X∆2 and X∆4. Excluding extreme conditions, we can see that for 

each net flow pattern X∆3 and X∆5 can only exist in one difference point region. 

This is true for all X∆2 and X∆4 placement scenarios. 

  

By consulting Figures AI.1-14, as above, we can see that all the positions of the 

differences points in Figure 7.14 to Figure 7.16 are acceptable. Hence we have 

found feasible difference point placement combinations for all the net flow 

patterns. Table 7.4 lists regions of feasible placement for all the coupled column 

sections while Figure 7.17 to Figure 7.21 illustrate the actual net component flow 

direction possibilities.  
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Figure 7.13: Two different, feasible 
difference point placement scenarios – Net 

flow pattern 1 

 
Figure 7.14: Two different, feasible 

difference point placement scenarios – Net 
flow pattern 2 

 
Figure 7.15: Two different, feasible 

difference point placement scenarios – Net 
flow pattern 4 

Figure 7.16: Two different, feasible 
difference point placement scenarios – Net 

flow pattern 5 
 

 
Net Flow 
Pattern 

X∆2 
(Region) 

X∆3 
(Region)

X∆4 
(Region) 

X∆5 
(Region) 

1 1,4 1 4,5 5 

2 1,4 1 4,5 2 

3 1,4 1 1,6 1 

4 5,6 2 1,6 1 

5 5,6 5 1,6 1 

Table 7.4: Summary of Regions Feasible Difference Point Placement for all Net flow Patterns 

1 

2

45 

6 
X∆1 

X∆6 

XS 

XF 

6

4 5

1 

2 
X∆1 

X∆6 

XS 

XF 

1

2 

4 5

6

X∆1 

X∆6 

XS 

XF 

1 

2

45 

6 

X∆1 

X∆6 XS 

XF 
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Figure 7.17: Feasible 

component net-molar-flow 
scenarios – Net Flow Pattern 1 

 
Figure 7.18: Feasible 

component net-molar-flow 
scenarios – Net Flow Pattern 2 

 
Figure 7.19: Feasible 

component net-molar-flow 
scenarios – Net Flow Pattern 3 

 
Figure 7.20: Feasible 

component net-molar-flow 
scenarios – Net Flow Pattern 4  

 

 
Figure 7.21: Feasible 

component net-molar-flow 
scenarios – Net Flow Pattern 5 
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1 

4 

1 

5 

4 
5 
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7.2.3 Implications of Feasible Difference Point Placement for Net Flow 
 
From the required feasible topology, we have determined regions of possible 

placement of X∆2 and X∆4, but we have not yet discussed the implications of this 

placement on the column net-molar-flow. 

 

Net flow pattern 1&2: 

 

These flow patterns require X∆2 to be placed in regions 1 

or 4 and X∆4 to be placed in regions 4 or 5. This makes 

intuitive sense from a component net-molar flow 

perspective. ∆ is negative in CS 2 and CS 4 for these 

flow patterns (i.e. net flow down the CS). If X∆2 is in 

either region 1 or 4, the heavy component value of X∆2 

is positive, hence ∆2X∆2-2 is negative and the heavy 

component moves down the column section. 

Hence heavy component material directed to the top-half of the column by CS3 is 

recovered in CS 2 and directed to the bottom-half of the column. If X∆4 is in either 

region 4 or 5, the light component value of X∆4 is negative, hence ∆4X∆4-1 is 

positive and the light component moves up the column section. Light component 

material directed to the bottom-half of the column by CS 5 is, therefore, recovered 

in CS 4 and directed to the top-half of the column.  Note that, despite this, 

movement of the light component in CS 2 down and heavy component in CS 4 up 

are still feasible, but the heavy component flow can only move down in CS 2 and 

the light component can only move up in CS 4. From a component recovery 

perspective it would seem logical that the best region of operation of both 

difference points for these flow patterns would be region 4. This would result in a 

positive net-molar flow of the light component and negative net-molar flow of the 

heavy component in both sections. These component net flow alternatives for net 

flow patterns 1 and 2 are illustrated in Figure 7.17 and Figure 7.18, respectively.  

 

1 2 
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Net flow pattern 3: 

 

Net flow pattern 3 requires X∆2 to be placed in regions 1 

or 4 and X∆4 to be placed in regions 1 or 6. Placement of 

the difference points in these regions maintains a 

negative net flow (down the column section) of the heavy 

component in CS 2 (∆2X∆2-2 is negative) and a positive 

net flow (up the column section) of the light component 

in CS 4 (∆4X∆4-1 is positive). This holds with our 

understanding of these sections. 

CS 2 transports intermediate component material to the side-draw and recovers 

heavy component material from the top half of the column while CS 4 also 

transports intermediate component material to the side-draw but recovers light 

component material from the bottom half of the column. The component net flow 

for net flow pattern 3 is illustrated in Figure 7.19. 

 

Net flow pattern 4&5: 

 

These flow patterns require X∆2 to be placed in regions 

5 or 6 and X∆4 to be placed in regions 1 or 6. This also 

makes intuitive sense from a component net-molar flow 

perspective. ∆ is positive in CS 2 and CS 4 for these 

flow patterns (i.e. net flow up the CS). If X∆2 is in either 

region 5 or 6, the heavy component value of X∆2 is 

negative, hence ∆2X∆2-2 is negative and the heavy 

component moves down the column section. 

Once again heavy component material directed to the top-half of the column by 

CS3 is recovered in CS 2 and directed to the bottom-half of the column. If X∆4 is 

in either region 1 or 6, the light component value of X∆4 is positive, hence ∆4X∆4-1 

is positive and the light component moves up the column section. Hence light 

component material directed to the bottom-half of the column by CS 5 is 

recovered in CS 4 and directed to the top-half of the column. Again, despite these 

net-molar-flow requirements, movement of the light component in CS 2 down and 

heavy component in CS 4 up are still feasible. From a component recovery 

3 

4 5 
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perspective it would seem logical that the best region of operation of both 

difference points for these flow patterns would be region 6. This would result in a 

positive net-molar flow of the light component and negative net-molar flow of the 

heavy component in both sections. These component net flow alternatives for net 

flow patterns 4 and 5 are illustrated in Figure 7.20 and Figure 7.21, respectively. 

 

General Net Flow Observations: 

• For all net flow patterns the heavy component net flow direction in CS 2 is 

downwards. This leads to the conclusion that one of the fundamental 

functions of CS 2 is the recovery of heavy component material directed to 

the top half of the column. This material is directed either to the side-draw 

or bottoms product. Analogously, the role of CS 4 is the recovery of light 

component material directed to the bottom half of the column. Indeed the 

light component net-molar-flow direction is always up in CS 4. This 

material is directed either to the side-draw or distillate product.  

• Despite the differing bulk material flow direction, flow patterns 1 and 2 

exhibit exactly the same component net-molar-flow possibilities, as do 

flow patterns 4 and 5. 

• For all flow patterns the intermediate component is the only species to 

change direction in CS 3 and 5. 

• The potential for the coupled column section difference points to operate 

in either regions 2 or 5 for net flow patterns 1, 2, 4 and 5 and still result in 

feasible columns (at the very least from a material balance and topological 

perspective) is quite startling. The net-molar flow of the intermediate 

component in regions 2 and 5 is opposite to both the light and heavy 

components (See Figure 7.17, Figure 7.18, Figure 7.20 and Figure 7.21). 

This operation is counter-intuitive. One usually expects the net-molar flow 

to be influenced by the volatilities of the components, that is, one would 

not expect a column to operate with the light component moving down a 

CS and the heavy component moving up. These basic preconceived ideas 

are not contradicted in any of the other feasible difference point regions 

for net flow patterns 1, 2, 4 & 5. We will investigate this phenomenon in 
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greater detail later and determine whether or not a full column can, in fact, 

be designed to operate at these conditions. 

 

7.2.4 Refining Difference Point Selection to Guarantee Feasibility 
 

It should be noted that not all placements of the difference points, for the net flow 

patterns in the associated regions, result in feasible solutions. CS 2 and 4 profiles 

can still fail to satisfy matching criterion 1 and 2 respectively - even if they remain 

within the MBT - if the difference points are not placed appropriately. The liquid 

CS2 profile can pass between the liquid rectifying profile and the light-

intermediate axis (see Figure 7.22), while the CS 4 vapour profile can pass 

between the vapour stripping profile and the intermediate-heavy axis (see Figure 

7.23).  

 

To ensure the intersection of profiles, we need to choose difference points with 

pinch point curves that cross the rectifying and stripping profiles (see Figure 

7.24and Figure 7.25). This guarantees that if the reflux of the associated column 

section is high enough, the profiles will intersect.  

 

The bound of feasible X∆2 placements can be found by studying the case where 

the unstable node of the CS 2 trajectory lies on the distillate composition. This is 

the “last” trajectory satisfying the intersection. If we extend a separation vector 

from this pinch point, as we did in the previous chapter, we can find the line of all 

difference points producing this node (see Figure 7.26). This construction can be 

used to determine the line of difference points because the separation and mixing 

vectors are collinear at the node.  

 

A similar construction can be performed to determine the bound of X∆4 

placements (see Figure 7.27). This construction is only really necessary when the 

specified products are not at all sharp i.e. the distillate contains large quantities of 

heavy component material and the bottoms contains large quantities of light 

component material. In this case the separation vector boundary will lie far from 



Chapter 7: Petlyuk Column – Design for Non-Sharp Specifications 210 

 210

the axes. However, for relatively sharp splits the X∆2 and X∆4 bounds lie very 

close to the light-intermediate and intermediate-heavy axes respectively. For 

design we need only track the movement of the difference points across these 

axes.  

 

7.3 Feasible Product Composition Selection 
 

The discussion of difference point placement highlights an obvious issue that we 

have not yet addressed. That is the placement of XS. As sharp split constraints are 

lifted from the product specifications complexities are added to the design process 

that include not only difference point selection but product composition selection 

as well. We are not free to specify these independently, even if we determine the 

feed composition from the product compositions. If the distillate or bottoms 

products are not sharp, there are restrictions on the selection of the side-draw 

composition. These restrictions occur because of the potential for profiles 

originating from XS to bypass the rectifying or stripping profiles in the same way 

discussed above (section 7.2.4). This is illustrated in Figure 7.22 and Figure 7.23.  

 

The issue is easily resolved if we apply the same reasoning applied for difference 

point selection above (section 7.2.4) i.e. the last CS 2 trajectory that guarantees 

intersection with the rectifying profile will terminate at an unstable node situated 

on the distillate composition and the last CS 4 trajectory that guarantees 

intersection with the rectifying profile will terminate at a stable node situated on 

the bottoms composition. 

 

If we set XS=X∆2=X∆4, then XS is a difference point and exactly the same logic in 

generating boundaries of possible side-draw composition can be applied – that is 

extend separation vectors from the nodes to find lines of possible placement.  

 

However, if XS≠X∆2≠X∆4, then XS is not a difference point. In this case the 

separation vector boundaries do not apply. The separation vector boundaries only 

apply for difference point placement. To ensure feasibility, for this scenario, XS 
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must lie within both TT 2 and TT 4. This allows XS to sample feasible topology 

and allows for the satisfaction of matching criterion 3.  

 

To guarantee this we must find TT boundaries A2 and B4 that run through the 

distillate and bottoms compositions, respectively. For constant relative volatility 

systems this entails evaluating the eigenvectors, of the difference point equation 

(Equation 6.1), at the two nodes and extending lines along the eigenvector 

directions associated with these TT boundaries (eigenvector point along the 

boundaries of TTs for constant relative volatility systems). See Figure 7.28. 

Because we require vapour composition matching at the node on X∆6, we make 

use of the eigenvectors of the differential equations which have separation vectors 

expressed in terms of the vapour composition i.e. S = (X*(Y) - Y). See Figure 

7.29. 

 

 
Figure 7.22: CS 2 trajectory bypassing 
rectifying profile – matching criterion 1 

not satisfied 

 
Figure 7.23: CS 4 trajectory bypassing 

stripping profile – matching criterion 2 not 
satisfied 

 
Figure 7.24: X∆2 (region 1) pinch point 

curve intersecting rectifying profile 

 
Figure 7.25: X∆4 (region 1) pinch point 

curve intersecting vapour stripping profile 
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Figure 7.26: Separation vector at distillate 
composition defining X∆2 placement bound 

 
Figure 7.27: Separation vector at bottoms 

composition defining X∆4 placement 

 
Figure 7.28: Eigenvector at distillate 

composition defining XS placement bound 

 
Figure 7.29: Eigenvector at bottoms 

composition defining XS placement bound 
 

7.4 Constructing Feasible Split Ratio Regions 
 

7.4.1 Feasible Regions for Different Net Flow Patterns 
 

In general, each net flow pattern requires different placement of the difference 

points. We use the term “in general” here because feasible columns can 

sometimes be produced for net flow patterns operating with qualitatively sub-

optimal difference points. This arises from the potential of operating profiles, 

which pinch outside the MBT, to satisfy the matching criteria before leaving 

physically relevant composition space. The possibility of this phenomenon 

occurring becomes less and less likely as the distillate and bottoms product 

specifications are made “less” sharp. As a result, feasible regions generated for a 
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particular difference point set will only be considered valid for the corresponding 

net flow pattern. Hence we will assume that the zero net flow lines (which 

separate split ratio regions resulting in different net flow patterns) represent 

potential boundaries of the feasible region in split ratio space. 

 

7.4.2 Sharp Distillate and Bottoms Specifications, Non-Sharp Side-Draw 
Specification 

 

To construct feasible regions we must assign actual values to one of the coupled 

column section difference points. We will continue our policy of placing X∆2 

ahead of X∆4. This is a completely arbitrary policy. X∆4 values can be calculated 

after the selection of an operating split ratio pair. 

 

Once a value for X∆2 has been specified, we can proceed to constructing the 

feasible split ratio region. To simplify our task we will relax the sharp-split 

specification on each product composition in turn. Let us begin by considering the 

case where we have a sharp-split on the distillate and bottoms specifications, but a 

non-sharp side-draw specification. This greatly simplifies our task because in this 

case, as in the sharp-split case, the CS 1 and CS 6 composition profiles run along 

the boundaries of their respective TTs. 

 

7.4.2.1 Net flow Pattern 1, 2, 4 and 5:  X∆2 = X∆4 = XS 

 
From Table 7.1 and Table 7.3 we can see that placing X∆2 and X∆4 in difference 

point region 1, for exists for net flow patterns 1, 2, 4 and 5, does not result in 

feasible separations. Hence no feasible split ratio region exists for net flow 

patterns 1, 2, 4 and 5 for this difference point specification. 
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7.4.2.2 Net flow Pattern 3:  X∆2 = X∆4 = XS 

 
If X∆2 and X∆4 are placed at the side-draw composition we can construct the 

minimum CS 2 and CS 4 reflux boundaries as before (for sharp-splits). When TT 

boundary C2 borders boundary B1, CS 2 is at its minimum reflux. Similarly, when 

vapour TT boundary C4 borders vapour boundary A6 CS 4 is at its minimum 

reflux. The R∆2MIN and R∆4MIN boundaries are unaffected by the non-sharp side-

draw specification. That is to say, they are qualitatively the same as their sharp-

split equivalents. 

 

The eigenvector boundaries are slightly affected by non-sharp side-draw 

specifications, however. When the specification was sharp, the CS 3 and CS 5 

profiles ran along the boundaries of their respective TTs. This resulted from the 

fact that the CS 1 and CS 2 trajectories intersected, effectively, on the light-

intermediate axis (see Figure 6.16a and Figure 6.18a) and the CS 4 and CS 6 

trajectories intersected, effectively, on the intermediate-heavy axis (see Figure 

6.17a and Figure 6.19a)– one boundary of each of the TTs lies effectively on an 

axis for sharp product specifications. With the non-sharp side-draw specification 

this is no longer the case. Both sets of trajectories intersect “away” from the axes 

and only TT 1 and TT 6 will have a boundary effectively on an axis. See Figure 

7.31. 

 

It can be shown that only transformed region 4, of CPM 3, and transformed region 

6, of CPM 5, will ever be sampled in satisfying matching criteria 1 and 2, 

respectively, for these product specifications (See Figure 7.37, Figure 7.38 and 

Appendix H for details). Consequently, CS 3 and CS 5 trajectories originating 

from the respective intersections will always intersect if the TTs overlap (see 

Figure 7.31 and Figure 7.32). However, they can also lie “away” from their 

respective TTs and still intersect.  Because of this we can reach a situation where 

the operating profiles intersect even when the TTs do not overlap. Figure 7.33 and 

Figure 7.34 illustrate feasible operting profiles when TT 3 and TT 5 do not 

overlap across collinearity line 1 (CLL1). Figure 7.35 and Figure 7.36 illustrate 

feasible operting profiles when TT 3 and TT 5 do not overlap across collinearity 
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line 2 (CLL2). Hence the eigenvector boundaries no longer represent the limit of 

possible operation in split ratio space.  

 

The feasible region will always “grow” but never “shrink” over the eigenvector 

boundaries when the side-draw specification is not sharp. This is due to the 

potential feasibility of the non-overlapping TT3 and TT5. This “growth” has zero 

size where the eigenvector boundaries (PEB1 and PEB2) intersect. At this point 

both CS 3 and CS 5 must pinch i.e. the profile and the TT have to coincide; hence 

there will be zero growth here.  The “growth” increases in size along the length of 

both eigenvector boundaries until they reach the R∆2MIN and R∆4MIN reflux 

boundaries. See Figure 7.30.  

 
Figure 7.30: Feasible region growth adjacent to PEB1 and 

PEB2 for non-sharp side-draw specifications 
 

The overall growth of the feasible region is negligible in comparison to the size of 

the region incorporated by the original four (sharp-split) boundaries and, for 

design purposes, can generally be neglected. Also all split ratios chosen within the 

original boundaries are still feasible. Below, in Figure 7.39 and Figure 7.40, are 

the complete feasible regions and original boundaries for two systems with 

differing relative volatilities. It is clear from these examples that the region 

“growth” is very small and irrespective of the relative volatility can, generally, be 

neglected. Notice also that the sharp-split boundaries have crossed the ∆2=0 and 

∆4=0 net flow lines, which now represent new boundaries of the feasible region. 

 

Note: Feasible region growth was determined by simulation. Split ratios were 

chosen and solutions for each column section were generated. CS 1 and CS 6 
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solutions were generated from the distillate and bottoms products, respectively. 

CS 2 and CS 4 solutions were generated from the side-draw composition. If these 

solutions satisfied matching criteria 1 and 2, respectively, these intersection 

points were used as starting points (initial conditions) to generate solutions for 

CS 3 and CS 5. If these profiles intersected (satisfied composition matching 

criterion 4) the overall solution was deemed feasible and hence the split ratios 

chosen were deemed feasible. 

 

 

 
Figure 7.31: Feasible composition profiles 

for non-sharp side-draw specifications 
when TT 3 and TT 5 overlap 

 
Figure 7.32: Feasible TTs for non-sharp 

side-draw specifications when TT 3 and TT 
5 overlap – with TT 3 and TT 5 

 

 
Figure 7.33: Feasible composition profiles 

for non-sharp side-draw specifications 
when TT 3 and TT 5 do not overlap across 

CLL1 

 
Figure 7.34: Feasible TTs for non-sharp 

side-draw specifications when TT 3 and TT 
5 do not overlap across CLL1 
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Figure 7.35: Feasible composition profiles 

for non-sharp side-draw specifications 
when TT 3 and TT 5 do not overlap across 

CLL2 

 
Figure 7.36: Feasible TTs for non-sharp 

side-draw specifications when TT 3 and TT 
5 do not overlap across CLL2 

 
 

 
Figure 7.37: Matching criterion 1 satisfied 

in transformed region 4 of CPM 3 

 
Figure 7.38: Matching criterion 2 satisfied 

in transformed region 6 of CPM 5 
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Alpha  [2, 1, 1.5] 

Reflux Ratio 10 
Feed [1/3, 1/3, 1/3] 
Side-Draw [0.05, 0.05, 0.90] 
Distillate [0.95, 0, 0.05] 
Bottoms [0, 0.95, 0.05] 

Figure 7.39: Feasible region for X∆2 = X∆4 = 
XS  with growth adjacent to PEB 1 and 2 

and new boundaries ∆2=0 and ∆4=0 

Alpha  [5, 1, 3] 

Reflux Ratio 5 
Feed [1/3, 1/3, 1/3] 
Side-Draw [0.05, 0.05, 0.90] 
Distillate [0.95, 0, 0.05] 
Bottoms [0, 0.95, 0.05] 
Figure 7.40: Feasible region for X∆2 = X∆4 = 

XS  with growth adjacent to PEB 1 and 2 
and new boundaries ∆2=0 and ∆4=0 

 

7.4.2.3 Net flow Pattern 3:  X∆2 ≠ X∆4 ≠ XS 

 
To generate the feasible region for net flow pattern 3, when X∆2 ≠ X∆4 ≠ XS, the 

results from Table 7.2 indicate that we are required to place X∆2 in region 1 or 4 

and X∆4 in region 1 or 6. The feasible region itself is, however, defined after the 

specification of one of these variables. Again we will arbitrarily choose to specify 

X∆2. X∆4 will therefore be a function of the values of X∆2, XS and the two split 

ratios. This means that the value of X∆4 will not be optimal for all values of the 

split ratios but will vary along a material balance line through X∆2 and XS. 

Depending on the orientation of this material balance line, X∆4 can, potentially, 

enter a difference point region other than 1 or 6, most obviously, by crossing the 

intermediate-heavy axis into either region 4 or 5.  

 

X∆4-i=0 Boundaries: 

To prevent this from happening we can generate an X∆4 boundary in split ratio 

space that simply represents the line across which the light component net flow 

changes sign. These boundaries are the constant X∆-i lines discussed in the 

previous chapter (see Equation 6.20). Two forms of the constant X∆4-i lines are 
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seen below (Equation 7.6 and Equation 7.7). Equation 7.6 is independent of the 

overall net flow in the CS. Equation 7.7, however, allows us to better understand 

the influence of the net-molar flow of individual components. When X∆4-i=0 both 

equations are exactly equivalent. 
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If X∆2 is in difference point region 1 and we wish to prevent X∆4 from entering 

difference point region 4, we can generate an X∆4-1 =0 boundary. One such 

boundary is seen in Figure 7.41. By analysing Equation 7.7 we can determine 

whether the area above or below this line corresponds to positive X∆4-1 values. For 

net flow pattern 3, ∆4 is positive and X∆4-1 is required to be positive. All other 

variables of the final term in Equation 7.7 are also positive. These values result in 

the ΦL-intercept of Equation 7.7 being smaller than the intercept for the case 

where X∆4-1 =0, hence all values below this boundary represent values of X∆4-1>0. 

 

 
Figure 7.41: X∆4-1 = 0 split ratio boundary 

 
Figure 7.42: X∆4-1 = 0 and variable R∆4MIN 
split ratio boundaries for net flow pattern 

3 and  X∆2 ≠ X∆4 ≠ XS 
 

Split ratios chosen above this line yield negative light component net flows for CS 

4. Conversely those chosen below the line yield positive CS 4 light component net 

flows. As we require (for feasibility) that light component flows are positive in 

this CS all split ratios, chosen above the X∆4-1=0 boundary, are infeasible. This 
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specification reduces the size of the region defined by the original four boundaries 

(R2Min, R4Min, PEB1, PEB2).  

 

This is not always the case. For lower reflux ratios than the one used to generate 

the above example, the X∆4-1=0 boundary can lie outside the original feasible 

region. Also if X∆2-1 < XS-1, X∆4 cannot cross the light-intermediate axis and the 

boundary therefore does not exist. 

 

Variable R∆4MIN Boundary: 

For this case where the X∆4 value is variable, the constant reflux R∆4MIN boundary 

is not defined. Instead a minimum reflux value is defined for each value of X∆4. 

The procedure for determining these minimum reflux values is the same as for the 

constant reflux case. The calculated minimum reflux values can then be mapped 

to split ratio space. The new boundary, thus formed, is not necessarily straight and 

depends on the shape of the CS 6 trajectories – i.e. each point on the trajectory 

corresponds to a minimum CS 4 reflux and X∆4 value (see Figure 7.42). 

 

7.4.2.4 Net Flow Pattern 1 & 2:  X∆2 ≠ X∆4 ≠ XS 

 
For net flow pattern 1 & 2 feasibility we are required to place X∆2 in difference 

point regions 1 or 4 and X∆4 in difference point regions 4 or 5. The value of X∆4 is 

again variable and lies on a straight line through XS and X∆2. If X∆2 is placed in 

difference point region 4 there is no possibility that X∆4 can shift into regions 1 or 

6 and the X∆4-1=0 boundary is not required (see Figure 7.43). If, however, X∆2 is 

placed in region 1, X∆4 is able to cross the intermediate-heavy axis for certain 

choices of ΦV and ΦL. In this case we are required to generate the X∆4-1=0 

boundary to remove infeasible choices of ΦV and ΦL. The light component net-

molar-flow requirement is positive in CS 4 for all net flow patterns. Consulting 

Equation 7.7 we notice that this again only results in feasible ∆4X∆4-1 values below 

the X∆4-1=0 boundary (see Figure 7.44). The lower bound of feasibility, for these 

flow patterns is the ∆4=0. 
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Figure 7.43: Feasible region for net flow 

patterns 1 and 2 with X∆2-1 < 0 

 
Figure 7.44: Feasible region for net flow 

patterns 1 and 2 with X∆2-1 > 0 
 

We notice that, in the case of Figure 7.44, a large portion of the feasible region is 

removed by the presence of the X∆4-1=0 boundary. For control purposes we would 

obviously like the feasible region to be as large as possible. The boundary 

presence is therefore undesirable. From this perspective, placing X∆2 in region 4 

ahead of region 1 seems preferable. The R∆2MIN required increases as X∆2 is 

shifted away from the rectifying profile, however. This also has the effect of 

reducing the feasible region area. A trade-off between these two effects is 

required. X∆2 should be placed as close to the rectifying profile as possible 

without introducing the X∆4i=0 boundary into the feasible region. Consideration 

should also be made for the R∆4MIN values required to satisfy matching criterion 2. 

 

7.4.2.5 Net Flow Pattern 4 & 5:  X∆2 ≠ X∆4 ≠ XS 

 
For net flow pattern 4 & 5 feasibility we are required to place X∆2 in difference 

point regions 5 or 6 and X∆4 in difference point regions 1 or 6. We must again be 

aware of the potential movement of X∆4 across the intermediate-heavy axis. For 

these flow patterns X∆4 must lie between X∆2 and XS, therefore X∆4 can only cross 

the intermediate-heavy axis if X∆2 is in region 5. In this case X∆2-1<0 but ∆4>0 and 

we require X∆4-1>0, therefore the final term of Equation 7.7 is positive and all 

feasible values lie above the X∆4i=0 boundary in split ratio space (see Figure 

7.45). 
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Figure 7.45: Feasible region for net flow patterns 4 

and 5 with X∆2-1< 0 
 

7.4.2.6 Parameter Effects on the Feasible Region “Growth” 
 
Side-Draw Composition: 

The size of the additional area of the feasible region is a strong function of the 

side-draw composition. As the side-draw composition tends to pure intermediate, 

the additional area tends to zero. As the impurities in the side-draw are increased 

the additional area increases. The additional feasible region adjacent to each of the 

eigenvector boundaries can be influenced independently by manipulating these 

impurities in the side-draw composition. If the heavy component composition, in 

this stream, is close to zero but the light component composition is not, the 

feasible region will only exhibit “growth” adjacent to PEB2 (see 6.42). This 

occurs because at these conditions composition matching criterion 1 occurs 

effectively on the light-intermediate axis and therefore the CS 3 trajectory runs 

along the boundary of TT 3 – hence only CS 5 can sample topology “far” from its 

TT (see Figure 7.46). Similarly, if the (side-draw) light component composition is 

close to zero but the heavy component is not, the feasible region will only exhibit 

“growth” adjacent to PEB1 (see Figure 7.48 and Figure 7.49). 
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Reflux Ratio: 

The size of the additional area of the feasible region is also a function of the reflux 

ratio. As the reflux ratio is increased the size of the region increases. This is due to 

the fact that intersection, of CS 3 and CS 5 trajectories “away” from their 

respective TTs, becomes easier at higher reflux.  

 

 

 
Figure 7.46: Feasible CS 3 and CS 5 

Trajectories for non-Overlapping TT 3 
and TT 5 in the CLL2 direction for Xs = 

[0.05;1e-10 ] 

 
Figure 7.47: Growth occurs adjacent to 

PEB2 for significant light but 
infinitesimal heavy component 

impurities in the side-draw 

Figure 7.48: Feasible CS 3 and CS 5 
Trajectories for non-Overlapping TT 3 

and TT 5 in the CLL1 direction for Xs = 
[1e-10 ;0.05] 

Figure 7.49: Growth occurs adjacent to 
PEB1 for significant heavy but 

infinitesimal light component impurities 
in the side-draw 
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7.4.3 Sharp Bottoms Specification, Non-Sharp Distillate and Side-Draw 
Specifications 

 

Let us now consider the case where we have a sharp-split bottoms specification, 

but non-sharp distillate and side-draw specifications. The effects due to these 

product specifications are common to all net flow patterns and feasible difference 

point placements. Note that in light of the discussion on side-draw composition 

selection above (section 7.3), a small heavy component impurity flow is required 

in the side-draw stream in order to satisfy matching criterion 1. As a result the 

boundaries and other features present, in the non-sharp side-draw feasible region, 

discussed above (section 7.4.2), will be present at these conditions too when 

applicable.  

 

At these specifications the CS 6 composition profiles run along the boundaries of 

their respective TTs. The R∆4MIN feasible region boundary can therefore be 

constructed in exactly the same way as for sharp-splits and non-sharp side-draw 

specifications. The R∆2MIN feasible region boundary, however, is affected by the 

introduction of heavy component material in the distillate product. This occurs 

because the rectifying profile no longer runs along the boundary of TT 1, but lies 

within it. CS 2 now requires a higher reflux ratio in order to satisfy composition 

matching criterion 1 (see Figure 7.50). This increase in R2Min, compared to the 

sharp-split case, results in the associated split ratio boundary shifting “inside” the 

sharp-split R∆2MIN boundary and consequently removing an area of split ratios 

which were previously feasible. This is clearly evident in Figure 7.57 and Figure 

7.59. Both show a marked decrease in the size of the feasible region. This effect is 

very significant if the light and intermediate component relative volatilities are 

close and large, but becomes smaller when the relative volatilities are evenly 

spaced. Similar intermediate and heavy component relative volatilities which are 

dissimilar, or “far”, from the light component relative volatility result in a 

negligible decrease in the feasible region area (see Figure 7.61).  

 

The fact that matching criterion 1 is satisfied within TT 1 creates the potential for 

CS 3 trajectories to originate within TR 1 of CPM 3 (see Figure 7.53). As a result, 
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matching criterion 4 need not be satisfied when boundaries B3 and C5 are collinear 

(see Figure 7.52) – i.e. PEB 1 no longer represents a boundary of feasible split 

ratios. The feasible region actually “shrinks” and the new boundary lies within the 

sharp-split boundaries close to PEB 1 (see Figure 7.57, Figure 7.59 and Figure 

7.61). The degree of “shrinkage” increases from zero, at the intersection of PEB 1 

and PEB 2, along PEB 1 until it reaches the R∆4MIN boundary. The intersection of 

PEB 1 and PEB 2 always represents a feasible solution because the TT 3 stable 

node and TT 5 unstable node coincide at this split ratio – i.e. the CS 3 

composition profile is exactly on TT 3.  

 

The degree of “shrinkage” of the feasible region along PEB 1 follows the same 

pattern as that discussed for R∆2MIN with respect to various relative volatilities. 

This is evident in Figure 7.57 and Figure 7.59 where larger decreases in feasible 

region area due to changes in R∆2MIN correspond to larger decreases due to 

“shrinkage” across PEB 1. The phenomenon is, obviously, also affected by the 

heavy component composition of the distillate. The sharper the product 

specification, the smaller the effect and conversely the less sharp the distillate 

specification the greater the effect.  

 

It should be noted that this effect is in competition with the “growth” of the 

feasible region (due to impurities in the side-draw) discussed above (section 

7.4.2). In some instances, despite the non-sharp distillate specification there is no 

“shrinkage” at all but an extension to the region across PEB 1 as the side-draw 

effects take precedence. It should also be noted that PEB 2 is unaffected at these 

conditions except by the non-sharp side-draw specification.  

 

7.4.4 Sharp Distillate Specification, Non-Sharp Bottoms and Side-Draw 
Specifications 

 

The effects due to these product specifications are also common to all net flow 

patterns and feasible difference point placements. In this case a small light 

component impurity flow is required in the side-draw stream in order to satisfy 



Chapter 7: Petlyuk Column – Design for Non-Sharp Specifications 226 

 226

matching criterion 2. The boundaries and other features present, in the non-sharp 

side-draw feasible region, discussed above (section 7.4.2), will, therefore, be 

present at these conditions too when applicable. 

 

If we have a sharp distillate specification, but non-sharp bottoms and side-draw 

specifications the CS 1 composition profiles run along the boundaries of their 

respective TTs but the stripping profiles do not. The R∆2MIN feasible region 

boundary, in this case, can be constructed in the same way as for sharp-splits and 

non-sharp side-draw specifications. The R∆4MIN feasible region boundary, 

however, is affected by the introduction of light component material in the 

bottoms product. The reason for this is that the vapour stripping profile no longer 

runs along the boundary of vapour TT 6, but lies within it. CS 4 now requires a 

higher reflux ratio in order to satisfy composition matching criterion 2 (see Figure 

7.51). The larger R4Min, for these specifications, compared to that required in the 

sharp-split case, results in a shift of the R∆4MIN split ratio boundary into the 

feasible area defined for sharp-splits consequently removing a portion of 

previously feasible split ratios. This is clearly evident in Figure 7.58 and Figure 

7.60. All show a decrease in the area of the feasible region on the same scale seen 

for the non-sharp distillate R∆2MIN boundary. The trend followed in this case is 

opposite to that shown for R2Min. The effect is significant if the heavy and 

intermediate component relative volatilities are close and small, but becomes less 

so when the relative volatilities are evenly spaced. Similar intermediate and light 

component relative volatilities which are dissimilar, or “far”, from the heavy 

component relative volatility result in a small decrease in the feasible region area 

(see Figure 7.56). This logic and the effects on R∆4MIN hold if X∆4 is variable or 

constant, so feasible regions constructed for X∆2 ≠ X∆4 ≠ XS will all exhibit a 

decrease in area compared to the sharp-split case.  

 

For non-sharp bottoms specifications, the fact that matching criterion 2 is satisfied 

within vapour TT 6 creates the potential for CS 5 trajectories to originate within 

TR 1 of vapour CPM 5 (see Figure 7.55). As a result, matching criterion 4 need 

not be satisfied when boundaries B3 and C5 are collinear (see Figure 7.54) – i.e. as 
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in the case of PEB 1, for non-sharp distillate specifications, PEB 2 now no longer 

represents a boundary of feasible split ratios. In this case the feasible region also 

“shrinks” and the new boundary, again, lies within the sharp-split boundaries but 

now close to PEB 2 (see Figure 7.56, Figure 7.58 and Figure 7.60). The removed 

region of feasibility also has zero area at the intersection of PEB 1 and PEB 2 and 

increases along PEB 2 until it reaches the R∆2MIN boundary.  

 

In this case, there is also a common trend followed by the infeasible region 

adjacent to PEB 2 and the removed area of feasibility adjacent to the R∆4MIN 

boundary with respect to the relative volatilities. Figure 7.58 and Figure 7.60 

illustrate this, where larger decreases in feasible region area due to changes in 

R∆4MIN correspond to larger decreases due to “shrinkage” across PEB 2. As in the 

case of heavy component impurities in the distillate, this phenomenon is, 

obviously, also affected by impurities (light component) in the bottoms. The 

sharper the product specification, the smaller the effect and conversely the less 

sharp the specification the greater the effect.  

 

This phenomenon also mirrors the pervious case with respect to its competition 

with the effect, on the feasible region, due to side-draw impurities. Here in some 

instances, despite the non-sharp bottoms specification there is no “shrinkage” but 

an extension to the region across PEB 2 as the side-draw effects take precedence. 

Also, it should be noted that PEB 1 is unaffected at these conditions except by the 

non-sharp side-draw specification as PEB 2 was unaffected by the non-sharp 

distillate specification. 
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Figure 7.50: CS 2 at minimum reflux for 

non-sharp distillate specification 

 
Figure 7.51: CS 4 at minimum reflux for 

non-sharp bottoms specification 
 

 
Figure 7.52: Matching criterion 4 not met 

despite bordering of TT 3 and TT 5. 
(vapour feed) 

 
Figure 7.53: CS 3 trajectory originating 

within TR 1 of CPM 3 

 

 
Figure 7.54: Matching criterion 4 not met 

despite bordering of TT 3 and TT 5. 

 
Figure 7.55: CS 5 trajectory originating 

within TR 1 of CPM 5 
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Alpha [2, 1, 1.5] 

Reflux Ratio 10 
Feed [1/3, 1/3, 1/3] 
Side-Draw [0.05, 0.05, 0.90] 
Distillate [0.95, 0, 0.05] 
Bottoms [1e-5, 0.95, 4.999e-2] 

Figure 7.56: Feasible region for non-sharp 
bottoms specifications with shrinkage 

adjacent to PEB 2 

Alpha [2, 1, 1.5] 

Reflux Ratio 10 
Feed [1/3, 1/3, 1/3] 
Side-Draw [0.05, 0.05, 0.90] 
Distillate [0.95, 1e-5, 4.999e-2] 
Bottoms [0, 0.95, 0.05] 

Figure 7.57: Feasible region for non-sharp 
distillate specifications with shrinkage 

adjacent to PEB 1 

  
Alpha  [5, 1, 3] 

Reflux Ratio 4 
Feed [1/3, 1/3, 1/3] 
Side-Draw [0.05, 0.05, 0.90] 
Distillate [0.95, 0, 0.05] 
Bottoms [1e-5, 0.95, 4.999e-2] 

Figure 7.58: Feasible region for non-sharp 
bottoms specifications with shrinkage 

adjacent to PEB 2 

Alpha  [5, 1, 3] 

Reflux Ratio 4 
Feed [1/3, 1/3, 1/3] 
Side-Draw [0.05, 0.05, 0.90] 
Distillate [0.95, 1e-5, 4.999e-2] 
Bottoms [0, 0.95, 0.05] 

Figure 7.59: Feasible region for non-sharp 
distillate specifications with shrinkage 

adjacent to PEB 1 
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Alpha  [5, 1, 2] 

Reflux Ratio 6 
Feed [1/3, 1/3, 1/3] 
Side-Draw [0.05, 0.05, 0.90] 
Distillate [0.95, 0, 0.05] 
Bottoms [1e-6, 0.95, 4.999e-2] 

Figure 7.60: Feasible region for non-sharp 
bottoms specifications with shrinkage 

adjacent to PEB 2 

Alpha  [5, 1, 2] 

Reflux Ratio 6 
Feed [1/3, 1/3, 1/3] 
Side-Draw [0.05, 0.05, 0.90] 
Distillate [0.95, 1e-5, 4.999e-2] 
Bottoms [0, 0.95, 0.05] 

Figure 7.61: Feasible region for non-sharp 
distillate specifications with shrinkage 

adjacent to PEB 1 
 

7.5 Optimisation 
 

7.5.1 Optimising Difference Point Placement 
 
We have discussed the regions of placement of the difference points for each 

column section as well as “separation vector” bounds within these regions, but we 

have not discussed the selection of actual values. The net-component flow 

arguments made in the previous chapter are still valid for non-sharp separations, 

but we need not place X∆2 and X∆4 at the side-draw composition. Indeed this 

specification, as we have discussed in the section on difference point placement 

above (section 7.2), is invalid for net flow patterns 1, 2, 4 and 5. What we can say 

is that the “impurities” in the net flow of CS 2 and 4 should not be large compared 

to the side-draw composition. This essentially means that X∆2 and X∆4 should be 

placed close to XS in composition space. Despite these arguments and those above 

(section 7.2), a large area of difference point placements result in feasible 

solutions and we, therefore, still have considerable freedom in our choice. How do 

we decide which placement is optimal or at least better than others?  
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One factor on which to base our choice is controllability. Halvorsen and 

Skogestad (1999) discussed the effects of disturbances on the operating conditions 

of the column. Disturbances can shift the operating values of the split ratios out of 

the feasible/ optimality region. This will cause the column to operate off 

specification. Maximising the area of the feasible region will minimise the effects 

of disturbances by ensuring that a larger disturbance is required in order to force 

the operating split ratios out of the region. We could, therefore, select X∆2 and X∆4 

such that they maximise this area.  

 

Below, in Figure 7.62 to Figure 7.67, are contour maps of minimum required CS 2 

and 4 reflux ratios for a grid of difference point values for net flow pattern 3. X∆2 

and X∆4 were placed at each point in the grid and the minimum CS reflux ratio 

required for (composition matching) feasibility was determined. The contour 

maps are produced for set distillate and bottoms compositions at a constant 

column reflux ratio. The curvature of the contours depends on the sharpness of the 

product specifications. Sharp product specifications, on average, require lower CS 

2 and 4 reflux ratios. These values increase dramatically as “impurities” are 

increased in the product streams. This is simply due to the fact that non-sharp 

operating profiles are far from their TTs and hence the CS 2 and 4 profiles have 

“further” to go in order to satisfy composition matching, hence higher refluxes are 

required. The dark blue colours represent low refluxes while the dark reds 

represent high refluxes.  

 

The optimal placement for both X∆2 and X∆4 appears to be near the upper right 

hand corner of each contour map (point C in Figure 7.62 to Figure 7.67) for these 

grids. XS, however, operates at [0.05;0.05] for these examples, so placement of 

both difference points at their optimal value is not possible. This is true in general. 

For sharp product specifications (distillate and bottoms), the placement of X∆2 

near the light-intermediate axis with as high a light component value as possible 

(point A in Figure 7.62) and X∆4 close to the intermediate-heavy axis with as high 

a heavy component value as possible (point B in Figure 7.63) allows both CS 2 
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and 4 to operate at relatively low reflux ratios. This scenario would produce a 

larger feasible region than if both difference points were set equal to the side-draw 

composition. Difference points at the side-draw composition sample green 

contours corresponding to medium value refluxes. 

 

As the sharpness of the product specification is reduced, the previous scenario 

loses its advantages over specifying the difference points at the side-draw 

composition. At the conditions of Figure 7.64 and Figure 7.65, both specifications 

would result in feasible regions of approximately equal size – the CS 2 and 4 

reflux ratios sampled are roughly equal in both cases. In this case for simplicity 

placing the difference points at the side-draw composition would be preferable. 

 

In Figure 7.66 and Figure 7.67, however, the situation has totally changed. 

Specifying X∆2 close to the light-intermediate axis (point A in Figure 7.66) and 

X∆4 close to the intermediate-heavy axis (point B in Figure 7.67) results in very 

high, required, CS 2 and 4 refluxes. Placement of both variables at the side-draw 

composition results in reasonable values, but the best placement of the two 

relative to each other is, in fact, to have X∆2 close to the intermediate-heavy axis 

(point B in Figure 7.66) and X∆4 close to the light-intermediate axis (point A in 

Figure 7.67). The optimal placement of the two difference points has actually 

switched over from that required for sharp distillate and bottoms splits.  

 

There is clearly much room for optimisation of a design by manipulating these 

difference points. Their optimal values are ultimately dependent on the shape of 

the rectifying and stripping profiles and therefore the quantity of impurity material 

in the distillate and bottoms product streams. The relative importance of the 

placement of the two points should also be taken into consideration. If the reflux 

ratio of either CS 2 or 4 has a minimal effect on the area of the feasible region 

then emphasis should be placed on the placement of the difference point for the 

other. Also the direction of potential disturbances to the operating conditions 

should be taken into consideration. Halvorsen and Skogestad (1999) identified the 

“bad” direction of split ratio change in response to a disturbance. This direction is 



7.5 Optimisation  233 

 233

normal to the column minimum reflux split ratio line (see Figure 7.68). 

Disturbances in this direction can rapidly increase the required operating reflux, 

whereas disturbances parallel to the column minimum reflux split ratio line, 

termed the “good” direction, require more gradual changes to the operating reflux 

ratio, in order to remain on specification. To minimise “bad” direction disturbance 

effects, the difference points should be chosen such that the width of the feasible 

region in the “bad” direction is maximised. This typically means that the choice of 

one of the two difference points will take precedence over the other – only one of 

the corresponding minimum reflux boundaries (R∆2MIN or R4MIN) is approximately 

normal to the bad direction. In Figure 7.68, R∆2MIN is normal to the “bad” 

direction and therefore the optimal placement of X∆2 would take precedence over 

X∆4 during optimisation. 

 

Note: in Figure 7.62 to Figure 7.67 red lines represent contours of high reflux 
ratio while blue curves represent lines of lower reflux ratio 
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Reflux Ratio 7 
Feed [1/3, 1/3, 1/3] 
Side-Draw [0.05, 0.05, 0.90] 
Distillate [0.95, 1e-10, 0.05] 

Figure 7.62: Minimum CS 2 reflux contours 
at sharp-split conditions varying X∆2 
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Bottoms [1e-10, 0.95, 0.05] 

Figure 7.63: Minimum CS 4 reflux contours 
at sharp-split conditions varying X∆4 
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Alpha [2, 1, 1.5] 

Reflux Ratio 7 
Feed [1/3, 1/3, 1/3] 
Side-Draw [0.05, 0.05, 0.90] 
Distillate [0.95, 1e-6, 0.05] 

Figure 7.64: Minimum CS 2 reflux contours 
at non-sharp split conditions varying X∆2 
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Feed [1/3, 1/3, 1/3] 
Side-Draw [0.05, 0.05, 0.90] 
Bottoms [1e-6, 0.95, 0.05] 

Figure 7.65: Minimum CS 4 reflux contours 
at non-sharp split conditions varying X∆4 
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Figure 7.66: Minimum CS 2 reflux contours 
at non-sharp split conditions varying X∆2 
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Figure 7.67: Minimum CS 4 reflux contours 
at non-sharp split conditions varying X∆4 

 

 

0.02 0.09

0.02 

0.09 A C

B

XS 

x1 

x2 0.02 0.09 

0.02

0.09
A C

B

XS 

x1 

x2 

0.02 0.09

0.02

0.09
A C

B

XS 

x1 

x2 0.02 0.09

0.02

0.09
A C

B

XS 

x1 

x2 



7.5 Optimisation  235 

 235

 
Figure 7.68: “Good” and “Bad” directions of 

split ratio change due to disturbances 
 

7.5.2 Optimal Split Ratio Choice - Stage Requirements 
 

Unlike sharp-split separations which require an infinite number of stages, non-

sharp separations have finite stage requirements. The infinite stage requirement 

for sharp splits arises from the necessity, of one or more of the CS operating 

profiles, to pass through the saddle point of the corresponding TT. This 

phenomenon does not occur in non-sharp Petlyuk separations. An infinite number 

of stages can still be required, but this is simply due to one or more or the column 

sections pinching. These pinch points are either stable or unstable nodes but never 

saddle points.  

 

We track the formation of these pinch points, with variation of the split ratios, by 

producing the feasible region boundaries. These are the only split ratio values that 

result in an infinite number of required stages for non-sharp separations. All the 

values within the feasible region result in finite stages requirements. Using the 

CPM methodology for design it is computationally simple to determine the 

number of stages required for the column after the selection of a particular split 

ratio pair. Tracking variable n of the difference point equation and then summing 

the values in each column section, the total number of required stages can be 

determined. If this process is repeated at various points throughout the feasible 

region, a contour map of stage requirement can be produced for the specific 

parameter set (see Figure 7.73).  
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We can gain a better understanding of the distribution of stages within the column 

by analysing the various sections of the column independently. The stage 

requirement of the prefractionator (CS 3 and 5) will be infinite at or close to the 

eigenvector boundaries PEB 1 and PEB 2. It will decrease as split ratio values 

away from these boundaries are sampled and reach a minimum close to the 

intersection of R∆2MIN and R∆4MIN (see Figure 7.71 and Figure 7.72). The product 

side coupled column sections (CS 2 and 4) will exhibit the opposite behaviour. 

Infinite stages will be required on the R∆2MIN and R∆4MIN boundaries but this will 

decrease for split ratios chosen towards the interior and reach a minimum at or 

close to the intersection of PEB 1 and PEB 2 (see Figure 7.69 and Figure 7.70). 

 

If we sum all the stages within the column, the effect of the feed side and product 

side coupled column sections balance each other. Infinite stages are required on or 

close to all the boundaries and this requirement decreases towards the interior, 

reaching a minimum somewhere within this interior (see Figure 7.73 and Figure 

7.74).  

 

Through this process it is possible to optimise the design for a specific reflux 

ratio. By minimising the stage requirement we minimise the capital investment for 

the separation. The true minimum stage requirement varies from system to system 

and also with variation of parameters. This is evident in Figure 7.73 and Figure 

7.74. The minimum solution is close to the centre of the feasible region in Figure 

7.73, but much closer to the R∆2MIN R∆4MIN intersection in Figure 7.74. If mass 

computation of the stage requirement is undesirable, a good approximation can be 

achieved at the point of intersection of two lines constructed from opposite 

corners of the feasible region. 
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Figure 7.69: Stage requirement 

contours for CS 2 and 4 

 
Figure 7.70: Stage requirement 

contours for CS 2 and 4 
 

 
Figure 7.71: Stage requirement 

contours for CS 3 and 5 

 
Figure 7.72: Stage requirement 

contours for CS 3 and 5 

 
Figure 7.73: Total Petlyuk stage 

requirement contours 

 
Figure 7.74: Total Petlyuk stage 

requirement contours 
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7.5.3 Overall Minimum Reflux 
 

In the previous chapter we discussed the topological conditions for minimum 

reflux for sharp splits. It was shown that at minimum reflux, the boundary of TT 1 

or TT 6 (of relevant phase) passes through the feed composition. The reflux ratio 

resulting from this topological condition is exactly equal to values calculated 

using the minimum reflux expressions derived by Fidkowski and Krolikowski 

(1987) and modified by Halvorsen and Skogestad (2001). When we relax the 

sharp product specification on the side-draw, we find that this same condition may 

be used to find minimum reflux. This is because the rectifying and stripping 

profiles run along the border of their TTs. Even though the CS 2 and 4 profiles do 

not, at minimum reflux we are only interested in their unstable and stable nodes 

respectively. These lie both on the profile and TT, hence exactly the same logic 

for finding minimum reflux topologically can be used. Minimum reflux ratios, 

determined using this rationale (for constant relative volatility systems), are 

exactly equal to those calculated using the non-sharp side-draw expression 

derived by Halvorsen (2001). Figure 7.75 shows the liquid TTs of all six column 

sections at minimum reflux for a sharp distillate and bottoms but non-sharp side-

draw separation with saturated liquid feed. Notice that all matching criteria are 

satisfied and that this is topologically equivalent to the sharp-split case. 

 
Figure 7.75: TTs for Petlyuk column 

with non-sharp side-draw spec at 
minimum reflux 

 
Figure 7.76: Infeasible non-sharp 

Petlyuk column with TTs at sharp-split 
minimum reflux condition 

 

When we introduce impurities into the distillate and bottoms products we can no 

longer use the TTs of the column sections to find the minimum reflux condition. 
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None of the profiles run along the boundaries of their TTs, hence it is extremely 

difficult to track them when parameters are varied. The fact that the rectifying and 

stripping profiles no longer run along these boundaries suggests that when all six 

TTs meet the sharp-split minimum reflux conditions (i.e. border each other) the 

separation may in fact be infeasible (see Figure 7.76 – matching criterion 1 not 

met). Instead of analysing composition space to determine under what conditions 

the system is at minimum reflux, we will consider split ratio space. 

 

At minimum reflux the feasible region shrinks to a line for sharp-splits. Two of 

the boundaries, either PEB 1 and R∆2MIN or PEB 2 and R∆4MIN collapse onto each 

other. At sharp-split conditions we have a hundred percent confidence in the 

validity and location of the boundaries. For non-sharp splits we have a hundred 

percent confidence in the validity of R∆2MIN and R∆4MIN and selection of split 

ratios between these lines will always result in the satisfaction of matching criteria 

1 and 2. We do not, however, have confidence in the validity of PEB 1 and PEB 

2. The feasible region can shrink or grow over these boundaries depending on the 

impurity content of the products. Therefore, there is some uncertainty surrounding 

the selection of split ratios between these two lines and their potential to result in 

the satisfaction of matching criterion 4. We do, however, have total confidence in 

the validity of the intersection of these lines. This set, of split ratios, results in a 

double pinch at the feed composition and is always a solution for composition 

matching criterion 4. We have confidence in this point because we can track the 

stationary points of CS 3 and 5 analytically.   

 

Although the shrinkage of the feasible region is fairly small compared to the area 

contained within the four boundaries when the reflux is relatively high, at or close 

to minimum reflux it becomes very significant and our confidence in the validity 

of the region is low. We can, therefore, only consider split ratios that we are 

certain of at these low refluxes. Consider Figure 7.77. The red region has been 

produced for a relatively large reflux ratio. If we decrease the ratio, the R∆4MIN 

boundary shifts upward and the overall area of the original region shrinks to that 

seen in the blue. We still have confidence that all the split ratios between R∆2MIN 
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and R∆4MIN will satisfy matching criteria 1 and 2 and that a large portion between 

PEB 1 and PEB2 will satisfy criterion 4. If we decrease the reflux ratio even 

further until the R∆4MIN boundary passes through the intersection of PEB 1 and 

PEB2, our confidence in satisfying criteria 1 and 2 is obviously intact but we have 

no confidence in the region, contained within the boundaries, to also satisfy 

criterion 4 and therefore produce a feasible column. The only point that will 

satisfy all matching criteria is the PEB 1 and PEB2 intersection. There may well 

be solutions within the region at this reflux or at a lower reflux, but we have no 

confidence in this. The minimum reflux at which we know for sure that we have a 

solution is, therefore, the reflux resulting in either R∆2MIN or R∆4MIN passing 

through the PEB 1 and PEB2 intersection. This is shown in Figure 7.78. We 

consider this to be the non-sharp split minimum reflux ratio. 

 

Figure 7.77: Changes to feasible region 
and R∆4MIN with decreasing reflux ratio 

 
Figure 7.78: Minimum reflux condition 

for non-sharp splits – R∆4MIN passing 
through the intersection of PEB 1 and 2 

 

7.6 The Dividing Wall Column 
 
The dividing wall column (DWC) is thermodynamically equivalent to the Petlyuk 

column if there is no heat transfer across the wall. DWCs are more popular than 

the original Petlyuk configuration because the practical difficulties, of 

transporting vapour from one shell to another, are removed. Also the DWC offers 
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there is a potential control issue associated with the pressure drop in the 

prefractionator in relation to that in the section adjacent to the side-draw.  If the 

pressure drop, on either side of the dividing wall, is different, control problems 

will undoubtedly ensue. To avoid this problem, DWCs are often designed with a 

50 % vapour split as well as an equal number of stages on either side of the 

dividing wall. This reduces the available degrees of freedom, but still facilitates 

some of the advantages of the Petlyuk column.  

 

By performing the same stage count as before (to find the minimum stage 

requirement), we can determine the range of solutions that result in an equal 

number of stages on either side of the dividing wall. Thus we can find the entire 

feasible region for this class of problem and identify all potential DWCs operated 

with a 50/50 vapour split. Figure 7.79 and Figure 7.80 illustrate these feasible 

regions, superimposed over the general solution, for two systems. In both cases 

the range of operation is very small – only a very thin band of such solutions 

exist. It is interesting to note that the 50/50 vapour split solution does not always 

exist (see Figure 7.79). 

 
Figure 7.79: DWC solutions with stage 

contours – Alpha [2, 1, 1.5] 

 
Figure 7.80: DWC solutions with stage 

contours – Alpha [5, 1, 3] 
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7.7 Discussion 
 

7.7.1 Net-Molar Flow Anomalies  
 
The net flow of individual components and the driving forces behind these net 

flows, in complex distillation configurations, are some of the most difficult 

concepts to reconcile with our conventional view of distillation. The simple 

column does not allow the generation of unusual net-molar-flows and it is easy to 

succumb to the idea that these are solely a product of component relative 

volatility. In a rectifying section the light component is the dominant species in 

the net flow and seems to draw the other components up the column with it. 

Similarly in a stripping section, the heavy component is in excess in the net flow 

and appears to draw the light and intermediate components down the column.  

 

It is also not very difficult to intuitively comprehend the effects of distributed feed 

addition on component net-molar flows along the length of a two product column. 

As feed material is added, each component, in turn, achieves the role of dominant 

species. At the top the light component holds sway. As feed material is added the 

heavy component composition becomes high enough to ensure that it begins to 

descend instead of ascend. The intermediate component can still flow in either 

direction. When enough heavy material has been added (through feed addition) 

for this component to play the dominant role in the net flow, the intermediate net-

molar-flow switches direction and begins to flow down the column. Finally, on 

further feed addition, the heavy component reaches a concentration high enough 

to draw all the components down.  

 

All these phenomena fit really well with our intuitive understanding. How then do 

we explain the potential for bulk flow of the light and heavy components in the 

opposite direction to that of the intermediate component? Indeed, net flow 

patterns 1, 2, 4 and 5 seem to provide this potential, in the Petlyuk column. From 

a material balance perspective, if X∆2 and X∆4 are placed in difference point 

regions 1, 4, 5 or 6, the difference points of CS 3 and 5 can be forced to operate in 
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regions 2 and 5, where this anomalous net-molar-flow is made possible. The 

topological feasibility of CS 3 and 5, also does not preclude this potential. Neither 

does that of CS 2 or 4 if placed in difference point region 5. In fact, all feasible 

placements of the CS 2 and 4 difference points for net flow patterns 1, 2, 4 and 5 

seem to dictate this region of operation for X∆3 and X∆5. Also, feasible split ratio 

regions can be generated for these modes of operation, as we have shown above 

(section 7.4) i.e. full theoretically feasible designs, where all composition 

matching criteria are satisfied, can be produced. There seems to be nothing 

preventing our acceptance of these possibilities except traditional distillation 

understanding.   

 

In our investigation into the viable placement of difference points X∆2 and X∆4, 

however, we neglected certain placement scenarios that have a low probability of 

satisfying matching criteria 1 and 2. These placement scenarios can, theoretically, 

still produce feasible designs and if used would result in X∆3 and X∆5 operating in 

difference point regions such as 7 and 3, respectively. The net-molar-flows 

produced in these sections are far more consistent with our intuition. The 

intermediate component flows in the same direction as either the heavy or light 

components, which flow in opposite directions; the light component up and the 

heavy component down. Indeed it would be more comforting to assume this mode 

of operation as the more likely. However, not only is there a low probability of CS 

2 and 4 profiles intersecting the rectifying and stripping profiles respectively, but 

if operated with the afore mentioned difference points, TT 3 and 5 would also be 

positioned such that the composition matching would be improbable. Boundary 

A3 would lie in positive heavy component space (see Figure 7.5) and boundary B5 

would lie in positive light component space (see Figure 7.9).  

 

If we return, for a moment, to the subject of sharp product splits we notice that in 

this scenario with very little or no freedom of difference point choice, a few net-

molar-flow anomalies present themselves too. For net flow pattern 1, X∆5 lies on 

the intermediate-heavy axis between difference point regions 5 and 6; see Figure 

6.27b. The net-molar-flow of the intermediate component, for this flow pattern 
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and difference point placement, is up the column, while the heavy component is 

down. This seems to hold with conventional logic. The light component, however, 

moves neither up nor down. There is no bulk flow of this component at all. That is 

not to say that there is minimal or no light component material in the liquid and 

vapour streams; there must be for the satisfaction of composition matching 

criterion 4 in the interior of the MBT. The bulk light component flow is simply 

not in the same direction as the bulk intermediate component flow. By 

conventional logic the lighter component should be drawing the intermediate 

component upwards, but it is not. The same phenomenon occurs for net flow 

pattern 2; see Figure 6.27c. Conversely, net flow patterns 4 and 5 produce a net 

flow of light component up, intermediate component down, but no net flow of 

heavy component; see Figures 6.27d-e. The heavy component does not draw the 

intermediate component down the column. These modes of operation cannot be 

avoided if feasible split ratios in net flow pattern regions 1, 2, 4 and 5 are sampled 

and the apparent anomaly in net-molar-flow is, clearly, a physical reality. 

Similarly the non-sharp, anomalous, net-molar-flows exhibited in CS 3 and 5 for 

these flow patterns are overwhelmingly more likely to occur than the “more 

intuitive” scenarios where X∆3 operates in difference point regions 4 or 7 and X∆5 

operates in difference point regions 6 or 3.  

 

It is the coupling of parallel column sections that provides the potential for these 

phenomena. For simple columns, where the sections are in series and products are 

drawn from the ends, unusual difference points cannot be produced. The sections 

have to produce actual product streams which are equivalent to their net flows. 

This coupled with the absence of “unusual” feeds confine simple columns to only 

two net-component flow possibilities. The possibilities increase considerably 

using feed distribution. The feed material does not instantly change the, product-

equivalent, net flow of one section (rectifying) to that of another (stripping). 

Rather, the component net flow direction change is gradual, taking place over a 

number feed trays. The sections between the rectifying and stripping sections are 

non-product sections and the net-molar flows are, therefore, not confined to 

product flow equivalents. These sections are, however, in series and although they 
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feed each other “unusual” pseudo streams (net-molar flows) these are confined to 

only a limited range of pseudo compositions. Coupled sections, on the other hand, 

receive both real and pseudo feeds, as well as producing pseudo products. The fact 

that not only two, but in some cases three column sections meet at a mixing point 

provides dramatically more net-molar-flow possibilities and the potential for them 

to operate in counter-intuitive manners.    

 

7.7.2 Non-Sharp Feasible Split Ratio Regions 
 

Non-sharp separations exhibit complexities in the design process that are absent in 

sharp separation design. The most noticeable complication involves the freedom 

of difference point choice. Sharp splits specifications result in constrained 

difference points. X∆2 and X∆4 are constrained to the side-draw composition, while 

X∆3 and X∆5 are constrained to the light-intermediate and intermediate-heavy axes 

respectively. Because the difference point is so fundamental to the quantitative 

and qualitative composition profile topology and achievable compositions in a 

column section, the correct placement of this variable is critically important. 

Difference point selection must be made on the basis of net flow mode of 

operation. Each net flow pattern requires a qualitatively different choice for this 

variable. These choices are based on the direction of bulk flow within each 

column section. 

 

The non-sharp product specifications and freedom of difference point choice 

result in feasible split ratio regions which are, often, quite dissimilar from the 

sharp-split versions. Understanding the influence of product impurities on the 

region of feasible split ratios is very important. For many thermodynamic systems 

producing composition profiles that run close to the system nodes, which is 

essentially the effect of true sharp split specifications, is extremely difficult and 

definitely not practical. In these situations even if a large number of stages is 

acceptable – as required for near sharp splits – the range of useful split ratios is 

unlikely to conform to the sharp-split feasible region. For effective design 
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purposes a thorough knowledge of this effect on the split ratio solutions is 

required.  

 

We have categorised, in this work, the effects of non-sharp side-draw, distillate 

and bottoms specifications. Non-sharp side-draw products do not affect the 

qualitative method of minimum reflux calculation for CS 2 and 4. They do, 

however, generate extra solutions, outside the original sharp-split feasible region, 

adjacent to PEB 1 and PEB 2. If XS contains light component impurities, growth 

will occur adjacent to PEB 2 and if it contains heavy component impurities, 

growth will occur adjacent to PEB 1. The fact that the region grows means that all 

split ratios within the original boundaries are still solutions and can be chosen 

here with total confidence in their validity.  

 

A non-sharp distillate product, where the rectifying profile does not run close to 

its saddle point, results in a much higher minimum CS 2 reflux ratio compared to 

the sharp-split case. This effectively shifts the R∆2MIN boundary into the sharp-

split region removing large areas of formerly feasible split ratios. The minimum 

reflux is easily and accurately determined by calculating the value at which the 

unstable node of the CS 2 trajectory lies on the rectifying section trajectory. This 

product specification also results in split ratio solutions, inside the PEB 2 feasible 

region boundary, becoming infeasible. This effect is slightly offset by region 

growth due to impurities in the side-draw product. For composition matching, 

non-sharp distillate products require heavy component impurities in the side-draw; 

hence the effects of solution growth and shrinkage around PEB 2 are set against 

each other.  

 

Similarly, a non-sharp bottoms product, where the stripping profile does not run 

close to its saddle point, results in a much higher minimum CS 4 reflux ratio 

compared to the sharp-split case. This now shifts the R∆4MIN boundary into the 

sharp-split region, again, removing areas of formerly feasible split ratios. The 

minimum reflux, for CS 4, is easily and accurately determined by calculating the 

value at which the stable node of the CS 4 profile lies on the stripping profile. 
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This product specification also results in split ratio solutions inside the PEB 1 

feasible region boundary becoming infeasible. Again the effects are somewhat 

counteracted by the growth of the region in this area. The growth in this case is 

due to light component impurities in the side-draw which are now required for the 

satisfaction of composition matching criterion 2.  

 

The effective design, of non-sharp Petlyuk columns, is largely dictated by our 

confidence in the solution.  The possibility of region “shrinkage” introduces an 

uncertainty in the validity of the solution. Our understanding of the cause of this 

phenomenon allows us to select split ratios, within the four boundaries, that we 

have more confidence in. All solutions between R∆2MIN and R∆4MIN satisfy 

matching criteria 1 and 2. Uncertainty surrounding split ratios close to these 

boundaries only occurs near their intersection with PEB 1 and PEB 2.  The region 

shrinkage always decreases, along the length of PEB 1 and 2 from these 

intersections, to zero at the point where they, in turn, intersect. The split ratio set, 

at which these boundaries intersect, is always a solution, satisfying all matching 

criteria. Areas of potential infeasibility are often removed at higher reflux when 

the zero net-molar flow lines become new boundaries of the region. In general, the 

uncertainty in the solution validity is small and the boundaries, of the feasible 

region, discussed in this work represent an excellent approximation. Even if the 

uncertainty is significant, the CPM design methodology allows the verification of 

composition matching criteria, by hand, with very little computational effort and 

time wasting.   

 

One of the most powerful results of this work is that by analysing the shifting of 

feasible region boundaries we can determine a column minimum reflux ratio for 

any product specifications - if these are feasible. Column minimum reflux occurs 

when either the R∆2MIN or R∆4MIN boundaries pass through the point of PEB 1 and 

PEB 2 intersection. 
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7.7.3 Non-Ideal Zeotropic Systems 
 

The convenient property, of constant relative volatility system topology, is the fact 

that the boundaries, or profiles, between transformed topological regions, are 

straight. This makes the analysis of topological changes with parameter variation 

relatively simple. We simply have to track TTs, for sharp-splits, to determine if 

composition matching criteria are satisfied. Non-ideal zeotropic systems do not 

afford us this luxury. The boundaries between nodes always exhibit a degree of 

curvature. The only way to overcome this problem is to make straight boundary 

approximations when using these systems. To make matters worse, the 

eigenvectors at the stationary points need not point directly at the others of the 

system.  In the process of feasible region generation, however, the PEB 

boundaries are the only boundaries affected. R∆2MIN and R∆4MIN are unaffected 

because these can be calculated accurately in the same way detailed, in this work, 

for no sharp splits. We also have complete confidence in the intersection of PEB 1 

and PEB 2 as this set of split ratios result in the double feed pinch and as 

mentioned before, must be a solution. In many ways, the design problems faced 

with non-ideal systems are exactly the same as those faced with non-sharp 

constant relative volatility systems. The ultimate pitfall is the inability to 

analytically track composition profiles. We have shown here, however, that by 

simply tracking the movement of the stationary points and generating appropriate 

split ratio boundaries, a fairly accurate approximation of the feasible region can be 

generated. At the very worst we know that the solutions lie between the R∆2MIN 

and R∆4MIN boundaries and the PEB 1 - PEB 2 intersection. This narrows the split 

ratio search dramatically. Generally, though, the feasible region approximations 

for all zeotropic systems is good and very importantly, minimum reflux solutions 

for both sharp and non-sharp splits can, quite certainly, be generated with a fair 

degree of accuracy.  
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7.8 Conclusions 
 
The CPM technique has allowed a comprehensive analysis of the Petlyuk 

distillation column at both sharp and non-sharp conditions. Not only are we able 

to gain insight into the column behaviour, but can generate all possible, zeotropic 

system, solutions for sharp product conditions and very good approximations for 

non-sharp product specifications, with minimal computational effort. Individual 

solutions can easily be generated by selecting split ratios and then producing 

CPMs for each section. Column section stage requirement is a natural product of 

the technique and can be determined by tracking variable n of the difference point 

equation along the length of the chosen operating composition trajectories. No 

iteration is required to generate the solution which can be used for the successful 

initialisation of rigorous design packages. Minimum required reflux ratios can be 

found for any product specifications allowing utility costs to be minimised. 

Capital investment, also, can be minimised by finding optimal operating split 

ratios. This is particularly powerful as the technique allows not only design, but 

optimisation as well to ensure the best possible financial return.  
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8 Chapter 8: 8 

Discussion 
 

Thesis Results 

In this work we have attempted to illustrate the use of column profile maps 

(CPMs) for the analysis and design of distillation systems. We believe that we 

have developed an extremely powerful and versatile tool that does not suffer some 

of the fundamental shortcomings of currently employed short-cut techniques.  

 

Firstly, unlike many techniques, the CPM design and analysis methodology is not 

configuration specific. Many other short-cut design techniques are produced 

specifically for a particular configuration. This makes them very limited. New 

techniques must be developed each time a new configuration is analysed. The 

CPM technique allows the design of any separation configuration, no matter how 

complex.  

 

We have presented illustrations of the effectiveness of the CPM methodology as 

an analysis tool by applying it to gain an understanding of the effects of feed 

distribution in a two product distillation column. A number of important results 

followed from this analysis. These are useful contributions to the field of 

distillation in their own right.  They include the following: 

 

• Feed distribution can be used to decrease the number of required stages for 

non-sharp separations. 

• Non-sharp separations that are infeasible using a single feed tray can be 

made feasible by feed distribution if the associated rectifying and stripping 

section transformed triangles (TTs) overlap. 

• True minimum reflux for a (two product) separation is represented 

graphically when the associated rectifying and stripping section TTs 

border each other. 
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• There are no advantages (from a topological perspective) in feed 

distribution for sharp separations. 

• A feasible/attainable region of composition profiles exists for a distributed 

feed column for defined product specifications and reflux ratio. 

 

A comprehensive analysis and design of the Petlyuk column has also been 

performed in this work. It has been shown that CPMs can be applied to both the 

sharp and non-sharp Petlyuk separation problems. Many of the results of the 

sharp-split Petlyuk analysis presented here are confirmed by the results obtained 

by Halverson and Skogestad (2001). These together with the non-sharp-split 

Petlyuk work also constitute very useful contributions to the field. Some of the 

most important results of this work are presented below. 

 

• A feasible/attainable parameter (split ratio) region exists for the Petlyuk 

column for defined product compositions and column reflux ratio. 

• At minimum reflux the feasible region is simply a line of solutions 

• The boundaries of the non-sharp-split feasible region require an infinite 

number of stages. 

• There are five material (net) flow patterns possible in the Petlyuk column. 

We have defined these as net flow patterns 1 through 5.  

• Net flow pattern 3 is the most efficient net flow pattern (for ideal systems). 

The minimum reflux solution always occurs at the net flow pattern 3 mode 

of operation.  

• Net flow analysis can be used as a diagnostic tool. Zeotropic separations 

operating at net flow patterns other than 3 are clearly over refluxed.  

• Counter-intuitive component net flows arise in the Petlyuk column due to 

column section coupling. The intermediate component net flow can be 

forced in the opposite direction (within a column section) to that of the 

light and heavy components. 

• An optimal solution corresponding to the minimum stage solution exists in 

the non-sharp feasible region. 

• The CPM technique can be used to generate individual Petlyuk solutions. 
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• The CPM technique can be used to optimise Petlyuk designs; Column 

control can be improved by selecting parameters that maximise the area of 

the feasible region. 

 

The CPM technique can be used to generate full solutions for configurations. This 

is particularly useful because current rigorous simulation packages often 

encounter solution convergence problems with complex arrangements. The 

Petlyuk column is one such arrangement that has received attention in literature 

regarding this problem (Triantafyllou and Smith, 1992). Solutions generated using 

the CPM technique can be used successfully to initialise rigorous simulation 

routines. 

 

Due to the graphical nature of the technique, it is difficult to describe specifics of 

the design elegantly and if there is a failing in this thesis it is that. Chapter 7 in 

particular suffers from this drawback as the relative, qualitative, positions of 

various topological features must be described. However, this does not detract 

from the effectiveness of the CPM design procedure which is, in fact, fairly 

simple. Once the general design methodology is understood, it can easily be 

applied to any configuration. An outline of this procedure is as follows: 

• Break configuration into column sections. 

• Determine all possible net flow patterns. 

• Identify required composition matching criteria. 

• Identify the form of advantageous topology for each column section based 

on product specifications and matching criteria. 

• Based on desired topology for each column section determine regions of 

feasible difference point placement, for each net flow pattern. 

• Determine minimum reflux conditions for each column section (if they 

exist). 

• Select useful variables for representation of minimum reflux solution and 

determine regions of feasible parameter choice (if possible). 
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The Way Forward 

Although the analysis and design of particular configurations has been discussed 

in this work, the CPM technique actually offers the potential for a design 

paradigm shift. Most separations are synthesised by assuming a separation 

configuration and trying to determine the potential capabilities of this 

configuration for the separation. This approach is severely limiting. By tackling 

the problem in this way the designer will almost always restrict themselves to 

standard equipment and miss significant opportunities that arise from novel 

arrangements. This is a standard approach by most design engineers. Instead of 

designing the standard equipment to achieve a separation, an approach of 

designing the separation to determine the required configuration should be taken. 

With this approach a designer could work backwards from a required composition 

profile and piece together a configuration to achieve it. This would be very 

advantageous if a separation path was known to be optimal or simply superior to 

that of standard equipment. The goal for efficient design would then be to 

determine the criteria defining an optimal composition profile. 

 

 

Column profile maps have revealed many exciting future opportunities for 

distillation synthesis. One such opportunity is the efficient separation of 

azeotropic mixtures. Current azeotropic distillation methods require large scale 

recycling within separation networks. These are very costly as large heating and 

cooling duties are required. An azeotropic separation synthesis based on Column 

Profile Mapping offers the potential to reduce or remove recycle requirements and 

even reduce the number of columns required in a separation network. This is 

possible because columns that allow composition profiles to cross azeotropic 

distillation boundaries can be designed, using the CPM technique.  

 

By simply shifting the topology adjacent to the simple distillation boundary, with 

appropriate difference points and reflux ratios, profiles straddling multiple 

distillation regions can be produced. These are not simply academic opportunities 
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which in practice would require impossible or hypothetical feeds. Existing 

configurations can be used to cross distillation boundaries.  

 

Castillo et al (1998) showed that a single side-rectifier could be used to separate 

an acetone-chloroform-benzene mixture to fairly high purity products. This 

separation requires a composition profile crossing the simple distillation boundary 

defined between the acetone-chloroform binary azeotrope and the benzene pure 

component composition.  

 

Other equipment can be used to perform this feat. A fully functional Petlyuk 

column can be designed to achieve relatively high product purities for this system. 

Below is a figure illustrating the composition profiles of such a Petlyuk column, 

designed using the CPM methodology (Figure 8.1). Notice that the composition 

profiles feeding the side-draw run directly over the distillation boundary.  

 

 

 
Figure 8.1: Petlyuk Column with 

operating profiles crossing distillation 
boundary 

 

 
Figure 8.2: ASPEN Plus simulation 

results from simulation initialised with 
CPM design data 

 
 
 

The column is not required to operate at particularly extreme conditions. The 

overall column reflux ratio is 7.70. Table 8.1 illustrates the operating parameters 

of each column section comprising the configuration. Figure 8.2 illustrates the 

results of an ASPEN Plus simulation initialised using the results of the CPM 
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design. The results are very similar, emphasising the effectiveness of the CPM 

methodology for initialisation purposes. 

 

 

 

Difference Point (X∆) Column 

Section  Acetone Benzene 

Reflux ratio (R∆) 

1 0.9 0 7.70 

2 0.05 -0.0001 6.26 

3 1.3243 0.0001 8.42 

4 0.1358 0.0004 3.14 

5 0.0642 0.4799 -6.10 

6 0 0.91 -14.4 
Table 8.1: Operating parameters for Petlyuk column with composition profiles crossing the 

acetone-benzene-chloroform simple distillation boundary 
 

It is interesting to note that this column is required to operate at net flow pattern 4. 

Without this mode of operation the column would not be able to achieve the 

distillation boundary crossing. For ideal systems these flow patterns are sub-

optimal and offer no advantages over net flow pattern 3 but for azeotropic systems 

they are extremely useful for achieving novel separations.  

 

There are exciting future prospects for developing the theory of azeotropic 

separation synthesis. This work should address topics such as the extent to which 

predefined configurations can “cross” distillation boundaries, the choice of 

configuration based on system topology, the synthesis of novel arrangements 

based on system topology, the minimum reflux requirement for azeotropic 

distillation etc. Column Profile Mapping applied to these problems could 

revolutionise the field of distillation which has for so long been thought of as 

understood. 

 

Long term development of the CPM technique must address the issue of higher 

component mixtures. The technique does have the potential to address this issue 
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because large portions of the theory and approach are based on the placement of 

system nodes. Although these are more difficult to find and interpret for higher 

order systems, the method of their application to design and analysis of distillation 

arrangements is similar to that for three components. For instance, the true 

minimum reflux condition for a two product column, as discussed in Chapter 4, 

occurs when boundaries of the transformed triangles, for the two column sections, 

border each other. In four-component systems, the topological counterpart of the 

three-component transformed triangle is a three-dimensional pyramid. An 

equivalent four-component minimum reflux condition would, therefore, simply 

require the bordering of one of the surfaces of each of the two “transformed 

pyramids”. Of course, determining when this condition is satisfied is not a trivial 

mathematical exercise, but is not impossible either.  

 

The task is substantially simpler in other cases.  Consider the determination of the 

minimum reflux of CS 2 of the Petlyuk column at sharp-splits conditions. The 

nodes of importance in this case (the unstable node of CS 2 and a saddle of CS 1) 

lie on an axis of the composition space (see Figure below). In this case we simply 

require that the nodes of the two transformed pyramids coincide.  We know that 

the movement of these nodes is restricted to the axis and therefore need only vary 

the reflux ratio until the condition is met. 

 
Figure 8.3: Increasing reflux ratio of Petlyuk column section 2 (for ideal 4 component sharp-

split)  to determine the section’s minimum reflux  

Increasing R∆ 
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One of the most powerful attributes of the CPM technique is the potential for 

graphical visualisation and interpretation. This, unfortunately, is lost for systems 

of higher order than four components but many three-component graphical results 

can be generalised to include any number of components in a similar manner to 

that discussed above. 
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X∆= [1.6 -0.57] 
R∆  = -13.89 

X0= [ 0.3868 
0.1176] 

X0= [ 0.005 
0.5]

X0= [ 0.13 
0.3984] 

X0= [ 0.02 
0.2744] 

X0= [ 0.1048 
0.1718] 

X0= [ 0.2013 
0.3167] 

X0= [ 0.1406 
0.1712]

X0= [ 0.1786 
0.1439]

X0= [ 0.2485 
0.1479]

X0= [ 0.2263 
0.2982]

X0= [ 0.2819 
0.1278]

X0= [ 0.3186 
0.3057] 

X∆=[1.6 -0.4] 
R∆ = -11

X0= [ 0.4123 
0.31] 

X∆=[-0.01 0.7] 
R∆ = 2.312

X0= [ 0.3937 
0.1907] 

X∆=[0.5 0.05] 
R∆  = -1.5 

X0= [ 0.4353 
0.1008] 

X∆=[1.6 -0.4] 
R∆  = -10.8 

X0= [ 0.4709 
0.110]

X0= [0.5733 
0.4267] 

X0= [0.5618 
0.0649] 

X∆=[0.61 0.4] 
R∆  = -1.2 

X∆=[-0.2  1.2] 
R∆  = 3.51 

X∆=[0.61 0.049] 
R∆  = 8 

X∆= [0.6 -0.2] 
R∆  = -10 

X∆=[-0.45 1.5] 
R∆  = 10.2 

X∆= [0.15 0.1] 
R∆  = -2 

X∆= [1.2 -0.1] 
R∆  = -13 

X∆= [-0.01 0.6] 
R∆  = 2.2 

X∆= [0.4 0.1] 
R∆  = 7 

X∆= [0.4 0.1] 
R∆  = -3.2 

X∆= [0.4 0.3] 
R∆  = -3.6 

X∆= [0.4 0.1] 
R∆  = 7 

X∆= [0.4 0.3] 
R∆  = -1.7 

X∆=[ 0.1021 0.0691] 
R∆  = 20 

9 APPENDIX A: Sequence of Column Sections to write “Reuel” 

Figure B.1: Sequence of column sections to write the word “Reuel” with the design 
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APPENDIX B 
 

Mathematical Background 

 

B.1. Eigenvalues and eigenvectors 

 
Liapounov’s first theorem states that the nature of a singular point XS of equation 

(B.1) is topologically similar to the singular point of the linearized equations: 
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By assuming that the n x n matrix J(XS) = [aij] is constant, that is, its entries do not 

depend on n, we are left with an eigenvalue problem, where the eigenvalue 

characterizes the kind of singularity that occurs and the pair of eigenvectors 

determine the asymptotic direction of the trajectories in the neighbourhood of the 

singularity. In order for a singular point to be investigated, it is necessary to set up 

the characteristic equation 

 

0
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−
λ
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aa
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and find its roots λ1 and λ2. (The characteristic equation shown is for a ternary 

system).  

 

Each pair of eigenvectors represents the axis of a new coordinate system which 

separate different behaviour of the phase diagram around the singularity and the 

singularity being the origin. Linear independent eigenvectors separate the space 

into four regions, while collinear eigenvectors divide the space into two regions, 

as illustrated in figure B.1a and B.1b.  

 

  

Figure B.1a: Example of a saddle 

node with two linear independent 

eigenvectors that divide the space into 

four regions. 

Figure B.1b: Example of a stable 

node with two collinear eigenvectors 

that divide the space in two regions. 

 

Complex eigenvectors are a result of complex roots of the characteristic equation. 

The space consists of one region as there is no determinable asymptotic direction 

in the real space. I.e. a characteristic node for complex eigenvectors would be a 

stable focus, see Figure B.1c. 

I 

II

III 

III IV
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Figure B.1c: Example of a stable focus with complex eigenvectors that results in 

a space that consists of one region. 

 

To characterize the kind of singularities in space it is necessary to look at the 

eigenvalues. The kind of singularity that can occur in a system is determined by 

the dimension of the characteristic equation. The eigenvalues for ternary systems 

are described by the sign of λ1 and λ2. (Quaternary systems are described by the 

signs of λ1λ2 and λ3.) Hence for ternary systems there exists a limited 

combination of eigenvalues and therefore cases of singularities that can occur in 

the system.  

 

B.2 Eigenvalue and eigenvector maps  
 

As the eigenvectors are a function of the thermodynamics only (v =f( yi(x))), there 

exists a unique eigenvector map for each system modelled by a particular set of 

thermodynamic data. The eigenvector map can be obtained by plotting the 

eigenvectors over a range of x. 

In analogy to the eigenvector map there exists an eigenvalue map. As the 

eigenvalues are a function of λ = f( yi(x), R∆.)) eigenvalue maps can be plotted for 

every R∆ for each system. 

 

 

 

 

I 
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B.3 Cases of singularities occurring in a ternary system 
 

Provided that ( ) 0det ≠SXJ  the singularities are elementary and the following 

cases for a ternary system are possible: 

 

1. The roots λ1, λ2 are distinct and real → two linear independent 

eigenvectors: 

- λ1 < 0, λ2 < 0. The singular point is asymptotically stable (stable node); 

- λ1 > 0, λ2 > 0.  The singular point is asymptotically unstable (unstable 

node); 

- λ1 < 0, λ2 > 0.  The singular point is asymptotically unstable (saddle 

point); 

2. The roots of the characteristic equation are complex: λ1 = p + iq, λ2 = p – 

iq → eigenvectors are complex: 

- p < 0, q ≠ 0. The singular point is asymptotically stable (stable focus); 

- p > 0, q ≠ 0. The singular point is asymptotically unstable (unstable 

focus); 

- p = 0, q ≠ 0. The singular point is asymptotically stable (midpoint); 

 

3. The roots of the characteristic equation are not distinct → eigenvectors are 

collinear: 

- λ1 = λ2 < 0. The singular point is an asymptotically stable node;  

- λ1 = λ2 > 0. The singular point is an asymptotically unstable node;  

 

The case ( ) 0det =SXJ  results in non-elementary singularities of the following 

kind:  

1. The roots of the characteristic equation has at most one zero eigenvalue → 

two linear independent eigenvectors: 

- λ1 = 0, λ2 < 0. The singular point is an asymptotically stable half node-

saddle (Doherty); 
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- λ1 = 0, λ2 > 0. The singular point is an asymptotically unstable half node-

saddle (Doherty); 

 

To be able to exploit the knowledge of the eigenvectors and eigenvalues we have 

to look at specific systems.  
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X∆=[-0.09575 0.4538] 
R∆  = 5 

X∆= [-0.08848 0.45081] 
R∆  = 5 

X∆= [0.184 0.6867] 
R∆  = 1.2 
 
XP = [0.168 0.6877] 

X0 =[0.1212 0.1589] 
 
X∆= [0.3 0.224234] 
R∆  = -2.254 

X∆= [-0.1 0.4465] 
R∆  = 3.529 

X∆= [0.4 0.4678] 
R∆  = -1.375 

X∆= [0.4 0.8733] 
R∆  = -2.102 

X∆= [0.2508 0.4359] 
R∆  → ∞ 

X∆= [0.3921 0.2897] 
R∆  =1 

X0= [0.3112 0.3681] 
 
X∆= [0.4 0.8733] 
R∆  =-2.102 

X∆= [0.6 0.16008] 
R∆  =-2.347 

X∆= [0.6 0.103397] 
R∆  = 0.70667 

X∆= [1.5 -0.46903] 
R∆  = -8.402 

X∆= [ 0.01 0.5] 
R∆  = 20 

APPENDIX C 
Sequence Of Column Sections To Write “Wits”. 

 
Figure C.1: Sequence of column sections to write the word “Wits” with the design 

parameters XΔ and RΔ. 
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APPENDIX D: Proof of overlap of vapour TTs if liquid TTs 

overlap. 
 

Hypothesis: If two liquid TTs overlap, the corresponding vapour TTs will overlap 

also. 

 

Consider two TTs (TT A and TT B) of a configuration with sharp product 

specifications that are required to achieve composition matching by overlapping 

close to an axis. The composition profiles of the corresponding sections run along 

the boundaries of these TTs. The extreme condition at which this composition 

matching can be satisfied is when stationary points of the two TTs coincide. i.e. 

XPA = XPB. The composition of vapour TT A in equilibrium with XPA is YPA
*. 

This composition is a stationary point of vapour TT A. However, the equilibrium 

composition of XPB is YPB
*= YPA

* since XPA = XPB. This composition is also a 

stationary point of vapour TT B. Hence, we can conclude that if the liquid TTs 

touch at nodes the vapour TTs will also touch at nodes.  

 

We can extend this argument to include, not only, situations where the liquid TTs 

touch but where they produce a small overlap. If XPA = XPB  and is then shifted, 

by changing parameters, such that light component value (for arguments sake) is 

increased and this shifting increases the liquid TT overlap, YPA
*

 must also shift in 

a direction that increases its light component value and will therefore increase the 

vapour TT overlap. Hence if liquid TTs (for sharp split) overlap, the 

corresponding vapour TTs will do likewise.  
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APPENDIX E: Proof of Coinciding Pinch Points for CS 1, 2 and 3 

at Sharp-Split Conditions. 
 

Hypothesis: If two stationary points of coupled CS system 1, 2 or 3 coincide at a 

point, a stationary point of the third section must also coincide at this point. 
 

Figure E.1: Mixing point of CSs 1, 2 and 3 
 

Material balance over streams from CSs 1, 2 and 3: 
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Pinch XP1 and equilibrium YP1

* satisfy section 3 material balance. The only 

passing streams in the CPM 3 that satisfy both material balance and equilibrium 

are the pinch points, so XP3= XP1 and YP3
* = YP1

*. 

 

1

2 3
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APPENDIX F: Proof of TT 1, 2 and 3 overlap for all ΦV and ΦL 

resulting in a negative value of R∆2 where |R∆2| > |R∆2MIN| at 

Sharp-Split Conditions. 
 

Hypothesis: At R∆2MIN boundaries B1, C2 and B3 are collinear. Any values of ΦV 

and ΦL chosen such that R∆2<0 and |R∆2| > |R∆2MIN| will result in an overlap of TT 

1, 2 and 3. 

 

 

At R∆2MIN, boundaries B1, C2 and B3 are collinear. This is therefore a feasible 

solution of the CS 1-2-3 system.  In order to determine whether or not TTs 1, 2 

and 3 overlap for |R∆2| > |R∆2MIN|, we must determine the rate and direction of 

movement of the nodes of the respective TTs as ΦV and ΦL are varied. The 

positions of the nodes of a TT are dependent on X∆ and R∆. Arbitrarily varying ΦV 

and ΦL results in dramatically different values of R∆2, R∆3 and X∆3, and 

consequently, dramatically different positions of the stationary points. We need to 

negate the effect of variation of X∆3 on the positions of the CS 3 stationary points 

so that we need only compare one variable type (i.e. reflux ratio of CS 2 and 3) 

and determine its effect on the rate of stationary point movement. If ΦV and ΦL 

are varied along lines of constant X∆3-i, the rate of change of R∆2 and R∆3 can be 

compared. Once the rate of change of R∆k is known for each section, the rate of 

movement of the stationary points can be determined.  

 

Below is the expression for ΦV and ΦL resulting in constant X∆3-i (Equation 6.20). 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

+Φ
+

=Φ
−Δ−Δ

−Δ−Δ

ΔΔ

Δ

ii

ii
VL XX

XX
RR

R

32

13

11

1 11
  (6.20) 

We will vary ΦV and ΦL along these lines and determine the rate of change of R∆2 

and R∆3. Examples of these lines are seen in the Figure F.1 below. 

 

The reflux ratio for CS 3 is given by Equation 6.15 below: 
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Combining Equation 6.15 and Equation 6.20 to eliminate ΦL and differentiating 

w.r.t. ΦV we obtain: 
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 (F.1) 
The reflux ratio for CS 2 is given by equation below: 
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Combining equation Equation 6.14 and Equation 6.20 to eliminate ΦL and 

differentiating w.r.t. ΦV we obtain: 
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From Equations F.1 and F.2, we see that both R∆2 and R∆3 decrease with 

increasing ΦV along lines of constant X∆3-i. The rate of change of R∆2, with respect 

to ΦV, is equal to the rate of change of R∆3 divided by (1-X∆3-i). In split ratio 

regions 1, 2 and 3: 0<(1-X∆3-i)<1 for all ΦV and ΦL (See Figure 6.27a, b and c). 

This means that the magnitude, of the rate of change of R∆2, is greater than that of 

R∆3 along lines of constant X∆3-i. R∆3, which is positive in region 3, becomes 

smaller as ΦV is increased. Boundary B3 consequently, shifts towards the light 

component. R∆2, which is negative, becomes more negative i.e. the magnitude of 

the negative R∆2 increases. Boundary C2 also shifts towards the light component. 

However, due to the more rapid rate of change of R∆2 than R∆3, we can conclude 

that boundary C2 will move towards the light component faster than boundary B3 

hence the two TTs will maintain overlap. 

 

In split ratio region 4, the TTs overlap by default. Both TT2 and TT3 operate at 

positive reflux ratio. TT2 will look similar to Figure 6.34 and TT3 will look 

similar to TT2 in Figure 6.32 (except that the TT 3 saddle point and stable node 

will have higher light component values). Because the TT 2 unstable node is 

above x1 = 1 and the TT 3 unstable node is below x1 = 1, for all R∆ > 0, overlap is 

guaranteed. The same is true for split ratio region 5. Although in this region CS3 

operates at negative reflux, the qualitative form of the TT3 always allows overlap 

with TT 2. We can say therefore that TT2 will overlap TT3 for all values of 

R∆2>R∆2MIN as we can choose any constant X∆3-i line along which to vary ΦV. 



APPENDIX  270 

 270

 

 

Figure F.1: Lines of Constant X∆ derived for values of X∆3 between 0 and 1 
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Appendix G: Pinch point curves for qualitatively different X∆ 

placement. 

 

  
Figure G.1: Pinch point curve for difference 

point region 1 at positive reflux 
Figure G.2: Pinch point curve for 

difference point region 1 at negative reflux 

  
Figure G.3: Pinch point curve for difference 

point region 6 at positive reflux 
Figure G.4: Pinch point curve for 

difference point region 6 at negative reflux 

 
Figure G.5: Pinch point curve for difference 

point region 5 at positive reflux 
Figure G.6: Pinch point curve for 

difference point region 5 at negative reflux 
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Figure G.7: Pinch point curve for difference 

point region 4 at positive reflux 
Figure G.8: Pinch point curve for 

difference point region 4 at negative reflux 

 
Figure G.9: Pinch point curve for difference 

point region 7 at positive reflux 
Figure G.10: Pinch point curve for 

difference point region 7 at negative reflux 

 
Figure G.11: Pinch point curve for difference 

point region 3 at positive reflux 
Figure G.12: Pinch point curve for 

difference point region 3 at negative reflux 
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Figure G.13: Pinch point curve for difference 

point region 2 at positive reflux 
Figure G.14: Pinch point curve for 

difference point region 2 at negative reflux 
 

 

Appendix H: Proof of region growth adjacent to PEB 1 and PEB 2 

for sharp distillate and bottoms products but non sharp side-

draw products. 
 

In the previous chapter we discussed the movement of the coupled column 

sections TTs with variation of the split ratios. We discussed how matching 

criterion 1 is always satisfied for split ratios resulting in R∆2 values greater than 

the minimum. (see Appendix F). This resulted from the fact that boundary B3 

always lies between the CPM 2 unstable node and boundary B1. This implies that 

when the distillate specification is sharp but the side-draw specification is not so, 

matching criterion 1 will always be satisfied within transformed difference point 

region 4 of CPM 3 – i.e. only transformed region 4 of CPM 3 will ever be 

sampled in satisfying matching criterion 1. Similarly, if we consider matching 

criterion 4, for a sharp bottoms product specification we note that this intersection 

is always satisfied within transformed region 6 of CPM 5. This means that CS 3 

profiles from TR 4 and CS 5 profiles from TR 6 which don’t run along the TT 

boundaries can intersect – i.e. TT 3 and TT 5 do not always have to intersect to 

satisfy matching criterion 4 for these product specifications. This means that the 

true limits of feasible operation always lie outside the eigenvector boundaries. 
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Appendix I: Derivation of the Difference Point Equation 

 

The generalised column section (CS) is defined as a length of column between 

points of addition or removal of mass or energy. The stages in a column section 

can be numbered from the bottom up (Figure I.1) or from the top down (Figure 

I.2). 

  
Figure I.1: Column section numbered 

from the bottom up 
Figure I.2: Column section numbered 

from the top down 
 

The compositional change from one stage to another can be determined by 

material balance. The difference equation describing this compositional change 

with stage number m (in Figure I.1) is seen in (I.1) below.  

 

Van Dongen and Doherty (1985), approximated the rectifying and stripping 

difference equations with differential equations. This can be done for the 

generalised column section, as well, using an analogous derivation, as follows. 

 

The material balance over the generalised column section in Figure I.1 is: 
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Letting  
Δ

 -LXVY
X

B
i

B
i

Δi =   (I.2) 

  

and   

 

 V-LΔ = where  0≠Δ  (I.3) 

 

Substituting (I.2) and (I.3) into (I.1) yields : 
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We can expand xi,m+1 around m using a Taylor Series 
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Where .m)(mΔh 11 =−+=  

 

Substituting (I.6) into (I.5) we obtain, 
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If we assume that only the first derivative is significant we can approximate (I.7) 

by, 
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Rearranging we obtain, 
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 (I.9) 

 

This ordinary differential equation (I.9) is called the difference point equation 

(DPE) and can be solved with arbitrary boundary conditions; ( )  Xhx B
ii == 1 . It 

approximates the composition profile from the bottom of a column section 

upwards and becomes increasingly accurate as h→∞. At stationary/pinch points, 

where 0=
dh
dx

i , the difference point equation (I.9) and the difference equation 

(I.1) are exactly equivalent. The difference point equation (I.9) approximation to 

the difference equation (I.1) is more accurate for difficult separations where the 

separation vector s is small (i.e. si=xi-yi is small).  It is exactly equivalent to (I.1) 

if solved using Euler integration with unit step size.  

 

To obtain the composition profile from the top of a column section downwards we 

simply have to reverse the direction of integration. The ODE describing this 

compositional change down the column section is seen in (I.10) below. 
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Where 
Δ

 -LXVY
Δ

 -LXVY
X

T
i

T
i

B
i

B
i

Δi ==  (I.11) 

 

In this case increasing values of n denote stages further down from the stage at 

which the boundary/initial value is chosen. In general the form of the difference 

point equation seen in (I.10) will be used and the stage count will be performed 

down a column section. 
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Appendix J: Discussion: The Thermodynamic and Mathematical 

Consistency of Solutions Generated for Negative Compositions  
 

Are solutions generated using the difference point equation and various 

thermodynamic models consistent or even valid at all, in negative composition 

space? This issue can be addressed by separating the concepts of mathematical 

and thermodynamic consistency. For physical relevance and accuracy we, clearly, 

require the models we use to be thermodynamically consistent. This allows us 

confidence in the prediction of realistic vapour-liquid-equilibrium. Negative 

compositions are clearly physically impossible and unrealistic and thermodynamic 

models will, of course, be thermodynamically inconsistent when handling these 

compositions.  

 

The question, then, is why should we bother tracking solutions outside the mass 

balance triangle (MBT)? The answer to this question is that they give additional 

mathematical/topological information about the system. If the models are 

mathematically consistent, the topology will be consistent. By consistent, we 

mean that the D.E is still differentiable over the composition range considered, 

trajectories are continuous across the MBT, they do not cross one another, and 

they originate at unstable nodes or infinity and terminate at stable nodes or 

infinity. If models are consistent close to the MBT and predict topological features 

(for a particular system) that behave in the same or similar ways upon variation of 

parameters, the process of tracking negative composition space solutions can be 

thought of as useful – from a practical perspective.  

 

As an example of this practical usefulness, consider the case where a stable node 

is predicted outside the MBT for mathematically consistent models and this node 

moves into the MBT at some value of a varied parameter. The fore knowledge of 

the existence of the node gives us valuable information about the potential for a 

stable node in positive composition space. If we only plot the physically relevant 

solution we have no information about a) the rates of trajectories close to the 
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boundary of the MBT and b) the potential for a singularity upon small variations 

of the aforementioned parameter. This situation would be severely restricting.  

 

The theoretical validity of solutions in negative composition space is clear; these 

solutions are theoretically invalid. However, recent work by Modise et al has 

confirmed the practical merits of generating these solutions. Modise et al (2005) 

generated column profile maps experimentally. Using mathematically consistent 

models, Modise et al (2005) were able to show that the qualitative form of 

topology (for the systems under investigation) was retained when comparing 

mathematically generated residue curve maps and experimentally generated 

column profile maps. In short, topology “predicted” in negative composition 

space was “transformed” and shifted into the MBT retaining topological features 

such as nodes and distillation boundaries. The experimentally generated column 

profile map also corresponded very well to the mathematically generated CPM. 

 

This will not be true of all models or, indeed, all composition ranges and it is clear 

that not all models will be mathematically consistent or even defined in negative 

composition space. The Wilson liquid activity coefficient model, for instance, 

contains logarithms that are undefined for negative compositions and even the 

simplest models are not consistent for all compositional values; discontinuities 

can be produced. 

 

In general, the topological predictions of the various models, throughout 

composition space, could be quite different. Even the number of nodes predicted 

could be different. However, in essence, all we require is 

mathematical/topological consistency close to the boundaries of the MBT. If this 

is satisfied our understanding of the system and potential changes to the 

topological structure, when parameters are varied, is increased and is therefore 

extremely useful.  
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