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A B S T R A C T  

Multi-Agent Systems are becoming a popular paradigm for many engineering 

applications. However, there is still much research to be performed in this fast growing 

field. In this thesis, the effect of learning in multi-agent systems on communication and 

collaboration between agents is investigated. This research focuses on agents learning 

local cooperative behaviour from a centralised agent, as well as using learning to reduce 

the amount of communication between agents that use negotiation to achieve their goals. 

A simple test problem is formulated in MATLAB. The effect of learning is clearly seen to 

reduce the amount of communication between agents by up to 50%, while still 

maintaining cooperative behaviour. The agents are also demonstrated to learn to a large 

degree cooperative local behaviour from a central system.  
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F O R E W O R D  

This thesis is compiled as part of the requirements for the degree of Master of Science in 

Engineering, at the University of the Witwatersrand. Chapter 1 introduces the topic, and 

explains the research performed. Chapters 2-4 provide details on the study and the results 

found. Chapter 5 summarises the results of the preceding chapters and concludes the 

thesis. 

Chapters 2-4 of this thesis are written as stand-alone papers, and can be treated 

individually. However, the order of the chapters follows the logical progression of the 

work, where Chapters 2 and 3 present the earlier part of the research, and chapter 4 

presents the culmination of the research with some additions and modifications to the 

preceding 2 chapters. The research presented in Chapter 4 was thus performed with the 

benefit of hindsight and comments offered on the first two published papers.  

There are 2 appendices to this thesis. Appendix A presents extra data gathered from the 

simulations. Appendix B contains details of the source code used to conduct the study. 
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C h a p t e r  1  

INTRODUCTION 

The purpose of this research is to study the influence learning can have in multi-agent 

communities. Specifically, we examine the influence on communication and collaboration 

in a cooperative agent system. Constructing Multi-agent systems is not a trivial task, and 

enabling cooperation and collaboration among agents in the system is an ongoing research 

topic. Typically, the task is to construct agent behaviours such that each of the agents’ 

local actions lead to some desired overall result of the system.  Normally, agents are 

enabled to negotiate with each other, or a selected central agent is used to coordinate the 

actions of all the agents, to ensure that the agents do not compromise the global result of 

the system.  

The problem in these agent systems is that negotiating between agents can consume 

significant bandwidth, as is the case for the centralised controller, where each agent must 

communicate its local data to the central agent as well as the central agent communicating 

the action plan to each of the agents.  

However, often the agents will face the same, or very, similar problems over the course of 

operation. This implies that solutions are continually being reformulated, with the 

consequent cost in communication. The hypothesis in this thesis in that once a problem 

has been seen by the agents, and the solution found, machine learning can be used to 

associate the problem characteristics with the solution. In this research the effect of 

learning (a) to enable the agents to learn appropriate cooperative behaviour and (b) on the 

level of communication between agents is studied.   

A simple board game is used as the study test problem. The players in the game are a 

community of agents which must cooperate to achieve the end goal of the game. Two 

variations in the structure of the system are used. In the first, a central agent is used to 

coordinate all the agents in the system. In the second, the agents negotiate with each other 

to achieve their goals.  In each case the agents are equipped with Multi-layer Perceptron 

(MLP) neural networks as the machine learning realisation. Neural networks are used due 

to their pattern recognition abilities, as well as the ability to generalise responses from seen 

problems to unseen problems.   
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The second chapter of this thesis examines the case of a central controller in the system, 

where each agent learns from this controller. Chapter 3 details a system in which the 

agents negotiate for a solution. The fourth chapter is a report on both types of systems, 

with further results and analysis. It encompasses the principles of the research.  

The following papers have been published\submitted for publication from this research: 

1. B. Van Aardt, T. Marwala, “A study in a Hybrid Centralised-Swarm agent 

Community”, Proceedings of the 3rd IEEE International Conference on 

Computational Cybernetics (ICCC), Mauritius, 2005, pp 169 - 174. 

2. B. Van Aardt, T. Marwala, “Reducing Inter-Agent communication due to 

Negotiation through Learning”, Proceedings of the Fifteenth Annual Symposium 

of the Pattern Recognition Association of South Africa (PRASA), 2004, pp 149 – 

155. 

3. B. Van Aardt, T. Marwala, “Using Learning in Multi-Agent Communities to 

Improve Communication Efficiency”, submitted for publication in the Journal of 

Systemics, Cybernetics and Informatics.  
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C h a p t e r  2  

A STUDY IN A HYBRID CENTRALISED-SWARM AGENT COMMUNITY 

Abstract – This paper describes a systems architecture for a hybrid 

Centralised/Swarm based multi-agent system. The issue of local goal 

assignment for agents is investigated through the use of a global agent which 

teaches the agents responses to given situations. We implement a test problem 

in the form of a Pursuit game, where the Multi-Agent system is a set of captor 

agents. The agents learn solutions to certain board positions from the global 

agent if they are unable to find a solution themselves. The captor agents learn 

through the use of MLP neural networks. The global agent is able to solve 

board positions through the use of a Genetic Algorithm. The cooperation 

between agents and the results of the simulation are discussed here.  

Introduction 

The concept of Multi-agent systems is an engineering paradigm that has been gaining 

momentum over the past years [1]. A particular form of multi-agent system, swarm based 

systems, have been successfully applied to a number of problems [2].  

A large part of the difficulty in designing such systems is assigning local strategies to 

individual agents in a community, to obtain some desired resultant overall or global 

behaviour [3].  In fact, the subject of assigning local strategies is of current research, and 

practical, interest. A methodology whereby agents are equipped with a host of strategies at 

design time, and then learn through interaction the appropriate local strategy to use in a 

given situation has been proposed in [4]. 

The ideal situation would be where agents are able to dynamically develop their own local 

behaviours, with the outcome of the given user desired global behaviour, in response to the 

environment in which they operate. A possibility would be for agents to identify certain 

situations using pattern recognition techniques, and then act upon these situations using 

learned responses.  

We present a study in this paper whereby agents learn responses to situations, or local 

strategy, from an entity with a global view of the problem. In this way we theorise that the 

agents will learn local strategies that are likely to lead to the overall globally desired 

behaviour of the system.  
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Firstly, we give a short background to the domain of multi-agent systems, and of the 

machine learning and evolutionary technology we use in the study. We then present the 

details of the study, and a brief analysis of our findings.  

Background 

Multi Agent Systems 

The multi-agent paradigm, in which many agents operate in an environment, has become a 

useful tool in solving large scale problems through a “divide and conquer” strategy [5]. 

The Multi-agent system is a distributed, decentralised system. The paradigm of individual 

entities collaborating to solve a particular problem that is beyond each entity’s own 

capabilities is a natural concept, and one that is proving to be very powerful in practice [6]. 

However, while the concept is easily understandable, the implementation is not trivial. 

There are many complexities and subtleties in these such as [5]: 

• Decomposing and allocating problems to the agents 

• Describing the problem to the agents 

• Enabling communication and interaction among the agents 

• Decentralised systems, in the context of Multi-Agent systems, promise the 

following advantages [5][7] [8][9][10]  

• No single failure point, therefore greater robustness. Multi-agent systems have the 

capacity to degrade gracefully.   

• Possibility of faster response times and fewer delays as the logic/intelligence is 

situated nearer to the problem domain.   

• Increased flexibility to take account of changes occurring in the problem domain.  

• Modularity and Scalability. Multi-agent systems can be increased in size 

dynamically according to the demands of the problem.  

The problems associated with Multi-agent systems are [1] [2][5] [10]: 

• Difficulty in measuring and evaluating the stability and security of the system. 

• Excessive communication between agents can slow down the system. This is often 

countered by heavily restricting the amount of communication between agents.  

• Possibility of getting stuck in non-optimal solutions of the problem, often due to 

the lack of global knowledge of the problem from each agent’s point of view.  
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• Most Multi-agent systems are built in an ad-hoc way since there is no absolute 

theory for these types of systems. There have been recent attempts however, to 

formalise the design of agent based systems, such as the Gaia Methodology [7]. 

However these are not yet in widespread use.  

Swarm Based systems 

Swarm intelligence is a particular paradigm for multi-agent systems which emphasizes 

distributedness and agent simplicity. It is based on the observations of social insects in 

nature, such as ants, termites and bees [2]. Such insect societies are extremely organized, 

even though there is no central control or planning. Each agent in the system is 

programmed only to achieve its own Local Goal. The agent’s behaviours in Swarms are 

very simple: the intelligence of the system is ‘emergent’ from the overall behaviours of all 

the agents in the system. The communication between agents is usually performed 

indirectly [9], by agents making changes to the environment, which other agents act upon. 

This is analogous to insects laying pheromone trails to food source, etc. Emphasis is 

therefore placed on reactivity in these systems.  Swarm systems have been successfully 

applied to many problems, notably routing in computer and telecoms networks [2] and 

recently to a manufacturing control system [9]. 

The disadvantage of swarm based systems is that no agents actually have a global view of 

the problem to be solved. All agents are entirely focused on achieving their own Local 

Goals, whether or not these goals are to the benefit or detriment to the overall community. 

This can exacerbate the problem of the system getting stuck in local optima, or worse, 

cause the system to  fail.  

The advantage of a centralised system, where there is effectively one agent or processing 

unit to control the whole system, is that such a system will make decisions which will 

benefit the global goal of the system.  

Neural Networks 

Artificial neural networks are inspired by the functioning of biological neurons in animal 

and human brains. Artificial neural networks differ from most other computing techniques 

in that they are able to learn arbitrary relations between sets of data presented to them, and 

generalise these relations to unseen data. That is, rules are not explicitly programmed or 

set, but are learned from experience by the network [10]. The basic architecture of a neural 

network is also based on that of their biological counterpart: both networks consist of 

many simple elements, known as neurons, operating in parallel [11] [12]. The most widely 

used neural network models are the Multi-layer Perceptron (MLP) and Radial Basis 

Function (RBF) networks.  
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We use neural networks in the captor agents because of their ability to learn from example. 

The examples in this case will be the solutions found by the global agent.   

Genetic Algorithms 

Genetic algorithms (GAs) are inspired by the process of natural selection and evolution in 

nature. GAs are a class of non-greedy algorithms – they perform an exploration of the 

search space. GAs were first proposed by John Holland in 1975 [13] and can be thought of 

as four modules: Encoding, Selection, Recombination and Evaluation. Of the modules, 

only the evaluation Function is problem specific. With a GA, possible solutions to a 

problem are encoded as a chromosome string. A population of chromosomes make up a 

generation of possible solutions to the problem. From each generation, the fitness of each 

chromosome is evaluated by the problem-specific evaluation module. Certain 

chromosomes are selected by the selection module, by some procedure, and those selected 

are then mated by the recombination module to form the next generation of chromosomes.   

Hypothesis  

Reference [14] states that the method of human learning when presented by a new task is 

to use rational reasoning to perform the decision making process behind solving the task. 

After using this deliberative approach, and we begin to “master” a task, we are able to 

perform it “naturally”, without explicitly performing rational reasoning. At this point, 

people use their pattern recognition skills to perform the task.  

It is hypothesised that the human model of discovery and learning can be applied to agent 

strategising. Evolutionary optimisation and genetic programming techniques can be used 

to discover strategies for the agent community. These methods are desirable due to the 

large number of possible solutions to the problem. This will be the deliberative stage, 

where a problem solution is formulated. Once a strategy has been discovered and used, a 

neural network can be trained with the results. This is the pattern recognition stage.  Thus 

over time, the neural networks should learn a large number of strategies, while 

generalising these strategies to other scenarios. Thus, as agents perform more tasks, the 

problem solving should become “natural” to them, as the neural networks start taking over 

from the genetic optimisation module. 

Method 

Our proposal is to link the qualities of the swarm based (or highly decentralised system) 

with a centralised system. To do this, we propose a system that consists of both a 

centralised control, and a swarm of agents.  Our method aims to use the centralised control 
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in the deliberative phase of problem solving, and then switch to a distributed system once 

the problem solutions, as discovered by the centralised system, have been learned by the 

“subconscious” of the agents, as represented by a neural network.  

Test Problem 

The proposed system is applied to the game of Pursuit. A Pursuit board is represented by a 

2 dimensional grid pattern, as shown in Figure 1. The crosses represent the Captor agents, 

while the circle represents the Fugitive agent (top row). The aim of the game is for the 

Captors to surround or corner the Fugitive. Each agent may only move one block per turn. 

Legal moves on a Pursuit board are Up, Down, Left, Right and Stay. No diagonal moves 

are allowed.  At least one captor agent must move during the captors’ move. Furthermore, 

the board does not wrap around.  A game is ended when the fugitive is captured, implying 

that the fugitive has no place to move to.  

 

Figure 1 Pursuit Board representation 

System Description  

The architecture of the system is to have four separate agents representing the captors. 

Each of the agents has a neural network, which are trained independently of each other. 

Each agent is responsible for making a valid move.  

The system also has a genetic algorithm based agent, which can control all of the Captor 

agents, called the Global Agent.  It has a global view of the system. When the Global 

Agent is invoked, it acts as a centralised system, which proposes moves that best satisfy 

the global goal of the system.  

The system operation is shown in flowchart form in Figure 2. At each turn for the captors 

to move, the Captor agents are invoked. The proposed moves from each of the captors are 

then combined, and the result is tested for legality.  If the proposed moves for all the 

captors are legal, the moves are implemented synchronously. If not, the Global Agent is 
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invoked, and the moves proposed by the Global Agent are implemented. The new move 

data is then used to re-train the Captor Agents.  

The fugitive agent has no real intelligence; it merely chooses a (legal) move at random.  

The system is thus a hybrid Centralised/Swarm system. The centralized system is 

effectively used to train the multi-agent system. The advantage of this arrangement is that 

the centralized system has a global view of the Pursuit board. The centralised system, as 

represented by the Global Agent is programmed to favour a solution that minimises the 

sum of all the captor’s distances from the fugitive. In other words, it looks for an 

arrangement of the captors that will maximally surround the fugitive. If a pure swarm 

system approach were to be followed, a likely implementation would be one where each 

agent attempts to minimize its own distance from the fugitive. This will cause agents to get 

in each others way, by blocking, or will result in an inferior strategy by the agents, since 

they are not prepared to make sacrifice to their positions, even if it would result in a 

globally better arrangement of the captors.  

 

Figure 2 System Flow Diagram 

Initially, as the system is run, it operates mainly as a centralised system, with the Global 

Agent proposing most of the moves. As time progresses, however, the Captor agents start 

performing more of the moves and the system edges towards a swarm system.  

Captor Agents Description  

The agents each contain a neural network. The network inputs are the current relative 

positions of all other agents (captors and fugitive) on the board to the agent. There are five 
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outputs for each network, each representing a particular direction in which the agent 

should move. 

Board Representation and Training 

The input representation to a neural network is extremely important to the success of 

practical network applications [13][16][17]. Smooth representation of the input data, as 

well as using an input representation that describes features of the data can help reduce the 

number of states the network has to learn in a lookup-table type fashion, and increase the 

ability of the network to generalise learned data to new situations [17]. 

For this study, we implement the board representation as a set of relative differences in 

position. Each Captor agent has the relative positions of the other captors inputted in order 

of Cartesian distance. The relative position of the fugitive is then given as the last two 

inputs. This is depicted in Figure 3. 

This representation allows various formations of the agents to be captured, regardless of 

the exact location on the Pursuit board. Such formations are common when the captors are 

chasing the fugitive.  

 

Figure 3 Network Input representation 

The Captor Agents are trained on moves discovered by the Global Agent, using its genetic 

algorithm. Each Captor is trained with data specific to its own experience on the board. 

Training the agents from a centralised system means that the direct communication 

between agents can be drastically reduced. This is due to the fact that each agent will take 

into account other agents actions when moving. Therefore, in terms of communication, the 

system acts as a swarm system, but with one major difference: each agent is “aware” of 

the global goal through the training it has received from the Global Agent, and so 

inherently acts cooperatively with other agents.  
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Global Agent Description 

The evaluation function for a chromosome of moves is calculated by summing the 

Euclidean distance of each of the Captor agents from the Fugitive agent.  This is given by: 

�
=

−+−=
M

N
ANAN YYXXS

1

22 )()(
 

Where: S is the sum of the distances to the fugitive; M is the number of Captor agents in 

the system; XA, YA are the Fugitive agent’s coordinates and XN, YN are the current 

Captor’s coordinates.  

In order to ensure that illegal moves are discouraged, a penalty scheme is used where the 

sum is multiplied by a large number in order to create a peak in the evaluation function. 

Similarly, to ensure that a winning move (when possible) is chosen clearly above any 

other possible legal combination, such as move is heavily rewarded. 

Implementation 

The system is implemented in MATLAB. The Genetic Algorithm toolbox used is the open 

source GAOT [19]. NETLAB [18] is used to implement the neural networks for the 

Captor Agents. A two-layer MLP architecture is used for the networks. The networks use a 

Logistical function for the output units. A variable number of hidden units are used, 

depending on the amount of data the network has seen.  

Since NETLAB does not directly support on-line training, an alternative scheme is used. 

Every time the Global Agent is invoked, the board position is recorded, as well as the 

moves proposed by the Global Agent. This data is added to the set of training data. After 

each game is complete, the agents are re-trained using the updated training data.  

The results of training the network on a small subset of the Pursuit problem can be seen in 

Figure 4. Here, the agents repeatedly play the game, with the same starting position for 

each game. The agents thus learn all the permutations of the particular subset. In Figure 4, 

it can be seen that the agents make the majority of the moves after the 50th game, with 

between 80 -100% of the total moves made by the agents.  

(1) 
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Figure 4 Number of correct game moves made by the agents for a limited subset of the Pursuit 
problem (normalised) 

Figure 5 shows the percentage of game moves made by the agents during 350 games of 

pursuit. Although the result is not as successful as the limited sub problem as in Figure 4, 

it clearly demonstrates the ability of the agents to learn from the global agent.  
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Figure 5 Number of correct game moves made by the agents for the game of Pursuit (normalised) 

Discussion 

Despite the fact that Pursuit is a very simple game, the successful suggestion of moves by 

the community of agents is quite significant. Firstly, to make a legal move, all the agents 

have to be aware of the rules of the game, which has not been explicitly programmed into 

them. Secondly, successful moves invariably require some degree of cooperation with 

neighbouring agents. Usually, this is achieved by explicitly using negotiation 

communication between agents. In this system, there is no such communication. 

Successful moves mean that the agents are able to anticipate each other’s actions.  
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There are a very large number of possible board positions, given by the permutation of all 

the agents on the board over the blocks. This is given by: 

600,375,6
)!525(

!25 =
−

=kn P
 

where we are using a 25 block board with 5 moveable agents (captors + fugitive). This is a 

large number of positions to learn from a finite set of data, and therefore methods of input 

representation compression should be investigated.  

After a large number of games, each agent will have observed a large variety of board 

positions, and for this system, the neural networks will tend to be the same. This is only 

because the agents in this system all have the same “abilities” or allowed moves. In a 

scenario where there are agents with different abilities, as for the separate pieces in chess, 

the networks will each train on totally different output moves, and so will tend to be 

different even after observing an infinite number of moves. However, there is no reason 

why the agents should not still be able to anticipate each others moves, since they will be 

trained with this data. 

Recommendations and Further work 

On many of the occasions, the agents were not able to make a legal move due to the fact 

that some agents suggested more than one direction to move in at a time. While this 

intuitively suggests that the agents are not yet well trained in the particular situation, this is 

often not the case. The genetic algorithm does not always propose the same result for a 

particular board position, since there may not be a unique global optimum move for a 

certain board position. This means that for a given board position, an agent may be trained 

with many possible moves. What is needed is a method to resolve the proposed multiple 

directions by an agent in a particular situation with the other agents.  

Further work involves a methodology allowing the agents themselves to formulate a 

global strategy, without relying on the external Global agent. This could be a simple 

principle such as distributing the evaluations of the Genetic Algorithm populations among 

the agents, or more elaborate methods. 

Conclusion 

The study of a hybrid Centralised-Swarm agent community has been discussed in this 

paper. The implementation of the proposed architecture, in the form of a genetic algorithm 

(2) 



13 

as the Global agent and neural networks as swarm agents, is applied to the game of 

pursuit.  

We found that although the swarm, or Captor, agents are able to learn a large number of 

moves, the fact that more than one move may be applicable in a situation results in agents 

proposing all these possibilities in a situation. This needs to be resolved within the swarm 

system to result in a valid move, and reduce the number of calls to the Global system.  

The possibility of reduced communication between agents, while still cooperating with 

each other is demonstrated here. 
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C h a p t e r  3  

REDUCING INTER-AGENT COMMUNICATION DUE TO NEGOTIATION 

THROUGH LEARNING 

Abstract – This paper studies the effect that agent learning can have on inter-

agent communication in a Multi-agent system. The agents are equipped with 

Multi Layer Perceptron neural networks to learn solutions to problems that 

have been solved through explicit negotiation and communication.  We 

implement a test problem in the form of a Pursuit game, where the Multi-Agent 

system is a set of captor agents. The result is up to 44% fewer negotiation 

sessions with learning-enabled agents. The importance of learning, in terms of 

agent knowledge and overall system effectiveness is discussed.  

Introduction 

The concept of Multi-agent systems is an engineering paradigm that has been gaining 

momentum over the past years [1]. A particular form of Multi-Agent systems, Swarm 

based systems, have been successfully applied to a number of problems [2] 

Swarm systems are popular because of the lightweight processing power needed for them. 

A particular advantage in some instances is the low level, or often no direct, 

communication between agents, especially when communication bandwidth is limited or 

costly [2]. In [3], for example, the time taken for a system during negotiation to solve a 

task for a particular planning scheme, GraphPlan, is noted. The amount of time can be 

seen to increase significantly on some problems. This is potentially very inefficient, 

especially if the agents face the same problem frequently.   However, it is often considered 

an absolute fundamental attribute of agents to be able to communicate with other agents in 

the system to improve the overall performance of the system [4].  

In this paper, a study is performed on the effect that learning has on communication 

between agents. It is reasoned that once an agent community has solved a particular 

problem successfully, there should be no reason to repeat all the steps that led to the 

solution. In other words, the agents should be able to re-use solutions that they have 

discovered previously.  In the experiment described here, the agents first negotiate a 

solution for each problem they are presented. Each agent then learns the problem situation 

from its point of view, and the resultant action that it took after successful negotiation with 
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other agents. Once they have learned the appropriate behaviour, they need not perform the 

task of negotiation for that situation, as long as the same conditions hold. It is reasoned 

that this can significantly cut down on inter-agent communication traffic.   

Background 

Multi Agent Systems 

The multi-agent paradigm, in which many agents operate in an environment, has become a 

useful tool in solving large scale problems through a “divide and conquer” strategy [5]�[5]. 

The Multi-agent system is a distributed, decentralised system. The paradigm of individual 

entities collaborating to solve a particular problem that is beyond each entity’s own 

capabilities is a natural concept, and one that is proving to be very powerful in practice [6]. 

However, while the concept is easily understandable, the implementation is not trivial. 

There are many complexities and subtleties in these such as [5]: 

• Decomposing and allocating problems to the agents 

• Describing the problem to the agents 

• Enabling communication and interaction among the agents 

• Decentralised systems, in the context of Multi-Agent systems, promise the 

following advantages  [5][7][8][9][10] 

• No single failure point, therefore greater robustness. Multi-agent systems have the 

capacity to degrade gracefully.   

• Possibility of faster response times and fewer delays as the logic/intelligence is 

situated nearer to the problem domain.   

• Increased flexibility to take account of changes occurring in the problem domain.  

• Modularity and Scalability. Multi-agent systems can be increased in size 

dynamically according to the demands of the problem.  

The problems associated with Multi-agent systems are [1][2][5][10]: 

• Difficulty in measuring and evaluating the stability and security of the system. 

• Excessive communication between agents can slow down the system. This is often 

countered by heavily restricting the amount of communication between agents.  

• Possibility of getting stuck in non-optimal solutions of the problem, often due to 

the lack of global knowledge of the problem from each agent’s point of view.  
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Most Multi-agent systems are built in an ad-hoc way since there is no absolute theory for 

these types of systems. There have been recent attempts however, to formalise the design 

of agent based systems, such as the Gaia Methodology [7]. However, these are not yet in 

widespread use.  

Swarm Based systems 

Swarm intelligence is a particular paradigm for multi-agent systems which emphasizes 

distributedness and agent simplicity. It is based on the observations of social insects in 

nature, such as ants, termites and bees [2]. Such insect societies are extremely organized, 

even though there is no central control or planning. Each agent in the system is 

programmed only to achieve its own Local Goal. The agent’s behaviours in Swarms are 

very simple: the intelligence of the system is ‘emergent’ from the overall behaviours of all 

the agents in the system. The communication between agents is usually performed 

indirectly [9], by agents making changes to the environment, which other agents act upon. 

This is analogous to insects laying pheromone trails to food source, etc. Emphasis is 

therefore placed on reactivity in these systems.  Swarm systems have been successfully 

applied to many problems, notably routing in computer and telecoms networks [2] and 

recently to a manufacturing control system [9]. 

The disadvantage of swarm based systems is that no agents actually have a global view of 

the problem to be solved. All agents are entirely focused on achieving their own Local 

Goals, whether or not these goals are to the benefit or detriment to the overall community. 

This can exacerbate the problem of the system getting stuck in local optima, or worse, 

cause the system to  fail.  

Neural Networks 

Artificial neural networks are inspired by the functioning of biological neurons in animal 

and human brains. Artificial neural networks differ from most other computing techniques 

in that they are able to learn arbitrary relations between sets of data presented to them. 

That is, rules are not explicitly programmed or set, but are learned from experience by the 

network [10]. The basic architecture of a neural network is also based on that of their 

biological counterpart: both networks consist of many simple elements, known as neurons, 

operating in parallel [12][13]. The most widely used neural network models are the Multi-

layer perceptron (MLP) and Radial Basis Function (RBF) networks.  

Hypothesis and Method 

Reference [11] states that the method of human learning when presented by a new task is 

to use rational reasoning to perform the decision making process behind solving the task. 
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After using this deliberative approach, and we begin to “master” a task, we are able to 

perform it “naturally”, without explicitly performing rational reasoning. At this point, 

people use their pattern recognition skills to perform the task.  

It is hypothesised that the human model of discovery and learning can be applied to agent 

strategising. An algorithmic discovery stage using negotiation between agents can be used 

on new problems. This will be the deliberative stage, where a problem solution is 

formulated. Once a strategy has been discovered and used, a neural network can be trained 

with the results. This is the Pattern Recognition stage.  Thus over time, the neural 

networks should learn a large number of strategies, while generalising these strategies to 

other scenarios. Thus, as agents perform more tasks, the problem solving for known tasks 

should become “natural” to the entire community, as the neural networks start taking over 

from the negotiation modules.  

Our proposal is to create a system that uses negotiation to enable the agents to find 

solutions to problems they encounter, and then learn this solution, in order to avoid the 

necessity of re-negotiating a solution, with the resultant communication and time costs, if 

the problem occurs again. Learning is considered to be an important feature of true 

autonomous agents [5]. One aspect of learning can be expressed as the ability to perform 

old tasks better as a result of learning and observing [4]. In this case it can be interpreted as 

the agents learning to perform old tasks more efficiently.  

Test Problem 

The proposed system is applied to the game of Pursuit. A Pursuit board is represented by a 

2 dimensional grid pattern, as shown in Figure 6. The asterisks represent the Captor 

agents, while the circle represents the Fugitive agent. The aim of the game is for the 

Captors to surround or corner the Fugitive. The fugitive and captors take alternate turns to 

move.  Each agent may only move one block per turn. Legal moves on a Pursuit board are 

Up, Down, Left, Right and Stay. No diagonal moves are allowed. Furthermore, the board 

does not wrap around.  A game is ended when the fugitive is captured, implying that the 

fugitive has no place to move to.  
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Figure 6 Pursuit Board representation 

System Description  

The system has four separate agents representing the captors. Each of the agents has a 

neural network that is trained independently of other agents, as well as a negotiating 

algorithm. Each agent is responsible for making a valid move. This is defined as a move 

that is within the bounds of the board, and does not infringe on any block that another 

agent is in.  

The fugitive agent has no real intelligence; it merely chooses a (legal) move at random.  

The agents interact by proposing the move that they would prefer to make. This is sent to 

all other agents. If there is a conflict among the proposals, the agents send out a signal, and 

the agents negotiate a new proposal. This occurs until there are no conflicts among the 

agents. The agents then implement their moves. The first move proposed for each agent is 

always drawn from the neural network. If this is not successful, the agents start the 

negotiations.  

Captor Agent Description 

As mentioned above, the Captor Agents consist of two parts: a pattern recognition unit, 

implemented as a neural network, and a negotiating algorithm that solves disputes with 

other agents.  

As can be seen in Figure 7, the agents start off by proposing the solutions predicted by 

their neural networks. Only if this fails is the negotiation algorithm invoked. Whenever 

there is a conflict, all the agents are involved in the negotiation. The dotted feedback lines 

from the negotiation block to the neural network represents the network learning from the 

successful move made by the negotiation algorithm. In this way, the neural network learns 

cooperative behaviour. 
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Figure 7 High Level Agent execution 

The negotiation algorithm is shown in Figure 8. The agents each have a local goal based 

on the global goal of the system. The global goal of the system is to win the game, i.e. 

capture the agent. In this system the global goal is expressed as the minimisation of the 

distance of all the Captor agents from the Fugitive agents. This is given by: 

�
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Where: S is the sum of the distances to the fugitive; M is the number of Captor agents in 

the system;  XA, YA are the Fugitive agent’s coordinates and XN, YN are the current 

Captor’s coordinates.   

If the captors follow this rule, they will win on a finite sized board, although not always in 

the least number of moves.  

It would follow that if each captor agent minimised its own distance from the fugitive, the 

global goal would be satisfied. However, since each block on the board can hold only one 

agent exclusively, not all agents will be able to reach their own minimum on every board 

state. Therefore, to minimise the function in reality, some agents may not be in their 

optimal positions. In a Centralised system, where one agent controls the movements of all 

the Captors, this would be straightforward to implement, as the controller would have a 

global view of the problem, as well as only having to act in its own best interest. However, 

in a decentralised or Multi-Agent system, the implementation is not as clear. Since each 



21 

agent will have its own local goal to pursue, it is not clear what the formulation of this 

local goal would be in order to reap the maximum benefit for the entire community [14].  
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Figure 8 Agent Negotiating Algorithm 

In this case, the local goal of each captor agent is to minimise its own distance from the 

fugitive through negotiation with the other Captors.  The negotiation algorithm of each 

agent is depicted in Figure 8. The agents are aware of the possible moves they can make at 

each turn. By evaluating the payoff that each of the possible moves will bring, the agents 

construct a Preference List of the possible moves and payoffs ordered from highest payoff 

(least distance) to lowest (furthest distance). Once the agent has made its list, it transmits 

its preferred move (which is the block on the board it would like to occupy), and the 

payoff value of the next preferred move on the list. In this way, the agent expresses its 

“need” for the block. The agent then creates a list of all the moves and payoffs received 

from the other agents. If there is a conflict between itself and one or more other agents on 

the choice of blocks, the agent attempts to resolve this. An agent will give way to the other 

agent(s) if it does not value the position as highly as any other conflicting agent (i.e, if it 

does not need the block as badly as other agents). An agent gives way by using the next 

move on its preference list. Once it gets to the end of its list, it wraps around to the start. If 

there is a tie for the highest value on the block, the agents involved in the tie go into a 

“lotto” mode, where they each randomly pick a number, with the highest number winning 
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the right to keep the block. The losing agents then choose the next move on their 

Preference list.  This procedure is iterated until no conflicts exist. At this point the agents 

implement their moves. In this manner, an approximation to the global optimum is 

performed.  This sequence can be performed a number of times, which can be seen to 

create many messages between agents, and thus a high usage of the communication 

medium.  

From this, it can be seen that the neural network of each agent learns solutions to board 

problems that are not only legal, but also cooperative with other agents on the board. Once 

these moves have been learned, the agents need only inform each other of the predicted 

move, and if there are no conflicts, proceed with the move. This then eliminates the need 

for the explicit negotiation transmissions.  

Board Representation and Training 

The input representation to a neural network is extremely important to the success of 

practical network applications [15][16][17]. Smooth representation of the input data, as 

well as using an input representation that describes features of the data can help reduce the 

number of states the network has to learn in a lookup-table type fashion, and increase the 

ability of the network to generalise learned data to new situations [17].  

For this study, we implement the board representation as a set of relative differences in 

position. Each Captor agent has the relative positions of the other captors inputted in order 

of Cartesian distance. The relative position of the fugitive is then given as the last two 

inputs. This is depicted in Figure 9. 

 

 

Figure 9 Network Input representation 

This representation allows various formations of the agents to be captured, regardless of 

the exact location on the Pursuit board. Such formations are common when the captors are 

chasing the fugitive.  
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Each Captor is trained with data specific to its own experience on the board. Training the 

agents from their past experience means that the direct communication between agents can 

be drastically reduced. This is due to the fact that each agent will take into account other 

agents moves when moving itself. Therefore, in terms of communication, the system acts 

as a swarm system, but with one major difference: each agent is “aware” of the global goal 

through the experience it has gained through negotiation, and so inherently acts 

cooperatively with other agents. 

Implementation 

The system is implemented in MATLAB. NETLAB [19] is used to implement the neural 

networks for the Captor Agents. A two-layer MLP architecture is used for the networks. 

The networks use a Logistic function for the output units. A variable number of hidden 

units are used, depending on the amount of data the network has seen.  

Since NETLAB does not directly support on-line training, an alternative scheme is used. 

Every time the agents negotiate a solution, the board position is recorded, as well as the 

moves agreed upon through negotiation. This data is added to the set of training data. After 

each game is complete, the agents are re-trained using the updated training data.  

Results 

The simulation was run for 300 games. The results are summarised in Table 1. The 

measure of effectiveness used is the average number of game moves per game 

successfully predicted by the neural network. This is shown as the Average Learned 

moves/Game. The average number of moves per game when not using learning, i.e. using 

only the negotiation modules, is 6.5 over 300 games. This figure is used as the control 

number, to measure the quality of the predicted moves. An average of the number of 

moves over a large number of games is used, since the exact number of moves can vary 

substantially, depending on the starting parameters of each game. If the average number of 

moves per game increases from this control, it implies that learning is actually having a 

detrimental effect on the agent’s performance. We would expect that the average number 

of moves per game remain consistent between the learning enabled, and non- learning 

systems. This is due to the fact that the agents should be learning the game tactics 

demonstrated, and not creating new strategies.  The bandwidth reduction is calculated by 

considering each negotiation session as using one unit of bandwidth. Therefore, if the 

agents make the moves without negotiation, then they will be saving one unit of 

bandwidth. We define this arbitrary measure, as the actual amount of data transferred will 

differ from one agent system to the next, and so a precise byte count will be meaningless.   
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The results of the learning simulation are broken into 3 stages of the game: 0 -100 games, 

in which it can be seen that the neural networks are still learning appropriate moves. The 

result is that the average number of moves per game in this phase actually increases from 

the control number, and it is for this reason that a percentage saving in bandwidth is not 

given, as it is meaningless in this case. A suggestion is this case would be to ignore the 

neural network’s proposal until a critical number of training data has been obtained.  

In the second phase, from game number 100 -200, it can be seen that the neural networks 

have learned sufficient appropriate moves to be effective in the system. In this phase, the 

average moves/game is at the level of the Control, but the amount of communication is 

decreased. This shows that the learning is useful in this stage, as the number of game 

moves remains at our expected control value, but the number of valid suggestion provided 

by the agents is increasing.  

In the third stage, the neural networks account for nearly half of the game moves, while 

the overall moves per game is kept at the Control level. This represents a substantial 

reduction in negotiation communication.  

Table 1 Breakdown of Simulation Results after 400 games 

 Game numbers 

 0 -100 100- 200 200-300 

Average moves/ game 7.6 6.3 6.23 

Average learned 

moves/game 

2.4 1.92 2.7 

% Bandwidth 

Reduction 

N/A 30% 44% 

 

Analysis 

The knowledge that the agents have obtained as a result of their learning can be thought of 

as obtaining a model of their environment, or more specifically, as a model of the 

behaviour of the other agents within the system. This is due to the fact that when the 

agents correctly predict moves using their neural networks, they are not only maximising 

their own goal, but taking into account the needs of the other agents in the system. This is 

despite the fact that they have no explicit knowledge of the behaviour or workings of the 
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other agents: the knowledge that they have obtained is purely through observation and 

interaction. In the negotiation, or deliberative algorithm, the agents take no account of the 

moves that the other agents might make: they wait for another agent to actively inform of a 

problem. To programme into such algorithms the ability to anticipate other agent’s moves 

would effectively mean that the agents would each have a global view of the problem, as 

well as having intimate knowledge of every agent’s abilities and desires in the system. 

This would defeat the object of a Multi-agent system, where each agent is expected to 

operate in a highly distributed environment, and having a limited viewpoint of the 

problem, as well as considerable duplication of abilities.  Furthermore, it may not even be 

appropriate for each agent to have this knowledge, especially when the agents are divided 

into sub-teams [3].  

After a large number of games, each agent will have observed a large variety of board 

positions, and for this system, the neural networks will tend to be the same. This is only 

because the agents in this system all have the same “abilities” or allowed moves. In a 

scenario where there are agents with different abilities, as for example the separate pieces 

in a chess game, the networks will each train on totally different output moves, and so will 

tend to be different even after observing an infinite number of moves. However, there is no 

reason why the agents should not still be able to anticipate each others moves, since they 

will be trained with this data.  

The reduction in communication as shown here can have large benefits in certain 

situations, such as when the communication channel carries a significant monetary cost, or 

if the channel is not reliable or slow. All these factors contribute to the overall 

effectiveness of the agent community, and should be minimised.   

Future research 

There is already considerable research in the field of agent learning. We believe that 

learning is not only useful for added functionality in agents, but also to enhance existing 

agent operation. The main problem in any learning system is often the presentation of the 

information to the system [15].  With other means of representation, it may be possible to 

increase the benefits of learning, and create more efficient agents. In complicated 

environments, which are common of multi-agent domains, it would be desirable, and 

probably necessary, to have the agents automatically determine the relevant representation 

of information, as well as choosing the information that would help in the decision.   

Furthermore, the area of agent coordination is a currently an active area of research. A 

methodology whereby agents are equipped with a host of coordination strategies at design 
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time, and then learn through interaction the appropriate local strategy to use in a given 

situation has been proposed by [18]. A mechanism to accommodate this type of agent 

behaviour will need to be investigated.  

Conclusion 

The possibility of reduced communication between agents, while still cooperating with 

each other is demonstrated in this paper.  We show that learning can be successfully 

applied to this aim. This results in agents that effectively anticipate other agent’s 

behaviours, despite having no explicit model of the agents programmed.  

A reduction in communication of up to 44% is achieved in this study. This level of 

reduction can have extremely positive effects if communication in the system is in some 

way a significant cost factor in the overall effectiveness of the system.  
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C h a p t e r  4  

USING LEARNING IN MULIT-AGENT COMMUNITIES TO IMPROVE 

COMMUNICATION EFFICIENCY 

Abstract - This paper studies the effect that agent learning can have on 

communication efficiency in a cooperative Multi-agent system. The agents are 

equipped with Multi-layer Perceptron (MLP) neural networks to learn 

solutions to problems that have been solved through explicit negotiation and 

communication in one system, and delegated solutions in a slave/master type 

system.  We implement two test problems in the form of a Pursuit game, where 

the Multi-Agent system is a set of captor agents. In the first system, the agents 

negotiate in a peer to peer fashion to solve problems. In the second system, the 

agents are instructed by a centralised global agent. In both systems the agents 

are able to learn the solutions. The results are: up to 54% of the solutions are 

learned and reused by the agents and up to 55% fewer negotiation sessions 

with learning-enabled agents.  This can result in lower bandwidth costs, and 

improved efficiency of multi-agent system. The importance of learning, in terms 

of agent knowledge and overall system effectiveness is discussed.  

Introduction 

Multi-agent systems are becoming a popular paradigm for many complex tasks [1]. The 

notion of enabling many agents to work together either for a common goal or in a common 

environment is intriguing, and challenging.  This concept has been applied to many 

diverse applications from stock market simulation to manufacturing control and 

construction [2][3][4][5]. 

A common problem in multi-agent systems is that of decomposing the main task, also 

known as the global goal, into behaviours for each of the agents in the systems, also 

known as the local goals [6]. This problem is significant, when it is considered that in most 

systems, the agents have only local knowledge of the current problem at hand. 

Furthermore, agents often need to act cooperatively with one another to ensure that the 

tasks can be solved [7].  

Commonly, two approaches are used to address the problem of translating local goals into 

benefit to the whole community. The first is where the agents are enabled to negotiate and 
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bargain in a peer-to-peer fashion, where if conflicts arise between agents, the agents come 

to a compromise to solve the conflict locally. In this way, the agents can cooperate in 

achieving their local goals [8]. The other method is to define hierarchies in agent 

communities, where one agent is a “leader” which solves the problem optimally for the 

community under its control using information gathered from other agents. The leader 

then delegates the resultant plan to each agent to implement. This is commonly known as a 

master/slave relationship [2].  

Both approaches, however, have some drawbacks. In the negotiation case, the 

communication between the agents can become excessive, which is not only time 

consuming but also may carry a monetary cost in terms of the bandwidth used. The second 

approach has a similar drawback, since the communication between the “leader” agent and 

the other agents can be large, since each agent will have to send all of its information to 

the leader in order that a proper representation of the situation is gained. Furthermore, the 

leader agent will commonly need a large amount of processing power to solve the problem 

optimally for all agents.  

In fact, these problems are so significant that a new type of Multi-agent system, known as 

Swarm systems, has become popular. These systems emphasise “emergent” behaviour; 

where agents do not directly communicate with each other, and agents have simple local 

goals [9]. The agents in these systems are generally reactive. This is attractive for two 

main reasons: the low level of communication required, and the lightweight processing 

power of the agents.  

In this paper, a study is performed on the effect that learning has on communication 

between agents. It is reasoned that once an agent community has solved a particular 

problem successfully, there should be no reason to repeat all the steps that led to the 

solution. In other words, the agents should be able to re-use solutions that they have 

discovered previously. We propose that machine learning can be used to enable the agents 

to recall solutions to problems that they have encountered previously. We conduct 2 

related experiments in this paper. In both experiments the agents are equipped with neural 

networks to learn solutions to problems.  

The first experiment is an agent community with a centralised controller to find solutions 

to problems the agents are presented with, and delegate the implementation of the solution 

to each agent. We hypothesise that learning can reduce the number of times the central 

agent has to be invoked for repetitive or similar tasks.  

The second experiment consists of a system of independent negotiating agents. In this 

experiment, the agents first negotiate a solution for each problem they are presented. Each 
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agent then learns the problem situation from its point of view, and the resultant action that 

it took after successful negotiation with other agents. Once they have learned the 

appropriate behaviour, they need not perform the task of negotiation for that situation, as 

long as the same conditions hold. It is reasoned that this can significantly cut down on 

inter-agent communication traffic.   

In both experiments, we reason that over time the agents will learn cooperative behaviour, 

while minimising the amount of communication needed to achieve this, in effect becoming 

more of a Swarm type system, in terms of reactivity. Learning is considered to be an 

important feature of true autonomous agents [10]. One aspect of learning can be expressed 

as the ability to perform old tasks better as a result of learning and observing [2]. In this 

case it can be interpreted as the agents learning to perform old tasks more efficiently.  

This paper is organised as follows. First we give a brief review of the Multi-agent System 

paradigm, and then describe the method we use for our experiments. We present the 

results and give a discussion of the simulations. We conclude the paper with proposals for 

further work, and a summary of our findings.  

Multi Agent System Review 

Multi Agent Systems 

The multi-agent paradigm, in which many agents operate in a common environment, has 

become a useful tool in solving large scale problems through a “divide and conquer” 

strategy [10] The Multi-agent system is a distributed, decentralised system. The paradigm 

of individual entities collaborating to solve a particular problem that is beyond each 

entity’s own capabilities is a natural concept, and one that is proving to be very powerful 

in practice [11]. However, while the concept is easily understandable, the implementation 

is not trivial. There are many complexities and subtleties in these such as [10]: 

• Decomposing and allocating problems to the agents 

• Describing the problem to the agents 

• Enabling communication and interaction among the agents 

• Decentralised systems, in the context of Multi-Agent systems, promise the 

following advantages [3][10][12][13][14] 

• No single failure point, therefore greater robustness. Multi-agent systems have the 

capacity to degrade gracefully.   

• Possibility of faster response times and fewer delays as the logic/intelligence is 

situated nearer to the problem domain.   
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• Increased flexibility to take account of changes occurring in the problem domain.  

• Modularity and Scalability. Multi-agent systems can be increased in size 

dynamically according to the demands of the problem.  

The problems associated with Multi-agent systems are [1][9][10][14]: 

• Difficulty in measuring and evaluating the stability and security of the system. 

• Excessive communication between agents can slow down the system. This is often 

countered by heavily restricting the amount of communication between agents.  

• Possibility of getting stuck in non-optimal solutions of the problem, often due to 

the lack of global knowledge of the problem from each agent’s point of view.  

• Most Multi-agent systems are built in an ad-hoc way since there is no absolute 

theory for these types of systems. There have been recent attempts, however, to 

formalise the design of agent based systems, such as the Gaia Methodology [12]. 

Currently though, these are not yet in widespread use.  

Swarm Based systems 

Swarm intelligence is a particular paradigm for multi-agent systems which emphasizes 

distributedness and agent simplicity. It is based on the observations of social insects in 

nature, such as ants, termites and bees [9]. Such insect societies are extremely organized, 

even though there is no central control or planning. Each agent in the system is 

programmed only to achieve its own Local Goal. The agent’s behaviours in Swarms are 

very simple: the intelligence of the system is ‘emergent’ from the overall behaviours of all 

the agents in the system. The communication between agents is usually performed 

indirectly [3], by agents making changes to the environment, which other agents act upon. 

This is analogous to insects laying pheromone trails to food source, etc. Emphasis is 

therefore placed on reactivity in these systems.  Swarm systems have been successfully 

applied to many problems, notably routing in computer and telecoms networks [9] and 

recently to a manufacturing control system [3]. 

The disadvantage of swarm based systems is that no agents actually have a global view of 

the problem to be solved. All agents are entirely focused on achieving their own Local 

Goals, whether or not these goals are to the benefit or detriment to the overall community. 

This can exacerbate the problem of the system getting stuck in local optima, or worse, 

cause the system to  fail. Furthermore, choosing local strategies to create emergent swarm 

behaviour is not trivial or even feasible.  
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Method 

In this paper we conduct two experiments into the value of learning in Multi-agent 

communities.  

In the first experiment, we use an agent community which is guided by a Central 

controller. In this experiment, we attempt to reduce the agents’ reliance on the central 

controller through learning.  

In the second experiment, the agents cooperate through negotiation. We attempt to reduce 

the amount of negotiation over time by enabling the agents to learn the outcomes of 

previous negotiation sessions.  

We use the same test problem, described below, for both experiments. In both studies, the 

agents are equipped with neural networks as the learning mechanism.   

We first give a brief overview of neural networks as our choice for a learning mechanism.  

Neural Networks 

Artificial neural networks are inspired by the functioning of biological neurons in animal 

and human brains. Artificial neural networks differ from most other computing techniques 

in that they are able to learn arbitrary relations between sets of data presented to them. 

That is, rules are not explicitly programmed or set, but are learned from experience by the 

network [14]. The basic architecture of a neural network is also based on that of their 

biological counterpart: both networks consist of many simple elements, known as neurons, 

operating in parallel [15][16]. The most widely used neural network models are the Multi-

layer Perceptron (MLP) and Radial Basis Function (RBF) networks.  

The basic element of a neural network is the neuron. A representation of a neuron is shown in 

 

Figure 10figure 10.  

A neuron may have an arbitrary number of inputs pi. These inputs to the network are 

weighted, which is to say they are multiplied by a constant value wi. The weighted inputs 

to the neuron are then summed, along with the bias b of the network. The bias is a constant 

value added to the summation of the neuron inputs. The resultant summation is then acted 
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on by an activation function f. This transfer function may be linear or nonlinear. In simple 

mathematical terms, the neuron can be described as: 

)( 332211 bpwpwpwpwfa ii +++++= �    (1) 

 

 

Figure 10 Neuron Representation 

The output of the neuron may then be used as the input to further neurons, or as the output 

of the neural network. Generally many neurons are connected in layers to create a neural 

network, which is a number of neurons acting in parallel, receiving the same input data 

[17]. Each layer of a network feeds into a subsequent layer, or in the case of an output 

layer, to the outside world. Not all layers in a network need to have the same number of 

neurons. Furthermore, the activation functions of each neuron need not all be the same 

[17].  The last layer of the network is known as the Output layer. The point of input of the 

network is known as the Input layer, and the layers between the inputs and the output layer 

are known as the hidden layers of the network.   

Training  

An MLP network is trained by adjustment of the weights and the biases of each neuron in 

the network. For training, two basic methods are used: supervised training and 

unsupervised training [16].  

With supervised training, the network is presented with inputs and targets. The targets are 

the desired outputs of the network. The aim is then to minimise the error between the 

actual network output and the target values, expressed by some cost function, by adjusting 

the weights and biases of the network. 

In the case of unsupervised training, the network is not given targets; instead the aim is for 

the network to categorise and classify inputs into a number of classes.  

For supervised training, adjustment of the weights and biases is achieved by a training 

algorithm. A commonly used training algorithm is backpropagation [16]. 

Backpropagation, which is a form of optimisation based on steepest descent algorithms, 

updates the weights and biases from the output layer of the network towards the input 
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layer at each training cycle or epoch, hence the name backpropagation. The algorithm 

relies on the activation functions being differentiable, as the weights are updated in 

proportion to the derivatives calculated from the output of the network to the input. 

Improvements to the standard backpropagation involve using more efficient non-linear 

optimisation techniques for finding the weights. These include the Scaled Conjugate 

Gradient (SCG) method and Quasi-Newton methods [18]. 

Test Problem 

The test problem is a multi-agent game of Pursuit. A Pursuit board is represented by a 2 

dimensional grid pattern, as shown in Figure 11. The crosses represent the Captor agents, 

while the circle represents the Fugitive agent. The aim of the game is for the Captors to 

surround or corner the Fugitive. The fugitive and captors take alternate turns to move. The 

captors must move synchronously on their turn. Each agent may only move one block per 

turn. Legal moves on a Pursuit board are Up, Down, Left, Right and Stay. No diagonal 

moves are allowed. Furthermore, the board does not wrap around.  A game is ended when 

the fugitive is captured, implying that the fugitive has no place to move to.  

 

Figure 11 Pursuit Board Representation 

Global Solution Strategy 

The global goal of the system is to win the game, i.e. capture the agent. In this system the 

global goal is expressed as the minimisation of the sum of the distances of all the Captor 

agents from the Fugitive agents. This is given by: 

�
=

−+−=
M

N
ANAN YYXXS

1

22 )()(  (2) 

Where: S is the sum of the distances to the fugitive; M is the number of Captor agents in 

the system;  XA, YA are the Fugitive agent’s coordinates and XN, YN are the current 

Captor’s coordinates.  We assume here that a signal describing the current state of the 

board has the Markov property, meaning all relevant information pertaining to the current 

state of game is encapsulated in this signal. Thus, if the captors positions are updated using 
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this rule of minimising the sum of their distances from the fugitive on each time step 

(turn), they will win on a finite sized board, although not always in the least number of 

moves. 

It would follow that if each captor agent minimised its own distance from the fugitive at 

each turn, the global goal would be satisfied. However, since each block on the board can 

hold only one agent exclusively, and all the agents move synchronously, there may be 

conflicts for board space among the agents. Therefore, to minimise the function in reality 

and to maintain a legal board, some agents may not be in their optimal positions. In a 

Centralised system, where one agent controls the movements of all the Captors, this is 

straightforward to implement, as the controller would have a global view of the problem, 

as well as only having to act in its own best interest. However, in a decentralised or Multi-

Agent system, the implementation is not as clear. Since each agent will have its own local 

goal to pursue, it is not clear what the formulation of this local goal would be in order to 

reap the maximum benefit for the entire community [19].  However, it is clear that the 

agents would have to act in a cooperative spirit, in order to minimise the objective 

function.  

If a pure swarm system approach were to be followed, a likely implementation would be 

one where each agent attempts to minimize its own distance from the fugitive, and all 

agents move asynchronously. This will cause agents to get in each others way, by 

blocking, or will result in an inferior strategy by the agents, since they are not prepared to 

make sacrifice to their positions, even if it would result in a globally better arrangement of 

the captors. 

System Descriptions 

Centralised System 

As shown in the system flowchart in Figure 12, this system consists both of separate 

captor agents, as well as a global agent. The global agent is effectively used to train the 

multi-agent system. The advantage of this arrangement is that the global agent has a global 

view of the Pursuit board. The global agent uses a brute-force search through all possible 

move combinations to find a solution that minimises the sum of all the captor’s distances 

from the fugitive. In other words, it looks for an arrangement of the captors that will 

maximally surround the fugitive. The flow of the system is as follows: at each turn, the 

captors propose a move for themselves. The moves from all of the captors are combined 

and tested to see if the resulting board configuration is legal. If the proposals do result in a 

legal board, they are implemented by the agents. However, if an illegal board results from 
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the proposals, the global agent is invoked to solve the problem. The solution from the 

global agent is then used to train the captors.  

 

 

Figure 12 High level Agent execution in the Centralised system 

Negotiating System 

The agents interact by proposing the move that they would prefer to make, i.e., the move 

that would bring the agent closest to the fugitive.  This is sent to all other agents. If there is 

a conflict among the proposals, the agents send out a signal, and the agents negotiate a 

new proposal. This occurs until there are no conflicts among the agents. The agents then 

implement their moves. The first move proposed for each agent is always drawn from the 

neural network. If this is not successful, the agents start the negotiations.  

As can be seen in Figure 13, the agents start off by proposing the solutions predicted by 

their neural networks. Only if this fails is the negotiation algorithm invoked. Whenever 

there is a conflict, all the agents are involved in the negotiation. The dotted feedback lines 

from the negotiation block to the neural network represents the network learning from the 

successful move made by the negotiation algorithm. In this way, the neural network learns 

cooperative behaviour.  
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Figure 13 High level Agent execution in the Negotiating System 

Captor Agent Description 

In both experiments, the agents are equipped with neural networks to learn the solutions to 

the game in a pattern recognition fashion. The agents in the Negotiating system are also 

equipped with negotiation modules to bargain with the other agents.  

Input representation 

The input representation to a neural network is extremely important to the success of 

practical network applications [20][21][22]. Smooth representation of the input data, as 

well as using an input representation that describes features of the data can help reduce the 

number of states the network has to learn in a lookup-table type fashion, and increase the 

ability of the network to generalise learned data to new situations [22].  

The agents each have 28 binary inputs to represent the current board state. The board is 

presented to the agents from their own point of view. Each agent can be thought of as 

having “sensors” to perceive their surroundings.  The first 12 inputs to an agent represents 

if any other captor agents are in a 2-block radius around the agent. This is depicted in 

Figure 14, where the X represents a captor agent on the board. The light grey circle 

represents the 2 block radius. Only blocks that fall completely into this radius can be 

accurately detected by the agent, therefore only these are used as inputs. These input 

blocks are represented by the 12 darker grey shaded blocks. If a block is occupied by 

another captor agent, it is represented as a binary 1; else it is shown as a binary 0. The 

same scheme is used for the next 12 inputs, which represent the position of the fugitive 
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relative to the agent. The remaining 4 sensors are binary wall sensors, to inform the agent 

if it is at any of the four sides of the board. This type input structure is true to a multi-agent 

system, since each agent has only local knowledge of the game, and it also allows our 

agents to be trained with data specific to its own experience on the board. Furthermore, 

agents can obtain all the information they need from their sensors, and do not rely on 

external entities for information about the board state.  

 

Figure 14 Captor agent input representation 

This representation allows various formations of the agents to be captured, regardless of 

the exact location on the Pursuit board. Such formations are common when the captors are 

chasing the fugitive.  

Negotiating Agents Description  

In this case, the local goal of each captor agent is to minimise its own distance from the 

fugitive through negotiation with the other Captors.  The negotiation algorithm of each 

agent is depicted in Figure 15. The agents are aware of the possible moves they can make 

at each turn. By evaluating the payoff that each of the possible moves will bring, the 

agents construct a Preference List of the possible moves and payoffs ordered from highest 

payoff (least distance) to lowest (furthest distance). Once the agent has made its list, it 

transmits its preferred move (which is the block on the board it would like to occupy), and 

the payoff value of the next preferred move on the list. In this way, the agent expresses its 

“need” for the block. The agent then creates a list of all the moves and payoffs received 

from the other agents. If there is a conflict between itself and one or more other agents on 

the choice of blocks, the agent attempts to resolve this. An agent will give way to the other 

agent(s) if it does not value the position as highly as any other conflicting agent (i.e., if it 

does not need the block as badly as other agents). An agent gives way by using the next 

move on its preference list. Once it gets to the end of its list, it wraps around to the start. If 

there is a tie for the highest value on a block, the agents involved in the tie go into a “lotto” 

mode, where they each randomly pick a number, with the highest number winning the 

right to keep the block. The losing agents then choose the next move on their Preference 
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list.  This procedure is iterated until no conflicts exist. At this point the agents implement 

their moves. In a slight variance to Chapter 3’s implementation, an additional stage was 

added at the end of the negotiating session where each agent observes if a block higher up 

on its preference list to the one they are to move to has become free. If it has, the agent 

changes its desired move, and communicates this to the other agents. If need be, 

negotiation is started again between the agents, if more than one wants to move to the 

unoccupied block.  In this manner, an approximation to the global optimum is performed.  

This sequence can be iterated a number of times, which can be seen to create many 

messages between agents, and thus a high usage of the communication medium. 

 

 

Figure 15 Agent Negotiating Algorithm 

Implementation  

The system is implemented in MATLAB. NETLAB [18] is used to implement the neural 

networks for the Captor Agents. A two-layer MLP architecture is used for the networks. 

The networks use a Logistic function for the output units. A variable number of hidden 

units, up to a maximum of 50, are used depending on the amount of data the network has 

seen.  

Since NETLAB does not directly support on-line training, an alternative scheme is used. 

Every time the agents negotiate a solution or the global agent solves a problem, the board 

position is recorded, as well as the moves agreed upon through negotiation. This data is 
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added to the set of training data. After each game is complete, the agents are re-trained 

using the updated training data.  

Results 

The simulations were run for 400 games for the centralised system and 1000 games for the 

negotiation system experiment. The positions of the captors and the fugitive agents are 

randomised on the board at the beginning of each game. This is done in order to create a 

wide sampling of all the board combinations for the learning algorithms.  

We consider the number of moves per game as the cost for that game, since the actual 

objective of the game is to capture the fugitive as quickly as possible. By this formulation, 

we can ensure that learning in the agents is not having a detrimental effect to the objective 

of the game. We do this by recording the average number of moves per game (cost) 

without learning enabled over large number of games. This is expressed as the baseline 

cost. The average number of moves per game is taken, as the precise number of moves per 

game can vary depending on game factors such as starting positions, previous moves, etc. 

After learning is enabled, we can compare the game cost with learning to the baseline cost. 

In these experiments, we expect the cost to remain approximately the same before and 

after learning. This is because we expect the agents to learn the moves they make from the 

fixed strategy presented in each case. The agents are not expected to create new strategies, 

but carry out the strategies which have been observed from the negotiation protocols or 

centralised agent. However if the cost, after learning is enabled in each experiment, 

increases significantly then learning can be said to have an overall negative effect on the 

community. For these cases, the neural networks in the agents would be suggesting legal 

moves, but the moves would be un-strategic, or possibly random (which would be 

expected while the neural networks are still untrained). 

What is expected is that the communication levels, between the agents and the central 

controller and between agents in the negotiation system, shows an overall decrease.  

For the negotiating system we also record the average number of conflicts that arise per 

game, before and after learning is introduced into the system. For each conflict that occurs, 

a negotiation session must be started. To normalise the measurement of bandwidth usage, 

we define one negotiation session as using one unit of bandwidth. Therefore, for each 

conflict that is avoided, one bandwidth unit can be saved. The measurements show the 

percentage reduction in conflicts in the learning system from the non-learning system, thus 

effectively showing the reduction in bandwidth usage. 
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Figure 16 Results of the Centralised system simulation 

The results of the simulation are summarised in Figure 16. The data is averaged over 

intervals of 100 games each, for clearer presentation. We show here the percentage correct 

moves made by the neural networks of the total moves per game over the simulation time. 

In other words, the graph shows the percentage of game moves made without invoking the 

central controller. This can be clearly seen to increase over the simulation time to a 

maximum of 54.75% of the total moves made. However, simulation beyond this point 

resulted in very little increased performance by the neural networks.  
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Figure 17 Average number of captor moves per game, averaged over 100 game intervals 

The baseline cost was found to be 4.92 Moves/Game after simulation of 400 games 

without learning enabled. The standard deviation of this is � =1.6649 Moves/Game. In 

Figure 17, the baseline cost is plotted as the bold horizontal line. The bars show the cost 

per game, averaged over 100 games per interval, with learning enabled. The cost with 

learning is slightly higher than the baseline cost, but is still within 1 standard deviation.  
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Figure 18 Results of the Negotiation System simulation 

In order to have a benchmark figure to evaluate the contribution of learning to this system, 

we first ran a simulation of 500 games without using learning. This enabled us to obtain an 

average for the number of conflicts per game in normal circumstances and the baseline 

cost for this system. We found the average number of conflicts over the 500 games to be 

7.02, and the baseline cost to be 4.874 Moves/Game with a standard deviation of � = 

1.7402. Learning was then introduced into the system. In Figure 18, we see that the 

percentage of moves learned by the agents is similar to that of the centralised system, with 

a peak of 57.6% successful predictions. The improvement in the moves learned by the 

agents’ shows only moderate change after 700 games. 
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Figure 19 Cost of games in the negotiating system with learning enabled. The horizontal line shows the 

baseline cost without learning 

Figure 19 shows the cost per game averaged over 250 game intervals with the baseline 

cost plotted as the bold horizontal line. Once again, the cost with learning is slightly higher 

than the baseline cost, but is still within 1 standard deviation.  
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Figure 20 Results showing percentage reduction in agent conflicts compared to the measured average 
of 7.02 conflicts per game without learning 

 In Figure 20, we see the percentage reduction of conflicts in the learning agent system, 

compared with the number of conflicts in the non-learning system. Although the pattern 

seems erratic, it is clear that the overall trend is of increasing conflict reduction. It can be 

seen that the number of conflicts reduces by at least 30% after the 300 games mark, and 

reaches peaks of up to 55% reduction in conflicts. This is significant, since reducing 

conflicts means reducing negotiations, which can be bandwidth intensive. Using the 

concept of 1 bandwidth unit per negotiation, we can say that the bandwidth reduction is 

equal to the reduction in the number of conflicts.  

 

Discussion 

The knowledge that the agents have obtained as a result of their learning can be thought of 

as obtaining a model of their environment, or more specifically, as a model of the 

behaviour of the other agents within the system. This is due to the fact that when the 

agents correctly predict moves using their neural networks, they are not only maximising 

their own goal, but taking into account the needs of the other agents in the system. This is 

despite the fact that they have no explicit knowledge of the behaviour or workings of the 

other agents: the knowledge that they have obtained is purely through observation and 

interaction. In the negotiation system when the agents are actively negotiating, the agents 

take no account of the moves that the other agents might make: they wait for another agent 

to actively inform of a problem. To programme into such algorithms the ability to 

anticipate other agent’s moves would effectively mean that the agents would each have a 

global view of the problem, as well as having intimate knowledge of every agent’s abilities 

and desires in the system. This would defeat the object of a Multi-agent system, where 
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each agent is expected to operate in a highly distributed environment, and having a limited 

viewpoint of the problem, as well as considerable duplication of abilities.  Furthermore, it 

may not even be appropriate for each agent to have this knowledge, especially when the 

agents are divided into sub-teams [8].  

After a large number of games, each agent will have observed a large variety of board 

positions, and for this system, the neural networks will tend to be the same. This is only 

because the agents in this system all have the same “abilities” or allowed moves. In a 

scenario where there are agents with different abilities, as for example the separate pieces 

in a chess game, the networks will each train on totally different output moves, and so will 

tend to be different even after observing an infinite number of moves. However, there is no 

reason why the agents should not still be able to anticipate each others moves, since they 

will be trained with this data.  

On many of the occasions, the agents were not able to make a legal move due to the fact 

that some agents suggested more than one direction to move in at a time. This limited the 

effectiveness of the learning function. While this intuitively suggests that the agents are 

not yet well trained in the particular situation, this is often not the case. Both the global 

agent in the centralised system and the negotiation modules in the negotiation system do 

not always propose the same solution for a particular board position. This means that for a 

given board position, an agent may be trained with many possible moves. What is needed 

is a method to resolve the proposed multiple directions by an agent in a particular situation 

with the other agents to improve the effectiveness of the learning theory.  

The slight increase in the cost per game from the baseline costs measured for each 

experiment may be in part due to the neural networks over-generalising moves to new 

situations, as well as for the above mentioned reason of multiple possible moves for one 

position. In this case, the agents will act uncoordinated if they choose differing strategies. 

This may lead to longer games.  

Further Research 

There is already considerable research in the field of agent learning. We believe that 

learning is not only useful for added functionality in agents, but also to enhance existing 

agent operation. The main problem in any learning system is often the presentation of the 

information to the system [20].  With other means of representation, it may be possible to 

increase the benefits of learning, and create more efficient agents. In complicated 

environments, which are common of multi-agent domains, it would be desirable, and 
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probably necessary, to have the agents automatically determine the relevant representation 

of information, as well as choosing the information that would help in the decision.   

The problem of agents learning different strategies in the same situation needs to be 

addressed to improve the overall effectiveness of learning. A methodology whereby agents 

are equipped with a host of coordination strategies at design time, and then learn through 

interaction the appropriate local strategy to use in a given situation has been proposed by 

[23]. A mechanism to accommodate this type of agent behaviour will need to be 

investigated 

The problems that we have implemented here are very simple in order to demonstrate a 

theory. This theory should now be tested on more complex systems, where perhaps the 

agents in the environment are heterogeneous, and agents have many more options on a 

particular move.  

Conclusion 

We have demonstrated here the ability of learning to significantly reduce the amount of 

communication in a multi-agent system. To do this, the agents effectively learn a model of 

the other agents in the community, and start to behave reactively, while still being 

cooperative. The advantage of this method is that such learning techniques can be applied 

to existing agent communities to improve the efficiency of the community. 

The reduction in communication as shown here can have large benefits in certain 

situations, such as when the communication channel carries a significant monetary cost, or 

if the channel is not reliable or slow. All these factors contribute to the overall 

effectiveness of the agent community, and should be minimised.   
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C h a p t e r  5  

CONCLUSION 

The study presented in this thesis shows that learning can have a significant impact on the 

communication levels in a multi-agent system, and possibly improve the efficiency of such 

systems.  

Firstly, the ability of agents to acquire their behaviour purely through learning is 

demonstrated through the simulations of the centralised system structure. In these cases, 

the agents learn appropriate behaviour through example. The advantage of this model is 

that agents may learn desired local behaviour through observation of a global goal. Here 

the global goal is for captor agents to maximally surround a fugitive agent in the game of 

Pursuit. The local goals of each captor agent are subtly different: Each captor must move 

as close as possible to the fugitive, but must not block any other agents to the detriment of 

the global goal. The ability of the agents to learn this behaviour to a reasonable degree is 

shown here.  

 Secondly, the reduction of communication between agents in the test systems is clearly 

demonstrated in the study. In instances where the communication medium between agents 

is costly, for example wireless communication between robots, as well as instances where 

communication delay is undesirable, this can be significant. Communication reduction 

also allows agent systems to behave more like swarm systems, with the attendant benefits 

of quicker reaction and reduced communications latency. 

This research has shown that, in the case of centralised system structure, the agents are 

able to learn the goals of the system without explicitly programming any rules into these 

agents. Furthermore, in both the negotiation formulation and the centralised system, the 

agents can be seen to learn cooperative behaviour whilst reducing inter-agent or agent - 

controller communication. This would traditionally mean programming the agents with 

models of all the other agents in the system. In this research, the agents learn the behaviour 

of other agents through interaction and observation. In building agent communities where 

the formulation of local goals and modelling of agents behaviours can be problematic, this 

research may be of use.  
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A p p e n d i x  A  

EXTRA DATA FROM AGENT SIMULATIONS 

Negotiating Agents Simulation 

This section shows the results of the negotiating agents simulation in more detail. Table 1 

shows the results after 1000 games simulation. The results are averaged over 100 game 

intervals. “Total moves”  is the average number of moves to the end of each game in the 

interval; “Moves by Agents”  is the number of moves made by the agents without 

negotiation being required (i.e. the moves predicted by each agent’s neural network); 

“Conflicts” is the average number of times the agents had to negotiated per game ( Note 

that the agents may negotiate more than once per move); “% moves by agents” is the 

percentage moves made by the agents of the total moves during each game; “% conflict 

reduction” is the percentage the learning has reduced the number of conflicts from the 

mean measure of 7.02 conflicts per game without learning.  

Table 1: Detailed Results for the Negotiating Agents Simulation 

Game 
range Total moves  

Moves by 
Agents Conflicts 

% moves by 
agents 

% Conflict 
reduction 

0-100 5.17 1.77 5.88 34.23597679 16.23931624 

100-200 4.93 2.27 4.73 46.04462475 32.62108262 

200-300 5.49 2.76 5.84 50.27322404 16.80911681 

300-400 4.86 2.41 4.08 49.58847737 41.88034188 

400-500 5.2 2.78 4.38 53.46153846 37.60683761 

500-600 5.53 2.97 4.77 53.70705244 32.05128205 

600-700 5.09 2.7 3.71 53.04518664 47.15099715 

700-800 5.15 2.97 4.32 57.66990291 38.46153846 

800-900 4.89 2.71 3.15 55.4192229 55.12820513 

900-1000 5.09 2.91 3.37 57.17092338 51.99430199 
 

Centralised system simulations 

Here, the results of the centralised system simulations are shown in more detail. Figure 1 

shows the number of successful moves made by the agents’ neural networks per game. 

The dark horizontal lines show the average number of agent moves per 100 game 

intervals. From this, the effect of the learning is clearly seen. Figure 2 shows the total 

number of moves made per game (moves made by the agents and by the centralised 

system). As can be seen on this graph, the number of moves per game increases slightly in 
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the first 100 games, compared to the other game intervals. This can be attributed to the 

neural networks still learning the pattern of legal moves, and thus making essentially 

random moves, which merely prolong the game.  
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Figure 1 Results of the Centralised Agent simulations 
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Figure 2 Total Moves per Game 
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A p p e n d i x  B  

SOURCE CODE 

The source code for the research, and other material is given on a CD-ROM. The contents 

of the CD are as follows (Bold items are folders on the CD): 

Source Code -- The actual Code 

 Saves -- MATLAB workspaces saved during 
simulation  

 Description.txt -- Description of each saved item 

Documents 

  Thesis.doc -- This document 

  PRASA.doc -- Paper submitted to PRASA 

  ICCC.doc -- Paper submitted to the ICCC 
Conference 

  JSCI.doc -- Paper submitted to the JSCI 
journal 

 


