
S. M. Thomas 2004/05/23

 Page

i

EVALUATION OF UML TOOLS USING

AN END-TO-END APPLICATION

Shibi Mary Thomas

A dissertation submitted to the Faculty of Engineering and the Built

Environment, University of the Witwatersrand, in partial fulfilment of the

requirements for the degree of Master of Science in Engineering.

Johannesburg, 2003

S. M. Thomas 2004/05/23

 Page

ii

DECLARATION

I declare that this dissertation is my own, unaided work. It is being

submitted for the Degree of Master of Science in Engineering in the

University of the Witwatersrand, Johannesburg. It has not been submitted

before for any degree or examination in any other University.

 (Signature of Candidate)

_______________ day of _____________________ (year) _________

S. M. Thomas 2004/05/23

 Page

iii

ABSTRACT

Any software project goes through the different stages of a Software

Development Life Cycle (SDLC). Like any other commercial product,

software has a design stage but this stage is unique and critical to software

due to its soft nature. A system that is given careful thought at the design

phase results in a correct and complete system and adheres to software

design principle. The “Unified Modelling Language” (UML) is a standard

modelling language for object-oriented systems. Many tools are currently

available to support the design and implementation of software.

Generating skeletal code from a design brings down the implementation

time considerably.

This research report presents a list of criteria against which one can

compare different UML tools, and puts forward a rating system where

decisions can be made on them. It presents a comparison between four

UML tools: ArgoUML, Rational Rose, Together Control Centre, and

MasterCraft. An end-to-end application was developed on each of these

tools as part of the evaluation process. During the design phase a detailed

design was done using the ICONIX process. The different features of an

ideal UML tool is analysed and used to evaluate the four selected tools. Of

the four tools, Rational Rose, Together Control Centre, MasterCraft are off-

the-shelf modelling softwares whereas ArgoUML is an open source

modelling software. From the evaluation it is observed that Together

Control Centre attains a high score with Rational Rose following just

behind. MasterCraft comes third. Argo UML has the least score but it has

the advantage of being an open source software.

S. M. Thomas 2004/05/23

 Page

iv

ACKNOWLEDGEMENTS

This dissertation and the resulting prototype described herein, was

completed within the Information Engineering Research Programme

(IERP) at the University of the Witwatersrand.

First and foremost I would like to thank my God who was with me through

all the moments of this research work.

I would like to acknowledge Prof B. Dwolatzky for his supervision of this

study and for his unwavering and consistent support throughout the

duration of this project. I would also like to thank him for making available

the resources to proceed with my work.

I would like to thank TATA Consultancy Services (Pune, India) for the

support and training arrangements, they provided for their tool,

MasterCraft, to abet my work.

I would also like to express my gratitude to the members of the IERP group

for the small technical support and advice that has added value and helped

me proceed in my research work.

Last but not least, I would like to acknowledge the support and unwavering

encouragement of my family throughout my studies with boundless

enthusiasm for all my chosen endeavours.

S. M. Thomas 2004/05/23

 Page

v

TABLE OF CONTENTS

DECLARATION .. i

ABSTRACT... ii

ACKNOWLEDGEMENTS.. iv

TABLE OF CONTENTS... v

FOREWORD .. ……………vii

PROJECT OVERVIEW .. 1

PAPER I .. 4

EVALUATION OF UML TOOLS USING AN END-TO-END APPLICATION. 4

DISCUSSION AND CONCLUSION.. 5

REFERENCES \BIBLIOGRAPHY... 8

APPENDIX I.. 18

END-TO-END APPLICATION A CASE STUDY .. 18

APPENDIX II .. 40

EVALUATION METHODOLOGY ... 40

APPENDIX III ... 66

UML TOOLS USED FOR EVALUATION.. 66

APPENDIX IV... 78

UML TOOLS –EVALUATION OF MODELLING .. 78

APPENDIX V.. 104

S. M. Thomas 2004/05/23

 Page

vi

UML TOOLS –EVALUATION OF IMPLEMENTATION............................... 104

APPENDIX VI... 133

EVALUATION RESULT ... 133

S. M. Thomas 2004/05/23

 Page

vii

FOREWORD

This MSc Research project report is different from the conventional format

in that it comprises of a paper and a number of appendices. It is therefore

considered helpful to provide the reader the guidance regarding the order

in which the various documents should be reviewed. There are various

UML concepts used in this project report. It is assumed that the reader is

familiar with basics of UML and its concepts.

The Project Overview gives the user an overall description of this research

project. This gives a background of how this project came about and why it

is important. It also gives a brief description of the work done in this

project and the outcome of this research work.

For the essence of the project, the reader is directed to the paper entitled

“Evaluation of UML tools using an End-to-End Application”.

The substance of the project will be found in this paper, and the appendices

should be regarded as additional sources of information in understanding

the issues at hand.

Discussion and Conclusion contains important information regarding the

conclusions that were reached. This is followed by a list of all the references

used for this work.

S. M. Thomas 2004/05/23

 Page

viii

The appendices to the research project are discussed below.

Appendix I discusses how the application was taken through the different

stages of the software development cycle. It focuses primarily on the design

phase. The design phase of the application is elaborated further by going

through the steps of the ICONIX process.

Appendix II talks about the evaluation methodology used for the

evaluation of tools. This section discusses the criteria defining each feature

and sub features that an ideal UML tool should have. The approach used

towards rating each tool, is also discussed here. The evaluation process

breaks down each feature and quantifies the evaluation using a rating

method.

Appendix III discusses all the UML tools used in this research work. This

section brings forth some of the additional feature that each tool has and

hence making them unique in their own way. It also talks about the

features that should be part of the tool.

Appendix IV discusses the general interfaces of the tools. This section talks

about each tool discussing the usability of the tool. The functions provided

for navigation, the different panes etc are also discussed in this section. It

also talks about modelling class diagrams and sequence diagrams in the

different tools.

Appendix V concentrates mainly on the function round trip engineering.

This section compares the code generation and reverse engineering in the

various tools. Appendix VI gives the final evaluation table.

S. M. Thomas 2004/05/23

 Page

1

PROJECT OVERVIEW

Throughout the Software Development Life Cycle (SDLC), seamlessness is

both a highly desirable and much sought after feature. Like any other

commercial product, software has a design stage but this stage is unique

and critical to software due to its soft nature. A system that is given careful

thought at the design phase results in a correct and complete system and

adheres to software design principle. Achieving an effortless transition

from the requirements and analysis phase to the design phase is a

complicated task. The ability to harness the power of design offered by the

Unified Modelling Language (UML) into a tool, which provides a high level

of usability and functionality, would be a considerable advantage. Some of

the functionalities incorporated in the tool, empowers the implementation

and testing of the design developed. Code generation in an accurate

manner, is significant since it reduces the time of the implementation

phase and hence the cost.

The Unified Modelling Language, an Object Management Group (OMG)

standard since 1997, is a visualizing language for the modelling and

development of software systems. The UML offers a standard way to write

a system's blueprints, including conceptual aspects such as business

processes and system functions as well as concrete things such as

programming language statements, database schemas, and reusable

software components.

Since the official release of UML in late 1997, the number of commercial

UML modelling Computer Aided Software Engineering (CASE) tools has

increased dramatically in the market. This provides us with many choices,

S. M. Thomas 2004/05/23

 Page

2

yet requires us to select the right UML modelling tool that best meets our

business and software application development requirements and achieves

the best Return on Investment (ROI). The UML modelling CASE tools

enable us to apply a formal object oriented analysis and design

methodology and abstract away from the entanglement of source code, to a

level where architecture and design become more apparent and easier to

understand and modify. As the systems being built today become more and

more complex, UML modelling CASE tools offer many benefits for

everyone involved in a project, e.g., project manager, analysts, designers,

architects, developers and so on. UML tools play a significant role in

developing software systems better, faster and in a cost effective way.

The research presented in this report defines a list of criteria against which

one can compare different UML tools, and puts forward a rating system

where decisions can be made on them. The usability aspects and functional

aspects of ideal UML tool were studied. Four different tools (ArgoUML,

Rational Rose, Together Control Centre, and MasterCraft) were chosen to

evaluate the criteria. An example application with sufficient complexity

was taken to walk through the different stages of a SDLC using each of the

above mentioned tools.

UML on its own is a mere modelling language but it is necessary to put a

process in place while doing the design. In this report the process used

while designing the system is the ICONIX process [10, 11, 12, 42]. The

rating system used in this research gives an analyst, who carries out a

comparison between various tools, the flexibility to prioritize his features

according to the requirements. Hence the matrix [appendix VI] presented

in this project report could be used as a comparison tool to compare any

set of UML tool.

S. M. Thomas 2004/05/23

 Page

3

This evaluation tool or the matrix emphasizes, particularly on the technical

features in a UML tool. These technical features are mainly functional and

usability issues. Non-technical aspects such as cost, training, local support,

availability of resource and developmental environment are not part of the

comparison matrix. Choosing a tool is critical and requires a lifetime

investment yet design is one of the aspects that cannot be lightly tinkered

with. This work aids in rating a tool and hence selecting an appropriate

tool.

S. M. Thomas 2004/05/23

 Page

4

PAPER I

EVALUATION OF UML TOOLS

USING AN

END-TO-END APPLICATION

S. M. Thomas 2004/05/23

 Page

1

EVALUATION OF UML TOOLS USING

AN END-TO-END APPLICATION

Shibi Mary Thomas

Information Engineering Research Group, Information and Electrical Engineering,
University of Witwatersrand, Johannesburg, South Africa.

Abstract

Throughout the Software Development Life Cycle (SDLC), seamlessness is both a highly
desirable and much sought after feature. A system, which is given careful thought during
its design phase, caters for a correct and complete system and covers the basics of the
software design principle. The Unified Modelling Language (UML) offers a standard
way to write a system's blueprints. The UML modelling CASE tools enable us to apply
the formal object oriented analysis and design methodology such that architecture and
design become more apparent and easier to understand and modify. There are different
tools with diverse degree of functionalities available for modelling software. This paper
tries to draw up ideal evaluation criteria for a UML tool and using these criteria,
evaluates four UML tools. An application is developed, taking it through the different
stages of SDLC, which includes a detailed design and implementation, in an object
oriented language. The design and implementation phase of the application are used to
evaluate the different features of the tools chosen. The matrix presented in this paper
could be used as a comparison tool to compare any set of UML tool.

Keywords
Software Engineering, Object Oriented, UML Tools, Evaluation, Methodology, Rating.

Computing Review Categories
Software Engineering Design, Evaluation of Tools

1. Introduction

Since the Stone Age, tools have been an
integral part of man enabling him to
simplify and improvise his work. Like
other engineering fields software
engineering has its own set of tools

directed towards specific developmental
requirements and areas. Yet unlike other
tools, software tools need to adapt to the
soft nature (i.e. the continuously
changing requirements) of the
environment where they will be used.

Since the official release of UML in late

S. M. Thomas 2004/05/23

 Page

2

1997, the number of commercial UML
modelling CASE tools has increased
dramatically in the market [1]. There are
many UML tools available in the market
where the tool vendor tries to prove their
tool better than the others. Hence before
a user invests in a UML tool it is
essential to consider the business
requirements as well as the software
application development requirements.
The research described in this paper
evaluates four different UML tools:
ArgoUML v 0.14, Master Craft for Java
v 6.0, Rational Rose 2001 and Together
Control Center v 6.1. A technical
evaluation of the tools was carried out
based on an end-to-end application. The
evaluation is rated based on the author’s
experience with each of these tools and a
conclusion is drawn from this rating.

2. Software Engineering Principles

and Design

Software engineering is the application
of a systematic, disciplined, quantifiable
approach to the development, operation
and maintenance of software; that is the
application of engineering to
software. [2] When constructing
software, the problem to be solved is
analysed and the requirements are
defined in a precise manner.

 There are six distinguished phases in the
Software Development Life cycle
(SDLC):

• Preliminary Investigation Phase
(Feasibility Study)

• Analysis Phase
• Design Phase
• Implementation Phase
• Testing Phase
• Maintenance Phase [2] [3].

Any software system, which is given
careful thought during its design phase,
caters for the factors that lead to a
correct and complete system. A correct
and a complete software system is a
system which has maximum cohesion,
minimum coupling, maintainability,
reusability, understandability, and
adaptability. The characteristics of a
system with a good design are:

1. Change in one part of the system
doesn't always require a change
in another part of the system.

2. Every piece of logic has one and
one home. There is no
duplication of logic.

3. System can be extended with
changes in only one place.

4. Simplicity. [4]

Software is not a jumble of code that can
be written and put together by any

S. M. Thomas 2004/05/23

 Page

3

programmer. Many do not realize the
enormity of skills and knowledge
required to build a complete and correct
software system.

3. Why Object Oriented Design
and Programming?

To put the ever-growing power of
computers to good use we need software
of much greater complexity, yet the
software needs to be more reliable. High
Quality is essential in software
development while poor quality is a
waste of time and money. To improve
quality, the design has to be given
careful thought. There are different types
of design: Structured design, data-driven
design, object-oriented design, object-
based design etc. Object oriented
techniques is currently one of the better
techniques used to simplify the design of
complex systems.

Using the object oriented technology the
domain of a system can be visualized as
a collection of objects existing in one of
the specified states. The operations that
change the state are simple. Objects are
built out of other objects.

Design can be thought of in two phases.
The first, called high-level design, deals
with the decomposition of the system
into large, complex objects. The second

phase is called low-level design. In this
phase, attributes and methods are
specified at the level of individual
objects. This is also where a project can
realize most of the reuse of object-
oriented products, since it is possible to
guide the design so that lower-level
objects correspond exactly to those in
existing object libraries or to develop
objects with reuse potential.

“High thoughts must have high
language”Aristophanes. [9] Hence to
put our complex systems into software
we need a powerful language. The
implementation in this research is done
in Java. Java is a fully object-oriented
language with strong support for proper
software engineering techniques [9].
Java is a powerful language with various
class libraries. It is used to develop
internet-based and intranet-based
applications and software for devices
that communicate over a network.

S. M. Thomas 2004/05/23

 Page

4

Figure 3.1 Software Technologies

Object Oriented System alone cannot
provide the magnitude of change needed.
They must be combined with other
software technologies. Some of them
include repository-based development,
code generators, repository based
methodologies etc. as shown in
Fig. 3.1. [22]

4. Unified Modelling Language

The Unified Modeling Language
(UML), an Object Management Group
(OMG) standard since1997, is a
visualizing language for the modeling
and development of software systems [5,
6]. The UML is a modeling language,
not a software development process, and
it intends to support different object
oriented approaches to software
production. UML is also a standardized

notation for object-oriented analysis and
design. The UML offers a standard way
to write a system's blueprints, including
conceptual things such as business
processes and system functions as well
as concrete things such as programming
language statements, database schemas,
and reusable software components.

 UML defines twelve types of diagrams,
divided into three categories. The three
categories are:

1. Diagram used to represent static
application structure or Structural
diagrams.

2. Diagrams used to capture the
different aspects of dynamic
behavior also called Behavior
diagrams.

3. Diagrams used to model and
manage the application modules.
This is also called Model
Management diagrams.

Four diagram types represent structural
diagram; five represent behavior
diagrams; and three represent model
management diagrams. Structural
Diagrams include the Class Diagram,
Object Diagram, Component Diagram,
and Deployment diagram. Behavior
Diagrams include the Use-case Diagram
(used by some methodologies during
requirements gathering); Sequence
Diagram, Activity Diagram,

S. M. Thomas 2004/05/23

 Page

5

Collaboration Diagram, and Statechart
Diagram. Model Management Diagrams
include Packages, Subsystems, and
Models. [5, 6, 7, 8]

UML DIAGRAMS

STRUCTURAL
DIAGRAMS

BEHAVIOUR
DIAGRAMS

MODAL
MANAGEMENT
DIAGRAMS

• CLASS

• OBJECT

• COMPONENT

• DEPLOYMENT

• USE CASE

• SEQUENCE

• ACTIVITY

• COLLABORATION

• STATE CHART

• PACKAGES

• SUBSYSTEMS

• MODELS

Figure 4.1 Types of UML Diagram

5. ICONIX Process

The visual language UML has to be
combined with a process while

designing. The process that will be used
in this research will be ICONIX. This
methodology was created by Doug
Rosenberg. ICONIX uses robustness
analysis as a bridge between use-cases
(or Domain Model) and the code [10].
This methodology assumes an Object
Oriented decomposition of the domain
and it is use-case driven. The diagram
[Fig 5.1] below explains the ICONIX
process. It consists of two parts:
dynamic and static. The main stages in
this are domain modeling, use-case
modeling, robustness analysis,
interaction modeling and finally class
diagram. [11, 12]

Figure 5.1 ICONIX Processes [12]

S. M. Thomas 2004/05/23

 Page

6

6. UML Tools

UML tools help designers to model their
design. Most of these tools support:
drawing and exporting UML diagrams,
eliminating errors, model- and
document- linking, report generation,
configuration management, code
generation and reverse engineering.

The number of UML tools in the market
has increased incredibly, since UML was
made a standard in 1997. This provides
us with a number of choices but at the
same time requires us to do more
investigations, to select the right UML
modeling tool, according to our business
needs. OMG suggests some of the
features that may be essential in a UML
tool like Repository support, Roundtrip
engineering, UML support, Pick lists etc
[9]. Many products have done a
comparison with their competitors to
prove that their products are better,
hence pointing out some of the features
essential in a tool [1, 10, 11, 12].

UML tools can be classified as follows:

 Basic diagram-drawing tools
E.g. Visio (basic version).

 Main-stream OO CASE tools
E.g. Together, ArgoUML.

 Specialist real-time/embedded
tools.
E.g. Rhapsody, Telelogic. [13]

7. Evaluation Criteria

Evaluation criteria are selected in order
to assess the functionality and usability
of the tool as a whole, not merely from a
superficial, interface evaluation
perspective [14]. It is essential to
evaluate everything from the compliance
of a tool’s notation to the UML standard,
to the ease with which it supports
navigation between diagrams and ease of
use. Evaluation criteria were drawn up to
highlight the basic requirements and the
future evolving requirements, of an ideal
UML tool. Each of these features tries to
focuses on the ideal technical facilities
provided by the tool rather than the
ostensibly appealing features promoted
by the vendor.

The evaluation criteria are divided into
two sections: Ideal features and other
features. The ideal features discuss all
features that an ideal tool should have.
These features are used as part of the
evaluation table (See table 9.1) to
evaluate the tools. Other features talk
about commonly used features in a tool.
Hence it will be good to include them in
the tool.

S. M. Thomas 2004/05/23

 Page

7

7.1. Ideal Features

7.1.1 Repository

For a large project, a repository is
necessary for the sharing of component
designs between developers. Two or
more developers can share components
of a model or even collaborate on the
development of a single component by
defining ownership and sharing rights at
the appropriate level. With modeling
tools that support a repository, changes
to any component should be
automatically propagated to any design
which imports the component.

7.1.2 Customisation

It can be useful for a developer to be
able to configure the tool to conform to
some specific standards, like company
requirements, personal preferences etc.
This could include the options to view
different panes, tools etc.

7.1.3 HTML Documentation

The UML modelling tool should provide
seamless generation of HTML
documentation of the model. HTML
documentation provides a static view of
the object model that any developer
using the model can refer to quickly in a
browser, without having to launch the
modelling tool itself. This reduces the

number of required licenses for the
modelling tool for those who require
read-only access to the model
information. The HTML documentation
should include a bitmap picture of each
of the diagrams in the model and should
provide navigation throughout the model
through the use of hyperlinks.

7.1.4 Usability

First Contact

The users initial experience with the system
should be one in which the task of initially
constructing and modeling parts of the
system is easy. This feature is analyzed
based on the user’s first experience with the
tool without referring to any documentation.

Easy to Use

The tool should remain easy to use even
when dealing with complex diagrams and
objects. For this criterion the focus is the
tool’s ability to hide and reveal information
allowing the user to focus on specific
details.

Pick List

The modeling tool should provide pick lists
in several key interfaces:
Collaboration and Sequence Diagrams - The
tool should allow an object to be assigned to
a class from a list of the classes in the
model. It should allow the messages sent
between objects to be chosen from a valid

S. M. Thomas 2004/05/23

 Page

8

list of methods for the object (class) which is
receiving the message. The pick list feature
contributes significantly to the intuitiveness
of the modeling tool and may be considered
a must-have feature. The development of
sequence and collaboration diagrams is
greatly facilitated by being able to quickly
select the message you want to send from
one object to another.

Interface Presentation

The interface should have a layout which is
both consistent and aesthetically pleasing.
This category typically examines areas such
as fonts, labels on diagrams, facilities
provided for viewing diagrams, and the
visibility of different states of the model.

Documentation and Help File

Good documentation and search facilities
help the user to learn the tool and feel
comfortable around the tool. This
determines how quickly a user can perform
functions using the tool. Distinguishing the
menus and the submenus makes readability
easier. Name completion facilities, short-cut
keys and learning aids can heavily influence
the speed with which a user can perform
common tasks.

7.1.5 Printing Support

The modeling tool should allow accurate
renditions of large diagrams to be
produced through multi-page printing.
Print preview and scaling functionality
should be supported to allow ease of

fitting the diagram to the desired number
of pages. The ability to fit a diagram to a
single page is high on this list.

7.1.6 Exporting Diagrams

One key feature is the ability to export
diagrams into a format that may be
imported into a word processing
document or a web page. The most
popular graphics formats used for export
are GIF, PNG and JPEG. When
exporting, the tool should allow you to
define the preferred resolution and size
of the graphic that is produced.

XMI, an Object Management Group
(OMG) standard, is an interchange
format which has the potential to finally
allow seamless sharing of models
between development tools. For
example, rather than writing scripts
within a UML modeling tool to create
reports, a user could simply export the
model under development using XMI
and import the model into a specialized
report writing tool. It is therefore good
that a tool should be able to export
diagrams to XMI format.

7.1.7 Robustness

A UML tool should have rock-solid
reliability and consistency. This is to prevent
users from losing potentially hours of
productivity, when the tool crashes in the
middle of a design session, or corrupts a

S. M. Thomas 2004/05/23

 Page

9

model which hasn't been backed up. A tool
which causes hours of work to be lost due to
a crash or file corruption is very
unsatisfactory. A strategy to be considered
here is to have the UML tool automatically
to save a model in the background at
periodic intervals.

7.1.8 New Release

The modelling tool selected should
continue to be actively improved
through bug fixes, performance
improvements, and the addition of new
features. Another factor is that these
tools have to adapt to the new
technological advancements in hardware
and software environments. Since there
is a big investment in time and money in
a tool, it is not easy to change to another
modelling tool. We can determine if a
product is evolving by enquiring for a
detailed schedule of recent releases and a
roadmap for the product's future and by
looking closely at the rate at which
features and improvements have been
made.

New versions and improvements in
functionalities are good, provided the
new version of the tool is backward
compatible with the older versions. It is
unreasonable that one should be stranded
with old design diagrams which are not
compatible with new versions of the
tool. So it is necessary to consider this
feature when deciding on a tool.

7.1.9 Round Trip Engineering

The ability to both forward and reverse
engineer source code (Java, C++, and
CORBA IDL) is a complex requirement
that vendors support with varying
degrees of success. The successful
combination of these two features,
forward and reverse engineering is
defined as round-trip engineering. [1]

Code Generation or Forward
Engineering

Code Generation is the process of
generating code in the respective
programming language for the
components defined in the design. It is
also possible to generate the code for the
relationship between the components.
Once this is generated the programmer
just has to implement the logic of each
operation.

Reverse Engineering

Reverse engineering is the ability of the tool
to recognise the new classes, methods and
attributes that the programmer adds to the
application. This can be done during the
development of the application or during
maintenance once the application is
deployed. Reverse engineering is very useful
both to transform code into a model when no
model previously existed, as well as to
resynchronize a model with the code at the
end of iteration.

S. M. Thomas 2004/05/23

 Page

10

During an iterative development cycle,
once a model has been updated as part of
the iteration, another round of forward
engineering should allow code to be
refreshed with any new classes, methods
or attributes that have been added to the
model. This step is less commonly
adopted by developers because many
tools can hopelessly mangle source code
in the process. The problem is that the
source code contains much more than
the model; tools must be very adept at
reconstructing the source code that
existed prior to the new round of
forward engineering.

At minimum, the modelling tool should
successfully support forward
engineering the first time and reverse
engineering throughout the process.
Also, the tool should have no trouble
reverse engineering the full Java
language. The way to verify this feature
is to implement your own source code
and try the round trip engineering on
your code.

7.1.10 Data Modelling

The object modelling tool should allow
integration with data modelling
facilities. This can be done by

1. Allowing an object model to be
transformed into DDL

2. Exporting metadata to a data
modelling tool which can import the

metadata and use it as the basis for a
data model.

7.1.11 Model navigation

The modelling tool should provide
strong navigational support to allow a
developer to navigate through all the
diagrams and classes in the model. A
directory or pick list of classes sorted by
name is one way to allow a designer to
jump to the desired class on a diagram.

For large diagrams, the tool should
provide ease of navigation when
zooming and panning. The tool should
also allow ease of navigating to the
source code for a class when round-trip
engineering is being used.

7.1.12 Diagram views

The modelling tool should facilitate
customization of the view of a class and
its details. For instance, it should be
possible to exclude all get/set methods
from the diagram since they tend to
clutter, rather than clarify a diagram. The
full signature of methods should be
allowed to be shown or hidden easily,
depending on the level of detail desired.
The visibility of attributes and methods
(private, protected, public) should be
another dimension used to select what to
show or hide on the diagram.

S. M. Thomas 2004/05/23

 Page

11

7.1.13 Platform

In order to maximize an investment in a
modelling tool, one has to carefully
consider the platforms on which the tool
will run. Java's Swing user interface
allows cross-platform graphical user
interface (GUI). So if the UML tool is
built using a cross platform GUI, one
can look over the issue of platforms.

However, cross-platform tools need to
be supported on common platforms such
as Linux in order to achieve large-scale
adoption by programmers. Sun had
originally done little to promote Java on
Linux. But recent industry initiatives,
principally from IBM, which has
pledged broad-based support for Linux
on all of its hardware platforms and is
supporting the Apache/Jakarta project,
are now rapidly pushing Java onto
Linux. Perhaps because IBM has moved
to distribute its version of JDK 1.1.8 to
the major Linux vendors, Sun has been
compelled to support the distribution of
a fully functional JDK 1.2 (Java 2, with
Swing) for Linux. This Java port to
Linux has been largely accomplished
through the efforts of the Blackdown
Group [15]. So a tool developed on a
platform independent programming
environment, gives a user the freedom to
adopt any platform.

7.1.14 Multi-user Support

When working in a team oriented
environment it is essential that the tool
provides support for multiple users.
This support is generally required in the
form of multiple user access to the
development software, which in turn
requires users to be constrained by
predefined permissions. The changes
made by each user to a model should be
backed up and made available to the
next user.

7.1.15 UML Support

While many tools claim full support for
UML 1.3, in reality this is a complex
requirement and some tools may not live
up to advertised claims for full support.
At minimum, the diagrams which should
be supported are the Use-case, Class,
Collaboration, Sequence, Package, and
State diagrams.

7.1.16 Support for Language

This feature deals with the different
languages supported for code generation.
Some of the common languages that are
supported by tools include: JAVA, C++,
VC++, CORBA, ADA, J2EE, and C #,
Visual Basic.net, CORBA IDL and
Visual Basic 6

S. M. Thomas 2004/05/23

 Page

12

7.1.17 Installation

Installation of any tool should be fairly
easy and the tool should be up and
running without many problems. One
should be aware of all the prerequisites
before considering a tool. Some tools
require a database for use as a repository
and others require an application server.
It is essential to study the kind of
application you develop before selecting
a tool. Most of the prerequisites are open
source software.

7.1.18 Class Diagram Features

 Class box size flexibility
 Line flexibility
 Independent placement of association

end names
 Preservation of position of end names

and multiplicity labels
 Moderate binding of relationship lines
 Distinguish between remove from

diagram and delete from model
 Restoration of relationships in new

diagrams
 N-ary associations: An N-ary

association is an association among
three or more classifiers (a single
classifier may appear more than
once). Each instance of the
association is an n-tuple of values
from the respective classifier. A
binary association is a special case
with its own notation.

 Undo functionality for diagrams

 UML profiles (stereotypes and tagged
values): A UML profile is made up
of one or more “stereotypes” that
may have “tagged values” and
“constraints” [24]. Profiles are
sometimes referred to as the
‘lightweight’ built-in extension
mechanisms of UML, in contrast
with the ‘heavyweight’ extensibility
mechanism as defined by the Meta-
Object Family (MOF) specification.
This is because there are restrictions
on how UML profiles can extend the
UML metamodel [25]. These
restrictions are intended to ensure
that any extensions defined by a
UML profile are purely additive [6].

7.2. Other Features

7.2.1 Sequence Diagram Features

UML sequence diagrams model the flow
of logic within your system in a visual
manner, enabling you both to document
and validate your logic, and are
commonly used for both analysis and
design purposes. Sequence diagrams are
used to model the following:

1. Usage scenarios: A usage
scenario is a description of a
potential way your system is
used. This includes the basic
course and the alternate course.

2. The logic of methods: Sequence
diagrams can be used to explore

S. M. Thomas 2004/05/23

 Page

13

the logic of a complex operation,
function, or procedure.

3. The logic of service: A service
(web-services and business
transactions) is effectively a
high-level method, often one that
can be invoked by a wide variety
of clients. [17]

Sequence diagrams are the most popular
UML artefacts for dynamic modelling,
which focuses on identifying the
behaviour within your system. Therefore
it should be part of a UML tool.

7.2.2 Use-Case Diagram Features

Use-Case Diagrams can be used to
describe the functionality of a system in
a horizontal way. That is, rather than
merely representing the details of
individual features of your system, use-
case diagrams can be used to show all of
its available functionality. Use-Case
diagrams have 4 major elements: The
actors that the system you are describing
interacts with, the system itself, the use-
cases, or services, that the system knows
how to perform, and the lines that
represent relationships between these
elements. [26, 6, 5]

Hence a tool should support the basic
notations of a use-case diagram like
actors, include, extends etc.

7.2.3 Support Robustness
Diagrams

In this research project the ICONIX
methodology is used as the process for
designing. One of the steps in this
process is to draw robustness diagrams.
Some tools do not support the different
notations in the robustness analysis. This
may not be an essential feature but for
companies that use these methodologies
as one of their standards one should take
this feature into consideration.

When considering this feature one
should analyse the following: the tools
support the notations used to represent
the types of stereotypes, the rules and
constraints applied while drawing the
diagrams.

8. Case Study: Juke Box

The application chosen for the design is
a fairly complex one, covering the
prominent features of object oriented
methodology like associations,
generalisation, inheritance etc. The
application chosen will be an automated
jukebox, which incorporates user
interfaces, storing, and retrieving data
from a database, an administration
interface, which allows future
enhancements to the system, and also an
interface with other systems like a

S. M. Thomas 2004/05/23

 Page

14

cashbox.

The example chosen is to develop
software for a digital jukebox. The logic
of the overall system is summarised as
follows:

 Its external construction consists of
a case containing a display screen
with outputs to an audio amplifier
and input from a track-ball. There is
a cash box, which is a separate unit.
It accepts, validates and counts coins
but cannot give change. The music is
stored in the database with all the
details of track and its cost. The
display screen displays the list of
tracks and the trackball highlights
one item from the list of tracks. A
request for payment is made. Then
the selected song is played. For
administrative purposes the user
should be allowed to enter data and
produce usage reports. A detailed
description of this example is given
in the reference [12].

This jukebox application will be taken
through the complete process of an end–
to–end application. A software
application that goes through a whole
Software Development Life Cycle
(SDLC) process is called an end-to-end
application.

9. Evaluation methodology

9.1 Evaluation Using Case Study

The case study described in section 8
will be used to do the evaluation. The
example was studied. After laying down
the requirements a design was
developed. The same design was
repeated on each tool. Hence this helps
to understand and compare how each
tool handles the development of the
same application design. Then the code
generation is done on each tool from the
respective design. In this area we can
compare the different tools by testing the
different features in round trip
engineering. Some of these include:

 The code generation set up
 The readability of the code

generated by including
comments.

 Reverse engineering set up.
 Feasibility to do reverse

engineering.

In the code generated, the business logic
is implemented for the operations and
tested to produce a working prototype.
The implementation is done in JAVA.
The research concentrates more on the
evaluation of the UML tools hence only
part of the prototype is developed. Since
the UML tool only generates a skeletal

S. M. Thomas 2004/05/23

 Page

15

code for the user, the business logic
plugged in by the user does not play a
critical role in the evaluation.

9.2 Evaluation Process

The set of features was drawn up and
defined. Each feature is defined clearly
so as to eradicate duplication of features
and definition of these features. It also
clearly sets a boundary around each
feature. Each feature can be further
divided into sub features. For example
consider the feature “round trip
engineering”. This can be subdivided as
shown in Table 8.1

 Features Sub-Features

 ROUND TRIP
 ENGINEERING

• Code Generation
• Reverse

Engineering
• Synchronization

 With Editor

Table 8.1 Example of subdivision
 of a feature.

The evaluation is done using a “rating
system” where a weighting is given for
each feature and a rating is given based
on the tool. The weighting for each sub-
feature is fixed, based on the
significance and the importance of each
of the features when compared with the
rest of the sub-features. This prevents
some tools from scoring a higher value

for a feature, which is not essential. If a
feature is absolutely essential then it is
assigned a 3. If the feature pleases the
eye yet it is not significant in terms of
production then it is given a 1. The
weightings given to the features in this
research are based on what was felt to be
significant. This judgement was based
on extensive literature survey,
complaints from forums and discussion
with users. The weightings are shown in
Table 8.2

Nice to have
Feature

Good
Feature

Essential
Feature

1

2

3

Table 8.2

The ratings for the features are given
based on how well the functionality is
implemented, for each tool chosen. If a
feature is poorly implemented then it is
assigned one but if it is implemented
well then it gets a three. For example
consider the feature “The class box
flexibility”. In some tools this feature is
there yet it does not serve the purpose
where, it should reveal all the attributes
and methods on increasing the size. This
is a poor implementation and it is
assigned a one. Figure 8.3 shows the
score for the ratings.

S. M. Thomas 2004/05/23

 Page

16

Figure 8.3

The product of the weighting and rating
is calculated for each feature and the
total sum of the products gives the final
score for each tool. This can be
summarised into the following formula:

Score for a tool =
∑ (weighting of
 each feature × rating of tool for
 that feature)

9.3 Evaluation of Tools

The tools chosen for evaluation are
ArgoUML v0.14, MasterCraft for JAVA
v6.0, Rational Rose Enterprise Edition
2001A.04.00, Together Control Center
v6.1. ArgoUML is an open source
software while the other three are
commercial softwares. MasterCraft is a
UML based Component Modeller and it
uses a Repository-driven development
process [19]. Rational Rose supports two

elements of modern software
engineering: component based
development and controlled iterative
development [20]. Together is another
product which is as popular in industry
as Rational Rose. In all these modeling
tools code generation can be done in
JAVA.

The evaluations for each tool are shown
below. The weightage is given to
prioritize the features. The values are
given based on the author’s experiences
with the tools. The matrix given in Table
9.1 could be used as an evaluation tool
to compare any set of UML tool. The
tool has the following headers: Features,
Weightings and list of UML Tools used
for comparison. The Features listed are
indispensable in any UML tool. The
weightings given for each feature could
be prioritised according to the user’s
priority list. And finally a set of UML
tools can be used for comparison. This
can be done by plugging in quantitative
values and calculating the highest score.

S. M. Thomas 2004/05/23

 Page

17

Features
Weighti
ngs

Rational
Rose

Argo
UML Together

Master
Craft

Repository:

database 2 1 2 1 3

Customization:

Components and
tools 2 3 1 2 1

HTML
documentation:

Generate Web
Reports: 3 2 1 3 2

Save diagrams to
include in reports 3 3 1 3 3

Usability:

First Contact: 2 3 3 2 1

Ease of use: 3 2 3 3 2

Pick List:

Pick list of the classes
in the model while
drawing. 2 3 1 1 1

Tree structure in a
pane where all the
classes can be
viewed. 3 3 3 3 3

Select methods to
draw sequence or
collaboration
diagram. 3 2 1 3 3

Drag and drop 3 3 3 3 3

S. M. Thomas 2004/05/23

 Page

18

Features
Weighti
ngs

Rational
Rose

Argo
UML Together

Master
Craft

Interface
Presentation

Allows changing the
font and size of labels
on diagrams. 3 3 1 3 3

States are visibly
distinct 2 3 2 2 2

Documentation and
help files

step by step
documentation 3 3 2 3 2

Online help 2 3 1 3 1

Keyword search
facilities 3 1 1 1 1

Short – cut keys 1 1 1 1 1

Printing Support:

Fit diagram to a
single page 3 3 3 3 2

Print preview 3 3 1 3 3

Scaling functionality 3 2 1 3 1

Exporting
Diagrams:

Save diagrams any
picture editor format: 3 3 1 3 3

XMI format: 2 3 3 3 3

Robustness:

S. M. Thomas 2004/05/23

 Page

19

Features
Weighti
ngs

Rational
Rose

Argo
UML Together

Master
Craft

Does tool crash or
corrupt diagrams: 3 2 3 3 3

Automatic saving at
periodic intervals: 1 1 1 3 1

New Releases:

Any New version
releases announced: 3 3 1 2 3

Round Trip
Engineering:

Code generation: 3 3 3 3 3

Reverse engineering: 3 3 2 3

Synchronization with
editor: 2 1 3 3 2

Model navigation:

 Zooming and
panning: 3 3 1 3 3

Navigating between
source code and
diagram: 2 1 2 3

Diagram views:

Customizing details
of classes: 3 3 3 2 2

Reveal and hide
methods: 3 2 1 2 2

Visibility of methods
and attributes: 3 3 3 3 3

S. M. Thomas 2004/05/23

 Page

20

Features
Weighti
ngs

Rational
Rose

Argo
UML Together

Master
Craft

UML support:

Key Notation parts

 Use-case diagrams 3 2 3 3 3

 Class diagrams 3 3 3 3 3

 Sequence diagrams 3 3 1 3 3

 Collaboration
diagrams 3 3 3 3 3

 State diagrams 3 3 3 3 3

 Activity diagrams 3 3 3 3 3

 Component
diagrams 3 1 1 3 1

 Deployment
diagrams 3 1 3 3 3

 Package diagrams 3 3 1 1 3

Class box size
flexibility 3 3 3 2 2

Line flexibility 2 3 3 2 2

Independent
placement of
association end
names 3 3 3 3 3

Independent
placement of
multiplicity labels 3 3 3 3 3

 Preservation of
position of end names
and multiplicity
labels 3 3 1 3 3

Distinguish between
remove from diagram
and delete from 3 3 3 1 3

S. M. Thomas 2004/05/23

 Page

21

Features
Weighti
ngs

Rational
Rose

Argo
UML Together

Master
Craft

model

Restoration of
relationships in new
diagrams 3 3 1 3 2

N-ary associations 3 3 3 3 3

undo functionality for
diagrams 2 1 1 3 3

UML profiles
(stereotypes and
tagged values) 2 3 1 2 2

Total Score 352 279 359 328

 Table 9.1 Evaluation of tools with ratings

10. Conclusions and Observations

The evaluation technique provides an
efficient means of isolating both the
positive and negative features of UML
tools. From a business point of view cost
and time are some of the major concerns
in a software industry. Tools do play a
role in the development of cost effective
software. Any user should feel
comfortable and confident in the tool he
uses. Above all, tools are used to make
the job easier. All these aspects make it
worthwhile to invest time and effort to
assess the tools before choosing the right
tool.

The four tools evaluated and rated were
ArgoUML, Master Craft, Rational Rose,
and Together. The table 10.1 presents a
summary of the final score obtained for
each tool.

 Table 10.1

These tools are evaluated considering

S. M. Thomas 2004/05/23

 Page

22

only the technical aspects and they
involve the author’s experience with the
tools, while designing and implementing
the jukebox example. The ratings and
weighting of these tools are also judged
based on the author’s findings on these
tools. Discussions with users, comments
in forums have also been a factor in
studying and coming to conclusion on
these tools. Non- technical aspects are
not part of the evaluation tool.

The matrix given in Table 9.1 could be
used as an evaluation tool to compare
any set of UML tool. The tool has the
following headers: Features, Weightings
and list of UML Tools used for
comparisons. The Features listed are
indispensable in any UML tool. The
weightings given for each feature could
be prioritised according to the user’s
priority list. And finally a set of UML
tools can be used for comparison. This
can be done by plugging in quantitative
values and calculating the highest score.

11. Future Improvements

Principles of Software, though new to
the industry has improved and advanced
immeasurably. Software is so complex
and as it grows it tends to be even more
complex and difficult to maintain.

The evaluation criteria can be modified

further. Software is now built at multi-
site and with multiple users. Issues like
authentication, change control,
robustness of saving data, version
control etc. are important sub-features in
this feature. These could be investigated
further with the example implemented.
Only part of the example has been
implemented in this research due to time
constraints. This example could be
implemented further to be a complete
example.

The XML Metadata Interchange Format
[XMI] standard from the Object
Management Group (OMG) [20], is one
of the most exciting recent developments
in the UML developer community. XMI
is an interchange format, which has the
potential to finally allow seamless
sharing of models between best-of-breed
development tools [15]. XMI uses XML
to represent model information. During
iterative development of a model, it is
very productive to look at the UML
diagram and matching source code in
adjacent windows. When your project
starts to mature, it may be good to have
access to the metrics for your model.
These are some of the features that
vendors are trying to incorporate into
their product and should indubitably be
part of the evaluation criteria.

S. M. Thomas 2004/05/23

 Page

23

12. References

[1] Comparison of UML Modeling

Tools: Enterprise Architect and
Rational Rose,
http://consulting.dthomas.co.uk/ooad
_articles_resources/Comparison_of_
UML_Modelling_Tools.pdf last
accessed on 19 October 2003.

[2] Vliet, H.V. Software Engineering

Principles and practices, ISBN 0-
471-97508-7, John Wily & Sons
Ltd, New York, 2000.

[3] The Systems Development
 Life Cycle,

http://www.muskalipman.com/VBO
bjects/SDLC.pdf last accessed on

 11 December 2003.

[4] Software Design Principles,

http://cs.wwc.edu/~aabyan/Design/so
ftwareDesign.html last accessed on
29 November 2003.

[5] Introduction to OMG's Unified
Modelling Language™ (UML™),
http://www.omg.org/gettingstarted/w
hat_is_uml.htm last accessed on 19
October 2003.

[6] OMG Unified Modeling Language
Specification,
http://www.omg.org/docs/formal/01-
09-67.pdf last accessed on 19
October 2003.

[7] UML- a tutorial,

http://ranger.uta.edu/~alp/cse5330/U
ML/uml_tutorial.pdf last accessed
on 21 October 2003.

[8] UML tutorial,

http://www.geocities.com/sriskant
haverlk/UML_tutorial.pdf last
accessed on 21 October 2003.

[9] Deitel, H. M., Deitel P. J., JAVA

How To Program, ISBN 0-13-
0345151-7 Prentice Hall, New
Jersey, 2001.

[10] Iconix Process, http://c2.com/cgi-

bin/wiki?IconixProcess last accessed
on 4 November 2003.

[11] The ICONIX Process

http://dept.ee.wits.ac.za/~slevitt/elen
533/ICONIX.pdf last accessed on 4
November 2003.

[12] Prof. B. Dwolatzky, Notes on

Software Design Process,
 University of Witwatersrand, 2003

S. M. Thomas 2004/05/23

 Page

24

[13] Advanced Tools for UML: now and
in the future,
http://www.dcs.ed.ac.uk/home/pxs/
uml2000.pdf last accessed on 21
October 2003.

[14] Building a UML Editing Tool,

http://216.239.57.104/search?q=ca
che:k7OJj5WZU-
IJ:www.itee.uq.edu.au/~comp6801
/project-
components/BrettCampbell.pdf++
OMG%22UML+Tools%22+%22E
valuation+Criteria+%22&hl=en&i
e=UTF-8 last accessed on 19
October 2003.

[15] Objects by Design: Choosing a

UML Modelling Tool,
http://www.objectsbydesign.com/t
ools/modeling_tools.html last
accessed on 21 October 2003.

[16] Chapter 4: Software: Systems and

Application Software
http://66.102.11.104/search?q=cac
he:5eYY16G7pl8J:www.csus.edu/i
ndiv/v/velianitis/175/Chapter4Soft
ware.ppt+%22types+of+software%
22+like+open+source,+off+the+sh
elf&hl=en&ie=UTF-8 last
accessed on 16 March 2004

[17] UML 2 Sequence Diagram

Overview
http://www.agilemodeling.com/arti

facts/sequenceDiagram.htm last
accessed on 17 March 2004

[18] All about Sequence Diagrammes

http://www.lindesay.co.nz/manuals
/SequenceSketcherHelp/whatare.ht
ml last accessed on 17 March
2004.

[19] MasterCraft java ,

http://www.tatamastercraft.com/downl
oads/JavaFlier.pdf last accessed on
19-Feb-2004.

[20] Case: Rational Rose 81940 A

Seminar on Reverse Engineering,
Software Systems Laboratory,
Tampere University of Technology
Fall, 2000,
http://www.cs.tut.fi/~tsysta/sem/Re
ports/Rose.pdf last accessed on 20
March 2004.

[21] Software Development,
 http://www-
306.ibm.com/software/awdtools/lib
rary/standards/ last accessed on 19
March 2004.

[22] Martin J., Odell J. J., Object

Oriented analysis and design,
ISBN: 0-13-630245-9, PTR
Prentice Hall, New Jersey, 1992.

[23] Use-case Driven Object Modeling

with UML
http://pst.web.cern.ch/PST/HandBo
okWorkBook/Handbook/Software
Engineering/UCDOM_summary.ht
ml last accessed on 19 March
2004.

S. M. Thomas 2004/05/23

 Page

25

[24] Enterprise Architect 3.10 - UML

Profile XML File Format
Information
http://www.sparxsystems.com.au/p
rofile/UML_Profile_Information.p
df last accessed on 20 March 2004.

[25] Comparing UML 1.4/1.5 and 2.0

http://66.102.11.104/search?q=cac
he:2cfOUiO-
O_YJ:cs.ua.edu/630/Notes/2003-
02-
06/UML%2520Presentation%2520
Note.doc+Profiles+are+sometimes
+referred+to+as+the+lightweight&
hl=en&ie=UTF-8
last accessed on 19 March 2004.

[26] UML Use-case Diagrams: Tips and
FAQ
http://www.andrew.cmu.edu/cours
e/90-754/umlucdfaq.html last
accessed on 19 March 2004.

S. M. Thomas 2004/05/23

 Page

5

DISCUSSION AND CONCLUSION

The evaluation technique in this research work provides an efficient

means of isolating both the positive and negative features of UML

tools. From a business point of view cost and time are some of the major

concerns in a software industry. From the early ages, tools have always

played a role in aiding man to get his work done smoothly and efficiently.

Tools do play a role in the development of cost effective software. Any user

should feel comfortable and confident in the tool he uses. Above all, tools

are used to make the job easier. All these aspects make it worthwhile to

invest time and effort to assess the tools before choosing the right tool.

The four tools evaluated and rated in this research work were ArgoUML,

Master Craft, Rational Rose, and Together. Though ArgoUML has the least

score it is open source software while other tools come with a high cost.

The table 3 draws up a summary of the final score obtained for each tool.

Table 3 Total score from the evaluation of tools

These tools are evaluated based only on the technical aspects. The value

given for each feature and tool is based on my experience with the tools,

while designing and implementing the jukebox example. The ratings and

weighting of these tools are also judged based on my findings in these

S. M. Thomas 2004/05/23

 Page

6

tools. Discussions with users, comments in forums have also been a factor

in studying and coming to conclusion on these tools. The evaluation tool

emphasizes on the technical features in a UML tool. These technical

features are mainly functional and usability issues. Non-technical aspects

such as cost, training, local support, availability of resource and

developmental environment, are not part of the comparison matrix

because it is beyond the scope of this project report.

This research report is unique by presenting an evaluation tool / matrix

[Appendix VI] to compare any set of UML tool. The tool has the following

headers: Features, Weightings, UML Tools used for comparisons. The

Features listed are indispensable in any UML tool. The weightings given

for each feature could be customised according to the user’s priority list.

And finally a set of UML tools can be used for comparison. This can be

done by plugging in quantitative values and calculating the highest score.

Software, though new to the industry has improved and advanced

immeasurably. Software is so complex and as it grows it tends to be even

more complex and difficult to maintain. Hence it was realised that there

was a crisis in software. Acquiring all the user requirements is an

important factor. Yet one has to capture all these requirements in the

design. Further your design should cater for possible, future improvements

in the system. Hence your design is not a fixed blue print of your system

but it should be improved and maintained with new enhancements. This

maintenance has to be done even after the original programmers of the

system have moved to the next project.

The evaluation criteria can be modified further. Software is now built at

multi-site and with multiple users. Issues like authentication, change

S. M. Thomas 2004/05/23

 Page

7

control, robustness of saving data, version control etc. are important sub-

features in this feature. These could be investigated further with the

example implemented. Only part of the example has been implemented in

this research due to time constraints. This example could be implemented

further to be complete example.

The XMI standard from the Object Management Group (OMG) is one of

the most exciting recent developments in the UML developer community.

XMI is an interchange format which has the potential to finally allow

seamless sharing of models between best-of-breed development tools [15].

During iterative development of a model, it is very productive to look at the

UML diagram and matching source code in adjacent windows. When your

project starts to mature, it may be good to have access to the metrics for

your model. These are some of the features that vendors are trying to

incorporate into their product and should indubitably be part of the

evaluation criteria.

Other new features that could be included in the tools could be

• Management tools: A nice feature that should be integrated with

modelling tools is the ability to export modelling information into a tool

that will allow you to track the progress of both the design and

implementation of your project.

• Auto generation of interaction and state diagrams: This

function is the ability for modelling tools to help in the generation of

interaction and state diagrams. This could be achieved using a trace file.

Once the trace file is created, the modelling tool would be used to

analyze the trace in order to find the patterns of object interactions.

S. M. Thomas 2004/05/23

 Page

8

REFERENCES \BIBLIOGRAPHY

[1] Comparison of UML Modelling Tools: Enterprise Architect and

Rational Rose,

http://consulting.dthomas.co.uk/ooad_articles_resources/Comparison

_of_UML_Modelling_Tools.pdf last accessed on 19 October 2003.

[2] Vliet, H.V. Software Engineering Principles and practices, ISBN 0-471-

97508-7, John Wily & Sons Ltd, New York, 2000.

[3] The Systems Development

 Life Cycle, http://www.muskalipman.com/VBObjects/SDLC.pdf last

accessed on 11 December 2003.

[4] Software Design Principles,

http://cs.wwc.edu/~aabyan/Design/softwareDesign.html last accessed

on 29 November 2003.

[5] Introduction to OMG's Unified Modelling Language™ (UML™),

http://www.omg.org/gettingstarted/what_is_uml.htm last accessed on

19 October 2003.

[6] OMG Unified Modelling Language Specification,

http://www.omg.org/docs/formal/01-09-67.pdf last accessed on 19

October 2003.

S. M. Thomas 2004/05/23

 Page

9

[7] UML- a tutorial,

http://ranger.uta.edu/~alp/cse5330/UML/uml_tutorial.pdf last

accessed on 21 October 2003.

[8] UML tutorial,

http://www.geocities.com/sriskanthaverlk/UML_tutorial.pdf last

accessed on 21 October 2003.

[9] Deitel, H. M., Deitel P. J., JAVA How To Program, ISBN 0-13-0345151-

7 Prentice Hall, New Jersey, 2001.

[10] Iconix Process, http://c2.com/cgi-bin/wiki?IconixProcess last

accessed on 4 November 2003.

[11] The ICONIX Process

http://dept.ee.wits.ac.za/~slevitt/elen533/ICONIX.pdf last accessed

on 4 November 2003.

[12] Prof. B. Dwolatzky, Notes on Software Design Process,

 University of Witwatersrand, 2003

[13] Advanced Tools for UML: now and in the future,

http://www.dcs.ed.ac.uk/home/pxs/uml2000.pdf last accessed on

21 October 2003.

S. M. Thomas 2004/05/23

 Page

10

[14] Building a UML Editing Tool,

http://216.239.57.104/search?q=cache:k7OJj5WZU-

IJ:www.itee.uq.edu.au/~comp6801/project-

components/BrettCampbell.pdf++OMG%22UML+Tools%22+%22Ev

aluation+Criteria+%22&hl=en&ie=UTF-8 last accessed on 19 October

2003.

[15] Objects by Design: Choosing a UML Modelling Tool,

http://www.objectsbydesign.com/tools/modeling_tools.html last

accessed on 21 October 2003.

[16] Introduction to ArgoUML,

http://216.239.59.104/search?q=cache:QAQHdNCZruMJ:www-

serl.cs.colorado.edu/downloads/serl-talks/2002.02.11-

ArgoUML.pdf+ARGOUML+features&hl=en&ie=UTF-8 last accessed

on 22-Feb-2004

[17] ArgoUML User Manual, A tutorial and reference description of

ArgoUML,

http://www.ime.montana.edu/~emooney/ime534/ArgoUML-docs-

0.10/manual/index.html last accessed on 22-Feb-2004.

[18] Case Tools Compared Crisis Management, Frank Haubenschild

http://www.linux-magazine.com/issue/11/CASE_Tools.pdf last

accessed on 22-Feb-2004.

S. M. Thomas 2004/05/23

 Page

11

[19] Using Rose Rational Rose®, http://aris.fri.uni-

lj.si/~damjan/RIS_vaje/Rose_usingrose.pdf last accessed on 22-Feb-

2004.

[20] Rational Rose, http://c2.com/cgi/wiki?RationalRose , last accessed

on 19-Feb-2004.

[21] MasterCraft: the Lifecycle Development Tool

 http://www.omg.org/mda/mda_files/MasterCraftMDAV.pdf, last

accessed on 19-Feb-2004.

[22] JAVA 2 Complete , Sybex San Francisco, ISBN - 0-7821-2468-2 ,1999,

[23] CDROM, Inside unified Modelling language, Rational software

Corporation 2002.

[24] Eichelberger H., Nice Class Diagrams Admit Good Design , Software

Visualization Proceedings of the 2003 ACM symposium on Software

visualization, http://delivery.acm.org/10.1145/780000/774857/p159-

eichelberger.pdf?key1=774857&key2=3665077701&coll=GUIDE&dl=

ACM&CFID=14628654&CFTOKEN=73897503

 last accessed on the 23-Feb-2004.

[25] Tutorial: Importing and exporting data from a text,

filehttp://info.borland.com/techpubs/jbuilder/jbuilder9_bea/databas

e/textimportexport/textfileimportexport_tutorial.html

 last accessed on the 20-Feb-2004.

S. M. Thomas 2004/05/23

 Page

12

[26] 5 CASE Tools, http://uml.tutorials.trireme.com/uml_tutorial_5.htm

last accessed on the 20-Feb-2004.

[27] MasterCraft java ,

http://www.tatamastercraft.com/downloads/JavaFlier.pdf last

accessed on 19-Feb-2004.

[28] Tutorial MasterCraft Enterprise 6.0 JAVA for Windows, Tata

Consultancy Services, Pune .

[29] Grand M., Knudsen J., JAVA Fundamental Classes, O’Reilly &

Associations, ISBN 1-56592-241-7, 1997.

[30] Bishop J., Java Gently, Third edition, Addison Wesley,

ISBN - 0 201 71050 1 , 2001.

[31] Objects by Design: Choosing a UML Modelling Tool,

http://www.objectsbydesign.com/tools/modeling_tools.html last

accessed on 21 October 2003.

[32] Chapter 4: Software: Systems and Application Software

http://66.102.11.104/search?q=cache:5eYY16G7pl8J:www.csus.edu/i

ndiv/v/velianitis/175/Chapter4Software.ppt+%22types+of+software

%22+like+open+source,+off+the+shelf&hl=en&ie=UTF-8 last

accessed on 16 March 2004

[33] UML 2 Sequence Diagram Overview

http://www.agilemodeling.com/artifacts/sequenceDiagram.htm last

accessed on 17 March 2004

S. M. Thomas 2004/05/23

 Page

13

[34] All about Sequence Diagrams

http://www.lindesay.co.nz/manuals/SequenceSketcherHelp/whatare.

html last accessed on 17 March 2004.

[35] Fowler M., UML Distilled- A Brief guide to standard object modelling

language, Third Edition, ISBN –032- 19368-7, Pearson Edition , 2004.

[36] Case: Rational Rose 81940 A Seminar on Reverse Engineering,

Software Systems Laboratory, Tampere University of Technology

Fall, 2000, http://www.cs.tut.fi/~tsysta/sem/Reports/Rose.pdf last

accessed on 20 March 2004.

[37] Software Development,

http://www-306.ibm.com/software/awdtools/library/standards/ last

accessed on 19 March 2004.

[38] Martin J., Odell J. J., Object Oriented analysis and design, ISBN: 0-

13-630245-9, PTR Prentice Hall, New Jersey, 1992.

[39] Cook S., David J., Designing Object Systems – Object Oriented

Modelling with Syntropy, ISBN: 1-13-203860-9, Prentice Hall, 1994.

[40] Enterprise Architect 3.10 - UML Profile XML File Format Information

http://www.sparxsystems.com.au/profile/UML_Profile_Information.

pdf last accessed on 20 March 2004.

S. M. Thomas 2004/05/23

 Page

14

[41] Comparing UML 1.4/1.5 and 2.0

http://66.102.11.104/search?q=cache:2cfOUiO-

O_YJ:cs.ua.edu/630/Notes/2003-02-

06/UML%2520Presentation%2520Note.doc+Profiles+are+sometime

s+referred+to+as+the+lightweight&hl=en&ie=UTF-8

last accessed on 19 March 2004.

[42] Use-case Driven Object Modelling with UML

http://pst.web.cern.ch/PST/HandBookWorkBook/Handbook/Softwa

reEngineering/UCDOM_summary.html last accessed on 19 March

2004.

[43] User Guide for Together Control Center™ and Together® Solo,

Downloadable at http://www.togethersoft.com/download/license.do

or Together Control Center installation CDROM Version 6.1, last

accessed on 01 April 2004.

[44] Accelerate Your Productivity, Borland® Together® Control Center®
Technical Overview,
http://www.borland.com/together/pdf/tgr61_controlcenter_techview
.pdf, last accessed on 21 February 2004.

[45] Accelerate Your Productivity, Borland® Together® Control Center®

Features Overview,

http://www.borland.com/together/pdf/tgr61_controlcenter_datashe

et.pdf, last accessed on 21 February 2004.

S. M. Thomas 2004/05/23

 Page

15

[46] MasterCraft Enterprise 6.0 JAVA Roles Overview, MasterCraft Group,

TATA Consultancy Services, Pune.

[47] User Manual, MasterCraft Enterprise 6.0 JAVA for windows,

MasterCraft Group, TATA Consultancy Services, Pune.

[48] Training Manual, MasterCraft Enterprise 6.0 JAVA for windows,

MasterCraft Group, TATA Consultancy Services, Pune.

[49] Introduction to UML 1.3, MasterCraft Group, TATA Consultancy

Services, Pune.

[50] UML Case Study 2, MasterCraft Group, TATA Consultancy Services,

Pune.

[51] MasterCraft Enterprise 6.0 JAVA Overview, MasterCraft Group, TATA

Consultancy Services, Pune.

[52] MasterCraft Enterprise 6.0 JAVA Analysis Overview_ 1 , MasterCraft

Group, TATA Consultancy Services, Pune.

[53] MasterCraft Enterprise 6.0 JAVA Component Overview, MasterCraft

Group, TATA Consultancy Services, Pune.

[54] MasterCraft Enterprise 6.0 JAVA Construction Overview _1,

MasterCraft Group, TATA Consultancy Services, Pune.

[55] MasterCraft Enterprise 6.0 JAVA Construction Overview _2,

MasterCraft Group, TATA Consultancy Services, Pune.

S. M. Thomas 2004/05/23

 Page

16

[56] MasterCraft Enterprise 6.0 JAVA Design Overview _1, MasterCraft

Group, TATA Consultancy Services, Pune.

[57] MasterCraft Enterprise 6.0 JAVA Design Overview _2, MasterCraft

Group, TATA Consultancy Services, Pune.

[60] MasterCraft Enterprise 6.0 JAVA GUIMod Overview _1, MasterCraft

Group, TATA Consultancy Services, Pune.

[61] MasterCraft Enterprise 6.0 JAVA GUIMod Overview _2, MasterCraft

Group, TATA Consultancy Services, Pune.

[62] MasterCraft Enterprise 6.0 JAVA JAVA_1, MasterCraft Group, TATA

Consultancy Services, Pune.

[63] MasterCraft Enterprise 6.0 JAVA JAVA_2, MasterCraft Group, TATA

Consultancy Services, Pune.

[64] MasterCraft Enterprise 6.0 JAVA Q++_1, MasterCraft Group, TATA

Consultancy Services, Pune.

[65] MasterCraft Enterprise 6.0 JAVA Q++_2, MasterCraft Group, TATA

Consultancy Services, Pune.

[66] MasterCraft Enterprise 6.0 JAVA Version Control Overview,

MasterCraft Group, TATA Consultancy Services, Pune.

[65] MasterCraft Enterprise 6.0 JAVA Release Overview, MasterCraft

Group, TATA Consultancy Services, Pune.

S. M. Thomas 2004/05/23

 Page

17

[66] MCE Java 6.0 Help, MasterCraft CDROM, MasterCraft Group, TATA

Consultancy Services, Pune.

[67] Programmer’s Guide, Q++ for MasterCraft Enterprise 6.0 JAVA for

windows, MasterCraft Group, TATA Consultancy Services, Pune.

[68] Martin R.C., UML Tutorial: Part1 – A Class Diagrams last accessed on

11 – Dec – 2003.

[69] Perdita S., Small-Scale XMI Programming: A Revolution in UML

Tool Use? http://www.dcs.ed.ac.uk/home/pxs/xmiImpact.pdf last

accessed on 11 – Dec – 2003.

[70] Developing database applications, Borland JBuilder, http://ftp.vc-

graz.ac.at/ftp.tu-graz.ac.at/jbuilder/techpubs/jbuilder9/database.pdf

last accessed on 11 – Dec – 2003.

[71] The Java Tutorial, http://java.sun.com/docs/books/tutorial/ last

accessed on 16– Apr–2003.

[72] Eckels B., Thinking in Java Second ed. Revision 12, Prentice Hall, New

Jersey, ISBN: 0-13-027363-5, 2000.

S. M. Thomas 2004/05/23

 Page

18

APPENDIX I

END-TO-END APPLICATION

 A CASE STUDY

S. M. Thomas 2004/05/23

 Page

19

Table of Contents

1.1 Introduction .. 20

1.2End-to-End Application .. 20

1.3Application Chosen for Study.. 22

1.3.1 Description.. 22

1.3.2 Design ... 23

1.3.2.1 ICONIX Process ... 23

1.3.2.2 Case Study – Jukebox .. 25

1.4Conclusion ... 37

List of Figures ... 38

List of Tables... 39

S. M. Thomas 2004/05/23

 Page

20

1.1 Introduction

A fairly complex system was chosen for the implementation and study of

the UML tools. This section tries to define an end-to-end application. Then

it takes the reader through the techniques and steps for designing the

system providing sufficient examples. A brief description of the ICONIX

process is given.

1.2 End-to-End Application

When building a bridge, the construction group does not start , by piling up

bricks. Rather the requirements are analysed by taking into account factors

like purpose of the bridge, type of transport it accommodates, finances,

environment, expansion that could be made in the future to the bridge. The

architect puts these factors into his design while designing. This design is

analysed and agreed upon before the construction begins.

Constructing large, growing software systems is very similar to building a

bridge yet with its own uniqueness. The problem to solve is first analysed

and the requirements are defined in a very precise way. Then a design is

made based on these requirements. Finally the construction process is

started. There are a distinguishable number of phases in the development

of software. The different phases in an SDLC are Requirements

Engineering, Design, Implementation, Testing and Maintenance [2].

S. M. Thomas 2004/05/23

 Page

21

Figure 1.1 A simple of view of a software development life cycle [2]

We define an end-to-end process to be a complete Software Development

Life Cycle (SDLC) process. And an application developed by stepping

through all the phases in the development of software can be defined as an

end-to-end application.

Problem

Requirements
Specification

Program

Working program

Design
Specification

Requirements engineering

Design

Implementation

Testing

Maintenance

S. M. Thomas 2004/05/23

 Page

22

1.3 Application Chosen for Study

1.3.1 Description

The example chosen is to develop software for a digital jukebox. This

example deals with a user interface a specialised hardware. Its external

construction consists of a case containing a display screen with outputs to

an audio amplifier and input from a track-ball.

There is a cash box which is a separate unit. It accepts, validates and counts

coins but cannot give change. The music is stored in the database with all

the details of track and its cost. The display screen displays the list of tracks

and the trackball highlights the one item from the list of tracks. A request

for payment is made. Then the selected song is played. For administrative

purposes the user should be allowed to enter data and produce usage

reports. A detailed description of this example is given in the reference

[12].

The jukebox system was developed using the object oriented technology.

The Unified Modelling Language, an OMG standard since1997, is a

visualizing language for the modelling and development of software

systems [5, 6]. The UML language has a set of diagram types and notations

to represent the different concepts of object oriented programming. The

main nine types of diagrams are: Class Diagram, Component Diagram,

Deployment diagram, Use-case Diagram, Sequence Diagram, Activity

Diagram, Collaboration Diagram, Statechart Diagram, Package diagrams.

The notion used to represent concepts like generalisation, aggregation,

inheritance etc. are explained in detail (see reference [6]).

S. M. Thomas 2004/05/23

 Page

23

1.3.2 Design

1.3.2.1 ICONIX Process

Unified modelling language, on its own is not sufficient to be used for

designing of software. UML by itself is just a modelling language with

notations and representation. But these notation and techniques can be

optimised by using methodologies, tools, processes and guide lines for the

design. The process used for this design is ICONIX process. This

methodology was created by Doug Rosenberg. ICONIX uses robustness

analysis as a bridge between use-cases (or Domain Model) and the code

[10]. This methodology assumes an Object Oriented decomposition of the

domain and it is use-case driven.

The diagram [Fig 1.2] below explains the ICONIX process. It consists of

two parts: dynamic and static. The dynamic part includes the use-case

diagram, robustness diagram and the sequence diagram. [11, 12]

S. M. Thomas 2004/05/23

 Page

24

 Figure 1.2 The ICONIX process [42]

Apart from guiding a designer through a sequence of diagrams the ICONIX

process also contains a number of mile stones, which are steps at which the

progress is reviewed. The different steps in the ICONIX process are:

Step 1: Informal statement of GUI & Prototype GUI

Step 2: Domain Modelling

 Step 3: Use-case Modelling

 Step 4: Requirements Review

 Step 5: Robustness Analysis

S. M. Thomas 2004/05/23

 Page

25

 Step 6: Preliminary Design Review

 Step 7: Sequence Diagram

 Step 8: Class Diagram

 Step 9: Critical Design Review

 Step10: Delivery

1.3.2.2 Case Study – Jukebox

Note: For detailed information on the design see reference [12].

Case Study: Informal statement of Problem & Prototype GUI

In the case study the Jukebox example is used along with the ICONIX

process to bring forth a design for the application. Due to time constraints

part of the design is implemented in an object oriented language JAVA. In

the explanation given below examples are shown for each step to give a

better understanding of how each step is achieved.

The example chosen for the study is a standard application for the

evaluation. This application is to develop software for a jukebox.

S. M. Thomas 2004/05/23

 Page

26

Informal Statement

Figure 1.3 Informal statement of the problem domain [12]

An equipment supplier to the entertainment industry has hired you to

develop software for a digital jukebox. They have developed the

specialised hardware. Its external construction consists of a very robust

case containing a 14" display screen (like a PC monitor), outputs to an

audio amplifier, a tracker-ball input device with a single select button,

and a cash box.

a) The cash box is a separate unit which accepts, validates and counts

coins. It does not give change. The control computer communicates

with the cash box via an RS232 (serial) connection. It sets a counter

in the cash box to an amount, in cents, corresponding to the required

payment. As coins are deposited the counter is decremented until it

reaches zero. An "okay" signal is then sent back to the control

computer.

b) The music is stored on a database. Each track has a title, an artist,

a playing time, and a cost (Le. different amounts might be charged for

different tracks).

c) The display screen is primarily used to list the available tracks. The

tracker ball and select button are used to highlight an item on the list

and request that it is are played. The screen then displays the amount

to pay. When the juke box is "waiting" and while it is playing a track,

graphical images can be displayed on the screen.

d) For set up and administrative purposes a keyboard and printer can

be connected to the unit to enter data and produce usage reports.

In discussing the requirements with you the equipment supplier says

that he might, in the future, require the digital jukebox to allow the user

to view videos or web pages. He would also like to use credit cards rather

than cash for payment.

S. M. Thomas 2004/05/23

 Page

27

A prototype of each of the screens in the system is drawn. For example a

throw away prototype of the login GUI is shown below.

Figure 1.4 Prototype GUI of login

Case Study: Domain Modelling

In the domain model we try to identify the abstractions in the real world.

These will include the main problem space conceptual objects that are

going to participate in the system. You pick out all the nouns and the noun

phrases from the informal statement. This is you candidate class. The next

step is to sift through the candidate classes and eliminate items that are

unnecessary or redundant. The last step is to show the relationship like,

generalisation and aggregation, between these classes.

S. M. Thomas 2004/05/23

 Page

28

The sifted classes are shown below (Table 1.1):

Table 1.1 List of sifted classes

Design Jukebox Display Screen Audio amplifier

Track Ball Select button Cash box

Ok Signal Title Required payment

Track Graphical images Database

Playtime Web pages Artist

Printer Usage reports List of tracks

Video Credit cards keyboard

S. M. Thomas 2004/05/23

 Page

29

Figure 1.5 Domain models of the classes

S. M. Thomas 2004/05/23

 Page

30

Case Study: Use-case Modelling

The use-case analysis drives the entire process. The dynamic part of the

UML model begins with the use-cases. The static structure is derived from

the dynamic part. As we develop the use-case we should constantly be

reviewing and updating the domain model.

Figure 1.6 Use-Case Diagram

S. M. Thomas 2004/05/23

 Page

31

Once the use-cases are identified they are written out in basic text format.

A basic template is used for each use-case:

• Basic flow - here you focus on what the user of the system is trying

to do

• Alternate flow - In the alternate flow one considers the negative such

aspects and anything else that happens other than the normal ideal

sequence of events.

Consider the example where the text format for use-case Administrator

Login is described:

Figure 1.7 Description of Use-case Administrator login

Administrator Login

Basic flow: The Administrator attaches a keyboard to the system

and strikes the "F1" key. The system asks the Administrator for

his/her password. If this is valid the "Admin" interface appears

on the display and the Administrator can proceed with other

use-cases.

Alternate flows: If an invalid password is entered the

Administrator is warned and is prompted again for the

password.

S. M. Thomas 2004/05/23

 Page

32

Case Study: Robustness Analysis

Robustness diagrams show the objects that participate in the scenario and

how they interact with each other. The three different stereotypes used for

representation are:

Boundary object:

This is used by actors in

communication with the system

Entity Object:

They are usually objects from

 the domain model.

Control Object:

 These serve as a glue between the

 boundary objects and entity objects.

S. M. Thomas 2004/05/23

 Page

33

Figure 1.8 Robustness Diagram for Administrator Login

S. M. Thomas 2004/05/23

 Page

34

Case Study: Sequence Diagram

Figure 1.9 Sequence diagram for the use-case Administrator login

S. M. Thomas 2004/05/23

 Page

35

Sequence diagrams are the first steps in detailed design. The focus is to

allocate behaviours into the objects. The tree main goals of interaction

modelling or sequence modelling are [12]:

• Allocate behaviour to boundary, entity and control objects

• Show the detailed actions that occur over time among the objects

associated with each use-case.

• Finalize the distribution of operations among the classes. As you lay the

detailed behaviour of the object in the sequence diagram you are

finalizing the process of finding appropriate classes for both attributes

and operations.

Case Study: Class Diagram

The final step is to draw the class diagram and this is the blue print of the

system after critical design review is done on it. The Quality of the classes

in the diagram is attained by ensuring the following features class diagram.

• Coupling

• Cohesion

• Sufficiency

• Completeness

• Primitivenes

S. M. Thomas 2004/05/23

 Page

36

Figure 1.10 Final Class diagram of Jukebox [Adapted to JAVA from Ref[2]]

S. M. Thomas 2004/05/23

 Page

37

1.4 Conclusion

A fairly complex system of a jukebox was chosen as a case study. This was

used for the design of an object oriented system and study of the UML

tools. It gives a brief description of the system. Then using the case study

the steps of ICONIX are covered. Finally from the ICONIX process we have

a class diagram. This is the detailed design of the system and the blue print

for which the implementation is done.

S. M. Thomas 2004/05/23

 Page

38

List of Figures

Figure 1.1 A simple of view of a software development life cycle [2]...........21

Figure 1.2 The ICONIX process [42] ... 24

Figure 1.3 Informal statement of the problem domain............................... 26

Figure 1.4 Prototype GUI of login .. 27

Figure 1.5 Domain model of the classes.. 29

Figure 1.6 Use-Case Diagram... 30

Figure 1.7 Description of Use-case Administrator login31

Figure 1.8 Robustness Diagram for Administrator Login........................... 33

Figure 1.9 Sequence diagram for the use-case Administrator login........... 34

Figure 1.10Final Class diagram for Jukebox [Adapted to JAVA from........ 36

S. M. Thomas 2004/05/23

 Page

39

List of Tables

Table 1.1 List of sifted classes... 28

S. M. Thomas 2004/05/23

 Page

40

APPENDIX II

EVALUATION METHODOLOGY

S. M. Thomas 2004/05/23

 Page

41

Table of Contents

2.1 Introduction.. 43

2.2 Methodology For Evaluation ... 43

2.3 Evaluation Criteria ... 44

2.3.1 Repository ... 44

2.3.2 Customisation ... 45

2.3.3 HTML Documentation.. 45

2.3.4 Usability... 46

2.3.4.1 First Contact ... 46

2.3.4.2 Easy to Use ... 46

2.3.4.3 Pick List .. 47

2.3.4.4 Interface Presentation.. 47

2.3.4.5 Documentation and Help Files .. 47

2.3.5 Printing Support.. 47

2.3.6 Exporting Diagrams .. 48

2.3.7 Robustness .. 49

2.3.8 New Release .. 49

2.3.9 Round Trip Engineering ... 50

2.3.9.1 Code Generation or Forward Engineering 50

S. M. Thomas 2004/05/23

 Page

42

2.3.9.2 Reverse Engineering ...51

2.3.10 Data Modelling .. 52

2.3.11 Model navigation ... 52

2.3.12 Diagram views.. 52

2.3.13 Platform ... 53

2.3.14 Multi-user Support .. 54

2.3.15 UML Support ... 54

2.3.16 Support for Language .. 54

2.3.17 Installation... 55

2.3.18 Class Diagram Features... 55

2.3.19 Support Robustness Diagrams.. 56

2.4 Evaluation Process ... 56

2.4.1 Rating Method..57

2.4.2 Evaluation Table ... 59

2.4.2.1 Features Evaluated using Implementation 59

2.4.2.2 Features Evaluated without Implementation 62

2.5 Conclusion .. 62

List of Figures.. 64

List of Tables ... 65

S. M. Thomas 2004/05/23

 Page

43

2.1 Introduction

There are many features that a UML tool can have but there are some

which are necessary. There are a set of features that a CASE tool which

claims to be a UML tool should ideally have. This section elaborates on a

set of features that a tool should have and defines each feature. Further it

also discusses a method to quantify the process of evaluating the tools. The

rating system used for this evaluation is also discussed in detail.

2.2 Methodology For Evaluation

A standard application is chosen. This application is discussed in detail in

Appendix 1. The application is complex and involves most of the concepts

of an object-oriented system. Then the next step is to pick, one of the tools

used in the evaluation, and develop the design for the system. This is done

using UML as the modelling language and ICONIX is the process followed.

Then the code generation is done using the tool selected. Once the code

generation is done the logical part is coded in and then it is tested. This is

repeated for all the four tools. Each feature is checked against each tool and

compared, hence coming up with results and conclusions.

S. M. Thomas 2004/05/23

 Page

44

Figure 2.1 The method of evaluation

2.3 Evaluation Criteria

2.3.1 Repository

For a large project, a repository is necessary for the sharing of component

designs between developers. Two or more developers can share

components of a model or even collaborate on the development of a single

component by defining ownership and sharing rights at the appropriate

level. A repository is generally built on top of a database, which provides

data sharing and concurrency control features. By providing locking and

S. M. Thomas 2004/05/23

 Page

45

read-only access, the repository permits one developer to own the model

while allowing others to read the model and its components, as well as to

incorporate these components into their own designs.

Another way to build the repository is on top of the source code for a

project, using a source-code control system to provide concurrency control.

The benefit of this approach is a higher degree of synchronization between

the code and the model. Another benefit is the elimination of yet another

data source. Don't forget that if you use a database for a repository you

must back-up this data store separately and perform three-way

synchronization between the model, the repository and the source-code

instead of just a two-way synchronization between the code and the model.

With modelling tools that support a repository, changes to any component

should be automatically propagated to any design which imports the

component.

2.3.2 Customisation

It can be useful for a developer to be able to configure the tool to conform

to some specific standards, perhaps company requirements or merely

personal preferences, hence we would expect the tool to possess a

certain level of customisability. This could include the options to view

different panes, tools etc.

2.3.3 HTML Documentation

The object modelling tool should provide seamless generation of HTML

S. M. Thomas 2004/05/23

 Page

46

documentation for an object model and its components. HTML

documentation provides a static view of the object model that any

developer using the model can refer to quickly in a browser, without having

to launch the modelling tool itself. Also, by producing HTML as

documentation, the number of required licenses for the modelling tool can

be reduced by the number of people that need read-only access to the

model information. The HTML documentation should include a bitmap

picture of each of the diagrams in the model and should provide navigation

throughout the model through the use of hyperlinks. The amount of time

required to generate the HTML should be reasonable. A number of

products available today support these features with varying amounts of

success.

2.3.4 Usability

2.3.4.1 First Contact

The users initial experience with the system should be one in which the

task of initially constructing and modelling parts of the system is easy.

This feature is analyzed based on the user’s first experience with the tool

without referring to any documentation.

2.3.4.2 Easy to Use

The tool should remain easy to use even when dealing with complex

diagrams and objects. For this criterion the focus is the tool’s ability to

hide and reveal information allowing the user to focus on specific details.

S. M. Thomas 2004/05/23

 Page

47

2.3.4.3 Pick List

The modelling tool should provide pick lists in several key interfaces:

Collaboration and Sequence Diagrams - The tool should allow an object to

be assigned to a class from a list of the classes in the model. It should allow

the messages sent between objects to be chosen from a valid list of methods

for the object (class) which is receiving the message. The pick list feature

contributes significantly to the intuitiveness of the modelling tool and may

be considered a must-have feature. The development of sequence and

collaboration diagrams is greatly facilitated by being able to quickly select

the message you want to send from one object to another.

2.3.4.4 Interface Presentation

The interface should have a layout which is both consistent and

aesthetically pleasing. This category typically examines areas such as fonts,

labels on diagrams, facilities provided for viewing diagrams, and the

visibility of different states of the model.

2.3.4.5 Documentation and Help Files

Good documentation and search facilities help the user to learn the tool

and feel comfortable around the tool. This determines how quickly a user

can perform functions using the tool. Distinguishing the menus and the

submenus makes readability easier. Name completion facilities, short-cut

keys and learning aids can heavily influence the speed with which a user

can perform common tasks.

S. M. Thomas 2004/05/23

 Page

48

2.3.5 Printing Support

The modelling tool should allow accurate renditions of large diagrams to be

produced through multi-page printing. Print preview and scaling

functionality should be supported to allow ease of fitting the diagram to the

desired number of pages. The ability to fit a diagram to a single page is high

on this list.

2.3.6 Exporting Diagrams

One key feature that is often overlooked is the ability to export diagrams

into a format that may be imported into either a word processing

document or a web page. The most popular graphics formats used for

export are GIF, PNG and JPEG. When exporting, the tool should allow you

to define the preferred resolution and size of the graphic that is produced.

This functionality helps to include diagrams when writing reports, UML

books or even display the design diagrams on a web site.

The XMI standard from the Object Management Group (OMG) is one of

the recent developments in the UML developer community. XMI is an

interchange format which has the potential to finally allow seamless

sharing of models between best-of-breed development tools. For example,

rather than writing scripts within a UML modelling tool to create reports,

instead a user could simply export the model under development using

XMI and import the model into a specialized report writing tool. It is

therefore good that a tool should be able to export diagrams to XMI

format.

S. M. Thomas 2004/05/23

 Page

49

2.3.7 Robustness

A UML tool should have rock-solid reliability and consistency. This is to

prevent users from losing potentially hours of productivity, when the tool

crashes in the middle of a design session, or corrupts a model which hasn't

been backed up. A tool which causes hours of work to be lost due to a crash

or file corruption is very unsatisfactory. As a developer, you know the

feeling of disdain for 'productivity applications' that are less productive

than raw coding tools. If you are a manager, you have seen the resentment

developers will show when being required to use an unreliable tool.

Another strategy to apply here, which is recommended that tool vendors

adopt, is borrowed from office productivity applications. The strategy is to

have the UML tool to automatically save a model in the background at

periodic intervals.

2.3.8 New Release

The modelling tool selected should continue to be actively improved

through bug fixes, performance improvements, and the addition of new

features. After all, you are making a big investment in time and money and

it is not easy to change to another modelling tool. Another factor is that

these tools have to adapt to the new technological advancements in

hardware and software environments.

We can determine if a product is evolving by enquiring for a detailed

S. M. Thomas 2004/05/23

 Page

50

schedule of recent releases and a roadmap for the product's future and by

looking closely at the rate at which features and improvements have been

made. One may also look on the company website for the product

announcements and outside reviews.

New versions and improvements in functionalities are good, provided the

new version of the tool is backward compatible with the older versions. It is

unreasonable that one should be stranded with old design diagrams which

are not compatible with new versions of the tool. So it is necessary to

consider this feature when deciding on a tool.

2.3.9 Round Trip Engineering

The ability to both forward and reverse engineer source code (Java, C++,

and CORBA IDL) is a complex requirement that vendors support with

varying degrees of success. The successful combination of these two

features, forward and reverse engineering is defined as round-trip

engineering. [1]

2.3.9.1 Code Generation or Forward Engineering

Code Generation is the process of generating code in the respective

programming language for the classes, attributes and operations defined in

the design. It is also possible to generate the code for the relationship

between the classes and other components. Once this is generated the

programmer just has to implement the logic of each operation. Forward

engineering is very useful the first time that code is generated from a

model. This will save you much of the mundane work of keying in classes,

S. M. Thomas 2004/05/23

 Page

51

attributes and methods.

2.3.9.2 Reverse Engineering

Reverse engineering is the ability of the tool to recognise the new classes,

methods and attributes that the programmer adds to the application. This

can be done during the development of the application or during

maintenance once the application is deployed. Reverse engineering is very

useful both to transform code into a model when no model previously

existed, as well as to resynchronize a model with the code at the end of an

iteration.

During an iterative development cycle, once a model has been updated as

part of the iteration, another round of forward engineering should allow

code to be refreshed with any new classes, methods or attributes that have

been added to the model. This step is less commonly adopted by

developers because many tools can hopelessly mangle source code in the

process. The problem is that the source code contains much more than the

model; tools must be very adept at reconstructing the source code that

existed prior to the new round of forward engineering.

At minimum, the modelling tool should successfully support forward

engineering the first time and reverse engineering throughout the process.

Also, the tool should have no trouble reverse engineering the full Java

language. The way to verify this feature is to implement your own source

code and try the round trip engineering on your code.

S. M. Thomas 2004/05/23

 Page

52

2.3.10 Data Modelling

The object modelling tool should allow integration with data modelling

facilities. There are many ways to provide this functionality. One way is for

the UML tool to provide a feature allowing an object model to be

transformed into DDL, which is the SQL needed to create tables for classes.

Another way is for the UML tool to export metadata to a data modelling

tool which can import the metadata and use it as the basis for a data model.

An advanced, integrated set of tools should allow the data models and

object models to be synchronized after each iteration of the design.

2.3.11 Model navigation

The modelling tool should provide strong navigational support to allow a

developer to navigate through all the diagrams and classes in the model. A

directory or pick list of classes sorted by name is one way to allow a

designer to jump to the desired class on a diagram.

For large diagrams, the tool should provide ease of navigation when

zooming and panning. The tool should also allow ease of navigating to the

source code for a class when round-trip engineering is being used.

2.3.12 Diagram views

The modelling tool should facilitate customization of the view of a class and

its details. For instance, it should be possible to exclude all get/set methods

S. M. Thomas 2004/05/23

 Page

53

from the diagram since they tend to clutter, rather than clarify a diagram.

The full signature of methods should be allowed to be shown or hidden

easily, depending on the level of detail desired. The visibility of attributes

and methods (private, protected, public) should be another dimension

used to select what to show or hide on the diagram.

2.3.13 Platform

In order to maximize an investment in a modelling tool, one has to

carefully consider the platforms on which the tool will run. Java's Swing

user interface allows cross-platform graphical user interface (GUI). So if

the UML tool is built using a cross platform GUI, one can look over the

issue of platforms.

However, cross-platform tools need to be supported on commodity

platforms such as Linux in order to achieve large-scale adoption by

programmers. Sun had originally done little to promote Java on Linux. But

recent industry initiatives, principally from IBM, which has pledged broad-

based support for Linux on all of its hardware platforms and is supporting

the Apache/Jakarta project, are now rapidly pushing Java onto Linux.

Perhaps because IBM has moved to distribute its version of JDK 1.1.8 to

the major Linux vendors, Sun has been compelled to support the

distribution of a fully functional JDK 1.2 (Java 2, with Swing) for Linux.

This Java port to Linux has been largely accomplished through the efforts

of the Blackdown Group. So a tool developed on a platform independent

programming environment, gives a user the freedom to adopt any

platform.

S. M. Thomas 2004/05/23

 Page

54

2.3.14 Multi-user Support

When working in a team oriented environment it is essential that the

tool provides support for multiple users. This support is generally

required in the form of multiple user access to the development

software which in turn requires users to be constrained by predefined

permissions. The changes made by each user to a model should be backed

up and made available to the next user.

2.3.15 UML Support

While many tools claim full support for UML 1.3, in reality this is a

complex requirement and some tools may not live up to advertised claims

for full support. At minimum, the diagrams which should be supported are

the Use-case, Class, Collaboration, Sequence, Package, and State diagrams.

2.3.16 Support for Language

This feature deals with the different languages supported for code

generation. Some of the common languages that are supported by tools

include: JAVA, C++, VC++, COBRA, ADA, J2EE, C #, Visual Basic.net,

CORBA IDL and Visual Basic 6

S. M. Thomas 2004/05/23

 Page

55

2.3.17 Installation

Installation of any tool should be fairly easy and the tool should be up and

running without many hassles. One should be aware of all the prerequisites

before considering a tool. Some tools require a database for it as a

repository while others require an application server. It is essential to study

the kind of application you develop before selecting a tool. Most of the

prerequisites are open source software.

2.3.18 Class Diagram Features

 Class box size flexibility :

 Line flexibility :

 Independent placement of association end names:

 Preservation of position of end names and multiplicity labels:

 Moderate binding of relationship lines:

 Distinguish between remove from diagram and delete from model:

 Restoration of relationships in new diagrams:

 N-ary associations: An N-ary association is an association among

three or more classifiers (a single classifier may appear more than

once). Each instance of the association is an n-tuple of values from

the respective classifier. A binary a

 Association is a special case with its own notation.

 Undo functionality for diagrams

 UML profiles (stereotypes and tagged values): A UML profile is made

up of one or more “stereotypes” that may have “tagged values” and

“constraints” [24]. Profiles are sometimes referred to as the

S. M. Thomas 2004/05/23

 Page

56

‘lightweight’ built-in extension mechanisms of UML, in contrast with

the ‘heavyweight’ extensibility mechanism as defined by the MOF

specification. This is because there are restrictions on how UML

profiles can extend the UML meta-model [25]. These restrictions are

intended to ensure that any extensions defined by a UML profile are

purely additive [6].

2.3.19 Support Robustness Diagrams

In this research project the ICONIX methodology is used to do the design.

Some tools do not support the different notations in the robustness

analysis. This may not be an essential feature but for companies that use

these methodologies as one of their standards one should take this feature

into consideration.

When considering this feature one should analyse the following: the tools

support the notations used to represent the types of stereotypes, the rules

and constraints applied while drawing the diagrams.

2.4 Evaluation process

The set of features was drawn up and defined. Each feature is defined

clearly so as to eradicate duplication of features and definition of these

features. It also clearly sets a boundary around each feature. Each feature

can be further divided into sub features. For example consider the feature

round trip engineering. This can be subdivided as shown in Table2.1

S. M. Thomas 2004/05/23

 Page

57

Features Sub-Features

 ROUND TRIP

 ENGINEERING

• Code Generation

• Reverse Engineering

• Synchronization

 With Editor

Table 2.1 Feature divided to subfeatures

The evaluation is done using a “rating system” where a weighting is given

for each feature and a rating is given based on the tool. This kind of

evaluation gives a weighting for each feature based on its significance. This

gives a user the flexibility to change the weightings and hence evaluate the

tools. Another user can prioritise the features based on the technical and

functional requirements of the product developed.

2.4.1 Rating Method

The weighting for each sub-feature is fixed based on the significance and

the importance of each of the feature when compared with the rest of the

sub-features. This prevents some tools to score a higher value for a feature

which is not essential. If a feature is absolutely essential then it is assigned

a three. If the feature pleases the eye yet it is not significant in terms of

production then it is given a 1. The weightings given to the features in this

research are based on what I felt was significant. This judgement was based

on extensive literature survey, complaint from forums and discussion with

users. The weightings are shown in Table 2.2

S. M. Thomas 2004/05/23

 Page

58

Nice to

have

Feature

Good

Feature

Essential

Feature

1

2

3

Table 2.2Weightings for feature

The ratings for the features are given based on how well the functionality is

implemented, for each tool chosen. If a feature is poorly implemented then

it is assigned 1 but if it is implemented well then it gets a 3 E.g. Consider

the feature “The class box flexibility”. In some tools this feature is there yet

it does not serve the purpose where, it should reveal all the attributes and

methods on increasing the size. This is a poor implementation and it is

assigned a one. Figure 2.2 shows the score for the ratings.

Figure 2.2 Score for ratings

The product of the weighting and rating is calculated for each feature and

the total sum of the products gives the final score for each tool. This can be

S. M. Thomas 2004/05/23

 Page

59

summarised into the following general formula:

Score for a tool = ∑ (weighting of each feature × rating of tool for

 that feature)

That is if weighting is represented in W and rating represented in R then

the score of a tool 1 (T1) is obtained by

 T1 = (W11 * R11) + (W12 * R12) + (W13 * R13) +..................

2.4.2 Evaluation Table

2.4.2.1 Features Evaluated using Implementation

The interface of the UML tool should be intuitive and easy to learn,

in addition to providing required functionality. These aspects of a

tool can be further subdivided into sub-categories for evaluation. The

evaluation table is illustrated below (Table 2.3).

S. M. Thomas 2004/05/23

 Page

60

Main Features Sub Features Weightage
Repository Database 2

Customisation Components and tools 2

Generate Web Reports 3 HTML
Documentation Save diagrams to include in reports 3

First Contact 2
Ease of use 3

Pick list of the classes in the model
while drawing.

2

Tree structure in a pane where all the
classes can be viewed.

3

Select methods to draw sequence or
collaboration diagram.

3
Pick List

Drag and drop 3

Select methods to draw sequence or
collaboration diagram.

3

Interface Presentation
States are visibly distinct 2

 step by step documentation 3

Online help 2

Keyword search facilities 3

Usability

Documentation and
Help Files

Short – cut keys 1

Fit diagram to a single page 3

Print preview 3
Printing Support

Scaling functionality 3

Save diagrams any picture editor format 3 Exporting
Diagrams XMI format 2

Does tool crash or corrupt diagrams 3 Robustness
Automatic saving at periodic intervals 1

New Releases Any New version releases announced 3

Code generation 3

Reverse engineering 3
Round Trip
Engineering

Synchronisation with editor 2

Zooming and panning 3 Model navigation
Navigating between source code
and diagram

2

S. M. Thomas 2004/05/23

 Page

61

Table 2.3 Features and Sub-Features Used For Evaluation

Customizing details of classes 3

Reveal and hide methods 3
Diagram views

Visibility of methods and attributes 3

Use case diagrams 3

Class diagrams 3

Sequence diagrams 3

Collaboration diagrams 3

State diagrams 3

Activity diagrams 3

Component diagrams 3

Deployment diagrams 3

Key Notational parts

Package diagrams 3

Class box size flexibility 3

Line flexibility 2

Independent placement of association
end names.

3

Independent placement of multiplicity
labels.

3

Preservation of position of end names
and multiplicity labels.

3

Distinguish between remove from
diagram and delete from model.

3

Restoration of relationships in new
diagrams.

3

N-ary associations 3

Undo functionality for diagrams. 2

UML Support

Class Diagram
Functionalities

UML profiles (sterotypes and tagged
values)

2

S. M. Thomas 2004/05/23

 Page

62

2.4.2.2 Features Evaluated without Implementation

The stages in the design and implementation of the jukebox example, was

used to evaluate a chosen tool against most of the ideal features of a UML

tool. Some features could not be evaluated based on the example because

it was not within the scope and time limit of this research. Others like

platform support and installation are not included in Table 2.3 since it is

not a quantifiable feature. Hence it cannot be rated. These features are

shown below:

• Installation

• Platform

• Support For Languages

• Data Modelling

• Multi-User support

2.5 Conclusion

There are many UML tools in the market, which claim to have certain

features. Most of the time we find that these tools do not have the required

features to satisfy our business needs while in other cases the vendors

claim on the features might not be up completely up to the mark. This

section has tried to come up with a set of features that an ideal UML tool

should have. It also gives a rating method whereby the user can get a

quantified result on the tools he evaluates. In the rating method one can

prioritize the features according to the business claims and assess each

tool.

S. M. Thomas 2004/05/23

 Page

63

The evaluation tool or matrix [Appendix VI] emphasizes on the technical

features in a UML tool. These technical features are mainly functional and

usability issues. Non-technical aspects such as cost, training, local support,

availability of resource and developmental environment, are not part of the

comparison matrix because it is beyond the scope of this project report.

This research report is unique by presenting an evaluation tool to compare

any set of UML tool. The tool has the following headers: Features,

Weightings, UML Tools used for comparisons. The Features listed are

indispensable in any UML tool. The weightings given for each feature could

be customised according to the user’s priority list. And finally a set of UML

tools can be used for comparison. This can be done by plugging in

quantitative values and calculating the highest score.

S. M. Thomas 2004/05/23

 Page

64

List of Figures

Figure 2.1 The method of evaluation .. 44

Figure 2.2 Score for ratings ... 58

S. M. Thomas 2004/05/23

 Page

65

List of Tables

Table 2.1 Feature divided to subfeatures ... 57

Table 2.2Weightings for feature .. 58

Table 2.Features and Sub-Features Used For Evaluation...................................... 61

S. M. Thomas 2004/05/23

 Page

66

APPENDIX III

UML TOOLS USED FOR
EVALUATION

S. M. Thomas 2004/05/23

 Page

67

Table of Contents

3.1 Introduction .. 68

3.2 ArgoUML v 0.14 ... 68

3.3 Together Control Center V6.1 .. 69

3.4 RATIONAL ROSE ENTERPRISE EDITION V. 2001A.04.00...............71

3.5 MASTERCRAFT FOR JAVA V 6.0... 72

3.6 Conclusion .. 76

List of Figures ..77

S. M. Thomas 2004/05/23

 Page

68

3.1 Introduction

This section talks about the tools that were used for evaluation in this

research work. The tools that are discussed here include ArgoUML,

MasterCraft, Rational Rose and Together Control Center. These tools are

considered as mainstream Object Oriented tools and they also support

implementation in JAVA language. UML tools can be classified as follows:

• Basic diagram-drawing tools

o e.g. Visio (basic version).

• Main-stream OO CASE tools

o e.g. Together, ArgoUML.

• Specialist real-time/embedded tools e.g. Rhapsody, Telelogic. [13]

3.2 ArgoUML v 0.14

ArgoULM is an open source project developed by Jason Robbins and David

Redmiles at the University of California. According to Greek mythology,

the hero Jason built a ship called Argo and with his comrades, the

Argonauts, he left for the quest of the Golden Fleece [16].That is how they

came up with the name for this tool. ArgoUML is completely implemented

in JAVA. Since it is byte code-interpreted the speed of execution is not

electrifying. [18]

ArgoUML was conceived as a tool and environment for use in the analysis

and design of object-oriented software systems. In this sense it is similar to

many of the commercial CASE tools that are sold as tools for modelling

S. M. Thomas 2004/05/23

 Page

69

software systems. ArgoUML has a number of very important distinctions

from many of these tools. These include the following:

• ArgoUML draws on research in cognitive psychology to provide novel

features that increase productivity by supporting the cognitive needs of

object-oriented software designers and architects.

• ArgoUML supports open standards extensively—UML, XMI, SVG, OCL

and others. In this respect, ArgoUML is still ahead of many commercial

tools.

• ArgoUML is a pure Java application. This allows ArgoUML to run on all

platforms for which a reliable port of the Java2 platform is available.

• ArgoUML is an open source project. The availability of the source

ensures that a new generation of software designers and researchers

now have a proven framework from which they can drive the

development and evolution of CASE tool technologies.

ArgoUML meets the OMG standard for UML 1.3 and supports as diagram

types class, state machine, use-case, collaboration, activity and object/

component/ deployment diagrams. It is only sequence type diagrams that

are not supported in ArgoUML. For code generation, ArgoUML supports

only Java and reverse engineering is not supported well in ArgoUML. The

documentation and user manuals for ArgoUML are not complete.

3.3 Together Control Center V6.1

Together Control Center includes the features you need to build enterprise

level applications, allowing the entire development team to collaborate

S. M. Thomas 2004/05/23

 Page

70

using common language, diagrams, and software. This product is

developed and maintained by Borland. Like ArgoUML, Together is also

byte code-interpreted. Hence there is a sluggish rate of execution on

ordinary hardware. It requires JDK 1.3 as a virtual Java machine.

Modelling support includes all the standard UML diagrams, plus

additional diagrams for other special types of modelling. This includes

support for class diagrams and UML 1.4 diagram types like use-case,

sequence, collaboration, state, activity, component and deployment for

modelling. Class and sequence diagrams generate source code

automatically and keep it in synchronization. Code generation can be done

in Java and C++, and reverse and roundtrip engineering as well as team

support are provided.

Together Control Center provides an efficient feature called simultaneous

round-trip technology. Unique simultaneous round-trip technology means

that changes to application code are immediately reflected in visual models

[18].Make changes to the model or the source code and each stays

synchronized with each other. Plus, Live Source provides visibility into

existing applications, generating class models instantly. Together Control

Center, applications can be built for one application server and easily

switched to another, protecting development assets even if server changes

are required.

Another option is that of direct import of existing relations from a database

as ER diagrams. Via a dialog window, the necessary settings (server type,

database name, host, port, username and password) can be made for

S. M. Thomas 2004/05/23

 Page

71

database communication. Databases supported are Oracle 7.3.x/8.x, DB2,

MySQL, MS SQL, Cloudscape, ODBC/Access 97 and SequeLink/Oracle.

Usability issues on picking a class from a list have to be modified further.

Multi-user support though available it is not very efficient. Since UML is

most efficient in large systems and there are multiple developers working

on these systems one cannot ignore the efficiency of the multi-user support

provided by the tool.

3.4 RATIONAL ROSE ENTERPRISE EDITION V.

2001A.04.00

Rational Rose provides support for two essential elements of modern

software engineering: component-based development and controlled

iterative development. While these concepts are conceptually independent,

their usage in combination is both natural and beneficial. Rational Rose’s

model-diagram architecture facilitates use of the Unified Modelling

Language (UML), Component Object Modelling (COM), Object Modelling

Technique (OMT), and Booch ‘93 method for visual modelling [4].Using

semantic information it ensures correctness by construction and

maintaining consistency.

Of the CASE tools in the test field, Rose supports most languages: Java,

C++, ADA 83, ADA 95 and CORBA IDL and DDL for database applications.

Rose offers both roundtrip and reverse engineering. Rational Rose

provides the following main features to facilitate the analysis, design, and

iterative construction of your applications:

S. M. Thomas 2004/05/23

 Page

72

_ Use-Case Analysis

_ Object-Oriented Modelling

_ User-Configurable Support for UML, COM, OMT, and Booch ‘93

_ Semantic Checking

_ Support for Controlled Iterative Development

_ Round-Trip Engineering

_ Parallel Multi-user Development Through Repository and Private

Support

_ Integration with Data Modelling Tools

_ Documentation Generation

_ Rational Rose Scripting for Integration and Extensibility

_ OLE Linking

_ OLE Automation

_ Multiple Platform Availability

Rose claims to support multi-users and developer groups. Rose makes a

private working for all developers, in which each has an individual via of

the whole model. Modifications are thus restricted to the private working

area until they are checked in to the CMVC (Configuration Management

and Version Control System). Yet there are many issues around the

efficiency Rational Rose provides for multi-user and reverse engineering.

(See [20])

3.5 MASTERCRAFT FOR JAVA V 6.0

MasterCraft Enterprise Java is an integrated tool suite developed to

increase the productivity and quality of large, multiple teams working on

complex, mission critical application development. It provides an object

S. M. Thomas 2004/05/23

 Page

73

oriented environment that supports a UML based Component Modeller

and Repository-driven development process [27].

MasterCraft’s modelling tools, in MDA™ like approach, allow the designer

to keep the logical application independent of the underlying technology.

Platform-specific generators deliver code for the required platform, using

the models. MasterCraft supports a component-based repository driven

development process and has a visual modelling tool, a GUI modeller and

an object-oriented specification language.

MasterCraft supports development of applications, which use

geographically distributed resources and allow geographically distributed

end users. MasterCraft uses a central repository, to manage all

information. It also integrates with and processes information stored

outside the repository database. The meta-model integrates meta-data

across the various phases of the life cycle.

S. M. Thomas 2004/05/23

 Page

74

Figure 3.1 MasterCraft – Integrated Tool-suite

The Component Modeller in MasterCraft is the visual modelling and

repository tool; MasterCraft uses the repository to create, validate,

and store the analysis and design models. MasterCraft’s GUI

Modeller is used to model, validate, and generate the Graphical User

Interfaces of the application. (See figure 3.1)

MasterCraft supports the development process through a set of pre-

defined roles. Software builds, releases and versions are managed

through clear processes. These processes are configurable and can be

S. M. Thomas 2004/05/23

 Page

75

integrated into the organisation’s environment. Roles in MasterCraft

are sets of logically coherent tasks that developers perform during

the software development life cycle (SDLC).

Figure 3.2 Role-based Development

MasterCraft supports the entire Software Development Life Cycle through

the Analysis, Design, Construction, Release and Maintenance phases. One

or more pre-defined roles map to one or more phases of the life cycle.

S. M. Thomas 2004/05/23

 Page

76

Mastercraft allows hiding the logical part from the technology. This is done

using Q++. Q++ has the following features:

• Reduce Coding

• Hide Technology: there are interpreters that convert the Q++ code to the

underlying technology like C++, JAVA etc..

• Stronger Type Checking

• Maximum use of modelled information in repository

Master craft allows unit testing up to the level of each operation. It allows

reverse engineering but this is not reflected back into the diagram

automatically. All the new classifiers added are saved in the repository and

the information can be browsed. But it has to be updated manually in the

diagram in this version of Mastercraft. The installation and setup of this

tool requires support and cannot be easily done the first time.

3.6 Conclusion

There are many tools in the market available for a user to pick from but

one has to spend time to study the kind of tool you need for your business

requirements. Each tool has positive and negative aspects to it. The section

discusses the four UML tools used for evaluation in this research work. For

each tool the additional features and weaknesses for the tools are

discussed. Further details on the tools can be obtained from the respective

websites for each of these tools.

S. M. Thomas 2004/05/23

 Page

77

List of Figures

Figure 3.1 MasterCraft – Integrated Tool-suite ... 74

Figure 3.2 Role-based Development ...75

S. M. Thomas 2004/05/23

 Page

78

APPENDIX IV

UML TOOLS –
EVALUATION OF MODELLING

S. M. Thomas 2004/05/23

 Page

79

 Table of Contents

4.1 Introduction..80

4.2 General View of each tool...80

4.3 Together..80

4.3.1 Modular architecture...80

4.3.2 Flexibility : User Interface ..81

4.3.3 Navigation: Together Main Window 82

4.4 Rational .. 85

4.4.1 Navigation :Rational Rose Main Window.............................. 85

4.5ArgoUML ...88

4.5.1 Navigation : ArgoUML ...88

4.6 MasterCraft..91

4.6.1 Flexibility ..91

4.6.2 Navigation : MasterCraft .. 93

4.7 View of class diagram using each tool ... 95

4.8 Conclusion.. 102

List of Figures ... 103

S. M. Thomas 2004/05/23

 Page

80

4.1 Introduction

UML tools are mainly modelling tools and hence modelling is an inevitable

issue for discussion. This section reviews the interfaces for each of the tool

describing flexibility, navigability and architectural issues. It further

discusses UML notations like class diagrams, and sequence diagrams in the

different tools.

4.2 General View of each tool

The usability and layout of a tool is critical to a user. A tool might provide

all the necessary features but if it is not user-friendly, a user will be very

hesitant to use the tool. The usability of the four different tools is discussed

in this section. It also describes the flexibility allowed by the tools in the

toolbar, the different panes etc. The snapshot of the respective interfaces of

each of the tools is shown. Aspects such as navigation are also applicable

when covering usability.

4.3 Together

4.3.1 Modular architecture

Together consists of a large set of modules representing available features.

A given project will not require all the available features. Some feature

modules can be turned on or off as necessary. Therefore unneeded features

are not loaded, simplifying the user interface by displaying only those

S. M. Thomas 2004/05/23

 Page

81

commands and features you need for your project. Features are activated

on several levels:

• Your selected user role determines which features are available for all

projects.

• The Activate/Deactivate Features dialog enables you to set which

features to load for the current project.

• Features activated on demand are loaded automatically when they are

needed. [43]

Each feature module has a configuration file that stores property settings

that apply to the feature. You can use the Options dialog to make

configuration settings.

4.3.2 Flexibility : User Interface

The Together user interface (including menus, toolbars, and panes)

changes according to how you are working with Together.

The menus, toolbars, and panes available depend on several factors:

• your user role

• the project context (whether a project is open, and which feature

modules are activated)

• the selected workspace in the project. [43]

S. M. Thomas 2004/05/23

 Page

82

Roles

During installation, you choose a user role (Business Modeler, Designer,

Developer, or Programmer). When Together starts up it shows only those

menu commands, toolbars, and panes that are appropriate for your chosen

role. The role also determines the default workspace. The user role is a

global configuration setting that you can reset in the Options dialog.

Workspaces

A workspace is an arrangement of panes that you can save and reuse as you

find convenient. Workspaces are saved with the project.

4.3.3 Navigation: Together Main Window

The ease of navigating through the diagram and the element properties is a

critical issue. This widely determines if the tool is user-friendly or not.

Figure4.1 gives us an outlook of the Together front-end. The main window

is divided into four major panes.

• Explorer: for file system and project navigation.

• Designer: for creating UML and other kinds of model diagrams as well

as for building graphical user interfaces. The Designer has a toolbox for

its GUI construction tools.

• Editor: for viewing and editing source code files and other text files.

• Message pane: for system messages, special tasks, and results of some

feature operations.

S. M. Thomas 2004/05/23

 Page

83

The focus pane, with the light blue title bar, is the site of the most recent

activity. Together elements are individual components of the project and

the user interface. Elements can be diagrams, files, diagram elements such

as nodes or links, names, error messages, and so on. Right clicking on a

Together element displays a menu of commands for that element. These

right-click menus vary according to the type of element. Many elements

have Inspectors for accessing the elements’ properties. You can display the

Inspector of an element by selecting Properties from its right-click menu.

Many elements have Property Inspectors for accessing the elements’

properties. Property inspectors enable you to view and change the

properties of many Together elements. Inspectors are organized into

tabbed pages whose content depends on the type of element. [43, 45]

S. M. Thomas 2004/05/23

 Page

84

Figure 4.1Workspace in Together Control Center

S. M. Thomas 2004/05/23

 Page

85

4.4 Rational

4.4.1 Navigation :Rational Rose Main Window

Rational Rose’s graphical user interface is used to display, create, modify,

manipulate, and document the elements in a model using these windows:

• Application window :

• Browser window

• Documentation window

• Diagram window

• Overview window

• Specification window

• Log window [19]

Rational Rose displays the diagram, specification, and documentation

windows within the application window. The log window is a dockable

window you can move, dock or undock, or close.

An application window contains a title bar, menu bar, toolbar, and a work

area where the toolbox, browser, documentation window, diagram

window, and specification window appear. The documentation window is

used to describe model elements or relationships. The description can

include such information as the roles, keys, constraints, purpose, and

essential behaviour of the element.

The documentation window is used to describe model elements or

relationships. The description can include such information as the roles,

keys, constraints, purpose, and essential behaviour of the element. Rose

uses the log window to report progress, results, and errors that occur as a

S. M. Thomas 2004/05/23

 Page

86

result of a command or action in your model. The messages posted to the

log are prefixed with a time stamp. This enables you to keep track of when

an event or action occurred. Like the documentation window, the log

window can be docked or floating.

The overview window is a navigational tool that helps you move to any

location on all Rational Rose diagrams. When a diagram is larger than the

viewable area within the diagram window, it is not possible to see the

whole diagram without scrolling. The overview window provides a scaled-

down view of the current diagram so you can see the entire diagram.

Diagram windows allow you to create and modify graphical views of the

current model. Each icon in a diagram represents an element in the model.

Since diagrams are used to illustrate multiple views of a model, each model

element can appear in none, one, or several of a model’s diagrams. This

means you can control which elements and properties appear on each

diagram.

A specification enables you to display and modify the properties and

relationships of a model element, such as a class, a relationship, an

operation, or an activity. The information in a specification is presented

textually; some of this information can also be displayed inside icons

representing the model element in diagrams.

The browser is a hierarchical navigational tool that allows you to view the

names and icons of interaction, class, use-case, statechart, activity, and

deployment diagrams as well as many other model elements.

S. M. Thomas 2004/05/23

 Page

87

Figure4.2 Workspace in Rational Rose

S. M. Thomas 2004/05/23

 Page

88

4.5 ArgoUML

4.5.1 Navigation : ArgoUML

The user workspace of argoUML is shown in figure 4.3 below. At the top of

screen is a menu bar. Under that there are Toolbars. Then the bulk of the

window comprises four subwindows or Panes. Clockwise from top left

these are:

• Explore pane

• Editing Pane

• Details Pane

• To-Do Pane

At the top of the Editing Pane is another toolbar called the Edit Pane

Toolbar. Finally at the bottom of the window is a status bar. [17]

Explorer allows you to navigate through our model. This pane lists all the

classes, interfaces and data types of our model as a tree view.

The Editing Pane, where we can edit our diagram in a graphical way. One

can do all the editing functionalities like modeling new classifiers,

zooming, spanning, modifying etc in this pane.

S. M. Thomas 2004/05/23

 Page

89

The Details Pane allows us to edit various details of our model. This

includes the properties of each classifier, editing constraints, tagged values

and checklist. This also simultaneously displays the source code generated

for the respective elements modeled. The To-Do Pane displays the items on

the models to-do list in a tree which sorts the list in a number of different

ways. A drop down selection box at the top of the pane determines the

layout of the tree.

S. M. Thomas 2004/05/23

 Page

90

Figure 4.3 Workspace of ArgoUML

S. M. Thomas 2004/05/23

 Page

91

4.6 MasterCraft

4.6.1 Flexibility

MasterCraft supports Role Based Development. The various roles cover

the entire Software Development Life Cycle (SDLC). Tasks that are

logically related, tasks are grouped together and assigned to these roles.

Roles supported in MasterCraft consist of two major roles: Managerial

roles and User roles. These are further divided as shown below:

 Managerial Roles

 Application Administrator

 Model Manager

 Construction Manager

 Version Manager

User Roles

 Analysis Modeler

 Design Modeler

 Construction Programmer [46]

Each of the roles is described below. A user can be assigned to more than

one role which can be decided by the application administrator.

The Application Administrator can perform the following activities:

• Create users

• Create components

• Allocate users to components and roles

S. M. Thomas 2004/05/23

 Page

92

• Selecting the development environment installation type

• Define file server share

• Allocate file server-shares to application-specific standard servers

• Allocate server-shares to component-specific standard servers

• Generate report for server allocation and versioning activities

• Generate report for user allocation

• Perform server-side set up

• Extract model from jars

• Import models developed using Rational Rose

• Import user-models available in XMI format

• Export MasterCraft-developed user-models in XMI format

• Reset modeling status

• Purge journal data

• Reset the Control Table contents [47]

The role of the Analysis Modeler is to enter the UML model, to draw the

different UML diagrams.

The Design Modeler has the following roles:

 To enter the Database and GUI model

 Perform impact analysis

 Define the component interface and inter - component

dependencies.

The roles of the Construction Manager can be defined as follows:

 Export the model into the common pool

 Generate code from the model

 Build and release component jars

 Configure standards checker

S. M. Thomas 2004/05/23

 Page

93

 Perform check for conformance to standards

 Assign classes to each construction programmer

The Construction Programmer’s tasks include the following:

 Implement the code for business logic

 Implement the code for business rules

 Unit test the modeled business services

 Test Application screens

 Perform file-level version control

The version manager is configured only if a version managing tool is

installed. The tasks of Version Manager are as follows:

 Performs application level version control

 Checks in, checks out and merges application versions

4.6.2 Navigation : MasterCraft

The main window of the analysis modeler is shown in Figure 4.4 below.

Each role has a separate window with a few differences. The main window

includes a toolbar, selection window, diagram window. The selection

window has a list from which one can select the components and decide a

function upon it. The diagram window can be used to model the different

elements.

There are other panes like Error Window and Output Window for the

managerial roles. Output window displays the whether a task was

successfully executed, displaying the results. The error window displays the

errors thrown, displaying the type of error and a suggested in solution.

S. M. Thomas 2004/05/23

 Page

94

Figure 4.4 Workspace of MasterCraft

S. M. Thomas 2004/05/23

 Page

95

4.7 View of class diagram using each tool

The UML notation is rich and full bodied. It is comprised of two major

subdivisions. There is a notation for modeling the static elements of a

design such as classes, attributes, and relationships. There is also a

notation for modeling the dynamic elements of a design such as objects,

messages, and finite state machines. Static models are presented in

diagrams called: Class Diagrams.

The purpose of a class diagram is to depict the classes within a model. In

an object oriented application, classes have attributes (member variables),

operations (member functions) and relationships with other classes. The

UML class diagram can depict all these things quite easily. The

fundamental element of the class diagram is an icon that represents a class.

This section presents the area of modeling class diagrams with the

different tools along with other aspects like documentation and exporting

diagrams.

Together Control Centre

Class diagrams can be exported as .gif, .wmf or .svg format. Figure 4.5

shows the class diagram for the jukebox application. Web documentation

can be generated for the diagrams drawn.

S. M. Thomas 2004/05/23

 Page

96

Figure 4.5 Class diagram in Together Control Center

S. M. Thomas 2004/05/23

 Page

97

Figure 4.6 Class diagram in Rational Rose

S. M. Thomas 2004/05/23

 Page

98

Rational Rose

Figure 4.6 illustrates the class diagram in Rational Rose. Diagrams can be

exported and saved as .jpeg, .bmp, .svg files. Web documentation in

rational produces a clear separate documentation for each diagram and

and the different classifiers in the diagram. Sequence diagrams for the

use–case “AdminLogin” is shown in Figure 1.7

ArgoUML

ArgoUML helps to export a class diagram as .jpeg, .svg, post scripts, .eps.

The class diagrams for the application Jukebox is illustrated in the

Figure4.7.

MasterCraft

Figure 4.8 shows the class diagram for the application jukebox.

MasterCraft export diagrams to rational rose and with a detailed diagram.

The diagrams and individual elements in the diagram can be saved .bmp,

.emf, and .gif files. An example of sequence diagram is shown in figure 4.9.

The navigation through the diagram is not very flexible.

S. M. Thomas 2004/05/23

 Page

99

Figure 4.7 Class diagram in ArgoUML

S. M. Thomas 2004/05/23

 Page

100

Figure 4.8 Class diagram in MasterCraft JAVA

S. M. Thomas 2004/05/23

 Page

101

Figure 4.9 Sequence diagram in MasterCraft for “AdminLogin”

S. M. Thomas 2004/05/23

 Page

102

4.8 Conclusion

The primary objective of a UML modelling tool is to model an Object

Oriented application in using UML notation. Modelling can be done

efficiently by drawing the design quickly and checking it against the

standards of UML notation. This section looks at how ArgoUML,

MasterCraft, Rational Rose and Together approach these issues. The

interfaces for each tool are discussed. Sequence diagrams and Class

diagrams are also highlighted in this section. ArgoUML and MasterCraft

are not yet up to the mark when compared with the later two tools.

S. M. Thomas 2004/05/23

 Page

103

List of Figures

Figure 4.1Workspace in Together Control Center84

Figure4.2 Workspace in Rational Rose..87

Figure 4.3 Workspace of ArgoUML... 90

Figure 4.4 Workspace of MasterCraft...94

Figure 4.5 Class diagram in Together Control Center....................................96

Figure 4.6 Class diagram in Rational Rose ..97

Figure 4.7 Class diagram in ArgoUML ..99

Figure 4.8 Class diagram in MasterCraft ...100

Figure 4.9 Sequence diagram for the use-case AdminLogin...................... 101

S. M. Thomas 2004/05/23

 Page

104

APPENDIX V

UML TOOLS –
EVALUATION OF IMPLEMENTATION

S. M. Thomas 2004/05/23

 Page

105

Table of Contents

5.1 Introduction...106

5.2 Code generation by each tool..106

5.3 Implementation: Together Control Center ...109

5.3.1 Features of editor...109

5.3.2 Forward Engineering.. 111

5.3.3 Reverse Engineering...112

5.4 Implementation: Rational Rose ...114

5.4.1 Forward Engineering..114

5.4.2 Reverse Engineering...117

5.5 Code generation: ArgoUML... 118

5.6 Code generated: MasterCraft...120

5.6.1 Role of Construction Manager in Implementation………………...120

5.6.2 Role of construction Programmer in implementation……………122

5.6.3 Q++ A Technology Independent Language…………………………. 128

5.6.4 Reverse Engineering ………………………………………………………….129

5.7 Business Logic Implementation…………………………………………….… ….129

5.8 Conclusion..131

List of Figures... .132

S. M. Thomas 2004/05/23

 Page

106

5.1 Introduction

Tools have always been an essential factor for humans to simplify his

creative thoughts. Most of the time UML tools are used for designing the

software. Since there are many tools now in the market each one claiming

to provide certain degree of sophistication, it is up to us as users to analyze

and evaluate these tools, comparing it to check if it meets up to the our

business needs.

Round-trip engineering is any combination of multiple code generation

and/or reverse engineering operations, though it most commonly refers to

a series of operations alternating between the two. Code generation and

reverse engineering are some of the key factors discussed in this section.

Here we also discussion about how the code is generated by the different

tools.

5.2 Code generation by each tool

Tools are used in order to simplify the work of a programmer. This is

achieved through the functionality of round trip engineering in a tool.

Round trip engineering includes two major features. One is code

generation and the other reverse engineering. I believe that any tool which

claims to be a UML tool should at least provide the functionality of Code

Generation.

Reverse engineering is one of the factors which puts the tool in the

forefront. Reverse engineering is to generate code from the code

implemented or from the modified code. Having an in built editor helps

S. M. Thomas 2004/05/23

 Page

107

the user from the trouble of finding an editor and integrating it with the

tool. Though some tools provide separate editors with the facility to

integrate with a UML tool.

Reverse engineering plays a major role in the maintenance of the software.

The reverse engineering feature can be applied to existing code as well as

code that are being developed. A tool should reverse engineer source code,

build a model around existing code or restoring a model from archived

files.

The code generation done by the tool generates a skeletal code for the

classes, attributes, relationship between the classes and the parameters of

the operations. This brings down the physical implementation time of the

software by around 35 - 40 percentage.

S. M. Thomas 2004/05/23

 Page

108

Figure 5.1 Code generated for a class “Slideshow”

//Source file: C:\\jukebox\\CSlideshow.java

public class CSlideshow
{
 private int num = 0;
 private int cur = 0;
 public CRealTimeClock theCRealTimeClock;
 public CImage theCImage[];

 /**
 * @roseuid 3F7C5A830358
 */
 public CSlideshow()
 {

 }

 /**
 * @param dur
 * @param file
 * @param desc
 * @return int
 * @roseuid 3F7B26ED02E9
 */
 public int addImage(int dur, String file, String desc)
 {
 return 0;
 }

S. M. Thomas 2004/05/23

 Page

109

5.3 Implementation: Together Control Center

5.3.1 Features Of Editor

Together comes with a built-in full-featured text editor that allows you to

work with any of the supported languages. The editor is flexibly

configurable. You can configure the Editor using the Options dialog at any

of the multiple configuration levels. The Editor can be tuned for working

with different contents like: plain text, Java, C++, Visual Basic, IDL,

HTML, XML, JSP, C#, Visual Basic .Net.

Together provides two types of bookmarks: global bookmarks that apply to

the entire project, and local bookmarks that are used only within the

currently opened file. [43] One can set the global bookmarks in the source

code files and navigate to them from any open file that is part of your

project. You can view, edit, classify, and navigate to bookmarks in the

project using the Edit Bookmarks dialog, which is available on the right-

click menu of the current line. Local bookmarks are fast and handy to

operate. They are numeric instead of titled, meaning that they are

numbered from 1 to 10. For this reason, there can be only ten local

bookmarks per file.

Breakpoints specify where to stop code execution during debugging to

permit inspection of variables, expressions, class members, and so on. This

feature of the integrated debugger is accessible from the Editor.

The Editor Toolbar provides a number of buttons that significantly speed

up the coding process. These buttons are: [43]

S. M. Thomas 2004/05/23

 Page

110

Code Sense, Advanced Code Sense: These features automatically

complete your code.

Parameters Tool Tip: This feature is also a part of code completion,

and displays the list of possible parameters for the method under the

cursor.

Surround With:

Surrounds the selected lines of code with one of the specified constructions

(for, if-else, try-catch).

Toggle Comments:

This feature enables you toggle between commenting and uncommenting

the selected section of code.

Override/Implement Methods:

Enables you to choose methods of the parent class to be implemented or

overridden.

Expand Snippet:

Expand Snippet expands one of the pre-defined snippets into the code

block that it represents.

Browse Symbol:

Browse symbol enables you to view the source code of the library classes.

Previous / Next Declaration:

This feature Navigates through the list of declarations within the current

class.

S. M. Thomas 2004/05/23

 Page

111

5.3.2 Forward Engineering

The figure below [Figure 5.2] gives a snapshot of the code generated by

together control center. It is very plain and simple without any comments.

There are no comments directing the programmer where to insert his code.

The code generated does not include default constructors or destructors.

The operations are generated on top and the attributes and the relations

are generated at the end.

 Figure 5.2 Code generated by Together for class Password

/* Generated by Together */

public class CPassword {
 public Boolean check(String pwd) {
 }

 public void setdefault() {
 }

 public int change() {
 }

 private String PassWord;
}

S. M. Thomas 2004/05/23

 Page

112

5.3.3 Reverse Engineering

A central feature of Together is Live Source. This is the ability of the tool to

immediately synchronize class diagrams with the implementation code.

Live Source means that your UML class diagrams are always synchronized

to the source code that implements them. When you change a class

diagram, Together immediately updates the corresponding source code.

When you change the code, Together updates the visual model. There is no

intermediary repository, no batch code generation. The Live Source feature

applies to existing code as well as the code that are being developed.

Together can do reverse engineering to the source code. It builds a model

around existing code and can restore a model from archived files.

The figure below [Figure 5.3] gives a view of how Together achieves

synchronization with an integrated editor. In the example below the new

operation “reverse check” was added to the class CJubebox, in the editor.

This is immediately shown in the model as a new operation Reverse Check.

This new operation added is highlighted in figure both in the editor pane

and in the designer pane.

S. M. Thomas 2004/05/23

 Page

113

 Figure 5.3 Reverse Engineering with Synchronised Editor - Together

S. M. Thomas 2004/05/23

 Page

114

5.4 Implementation: Rational Rose

5.4.1 Forward Engineering

Code generation (also called forward engineering) is the process of

generating Java source from one or more classes in a Rose model. Round-

trip engineering is any combination of multiple code generation and/or

reverse engineering operations, though it most commonly refers to a series

of operations alternating between the two. Model and source code are kept

synchronized over an extended period of time and through multiple

changes. If you change the model, use a code generation operation to make

the corresponding changes to the code. If you change the code, use reverse

engineering to make the corresponding changes to the model.

Forward engineering in Rose is component-centered. This means that the

Java source generation is based on the component specification rather

than on the class specification. To do this, you create a class and then

assign it to a valid Java component. Or, Rose creates the component for

you when your model’s default notation is Java.

When you forward engineer a Java model element, its characteristics are

mapped to a corresponding Java-language construct. For example, a Rose

class forward-engineers, through its component, to a .java file; a Rose

package forward-engineers to a Java package, and so on. In addition, when

you forward engineer a package, a .java file is generated for each

component belonging to the package. Each .java file contains the

definitions for any classes assigned to that component.

S. M. Thomas 2004/05/23

 Page

115

Rose Java offers an auto-synchronization mode that automatically initiates

code generation any time you create or modify any Java element in your

model. By default this is off but one can enable this feature through the

Java Project Specification.

Because Auto Synchronization is normally off, Rose generates RoseIDs for

Java methods. This feature allows Rose to track method name changes in

the code. When Auto Synchronization is turned on, Generate Rose ID

should be turned off (on the Code Generation tab of the Project

Specification). The RoseID is a Java comment that takes the form:

@roseuid <string>

Model ID comments of the form:

//##ModelId=392B160E0157

may be inserted into the code during code generation or reverse

engineering. These comments help Rose match declarations in the code

with the corresponding elements in the model when doing both code

generation and reverse engineering. The figure 5.4 shows the code

generated by Rose in Java for the class CPassword.

S. M. Thomas 2004/05/23

 Page

116

Figure 5.4 Code generated by Rational Rose for class Password

//Source file: C:\\jukebox\\CPassword.java

public class CPassword
{
 private String passWord;

 /**
 * @roseuid 3F7945060322
 */
 public CPassword()
 {

 }

 /**
 * @param pwd
 * @return Boolean
 * @roseuid 3F793A880208
 */
 public Boolean check(string pwd)
 {
 return null;
 }

 /**
 * @return Void
 * @roseuid 3F793A9701D7
 */
 public Void setdefault()
 {
 return null;
 }

 /**
 * @return Integer
 * @roseuid 3F793AE2027F
 */
 public Integer change()
 {
 return null;
 }
}

S. M. Thomas 2004/05/23

 Page

117

Rose specifications enable you to document your model elements by

adding text to various Documentation fields. Rose Java uses the text you

supply to create Javadoc tagged comments in the code it generates. There

are two comment types that Rose generates:

• Asterisk Style. The Asterisk style inserts an asterisk at the start of

the comment. This is the standard Java style.

• Javadoc style. This style uses Javadoc tags that the Javadoc

compiler uses to create HTML pages that describe various Java

constructs such as classes, interfaces, constructors, methods, etc

5.4.2 Reverse Engineering

Rose Java reverse-engineers a .java file as a Java-language component in

your model. This component includes the package information that locates

the file in you directory structure. At the same time, it creates the class(es)

contained in the .java file. You can view reverse-engineered classes and

components in the Rose Browser. Rose does not automatically create class

or component diagrams based on newly reverse-engineered classes. To add

classes or components to diagrams you can drag and drop them from the

browser into new or existing diagrams

Do not change both the model and the code at the same time since it is

difficult to get them synchronized again. If the changes in the model and

the code are in different classes, then it may be possible to selectively do

code generation and reverse engineering on a class-by-class basis. If the

S. M. Thomas 2004/05/23

 Page

118

same class is changed in both the model and the code, one set of changes

will have to be overwritten in order to synchronize that class again.

5.5 Code generation: ArgoUML

Code generation in ArgoUML is very simple to do. In the workspace of

ArgoUML there is “Generate” on the toolbar menu. This is to generate

code. You have the option to generate code for Selected Classes or All the

Classes. If All the Classes is selected the “Generate Classes” window

appears [Figure 5.5]. From here one can select the classes for which code

generation is done.

The source code can be viewed along with the model since it is

synchronized with the model. So any change to the model is immediately

reflected. The code generated by ArgoUML is shown in Figure 5.6. It is

simple without any comments. The attributes and relations are placed first

then the operations are placed. ArgoUML does not cater for reverse

engineering.

S. M. Thomas 2004/05/23

 Page

119

 Figure 5.5 Process of Code Generation in ArgoUML

S. M. Thomas 2004/05/23

 Page

120

Figure 5.6 Code generated by ArgoUML for class Password

5.6 Code generated: MasterCraft

5.6.1 Role of Construction Manager in Implementation

The construction manager’s role is responsible for initiating the

construction activity for the application and for performing building jars of

the components and deploying the individual group of components – a

component and its supplier-components. This role is also responsible for

managing and monitoring the construction activity being carried out for

import java.lang.String;
import java.lang.Integer;

public class CPassword {

public String passWord;
 /* {transient=false, volatile=false}*/

public boolean check(String pwd) {
 return false;
 }
public void setdefault() {
 }
public Integer Change() {
 return null;
 }
}

S. M. Thomas 2004/05/23

 Page

121

the entire application. Some of the functions done by the Construction

Manager are:

• Generate code for the component

• Manage user-workspaces for the ConstructionProgrammers

• Check conformance of the code to the Java standards

• Create application tables

• Prepare application for deployment

Code for a component is generated from the object model of the

component that is available as a CDIF file. User-model of the selected

component needs to be translated into a standard format that is easily

understood by the other tools in MasterCraft. The model in the relational

database gets translated to the one in a flat database. The code generators

in MasterCraft need a Case Data Interchange Format (CDIF) file of the

component as the input.

The following files are generated:

• Object model files

• Domain description files

• Java files for the classes

• Java files for interface of the classes

• Java files for the WinClasses

• SQL files for queries

• Java files for Batch Programs

• Java files for Batch Functions

• Unit-testing driver Java files

• Input files

S. M. Thomas 2004/05/23

 Page

122

• Makefiles

• DDLs

• Rulebase

• Test data specification templates for Test Data Generator [66]

All the Java files for classes, WinClasses, and interfaces are compiled

during the ‘Generated Code’ action to create a stub jar. A stub jar is the jar

with dummy implementations. After generating code, the Construction

Programmer can pick up the class templates and code them. These classes

can then be compiled, built and unit tested.

5.6.2 Role of construction Programmer in Implementation

The Construction Programmer’s role is used for performing all the coding

and unit-testing actions after the Construction Manager has completed the

initial set-up and code generation. The Construction Programmer can edit

the generated code template to enter the business logic. Typically no

changes should be made to the MasterCraft generated code. However,

sometimes you may find that there are some model elements that may not

have been modeled and need to be created. These can be created and used

while coding, for example, you may add an attribute to a class or a

parameter to an operation or service. These elements can thus be

introduced in the construction phase. However, it is then required that the

change be validated and incorporated in the model from which the code

was generated. After understanding the need of the code changes, the

Construction Manager ascertains the correctness of changes in the code,

and approves the updating of the model accordingly during ‘Synchronize

User-workspace’.

S. M. Thomas 2004/05/23

 Page

123

// ## MasterCraft generated code starts here
// ## This code should not be changed
package comp1;

import Domains.*;
import ErrorMessages.*;
import com.tcs.mastercraft.mctype.*;
import com.tcs.mastercraft.mctype.errlib.*;
import com.tcs.mastercraft.mcutil.* ;
import java.util.*;
import java.io.*;
import java.text.*;
import java.sql.*;
import com.tcs.mastercraft.mcdiagnosis.*;
// ## User-required import statements could start here onwards

// ## End of User-required import statements

/**
*/
class CPassword extends MasterCraftObject implements java.io.Serializable
{
 // Following are the Class Attributes
 /**
 */
 protected StringBuffer passWord; // Domain d_String maps to StringBuffer
here

 private MasterCraftBitSet specFlag;

 // ## User-required attribute declaration could start here onwards

 // ## End of User-required attribute declarations

S. M. Thomas 2004/05/23

 Page

124

// This is a Default Constructor
 CPassword ()
 {
 passWord = new StringBuffer(256);
 specFlag = new MasterCraftBitSet(1);
 }

 // DeepCopy Constructor
 public void deepcopy(Object inst_CPassword) throws Exception
 {
 if (inst_CPassword instanceof CPassword)
 {
 CPassword __CPassword_obj = (CPassword) inst_CPassword;

 passWord.replace(0, __CPassword_obj.passWord.capacity(),
__CPassword_obj.passWord.toString());
 specFlag.deepcopy(__CPassword_obj.specFlag);
 }
 }

 public int getId()
 {
 return 28;
 }

 public void SetspecFlag(MasterCraftBitSet spec) throws Exception
 {
 specFlag.deepcopy(spec);
 }

 public MasterCraftBitSet GetspecFlag()
 {
 return specFlag ;
 }

S. M. Thomas 2004/05/23

 Page

125

public int IsSpecifiedpassWord()
 {
 if(specFlag.isBitOn(0) == true)
 {
 return 1;
 }
 else
 {
 return 0;
 }
 }

 public void SetpassWord (final StringBuffer iStringBuffer) throws Exception
 {
 passWord.replace(0 , passWord.length() , iStringBuffer.toString()) ;
 specFlag.setBit(0);
 }

 public void UnmarkpassWord ()
 {
 specFlag.resetBit(0);
 }

 public StringBuffer GetpassWord ()
 {
 return (passWord);
 }

 public void UnmarkAll ()
 {
 specFlag.resetAll();
 }

S. M. Thomas 2004/05/23

 Page

126

 public String toString ()
 {
 String s = "";
 s = s + "\nClass CPassword : " ;
 if (IsSpecifiedpassWord() != 0)
 {
 s = s + "\npassWord = " + passWord + " (StringBuffer) ";
 }
 else
 {
 s = s + "\npassWord = _NS_ " + " (StringBuffer) ";
 }
 s = s + "\nspecFlag = " + specFlag.toString() + " (MasterCraftBitSet) " ;
 s = s + "\nEND OF CPassword \n\n" ;
 return s;
 }
// ## End of MasterCraft generated code

 // ## Signature of check_30 method should not be changed
 /**
 * @param pwd
 */
 public void check (StringBuffer pwd) throws Exception
 {
 String signature = new String("CPassword::check(StringBuffer):void");
 ServerContext.SetretError(new ErrorType());
 // ## Add your code for check_30 method here

 }
 // ## End of check_30 method

 // ## Signature of setdefault_36 method should not be changed
 /**
 */

S. M. Thomas 2004/05/23

 Page

127

Figure 5.7Code generated by MasterCraft Together for class Password

public void setdefault () throws Exception
 {
 String signature = new String("CPassword::setdefault():void");
 ServerContext.SetretError(new ErrorType());
 // ## Add your code for setdefault_36 method here

 }
 // ## End of setdefault_36 method

 // ## Signature of change_37 method should not be changed
 /**
 */
 public void change () throws Exception
 {
 String signature = new String("CPassword::change():void");
 ServerContext.SetretError(new ErrorType());
 // ## Add your code for change_37 method here

 }
 // ## End of change_37 method
 // ## User-required operation declaration could start here onwards

 // Sample format to add an operation
 // public void ExampleOperation(int Param1, StringBuffer Param2)
 // {
 // CODE_START

 // CODE_END
 // }

 // ## End of User-required operation declarations

}

S. M. Thomas 2004/05/23

 Page

128

Though the generated code is long and appears to be complicated, it is well

commented. Figure 5.7 shows the code generated for the class Password.

The business logic for the operation Setdefault is implemented between the

two lines shown below:

// ## Add your code for setdefault_36 method here

 }

 // ## End of setdefault_36 method

The tags between which you can add the required import statements are:

// ## User-required import statements could start here onwards

 import xyz.*;

// ## End of User-required import statements

5.6.3 Q++ A Technology Independent Language

The business functionality of an application is independent of the

implementation technology being used to realize it as a software system.

Appreciation of this separation is critical for the application to be

configurable with respect to the implementation technology. MasterCraft

provides a high-level specification language, Q++, which is designed to

achieve transparency in specifying the program logic, with respect to the

technology being used in the application in a declarative manner. [67]

Q++ is a high-level specification language that is used to write the

application logic on the server-side. It has the following features:

• Object-oriented and model-aware

S. M. Thomas 2004/05/23

 Page

129

• Transparent memory management

• Comprehensive error handling

• Type checking across the network

• Simplified query-processing with multiple records

• A special data type called MULTIROW and its associated

methods to handle multiple rows of data [64, 67]

5.6.4 Reverse Engineering

Extracting models from external jar is the term used for reverse

engineering in MasterCraft. This includes extracting models from jars and

model updating with the required code changes. This functionality allows

reverse engineering up to a certain level but does not allow you to update

the model. The later version of MasterCraft has incorporated this property.

5.7 Business Logic Implementation

In the above sections we discuss the code generation done by each tool.

This code generated is merely a skeletal code for the classes, parameters

and relationships. To have a workable code, a programmer has to plug-in

the business logic for the different operations. He might also have to add in

new classifiers during the implementation. The figure5.8 shows how the

code is implemented between the specified lines of the generated code.

S. M. Thomas 2004/05/23

 Page

130

Figure 5.8 Implementation: Plug –in the business logic

//Source file: C:\\jukebox\\CPassword.java

public class CPassword
{
 private String passWord;

 /**
 * @roseuid 3F7945060322
 */
 public CPassword()
 {

 }

 /**
 * @param pwd
 * @return Boolean
 * @roseuid 3F793A880208
 */
 public Boolean check(string pwd)
 {
 return check;
 }

 /**
 * @return Void
 * @roseuid 3F793A9701D7

*/

System.out.println("Print pwd"+ pwd);
 System.out.println("print readpassword[0]"
+ readpassword[0]);
 boolean check = false;
 if
(pwd.equalsIgnoreCase(readpassword[0]))
 {
 System.out.println ("Password
accpted!!\n" +" WELCOME ");
 check = true;
 }
 else
 {
 System.out.println ("Sorry Try
Again :-) ");
 }

Business Logic for Operation “Check”

S. M. Thomas 2004/05/23

 Page

131

5.8 Conclusion

Tools are used to curtail time and facilitate the development of a product.

In software the final product is a workable automated code. Tools help to

develop these software products with quality and better return on

investment. This section wraps up the functionalities like forward

engineering, reverse engineering and integrated editor in each of the tool

used for the evaluation. Code generation, reverse engineering and

updating the model are some of the vital functionalities when maintaining

a system. Keeping track of changes in the code and /or in the model and

versioning it is also an important aspect. Above all a tool which is easy to

use is always alluring to its user.

S. M. Thomas 2004/05/23

 Page

132

List of Figures

Figure 5.1 Code generated for a class “Slideshow”....................................108

Figure 5.2 Code generated by Together for class Password 111

Figure 5.3 Reverse Engineering with Synchronised Editor – Together .. 113

Figure 5.4 Code generated by Rational Rose for class Password116

Figure 5.5 Process of Code generation in ArgoUML119

Figure 5.6 Code generated by ArgoUML for class Password120

Figure 5.7 Code generated by MasterCraft Together for class Password

…………………………………………………………………………………………………127

Figure 5.8 Implementation: Plug –in the business logic........................... 130

S. M. Thomas 2004/05/23

 Page

133

APPENDIX IV

EVALUATION RESULT

S. M. Thomas 2004/05/23

 Page

134

Evaluation Table

Features
Weighti
ngs

Rational
Rose

Argo
UML Together

Master
Craft

Repository:

database 2 1 2 1 3

Customization:

Components and
tools 2 3 1 2 1

HTML
documentation:

Generate Web
Reports: 3 2 1 3 2

Save diagrams to
include in reports 3 3 1 3 3

Usability:

First Contact: 2 3 3 2 1

Ease of use: 3 2 3 3 2

Pick List:

Pick list of the classes
in the model while
drawing. 2 3 1 1 1

Tree structure in a
pane where all the
classes can be
viewed. 3 3 3 3 3

Select methods to
draw sequence or 3 2 1 3 3

S. M. Thomas 2004/05/23

 Page

135

Features
Weighti
ngs

Rational
Rose

Argo
UML Together

Master
Craft

collaboration
diagram.
Drag and drop 3 3 3 3 3

Interface
Presentation

Allows changing the
font and size of labels
on diagrams. 3 3 1 3 3

States are visibly
distinct 2 3 2 2 2

Documentation and
help files

step by step
documentation 3 3 2 3 2

Online help 2 3 1 3 1

Keyword search
facilities 3 1 1 1 1

Short – cut keys 1 1 1 1 1

Printing Support:

Fit diagram to a
single page 3 3 3 3 2

Print preview 3 3 1 3 3

Scaling functionality 3 2 1 3 1

Exporting
Diagrams:

Save diagrams any
picture editor format: 3 3 1 3 3

XMI format: 2 3 3 3 3

Robustness:

S. M. Thomas 2004/05/23

 Page

136

Features
Weighti
ngs

Rational
Rose

Argo
UML Together

Master
Craft

Does tool crash or
corrupt diagrams: 3 2 3 3 3

Automatic saving at
periodic intervals: 1 1 1 3 1

New Releases:

Any New version
releases announced: 3 3 1 2 3

Round Trip
Engineering:

Code generation: 3 3 3 3 3

Reverse engineering: 3 3 2 3

Synchronization with
editor: 2 1 3 3 2

Model navigation:

 Zooming and
panning: 3 3 1 3 3

Navigating between
source code and
diagram: 2 1 2 3

Diagram views:

Customizing details
of classes: 3 3 3 2 2

Reveal and hide
methods: 3 2 1 2 2

Visibility of methods
and attributes: 3 3 3 3 3

UML support:

Key Notation parts

S. M. Thomas 2004/05/23

 Page

137

Features
Weighti
ngs

Rational
Rose

Argo
UML Together

Master
Craft

 Use-case diagrams 3 2 3 3 3

 Class diagrams 3 3 3 3 3

 Sequence diagrams 3 3 1 3 3

 Collaboration
diagrams 3 3 3 3 3

 State diagrams 3 3 3 3 3

 Activity diagrams 3 3 3 3 3

 Component
diagrams 3 1 1 3 1

 Deployment
diagrams 3 1 3 3 3

 Package diagrams 3 3 1 1 3

Class box size
flexibility 3 3 3 2 2

Line flexibility 2 3 3 2 2

Independent
placement of
association end
names 3 3 3 3 3

Independent
placement of
multiplicity labels 3 3 3 3 3

 Preservation of
position of end names
and multiplicity
labels 3 3 1 3 3

Distinguish between
remove from diagram
and delete from
model 3 3 3 1 3

S. M. Thomas 2004/05/23

 Page

138

Features
Weighti
ngs

Rational
Rose

Argo
UML Together

Master
Craft

Restoration of
relationships in new
diagrams 3 3 1 3 2

N-ary associations 3 3 3 3 3

undo functionality for
diagrams 2 1 1 3 3

UML profiles
(stereotypes and
tagged values) 2 3 1 2 2

Total Score 352 279 359 328

