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ABSTRACT 
 

Any software project goes through the different stages of a Software 

Development Life Cycle (SDLC). Like any other commercial product, 

software has a design stage but this stage is unique and critical to software 

due to its soft nature.  A system that is given careful thought at the design 

phase results in a correct and complete system and adheres to software 

design principle. The “Unified Modelling Language” (UML) is a standard 

modelling language for object-oriented systems.  Many tools are currently 

available to support the design and implementation of software. 

Generating skeletal code from a design brings down the implementation 

time considerably.  

 

This research report presents a list of criteria against which one can 

compare different UML tools, and puts forward a rating system where 

decisions can be made on them. It presents a comparison between four 

UML tools: ArgoUML, Rational Rose, Together Control Centre, and 

MasterCraft. An end-to-end application was developed on each of these 

tools as part of the evaluation process. During the design phase a detailed 

design was done using the ICONIX process. The different features of an 

ideal UML tool is analysed and used to evaluate the four selected tools.  Of 

the four tools, Rational Rose, Together Control Centre, MasterCraft are off-

the-shelf modelling softwares whereas ArgoUML is an open source 

modelling software. From the evaluation it is observed that Together 

Control Centre attains a high score with Rational Rose following just 

behind. MasterCraft comes third.  Argo UML has the least score but it has 

the advantage of being an open source software.  
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FOREWORD  
 

 

This MSc Research project report is different from the conventional format 

in that it comprises of a paper and a number of appendices. It is therefore 

considered helpful to provide the reader the guidance regarding the order 

in which the various documents should be reviewed. There are various 

UML concepts used in this project report. It is assumed that the reader is 

familiar with basics of UML and its concepts. 

 

The Project Overview gives the user an overall description of this research 

project. This gives a background of how this project came about and why it 

is important. It also gives a brief description of the work done in this 

project and the outcome of this research work.  

 

For the essence of the project, the reader is directed to the paper entitled  

 

“Evaluation of UML tools using an End-to-End Application”. 

 

The substance of the project will be found in this paper, and the appendices 

should be regarded as additional sources of information in understanding 

the issues at hand.  

 

Discussion and Conclusion contains important information regarding the 

conclusions that were reached. This is followed by a list of all the references 

used for this work. 
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The appendices to the research project are discussed below.  

 

Appendix I discusses how the application was taken through the different 

stages of the software development cycle. It focuses primarily on the design 

phase. The design phase of the application is elaborated further by going 

through the steps of the ICONIX process.  

 

Appendix II  talks about the evaluation methodology used for the 

evaluation of tools. This section discusses the criteria defining each feature 

and sub features that an ideal UML tool should have. The approach used 

towards rating each tool, is also discussed here. The evaluation process 

breaks down each feature and quantifies the evaluation using a rating 

method.  

 

Appendix III discusses all the UML tools used in this research work. This 

section brings forth some of the additional feature that each tool has and 

hence making them unique in their own way. It also talks about the 

features that should be part of the tool. 

 

Appendix IV discusses the general interfaces of the tools. This section talks 

about each tool discussing the usability of the tool. The functions provided 

for navigation, the different panes etc are also discussed in this section. It 

also talks about modelling class diagrams and sequence diagrams in the 

different tools. 

  

Appendix V concentrates mainly on the function round trip engineering. 

This section compares the code generation and reverse engineering in the 

various tools. Appendix VI gives the final evaluation table.
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PROJECT OVERVIEW 
 

Throughout the Software Development Life Cycle (SDLC), seamlessness is 

both a highly desirable and much sought after feature. Like any other 

commercial product, software has a design stage but this stage is unique 

and critical to software due to its soft nature.  A system that is given careful 

thought at the design phase results in a correct and complete system and 

adheres to software design principle. Achieving an effortless transition 

from the requirements and analysis phase to the design phase is a 

complicated task. The ability to harness the power of design offered by the 

Unified Modelling Language (UML) into a tool, which provides a high level 

of usability and functionality, would be a considerable advantage. Some of 

the functionalities incorporated in the tool, empowers the implementation 

and testing of the design developed. Code generation in an accurate 

manner, is significant since it reduces the time of the implementation 

phase and hence the cost. 

 

The Unified Modelling Language, an Object Management Group (OMG) 

standard since 1997, is a visualizing language for the modelling and 

development of software systems. The UML offers a standard way to write 

a system's blueprints, including conceptual aspects such as business 

processes and system functions as well as concrete things such as 

programming language statements, database schemas, and reusable 

software components. 

 

Since the official release of UML in late 1997, the number of commercial 

UML modelling Computer Aided Software Engineering (CASE) tools has 

increased dramatically in the market. This provides us with many choices, 
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yet requires us to select the right UML modelling tool that best meets our 

business and software application development requirements and achieves 

the best Return on Investment (ROI). The UML modelling CASE tools 

enable us to apply a formal object oriented analysis and design 

methodology and abstract away from the entanglement of source code, to a 

level where architecture and design become more apparent and easier to 

understand and modify. As the systems being built today become more and 

more complex, UML modelling CASE tools offer many benefits for 

everyone involved in a project, e.g., project manager, analysts, designers, 

architects, developers and so on. UML tools play a significant role in 

developing software systems better, faster and in a cost effective way.  

 

The research presented in this report defines a list of criteria against which 

one can compare different UML tools, and puts forward a rating system 

where decisions can be made on them. The usability aspects and functional 

aspects of ideal UML tool were studied. Four different tools (ArgoUML, 

Rational Rose, Together Control Centre, and MasterCraft) were chosen to 

evaluate the criteria. An example application with sufficient complexity 

was taken to walk through the different stages of a SDLC using each of the 

above mentioned tools.  

 

UML on its own is a mere modelling language but it is necessary to put a 

process in place while doing the design. In this report the process used 

while designing the system is the ICONIX process [10, 11, 12, 42]. The 

rating system used in this research gives an analyst, who carries out a 

comparison between various tools, the flexibility to prioritize his features 

according to the requirements. Hence the matrix [appendix VI] presented 

in this project report could be used as a comparison tool to compare any 

set of UML tool.  
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This evaluation tool or the matrix emphasizes, particularly on the technical 

features in a UML tool. These technical features are mainly functional and 

usability issues. Non-technical aspects such as cost, training, local support, 

availability of resource and developmental environment are not part of the 

comparison matrix. Choosing a tool is critical and requires a lifetime 

investment yet design is one of the aspects that cannot be lightly tinkered 

with. This work aids in rating a tool and hence selecting an appropriate 

tool.   
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Abstract 
 
Throughout the Software Development Life Cycle (SDLC), seamlessness is both a highly 
desirable and much sought after feature. A system, which is given careful thought during 
its design phase, caters for a correct and complete system and covers the basics of the 
software design principle. The Unified Modelling Language (UML) offers a standard 
way to write a system's blueprints. The UML modelling CASE tools enable us to apply 
the formal object oriented analysis and design methodology such that architecture and 
design become more apparent and easier to understand and modify. There are different 
tools with diverse degree of functionalities available for modelling software. This paper 
tries to draw up ideal evaluation criteria for a UML tool and using these criteria, 
evaluates four UML tools.  An application is developed, taking it through the different 
stages of SDLC, which includes a detailed design and implementation, in an object 
oriented language. The design and implementation phase of the application are used to 
evaluate the different features of the tools chosen. The matrix presented in this paper 
could be used as a comparison tool to compare any set of UML tool.  
 
Keywords 
Software Engineering, Object Oriented, UML Tools, Evaluation, Methodology, Rating.  
 
Computing Review Categories 
Software Engineering Design, Evaluation of Tools  
 
 
1. Introduction  
 
Since the Stone Age, tools have been an 
integral part of man enabling him to 
simplify and improvise his work. Like 
other engineering fields software 
engineering has its own set of tools 

directed towards specific developmental 
requirements and areas.  Yet unlike other 
tools, software tools need to adapt to the 
soft nature (i.e. the continuously 
changing requirements) of the 
environment where they will be used. 
 
Since the official release of UML in late 
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1997, the number of commercial UML 
modelling CASE tools has increased 
dramatically in the market [1]. There are 
many UML tools available in the market 
where the tool vendor tries to prove their 
tool better than the others.  Hence before 
a user invests in a UML tool it is 
essential to consider the business 
requirements as well as the software 
application development requirements. 
The research described in this paper 
evaluates four different UML tools: 
ArgoUML v 0.14, Master Craft for Java 
v 6.0, Rational Rose 2001 and Together 
Control Center v 6.1.  A technical 
evaluation of the tools was carried out 
based on an end-to-end application. The 
evaluation is rated based on the author’s 
experience with each of these tools and a 
conclusion is drawn from this rating.  
 
2. Software Engineering Principles 

and Design 
 
Software engineering is the application 
of a systematic, disciplined, quantifiable 
approach to the development, operation 
and maintenance of software; that is the 
application of engineering to  
software. [2] When constructing 
software, the problem to be solved is 
analysed and the requirements are 
defined in a precise manner. 
 
 

 
 There are six distinguished phases in the 
Software Development Life cycle 
(SDLC): 

• Preliminary Investigation Phase 
(Feasibility Study) 

• Analysis Phase 
• Design Phase 
• Implementation Phase 
• Testing Phase 
• Maintenance Phase [2] [3].   
 

Any software system, which is given 
careful thought during its design phase, 
caters for the factors that lead to a 
correct and complete system. A correct 
and a complete software system is a 
system which has maximum cohesion, 
minimum coupling, maintainability, 
reusability, understandability, and 
adaptability. The characteristics of a 
system with a good design are: 

1. Change in one part of the system 
doesn't always require a change 
in another part of the system.  

2. Every piece of logic has one and 
one home. There is no 
duplication of logic. 

3. System can be extended with 
changes in only one place.  

4. Simplicity. [4] 

Software is not a jumble of code that can 
be written and put together by any 
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programmer. Many do not realize the 
enormity of skills and knowledge 
required to build a complete and correct 
software system. 

3. Why Object Oriented Design 
and Programming? 

 
To put the ever-growing power of 
computers to good use we need software 
of much greater complexity, yet the 
software needs to be more reliable. High 
Quality is essential in software 
development while poor quality is a 
waste of time and money. To improve 
quality, the design has to be given 
careful thought. There are different types 
of design: Structured design, data-driven 
design, object-oriented design, object-
based design etc.  Object oriented 
techniques is currently one of the better 
techniques used to simplify the design of 
complex systems. 
 
Using the object oriented technology the 
domain of a system can be visualized as 
a collection of objects existing in one of 
the specified states. The operations that 
change the state are simple. Objects are 
built out of other objects. 
 
Design can be thought of in two phases. 
The first, called high-level design, deals 
with the decomposition of the system 
into large, complex objects. The second 

phase is called low-level design. In this 
phase, attributes and methods are 
specified at the level of individual 
objects. This is also where a project can 
realize most of the reuse of object-
oriented products, since it is possible to 
guide the design so that lower-level 
objects correspond exactly to those in 
existing object libraries or to develop 
objects with reuse potential. 
 
“High thoughts must have high 
language”Aristophanes. [9] Hence to 
put our complex systems into software 
we need a powerful language. The 
implementation in this research is done 
in Java. Java is a fully object-oriented 
language with strong support for proper 
software engineering techniques [9]. 
Java is a powerful language with various 
class libraries. It is used to develop 
internet-based and intranet-based 
applications and software for devices 
that communicate over a network.   
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Figure 3.1 Software Technologies 
 
Object Oriented System alone cannot 
provide the magnitude of change needed. 
They must be combined with other 
software technologies. Some of them 
include repository-based development, 
code generators, repository based 
methodologies etc. as shown in  
Fig. 3.1. [22] 
 
4. Unified Modelling Language 
 
The Unified Modeling Language 
(UML), an Object Management Group 
(OMG) standard since1997, is a 
visualizing language for the modeling 
and development of software systems [5, 
6]. The UML is a modeling language, 
not a software development process, and 
it intends to support different object 
oriented approaches to software 
production. UML is also a standardized 

notation for object-oriented analysis and 
design. The UML offers a standard way 
to write a system's blueprints, including 
conceptual things such as business 
processes and system functions as well 
as concrete things such as programming 
language statements, database schemas, 
and reusable software components. 

 UML defines twelve types of diagrams, 
divided into three categories. The three 
categories are:  

1. Diagram used to represent static 
application structure or Structural 
diagrams.  

2. Diagrams used to capture the 
different aspects of dynamic 
behavior also called Behavior 
diagrams.  

3. Diagrams used to model and 
manage the application modules. 
This is also called Model 
Management diagrams.  

Four diagram types represent structural 
diagram; five represent behavior 
diagrams; and three represent model 
management diagrams. Structural 
Diagrams include the Class Diagram, 
Object Diagram, Component Diagram, 
and Deployment diagram. Behavior 
Diagrams include the Use-case Diagram 
(used by some methodologies during 
requirements gathering); Sequence 
Diagram, Activity Diagram, 
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Collaboration Diagram, and Statechart 
Diagram. Model Management Diagrams 
include Packages, Subsystems, and 
Models. [5, 6, 7, 8] 

UML DIAGRAMS

STRUCTURAL 
DIAGRAMS

BEHAVIOUR 
DIAGRAMS

MODAL 
MANAGEMENT 
DIAGRAMS

• CLASS

• OBJECT

• COMPONENT

• DEPLOYMENT

• USE CASE

• SEQUENCE

• ACTIVITY

• COLLABORATION

• STATE CHART

• PACKAGES

• SUBSYSTEMS

• MODELS

 

Figure 4.1 Types of UML Diagram 

5. ICONIX Process 

The visual language UML has to be 
combined with a process while 

designing. The process that will be used 
in this research will be ICONIX. This 
methodology was created by Doug 
Rosenberg. ICONIX uses robustness 
analysis as a bridge between use-cases 
(or Domain Model) and the code [10]. 
This methodology assumes an Object 
Oriented decomposition of the domain 
and it is use-case driven. The diagram 
[Fig 5.1] below explains the ICONIX 
process.  It consists of two parts: 
dynamic and static. The main stages in 
this are domain modeling, use-case 
modeling, robustness analysis, 
interaction modeling and finally class 
diagram. [11, 12] 

 

 

 
 

Figure 5.1 ICONIX Processes [12] 
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6. UML Tools 
 
UML tools help designers to model their 
design. Most of these tools support: 
drawing and exporting UML diagrams, 
eliminating errors, model- and 
document- linking, report generation, 
configuration management, code 
generation and reverse engineering.  
 
The number of UML tools in the market 
has increased incredibly, since UML was 
made a standard in 1997.  This provides 
us with a number of choices but at the 
same time requires us to do more 
investigations, to select the right UML 
modeling tool, according to our business 
needs. OMG suggests some of the 
features that may be essential in a UML 
tool like Repository support, Roundtrip 
engineering, UML support, Pick lists etc 
[9]. Many products have done a 
comparison with their competitors to 
prove that their products are better, 
hence pointing out some of the features 
essential in a tool [1, 10, 11, 12]. 
 
UML tools can be classified as follows:  

 Basic diagram-drawing tools 
E.g. Visio (basic version). 

 Main-stream OO CASE tools 
E.g. Together, ArgoUML. 
 
 

 Specialist real-time/embedded 
tools. 
E.g. Rhapsody, Telelogic. [13] 

 
7. Evaluation Criteria 
 
Evaluation criteria are selected in order 
to assess the functionality and usability 
of the tool as a whole, not merely from a 
superficial, interface evaluation 
perspective [14].  It is essential to 
evaluate everything from the compliance 
of a tool’s notation to the UML standard, 
to the ease with which it supports 
navigation between diagrams and ease of 
use. Evaluation criteria were drawn up to 
highlight the basic requirements and the 
future evolving requirements, of an ideal 
UML tool. Each of these features tries to 
focuses on the ideal technical facilities 
provided by the tool rather than the 
ostensibly appealing features promoted 
by the vendor.   
 
The evaluation criteria are divided into 
two sections: Ideal features and other 
features. The ideal features discuss all 
features that an ideal tool should have. 
These features are used as part of the 
evaluation table (See table 9.1) to 
evaluate the tools. Other features talk 
about commonly used features in a tool. 
Hence it will be good to include them in 
the   tool. 
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7.1. Ideal Features 

7.1.1 Repository 

For a large project, a repository is 
necessary for the sharing of component 
designs between developers. Two or 
more developers can share components 
of a model or even collaborate on the 
development of a single component by 
defining ownership and sharing rights at 
the appropriate level. With modeling 
tools that support a repository, changes 
to any component should be 
automatically propagated to any design 
which imports the component.  

7.1.2 Customisation 

It can be useful for a developer to be 
able to configure the tool to conform to 
some specific standards, like company 
requirements, personal preferences etc.  
This could include the options to view 
different panes, tools etc. 

7.1.3 HTML Documentation 

The UML modelling tool should provide 
seamless generation of HTML 
documentation of the model. HTML 
documentation provides a static view of 
the object model that any developer 
using the model can refer to quickly in a 
browser, without having to launch the 
modelling tool itself. This reduces the 

number of required licenses for the 
modelling tool for those who require 
read-only access to the model 
information. The HTML documentation 
should include a bitmap picture of each 
of the diagrams in the model and should 
provide navigation throughout the model 
through the use of hyperlinks.  

7.1.4 Usability 
 
First Contact 
 
The users initial experience with the system 
should be one in which the task of initially 
constructing and modeling parts of the 
system is easy. This feature is analyzed 
based on the user’s first experience with the 
tool without referring to any documentation.  

 
Easy to Use 
 
The tool should remain easy to use even 
when dealing with complex diagrams and 
objects.  For this criterion the focus is the 
tool’s ability to hide and reveal information 
allowing the user to focus on specific 
details.  

 
Pick List  
 
The modeling tool should provide pick lists 
in several key interfaces: 
Collaboration and Sequence Diagrams - The 
tool should allow an object to be assigned to 
a class from a list of the classes in the 
model. It should allow the messages sent 
between objects to be chosen from a valid 
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list of methods for the object (class) which is 
receiving the message. The pick list feature 
contributes significantly to the intuitiveness 
of the modeling tool and may be considered 
a must-have feature. The development of 
sequence and collaboration diagrams is 
greatly facilitated by being able to quickly 
select the message you want to send from 
one object to another. 
 
Interface Presentation 
 
The interface should have a layout which is 
both consistent and aesthetically pleasing.  
This category typically examines areas such 
as fonts, labels on diagrams, facilities 
provided for viewing diagrams, and the 
visibility of different states of the model.  
 
Documentation and Help File 
 
Good documentation and search facilities 
help the user to learn the tool and feel 
comfortable around the tool. This 
determines how quickly a user can perform 
functions using the tool. Distinguishing the 
menus and the submenus makes readability 
easier. Name completion facilities, short-cut 
keys and learning aids can heavily influence 
the speed with which a user can perform 
common tasks.  

7.1.5 Printing Support  

The modeling tool should allow accurate 
renditions of large diagrams to be 
produced through multi-page printing. 
Print preview and scaling functionality 
should be supported to allow ease of 

fitting the diagram to the desired number 
of pages. The ability to fit a diagram to a 
single page is high on this list.  

7.1.6 Exporting Diagrams 

One key feature is the ability to export 
diagrams into a format that may be 
imported into a word processing 
document or a web page. The most 
popular graphics formats used for export 
are GIF, PNG and JPEG. When 
exporting, the tool should allow you to 
define the preferred resolution and size 
of the graphic that is produced.  

XMI, an Object Management Group 
(OMG) standard, is an interchange 
format which has the potential to finally 
allow seamless sharing of models 
between development tools. For 
example, rather than writing scripts 
within a UML modeling tool to create 
reports, a user could simply export the 
model under development using XMI 
and import the model into a specialized 
report writing tool. It is therefore good 
that a tool should be able to export 
diagrams to XMI format. 

7.1.7 Robustness  
 
A UML tool should have rock-solid 
reliability and consistency. This is to prevent 
users from losing potentially hours of 
productivity, when the tool crashes in the 
middle of a design session, or corrupts a 
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model which hasn't been backed up. A tool 
which causes hours of work to be lost due to 
a crash or file corruption is very 
unsatisfactory. A strategy to be considered 
here is to have the UML tool automatically 
to save a model in the background at 
periodic intervals. 

7.1.8 New Release  

The modelling tool selected should 
continue to be actively improved 
through bug fixes, performance 
improvements, and the addition of new 
features. Another factor is that these 
tools have to adapt to the new 
technological advancements in hardware 
and software environments. Since there 
is a big investment in time and money in 
a tool, it is not easy to change to another 
modelling tool. We can determine if a 
product is evolving by enquiring for a 
detailed schedule of recent releases and a 
roadmap for the product's future and by 
looking closely at the rate at which 
features and improvements have been 
made.  

New versions and improvements in 
functionalities are good, provided the 
new version of the tool is backward 
compatible with the older versions. It is 
unreasonable that one should be stranded 
with old design diagrams which are not 
compatible with new versions of the 
tool. So it is necessary to consider this 
feature when deciding on a tool. 

7.1.9 Round Trip Engineering  

The ability to both forward and reverse 
engineer source code (Java, C++, and 
CORBA IDL) is a complex requirement 
that vendors support with varying 
degrees of success. The successful 
combination of these two features, 
forward and reverse engineering is 
defined as round-trip engineering. [1] 

Code Generation or Forward 
Engineering 

Code Generation is the process of 
generating code in the respective 
programming language for the 
components defined in the design. It is 
also possible to generate the code for the 
relationship between the components. 
Once this is generated the programmer 
just has to implement the logic of each 
operation.  

Reverse Engineering 
 
Reverse engineering is the ability of the tool 
to recognise the new classes, methods and 
attributes that the programmer adds to the 
application. This can be done during the 
development of the application or during 
maintenance once the application is 
deployed. Reverse engineering is very useful 
both to transform code into a model when no 
model previously existed, as well as to 
resynchronize a model with the code at the 
end of iteration. 
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During an iterative development cycle, 
once a model has been updated as part of 
the iteration, another round of forward 
engineering should allow code to be 
refreshed with any new classes, methods 
or attributes that have been added to the 
model. This step is less commonly 
adopted by developers because many 
tools can hopelessly mangle source code 
in the process. The problem is that the 
source code contains much more than 
the model; tools must be very adept at 
reconstructing the source code that 
existed prior to the new round of 
forward engineering.  

At minimum, the modelling tool should 
successfully support forward 
engineering the first time and reverse 
engineering throughout the process. 
Also, the tool should have no trouble 
reverse engineering the full Java 
language. The way to verify this feature 
is to implement your own source code 
and try the round trip engineering on 
your code.  

7.1.10 Data Modelling 

The object modelling tool should allow 
integration with data modelling 
facilities. This can be done by 

1. Allowing an object model to be 
transformed into DDL  

2. Exporting metadata to a data 
modelling tool which can import the 

metadata and use it as the basis for a 
data model.  

7.1.11 Model navigation 

The modelling tool should provide 
strong navigational support to allow a 
developer to navigate through all the 
diagrams and classes in the model. A 
directory or pick list of classes sorted by 
name is one way to allow a designer to 
jump to the desired class on a diagram. 

For large diagrams, the tool should 
provide ease of navigation when 
zooming and panning. The tool should 
also allow ease of navigating to the 
source code for a class when round-trip 
engineering is being used. 

7.1.12 Diagram views  

The modelling tool should facilitate 
customization of the view of a class and 
its details. For instance, it should be 
possible to exclude all get/set methods 
from the diagram since they tend to 
clutter, rather than clarify a diagram. The 
full signature of methods should be 
allowed to be shown or hidden easily, 
depending on the level of detail desired. 
The visibility of attributes and methods 
(private, protected, public) should be 
another dimension used to select what to 
show or hide on the diagram. 
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7.1.13 Platform  

In order to maximize an investment in a 
modelling tool, one has to carefully 
consider the platforms on which the tool 
will run.   Java's Swing user interface 
allows cross-platform graphical user 
interface (GUI). So if the UML tool is 
built using a cross platform GUI, one 
can look over the issue of platforms.  

However, cross-platform tools need to 
be supported on common platforms such 
as Linux in order to achieve large-scale 
adoption by programmers. Sun had 
originally done little to promote Java on 
Linux. But recent industry initiatives, 
principally from IBM, which has 
pledged broad-based support for Linux 
on all of its hardware platforms and is 
supporting the Apache/Jakarta project, 
are now rapidly pushing Java onto 
Linux. Perhaps because IBM has moved 
to distribute its version of JDK 1.1.8 to 
the major Linux vendors, Sun has been 
compelled to support the distribution of 
a fully functional JDK 1.2 (Java 2, with 
Swing) for Linux. This Java port to 
Linux has been largely accomplished 
through the efforts of the Blackdown 
Group [15]. So a tool developed on a 
platform independent programming 
environment, gives a user the freedom to 
adopt any platform.  

 

7.1.14 Multi-user Support  
 
When working in a team oriented 
environment it is essential that the tool 
provides support for multiple users.    
This support is generally required in the 
form of multiple user access to the 
development software, which in turn 
requires users to be constrained by 
predefined permissions. The changes 
made by each user to a model should be 
backed up and made available to the 
next user.  

7.1.15 UML Support  
 
While many tools claim full support for 
UML 1.3, in reality this is a complex 
requirement and some tools may not live 
up to advertised claims for full support. 
At minimum, the diagrams which should 
be supported are the Use-case, Class, 
Collaboration, Sequence, Package, and 
State diagrams. 

7.1.16 Support for Language 
 
This feature deals with the different 
languages supported for code generation. 
Some of the common languages that are 
supported by tools include: JAVA, C++, 
VC++, CORBA, ADA, J2EE, and C #, 
Visual Basic.net, CORBA IDL and 
Visual Basic 6 
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7.1.17 Installation 
 
Installation of any tool should be fairly 
easy and the tool should be up and 
running without many problems. One 
should be aware of all the prerequisites 
before considering a tool. Some tools 
require a database for use as a repository 
and others require an application server. 
It is essential to study the kind of 
application you develop before selecting 
a tool. Most of the prerequisites are open 
source software. 

7.1.18 Class Diagram Features 
 

 Class box size flexibility   
 Line flexibility  
 Independent placement of association 

end names 
 Preservation of position of end names 

and multiplicity labels 
 Moderate binding of relationship lines 
 Distinguish between remove from 

diagram and delete from model 
 Restoration of relationships in new 

diagrams 
 N-ary associations: An N-ary 

association is an association among 
three or more classifiers (a single 
classifier may appear more than 
once). Each instance of the 
association is an n-tuple of values 
from the respective classifier. A 
binary association is a special case 
with its own notation. 

 Undo functionality for diagrams 

 UML profiles (stereotypes and tagged 
values): A UML profile is made up 
of one or more “stereotypes” that 
may have “tagged values” and 
“constraints” [24]. Profiles are 
sometimes referred to as the 
‘lightweight’ built-in extension 
mechanisms of UML, in contrast 
with the ‘heavyweight’ extensibility 
mechanism as defined by the Meta-
Object Family (MOF) specification. 
This is because there are restrictions 
on how UML profiles can extend the 
UML metamodel [25]. These 
restrictions are intended to ensure 
that any extensions defined by a 
UML profile are purely additive [6]. 

7.2. Other Features 

7.2.1 Sequence Diagram Features 

 
UML sequence diagrams model the flow 
of logic within your system in a visual 
manner, enabling you both to document 
and validate your logic, and are 
commonly used for both analysis and 
design purposes. Sequence diagrams are 
used to model the following: 

1. Usage scenarios: A usage 
scenario is a description of a 
potential way your system is 
used. This includes the basic 
course and the alternate course. 

2. The logic of methods:  Sequence 
diagrams can be used to explore 
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the logic of a complex operation, 
function, or procedure.   

3. The logic of service: A service 
(web-services and business 
transactions) is effectively a 
high-level method, often one that 
can be invoked by a wide variety 
of clients. [17] 

 
Sequence diagrams are the most popular 
UML artefacts for dynamic modelling, 
which focuses on identifying the 
behaviour within your system. Therefore 
it should be part of a UML tool.  

 

7.2.2 Use-Case Diagram Features   

 
Use-Case Diagrams can be used to 
describe the functionality of a system in 
a horizontal way. That is, rather than 
merely representing the details of 
individual features of your system, use-
case diagrams can be used to show all of 
its available functionality. Use-Case 
diagrams have 4 major elements: The 
actors that the system you are describing 
interacts with, the system itself, the use-
cases, or services, that the system knows 
how to perform, and the lines that 
represent relationships between these 
elements. [26, 6, 5] 
 
Hence a tool should support the basic 
notations of a use-case diagram like 
actors, include, extends etc.  

7.2.3 Support Robustness 
Diagrams 

 
In this research project the ICONIX 
methodology is used as the process for 
designing. One of the steps in this 
process is to draw robustness diagrams. 
Some tools do not support the different 
notations in the robustness analysis. This 
may not be an essential feature but for 
companies that use these methodologies 
as one of their standards one should take 
this feature into consideration. 
 
When considering this feature one 
should analyse the following:  the tools 
support the notations used to represent 
the types of stereotypes, the rules and 
constraints applied while drawing the 
diagrams.  

 
8. Case Study: Juke Box 
 
The application chosen for the design is 
a fairly complex one, covering the 
prominent features of object oriented 
methodology like associations, 
generalisation, inheritance etc. The 
application chosen will be an automated 
jukebox, which incorporates user 
interfaces, storing, and retrieving data 
from a database, an administration 
interface, which allows future 
enhancements to the system, and also an 
interface with other systems like a 
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cashbox. 
 
The example chosen is to develop 
software for a digital jukebox. The logic 
of the overall system is summarised as 
follows:  
 

 Its external construction consists of 
a case containing a display screen 
with outputs to an audio amplifier 
and input from a track-ball. There is 
a cash box, which is a separate unit. 
It accepts, validates and counts coins 
but cannot give change. The music is 
stored in the database with all the 
details of track and its cost. The 
display screen displays the list of 
tracks and the trackball highlights 
one item from the list of tracks. A 
request for payment is made. Then 
the selected song is played. For 
administrative purposes the user 
should be allowed to enter data and 
produce usage reports. A detailed 
description of this example is given 
in the reference [12]. 

 
This jukebox application will be taken 
through the complete process of an end–
to–end application. A software 
application that goes through a whole 
Software Development Life Cycle 
(SDLC) process is called an end-to-end 
application.  
 

 
 
9. Evaluation methodology 

9.1 Evaluation Using Case Study 

 
The case study described in section 8 
will be used to do the evaluation. The 
example was studied. After laying down 
the requirements a design was 
developed. The same design was 
repeated on each tool. Hence this helps 
to understand and compare how each 
tool handles the development of the 
same application design.   Then the code 
generation is done on each tool from the 
respective design. In this area we can 
compare the different tools by testing the 
different features in round trip 
engineering. Some of these include: 

 The code generation set up 
 The readability of the code 

generated by including 
comments.  

 Reverse engineering set up. 
 Feasibility to do reverse 

engineering. 
 

In the code generated, the business logic 
is implemented for the operations and 
tested to produce a working prototype. 
The implementation is done in JAVA. 
The research concentrates more on the 
evaluation of the UML tools hence only 
part of the prototype is developed. Since 
the UML tool only generates a skeletal 
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code for the user, the business logic 
plugged in by the user does not play a 
critical role in the evaluation.  

9.2 Evaluation Process 

 
The set of features was drawn up and 
defined. Each feature is defined clearly 
so as to eradicate duplication of features 
and definition of these features. It also 
clearly sets a boundary around each 
feature. Each feature can be further 
divided into sub features. For example 
consider the feature “round trip 
engineering”. This can be subdivided as 
shown in Table 8.1 
 
 Features  Sub-Features 

 
 ROUND TRIP     
 ENGINEERING 

• Code Generation  
• Reverse 

Engineering 
• Synchronization 

            With Editor 
 

Table 8.1 Example of subdivision 
                  of a feature. 

 
The evaluation is done using a “rating 
system” where a weighting is given for 
each feature and a rating is given based 
on the tool. The weighting for each sub-
feature is fixed, based on the 
significance and the importance of each 
of the features when compared with the 
rest of the sub-features. This prevents 
some tools from scoring a higher value 

for a feature, which is not essential. If a 
feature is absolutely essential then it is 
assigned a 3. If the feature pleases the 
eye yet it is not significant in terms of 
production then it is given a 1. The 
weightings given to the features in this 
research are based on what was felt to be 
significant. This judgement was based 
on extensive literature survey, 
complaints from forums and discussion 
with users.  The weightings are shown in 
Table 8.2 
 
Nice to have 
Feature 

Good 
Feature 

Essential  
Feature 

 
1 

           
2 

 
3 

 
Table 8.2 

 
The ratings for the features are given 
based on how well the functionality is 
implemented, for each tool chosen. If a 
feature is poorly implemented then it is 
assigned one but if it is implemented 
well then it gets a three. For example 
consider the feature “The class box 
flexibility”. In some tools this feature is 
there yet it does not serve the purpose 
where, it should reveal all the attributes 
and methods on increasing the size. This 
is a poor implementation and it is 
assigned a one. Figure 8.3 shows the 
score for the ratings. 
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Figure 8.3 

 
The product of the weighting and rating 
is calculated for each feature and the 
total sum of the products gives the final 
score for each tool. This can be 
summarised into the following formula: 
 
Score for a tool =  
∑ (weighting of  
     each feature × rating of tool for             
                              that feature) 
 
 

9.3 Evaluation of Tools                                                                                                                
 
The tools chosen for evaluation are 
ArgoUML v0.14, MasterCraft for JAVA 
v6.0, Rational Rose Enterprise Edition 
2001A.04.00, Together Control Center 
v6.1. ArgoUML is an open source 
software while the other three are 
commercial softwares. MasterCraft is a 
UML based Component Modeller and it 
uses a Repository-driven development 
process [19]. Rational Rose supports two 

elements of modern software 
engineering: component based 
development and controlled iterative 
development [20]. Together is another 
product which is as popular in industry 
as Rational Rose. In all these modeling 
tools code generation can be done in 
JAVA.  
 
The evaluations for each tool are shown 
below. The weightage is given to                                          
prioritize the features. The values are 
given based on the author’s experiences 
with the tools. The matrix given in Table 
9.1 could be used as an evaluation tool 
to compare any set of UML tool. The 
tool has the following headers: Features, 
Weightings and list of UML Tools used 
for comparison. The Features listed are 
indispensable in any UML tool. The 
weightings given for each feature could 
be prioritised according to the user’s 
priority list. And finally a set of UML 
tools can be used for comparison. This 
can be done by plugging in quantitative 
values and calculating the highest score.    
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Features 
Weighti
ngs 

Rational 
Rose 

Argo 
UML Together 

Master 
Craft 

Repository:            

database 2 1 2 1 3

            

Customization:            

Components and 
tools 2 3 1 2 1

            

HTML 
documentation:           

Generate Web 
Reports: 3 2 1 3 2

Save diagrams to 
include in reports 3 3 1 3 3

            

Usability:           

First Contact: 2 3 3 2 1

Ease of use: 3 2 3 3 2

Pick List:           

Pick list of the classes 
in the model while 
drawing. 2 3 1 1 1

Tree structure in a 
pane where all the 
classes can be 
viewed. 3 3 3 3 3

Select methods to 
draw sequence or 
collaboration 
diagram. 3 2 1 3 3

Drag and drop 3 3 3 3 3
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Features 
Weighti
ngs 

Rational 
Rose 

Argo 
UML Together 

Master 
Craft 

  

Interface 
Presentation           

Allows changing the 
font and size of labels 
on diagrams. 3 3 1 3 3

States are visibly 
distinct  2 3 2 2 2

  

Documentation and 
help files            

step by step 
documentation  3 3 2 3 2

Online help  2 3 1 3 1

Keyword search 
facilities 3 1 1 1 1

Short – cut keys 1 1 1 1 1

            

Printing Support:            

Fit diagram to a 
single page 3 3 3 3 2

Print preview  3 3 1 3 3

Scaling functionality 3 2 1 3 1

            

Exporting 
Diagrams:           

Save diagrams any 
picture editor format: 3 3 1 3 3

XMI format: 2 3 3 3 3

  

Robustness:            
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Features 
Weighti
ngs 

Rational 
Rose 

Argo 
UML Together 

Master 
Craft 

Does tool crash or 
corrupt diagrams:  3 2 3 3 3

Automatic saving at 
periodic intervals: 1 1 1 3 1

           

New Releases:            

Any New version 
releases announced:  3 3 1 2 3

            

Round Trip 
Engineering:            

Code generation: 3 3 3 3 3

Reverse engineering: 3 3 2 3   

Synchronization with 
editor: 2 1 3 3 2

            

Model navigation:            

 Zooming and 
panning: 3 3 1 3 3

Navigating between 
source code and 
diagram: 2 1 2 3   

   

Diagram views:            

Customizing details 
of classes:  3 3 3 2 2

Reveal and hide 
methods: 3 2 1 2 2

Visibility of methods 
and attributes: 3 3 3 3 3

  



S. M. Thomas                                              2004/05/23      
 

                                            
                                           Page  

                                          
20 

Features 
Weighti
ngs 

Rational 
Rose 

Argo 
UML Together 

Master 
Craft 

 
UML support:           

Key Notation parts           

   Use-case diagrams 3 2 3 3 3

   Class diagrams 3 3 3 3 3

   Sequence diagrams  3 3 1 3 3

     Collaboration   
diagrams 3 3 3 3 3

   State  diagrams   3 3 3 3 3

   Activity diagrams 3 3 3 3 3

   Component 
diagrams 3 1 1 3 1

   Deployment 
diagrams 3 1 3 3 3

   Package diagrams 3 3 1 1 3

Class box size 
flexibility 3 3 3 2 2

Line flexibility 2 3 3 2 2

Independent 
placement of 
association end 
names 3 3 3 3 3

Independent 
placement of 
multiplicity labels 3 3 3 3 3

 Preservation of 
position of end names 
and multiplicity 
labels 3 3 1 3 3

Distinguish between 
remove from diagram 
and delete from 3 3 3 1 3
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Features 
Weighti
ngs 

Rational 
Rose 

Argo 
UML Together 

Master 
Craft 

model 

Restoration of 
relationships in new 
diagrams 3 3 1 3 2

N-ary associations 3 3 3 3 3

undo functionality for 
diagrams 2 1 1 3 3

UML profiles 
(stereotypes and 
tagged values) 2 3 1 2 2

Total Score   352 279 359 328

  
   Table 9.1 Evaluation of tools with ratings 
 

10. Conclusions and Observations 
 
The  evaluation  technique  provides  an  
efficient means  of  isolating  both  the  
positive and  negative  features  of UML  
tools. From a business point of view cost 
and time are some of the major concerns 
in a software industry. Tools do play a 
role in the development of cost effective 
software. Any user should feel 
comfortable and confident in the tool he 
uses. Above all, tools are used to make 
the job easier. All these aspects make it 
worthwhile to invest time and effort to 
assess the tools before choosing the right 
tool.  

 
The four tools evaluated and rated were 
ArgoUML, Master Craft, Rational Rose, 
and Together. The table 10.1 presents a 
summary of the final score obtained for 
each tool.  
 

 
  Table 10.1 
 
These tools are evaluated considering 
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only the technical aspects and they 
involve the author’s experience with the 
tools, while designing and implementing 
the jukebox example.   The ratings and 
weighting of these tools are also judged 
based on the author’s findings on these 
tools. Discussions with users, comments 
in forums have also been a factor in 
studying and coming to conclusion on 
these tools. Non- technical aspects are 
not part of the evaluation tool.  
 
The matrix given in Table 9.1 could be 
used as an evaluation tool to compare 
any set of UML tool. The tool has the 
following headers: Features, Weightings 
and list of UML Tools used for 
comparisons. The Features listed are 
indispensable in any UML tool. The 
weightings given for each feature could 
be prioritised according to the user’s 
priority list. And finally a set of UML 
tools can be used for comparison. This 
can be done by plugging in quantitative 
values and calculating the highest score.    
 
11. Future Improvements 
 
Principles of Software, though new to 
the industry has improved and advanced 
immeasurably. Software is so complex 
and as it grows it tends to be even more 
complex and difficult to maintain. 
 
The evaluation criteria can be modified 

further.  Software is now built at multi-
site and with multiple users. Issues like 
authentication, change control, 
robustness of saving data, version 
control etc. are important sub-features in 
this feature. These could be investigated 
further with the example implemented. 
Only part of the example has been 
implemented in this research due to time 
constraints. This example could be 
implemented further to be a complete 
example.  
 
The XML Metadata Interchange Format 
[XMI] standard from the Object 
Management Group (OMG) [20], is one 
of the most exciting recent developments 
in the UML developer community. XMI 
is an interchange format, which has the 
potential to finally allow seamless 
sharing of models between best-of-breed 
development tools [15]. XMI uses XML 
to represent model information. During 
iterative development of a model, it is 
very productive to look at the UML 
diagram and matching source code in 
adjacent windows. When your project 
starts to mature, it may be good to have 
access to the metrics for your model. 
These are some of the features that 
vendors are trying to incorporate into 
their product and should indubitably be 
part of the evaluation criteria.  
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DISCUSSION AND CONCLUSION  
 

The evaluation technique in this research work provides  an  efficient 

means  of  isolating  both  the  positive and  negative  features  of UML  

tools. From a business point of view cost and time are some of the major 

concerns in a software industry.  From the early ages, tools have always 

played a role in aiding man to get his work done smoothly and efficiently. 

Tools do play a role in the development of cost effective software. Any user 

should feel comfortable and confident in the tool he uses. Above all, tools 

are used to make the job easier. All these aspects make it worthwhile to 

invest time and effort to assess the tools before choosing the right tool.  

 

The four tools evaluated and rated in this research work were ArgoUML, 

Master Craft, Rational Rose, and Together. Though ArgoUML has the least 

score it is open source software while other tools come with a high cost.   

The table 3 draws up a summary of the final score obtained for each tool.  

 

 

Table 3 Total score from the evaluation of tools 

 

These tools are evaluated based only on the technical aspects. The value 

given for each feature and tool is based on my experience with the tools, 

while designing and implementing the jukebox example.   The ratings and 

weighting of these tools are also judged based on my findings in these 
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tools. Discussions with users, comments in forums have also been a factor 

in studying and coming to conclusion on these tools. The evaluation tool 

emphasizes on the technical features in a UML tool. These technical 

features are mainly functional and usability issues. Non-technical aspects 

such as cost, training, local support, availability of resource and 

developmental environment,  are not part of the comparison matrix 

because it is beyond the scope of this project report.  

 

This research report is unique by presenting an evaluation tool / matrix  

[Appendix VI] to compare any set of UML tool. The tool has the following 

headers: Features, Weightings, UML Tools used for comparisons. The 

Features listed are indispensable in any UML tool. The weightings given 

for each feature could be customised according to the user’s priority list. 

And finally a set of UML tools can be used for comparison. This can be 

done by plugging in quantitative values and calculating the highest score.    

 

Software, though new to the industry has improved and advanced 

immeasurably. Software is so complex and as it grows it tends to be even 

more complex and difficult to maintain. Hence it was realised that there 

was a crisis in software. Acquiring all the user requirements is an 

important factor. Yet one has to capture all these requirements in the 

design. Further your design should cater for possible, future improvements 

in the system. Hence your design is not a fixed blue print of your system 

but it should be improved and maintained with new enhancements. This 

maintenance has to be done even after the original programmers of the 

system have moved to the next project.  

 

The evaluation criteria can be modified further.  Software is now built at 

multi-site and with multiple users. Issues like authentication, change 
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control, robustness of saving data, version control etc. are important sub-

features in this feature. These could be investigated further with the 

example implemented. Only part of the example has been implemented in 

this research due to time constraints. This example could be implemented 

further to be complete example.  

 

The XMI standard from the Object Management Group (OMG) is one of 

the most exciting recent developments in the UML developer community. 

XMI is an interchange format which has the potential to finally allow 

seamless sharing of models between best-of-breed development tools [15]. 

During iterative development of a model, it is very productive to look at the 

UML diagram and matching source code in adjacent windows. When your 

project starts to mature, it may be good to have access to the metrics for 

your model. These are some of the features that vendors are trying to 

incorporate into their product and should indubitably be part of the 

evaluation criteria.  

 

Other new features that could be included in the tools could be  

 

• Management tools: A nice feature that should be integrated with 

modelling tools is the ability to export modelling information into a tool 

that will allow you to track the progress of both the design and 

implementation of your project. 

 

• Auto generation of interaction and state diagrams: This 

function is the ability for modelling tools to help in the generation of 

interaction and state diagrams. This could be achieved using a trace file. 

Once the trace file is created, the modelling tool would be used to 

analyze the trace in order to find the patterns of object interactions.  
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1.1 Introduction  

 
A fairly complex system was chosen for the implementation and study of 

the UML tools.  This section tries to define an end-to-end application. Then 

it takes the reader through the techniques and steps for designing the 

system providing sufficient examples. A brief description of the ICONIX 

process is given. 

 

1.2 End-to-End Application  

 
When building a bridge, the construction group does not start , by piling up 

bricks. Rather the requirements are analysed by taking into account factors 

like purpose of the bridge, type of transport it accommodates, finances, 

environment, expansion that could be made in the future to the bridge. The 

architect puts these factors into his design while designing. This design is 

analysed and agreed upon before the construction begins.  

 

Constructing large, growing software systems is very similar to building a 

bridge yet with its own uniqueness. The problem to solve is first analysed 

and the requirements are defined in a very precise way.  Then a design is 

made based on these requirements. Finally the construction process is 

started. There are a distinguishable number of phases in the development 

of software. The different phases in an SDLC are Requirements 

Engineering, Design, Implementation, Testing and Maintenance [2]. 
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Figure 1.1  A simple of view of a software development life cycle [2] 

 

We define an end-to-end process to be a complete Software Development 

Life Cycle (SDLC) process. And an application developed by stepping 

through all the phases in the development of software can be defined as an 

end-to-end application.  
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1.3 Application Chosen for Study  
 

1.3.1 Description 

 
The example chosen is to develop software for a digital jukebox. This 

example deals with a user interface a specialised hardware. Its external 

construction consists of a case containing a display screen with outputs to 

an audio amplifier and input from a track-ball.  

There is a cash box which is a separate unit. It accepts, validates and counts 

coins but cannot give change. The music is stored in the database with all 

the details of track and its cost. The display screen displays the list of tracks 

and the trackball highlights the one item from the list of tracks. A request 

for payment is made. Then the selected song is played. For administrative 

purposes the user should be allowed to enter data and produce usage 

reports. A detailed description of this example is given in the reference 

[12]. 

 

The jukebox system was developed using the object oriented technology. 

The Unified Modelling Language, an OMG standard since1997, is a 

visualizing language for the modelling and development of software 

systems [5, 6]. The UML language has a set of diagram types and notations 

to represent the different concepts of object oriented programming. The 

main nine types of diagrams are: Class Diagram, Component Diagram, 

Deployment diagram, Use-case Diagram, Sequence Diagram, Activity 

Diagram, Collaboration Diagram, Statechart Diagram, Package diagrams. 

The notion used to represent concepts like generalisation, aggregation, 

inheritance etc. are explained in detail (see reference [6]).  
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1.3.2 Design  

1.3.2.1 ICONIX Process 

Unified modelling language, on its own is not sufficient to be used for 

designing of software. UML by itself is just a modelling language with 

notations and representation. But these notation and techniques can be 

optimised by using methodologies, tools, processes and guide lines for the 

design. The process used for this design is ICONIX process. This 

methodology was created by Doug Rosenberg. ICONIX uses robustness 

analysis as a bridge between use-cases (or Domain Model) and the code 

[10]. This methodology assumes an Object Oriented decomposition of the 

domain and it is use-case driven. 

The diagram [Fig 1.2] below explains the ICONIX process.  It consists of 

two parts: dynamic and static. The dynamic part includes the use-case 

diagram, robustness diagram and the sequence diagram. [11, 12] 
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   Figure 1.2 The ICONIX process [42] 
 

Apart from guiding a designer through a sequence of diagrams the ICONIX 

process also contains a number of mile stones, which are steps at which the 

progress is reviewed. The different steps in the ICONIX process are: 

Step 1: Informal statement of GUI & Prototype GUI 

Step 2: Domain Modelling 

 Step 3: Use-case Modelling 

 Step 4: Requirements Review 

 Step 5: Robustness Analysis 
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 Step 6: Preliminary Design Review  

 Step 7: Sequence Diagram 

 Step 8: Class Diagram  

 Step 9: Critical Design Review 

 Step10: Delivery 

 

1.3.2.2 Case Study – Jukebox  
 

Note: For detailed information on the design see reference [12]. 

 

Case Study: Informal statement of Problem & Prototype GUI 

 

In the case study the Jukebox example is used along with the ICONIX 

process to bring forth a design for the application. Due to time constraints 

part of the design is implemented in an object oriented language JAVA. In 

the explanation given below examples are shown for each step to give a 

better understanding of how each step is achieved.  

 

The example chosen for the study is a standard application for the 

evaluation. This application is to develop software for a jukebox.  
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Informal Statement 

 

 

Figure 1.3 Informal statement of the problem domain [12] 

An equipment supplier to the entertainment industry has hired you to 

develop software for a digital jukebox. They have developed the 

specialised hardware. Its external construction consists of a very robust 

case containing a 14" display screen (like a PC monitor), outputs to an 

audio amplifier, a tracker-ball input device with a single select button, 

and a cash box. 

a) The cash box is a separate unit which accepts, validates and counts 

coins. It does not give change. The control computer communicates 

with the cash box via an RS232 (serial) connection. It sets a counter 

in the cash box to an amount, in cents, corresponding to the required 

payment. As coins are deposited the counter is decremented until it 

reaches zero. An "okay" signal is then sent back to the control 

computer. 

b) The music is stored on a database. Each track has a title, an artist, 

a playing time, and a cost (Le. different amounts might be charged for 

different tracks). 

c) The display screen is primarily used to list the available tracks. The 

tracker ball and select button are used to highlight an item on the list 

and request that it is are played. The screen then displays the amount 

to pay. When the juke box is "waiting" and while it is playing a track, 

graphical images can be displayed on the screen. 

d) For set up and administrative purposes a keyboard and printer can 

be   connected to the unit to enter data and produce usage reports.  

 

In discussing the requirements with you the equipment supplier says 

that he might, in the future, require the digital jukebox to allow the user 

to view videos or web pages. He would also like to use credit cards rather 

than cash for payment. 
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A prototype of each of the screens in the system is drawn. For example a 

throw away prototype of the login GUI is shown below.  

 

 

Figure 1.4 Prototype GUI of login 

  

Case Study: Domain Modelling 

 

In the domain model we try to identify the abstractions in the real world. 

These will include the main problem space conceptual objects that are 

going to participate in the system. You pick out all the nouns and the noun 

phrases from the informal statement. This is you candidate class. The next 

step is to sift through the candidate classes and eliminate items that are 

unnecessary or redundant. The last step is to show the relationship like, 

generalisation and aggregation, between these classes. 
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The sifted classes are shown below (Table 1.1):  

 

 

 

Table 1.1 List of sifted classes 

 

 

 

 

 

Design Jukebox Display Screen Audio amplifier 

Track Ball Select button Cash box  

Ok Signal  Title  Required payment 

Track Graphical images Database  

Playtime Web pages Artist 

Printer  Usage reports List of tracks 

Video Credit cards keyboard 
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Figure 1.5 Domain models of the classes  
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Case Study: Use-case Modelling 

 

The use-case analysis drives the entire process. The dynamic part of the 

UML model begins with the use-cases. The static structure is derived from 

the dynamic part. As we develop the use-case we should constantly be 

reviewing and updating the domain model.  

 

 

Figure 1.6 Use-Case Diagram 
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Once the use-cases are identified they are written out in basic text format. 

A basic template is used for each use-case: 

• Basic flow -  here you focus on what the user of the system is trying 

to do  

• Alternate flow - In the alternate flow one considers the negative such 

aspects and anything else that happens other than the normal ideal 

sequence of events.  

 

Consider the example where the text format for use-case Administrator 

Login is described:  

 

 

 

 

 

 

Figure 1.7 Description of Use-case Administrator login 

 

 

Administrator Login 

 

Basic flow: The Administrator attaches a keyboard to the system 

and strikes the "F1" key. The system asks the Administrator for 

his/her password. If this is valid the "Admin" interface appears 

on the display and the Administrator can proceed with other 

use-cases. 

 

Alternate flows: If an invalid password is entered the 

Administrator is warned and is prompted again for the 

password. 
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Case Study: Robustness Analysis 

 

Robustness diagrams show the objects that participate in the scenario and 

how they interact with each other. The three different stereotypes used for 

representation are: 

 

Boundary object:      

            

This is used by actors in  

communication with the  system 

  

 

Entity Object:    

   

 

They are usually objects from 

          the domain model.  

  

 

 

 

Control Object: 

 

  These serve as a glue between the 

  boundary objects and entity objects. 
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Figure 1.8 Robustness Diagram for Administrator Login 
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Case Study: Sequence Diagram 

Figure 1.9 Sequence diagram for the use-case Administrator login 

 



S. M. Thomas                                              2004/05/23       
 

                                            
                                        Page  

                                          
35 

 

Sequence diagrams are the first steps in detailed design. The focus is to 

allocate behaviours into the objects. The tree main goals of interaction 

modelling or sequence modelling are [12]: 

 

• Allocate behaviour to boundary, entity and control objects 

 

• Show the detailed actions that occur over time among the objects 

associated with each use-case. 

 

• Finalize the distribution of operations among the classes. As you lay the 

detailed behaviour of the object in the sequence diagram you are 

finalizing the process of finding appropriate classes for both attributes 

and operations. 

 

 

Case Study: Class Diagram  

 

The final step is to draw the class diagram and this is the blue print of the 

system after critical design review is done on it. The Quality of the classes 

in the diagram is attained by ensuring the following features class diagram.  

• Coupling 

• Cohesion 

• Sufficiency 

• Completeness 

• Primitivenes 
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Figure 1.10 Final Class diagram of Jukebox [Adapted to JAVA from Ref[2]]
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1.4 Conclusion  
 

A fairly complex system of a jukebox was chosen as a case study.  This was 

used for the design of an object oriented system and study of the UML 

tools. It gives a brief description of the system. Then using the case study 

the steps of ICONIX are covered. Finally from the ICONIX process we have 

a class diagram. This is the detailed design of the system and the blue print 

for which the implementation is done.  
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2.1 Introduction 

 
There are many features that a UML tool can have but there are some 

which are necessary. There are a set of features that a CASE tool which 

claims to be a UML tool should ideally have. This section elaborates on a 

set of features that a tool should have and defines each feature. Further it 

also discusses a method to quantify the process of evaluating the tools. The 

rating system used for this evaluation is also discussed in detail.  

 

2.2 Methodology For Evaluation  

 
A standard application is chosen. This application is discussed in detail in 

Appendix 1. The application is complex and involves most of the concepts 

of an object-oriented system. Then the next step is to pick, one of the tools 

used in the evaluation, and develop the design for the system. This is done 

using UML as the modelling language and ICONIX is the process followed. 

Then the code generation is done using the tool selected. Once the code 

generation is done the logical part is coded in and then it is tested. This is 

repeated for all the four tools. Each feature is checked against each tool and 

compared, hence coming up with results and conclusions.  
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Figure 2.1 The method of evaluation 

 

2.3 Evaluation Criteria 
  

2.3.1 Repository 

 
For a large project, a repository is necessary for the sharing of component 

designs between developers. Two or more developers can share 

components of a model or even collaborate on the development of a single 

component by defining ownership and sharing rights at the appropriate 

level. A repository is generally built on top of a database, which provides 

data sharing and concurrency control features. By providing locking and 
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read-only access, the repository permits one developer to own the model 

while allowing others to read the model and its components, as well as to 

incorporate these components into their own designs.  

 

Another way to build the repository is on top of the source code for a 

project, using a source-code control system to provide concurrency control. 

The benefit of this approach is a higher degree of synchronization between 

the code and the model. Another benefit is the elimination of yet another 

data source. Don't forget that if you use a database for a repository you 

must back-up this data store separately and perform three-way 

synchronization between the model, the repository and the source-code 

instead of just a two-way synchronization between the code and the model. 

With modelling tools that support a repository, changes to any component 

should be automatically propagated to any design which imports the 

component.  

 

2.3.2 Customisation 

 
It can be useful for a developer to be able to configure the  tool to conform 

to some specific standards, perhaps company requirements or merely  

personal  preferences,  hence  we  would  expect  the  tool  to  possess  a 

certain level of customisability. This could include the options to view 

different panes, tools etc. 

 

2.3.3 HTML Documentation 

 
The object modelling tool should provide seamless generation of HTML 
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documentation for an object model and its components. HTML 

documentation provides a static view of the object model that any 

developer using the model can refer to quickly in a browser, without having 

to launch the modelling tool itself. Also, by producing HTML as 

documentation, the number of required licenses for the modelling tool can 

be reduced by the number of people that need read-only access to the 

model information. The HTML documentation should include a bitmap 

picture of each of the diagrams in the model and should provide navigation 

throughout the model through the use of hyperlinks. The amount of time 

required to generate the HTML should be reasonable. A number of 

products available today support these features with varying amounts of 

success.  

 

2.3.4 Usability 

 
2.3.4.1 First Contact 

 

The users initial experience with the system should be one in which  the  

task  of  initially  constructing  and modelling  parts  of  the  system  is easy. 

This feature is analyzed based on the user’s first experience with the tool 

without referring to any documentation.  

 

2.3.4.2 Easy to Use 

 

The tool should remain easy to use even when dealing with complex 

diagrams and objects.  For this criterion the focus is the tool’s ability to 

hide and reveal information allowing the user to focus on specific details.  
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2.3.4.3 Pick List  

 

The modelling tool should provide pick lists in several key interfaces: 

Collaboration and Sequence Diagrams - The tool should allow an object to 

be assigned to a class from a list of the classes in the model. It should allow 

the messages sent between objects to be chosen from a valid list of methods 

for the object (class) which is receiving the message. The pick list feature 

contributes significantly to the intuitiveness of the modelling tool and may 

be considered a must-have feature. The development of sequence and 

collaboration diagrams is greatly facilitated by being able to quickly select 

the message you want to send from one object to another. 

 

2.3.4.4 Interface Presentation 

 

The interface should have a layout which is both consistent and 

aesthetically pleasing.  This category typically examines areas such as fonts, 

labels on diagrams, facilities provided for viewing diagrams, and the 

visibility of different states of the model.  

 

2.3.4.5 Documentation and Help Files 

 

Good documentation and search facilities help the user to learn the tool 

and feel comfortable around the tool. This determines how quickly a user 

can perform functions using the tool. Distinguishing the menus and the 

submenus makes readability easier. Name completion facilities, short-cut 

keys and learning aids can heavily influence the speed with which a user 

can perform common tasks.  
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2.3.5 Printing Support 

 
The modelling tool should allow accurate renditions of large diagrams to be 

produced through multi-page printing. Print preview and scaling 

functionality should be supported to allow ease of fitting the diagram to the 

desired number of pages. The ability to fit a diagram to a single page is high 

on this list.  

 

2.3.6 Exporting Diagrams 

 
One key feature that is often overlooked is the ability to export diagrams 

into a format that may be imported into either a word processing 

document or a web page. The most popular graphics formats used for 

export are GIF, PNG and JPEG. When exporting, the tool should allow you 

to define the preferred resolution and size of the graphic that is produced. 

This functionality helps to include diagrams when writing reports, UML 

books or even display the design diagrams on a web site. 

 

The XMI standard from the Object Management Group (OMG) is one of 

the recent developments in the UML developer community. XMI is an 

interchange format which has the potential to finally allow seamless 

sharing of models between best-of-breed development tools. For example, 

rather than writing scripts within a UML modelling tool to create reports, 

instead a user could simply export the model under development using 

XMI and import the model into a specialized report writing tool. It is 

therefore good that a tool should be able to export diagrams to XMI 

format. 



S. M. Thomas                                              2004/05/23        
  
  

   
 Page 

 
49

 

2.3.7 Robustness  

 
A UML tool should have rock-solid reliability and consistency. This is to 

prevent users from losing potentially hours of productivity, when the tool 

crashes in the middle of a design session, or corrupts a model which hasn't 

been backed up. A tool which causes hours of work to be lost due to a crash 

or file corruption is very unsatisfactory. As a developer, you know the 

feeling of disdain for 'productivity applications' that are less productive 

than raw coding tools. If you are a manager, you have seen the resentment 

developers will show when being required to use an unreliable tool. 

 

Another strategy to apply here, which is recommended that tool vendors 

adopt, is borrowed from office productivity applications. The strategy is to 

have the UML tool to automatically save a model in the background at 

periodic intervals. 

 

2.3.8 New Release  

 
The modelling tool selected should continue to be actively improved 

through bug fixes, performance improvements, and the addition of new 

features. After all, you are making a big investment in time and money and 

it is not easy to change to another modelling tool. Another factor is that 

these tools have to adapt to the new technological advancements in 

hardware and software environments.  

 

We can determine if a product is evolving by enquiring for a detailed 
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schedule of recent releases and a roadmap for the product's future and by 

looking closely at the rate at which features and improvements have been 

made. One may also look on the company website for the product 

announcements and outside reviews. 

 

New versions and improvements in functionalities are good, provided the 

new version of the tool is backward compatible with the older versions. It is 

unreasonable that one should be stranded with old design diagrams which 

are not compatible with new versions of the tool. So it is necessary to 

consider this feature when deciding on a tool. 

 

2.3.9 Round Trip Engineering 

 
The ability to both forward and reverse engineer source code (Java, C++, 

and CORBA IDL) is a complex requirement that vendors support with 

varying degrees of success. The successful combination of these two 

features, forward and reverse engineering is defined as round-trip 

engineering. [1] 

 

2.3.9.1 Code Generation or Forward Engineering 

 

Code Generation is the process of generating code in the respective 

programming language for the classes, attributes and operations defined in 

the design. It is also possible to generate the code for the relationship 

between the classes and other components. Once this is generated the 

programmer just has to implement the logic of each operation. Forward 

engineering is very useful the first time that code is generated from a 

model. This will save you much of the mundane work of keying in classes, 
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attributes and methods. 

 

2.3.9.2 Reverse Engineering 

 

Reverse engineering is the ability of the tool to recognise the new classes, 

methods and attributes that the programmer adds to the application. This 

can be done during the development of the application or during 

maintenance once the application is deployed. Reverse engineering is very 

useful both to transform code into a model when no model previously 

existed, as well as to resynchronize a model with the code at the end of an 

iteration. 

 

During an iterative development cycle, once a model has been updated as 

part of the iteration, another round of forward engineering should allow 

code to be refreshed with any new classes, methods or attributes that have 

been added to the model. This step is less commonly adopted by 

developers because many tools can hopelessly mangle source code in the 

process. The problem is that the source code contains much more than the 

model; tools must be very adept at reconstructing the source code that 

existed prior to the new round of forward engineering.  

 

At minimum, the modelling tool should successfully support forward 

engineering the first time and reverse engineering throughout the process. 

Also, the tool should have no trouble reverse engineering the full Java 

language. The way to verify this feature is to implement your own source 

code and try the round trip engineering on your code.  
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2.3.10 Data Modelling 

 
The object modelling tool should allow integration with data modelling 

facilities. There are many ways to provide this functionality. One way is for 

the UML tool to provide a feature allowing an object model to be 

transformed into DDL, which is the SQL needed to create tables for classes. 

Another way is for the UML tool to export metadata to a data modelling 

tool which can import the metadata and use it as the basis for a data model. 

An advanced, integrated set of tools should allow the data models and 

object models to be synchronized after each iteration of the design. 

 

2.3.11 Model navigation  

 
The modelling tool should provide strong navigational support to allow a 

developer to navigate through all the diagrams and classes in the model. A 

directory or pick list of classes sorted by name is one way to allow a 

designer to jump to the desired class on a diagram. 

 

For large diagrams, the tool should provide ease of navigation when 

zooming and panning. The tool should also allow ease of navigating to the 

source code for a class when round-trip engineering is being used. 

 

2.3.12 Diagram views 

 
The modelling tool should facilitate customization of the view of a class and 

its details. For instance, it should be possible to exclude all get/set methods 
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from the diagram since they tend to clutter, rather than clarify a diagram. 

The full signature of methods should be allowed to be shown or hidden 

easily, depending on the level of detail desired. The visibility of attributes 

and methods (private, protected, public) should be another dimension 

used to select what to show or hide on the diagram. 

 

2.3.13 Platform 

 
In order to maximize an investment in a modelling tool, one has to 

carefully consider the platforms on which the tool will run.   Java's Swing 

user interface allows cross-platform graphical user interface (GUI). So if 

the UML tool is built using a cross platform GUI, one can look over the 

issue of platforms.  

 

However, cross-platform tools need to be supported on commodity 

platforms such as Linux in order to achieve large-scale adoption by 

programmers. Sun had originally done little to promote Java on Linux. But 

recent industry initiatives, principally from IBM, which has pledged broad-

based support for Linux on all of its hardware platforms and is supporting 

the Apache/Jakarta project, are now rapidly pushing Java onto Linux. 

Perhaps because IBM has moved to distribute its version of JDK 1.1.8 to 

the major Linux vendors, Sun has been compelled to support the 

distribution of a fully functional JDK 1.2 (Java 2, with Swing) for Linux. 

This Java port to Linux has been largely accomplished through the efforts 

of the Blackdown Group. So a tool developed on a platform independent 

programming environment, gives a user the freedom to adopt any 

platform.  
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2.3.14 Multi-user Support 
 

When working in a team oriented environment it is  essential  that  the  

tool  provides  support  for  multiple  users.    This  support  is generally  

required  in  the  form  of  multiple  user  access  to  the  development 

software  which  in  turn  requires  users  to  be  constrained  by  predefined 

permissions. The changes made by each user to a model should be backed 

up and made available to the next user.  

 

 

2.3.15 UML Support  

 
While many tools claim full support for UML 1.3, in reality this is a 

complex requirement and some tools may not live up to advertised claims 

for full support. At minimum, the diagrams which should be supported are 

the Use-case, Class, Collaboration, Sequence, Package, and State diagrams. 

 

2.3.16 Support for Language 

 
This feature deals with the different languages supported for code 

generation. Some of the common languages that are supported by tools 

include: JAVA, C++, VC++, COBRA, ADA, J2EE, C #, Visual Basic.net, 

CORBA IDL and Visual Basic 6 
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2.3.17 Installation 

 
Installation of any tool should be fairly easy and the tool should be up and 

running without many hassles. One should be aware of all the prerequisites 

before considering a tool. Some tools require a database for it as a 

repository while others require an application server. It is essential to study 

the kind of application you develop before selecting a tool. Most of the 

prerequisites are open source software. 

 

 

2.3.18 Class Diagram Features 

 
 Class box size flexibility :  

 Line flexibility : 

 Independent placement of association end names: 

 Preservation of position of end names and multiplicity labels: 

 Moderate binding of relationship lines: 

 Distinguish between remove from diagram and delete from model: 

 Restoration of relationships in new diagrams: 

 N-ary associations: An N-ary association is an association among 

three or more classifiers (a single classifier may appear more than 

once). Each instance of the association is an n-tuple of values from 

the respective classifier. A binary a 

 Association is a special case with its own notation. 

 Undo functionality for diagrams 

 UML profiles (stereotypes and tagged values): A UML profile is made 

up of one or more “stereotypes” that may have “tagged values” and 

“constraints” [24]. Profiles are sometimes referred to as the 
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‘lightweight’ built-in extension mechanisms of UML, in contrast with 

the ‘heavyweight’ extensibility mechanism as defined by the MOF 

specification. This is because there are restrictions on how UML 

profiles can extend the UML meta-model [25]. These restrictions are 

intended to ensure that any extensions defined by a UML profile are 

purely additive [6]. 

 

2.3.19 Support Robustness Diagrams 

 
In this research project the ICONIX methodology is used to do the design. 

Some tools do not support the different notations in the robustness 

analysis. This may not be an essential feature but for companies that use 

these methodologies as one of their standards one should take this feature 

into consideration. 

 

When considering this feature one should analyse the following:  the tools 

support the notations used to represent the types of stereotypes, the rules 

and constraints applied while drawing the diagrams.  

 

2.4 Evaluation process 
 

The set of features was drawn up and defined. Each feature is defined 

clearly so as to eradicate duplication of features and definition of these 

features. It also clearly sets a boundary around each feature. Each feature 

can be further divided into sub features. For example consider the feature 

round trip engineering. This can be subdivided as shown in Table2.1 
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Features Sub-Features 

 

 ROUND  TRIP     

 ENGINEERING 

• Code Generation  

• Reverse Engineering 

• Synchronization 

    With Editor 

Table 2.1 Feature divided to subfeatures 

 

The evaluation is done using a “rating system” where a weighting is given 

for each feature and a rating is given based on the tool. This kind of 

evaluation gives a weighting for each feature based on its significance. This 

gives a user the flexibility to change the weightings and hence evaluate the 

tools. Another user can prioritise the features based on the technical and 

functional requirements of the product developed.   

 

 

2.4.1 Rating Method 
 

The weighting for each sub-feature is fixed based on the significance and 

the importance of each of the feature when compared with the rest of the 

sub-features. This prevents some tools to score a higher value for a feature 

which is not essential. If a feature is absolutely essential then it is assigned 

a three. If the feature pleases the eye yet it is not significant in terms of 

production then it is given a 1. The weightings given to the features in this 

research are based on what I felt was significant. This judgement was based 

on extensive literature survey, complaint from forums and discussion with 

users.  The weightings are shown in Table 2.2 
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Nice to 

have 

Feature 

Good 

Feature 

Essential  

Feature 

 

1 

           

2 

 

3 

   

Table 2.2Weightings for feature 

 

The ratings for the features are given based on how well the functionality is 

implemented, for each tool chosen. If a feature is poorly implemented then 

it is assigned 1 but if it is implemented well then it gets a 3 E.g. Consider 

the feature “The class box flexibility”. In some tools this feature is there yet 

it does not serve the purpose where, it should reveal all the attributes and  

methods on increasing the size. This is a poor implementation and it is 

assigned a one. Figure 2.2 shows the score for the ratings. 

 

Figure 2.2 Score for ratings 

 

The product of the weighting and rating is calculated for each feature and 

the total sum of the products gives the final score for each tool. This can be 
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summarised into the following general formula: 

 

Score for a tool =  ∑ (weighting of each feature × rating of tool for                  

                                                                                                                 that feature) 

 

That is if weighting is represented in W and rating represented in R then 

the score of a tool 1 (T1) is obtained by  

 

 T1 = (W11 * R11) + (W12 * R12) + (W13 * R13) +.................. 

 

2.4.2 Evaluation Table 

 
2.4.2.1 Features Evaluated using Implementation  

 

 

The  interface  of  the UML  tool  should  be  intuitive  and  easy  to  learn,  

in  addition  to  providing  required  functionality.   These  aspects  of  a  

tool  can be  further  subdivided  into  sub-categories  for  evaluation.    The 

evaluation table is illustrated below (Table 2.3). 
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Main Features Sub Features Weightage 
Repository Database 2 

Customisation Components and tools 2 

Generate Web Reports 3 HTML 
Documentation Save diagrams to include in reports 3 

First Contact 2 
Ease of use 3 

Pick list of the classes in the model 
while drawing. 

2 

Tree structure in a pane where all the 
classes can be viewed. 

3 

Select methods to draw sequence or 
collaboration diagram. 

3 
Pick List 

Drag and drop 3 

Select methods to draw sequence or 
collaboration diagram. 

3 

Interface Presentation 
States are visibly distinct  2 

 step by step documentation  3 

Online help  2 

Keyword search facilities 3 

Usability 

Documentation and 
Help Files 

Short – cut keys 1 

Fit diagram to a single page 3 

Print preview  3 
Printing Support 

Scaling functionality 3 

Save diagrams any picture editor format 3 Exporting 
Diagrams XMI format 2 

Does tool crash or corrupt diagrams 3 Robustness 
Automatic saving at periodic intervals 1 

New Releases Any New version releases announced 3 

Code generation 3 

Reverse engineering 3 
Round Trip 
Engineering 

Synchronisation with editor 2 

Zooming and panning 3 Model navigation 
Navigating between source code  
and diagram 

2 
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Table 2.3 Features and Sub-Features Used For Evaluation 

 

Customizing details of classes 3 

Reveal and hide methods 3 
Diagram views 

Visibility of methods and attributes 3 

Use case diagrams 3 

Class diagrams 3 

Sequence diagrams  3 

Collaboration diagrams 3 

State  diagrams   3 

Activity diagrams 3 

Component diagrams 3 

Deployment diagrams 3 

Key Notational parts 

Package diagrams 3 

Class box size flexibility 3 

Line flexibility 2 

Independent placement of association 
end names. 

3 

Independent placement of multiplicity 
labels. 

3 

Preservation of position of end names 
and multiplicity labels. 

3 

Distinguish between remove from 
diagram and delete from model. 

3 

Restoration of relationships in new 
diagrams. 

3 

N-ary associations 3 

Undo functionality for diagrams. 2 

UML Support 

Class Diagram 
Functionalities 

UML profiles (sterotypes and tagged 
values) 

2 
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2.4.2.2 Features Evaluated without Implementation 

 

The stages in the design and implementation of the jukebox example, was 

used to evaluate a chosen tool against most of the ideal features of a UML 

tool.  Some features could not be evaluated based on the example because 

it was not within the scope and time limit of this research. Others like 

platform support and installation are not included in Table 2.3 since it is 

not a quantifiable feature. Hence it cannot be rated. These features are 

shown below: 

• Installation 

• Platform      

• Support For Languages 

• Data Modelling 

• Multi-User support    

 

2.5 Conclusion  
 

There are many UML tools in the market, which claim to have certain 

features. Most of the time we find that these tools do not have the required 

features to satisfy our business needs while in other cases the vendors 

claim on the features might not be up completely up to the mark. This 

section has tried to come up with a set of features that an ideal UML tool 

should have. It also gives a rating method whereby the user can get a 

quantified result on the tools he evaluates.  In the rating method one can 

prioritize the features according to the business claims and assess each 

tool.  
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The evaluation tool or matrix [Appendix VI] emphasizes on the technical 

features in a UML tool. These technical features are mainly functional and 

usability issues. Non-technical aspects such as cost, training, local support, 

availability of resource and developmental environment, are not part of the 

comparison matrix because it is beyond the scope of this project report.  

 

This research report is unique by presenting an evaluation tool to compare 

any set of UML tool. The tool has the following headers: Features, 

Weightings, UML Tools used for comparisons. The Features listed are 

indispensable in any UML tool. The weightings given for each feature could 

be customised according to the user’s priority list. And finally a set of UML 

tools can be used for comparison. This can be done by plugging in 

quantitative values and calculating the highest score.    
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3.1 Introduction  
 

This section talks about the tools that were used for evaluation in this 

research work. The tools that are discussed here include ArgoUML, 

MasterCraft, Rational Rose and Together Control Center. These tools are 

considered as mainstream Object Oriented tools and they also support 

implementation in JAVA language. UML tools can be classified as follows:  

• Basic diagram-drawing tools 

o e.g. Visio (basic version). 

• Main-stream OO CASE tools 

o e.g. Together, ArgoUML. 

• Specialist real-time/embedded tools e.g. Rhapsody, Telelogic. [13] 

  

3.2 ArgoUML v 0.14 
 

ArgoULM is an open source project developed by Jason Robbins and David 

Redmiles at the University of California. According to Greek mythology, 

the hero Jason built a ship called Argo and with his comrades, the 

Argonauts, he left for the quest of the Golden Fleece [16].That is how they 

came up with the name for this tool. ArgoUML is completely implemented 

in JAVA. Since it is byte code-interpreted the speed of execution is not 

electrifying. [18] 

 

ArgoUML was conceived as a tool and environment for use in the analysis 

and design of object-oriented software systems. In this sense it is similar to 

many of the commercial CASE tools that are sold as tools for modelling  
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software systems. ArgoUML has a number of very important distinctions 

from many of these tools. These include the following: 

• ArgoUML draws on research in cognitive psychology to provide novel 

features that increase productivity by supporting the cognitive needs of 

object-oriented software designers and architects. 

• ArgoUML supports open standards extensively—UML, XMI, SVG, OCL 

and others. In this respect, ArgoUML is still ahead of many commercial 

tools. 

• ArgoUML is a pure Java application. This allows ArgoUML to run on all 

platforms for which a reliable port of the Java2 platform is available.                                     

• ArgoUML is an open source project. The availability of the source 

ensures that a new generation of software designers and researchers 

now have a proven framework from which they can drive the 

development and evolution of CASE tool technologies. 

ArgoUML meets the OMG standard for UML 1.3 and supports as diagram 

types class, state machine, use-case, collaboration, activity and object/ 

component/ deployment diagrams. It is only sequence type diagrams that 

are not supported in ArgoUML. For code generation, ArgoUML supports 

only Java and reverse engineering is not supported well in ArgoUML. The 

documentation and user manuals for ArgoUML are not complete.  

 

3.3 Together Control Center V6.1 
 

Together Control Center includes the features you need to build enterprise 

level applications, allowing the entire development team to collaborate  
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using common language, diagrams, and software. This product is  

 

developed and maintained by Borland.  Like ArgoUML, Together is also 

byte code-interpreted. Hence there is a sluggish rate of execution on 

ordinary hardware. It requires JDK 1.3 as a virtual Java machine.  

 

Modelling support includes all the standard UML diagrams, plus 

additional diagrams for other special types of modelling. This includes 

support for class diagrams and UML 1.4 diagram types  like use-case, 

sequence, collaboration, state, activity, component and deployment for 

modelling. Class and sequence diagrams generate source code 

automatically and keep it in synchronization. Code generation can be done 

in Java and C++, and reverse and roundtrip engineering as well as team 

support are provided. 

 

Together Control Center provides an efficient feature called simultaneous 

round-trip technology. Unique simultaneous round-trip technology means 

that changes to application code are immediately reflected in visual models 

[18].Make changes to the model or the source code and each stays 

synchronized with each other. Plus, Live Source provides visibility into 

existing applications, generating class models instantly. Together Control 

Center, applications can be built for one application server and easily 

switched to another, protecting development assets even if server changes 

are required. 

 

Another option is that of direct import of existing relations from a database 

as ER diagrams. Via a dialog window, the necessary settings (server type, 

database name, host, port, username and password) can be made for 
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database communication. Databases supported are Oracle 7.3.x/8.x, DB2, 

MySQL, MS SQL, Cloudscape, ODBC/Access 97 and SequeLink/Oracle. 

 

Usability issues on picking a class from a list have to be modified further. 

Multi-user support though available it is not very efficient. Since UML is 

most efficient in large systems and there are multiple developers working 

on these systems one cannot ignore the efficiency of the multi-user support 

provided by the tool.  

 

3.4 RATIONAL ROSE ENTERPRISE EDITION V. 

2001A.04.00 
 

Rational Rose provides support for two essential elements of modern 

software engineering: component-based development and controlled 

iterative development. While these concepts are conceptually independent, 

their usage in combination is both natural and beneficial. Rational Rose’s 

model-diagram architecture facilitates use of the Unified Modelling 

Language (UML), Component Object Modelling (COM), Object Modelling 

Technique (OMT), and Booch ‘93 method for visual modelling [4].Using 

semantic information it ensures correctness by construction and 

maintaining consistency. 

 

Of the CASE tools in the test field, Rose supports most languages: Java, 

C++, ADA 83, ADA 95 and CORBA IDL and DDL for database applications. 

Rose offers both roundtrip and reverse engineering. Rational Rose 

provides the following main features to facilitate the analysis, design, and 

iterative construction of your applications: 
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_ Use-Case Analysis 

_ Object-Oriented Modelling 

_ User-Configurable Support for UML, COM, OMT, and Booch ‘93 

_ Semantic Checking 

_ Support for Controlled Iterative Development 

_ Round-Trip Engineering 

_ Parallel Multi-user Development Through Repository and Private 

Support 

_ Integration with Data Modelling Tools 

_ Documentation Generation 

_ Rational Rose Scripting for Integration and Extensibility 

_ OLE Linking 

_ OLE Automation 

_ Multiple Platform Availability 

 

Rose claims to support multi-users and developer groups. Rose makes a 

private working   for all developers, in which each has an individual via of 

the whole model. Modifications are thus restricted to the private working 

area until they are checked in to the CMVC (Configuration Management 

and Version Control System). Yet there are many issues around the 

efficiency Rational Rose provides for multi-user and reverse engineering. 

(See [20]) 

 

3.5 MASTERCRAFT FOR JAVA V 6.0 
 

MasterCraft Enterprise Java is an integrated tool suite developed to 

increase the productivity and quality of large, multiple teams working on 

complex, mission critical application development. It provides an object 
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oriented environment that supports a UML based Component Modeller 

and Repository-driven development process [27].  

 

MasterCraft’s modelling tools, in MDA™ like approach, allow the designer 

to keep the logical application independent of the underlying technology. 

Platform-specific generators deliver code for the required platform, using 

the models. MasterCraft supports a component-based repository driven 

development process and has a visual modelling tool, a GUI modeller and 

an object-oriented specification language. 

 

MasterCraft supports development of applications, which use 

geographically distributed resources and allow geographically distributed 

end users. MasterCraft uses a central repository, to manage all 

information. It also integrates with and processes information stored 

outside the repository database. The meta-model integrates meta-data 

across the various phases of the life cycle. 
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Figure 3.1 MasterCraft – Integrated Tool-suite 

 

 

The Component Modeller in MasterCraft is the visual modelling and 

repository tool; MasterCraft uses the repository to create, validate, 

and store the analysis and design models. MasterCraft’s GUI 

Modeller is used to model, validate, and generate the Graphical User 

Interfaces of the application. (See figure 3.1) 

 

MasterCraft supports the development process through a set of pre-

defined roles. Software builds, releases and versions are managed 

through clear processes. These processes are configurable and can be 
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integrated into the organisation’s environment. Roles in MasterCraft 

are sets of logically coherent tasks that developers perform during 

the software development life cycle (SDLC).  

 

 

Figure 3.2 Role-based Development 

 

MasterCraft supports the entire Software Development Life Cycle through 

the Analysis, Design, Construction, Release and Maintenance phases. One 

or more pre-defined roles map to one or more phases of the life cycle. 
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Mastercraft allows hiding the logical part from the technology. This is done 

using Q++. Q++ has the following features: 

• Reduce Coding 

• Hide Technology: there are interpreters that convert the Q++ code to the 

underlying technology like C++, JAVA etc.. 

• Stronger Type Checking 

• Maximum use of  modelled information in repository 

Master craft allows unit testing up to the level of each operation. It allows 

reverse engineering but this is not reflected back into the diagram 

automatically. All the new classifiers added are saved in the repository and 

the information can be browsed. But it has to be updated manually in the 

diagram in this version of Mastercraft. The installation and setup of this 

tool requires support and cannot be easily done the first time.  

 

3.6 Conclusion  
 
There are many tools in the market available for a user to pick from but 

one has to spend time to study the kind of tool you need for your business 

requirements. Each tool has positive and negative aspects to it.  The section 

discusses the four UML tools used for evaluation in this research work. For 

each tool the additional features and weaknesses for the tools are 

discussed. Further details on the tools can be obtained from the respective 

websites for each of these tools.  
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4.1 Introduction  
 

UML tools are mainly modelling tools and hence modelling is an inevitable 

issue for discussion. This section reviews the interfaces for each of the tool 

describing flexibility, navigability and architectural issues. It further 

discusses UML notations like class diagrams, and sequence diagrams in the 

different tools.   

 
 

4.2 General View of each tool  
 

The usability and layout of a tool is critical to a user. A tool might provide 

all the necessary features but if it is not user-friendly, a user will be very 

hesitant to use the tool. The usability of the four different tools is discussed 

in this section. It also describes the flexibility allowed by the tools in the 

toolbar, the different panes etc. The snapshot of the respective interfaces of 

each of the tools is shown. Aspects such as navigation are also applicable 

when covering usability.  

 

4.3 Together 

 
4.3.1 Modular architecture 

 

Together consists of a large set of modules representing available features. 

A given project will not require all the available features. Some feature 

modules can be turned on or off as necessary. Therefore unneeded features 

are not loaded, simplifying the user interface by displaying only those 
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commands and features you need for your project. Features are activated 

on several levels: 

 

• Your selected user role determines which features are available for all 

projects. 

• The Activate/Deactivate Features dialog enables you to set which 

features to load for the current project. 

• Features activated on demand are loaded automatically when they are 

needed. [43] 

 

Each feature module has a configuration file that stores property settings 

that apply to the feature. You can use the Options dialog to make 

configuration settings. 

 

 

4.3.2 Flexibility : User Interface 

 

The Together user interface (including menus, toolbars, and panes) 

changes according to how you are working with Together. 

The menus, toolbars, and panes available depend on several factors: 

• your user role 

• the project context (whether a project is open, and which feature 

modules are activated) 

• the selected workspace in the project. [43] 
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Roles  

During installation, you choose a user role (Business Modeler, Designer, 

Developer, or Programmer). When Together starts up it shows only those 

menu commands, toolbars, and panes that are appropriate for your chosen 

role. The role also determines the default workspace. The user role is a 

global configuration setting that you can reset in the Options dialog. 

 

Workspaces 

 

A workspace is an arrangement of panes that you can save and reuse as you 

find convenient. Workspaces are saved with the project.  

 

4.3.3 Navigation:  Together Main Window 

 

The ease of navigating through the diagram and the element properties is a 

critical issue. This widely determines if the tool is user-friendly or not. 

Figure4.1 gives us an outlook of the Together front-end. The main window 

is divided into four major panes. 

• Explorer: for file system and project navigation. 

• Designer: for creating UML and other kinds of model diagrams as well 

as for building graphical user interfaces. The Designer has a toolbox for 

its GUI construction tools.  

 

 

• Editor: for viewing and editing source code files and other text files.  

• Message pane: for system messages, special tasks, and results of some 

feature operations. 
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The focus pane, with the light blue title bar, is the site of the most recent 

activity. Together elements are individual components of the project and 

the user interface. Elements can be diagrams, files, diagram elements such 

as nodes or links, names, error messages, and so on. Right clicking on a 

Together element displays a menu of commands for that element. These 

right-click menus vary according to the type of element. Many elements 

have Inspectors for accessing the elements’ properties. You can display the 

Inspector of an element by selecting Properties from its right-click menu. 

Many elements have Property Inspectors for accessing the elements’ 

properties. Property inspectors enable you to view and change the 

properties of many Together elements. Inspectors are organized into 

tabbed pages whose content depends on the type of element.  [43, 45]  
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Figure 4.1Workspace in Together Control Center
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4.4 Rational  

 
4.4.1 Navigation  :Rational Rose Main Window  

 

Rational Rose’s graphical user interface is used to display, create, modify, 

manipulate, and document the elements in a model using these windows: 

• Application window :  

• Browser window 

• Documentation window 

• Diagram window 

• Overview window 

• Specification window 

• Log window [19]  

Rational Rose displays the diagram, specification, and documentation 

windows within the application window. The log window is a dockable 

window you can move, dock or undock, or close. 

 

An application window contains a title bar, menu bar, toolbar, and a work 

area where the toolbox, browser, documentation window, diagram 

window, and specification window appear. The documentation window is 

used to describe model elements or relationships. The description can 

include such information as the roles, keys, constraints, purpose, and 

essential behaviour of the element. 

 

The documentation window is used to describe model elements or 

relationships. The description can include such information as the roles, 

keys, constraints, purpose, and essential behaviour of the element. Rose 

uses the log window to report progress, results, and errors that occur as a 
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result of a command or action in your model. The messages posted to the 

log are prefixed with a time stamp. This enables you to keep track of when 

an event or action occurred. Like the documentation window, the log 

window can be docked or floating. 

 

The overview window is a navigational tool that helps you move to any 

location on all Rational Rose diagrams. When a diagram is larger than the 

viewable area within the diagram window, it is not possible to see the 

whole diagram without scrolling. The overview window provides a scaled-

down view of the current diagram so you can see the entire diagram. 

 

Diagram windows allow you to create and modify graphical views of the 

current model. Each icon in a diagram represents an element in the model. 

Since diagrams are used to illustrate multiple views of a model, each model 

element can appear in none, one, or several of a model’s diagrams. This 

means you can control which elements and properties appear on each 

diagram. 

 

A specification enables you to display and modify the properties and 

relationships of a model element, such as a class, a relationship, an 

operation, or an activity. The information in a specification is presented 

textually; some of this information can also be displayed inside icons 

representing the model element in diagrams.  

 

The browser is a hierarchical navigational tool that allows you to view the 

names and icons of interaction, class, use-case, statechart, activity, and 

deployment diagrams as well as many other model elements.  
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Figure4.2 Workspace in Rational Rose
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4.5 ArgoUML 

 
4.5.1 Navigation  : ArgoUML 
 
The user workspace of argoUML is shown in figure 4.3 below.  At the top of 

screen is a menu bar. Under that there are Toolbars. Then the bulk of the 

window comprises four subwindows or Panes. Clockwise from top left 

these are: 

• Explore pane  

• Editing Pane  

• Details Pane  

• To-Do Pane  

At the top of the Editing Pane is another toolbar called the Edit Pane 

Toolbar. Finally at the bottom of the window is a status bar. [17] 

 
Explorer allows you to navigate through our model. This pane lists all the 

classes, interfaces and data types of our model as a tree view. 

The Editing Pane, where we can edit our diagram in a graphical way. One 

can do all the editing functionalities like modeling new classifiers, 

zooming, spanning, modifying etc in this pane. 
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The Details Pane allows us to edit various details of our model. This 

includes the properties of each classifier, editing constraints, tagged values 

and checklist. This also simultaneously displays the source code generated 

for the respective elements modeled. The To-Do Pane displays the items on 

the models to-do list in a tree which sorts the list in a number of different 

ways. A drop down selection box at the top of the pane determines the 

layout of the tree. 
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Figure 4.3 Workspace of ArgoUML 
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4.6 MasterCraft 
 
 
4.6.1 Flexibility  

 
MasterCraft supports Role Based Development. The various roles cover   

the entire Software Development Life Cycle (SDLC). Tasks that are 

logically related, tasks are grouped together and assigned to these roles.  

Roles supported in MasterCraft consist of two major roles: Managerial 

roles and User roles. These are further divided as shown below: 

 

 Managerial Roles 

 Application Administrator 

 Model Manager 

 Construction Manager 

 Version Manager 

 

User Roles 

 Analysis Modeler 

 Design Modeler 

 Construction Programmer  [46] 

 
Each of the roles is described below. A user can be assigned to more than 

one role which can be decided by the application administrator. 

 

The Application Administrator can perform the following activities:  

• Create users 

• Create components 

• Allocate users to components and roles 
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• Selecting the development environment installation type 

• Define file server share 

• Allocate file server-shares to application-specific standard servers 

• Allocate server-shares to component-specific standard servers 

• Generate report for server allocation and versioning activities 

• Generate report for user allocation 

• Perform server-side set up 

• Extract model from jars 

• Import models developed using Rational Rose 

• Import user-models available in XMI format 

• Export MasterCraft-developed user-models in XMI format 

• Reset modeling status 

• Purge journal data 

• Reset the Control Table contents [47] 

  

The role of the Analysis Modeler is to enter the UML model, to draw the 

different UML diagrams.  

 

The Design Modeler has the following roles:  

 To enter the Database and GUI model  

 Perform impact analysis 

 Define the component interface and inter - component 

dependencies.  

The roles of the Construction Manager can be defined as follows: 

 Export the model into the common pool  

 Generate code from the model 

 Build and release component jars 

 Configure standards checker  
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 Perform check for conformance to standards  

 Assign classes to each construction programmer 

 

The Construction Programmer’s tasks include the following: 

 Implement the code for business logic 

 Implement the code for business rules 

 Unit test the modeled business services  

 Test Application screens 

 Perform file-level version control 

 

The version manager is configured only if a version managing tool is 

installed. The tasks of Version Manager are as follows: 

 Performs application level version control 

 Checks in, checks out and merges application versions 

 
 
4.6.2 Navigation  : MasterCraft 

 
 
The main window of the analysis modeler is shown in Figure 4.4 below. 

Each role has a separate window with a few differences. The main window 

includes a toolbar, selection window, diagram window. The selection 

window has a list from which one can select the components and decide a 

function upon it.  The diagram window can be used to model the different 

elements.  

 

There are other panes like Error Window and Output Window for the 

managerial roles. Output window displays the whether a task was 

successfully executed, displaying the results. The error window displays the 

errors thrown, displaying the type of error and a suggested in solution. 
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Figure 4.4 Workspace of  MasterCraft
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4.7 View of class diagram using each tool  

 
The UML notation is rich and full bodied. It is comprised of two major 

subdivisions. There is a notation for modeling the static elements of a 

design such as classes, attributes, and relationships. There is also a 

notation for modeling the dynamic elements of a design such as objects, 

messages, and finite state machines. Static models are presented in 

diagrams called: Class Diagrams. 

 

The purpose of a class diagram is to depict the classes within a model. In 

an object oriented application, classes have attributes (member variables), 

operations (member functions) and relationships with other classes. The 

UML class diagram can depict all these things quite easily. The 

fundamental element of the class diagram is an icon that represents a class. 

 

This section presents the area of modeling class diagrams with the 

different tools along with other aspects like documentation and exporting 

diagrams.  

 

Together Control Centre 

 

Class diagrams can be exported as .gif, .wmf or .svg format. Figure 4.5 

shows the class diagram for the jukebox application. Web documentation 

can be generated for the diagrams drawn.  
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Figure 4.5 Class diagram in Together Control Center 
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Figure 4.6 Class diagram in Rational Rose
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Rational Rose 

Figure 4.6 illustrates the class diagram in Rational Rose. Diagrams can be 

exported and saved as .jpeg, .bmp, .svg files. Web documentation in 

rational produces a clear separate documentation for each diagram and 

and the different classifiers in the diagram.  Sequence diagrams for the 

use–case “AdminLogin” is shown in Figure 1.7 

  

ArgoUML 

ArgoUML helps to export a class diagram as .jpeg, .svg, post scripts, .eps. 

The class diagrams for the application Jukebox is illustrated in the 

Figure4.7. 

 

MasterCraft 

Figure 4.8 shows the class diagram for the application jukebox. 

MasterCraft export diagrams to rational rose and with a detailed diagram. 

The diagrams and individual elements in the diagram can be saved .bmp, 

.emf, and .gif files. An example of sequence diagram is shown in figure 4.9. 

The navigation through the diagram is not very flexible. 
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Figure 4.7 Class diagram in ArgoUML 
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Figure 4.8 Class diagram in MasterCraft JAVA 
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Figure 4.9 Sequence diagram in MasterCraft for “AdminLogin”
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4.8 Conclusion  
 

The primary objective of a UML modelling tool is to model an Object 

Oriented application in using UML notation. Modelling can be done 

efficiently by drawing the design quickly and checking it against the 

standards of UML notation. This section looks at how ArgoUML, 

MasterCraft, Rational Rose and Together approach these issues. The 

interfaces for each tool are discussed. Sequence diagrams and Class 

diagrams are also highlighted in this section. ArgoUML and MasterCraft 

are not yet up to the mark when compared with the later two tools. 
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5.1 Introduction  
 
Tools have always been an essential factor for humans to simplify his 

creative thoughts. Most of the time UML tools are used for designing the 

software. Since there are many tools now in the market each one claiming 

to provide certain degree of sophistication, it is up to us as users to analyze 

and evaluate these tools, comparing it to check if it meets  up to the our 

business needs. 

 

Round-trip engineering is any combination of multiple code generation 

and/or reverse engineering operations, though it most commonly refers to 

a series of operations alternating between the two.  Code generation and 

reverse engineering are some of the key factors discussed in this section.  

Here we also discussion about how the code is generated by the different 

tools.  

 
 

5.2 Code generation by each tool  
 

Tools are used in order to simplify the work of a programmer.  This is 

achieved through the functionality of round trip engineering in a tool. 

Round trip engineering includes two major features. One is code 

generation and the other reverse engineering. I believe that any tool which 

claims to be a UML tool should at least provide the functionality of Code 

Generation.  

 

Reverse engineering is one of the factors which puts the tool in the 

forefront. Reverse engineering is to generate code from the code 

implemented or from the modified code. Having an in built editor helps 
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the user from the trouble of finding an editor and integrating it with the 

tool. Though some tools provide separate editors with the facility to 

integrate with a UML tool.  

 

 

Reverse engineering plays a major role in the maintenance of the software. 

The reverse engineering feature can be applied to existing code as well as 

code that are being developed. A tool should reverse engineer source code, 

build a model around existing code or restoring a model from archived 

files. 

 

The code generation done by the tool generates a skeletal code for the 

classes, attributes, relationship between the classes and the parameters of 

the operations. This brings down the physical implementation time of the 

software by around 35 - 40 percentage.  
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Figure 5.1  Code generated for a class “Slideshow” 

//Source file: C:\\jukebox\\CSlideshow.java 
 
public class CSlideshow  
{ 
   private int num = 0; 
   private int cur = 0; 
   public CRealTimeClock theCRealTimeClock; 
   public CImage theCImage[]; 
    
   /** 
    * @roseuid 3F7C5A830358 
    */ 
   public CSlideshow()  
   { 
     
   } 
    
   /** 
    * @param dur 
    * @param file 
    * @param desc 
    * @return int 
    * @roseuid 3F7B26ED02E9 
    */ 
   public int addImage(int dur, String file, String desc)  
   { 
    return 0; 
   } 
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5.3 Implementation:  Together Control Center 
 
5.3.1 Features Of Editor  
 
Together comes with a built-in full-featured text editor that allows you to 

work with any of the supported languages. The editor is flexibly 

configurable. You can configure the Editor using the Options dialog at any 

of the multiple configuration levels. The Editor can be tuned for working 

with different contents like:  plain text, Java, C++, Visual Basic, IDL, 

HTML, XML, JSP, C#, Visual Basic .Net. 

 

Together provides two types of bookmarks: global bookmarks that apply to 

the entire project, and local bookmarks that are used only within the 

currently opened file. [43] One can set the global bookmarks in the source 

code files and navigate to them from any open file that is part of your 

project. You can view, edit, classify, and navigate to bookmarks in the 

project using the Edit Bookmarks dialog, which is available on the right-

click menu of the current line. Local bookmarks are fast and handy to 

operate. They are numeric instead of titled, meaning that they are 

numbered from 1 to 10. For this reason, there can be only ten local 

bookmarks per file. 

 

Breakpoints specify where to stop code execution during debugging to 

permit inspection of variables, expressions, class members, and so on. This 

feature of the integrated debugger is accessible from the Editor. 

The Editor Toolbar provides a number of buttons that significantly speed 

up the coding process. These buttons are: [43] 
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Code Sense, Advanced Code Sense: These features automatically 

complete your code. 

Parameters Tool Tip:  This feature is also a part of code completion, 

and displays the list of possible parameters for the method under the 

cursor.  

Surround With: 

Surrounds the selected lines of code with one of the specified constructions 

(for, if-else, try-catch). 

Toggle Comments: 

This feature enables you toggle between commenting and uncommenting 

the selected section of code. 

Override/Implement Methods: 

Enables you to choose methods of the parent class to be implemented or 

overridden. 

Expand Snippet:  

Expand Snippet expands one of the pre-defined snippets into the code 

block that it represents.  

Browse Symbol:   

Browse symbol enables you to view the source code of the library classes.  

Previous / Next Declaration:    

This feature Navigates through the list of declarations within the current 

class. 
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5.3.2 Forward Engineering  
 

The figure below [Figure 5.2] gives a snapshot of the code generated by 

together control center. It is very plain and simple without any comments. 

There are no comments directing the programmer where to insert his code.  

 

The code generated does not include default constructors or destructors.  

The operations are generated on top and the attributes and the relations 

are generated at the end.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 5.2 Code generated by Together for class Password 
 
 
 
 

 
 
/* Generated by Together */ 
 
public class CPassword { 
    public Boolean check(String pwd) { 
    } 
 
    public void setdefault() { 
    } 
 
    public int change() { 
    } 
 
    private String PassWord; 
} 
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5.3.3 Reverse Engineering  
 
A central feature of Together is Live Source. This is the ability of the tool to 

immediately synchronize class diagrams with the implementation code. 

Live Source means that your UML class diagrams are always synchronized 

to the source code that implements them. When you change a class 

diagram, Together immediately updates the corresponding source code. 

When you change the code, Together updates the visual model. There is no 

intermediary repository, no batch code generation. The Live Source feature 

applies to existing code as well as the code that are being developed.  

 

 

Together can do reverse engineering to the source code. It builds a model 

around existing code and can restore a model from archived files. 

 

The figure below [Figure 5.3] gives a view of how Together achieves 

synchronization with an integrated editor. In the example below the new 

operation “reverse check” was added to the class CJubebox, in the editor. 

This is immediately shown in the model as a new operation Reverse Check. 

This new operation added is highlighted in figure both in the  editor pane 

and in the designer pane. 

 



S. M. Thomas                                                                                                            2004/05/23         
 

   
   Page 

 
113 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           Figure 5.3 Reverse Engineering with Synchronised Editor - Together 
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5.4 Implementation:  Rational Rose 
 
5.4.1 Forward Engineering  
 
  
Code generation (also called forward engineering) is the process of 

generating Java source from one or more classes in a Rose model. Round-

trip engineering is any combination of multiple code generation and/or 

reverse engineering operations, though it most commonly refers to a series 

of operations alternating between the two.  Model and source code are kept 

synchronized over an extended period of time and through multiple 

changes. If you change the model, use a code generation operation to make 

the corresponding changes to the code.  If you change the code, use reverse 

engineering to make the corresponding changes to the model.   

 

Forward engineering in Rose is component-centered. This means that the 

Java source generation is based on the component specification rather 

than on the class specification. To do this, you create a class and then 

assign it to a valid Java component. Or, Rose creates the component for 

you when your model’s default notation is Java.  

 

When you forward engineer a Java model element, its characteristics are 

mapped to a corresponding Java-language construct. For example, a Rose 

class forward-engineers, through its component, to a .java file; a Rose 

package forward-engineers to a Java package, and so on. In addition, when 

you forward engineer a package, a .java file is generated for each 

component belonging to the package. Each .java file contains the 

definitions for any classes assigned to that component.  
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Rose Java offers an auto-synchronization mode that automatically initiates 

code generation any time you create or modify any Java element in your 

model. By default this is off but one can enable this feature through the 

Java Project Specification.  

 

Because Auto Synchronization is normally off, Rose generates RoseIDs for 

Java methods. This feature allows Rose to track method name changes in 

the code. When Auto Synchronization is turned on, Generate Rose ID 

should be turned off (on the Code Generation tab of the Project 

Specification). The RoseID is a Java comment that takes the form:  

 

@roseuid <string> 

 

Model ID comments of the form: 

 

//##ModelId=392B160E0157 

 

may be inserted into the code during code generation or reverse 

engineering.  These comments help Rose match declarations in the code 

with the corresponding elements in the model when doing both code 

generation and reverse engineering. The figure 5.4 shows the code 

generated by Rose in Java for the class CPassword.  
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Figure 5.4 Code generated by Rational Rose for class Password 

//Source file: C:\\jukebox\\CPassword.java 
 
 
public class CPassword  
{ 
   private String passWord; 
    
   /** 
    * @roseuid 3F7945060322 
    */ 
   public CPassword()  
   { 
     
   } 
    
   /** 
    * @param pwd 
    * @return Boolean 
    * @roseuid 3F793A880208 
    */ 
   public Boolean check(string pwd)  
   { 
    return null; 
   } 
    
   /** 
    * @return Void 
    * @roseuid 3F793A9701D7 
    */ 
   public Void setdefault()  
   { 
    return null; 
   } 
    
   /** 
    * @return Integer 
    * @roseuid 3F793AE2027F 
    */ 
   public Integer change()  
   { 
    return null; 
   } 
} 
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Rose specifications enable you to document your model elements by 

adding text to various Documentation fields. Rose Java uses the text you 

supply to create Javadoc tagged comments in the code it generates. There 

are two comment types that Rose generates: 

 

• Asterisk Style. The Asterisk style inserts an asterisk at the start of 

the comment. This is the standard Java style. 

 

• Javadoc style. This style uses Javadoc tags that the Javadoc 

compiler uses to create HTML pages that describe various Java 

constructs such as classes, interfaces, constructors, methods, etc 

 

5.4.2 Reverse Engineering  
 

Rose Java reverse-engineers a .java file as a Java-language component in 

your model. This component includes the package information that locates 

the file in you directory structure. At the same time, it creates the class(es) 

contained in the .java file. You can view reverse-engineered classes and 

components in the Rose Browser. Rose does not automatically create class 

or component diagrams based on newly reverse-engineered classes. To add 

classes or components to diagrams you can drag and drop them from the 

browser into new or existing diagrams 

 

Do not change both the model and the code at the same time since it is 

difficult to get them synchronized again.  If the changes in the model and 

the code are in different classes, then it may be possible to selectively do 

code generation and reverse engineering on a class-by-class basis. If the 



S. M. Thomas                                                      2004/05/23
   
   

   
 Page 

 
118

same class is changed in both the model and the code, one set of changes 

will have to be overwritten in order to synchronize that class again. 

 

5.5 Code generation:  ArgoUML 
 
Code generation in ArgoUML is very simple to do. In the workspace of 

ArgoUML there is “Generate” on the toolbar menu. This is to generate 

code. You have the option to generate code for Selected Classes or All the 

Classes. If All the Classes is selected the “Generate Classes” window 

appears [Figure 5.5]. From here one can select the classes for which code 

generation is done.  

 

The source code can be viewed along with the model since it is 

synchronized with the model. So any change to the model is immediately 

reflected. The code generated by ArgoUML is shown in Figure 5.6. It is 

simple without any comments. The attributes and relations are placed first 

then the operations are placed. ArgoUML does not cater for reverse 

engineering.  
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   Figure 5.5 Process of Code Generation in ArgoUML 
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Figure 5.6 Code generated by ArgoUML for class Password 

 

5.6 Code generated:  MasterCraft 
 
5.6.1 Role of Construction Manager in Implementation  
 

The construction manager’s role is responsible for initiating the 

construction activity for the application and for performing building jars of 

the components and deploying the individual group of components – a 

component and its supplier-components. This role is also responsible for 

managing and monitoring the construction activity being carried out for 

 
 
import java.lang.String; 
import java.lang.Integer; 
 
public class CPassword { 
 
public String passWord; 
  /* {transient=false, volatile=false}*/ 
 
   
public boolean check(String pwd) { 
  return false; 
  } 
public void setdefault() { 
  } 
public Integer Change() { 
  return null; 
  } 
} 
 



S. M. Thomas                                                      2004/05/23
   
  

   
 Page 

 
121

the entire application. Some  of the functions done by the Construction 

Manager are:  

• Generate code for the component 

• Manage user-workspaces for the ConstructionProgrammers 

• Check conformance of the code to the Java standards 

• Create application tables 

• Prepare application for deployment 

 
Code for a component is generated from the object model of the 

component that is available as a CDIF file. User-model of the selected 

component needs to be translated into a standard format that is easily 

understood by the other tools in MasterCraft. The model in the relational 

database gets translated to the one in a flat database. The code generators 

in MasterCraft need a Case Data Interchange Format (CDIF) file of the 

component as the input.  

The following files are generated: 

• Object model files 

• Domain description files  

• Java files for the classes 

• Java files for interface of the classes  

• Java files for the WinClasses  

• SQL files for queries  

• Java files for Batch Programs 

• Java files for Batch Functions   

• Unit-testing driver Java files  

• Input files  
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• Makefiles  

• DDLs  

• Rulebase  

• Test data specification templates for Test Data Generator [66]  

 

All the Java files for classes, WinClasses, and interfaces are compiled 

during the ‘Generated Code’ action to create a stub jar. A stub jar is the jar 

with dummy implementations. After generating code, the Construction 

Programmer can pick up the class templates and code them. These classes 

can then be compiled, built and unit tested.  

 

5.6.2 Role of construction Programmer in Implementation  
 
The Construction Programmer’s role is used for performing all the coding 

and unit-testing actions after the Construction Manager has completed the 

initial set-up and code generation. The Construction Programmer can edit 

the generated code template to enter the business logic. Typically no 

changes should be made to the MasterCraft generated code. However, 

sometimes you may find that there are some model elements that may not 

have been modeled and need to be created. These can be created and used 

while coding, for example, you may add an attribute to a class or a 

parameter to an operation or service. These elements can thus be 

introduced in the construction phase. However, it is then required that the 

change be validated and incorporated in the model from which the code 

was generated. After understanding the need of the code changes, the 

Construction Manager ascertains the correctness of changes in the code, 

and approves the updating of the model accordingly during ‘Synchronize 

User-workspace’.  
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// ## MasterCraft generated code starts here 
// ## This code should not be changed 
package comp1; 
 
import Domains.*; 
import ErrorMessages.*; 
import com.tcs.mastercraft.mctype.*; 
import com.tcs.mastercraft.mctype.errlib.*; 
import com.tcs.mastercraft.mcutil.* ; 
import java.util.*; 
import java.io.*; 
import java.text.*; 
import java.sql.*; 
import com.tcs.mastercraft.mcdiagnosis.*; 
// ## User-required import statements could start here onwards 
 
 
// ## End of User-required import statements 
 
/** 
*/ 
class CPassword extends MasterCraftObject implements java.io.Serializable  
{ 
 // Following are the Class Attributes 
 /** 
  */ 
 protected StringBuffer passWord; // Domain d_String maps to StringBuffer 
here 
 
 private MasterCraftBitSet specFlag; 
 
 
  // ## User-required attribute declaration could start here onwards 
 
 
  // ## End of User-required attribute declarations 
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// This is a Default Constructor 
 CPassword ( ) 
 { 
  passWord = new StringBuffer(256); 
  specFlag = new MasterCraftBitSet(1); 
 } 
 
 // DeepCopy Constructor 
 public void deepcopy(Object inst_CPassword) throws Exception  
 { 
  if ( inst_CPassword instanceof  CPassword ) 
  { 
   CPassword __CPassword_obj = ( CPassword ) inst_CPassword; 
 
   passWord.replace( 0, __CPassword_obj.passWord.capacity(), 
__CPassword_obj.passWord.toString() ); 
   specFlag.deepcopy( __CPassword_obj.specFlag ); 
  } 
 } 
 
 public int getId() 
 { 
  return 28; 
 } 
 
 public void SetspecFlag( MasterCraftBitSet spec ) throws Exception 
 { 
  specFlag.deepcopy(spec); 
 } 
 
 public MasterCraftBitSet GetspecFlag( ) 
 { 
  return specFlag ; 
 } 
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public int IsSpecifiedpassWord() 
 { 
  if( specFlag.isBitOn( 0 ) == true ) 
  { 
   return 1; 
  } 
  else 
  { 
   return 0; 
  } 
 } 
 
 public void SetpassWord (final StringBuffer iStringBuffer ) throws Exception 
 { 
  passWord.replace( 0 , passWord.length() , iStringBuffer.toString() ) ; 
  specFlag.setBit( 0 ); 
 } 
 
 public void UnmarkpassWord () 
 { 
  specFlag.resetBit( 0 ); 
 } 
 
 public StringBuffer GetpassWord () 
 { 
  return ( passWord ); 
 } 
 
 public void UnmarkAll () 
 { 
  specFlag.resetAll(); 
 } 
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 public String toString ( ) 
 { 
  String s = ""; 
  s = s + "\nClass CPassword : " ; 
  if ( IsSpecifiedpassWord() != 0) 
  { 
   s = s + "\npassWord = " + passWord + " (StringBuffer) "; 
  } 
  else 
  { 
   s = s + "\npassWord = _NS_ " + " (StringBuffer) "; 
  } 
  s = s + "\nspecFlag = " + specFlag.toString() + " (MasterCraftBitSet) "  ; 
  s = s + "\nEND OF CPassword \n\n" ; 
  return s; 
 } 
// ## End of MasterCraft generated code 
 
 
 
 // ## Signature of check_30 method should not be changed 
 /** 
   * @param pwd  
  */ 
 public  void check ( StringBuffer pwd  ) throws Exception 
 { 
  String signature = new String("CPassword::check(StringBuffer):void"); 
  ServerContext.SetretError( new ErrorType() ); 
  // ## Add your code for check_30 method here 
   
 
 
   
 } 
 // ## End of check_30 method 
 
 
 // ## Signature of setdefault_36 method should not be changed 
 /** 
  */ 
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Figure 5.7Code generated by MasterCraft Together for class Password 

public  void setdefault ( ) throws Exception 
 { 
  String signature = new String("CPassword::setdefault():void"); 
  ServerContext.SetretError( new ErrorType() ); 
  // ## Add your code for setdefault_36 method here 
   
 
 
   
 } 
 // ## End of setdefault_36 method 
 
 
 // ## Signature of change_37 method should not be changed 
 /** 
  */ 
 public  void change ( ) throws Exception 
 { 
  String signature = new String("CPassword::change():void"); 
  ServerContext.SetretError( new ErrorType() ); 
  // ## Add your code for change_37 method here 
   
 
 
   
 } 
 // ## End of change_37 method 
 // ## User-required operation declaration could start here onwards 
 
 // Sample format to add an operation 
 // public void ExampleOperation( int Param1, StringBuffer Param2 ) 
 // { 
  //  CODE_START 
 
 
  //  CODE_END 
 // } 
 
 // ## End of User-required operation declarations 
 
} 
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Though the generated code is long and appears to be complicated, it is well 

commented. Figure 5.7 shows the code generated for the class Password. 

The business logic for the operation Setdefault is implemented between the 

two lines shown below: 

 

// ## Add your code for setdefault_36 method here 

  

 } 

 // ## End of setdefault_36 method 

 

The tags between which you can add the required import statements are: 

 

// ## User-required import statements could start here onwards 

 import xyz.*; 

// ## End of User-required import statements 

 

5.6.3 Q++ A Technology Independent Language  
 

The business functionality of an application is independent of the 

implementation technology being used to realize it as a software system. 

Appreciation of this separation is critical for the application to be 

configurable with respect to the implementation technology. MasterCraft 

provides a high-level specification language, Q++, which is designed to 

achieve transparency in specifying the program logic, with respect to the 

technology being used in the application in a declarative manner. [67] 

Q++ is a high-level specification language that is used to write the 

application logic on the server-side. It has the following features: 

• Object-oriented and model-aware 
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• Transparent memory management 

• Comprehensive error handling 

• Type checking across the network 

• Simplified query-processing with multiple records 

• A special data type called MULTIROW and its associated 

methods to handle multiple rows of data [64, 67] 

5.6.4 Reverse Engineering 
 
Extracting models from external jar is the term used for reverse 

engineering in MasterCraft. This includes extracting models from jars and 

model updating with the required code changes. This functionality allows 

reverse engineering up to a certain level but does not allow you to update 

the model. The later version of MasterCraft has incorporated this property.  

 

5.7 Business Logic Implementation 
 
In the above sections we discuss the code generation done by each tool. 

This code generated is merely a skeletal code for the classes, parameters 

and relationships. To have a workable code, a programmer has to plug-in 

the business logic for the different operations. He might also have to add in 

new classifiers during the implementation. The figure5.8 shows how the 

code is implemented between the specified lines of the generated code.  
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Figure 5.8  Implementation: Plug –in the business logic 

 

//Source file: C:\\jukebox\\CPassword.java 
 
 
public class CPassword  
{ 
   private String passWord; 
    
   /** 
    * @roseuid 3F7945060322 
    */ 
   public CPassword()  
   { 
     
   } 
    
   /** 
    * @param pwd 
    * @return Boolean 
    * @roseuid 3F793A880208 
    */ 
   public Boolean check(string pwd)  
   { 
    return check; 
   } 
    
   /** 
    * @return Void 
    * @roseuid 3F793A9701D7 

*/

 
 
System.out.println("Print pwd"+ pwd); 
 System.out.println("print readpassword[0]" 
+ readpassword[0]); 
 boolean check = false; 
 if 
(pwd.equalsIgnoreCase(readpassword[0])) 
  { 
  System.out.println ("Password 
accpted!!\n" +" WELCOME "); 
  check = true; 
  } 
  else  
  { 
  System.out.println ("Sorry Try 
Again :-) "); 
  } 
      

Business Logic for Operation “Check” 
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5.8 Conclusion  
 

Tools are used to curtail time and facilitate the development of a product. 

In software the final product is a workable automated code. Tools help to 

develop these software products with quality and better return on 

investment. This section wraps up the functionalities like forward 

engineering, reverse engineering and integrated editor in each of the tool 

used for the evaluation.  Code generation, reverse engineering and 

updating the model are some of the vital functionalities when maintaining 

a system. Keeping track of changes in the code and /or in the model and 

versioning it is also an important aspect. Above all a tool which is easy to 

use is always alluring to its user.  
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Evaluation Table  
 
 

Features 
Weighti
ngs 

Rational 
Rose 

Argo 
UML Together 

Master 
Craft 

Repository:            

database 2 1 2 1 3 

            

Customization:            

Components and 
tools 2 3 1 2 1 

            

HTML 
documentation:           

Generate Web 
Reports: 3 2 1 3 2 

Save diagrams to 
include in reports 3 3 1 3 3 

            

Usability:           

First Contact: 2 3 3 2 1 

Ease of use: 3 2 3 3 2 

Pick List:           

Pick list of the classes 
in the model while 
drawing. 2 3 1 1 1 

Tree structure in a 
pane where all the 
classes can be 
viewed. 3 3 3 3 3 

Select methods to 
draw sequence or 3 2 1 3 3 
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Features 
Weighti
ngs 

Rational 
Rose 

Argo 
UML Together 

Master 
Craft 

collaboration 
diagram. 
Drag and drop 3 3 3 3 3 

Interface 
Presentation           

Allows changing the 
font and size of labels 
on diagrams. 3 3 1 3 3 

States are visibly 
distinct  2 3 2 2 2 

Documentation and 
help files            

step by step 
documentation  3 3 2 3 2 

Online help  2 3 1 3 1 

Keyword search 
facilities 3 1 1 1 1 

Short – cut keys 1 1 1 1 1 

            

Printing Support:            

Fit diagram to a 
single page 3 3 3 3 2 

Print preview  3 3 1 3 3 

Scaling functionality 3 2 1 3 1 

            

Exporting 
Diagrams:           

Save diagrams any 
picture editor format: 3 3 1 3 3 

XMI format: 2 3 3 3 3 

Robustness:            
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Features 
Weighti
ngs 

Rational 
Rose 

Argo 
UML Together 

Master 
Craft 

Does tool crash or 
corrupt diagrams:  3 2 3 3 3 

Automatic saving at 
periodic intervals: 1 1 1 3 1 

            

New Releases:            

Any New version 
releases announced:  3 3 1 2 3 

            

Round Trip 
Engineering:            

Code generation: 3 3 3 3 3 

Reverse engineering: 3 3 2 3   

Synchronization with 
editor: 2 1 3 3 2 

            

Model navigation:            

 Zooming and 
panning: 3 3 1 3 3 

Navigating between 
source code and 
diagram: 2 1 2 3   

Diagram views:            

Customizing details 
of classes:  3 3 3 2 2 

Reveal and hide 
methods: 3 2 1 2 2 

Visibility of methods 
and attributes: 3 3 3 3 3 

UML support:           

Key Notation parts           
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Features 
Weighti
ngs 

Rational 
Rose 

Argo 
UML Together 

Master 
Craft 

   Use-case diagrams 3 2 3 3 3 

   Class diagrams 3 3 3 3 3 

   Sequence diagrams  3 3 1 3 3 

     Collaboration   
diagrams 3 3 3 3 3 

   State  diagrams   3 3 3 3 3 

   Activity diagrams 3 3 3 3 3 

   Component 
diagrams 3 1 1 3 1 

   Deployment 
diagrams 3 1 3 3 3 

   Package diagrams 3 3 1 1 3 

Class box size 
flexibility 3 3 3 2 2 

Line flexibility 2 3 3 2 2 

Independent 
placement of 
association end 
names 3 3 3 3 3 

Independent 
placement of 
multiplicity labels 3 3 3 3 3 

 Preservation of 
position of end names 
and multiplicity 
labels 3 3 1 3 3 

Distinguish between 
remove from diagram 
and delete from 
model 3 3 3 1 3 
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Features 
Weighti
ngs 

Rational 
Rose 

Argo 
UML Together 

Master 
Craft 

Restoration of 
relationships in new 
diagrams 3 3 1 3 2 

N-ary associations 3 3 3 3 3 

undo functionality for 
diagrams 2 1 1 3 3 

UML profiles 
(stereotypes and 
tagged values) 2 3 1 2 2 

Total Score   352 279 359 328 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


