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Abstract

Axial line placement is one step in a method known as space syntax which is used in town

planning to analyse architectural structures. This is becoming increasingly important in the

quickly growing urban world of today. The field of axial line placement is an area of space

syntax that has previously been done manually which is becoming increasingly impractical.

Research is underway to automate the process and this research forms a large part of the

automation.

The general problem of axial line placement has been shown to be NP-complete. For

this reason, previous research in this field has been focused on finding special cases where

this is not the case or finding heuristics that approximate a solution.

The majority of the research conducted has been on the simpler case of axial line place-

ment in configurations of orthogonal rectangles and the only work done with convex poly-

gons has been in the restricted case of deformed urban grids. This document presents re-

search that finds two non-trivial special cases of convex polygons that have polynomial

solutions and finds the first heuristic for general configurations of convex polygons.
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Chapter 1

Introduction

1.1 Introduction

Space syntax [Hillier et al. 1983] is used in town planning to describe and analyse archi-

tectural structures. There are various steps in this process but the one that is of concern in

this document is that of axial line placement (ALP). ALP is one of the harder steps in space

syntax so it warrants research. Previously, the process was done manually and with growing

problem sizes it is becoming increasingly important to automate axial line placement.

The general problem of ALP has been shown to be NP-complete [Sanders 2002] so it is

important to develop heuristics and find special cases that have polynomial solutions. This

document presents the first heuristic for ALP in configurations of convex polygons which

is the most general version of the problem.

The purpose of this chapter is to give the reader an idea of what axial line placement in-

volves as well as to give an overview of the rest of the document and the research contained

therein. The chapter begins with a brief description of the problem of axial line placement

and follows with a discussion on the importance of the problem and the importance of this

research. The next part of the chapter gives a description of the actual heuristic. This begins

with a description of some problems that need to be solved for preprocessing and concludes

with a description of the main part of the heuristic. The chapter ends with an overview of

the structure of the rest of the document.

1.2 Axial line placement in convex polygons

A configuration of convex polygons is given in a two-dimensional plane, where each poly-

gon in this configuration may not overlap. However each polygon in the configuration may

share a its edges with other polygons in the set. The shared line segment where two poly-

gons share an edge is called an adjacency, i.e. the part where the polygons edges touch.

The problem of axial line placement is to find the minimum number of axial lines that cross

the adjacencies in a configuration, where all points on the axial lines must lie inside the

polygons.
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The lines placed across these adjacencies should be maximal i.e. each line should cross

as many adjacencies as possible. However, this does not mean that the solution with the

longest lines should be chosen. Figure 1.1 shows an example of axial lines being placed

across the adjacencies between convex polygons. The polygons in the figure are shaded so

there is no confusion between the polygons and the spaces between the polygons. It can be

seen in the diagram that no lines cross any unshaded area. If any lines did then it would not

be a valid placement.

Figure 1.1: Example of optimal axial line placement.

1.3 The importance of axial line placement in convex polygons

Axial line placement has applications in VLSI design and town planning. However, this sec-

tion focuses on the importance of furthering the field of axial line placement to include con-

vex polygons rather than the practical importance of axial line placement. Sanders [2002]

gives a more thorough treatment of the practical applications of ALP.

The problem of axail line placement has been shown to be NP-complete [Sanders 2002],

making the development of heuristics imperative. Previously, a large portion of the work

done on axial line placement has been in orthogonal rectangles and the application area

considers many cases which may not be represented well by rectangles. The research done

with rectangles tries to use the geometry of rectangles to get a good solution instead of

looking for problems that are similar to the problem of axial line placement in general

or focusing on the characteristics of the problem itself. The heuristic presented in this

document takes a more general view of the problem.

No heuristic exists for the general problem and the only work done on convex polygons
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has been on deformed urban grids which is a special configuration of convex polygons that

represents networks of streets in a city or town [Wilkins and Sanders 2004; Konidaris and

Sanders 2002]. The next logical step for the area of axial line placement is to investigate

the problem in its most general form; collections of convex polygons. Finding a good

approximation algorithm for the general problem is really important because an algorithm is

needed that can be applied to any configuration. This document presents such an algorithm.

1.4 Preprocessing for the heuristic

The heuristic presented in this document can be applied to any configuration of polygons

that will be considered in the area of axial line placement. It works by recursively choosing

a line based on the current set of lines already chosen. This means that some configuration

of lines is required before the algorithm may start. This document suggests the following

three methods for choosing a starting configuration.

1. Choose a random polygon and generate lines from it.

2. Choose a polygon based on its number of adjacencies and position in the configura-

tion, and generate lines from it.

3. Detect special configurations of convex polygons embedded in the configuration and

use their respective algorithms to place lines.

Methods 1 and 2 are discussed further in chapter 6. Method 3 is desirable because it may

cover most of the configuration before the heuristic starts. However, in order for it to work

well, the special cases detected should have polynomial time algorithms to place the mini-

mum number of lines in them. Unfortunately, the only special configuration of convex poly-

gons studied previously is deformed urban grids, as mentioned in section 1.3. Deformed

urban grids are difficult to detect in general cases so other special cases are required.

The special configurations used by this document for method 3 are as follows.

� Chains of convex polygons

� Stars of convex polygons

� Networks of stars

Networks of stars are made up of stars and the stars are made up of chains. These special

cases are discussed in the following three subsections.

1.4.1 Chains of convex polygons

Figure 1.2 shows an example of a chain of convex polygons. Chains of convex polygons are

the simplest non trivial configurations for the problem of axial line placement in arbitrary

convex polygons and form the basis for the other special cases that are discussed in this

3



Figure 1.2: A chain of convex polygons

document. Chains of convex polygons are a natural extension of work done previously on

chains of rectangles [Phillips 2001; Sanders et al. 2000b].

A quadratic time algorithm was developed by transforming the problem of ALP in

chains of convex polygons to interval point cover.

In addition to their application to the heuristic developed in this document, chains of

convex polygons can be applied to other heuristics for the general case that use path finding

algorithms.

1.4.2 Stars of convex polygons

Figure 1.3: A star of convex polygons

Figure 1.3 shows an example of the next special case developed: stars of convex poly-

gons, which are made up of chains. This configuration does not extend previous research

done on ALP in rectangles like chains of convex polygons does, and is a completely new

special case.

The chain algorithm is used to transform the problem to a well known graph theory

problem known as maximum cardinality matching. This creates a quadratic time algorithm

that solves ALP in stars of convex polygons.
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1.4.3 Networks of stars

Figure 1.4: A network of stars

The final special case considered by the research presented in this document is networks

of stars which are formed by joining stars of convex polygons. An example is shown in fig-

ure 1.4. The algorithm developed for networks of stars is a heuristic, unlike the algorithms

developed for chains and stars. This special case is considered because of conflicts that can

happen when stars are detected in a configuration. This document presents a cubic time

algorithm for networks of stars.

The network of stars special case can be useful to areas outside of this research because

of its resemblance to a town plan, much like the deformed urban grid mentioned earlier.

However, it is more general than a deformed urban grid which may increase its usefulness.

1.5 Development of the heuristic

The heuristic presented in this document first uses some method to find a starting set of

axial lines that cross some adjacencies in a general configuration of convex polygons. Then

it recursively chooses exactly one line that extends as far as possible from the current set of

lines. This process terminates when all of the adjacencies have been crossed. This method

is a generalised version of the algorithm developed for ALP in chains of convex polygons.

The line that extends the furthest is chosen from a set of lines generated using a depth

first search. This is a major overhead of the algorithm so a data structure is presented in this

document to make it more efficient. Efficiency is also increased by limiting the number of

lines found by the depth first search but results in a worse solution.

The algorithm developed is
���������
	

where
�

is the number of polygons and
�

is a pa-

rameter passed to the algorithm that limits the number of lines found by the search. This

research only considers values of
�

no greater than
�����
��	

. This is acceptable because the

problem is NP-complete and this is the first heuristic developed.
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1.6 Evaluation of the heuristic

The solutions found by the heuristic for the general case of axial line placement were eval-

uated by implementing the heuritic and testing it on randomly generated configurations of

convex polygons.

The tests done using the heuristic fall into the following three categories.

� Comparing the various methods for finding a starting set of lines.

� Comparing limits placed upon the heuristic itself.

� Comparing the solutions found by the heuristic to solutions with the smallest number

of lines.

Ideally, an approximation ratio would have been found and used to evaluate the heuristic

but doing so is outside the scope of this dissertation because of time constraints and the

amount of work done in other areas such as the special cases.

1.7 Structure of the dissertation

Chapter 2 is the next chapter in this document and it gives some background to the problem

of axial line placement. It discusses the work done on rectangles and one special case

using convex polygons, and shows the need for the heuristic developed in this document.

Additionally, chapter 2 contains discussions of algorithms that are needed for axial line

placement to take place, as well as some algorithms that are used to solve the special cases

that were discovered by this research. This chapter forms the basis for the research that is

described in the rest of the document.

Chapters 3, 4 and 5 each present a special case and the algorithm that is used to solve it.

These special cases are integrated into the heuristic so they are discussed before the heuristic

is described in any detail. The first of these chapters discusses chains of convex polygons

which is the most basic of the special cases considered. It describes how the problem of

placing the smallest number of axial lines in a chain of convex polygons is transformed into

interval point cover.

The second chapter dealing with special cases discusses stars of convex polygons and

describes how chains are joined to form stars and how the chain algorithm is combined with

the algorithm for maximum cardinality matching to find an algorithm.

The third chapter dealing with special cases discusses the network of stars. This chapter

describes the conflict that can occur between stars when they are being detected in a gen-

eral configuration of convex polygons and how the network of stars special case is used to

resolve this conflict.

Chapter 6 is the most important chapter in this document as it describes the heuristic

produced by this research to place axial lines across the adjacencies in a general configu-

ration of convex polygons. This chapter describes the three methods of finding a starting
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set of lines and discusses the use of the algorithms for the special cases. The data structure

that is used to make the heuristic more efficient is described along with a description of the

heuristic itself.

The empirical tests that were done using an implementation of the algorithm are de-

scribed in chapter 7 where the results of these tests are presented and evaluated. This chap-

ter finds the best configuration of the heuristic and gives reasons for some configurations

working badly and suggests ways to improve those configurations.

This is the first attempt at developing a heuristic for the general case of axial line place-

ment, so naturally there will be some areas that could be developed further. These areas

are described in chapter 8 where other special cases that have polynomial solutions are

suggested as well as some improvements to the heuristic itself.

Chapter 9 concludes this dissertation by summarising the significant contribution that

this research has made to the area of axial line placement.
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Chapter 2

Background and related work

2.1 Introduction

Axial line placement is a relatively new problem. It originated from a problem known as

space syntax, which is a method used to determine how accessible areas in a town are to

each other. Axial line placement (ALP) is a step in this process. The problem was brought

into a computer science context by Sanders [2002] (see also Sanders [1999] and Sanders

and Kenny [2001]). While Sanders [2002] was being written more research was done in

this area in the form of honours research reports. These form the bulk of the work done on

axial line placement and are reviewed in this chapter. Some terms used in this chapter and

in the rest of the document that might be unfamiliar to the reader are defined in appendix A.

This chapter covers the following topics.

� A definition of axial line placement

� A brief history of axial line placement

� A review of research directly related to axial line placement

� A review of work that is directly related to this research

� A review of research that is similar to axial line placement

The history of axial line placement reviews the work done with rectangles where axial

lines are placed with arbitrary orientation and the lines are orthogonal. This includes dis-

cussions on heuristics and special cases where a polynomial solution exists. Additionally, a

special case of axial line placement in convex polygons is discussed.

The review of research directly related to axial line placement contains discussions of

work done in the areas of visibility and adjacency detection. These areas contain algorithms

that are required before axial line placement can take place.

The review of work that is directly related to this research discusses maximum cardinal-

ity matching. This area includes an algorithm that is used to solve one of the problems in

this document.
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Finally, the review of research that is similar to axial line placement includes discussions

on the Art Gallery problem and the Stabbing problem. These areas are considered similar

to axial line placement.

2.2 Axial line placement defined

Axial line placement arose from a method called space syntax which was initially proposed

by Hillier et al. [1983], which is an architectural method used to analyse urban and structural

layouts. They define an axial line as the following:

A one dimensional extension of the sight lines from particular spaces.

For the problem of axial line placement, the spaces referred to in the above definition

are convex polygons, and the one dimensional extension of the sight lines are represented

by any lines that cross the shared edges of the convex polygons but are wholly contained

inside the convex polygons. This leads to the following definition of axial line placement

(ALP) from Sanders [2002]:

Given a collection of adjacent polygons, find the minimum number of maximum length

straight line segments contained wholly inside the convex polygons (axial lines) that will

cross every adjacency (shared edge) between the polygons. Each adjacency must be crossed

by at least one axial line.

A variation on this problem exists where each adjacency can be crossed by only one

axial line. However, previous work has been done on the variant with multiple crossings

and so is chosen to be the focus of this research.

In this document, an axial line is defined by the adjacencies it crosses and its length is

defined by the number of these adjacencies. Therefore, the terminology “maximum length”

means that each line should cross as many adjacencies as possible. Figure 2.1 gives an

example of a collection of convex polygons with axial lines placed upon it. This is an

optimal configuration of axial lines that cross the adjacencies in this configuration.

1
2 8

7

3

4

5

6

Figure 2.1: Example of axial line placement
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Note that the line that crosses the adjacencies between polygons 5, 4, 3 and 7 crosses

adjacencies that have already been crossed by other lines. This is necessary because of the

maximal lines condition in the definition. If the single crossing variant was used then only

the adjacency between polygons 3 and 7 would be crossed by that line.

In order to determine if it is possible to place an axial line on the two adjacencies

between polygons 2, 8 and 7 it must be known if these adjacencies can “see” each other.

This is done using a visibility algorithm which is discussed in section 2.4.2. It may not be

necessary to determine the position of an actual line given the application.

Here are three types of axial lines are discussed in this document, particularly in the

next section. These definitions are mutually exclusive.

� Redundant – all the adjacencies crossed by this line are already crossed by another

line.

� Essential lines – at least one adjacency crossed by this type of line cannot be crossed

by another line that is not redundant.

� Choice lines – these are lines that are not essential or redundant.

If a line is redundant then there is a longer line that crosses the redundant line’s adjacencies.

Therefore, a line is not maximal if it is redundant. By the definition, essential lines cannot

be redundant themselves. Furthermore, essential lines are axial lines that have to appear in

any solution because the lines must be maximal. From the definition of choice lines, it can

be seen that they only cross adjacencies that are crossed by essential lines or other choice

lines.

Determining if a line falls into any of the three categories above can be done by finding

all the axial lines that cross all of the adjacencies in a collection. First, redundant lines must

be identified and removed, then the essential lines can be identified. The choice lines are

the lines that remain. This method is used in several heuristics that are discussed in the

following section.

2.3 History of axial line placement

Presently, space syntax [Hillier et al. 1983] is carried out manually but there are many

aspects that could be automated on a computer such as axial line placement. Axial line

placement was originally called ray guarding because they seem similar. ALP has been

proven to be computationally difficult so it would be difficult for a human to obtain good

solutions for large cases and so computers would be better suited for the task.

This section gives an overview of previous work done on axial line placement beginning

with its origins. The history of axial line placement started with orthogonal lines in orthog-

onal rectangles (ALP-OLOR). The next progression was to consider lines with arbitrary

orientation in orthogonal rectangles (ALP-ALOR). This research deals with arbitrary lines

in convex polygons (ALP-ALCP). One special case of ALP-ALCP has been considered and

will be discussed in this section.
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2.3.1 Placing orthogonal axial lines in orthogonal rectangles (ALP-OLOR)

In ALP-OLOR (axial line placement - orthogonal lines in orthogonal rectangles), all the

lines placed upon the adjacencies are orthogonal to either Euclidean axis. Figure 2.2 shows

an example of how axial lines are placed for ALP-OLOR.

Figure 2.2: Example of axial line placement with orthogonal lines in orthogonal rectangles
(ALP-OLOR).

Sanders [2002] shows that ALP-OLOR is NP-complete through a transformation from

vertex cover for a planar graph [Lichtenstein 1982]. The transformation from planar vertex

cover is done by mapping the vertices in a planar graph to choice axial lines in the problem

being considered. Edges in the planar graph are mapped to adjacencies that are crossed by

the choice axial lines.

This transformation is done in two steps. First, a planar graph is transformed to the

problem of a “stick diagram”. Sanders [2002] defines an instance of a “stick diagram” as a

collection � of horizontal lines and � of vertical lines such that each vertical line is cut by

exactly two horizontal lines, and a positive integer ����� ��� . The question posed is whether

there is a set of horizontal lines, �	��
�� , such that every vertical line in � is cut at least

once and � � � ���
�
In this “stick diagram” each vertex in the original graph is mapped to a horizontal line

representing a choice axial line and each edge in the original graph is mapped to a vertical

line that is cut by the two horizontal lines that represent the two vertices to which the edge

is incident. Second the “stick diagram” is transformed into an instance of ALP-OLOR.

A heuristic algorithm

Sanders [2002] also gives an
����� � 	

heuristic algorithm to solve ALP-OLOR. The algorithm

starts by determining the adjacencies between the rectangles and storing the information

in an array, where each element denotes a rectangle and has a linked list attached to it

containing the rectangles that are adjacent to it on the right.

The next step is to generate the non-redundant set of axial lines to cross all the adja-

cencies in a collection of adjacent orthogonal rectangles. Next the redundant, choice and

essential lines defined above at the beginning of this section are identified.

First, all the possible orthogonal axial lines which cross the adjacencies between rectan-
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gles are generated to form the set of candidate lines. Sanders [2002] provides a polynomial

time algorithm to do this. The redundant lines are removed and the essential lines are iden-

tified. The essential lines are removed from the candidate set and placed into the final set.

The set of candidate lines is now the set of choice lines.

The final step is to choose a subset � of the choice lines such that each of the lines in

� crosses at least one adjacency that is not crossed by any other line in � or by an essential

line. Sanders [2002] calls this the choice conflict and is the crux of the algorithm and is

where the heuristic comes in. The heuristic resolves this conflict by choosing the candidate

line that crosses the most uncrossed adjacencies1 . This line is then made an essential line

(actually added to the final set of lines) and is removed from the candidate set. If other lines

in the candidate set are made redundant by making this an essential line then the redundant

line is removed from the candidate set. This process is repeated until no lines remain in the

candidate set.

Special cases

Also considered in Sanders [2002] are special cases where the minimum number of lines

can be found in polynomial time. These cases are chains and trees of rectangles and were

solved by Sanders et al. [2000a]. Figure 2.3 shows an example of a chain and a tree of

rectangles.

� �

Figure 2.3: Special cases of ALP-OLOR. Example of a chain
�

and a tree
�

of rectangles
for ALP-OLOR.

Sanders [2002] defined a chain of orthogonal rectangles as “any collection of orthog-

onal rectangles where every rectangle is horizontally (vertically) adjacent to at most one

other rectangle at each end.”

The research contained in this document generalises this definition by allowing convex

polygons in the place of rectangles. The algorithm that places axial lines in chains of rectan-

gles works by first finding the set of “forward” lines and the set of “backward” lines. Then

these two sets are merged to form the final set of lines which is the result. The forward

lines are generated by considering the left most adjacency in the chain. An axial line is

placed upon it and extended to cross as many adjacencies to the right as possible. This line

1An uncrossed adjacency is an adjacency that has not been crossed by a line in the solution set
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is then placed into the set of forward lines. The process is repeated starting with the left

most uncrossed adjacency and stops when all adjacencies have been crossed by a forward

line. The backward lines are generated in much the same way except the starting point is the

rightmost adjacency. From there the algorithm proceeds backwards. The merging is done

by merging the left most lines in both sets in succession. The algorithm presented in this

document that places lines in chains of convex polygons uses a slightly different approach

but results in a similar solution.

Next are the trees. A tree of orthogonal rectangles is a collection of adjacent orthogo-

nally aligned rectangles, where each rectangle is joined on the left (right) end to at most one

rectangle and on the right (left) to zero or more rectangles.

An
����� � 	

algorithm was developed that is surprisingly similar to the chain case. The

algorithm begins by generating the forward lines in much the same way as the chain algo-

rithm. The backward lines are now called “leaf” lines and are generated starting from the

adjacency of each “leaf” of the tree (note that there can only be one adjacency for each leaf

polygon). Overlapping forward and backward lines are merged in a similar way to the chain

algorithm.

This section discusses work done on configurations of rectangles where only orthogonal

lines could cross the adjacencies. The following section, discusses work done on configu-

rations where the polygons are still rectangles but the lines are allowed to be of arbitrary

orientation.

2.3.2 Placing axial lines with arbitrary orientation in orthogonal rectangles
(ALP-ALOR)

This section deals with ALP-ALOR (axial line placement – arbitrary lines in orthogo-

nal rectangles). Figure 2.4 demonstrates ALP-ALOR. ALP-ALOR was shown to be NP-

complete in Sanders [2002 1999] by transforming from biconnected planar vertex cover.

The proof follows along the same lines as for ALP-OLOR. The first step is to transform

biconnected planar vertex cover to “stick diagram”. The second step is to transform “stick

diagram” into ALP-ALOR.

Heuristics

Sanders [2002] discusses some possible heuristics or ALP-ALOR(also in Sanders and Kenny

[2001]). In ALP-OLOR (see section 2.3.1) the first step in the heuristic was to generate all

possible axial lines. However, it has not been proven that there are a polynomial number of

non-redundant axial lines of arbitrary orientation so heuristics are implemented at this level.

Generating all possible lines for convex polygons has the same problem.

The first heuristic suggested was to extend the lines to all neighbours. This started with a

rectangle on the outer edges of the configuration and extended all axial lines that originated

from that rectangle as far into the other rectangles as they could go. In other words at each

step each rectangle is considered in turn. For each neighbour of this rectangle an axial line
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Figure 2.4: Example of axial line placement with arbitrary lines in orthogonal rectangles
(ALP-ALOR.

is placed that starts in the original rectangle, passes through the current rectangle and into

its neighbour (if such a line exists of course). The problem with this algorithm is it misses

out many lines that may be part of an optimal solution so is unlikely to come close.

The second heuristic tries to deal with the vertical and horizontal adjacencies in different

passes. The vertical pass would traverse the rectangles in order from top to bottom based

on the top � -coordinate. Only axial lines would be placed on horizontal adjacencies. The

horizontal pass works analogously. This leaves out many lines but is more efficient than the

first heuristic.

The next heuristic suggested is that of finding the longest chain of rectangles that can be

crossed by one axial line. This is done by first identifying extreme rectangles. An extreme

rectangle is defined as a rectangle with no neighbours on both the left and right and the

top and bottom sides. Then for each extreme rectangle all possible chains are generated.

The longest chain is identified and it is determined if an axial line can be placed upon this

chain. If so then the line is added to the final set. If not then the next longest chain is

considered. The process continues until an axial line is placed or there are no more chains.

Some adjacencies may not be crossed at the end of this process so the current policy crosses

each uncrossed adjacency with a single axial line. This heuristic requires development

since the requirement of placing a line across the configuration is unreasonable. A different

method to generate the chains was suggested by Sanders [2002] that creates chains that

could possibly have a line going across. This involves detecting places were it would be

impossible to place an axial line and removing them from the chain.

Special cases

Special cases considered for ALP-ALOR have been chains, circular chains and “acyclic”

trees. Figure 2.5 shows an example of an “acyclic” tree and a chain of rectangles. These

are considered by Phillips [2001] and all three are shown to have polynomial solutions. The

definition of a chain used is slightly different to the definition given for ALP-OLOR. Vertical
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and horizontal adjacencies are allowed. In the ALP-OLOR definition only horizontal or only

vertical adjacencies are allowed. Not surprisingly, the algorithm to place axial lines with

arbitrary orientation upon a chain of orthogonal rectangles is very similar to the orthogonal

lines case. Forward and backward lines are created then merged together to get the final

set. This
����� ��	

algorithm for chains of rectangles may have been generalised to obtain a

solution for chains of convex polygons but due to comments made by O’Rourke [2002], a

slightly different approach was taken.

� �

Figure 2.5: Special cases of ALP-ALOR. Example of a chain
�

and a tree
�

of rectangles
for ALP-ALOR.

The next case considered is the circular chain of orthogonal rectangles. A circular chain

of orthogonal rectangles is basically a chain of orthogonal rectangles but all of the rectan-

gles are adjacent to two other rectangles in the collection forming a loop. The approach to

solving this was to generate
�

chains of rectangles with
��� �

rectangles in each, where
�

is

the number of rectangles in the circular chain. Each chain would have the same starting and

ending rectangle. Then the normal chain algorithm is applied to each chain and redundan-

cies are then removed from the end points. The chain with the least number of axial lines

placed upon it would then be the final result. This is an
����� � 	

algorithm. Generalizing

this algorithm to the convex case would be direct since the only change would be the chain

algorithm part.

The final case considered, is what Phillips [2001] refers to as the acyclic tree. The defi-

nition for an acyclic tree is relatively complicated with many constraints that are based upon

the number of adjacencies that each rectangle can have and on which side these adjacencies

can occur. Many constraints are placed upon it in order for it to have a polynomial solution.

For this reason, trees of convex polygons are not considered in this research. The algorithm

basically works by finding chains in the tree and solving those cases. Then these solutions

are merged to obtain the final solution.

2.3.3 Placing axial lines with arbitrary orientation in convex polygons (ALP-
ALCP)

Previously, ALP-ALCP has not been given much attention and the only special case consid-

ered so far is that of deformed urban grids (see section 2.3.4). Sanders [2002] shows that it

is NP-complete by stating that ALP-ALOR is a special case of ALP-ALCP. ALP-ALCP is

the problem that this document addresses by finding two, non-trivial special cases that have

polynomial solutions and developing the first heuristic that can be applied to any problem
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that can be considered in the area of axial line placement. This means that this document

solves many problems in ALP-ALCP and opens up the area for future research.

2.3.4 Placing axial lines with arbitrary orientation in deformed urban grids

The problem of placing axial lines with arbitrary orientation in deformed urban grids is a

special case of ALP-ALCP and is shown to be NP-complete in Wilkins and Sanders [2004]

by a transformation from 3SAT. The original definition of the problem is given by Sanders

[2002] and is based on the idea of a complete grid [Gewali and Ntafos 1993] – the com-

plete two-dimensional grid of size
�

is the graph with vertex set ��� ��������������� � � ���
��������������� � � �

and the edge set ��� � � �
	 ��� 	 � ��
 ��� 	 ��� � 	���
 � � � � � � ��� � �
where all

edges are parallel to the major axes. In a geometric setting, the grid edges can be thought

of as corridors and the grid vertices as intersections of corridors. A (partial) grid is any

subgraph of the complete grid. In a simple urban grid the corridors and intersections are

given dimension. A simple urban grid is thus a polygon with holes that is the union of rect-

angles and squares. The rectangles are the “corridors” and have width � and length
�
. The

squares are the “intersections” and have width � . Each corridor must begin and end with

an intersection. The short side of a corridor should be flush with the side of an intersection.

Figure 2.6: Example of a deformed urban grid.

No intersection can be adjacent to another intersection. A horizontal (or vertical) se-

quence of corridors and intersections is called a “thoroughfare”. A deformed urban grid

(DUG) is generated from a simple urban grid and is formed by deforming (moving the

vertices of) the intersections, therefore deforming the corridors since they share the same

vertices. Corridors, intersections and thoroughfares in DUGs are similar to those in simple

urban grids. An example of a deformed urban grid is given in figure 2.6.

The degree to which the intersections should be deformed is also an issue. Consider a

simple urban grid of dimensions � and
�

where ��� �
. To form the deformed urban grid

the vertices of any intersection may be moved around but only so that they still lie inside

the original simple urban grid’s intersection. The intersections and corridors must remain

convex.

A heuristic algorithm was also developed in Konidaris and Sanders [2002] that had a

similar framework to that of the heuristic algorithm developed for ALP-OLOR. All the axial
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lines are first generated and maximized. Redundant lines are removed and the remainder

are placed into a candidate set. The essential lines are identified and removed from the

candidate set then placed in the final set. Then some policy is used to resolve the choice

conflict (or deadlock).

The resolution of the choice conflict is also similar. The line that crosses the most un-

crossed adjacencies is removed and placed in the final set. The essential lines are identified

once again and the deadlock removal is applied. This is repeated until there are no more

candidate lines.

The major difference between the ALP-OLOR algorithm and this one was that of plac-

ing all the lines. This can be done efficiently because of the information inherent in the

deformed urban grid. This problem is quite restricted so the fact that it is NP-complete

shows how hard this problem really is.

2.4 Research directly related to axial line placement

The work presented in this section covers adjacency detection in configurations of convex

polygons and visibility. Two of the algorithms that are developed in these two areas are

necessary before axial line placement can take place.

2.4.1 Finding adjacencies in a collection of convex polygons

Two polygons are said to be adjacent if the intersection of an edge from one polygon and an

edge from the other polygon is a line segment. This intersection, or shared segment is then

called an adjacency. In order to place axial lines upon these shared segments between the

convex polygons, one needs to know where the shared segments occur. This can be done

trivially in
��� � � � 	 � 	

where there are
�

polygons where each polygon has a maximum of�
edges. However, Adler et al. [2001] gives a � � � ������� � 	

algorithm, which was reduced

to � ��������� � � ������� � 	
in Konidaris et al. [2003]. These last two algorithms use a line

sweep strategy.

This section gives an overview of the � ��������� � � ������� � 	
algorithm. Before contin-

uing, it must be noted that this algorithm assumes that the edges are in counter-clockwise

order. Next is a discussion on the algorithm to determine whether one polygon is adjacent

to another. Following this is a discussion of the partial ordering used by the algorithm then

the main algorithm is explained.

Testing if two convex polygons are adjacent

The algorithm begins by separating each polygon into upper and lower chains as shown in

figure 2.7. The chain boundries are indicated by the arrows where the upper chain is in bold

and the lower chain is represented by dashed lines.

The points indicated with the arrows are the points with the smallest and largest � -

values, which are called the extreme points and can be computed in � ������� � 	
time, using
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Upper chain

Lower chain

Figure 2.7: The polygon is decomposed into upper and lower chains for adjacency detec-
tion.

a modified binary search [O’Rourke 1995]. Furthermore, the line segment formed by the

intersection of the polygon and a vertical line at a particular � value can be obtained in

� ������� � 	
, since the extreme points can be determined in � ������� � 	

, and the chains are

monotonic in � , allowing a binary search to obtain the edges that cover the relevant � value

in � ��� ��� � 	
time.

The algorithm proceeds by splitting each polygon into their respective upper and lower

chains, and checks the first polygon’s upper chain against the second polygon’s lower chain,

and vice versa. Then half of the edges from at least one of the chains are repeatedly elimi-

nated until an adjacency is found or none can exist. Elimination ceases when either of the

chains has fewer than four edges, in which case a binary search on gradient is performed

for each edge.

The chains are reduced as follows. First, the middle edge of each chain is obtained, the

midpoints of these middle edges are computed, and the angles between the line segment

joining the two midpoints and their middle edges are obtained.

The algorithm is then split into two cases which are defined by the angles between the

line segment joining the two midpoints and their middle edges. Figure 2.8 is an example of

the first case because the angles
�

and
�

are both less than or equal to � . If either
�

or
�

was greater than � then figure 2.8 would be an example of the second case.

A

B

P

P

a

middle

start end

middle

b startend

Figure 2.8: Case 1 of checking if the upper chain of polygon
���

shares an edge with the
lower chain of polygon

���
. Angles

�
and

�
are less than � .
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In this case, the middle edges are extended and the intersection is found, as indicated

by the broken lines in figure 2.8. If the middle edges are parallel then there can be no such

intersection and the polygons are not adjacent. The edges from start to middle in
� �

are not

eliminated and neither are the edges from end to middle in
���

.

The second case occurs when at least one of the two angles is greater than � , and

therefore the line connecting the midpoints of the middle edges of the polygon goes through

at least one of the polygons. In this case, the edges that lie on the same side of the midpoint

as the other polygon’s midpoint are kept, and the others removed. Figure 2.9 illustrates this.

Here, the edges from middle to end from
� �

are retained as well as all the edges from
� �

.

Note that the edges beginning at start up until, but not including, middle from
� �

could only

be eliminated if
�

was greater than � .

start

middle

middle

end

start

end
P

Pb

a

A

B

Figure 2.9: Case 2 of checking if the upper chain of polygon
���

shares an edge with the
lower chain of polygon

� �
. Angle

�
is greater than � .

The elimination continues until one of the chains has fewer than four edges left. In this

case, the longer chain is searched using a standard binary search on edge gradient for each

one of the remaining edges in the shorter chain, and if any of them are found to overlap the

polygons are adjacent; otherwise, they are not.

A Partial Ordering for Convex Polygons

The line sweep algorithm finds the adjacencies in a configuration based on the intuition that

two polygons must be “nearby” if they are to be adjacent. In this section, a partial ordering is

presented that determines if two polygons are “nearby” if there can be no polygons between

them.

First, the line joining the first and last vertex of polygon
� � ’s upper chain is labelled as�������

, and its � value at a given � coordinate is referred to as
�	�
��� � � 	 . Figure 2.10 shows

an example with
���

shown as a dashed line.

The relation
� �
� �
�

is defined below, where the interval � is defined as the intersection

of the intervals spanned on the � -axis by
��� ���

and
�	� ���

.
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Upper chain

Lower chain

ML

Figure 2.10: A convex polygon with its interior midline (
�	�

).

� � � � � if

1.
� 
�� � such that

��� ��� ��
 	 � �	� ��� ��
 	
or

2. � 
�� � � ��� ��� ��
 	 � �	� ��� ��
 	 � � is not a singleton, and � � lies below
��� ���

or

3. � � � 
 � � ��� ��� ��
 	 � �	� ��� ��
 	
, and

�������
extends further than

�	� ���
.

Number 2 can only happen when the opposing chains are of length 1 and the polygons

are adjacent along them. The third case is only intended to handle the special case where

one polygon’s upper chain starts at the same point as another’s upper chain ends.

The Algorithm

The algorithm for finding all the adjacencies in a configuration involves sweeping a vertical

line from the far left of the plane to the far right, while maintaining a list of the polygons that

the line intersects with as it moves through the plane. The list of polygons is kept ordered

using the � operator.

To do this, a list of the start and end vertices of the upper chains of each polygon is

obtained. The list is then sorted on each point’s � coordinate, breaking ties on the point’s

� coordinate, then on polygon number. This list now contains a set of event points, where

each event point indicates that the set of polygons intersecting with the sweep line changes

– either a polygon is leaving the set (an end point), or a polygon is entering the set (a start

point).

During the scan, only those polygons that are at some point next to each other in the

ordered list are tested for adjacency.

This section has discussed an algorithm to detect all the adjacencies in a configuration of

convex polygons. Next, the area of visibility is discussed, where an algorithm is presented

that detects if the adjacencies in a configuration are visible to each other.

2.4.2 Visibility

Visibility mainly has to do with whether two points inside a polygon can “see” each other. In

other words, can a line segment be drawn from one point to the other without it intersecting

the edges of the polygon? The same analogy holds for visibility between lines. This section

briefly discusses the area in general, however, more information can be found in Asano
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et al. [1999] which gives a more complete overview of the area. For some discussion on

open problems see O’Rourke [1998] which deals with point and edge visibility, floodlight

illumination and visibility graphs.

This section discusses the various types of visibility such as point to point visibility,

edge and polygon visibility with various combinations thereof such as point-to-edge visi-

bility. However, the algorithm for edge-to-edge visibility is discussed in detail at the end of

the section because it is the most relevant to axial line placement.

Types of Visibility

One of the more natural problems in visibility is point-to-polygon visibility, which is the

problem of determining how much of a polygon is visible from a point. This is done by

computing the visibility polygon � � � 	 of a point � . Formally � � � 	 � ��� � � � � sees
���

[Asano et al. 1999]. Figure 2.11 shows a visibility polygon of a point. El Gindy and Avis

[1981] and Lee [1983] developed linear time algorithms to calculate � � � 	 . Both were later

shown to fail in certain cases by Joe and Simpson [1987] with corrections to the algorithm

given in Joe [1990].

p

Figure 2.11: The shaded polygon is the visibility polygon of point � .

Avis and Toussaint [1981] introduced the notions of weak and complete visibility. A

point is weakly visible from a polygon
�

if it is visible to at least one point in
�

, and it is

completely visible from
�

if it is visible to all points in
�

. They also introduced notions

of weak, strong and complete visibility of a polygon to an edge. An
����� 	

algorithm was

presented that determines whether a given polygon
�

is completely, weakly or strongly

visible from an edge ��� . Note that this is a decision algorithm and does not determine

the polygons themselves. Avis and Toussaint [1981] derived an algorithm to determine the

complete visibility polygon of an edge. A linear algorithm to compute the weak visibility

polygon came later from Guibas et al. [1986].

Another type of visibility which has relevance to axial line placement is that of link

visibility [Asano et al. 1999]. The link distance between two points � and
�

in a polygon
�

is the minimum number of line segments in a polygonal path from � to
�

that stays within
�

.
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The link diameter of a polygon is the maximum link distance between any pair of points out

of all the pairs of points in the polygon. So the link diameter of a polygon is 1 if and only if

it is convex. The axial lines can be seen as the links between points in the convex polygons.

This makes it easy to at least approximate the link distance between points in the convex

map. ALP is used to do something similar, but instead of finding the link distance between

two points in an area, ALP can be used as a step in finding the link distance between two

sub-areas in a given area. In this case the areas are convex.

The most relevant type of visibility to this research is edge-to-edge visibility. There are

many types of edge-to-edge visibility. Avis et al. [1981] gives the following classifications:

� Edge ��� is said to be completely visible from edge � � if for all points � on edge � �

and all points � on edge ��� , � and � are visible.

� Edge ��� is said to be strongly visible from edge � � if there exists a point � on edge

� � such that for all points � on edge � � , � and � are visible.

� Edge � � is said to be weakly visible from edge � � if for each point � on edge ���
there exists a point � on edge � � such that � and � are visible.

� Edge � � is said to be partially visible from edge � � if there exists a point � on edge

� � and a point � on edge � � such that � and � are visible.

The relevant type of visibility here is partial visibility, because a single line can only cross

all the adjacencies in a sequence of convex polygons if there exists a point on each adjacency

in all pairs of adjacencies in the sequence that are visible. Avis et al. [1981] gives an
����� 	

algorithm to compute these four edge-to-edge visibilities and the parts that compute partial

edge visibility are presented here, but first a method is presented that finds the polygon that

gets inputted into the visibility algorithm. This polygon is called the adjacency polygon.

Determining the adjacency polygon

The following method for finding an adjacency polygon is detailed in du Plessis and Sanders

[2000], though only orthogonal rectangles were considered in this paper. This is expanded

in this document to encompass convex polygons.

Figure 2.12: A chain of convex polygons polygons. The thick line segments are the line
segments we wish to place an axial line upon
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A prerequisite for the algorithm is that the polygons that the axial line should pass

through are known. Figure 2.12 shows the initial configuration. The two polygons on either

end of the sequence or chain are removed and the adjacency polygon is formed from the

union of the other polygons in the chain (see figure 2.13). The reduced adjacency polygon

can be formed by joining the end points of the adjacencies to create a chain of quadrilaterals

(see figure 2.14). The reduced adjacency polygon is not completely necessary as shown in

the following paragraph. It will however make the line visibility algorithm more efficient.

Note that the step to find the un-reduced polygon can be skipped and the vertices of the

adjacencies joined in order to find the reduced adjacency polygon. Obviously it has to be

ensured that the line segments that join the adjacencies do not cross.

Figure 2.13: The adjacency polygon has been found and is indicated by the shaded region.

Figure 2.14: The reduced adjacency polygon is indicated by the shaded region. It is found
by reducing the adjacncy polygon shown in figure 2.13.

Partial edge visibility through a polygon

Once the adjacency or reduced adjacency polygon has been determined the lines must be

tested for partial visibility. Edge � � is said to be partially visible from edge � � if there

exists a point � on edge � � and a point � on edge � � such that � and � are visible. In figure

2.15 the edges ��� and � � in polygon
�

are partially visible because there exist two points

� and � that can see each other, illustrated by the line segment � � . Clearly edges �
�

and� �
in polygon

�
are not partially visible because there exists no line segment that joins the

two lines such that the segment lies entirely in
�

. The fact that edges ��� and � � are visible

indicates that an axial line can be placed upon these two edges.

Determining if two edges in a polygon are partially visible is done using the linear algo-

rithm derived in Avis et al. [1981]. This algorithm determines if two edges are completely,

23



x

z

y v

w

u

A B

a

b
n

m

Figure 2.15: Illustration of partial edge visibility. � � is partially visible to � � but �
�

is not
partially visible to

� �
.

strongly, weakly or partially visible, though only partial visibility is required here and so

will be the only type discussed. There are many different special cases that need to be ad-

dressed that depend upon how the lines face each other. The simplest case is where the

two lines are totally facing each other so will be the case considered in the explanation of

the algorithm. It is recommended that the reader refers to the original text for a complete

explanation. The edges in polygons
�

and
�

in figure 2.15 are totally facing each other.

vu

yx

Figure 2.16: An example of � �
�
�

�
	

cutting through
���

�
�
�
�

�
� � 	 indicating that ��� is not

partially visible to � � .

Given is polygon
�

and edges � � and � � . The algorithm takes the following steps:

1. Create quadrilateral
���

�
�
�
�

�
� � 	 .

2. Create chains � �
�
� � 	 and � �

�
�
�
	

where � �
�
� � 	 is the chain of vertices in the poly-

gon from vertex � to vertex � (analogous for � �
�
�
�
	
).

3. Determine if � �
�
� � 	 or � �

�
�
�
	

cuts through
���

�
�
�
�

�
� � 	 . If it does then no visibility

is possible and the algorithm terminates. Figure 2.16 shows an example of � �
�
�
�
	

cutting through
���

�
�
�
�

�
� � 	 .

4. Create � � �
�
� � 	 and � � �

�
�
�
	

where � � �
�
� � 	 is a reduced chain of vertices. This
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Figure 2.17: Initial polygon with
���

�
�
�
�

�
� � 	 in dashed lines

chain contains vertices in � �
�
� � 	 that lie outside

���
�
�
�
�

�
� � 	 and also contains

points where � �
�
� � 	 intersects with the line segment � � .

5. Calculate � � � �
�
� � 	 and � � � �

�
�
�
	

of � � �
�
� � 	 and � � �

�
�
�
	

respectively. Where

� � � �
�
� � 	 is the inner convex hull of � � �

�
�
�
	
. Figures 2.17 to 2.19 show the steps

in this process beginning with the input polygon and ending with the inner convex

hulls.

6. Form polygon � from � � � �
�
� � 	 � � �

� � � � �
�
�
�
	 �
� � .

7. If � is a simple polygon (ie. doesn’t intersect itself) then � � is partially visible from

� � and vice versa.

y

x

u

v

Figure 2.18: Illustration of reduced chains. The polygon from figure 2.17 has been “cut off”
by

���
�
�
�
�

�
� � 	 to form the reduced chains.

This section discusses an algorithm to determine if two edges are partially visible through

a chain of convex polygons. However, this only indicates that an axial line can be placed

upon these edges and does not say where the axial line should be placed. Fortuitously, the

actual placement of a line is only important for a graphical representation. At this point it is

sufficient to know that an axial line can be placed.
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Figure 2.19: Illustration of inner convex hulls. The inner convex hulls are formed by finding
the convex hulls of the reduced chains from figure 2.18.

2.5 Maximum cardinality matching

This section describes an algorithm to solve maximum cardinality matching, which is a

well known problem in graph theory. Stars of convex polygons are one of the special cases

considered in this document and maximum cardinality matching is part of the algorithm

that solves the problem of axail line placement in this configuration.

A matching of an undirected graph ��� � � � � 	 is a subset of the edges � 
 �
such that no two edges in � touch a common vertex where

� � � � � and
� � � � � . A

maximum cardinality matching is a matching with the maximum number of edges. In this

research, maximum cardinality matching is used for axial line placement in a special type

of configuration of convex polygons called a star of convex polygons discussed in chapter

4.

The first polynomial time algorithm for this problem appears in Edmonds [1965], which

is described in this section. At each stage of the algorithm there is a matching � . Initially,

� is empty. A vertex
	

is matched if there is an edge
�
	 ��� 	

in � and single otherwise. An

edge is matched if it is in � and unmatched if it is not in � .

Simply put, the algorithm works by repeatedly searching for a type of path called an

augmenting path and terminates when none are found. During the search for an augmenting

path a cycle can be found that Edmonds called a blossom. The concepts of augmenting paths

and blossoms are explained in the following section. Then the algorithm will be explained.

Augmenting paths and blossoms

An alternating path (with respect to � ) is a simple path, such that every other edge on it

is matched. An augmenting path (with respect to � ) is an alternating path between two

single vertices. In figure 2.20, the paths s,a,r,b,c,d,i and s,a,r,g,f,e,j are augmenting paths.

The path s,a,r,g,f is an alternating path but is not an augmenting path because f is one end

of the path and is matched. Any contiguous part of these paths are alternating paths.

It is easy to see that the size of a matching can be increased by one if the matched

(unmatched) edges in an augmenting path are changed to unmatched (matched) edges. This

operation is called augmenting the matching � . In fact, Berge [1957] and Norman and
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Figure 2.20: The solid lines represent the matched edges. The dashed lines represent edges
that have been considered by the search but not matched. Edges

�
	 ��� 	
and

��� ��� 	
have not

yet been considered by the search.
�

is a blossom formed when edge
�
	 ��� 	

is considered.

Rabin [1959] showed that a matching � has maximum cardinality if and only if there is no

augmenting path with respect to � . This result gives the following algorithm for bipartite

graph. At each stage a search is performed for an augmenting paths which is augmented if

found and terminates if no augmenting path is found. However, for the non-bipartite case,

the algorithm is complicated by the existence of odd-length cycles. Edmonds introduced

the concept of blossoms to resolve this.

Consider figure 2.20. If edge
�
	 ��� 	

is considered during the search for an augmenting

path, then the cycle created is called a blossom and � is called its base because the paths that

end in
	

and
�

begin at � .

A

C

B

E

D

F G

Figure 2.21: A graph with blossoms within blossoms. The circles show the blossoms or
super vertices. The set of solid edges is the maximum cardinality matching for this graph.

The blossom is now considered a super vertex, so the path from � to
�

is s,a,B,h. A

blossom is a recursive structure because it can contain other blossoms and its structure is
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stored in a tree called the structure tree. Figure 2.21 demonstrates how blossoms can occur

within other blossoms. A contains B,C and D; B contains E; and D contains F and G. For

convenience, single vertices are considered degenerate blossoms.

The blossom now replaces all the vertices that are in it creating a new graph. Edmonds

showed that if there is no augmenting path in the graph with the blossom then the matching

is a maximum cardinality matching.

How the algorithm works

This explanation is taken from Galil [1986]. At each stage of the algorithm a search for an

augmenting path is conducted. If any augmenting paths exist, the search finds one (and only

one) and the matching is augmented. The algorithm terminates when no augmenting paths

can be found. The algorithm labels vertices � or � where each label contains the vertex

from which the label arrived.

The search works as follows. At each stage all the labels are cleared then all the single

or unmatched vertices are labelled � and the rest are unlabelled. Initially all the vertices in

the graph are labelled � . At this stage the origin of each � vertex is the vertex itself. Now

the � vertices are inserted into a queue
�

and are scanned in the order that they occur in the

queue. Scanning a vertex means considering in turn all its edges except the matched edge

(there will be at most one).

The following rules are applied to the edges.

1. If
�
	 ��� 	

is not matched and
	

is labelled � and
�

is unlabelled, then label
�

by � and

use rule 2 to label the spouse of
�

with � .

2. If
�
	 ��� 	

is matched and
�

is labelled � and
	

is single, then label
	

with � .

The application of these rules depends upon the following cases.

1.
�

is single

2.
�

is an � -vertex

The case where
�

is a � vertex is discarded.

In case 1 rule 1 is applied. In case 2 the following is done: Backtrack from
	

and
�
,

using the labels, to the single persons � � and �
�

from which
	

and
�

got their � labels. If

� ���� �
�
, an augmenting path from � � to �

�
is found and the matching is augmented. The first

time that the search is done all the vertices are labelled � and point to themselves, so the

first edge that is considered is matched because both vertices are unmatched � vertices and

both point to themselves. However the case where � � � �
�

is more difficult and requires the

use of blossoms.

If � � � �
� � � , let � be the first common vertex on the paths from

	
and

�
to � . It can be

seen that � is an � vertex because the labels only point to other labelled vertices and all �
vertices get their labels from � vertices. Moreover, the part of the two paths from

	
and

�
to

� are disjoint, and that the parts from � to � are identical. There is now an alternating path
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from � to itself through
�
	 ��� 	

. This cycle is now the blossom and � is its base. The blossom

itself is now inserted into
�

and labelled as an � vertex. Its sub blossoms are removed from
�

.

If the search succeeds, an augmenting path has been found. The next stage begins with

all labels and blossoms cleared.

Implementations and complexity

The algorithm presented in Edmonds [1965] is
��������	

but was improved in Gabow [1976]

to
����� ��	

, where
� � � � � and

� � � � � . The implementation used for the empirical test-

ing presented in the document is the
��������	

algorithm and was downloaded from http:

//elib.zib.de/pub/Packages/mathprog/matching/weighted/. Further

improvements were done using Union and Find [Gabow and Tarjan 1983] which improved

the algorithm to
����� � 	

.

The algorithm with the best running time is the
��� ��� � 	

algorithm of Micali and Vazi-

rani [1980]. However, the algorithm is relatively difficult to understand and it took nearly

10 years after the initial publication to prove its correctness [Vazirani 1989].

2.6 Research that is similar to axial line placement

There are various other areas of research that seem similar to ALP. Such areas are art gallery

guarding and stabbing. This section discusses these problems and how they differ from axial

line placement.

As mentioned in section 2.3, axial line placement was once called ray guarding. This

name originated from the Art Gallery problem. This is the problem of placing guards in an

art gallery so that every point in the gallery is visible to at least one guard. The gallery is

represented by a polygon and the guards are points in the polygon. There are different types

of possible guards such as vertex guards. This is where the guards can only be placed upon

the vertices of the polygon. Other types of guards are edge guards and diagonal guards.

In this section is a discussion on point guards. Urrutia [1999] and O’Rourke [1987] give

reviews of art gallery problems and will point the reader to more literature in the area.

Shermer [1992] discusses some more results in art gallery problems.

Figure 2.22 shows an optimal placement of guards in a polygon. Optimal, in this cases,

means the least number of guards placed. The black area represents a hole in the polygon.

The hole is representative of a wall in an art gallery. If each guard or point placed in

the polygon generates its own visibility polygon (see section 2.4.2) and the union of these

polygons is the original polygon (the art gallery) then the placement is valid. The shaded

area in figure 2.22 is the visibility polygon of point
�

. If not then another guard needs to be

placed or the current points should be moved around. This shows that art gallery problems

are reliant upon the work done on visibility. In fact all art gallery problems are visibility

problems.
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Figure 2.22: Optimal placement of guards (points) in an art gallery (polygon).

Axial line placement is also heavily reliant on visibility and so has this in common with

art gallery problems but they are still separate. The point of placing the guards in an art

gallery is so that they can collectively see the whole area. Axial line placement on the

same configuration would tell us how well these guards can see each other. The example to

follow will demonstrate this.

A

C

B

Figure 2.23: Optimal axial line placement upon a partitioned polygon

Figure 2.23 shows the polygon from the example above partitioned into convex poly-

gons with optimal axial line placement. Points
�

and
�

only have one line joining their

areas so they are the most accessible to each other. Point � requires that two lines are fol-

lowed to join its area to
�

or
�

so it is the most remote point out of the three. This shows

that axial line placement and the art gallery problem are inherently different.

Another problem more closely related to ALP is that of stabbing [Avis and Wenger

1987; Edelsbrunner et al. 1982; Pellegrini and Shor 1992; Pellegrini 1993]. This is the

problem of finding a stabber. This is a line that intersects every member of a given poly-

hedral set. Such a line may not exist. Clearly no stabber exists for the polygons in figure

2.24 and so the problem cannot be solved. This is one aspect of stabbing that differs from

axial line placement. Stabbing doesn’t look for the smallest number of stabbers to cover

the whole set it just looks for one line. In axial line placement the line segments have to

stay inside the polygons and the polygons cannot overlap. These restrictions do not apply

to stabbing.
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Figure 2.24: Illustration of stabbing in 2-space

One aspect of stabbing that can be used in axial line placement is the actual drawing

of the axial lines. Once the adjacencies that will be crossed by line segments have been

determined, stabbing can be applied to the adjacencies to determine where the line segments

should go. This is but a small part of axial line placement, in fact, it need not be done at all

if the application does not require that the lines be displayed graphically.

2.7 Conclusion

Axial line placement is a relatively new area of research but this chapter has shown it to

tie in with other areas such as visibility. The work on visibility can completely abstract

the polygons themselves from the problem and the problem can be dealt with at a higher

level. This chapter has shown that there are no heuristics for the general case of axial line

placement other than the heuristic presented in this dissertation.

31



Chapter 3

Chains of convex polygons

3.1 Introduction

The aim of this research was to produce the heuristic for axial line placement in convex

polygons presented in chapter 6. This chapter discusses chains of convex polygons, which

is the first of three special configurations of convex polygons that will be used for prepro-

cessing. Chains of convex polygons are joined together to form stars of convex polygons,

which is the subject of chapter 4. Chapter 5 is the final chapter discussing special cases

and shows how the network of stars configuration is created by combining stars of convex

polygons.

The network of stars configuration is created to make the process of detecting stars in

a general configuration of convex polygons more effective and forms a method for pre-

processing. However, the detection of networks of stars forms only one of three methods

considered for preprocessing. Chapter 6 gives the details of the other two.

Chains of convex polygons is the most basic special case considered by any research

in axial line placement. Algorithms have been developed to solve axial line placement in

rectangles ([Phillips 2001; Sanders et al. 2000b]) but previously there was no algorithm

to place lines in chains of convex polygons. This chapter presents an
����� ��	

algorithm to

do this. The algorithm begins by finding all the axial lines that cross the adjacencies in a

chain then transforming to a variation of Interval Point Cover (IPC). The intervals that are

returned represent the axial lines in the solution.

This chapter begins with a formal definition of a chain of convex polygons, then Interval

Point Cover is introduced. Following that, the transformation process is given and IPC is

solved. The transformation process can be skipped so a more efficient algorithm is given

that solves axial line placement in convex polygons but only mimics the algorithm for IPC.

3.2 A formal definition

A chain of convex polygons is a configuration of convex polygons where each polygon

is adjacent to exactly two other polygons with the exception of two polygons which are
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Figure 3.1: A chain of convex polygons

adjacent to only one other polygon each. The polygons that are adjacent to only one other

polygon are the ends of the chain. An example of a chain of convex polygons is shown in

figure 3.1. If the chain is denoted by � then the polygons in the chain are ���
�
� �
��� � � �

��� where
�

is the number of polygons in the chain. These are listed in chain order, meaning ��� is at

one end of the chain, � � is adjacent to ��� , � � is adjacent to � � and so on. This implies that ���
is at the other end of the chain. Note that � � � � � denotes the adjacency between polygons � �

and � � . � � � � �
.

3.3 Interval Point Cover (IPC)

Mirzaian [2002] defines interval point cover (IPC) as follows. Given a set
� � � � � � 	 �� � � � �

of
�

points and a set � � ���
� � �
	 ��� � 	 � � � � �

and � � � 	 � � of
�

intervals, all on the

real line. The interval cover problem is to find a minimum cardinality subset � of intervals

from � that collectively cover all points in
�

. If there is a point that is not covered by any

interval in � then that point should be returned as opposed to � because there is no solution.

1 2 3 4 5 6 7 8 9 10

[1,5]

[1,2]

[2,6]
[5,9]

[7,8]

[8,10]
[4,7]

[9,10]

Figure 3.2: An example of a set of intervals over the set
�������������
	�������
�������� ��� �������

Figure 3.2 shows an example problem with
� � �������������
	�������
�������� ����� � ���

and � ���� ����� � �
� ����� � �
� ����
 � �
� ����� � ��� ����� � ��� 	 ��� � �
� ������� � ��� � ��� � � � . Figure 3.3 shows a solution set, � ���� ����� � �
� ����� � �
� ������� � � . Note that interval
� ����� � � could have been chosen instead of

� ����� � � ,
but the problem of axial line placement requires that the lines are as long as possible so the
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longer interval is chosen.

[1,5]

[5,9]

1 2 3 4 5 6 7 8 9 10

[8,10]

Figure 3.3: A solution to IPC

To transform ALP in chains of convex polygons to IPC, each adjacency in a chain of

convex polygons is considered to be a point in
�

and the axial lines are the intervals. This

means that only the version of the problem where a solution is guaranteed is considered

since all of the adjacencies are crossed by some axial line.

3.4 Transformation to IPC

In this section, the problem at hand is transformed to IPC. The reason for doing this is that

it gives an abstract view of the problem and is easy to come up with examples that show

specific characteristics about the problem. The axial lines and the adjacencies between

polygons will be transformed into the intervals and points respectively. The transformation

begins by first generating all possible axial lines in a given chain of convex polygons then

transforming these into intervals. The transformation is presented as an algorithm and the

output of the algorithm is shown to produce the required input for IPC.

In order for algorithm 1 to transform the problem correctly it is necessary to show that all

elements of the problem are transformed as well. Showing this requires that the algorithm

transforms all possible axial lines into intervals. The following lemma says that all axial

lines in chains of convex polygons must cross consecutive adjacencies. This means that

an axial line that crosses some adjacencies in a chain, � , can be represented by the interval�
�
� � � if � � � � ��� � and � � � � � � � are the adjacencies where the axial begins and ends respectively.

Lemma 1 Suppose that
�

is an axial line in a chain � . If
	 � 
 � � and

�
crosses � � � � � � �

and � � � � ��� � then
�

must cross ��� � ��� � � .

Proof – by contradiction

Consider figure 3.4. Suppose that a line,
�
, crosses � � � � � � � and � � � � ��� � but doesn’t cross

��� � ��� � � where
	 � 
 � � . � must stay within the chain so in order for it to cross both � � � � � � �

and � � � � ��� � it must pass in between these two. However, ��� � ��� � � divides the chain into two

pieces where � � � � � � � is in one piece and � � � � ��� � is in the other piece so
�

must cross ��� � ��� � � ,
resulting in a contradiction of the fact that

�
does not cross ��� � ��� � � . 	

Theorem 1 If � is a chain of convex polygons then there are at most 

�


� �
�
� axial lines in

� where
� � � � � � �

.
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Figure 3.4: A representation of a chain with adjacencies � � � � � � � , � � � � ��� � and ����� ��� � � indi-
cated.

Proof – by induction

Assume that
� � �

. Since there is only one adjacency there can only be one axial line to

cross it and
� � � � �
�
� � �

so the theorem has been proven for
� � �

.

Induction Hypothesis: assume that the theorem is true for
� � 
 where


�� �
. It is now

required to show that the theorem is true for
� � 
 � �

.

Let � be a chain of convex polygons with � � � � 
 � �
. If � � is removed from � then the

chain � � is created with � � � � � 
 � �
. By the induction hypothesis there are at most

� � � � �
�
�

axial lines that cross the adjacencies in � � , call this number � . If the number of axial lines

needed to cross the adjacencies in � is
�

and the largest number of lines that could possibly

cross ��� � � � is
�

then
� � �

� �
since the inclusion of another adjacency cannot increase the

number of axial lines required to cross adjacencies that are not the added adjacency.

By the induction hypothesis � is known. In order to find the bound on
�

only
�

needs

to be found. In order for the number of lines that cross � � � � � to be maximized it is required

that all of the adjacencies in � � be visible to ��� � � � . To see this consider the case where

one adjacency is not partially visible to � � � � � . This would mean that there is no axial line

that crosses both adjacencies resulting in the number of axial lines crossing � � � � � being

reduced by one so the number would not be maximal and less than
�
. If � � � � � is visible to

all adjacencies in the chain then there is at least one axial line per adjacency that extends

from ��� � � � to that adjacency and stops there. There are



adjacencies in the rest of the chain

and one axial line crosses � � � � � itself therefore there are at least

 � �

axial lines to cross

��� � � � provided that ��� � � � is visible to all other adjacencies in � � .
Now, by lemma 1, if an axial line,

�
, crosses � � � � � and � � � � � � � all the adjacencies between

these adjacencies must be crossed by this line. Now if
�

does not cross adjacencies � � � � � � � � �
to � 
 � � 


� � then
�

is the only axial line that crosses � � � � � and � � � � � � � but does not cross

adjacencies � � � � � � � � � to � 
 � � 

� � . This means that there can be no more than


 � �
axial

lines to cross ��� � � � therefore
� � 
 � �

.

Substituting in for � and
�
:

� � � � � � �
��
��
 � �

� � � � � � �
� � � � � � �
��� �
� � � � � � � � �
��
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Similarly shown if ��� � � is removed. So there are at most
� � � � � � � � �
�� axial lines that cross

the adjacencies in � . By induction the theorem is true for any
�
.

	

This proof leads on to algorithm 1 which transforms the problem of axial line placement

into that of IPC. The while loop finds where all axial lines that begin at � � � � ��� � would be

and adds the corresponding intervals to the final set of intervals directly. The for loop begins

this process at the first adjacency then the second then the third and so on. This means that

it is not necessary to find the axial lines that don’t start at � � � � ��� � in the while loop because

those would have already been found previously.

Algorithm 1 Transform axial line placement in chains of convex polygons into IPC.

input: A chain of convex polygons � .
output: An set of intervals � over � .

1: �����
2:

� � � � � � �
3: for

	 � �
to
�

do
4:

� � 	 � �
5: while

� �� � � �
AND visible

� � � � � � � � � � � � � ��� � 	 do
6: ��� ��� ��� 	 ��� � �
7:

� � � � �
8: end while
9: end for

10: return �
visible

�
�
� � 	

returns TRUE if � is partially visible to
�

and FALSE otherwise.

So algorithm 1 has found a set of intervals � � ��� 	 ��� � � 	 ��� � � ��� � 	 � � � � � ����� �� � � � � � � �
where � is a chain of convex polygons and the beginning and the end of

each interval is the index of an adjacency in � where these two adjacencies are partially

visible to each other. The set of points can be formed by considering all the indices of the

adjacencies in � . This set would just consist of the numbers from
�

to � � � � �
. Call this set

of points
�

. Now there is a set of intervals � and a set of points
�

which satisfies the input

for IPC.

The problem is to find the minimum number of axial lines to cross the adjacencies in � .

These axial lines must be as long as possible but this will be discussed later. The intervals

in � correspond to all possible axial lines crossing the adjacencies in � and the points in
�

correspond to all adjacencies in � so the equivalent problem is to find minimum cardinality

subset � of intervals � that collectively cover all points in
�

. Now since � corresponds to

all axial lines in � all the adjacencies are crossed and so all points in
�

are covered by some

interval. This satisfies the output condition for IPC. The input and output conditions have

been satisfied so algorithm 1 transforms axial line placement in chains of convex polygons

to IPC.
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3.5 Solving IPC

The algorithm presented here solves IPC with the added condition of ALP that the lines

chosen should be as long as possible. Algorithm 2 solves IPC and the proof of correct-

ness follows. Algorithm 2 should not be used in practice and is only included because the

theoretical work that follows. A more efficient algorithm is given later on in the chapter

Algorithm 2 Solving IPC with modifications

input: A set of intervals � � ��� 	 ��� � � 	 ��� � � � � � 	 � � � � � � � � 	 � ��� where� � � � � � �
.

output: A minimum cardinality subset � of � such that the intervals in � collectively
cover all points in

� � � 	 � 	 � � � � � �
.

1: � � �
2:
	 � �

3: while
	 �� �

do
4: � � set of intervals from � where each interval is of the form

� � � � � where � is as
large as possible with � � 	 � � .

5: � � the interval from � that has the lowest left index
6: � � � � �

�
�

7:
	 � (right index of � )+1

8: end while
9: return �

Correctness Proof – by induction

The proof that algorithm 2 solves IPC is done inductively and is derived from a proof found

in Mirzaian [2002] which is only an outline of a proof. The proof given here fills in the

gaps. This proof proves that the solution, � , found by algorithm 2 solves IPC by showing

that each interval in any solution can be replaced by the intervals in � but the new set still

solves IPC.

First consider the case
	 � �

. Clearly, all intervals that include 1 are in the set � ���� ���
� � � � � � � � � ���

� � � � � , so an interval must be picked from � . The interval picked

by algorithm 2 is the interval that includes 1 and has the largest right index, as specified at

line 4. Let this interval be
� ��� 
 � . Note that there is only one such interval because 1 is the

smallest vertex so no interval can extend to the left of it.

So algorithm 2 picks
� ��� 
 � from � and places it in � . Now assume that there is another

set � of intervals that is a solution for IPC and it contains
� ����� � � � where

� � 
 resulting

in the situation shown in figure 3.5. Now consider � � � � � � � ����� � 	 � � ��� 
 � . � ��� 
 � covers

all the points that
� ����� � covers because

� � 
 , so � � is also a solution for IPC. Therefore,
� ��� 
 � can be substituted into any solution for IPC.

This shows that the interval chosen to cover the first point in
�

can replace an interval in

any solution and the newly formed set of intervals would still solve IPC. Consider the case

where
	 � � where

� � � � �
, this means that all the points before � have been covered by

some intervals � chosen by algorithm 2. The induction hypothesis is that a new solution to
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Figure 3.5: The base case for the proof of correctness of algorithm 2.
� ��� 
 � is the interval

chosen by algorithm 2 and
� ����� � represents any other interval that can be chosen to include

1.

IPC can be formed by replacing some intervals in any solution with all the intervals in � .

What needs to be shown is that the intervals � , with the addition of the next interval chosen

by algorithm 2 can replace adjacencies in any solution of IPC while still being a solution to

IPC. The proof is similar to that of the base case.

n

x ,[ y ]

,[ ]u v

1 2 xu va−1 a y

Dcan be covered by all the intervals in 

Figure 3.6: The inductive case for the proof of correctness of algorithm 2.
� � � � � is the

interval chosen by algorithm 2 and
�
�
�
� � represents any other interval that can be chosen to

include � .

The intervals in
� � ��� � � � � � � � �

� � ��� � � � � ��� � �	� � � � � � � �
�

are all the

intervals that can cover � . Algorithm 2 picks an interval
� � � � � � �

such that � is as large

as possible and the difference between the chosen � and � is as large as possible. Figure

3.6 shows the position of
� � � � � where no interval from

�
can cover points that are greater

than � and no interval that covers � cannot cover points that are less than � . Note that all

the points from 1 to � can be covered by all the intervals in � � ��� � � � �
�
.

Line 4 of algorithm 2 chooses the set of intervals with the largest � and line 5 chooses

the interval with the smallest � from that set. The fact that the difference is the largest

possible means that
� � � � � is as large as it can possibly be, satisfying the condition that the

intervals should be as large as possible.

Now, suppose that there is a set of intervals � that is a solution to IPC and contains

an interval
�
�
�
� � � �

that is not
� � � � � as shown in figure 3.6. However, point � in 3.6 is

less than � but in general it may be equal to or greater than � . By the induction hypothesis,

some intervals in � can be replaced by all the intervals in � to form a new solution to IPC

� � . The intervals in � were chosen by algorithm 2 so these intervals cover all points before
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� . Now consider � � ��� � � � � �
�
�
� � 	 � � � � � � .

� � � � � covers all points after and including �

that are covered by
�
�
�
� � . Additionally, all points before � are covered by intervals in � .

Therefore, � � � � � � � covers all points
�
�
�
� � covers so � � � is a solution for IPC. Therefore,

the set formed by replacing the intervals in any solution for IPC by all the intervals in

� � � � � � � is itself, a solution for IPC.

If � � �
then

� � � � � is added to � and the algorithm terminates. Therefore, if � is some

solution to IPC, then all the intervals in � can be replaced by the intervals in � forming

� � and � � is a solution to IPC. But � covers all points in
�

so � � � � and � is the set of

intervals found by algorithm 2. Therefore, algorithm 2 solves IPC.
	

3.6 Improved chain algorithm

The process of transforming the problem into IPC was done to aid the theoretical work but

is unnecessary from an implementation point of view. This section provides algorithm 3

that skips the transformation process.

Algorithm 3 Perform axial line placement on a chain of convex polygons

input: a chain of convex polygons � and
� � � � � � �

output: a minimal set of axial lines
�

1: � � � �
Source of current axial line in the loop

�
2:

� ��� � Will contain final set of axial lines
�

3: for
	 � �

to
�

do
4: if

	 � �
or not visible

� ��� � ��� � � � � � � � � � � 	 then
5:

� ���
� �

6: while
� �� �

or visible
� � � � � ��� � � � ��� � � � � 	 do

7:
� � � � �

8: end while
9:

� � � � �
axialLine

� � ��� � � � ��� � � � ��� � � � � 	 �
10: � � 	
11: end if
12: end for
13: return

�

visible
�

�
� � 	

returns TRUE if � is partially visible to
�

and FALSE otherwise.
axialLine

�
�
� � 	

returns an axial line that crosses all adjacencies from � to
�

in the
chain.

Algorithm 2 looks at the set of intervals that cover a certain point and chooses the one

that first goes as far right as possible and then chooses, from that set, the one that goes as

far left as possible. Since this interval is representative of an axial line it would be easier

to just extend an axial line from the adjacency being considered as far along the chain as

possible then to extend that line as far backwards along the chain as possible. Algorithm 3

does exactly this. The variable � is the index of the source adjacency of the current line that

is being extended forwards along the chain. Line 1 in the algorithm indicates that this starts

at ��� � � � . The for loop visits each adjacency in turn and checks if the current line cannot be
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extended from � � � ��� � � to � � � � � � � were
	

is the current value of the for loop counter. As soon

as the current line cannot be extended from � � � � � � � to � � � � � � � the line has been extended

as far forward as possible and it must now be extended backwards. At this stage the while

loop is entered into. At each step of the while loop an attempt is made to extend the line

from � ��� � � � � to an adjacency before ��� � ��� � � . As soon as this attempt fails the line has been

extended as far as possible and the next line is started by setting � � 	
and the for loop

continues until the end of the chain is reached.

3.7 Example

A small example is worked through here to show how algorithm 3 works. The example

is shown in figure 3.7. The algorithm draws each axial line by first choosing an initial

adjacency. This initial or source adjacency is indexed by � in the algorithm. Initially it

is set to index the first adjacency at line 1. This adjacency is then checked for visibility

with each adjacency that comes after it starting with � � � � � � � � � . Figure 3.7 shows the first

source adjacency ( � � � � � ) and the adjacency that will be checked for visibility. Note that the

adjacencies that are being checked for visibility against � � � ��� � � are indexed by
	
. The for

loop in line 3 shows that the initial value of
	

is 2.

|ccα α+1 |c i +1ic

c
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c
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c 4c 3

Figure 3.7: Tracing through algorithm 3. Example with
	 � �

.

Now that the first two adjacencies have been chosen the visibility is checked in line 4 of

algorithm 3. If they are visible then the loop continues onto the next adjacency. It is clear

from figure 3.7 that ��� � ��� � � and � � � � � � � are visible to each other so it is possible to draw

an axial line through these two. This is not done yet because it may be possible for such

an axial line to cross more adjacencies further on. Since the condition of the if statement

evaluates to false nothing happens on this iteration of the loop. The next iteration of the

loop begins and now
	 � �

. The if statement checks to see if � � � ��� � � is visible to � � � � � . It

is easy to see that they are visible to each other from figure 3.7 so the next iteration of the

for loop begins and � � � � � is checked with the same result. Now on the iteration where
	 � �

it is found that � � � ��� is not visible to � � � � � � � . This indicates that an axial line can be drawn

through all the adjacencies from ��� � ��� � � to � � � � � but not though � � � � � as well and a new

line must start at � � � � � .
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Figure 3.8: Tracing through algorithm 3. Example with
	 � 


.

The lines must also be maximal, so before a new line can be started it must be checked

to see if the line that ends at � � � � � can be extended further backwards before the source

adjacency, � � � ��� � � . This is taken care of in the body of the if statement from lines 5 to 8.

Each adjacency before ��� � ��� � � is checked in succession until an adjacency is found that is

not visible to � � � � � � � or the beginning of the chain is reached. These adjacencies are indexed

by
�
. In line 5

�
is set to the index of the adjacency before � � � ��� � � . In this case

�
is set

to 0 because � � �
which means that

�
does not index any adjacency. The while loop is

what iterates through these adjacencies. Notice one of the conditions for the while loop is� �� �
which means that the loop will not execute in this case and line 9 is reached. Note

that
� �� �

can be exchanged for � �� �
. Line 9 is what places the axial line in the final set of

lines. After placing the line in
�

a new source adjacency needs to be set. The current value

of
	

is the index of the first adjacency that is not visible to the current source adjacency so

it is used as the new source adjacency. This is done in line 10 by setting � to
	
. Figure 3.8

shows the state of the algorithm at the beginning for the next iteration of the for loop i.e.

when
	 � 


The algorithm works as before to check if � � � ��� � � is visible to the adjacencies that come

after it to draw the “forward” part of the line. From the figure it is easy to see that � � � � � is

visible to � � � ��� but not to ��� � ��� so the if condition becomes true when
	 � �

signaling the

end of the forward extension phase. The adjacencies before � � � ��� � � must now be checked

for visibility with � � � ��� beginning with the adjacency right before � � � ��� � � which is ��� � � � ���
or � � � � � . In line 5

�
is set to �

� �
to facilitate this. Figure 3.9 shows the state of the

algorithm up until this point.

The current value of
	

indexes the first adjacency in the chain after � � � � � that is not

visible to � � � � � . This means that
	 � �

must be the index used for visibility checking and is

reflected in the condition of the while loop. Each iteration of the while loop checks to see if

� � � ��� is visible to the adjacency indexed by
�

then decrements
�
. It continues to do so until�

indexes an adjacency that is not visible to � � � ��� . This adjacency happens to be � � � � � in the

example. Since the loop checked for visibility with all adjacencies from � � � � � to � � � � � with

��� � � � it means that an axial line can be drawn through all those adjacencies. The while loop

is then exited and the line is added and the new source adjacency is set. Note that the index

used to add the line is
� � �

and not
�

because
�

now indexes the first adjacency that is not
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Figure 3.9: Tracing through algorithm 3. Example with
	 � �

and
� � 	

.

visible to � � � ��� . The state of the algorithm at the beginning of the next iteration is shown in

figure 3.10. Note that two axial lines have now been placed.
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Figure 3.10: Tracing through algorithm 3. Example with
	 � �

.

The algorithm repeats the process to place two more lines and the final solution is shown

in figure 3.11.
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Figure 3.11: The final solution

3.8 Complexity analysis

This section discusses the complexity of algorithm 3. Only algorithm 3 is analysed because

it is the algorithm that will be used in practice. Algorithms 1 and 2 were only presented
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because of their usefulness in deriving and proving the correctness of the solution. The best

and the worst case performances are shown to be � ��� 	
and � ��� ��	

respectively where
�

is

the number of polygons in the chain.

3.8.1 Best case analysis

The best case for the algorithm happens when none of the adjacencies are visible to each

other in the chain and an example is shown in figure 3.12. This is expected because each of

the adjacencies must be checked for visibility which means there must be at least one oper-

ation per adjacency. This section first shows that this special case does cause the algorithm

to perform in linear time and then shows that it is impossible to find input that causes the

algorithm to perform sub-linearly.

Consider first the body of the loop for an arbitrary
	
. Since no adjacency is visible

to any other in the chain, visible
� � � � ��� � � � � � � � � � � 	 is false, therefore the body of the if

statement is executed. The condition visible
� � � � � ��� � � � ��� � � � � 	 which is a condition in the

while loop is always false so the body of the while loop is never executed. No command

in the for loop has been executed more than once so one iteration of the loop executes

in constant time provided that the sub-functions visible and axialLine execute in

constant time. To show this it is first necessary to show that � � 	 � �
in all iterations of

the for loop.

Figure 3.12: Best case performance of the chain algorithm with solution

Before the loop is executed � is set to 1 in line 1 and can only change at line 10 which

can only happen at the end of an iteration of the for loop. In the first iteration of the loop
	

is set to 2 and doesn’t change until the next iteration of the loop. So � � 	 � �
for
	 � �

.

For all iterations of the loop the condition in the if statement is always true and line 10 is

contained inside the if statement and at the end of each iteration of the loop. Line 10 says

that � is set to the value of
	
. In the next iteration of the loop

	
is incremented so at the

beginning of each iteration � � 	 � �
.

Now the first instance of the visible function is in line 4 and has arguments � � � ��� � �
and � � � � � � � . Since � � 	 � �

the function is trying to find if two adjacencies that are in

the same convex polygon are partially visible to each other. The only vertices required for

this operation are the four that define the adjacencies so the visible function executes in

constant time.

The other instance of the visible function occurs in line 6 and has arguments � � � � ��� �
and � ��� � � � � . In line 5

�
is set to �

� �
, also

	 � � � � so again the function is trying to find
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if two adjacencies that are in the same convex polygon are partially visible to each other. So

similarly the visible function executes in constant time.

The only instance of axialLineoccurs in line 9 with arguments � ��� � � � ��� � and � ��� � � � � .
Now from the arguments above it is clear that

� � � � 	 � �
. This indicates that the axial

line only has to be placed upon one adjacency which can be done in constant time, � .
Now it has been shown that the body of the for loop executes in constant time for all

	
.

It is easy to see that the body of the for loop executes
� � �

times because
	

goes from
�

to
�

with a step size of
�
. So the time function is �

��� 	 � � ����� � 	 � �
where

�
represents the

time for the initializations. Clearly �
��� 	 � � ��� 	

.
	

It must also be shown that there cannot be a better time complexity for the algorithm.

The counter for the for loop never changes in the body of the loop so the body of the loop is

always executed
� � �

times regardless of the input so the algorithm has to do at least
� � �

operations and
� � � � � ��� 	

. So you cannot get input that causes the algorithm to perform

in sub linear time.

This analysis assumes two things about the arrangement that may not be true depending

on the application. The first of these is that two polygons can be adjacent to the same side of

another polygon. If the only line of visibility from one adjacency to another runs along an

edge or intersects a vertex of any polygon in the arrangement then it may or may not indicate

partial visibility. The second assumption is that this does not indicate partial visibility. If

for any reason these do not apply then the special case shown in figure 3.13 gives a similar

result and is still linear.

Figure 3.13: Alternative best case performance of the chain algorithm with solution

3.8.2 Worst case analysis

The worst case performance occurs when all of the adjacencies can see each other except

the first and the last. Figure 3.14 shows an example of such a case with the solution. The

solution always involves two lines and each cross �
� �

adjacencies if � is the number of

adjacencies in the chain. The final part of this section shows that this is indeed the worst

case.

Before any analysis is done it is necessary to show that the complexity of the visible

function depends upon the number of polygons directly and hence upon the number of

adjacencies between the polygons. This has been done for the case with only one polygon
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Figure 3.14: Worst case performance of the chain algorithm with solution

in the best case analysis. Section 2.4.2 describes the visible algorithm in detail. The

first step is to construct an adjacency polygon which can be done independently of the

points in the polygon that are not the vertices of the adjacencies between the polygons

being considered. This is done by joining up the vertices of the adjacencies. So this process

is linear with respect to the number of polygons in the adjacency polygon. The second part

of visible is to plug this adjacency polygon into the partial visibility algorithm. Since

no information about the rest of the polygons is given to the partial visibility algorithm

its performance also depends on the number of polygons directly. So visible is linear

with respect to the number of polygons but since there are as many adjacencies as there are

polygons minus one visible is linear with respect to the number of adjacencies being

crossed as well.

The algorithm goes through two main stages when tackling this special case. The first

part is when the first line is being “drawn” and the second part is when the second line is

being “drawn”. Both parts are shown to happen in � ��� � 	
time and are then added together

to get the final result.

At line 1 in algorithm 3, � is set to 1. The for loop begins with
	 � �

. The condition in

the if statement always evaluates to false until
	 � � � �

because of the condition that all

of the adjacencies are visible to each other except for the first and the last. What needs to

be shown first is that the condition in the if statement is true when
	 � ��� �

, � is always
�

up until the point where
	 � � � �

because the only other statement that changes it is inside

the if statement which was never entered into. This means that when
	 � ��� �

��� �
, and

� � � � � � � and � � � � � � � refer to the first and last adjacencies and are not visible to each other

because of the condition specified for this special case. So the condition in line 4 is true and

the body of the if statement is entered into when
	 � � � �

. Note that the first line is still

being drawn because the axialLine function has not yet been called.

Now that it has been shown that the body of the if statement is not entered into until	 � � � �
it is necessary to show how many computations happen up until that point. All

of the computations in the loop happen in constant time except the visible function. It

was shown above that the complexity of visible linearly depends on the number of adja-
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cencies that are in the adjacency polygon generated. The function takes in two arguments,

namely the first and last adjacencies of the chain of polygons that will be considered. There-

fore the difference in the indices of these adjacencies gives an approximation of the number

of computations multiplied by a constant, � . So for any
	

the number of computations in

visibility( �
�
	 	

) is � �
	 � �
	
. � is always

�
so �

�
	 	 � � �
	 � � 	
for

	 � � � �
. For	 � � � �

�
�
	 	

still includes the number of computations of the visible function which

is � ��� � � 	
. The rest comes from the rest of the body of the if condition. Line 5 says

�
becomes �

� � � �
which means that the body of the while loop is not executed and so is a

constant number of computations. The axialLine function does
����� 	

computations so

�
��� � � 	 � � ����� � 	 � ��� ����� 	

.

So to get the running time of the algorithm up until
	 � � � �

, �
�
	 	

must be summed up

for
	 � �

to
��� �

. Which gives:

��� � � ���� � �
	 � � 	 � � � ����� 	 � ��� � � ���� � �
	 � � 	 � � � ����� 	 ���� ��� � � � � � � 	 � � � ����� 	 �

� ��� � 	

With the inclusion of the axialLine function the first line has now been placed and

it has been shown to be done in � ��� � 	
. This also means that it took

����� � 	
time to place

the line. Additionally the next part shows that the next line also takes
����� ��	

. If it takes
����� ��	

time to place a line then it may seem possible for there to be
����� 	

lines that each

take
����� ��	

time to place, but there is no such case. This will be shown at the end of the

section.

Now all iterations of the for loop have been considered besides the iteration where	 � �
. Now

	
is equal to

�
so the body of the if statement is entered into. Note that

it is assumed that the or is short circuit so visible is not executed and it would have

been done in constant time if it had. This means that the major contributing factor to the

number of computations is the while loop. Now � ��� � � � � refers to the last adjacency in the

chain and initially � � � � ��� � � � � � � � � � which is the adjacency just before � ��� � � � � . As before

the number of computations of visible(
	 � � 	

) is � ��� � � � � 	
. Now visible is only

going to be false once � � � � ��� � � ��� � � � because of the condition upon the worst case.
�

is

decremented once per iteration of the while loop so that loop is executed
��� �

times. The

number of computations is now equal to the sum of
	 � � 	

for
� � �

to
� � �

plus the time

for axialLinewhich is
����� 	

. Which gives:

� � � � �� � � � ����� � � � 	 � � � � � �� � � ����� � � � 	 ��� ��� � � � � � � 	 � � ��� � 	

where � is an arbitrary constant.

With the inclusion of the second call to axialLine the second line has been placed

and the algorithm terminates. Both cases execute only once and independently of each other

and both are � ��� � 	
therefore the worst case is � ��� � 	

.
	

What remains to be shown is that there is no special case that has complexity larger than
����� ��	

when algorithm 3 is applied to it. Recall from earlier in the section that algorithm 3

could have a greater complexity if there are
����� 	

lines that take
����� � 	

(or anything greater

than
����� 	

) to place. This would happen if the lines were placed in a pattern that is depicted

in figure 3.15.
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t

Figure 3.15: Axial lines and adjacencies are represented by horizontal and vertical lines
respectively.

Algorithm 3 cannot produce this pattern because firstly it is not an optimal placement

as most of the lines are redundant. Secondly as soon as the first line is placed the second

line would start at the next uncrossed adjacency and would be extended as far forward as

possible resulting in line � and the next line would start after that. This is generalized lemma

3 in apppendix B which says that no minimum cardinality solution to axial line placement

in chains of convex polygons can have three of more lines that cross a single adjacency.

Lemma 3 means that if there are
�

adjacencies in a chain of convex polygons then the

sum of the length of the lines must be less than or equal to
� �

for the solution to be optimal.

The bound on the sum of the length is actually a bit lower but it is sufficient for now. This

is the property that will be used to show that there is no special case that causes algorithm 3

to perform worse than
����� �
	

. Note that the bound applies to any solution that comes from

algorithm 3 because the algorithm has been shown to always find a solution with the least

number of lines..

Suppose that there are
�

lines from an arbitrary solution produced by algorithm 3 per-

formed on a chain with
�

adjacencies and the length of line
	

is denoted by
� � . The com-

plexity of placing line
	

has been shown to be
����� �� 	 so the complexity of placing all of the

lines is
��� ������ � � �� 	 . Also

� � � ������ � � � from the property just shown. This means that

� � � 	 � � � ������ � � � 	 �
� � ���� � � �� � some positive terms
� � ���� � � ��

now

� ���� � � �� � � � � 	 � � ����� � 	

So
��� � ���� � ���� 	 
 ����� �
	

which means that the worst case complexity of algorithm 3 is
����� � 	

.
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3.9 Conclusion

This chapter has expanded the notion of chains to its most general form; chains of convex

polygons and presented an algorithm to place axial lines in this configuration. This means

than any future work done on this special case can focus on making the algorithm more ef-

ficient since this configuration cannot be generalised further without creating a new special

case.

The work done on this special case began with a restricted case of chains of rectangles

in ALP-OLOR meaning that the axial lines had to be orthogonal to an axis Sanders et al.

[2000a]. The algorithm developed for ALP-OLOR in chains of rectangles was generalised

to get an algorithm for ALP-ALOR in a less restricted case of chains of rectangles [Phillips

2001]. However, due to comments in O’Rourke [2002], the approach used in this chapter to

solve ALP-ALCP in chains of convex polygons was used in favour of the approach taken to

solve ALP-OLOR and ALP-ALOR for this configuration.

The approach taken by this chapter relates the problem to another problem and produces

an algorithm that can be generalised to form the heuristic presented in chapter 6.

The algorithm developed in this chapter may not be optimal because it may be possible

to find an online visibility algorithm that works in
����� 	

time, but that falls under visibility

and the actual finding of axial lines. This special case plays a large part in the next chapter

which deals with another special case named stars of convex polygons.
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Chapter 4

Stars of convex polygons

4.1 Introduction

This chapter presents a quadratic algorithm to solve another special case of axial line place-

ment in convex polygons called stars of convex polygons. The overall aim of this research

is to develop a heuristic to solve the general case of axial line placement and the algorithm

for stars of convex polygons is used as part of this heuristic.

This special case consists of a central polygon, which is adjacent to one of the ends of

many chains of convex polygons which were presented in the previous chapter. The pre-

vious chapter also contains an algorithm to solve axial line placement in chains of convex

polygons which is used in this chapter to solve axial line placement in stars of convex poly-

gons in conjunction with a well known graph theory problem named maximum cardinality

matching.

This chapter begins with a formal definition of the star of convex polygons, then an

overview of the algorithm is given. The algorithm for placing the lines upon the chains

follows, then the problem is transformed to maximum cardinality matching and the final

algorithm is presented in detail.

4.2 Definition

A star of convex polygons consists of a central polygon,
�

and a set of
�

chains of convex

polygons, � � � � � � � � ��� � � � � � � . If
� ��

denotes the
�
th polygon in

� �
then for

	 � � � � � �
,

� � � � � � � � must exist. In other words the last polygon in each chain in � must be adjacent to
�

. Figure 4.1 shows an example of a star of convex polygons.

4.3 Overview of the star algorithm

The algorithm begins by adding polygon
�

to the end of all the chains creating new chains.

If � is chain
� �

with
�

added then �
� ���
� �

and �
� ���
� � � � � � � � �

. Then a modified chain

algorithm is applied to all the new chains starting at
� �
� for all

	
from 1 to

�
. This means
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Figure 4.1: A star of convex polygons

that all of the adjacencies are now crossed but the set of lines does not contain the smallest

number of lines.

The algorithm reduces the number of lines by merging the lines that cross all the ad-

jacencies between polygon
�

and the chains. Figure 4.2 shows the central polygon with

surrounding chains and the lines that are coming into
�

from the chains. Two lines can only

be merged if each adjacency crossed by one of the lines is partially visible to each other

adjacency crossed by the other line. If these two lines start in the same polygon and extend

away from each other, then the shorter they are the more likely it is that they will merge. All

of the lines that can be merged start in
�

and extend into their respective chains, therefore,

they should be as short as possible to maximise the chance of them merging. The chain

algorithm is modified to ensure that the lines that are to be merged are as short as possible.

A

Figure 4.2: The lines to be merged by maximum cardinality matching in the star algorithm

Each time a merge is made the number of lines is reduced by one, so it is necessary to

ensure that the number of merges is maximised. This is done using maximum cardinality

matching. Each line is a node in the graph and each possibility for a merge between two
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lines is an edge. The matching is transformed into a set of lines and these lines replace the

lines that originate in
�

. This produces a set of lines with minimum cardinality.

This set of lines is not the maximal set because the part of the chain algorithm that

extends the lines backwards is omitted. However, maximising the lines is relatively simple

and is done by trying all possibilities.

4.4 The modified chain algorithm

This algorithm is the same as algorithm 3 given in chapter 3 except the while loop is ex-

cluded. The purpose of the while loop in algorithm 3 is to extend the lines backwards so

they are as long as possible. It plays no role in finding the set of lines with minimum car-

dinality. Note that because of this, algorithm 4 does not meet the requirements of axial

line placement. The maximizing of the lines has been left out for now because algorithm 4

ensures that the last line that crosses the last adjacency in the chain is the shortest line to do

so.

Algorithm 4 produces the same number of lines that algorithm 3 produces because no

part of the condition in the if statement is dependent on any part of the while loop and

therefore hasn’t any part in determining when the if statement is entered into. An axial line

is placed each time the body of the if statement is entered into so algorithm 4 places the

same number of axial lines as algorithm 3 does. The fact that the last line in this solution is

the shortest is expressed in theorem 2 but before that property can be proven it is necessary

to show that there can only be one such line in any set.

Algorithm 4 Modified algorithm to perform axial line placement on a chain of convex
polygons.

input: a chain of convex polygons � and
� � � � �

output: a minimum cardinality set of axial lines
�

1: � � � �
Source of current axial line in the loop

�
2:

� ��� � Will contain final set of axial lines
�

3: for
	 � �

to
� � �

do
4: if

	 � � � �
or not visible

� � � � � � � � � � � � � � � � 	 then
5:

� � � � �
axialLine

� � � � ��� � � � � ��� � � � � 	 �
6: � � 	
7: end if
8: end for
9: return

�

visible
�

�
� � 	

returns TRUE if � is partially visible to
�

and FALSE otherwise.
axialLine

�
�
� � 	

returns an axial line that crosses all adjacencies from � to
�

in the
chain.

Lemma 2 In any minimum cardinality set of axial lines that crosses the adjacencies in a

chain of convex polygons there is only one line to cross the the first adjacency in the chain

and only one that crosses the last adjacency in the chain.
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Proof - by contradiction

Assume that there are two distinct lines, � and
�

that cross the first adjacency in a chain, � ,

and both belong to the same minimum set of axial lines,
�

, that cross the adjacencies in � .

Since � and
�

are distinct either line must cross one or more adjacencies that the other does

not. Without loss of generality assume that � crosses one or more adjacencies that
�

does

not. Let
�

be the first adjacency not to be crossed by
�

but crossed by � . Since
�

crosses

the first adjacency but not
�

it follows from lemma 1 in section 3.4 that no adjacency after
�

is crossed by
�

either. Since � crosses the first adjacency and
�

it also follows from lemma

1 that � crosses all of the adjacencies between the first adjacency and
�
. Finally

�
crosses

the first adjacency and the adjacency before
�

(from definition of
�
) so using lemma 1 once

more, it follows that
�

crosses all of the adjacencies between the first adjacency and
�
. Now

it has been shown that the only adjacencies that
�

crosses are all of those before
�

but it

has also been shown that � crosses all of these adjacencies as well so � crosses all of the

adjacencies
�

crosses. This means that
�

is redundant so
�

contains a line that is not needed

and hence not the minimum number of lines which contradicts the assumption that
�

is a

minimum cardinality set of lines. To show that only one line crosses the last adjacency the

chain just has to be relabelled so that the first is the last and the last is the first and the proof

follows.
	

Theorem 2 Let
� � � � � � �

. If algorithm 4 is applied to a chain of convex polygons �
and

�
is the set of lines produced by algorithm 4, then the axial line from

�
that crosses

the last adjacency in � ( � � � � �
� � ) is the shortest line to do so from all possible sets of axial

lines to cross the adjacencies in � with minimal cardinality.

This theorem does not say that there is only one optimal solution. There could be

another set of lines with minimal cardinality where the line that crosses the last adjacency

is longer but the theorem says that this line cannot be shorter

Proof

If
�

is the set of lines produced by algorithm 4 then
�

has minimum cardinality because

4 finds a minimum cardinality set of lines. So by lemma 2, the line that crosses the last

adjacency is the only line to do so. Call this line � and call the last adjacency
�
. Assume that

� is not the shortest line that crosses
�

and there is another set of lines, � that contains a line,
�

that crosses
�

but is shorter than � as shown in figure 4.3. Clearly
�

doesn’t cross some

adjacencies that � crosses so � must contain another line that crosses them, call this line
� � .

Call the line that comes before � in
�

� � and let
� � be the last adjacency that it crosses.

Now
� � cannot extend before ��� . To see why, consider the adjacency

� � � where � � began.

Algorithm 4 extended � � forward from
� � � and stopped at

� � because
�

, the adjacency just

right of
� � , was not visible to

� � � . Now,
� � crosses the adjacencies left uncrossed by

�
, so it

crosses some adjacency between
�

and
�
. Therefore,

� � must cross
�

in order to cross
� � �

because an axial line must cross consecutive adjacencies in a chain (lemma 1). However,
� � �
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b

a’
b’B
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a

b
b’

a’

ll’l’’ n

Figure 4.3: Line placements at the end of a chain of convex polygons. The placement
�

is
possible while

�
is not.

is not visible to
�

so
�

cannot cross
� � � and therefore cannot extend backwards past

� � � and

hence, cannot extend before ��� .
� � does not cross the source of ��� so � � extends further backwards than

� � which is the

same situation with � and
�
. This means that the pattern will be the same with the lines

that come before � � and
� � and repeats until the first adjacency is reached. Now the line in

�
that crosses the first adjacency corresponds to a line in � which does not cross the first

adjacency, so one or more lines must be added to � to cross the first adjacency and hence

there are more lines in � than there are in
�

and so � is not a minimum cardinality set and

a contradiction is reached.
	

4.5 Transformation to the matching problem

This section presents an algorithm to transform axial line placement in a star of convex

polygons to maximum cardinality matching and explains why it does so. The algorithm first

applies algorithm 4 to the chains adjacent to the central polygon. Each chain that is given

as input to algorithm 4 must include the central polygon. Then the process of producing

the graph for matching begins. A check is done to see if each pair of lines that crosses the

adjacencies involving the central polygon can be merged. If they can be merged then two

vertices are added that represent the two lines being merged. If these vertices don’t exist,

and an edge between these two vertices is added to represent the fact that these two can be

merged. This transforms the problem to the matching problem. The algorithm to do this is

algorithm 5.

Algorithm 5 also returns the set of lines that cross the adjacencies of the chains in � .

This doesn’t play a part in transforming to the matching problem but is needed for a later

stage since these are the lines that will be used to form the final set.

Consider the first for loop, particularly line 6. This loop applies algorithm 4 to all of

the chains that are adjacent to the central polygon where each chain includes the central

polygon. Each of these chains has the minimum number of lines that cross their adjacencies

if these chains are considered on their own, which means that all of the adjacencies in the
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Algorithm 5 Transformation to maximum cardinality matching

input: a star of convex polygons with central polygon
�

and a set of chains of convex
polygons, � � � � � � � � ��� � � � � � � .
output: a graph, � � � � � � 	 and a set of sets of axial lines

� � ��	
�
�
	 � ��� � � �
	 � �

1: � ���
2: � ���
3:

� � number of chains in �
4: for

	 � �
to
�

do
5: � � � � � � �

� becomes
� �

with
�

added to the end
�

6:
	 � � the set of lines formed from applying algorithm 4 to �

7:
� � � the line in

	 � that crosses
� � � � � � � �

8: end for
9: for

	 � �
to
�

do
10: for

� � 	 � �
to
�

do
11: if merge?

��� � � � � 	 then
12: if

� ���� � then
13: � � � � � �
14: end if
15: if

� � �� � then
16: � � � � � �
17: end if
18: � � � � ��� � � � � 	
19: end if
20: end for
21: end for
22: return

�
and �

merge?
�

�
� � 	

returns TRUE if all of the adjacencies that � crosses are partially visible
to all the adjacencies that

�
crosses, and returns FALSE otherwise.
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star have now been crossed. However, this does not mean that this new set of lines has a

minimum cardinality so more work is required.

One possible way to reduce the number of lines in this new set is to merge the lines

across the central polygon, because doing this would reduce the number of lines by one.

Note that all of the lines that cross the adjacencies that involve the central polygon are the

lines that cross the last adjacency of all the chains with the central polygon added on to the

end as shown in figure 4.4. To see if any of these lines can merge it is necessary to check

if all of the adjacencies that each line crosses are visible to each other, which means that

the lines that are being merged should be as short as possible so that the smallest number

of adjacencies have to be checked. However, it is easy to see from figure 4.5 that the only

adjacencies that need to be checked are the first adjacencies that are crossed by the two lines

that are being merged, but having the lines as short as possible means that the adjacency

polygon is small and the chance of the adjacencies being visible is maximised and hence

the chance of lines being merged is maximised. Lemma 2 shows that these lines are, in fact,

as short as possible.

central polygon

Figure 4.4: A star configuration of convex polygons with axial lines placed upon the chains

A minimum cardinality set of axial lines that crosses the star of convex polygons in

question is found by finding a maximum cardinality matching on the graph produced by

algorithm 5 then placing the lines that correspond to the matching.

Now merging two lines across the central polygon reduces the number of lines in the set

by one, which means that as many merges as possible should be done to make the set have

a minimum cardinality. To do this it is necessary to find all possibilities for merges and then

find the configuration that has the most merges. Finding all of the possibilities is done by

lines 9 to 21 in algorithm 5, which also generates a graph corresponding to these merges.

So the problem has now been transformed to the maximum cardinality matching problem.
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central polygon

lines to be merged

Figure 4.5: Two chains in a star with lines to be merged across a central polygon

Complexity analysis

The complexity of algorithm 4 has been shown to be
���

�
� 	

in chapter 3 where � is the

number of polygons so the complexity of placing the axial lines in all the chains in the

star is
��� � �

�
� � �� �

� � � � � �
�
	

where
�

is the number of chains in the star, and
� � is the

number of polygons in chain
� � . If

�
is the number of polygons in the configuration then� � � � � � �

� � � � � � � � � 	 . Now
� � � 	 � � � � � �

� � � � � � � � � 	 �

� � �
�
� � �� �

� � � � � �
�
� ��� � � �

� � � � � � � � � 	

� � �
�
� � �� �

� � � � � �
�
� ��� � 	

So
��� � �

�
� � �� �

� � � � � �
�
	

reduces to
��� � � 	

The complexity of checking whether a line can be merged with another line is linear

because it only requires that two adjacencies be checked for visibility. However, it is linear

in terms of the number of polygons in each chain which is bounded by
� � � � � . This means

that the line from chain 1 can be checked with no more than
� � �

other chains making the

complexity of one check
����� � � �

� � � � � � � � � 	 which generalises to
��� ��� � 	 	 � � �

� � � � � � � � � � � 	 for the
	
th stage. Summing up all the stages gives

����� � � � �
� � �� � � � � � � � 	 	 � � � � �

� � � � � � � � ��� � � 	 � � � � 	 � � � � � � � � � � � � ��� � � 	 � � 	 	 which

simplifies to
����� � � � � � �

� � � � � � � � � � � 	 � ��� � � 	 � � 	 . � and
�
� are bounded by

�

so this further simplifies to
��� � ��	

which is the complexity of algorithm 5.

The matching itself is
���
	 � � 	

where
�

is the number of vertices and
	

is the number

of edges in the graph. The number of vertices is bounded by the number of chains and

the number of edges is at most
� �

so the worst case complexity of the matching is
����� � 	

.

Summing up the complexities gives
��� � � � � � 	

as the worst case complexity.

Now
�

is bounded by
�

so the worst case complexity of the given algorithm to place the

smallest number of axial lines in a star of convex polygons is
��� � �
	

where
�

is the number

of polygons.
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4.6 Maximising the lines

Maximising the lines in the chains apart from the lines that cross into the central polygon

is a simple matter of extending them backwards away from the central polygon. To extend

each line that has been merged it is a simple matter of trying all possibilities. This is done by

first extending the line as far as it can go in one direction (forwards) then form another line

by extending the original line in the opposite direction (backwards) by one and extending

it as far forwards as it can go. Now form another line by extending the original line two

adjacencies backwards and extend it as far forwards as possible. Carry on forming lines

by extending the original backwards by one more each time and then extending it forwards

until the original cannot be extended any further backwards. Just choose the longest line to

get the longest line.

The only lines left to maximise are the lines that cross into the central polygon but

did not get merged, which means that they may be extended into any of the other chains.

Maximising these lines can be done by applying the same process to get the longest merged

line to each possible combination. This would still be polynomial but may be inefficient

but the definition of maximising in axial line placement says that the lines in the minimum

solution should be as long as possible but does not say that the minimum solution must be

the one with the longest possible lines so it may not matter which chain an unmerged line

extends into.

4.7 Worked example

�����������������������������������������������������������������������������

�����������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������
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�

A

First polygon
in each chain

1

2
3

4

5

6

9

8 7

Figure 4.6: A star configuration of convex polygons with unextended axial lines placed
upon the chains. Polygon

�
is the central polygon. The chains are labelled 1 to 9.

57



An example is worked through in this section to clarify the star algorithm. The first

part of the algorithm uses the modified chain algorithm to place axial lines upon the adja-

cencies in all the chains, starting from the polygons furthest away from the central polygon

chainwise. Figure 4.6 shows an example star with the modified chain algorithm applied as

specified in lines 4 to 8 in algorithm 5. The modified chain algorithm starts at the beginning

of each chain as shown by the hatching in figure 4.6, and continues placing lines in the chain

until the central polygon,
�

, is reached. This means that all the lines that end in
�

are the

shortest axial lines that cross the last adjacencies in their respective chains. They are also

the lines that are candidates for merging.
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Figure 4.7: All the possible merges across the central polygon.
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Figure 4.8: A graph representing all possible merges across the central polygon.

Figure 4.7 shows all the possible lines that can come from the merging of the lines that

end in polygon
�

without extending them backwards. Lines 9 to 21 produce the graph

shown in figure 4.8 where the vertices have the same labels as the chains. If the edge from

vertex 1 to vertex 7 is chosen it means that a line must be drawn to cross adjacencies in
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chains 1 and 7.
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Figure 4.9: A maximum cardinality matching on the graph from figure 4.8

Figure 4.9 shows the result of the maximum cardinality matching algorithm. In this

case, the matching indicates that the lines from chains 1, 2, 3 and 4 should be merged with

the lines from chains 5, 6, 7 and 8 respectively in order to maximise the number of merges

and find the smallest set of axial lines to cross the adjacencies in the star shown in figure 4.8.

The fact that vertex 9 was not matched indicates that the line from chain 9 could be merged

with another line but doing so would not reduce the number of lines in the final solution if

this particular matching was used.

Figure 4.10 shows all the axial lines after the specified merges have been done. Note

that the line from chain 9 is left unmerged. However, doing so would not add an axial line

but neither would it take one (or more) away.

A
1

5

9

7

2

3

6
8

4

Merged lines

Figure 4.10: A solution to axial line placement that has the smallest number of lines.

The final solution requires that the lines be maximal. This can be done using any method

that leaves the lines unextendable. Figure 4.11 shows such a set.
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Figure 4.11: A minimal cardinality set of lines with maximal length

4.8 Conclusion

This chapter presents a special case that has not been considered before in any form by

research in the area of axial line placement. Previously, work done on special cases of

axial line placement has extended the notion of chains to trees of polygons in order to get

more general special cases that may have polynomial solutions. However, Phillips [2001]

shows that this is not a viable strategy for convex polygons because the tree’s usefulness is

compromised by the many restrictions that are required. This chapter solves this problem

by suggesting a new direction in which to expand the notion of chains in order to obtain

special cases that have polynomial time solutions. Chapter 8 discusses some additional

special cases that are similar to the star that may have polynomial time solutions.

The purpose of finding a polynomial solution to this special case is to integrate it into a

heuristic for the general case. However, in the general case, a star may share several chains

with other stars. A solution to this problem is given in the next chapter.
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Chapter 5

Networks of stars

5.1 Introduction

Networks of stars are the last of three special cases considered by the research presented in

this dissertation. They are constructed from stars of convex polygons which are discussed

in the previous chapter and the main component of a star of convex polygons is the chain of

convex polygons which are discussed in chapter 3.

In previous chapters, polynomial solutions are found for axial line placement in chains

and stars of convex polygons. However, networks of stars differ from these special cases

because a heuristic has been found to place the axial lines. Additionally, the problem of

finding a minimum cardinality set of lines to cross the adjacencies in networks of stars is

thought to be NP-complete due to previous work done on deformed urban grids ([Konidaris

and Sanders 2002] and [Wilkins and Sanders 2004]) which is considered to be a similar

special case.

Generally, a special case in axial line placement is only considered if it is thought that

an exact polynomial time solution exists. However, the aim of this research is to develop the

heuristic presented in chapter 6 for the general case of axial line placement and this heuristic

requires that special cases be detected in the general configuration for preprocessing. If

the stars of convex polygons are detected in a general configuration then some stars may

share components and cause a conflict. The network of stars special case is introduced to

heuristically resolve this conflict.

The following section contains a precise definition of a network of stars. The algorithm

is given in the section following that.

5.2 Definition of a network of stars of convex polygons

A network of stars is made up of stars of convex polygons and an example is given in figure

5.1. A star, as defined in chapter 4, is a collection of convex polygons where one polygon is

central and the other polygons form chains where one polygon out of the two that is at the

ends of each chain is adjacent to the central polygon. In a network of stars the chains can
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have each end adjacent to a central polygon, though not the same central polygon.

A

B

Figure 5.1: A network of stars of convex polygons. Polygons
�

and
�

are central polygons.

What remains to be seen is which parts of the network are considered stars for the

purposes of the algorithm. In fact, the stars overlap and a choice must be made to determine

which stars must be matched first. The way in which the stars can overlap is demonstrated

using polygons
�

and
�

in figure 5.1.
�

and
�

are central polygons where a chain has

both ends adjacent to them. In this case the chain is shared between two stars because it

forms part of both the stars that contain central polygons
�

and
�

. Additionally
�

will be

considered part of the chain in the star formed by
�

and vice versa for the purposes of the

algorithm which will be explained later.
�

and
�

are considered neighbours because they

share a chain. Figure 5.2 shows what will be considered the star of convex polygons that

has polygon
�

as a central polygon.
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Figure 5.2: The star formed with polygon
�

as a central polygon.
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5.3 A greedy algorithm for networks of stars

The algorithm uses a relatively simple greedy approach by using the star algorithm from

chapter 4 on each of the stars in the network, then the star with the most merges will be

chosen because that will remove the most lines. This star will be “removed” from the

network by adding parts of the star to other stars and placing axial lines upon the rest. The

process will then begin again on the new network and continue until there are no stars left

and some final cleaning up will be done. The rest of this section will discuss how to choose

a star for removal and a method for removing a star.

5.3.1 Removing a star

In order to explain why a star is chosen for removal in the manner that it is, it is neces-

sary to explain exactly how a star is removed. In truth, the star is just reduced to a set of

chains which are merged with other stars in the configuration where necessary. Algorithm

6 describes the process with an example to follow.

The basic function of algorithm 6 is to merge the chains that are matched, but the reason

why the algorithm is as long as it is, is because of efficiency and the fact that the merging of

chains might violate the definition of a star. The algorithm is demonstrated below with the

aid of figure 5.3 which shows a star with the star algorithm already applied and the chains

labelled 1,2,3,4,5 and 6.

1 6

3

2

4
5

A

C

E

D

F

B

Figure 5.3: A star with exact solution before removal. The dotted lines indicate polygons
that are not part of the star.

The heuristic presented in this chapter will find the solution to each star in the network

over and over again which means that the chain algorithm will be applied repeatedly and

often to the same chain. Lines 12 to 17 and 24 to 28 help reduce the number of times
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Algorithm 6 Remove a star from a network of stars.

input:
a network of stars

�

a star to be removed �
1: for each chain

� �
in � do

2: if a line from
� �

has been matched with a line from another chain
� �

then
3: merge

� �
with

� �
to form

�
� and replace

� �
and

� �
with

�
�

4: if the ends of
�
� are the same central polygon

�
then

5: let � be one of the adjacencies that is in
�
� and

�

6: let
�
�
� ��� ��� � � reduceChain

� �
�
�

�
	

/* T is a chain of convex polygons*/
7: let

�
be the adjacency at one end of � that isn’t �

8: let
�
�
� ��� ��� � � reduceChain

�
�
� � 	

9: extend the lines in
�

and add it to the solution set
10: replace both occurrences of

�
� with

���
and

���

11: else
12: if only one end of

�
� is part of a central polygon then

13: let � be the adjacency at the end of
�
� that isn’t part of a central polygon

14: let
�
�
� � � ��� � � reduceChain

� �
�
�

�
	

15: extend the lines in
�

and add it to the solution set
16: replace

�
� with

� �

17: end if
18: else
19: if both ends of

�
� are not part of a central polygon then

20: use the chain algorithm on
�
� and add the solution to the solution set

21: end if
22: end if
23: else
24: if

� �
is shared then

25: let � be the adjacency that is in
� �

and the central polygon of �
26: let

�
�
� � � ��� � � reduceChain

� � � �
�
	

27: replace
���

with
���

in the neighbouring star
28: extend the lines in

�
and add it to the solution set

29: else
30: use the chain algorithm on

� �
and add the solution to the solution set

31: end if
32: end if
33: end for
reduceChain

� �
�

�
	

uses the chain algorithm on chain � starting from adjacency �

without extending the lines backwards forming the set of lines
�

. Note that � must be an
adjacency at an end of � . Then it forms a chain of convex polygons � from the polygons
that are crossed into by all the lines in

�
except the line that crosses the last adjacency

in � . The chain � is formed from all of the polygons that the line that crosses the last
adjacency in � crosses into. The line that crosses the last adjacency in � is now removed
from

�
and

� � � � ��� �
is returned.
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the chain algorithm is repeated. Chain 1 in figure 5.3 is the first to be considered by the

algorithm and demonstrates this concept.

Line 2 determines that chain 1 has been matched with chain 4. They are now merged

to form
�
� which is a chain that consists of all polygons in chains 1 and 4. The ends are

polygons
�

and
�

which are not the same polygon so lines 4 to 10 are skipped. However,
�

is part of a central polygon so lines 12 to 17 are executed. If lines 12 to 17 weren’t

executed then
�
� would be considered one of the chains that form the star that

�
is the

central polygon of. If this star is only chosen for removal at a much later stage then the

chain algorithm will be applied to
�
� many times just to get the shortest line that crosses

the last adjacency in
�
� . Lines 12 to 17 shorten

�
� so it is only as long as the shortest line

required by the star algorithm, so when the chain algorithm is applied again it only returns

that line. The chain algorithm is applied to the rest of
�
� and the result is added to the

solution set. The chain is reduced with the function reduceChain. � is the adjacency at

the end of
�
� that is part of

�
and

� �
as indicated in figure 5.4.

� �
is made up of the

shaded polygons in figure 5.4 and the dashed lines make up
�

.

1 6

3
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4
5

A

C

F

D

B

E

a

Figure 5.4: A star that is being removed after chain 1 has been considered by algorithm 6.
The solid lines are lines that are now in the solution set.

Next to be considered is chain 2 which is matched with chain 5. Chain 2 and chain 5 are

both shared and the ends are not the same central polygon so line 3 replaces the chains for

� and � with
�
� and lines 4 to 22 are skipped.

�
� now spans from polygon � , through

chain 2 and chain 5 to polygon � and is now shared by the stars that are formed by � and

� . The chain algorithm is not applied at this stage because it is impossible to say which

side it should start on. If it was started at � to get the shortest line on the � end then it

may not have been possible to get the shortest line at the � side. This is one of the main

problems with finding the minimum solution to networks and is discussed further in section
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5.3.2.

Chain 3 is next in line and it has not been matched but it is shared so lines 24 to 29 are

executed. This case is the same as that of chain 1 except that chain 3 is not merged with

anything. Chain 3 is reduced so the length of the chain that the chain algorithm has to be

applied to is reduced to the essential.

Chains 4 and 5 were merged with chains 1 and 2 in previous steps so they are skipped

which leaves chain 6. Chain 6 is not merged with another chain and is not shared so only

line 30 is executed. This just uses the chain algorithm and adds the solution to the solution

set. No matter what happens in the rest of the heuristic the solution to chain 6 will not

change but has to be found at some stage so it is done here. This is not done for efficiency

because the chain algorithm would never be applied to it again. Figure 5.5 shows what

happens after removal. The parts of the former star that are not shaded have been removed

and the shaded polygons form the chains that are still part of the network. The dashed lines

are the lines that are in the solution set.

Figure 5.5: The star after removal. The shaded parts are kept and the unshaded polygons
with the solid lines are removed.

The only part of the algorithm that hasn’t been discussed is contained in lines 4 to 10.

This part deals with the case where a star is removed and it creates a chain that has both ends

connected to a central polygon which violates the definition of a star. Algorithm 6 breaks

up the offending chain into two, though not necessarily in the best way. In figure 5.6, star
�

has been chosen for removal and there is a match between chains 1 and 2 so they have to

be merged, but both of the ends of the merged chain are the same central polygon.

At line 5 in the algorithm, � is randomly chosen. In this case adjacency � will be chosen

as � . The function reduceChain is applied to the chain starting on � . This results in the

division shown in figure 5.7 where the shaded polygons form the first chain to replace the
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B

Figure 5.6: Removing star
�

creates a violation of the definition of a star.

1

B

x y

2

z
A

Figure 5.7: After the first reduce. The shaded polygons form the first chain to replace the
merged chain.

1

B

x y

A

2

z

Figure 5.8: After the second reduce. The shaded polygons form the second chain to replace
the merged chain.
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merged chain.

At line 7,
�

is assigned adjacency � in figure 5.7 then reduceChain is applied to the

chain starting from � through chain 1 to adjacency � . This results in the shaded chain shown

in figure 5.8 as well as the lines that are added to the solution set. This probably isn’t the

best solution since starting with adjacency � instead of � would result in different chains

and the matching may turn out to be different. Finding the best configuration of chains is

thought to be too inefficient and so this heuristic method is used.

Complexity analysis

This analysis is similar to the analysis done for the chain algorithm in section 3.8.2 for the

chain algorithm. Let
�

be the number of chains in the star being removed and let
� � be

the number of polygons in the
	
th chain. Let

�
be the number of polygons in the star so� � � � � �

� � � � � � � � � . The function reduceChain applies the chain algorithm twice

so it is
���

�
� 	

if � is the number of polygons in the chain. The merge process at line 3 is

linear, this means that the removal algorithm is
��� � � � � �

� � � � � � � � � 	 	 � ��� � 	
when

all the chains are shared with different stars. In all other cases, either the reduceChain

function is called or the chain algorithm is used, which means that the removal algorithm

works in
��� � 	

in the best case.

In all other cases, neither the reduceChain function or the chain algorithm are used

more than twice so each single loop is
���

�
��	

. What remains to be determined is the value of

� . Consider the
	
th iteration of the loop. At lines 6, 8 and 14, the reduceChain function

receives a chain that is two chains merged whose lengths are
� � and

� �
where chain

�
is

the chain that chain
	

is being merged with. This also holds for the application of the chain

algorithm at line 20. At lines 27 and 30, the chain used is only a single chain, and the length

of this chain is
� � . Replacing

�
� with other chains is linear and can be done no more than

twice for each iteration of the for loop. Extending the lines is part of the chain algorithm

so it is no more than
��� � � � � � � 	 � 	 if the chain can be merged or

��� � � � 	 � 	 if not. All of

this means that one iteration of the for loop is
��� � � � � � � 	 � 	 , which is executed

�
times.

However, each chain is matched with only one other chain so the complexity of algorithm

6 is
��� � �

�
� � �� �

� � � � �
�
	 	

if all of the chains are matched which reduces to
��� � ��	

5.3.2 Choosing a star for removal

With each matching done in a star the number of lines in the solution will be reduced by

one so the number of matchings in a star would be the first criteria for a choice. The

second criteria for the choice is choosing a star where the neighbours would have the most

matchings done if that star is chosen for removal. The way in which the choice of star

affects its neighbours has been somewhat explained in the previous section on removal but

is now explained further with the aid of the example shown in figures 5.9 and 5.10.

Figures 5.9 and 5.10 shows the same example just with different lines. Polygons
�

and
�

are central polygons for two stars that share the chain shown in the figure. The
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A
B

Figure 5.9: Matching on
�

with the matching on
�

chosen first

B

A

Figure 5.10: Matching on B chosen first.

configuration in figure 5.9 is the line placement where the matching on
�

is chosen first,

then the removal procedure described above is used, then the matching on
�

is done. The

line from the shared chain is matched in
�

and cannot be extended into the chain as far as

the unmatched line could so that results in the line that comes out on the other end not being

as short as it could be and hence would not be matched at all resulting in one match across

polygon
�

. Figure 5.10 shows that there are two lines in the matching across
�

if that

matching is done first. This shows that a matching done on a star can reduce the number

of matches in its neighbouring stars and so increase the number of lines in the solution set

which is not desirable. The matching that results in the most matchings in its neighbours

should be chosen. This results in algorithm 7 for choosing a star for removal.

Taking the neighbours into account adds at least another order of complexity. The choice

for removal can be based upon the size of the matching in each star only, which can be done
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Algorithm 7 Choose a star for removal.

1: maxmatch � � �
2: for Each star in the configuration do
3: Save the current state of the configuration.
4: Use the star algorithm on the star.
5: Let


 � number of matches in the matching.
6: Remove the star.
7: for Each of the neighbouring stars do
8: Use the star algorithm on the star.
9:


 � 
 � number of matches in the matching on star.
10: end for
11: if


 � maxmatch then
12: maxmatch � 

13: beststar � � � � � � � � � � � �

14: end if
15: Revert back to saved state of the configuration.
16: end for
17: Use star algorithm on beststar and remove it.

by removing lines 6 to 10 from algorithm 7. Clearly, this may increase the number of lines

in the solution set but that is the trade off for efficiency. The version of the algorithm where

the neighbours are not taken into consideration was not used when the heuristic presented

in chapter 6 was implemented for the empirical evaluation of said heuristic.

The final algorithm would be to just choose a star to remove using algorithm 7 repeat-

edly until there are no stars left.

Complexity analysis

This analysis is similar to the analysis done for the chain algorithm in section 3.8.2. Let



be

the number of stars in any network of stars and
� � be the number of polygons in the

	
th star.

If
�

is the number of polygons in the network then
� � � � � � � � � � � � � � �

. It is
� �

and not
�

because some chains are shared. A star is removed at each stage of the algorithm, meaning

that there are



stages. At the first stage of the algorithm the star algorithm is applied to

each star in the network then a star is removed. Furthermore, the star algorithm works in
� �

time where
�

is the number of polygons in a star and the removal is also
� �

. Therefore, the

first stage of the network algorithm works in
����� �

�
� ���� �

� � � � ���� 	 time which reduces to
����� ��	

.

At the second stage, a star has been removed so there are now

 � �

stars. However,

some polygons from the removed star may have been added to other stars, meaning that
� �

is no longer the length of the
	
th chain. Let

� � denote the number of polygons in star
	
, so

now
�

� �
� � � � � � � � � � � holds. This means that the complexity of the second stage is

��� � �
�
� � �� �

� � � � � �� � � 	 which reduces to
����� ��	

again. This repeats until there is only

one star left at the



th iteration which works in order of the size of the final star squared

time. This shows that all



iterations work in
�����
� 	

time so the complexity of the network
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of stars algorithm is
����
 � � 	

which reduces to
����� � 	

because

 � �

.

5.4 Conclusion

The network algorithm completes the work done on special cases for this research. The

algorithm presented in this chapter uses a greedy approach to resolve the conflict between

stars in a general configuration. However, it may be improved by transforming it to some

graph problem by making the central polygons vertices and the chains the edges. Unfortu-

nately, this document does not suggest a suitable graph problem.

The network algorithm differs from the algorithms developed for chains and stars be-

cause it is a heuristic and the problem is thought to be NP-complete. However, it is useful

because it resolves the conflict between stars when they are detected in the preprocessing

stage of the heuristic presented in the following chapter. In addition to this, a network of

stars closely resembles a network of roads which is a large application area in space syntax.

The following chapter gives the heuristic for the general case of axial line placement

where the network of stars is used as one of the three preprocessing methods for the heuris-

tic.
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Chapter 6

Greedy heuristic for the general case

of ALP-ALCP

6.1 Introduction

The heuristic presented in this chapter is the overall aim of this research. It uses a gener-

alised version of the chain algorithm from chapter 3 and is called the line heuristic because

a single line is chosen for the solution set at each iteration of the algorithm. This line is cho-

sen based upon the lines that were chosen in previous iterations, so some method is needed

to choose an initial state. This chapter discusses how this can be done by using networks of

stars, among other methods. An algorithm for detecting networks of stars is also discussed.

The part of the algorithm that dominates its running time is a function called search

which is essentially a depth first search. This chapter discusses a data structure that reduces

the number of times search is called and so increases the efficiency of the algorithm. This

data structure is an implementation of a bucket sort.

The algorithm is shown to be
����� � � 	

where
�

is the number of polygons or adjacencies

and
�

is some function of
�
. The value of

�
does not depend upon the input set but is a user

defined parameter and it restricts the degree to which the search function searches. This

research only considers values of
�

that are not of greater order than
� �

.

A conceptual view of the algorithm is presented in the following section. Following that,

some methods for finding a starting point are discussed as well as the sub functions used in

the line heuristic. The algorithm is presented in a way that shows the use of the functions

and the data structure then some future work is discussed after the worked example.

6.2 Overview of the line heuristic

The chain algorithm for axial line placement in chains of convex polygons can be seen to

work in the following way. It starts at one end of the chain and extends a line as far along

the chain as possible. Then the situation shown in figure 6.1 is reached. The iterative step

is to find all the uncrossed adjacencies that are part of polygons with crossed adjacencies.
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In figure 6.1 the only adjacency that satisfies this condition is � . The next line to be added

to the final solution is chosen from all the lines that cross these uncrossed adjacencies. The

line chosen has to extend the furthest from any of the uncrossed adjacencies as possible then

it must extend furthest backwards if there are ties. The only line to do this in figure 6.1 is the

one that would be chosen by the chain algorithm. The process repeats until all adjacencies

are crossed. This is the idea that will be used to produce a heuristic for axial line placement

in convex polygons.

a

Figure 6.1: The initial state of the chain algorithm

The following steps give a conceptual view of the algorithm.

1. Find a starting point. This could be either a single polygon or a set of lines.

2. Create an empty set
�

.

3. Let
�

be all the uncrossed adjacencies that are part of polygons that have crossed ad-

jacencies. If there are no lines (so no adjacencies are crossed) then use the adjacencies

from the starting polygon.

4. Let
� �

be the set of all the lines that cross all of the adjacencies in
�

.

5. Find the line from
� �

that extends the furthest from the adjacency from
�

that it

crosses and add it to
�

.

6. Repeat steps 3 to 5 until all adjacencies have been crossed.

7. Return
�

.

Note that, in this context, an adjacency is only considered crossed when it is crossed by a

line in
�

. Also, the distance a line extends from an adjacency is defined as the number of

uncrossed adjacencies crossed by the extension.

Finding the starting point required at step 1 is discussed in section 6.3, where three

methods are considered. In the case of the chain algorithm the starting point is one of the

polygons at either end of the chain. In the example above, the explanation implied that steps

1 to 5 were used to find the first line and this was used as a starting point, but using the first

line placed in the chain algorithm would also be a valid starting point. Three starting point

methods are discussed, one of which uses the network of stars algorithm.
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An example of the adjacencies that will form the set
�

is shown in figure 6.2. If the two

axial lines shown form the starting point then the broken lines indicate the adjacencies that

will form set
�

at step 3. Step 4 finds all the lines that cross these adjacencies.

adjacencies to be extended from

polygons without lines
polygons with lines

Figure 6.2: Some set of axial lines that may form a starting point for the heuristic

At step 4 of the algorithm it says that all the lines that cross each adjacency in
�

have to

be found but this is not actually necessary for step 5. Firstly, lines that are subsets of other

lines need not be found. Secondly, only lines that start at
�

should be found then extended

backwards. The function extendFrom in section 6.4 does this for a single adjacency, so

multiple applications of this function get the desired set.

At step 5, only one line is chosen from the lines found at step 4, meaning that step 4

finds lines that cross certain adjacencies multiple times and the cost of finding all of these

lines is shown to be high. Section 6.5 presents a data structure that will make sure that step

4 is only executed at most once for each adjacency. This data structure is basically a two

dimensional array of lines that is bucket sorted on length.

Section 6.6 presents the algorithm in a form that uses the data structure and the function

extendFrom.

6.3 Finding a starting point

This section describes the three methods for finding a starting point that will be tested in

this research. These are:

1. Random method: pick a random polygon as the start set.

2. Least adjacency method: pick the polygon with the least number of adjacencies that

has the adjacency the with smallest � coordinate.

3. Network method: detect any networks of stars embedded in the configuration then

use the network of stars heuristic from chapter 5 on the networks. There may be no
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stars detected if this method is used, so method 2 is used as a backup.

The first method is only used as a base to compare the other two methods from, and is

not expected to work well. Method 2 attempts to maximize the chance of finding a polygon

where a line would start. If a polygon only has one adjacency then a line is guaranteed

to start in that polygon. Furthermore, a line can only cross two adjacencies in a polygon

because the polygons are convex, so the number of lines that must cross the adjacencies

between a polygon and its neighbours is no less than half the number of adjacencies plus

one. This indicates that the more adjacencies a polygon has, the more likely a large number

of lines will pass through it. If the polygon with the smallest number of adjacencies is

chosen for the starting point then there is a high chance of finding the best line that passes

through that polygon.

The major difference between the least adjacency method and the network method is

that the network method attempts to find some lines for the solution, where the least adja-

cency method only finds a single polygon to start the line heuristic from. This means the

line heuristic that uses the network method is merging two solutions, where the heuristic

with the least adjacency method only finds one solution.

The last method is the one that is expected to work the best because the heuristic is

specifically tailored for that special case. However, detecting the networks in a configuration

is not strictly trivial and is explained below.

Networks of stars can be detected by first detecting all the chains as follows.

1. Make an empty chain ��� and an empty set ��� .

2. Add an unmarked polygon to ��� where that polygon has one or two adjacencies.

3. Make a new set ��� from the polygons adjacent to those in ��� but not in ��� .

4. Add the polygons in ��� to ��� .

5. Remove the polygons in ��� that are not adjacent to exactly two polygons.

6. Repeat 3 to 5 until ��� is empty.

7. Mark all the polygons in ��� except for the end polygons that are adjacent to more

than two other polygons.

8. Add ��� it to the set of chains.

9. Repeat 1 to 8 until there are no unmarked polygons with one or two adjacencies.

This process basically picks a polygon with one or two adjacencies then adds the adjacent

polygons repeatedly until both ends reach either a polygon with only one adjacency or

a polygon with more than two adjacencies, then, it marks those polygons as chosen and

picks another polygon. ��� is the set of polygons that have been added to the chain and ���
indicates the current ends of the chain. Figure 6.3 demonstrates this process.
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Figure 6.3: Stages in the detection of chains process.

The configuration labelled A shows the state of � � and � just before step 3 and the

configuration labelled B shows the state of � � and � just before step 3 the second time that

the algorithm reached that stage and so on. Note that ��� is always contained in ��� right

before step 3, hence the overlaps in the diagram.

At C, the polygon at the top is not part of ��� because it was removed at step 5. This

polygon is adjacent to more than two polygons so this branch of the chain cannot continue.

The reason for stopping at this polygon is that it could form a central polygon for a star. In

the star algorithm, the central polygon is added on to the end of all the chains in the star.

The process above skips this step by including the possible central polygon in the chain.

After C, � � only has one polygon, which is extended in D then E where it reaches the

end. The end polygon is removed from ��� at step 5 because it is only adjacent to one

polygon.

Once the chains have been detected the stars can be detected by placing all the chains

that have a common end in one star then throwing away the stars that have one chain. A

network of stars is produced by making a link between the stars that share chains.

6.4 Generating all the lines that cross an adjacency

For the purposes of this section, the length of a line is determined by the number of pre-

viously uncrossed adjacencies that a line crosses, and the extent to which a line extends is

determined using this length. The algorithm presented here finds the set of longest lines

that start at the adjacency in question then returns the set of lines that extend these lines

backwards.

The problem with finding all the lines that cross a particular adjacency is that it has

not been proved that there are a polynomial number of non-redundant lines that cross this

adjacency. The reason why this has not been proved is that the problem is similar to the
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problem of finding the longest path in a graph which is inapproximable [Karger et al. 1997].

However the longest path problem would be solvable in polynomial time if there were a

polynomial number of disjoint paths since an exhaustive search could be used to find them

all. The same applies to the longest line problem. Each line can be found in
����� ��	

time

but the number of lines is determined by the geometry of the problem and finding a limit

on the number of lines using the geometry is difficult. It is conjectured that the limit on the

number of lines in the set found by extendFrom is
�����
��	

.

Finding the limit is left for future work, but in the mean time a user specified limit is

placed upon the number of lines found. However, the lower the limit the more efficient the

algorithm will be because the search can stop when the limit is reached. The algorithm is

given in two parts, search and extendFrom which are explained next, followed by an

example and complexity analysis.

The algorithm is given in two parts as algorithms 8 and 9 which define functions search

and extendFrom respectively. The search function is the part of the algorithm that

finds sets of lines and extendFrom merges the results from search to get the final set.

It is recommended that the reader refer to the parameter list in the two functions before

continuing.

6.4.1 The search function

The search function is basically a depth first search that stores the current path when an

end is reached. It finds all1 of the lines that can be extended from line
�

where � is the

last polygon in the chain formed by
�

and � � � is the last adjacency in
�

. The lines that

are subsets of other lines are not included. It does this recursively at line 7 by attempting

to extend the line
�

into each polygon that is adjacent to � by using the partial visibility

algorithm to see if the new adjacency is visible to all the adjacencies in
�

. If the attempt is

successful then search is called again at line 9 with each extended line as the new
�

, � as

� and the polygon that the line is being extended into as � . Figure 6.4 demonstrates this idea

with the
�

’s representing all of the candidate polygons that
�

may be extended into. Note

that polygon � is not considered by the algorithm because � � � is already included in
�

and

a line cannot cross the same adjacency twice.

If the line cannot be extended into any of the adjacent polygons then the line has been

extended as far as it can go and needs to be added to the final set of lines. When this

happens line 10 is never executed and so addLine is never set to FALSE, meaning that line

17 is executed which adds
�

to � .

The idea of putting a limit on the number of lines is implemented at line 5 of search

by checking if the size of � is less than or equal to the limit given to search. If the size

of � is equal to limit then no more lines can be added to � and the variable addLine is set

to FALSE, resulting in lines 6 to 12 never being executed for the rest of the iterations of

the loop. Line 17 isn’t executed either because no more lines can be added and the function

1If there are more than limit number of lines to be found then it will only find limit lines.
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Algorithm 8 The function search

function format: search
� �
� � ��� � � � � � limit

	

input:
polygons � and �
the current line

�
as a set of ordered adjacencies

a set of lines �
a set of convex polygons

�

an integer limit

1: the length of a line is the number of previously uncrossed adjacencies crossed by the
line

2: let � � � denote the adjacency between polygons � and
�

3: let � be a line as a set of ordered adjacencies
4: addLine � TRUE
5: if � � � �� limit then
6: for each polygon

�
adjacent to � that isn’t � do

7: if canAddTo
��� � � ��� 	 then

8: � � addAdjacency
��� � � ��� 	

9: � � � � search ��� � � � � � � � � � limit
	

10: addLine = FALSE
11: end if
12: end for
13: else
14: addLine � FALSE
15: end if
16: if addLine = TRUE then
17: � � addLine

� � � � 	
18: end if
19: return �
addAdjacency

�
�
��� 	

inserts adjacency � at the end of the ordered list of adjacency
�

.
addLine

� � � � 	 adds line
�

to the set of lines � .
canAddTo

�
�
��� 	

checks to see if adjacency � is visible to all adjacencies in line
�

using
the partial visibility algorithm.
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Figure 6.4: Demonstration of a recursive step in the search function.

returns � . Note that it may be more efficient to integrate the limit check into the stop

condition of the for loop so unnecessary iterations are not executed. However, the number

of polygons adjacent to � is probably small compared to the rest of the problem so this is a

minor concern. Clearly, if the limit is reached before all the lines are found then all of the

lines will not be found.

6.4.2 The extendFrom function

The extendFrom function, given as algorithm 9, uses results from search to find the

longest line that extends the furthest from adjacency � . To clarify look at lines
�

and � in

figure 6.5. Line � crosses five adjacencies whereas line
�

only crosses four adjacencies but
�

is the line wanted because it extends the furthest from � . � only extends two adjacencies

away from � in either direction but
�

extends three adjacencies to the left.

Ya
X

Figure 6.5: The axial lines are
�

and � , and � is an adjacency.

First, search is used at lines 6 and 7 to get all the lines that start at � . Note that the

only difference between the two calls to search is the order of the polygons � and � , the

two polygons that form adjacency � . Figure 6.6 shows an example of the axial lines that are

found by the calls to search at lines 6 and 7. The first call starts off search with a line

that crosses � from � to � to find all the lines that extend from � into � and into the polygons

that are adjacent to � , as indicated by the broken lines in figure 6.6. The second call finds

the lines that extend into the polygons that are adjacent to � , as shown by the solid lines in

figure 6.6.

Up until this point, the variable limit is the limit on the number of lines found by each
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Algorithm 9 The function extendFrom

function format: extendFrom
�

�
� � �

limit
	

input:
adjacency �

set of convex polygons
�

an integer limit
output:
a set of lines line

� � as an ordered set of adjacencies

1: the length of a line is the number of previously uncrossed adjacencies crossed by the
line

2: let � � � denote the adjacency between polygons � and
�

3: let � and � be polygons such that � � � � �
4:

� � ,
� �

,
� �

and
� � denote sets of lines (ordered sets of adjacencies)

5:
�
� is an integer

6:
� � � search

� � � �
� � � � � � � � � � � limit

	

7:
� � � search

�
�
� � � � � � � � � � � � � limit

	

8:
� � � � � � � �

9:
�
� �

� �
limit � � � � � // � � �

denotes integer division
10: for each

� � � �
do

11: let
���

= reverse
��� 	

// � is now the last adjacency in
���

12: if � is the polygon that is an end of the chain formed by
� �

then
13:

��� � search � � � �
� ��� � � � � � � �

	

14: else
15:

� � � search � �
� � � � � � � � � � � �

	

16: end if
17: for each line


 � � �
do

18:

 �
� � � � � // 
 � � denotes number of uncrossed adjacencies crossed by

�
indicating

the unextended length of



19:

 �
� � � 
 � // 
 � � denotes number of uncrossed adjacencies crossed by



indicating

the total length of



20: end for
21:

� � � � � � ���

22: end for
23: return

� �
reverse

��� 	
returns a line with the reverse ordering of

�

search
� �
� � ��� � � � � � � 	 is algorithm 8.
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Figure 6.6: Results from lines 6 and 7 of function extend

call to search, meaning that there are, at most
� �

limit lines in
� �

. However, in the next

part extendFrom,search is called on each line in
� �

, which means that, if limit were to

remain unchanged, then the calls to search after line 8 could find at most
	 �

limit
�
. Some

flexibility has been given to the meaning of the variable limit but this would stretch it too far

and would make the algorithm inefficient. At line 9, limit is changed to limit divided by half

the number of lines in
� �

. Since the size of
� �

can’t be bigger than twice the original limit,

this ratio is always greater than or equal to 1. The new limit ensures that all lines found by

all the calls to search cannot be more than the original limit.

The lines in
� �

that do not cross any adjacencies are not needed since the lines returned

from search are the lines that are going to be chosen by the heuristic and lines that only

cross adjacencies that have already been crossed are useless. If these lines were removed

before the main loop, it would lower the number of lines in
� �

, making
�
� higher so more

lines can be found by subsequent calls to search giving a larger chance of finding a longer

line. However, it has already been established that � is not crossed, but there may still be

lines with � as the only uncrossed adjacency. This case can be dealt with by leaving one

line that crosses � if no lines are left in
� �

. However, this is not in the algorithm above and

is not implemented for the empirical analysis.

Each line to be extended using search has to be reversed, otherwise search will try

to extend the line forwards even more and find that it can’t be extended and return the same

line. The reversal happens at line 12 using the reverse function. In figure 6.7, line
�

starts

at adjacency � and ends at adjacency
�
. The reverse function returns a line that starts at

�

and ends at � but still crosses the same adjacencies as
�
.

The if statement at line 12 determines whether line
�

was generated by extending from

� to � or � to � to establish the order of the variables that are to be passed to search. If
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Figure 6.7: The result of one iteration of the main loop in extendFrom for the line indi-
cated as

�

this wasn’t done then search may try to extend the line back on itself. Line
�

in figure 6.7

has an end in � so line 15 is executed. The search function at line 15 results in the broken

lines shown in figure 6.7. If the number of broken lines shown in figure 6.7 were more than
�
� then some would be missing.

The for loop at line 18 stores the unextended and the extended length of each extended

line. The unextended length is always the number of uncrossed adjacencies crossed by
�
. In

figure 6.6 the unextended length of
�

is 4 so the unextended length of all the broken lines is

4. The extended length for a line in
� �

is the total number of uncrossed adjacencies crossed

by that line.

The set of lines that are returned are all the lines that are found from all the calls to

search in the main loop. There still may be lines that only cross � in the final set but

leaving those in will not affect the final solution found by the line heuristic.

These two functions make up the basic heuristic by first using some starting point

method to get an initial set of lines, � , then the extendFrom function can be applied

to each of the uncrossed adjacencies in the polygons with adjacencies crossed by lines in

� . Then the longest line can be chosen from the union of the sets returned by extend-

From and placed into � . The process of applying the extendFrom function and picking

the longest line is repeated until all the adjacencies are crossed. However, the following

analysis shows that the search function is inefficient and a data structure is presented in

section 6.5 that reduces the number of times that search gets called.

Analysis

The extendFrom function depends upon the search function, so search is analysed

first. The search is shown to be
���������
	

where
�
and

�
are the limits on the number of lines
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and the number of adjacencies respectively. To analyse the search function, a bound will

first be placed on the number of recursions. Following this, the complexity of each recursion

will be found and multiplied by the number of recursions to get the final complexity. The

analysis of extendFrom is relatively easy and is shown to be
������� ��	

.

Let � be the maximum number of adjacencies in any line. In each recursion of search,

only one or zero adjacencies are added to each line that will be in the final solution because

only the adjacencies in one polygon are being considered for addition, so the line coming

into this polygon cannot cross more than two adjacencies in it because all polygons in

the configuration are convex. One of the adjacencies has already been crossed by the line

entering the polygon so there can only be one other adjacency added. The process of adding

an adjacency is
��� � 	 because the visibility algorithm must be applied to check if it can

be added and the visibility algorithm is linear. In addition to this, the only time that no

adjacency is added to any line is when a line is added to the final set meaning that there are

at most
�

of these instances. Moreover, no adjacency is added more than once to any line, so,

there are only
� � recursions of searchwhere an adjacency is added to any line. This means

that the number of recursions of search is no greater than
� � � � � � � � � � 	

because of

the stage that determines that a line cannot extend any further into the configuration. There

can be fewer than
� � � � � 	

recursions because there may be lines that are not � long and

different adjacencies can be added to different lines within one recursion of search.

The complexity of each recursion of search is dominated by the calls to canAddTo

which uses the
��� � 	 partial visibility algorithm and the number of calls to canAddTo is

the number of polygons that are adjacent to polygon � besides � . Recall that � and � are

parameters passed to search. Now, the number of adjacencies is in the order of the number

of polygons, meaning that on average the number of polygons adjacent to each polygon is

some constant, say
�
. Therefore, the complexity of a single recursion of search is

��� � 	 .
Taking this and the fact that there can be no more than

� � � � � 	
recursions of search into

account leads to the conclusion that the search function is
����� � ��	 . What remains to be

done is to place a bound on � .

Recall that � is the longest a line could be. Now consider the fact that a line cannot

cross the same adjacency twice. This means that any axial line cannot cross more than
�

adjacencies so � � �
. Therefore the complexity of the search function in terms of

�
and

�
is
������� ��	

.

Note that
����� � ��	

is a rather liberal upper bound. One reason for this is that most of

the lines probably won’t be
�

long. If a line was
�

long then all the adjacencies would

be crossed and only this line would be returned. In fact, the longer the longest line the

greater the likelihood that a small number of lines would be returned. More generally, the

number of lines returned becomes the limit and would replace
�

in
������� �
	

, so if a limit on

the number of lines for a specific configuration can be proven then that would be
�

instead

of a user specified limit and it could be proved that search is more efficient for that case.

The analysis of extendFrom is relatively simple. The first two calls to search are
������� ��	

. The rest is constant time except for the main loop at line 10. Each iteration of this
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loop calls reverse which is
����� 	

. Then search is called with the limit that is set at

line 9, which is equal to
� �

divided by the number of lines in
� �

so the calls to search

at lines 13 and 15 are
��� ����

���
� � ��	

. Each iteration of the nested loop at line 17 executes in

constant time and there are the same number of iterations as there are lines in
� �

, which is

bounded by
����
� �
�
. This means that the nested loop is

��� ����
� �
� 	

making the complexity of one

iteration of the for loop
��� ����

� �
� � ����

� �
� � � 	

which is
��� ����

� �
� � �
	

because
����
� �
� � �

and
� � �

.

Now, the number of iterations of the loop is � � � � meaning that the whole of the main loop

is
��� � � � � � ����

���
� � � 	

which is
����� � � 	

, since � � � � is bounded by
�
.

In summary, the first two calls are
������� � 	

and the main loop is also
����� � � 	

. Everything

else is linear or less so extendFrom is
����� �
��	

.

6.5 The line collections data structure

The extendFrom function is shown to be
������� � 	

where
�

is the limit on the number of

lines. Values of
�

greater than
� �

are not considered in this research, which means that

extendFrom is
����� � 	

within the bounds of this research. An algorithm that is
������� 	

is

not very efficient and it would be desirable to reduce the number of times that it is executed.

This section presents a data structure to store lines found by extendFrom so they don’t

have to be found again. When inserted, each line is sorted by length using a bucket sort

and the function that retrieves a line returns the longest line. The insertion and retrieval

functions are insert and removeLongestLine respectively.

The data structure consists of a two dimensional,
� � �

array and two numbers, biggestU

and biggestT. The element at
�
�
�
� � contain lines that have an unextended length of � and a

total length of � , where the unextended length is the length of the line before it was extended

backwards and the total length is the length of the line after it was extended backwards as

set at lines 18 and 19 of algorithm 9. Remember that length is determined by the number of

uncrossed adjacencies that a line crosses. The element
�
biggestU,biggestT � denotes the list

of lines with the greatest unextended length with ties broken on the total length.

Note that half of the array would be empty because no line can have an unextended

length greater than its total length. For example if a line has an uncrossed length of
	

then

it can’t be at position
� 	���� � and the second value would have to be greater than or equal to

4. Also, the elements in
� � � � � and

� � � � � should be empty for all values of � because these

lines only cross crossed adjacencies and are redundant.

The unextended length and the total length of each line are assigned by extendFrom

so insert
� � 	

can put each line,
�
, in

�
at the head of the linked list at position

� � �
�
� � �
� �

in constant time. If the unextended length of the new line is greater than biggestU then

biggestU and biggestT are set to the lengths of the new line. If the unextended length of the

new line is equal to biggestU but biggestT is greater than the total length then biggestT is

set to the lines total length.

The removeLongestLine function returns the line at the head of the linked list at

position
�
biggestU,biggestT � . This line is removed from the linked list and if the list is
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empty then biggestU and biggestT must be updated by finding the largest value of � such

that
�
biggestU

�
� � is non empty. If there is no such value of � then decrement biggestU until

there is. In the worst case this process is
�����
� 	

because each element in the array may

have to be checked. It is possible to store the positions of each non empty element of the

array in a balanced tree, which would make insertion
�������

�
��� 	 	

and retrieval
�������

�
��� 	 	

,

but this isn’t implemented and the largest overhead comes from updating the length of the

lines when they change.

When a line is chosen to be in the set of lines that will be returned by the line heuristic,

the uncrossed length of some lines change so they have to be updated. The updates can

all be done by removeLongestLine because a line is removed from the data structure

only when that line will be inserted into the set returned by the heuristic. If each adjacency

that is crossed by this line stores all the lines that cross it then it is easy to update the

lengths. This requires the insert function to store a pointer to each line being inserted

in each uncrossed adjacency crossed by it. It is also necessary to keep track of whether the

adjacency being crossed is part of the unextended part of the line. The lines are not stored in

crossed adjacencies because an adjacency will not become uncrossed if it is crossed already,

so there is no need to update it.

When a line is updated, the line has to be moved within the data structure. Unfortu-

nately, this means that the linked list at the position in the array has to be traversed, but this

problem can be solved by storing the line’s position in the linked list in the line itself. When

a line is inserted or removed the neighbouring elements in the list are updated appropriately.

Analysis

When a line is inserted, the line is added to each uncrossed adjacency that it crosses. How-

ever, the number of adjacencies in each line is bounded by the number of adjacencies in the

configuration. This shows that insertion of one line is
����� 	

. Therefore insert is
����
 � 	

where



is the number of lines in the set being inserted.

When a line is removed, each of the uncrossed adjacencies that that line crosses is

operated upon. It has been established that the length of the line is bounded by
�

. Now

each operation decrements the unextended length if this is the unextended portion and the

total length of each line crossing this adjacency. extendFrom can’t get called more than
�

times so there are at most
� �

lines in the configuration and in the extremely unlikely case

that each of these lines cross all the adjacencies that the line crosses then this operation is
������� ��	

. This the same complexity as the extendFrom function but the extendFrom

function would get called many times where the removal would only be called once.

6.6 The line heuristic - bringing it all together

This section explains how the line heuristic works using the starting point methods, the line

collections data structure and the functions described in this chapter. First, the use of the

starting point methods is discussed then the iterative part of the algorithm is given in the
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form of algorithm 11. An example is given in section 6.7 to clarify the workings of the

algorithm.

6.6.1 Use of the starting point methods

The steps of the heuristic described in section 6.2 are as follows.

1. Find a starting point. This could be either a single polygon or a set of lines.

2. Create an empty set
�

.

3. Let
�

be all the uncrossed adjacencies that are part of polygons that have crossed ad-

jacencies. If there are no lines (so no adjacencies are crossed) then use the adjacencies

from the starting polygon.

4. Let
� �

be the set of all the lines that cross all of the adjacencies in
�

.

5. Find the line from
� �

that extends the furthest from the adjacency from
�

that it

crosses and add it to
�

.

6. Repeat steps 3 to 5 until all adjacencies have been crossed.

7. Return
�

.

The first step requires a set of lines or a single polygon. The network method returns a

set of lines that are placed in
�

. The random and least adjacency methods return a single

polygon. However, the iterative part described in section 6.6.2 requires a set of lines be

present in the data structure and that some adjacencies have been marked as “origins”. The

reasons why these are required will become clearer in section 6.6.2. Algorithm 10 gives a

method to initialise the data structure.

Algorithm 10 puts lines that extend the furthest from the chosen starting point into the

line collections data structure, and initialises the set that will form the solution, so it does

steps 2 to 4 of the heuristic above.

Figure 6.8 demonstrates the three starting point methods. The “origin” adjacencies,

shown as broken lines in the figure, are the adjacencies that form the set referred to in step 3

of the heuristic. The lines in the data structure extend from these adjacencies and are shown

as dotted lines in figure 6.8. Placing the lines in the data structure achieves step 4 of the

heuristic.

Algorithm 10 achieves steps 1 to 4, however, it only executes 3 and 4 once. The iterative

part of the algorithm continues from step 5 then jumps back to step 3 then 4.

6.6.2 The rest of the line heuristic

Algorithm 11 is the iterative part of the line heuristic that uses the functions and the data

structure described in the rest of the chapter. Once algorithm 10 has been executed, algo-

rithm 11 is applied repeatedly until no adjacency is left uncrossed.
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Algorithm 10 Populating the line collections data structure.

input:
a set of convex polygons

�

an empty set of lines
�

an integer limit

1: if the least adjacency method is used or the random method is used then
2: � � the polygon produced by the least adjacency or random starting point methods
3: else
4: ��� the set of polygons crossed into by the lines produced by the network method
5:

� � the set of lines produced by the network method
6: end if
7: for each polygon � � � do
8: for each uncrossed adjacency � in � do
9: mark � as an origin

10: insert
�
extendFrom

�
�
� � �

limit
	 	

11: end for
12: end for
extendFrom

�
�
� � � � 	

finds the set of lines that start at � where no line in the set is a
subset of another. The function then extends these lines backwards to find the set of
all lines that contain these lines. The extended lines are returned. The details and an
explanation of

�
are given in section 6.4.

insert
� � 	 inserts the set of lines, � into the data structure presented in section 6.5

Line 1 chooses a line that extends the furthest away from the current set of lines, which

is step 5 of the heuristic. Once step 5 is executed the heuristic returns to step 3. Steps 3 and 4

are executed in the main for loop which finds all the lines that extend from the newly found

line and places them in a data structure to be used by the next application of the algorithm.

The for loop from lines 2 to 6 only considers the polygons crossed by the new line be-

cause new origin adjacencies can only be formed by those polygons. Step 3 of the heuristic

says that
�

, which is the set of origins, is the set of all the uncrossed adjacencies that are

part of polygons that have crossed adjacencies. The only new adjacencies added to this set

will be some of those that are in the polygons crossed by the new line. This is clarified with

an example in section 6.7

Step 4 says that the set
� �

is all the lines that cross all of the adjacencies in
�

. This is

accomplished by line 5 of algorithm 11.

Algorithm 11 is applied repeatedly until all adjacencies are crossed. This results in a

set of axial lines. However, if the network method was used to find a starting point then

some lines found by the network of stars algorithm may be redundant once the heuristic is

complete because they were not extended into the rest of the configuration. So the final step

is to remove all the redundant lines.

It is easy to see that an execution of the heuristic results in all of the adjacencies in the

configuration being crossed because a new line that crosses some uncrossed adjacency is

chosen at each iteration of algorithm 11 and added to the solution set
�

and the heuristic

only terminates once all adjacencies are crossed.
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Figure 6.8: A demonstration of the three starting point methods.

Algorithm 11 is executed no more than
�

times, if
�

is the number of adjacencies,

because one or more adjacencies are crossed at each application. Retrieving a line from

the data structure has been shown to be an
����� � � 	

operation and is only called once for

each application of algorithm 11, so the complexity of all of the retrievals from the data

structure for the whole heuristic is
����������	

. Furthermore, extendFrom is only applied

to an adjacency that hasn’t been marked as an origin and line 4 of algorithm 11 marks

an adjacency as an origin right before extendFrom is applied to it, so extendFrom is

applied to no more than once to each adjacency. This means that the complexity of all the

calls to extendFrom over the whole execution of the heuristic is
������� ��	

. The starting

point methods are less than
�������
	

so the complexity of the heuristic is
����������	

. If the

number of polygons is
�

then the complexity is
����� � � 	

since the number polygons is in the

order of the number of adjacencies.

It is conjectured that the number of actual lines is no more than
����� ��	

, if this is the case

then the heuristic is
��� � � 	

. However, the results of empirical tests presented in chapter 7

with
� � �

are similar to the results where
���

was used as a value of
�
. Moreover, when the

configuration is sparse, a value of
����� � � also gave acceptable results.
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Algorithm 11 One step in the line heuristic.

input:
a set of convex polygons

�

a non-empty set of lines
�

an integer limit

1: longestLine � removeLongestLine � 	
2: for each polygon � crossed by longestLine do
3: for each uncrossed adjacency � in � that is not an origin do
4: mark � as an origin
5: insert

�
extendFrom

�
�
� � �

limit
	 	

6: end for
7: end for
8:

� � � � longestLine

extendFrom
�

�
� � � � 	

finds the set of lines that start at � where no line in the set is a
subset of another. The function then extends these lines backwards to find the set of
all lines that contain these lines. The extended lines are returned. The details and an
explanation of

�
are given in section 6.4.

insert
� � 	 inserts the set of lines, � , into the data structure presented in section 6.5

removeLongestLine
� 	

returns the line that extends the furthest from the set of un-
crossed adjacencies whose polygons contain adjacencies that are crossed. Note that how
far a line extends is measured by how many uncrossed adjacencies it crosses. This uses
the data structure discussed in section 6.5

6.7 Example

The heuristic is explained below with the aid of an example. The variable limit is set to
� �

and the least adjacency method is used to find a starting point. Figure 6.9 is a key to the

figures in this section.

polygons with crossed adjacencies

old origin adjacencies

new origin adjacencies

axial lines in 

axial lines in data structure

F

Figure 6.9: The key to the figures in this section.

Figure 6.10 shows the example configuration with algorithm 10 already applied. Poly-

gon
�

is chosen as the starting point because it is the left most polygon with one adjacency.

The only adjacency in this polygon is � so line 9 of algorithm 10 marks it as an origin and

line 10 applies extendFrom to it. Line 1 is the only line in the set returned from ex-

tendFrom and is placed in the data structure. Note that, line 1 is not yet in the solution
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1

A
a

Figure 6.10: A configuration of convex polygons with algorithm 10 already applied. Line 1
is the only line in the data structure.

1

a

b

2

3

A

Figure 6.11: A configuration of convex polygons with algorithm 11 applied once. Line 1 is
now in the solution set and lines 2 and 3 are in the data structure.
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set,
�

, and will only be placed there on the first execution of algorithm 11.

Figure 6.11 shows the example configuration after the first application of algorithm 11.

Line 1 is removed from the data structure at line 1 of algorithm 11 and placed in
�

at line

8. Adjacency
�

is marked as an origin and extendFrom is applied to it at lines 4 and

5 of algorithm 11. Lines 2 and 3 are returned by extendFrom and are now in the data

structure. Note that line 2 should be added to
�

next because it crosses three uncrossed

adjacencies, where line 3 only crosses two.

Two more applications of algorithm 11 results in the state shown in figure 6.12. In

the second application, line 2 is removed from the data structure and placed in
�

and � is

marked as an origin adjacency. Line 3 is removed from the data structure because its origin

is
�

and any line that is extended from
�

is no longer a line that extends as far as it can from

the current configuration of lines. Note that the lines 1 and 2 are the same lines that would

be placed by the chain algorithm if it was applied to this part of the configuration if it started

at
�

. In fact, line 1 is an essential line and line 2 would be in the minimal solution for the

whole configuration.

Applying extendFrom to � produces a set of many lines that would cover most of the

configuration, so they are not shown. However, line 4 is in this set and is the line that crosses

the most uncrossed adjacencies. This means that it is removed from the data structure at line

1 of the third application of algorithm 11 and added to
�

at line 8.

Lines 2 to 7 of algorithm 11 apply extendFrom to all of the new origin adjacencies

that are shown in figure 6.12. Clearly, there are many lines that extend from the new origin

adjacencies so they are not shown either.

The fourth iteration of algorithm 11 is shown in figure 6.13. Line 5 is removed from

the data structure and added to
�

. Now, only five adjacencies are marked as origins so the

extendFrom function only has to be applied to these. The lines in the data structure that

originate from other uncrossed origin adjacencies merely have to be updated because they

are already in the data structure. Figure 6.14 shows the solution.

6.8 Conclusion

This chapter contains a heuristic for the problem of axial line placement in convex polygons

which uses the special cases that are presented in this document for one of the three proposed

methods for preprocessing. The next chapter gives the results from the empirical tests where

one of these tests compared these three methods of preprocessing.

The major difference between the random and least adjacency methods and the network

detection method is that the random and least adjacency methods attempt to find a starting

point for the algorithm while minimising interference with the heuristic itself. The network

method interferes with the heuristic by placing lines meaning that the line heuristic must

work around this solution. This method works well if a large part of the configuration can

be identified as a particular special case but may work badly if many small parts of the

configuration are identified meaning that the line heuristic must work around these areas
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Figure 6.12: A configuration of convex polygons after three applications of algorithm 11.
Lines 1, 2 and 4 are in

�
and there are many lines in the data structure which are not shown.

1

2

4

5

Figure 6.13: A configuration of convex polygons with algorithm 11 applied four times.
Lines 1, 2, 4 and 5 are in

�
and there are many lines in the data structure which are not

shown.
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Figure 6.14: The solution found by the line heuristic.

resulting in wasted lines. The following chapter shows that this is a major problem with

using special case detection for preprocessing and chapter 8 suggests methods for improving

the integration of the line heuristic with special case detection.

The heuristic is shown to work in
����� � � 	

time where
�

is the number of polygons and
�

can be a function of
�

or the number of adjacencies. The bound on
�

is conjectured to be

no more than
��� � �
	

so the algorithm works in no more than
��� � � 	

time. This may seem

inefficient but the problem is NP-complete and, as the next chapter will show, the heuristic

finds a good solution. The next chapter contains details of the empirical tests that were done

using an implementation of this heuristic where, along with the preprocessing methods,

various limits are compared and the solutions found by the line heuristic are compared with

exact solutions. These tests justify the high complexity by showing just how well the line

heuristic works.
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Chapter 7

Empirical results

7.1 Introduction

To evaluate the line heuristic presented in chapter 6, an implementation of this heuristic was

used on many configurations of randomly generated polygons. The results from these tests

are presented in this chapter. The tests used are the following.

1. Test the three starting point methods from section 6.3.

2. Test the three limits passed to the search function from section 6.4.

3. Compare the solutions found by the line heuristic to the corresponding exact solu-

tions.

Test 1 is used to find the best starting point method, which was then used in tests 2 and 3.

Test 2 is used to evaluate the limits placed upon the number of lines found by search and

to give some indication to the actual limit on the number lines that would be found by an

unlimited search function. Test 3 is the most important test because it is used to determine

how well the heuristic works. However, the configurations used in test 3 are small because

of the time needed to compute exact solutions so the results are somewhat limited.

The following section briefly discusses the different types of configurations used in the

three tests and how these configurations were generated. Following this, the results from

each of the three tests are presented and evaluated in sections 7.4, 7.5 and 7.6. Section 7.4

contains an explanation of the tables that are used to present the results for the starting point

method, which is analogous to the tables in sections 7.5 and 7.6.

7.2 Test case generation

This section gives the method used to generate two types of configurations which can

be classified as “dense” and “sparse”. Dense configurations are configurations of tightly

packed polygons, whereas sparse configurations would be “star like” in the sense that they
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contain many chains or thin rows of polygons that link other parts of the configuration. Ex-

amples of dense and sparse configurations generated using this method are given in figures

7.1 and 7.2.

Figure 7.1: Two examples of dense configurations.

Figure 7.2: Two examples of sparse configurations

The method for generating both dense and sparse configurations begins by randomly

drawing lines across a rectangle from side to side as in figure 7.3. Then all the polygons

that are formed by the intersections of the lines are detected. Next, an initial polygon is

chosen that is close to the center of the configuration. At this point the method starts to

iterate and, at each iteration, polygons are chosen that are adjacent to polygons that have

already been chosen. The policy for picking polygons at each stage depends on whether a

dense or a sparse configuration is desired. The method stops when the specified number of

polygons have been chosen.
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Figure 7.3: Rectangle with lines randomly drawn

The polygons found are limited because a lot of polygons are in straight lines. Some

chains lack the desirable bends but this is somewhat compensated by the fact that the ver-

tices are rounded off to integers so situations like 7.4 are possible.

Figure 7.4: A bend that is possible. The broken line is an axial line and the shaded parts are
part of the configuration

The configurations generated using this method were as follows.

� 900 dense configurations of 20 polygons each

� 900 sparse configurations of 20 polygons each

� 900 dense configurations of 100 polygons each

� 900 sparse configurations of 100 polygons each

The 20 polygon sets were used for the comparison between the exact solution and the solu-

tions found by the heuristic. These 20 polygon sets were used because they are the largest

sets where the exact solution can be determined in a reasonable amount of time.

The 100 polygon sets were used for the starting point tests and the limit tests. These

100 polygon sets were used because they were thought to be large enough to demonstrate

the important aspects of the starting point methods. In addition to this, the high complexity

of the heuristic for the general case of axial line placement meant that the test cases could

not be very large.
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7.3 Explanation of data in tables

This section contains an explanation of the tables that are presented in this section. There

are two types of tables used in this chapter and they are:

� tables that show the average number of lines found by each method and

� tables that show the differences in the number of lines found by each method.

The first type of table is straightforward. However, the second type may require some

explanation. An example of the second type of table is given as table 7.1.

Sparse Dense
# average greatest # average greatest

Condition diff diff diff diff
method A � method B 100 1.00 1 200 1.50 3
method A � method B 200 0 0 300 0 0
method A � method B 700 3.00 5 500 5.00 7
Total -2.00 -2.20

Table 7.1: Example of a table showing the differences in method A and method B

The condition column in table 7.1 specifies which data the row pertains to. The tables

compare the number of lines found by the various methods, and the condition indicates

which methods are being compared in that row, and what the relation between the solutions

found was. For example, a condition labelled “Method A � Method B” indicates that the

configurations in that row conform to the condition that method A yields fewer lines than

method B.

The first row of the first and fourth columns in table 7.1 shows how often the number of

lines found by the specified method was greater than the number of lines found by another

specified method. The second and third columns operate similarly, showing how often the

number of lines found by the method is respectively equal to or less than the number of lines

found by the other method. For example, the element at the first row of the first column of

table 7.1 indicates that the number of lines found by the method A was greater than the

number of lines found by the method B 100 times.

The first row of the second and fifth columns of table 7.1 gives an indication of the scale

of the difference between the solutions found by the methods. It does this by presenting the

average difference between the number of lines found by the methods when the specified

condition holds. For example, the number at the first row of the second column of table 7.1

indicates that the average difference between the number of lines found by method A and

method B was 1.00 when method A found more lines than method B. Note that the average

differences in rows one and three cannot be less than 1 because the number of lines is a

whole number, and the cases where the difference is equal to 0 would be included in row

two.

The first row of the third and sixth columns of table 7.1 show the greatest, positive

difference between the number of lines found by method A and the number of lines found
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by method B. Similarly, the first row of the third and sixth columns of table 7.1 show the

greatest, positive difference between the number of lines found by method B and the number

of lines found by method A. Note that the greatest element should not be greater than 1 if

the corresponding average is equal to one, but this can happen because of round off errors

while calculating the average.

The fourth row in tables 7.1 show the average difference between the number of lines

found by the specified method and the other specified method for all the test cases. For ex-

ample, the element at row four, column two in table 7.1 indicates that the average difference

between the number of lines found by method A and method B was -2.00. This indicates

that method B found more lines in the sparse configurations than method A did, suggesting

that method A works better in sparse configurations than method B does.

7.4 Testing the starting point methods

These are the three starting point methods that were tested.

1. Pick a random polygon as the start set.

2. Pick the polygon with the least number of adjacencies that has the adjacency with

smallest the � coordinate.

3. Detect any networks of stars embedded in the configuration then use the network of

stars heuristic from chapter 5 on the networks.

Section 6.3 says that method 3 was expected to be the best and method 1 would be the

worst. However, the results presented in this section show there is little difference between

methods 1 and 2 and both are better than method 3. Possible explanations are given in this

section.

To test the three starting points discussed in section 6.3 each starting point was run on

900 sparse and 900 dense configurations of 100 convex polygons each.

Sparse Dense
Random 20.80 20.34
Least Adj. 20.83 20.33
Networks 22.08 22.15

Table 7.2: Average lines found for each starting point method in configurations of 100
polygons each.

The average number of lines found by each method in the sparse and the dense con-

figurations is shown in table 7.2. This table already suggests that the random and least

adjacency methods are superior to the network method. Tables 7.3 and 7.4 and 7.5 compare

the differences in the number of lines found by each method as explained in section 7.3.

The following section compares the random method with the least adjacency method.
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7.4.1 Random versus least adjacency

The data comparing the random method with the least adjacency method is shown in table

7.3. These results were generated using the line heuristic with
� � � �

as the limit passed to

the search function. The data shows that the number of times the random method found

more lines than the least adjacency method is very close to the number of times that the least

adjacency method found more for both dense and sparse cases. In fact, both methods found

the same number of lines in a large proportion of the test cases. Furthermore, the average

difference in both cases is between 1 and 1.3, indicating that most of the differences were

1. This, coupled with the fact that the total average differences are very close to 0, strongly

suggests that there is very little advantage to using either the random method or the least

adjacency method.

What is interesting about these results is the difference between the sparse and dense

configurations. The methods found the same number of lines much more often in sparse

configurations than in dense configurations. This indicates that a dense configuration is

more sensitive to the choice of initial polygon than a sparse configuration is. However, the

test was not designed to test this and will not be discussed further.

Sparse Dense
# average greatest # average greatest

Condition diff diff diff diff
Random � Least Adj. 205 1.16 4 275 1.26 3
Random � Least Adj. 463 0 0 342 0 0
Random � Least Adj. 232 1.16 3 283 1.22 3
Total -0.03 0.0001

Table 7.3: Results from starting point tests for 900 configurations of 100 polygons each for
the random method versus the least adjacency method.

7.4.2 Networks versus random and least adjacency

The network method was expected to be the best performing method but the results in this

section show otherwise. Since the random and least adjacency methods are shown to be of

similar value above, the networks method is compared to both of them here.

Sparse Dense
# average greatest # average greatest

Condition diff diff diff diff
Random � Networks 99 1.26 3 63 1.30 3
Random � Networks 176 0 0 153 0 0
Random � Networks 625 2.05 7 684 2.51 10
Total -1.28 -1.81

Table 7.4: Results from starting point tests for 900 configurations of 100 polygons each for
the random method versus the network method.
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Sparse Dense
# average greatest # average greatest

Condition diff diff diff diff
Least Adj. � Networks 99 1.28 3 49 1.08 2
Least Adj. � Networks 193 0 0 188 0 0
Least Adj. � Networks 608 2.06 7 633 2.54 8
Total -1.25 -1.82

Table 7.5: Results from starting point tests for 900 configurations of 100 polygons each for
the least adjacency method versus the network method.

Tables 7.4 and 7.5 show that the network method found more lines than the least ad-

jacency and random methods for more than two thirds of all of the configurations. The

configuration shown in figure 7.5 will be investigated to explain why this happens. The

darkly shaded polygons are polygons that are detected as networks of stars. The configura-

tion in figure 7.5 is a dense configuration where the difference in the number of lines found

by the network and the least adjacency methods was the greatest. In this case the network

method found 26 lines and the least adjacency method found 18. So the difference is 8, as

is indicated in table 7.5.

A

Figure 7.5: Example of a dense configuration where the network method worked badly.

The problem with the case in figure 7.5 is that many of the stars detected are too “open”,

in the sense that many of the adjacencies in the star are visible to the same parts of the

configuration in many different ways. The star marked as A in the example is a good

example of this. All of the adjacencies in the polygon are visible to the large cluster of

small polygons at the bottom of the configuration. Many lines can come from the cluster at
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the bottom and cross the adjacencies in the star but don’t because they have been crossed

already meaning that the lines go in other directions with more uncrossed adjacencies.

Figure 7.6 shows some of the lines that the least adjacency method placed and figure 7.7

shows some of the lines that the network method placed. Some wavy axial lines are used

because some pass through narrow parts or may seem to be co-linear with some adjacencies.

The network method placed a line that crossed five adjacencies at the top of the configu-

ration, marked � . All of these adjacencies were crossed by other lines placed by the least

adjacency method (shown in figure 7.6) and these lines crossed many other adjacencies.

Line
	

in figure 7.6 crosses many other adjacencies that are part of the star to the left but it

was not found by the network method because most of those adjacencies were crossed by

other lines placed by the network algorithm and so that line would be considered too short

by the heuristic. This suggests that the network of stars heuristic may not be compatible

with the line heuristic for dense configurations of polygons.

e

f

d

Figure 7.6: Some lines placed by the least adjacency method.

Another point about the network method is also shown in figure 7.7. The two adjacen-

cies crossed by line
�

in figure 7.7 are not crossed again by the line heuristic meaning that

it does not get thrown away. Figure 7.6 illustrates that this line could have been extended

to cross many more adjacencies. This problem can be fixed by extending all of the lines

using the search function from section 6.4 on all of the lines found by the network of

stars algorithm.

A sparse configuration where the network method worked badly is shown in figure

7.8. The polygons that were detected as parts of networks of stars are the darkly shaded

polygons. Figure 7.8 shows that a large proportion of the configuration is considered parts

of networks of stars but the heuristic implementing the network of stars heuristic found
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Figure 7.7: Some lines placed by the network method.

27 lines, where as the least adjacency method found 20. This indicates that the network

heuristic is bad or it isn’t compatible with the line heuristic. To test this, the polygons that

are not part of the network of stars were removed from the configuration in figure 7.8 and

both methods were tested. Both methods found 15 lines so the network of stars heuristic

is not to blame for the difference, so the network heuristic may not be compatible with the

line heuristic for sparse cases either. This conclusion is supported by the rest of the results.

One of the cases where the network method worked well is shown in figure 7.9. The

network method produced 21 lines and the least adjacency method produced 24. In this

case most of the configuration is considered a network of stars, much like the configuration

in figure 7.8. However, this configuration differs because there are not so many spaces

between stars that are not part of a network. This configuration seems to indicate that the

network heuristic works well when applied to configurations that are only networks but is

not compatible with general configurations. However, no conclusions can be drawn from

this due to the small number of cases where the network did work well and there are no tests

done in this research to test the network heuristic directly.

This section has shown that the random and the least adjacency methods are tied for the

best starting point method so far, but the least adjacency method is deterministic so that will

be the method used in any further experiments. It is believed that the network method can

be improved but that is left for future work.
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Figure 7.8: A configuration where the network method worked badly.

Figure 7.9: A configuration where the network method worked well.
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7.5 Testing the limits on longest line generation

The results in this section were generated using three variations of an implementation of

the line heuristic on 900 dense and 900 sparse configurations of convex polygons using the

least adjacency method to find a starting point. The difference between each variation is the

limits passed to the search function. These limits were
����� � � ,

�
and

� �
where

�
is the

number of adjacencies in a configuration. The reason for making the limit a function of
�

is so the results can easily relate to the size of the configuration. Furthermore, the limit was

made in terms of the number of adjacencies instead of the number of polygons because it is

conjectured that the limit is in terms of the number of adjacencies more than that in terms of

the number of polygons. However, the number of adjacencies is in the order of the number

of polygons.

The results in the section show how the limit affects the number of lines in a config-

uration and shows the value of choosing the longest possible lines to cross adjacencies.

More specifically, the results show that quadratic and linear limits produce similar results

but logarithmic limits produce a much greater number of lines for dense cases. However,

the results do not show how the difference in the number of lines grows as the number of

polygons increases for the various limits. Results that show how often the search function

reaches the specified limit are also shown.

limit Sparse Dense����� � � 20.84 22.07�
20.82 19.72� �
20.82 19.67

Table 7.6: Average lines found for each value of limit in 900 configurations of 100 polygons
each.

The average number of lines found with each limit for each type of configuration is

shown in table 7.6. This table shows that the difference in the number of lines found in

sparse configurations for each of the three limits is so small that it can be ignored. However,

the difference becomes apparent with the dense configurations. Tables 7.7, 7.10 and 7.9 go

further to show this difference.

Table 7.8 shows the number of times the search function reached the specified limit

as a percentage of the number of times searchwas called. The limit was divided at certain

points in the search function, so the first and second columns show the limit data for the

unchanged limit and the third and fourth columns show the data for the divided limit.

7.5.1 Limits and sparse configurations

Table 7.7 shows that there is no difference in the number of lines found in sparse cases using

either the quadratic or linear limits. This indicates that there are relatively few lines from

any adjacency in a sparse configuration. This is supported by table 7.8 which shows that the
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Sparse Dense
# average greatest # average greatest

Condition diff diff diff diff� � � �
0 n/a n/a 98 1.09 2� � � �

900 0 0 744 0 0� � � �
0 n/a n/a 58 1.16 2

Total 0 0.05

Table 7.7: Results from limit tests with limits equal to
�

and
� �

.

limit undivided divided
sparse dense sparse dense����� � � 10.01% 82.19% 47.00% 99.65%�
0.00% 3.38% 0.01% 36.28%� �
0.00% 0.00% 0.00% 0.01%

Table 7.8: Average number of times each limit was reached with each type of configuration
expressed as a percentage.

limit was never reached for the undivided limit and only reached the divided limit 0.01%

of the time for 900 configurations. The fact that the heuristic hardly ever reached either

limit means that the heuristic was picking lines from the same sets, which explains why the

heuristic with quadratic and linear limits found the same number of lines.

For the logarithmic limits, tables 7.9 and 7.10 show that the heuristic with the logarith-

mic limit found the same number of lines as the heuristic with the other limits 846 times out

of 900 for sparse configurations. Furthermore, the instances where there were differences in

the number of lines, the differences were small. The biggest differences in the lines were 2

in either direction and the total average difference was 0.02, which is inconsequential. Also,

table 7.8 shows that the undivided, logarithmic limit was reached only 10.01% of the time.

Therefore, there is very little difference between the logarithmic limit and the other two for

sparse configurations.

Taking the above into account means that there is very little difference between any of

the limits in sparse configurations. However, the fact that the undivided limits were seldom

reached means that the time difference would be small for each of the limits. Unfortunately,

no timing data was taken so this theory will not be empirically verified but it is easy to see

this is so because the limit is part of the complexity function. However, these results do

show that the algorithm will work relatively efficiently for sparse configurations.

7.5.2 Limits and dense configurations

Changing the limit seems to have very little effect on solutions when dealing with sparse

configurations but the results show otherwise when dense configurations are considered.
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Sparse Dense
# average greatest # average greatest

Condition diff diff diff diff����� � � � �
33 1.09 2 807 2.65 7����� � � � �

846 0 0 70 0 0����� � � � �
21 1.05 2 23 1.13 2

Total 0.02 2.35

Table 7.9: Results from limit tests with limits equal to
����� � � and

�
.

Sparse Dense
# average greatest # average greatest

Condition diff diff diff diff����� � � � � �
33 1.09 2 815 2.68 7����� � � � � �

846 0 0 62 0 0����� � � � � �
21 1.05 2 23 1.13 2

Total 0.02 2.40

Table 7.10: Results from limit tests with limits equal to
����� � � and

� �
.

Tables 7.9 and 7.10 show that there is a considerable difference between solutions found

using the logarithmic limits and solutions found using the other limits for dense configu-

rations. The heuristic using the logarithmic limit found more lines than the heuristic using

the other limits more than 800 times each, and the average differences were 2.35 and 2.40.

The average number of lines found using any limit was between 19 and 22 so differences of

2.35 and 2.40 are considered meaningful. Table 7.8 reached shows that the undivided limit

was reached 82.19% of the time, which accounts for this great discrepancy.

The differences between the linear and the quadratic limits are not so large. Table 7.7

shows that both limits produced the same number of lines 744 times out of 900 for dense

configurations and the average difference was an inconsequential 0.05. Table 7.8 shows

that the undivided limit was reached only 3.38% of the time for the linear limit for dense

configurations, meaning that using the linear limit as opposed to the quadratic limit gives

similar sets of lines to choose from. Therefore, there is no notable benefit to using either

the linear or the quadratic.

An interesting aspect of these results is that the 3.38% for the linear limit is less than the

10.01% for the logrithmic, undivided limit in sparse configurations but the number of times

that the heuristic with linear and quadratic limits found the same number of lines is 100

instances less than the number of times the heuristic with the logrithmic limit found the same

number of lines in sparse configurations. This suggests that the dense configurations are

more sensitive to changes in limit than sparse configurations are. However, this is beyond

the scope of this research and will not be discussed further.

These results show that the logarithmic limit should not be used when dense configu-
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rations are being considered if accuracy is a requirement. Furthermore, there is very little

difference between using the quadratic and linear limits in the heuristic for both sparse and

dense configurations. However, the undivided, linear limit was only reached 3.38% of the

time so the unlimited algorithm may work with a limit close to the number of the adjacen-

cies. However, only one size of configuration was considered and to show any conclusive

evidence of the changes in the differences as configurations get bigger more tests need to

be run. Unfortunately, time constraints did not allow for these tests to be done.

Table 7.8 shows that the undivided, quadratic limit was never reached and the divided

limit was only reached 0.01% of the time for dense configurations. Therefore, the limit is

implied to be
� �

. However, this may change as the configurations get bigger.

7.6 Comparing the line heuristic to the exact solution

This is probably the most important section in this chapter because it evaluates the heuristic

in general. The line heuristic is shown to work quite well when compared to the exact

solution. However, the exact solution takes an unreasonably long time to compute so only

small configurations are considered. As small cases are only considered, cases where the

largest differences occur will be investigated to see where the heuristic went wrong and if

these cases scale up to larger configurations.

The results shown in this section compare the exact solutions to the solutions found by

the line heuristic with a quadratic limit and the least adjacency starting point method in 900

dense and 900 sparse configurations of 20 convex polygons. The average number of lines

found by each algorithm is shown in table 7.11 and the differences in the number of lines

found by each algorithm is shown in figure 7.12. The row that shows the number of times

the heuristic found fewer lines than the exact solution is omitted for obvious reasons.

Sparse Packed
Heuristic 4.75 5.47
Exact 4.51 5.07

Table 7.11: Average lines found in the exact solutions and solutions found by the heuristic
in configurations of 20 polygons each.

Table 7.11 shows that the average number of lines found by both algorithms is relatively

small so any difference in the number of lines in the solutions is considered meaningful.

Though, it is a heuristic so some differences should be tolerated.

The data in table 7.12 show that the heuristic found an exact solution more than two

thirds of the time in sparse configurations and just less than that for dense configurations.

The heuristic found only one more line than the exact solution in 212 out of 900 configura-

tions and two more lines in only two out of 900 configurations for the sparse configurations.

Similar results hold for the dense configurations. This indicates that the heuristic works

well. However the test cases were quite small so the extreme cases are now investigated.
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Sparse Dense
# average greatest # average greatest

Condition diff diff diff diff
Heuristic � exact 214 1.01 2 347 1.03 2
Heuristic � exact 686 0.00 0 553 0.00 0
Total 0.24 0.40

Table 7.12: Results from exact tests for 900 dense configurations of 20 polygons each.

small
polygon

Figure 7.10: A configuration where the heuristic worked relatively badly.

Figure 7.11 shows a configuration where the heuristic found 7 lines but the exact solu-

tion contained 5 lines. The square marked “small polygon” is a magnification of the area

that the arrow is pointing to. The arrow points to an area where there is a very small polygon

that cannot be seen. The configuration shown has ends that are similar to a chain so any

attempt at finding the axial lines should start at the ends because axial lines are guaranteed

to start there. In this case, the least adjacency method picks the polygon at the bottom, so

this condition is partly satisfied. Next, the exact and heuristic solutions will be compared to

see where extra lines were added and why.

Figure 7.11 shows the solutions found by the heuristic and the exact solution. Some of

the lines seem to run parallel to some adjacencies so they are represented by wavy lines.

Furthermore, the figures might become confusing if all of the lines were extended as far as

they could go, so the extensions are not shown where possible. The lines in the heuristic

solution are labelled in the order that they were placed by the heuristic and the lines in the
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Figure 7.11: The exact and heuristic solutions for a configuration where the heuristic
worked relatively badly.

exact solution are only labelled for convenience.

The figure shows that line 1 extended from the bottom polygon then line 2 extended

from the closest uncrossed adjacency through the tiny polygon that is shown in figure 7.10.

Line 10 in the exact solution is similar to line 2 except it doesn’t pass through the small

polygon. Line 10 and line 2 are the same length so either would be a candidate for the

second line chosen by the heuristic but line 2 was chosen. In this case line 2 was the wrong

choice because line 12 could have crossed the adjacencies in the small polygon. Instead,

line 5 is used to cross some adjacencies that would have been crossed by line 10, leaving

adjacencies that will be crossed by line 7 uncrossed. Line 5 could have been used to cross

adjacencies that will be crossed by line 7 but the current orientation is chosen because it is

longer. This is a case where a shorter line would have been a better choice than a longer

line.

The fact that line 5 is higher than it should be means that it doesn’t extend far enough,

causing line 6 to be chosen. All of this indicates that line 6 and line 7 are the unnecessary

lines that are added by the heuristic. Choosing line 2 instead of line 12 and choosing line 5

instead of a line to cross adjacencies crossed by line 7 caused these lines to be added.

These problems may have been solved by implementing a policy that makes lines that

extend into chains have a higher probability of being chosen than lines that extend into an

open part of the polygon. However, the heuristic seems to work slightly worse for dense

cases. This is because most of the sparse cases are very much like chains and more cases
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like the above example would occur in dense configurations. In spite of this, the heuristic

still finds the exact solution on more than half of the test cases. Furthermore, the differences

are relatively small where they do occur.

7.7 Conclusion

This chapter has shown that the best form of the line heuristic out of all of the options

considered in this research has the following configuration.

� The least adjacency method or the random method should be used to find a starting

point.

� A quadratic limit should be used.

The network method was a surprising failure but some suggestions for improvements are

given in the next chapter. It was also shown that a quadratic limit should be used but only

if efficiency is not a consideration. Also shown, was that the limit is actually closer to loga-

rithmic for sparse configurations and close to a linear for dense configurations. However, it

would be interesting to see how these limits are affected when the configurations grow, as

only configurations of one size where tested.

The heuristic was compared to the exact solution and shown to work quite well. The

next chapter suggests methods to improve the algorithm in the places where it doesn’t work

well.
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Chapter 8

Future work

8.1 Introduction

This document presents algorithms for a few different areas in axial line placement in con-

vex polygons. However, there is room for improvement in many of these algorithms. This

chapter discusses some ideas for improvements to these algorithms as well as some ideas

that were not researched due to time constraints or scope.

The first topic for discussion in section 8.2 is a linear algorithm for visibility through a

chain of convex polygons. This algorithm is used to determine if an axial line can cross a

certain sequence of adjacencies, so it is used in all areas of axial line placement in convex

polygons.

The chain algorithm developed in chapter 3 finds a smallest cardinality set of lines to

cross the adjacencies in a configuration of convex polygons. However, the sum of the length

of the lines in the subset is not guaranteed to be maximal. Section 8.3 gives some direction

to any research that tackles this subject.

Section 8.4 discusses the origin of the star of convex polygons and poses it as a topic

for future work as well as some related configurations.

Section 8.5 follows with a discussion on the usage of essential lines for another starting

point method for the heuristic for general configurations of convex polygons.

Section 8.6 discusses possible explanations for the bad performance of the network

heuristic as a starting point method. In addition to this, some methods are suggested that

would greatly improve its use as a starting point method.

Finally, section 8.7 discusses some improvements to the heuristic. These suggestions

may improve the efficiency of the heuristic and may decrease the number of lines in the

heuristic.

8.2 Linear visibility algorithm for axial line placement

All of the algorithms for axial line placement would be more efficient if a more efficient

algorithm for placing an axial line was found. The algorithm for partial visibility between
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two edges in a simple polygon is linear. However, in order to place an axial line in a

configuration of convex polygons each adjacency that that line crosses must be tested with

the first adjacency as shown by the progression in figure 8.1. This means that the algorithm

for placing an axial line is quadratic in the number of adjacencies.
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Figure 8.1: The process of placing an axial line.

In van Antwerpen [2002] a linear algorithm is presented that places axial lines in chains

of orthogonal rectangles. The algorithm is an adaptation of an algorithm to fit straight lines

through data ranges [O’Rourke 1981]. The main problem with the algorithm, other than

that it does not work for convex polygons, is that it only works if each adjacency in the

chain has no � value less than the adjacencies that came before it in the chain as depicted

in figure 8.2. The algorithm cannot be applied to
�

because adjacencies 5, 6 and 7 have �
values smaller than an � value in adjacency 4.

If this algorithm can be adapted to convex polygons then it can be used to make the

search function from section 6.4 much more efficient because adjacencies can be added

one at a time. However, the states would have to be saved to facilitate back stepping through

the configuration.

If this algorithm cannot be adapted for convex polygons then it may be possible to do

some sort of binary search. This would require a candidate chain such as in figure 8.3.

Placing a line that crosses 1 and as many other adjacencies as possible can be done by using

the standard visibility algorithm to check if adjacency 1 is partially visible to adjacency 5

through 2, 3 and 4. If it is, then adjacencies 1 and 7 should be checked for partial visibility,

otherwise 1 and 3 should be checked and so on.
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Figure 8.2: Two chains of convex polygons with the adjacencies labelled in order. The
linear chain algorithm can be applied to � but not to

�
.
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93

Figure 8.3: A chain with adjacencies labelled 1 to 9.

This method would guarantee an
����������� � 	

running time. However, its uses would be

restricted because a candidate chain must be given. The search function only builds paths

by checking visibility each time a node is added. However, this may be solved by finding

chains of adjacencies that a line cannot cross or can only extend to a certain depth. This

will be discussed in more detail in section 8.7 which discusses ways to improve the heuristic

itself.

8.3 Maximising the lines in a chain

The definition of axial line placement calls for the lines in any solution to be as long as

possible, but it does not require that the solution be the one with the longest lines. In other

words it is not required to find the minimum solution where the sum of the length of the

lines is maximal. Finding such a solution is much harder than finding a solution matching

the original criteria. However, Space Syntax requires that the lines be as long as possible

so such a solution would be better than the current one because the lines could be longer.

This section discusses this problem for chains of convex polygons and goes to show that

this problem definition is much harder to solve for than the definition used in this research.

Previous research (Sanders et al. [2000b] and Phillips [2001]) has solved the problem

of axial line placement in chains of polygons by using an approach that first finds the set of

forward1 lines and then the set of backward lines then merging these to get a solution. The

1The forward direction is considered as going from left to right and right to left for backwards
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forward lines are generated by starting at the first adjacency in the chain and extending a

line as far forward (chainwise) as possible. Where that line ended a new line is started at the

next uncrossed adjacency and extended as far forward as possible. This process continues

until the last adjacency is crossed. This process yields a minimum cardinality set of lines

is the same as algorithm 3 with the while loop removed. The set of backward lines is

formed by performing the same operation used to find the forward lines but starting at the

last adjacency and extending lines in the opposite direction. This approach is used in this

section to suggest a way of finding the solution where the lines are of maximal length and

shows why this problem is difficult.

forward

paired

paired

backward

Figure 8.4: Forward and backward lines.

The chain algorithm (algorithm 3 from chapter 3) finds the forward set of lines then

extends them backwards to maximise them. This could be modified to produce longer lines

if both backward and forward sets of lines where found and where extended. The solution

with the longest lines could then be picked. Figure 8.4 shows an example of a forward

set and a backward set of lines. If this procedure was applied to the example in figure 8.4

then the solution shown in figure 8.5 would be found where the lines cross a total of 15

adjacencies. However, this is not the solution where the lines cross the greatest number of

adjacencies. Such a solution is shown in figure 8.6. This solution takes a combination of the

forward and backward lines. However, the following discussion will show that a solution

that has the longest lines may contain a line that cannot be derived from either a forward or

a backward line but must lie somewhere in between a pair or them.

Both the forward and the backward set have the same number of lines because can be

generated by the chain algorithm, so it is possible to match each line in one set with a line in

the other. The first line from the forward set will be paired with the last line in the backward

set. The second line in the forward set is paired with the second last line in the backward set

and so on. These pairs are the lines that are “merged” if the previous technique of placing

axial lines in chains of rectangles is used.

Figure 8.7 shows a set of forward and backward lines on a section of a chain. Note that

the figure is just an abstract representation and not a real chain. Once a forward line and
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Figure 8.5: Solution from chain algorithm

Figure 8.6: Set of lines that cross the greatest number of adjacencies

a backward line are paired, the adjacencies that this pair spans forms a range in which an

axial line must occur. This is because the right end of the forward lines are as far right as

the lines can possibly go while still retaining the minimal solution. Similarly, the backward

lines are the lines where their left point is as far left as possible. The ranges in figure 8.7 are

labelled � ,
�

and � . The relevant adjacencies are labelled 0 to 21.

A single axial line must cross the adjacencies that both backward and forward lines cross

in a pair. For example, consider range
�

in figure 8.7. The forward and the backward lines

that form this range both cross adjacencies 9 to 13. This range is called an “essentail range”

because an axial line must cross these adjacencies in order for it to be in the minimum

cardinality solution. The other “essential” ranges where axial lines must occur in figure 8.7

are 17 to 20 and adjacency 5 on its own. Clearly, if an axial line was chosen to only cross

adjacencies 2 to 5 then lines from the neighbouring pairs would have to be extended to cross

the uncrossed adjacencies, meaning that the local choice of line would affect the choice of

lines for other pairs.

Consider range
�
. Suppose that adjacency 7 is partially visible to 15 but 6 is not partially

visible to 16. It is relatively easy to determine that the longest line that crosses the essential

range of
�

starts at 7 and ends at 15. However, suppose that adjacency 4 cannot see adjacency

6, then the line from 7 to 15 would affect the choice of line at range � because the forward

line would have to be picked where the longer line in range � would be the backward line.

If the forward line is chosen in this case then the choice of line for the range left of � would
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Figure 8.7: Representation of pairs on a section of chain.

also be affected, but it not possible to say whether this would be for the better at this point.

Therefore, the choice at the local stage affects the choice at other stages but it is seemingly

not possible to say how the local choice affects other choices. Figure 8.8 shows how this

situation can occur in an actual chain.
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Figure 8.8: A real example of figure 8.7

Finding an algorithm to find the truly maximal solution or proving that the problem is

NP-complete is left for future work.

8.4 Configurations related to the star of convex polygons

The star of convex polygons originated from another special case which has not been solved,

but investigating it produced the algorithm to solve the star. This section discusses how the

star relates to this special case as well some ideas that could lead to a solution. Naming

this special case is also left for future work. An example of the original problem is given in

figure 8.9.

The special case is made of a main chain and a number of other “offshoot” chains. In

figure 8.9 the main chain is made up of the polygons that are shaded. Each polygon in the

main chain must be adjacent to at most one polygon that is not part of the main chain and

begins (or ends) another chain of convex polygons. No other polygon in this “offshoot”

chain can be adjacent to any other polygon that is not part of this chain.

This special case could be useful because of its similarity to a road map. The main chain

would represent a major thoroughfare and the offshoot chains represent roads that intersect

with it.
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Figure 8.9: Origin of the star

It probably is not obvious what this problem has to do with the star of convex polygons

but figure 8.10 shows a rather bizarre special case of this special case which shows the

connection. The shaded polygons form the offshoot chains and the rest form the main

chain. The axial lines that cross the adjacencies in the figure are all the possible merges

between the chains across the configuration.

Figure 8.10: A bizarre special case

Using the maximum cardinality matching algorithm on these lines will solve this partic-

ular case but it is possible that the matching could leave some of the adjacencies in the main

chain uncrossed such as the arrangement shown in figure 8.11. In figure 8.11, either the

vertical lines or the horizontal lines would be chosen by the matching algorithm so it would
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be desirable to bias the matching towards the lines that cross the most adjacencies. This can

be done by using the weighted, maximum cardinality matching algorithm where the number

of adjacencies each axial line crosses is used for the weight. This alone still does not solve

the whole problem alone because there are adjacencies that can be left uncrossed.

Once the weighted matching is done, it is possible that the solution with the smallest

number of axial lines can be found by just crossing the uncrossed adjacencies using the

chain algorithm. However, there may be many configurations like the one shown in figure

8.10 that are linked together by the main chain. In that case, the way that the matching is

done in one part of the configuration may affect the matching done in another because the

main chain may produce lines for merging.

Figure 8.11: Weighted maximum cardinality matching must be used

It is suggested that any attempt at a solution to this problem should start with applying

algorithm 4 to the offshoot chains so the axial line that crosses the adjacency between the

last polygon in the offshoot chain and the main chain is as short as possible. The chain

that begins the main chain and the chain that ends the main chain should be considered as

offshoot chains as well as demonstrated in figure 8.12. Figure 8.10 suggests that the problem

should be transformed to some sort of matching problem in much the same way that the star

of convex polygons was transformed by merging the lines across the main chain.

Beginning and end chains

Figure 8.12: Considering the beginning chain as an offshoot

The next step would be to identify all the possible merges across the main chain and

separate the merges that would not have common vertices in the corresponding graph. At

this point a greedy approach may fail because it is difficult to say how separate matchings

would affect others. Once a matching has been done there are more lines present in the main

chain which present new opportunities for matching so the merges may have to be redone.
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The problem presented here is more difficult than the star and may be NP-complete, but

it opens up a new area of special cases. Additional special cases can be formed by replacing

the central polygon with other arrangements. This particular problem can be seen as a star

with a chain replacing the central polygon. The more general the replacement for the central

polygon becomes, the more likely the configuration will occur in general configurations and

the more useful the special case would be in a heuristic.

8.5 Another starting point method – essential lines

Three methods have been given to find a starting point for the heuristic. The random and

least adjacency methods are desirable because they do not interfere with the workings of

the line heuristic. The network method is desirable because it solves a part of the config-

uration but may not merge well with the rest. A method that would combine the desirable

characteristics of both of these methods would be to find the essential lines.

Essential lines are defined in section 2.3 as lines that cross an adjacency that cannot be

crossed by another line that is not wholly contained in the essential line (i.e. redundant lines

are excluded). These are lines that must be in a solution with the least number of longest

lines. If these are found then the line heuristic would begin to pick lines that extend from

lines that are known to be in the minimal solution.

Essential lines

a

x

b
rr

Figure 8.13: Essential line starting point method.

Figure 8.13 shows two configurations where essential lines occur. Configuration �

shows a chain that is attached to a general configuration on one end and the other end is

not attached. The line that extends from the unattached side is essential because it is the
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only non redundant line to cross adjacency � . This case can easily be identified by finding

all the chains with an unattached polygon and extending a line from the unattached poly-

gon as far into the chain as it can go. If the line cannot extend into the general part of the

configuration then that line is essential.

The essential line in configuration � is the same line that the chain algorithm would

place. If this line was used as a starting point then the broken lines in configuration � would

be found but they could also be found by using the chain algorithm from the unattached

edge. However, the line heuristic would find the same result but may be inefficient so the

chain algorithm would probably be better.

At this point, the broken lines can be seen as essential but they do not meet the definition

given in section 2.3 because other lines that are not redundant can cross all the adjacencies

that the broken lines cross. This can be rectified by changing the definition of redundant to

the following.

� Redundant - each of the adjacencies crossed by this line is already crossed by one

choice line and one or more essential lines.

This definition means that the broken line closest (chain wise) to the essential line indi-

cated becomes essential, which, in turn, means that the other broken line is also essential.

However, a line that is made redundant by this definition may still have been in a minimum

cardinality solution because the choice line that excluded it may not have been chosen be-

cause all of the adjacencies crossed by this choice line may be crossed by the redundant line

and another choice line. This only means that the solution without the redundant line might

be a solution where the total length of the lines is less than that of the total length of the

lines in the solution with the redundant lines but the number of lines would still be the same

in both solutions because all the adjacencies crossed by the redundant lines are crossed by

the choice line and some essential lines.

Configuration
�

shows a case where an essential line occurs somewhere in the middle

of a chain. This may be a very restrictive case because it seems to occur only when two

polygons are adjacent to the same edge of another polygon in two different places in a

chain. The adjacencies, indicated as � in figure 8.13, satisfy this condition.

Other lines can be placed based on the position of this essential line by using the chain

algorithm starting at the polygons that contain the ends of the essential line and contin-

uing outwards. This case is not yet fully understood so future work may investigate the

requirements and detection of this special case.

Other configurations may exist that can be identified as having essential lines so future

work may be dedicated to finding these configurations or proving that none exist.

8.6 Improvements to the network of stars heuristic

Chapter 7 shows that the network of stars algorithm works relatively badly as a starting point

method. This may be because the heuristic itself works badly. Unfortunately, the empirical
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analysis focused on testing the line heuristic itself. It would be desirable for future work

to improve and compare the network heuristic to this heuristic and the exact solution. The

conclusion to chapter 5 has already suggested that the network of stars heuristic can be

improved by transforming it to some graph problem.

However, the stars of convex polygons algorithm from chapter 4 forms most of the

network heuristic and always finds the minimal solution. Therefore, it is not likely that

it works worse than the line heuristic in networks of stars. This means that the solution

produced by the network algorithm is not compatible with the solution found by the line

heuristic.

The most probable reason for this incompatibility is that the lines in the network are

not extended into the rest of the configuration where possible. This means that there can be

at most one extra line added for each unextended line from the network. However, a line

found by the line heuristic could extend into the network and may cross all the adjacencies

crossed by an unextended line, then the unextended line would be considered redundant

and removed. This is not a very good solution because there is no guarantee that the line

heuristic would find such a line.

The easiest way to solve the problem would be to plug the lines that are found by the

heuristic and have ends in the rest of the configuration into the search function from

section 6.4 and picking the longest line. This was not done because, by the time this had

been discovered, the test cases had already been run. Time was running short and it would

have been impractical to re-run the test cases. However, there are other ways this could be

done that may be more effective.

rest of the configuration

stars

A
B

Figure 8.14: A general configuration with stars
�

and
�

In figure 8.14, the broken lines are lines that can be extended into the rest of the con-
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figuration. Instead of extending these lines into the rest of the configuration they can be

deleted. The remaining lines can be used as a starting point, meaning that the adjacencies

that are indicated by the arrows in figure 8.14 are marked as origins.

This method gives more freedom of choice in cases like star
�

in the figure, where a

line from the rest of the configuration can cross a star back into the rest of the configuration.

The network heuristic can also be redone so that the broken lines are as short as possible

by using the reduceChain function described in the heuristic. This would mean that the

lines that extend from the star can cross as many adjacencies in the rest of the configuration

as possible.

8.7 Improvements to the line heuristic

There are two areas where the heuristic can be improved.

� Reducing the complexity

� Reducing the number of lines found

The first attempt at reducing the complexity would be to find a sub-quadratic algorithm

for visibility. The visibility algorithm is already linear, however, only one adjacency is

tested at a time so the algorithm for a whole chain of adjacencies becomes quadratic. The

algorithm would have to be an online algorithm because it cannot be known which adja-

cencies are going to be added in the future. Finding such an algorithm would make any

heuristic more efficient because the visibility algorithm has to be used when doing axial

line placement.

Another improvement in the efficiency could come from improving the data structure.

Some balanced tree structures could be used to improve the efficiency of the insertion and

removal algorithms. As the data structure stands, some of the lines are repeated because

they come from different origin adjacencies. An efficient method of finding repeats may be

beneficial.

If the limit on the number of polygons is shown to be not polynomial in the number of

polygons, then the method of finding all the lines from an adjacency can be improved by

using a search that only searches along lines where an axial line is likely to be placed. Figure

8.15 demonstrates this concept. Searching in the right direction will most likely give longer

lines than searching in the wrong direction. Some angular sweep method may prove to be

useful but may prove to be just as inefficient. This may also decrease the number of lines

because the search algorithm in this document may terminate before the right directions

have been searched, resulting in much shorter lines than would otherwise be possible.

This method of choosing the right direction can improve the approximation for the

length of a chain by using the method of finding chains of adjacencies that a line cannot

cross or can only extend to a certain depth, mentioned briefly in section 8.2. This uses the

idea of “kinks” used in Sanders [2002] to develop heuristics for ALP-ALOR. For rectangles,
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Figure 8.15: Searching in the right direction.

a kink occurs when two polygons in a chain are adjacent to the same side of another polygon

in the same chain. Figure 8.16 shows an example of a kink in a chain.

kink

Figure 8.16: An example of a kink in a chain of rectangles.

If a kink occurs in a chain then it is impossible for one axial line to cross all the ad-

jacencies in the chain. The search function can have a preprocessing stage where chains

are searched for using a depth first search. The search stops descending when a kink is

discovered.

The definition of kinks given for rectangles works for convex polygons, however, they

occur infrequently, but there are other methods of identifying kinks in a chain. Once such

method is demonstrated in figure 8.17.

Assume that the search is adding adjacency � . To identify the kinks, consider the lines
�
�

� �
,

� � � � ,
� � �

� and
�
� � � , and form the angles � and � . If �

� � or � � � then an axial

line cannot cross adjacency
�

,
�

and � . Identifying other methods is left for future work.

This method can be used in conjunction with the angular sweep method to get a better idea

of the length of a line if it was extended in a certain direction.

The number of lines found by the heuristic can be reduced by implementing the essential

lines method for finding a starting point. This would start the heuristic in a polygon where

a line in the minimal solution is known to start. However, there may be no essential lines in

the configuration so another method will have to be used.
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Figure 8.17: An example of a kink in a chain of convex polygons.

8.8 Conclusion

This chapter shows that the subject of axial line placement in convex polygons is far from

closed. Many more special cases that have polynomial solutions may exist and more ef-

ficient heuristics need to be found that find better solutions. However, this document has

made a large contribution to the field by introducing a new heuristic and finding polynomial

time algorithms for two special cases.
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Chapter 9

Conclusion

9.1 Introduction

The research presented in this document has covered a few different areas in axial line

placement in convex polygons to develop the heuristic for the general case. This chapter

gives some final remarks on the various elements that have been brought together to find a

good heuristic and the heuristic itself is remarked upon too.

The first three sections discuss the special cases that were studied in this research. These

special cases where only used as preprocessing for the heuristic for the general case but they

have applications in other areas of axial line placement. The chains of convex polygons are

the most basic special case considered and can be considered an extension of the work done

in visibility. The resolution of the conflict between stars of convex polygons resulted in the

network of stars which is similar to a town plan, and the study of town plans is a major

application area of axial line placement.

The heuristic for the general case of axial line placement is discussed in section 9.5

where the results are reviewed. The algorithm is the first attempt at producing a heuristic

for finding a minimum cardinality set of lines that cross the adjacencies in a configuration

of convex polygons, so the research is considered a success even though the heuristic has a

high complexity.

9.2 Chains of convex polygons

The study of chains of polygons started with placing orthogonal lines in configurations of

orthogonal rectangles and was then expanded to allow the placement of lines of arbitrary

orientation. This document has taken the next step, which is to develop an algorithm for

placing lines of arbitrary orientation in configurations of convex polygons.

The algorithm is proven to find the minimum cardinality set of lines to cross the adja-

cencies in a chain and is
����� � 	

where
�

is the number of adjacencies.

The algorithm makes a large step towards completing the work on chains of polygons

because convex polygons are the most general type of polygon allowed by the problem of
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axial line placement. The only area that may need to be researched is finding the solution

where the sum of the lines is maximal (discussed in chapter 8). However, this requires a

restatement of axial line placement, so this may never be necessary. If this is the case, then

this document completes the study of axial line placement in chains of polygons.

Chains of convex polygons can be viewed as a fundamental part of axial line placement

since they can be seen as an extension of the visibility algorithm. The search algorithm

from chapter 6 finds a chain with adjacencies that can be crossed by one axial line and are

built in a depth first manner by using the visibility algorithm. The chain algorithm could

be used in the same manner with more advanced path finding strategies to build a better

heuristic.

9.3 Stars of convex polygons

The star of convex polygons is a new special configuration of convex polygons and is made

up of a central polygon with a number of chains connected to it. The future work chapter

has suggested that future research should attempt to replace the central polygon with other

configurations such as a chain. However, the problem of a star of convex polygons trans-

formed into maximum cardinality matching which is a well known graph theory problem.

In light of this, it may be possible that more special cases can be found that transform into

other graph theory problems.

This document has presented a quadratic algorithm to find the least number of axial

lines to cross the adjacencies in a star of convex polygons. This is a good result as it uses

the chain algorithm multiple times yet manages to have the same complexity as the chain

algorithm itself.

9.4 Networks of stars of convex polygons

The purpose behind investigating special cases is to integrate them into a heuristic. In this

research they were detected in a configuration and solved using the appropriate algorithm.

If this is done with stars then conflicts happen between stars that share the same chains. To

resolve this conflict, the network of stars special case was developed.

The network of stars differs from the other two special cases because it is unlikely that

there exists a polynomial time algorithm to place axial lines across its adjacencies. However,

town planning is an application of axial line placement and the network of stars resembles

a town plan. This means that the algorithm developed is relevant besides its application to

the heuristic so further research would be useful.

9.5 The heuristic for general configurations of convex polygons

The greedy heuristic for general configurations of convex polygons is an algorithm that can

be applied to any configuration that will be considered in the area of axial line placement.
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Chapter 7 shows that the heuristic works well, at least for small cases.

At each step, the heuristic chooses a line based upon the lines already chosen. This

means that some initial set of lines needs to be found. Various starting point methods were

developed and are presented in this document. These starting point methods include the

network of stars algorithm which is shown to work badly relative to the other starting point

methods presented. However, this is conjectured to be because the solution found by the

network of stars algorithm is not merged well with the solution found by the heuristic rather

than because the solution found by the heuristic is bad itself. This document conjectures that

further work on merging the two solutions will probably show that this approach produces

better solutions than the other starting point methods.

9.6 Conclusion

This document gives solutions to many different areas of axial line placement in convex

polygons. The research nearly completes the work on chains and introduces new types of

special cases that may have polynomial time solutions. Additionally, the special cases are

much more suited for development than trees of convex polygons.

The heuristic presented in this document is not very efficient but it is the first algorithm

that can be used to find a set of lines to cross the adjacencies in a set of convex polygons.

This is a good result because the problem of axial line placement is NP-complete and an

algorithm now exists that can be applied to any configuration of polygons that will be con-

sidered in the area of axial line placement.

Additionally, previous research has focused on developing heuristics for and finding

special cases of configurations of rectangles. This meant that the solutions tended to focus

on the geometry of rectangles rather than the nature of the problem of axial line placement.

Attempted to abstract away from the geometry as much as possible. This produced a special

case that is solvable in polynomial time and a good heuristic which may pave the way for

further research.
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Appendix A

Terminology

Various terms are defined here that are used throughout the document. Almost all of the

terms are defined as in Sanders [2002] but exist in many other resources.

� A point � is represented by a pair of coordinates
� � � �

	
in Euclidean space.

� A line is represented by two points � and
�

(which can be any two distinct points on

the line) and is denoted
� � � � .

� A line is orthogonal if it is parallel to one of the Cartesian axes.

� A line segment is represented by a pair of points � and
�

where the points are the

endpoints of the line segment; and the line segment is denoted by � � .

� A line segment is orthogonal if it is parallel to one of the Cartesian axes.

� A path is a sequence of points � � � � � ��� � � � � � and the line segments joining them (see

fig A.1).

� The line segments in a path are called edges.

� A closed path is a path whose last point is the same as its first point (see fig A.1).

� A closed path is also called a polygon.

� The points defining the polygon are called the vertices of the polygon (see fig A.1).

� A polygon
�

can also be defined as a collection of
�

vertices, � �
�
� �

��� � � �
��� , and

�

edges, ��� � �
�
� � � �

��� � � �
� � � � � �

�
� � ��� .

� A simple polygon is a polygon where no two non-consecutive edges intersect (see fig

A.1).

� The set of points enclosed by a simple polygon forms the interior of the polygon.
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� A convex polygon is a simple polygon whose internal angles are all less than or equal

to 180 degrees. Alternatively, if a car was driving along the boundary of a convex

polygon then it would only make left turns at the vertices (or right turns depending

on which way it was going) (see fig A.1).

path closed path
(polygon)

simple polygon convex polygon

vertex

<180

Figure A.1: Polygons

� Let
�

and
�

be two polygons that do not overlap. If an edge from
�

and an edge

from
�

share a line segment, this line segment is an adjacency (see fig A.2).

� A chain of convex polygons is a configuration of convex polygons where all polygons

are adjacent to at most two other polygons. Two polygons in the chain must only

be adjacent to one other polygon. These will form the beginning and the end of the

chain. This ensures that the chain is not a loop (see fig A.2).

� If
�

is a polygon with or without holes, a partition of
�

is the set of convex polygons

that covers the entire area of
�

without overlapping. Figure A.3 shows an example

of a partition with the original polygon on the right. The number of polygons in a

partition should be minimal but finding such a partition has been shown to be NP-

hard [Lingas 1982].

� Axial lines are one dimensional extensions of the sight lines from particular spaces

[Hillier et al. 1983]. In this document, an axial line is defined by the set of adjencies

it crosses.

� ALP-OLOR is the problem of placing lines that are orthogonal to the Cartesian axes

upon adjacencies between orthogonal rectangles. Where orthogonal rectangles are

rectangles with edges orthogonal to the Cartesian axes. This is discussed further in

section 2.3.1.
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Adjacencies

Figure A.2: A chain of convex polygons

Figure A.3: A partition with the original polygon on the right

� ALP-ALOR is the problem of placing lines of arbitrary orientation upon adjacencies

between orthogonal rectangles. ALP-ALOR is discussed further in section 2.3.2.

� ALP-ALCP is the problem of placing lines of arbitrary orientation upon adjacencies in

collections of convex polygons. A special case of ALP-ALCP is discussed in section

2.3.4.
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Appendix B

A property of a minimum cardinality

set of lines for ALP-ALCP in chains

of convex polygons.

Lemma 3 No minumum cardinality solution to axial line placement in chains of convex

polygons can have three or more lines that cross a single adjacency.

Proof – by contradiction

Assume that there are three lines, �
� �

and � in a minimal solution to axial line placement

in chains of convex polygons that cross adjacency
�
. For this proof, a line is considered to

end after another line begins if it ends on the same adjacency as the other begins. There are

four cases to consider below which are illustrated in figures B.1, B.2, B.3 and B.4. Without

loss of generality, assume that � starts before
�

and � , and
�

starts before � for the first three

cases.

1. � ends after
�

and �

2.
�

ends after � and �

3. � ends after � and
�

4. any of the lines starts (ends) at the same point as another starts (ends).

Case 1 in figure B.1: In this case, � begins before the two other lines and ends after the

two other lines. By lemma 1 � crosses all the adjacencies that
�

and � cross making them

redundant, meaning they cannot be in a solution with the least amount of lines that contains

� .

Case 2 in figure B.2:
�

begins before � and ends after � , therefore, by lemma 1 � is

redundant and cannot be in any minimal solution containing � and
�
.
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ba cq

Figure B.1: Case 1:
�

and � are redundant

a b cq

Figure B.2: Case 2: � is redundant

Case 3 in figure B.3 : Here, � begins before the start of line
�

and ends at some adjacency

after
�
, so all adjacencies crossed by

�
, before

�
are crossed by � , by lemma 1. Similarly, �

ends after
�

ends, and � starts before
�

so � crosses all the adjacencies after
�

that
�

crosses,

by lemma 1. Now, both � and � cross
�

so � together with � cross all the adjacencies that
�

crosses making
�

redundant. Therefore
�

is not in any minimal solution that contains � and

� .
Case 4 in figure B.4: If any of the lines start at the same point as any of the other lines,

then one of the lines must cross the adjacencies that the other crosses, by lemma 1, so one

of the lines cannot be in the minimal solution. Similarly, proved when they end at the same

point.
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ca b q

Figure B.3: Case 3:
�

is redundant

v q u

Figure B.4: Case 4: � is redundant
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