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Abstract 

 
 
 

 

Artificial Neural Networks has seen tremendous growth in recent years. It has been applied 

to various sciences, including applied mathematics, chemistry, physics, and engineering 

and has also been implemented in various areas of finance. Many researchers have applied 

them to forecasting of stock prices and other fields of finance. In this study we focus on 

option pricing. An option is a contract giving the buyer of the contract the right but not the 

obligation to purchase stock on or before a certain expiration date. Options have become a 

multi-billion dollar industry in modern times, and there has been a lot of focus on pricing 

these option contracts. Option pricing data is highly non-linear and its pricing has its basis 

in stochastic calculus. Since neural networks have excellent non-linear modeling 

capabilities, it seems obvious to apply neural networks to option pricing. In this thesis, 

many different methodologies are developed to model the data. The multilayer perceptron 

and radial basis functions are used in the stand-alone neural networks. Then, the 

architectures of the stand-alone networks are optimized using particle swarm optimization, 

which leads to excellent results. Thereafter, a committee of neural networks is investigated. 

A committee network is an average of a combination of stand-alone neural networks. In 

contrast to stand-alone networks, a committee network has great generalization capabilities. 

Many different methods are developed for attaining optimal results from these committee 

networks. The methods included different forms of weighting the stand-alone networks, a 
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non-linear combination of the committee members using another stand-alone neural 

network, a two layer committee network where the second layer was used for smoothing 

the output and a circular committee network. Lastly, genetic algorithm, with the 

Metropolis-Hastings algorithm, was used to optimize the committee of neural networks. 

Finally all these methods were analyzed.  
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1. Thesis Layout 

 

In this thesis different forms of neural networks are applied to option pricing data.  

 

Chapter 2 introduces options. Options are an area of finance that has become a multi-billion 

dollar industry in recent years. Options can be divided into two types, namely, a call and a 

put option. There are two categories of options which are called the American option and 

the European option. Pricing options is deep rooted in stochastic calculus and there is no 

standard pricing technique. Current pricing techniques include variations of the binomial 

and Black/Scholes pricing models.  

 

In Chapter 3 neural networks are investigated. The multi-layer perceptron (MLP) and radial 

basis functions (RBF) are two types of neural networks. A committee of networks is a 

combination of stand-alone networks. This type of network generalizes far better than 

individual stand-alone networks. The stand-alone networks within the committee of 

networks can be combined using various averaging methods. Many different techniques are 

developed to attain the best combination of the stand-alone networks. Three weighting 

techniques are investigated to attain good performing committee networks, namely, equal 

weighting, standard weighting and priority based weighting. A committee with neural 

network integrator, a double layered committee network and a circular committee network 

are the methods developed to improve the performance of a committee network. 

 

Neural network architecture plays an important role in model accuracy. Chapter 4 discusses 

different optimization techniques that are used to find ‘optimal architecture’ networks. 
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Particle swarm optimization is a global optimization tool which simulates the social 

behaviour of a school of fish or a flock of birds during the hunt for food. This technique is 

used to optimize the stand-alone MLP and RBF networks. Thereafter, a modified genetic 

algorithm is introduced, where the Metropolis-Hastings Algorithm is used in the selection 

step. This is used to optimize the committee network. 

 

All the above methodologies are applied to option pricing data from the South African 

Foreign Exchange and implemented in Chapter 5. The results are then summarized and 

discussed in Chapter 6.  

 

From this thesis the following paper was published (Appendix B): ‘Option Pricing Using a 

Committee of Neural Networks and Optimized Networks’, IEEE International Conference 

on Systems, Man and Cybernetics, The Hague, Holland, 2004, pages 434 - 438. 
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2. Introduction to 

Options 

“Even a cursory glance at the Wall Street 
Journal reveals a bewildering collection of 
securities, markets, and financial 
institutions. Although it may appear so, the 
financial environment is not chaotic: there is 
a rhyme or reason behind the vast array of 
financial instruments and the markets in 
which they trade.” [1]  
 

2.1 Introduction 
 

A current pledge of money or other resources with the expectation of reaping future 

benefits is an investment [1]. The time an investor spends researching and purchasing the 

stock as well as the actual value of the stock is the investment one makes to reap future 

benefits.  

 

Material wealth of a society is one of the factors determined by the productivity of its 

economy. This productivity is a function of the economy’s real assets. Real assets include; 

the land, buildings, machines, etc. Financial assets, such as stocks and bonds, are the assets 

by which individuals hold their claims on real assets. Real assets generate income to the 

economy, while financial assets only define the allocation of the income among the 

investors.  

 

Financial assets can be subdivided into three broad categories; fixed income, equity and 

derivatives. Fixed income assets guarantee either a fixed stream of income or a stream of 
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income based on a certain formula. Equity represents ownership in a share of a firm. 

Derivatives provide payoffs based or derived from other assets such as stocks and bonds. 

Derivatives have become key investment tools. One of the most important uses of 

derivatives is to hedge risks or transfer these risks to other parties. [1] Hedging is a 

technique used to control risk. Intuitively high risk, or high volatility, stocks could develop 

into huge profits or possibly huge losses. 

 

With the coming of globalization investors can benefit from a range of new choices. 

Investors can participate, in foreign markets easily with the increasingly efficient and cost 

effective communication currently established. The growth of derivative markets in recent 

years has been a significant development in financial markets. 

 

2.2 Options 
 

“Horror stories about large losses incurred by high-flying traders in the derivative markets 

such as those for futures and options periodically become a staple of the evening news. 

Indeed, there were some amazing losses to report in the last decade; several totaling 

hundreds of millions of dollars, and a few amounting more than a billion dollars. In the 

wake of these debacles, some venerable institutions have gone under… 

 …These stories, while important, fascinating, and even occasionally scandalous, 

often miss the point. Derivatives when misused can indeed provide a quick path to 

insolvency. When used properly, however, they are potent tools for risk management and 

control.” [1] 
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An option can be defined as a contract giving the buyer, of this contract, the right but not 

the obligation, to buy or sell a particular underlying asset at a specific price on or before 

a certain date. 

 

Options are securities that were first traded in the 1970’s, since then there has been 

dramatic growth in these markets and they are currently being exchanged all over the 

world. The Chicago Board Options Exchange (CBEO) was the first national exchange to 

start trading standardized options. The success of these contracts crowded out the existing 

over-the-counter traded options almost immediately. Options are also traded in huge 

volumes by banks and other institutions [2]. 

 

Option markets attract many investors and if used properly could be very lucrative. Options 

are written on common stock, stock indexes, foreign exchange, agricultural commodities, 

precious metals and interest rate futures as well as custom made options on the over-the-

counter market. Forwards are contracts that protect the parties involved from price 

fluctuations. A forward contract is an arrangement of delivery of an asset at a future date at 

an agreed upon price. Futures markets are markets that use formalized and standardized 

forward contracts [1]. 

 

Derivatives provide a means to control risk that is qualitatively different from the 

techniques traditionally considered in the theory of managing portfolios. Derivatives are 

securities whose values are derived from other assets [2]. Derivatives are a powerful tool 

for hedging and speculation because its value is based on the value of other securities [1]. 
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Businesses often use options to hedge, for example companies often use forwards and 

exchange listed futures to protect against fluctuations in currency or commodity prices, 

thereby helping to manage import and raw materials cost. Options can serve a similar 

purpose for businesses as they do for homeowners; interest rate options such as caps and 

floors help companies control financing costs in much the same way that caps on 

adjustable-rate mortgages do for homeowners. Options contracts are divided into two types, 

viz. the ‘Call’ and ‘Put’ option. 

 

2.2.1 Call Option 

 

A call option gives its holder the right to buy an asset for a specific price called the exercise 

price, on or before some specified expiration date. For example, a May call option on a 

particular stock with exercise price R80 entitles its owner to purchase the stock for a price 

of R80 at any time up to and including the expiration date in May. [1] 

 

The holder of this call is not required to exercise this option. The holder will choose to 

exercise only if the market value or current value of the asset to be purchased exceeds the 

exercise price. Otherwise, the call option could be left unexercised. Therefore, if the stock 

price is greater than the exercise price on the expiration date, the value of the call option 

will equal the difference between the stock price and exercise price; but if the stock price is 

less than the exercise price at expiration, the call option will be worthless. The net profit on 

the call is the value of the option minus the price originally paid to purchase it. This is 

illustrated by Figure 2.1 and in the equation below: 
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   Payoff to call option holder   =   Current – Exercise    if    Current > Exercise             [2.1] 

                          0                  if    Current < Exercise  

 

 

Figure 2-1 Payoff to call option where the exercise price is 60 

 

2.2.2 Put Option 

 

A put option gives its holder the right to sell an asset for a specified exercise price on or 

before a specified expiration date. A March put on a particular stock with exercise price of 

R80 entitles its owner to sell the stock to the put writer at a price of R80 at anytime before 

expiration in March [1]. 

 

While profits on calls increase when the asset value increases, profits on puts increase 

when the value of the asset decreases. A put option will only be exercised if the exercise 

price is greater than the market value of the asset. The value of the put option is the 
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difference between the exercise price and the market value of the underlying asset. This is 

illustrated by Figure 2.2 and in the equation below: 

 

  Payoff to put option holder   =        0             if    Current � Exercise                  [2.2] 

          Strike – Current       if    Current < Exercise 

 

 

Figure 2-2 Payoff to put option with an exercise price of 30 

 

An option is ‘in the money’ if exercising the option would result in profit; conversely, an 

option is ‘out of the money’ when exercising the option would not be profitable. 
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2.2.3 American and European Options 

 

An American option allows its holder to exercise the right to buy (call option) or sell (put 

option) the underlying asset on or before the expiration date. A European option allows its 

owner to exercise the contract only on the contracts expiration date. Because of the 

flexibility of American options they are more valuable than European options. Most 

options traded are American. 

 

2.2.4 Options in Practice 

 

A hedge is an investment made in order to reduce the risk of adverse price movements in a 

security, by making an opposite transaction in a related security, such as an option [2]. 

 

Corporations in which individual investors place their money have exposure to fluctuations 

in all kinds of financial prices, as a natural by-product of their operations. The effect of 

changes in these prices on reported earnings can be overwhelming. Often, companies say in 

their financial statements that their income was reduced by falling commodity prices or that 

they enjoyed a windfall gain in profit [1]. 

 

Another reason for hedging the exposure of the firm to its financial price risk is to improve 

or maintain the competitiveness of the firm. Companies compete with other companies in 

their sector and with companies located in other countries that produce similar goods for 

sale in the global marketplace.  
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The hedging objective of the firm is the reduction in the variability of corporate income as 

an appropriate target. This is consistent with the notion that an investor purchases the stock 

of the company in order to take advantage of their core business expertise. 

 

Foreign currency options can guarantee a certain rate or whatever is needed to secure prices 

and remain competitive. 

 

Protective put is a strategy used to hedge. Investing in a stock alone might incur too much 

risk, since in principle; one could lose all the invested money. By purchasing a put option 

on the same stock you guaranteed a payoff equal to the put option’s exercise price, 

regardless of how low the value of the stock falls [1]. 

 

2.2.5 Option Valuation 

 

The fact that an option is ‘out of the money’ does not mean the option is valueless, even 

though immediate exercise would be profitless. The options’ value still remains positive 

since there is always a chance that the underlying assets’ value will increase sufficiently to 

allow for the option to be profitable at the expiration date. The value of a call option before 

expiration is illustrated in Figure 2.3. The time value of the option is the difference between 

the options’ price and the value the option would have if it were expiring immediately. It is 

this reason that the options’ value is positive when there is still positive time to expiration. 

Most of this time value is a type of volatility, as long as the option holder can choose not to 

exercise, the payoff cannot be worse than zero. The volatility value lies in the right not to 
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exercise the option if exercising would deem unprofitable. Hence, this volatility decreases 

as it becomes more likely that the option holder would exercise.  

 

 

Figure 2-3 Call option value before expiration [1] 

 

From Figure 2.3 we see that when the underlying asset price is low the option is worth very 

little, since there is little chance it would be exercised. When the underlying asset price is 

very high the option price increases one to one with it. 

 

Factors affecting the option value: 

 

The factors that affect the value of options (in the scope of this thesis) are; the underlying 

asset price, the exercise price, the volatility of the stock price, time to expiration and 

interest rate. This is tabulated in Table 2.1. 
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If this variable increases The Value of the Call Option 

Stock Price Increases 

Exercise Price Decreases 

Volatility Increases 

Time to Expiration Increases 

Interest Rate Increases 

Table 2-1 Determinants of call option values [1] 

 

The options’ value increases as the volatility increases due to the fact that the option holder 

cannot lose more than the actual price of the option, this means that volatility can only 

benefit the option holder positively. Longer time to expiration has a similar effect to 

increased volatility, the longer time the holder has to expiration the more the chances are 

that the underlying assets value can increase.  

 

2.2.6 Option Pricing Techniques 

 
Modern option pricing techniques, with roots in stochastic calculus, are often considered 

among the most mathematically complex of all applied areas of finance [3]. 

 

Binomial option pricing is a very popular option pricing technique; it involves constructing 

a binomial tree, illustrated in Figure 2.4. The tree represents possible paths that might be 

followed and or outcomes of a particular underlying asset’s price over the time period of 

the option contract [2]. 
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Figure 2-4 Stock and option prices in general two step tree .Here S represents the start and u, d, uu, ud 
and dd represent possible outcomes of the assets price over a certain time period. 

 

The outcomes of this technique are all the possible values that the underlying asset could 

have at different time intervals. Generalizing this and using all these possible prices the 

option is priced using appropriate techniques. A number of financial firms use variations of 

this model to value options. 

 

The year 1973 saw great inroads being made in this market, the work of Black and Scholes, 

with an option pricing model being developed [4]. In a Nobel Prize winning paper Black 

and Scholes derived a formula for calculating the exact value of European options, under 

certain assumptions. 

 

0 0 1 2( ) ( )T rTC S e N d Xe N dδ− −= −                                           [2.3] 
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Where: 

( )2
0

1

2 1

ln 2
S r TX

d
T

d d T

σδ

σ
σ

� � + − +� �
� �=

= −

 

And where 

0C  = Current call option value. 

0S  = Current stock price. 

( )N d = Probability that a random draw from a standard normal distribution will be less 

than d. 

X  = Exercise price 

δ  = Annual dividend yield of underlying stock. 

r  = Risk free interest rate 

T  = Time remaining until maturity (in years) 

σ  = standard deviation of the annualized continuously compounded rate of return of the 

stock. 

 

The assumptions are: 

� Geometric Brownian motion, of stock price movements, 

� Options have to be exercised at the expiration date (European), 

� Constant interest rate, 

� Continuous trading without dividends and tax applied to the stocks, 

� The market is frictionless [5]. 

Geometric Brownian motion is a continuous and stochastic process. 
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Although research shows that the Black/Scholes model outperforms other option pricing 

models, real data often violates the above assumptions. Because of this and since most 

options available in the market are American type options; other pricing methods need to 

be found [5]. 

 

Since this model is so easy to use, some of these assumptions are relaxed to adapt the 

model for real world applications. Many other techniques as well as variations of the 

Black/Scholes model have been developed in recent times.  

 

2.3 Conclusion 
 
 
Option contracts are presented in this chapter; first we discuss the different types of 

contracts, namely, a call option and a put option. We find that a call option has value even 

if the value of the underlying asset has dropped below the exercise price, and visa versa for 

a put option. American and European options are then introduced; American options are 

more valuable than European options, since they can be exercised at any date before the 

expiration date. The various factors that affect the value of an option are then explored.  

Option contracts are vital tools for risk management. Current methods for option pricing 

adopt variations of the binomial and Black/Scholes model. This chapter forms the basis of 

this thesis, as the methods developed are applied to data from these markets. 
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3. Neural Networks 

“Artificial Intelligence as most 
people see it suggests machines 
that are something like brains and 
is potentially laden with science 
fiction connotations of the 
Frankenstein mythos.” [24] 
 

3.1 Introduction 
 

A neural network is an assembly of interconnected processing elements, units or nodes, 

whose functionality is based on the animal neuron. The processing ability of the network is 

stored in the weights which are inter-unit connections. This ability is obtained by a process 

of adaptation to, or learning from, a set of training patterns [6]. The architecture of a 

network refers to how the processing elements are interconnected. 

 

Neural networks are frequently applied to statistical analysis and data modeling, where it is 

used as a substitute to standard non-linear regression or cluster analysis techniques. 

Therefore, they are used for classification, or forecasting. Some examples include image 

and speech recognition, character recognition, and domains and human expertise such as 

medical diagnosis, and financial market prediction. Neural networks fall within the sphere 

of artificial intelligence, so that neural networks are perceived as an alternative to the 

algorithmic techniques that have dominated in machine intelligence [6].  

 

Artificial neural networks could be seen as simplified models of the networks of neurons 

that arise in the animal brain [7].  
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 Neuroscientists and psychologists use neural networks as computational models of the 

animal brain developed by abstracting, what is believed to be, properties of real nervous 

tissue that are essential for information processing. The artificial neurons are simplified 

versions of their biological equivalent and there are neuroscientists who are doubtful of the 

power of these models. Mathematicians and physicists are drawn to neural networks from 

an interest of non-linear dynamical systems [6].  

 

All these groups use neural networks for different reasons from intelligent systems for 

computer scientists and engineers to understanding the complexities and properties of the 

network for mathematicians. Possibly the largest users of neural networks are people using 

it to analyze poorly understood data that arise in the workplace. 

 

Neural networks are very sophisticated modeling techniques capable of modeling 

extremely complex functions. In particular, neural networks are non-linear. For many years 

linear modeling has been the commonly used technique in most modeling domains since 

linear models are simple to solve and also because non-linear models can be approximated 

by linear models. Where the linear approximation was not valid or the linear approximation 

was too localized to give globally valid results the models suffered accordingly [8]. The 

architecture of the networks plays an important role in the accuracy of the networks. 

 

There are many different types of neural networks, we look at two; namely, the Multi-layer 

perceptron and Radial Basis Functions: 
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3.2 Multi-Layer Perceptron (MLP) 
 

MLP’s are feedforward neural networks. They learn how to transform input data into a 

desired response. Feed forward neural networks provide a general framework for 

representing non-linear functional mappings between a set of input variables and a set of 

output variables. This is achieved by representing the non-linear function of however many 

variables in terms of compositions of non-linear functions of a single variable, called 

activation functions [6]. 

 

Networks with just two layers of weights are capable of approximating any continuous 

functional mapping [9]. They are supervised networks, so they require a desired response to 

be trained. An illustration of an MLP is shown in Figure 3.1. 

 

 

Figure 3-1 Multilayer perceptron with inputs x, hidden units z and outputs y 
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The above is an example of a MLP network. This network has d inputs, m hidden units and 

c outputs. The output of this figure analytically is as follows: to attain the thi  hidden unit, a 

weighted linear combination of the d input values and adding a bias, is formulated to give: 

 

(1) (1)
0

1

d

j ji i j
i

a w x w
=

= +�                                                           [3.1] 

 

Here ijw  represents a weight in the first layer, going from input i to hidden unit j and 0jw  

denotes the bias for hidden unit j the hidden unit can be incorporated into the weight matrix 

by including an extra input variable ox . Hence the equation now becomes: 

 

(1)

0

d

j ij i
i

a w x
=

=�                                                              [3.2] 

 

The activation of hidden unit j is then obtained by transforming the linear sum in the above 

equation using an activation function ( )g g  to give: 

 

( )j jz g a=                                                                  [3.3] 

 

The outputs of the network are obtained by transforming the activations of the hidden units 

using the second layer of processing elements. Thus for each output unit k, we construct a 

linear combination of the outputs of the hidden units of the form: 

 

(2)

0

M

k kj j
j

a w z
=

=�                                                               [3.4] 
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The activation of the thk output unit with activation 0 1z = is obtained by transforming this 

linear combination using a non-linear activation function, to give: 

( )k ky g a=                                                               [3.5] 

Combining all the above equations gives: [1] 

 

 (2) (1)

0 0

M d

k kj ji i
j i

y g w g w x
= =

� �� �= � �� �
� �� �

� �                                                       [3.6] 

 

Another explanation has its basis in thinking of the neural network as implementing a 

mathematical function of its inputs, and is especially pertinent if we are dealing with 

continuous input and output signals. For example if we wanted to make a forecast nP of a 

particular stock value based on previous values of the stock price 1 2, ,...n n n kP P P− − −  we want 

to train a network to discover the functional relation between quantities: this is to discover 

the underlying function 1 2( , ,... )n n n n n kP P P P P− − −=  [8]. 

 

A MLP can perform categorization of an arbitrary number of classes and with an arbitrary 

decision surface. All that is required is that we have a set of inputs and targets, and that we 

fix the number of hidden units that are going to be used. 

 

3.3 Radial Basis Functions (RBF) 
 

Radial basis functions are another major class of neural networks; here the distance 

between the input vector and the prototype vector determines the activation unit. Radial 

Basis Functions have their roots in techniques for performing exact interpolation of a set of 
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data points in a multi dimensional space. The exact interpolation problem required every 

input vector to be mapped exactly onto the corresponding target vector. [6] 

 

The radial basis function approach introduces a set of N basis functions, one for each data 

point, which take the form ( )nx xφ −  where ( )φ g  is some non-linear function. Thus the 

thn function depends on the distance nx x− , between x  and nx . The output of the mapping 

is then taken to be a linear combination of the basis functions: [9] 

 

( )( ) n
nh x w x xφ= −�                                                   [3.7] 

 

The most common form of basis function is the Gaussian: 

 

( )
2

2exp
2
x

xφ
σ

� �
= −� �

� �
                                                        [3.8] 

 

Where σ  is a parameter that controls the smoothness properties of the interpolating 

function. 

 

Generalizing this for several outputs: each input vector must be mapped exactly onto an 

output vector nx  having components nt . The equation becomes: [9] 

 

( )( ) n
kn

n

h x w x xφ= −�                                                      [3.9] 
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Radial basis functions are illustrated in Figure 3.2; here the network has d inputs, m basis 

functions and c outputs. 

 

Figure 3-2 Radial basis functions with inputs x, basis functions φφφφ  and outputs y. 

 

Figure 3.3 illustrates the fact that mappings past through each point. The exact interpolating 

function for noisy data is typically a highly oscillatory function. Functions such as these are 

generally undesirable. The interpolation function that gives the best generalization is 

typically smoother and averages over the noise in the data. Another disadvantage of exact 

interpolation, is the fact that the number of basis functions are equal to the number of 

patterns in the data set, and when computing can become costly to evaluate [6]. 
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Figure 3-3 Exact interpolation using radial basis functions 

 

There are a number of modifications to the exact interpolating procedure that provides a 

smooth interpolating function as well as the reduction of the number of basis functions, 

which are determined by the complexity of the mapping rather than by the size of the data 

set. 

 

This technique makes use of a vector of parameters with the same dimension as the input. 

The difference between the weight w and input x vectors shows how much the input 

matches the feature template defined by the weights.  

 

RBF’s are usually two layer networks in which the first (hidden) layer is a series of RBF’s 

and the second (output) layer is a set of linear units that can be thought of as computing a 

weighted sum of the evidence from each of the feature template RBF units. 

 



 
32 

3.4 MLP vs. RBF 
 

The MLP and RBF techniques provide approximations for non-linear functional mappings. 

In both cases the mappings are in the form of functions of a single variable. The structures 

of the network, however, are different. Some of these differences are discussed below [9]: 

 

1] A MLP network has very complex connectivity patterns that frequently consist of many 

hidden layers. A RBF network, however, consist of only two layers of weights. The first 

layer contains the parameters of the basis functions, and the second layer forms linear 

combinations of the activations of the basis functions. 

 

2] The hidden units of MLP networks are dependent on weighted linear summations of the 

inputs and are then transformed by non-linear activation functions. By contrast, the hidden 

units of the RBF network are formed by the distance between the prototype vector and the 

input vector, transformed by a non-linear basis function.  

 

3] The output from a MLP network is usually a non-linear combination of cross-coupled 

hidden units. This non-linearity often leads to problems with local minima when training 

these networks, which leads to slow convergence during training. By contrast, for a given 

input vector, the output of a RBF network is influenced by only a few hidden units which 

have significant activations this is because it has localized functions which form a 

representation in the hidden unit space. 

 

4] The parameters in the MLP are all trained in one step using supervised training. The 

RBF, however, uses a two step training strategy where the first step determines the basis 
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functions by unsupervised techniques and the second step uses supervised training to 

determine the second layer weights. 

 

3.5 Training 
 

Training a neural network is usually done by presenting a training set to the network, and at 

each step of an iterative process, adjusting the weights of the network to bring its output 

closer to the desired output. This process of changing or adapting the weights is referred to 

as the learning rule of the network [6]. 

 

3.6 Cross-validation 
 

The objective of training a neural network is to have a network that performs best on 

unseen data. A simple method to compare the performance of neural networks is to test the 

errors of the networks using a separate validation / test data set. This is done by training 

many networks on a training set and comparing the errors of the networks on the validation 

set. The networks that performed best on the validation data set are then selected. This 

technique is called cross validation [6]. 

 

3.7 Architecture: Generalization and Overtraining 
 

Another very important aspect of attaining good results from neural networks is choosing 

the correct architecture. Architecture, as it is dealt with here, refers to the amount of hidden 

units. 
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The training patterns, in Figure 3.4, are shown by circular symbols and the two classes 

shown by open and filled symbols. The two lines represent the output of neural networks; 

where the solid line has been trained more than the dotted line. The solid line classifies all 

the training patterns correctly. The dotted line, however, misclassifies four of the eighteen 

training patterns, and it may appear at first sight that this network has performed poorly 

since there will be some residual error. Suppose that some previously unseen test patterns 

are presented, as shown by the square symbols, again filled and open squares correspond to 

the different classes. 

 

 

Figure 3-4 Generalization and overtraining 

 

 

These have been classified correctly by the dotted line and the network is said to have 

generalized from the training data. This would seem to support the choice of using fewer 

training epochs since it may be that the two misclassified training patterns result from noisy 
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data. In this case the network has implemented a good model of the data, which captures 

the essential characteristics of the data in pattern space. 

 

Consider now the solid line. The training set is identical to that used in the previous 

example and each one has been successfully classified, resulting in a significantly smaller 

error. However, three of the nine test patterns have been incorrectly classified so that, even 

though the training data are all dealt with correctly, there may be many examples, 

especially those close to the decision boundary from each class, that are misclassified. The 

problem is that the network has too much freedom to choose its decision surface and has 

overfitted it to accommodate all the noise and intricacies in the data without regard to the 

underlying trends. 

 

Generalization and overfitting is directly related to the architecture used in the neural 

network to model the data, since training iterations and the number of hidden units are key 

elements during the training of the network, and adjusting these elements could lead to 

great improvements in the networks modeling capability [6]. 

 

Figure 3.5 shows how increasing the training epochs eventually leads to greater error 

values on the validation set, and in turn leads to poor generalization, this illustrates the 

importance of finding the correct architecture for modeling accuracy. Cross-validation is 

used to determine when to stop training [6]. 
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Figure 3-5 Cross-validation behaviour [6] 

 

 

We may think of neural networks as discovering features in the training set that represent 

information essential for describing or classifying these patterns. 

 

One of the criticisms sometimes leveled at neural networks is that, although they may 

generate good models of data, it is difficult to then analyze the structure of the resulting 

model or to discover the relative importance of the inputs.  

 

3.8 Option Pricing and Neural Networks 
 

Many of the recent applications of Neural Networks to finance, especially option pricing, 

have just touched on the comparison of a single method to the Black/Scholes option pricing 

model. 
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Yao et al [5] modeled the Japan Nikkei 225 future using a MLP, with one hidden layer, 

with the backpropagation technique, to optimize their option pricing model. They found 

that neural networks, because of the non-linear modeling ability, was able to get better 

results on more volatile markets when compared to the model by Black & Scholes, and 

suggest that when the Black/Scholes assumptions do not hold, neural networks should be 

used. 

 

Duarte and Ait-Sahalia [10] proposed monotonic and convex shape restrictions on a 

nonparametric locally linear estimator, these methods could be very useful when there is a 

limited amount of data. 

 

A nonparametric estimation procedure, proposed by Broadie et al [11], dealt with the 

computational complexity encountered in estimating the American Option price. They also 

compared the nonparametric methods to the current parametric model; they found that 

there were sometimes large discrepancies between the results of the two models which 

raised several questions with regard to the current models. 

 

Path integrals where found to be fast and accurate for a large part of financial derivatives 

with early exercise features by Montagna et al [12], they also found that neural networks 

were a very flexible and powerful tool to predict the price of options to a high accuracy. 

 

The daily S&P 500 index call options where modeled by Gencay and Qi [13]. They 

compared year by year pricing and hedging performance of feedforward networks without 

any regularization, where they found that these methods outperformed the baseline neural 

network model. Also, overfitting the network can be reduced by using regularization 
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methods. Lastly, all of their neural network models outperform the Black/Scholes model 

significantly. 

 

Statistical inference techniques are used to build neural networks to model the German 

stock index DAX [14]. By testing for the explanatory power of several variables serving as 

networks inputs, some insight into the pricing process of the option market is obtained. The 

results indicate that statistical specification strategies lead to economical networks which 

have a superior performance when compared to the Black/Scholes model. 

 

Ghaziri et al have used a multi-layer feedforward neural network and neuro-fuzzy networks 

to price S&P 500 index call options and they have compared it to the Black/Scholes model. 

The results show that the neural network approach outperforms the Black/Scholes model 

provided that a sufficient number of patterns are presented [15]. 

 

A hybrid neural network was used by Lajbcygier et al to predict the difference between the 

conventionally accepted modified Black option pricing model and observed intraday option 

prices for stock index option futures. Their results reflect that a modified bootstrap 

predictor outperforms the hybrid and bagging predictors [16]. 

 

3.9 Committee of Neural Networks 
 

Modeling using neural networks often involves trying multiple networks with different 

architectures and training parameters in order to achieve acceptable model accuracy. 

Selection of the best network is based on the performance of the network on an 
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independent validation or test set for instance, and to keep only the best performing 

network and to discard the rest. There are two disadvantages with such an approach; first, 

all the effort involved in training the remaining neural networks is wasted, second, the 

networks generalization performance is greatly reduced. 

 

These drawbacks can be overcome by combining the networks together to form a 

committee (Perrone and Cooper) [17]. The importance of such an approach is that it could 

lead to significant improvements in the predictions on new data, while involving the 

training of a few additional networks. In fact performance of a committee can be better 

than the performance of the best stand-alone network used in isolation [9]. The committee 

of networks contains neural networks with different architectures and/or different types of 

neural networks trained on the same training data set. It might even include different kinds 

of network models with a mixture of conventional models. 

 

The error can never increase by using a committee of networks. Typically the error is 

reduced considerably by taking the average error of the combined networks [18]. 

 

COM AVE E≤                                                          [3.10] 

 

Another advantage of a committee of neural networks is the fact that it is more reliable than 

stand-alone networks. 
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 The committee network can be represented by Figure 3.6: 

 

 

Figure 3-6 Standard committee network 

 

Architectures of neural networks play a big role in capturing different aspects of data. Since 

the members of the committee network have different architectures, some will make better 

predictions than others; we expect to be able to reduce the error further if we give greater 

weight to the better performing committee members than to others. Thus, we consider 

different forms of committee networks given by weighted combinations of the member 

networks. 
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3.9.1 Weighted Averages 

 

There are many possible ways, mathematically, to average the neural networks in a 

committee network: 

 

1] One could divide the outputs of all the networks by the number of networks to attain an 

average, giving each network an equal weight, though not the most effective way to reduce 

the error, this method is easy to implement computationally. 

 

2] Intuitively, one of the best ways to achieve minimum error from a committee of 

networks is to give greater weight to the stand-alone networks that give better results. This 

technique uses the following weighting function: [18] 

 

1 1 2 2 ...COM n nY y y yα α α= + + +                                         [3.11] 

 

Where theα ’s are the weighting variables and, 

 

1 2 ... 1nα α α+ + + =                                                  [3.12] 

 

n is the number of networks used in the committee. According to a theorem [18], there 

exists an optimal committee network that gives the least mean square error if the weight 

variables α  are chosen to be: 
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Where ( )eε  is the expected error. This method will be referred to as the standard weighting 

method (SW), in this text. 

 

3] Another way of assigning weights to the outputs is to use priory based weighting, Figure 

3.7. In this method weights are assigned according to the individual priority of the data 

points as well as satisfying the overall reduction in error. 

 

 

Figure 3-7 Priority based weighting 

 

a, b and c are different approximations made by three different neural networks in a 

committee. As we can see from Figure 3.7 a, is the most accurate while c is the least 

accurate. Network c, however, does approximate the data better at a point that has high 

priority. High priority points are points that are more important to the modeler in a 

particular simulation. This weighting method satisfies both criteria, namely, better overall 
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results as well as better approximations at points of high priority. It does this by using a 

strategy similar to the above weighting method, and by adding a priority variable: 

 

1 1 1 2 2 2( ) ( ) ... ( )COM n n nY p y p y p yα α α= + + + + + +                       [3.14] 

Here  

1 1 2 2( ) ( ) ... ( ) 1n np p pα α α+ + + + + + =                             [3.15] 

Where  

1

n

i
i

p k
=

=�                                                          [3.16] 

And 

1

1
n

i
i

kα
=

= −�                                                       [3.17] 

 

k is a value the modeler chooses according to the model. The value k is divided according 

to which neural network approximates the high priority points better, the better the 

approximation of the thi  network, the bigger the chunk of k, ip  gets according to some 

division rule. 

 

There are a number of other ways to average the outputs in a committee network. Some 

employ non-linear techniques. Below are a few different ways to average the committee 

network using a neural network as a non-linear combiner. 
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3.9.2 Committee with Neural Network Integrator (CNNI) 

 
This committee has the same architecture as the one mentioned previously, the technique 

uses either a MLP or a RBF to combine the networks in the committee to create a non-

linear weighted average of the neural networks, Figure 3.8. The inputs for the integrator 

MLP or RBF are the outputs of the first layer of networks. This is the same output that 

would be combined using the methods discussed in the previous section. This integrator 

network serves to smooth the outputs of the first layer networks.  

 

Figure 3-8 Committee with Neural Network Integrator (CNNI) 

 

 

With regard to computational time, the ‘committee neural network integrator’ method only 

requires one more network to be trained; this does not affect computational time much. 
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3.9.3 Double Layered Committee Network (DLCN) 

 

This technique, illustrated in Figure 3.9, uses a smoothing neural network after each of the 

first layer networks. The output of the first layer is the same as described in Section 3.9.1 

for the standard committee network. This output provides the input for the second layer. 

The second layer smoothes these inputs and the second layer outputs are now combined 

using the weighting methods mentioned in Section 3.9.1. 

 

Figure 3-9 Double layered Committee Network (DLCN) 

 

With the ‘double layered committee network’ the computational time is doubled, since 

twice the amounts of networks have to be trained. 
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3.9.4 Circular Committee Network (CCN) 

 

The ‘circular committee network’ (CCN) uses a jump technique, Figure 3.10. Firstly, the 

inputs to all the stand-alone networks are the same. During the next step the outputs are 

jumped to the neighboring neural networks to serve as inputs to the second step of training. 

The second training step serves to smooth the outputs of the networks. Thereafter the 

weighting techniques in Section 3.9.1 are used to combine the outputs of this committee 

network. 

 

Figure 3-10 Circular Committee Network (CCN) 

 

The computational time required by the (CCN) technique is much less than that required 

for all previous techniques as it requires only four neural networks being trained twice. 
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3.10 Conclusion 
 
 
In this chapter neural networks were introduced. Neural networks originated from attempts 

to mimic the animal brain. Two types of stand-alone neural networks are investigated, 

namely, the MLP and RBF networks. Architectures of neural networks are then discussed 

in detail. In this text the number of hidden units, are referred to as the architecture. A 

committee of neural networks is an average of a few stand-alone networks. We investigated 

different approaches for averaging the networks using linear as well as non-linear methods. 

These included the following methods; the committee with neural network integrator 

(CNNI), the double layered committee network (DLCN) and the circular committee 

network (CCN). The methods introduced in this chapter are implemented in Chapter 5. 
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4. ‘Optimal 

Architecture’: 

Neural 

Networks and 

Optimization 

Techniques 

 

4.1 Introduction 
 

As mentioned before neural network architecture plays a big role in model accuracy. The 

architecture in this text refers to the number of hidden layers used to train the neural 

network. Finding the correct amount of hidden layers is crucial when dealing with such 

highly non-linear data, such as option pricing data. Because of the non-linearity, the 

amounts of hidden layers are almost counterintuitive, which leads, again, to high non-

linearity with regard to the best architecture. In an attempt to find the best architectures that 

model this particular data, the techniques described below are proposed to find ‘Optimal 

Architecture’ networks. Particle Swarm Optimization is used to find stand-alone ‘Optimal 

Architecture’ networks, while Genetic Algorithm finds the optimal architecture for a 

committee of neural networks. 
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4.2 Optimization Techniques 
 

Global optimization algorithms imitating principles of nature have been very useful in 

recent times and have been applied in various domains. Such phenomena can be found in 

annealing processes, central nervous systems and biological evolution, which in turn have 

lead to the field of Evolutionary Computation (EC) [19]. 

 

Evolutionary computation includes; Genetic algorithms, evolutionary programming, 

evolution strategies, classifier systems, genetic programming and numerous other problem 

solving approaches that are based on biological observations. These observations date back 

to Charles Darwin’s ‘theory of evolution’, hence the term Evolutionary Algorithms [20]. 

 

This term ‘evolutionary algorithm’ refers to evolutionary processes used by computer-

based problem solving systems. Evolutionary algorithms maintain a population of variables 

or structures, which evolve according to rules of selection, reproduction, recombination and 

mutation. Each individual in the population receives a measure of its fitness in its 

environment which is equivalent to its function value. Individuals with high fitness are 

chosen more readily for reproduction. Exploration across the domain is done by 

recombination and mutation by perturbing particular variables or individuals. Although 

simplistic from a biologist's viewpoint, these algorithms are sufficiently complex to provide 

robust and powerful adaptive search mechanisms [19].  
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4.2.1 Particle Swarm Optimization (PSO)  

 

Particle Swarm Optimization (PSO) is an algorithm proposed by James Kennedy and R. C. 

Eberhart in 1995 [21], motivated by social behavior of organisms such as bird flocking and 

fish schooling. PSO as an optimization tool provides a population-based search procedure 

in which individuals called particles change their position with time. This method is related 

to evolutionary programming and was discovered through simulation of the simplified 

social model, namely, the synchronized flocking of birds or the movement of a school of 

fish. In a PSO system, particles fly around in a multidimensional search space. During 

flight, each particle adjusts its position according to its own experience, and according to 

the experience of a neighboring particle, making use of the best position encountered by 

itself and its neighbor. Thus, a PSO system combines local search methods with global 

search methods, attempting to balance exploration and exploitation [22]. 

 

Thus, PSO is a technique used to globally optimize non-linear functions. Since, a school of 

fish profits from previous experiences and discoveries of each member during the search 

for food [23]. As with most global optimization techniques particle swarm initializes a 

population of points, called particles, and uses them to calculate their function values either 

by selecting them randomly or at equal spacing across the space. At each iteration, this 

method influences the update of each particle according to the following: 

 

• Each particle’s best function value, 

• The function value of its fittest neighbor, 

• An element of randomness 
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This strategy is illustrated in Figure 4.1. 

                        

Figure 4-1 Pi = particle’s best position, Pg = neighbor’s best position, r = random direction, Pn = next 
move 

 

Figure 4.1 shows how this method updates the particles, influenced by the above directions. 

Algorithm: 

 

1. Create random particle population and assign to them random positions, 

2. Evaluate their function values at their current positions, 

3. Choose a set of neighbors for each particle, 

4. Update the particle population using the new direction, called the velocity,  

5. Repeat until a stopping criterion is met. 

 

The MLP and RBF network architectures were optimized using PSO, to find ‘Optimal 

Architecture’ MLP and RBF networks. The pseudo code for this technique is in Appendix 

A. 

 

pg 
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Pn 
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4.2.2 Metropolis-Hastings Algorithm (MHA) 

 

In mathematics and physics, the Metropolis-Hastings algorithm is an algorithm to generate 

a sequence of samples from the joint distribution of two or more variables. The purpose of 

such a sequence is to approximate the joint distribution. This algorithm is an example of a 

Markov chain Monte Carlo algorithm. The Metropolis-Hastings algorithm can draw 

samples from any probability distribution P(x), requiring only that the density can be 

calculated at x [24]. 

 

The key to the Metropolis-Hastings algorithm is to create a sampling strategy by which the 

probability of being in state a and moving to state b is the same as from b to a, subject to a 

few regularity conditions. This series of draws is accomplished by proposal and 

acceptance/rejection of candidate values x∗  [24]. 

 

Algorithm: 

 

for 1:j N=  
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The proposal of a candidate value x∗ is conducted through a proposal function ( | )jq x x∗ the 

form of which is quite arbitrary. In order to get a lot of x values, the values of x∗  should not 

be rejected too often. The arbitrariness of the proposal function ( | )q x x∗ and the lack of 

theory guiding our choice leave lots of room for experimentation [25]. The two functions 

that suggest themselves are the uniform and normal distributions [24]. The arbitrariness of 

the proposal function is supported in the acceptance/rejection step, which corrects for 

unlikely steps from jx to x∗ by accepting them only with the ratio of moving from one to 

the other. 

 

4.2.3 Genetic Algorithm (GA) 

 

The genetic algorithm is a model of machine learning, which derives its behavior from a 

metaphor of the processes of evolution in nature. This is done by the creation within a 

machine of a population of individuals represented by chromosomes. The individuals in the 

population then go through a process of evolution. Some variables or individuals are better 

or fitter than others. Those that are better are more likely to survive and regenerate their 

genetic material. Reproduction allows the creation of genetically radically different 

offspring that are still of the same general species. At the molecular level what occurs is 

that a pair of chromosomes bump into one another, exchange chunks of genetic information 

and drift apart.  This is the recombination operation, which genetic algorithms generally 

refer to as crossover, because of the way that genetic material crosses over from one 

chromosome to another. Crossover takes place when the selection of who gets to mate is 
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made a function of the fitness of the individual. The genetic algorithm uses stochastic 

processes, but the result is distinctly non-random [19]. 

 

Firstly, an initial population of parent individuals (feasible solutions) is randomly created. 

Each individual is represented by a chromosome, a string of characteristic genes. Secondly, 

all the individuals are ranked with a fitness function appropriate to the problem at hand. 

The fittest of these, pass directly to the following generation; a process of ‘elitism’. 

Thirdly, a breeding population is formed by selecting top-ranking individuals from those 

that remain. This is the natural selection step. Lastly, these selected individuals undergo 

certain transformation via genetic operators to reduce children for the next generation. 

Operators include recombination by crossover and mutation (a randomly generated gene 

that is somehow altered). Mutation ensures a genetic diversity in the population [19]. This 

process is repeated for a certain number of generations, or until some stopping criterion is 

met.  

Algorithm: 

 

1. generate initial population 

2. generate offspring: 

• selection: probability of being accepted according to fitness 

• crossover: parents are paired to generate offspring 

• mutation: each string has a very small chance of being mutated 

• selection/rejection: selection or rejection of the new generation according 

to some criterion 

3.   Repeat step 2 unit stopping criterion is met. 
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4.2.4 Genetic Algorithm with Metropolis-Hastings Algorithm 

 

In the above algorithm the selection/rejection step of the new generated population is not 

specified, and many methods can be used to do this step. Metropolis-Hastings Algorithm 

has been adopted in this text to make the selection or rejection of the new generation in the 

genetic algorithm. 

 

The Genetic Algorithm Metropolis-Hastings Algorithm (GAMHA) method was then used 

to manipulate the architectures in the individual MLP and RBF networks so as to optimize 

the committee network. The pseudo code for this technique is in Appendix A. 

 

4.3 Conclusion 
 

The importance of neural network architecture is emphasized again in this chapter. Two 

optimization strategies are introduced. These strategies will be applied to neural networks 

in Chapter 5 to find ‘optimal architecture’ networks. Particle swarm optimization is a 

recently developed algorithm for global optimization; its algorithm is derived from the 

synchronized flocking of birds during the hunt for food. Genetic algorithm is then 

introduced. This algorithm is based on the theory of evolution or specifically ‘survival of 

the fittest’. The Metropolis-Hastings Algorithm is used as the selection step in this 

modified genetic algorithm. 
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5. Implementation 

and Results 

5.1 Introduction 
 

The data set used was collected from the South African Foreign Exchange between January 

2001 and December 2003 [26]. The data contained the underlying stock price, strike price, 

time to maturity, stock volatility, market to market price as well as the high and low prices. 

 

The key parameters needed for option pricing are [2]: 

 

• underlying asset price,  

• volatility of the underlying asset, 

• interest rate, 

• time to maturity 

 

Therefore these were the parameters used as inputs. The network output was the strike 

price. Approximately two thirds of the data set was used for training and the rest for the 

testing.  

 

To implement these neural networks, the Netlab software toolbox [27] was used and in 

particular, the MLP and RBF software programs were used to achieve the results below. 

With the Netlab toolbox you can implement and train various types of neural networks, as 

well as tweak the architectures to achieve good modeling results. 
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5.2 Stand-alone MLP & RBF Networks 
 

As expected, the architectures seemed to play a very important role in model accuracy.  

Architectures of the stand-alone MLP and RBF networks were chosen on a trial and error 

basis, whichever architecture modeled the test/validation data better would be chosen. This 

lead to many different architecture trials and sometimes particular neural networks took 

much longer than average. Below are the results of two different architectures for both the 

MLP and RBF. The first MLP is illustrated in Figure 5.1. 

 

Figure 5-1 Standard MLP 1 

 

This particular MLP took just over a second to train and has an error of almost 9 %. When 

increasing the number of hidden units 10 times, i.e. changing the architecture, it took 

almost ten times longer, it took almost 9 seconds and the error was reduced to about 3.5 %, 
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Figure 5.2. This shows just how much architecture affects the computational time of 

training MLP networks.  

 

 

 

Figure 5-2 Standard MLP 2 

 

RBF networks are characterized by fast training. Below we see how RBF attains similar 

results at a fraction of the computational cost. The error in Figure 5.3, just as the MLP in 

Figure 5.1 is about 9 %, whereas computational time used to train the RBF network is 5 

times less, at about 0.2 seconds. Increasing the number of hidden units had a different 

effect on the results; the error increased using more hidden layers. This illustrates, again, 

the importance of attaining the correct architecture. The error in Figure 5.4 increased 
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dramatically to about 60 %, with time required for computation still relatively fast, at just 

under a second. 

 

 

Figure 5-3 Standard RBF 1 
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Figure 5-4 Standard RBF 2 

 

5.3 ‘Optimal Architecture’ Multi-layer Perceptron (MLP) and 
Radial Basis Functions (RBF) using Particle Swarm 
Optimization (PSO) 
 

To solve the neural network optimal architecture problem, optimization techniques were 

employed. Particle Swarm Optimization was used to find the optimal architecture of neural 

networks by optimizing the error function; this was achieved by adjusting the number of 

hidden units. The results from these ‘Optimal Architecture’ MLP and RBF networks are as 

follows: 

 

The error was greatly reduced achieving near perfect results. Results for both, MLP and 

RBF, ‘optimal architecture’ networks were less than 0.005%, Figure 5.5 and Figure 5.6, 
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respectively. The time it took to achieve these results were unfeasible in a business or work 

environment; it sometimes took in excess of one hour to run an ‘optimal architecture’ 

simulation. This was due to the amount of networks that had to be trained and the highly 

non-linearity of the data, which meant that finding a global minimum could take a really 

long time. When running the simulation for a shorter period, say a few minutes, the results 

would still be a great improvement on the stand-alone MLP and RBF networks. This shows 

that the ‘optimal architecture’ program would choose local minima as its output.  

 

 

Figure 5-5 ‘Optimal Architecture’ MLP 
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Figure 5-6 ‘Optimal Architecture’ RBF 

 

5.4 Committee Networks 
 

When comparing committee networks to stand-alone networks, generalization capability, 

computational time as well as portability, always need to be considered. Committee 

networks in particular have excellent generalization capabilities (as mentioned in Chapter 

3.9), but intuitively take a much longer time to compute. This is not always true, since the 

time taken during trial and error to find good performing stand-alone networks could take 

far longer than the computational time taken to train a committee network. Another very 

important aspect is portability. To be able to run the simulation on different data set 

without previous knowledge or understanding of the data is essential in a working 
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environment. With regard to this attribute, the committee network outperforms any stand-

alone network. 

 

The standard committee network consists of 10 MLP and 10 RBF networks, each of which 

gets the same inputs. Each neural network in the standard committee had different 

architectures. The error from the individual stand-alone networks varied between 0.3 % and 

13 %. The architectures were chosen in a random range of values. Figure 5.7 illustrates the 

output of the standard committee network. 

 

Initially the stand-alone networks were each given equal weights followed by the Standard 

Weighting (SW) method mentioned in Chapter 3.9. The error was effectively reduced by 

using this technique to average the MLP and RBF networks, Figure 5.8. The error of the 

standard committee network with equal weights was just under 3 %, while the error when 

using the SW weighting method produced an error of only about 0.7 % with the 

computational time only increasing very slightly. The computational time both these 

committee networks were just under 33 seconds. This is excellent performance, when 

comparing these results to the ‘optimal architecture’ networks. 
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Figure 5-7 Standard Committee 

 

 

Figure 5-8 Standard Committee with SW weighting 
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5.4.1 Committee with Neural Network Integrator (CNNI) 

 

As mentioned in Chapter 3.8, there are many different committee network architectures 

that can be implemented. The CNNI method uses a stand-alone MLP or RBF network to 

combine the outputs of the entire committee network. The final network in the CNNI 

method uses all the outputs of the first layer of networks as its input. When using a MLP 

network as the final network the results were again a great improvement on the standard 

committee with equal weights and it also performed better than the standard committee 

with the Standard Weighting (SW) method. The error for the CNNI method was just over 

0.1 seconds with a computational time of about 34 seconds. 

 

When using a RBF network as the final network an even better improvement was achieved. 

The error was reduced to less than 0.001 while the computational time was about the same 

as using the MLP network. 
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Figure 5-9 CNNI MLP 

 

Figure 5-10 CNNI RBF 
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It’s worthwhile to note that the architecture of the final layer network also plays an 

important role in model accuracy. As in the first section of this chapter, trial and error was 

used to find good performing final networks. 

 

5.4.2 Double Layered Committee Network (DLCN) 

 

Intuitively, this method should double the computational time since there is a smoothing 

neural network after each of the first layer networks, thus doubling the amount of networks 

to be trained. The architectures of the second layer networks were substantially different 

thus leading to extra computational and programming time outside of the simulation time. 

The results were an improvement on the standard committee with equal weights but failed 

to improve on the results with the Standard Weighting (SW) method. The resulting error 

was just over 1 % for the final layer being combined with equal weights and just under 1 % 

for final layer being combined by the SW weighting method. Thus, the big increase in 

computational time doesn’t lead to better results. The computational time for the actual 

simulation without the extra setting up time was just under a minute. 
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Figure 5-11 DCLN with SW weighting 

 

5.4.3 Circular Committee Network (CCN) 

The CCN method achieved much better results than the standard networks keeping in mind 

the fact that it took much less time computationally. Using equal weights for combining the 

networks, the resulting error was less than 0.06 % with a computational time of about 14 

seconds. While the error was reduced even further by using the Standard Weighting (SW) 

method, the resulting error was just over 0.0002 %, with a similar computational time. 
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Figure 5-12 CCN with SW weighting 

 

5.4.4 Genetic Algorithm with Metropolis-Hastings Algorithm (GAMHA) 

Committee Network 

 

Finally, using the technique discussed in Chapter 4.2.4 for optimizing the committee of 

neural networks, the individual networks within the committee network were optimized in 

such way so as to improve the performance of the committee network. Again, as with 

‘optimal architecture’ stand-alone networks, the computational time was unfeasible in any 

real world environment. To achieve good results the simulation had to run for several 

hours. In this particular simulation 20 MLP and 20 RBF networks were used to achieve an 

error of just under 0.08 % using the Standard Weighting (SW) method. 
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Figure 5-13 GAMHA 

 
 
 

5.5 Conclusion 
 
 
 
All the techniques introduced in previous chapters are now implemented using the 

methodologies developed as well as the Netlab software toolbox. Firstly the stand-alone 

MLP and RBF networks are implemented using architectures that are chosen by trial and 

error. The architectures of these stand-alone networks are then optimized using particle 

swarm optimization. Different committee networks are then introduced. The stand-alone 

networks within the committee network are combined using various techniques developed. 

These include the following methods; the committee with network integrator, the double 
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layered committee network and the circular committee network. The results and 

conclusions are discussed further in the next chapter. 
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6.  Discussion &    

 Conclusion 

 

The results in Chapter 5 are summarized in Table 6.1 and discussed below: 

 

Type of Network Trained Computational Time  Resulting Error 

Stand-alone MLP 1 1.015 s 8.885 % 

Stand-alone MLP 2 8.485 s 3.2653 % 

Stand-alone RBF 1 0.235 s 8.2807 % 

Stand-alone RBF 2 0.969 s 54.4137 % 

Optimal MLP (with PSO) Over 1 hour 0.0045 % 

Optimal RBF (with PSO) Over 1 hour 0.0046 % 

Standard Committee (equal weights) 32.406 s 2.9258 % 

Standard Committee (SW weighting) 32.535 s 0.6797 % 

CNNI (MLP) 33.255 s 0.1411 % 

CNNI (RBF) 32.955 s 0.00068 % 

DLCN (equal weights) 57.425 s 1.3675 % 

DLCN (SW weighting) 57.465 s 0.9255 % 

CCN (equal weights) 13.715 s 0.0597 % 

CCN (SW weighting) 13.735 s 0.00024 % 

Optimized Committee (GAMHA) Several hours 0.0783 % 

Averages (excluding optimal networks) 23.6829 s 1.9013 % 

Table 6-1 Table of results 
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Numerous conclusions can be drawn from the above results. Firstly, the computational time 

for the stand-alone networks are misleading, this is because good performing architectures 

need to be found by trial and error and this could lead to several networks being trained to 

eventually find good performing networks. The stand-alone RBF greatly outperforms the 

MLP with regard to computational time, the MLP, however, seems to be more a reliable 

network across all types of architectures. 

 

Optimizing the stand-alone networks produce great results at the expense of a huge amount 

of computational time. Thus, these networks are unfeasible in a working environment 

where there are time constraints. The improvements of the results when compared to the 

unoptimized stand-alone networks, however, are huge. 

 

The generalization and portability capabilities of committee networks are easily accessible 

with computational time that is proportional to the amount of networks trained. Using the 

Standard Weighting (SW) method, the committee achieves results comparable to the 

‘optimal architecture’ networks. Since this network has major portable and generalization 

advantages over the ‘optimal architecture’ network, it seems the obvious choice when 

comparing the two. 

 

The committee with neural network integrator method (CNNI) shows even more 

improvement over the above methods, with slightly more computational time. The one 

draw back of this particular method is that it could be over fitted to the validation/test data. 

It this respect it loses some of its generalization capabilities. The computational time is 

slightly misleading since a good architecture needs to be found for the final network. Here 

the RBF network outperforms the MLP network in the final layer. 
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The double layered committee network (DLCN) sees an increase in error as well as 

computational time. This method also included a lot of extra time to find architecture in the 

second layer that produced good results. Overall this network when compared to the CNNI 

and the standard committee doesn’t perform well. 

 

Table 6.1 shows that the best performing network is the circular committee network (CCN) 

with SW weighting and since this network gives the best error result as well as the fact that 

its computational time is well below the average. The computational time with network is 

again misleading because good architectures needed to be found to achieve these results. 

 

It is difficult to judge which is the best method overall. Each method has its advantages and 

disadvantages when comparing errors, computational time, generalization capability as 

well as portability capability. 

 

Overall, since it has excellent generalization capability as well as portability, as well as the 

fact that it gives good results in just over average computational time, the standard 

committee with SW weighting seems a good choice for application to this type of highly 

non-linear data. 
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Appendix A 

A.1 PSO 
 
Pseudo code: 

Initialization: 

No.of.particles 

No.of.neighbours 

Stopping.criteria 

Dimension 

Bestfunctionvalues    (* an array of each particles best function value 

For all particles [i] 

 For dimensions [j]   

   Particle.next[j] = random 

   Particle.velocity = random(restricted) 

End 

End 

Particle.neighbours[i] = Getneighbours [i]    (*Getneighbours is a function that finds a 

particular 

(* particle’s neighbour 

PSO loop: 

While (best(Bestfunctionvalues)-worst(Bestfunctionvalues)) > Stopping.criteria 

 

  For all particles [i] 

   For dimensions [j] 
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  Particle.current [j]  = Particle.next [j] 

    End  

 Fitness = Test (particle.current)  (*  Test is a function that attains the function 

value  

 If  fitness > Bestfunctionvalue [i]  

   Bestfunctionvalue [i] = fitness 

  Particle.best = particle.current 

 End 

 Fitneigh = getfittestneighbour   (* function to find a particle’s fittest 

neighbour 

 Particle.velocity = findnewvelocity   (* function to find a particle’s next 

position 

 Particle.next = Particle.current + Particle.velocity 

 End 

End 
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A.2 Optimal committee using GAMHA 
 

1. generate a committee of networks: 

generate architectures of stand-alone networks from a random range of values 

 

2. select parents: 

stochastic selection 

 

3. crossover using real coded GA 

1

1

(1 )

(1 )

i i i
i i

i i i
i i

x x y

y y x

α α
α α

+

+

= + −

= + −
 

 

where iα ∈ rand(-0.5,1.5) 

 

4. mutation using real coded GA 

probability of ix  being chosen = 0.01. 

( )i i i ix x U Lγ= + −  

γ =0.01 

U = upper limit 

L = lower limit 

 

5. selection using MHA 

for all ix  

draw x∗  from( (0,1)u N:  + µ ) draw u from (0,1)u U:  
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if 
( )
( )i

f x
u

f x

∗

<
 

then 1ix x+ ∗=  

else 1i ix x+ =  

 

6. repeat step 2 – 5 until stopping criterion is met 
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Abstract* - The derivative market has seen tremendous 
growth in recent times. We look at a particular area of 
these markets, viz. options. The pricing of options has its 
roots in stochastic mathematics since option pricing data 
is highly non-linear. It seems obvious to apply the training 
techniques of neural networks to this type of data. The 
standard Multi-Layer Perceptron (MLP) and Radial Basis 
Functions (RBF) were used to model the data; these 
results were compared to the results found by using a 
committee of networks. The MLP and RBF architecture 
was then optimized using Particle Swarm Optimization 
(PSO). The results from the ‘optimal architecture’ 
networks were then compared to the standard networks 
and the committee network. We found that, at the expense 
of computational time, the ‘optimal architecture’ RBF and 
MLP networks achieved better results than both un-
optimized networks and the committee of networks. 
 
Keywords: Options, Multi-layer Perceptron (MLP), 
Radial Basis Functions (RBF), Particle Swarm 
Optimization. 
 

1. Introduction 
 
“Horror stories about large losses incurred by high-flying 
traders in the derivative markets such as those for futures 
and options periodically become a staple of the evening 
news. Indeed, there were some amazing loses to report in 
the last decade; several totaling hundreds of millions of 
dollars, and a few amounting more than a billion dollars. 
In the wake of these debacles, some venerable institutions 
have gone under… 
 …These stories, while important, fascinating, and 
even occasionally scandalous, often miss the point. 

                                                 
* IEEE International Conference on Systems, Man and 
Cybernetics, The Hague, Holland, 2004. 

Derivatives when misused can indeed provide a quick path 
to insolvency. When used properly, however, they are 
potent tools for risk management and control.” [14] 
Many investors, these days, are opting for securities such 
as mutual funds stocks and bonds [4]. Options are a 
security that was first traded in the 1970’s, since then there 
has been a dramatic growth in these markets and they are 
currently being exchanged all over the world. Options are 
also traded in huge volumes by banks and other 
institutions [4]. 
 
Option markets attract many investors and if used properly 
could be very lucrative. The year 1973 saw great inroads 
being made in this market, the work of Black and Scholes, 
with an option pricing model being developed [2]. This 
particular model, though very good, depends on various 
assumptions which at times fail.  
 
Many of the recent applications of Neural Networks to 
finance, especially option pricing, have just touched on the 
comparison of a single method to the Black/Scholes 
option pricing model. 
 
In this study we intend to compare different neural 
network techniques in option pricing. Standard MLP and 
RBF networks are compared to the committee of networks 
approach, which consisted of a few MLP and RBF 
networks. We then used Particle Swarm Optimization to 
optimize the architectures of the MLP and RBF networks. 
The results for all the techniques were then compared. We 
show that network architecture plays a huge role in the 
models’ accuracy, and that with the appropriate 
architecture near perfect results can be achieved. 
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2. Background 
 
2.1 Options  
 
An option is a contract giving the buyer, of this contract, 
the right but not the obligation, to buy or sell a particular 
underlying asset at a specific price on or before a certain 
date. Underlying assets include stocks, stock indices, 
foreign currencies, debt instruments, commodities, and 
future contracts [14].  
 
There are two types of options, viz. a call and a put. A call 
option gives the holder the right to buy the asset by a 
certain date for a certain price. A put option gives the 
holder the right to sell the asset by a certain date for a 
certain price. 
 
The two categories are the American option and the 
European option. An American option can be exercised at 
any time between the date of purchase up to the expiration 
date. A European option can only be exercised at the 
expiration date. The possibility of early exercise makes 
American options more valuable than otherwise similar 
European options; it also makes them more difficult to 
value. [12] 
 
Modern option pricing techniques, with roots in stochastic 
calculus, are often considered among the most 
mathematically complex of all applied areas of finance 
[12] 
 
In a Nobel Prize winning paper, Black and Scholes 
succeeded in solving their differential equation to obtain 
exact formulas for the prices of European call and put 
options, under certain assumptions [2]. The assumptions 
are: 

� Geometric Brownian motion of stock price 
movements, 
� Options have to be exercised at the expiration 
date (European), 
� Constant interest rate, 
� Continuous trading without dividends and tax 
applied to the stocks, 
� The market is frictionless [7]. 

 
Although research shows that the Black/Scholes model 
outperforms other option pricing models, real data often 
violates the above assumptions. Because of this and since 
most options available in the market are American, other 
pricing methods need to be found [7]. 
 
2.2 Neural Networks 
 
Neural networks are very sophisticated modeling 
techniques capable of modeling extremely complex 
functions. In particular, neural networks are non-linear. 
For many years linear modeling has been the commonly 
used technique in most modeling domains since linear 

models are simple to solve and also because non-linear 
models can be approximated by linear models. Where the 
linear approximation was not valid or the linear 
approximation was too localized to give globally valid 
results the models suffered accordingly [10]. 
Neural networks techniques learn by example. The neural 
network user gathers representative data, and then invokes 
training algorithms to automatically learn the structure of 
the data. Although the user does need to have some 
heuristic knowledge of how to select and prepare data, 
how to select an appropriate neural network, and how to 
interpret the results, the level of user knowledge needed to 
successfully apply neural networks is much lower than 
would be the case using some more traditional non-linear 
statistical methods [10]. 
 
Because of its non-linear modeling capability neural 
networks have recently been applied to option pricing data 
which is highly non-linear. 
 
2.2.1 Multi-Layer Perceptron (MLP) 
 
MLP’s are feedforward neural networks. They are 
supervised networks, so they require a desired response to 
be trained. They learn how to transform input data into a 
desired response, so they are widely used for pattern 
classification. With one or more hidden layers, they can 
approximate virtually any input-output map [1]. MLP’s 
are probably the most widely used architecture for 
practical applications. [3] 
 
The network can be described as follows: 

± (2) (1) (1) (2)

1 1

( ) tanh( )
M d

k kj ji i j k
j i

y x w w x b b
= =

= + +� �    (1) 

Where ±
kx  is the input, (1)

ij
w  and (2)

kj
w  are the first and 

second layer matrices to be minimized, (1)b  and (2)b  are 
the bias parameters associated with the hidden units, d is 
the number of inputs and M is the number of hidden units. 
In this case the linear activation function was used for the 
output and the hyperbolic tangent function was used in the 
hidden layers [3]. Because of its efficiency, the scaled 
conjugate gradient method was the optimization technique 
used to train the networks. 
 
2.2.2 Radial Basis Functions (RBF) 
 
RBF’s are a type of neural network employing a hidden 
layer of radial units and an output layer of linear units [3]. 
The activation of hidden units in a RBF network is given 
by a non-linear function of the distance between the input 
vector and a prototype vector [1]. The RBF network can 
be described as follows: 
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± ±
1
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k ij k
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y x w x xφ
=

= −�    (2)

     

Again ±kx  is the input, ( )xφ  is the non-linear activation 

function and ijw is the weight matrix to be minimized [3]. 

Because it is a distance, the absolute value between the 
prototype and input vectors is taken. RBF is characterized 
by its two stage training procedure which is considerably 
faster than the methods used to train the MLP. During the 
first stage the parameters of the basis functions are 
determined using fast unsupervised methods and the 
second stage determines the weights in the output layer 
[1]. 
 
RBF trains faster than a MLP. Another advantage is that 
the hidden layer is easier to interpret than the hidden layer 
in an MLP. Although the RBF is quick to train, when 
training is finished and it is being used it is slower than a 
MLP, so where speed is a factor a MLP may be more 
appropriate [8]. 
 
2.2.3 Committee Network 
 
Modeling using neural networks often involves trying 
multiple networks with different architectures and training 
parameters in order to achieve acceptable model accuracy. 
Typically, one of the trained neural networks is chosen as 
best, while the rest are discarded [13]. The disadvantages 
of this approach are that effort involved in training is 
wasted and the network with the best performance on the 
training data might not have the best performance on test 
data [1]. 
 
Architectures of neural networks play a big role in 
capturing different aspects of data. Therefore different 
architectures are better approximators at different points in 
the data.  
 
To capture these ideas, a committee of neural networks 
was used.  The committee of neural networks, as 
implemented in Figure 1, was implemented with different 
architectures and averaged to obtain the output. An 
example of this approach was used by Peronne and 
Cooper [11] where they used the weighted average of 
outputs of individual networks.  

 
 

 

Figure 1. Committee network 

This technique uses multiple MLP’s, as well as multiple 
RBF’s, each with a different number of hidden layers, in a 
network, so as to capture the different aspects of the data.  
 
 
2.3 Particle Swarm Optimization (PSO) 
 
To obtain the MLP and RBF architecture with the best 
results the MLP and RBF networks’ architectures were 
optimized using Particle Swarm Optimization.  
 
 Particle swarm optimization is a technique used to 
globally optimize non-linear functions. This method is 
related to evolutionary programming and was discovered 
through simulation of a simplified social model such as 
the synchronized flocking of birds or the movement of a 
school of fish. “School of fish can profit from all 
discoveries and previous experiences of all members of 
the school during the search for food.”[5] 
 
As with most global optimization techniques particle 
swarm initializes a population of points, called particles, 
and function values either by selecting them randomly or 
at equal spacing across the space. At each iteration, this 
method influences the update of each particle according to 
the following: 
 

• Each particle’s best function value, 
• The function value of its fittest 
 neighbor, 
• An element of randomness. 
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Figure 2. Pi = particle’s best position, Pg = neighbor’s best 
position, r = random direction, Pn = next move 

 
Figure 2 shows how this method updates the particles, 
influenced by the above directions [5]. 
 
Compared to GA, the advantages of PSO are that PSO is 
easy to implement and there are few parameters to adjust. 
PSO does not have genetic operators like crossover and 
mutation. Particles update themselves with the internal 
velocity. They also have memory, which is important for 
the speed of the algorithm [9]. 
 
 

3. Results 
 
The data set used was collected from the South African 
Foreign Exchange between January 2001 and December 
2003 [6]. The data contained the underlying stock price, 
strike/option price, time to maturity, stock volatility, 
market to market price as well as the high and low prices. 
 
The key parameters needed for option pricing are [4]: 
 

• underlying asset price,  
• volatility of the underlying asset, 
• interest rate, 
• time to maturity 

 
Therefore these were the parameters used as inputs. The 
network output was the strike/option price. 
 
Approximately two thirds of the data set was used for 
training and the rest for the testing. 
 
There were 5 different training algorithms used, viz. 
standard MLP and RBF networks, the committee network 
and the ‘optimal architecture’ MLP and RBF networks. 
 
The standard MLP and RBF were implemented using 
arbitrary values for the number of hidden layers and 
training cycles. 
 
In the implementation, the committee network consisted 
of 10 MLP’s and 10 RBF’s, all with different architectures 

(i.e. number of hidden layers), which were averaged to 
attain the results. 
 
Using PSO the number of hidden layers and training 
cycles were found that optimized the neural network 
architecture, for both the MLP and RBF. What these tests 
also showed the highly non-linear nature of option pricing. 
 
The results are as follows: 
 
Figure 3 and 4 shows the standard MLP and RBF 
respectively. The standard networks are characterized by 
relatively fast training and testing at the expense of 
accuracy, which was over 8% for both these networks. 
 
The accuracy improved significantly when using the 
committee network (Figure 5). The error of this network 
was 3.0995%.  The average computational time was over 
forty seconds. 
 
The optimization of the MLP and RBF networks took 
several minutes but lead to great accuracy improvements 
(Figure 6 and Figure 7), surpassing even the committee of 
networks, with errors of less than 0.01%  
 
 

 
 

Figure 3. MLP network, error = 8.8850% 
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Figure 4. RBF network, error = 8.2807% 
 
 

 

 
 

Figure 5. Committee network, error = 3.0995% 
 
 

 
 

Figure 6. ‘Optimal architecture’ MLP network,  
error = 0.0045%. 

 
 
 
 

 
 

Figure 7. ‘Optimal architecture’ RBF network, 
 error = 0.0046%. 

 
 

4. Discussion 
 
Even though the standard methods have larger errors, they 
prove useful when comparing computational time, since 
the average computational time was just under a second 
for MLP and under half a second for the RBF, this 
included training and testing. 
 
The computational time for the committee network was on 
average about forty seconds which was considerably less 
than the computational time for the optimized networks, 
which took, at times several minutes. 
 
Near perfect results were attained when using PSO to 
optimize the networks. 
 

5. Conclusion 
 
Since the options market’s tremendous growth in recent 
times, there has been many works relating to these 
markets. Previous work has seen stand-alone networks 
being used, the methods of committee networks and 
optimized networks, using PSO, as adapted in this work, 
however, have not been used in this application.  
 
Using optimization methods on the committee network 
could lead to even better results at the cost of 
computational time. The results prove that these methods 
are capable of estimating highly non-linear data. 
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Abstract: In this paper the multilayer perceptron (MLP), 
radial basis functions (RBF) as well as ‘committee 
networks’, are used to model highly non-linear data from 
the South African Foreign Exchange. Architecture plays a 
very important role in model accuracy of neural 
networks. When dealing with highly non-linear data, 
achieving good performing architectures becomes very 
difficult. We investigate two different optimization 
algorithms for finding ‘optimal architecture’ neural 
networks, namely, particle swarm optimization as well as 
a modified genetic algorithm. The Metropolis-Hastings 
Algorithm was used as the selection step in the genetic 
algorithm. Once optimized, the new ‘optimal architecture’ 
networks were compared to the standard networks. The 
results show huge improvements on the unoptimized 
networks at the expense of much larger computational 
times. 
 
Keywords: Multilayer Perceptron, Radial Basis 
Functions, Committee Networks, Particle Swarm 
Optimization, Genetic Algorithm, Metropolis-Hastings 
Algorithm. 
 

1. Introduction 
 
Artificial neural networks’ non-linear modeling 
capabilities are being applied in many fields of study. 
With this comes a constant demand for better performing 
networks when dealing with, sometimes daunting, highly 
non-linear data. The approach taken in this paper is to 
explore the architectures of neural networks, by using 

optimization techniques, in an attempt to find ‘optimal 
architecture’ neural networks. 
 

2. Neural Networks 
 
A neural network is an interconnected assembly of simple 
processing elements, units or nodes, whose functionality 
is loosely based on the animal neuron [1]. The processing 
ability of the network is stored in the inter-unit connection 
strengths, or weights, obtained by a process of adaptation 
to, or learning from, a set of training patterns. 
 
Neural networks are frequently applied to statistical 
analysis and data modeling, where it is used as a 
substitute to standard non-linear regression or cluster 
analysis techniques [2]. Therefore, they are used for 
classification, or forecasting. Some examples include 
image and speech recognition, character recognition, and 
domains and human expertise such as medical diagnosis, 
and financial market prediction. Neural networks fall 
within the sphere of artificial intelligence, so that neural 
networks are perceived as an alternative to the algorithmic 
techniques that have dominated in machine intelligence.  
 
Possibly the largest users of neural networks are people 
using it to analyze badly understood data that arise in the 
workplace [1].  
 
There are many different types of neural networks and 
here we look at two; viz. the Multi-layer perceptron and 
Radial Basis Functions: 
 
 



 

2.1 Multi-Layer Perceptron (MLP) 
 
MLP’s are feedforward neural networks. They learn how 
to transform input data into a desired response. Feed 
forward neural networks provide a general framework for 
representing non-linear functional mappings between a set 
of input variables and a set of output variables. This is 
achieved by representing the non-linear function of 
however may variables in terms of compositions of non-
linear functions of single variable, called activation 
functions [3]. 
 
Networks with just two layers of weights are capable of 
approximating any continuous functional mapping [3]. 
They are supervised networks, so they require a desired 
response to be trained. 
 

 
Figure 1 Multilayer perceptron with inputs x, hidden units 

z and outputs y 

 
The above is an example of a layered network. This 
network has d inputs, M hidden units and c outputs. The 
output of this figure analytically is as follows: to attain the 

thi  hidden unit, a weighted linear combination of the d 
input values and adding a bias, is formulated to give: 
 

(1) (1)
0

1

d

j ji i j
i

a w x w
=

= +�                         [1] 

 

Here ijw  represents a weight in the first layer, going from 

input i to hidden unit j and 0jw  denotes the bias for 

hidden unit j the hidden unit can be incorporated into the 

weight matrix by including an extra input variable ox . 
Hence the equation now becomes: 
 

 (1)

0

d

j ij i
i

a w x
=

=�                                   [2] 

 
The activation of hidden unit j is then obtained by 
transforming the linear sum in the above equation using 
an activation function ( )g g  to give: 
 

( )j jz g a=                                    [3] 

 
The outputs of the network are obtained by transforming 
the activations of the hidden units using the second layer 
of processing elements. Thus for each output unit k, we 
construct a linear combination of the outputs of the 
hidden units of the form: 
 

(2)

0

M

k kj j
j

a w z
=

=�                                 [4] 

 

The activation of the thk output unit with activation 

0 1z = is obtained by transforming this linear 
combination using a non-linear activation function, to 
give: 
 

( )k ky g a=                                   [5] 
 
Combining all the above equations [3]: 
 

(2) (1)

0 0

M d

k kj ji i
j i

y g w g w x
= =

� �� �= � �� �
� �� �

� �                  [6] 

Another explanation has its basis in thinking of the neural 
network as implementing a mathematical function of its 
inputs, and is especially pertinent if we are dealing with 
continuous input and output signals. For example if we 
wanted to make a forecast nP of a particular stock value 
based on previous values of the stock price 

1 2, ,...n n n kP P P− − −  we want to train a network to discover 
the functional relation between quantities: this is to 
discover the underlying function 

1 2( , ,... )n n n n n kP P P P P− − −= [4]. 
 
A MLP can perform categorization of an arbitrary number 
of classes and with an arbitrary decision surface. All that 
is required is that we have a set of inputs and targets, and 
that we fix the number of hidden units that are going to be 
used. 
 
 



 

2.2 Radial Basis Functions (RBF) 
 
Radial basis functions are another major class of neural 
networks; here the distance between the input vector and 
the prototype vector determines the activation unit. Radial 
Basis Functions have their roots in techniques for 
performing exact interpolation of a set of data points in a 
multi dimensional space. The exact interpolation problem 
required every input vector to be mapped exactly onto the 
corresponding target vector [1]. 
 
The radial basis function approach introduces a set of N 
basis functions, one for each data point, which take the 

form ( )nx xφ −  where ( )φ g  is some non-linear 

function. Thus, the thn function depends on the distance 
nx x− , between x  and nx . The output of the 

mapping is then taken to be a linear combination of the 
basis functions: 
 

( )( ) n
nh x w x xφ= −�                   [7] 

 
The most common form of basis function is the Gaussian: 
 

( )
2

2exp
2
x

xφ
σ

� �
= −� �

� �
                      [8] 

 
Where σ  is a parameter that controls the smoothness 
properties of the interpolating function. 
 
Generalizing this for several outputs: each input vector 

must be mapped exactly onto an output vector nx , having 

components nt . The equation becomes [3]: 
 

( )( ) n
kn

n

h x w x xφ= −�                  [9] 

 
The exact interpolating function for noisy data is typically 
a highly oscillatory function. Functions such as these are 
generally undesirable. The interpolation function that 
gives the best generalization is typically smoother and 
averages over the noise in the data. Another disadvantage 
of exact interpolation, is the fact that the number of basis 
functions are equal to the number of patterns in the data 
set, and when computing can become costly to evaluate 
[1]. 
 
There are a number of modifications to the exact 
interpolating procedure that provides a smooth 
interpolating function as well as the reduction of the 
number of basis functions, which are determined by the 

complexity of the mapping rather than by the size of the 
data set [1]. 
 

 
Figure 2 Radial basis functions with inputs x, basis 

functions φ  and outputs y. 

 
RBF’s are usually two layer networks in which the first 
(hidden) layer is a series of RBF’s and the second (output) 
layer is a set of linear units that can be thought of as 
computing a weighted sum of the evidence from each of 
the feature template RBF units. 
 

3. Committee of Neural Networks 
 
Modeling using neural networks often involves trying 
multiple networks with different architectures and training 
parameters in order to achieve acceptable model accuracy. 
 
Selection of the best network is based on the performance 
of the network on an independent validation or test set (as 
will be discussed), and to keep only the best performing 
network and to discard the rest. There are two 
disadvantages with such an approach; first, all the effort 
involved in training the remaining neural networks is 
wasted, second, the networks generalization performance 
is greatly reduced. 
 
These drawbacks can be overcome by combining the 
networks together to form a committee (Perrone and 
Cooper)[5] The importance of such an approach is that it 
could lead to significant improvements in the predictions 
on new data, while involving the training of a few 
additional networks. In fact performance of a committee 
can be better than the performance of the best stand-alone 
network used in isolation [3]. The committee of networks 
contains neural networks with different architectures and 
or different types of neural networks trained on the same 



 

training data set. It might even include different kinds of 
network models with a mixture of conventional models. 
 
The error can never increase by using a committee of 
networks. Typically the error is reduced considerably by 
taking the average error of the combined networks [6]. 
 

COM AVE E≤                                [10] 
 
Another advantage of a committee of neural networks is 
the fact that it is more reliable than stand-alone networks. 
 
 The committee network can be represented by Figure 3: 

 
Figure 3 Committee Network 

 
Architectures of neural networks, as well as performance, 
play a big role in capturing different aspects of data. Since 
the members of the committee network have different 
architectures, some will make better predictions than 
others. 
 

4. Training 
 
Training a neural network is usually done by presenting a 
training set to the network, and at each step of an iterative 
process, adjusting the weights of the network to bring its 
output closer to the desired output. This process of 
changing or adapting the weights is referred to as the 
learning rule of the network [1]. 
 
 
 
 
 

5. Cross-validation 
 
The objective of training a neural network is to have a 
network that performs best on unseen data. A simple 
method to compare the performance of neural networks, 
is to test the errors of the networks using a separate 
validation/test data set. This is done by training many 
networks on a training set and comparing the errors of the 
networks on the validation set. The networks that 
performed best on the validation data set are then 
selected. This technique is called cross validation[1] 
 
Another very important aspect of attaining good results 
from neural networks is choosing the correct architecture. 
The architecture as it is dealt with here refers to the 
number of hidden layers used to train the neural network. 
 
 

6. ‘Optimal Architecture’: Neural 
Networks and Optimization 
Techniques 

 
As mentioned before neural network architecture plays a 
big role in model accuracy. Finding the correct amount of 
hidden layers is crucial when dealing with highly non-
linear data. Because of the non-linearity, the amounts of 
hidden layers required is almost counterintuitive, which 
leads, again, to high non-linearity with regard to the best 
architecture. In an attempt to find the best architectures 
that model our particular data, the techniques described 
below are proposed to find ‘Optimal Architecture’ 
networks. Particle Swarm Optimization is used to find 
stand-alone ‘Optimal Architecture’ networks, while 
Genetic Algorithm finds the optimal architecture for a 
committee of neural networks. 
 
6.1 Optimization Techniques 
 
Global optimization algorithms imitating principles of 
nature have been very useful in recent times and have 
been applied in various domains. Such phenomena can be 
found in annealing processes, central nervous systems and 
biological evolution, which in turn have lead to the field 
of Evolutionary Computation (EC). [7] 
 
Evolutionary computation includes; Genetic algorithms, 
evolutionary programming, evolution strategies, classifier 
systems, genetic programming and numerous other 
problem solving approaches that are based on biological 
observations. These observations date back to Charles 
Darwin’s ‘theory of evolution’, hence the term 
Evolutionary Algorithms [8]. 
 



 

This term ‘evolutionary algorithm’ refers to evolutionary 
processes used by computer-based problem solving 
systems. 
 
6.1.1 Particle Swarm Optimization (PSO)  
 
PSO is an algorithm proposed by James Kennedy and R. 
C. Eberhart in 1995, motivated by social behavior of 
organisms such as bird flocking and fish schooling. PSO 
as an optimization tool provides a population-based 
search procedure in which individuals called particles 
change their position with time. This method is related to 
evolutionary programming and was discovered through 
simulation of the simplified social model, namely, the 
synchronized flocking of birds or the movement of a 
school of fish. In a PSO system, particles fly around in a 
multidimensional search space. During flight, each 
particle adjusts its position according to its own 
experience, and according to the experience of a 
neighboring particle, making use of the best position 
encountered by itself and its neighbor. Thus, a PSO 
system combines local search methods with global search 
methods, attempting to balance exploration and 
exploitation. 
 
Thus, PSO is a technique used to globally optimize non-
linear functions. Since, a school of fish profits from 
previous experiences and discoveries of each member 
during the search for food [9]. 
 
As with most global optimization techniques particle 
swarm initializes a population of points, called particles, 
and function values either by selecting them randomly or 
at equal spacing across the space. At each iteration, this 
method influences the update of each particle according to 
the following: [10] 
 
Each particle’s best function value, the function value of 
its fittest neighbor and an element of randomness. 
 
 

 

 
Figure 4. Pi = particle’s best position, Pg = neighbor’s 
best position, r = random direction, Pn = next move 
Figure 1 shows how this method updates the particles, 
influenced by the above directions. 
 
Algorithm: 
 

� Create random particle population and assign to 
them random positions, 

� Evaluate their function values at their current 
positions, 

� Choose a set of neighbors for each particle, 
� Update the particle population using the new 

direction, called the velocity,  
� Repeat until a stopping criterion is met. 

 
The MLP and RBF network architectures were optimized 
using PSO, to find ‘Optimal Architecture’ MLP and RBF 
networks.  
 
 
6.1.2 Metropolis-Hastings Algorithm (MHA) 
 
In mathematics and physics, the Metropolis-Hastings 
algorithm is an algorithm to generate a sequence of 
samples from the joint distribution of two or more 
variables. The purpose of such a sequence is to 
approximate the joint distribution. This algorithm is an 
example of a Markov chain Monte Carlo algorithm. The 
Metropolis-Hastings algorithm can draw samples from 
any probability distribution P(x), requiring only that the 
density can be calculated at x [11].  
 
The key to the Metropolis-Hastings algorithm is to create 
a sampling strategy by which the probability of being in 
state a and moving to state b is the same as from b to a, 
subject to a few regularity conditions. This series of draws 
is accomplished by proposal and acceptance/rejection of 

candidate values x∗ . 
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The proposal of a candidate value x∗ is conducted 

through a proposal function ( | )jq x x∗ the form of which 

is quite arbitrary. In order to get a lot of x values, the 

values of x∗  should not be rejected too often. The 

arbitrariness of the proposal function ( | )q x x∗ and the 
lack of theory guiding our choice leave lots of room for 
experimentation [12]. The two functions that suggest 
themselves are the uniform and normal distributions [11]. 
The arbitrariness of the proposal function is supported in 
the acceptance/rejection step, which corrects for unlikely 

steps from jx to x∗ by accepting them only with the ratio 

of moving from one to the other. 
 
 
6.1.3 Genetic Algorithm (GA) 
 
The genetic algorithm is a model of machine learning, 
which derives its behavior from a metaphor of the 
processes of evolution in nature. This is done by the 
creation within a machine of a population of individuals 
represented by chromosomes. The individuals in the 
population then go through a process of evolution. Some 
variables or individuals are better or fitter than others. 
Those that are better are more likely to survive and 
regenerate their genetic material. Reproduction allows the 
creation of genetically radically different offspring that 
are still of the same general species. At the molecular 
level what occurs is that a pair of Chromosomes bump 
into one another, exchange chunks of genetic information 
and drift apart.  This is the recombination operation, 
which genetic algorithms generally refer to as crossover, 
because of the way that genetic material crosses over 
from one chromosome to another. Crossover takes place 
when the selection of who gets to mate is made a function 
of the fitness of the individual. The genetic algorithm uses 
stochastic processes, but the result is distinctly non-
random [7]. 
 

Firstly, an initial population of parent individuals (feasible 
solutions) is randomly created. Each individual is 
represented by a chromosome, a string of characteristic 
genes. Secondly, all the individuals are ranked with a 
fitness function appropriate to the problem at hand. The 
fittest of these, pass directly to the following generation; a 
process of ‘elitism’. Thirdly, a breeding population is 
formed by selecting top-ranking individuals from those 
that remain. This is the natural selection step. Lastly, 
these selected individuals undergo certain transformation 
via genetic operators to reduce children for the next 
generation. Operators include recombination by crossover 
and mutation (a randomly generated gene that is somehow 
altered). Mutation ensures a genetic diversity in the 
population [7]. 
 
This process is repeated for a certain number of 
generations, or until some stopping criterion is met.  
 
Algorithm: 
 

1] Generate initial population 
2] Generate offspring: 
� selection: probability of being accepted 

according to fitness 
� crossover: parents are paired to generate 

offspring 
� mutation: each string has a very small chance of 

being mutated 
� selection/rejection: selection or rejection of the 

new generation according to some criterion 
3] Repeat step 2 until stopping criterion is met. 

 
 
6.1.3 Genetic Algorithm with Metropolis-Hastings 
Algorithm 
 
In the above algorithm the selection/rejection step of the 
new generated population is not specified, and many 
methods can be used to do this step. Metropolis-Hastings 
Algorithm (MHA) has been adopted in this text to make 
the selection or rejection of the new generation in the 
genetic algorithm. 
 
The Genetic Algorithm Metropolis-Hastings Algorithm 
(GAMHA) method was then used to manipulate the 
architectures in the individual MLP and RBF networks so 
as to optimize the committee of networks. 
 
 

7. Results 
 
The data set used was collected from the South African 
Foreign Exchange between January 2001 and December 
2003 [14]. The data contained the underlying stock price, 



 

strike  price, time to maturity, stock volatility, market to 
market price as well as the high and low prices. 
 
The inputs were underlying asset price, volatility of the 
underlying asset, interest rate and time to maturity. The 
network output was the strike price. 
 
Approximately two thirds of the data set was used for 
training and the rest for the testing. 
 
 
7.1 ‘Optimal Architecture’ Multi-layer Perceptron 
(MLP) and Radial Basis Functions (RBF) using 
Particle Swarm Optimization (PSO) 
 
Particle Swarm Optimization was used to find the optimal 
architecture of MLP and RBF networks by optimizing the 
error function; this was achieved by adjusting the number 
of hidden units and training iterations. The results from 
these ‘Optimal Architecture’ MLP and RBF networks are 
as follows: 
 
The error was greatly reduced achieving near perfect 
results. The errors for both, MLP and RBF, ‘optimal 
architecture’ networks were less than 0.005%. The 
computational time was quite high, it sometimes in excess 
of one hour to run an ‘optimal architecture’ simulation. 
This was due to the amount of networks that had to be 
trained and the highly non-linearity of the data, which 
meant that finding a global minimum could take a really 
long time. When running the simulation for a shorter 
period, say a few minutes, the results would still be a 
great improvement on the stand-alone MLP and RBF 
networks. This shows that the ‘optimal architecture’ 
program would choose local minima as its output. Figure 
5 and Figure 6 illustrate the standard MLP and RBF, 
respectively. The ‘optimal architecture’ MLP and RBF 
networks are illustrated in Figure 7 and Figure 8, 
respectively. 
 

 
Figure 5 Standard MLP 

 

 
Figure 6 Standard RBF 

 



 

 
Figure 7 ‘Optimal Architecture’ MLP 

 
 
 

 
Figure 8 ‘Optimal Architecture’ RBF 

 
 
7.2 Genetic Algorithm with Metropolis-Hastings 
Algorithm (GAMHA) Committee Network 
 
Finally using the technique discussed in section 6.1.3 for 
optimizing the committee of neural networks, the 
individual networks within the committee network were 
optimized in such way so as to improve the performance 
of the committee network. To achieve good results the 
simulation had to run for several hours. In this particular 
simulation 20 MLP and 20 RBF networks were used to 
achieve an error of just under 0.08 %. Figure 9 illustrates 
the output of the standard committee network and Figure 

10 illustrates the output for the ‘optimal architecture’ 
committee network. 
 

 
Figure 9 Standard Committee 

 

 
Figure 0 ‘Optimal Architecture’ Committee 

 
 

8. Discussion & Conclusion 
 
 
The results in Section 7 are summarized and discussed 
below: 
 
 
 
 
 



 

Type of Network 
Trained 

Computational 
Time  

Resulting 
Error 

MLP 1.015 s 8.885 % 
RBF 0.235 s 8.2807 % 
Optimal MLP (with 
PSO) 

Over 1 hour 0.0045 % 

Optimal RBF (with 
PSO) 

Over 1 hour 0.0046 % 

Committee Network  32.406 s 2.9258 % 
Optimized Committee 
(GAMHA) 

Several hours 0.0783 % 

 
 
The computational time for the stand-alone networks are 
misleading, this is because good performing architectures 
need to be found by trial and error and this could lead to 
several networks being trained to eventually find good 
performing networks. The stand-alone RBF greatly 
outperforms the MLP with regard to computational time. 
Optimizing the stand-alone networks produce great results 
at the expense of a huge amount of computational time.  
 
The generalization and portability capabilities of 
committee networks are easily accessible with 
computational time that is proportional to the amount of 
networks trained. Since this network has major portable 
and generalization advantages over the ‘optimal 
architecture’ network, it seems the obvious choice when 
comparing the two. 
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Abstract: The importance of a neural networks’ ability to 
generalize is relevant in most applications. A committee of 
neural networks has excellent generalization capabilities. 
Committee networks, consisting of multiple multilayer 
perceptrons and radial basis functions, are looked at in 
detail. These stand-alone networks are combined using the 
various techniques developed, and applied to data from the 
South African Foreign Exchange. The techniques include; 
different weighting functions to combine the stand-alone 
networks in the committee network and multiple layers of 
neural networks within a committee of networks. These 
different techniques were compared, to find that good 
modeling results could be found at relatively little extra 
computational time. 
 
Keywords: Multilayer Perceptron, Radial Basis Functions, 
Committee Networks, Committee with neural network 
integrator, Double layered committee network, Circular 
committee network. 

1. Introduction 
 
Generalization capabilities of neural networks are an 
important aspect to encompass within every neural network. 
That is, the neural networks ability to be used on data that is 
unseen. Committee networks are looked at it detail in this 
study. Various different techniques are used to combine 
stand-alone networks. Neural networks are also used to 
smooth the outputs of committee networks. These techniques 
were trained and tested using option pricing data. 
 
 
 

2. Architecture 
 
One of the most important aspects of neural network training 
is architecture. Architecture, as it is dealt with here, refers to 
the amount of hidden units and training cycles or iterations 
used. Choosing the correct architecture helps a great deal 
with regard to model accuracy. 
 

3. Generalization and Overtraining 
 
Generalization is a neural networks ability to be used on 
different data. This is a very important aspect that a trained 
neural network should have. A neural network with out this 
generalization property is said to be over fitted or over 
trained. Over trained neural networks model the data used to 
train the network very effectively, but this however, will 
perform very badly on a test data set. The example below 
illustrates generalization and overtraining [1]. 
 
The training patterns, in Figure 1, are shown by circular 
symbols and the two classes shown by open and filled 
symbols. The two lines represent the output of neural 
networks; where the solid line has been trained more than the 
dotted line. The solid line classifies all the training patterns 
correctly. The dotted line, however, misclassifies four of the 
eighteen training patterns, and it may appear at first sight that 
this network has performed poorly since there will be some 
residual error. Suppose that some previously unseen test 
patterns are presented, as shown by the square symbols, again 
filled and open squares correspond to the different classes. 



 

 
Figure 1 Generalization and overtraining 

 
These have been classified correctly by the dotted line and 
the network is said to have generalized from the training data. 
This would seem to support the choice of using fewer 
training epochs since it may be that the two misclassified 
training patterns result from noisy data. In this case the 
network has implemented a good model of the data, which 
captures the essential characteristics of the data in pattern 
space. 
 
Consider now the solid line. The training set is identical to 
that used in the previous example and each one has been 
successfully classified, resulting in a significantly smaller 
error. However, three of the nine test patterns have been 
incorrectly classified so that, even though the training data 
are all dealt with correctly, there may be many examples, 
especially those close to the decision boundary from each 
class, that are misclassified. The problem is that the network 
has too much freedom to choose its decision surface and has 
over fitted it to accommodate all the noise and intricacies in 
the data without regard to the underlying trends [1]. 
 
Generalization and over fitting is directly related to the 
architecture used in the neural network to model the data, 
since training iterations and the number of hidden units are 
key elements during the training of the network, and 
adjusting these elements could lead to great improvements in 
the networks modeling capability [2]. 
 
Figure 2 shows how increasing the training epochs eventually 
leads to greater error values on the validation set, and in turn 
leads to poor generalization, this illustrates the importance of 
finding the correct architecture for modeling accuracy [1]. 

 
Figure 2 Cross validation behaviour [1] 

 

4. Committee of Neural Networks 
 
Modeling using neural networks often involves trying 
multiple networks with different architectures and training 
parameters in order to achieve acceptable model accuracy. 
Selection of the best network is based on the performance of 
the network on an independent validation or test set for 
instance, and to keep only the best performing network and to 
discard the rest. There are two disadvantages with such an 
approach; first, all the effort involved in training the 
remaining neural networks is wasted, second, the networks 
generalization performance is greatly reduced. 
 
These drawbacks can be overcome by combining the 
networks together to form a committee (Perrone and Cooper) 
[4]. The importance of such an approach is that it could lead 
to significant improvements in the predictions on new data, 
while involving the training of a few additional networks. In 
fact performance of a committee can be better than the 
performance of the best stand-alone network used in isolation 
[3]. The committee of networks contains neural networks 
with different architectures and or different types of neural 
networks trained on the same training data set. It might even 
include different kinds of network models with a mixture of 
conventional models. 
 
The error can never increase by using a committee of 
networks. Typically the error is reduced considerably by 
taking the average error of the combined networks [5]. 
 

COM AVE E≤                               [1] 
 



 

Another advantage of a committee of neural networks is the 
fact that it is more reliable than stand-alone networks. 
 
 The committee network can be represented by Figure 3: 

 
Figure 3 Standard Committee 

 
Architectures of neural networks play a big role in capturing 
different aspects of data, as well as increased performance. 
Since the members of the committee network have different 
architectures, some will make better predictions than others; 
we expect to be able to reduce the error further if we give 
greater weight to the better performing committee members 
than to others. Thus, we consider different forms of 
committee networks given by weighted combinations of the 
member networks: 
 

4.1 Weighted Averages 
 
There are many possible ways, mathematically, to average 
the neural networks in a committee network: 
 
1] One could divide the outputs of all the networks by the 
number of networks to attain an average, giving each 
network an equal weight, though not the most effective way 
to reduce the error, this method is easy to implement 
computationally. 
 
2] Intuitively, one of the best ways to achieve minimum error 
from a committee of networks is to give greater weight to the 
stand-alone networks that give better results. This technique 
uses the following weighting function: 
 

1 1 2 2 ...COM n nY y y yα α α= + + +                [2] 
 
Where theα ’s are the weighting variables and, 

 

1 2 ... 1nα α α+ + + =                    [3] 
 
n Is the number of networks used in the committee. 
According to a theorem [5], there exists an optimal 
committee network that gives the least mean square error if 
the weight variables α  are chosen to be: 
 

2

2
1

1
( )
( )

ni
i

i j

e
e

α ε
ε=

=
�

                   [4] 

 
Where ( )eε  is the expected error. This method will be 
referred to as the standard weighting method (SW), in this 
text. 
 
 
3] Another way of assigning weights to the outputs is to use 
priory based weighting. In this method weights are assigned 
according to the individual priority of the data points as well 
as satisfying the overall reduction in error. 
 

 
Figure 4 Priority based weighting 

 
a, b and c are different approximations made by three 
different neural networks in a committee. As we can see from 
Figure 4 a, is the most accurate while c is the least accurate. 
c, however, does approximate the data better at a point that 
has high priority. High priority points are points that are more 
important to the modeler in a particular simulation. This 
weighting method satisfies both criteria, viz. better overall 
results as well as better approximations at points of high 
priority. It does this by using a strategy similar to the above 
weighting method, and by adding a priority variable: 
 

1 1 1 2 2 2( ) ( ) ... ( )COM n n nY p y p y p yα α α= + + + + + +  
[5] 



 

Here  
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k is a value the modeler chooses according to the model. The 
value k is divided according to which neural network 
approximates the high priority points better, the better the 

approximation of the thi  network, the bigger the chunk of k, 

ip  gets according to some division rule. 
 
There are a number of other ways to average the outputs in a 
committee network. Some employ non-linear techniques. 
Below are a few different ways to average the committee 
network using a neural network as a non-linear combiner. 

4.2 Committee with Neural Network Integrator (CNNI) 
 
This committee has the same architecture as the one 
mentioned previously, the technique uses either a MLP or a 
RBF to combine the networks in the committee to create a 
non-linear weighted average of the neural networks, Figure 5. 
The inputs for the integrator MLP or RBF are the outputs of 
the first layer of networks. This is the same output that would 
be combined using the methods discussed in the previous 
section. This integrator network serves to smooth the outputs 
of the first layer networks.  
 
 

 
Figure 5 Committee with Neural Network integrator (CCNI) 

 

With regard to computational time, the ‘committee neural 
network integrator’ method only requires one more network 
to be trained; this does not affect computational time much. 
 

4.3 Double Layered Committee Network (DLCN) 
 
This technique, illustrated in Figure 6, uses a smoothing 
neural network after each of the first layer networks. The 
output of the first layer is the same as the standard committee 
network. This output provides the input for the second layer. 
The second layer smoothes these inputs and the second layer 
outputs are now combined using the weighting methods 
mentioned in section 4.1. 
 

 
Figure 6 Double Layered Committee Network (DLCN) 

 
With the ‘double layered committee network’ the 
computational time is doubled, since twice the amounts of 
networks have to be trained. 
 

4.4 Circular Committee Network (CCN) 
 
The ‘circular committee network’ (CCN) uses a jump 
technique, Figure 7. Firstly, the inputs to all the stand-alone 
networks are the same. During the next step the outputs are 
jumped to the neighboring neural networks to serve as inputs 
to the second step of training. The second training step serves 
to smooth the outputs of the networks. Thereafter the 
weighting techniques above are used to combine the outputs 
of this committee network. 
 



 

 
Figure 7 Circular Committee Network (CCN) 

 
 
The computational time required by the (CCN) technique is 
much less than that required for all previous techniques as it 
requires only four neural networks being trained twice. 
 

5 Results 
 
The data set used was collected from the South African 
Foreign Exchange between January 2001 and December 
2003 [6]. The data contained the underlying stock price, 
strike  price, time to maturity, stock volatility, market to 
market price as well as the high and low prices. 
 
The inputs were underlying asset price, volatility of the 
underlying asset, interest rate and time to maturity. The 
network output was the strike price. 
 
Approximately two thirds of the data set was used for 
training and the rest for the testing. 
 
When comparing committee networks, generalization 
capability, computational time as well as portability, always 
need to be considered. Committee networks in particular 
have excellent generalization capabilities, but intuitively take 
a much longer time to compute when compared to stand-
alone networks. This is not always true, since the time taken 
during trial and error to find good performing stand-alone 
networks could take far longer than the computational time 
taken to train a committee network. Another very important 
aspect is portability. To be able to run the simulation on 
different data set without previous knowledge or 
understanding of the data is essential in a working 
environment. With regard to this attribute, the committee 
network outperforms any stand-alone network. 
 
The standard committee network consists of 10 MLP and 10 
RBF networks, each of which gets the same inputs. Each 

neural network in the standard committee had different 
architectures. The error from the individual stand-alone 
networks varied between 0.3 % and 13 %. The architectures 
were chosen in a random range of values. 
 
Initially the committee networks were each given equal 
weights followed by the second weighting method mentioned 
above. The error was effectively reduced by using this 
technique to average the MLP and RBF networks. The error 
of the standard committee network with equal weights was 
just under 3 %, while the error when using the SW technique 
produced an error of only about 0.7 % with the computational 
time only increasing very slightly. The computational time 
both these committee networks were just under 33 seconds.  
 

 
Figure 8 Standard Committee 

 

 
Figure 9 Standard Committee with SW weighting 

 
 
 
 



 

5.1 Committee with Neural Network Integrator (CNNI) 
 
The CNNI method uses a stand-alone MLP or RBF network 
to combine the outputs of the entire committee network. The 
final network in CCNI uses all the outputs of the first layer of 
networks as its input. When using a MLP network as the final 
network the results were again a great improvement on the 
standard committee with equal weights and it also performed 
better than the standard committee with the SW weighting 
method. The error for CNNI method was just over 0.1 
seconds with a computational time of about 34 seconds. 
 
When using a RBF network as the final network an even 
better improvement was achieved. The error was reduced to 
less than 0.001 while the computational time was about the 
same as using the MLP network. 
 

 
Figure 10 Committee with Neural Network integrator (CCNI) 

 

 
Figure 11 Double Layered Committee Network (DLCN) 

 
It’s worthwhile to note that the architecture of the final layer 
network also plays an important role in model accuracy. As 

in the first section, trial and error was used to find good 
performing final networks. 
 

5.2 Double Layered Committee Network (DLCN) 
 
 
Intuitively, this method should double the computational time 
since there is a smoothing neural network after each of the 
first layer networks, thus doubling the amount of networks to 
be trained. The architectures of the second layer networks 
were substantially different thus leading to extra 
computational and programming time outside of the 
simulation time. The results were an improvement on the 
standard committee with equal weights but failed to improve 
on the results for the SW weighting method. The resulting 
error was just over 1 % for the final layer being combined 
with equal weights and just under 1 % for final layer being 
combined by the SW weighting method. Thus, the big 
increase in computational time doesn’t lead to better results. 
The computational time for the actual simulation without the 
extra setting up time was just under a minute. 
 

 
Figure 12 Circular Committee Network (CCN) 

 

5.3 Circular Committee Network (CCN) 
 
The CCN committee network achieved much better results 
than the standard networks keeping in mind the fact that it 
took much less time computationally. Using equal weights 
for combining the networks, the resulting error was less than 
0.06 % with a computational time of about 14 seconds. While 
the error was reduced even further by using the SW 
weighting method, the resulting error was just over 0.0002 
%, with a similar computational time. 
 



 

6 Discussion & Conclusion 
 
The results in section 5 are summarized in Table 1 and 
discussed below: 
 
Type of Network Trained Computational 

Time  
Resulting 
Error 

Standard Committee 
(equal weights) 

32.406 s 2.9258 % 

Standard Committee 
(with SW weighting) 

32.535 s 0.6797 % 

CNNI MLP 33.255 s 0.1411 % 
CNNI RBF 32.955 s 0.00068 % 
DCLN (equal weights) 57.425 s 1.3675 % 
DCLN (with SW 
weighting) 

57.465 s 0.9255 % 

CCN (equal weights) 13.715 s 0.0597 % 
CCN (with SW 
weighting) 

13.735 s 0.00024 % 

Table 1 Summary of Results 
 
Numerous conclusions can be drawn from the above results: 
 
The generalization and portability capabilities of committee 
networks are easily accessible with computational time that is 
proportional to the amount of networks trained. Using the 
above mentioned weighting method, the committee achieves 
excellent results. 
 
The committee with neural network integrator method 
(CNNI) sees even more improvement over the above 
methods, with slightly more computational time. The one 
drawback of this particular method is that it could be over 
fitted to the validation/test data. It this respect it loses some 
of its generalization capabilities. The computational time is 
slightly misleading since a good architecture needs to be 
found for the final network. Here the RBF network 
outperforms the MLP network in the final layer. 
 
The double layered committee network (DLCN) sees an 
increase in error as well as computational time. This method 
also included a lot of extra time to find architecture in the 
second layer that produced good results. Overall this network 
when compared to the CNNI and the standard committee 
doesn’t perform well. 
 
The table above shows that the best performing network is 
the circular committee network (CCN) with SW weighting 
and since this network gives the best error result as well as 
the fact that its computational time is well below the average. 
The computational time with network is again misleading 
because good architectures needed to be found to achieve 
these results. 
 

Its is difficult to judge which method is the best, since each 
method has its advantages, comparing computational time as 
well as the generalization, portability and most importantly 
minimum error. Overall, since it has excellent generalization 
capability as well as portability, as well as the fact that it 
gives good results in just over average computational time, 
the standard committee with SW weighting seems a good 
choice for application to this type of highly no linear data. 
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