A Synthesis and Study of AlMgB₁₄

Richard Bodkin

A thesis presented to the University of the Witwatersrand in fulfilment of the requirements for the degree of Doctor of Philosophy

2005

A Synthesis and Study of AlMgB₁₄

by Richard Bodkin

DECLARATION

I, Richard Bodkin declare that this thesis is my own work. It is being submitted for the degree of Doctor of Philosophy at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at any other university.

Richard Bodkin

This ______ day of _____, 2005

Abstract

This project is specifically concerned with the processing, densification and mechanical properties of hot-pressed $AlMgB_{14}$, a hard ceramic material. In order to gain a better understanding of the processing and densification of $AlMgB_{14}$, it was necessary to investigate the Al-Mg-B ternary phase diagram. The study conducted indicated that the continuous solid solution that exists at 900°C between AlB_2 and MgB_2 recedes towards MgB_2 as the temperature is increased from 900°C to 1400°C. The position of the boundary was quantified using X-Ray diffraction and linear regression analysis to estimate the lattice constants. The results obtained using this method were confirmed by a Rietveld method. The final quantification of the solid solution boundary was done using the Rietveld results.

From the phase diagram studies it was shown that aluminium rich compositions of the elemental powders Al, Mg and B could be used to produce AlMgB₁₄. Specifically, composites that had a 3 wt.% excess of aluminium were found to produce the densest samples with the lowest porosities. As stated above samples were produced by hot-pressing. Hot-pressing was done on elemental powders of aluminium, magnesium and boron, at various loads between 20 and 75 MPa, temperatures between 900 and 1900°C, soak times of 1 hour and heating rates between 10 and 100°C/min.

It was found that for elemental powders, milled in a planetary ball mill with a WC milling media, of Al, Mg and B in the mole ratio of 1:1:14 did not produce $AlMgB_{14}$ at temperatures of less than 1200° C. For compositions richer in aluminium $AlMgB_{14}$ could be produced at temperatures of 1000° C. This suggests that the presence of the aluminium liquid phase aids with mass transport and thus the formation of $AlMgB_{14}$ is facilitated. Pure $AlMgB_{14}$ was not produced by this method and the predominant impurity was $MgAl_2O_4$ (≈ 10 wt.%).

It was found that this impurity phase is formed as a result of the oxide content in the starting elemental powders. The amount of $MgAl_2O_4$ can be limited by removal of the B_2O_3 from the starting powders. This is achieved by milling the starting powders in an

alcohol, specifically, methanol. B_2O_3 reacts with the methanol to produce boron esters which volatilise during evaporation of the milling solvent under a reduced pressure. It was also demonstrated that the milling of magnesium and aluminium in a planetary ball mill at 200-250 rpm did not further oxidise the aluminium and magnesium starting powders.

The optimum hot pressing parameters for producing dense $AlMgB_{14}$ were found to be at a temperature of 1600° C, heating rate of 100° C/min, a pushing force of 75 MPa and a soak time of 1 hour. However, samples produced from elemental powders were found to have a preferred orientation perpendicular to the hot-pressing direction. This is not uncommon for hot-pressed materials in which there exists a liquid phase. It was also found that equally dense $AlMgB_{14}$ could also be produced from micron sized pre-reacted elemental powders at the optimum hot-pressing conditions as those for the elemental powders. Pre-reacted powders were produced at 1400° C, 20 MPa, 10° C/min and 1 hour soak time. Compacts produced from the pre-reacted elemental powders were found to have no preferential alignment of homogeneous microstructure after hot-pressing at 1600° C, 75 MPa, 100° C/min. Samples prepared from the pre-reacted powders contain W_2B_5 as a secondary phase due to wear associated with WC milling media.

Pre-reacted powders were admixed separately with the compounds TiB_2 , TiC, TiN, Siand WC. Additionally, a compact containing TiB_2 and WC was also produced. Because of the reaction of the carbides and nitride with boron containing compounds, additional boron was added to those composites with the added nitrides and carbides in an attempt to minimise the reaction of those nitrides and carbides with the already formed boride phases in the pre-reacted powder. All the composites produced were found to contain only closed porosity (< 3%). The hardness and fracture toughness of these composites were measured from Vickers indents made at a 10 kg loading. The addition of TiB_2 (29.5 GPa), TiC (32.1 GPa), $TiB_2 + WC$ (29.1 GPa) and Si (31.2 GPa) to the baseline material, $AlMgB_{14}$, were found to increase the hardness of the baseline material (24 GPa). The addition of TiN did not increase the hardness of the baseline material. WC was found to react with boron and/or boride phases to form platelet-like W_2B_5 grains. The formation of W_2B_5 was prevalent in all the compacts because of the introduction of WC from the milling media and vessel. In the composites with Tibased additions a solid solution (Ti,W)B₂ formed. In composites produced with TiB₂ a core-rim structure was observed by SEM. Composites based on the additions of TiC and TiN or those with additional boron were found to have no core-rim structure.

Composites produced from $TiB_2 + WC + additional B$ increased the hardness of the baseline material from 24.0 GPa to 33.8 GPa and the fracture toughness from 7.7 $MPam^{\frac{1}{2}}$ to 9.8 $MPam^{\frac{1}{2}}$.

Dedication

It is over! Thank God, Mathias and Candice.

Acknowledgements

I would like to extend my gratitude and thanks to the following people:

School of Chemistry

Neil, Marcus, Mike, Barry, Steve, Ewa, Jo, Charles, Martha, Agnes, Amanda, Colleen, Pat, Demi, Dave, Manuel and Paul.

School of Engineering

Jack, Silvana, Graham, Theo, Aubrey, Bruce and Charmaine.

School of Physics

John, Kurt, Shuan, Andrew and Charles.

Council for Scientific and Industrial Research

Sara and Loukie.

Fraunhofer IKTS Dresden

Mathias, for so much!

Element 6

Hester, Brett, Peter, Lucas, Festus, Rod, Cheryl, Nick, Lex, James, Derrick, Lelanie and the company for a generous scholarship.

Colleagues and friends

John and James.

Family

Mom, Dad and Keith

Personal

Candice, for your patience, love, and above all, your understanding.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION	1
1.1: Background and Motivation	1
1.2: Project Overview	3
CHAPTER 2: LITERATURE REVIEW	4
2.1: Hard Materials	4
2.1.1 Hardness	4
2.1.2: The traditional paradigm for a hard material	8
2.2: Boride-based hard materials	9
2.2.1: Chemical bonding and structure types of some borides	10
2.2.2: The structure of $AlMgB_{14}$	11
2.2.3: The production of dense polycrystalline $AlMgB_{14}$ and associated impurity phases	13
2.2.4: Electrical, Thermal and Magnetic Properties of AlMgB ₁₄	14
2.2.5: The microhardness of polycrystalline $AlMgB_{14}$	16
2.2.6: Elastic constants of polycrystalline $AlMgB_{14}$	19
2.2.7: Thermal Expansion of polycrystalline $AlMgB_{14}$	21
2.2.8: Applications of $AIMgB_{14}$	23
2.2.9: Binary and Ternary Phase systems of interest	25
CHAPTER 3: EXPERIMENTAL	26
3.1: Chemicals	26
3.2: Equipment	27
3.2.1: Furnaces	27
3.2.1.1: The Tube Furnace	27
3.2.1.2: The Hot Isostatic Press	27
3.2.1.3: The Uniaxial Hot Press	28
3.2.1.4: Pyrolisis Furnace	31
3.2.2: The Planetary Mill	32
3.3: The Reaction Procedure	32
3.3.1: Preparing the Starting Powders	32

3.3.2: Compositions of the Powders	33
3.3.3: Sintering the Green Compacts	35
3.4 Analytical Procedures	35
3.4.1: Density Determination	35
3.4.2. Porosity by Image Analysis	36
3.4.3. Polishing of the Samples	36
3 4 4 X-Ray Diffraction	37
3.4.5: Particle Sizing	37
3.4.6: Scanning Electron Microscopy	38
3.4.7: Transmission Electron Microscopy	38
3.4.8: Inductively Coupled Plasma Analysis	38
3.4.9: Hardness and Fracture Toughness Testing	38
3.4.10: Thermal Analysis	39

CHAPTER 4: THE ALUMINIUM MAGNESIUM BORON TERNARY PHASE DIAGRAM 40

4.1: Introduction	40
4.1.1: The Aluminium-Boron Binary Phase Diagram	40
4.1.2: The Magnesium-Boron Binary Phase Diagram	42
4.1.3: The Al-Mg Binary System	44
4.1.4: The Aluminium-Magnesium-Boron Ternary Phase Diagram	46
4.1.5: The Solid Solution	48
4.2: Experimental	49
4.2.1: Qualitative XRD analysis	49
4.2.2: Quantitative XRD analysis	49
4.2.2: The XRD Scan Criteria	50
4.2.3: The Rietveld Method	53
4.3: Results and Discussion	54
4.3.1: The Compositions	54
4.3.2: Results of the Qualitative Analysis	56
4.3.3: The Thermodynamic Stability of the Phases	68
4.3.4: Quantifying the Phases using Rietveld Analysis	71
4.3.5: The Error in the 'a' and 'c' Parameter	75
4.3.6: Quantifying the Solid Solution Boundary	77
4.3.7: Composition 9 and the Volatilisation of Magnesium	81
4.3.8: Verifying the Phase Content for Composition 4	82

CHAPTER 5: LIMITING THE OXIDE PHASE	87
5.1: Introduction	87
5.1.1: Conventional Methods for Limiting Oxide Phase Formation	87
5.1.2: Measuring the Oxygen Content	89
5.1.3: Limiting the Formation of the Spinel Phase in AlMgB ₁₄ materials	90
5.1.3.1: The MgAl ₂ O ₄ system	90
5.1.3.2: The AlMgB ₁₄ compound	92
5.1.4: Boron Oxide as an oxidising agent	93
5.1.5: Boron as a reducing agent	93
5.1.6: Boron oxide and the formation of boron esters	94
5.2: Experimental	95
5.2.1: Solvent Properties	95
5.2.2: TEM analysis	98
5.3: Results and Discussion	99
5.3.1: Carbothermal Reduction	99
5.3.2: X-ray diffraction techniques	100
5.3.2.1: The baseline material	100
5.3.2.2: Washing the boron powder versus milling the boron powder in the solvent	102
5.3.2.3: The effect of milling Al, Mg and B in various solvents	104
5.3.2.4: Predicting the amount of spinel phase present in AlMgB ₁₄ samples milled in alcoho	1 107
5.3.3: EDS analysis preformed by TEM on boron powders milled in hexane and methanol	108
5.3.4: TEM analysis of the starting Mg and Al powders	109
5.4: Summary	109
CHAPTER 6: PROCESSING ALMGB ₁₄	111
6.1: Introduction	111
6.1.1: The Ti-B-C Ternary Phase System	111
6.1.2: The Ti-B-N Ternary Phase System	113
6.1.3: The W-B-C Ternary Phase System	114
6.2: Experimental	116
6.3: Results and Discussion	116

	110
6.3.1 Preliminary investigations of the formation of $AlMgB_{14}$	116
6.3.2: A synthesis of AlMgB ₁₄ from AlB ₁₂ and MgB ₂	118

6.3.3: Additives in AlMgB ₁₄	121
6.3.3.1 AlMgB ₁₄ + 30 wt.% TiB ₂	122
6.3.3.2: AlMgB ₁₄ + 20 wt.% TiN	125
6.3.3.3: AlMgB ₁₄ + 20 wt.% TiC	127
6.3.3.4: AlMgB ₁₄ + 20 wt.% TiCN	130
6.3.3.5: AlMgB ₁₄ + 20 wt.% WC	133
6.3.4: The Production of Dense AlMgB $_{14}$	135
6.3.4.1: The Effect of Particle Size	135
6.3.4.2: The Effect of Composition	138
6.3.4.3: The Effect of Temperature	141
6.3.4.4: The Effect of Pressure	143
6.3.4.5: Pre-Reacted Powder versus Elemental Powders	144
6.3.5: Microstructure and Mechanical Properties of compacts based on $AlMgB_{14}$	148
6.3.5.1: The hardness of composites produced from pre-reacted $AIMgB_{14}$	149
6.3.5.2: The PR_{3CS} system	150
6.3.5.3: PR _{3CS} + 30 wt.% TiB ₂	152
6.3.5.4: PR _{3CS} + 5 wt.% Si	155
6.3.5.5: PR _{3CS} + 25.8 wt.% TiC	157
6.3.5.6: PR _{3CS} + 26.7 wt.% TiN	161
$6.3.5.7 \text{ PR}_{3CS} + \text{WC}$	164
6.3.5.8: $PR_{3CS} + 30$ wt.% TiB ₂ + 30 wt.% WC	170
6.3.5.9: The hardness and fracture toughness of the prepared composites	175
6.4: Summary	179
CHAPTER 7: CONCLUSIONS AND FUTURE WORK	182
REFERENCES	185
APPENDIX A	191

LIST OF FIGURES

FIGURE 2.1.1: THE SCATTERING OF THE VICKERS HARDNESS MEASUREMENTS FOR	
VARIOUS HARD MATERIALS WHEN COMPARED WITH THEIR CORRESPONDING	ſ
BULK (GREY AREA) AND SHEAR (BLUE AREA) MODULI ¹⁰	5
FIGURE 2.1.2: A COMMON LOAD-HARDNESS RELATIONSHIP ¹²	6
FIGURE 2.1.3: H_{V1} FOR A FINE-GRAINED SINTERED ALUMINA CERAMIC PREPARED B	ΥA
SOL-GEL APPROACH STARTING WITH BOEHMITE ¹³	7
FIGURE 2.2.1: A TYPICAL FIVE-FOLD SYMMETRIC ICOSAHEDRON	10
FIGURE 2.2.2: THE STRUCTURE OF B ₄ C IN THE CHAIN OR POLAR STRUCTURES ²¹	11
FIGURE 2.2.3: CRYSTAL STRUCTURE OF ALMGB14 PROJECTION ON THE AB PLANE	12
FIGURE 2.2.5 B: A PLOT OF THE ELECTRICAL RESISTIVITY IN ALMGB14 AS A FUNCTION	ON
OF THE TOTAL VOLUME PERCENT OF AL2MGO4, FE3O4 AND FEB IMPURITY	
PHASES ²⁷	15
FIGURE 2.2.5: A PLOT OF THE MEAN MICROHARDNESS AS A FUNCTION OF THE TOTA	AL
VOLUME PERCENT OF AL2MGO4, FE3O4 AND FEB IMPURITY PHASES IN ALMGB1	4.
ERROR BARS INDICATE ONE STANDARD DEVIATION. NO LOAD HAS BEEN	
SPECIFIED FOR THE MICROHARDNESS MEASUREMENT ²⁷	17
FIGURE 2.2.6: PLOT OF MICROHARDNESS (Hv1) VS. SHEAR MODULUS FOR VARIOUS	
MATERIALS ¹⁰ . THE FILLED CIRCLE SHOWS THE POSITION OF ALMGB ₁₄ (NO LOA	٨D
HAS BEEN SPECIFIED FOR THIS MEASUREMENT) ²⁸	19
FIGURE 2.2.7: PART OF THE STRUCTURE OF ALMGB14 SHOWING THE LOCATIONS OF	AL
AND MG RELATIVE TO THE B ICOSAHEDRA ⁴	20
FIGURE 2.2.8: CRACK DEFLECTION AROUND TIB2 PARTICLES IN A B4C MATRIX ³⁴	22
FIGURE 2.2.9: FLANK AND NOSE WEAR VS. CUTTING TIME FOR UNCOATED AND	
COATED TOOLS IN DRY MACHINING ³⁶	24
FIGURE 3.2.1: THE UNIAXIAL HOT PRESS	28
FIGURE 3.2.2: HOT-ZONE COMPONENTS USED IN THE UNIAXIAL HOT PRESS	29
FIGURE 3.2.2: CALIBRATION OF THE HOT PRESS' OPTICAL PYROMETER WITH AN HO)T
WIRE PYROMETER	30
FIGURE 3.2.3: A THERMO-GRAVIMETRIC PROFILE FOR ALMGB14 + 3 WT.% PARAFFIN	
AND 5 WT. % STEARIC ACID IN ARGON, HEATING RATE 5 ⁰ C/MIN	31
FIGURE 4.1.1: THE ALUMINIUM-BORON BINARY PHASE DIAGRAM REPRODUCED FRO	ЭМ
THE REVIEW OF THE AL-B SYSTEM GIVEN BY O. N. CARLSON ⁴⁹	41
FIGURE 4.1.2: THE MAGNESIUM-BORON BINARY PHASE DIAGRAM ⁵⁰	43
FIGURE 4.1.3: THE AL-MG BINARY PHASE DIAGRAM ⁵³	45
FIGURE 4.1.4: AN ISOTHERMAL SECTION OF THE AL-MG-B TERNARY PHASE DIAGRA	М
AT 900 [°] C ⁵⁷	47
FIGURE 4.2.1: XRD PATTERN FOR COMPOSITION 1 AT 900°C WITH 5 WT% SILICON AS	S AN
INTERNAL STANDARD	50

FIGURE 4.2.2: LINEAR EQUATION FOR THE SHIFTING OF THE DIFFRACTOGRAM FOR	
COMPOSITION 1	51
FIGURE 4.3.1: COMPOSITIONS FOR THE STUDY OF THE AL-MG-B TERNARY PHASE	
DIAGRAM	54
FIGURE 4.3.2 A: DIFFRACTOGRAM FOR COMPOSITION 1 AT 900°C	56
FIGURE 4.3.2 B: DIFFRACTOGRAM FOR COMPOSITION 1 AT 1000 ⁰ C	56
FIGURE 4.3.2 C: DIFFRACTOGRAM FOR COMPOSITION 1 AT 1200°C	57
FIGURE 4.3.2 D: DIFFRACTOGRAM FOR COMPOSITION 1 AT 1400 ^o C	57
FIGURE 4.3.3: COMPARISON OF THE DIFFRACTOGRAMS FOR COMPOSITION 1	58
FIGURE 4.3.4: COMPARISON OF THE DIFFRACTOGRAMS FOR COMPOSITION 2	59
FIGURE 4.3.5: COMPARISON OF THE DIFFRACTOGRAMS FOR COMPOSITION 3	60
FIGURE 4.3.6: COMPARISON OF THE DIFFRACTOGRAMS FOR COMPOSITION 8	65
FIGURE 4.3.7: COMPARISON OF THE DIFFRACTOGRAMS FOR COMPOSITION 10	66
FIGURE 4.3.8 A: COMPOSITION 4 HEATED FOR 1 HOUR AND 5 HOURS AT 900 ^o C	68
FIGURE 4.3.8 B: COMPOSITION 5 HEATED FOR 1 HOUR AND 5 HOURS AT 900 ^o C	69
FIGURE 4.3.8 C: COMPOSITION 6 HEATED FOR 1 HOUR AND 5 HOURS AT 900 ^o C	69
FIGURE 4.3.8 D: COMPOSITION 9 HEATED FOR 1 HOUR AND 5 HOURS AT 900 ^o C	70
FIGURE 4.3.8 E: COMPOSITION 8 PREPARED AT 1200°C FOR 1 HOUR AND REHEATED F	OR
5 HOURS AT 900 ^o C	71
FIGURE 4.3.9: SCHEMATIC OF THE EQUILIBRIUM PHASES PREDICTED FOR	
COMPOSITIONS 1, 4 AND 8 AT THE 1000 ^o C AND 1200 ^o C TEMPERATURES	72
FIGURE 4.3.10: SHIFTED COMPOSITIONS 1, 4 AND 8 IN THE TERNARY PHASE DIAGRAM	M 75
FIGURE 4.3.11: TESTING VEGARD'S LAW FOR THE CHANGE IN THE 'A' AND 'C'	
PARAMETER FOR PURE MGB ₂ AND PURE ALB ₂	76
FIGURE 4.3.12 A: RIETVELD AND METHOD 1 DETERMINATION OF THE %ALB2 IN THE	
SOLID SOLUTION FROM COMPOSITION 4 AT 900, 1000, 1200 AND 1400 ⁰ C	79
FIGURE 4.3.12 A: RIETVELD AND METHOD 1 DETERMINATION OF THE %ALB2 IN THE	
SOLID SOLUTION FROM COMPOSITION 8 AT 900, 1000, 1200 AND 1400 ⁰ C	79
FIGURE 4.3.13: COMPOSITION OF THE SOLID SOLUTION BASED ON THE RIETVELD	
REFINEMENT DATA FOR COMPOSITION 4	80
FIGURE 4.3.14: SHIFTED COMPOSITION 9 DETERMINED FROM THE COMPOSITION OF	
THE SOLID SOLUTION	81
FIGURE 4.3.15: TIE LINES DRAWN IN THE ISOTHERMAL SECTION OF THE AL-MG-B	
TERNARY PHASE DIAGRAM FOR COMPOSITION 4 AT 1000 ⁰ C	83
FIGURE 4.4.1: A CROSS SECTION AT 66 AT.% B IN THE AL-MG-B TERNARY PHASE	
DIAGRAM	84
FIGURE 4.4.2 A: ISOTHERMAL SECTION OF THE AL-MG-B TERNARY PHASE DIAGRAM	AT
1000 ^o C	85
FIGURE 4.4.2 B: ISOTHERMAL SECTION OF THE AL-MG-B TERNARY PHASE DIAGRAM	AT
1200 ^o C	85

FIGURE 4.4.2 C: ISOTHERMAL SECTION OF THE AL-MG-B TERNARY PHASE DIAGRA	M AT
1400 [°] C	86
FIGURE 5.1.1: THE STRUCTURE OF MGAL ₂ O ₄ THE GREY COLOURED ATOMS ARE	
MAGNESIUM CATIONS, THE GREEN COLOURED ATOMS ARE THE ALUMINIUN	1
CATIONS AND THE RED ATOMS ARE THE OXYGEN ANIONS	91
FIGURE 5.3.1: OXYGEN CONTENT IN MG POWDER DETERMINED BY CARBOTHERM.	4L
REDUCTION	99
FIGURE 5.3.2: X-RAY DIFFRACTOGRAM FOR RIETVELD ANALYSIS OF PHASE CONT	ENT
	101
FIGURE 5.3.3: RIETVELD ANALYSIS DIFFRACTOGRAM	101
FIGURE 5.3.4: X-RAY DIFFRACTOGRAMS FOR SAMPLES PREPARED BY DIFFERENT	
METHODS HOT-PRESSED AT 1400 ^o C, 20 MPA, 1 HOUR	103
FIGURE 5.3.5: DIFFRACTOGRAM FOR THE MILLED SAMPLE HOT-PRESSED AT 1400 ^o	С,
20 MPA, 1 HOUR	104
FIGURE 5.3.6 A: RATIO OF BORIDE/OXIDE VS. SOLVENT	105
FIGURE 5.3.6 B: RATIO OF BORIDE/OXIDE VS. ALCOHOL SOLVENT POLARITY	106
FIGURE 6.1.1: AN ISOTHERMAL SECTION AT 1400°C FOR THE TI-B-C TERNARY PHASE	SE
DIAGRAM ⁹⁴	112
FIGURE 6.1.2: AN ISOTHERMAL SECTION AT 1500°C FOR THE TI-B-N TERNARY PHA	SE
DIAGRAM ¹⁰¹	113
FIGURE 6.1.3: AN ISOTHERMAL SECTION AT 1500°C FOR THE W-B-C TERNARY PHAS	SE
DIAGRAM ¹⁰³	115
FIGURE 6.3.1: A COMPARISON OF THE DIFFRACTOGRAMS FOR ALMGB14 PRODUCEI) IN
THE TUBE, HIP AND UNIAXIAL HOT PRESS FURNACES AT 1400 ⁰ C	116
FIGURE 6.3.2: MICROSTRUCTURE OF ALMGB ₁₄ MADE AT 1400 ^o C AND 20 MPA IN A H	OT
PRESS	118
FIGURE 6.3.3: DIFFRACTOGRAM FOR ALB ₁₂ + MGB ₂ PREPARED AT 1400 ^O C FOR 1 HO	JR
	120
FIGURE 6.3.4A: IDENTIFIED PHASES IN ALMGB ₁₄ + 30 WT.% TIB ₂	123
FIGURE 6.3.4 B: ALMGB ₁₄ + 30 WT.% TIB ₂ EXPANDED 20 REGION. THE EXPERIMENT	AL
DATA ARE COMPARED TO A SIMULATED SCAN FROM THE JCPDS DATA	124
FIGURE 6.3.4 C: THE MICROSTRUCTURE OF ALMGB ₁₄ + 30 WT.% TIB ₂	124
FIGURE 6.3.5 A: IDENTIFIED PHASES IN ALMGB14 + 20 WT.% TIN	125
FIGURE 6.3.5 B: ALMGB14 + 20 WT.% TIN EXPANDED 20 REGION. THE EXPERIMENTA	٩L
DATA ARE COMPARED TO A SIMULATED SCAN FROM THE JCPDS DATA	126
FIGURE 6.3.5 C: THE MICROSTRUCTURE OF ALMGB ₁₄ + 20 WT.% TIN	127
FIGURE 6.3.6 A: IDENTIFIED PHASES IN ALMGB14 + 20 WT.% TIC	128
FIGURE 6.3.6 B: ALMGB ₁₄ + 20 WT.% TIC EXPANDED 2 Θ REGION. THE EXPERIMENTA	 ۱
DATA ARE COMPARED TO A SIMULATED SCAN FROM THE JCPDS DATA	129
FIGURE 6.3.6 C: THE MICROSTRUCTURE OF 20 WT.% TIC + ALMGB ₁₄	129

EICLIDE 6.2.7. A. IDENTIEIED DIASES IN ALMOD. 1.20 WT 9/ TICN	120
FIGURE 0.5.7 A. IDENTIFIED PHASES IN ALMOD $_{14}$ + 20 w 1.76 FICN EICLIDE 6.2.7 D. IDENTIFIED DHASES IN ALMOD + 20 WT % TICN THE EXDEDIMENT.	150
FIGURE 0.5.7 B. IDENTIFIED FRASES IN ALMOB $_{14}$ + 20 w 1.76 FIGN. THE EXPERIMENTA	121
EICUDE 6.2.7.C: THE MICROSTRUCTURE OF ALMOR. + 20 WT % TICN	121
FIGURE 0.5.7 C. THE MICROSTRUCTURE OF ALMOB ₁₄ \pm 20 w 1.76 HCN EICURE 6.2.8: COMBADISON OF THE DIFERACTOOR AMS ORTAINED FOR ALL THE	131
FIGURE 0.5.8. COMPARISON OF THE DIFFRACTOGRAMS OBTAINED FOR ALL THE	122
EICUDE (2.0. A) IDENTIFIED DUASES IN ALMOD - 20 WT % WC	132
FIGURE 6.3.9 A: IDENTIFIED PHASES IN ALMOB $_{14}$ + 20 w 1.% wC	133
FIGURE 6.3.9 B: THE MICROSTRUCTURE OF ALMGB ₁₄ + 20 W 1.% WC	134
FIGURE 6.3.10: MASS PERCENT OF TUNGSTEN VERSUS MILLING TIME FOR PRE-	105
REACTED POWDERS	137
FIGURE 6.3.11: COMPARISON OF ELEMENTAL AND PRE-REACTED ALMGB ₁₄ (6 HOURS	S
MILLING) WITH W_2B_5	138
FIGURE 6.3.12: A COMPARISON OF ALMGB ₁₄ AND ALMGB ₁₄ + COMPENSATION FOR T	HE
SPINEL PHASE	140
FIGURE 6.3.13 A: COMPARISON OF THE XRD PATTERNS FOR ALMGB ₁₄ PREPARED AT	900,
1200, 1400, 1600 AND 1700 ^o C	141
FIGURE 6.3.13 B: X-RAY DIFFRACTOGRAM FOR ALMGB ₁₄ PREPARED AT 1600 ^o C	142
FIGURE 6.3.14 A: A MICROSCOPE IMAGE TAKEN FOR A COMPACT PRODUCED FROM	
THE ELEMENTAL STARTING POWDER WITH COMPOSITION A + CS + 3 WT.% AL	AT
1600 ⁰ C AND 75 MPA IN AN UNIAXIAL HOT-PRESS	147
FIGURE 6.3.14 B: A MICROSCOPE IMAGE TAKEN AT FOR A COMPACT PRODUCED FROM	ОМ
THE PRE-REACTED STARTING POWDER WITH COMPOSITION A + CS + 3 WT.% A	L
AT 1600 ⁰ C AND 75 MPA IN AN UNIAXIAL HOT-PRESS	147
FIGURE 6.3.15A: DIFFRACTOGRAM FOR PR _{3CS} REACTED AT 1600 ⁰ C, HEATING RATE	
100 ⁰ C/MIN, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA	150
FIGURE 6.3.15 B: A COMPARISON OF UNREACTED PR_{3CS} WITH REACTED PR_{3CS}	151
FIGURE 6.3.15 C: AN SEM IMAGE FOR PR _{3CS}	152
FIGURE 6.3.16 A: DIFFRACTOGRAM FOR PR _{3CS} + 30 WT.% TIB ₂ REACTED AT 1600 ^O C,	
HEATING RATE 100 ⁰ C/MIN, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA	153
FIGURE 6.3.16 B: AN SEM IMAGE FOR PR _{3CS} + 30 WT.% TIB ₂	154
FIGURE 6.3.17 A: DIFFRACTOGRAM FOR PR _{3CS} + 5 WT.% SI REACTED AT 1600 ^O C,	
HEATING RATE 100 ⁰ C/MIN, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA	155
FIGURE 6.3.17 B: A COMPARISON OF UNREACTED PR _{3CS} + 5 WT.% SI WITH REACTED	
$PR_{3CS} + 5 WT.\% SI$	156
FIGURE 6.3.17 C: AN SEM IMAGE FOR PR _{3CS} + 5 WT.% SI	156
FIGURE 6.3.18 A: DIFFRACTOGRAM FOR PR_{3CS} + 25.8 WT.% TIC REACTED AT 1600°C.	
HEATING RATE 100 [°] C/MIN. SOAK TIME 1 HOUR. PRESSING FORCE 75 MPA	157
FIGURE 6.3.18 B: A COMPARISON OF UNREACTED PRace + 25.8 WT % TIC WITH REACT	TED
$PR_{3CS} + 25.8 \text{ WT\% TIC}$	158

xvi

FIGURE 6.3.18 C: A COMPARISON OF REACTED PR _{3CS} + 25.8 WT.% TIC WITH REACTED)
PR _{3CS} + 25.8 WT% TIC + 21.8 WT.% B	158
FIGURE 6.3.18 D: A PHASE ANALYSIS OF REACTED PR _{3CS} + 25.8 WT.% TIC WITH REAC	CTED
PR _{3CS} + 25.8 WT% TIC + 21.8 WT.% B	159
FIGURE 6.3.18 E: AN SEM IMAGE FOR PR _{3CS} + 25.8 WT.% TIC	160
FIGURE 6.3.18 F: AN SEM IMAGE FOR PR _{3CS} + 25.8 WT.% TIC + 21.8 WT.% B	160
FIGURE 6.3.19 A: DIFFRACTOGRAM FOR PR_{3CS} + 26.7 WT.% TIN REACTED AT 1600 ^o C,	
HEATING RATE 100 ⁰ C/MIN, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA	161
FIGURE 6.3.19 B: A COMPARISON OF UNREACTED PR _{3CS} + 26.7 WT.% TIN WITH REAC	TED
PR _{3CS} + 26.7WT% TIN	162
FIGURE 6.3.19 C: A COMPARISON OF REACTED PR _{3CS} + 26.7 WT.% TIN WITH REACTED)
PR _{3CS} + 26.7WT% TIN + 15.7 WT.% B	162
FIGURE 6.3.19 D: AN SEM IMAGE FOR PR _{3CS} + 26.7 WT.% TIN	163
FIGURE 6.3.19 D: AN SEM IMAGE FOR PR_{3CS} + 26.7 WT.% TIN +15.7 WT.% B	163
FIGURE 6.3.20 A: DIFFRACTOGRAM FOR PR _{3CS} + 15 WT.% WC REACTED AT 1600 ^o C,	
HEATING RATE 10 ⁰ C/MIN, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA	164
FIGURE 6.3.20 B: A COMPARISON OF PR _{3CS} + 15 WT.% WC AND PR _{3CS} + 30 WT.% WC	
REACTED AT 1600 ^o C, HEATING RATE 10 ^o C/MIN, SOAK TIME 1 HOUR, PRESSING	ŕ
FORCE 75 MPA	165
FIGURE 6.3.20 C: A COMPARISON OF PR _{3CS} + 30 WT.% WC REACTED AT 1600 ^o C, HEAT	ING
RATE 100 ^o C/MIN AND 10 ^o C/MIN, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA	165
FIGURE 6.3.20 D: DIFFRACTOGRAM FOR PR _{3CS} + 30 WT.% WC REACTED AT 1600 ^o C,	
HEATING RATE 100 ⁰ C/MIN, SOAK TIME 1 HOUR, PRESSING FORCE 75 MPA	166
FIGURE 6.3.20 E: A COMPARISON OF REACTED PR _{3CS} + 30.0 WT.% WC WITH REACTED)
PR _{3CS} + 30.0WT% WC + 17.7 WT.% B	167
FIGURE 6.3.20 F: AN SEM IMAGE FOR PR_{3CS} + 15.0 WT.% WC, HEATING RATE 10 ^o C/MI	N 168
FIGURE 6.3.20 G: AN SEM IMAGE FOR PR_{3CS} + 15.0 WT.% WC, HEATING RATE 100 ^o C/M	IN
	168
FIGURE 6.3.20 H: AN SEM IMAGE FOR PR _{3CS} + 30.0 WT.% WC, HEATING RATE 10 ^o C/MI	N169
FIGURE 6.3.20 I: AN SEM IMAGE FOR PR _{3CS} + 30.0 WT.% WC, HEATING RATE 100 ^o C/MI	N169
FIGURE 6.3.20 J: AN SEM IMAGE FOR PR_{3CS} + 30.0 WT.% WC + 17.7 WT.% B, HEATING	
RATE 100 ^o C/MIN	170
FIGURE 6.3.21 A: DIFFRACTOGRAM FOR PR _{3CS} + 30 WT.%TIB ₂ + 30 WT.% WC REACTED	D AT
1600 ⁰ C, HEATING RATE 100 ⁰ C/MIN, SOAK TIME 1 HOUR, PRESSING FORCE 75 M	PA
	171
FIGURE 6.3.21 B: THE PHASES PRESENT IN REACTED PR_{3CS} + 30 WT.% TIB ₂ + 30 WT.%	WC
AND REACTED PR_{3CS} + 30 WT.% TIB ₂ + 30WT% WC + 14.2 WT.% B	171
FIGURE 6.3.21 C: AN SEM IMAGE OF PR _{3CS} + 30 WT.%TIB ₂ + 30 WT.% WC	172
FIGURE 6.3.21 D: AN SEM IMAGE OF PR_{3CS} + 30 WT.% TIB ₂ + 30 WT.% WC + 14.2 WT.%	B172
FIGURE 6.3.22: A TYPICAL VICKERS INDENT AT A 10 KG LOADING	175

LIST OF TABLES

TABLE 2.1: DENSITY, HARDNESS, BULK AND SHEAR MODULI OF SELECTED HARD	
MATERIALS ²	18
TABLE 2.2: COEFFICIENT OF THERMAL EXPANSION OF SOME IMPORTANT HARD	
MATERIALS	21
TABLE 3.1.1: CHEMICALS USED FOR PROCESSING	26
TABLE 4.1.1: STRUCTURAL DATA FOR PHASES IN THE AL-B SYSTEM	42
TABLE 4.1.2: STRUCTURAL DATA FOR THE PHASES IN THE MG-B SYSTEM	43
TABLE 4.1.3: STRUCTURAL DATA FOR THE PHASES IN THE AL-MG BINARY PHASE	
DIAGRAM	45
TABLE 4.1.4: STRUCTURAL DATA OF ALMGB ₁₄	47
TABLE 4.2.1: 2 THETA PEAKS FOR ALB ₂ , MGB ₂	50
TABLE 4.2.2: VALUES OF 1/D ² CALCULATED AND 1/D ² EXPERIMENTAL	52
TABLE 4.3.1: ATOMIC PERCENT FOR THE COMPOSITIONS	55
TABLE 4.3.2: SUMMARY OF THE MAJOR PHASES FOR COMPOSITION 9	62
TABLE 4.3.3: THE SHIFT IN D-SPACE FOR COMPOSITION 9 AT THE DIFFERENT	
TEMPERATURES	62
TABLE 4.3.4: SUMMARY OF THE MAJOR PHASES FOR COMPOSITIONS 1-3	63
TABLE 4.3.5: SUMMARY OF THE MAJOR PHASES FOR COMPOSITIONS 4-6	63
TABLE 4.3.6: SUMMARY OF THE MAJOR PHASES IDENTIFIED FOR COMPOSITION 8 AN	١D
10	66
TABLE 4.3.7: RIETVELD ANALYSIS DATA FOR THE DETERMINATION OF THE PHASE	
CONTENT IN COMPOSITION 1, 4 AND 8	73
TABLE 4.3.8: ATOMIC PERCENT FOR UNSHIFTED AND SPINEL SHIFTED COMPOSITION	٩S
	74
TABLE 4.3.9: THE CALCULATED CELL PARAMETERS FROM THE RIETVELD REFINEME	ENT
	77
TABLE 4.3.10: CALCULATED LATTICE PARAMETERS USING METHOD 1	78
TABLE 4.3.11: COMPOSITION OF THE SOLID SOLUTION DETERMINED BY METHOD 1	
AND THE RIETVELD METHOD	78
TABLE 4.3.12: CONCENTRATION OF. ALB2 IN (ALB2)SS FOR COMPOSITION 9 DETERMIN	₹ED
BY METHOD 1	81
TABLE 4.3.13: COMPOSITION OF PHASES THAT CONTAIN ALL OF AL, MG AND B ONLY	Y
FOR COMPOSITION 4 FROM RIETVELD ANALYSIS AND CALCULATED FROM THI	Е
STARTING COMPOSITIONS	82
TABLE 5.2.1: PROPERTIES OF SOME ORGANIC COMPOUNDS	95
TABLE 5.2.2: THE CORRESPONDING BORON ESTERS	96
TABLE 5.3.1: TABLE OF PHASE CONTENT OF BASELINE ALMGB14 DETERMINED BY	
RIETVELD ANALYSIS	102

TABLE 5.3.2: VALUES USED IN FIGURES 5.3.6A-B	105
TABLE 5.3.3: THE PERCENTAGE BY MASS OF THE SPINEL PHASE	107
TABLE 5.3.4: OXYGEN CONTENT IN THE POLYMER COATING	108
TABLE 5.3.5: MASS PERCENT OF OXYGEN IN BORON	108
TABLE 6.1.1: STRUCTURAL DATA FOR THE PHASES IN THE TI-B-C TERNARY PHASE	
DIAGRAM	112
TABLE 6.1.2: STRUCTURAL DATA FOR THE PHASES IN THE TI-B-N TERNARY PHASE	
DIAGRAM	114
TABLE 6.1.3: STRUCTURAL DATA FOR THE PHASES IN THE W-B-C TERNARY PHASE	
DIAGRAM	115
TABLE 6.3.1: PHASES, DENSITY AND POROSITY FOR ALMGB14 PREPARED THE THREE	Е
DIFFERENT FURNACES	117
TABLE 6.3.2: DENSITY AND POROSITY OF ALB ₁₂ , MGB ₂ AND THE COMPOSITE ALB ₁₂ +	-
MGB_2	121
TABLE 6.3.3: DENSITY, POROSITY AND MAJOR PHASES FOR ALMGB14 COMPOSITES	122
TABLE 6.3.4 A: PROPERTIES OF ELEMENTAL POWDERS HOT-PRESSED AT 1400°C,	
20 MPA, 1 HOUR	136
TABLE 6.3.4 B: PROPERTIES OF PRE-REACTED POWDERS HOT-PRESSED AT 1400°C,	
20 MPA, 1 HOUR	136
TABLE 6.3.5: THE DENSITIES, POROSITIES AND THEORETICAL DENSITIES FOR	
ELEMENTAL ALMGB14 PREPARED WITH EXCESS MAGNESIUM AND/OR	
ALUMINIUM AND HOT PRESSED AT 1400 ⁰ C, 20 MPA AND 1 HOUR	139
TABLE 6.3.6: DENSITY, RELATIVE DENSITY AND POROSITY FOR ALMGB14 PREPARED) AT
900°C, 1200°C, 1400 °C, 1500 °C, 1600 °C AND 1700 °C	143
TABLE 6.3.7: THE DENSITY, POROSITY AND ALMGB14: MGAL2O4 MAJOR PEAK RATIO	FOR
SAMPLES PREPARED AT 20 MPA AND 75 MPA AT 1600 ⁰ C	144
TABLE 6.3.8: A COMPARISON OF THE DENSITIES OBTAINED FROM PRE-REACTED	
POWDERS AND ELEMENTAL POWDERS AT 1400 ^o C AND 20 MPA	145
TABLE 6.3.8: DENSITIES, POROSITIES FOR ELEMENTAL AND PRE-REACTED POWDER	S
PREPARED AT 1600 ^o C AND 75 MPA	146
TABLE 6.3.9: THE KNOOP HARDNESS OF COMPOSITES PREPARED IN TABLE 6.3.8 AT	А
500 G LOAD	149
TABLE 6.3.10: A SUMMARY OF THE CRYSTALLINE PHASES IDENTIFIED BY XRD IN T	HE
COMPOSITES	174
TABLE 6.3.10: DENSITY. POROSITY, VICKERS HARDNESS AND FRACTURE TOUGHNE	SS
FOR THE COMPOSITES	176
TABLE 6.3.11: COMPARISON OF THE CHANGE IN HARDNESS	177
TABLE 1: COMPOSITIONS FOR THE PHASE DIAGRAM	191
TABLE 2: MASS AND ATOMIC PERCENTS FOR ALMGB14	191
TABLE 3: COMPOSITIONS FOR THE COMPOSITES PREPARED AT 1600 ⁰ C	192