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Abstract 

Various methods, mostly statistical in nature have been introduced for stock market 

modelling and prediction. These methods are, however, complex and difficult to 

manipulate. Computational intelligence facilitates this approach of predicting stocks due 

to its ability to accurately and intuitively learn complex patterns and characterise these 

patterns as simple equations. In this research, a methodology that uses neural networks 

and Bayesian framework to model stocks is developed. The NASDAQ all-share index 

was used as test data. A methodology to optimise the input time-window for stock 

prediction using neural networks was also devised. Polynomial approximation and 

reformulated Bayesian frameworks methodologies were investigated and implemented. A 

neural network based algorithm was then designed. The performance of this final 

algorithm was measured based on accuracy. The effect of simultaneous use of diverse 

neural network engines is also investigated. The test result and accuracy measurements 

are presented in the final part of this thesis. 

 

 

 

 

 

 

 

 

Key words: Neural Networks, Bayesian framework and Markov Chain Monte Carlo 



 iii

Table of Contents 

Preface................................................................................................................................. i 

Abstract.............................................................................................................................. ii 

Table of Contents ............................................................................................................. iii 

List of Tables ................................................................................................................... vii 

List of Figures................................................................................................................. viii 

1. Introduction: The Stock Market ................................................................................. 1 

1.1 Background............................................................................................................... 1 

1.2 Research Focus and Motivation................................................................................ 6 

1.3 Literature Review...................................................................................................... 7 

2. Neural Networks ......................................................................................................... 11 

2.1 Introduction............................................................................................................. 11 

2.2 Neural Networks ..................................................................................................... 12 

2.2.1 What Are Neural Networks?............................................................................ 12 

2.2.2 Why Neural Networks?.................................................................................... 13 

2.2.3 Neural Networks versus Other Methods and Linear Statistics ........................ 14 

2.2.4 Applications of Neural Networks ................................................................... 14 

2.2.5 Future of Neural Networks .............................................................................. 15 

2.2.6 Limitations of Neural Networks ..................................................................... 15 

2.3. Neural Networks Architectures.............................................................................. 15 

2.3.1 Multi-layer Perceptron ..................................................................................... 16 

2.3.1.1 Linear Regression ..................................................................................... 18 

2.3.1.2 Perceptron Algorithm................................................................................ 19 



 iv

2.3.1.3 Activation Functions................................................................................. 19 

2.3.2 Radial Basis Function Networks...................................................................... 21 

2.3.3 Recurrent Neural Networks ............................................................................. 22 

2.3.4 Hierarchical Mixtures of Experts..................................................................... 23 

2.3.5 Self-Organising Map Networks ....................................................................... 23 

2.3.6 Remarks on Network Architectures................................................................. 23 

3. Conventional Statistical Methods .............................................................................. 25 

3.1 Moving Average Methods ...................................................................................... 25 

3.1.1 Simple Average................................................................................................ 25 

3.2 Exponential Smoothing........................................................................................... 28 

3.2.1 Single Exponential Smoothing ........................................................................ 29 

3.2.2 Double Exponential Smoothing....................................................................... 29 

3.2.3 Triple Exponential Smoothing......................................................................... 30 

3.3 Linear Regression ................................................................................................... 32 

3.3.1 Least Squares ................................................................................................... 34 

3.4 Remarks and Conclusion ........................................................................................ 36 

4. Markov Chain Monte Carlo Sampling ..................................................................... 38 

4.1 Probability Density Function .................................................................................. 43 

4.2 Distribution ............................................................................................................. 43 

4.3 Monte Carlo Methods ............................................................................................. 44 

4.3.1 Monte Carlo Integration................................................................................... 46 

4.3.2 Variance Reducing Technique......................................................................... 48 

4.3.2.1 Importance Sampling ................................................................................ 48 



 v

4.3.2.2 Stratified Sampling ................................................................................... 49 

4.4 Metropolis Hastings Algorithm .............................................................................. 50 

4.5 Remarks .................................................................................................................. 53 

5. Bayesian Methodology For Statistical Modeling ..................................................... 54 

5.1 Bayesian Approach ................................................................................................. 55 

5.1.1 Bayesian Methodology .................................................................................... 55 

5.1.2 Prior Knowledge .............................................................................................. 56 

5.1.3 Model or Likelihood ........................................................................................ 56 

5.1.4 Posterior Distribution....................................................................................... 57 

5.2 Bayesian Learning for MLP Networks ................................................................... 58 

5.3 Markov Chain Monte Carlo Method....................................................................... 59 

5.4 Conclusion and Remarks ........................................................................................ 60 

6. Input Time-Window Optimization Algorithms ....................................................... 61 

6.1 Factors Specification and Processing...................................................................... 62 

6.2 Creating the Neural Networks ................................................................................ 63 

6.3 Optimizing the Input Time-Window Using Polynomial Approximation ............... 66 

6.4 Optimizing the Input Time-Window by Reformulation of Bayesian Framework.. 68 

6.4.1 Creating the Network Architecture.................................................................. 69 

6.4.2 Creation of the Discrete Feed-Forward Multi-Layer Perceptron..................... 69 

6.4.3 Optimisation/Training Algorithm .................................................................... 70 

6.4.4 Prediction of Outputs by RBF network ........................................................... 71 

6.5 Simulation Results .................................................................................................. 72 

6.5.1 Testing and Comparison of Different Networks.............................................. 74 



 vi

6.3 Conclusion on Implementation ............................................................................... 79 

7. Application of the Methodology Designed ................................................................ 80 

7.1 Analysis Data .......................................................................................................... 81 

7.2 Performance Measurement ..................................................................................... 81 

7.3 Methodology Analysis ............................................................................................ 82 

7.3 Effect of the Simultaneous Use of Diverse Neural Networks on the Accuracy of 

Prediction ...................................................................................................................... 86 

7.4 Conclusion .............................................................................................................. 86 

8. Conclusion ................................................................................................................... 87 

Bibliography .................................................................................................................... 91 

A. The Implemented Code for Methodologies Developed........................................... 95 

A.1 Matlab Code to Optimize the Network Architecture ............................................. 95 

A.2 Matlab Code for the Polynomial Approximation Optimisation of the Input Time-

Window....................................................................................................................... 101 

A.2.1 Input Number: ............................................................................................... 102 

A.2.2 Mastdaysn ..................................................................................................... 102 

A.3 The Matlab Codes Created for the Second Methodology.................................... 107 

A.3.1 The discrete MLP and RBF Networks.......................................................... 107 

A.3.2 Optimisation Algorithms for the MLP and RBF Networks.......................... 109 

A.4 Matlab Code for the Optimisation of the Input Time-Window ........................... 112 

A.4.1 MLP Network ............................................................................................... 112 

A.4.2 RBF Network ................................................................................................ 119 

 



 vii

List of Tables 

Table 1: Table of activation functions with the respective functions ............................... 18 

Table 2: The Mean Square Error (MSE) = 2.018 as compared to 3 for a simple averaging 

process............................................................................................................................... 28 

Table 3: Table of yearly means......................................................................................... 31 

Table 4: The values of a, for the Figures 9 and 10 ........................................................... 73 

Table 5: The mean square errors of the outputs of the tested networks. .......................... 74 

Table 6: Table showing the actual values for the analysis and the predicted value from the 

network as well as the error of prediction......................................................................... 85 

 

 

 

 

 

 

 

 

 

 

 

 



 viii

List of Figures 

Figure 1: Architecture of a neuron.................................................................................... 12 

Figure 2: 2-Layer multi-layer perceptron neural network ................................................ 17 

Figure 3: Architecture of a RBF neural network .............................................................. 22 

Figure 4: Committee of networks for prediction .............................................................. 65 

Figure 5: Relationship between rms error hidden layer neurons for the different 

architecture types .............................................................................................................. 65 

Figure 6: Relationship between the rms error and the number of input days for MLP and 

RBF networks ................................................................................................................... 67 

Figure 7: The reformed network with discrete parameter ................................................ 68 

Figure 8: Diagrammatic representation of the RBF input time-window optimisation 

methodology ..................................................................................................................... 71 

Figure 9: Predicted output by reformed MLP network..................................................... 72 

Figure 10: Predicted output by reformed RBF network ................................................... 73 

Figure 11: Predicted output of the reformulated MLP network for test data.................... 75 

Figure 12: Predicted output of the reformulated RBF network for test data .................... 75 

Figure 13: Networks predictions of the average indices using testing samples for 

polynomial approximation. ............................................................................................... 77 

Figure 14: Networks predicted output standard deviations for the polynomial 

approximation ................................................................................................................... 77 

Figure 15: Committee of networks predicted output for the training, validating and testing 

data.................................................................................................................................... 78 

Figure 16: NASDAQ test data set used for the analysis of the methodologies ................ 82 



 ix

Figure 17: Graph of the network predicted index average for MLP & RBF network for 

polynomial approximation ................................................................................................ 83 

Figure 18: The error between the predicted and the actual values ................................... 84 

Figure 19: Committee of networks predicted output for unseen data............................... 84 

 

 

 



 1

 

 

 

Chapter 1 

 

Introduction: The Stock Market 

1.1 Background 

The stock market appears in the news everyday [1], [2]. Every time it reaches a new high 

or a new low there is talk about it. But what is the stock market? The stock market is 

believed to have started at Wall Street. This is where the world's largest financial market 

was born and prospered. From Wall Street sprang a new industry with its own language 

and terminology. Wall Street can trace its name back to 1653. Originally it was set up for 

defense and not for commerce. What helped Wall Street rise to pre-eminence was the 

emergence of two great Stock Exchanges, which gave order to the chaotic trading and 

gave birth to the financial markets as it is known today. In 1790 at Philadelphia in the 

United States of America, the first stock exchange was founded. Two years later a group 

of New York merchants met to discuss how to take command of the securities business. 

The merchants founded what is now known as the New York Stock Exchange. But in 

early 1817, the merchant group from New York, distressed at the sorry state of their stock 

exchange, sent a representative to Philadelphia to observe how things were being done. 

Upon arriving with news about the robust exchange in Philadelphia, the New York Stock 
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and Exchange Board was soon formally organized. In the early 1900s massive amounts 

of money were made and lost on Wall Street. But the boom period could not be sustained 

indefinitely. And in 1929, the stock market seared the global-psyche and triggered what 

was to be called the Great Depression. But the stock market crash of 1929 was just the 

beginning of sorrows for Wall Street. For a while the economy eventually recovered from 

its catastrophic losses, the market excesses that had factored into the crash in the late 

1920s seeped back into the picture. The result was the stock market crash of 1987, which 

saw the Dow Jones suffer what was the largest single-day loss in the stock market’s 

history. The stock markets are now an integral part of the global economy, and so proper 

safeguards to reduce the risks of another disastrous crash are necessary. A market can be 

defined as a place which introduces a buyer to a seller. In the case of stocks the buyer and 

seller are dealing in small ownership portions of companies or shares. A stock symbolizes 

ownership in a company. The more stock investors hold in a particular company, the 

larger the percentage of the company they own. For instance, if a corporation has 20000 

shares of stock outstanding and a person owns 1000 of them, then he or she actually owns 

5 percent of the corporation. Those who own stock become shareholders or stockholders 

in the company from which they purchased the stock, and they remain shareholders for as 

long as they own the stock. In this way, the stocks investors own, reflects the percentage 

of the company they own. Stock markets perform the following functions: 

• Connecting those who seek money with those who can provide it. 

• Create an auction mechanism in which prices can be decided for investments. 

• Distributing the future risk of investments across many millions of individuals. 

• Providing the claim tickets upon which future wealth can be staked. 
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• Connecting financial institutions together to create money. 

The stock market is an important entity in a country because it indicates the state of the 

economy.  This state of the economy gives an indication of its stability, thereof, which 

can in turn be linked to the stability of the nation.  This information can be used as a 

comparison of the nation’s economy to other well established economies. The stock 

market has also become the very symbol of commerce in the modern world. They are 

truly unique in their scope and in the complexity of the number of transactions they 

handle each day. The economy of the world relies on the stock exchanges to facilitate 

even trade in the stocks of companies. On an individual level, the stock market is a high 

risk but high profit yielding investment. Due to the high risks involved in such an 

investment, it is beneficial that some sort of analytical tool, which reliably predicts future 

prices of stocks, be developed. The investments in the stock market are done by the 

trading of stock shares based on intelligent decisions. These intelligent decisions are 

generally made by stock brokers who based on analytic and statistical calculations decide 

on whether a stock is viable for investment or not. In our current era anyone can easily 

acquire for themselves the most popular stocks just by opening an online brokerage 

account. Direct interaction with the selling floor of the exchanges gives the modern 

investor more control than any other generation.  There are a number of options available 

for investors who want to learn the complexities of the stock market. One popular way is 

to take a course on the stock market. What makes these lessons useful is that they usually 

enable participants to take a proactive approach to the trading process without having to 

assume any financial risk. Lessons dealing with the stock market, for instance, may 

require participants to attend a class setting where they get into groups. These groups will 
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then represent companies with CEOs, employees, human resources etc. These companies 

then make various decisions and, according to the stipulations of the game, are asked to 

react to various variables in the marketplace that emerge from time to time. Depending 

on how these companies respond to the variables, their stock prices could go up or down. 

What these stock market lessons do is to allow participants to gain an insider’s view of 

the inner workings of a company and how these inner workings ultimately impact the 

public’s perception of the company’s value. Participants are often asked to respond to 

geo-political events, the need for layoffs, fiscal pressure, economic shifts and other 

factors real-life companies have to deal with on a day-to-day basis. Another twist on the 

educational front is to enable individual investors to learn about the stock market from 

the perspective of someone who wants to purchase stocks in a company. This risk-free 

option will enable participants to learn about the market without having to lose any real 

money in the process. In such a program, participants invest in the stock market and 

regularly research the companies they have invested in. Participants also learn how to 

determine the best time to buy and sell their stocks. The stock market has an interesting 

property in that since all of the buying and selling is done at one place the prices of the 

stock can be known every second of the day. When it comes to investing in the stock 

market, investors should know when to hold on to stocks and know when to unload them. 

Most financial experts believe that the buy-and-hold strategy, which requires investors to 

buy stocks and then keep them for the long term, is the best method for ultimately 

making money on the stock markets. The rationale behind this strategy is that, while the 

markets will likely experience ups and downs stemming from numerous factors, over 

time the stock markets tend to push upwards. This means that those who use the buy-and-
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hold strategy stand to make money over time. While there are many experts who still 

hold to this strategy, others point to some of the more catastrophic stock market crashes 

of the past as proof that investors can literally lose everything they had gained in a bull 

market (a bull market refers to the stock market when stock prices have gone up for a 

certain period of time) to the impact of the bear market (a bear market occurs when the 

stock market drops for a given period of time, caused often by lower than expected 

quarterly earning reports, economic pressures or some other reason that gets market 

participants jittery). This may be due to result of inflation and political instability. Rather 

than adopt a buy-and-hold strategy, some financial professionals recommend that 

investors take a more sophisticated approach to buying and selling stocks. This 

necessitates monitoring market conditions and making changes as fluctuations in the 

markets warrant change. What it does not mean is making change just for the sake of 

making change. Some investors choose to go with a broker so as to bypass the pressures 

of managing their own stock portfolios. Doing so requires them to look around for a good 

broker, one who has a proven methodology and a solid track record. There are a number 

of statistical analysis applications available these days to meet the needs of individual 

investors or large corporations. Key components of any statistical analysis software 

include the ability to: 

• perform data management 

• present data in graphs and reports 

• access data at a moment's notice 

A number of websites also offer plenty when it comes to stock market analysis. For 

investors willing to pay, some companies provide a mix of services related to stock 
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market analysis. For instance, some interpret the financial news of the day, highlighting 

the implications of various developments and explaining how these developments could 

impact the marketplace, in general, and investors, in particular.  Other service, which 

providers may offer relates to providing: 

• details on which stocks could be hot or cold on any particular day 

• analysis of earnings reports and what they mean 

• updates on important events when they happen 

• Signing up for free newsletters is another way to keep on top of developments in 

the stock market as they happen. 

Due to the high necessity of reliable software to do the analytical manipulation of stocks, 

many different software systems have been developed of which this document focuses on 

the development of such a software and also the design of the relevant methodology. The 

next section deals with the literature survey of the previous methodologies developed for 

analyzing stock portfolios. 

 

1.2 Research Focus and Motivation 

The aim of this project is to develop a computational intelligence procedure to predict the 

future prices of stocks. The research also focuses on optimising the input time-window 

required for the prediction of stocks and this was motivated by the fact that upon analysis 

of the literature review, the optimisation of the time-window, which forms an important 

part of the prediction process, had not been done before. In this thesis, the computational 

intelligent method used is neural networks. The proposed procedure is to be tested on the 

NASDAQ index [3]. This project will consist of the following tasks: 



 7

1. Create an intelligent engine using computational intelligence methods. The aim of this 

engine will be to predict the future stock prices from historical data.  

2. Train the network method using a Bayesian framework [4]. 

3. Identify the optimal input time-window using polynomial approximation and by 

redesigning the neural method to account for optimal selection of time-window and 

compare the two approaches. 

4. Investigate the effect of the simultaneous use of diverse computational intelligence 

engines on the accuracy of the prediction.  

The output of the design is thus a methodology that can be used to optimally select the 

input time-window as well as predict the future stock prices. 

 

1.3 Literature Review 

Most of the conventional sales forecasting methods use time series data to determine 

forecast.  Lachtermacher and Fuller [5] conducted a survey which indicated that artificial 

neural networks (ANN) are more appropriate for time-series data rather than 

conventional regression methods. They developed a calibrated ANN model using the 

Box-Jenkins methods to identify the input variables and also developed a methodology to 

suggest the number of hidden units needed by the model. However, they did not suggest a 

methodology to accurately choose an optimal time-window.  

 

Bigus [6] used promotion, time of the year, end-of-month and weekly sales as inputs to 

the ANN to forecast weekly demand. The results show a high degree of accuracy, 

however, in his paper Bigus does a weekly forecast by using a number of inputs with no 
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mention of how this number of inputs was determined. Agrawal and Schorling [7] 

showed that ANN is able to predict future share prices quite well from time-series data 

without the additional inputs that were used by the Bigus model [6]. 

 

Wang [8] proposed a methodology for the prediction of stock prices using a fuzzy grey 

prediction system. In his paper, he uses a fuzzy grey prediction system with two modules 

which are: the prediction agent and the graphic display agent.  This method proved to be 

unsuitable for predicting the behavior of the system due to the fact that an inaccurate 

forecasting step was used. This method has the limitation in that it does not present a 

methodology of selecting the optimal time-window needed for the prediction of the future 

stock prices but states that 5 days can be used to predict future 2 days. 

 

Kuo, Wu, Wang [9] proposed a methodology that uses artificial neural networks and 

fuzzy neural networks with fuzzy weight elimination for prediction of share prices. 

Previously, statistical methods which include the regression methods and moving average 

methods were used for such prediction. These methods have the limitation in that they are 

efficient only for data which are seasonal or cyclical. The results proved to be more 

accurate than the conventional statistical methods. In their paper they use historical time 

series data.  Again, just as in Lachtermacher and Fuller [5], this methodology had the 

shortfall in that there was no mention of a methodology to select the optimal time-

window even though the methodology gave adequately accurate results. 
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Chapter 2 of this thesis focuses on introducing neural networks as well as providing a 

rationale behind the increase in awareness of neural networks. This chapter also 

introduces the fundamentals of neural networks. It begins by giving definitions for neural 

networks. The different kinds of neural network architectures are looked into. It also 

gives a layout on the advantages and benefits neural networks give as well as the 

different applications in which neural networks are being used in. A brief discussion is 

given on the present and future of neural networks as well as their limitations. 

 

Chapter 3 of this document focuses on statistical analysis methods that have been applied 

to the stock market. 

 

Chapter 4 of this document then focuses on the Bayesian framework optimisation 

method. This part of the document introduces the Markov Chain Monte Carlo (MCMC) 

methods as well as the Metropolis-Hastings Algorithm, which is used to sample the 

posterior distribution resulting from the implementation of Bayesian framework. 

 

The methodologies developed are then discussed in the later chapters. Two approaches 

are proposed to select the optimal time window. The first method is to use polynomial 

approximation and the second one to reformulate the neural network architecture such 

that the optimal time window is an inherent variable to be learned during the training 

stages. The first approach entails the generation of a polynomial mapping the error 

function to the number of inputs and minimizing this error function to get the optimal 

input time-window required to give the best prediction. The second approach involves 
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using the Markov Chain, Monte Carlo and Markov Chain Monte Carlo methods to 

optimally select the appropriate time window while in the training stages of the neural 

network. This will thus involve the reformulation of the Bayesian networks to suit the 

optimal selection of the input time-window.  

 

The focus of the second part of this document is on the design process: from the analysis 

of the problem specification, to the choice of appropriate architectures, and finally to the 

actual neural network design. 

 

Some chapters end with remarks and conclusions, which give the relevance of the section 

to the project discussed. These remarks give the relevance of such chapters to the project. 
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Chapter 2 

 

Neural Networks 

 

2.1 Introduction 

The recent rapid advances in neural network technology in many pattern recognition 

systems, as opposed to the conventional statistical theory, have been attributed to the 

ability of these neural networks to model any kind of a system, be it a linear or non-

linear. Due to the difficulty and complexity of all the various statistical methods 

employed and the high level of expertise required for such methods such as; moving 

averages and regression methods, there has been a significant increase in usage of neural 

networks. This increase has also been due to the fact that neural networks can be applied 

to virtually every field in the industry, such as the medical field e.g. AIDS modelling, 

engineering e.g. control of the product quality. Neural network has gathered enormous 

momentum in recent years and this field of study is currently being introduced in many 

universities with the industry demanding more products which need neural networks.  

This document constitutes a neural network design for: 
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• Modelling stocks and 

• Optimally selecting input time-window for stock market prediction.  

2.2 Neural Networks 

2.2.1 What Are Neural Networks? 

Neural networks (NN) were first introduced in the early 40s based on the understanding 

of neurology. An artificial neural network is a network consisting of neurons and paths 

connecting the neurons. They are interconnected assemblies of simple processing nodes 

whose functionality is loosely based on the animal neuron. NN can also be defined as 

generalizations of classical pattern-oriented techniques in statistics and engineering areas 

of signal processing, system identification and control. Figure 1 shows a neural network 

model with the major components of the network. Each input is multiplied by weights 

along its path and the weighted inputs are then summed and biased. This weighted input 

is then biased by adding a value unto the weighted input. The output of the summation is 

sent into a function which the user specifies (linear, logistic). The output of the function 

block is fed to the output neuron. 

 

Figure 1: Architecture of a neuron. 
 
Neural networks (NN) consist of simple processing units which communicate with each 

other by sending signals over a large number of weighted connections. The various 
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aspects of the NN models are; neurons (a set of processing units); a state of activation for 

every unit, equivalent to the output of the unit; connection between the units (each 

connection is defined by a weight which determines the signal the unit j has on unit k); a 

propagation rule (this determines the effective input of a unit from its external inputs); an 

external input or bias for each unit; and a learning rule. NN are adaptable systems that 

can learn relationships through repeated presentation of data, and are capable of 

generalizing to new, previously unseen data. For Figure 1, the NN output equation is: 

k
j

jjkk bywOutput +=∑         (2.1) 

Where wj represents the j-th layer’s weights, b represents the bias at the node, yj 

represents the output at the j-th layer’s node and k represents the output node. 

 

2.2.2 Why Neural Networks? 

Neural network has been motivated by the fact that [10, 11, 12] scientists are challenged 

to use machines more effectively for tasks currently solved by humans. Neural networks 

assist in systems where an algorithmic solution cannot be formulated. NN possess the 

property of adaptive learning which is the ability to learn how to do tasks based on the 

data given for training or initial experience [10]. NN can create their own organization or 

representation of the information it receives during learning time from the data observed. 

NN also possess the ability to represent any function and are known as universal 

approximators. NN are insensible to noise or unreliable data. There is also no restriction 

on the output type in neural networks. Neural networks are performed in very short 

computational times. 
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2.2.3 Neural Networks versus Other Methods and Linear Statistics 

Statistical techniques on handling data have many drawbacks which neural networks do 

not possess [12]. They impose restrictions on the number of input data which NN do not. 

The regressions are performed using simple dependency functions (linear and 

logarithmic), which are quite unrealistic. There is no need for intensive mathematical 

methods to transform data for NN models meanwhile statistical methods require intensive 

mathematical transformations. NN are non-linear hence are better able to account for 

complexity of human behaviour. NN also give tolerance to missing or erroneous values. 

 

2.2.4 Applications of Neural Networks [12] 

Neural networks (NN) are currently being applied to nearly every field in the industry. 

NN are used in the banking sector to predict the issuing of loans, and to predict the 

recovery of bad loans (NN are used to predict the behaviour of new customers before 

offering them loans). NN are also used in the finance market to predict share prices. This 

helps for portfolio and asset management. NN are used in industry for the prediction of 

product or service demand in order to do better production planning. NN are used in 

administration for analysing and predicting crime, and tax return analysis for fraud 

detection. They are used in the medical field to analyse the spread of AIDS and future 

growth of the disease. NN are also used in game playing for games like Chess, Checkers 

and Backgammon in order to learn new moves which may not have initially been stored 

in the database. 
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2.2.5 Future of Neural Networks 

NN are already being used in intelligent refrigerators which do stock taking and order 

those that are in shortage in the refrigerator. It is also predicted that neural networks, 

integrated with other computational intelligence technologies and other technologies such 

as genetic engineering will be used for the generation of life-forms whether man, 

machine, or a hybrid. Neural networks will give humans the capability to explore new 

dimensions which are currently only available through extensive training and discipline. 

 

2.2.6 Limitations of Neural Networks [13] 

The major issue in industry of NN is the integration of neural networks into the modern 

environment. These results from the fact that NN sometimes become unstable when 

applied to large scale problems and they also neglect the effect of noise hence would tend 

not to react appropriately to sharp changes. There is also the problem that neural 

networks are viewed as black boxes whose rules are unknown. The results obtained from 

neural networks are thus not explained. 

 

2.3. Neural Networks Architectures  

There exist many kinds of network architectures, such as: [14, 15] 

• Multi-Layer Perceptron (MLP) 

• Radial Basis Function (RBF) 

• Recurrent Neural Networks(RNN) 

• (Hierarchical) Mixtures of Experts (HME) and 

• Self-Organizing Map (SOM). 
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2.3.1 Multi-layer Perceptron 

The simplest network architecture consists of a single layer with directed inputs, 

weighted connections to the output unit. These are very simple learning algorithms which 

find the weights for linear and binary activation functions. However, these algorithms can 

only work for a limited number of functions. The limitations are overcome by adding one 

or more layers, known as hidden layers which are nonlinear units between the input and 

the output. The architecture is a feedforward structure whereby each unit receives inputs 

only from the lower layers units. Gradient methods are used to find the sets of weights 

that work accurately for the practical cases. Backpropagation is also used to compute 

derivatives, with respect to each weight in the network, of the error function. The error 

function generally used in the neural network computation is the squared difference 

between the actual and desired outputs. The activities for each unit are computed by 

forward propagation through the network, for the various training cases. Starting with the 

output units, backward propagation through the network is used to compute the 

derivatives of the error function with respect to the input received by each unit. The 

representation of such a network is as follows: 
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Figure 2: 2-Layer multi-layer perceptron neural network  

The learning algorithm and number of iterations determines how good the error on the 

training set is minimized meanwhile the number of learning samples determines how 

good the training samples represent the actual function. In multi-layer perceptron, a 

number of layers are fully connected. The input to the activation function then becomes a 

scalar product of the layer weight vector wi and input i, that is: 

                                                   )( iwactfnOutput i ×=      (2.2) 

The different kinds of activation functions with their equations are as shown Table 1. The 

perceptron learning rule is a method for finding the weights in a network. The perceptron 

has the property that if there exist a set of weights that solve the problem, then the 

perceptron will find these weights. This rule follows a linear regression approach, that is, 

given a set of inputs and output values, the network finds the best mapping from inputs to 

outputs. Given an input value which was not in the set, the trained network can predict 
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the most likely output value. This ability to determine the output for an input the network 

was not trained with is known as generalization. 

Table 1: Table of activation functions with the respective functions 

 

 

Multi-layer networks are known as approximators. Two-layer networks with a sigmoid 

transfer function in the hidden layer and linear transfer functions in the output layer can 

approximate any function provided a sufficient number of hidden units are available [16]. 

These hidden units make use of non-linear activation functions. 

 

2.3.1.1 Linear Regression 

Linear regression is the algorithm used to fit a model unto a set of data. If a data set of 

inputs and outputs is given or can be obtained, it is then possible to fit in a model such 

that based on this model outputs can be determined for an input which is not in the 
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original set. The simplest model that can be fit is the linear model which has the 

following equation: 

                    21 wxwy +=       (2.3) 

This equation describes a straight line with a slope w1 and an intercept w2. The major 

problem in neural networks is choosing the parameters w1 and w2 for the given model, 

which would imply choosing a line which goes through the data. This method uses a 

supervised learning algorithm since the target values are available. 

 

2.3.1.2 Perceptron Algorithm 

The perceptron algorithm is as follows; initialize the weights, pick a learning rate η (this 

is generally a number between 0 and 1) [15] and iterate until stopping condition is 

satisfied, modifying the weights. For each training pattern (x, t) the following is done; 

compute the activation function y=f(w,x), if y = t, do not change the weights else update 

the weights. It should be noted that the choice of the learning rate does not matter 

because it just changes the scaling of the weights, w and the perceptron is guaranteed to 

converge in a finite number of steps if the problem is separable but may be unstable if the 

problem is inseparable. 

 

2.3.1.3 Activation Functions 

There exist several activation functions. These are; identity function, step function, 

logistic function (sigmoid), radial basis functions, derivatives and softmax. 

a) Identity Function 

The identity function is characterised by the equation: 



 20

                                                          xxf =)(       (2.4) 

b) Step Function 

The step function is characterised by the function: 

                                           0 if 1)( and 0 if 0)( >=≤= xxfxxf    (2.5) 

c) Logistic Function (Sigmoid) 

This function has the form axe
xf −+
=

1
1)(  where a determines how steep the function is. 

The larger a is the steeper the function. The sigmoid function is generally used for a two 

class problem that has Gaussian input distributions. 

d) Radial Basis Function 

A radial basis function is simply a Gaussian; .)(
2axexf −=  It is zero everywhere except in 

a small region. 

e) Derivatives 

The derivative of the various functions above also form activation functions. The 

derivative of the identity function yields 1. The derivative of the step function is 

undefined, the derivative of the sigmoid function are easy to compute and yields: 

))(1)(( xfxf
dx
df

−=          (2.6) 

The tanh function is also used as an activation function and its derivative is: 

.)(1 2xf
dx
df

−=           (2.7) 

f) Softmax Function 

The softmax function is characterised by the equation: 
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∑
j

a
j

a

e
e            (2.8) 

The softmax function is generally used for a multi-class problem. 

 

2.3.2 Radial Basis Function Networks 

These kinds of networks consist of 2 layers, stacked together. The first layer with a 

Gaussian activation function and the second layer with a linear activation function. The 

input to the activation function is the distance between the layer weight vector and i, that 

is, )( wiactoutput −= . These networks are fast in training because the first layer can be 

initialised with meaningful values and the second layer is found through matrix inversion 

techniques. An iterative optimization technique is then used to refine the solution. RBF 

network is not used in this project due to the fact that RBF networks require more 

parameters than MLP neural networks. The computation nodes of the hidden layers of 

such a network are different and serve a different purpose from the output layer of the 

network as opposed to the MLP where the hidden and output layers share a common 

neuron model. The hidden layer, as discussed above, for the RBF network is non-linear 

and the output layer is linear hence the inability to approximate non-linear functions 

whereas in MLP both layers are non-linear [14]. The RBF network has the following 

architecture: 
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Figure 3: Architecture of a RBF neural network 

With the following equations representing this network: 
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Where µ represents the centres and σ represents the widths of the network (training 

parameters to be optimised). 

2.3.3 Recurrent Neural Networks 

In these networks, there is the presence of recurrent or loop connections. These recurrent 

connections can, however, be unfolded to form feed-forward neural networks. These 

networks make efficient use of time varying information but are, however, complex to 
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design. This complexity arises from the fact that in order to use backpropagation 

algorithms with such architecture, there is a need to make the architecture feed-forward 

first, hence adding some computational expense. The inputs and outputs of this 

architecture are of arbitrary length sequences of vectors, not vectors. This also makes the 

handling of the input and outputs difficult to follow. 

 

2.3.4 Hierarchical Mixtures of Experts 

These networks are built out of modules, experts and gates, of which can be any of the 

other neural network types. The experts work on the problem in a small domain; 

meanwhile, the gates mix the opinions of the experts. The building of structure is data 

driven which poses a problem since as the structure would tend to fit the particular data it 

was trained for hence leading to over-fitting, which is a phenomenon to be avoided. 

 

2.3.5 Self-Organising Map Networks 

SOM is mainly used in the biomedical field such as in coronary heart risk assessment.  It 

is relatively easy to implement and evaluate and is computationally not expensive. 

However, SOM has the problem of overcrowding and underutilization of the neurons in 

the network due to the fact that the size and shape of the network is fixed before the 

training phase begins. 

 

2.3.6 Remarks on Network Architectures 

The above sections have discussed briefly the different architectures available for neural 

network. Each section has given the short-falls of the various networks. MLP are, 
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however, the most appropriate network architecture for the project at hand since RBF 

networks require more parameters than MLP, RNN are complex to design due to the fact 

that they need to be unfolded, HME networks lead to over-fitting of the data and SOM 

networks have the problem of overcrowding and underutilization of the neurons in the 

network.  
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Chapter 3 

 

Conventional Statistical Methods 

 

This section focuses on introducing the various statistical methods, which have been 

applied to the stock market for stock prediction. The methods discussed in this chapter 

are the moving average methods [17, 18], exponential smoothing and linear regression. 

The chapter concludes with remarks and limitations of these statistical methods on the 

stock prediction. 

 

3.1 Moving Average Methods  

3.1.1 Simple Average 

This method is suitable for data series with no trend/horizontal series. That is; 

 

yt = β0 + εt,  εt ~ N (0, σ2)        (3.1) 
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where β0 may change slowly with time and εt is a noise signal with zero mean and a 

standard deviation σ. In this approach, the first n data points are averaged and used to 

forecast the next period as shown by formula (3.2). 

∑
=

+ =
n

t
tt nyF

1
1          (3.2) 

The simple average method is updated to a moving simple average whereby the n-period 

moving average (MA) calculated at time period t-1 is the average of the n most recent 

observations and this can be written as: 

n
yyyyM ntnttt

t
−+−−−

−
++++

= 121
1

...       (3.3) 

As each new observation becomes available, a new moving average can be computed by 

dropping the oldest value and including the newest one 

 

n
yyyM nttt

t
11 ... +−− +++

=         (3.4) 

Mt can also be calculated by:  

n
yyMM ntt

tt
−

−
−

+= 1         (3.5) 

We use the moving average calculated at time t to forecast the y value at time t + 1 

n
yyyyMF ntnttt

tt
111 ... +−+−− ++++

==       (3.6) 

It should be noted that when the data have large randomness, a large n is used.  Otherwise 

a small n is used. Data taken over a particular time always has some randomness 

associated therein. There exist methods for reducing or canceling the effect due to 

random variation. An often-used technique in industry is smoothing. This technique, 
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when properly applied, reveals more clearly the underlying trend, seasonal and cyclic 

components. There are two distinct groups of smoothing methods and these are; 

averaging methods and exponential smoothing methods. An alternative way to 

summarize the past data is to compute the mean of successive smaller sets of numbers of 

past data as follows; consider the set of numbers 9, 8, 9, 12, 9, 12, 11, 7, 13, 9, 11, 10 

which is the Rand amount of 12 suppliers selected at random. Let us set M, the size of the 

smaller set equal to 3. Then the average of the first 3 numbers is:  (9 + 8 + 9) / 3 = 8.667.  

This is called smoothing (i.e., some form of averaging). This smoothing process is 

continued by advancing one period and calculating the next average of three numbers, 

dropping the first number. Table 2 summarizes the process, which is referred to as 

Moving Averaging. The general expression for the moving average is  

Mt = [Xt + Xt-1 + ... + Xt-N+1] / N       (3.7) 

 

a) Results of Moving Average  

Unfortunately, neither the mean of all data nor the moving average of the most recent M 

values, when used as forecasts for the next period, is able to cope with a significant trend. 

There exists a variation on the MA procedure that often does a better job of handling 

trend. It is called Double Moving Averages for a Linear Trend Process. It calculates a 

second moving average from the original moving average, using the same value for M. 

As soon as both single and double moving averages are available, a computer routine 

uses these averages to compute a slope and intercept, and then forecasts one or more 

periods ahead 
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Table 2: The Mean Square Error (MSE) = 2.018 as compared to 3 for a simple 

averaging process. 

Supplier  R  MA  Error  Error squared 

1  9           

2  8           

3  9  8.667  0.333  0.111  

4  12  9.667  2.333  5.444  

5  9  10.000  -1.000  1.000  

6  12  11.000  1.000  1.000  

7  11  10.667  0.333  0.111  

8  7  10.000  -3.000  9.000  

9  13  10.333  2.667  7.111  

10  9  9.667  -0.667  0.444  

11  11  11.000  0  0  

12  10  10.000  0  0  

 

3.2 Exponential Smoothing 

Exponential smoothing is a technique used in time series analysis. This differs from the 

simple moving average in that, whereas in the simple moving average, past observations 

are weighted equally, exponential smoothing assigns exponentially decreasing weights as 

the observation (data) gets older thereby ensuring that recent observations are given 
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relatively more weight in the forecasting than the older data. There exists single, double, 

and triple exponential smoothing which would be described in the next subsections. 

 

3.2.1 Single Exponential Smoothing 

In this technique, the first smoothed exponential prediction S2 is taken as the actual 

observed value.  For any time period, the exponential prediction is: 

3      t          10                    )1( 11 ≥≤<−+= −− ααα ttt SyS    (3.8) 

Where the parameter α is called the smoothing constant. The initial observation is 

computed by averaging the first four or five observations or initializing it to y1. 

 

3.2.2 Double Exponential Smoothing 

It should be noted that single exponential smoothing does not excel in data where there is 

a trend. As such, this situation can be improved by the introduction of a second equation 

with a second constant, γ, which is chosen in conjunction with α. These two equations 

are: 

10                       ))(1( 11 ≤≤+−+= −− ααα tttt bSyS     (3.9) 

( ) ( ) 10                         1 11 ≤≤−+−= −− γγγ tttt bSSb     (3.10) 

ahead-periods-mfor Forecast                                            )( ttmt mbSF +=+  (3.11) 

S1 is generally set as y1, which is the original observation. Parameter b1 can be chosen as 

follows: 

121 yyb −=           (3.12) 

( ) ( ) ( )[ ] 33423121 yyyyyyb −+−+−=       (3.13) 
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( ) ( )111 −−= nyyb n          (3.14) 

The first equation adjusts St for the trend of the previous period, bt-1, by adding it to the 

last value, St-1. Meanwhile the second equation updates the trend. The value of the 

parameters α and γ are obtained through non-linear optimization techniques, such as the 

Marquardt Algorithm [19, 20]. 

 

3.2.3 Triple Exponential Smoothing 

If the data, however, involves trend and seasonality, the double smoothing does not work. 

A third equation is then introduced which takes care of the seasonality. There are thus 

three equations and these sets of equations are known as the “Holt-Winters” (HW) 

equations named after the inventors. The equations are: 

 

( )( ) Smoothing Overall                                 1 11 −−
−

+−+= tt
Lt

t
t bS

I
y

S αα   (3.15) 

( ) ( ) Smoothing Trend                                        1 11 −− −+−= tttt bSSb γγ   (3.16) 

( ) Smoothing Seasonal                                                  1 Lt
t

t
t I

S
y

I −−+= ββ  (3.17) 

Forecast                                             )( mLtttmt ImbSF +−+ +=    (3.18) 

Where y is the observation, S is the smoothed observation, b is the trend factor, I is the 

seasonal index, F is the forecast at m periods ahead, t is an index denoting the time 

period, and α, β and γ are constants to be estimated such that the mean square error is 

minimized.  
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A full season’s data is required in order to determine the seasonal parameter I, thereby 

initializing the equations. The trend factor requires two complete seasons for its 

determination since as a full season has L periods. 

a) Initial values for the trend factor 

Consider the example where the data consists of 6 years with 4 periods (that is, 4 

quarters) per year. Then 

Step 1: Compute the averages of each of the 6 years  

∑
=

=
4

1i
ip yA   p=1, 2,…, 6       (3.19) 

Step 2: Divide the observations by the appropriate yearly mean  

 

Table 3: Table of yearly means 

1  2  3  4  5  6  

y1/A1  y5/A2  y9/A3  y13/A4  y17/A5 y21/A6 

y2/A1  y6/A2  y10/A3  y14/A4  y18/A5 y22/A6 

y3/A1  y7/A2  y11/A3  y15/A4  y19/A5 y23/A6 

y4/A1  y8/A2  y12/A3  y16/A4  y20/A5 y24/A6 

 

Step 3: Now the seasonal indices are formed by computing the average of each row. 

Thus the initial seasonal indices (symbolically) are:  

( ) 6/6215174133925111 AyAyAyAyAyAyI +++++=    (3.20) 

( ) 6/62251841431026122 AyAyAyAyAyAyI +++++=    (3.21) 

( ) 6/62351941531127133 AyAyAyAyAyAyI +++++=    (3.22) 
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( ) 6/62452041631228144 AyAyAyAyAyAyI +++++=    (3.23) 

 

3.3 Linear Regression 

The linear least squares regression is the most widely used modeling method [21, 22]. It 

is sometimes referred to as “regression”, “linear regression” or “least squares” to fit a 

model to their data set. It has also been adapted to a broad range of situations. Linear 

least squares regression can be used to fit data with any function of the form: 

( ) ...: 22110 +++= xxxf ββββ
ρρ        (3.24) 

Where ...,, 310 βββ  are model parameters to be estimated. 

In the least squares method the unknown parameters are estimated by minimizing the 

sum of the squared deviations between the data and the model. The minimization process 

reduces the over determined system of equations formed by the data to a sensible system 

of Р (where Р is the number of parameters in the functional part of the model) equations 

in Р unknowns. This new system of equations is then solved to obtain the parameter 

estimates. Linear models are not limited to being straight lines or planes, but include a 

fairly wide range of shapes. For example, a simple quadratic curve  

2
1110);( xxxf ββββ ++=

ρ
        (3.25) 

is linear in the statistical sense. A straight-line model in log(x)  

)ln();( 10 xxf βββ +=
ρ

        (3.26) 

or a polynomial in sin(x) 
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)3sin()2sin()sin();( 3210 xxxxf βββββ +++=
ρ

      (3.27) 

is also linear in the statistical sense because they are linear in the parameters, though not 

with respect to the observed explanatory variable, x. Though there are types of data that 

are better described by functions that are nonlinear in the parameters, many processes in 

science and engineering are well-described by linear models. This is because either the 

processes are inherently linear or because, over short ranges, any process can be well-

approximated by a linear model. The theory associated with linear regression is well-

understood and allows for construction of different types of easily-interpretable statistical 

intervals for predictions, calibrations, and optimizations. These statistical intervals can 

then be used to give clear answers to scientific and engineering questions. The main 

disadvantages of linear least squares are limitations in the shapes that linear models can 

assume over long ranges, possibly poor extrapolation properties, and sensitivity to 

outliers. Linear models with nonlinear terms in the predictor variables curve relatively 

slowly, so for inherently nonlinear processes it becomes increasingly difficult to find a 

linear model that fits the data well as the range of the data increases. As the explanatory 

variables become extreme, the outputs of the linear model will also always be more 

extreme. This means that linear models may not be effective for extrapolating the results 

of a process for which data cannot be collected in the region of interest. Of course 

extrapolation is potentially dangerous regardless of the model type. Finally, while the 

method of least squares often gives optimal estimates of the unknown parameters, it is 

very sensitive to the presence of unusual data points in the data used to fit a model. 
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3.3.1 Least Squares 

In least squares (LS) estimation, the unknown values of the parameters, ,...,, 10 ββ  in the 

regression function, );( β
ρρxf , are estimated by finding numerical values for the 

parameters that minimize the sum of the squared deviations between the observed 

responses and the functional portion of the model. Mathematically, the least (sum of) 

squares criterion that is minimized to obtain the parameter estimates is  

[ ]∑
=

−=
n

i
ii xfyQ

1

2
);( β
ρρ         (3.28) 

As previously noted, ,...,, 10 ββ are treated as the variables in the optimization and the 

predictor variable values, x1, x2, … are treated as coefficients. To emphasize the fact that 

the estimates of the parameter values are not the same as the true values of the 

parameters, the estimates are denoted by ,...ˆ,ˆ
10 ββ  For linear models, the least squares 

minimization is usually done analytically using calculus. For nonlinear models, on the 

other hand, the minimization must almost always be done using iterative numerical 

algorithms. To illustrate, consider the straight-line model,  

εββ ++= xy 10          (3.29) 

For this model the least squares estimates of the parameters would be computed by 

minimizing  

[ ]
2

1
10 )ˆˆ(∑

=

+−=
n

i
ii xyQ ββ         (3.30) 

Doing this by 
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1. taking partial derivatives of Q with respect to 0β̂  and 1̂β ,  

2. setting each partial derivative equal to zero, and  

3. solving the resulting system of two equations with two unknowns  

yields the following estimators for the parameters: 

∑
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= n

i i

n

i ii

xx

yyxx
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1
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))((
β̂         (3.31) 

xy 10
ˆˆ ββ −=           (3.32) 

These formulas are instructive because they show that the parameter estimators are 

functions of both the predictor and response variables and that the estimators are not 

independent of each other unless 0=x . This is clear because the formula for the 

estimator of the intercept depends directly on the value of the estimator of the slope, 

except when the second term in the formula for 0β̂ drops out due to multiplication by 

zero. This means that if the estimate of the slope deviates a lot from the true slope, then 

the estimate of the intercept will tend to deviate a lot from its true value too. This lack of 

independence of the parameter estimators, or more specifically the correlation of the 

parameter estimators, becomes important when computing the uncertainties of predicted 

values from the model. Although the formulas discussed in this paragraph only apply to 

the straight-line model, the relationship between the parameter estimators is analogous 

for more complicated models, including both statistically linear and statistically nonlinear 

models. Like the parameters in the functional part of the model, σ is another measure of 

the average quality of the fit of a regression function to a set of data by least squares, 
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which is generally not known, but can be estimated from the least squares equations. The 

formula for the estimate is  

pn
Q
−

=σ̂           (3.33) 

     =
pn

xfy ii
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 −∑

2

)ˆ;( β
ρρ

        (3.34) 

with n denoting the number of observations in the sample and p is the number of 

parameters in the functional part of the model. Parameter σ̂  is often referred to as the 

"residual standard deviation" of the process. Because σ measures how the individual 

values of the response variable vary with respect to their true values under );( β
ρρxf , it also 

contains information about how far from the truth quantities derived from the data, such 

as the estimated values of the parameters, could be. 

 

3.4 Remarks and Conclusion 

Statistical methods employed in the prediction of stock market prices have been 

presented in this chapter. These methods, however, involve complex and rigorous 

manipulations as the data set tends to increase. As presented in Section 3.1.1, simple 

average methods are suitable for data series with no trend (horizontal series) hence will 

not be suitable in the stock market, which sometimes has trends. The selection of the 

moving average model parameters in the statistical model, also involve further 

complexities such as non-linear techniques, Marquardt Algorithm. Linear regression 

methods discussed in Section 3.3 are disadvantageous in that they are limited in the shape 

they assume over long ranges hence leading to poor extrapolation properties. Also, linear 
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models with non-linear terms curve relatively slowly. Finally, while the method of least 

squares often gives optimal estimates of the unknown parameters, it is very sensitive to 

the presence of unusual data points in the data used to fit a model.  To this effect the 

neural network model is more beneficial for the prediction of stock market prices since 

the mathematical process involved is minimal and a non-linear model can be developed 

with less computation required compared to the statistical methods. 
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Chapter 4 

 

 

Markov Chain Monte Carlo Sampling  

 

A Markov chain is a succession of elements each of which can be generated from a finite 

(usually small) number of elements preceding it, possibly with some random element 

added. A Markov chain can also be considered as a sequence of random values whose 

probabilities at a time interval depends upon the value of the number at the previous time. 

A simple example is the no returning random walk, where the walkers are restricted to 

not go back to the location just previously visited. Sampling methods which rely on 

Markov chain theory are iterative: the principle is to build a succession of states, and 

once convergence is reached, the consecutive states are assumed to be drawn from the 

target probability distribution. With these methods, it is possible to sample from general 

probability distributions, whereas direct sampling algorithms only apply to specific 

probability distributions such as the Gaussian distribution. The probability distribution 

can be a posterior distribution in a Bayesian context, which makes Markov Chain Monte 
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Carlo (MCMC) methods very attractive in Bayesian computation. Markov chain Monte 

Carlo is a technique used by Bayesian practitioners to sample from the posterior 

distribution. The Monte Carlo method is, in general terms, any technique used for 

obtaining solutions to deterministic problems using random numbers.  

Markov chain Monte Carlo methods can be used in importance sampling, when in 

generating each point not only random numbers are used, but the previously generated 

point(s) enter with some weight, in the simplest case by a random walk, where 

rxx oldnew += , with r a random vector. The controlling factor in a Markov chain is the 

transition probability; it is a conditional probability for the system to go to a particular 

new state, given the current state of the system. Fairly efficient estimates can be 

determined from the proper transition probabilities. Markov chains can be used to solve a 

very useful class of problems in a rather remarkable way. Suppose we wanted to find the 

value of the vector x that is the solution to,  

fAxx +=           (4.1) 

where the nxn   matrix A, and the vector f are known. By setting up a random walk 

through the matrix A we can solve for any single component of x. A little mathematics is 

needed to see how this would work. First lets symbolically solve (4.1),  

fAIx 1)( −−=          (4.2) 

This can be expanded to,  
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Now lets suppose we have an nxn matrix of probabilities, P, such that,  

0≥ijp            (4.4) 

1≤∑
j

ijp           (4.5) 

and we have an array,  

∑−=ℑ
j

iji p1          (4.6) 

further we will define,  
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P can then describe a Markov chain where the states of the chain are n integers. The 

element ijp gives the transition probability for the random walk to go from state i to state 

j. As long as g is not zero the walk will eventually terminate. The probability that the 

walk will terminate after state i is given by iℑ . While taking the random walk we need to 

accumulate the product,  
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and the sum,  

∑=
k

m
mm

k
k fV

g
W 1          (4.9) 

The final W value is important because it’s mean value (averaged over the walks that start 

at index i) is,  
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    ⋅⋅⋅++++= iiii fAfAAff )()()( 32       (4.12) 

Notice that the final form of (4.12) is exactly the i-th element from (4.3). So to solve this 

problem we have three major steps:  

• Set up the probabilities p and g and start off the system at the index at which we 

want to solve for x, lets call that index i.  

• Then we take a random walk until the walk terminates, accumulating the product 

V and the sum W.  

• Then we take the average of the W values over several walks to obtain our 

estimate of xi.  

This will work as long as (4.3) converges, this will happen if the norm of A,  
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= ∑

j
ij

i
aA max          (4.13) 

is less than one (the smaller A is the faster the Monte Carlo estimate will converge). If 

the norm is larger than one, all is not lost; there is usually some manipulation that can be 

done to get a new matrix that has a small norm. It turns out we can use this idea for all 

sorts of problems that have the same general form as (4.1). If we write (4.1) as,  

fAxx +=  

and now consider A to be any linear operator that can operate on x, not just a matrix 

multiply. Given the appropriate operator for a given problem, we can use the above 

method to solve several kinds of problems. We can do a matrix inverse, i.e. solve  

Hxf =   

if we let A = I - H. Starting out at index i, will give us row i of 1−H . If we restrict the 

chains to start at index i and end at index j, then we obtain a single element of the 

inverse, 1−
ijH . Other problems that can be solved this way include the determination of 

eigenvalues and eigenvectors, and integral equations of the second kind such as,  

)()(),()( tfdssxtsAtx
b
a

+= ∫         (4.14) 

Notice that (4.14) has the same kind of form as (4.1), (integration is a linear operator). If 

we made a discrete grid upon which we wanted to solve (4.14) then we could use exactly 

the same code that we used to solve (4.1). However, in a practical application the 
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dimension of (4.14) would be extremely large, or ),( tsA would be so complicated to 

calculate that it is not really practical to create a giant matrix to approximate the integral. 

Instead we free up our random walk to apply continuously within the range [ ]ba, . These 

probability density functions are explained in the next subsection.  

 

4.1 Probability Density Function 

If a random variable X has a cumulative distribution (Section 4.2) function F(x) which is 

differentiable, the probability density function is defined as dxdFxf /)( = . The 

probability of observing X in the interval dxxXx +≤≤  is then dxxf )( . For several 

variables nXXX ,...,, 21 the joint probability density function is  

( ) ( ) ),...,,(...,...,, 212121 nn
n

n xxxFxxxxxxf ∂∂∂∂=      (4.15) 

The transformation of a given probability density function f(x) to the probability density 

function g(y) of a different variable y = y(x) is achieved by  

dxdy
xfyg )()( =          (4.16) 

The assumption has to be made for y(x) to be an increasing or decreasing function, in 

order to have a one-to-one relation.  

 

4.2 Distribution 

A distribution of measurements or observations is the frequency of these measurements 

shown as a function of one or more variables, usually in the form of a histogram. 
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Experimental distributions can thus be compared to theoretical probability density 

functions. The term distribution function is short for cumulative distribution function and 

describes the integral of the probability density function: a random variable X has the 

(cumulative) distribution function F(x), if the probability for an experiment to yield an X 

< x is: 

∫ ∞−
=<=

x
dfxXPxF ξξ )()()(        (4.17) 

For several random variables ),...,,( 21 nXXXX =  the joint distribution function is  

),...,,(),...,,()( 221121 nnn xXxXxXPxxxFxF <<<==
ρ     (4.18) 

The next section deals with the Monte Carlo methods. 

 

4.3 Monte Carlo Methods 

The systematic use of samples of random numbers in order to estimate parameters of an 

unknown distribution by statistical simulation. Methods based on this principle of random 

sampling are indicated in cases where the dimensionality and/or complexity of a problem 

make straightforward numerical solutions impossible or impractical. The method is 

ideally adapted to computers, its applications are varied and many, its main drawbacks 

are potentially slow convergence (large variances of the results), and often the difficulty 

of estimating the statistical error (variance) of the result. Monte Carlo problems can be 

formulated as integration of a function )(xff ρ
= over a (multi-dimensional) volume V, 

with the result  
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∫ =
V

fVfdV ,           (4.19) 

Where the average of f, f  is obtained by exploring randomly the volume V.  

Most easily one conceives a simple (and inefficient) hit-and-miss Monte Carlo: assume, 

for example, a three-dimensional volume V to be bounded by surfaces difficult to 

intersect and describe analytically; on the other hand, given a point (x,y,z), it is easy to 

decide whether it is inside or outside the boundary. In this case, a simply bounded 

volume which fully includes V can be sampled uniformly (the components x,y,z are 

generated as random numbers with uniform probability density function), and for each 

point a weight is computed, which is zero if the point is outside V, one otherwise. After N 

random numbers, n N≤  will have been found inside V, and the ratio n/N is the fraction of 

the sampled volume which corresponds to V.  

Another method, crude Monte Carlo, may be used for integration: assume now the 

volume V is bounded by two functions z(x, y) and z'(x, y), both not integrable, but known 

for any x, y, over an interval x∆ and y∆ . Taking random pairs (x,y), evaluating 

),(),( yxzyxzz ′−=∆ at each point, averaging to z∆ and forming zyx ∆∆∆ , gives an 

approximation of the volume. Often, the function to be sampled is, in fact, a probability 

density function. Variance-reducing techniques will then be indicated, like importance 

sampling or stratified sampling.  
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4.3.1 Monte Carlo Integration 

There are two major Monte Carlo techniques for evaluating such integrals. The first 

method is based upon an idea similar to the rejection method of generating random 

variables for arbitrary distribution functions. Suppose we wish to evaluate the integral,  

∫=
b
a

dxxgI )(           (4.20) 

If we put a bounding box around the function )(xg , then the integral of )(xg can be 

understood to be the fraction of the bounding box that is also within )(xg . So if we 

choose a point at random uniformly within the bounding box, the probability that the 

point is within )(xg is given by the fraction of the area that )(xg occupies. The 

integration scheme is then to take a large number of random points with the box and 

count the number that is within )(xg to get the area,  

V
n

nI
*

≈            (4.21) 

where, *n is the number of points within )(xg , n is the total number of points generated, 

and V is the volume of the bounding box.  

This method is very inefficient. Many points are required to make (4.21) converge 

towards (4.20) with any degree of precision. A more efficient approach is to note that we 

can write (4.20) as,  
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∫∫ ==
b

a

b

a
Vdxxfxg

V
dxxfxgI )()(1)()(       (4.22) 

if we define )(xf as,  





=
otherwise      0

domain in the is x if      1
)(xf        (4.23) 

(again V is the volume of the domain). (4.22) can be interpreted as the expectation of the 

function, Vxfxgxh )()()( =  for the random variable x, which is uniformly distributed 

within the domain. This then gives an approximate procedure,  

∑∑ =≈
n

i
i

n

i
i xg

n
Vxh

n
I )()(1         (4.24) 

Estimates based upon (4.24) converge much more quickly than those based upon using 

(4.21). If pseudo-random numbers are used for the Monte Carlo evaluation of integrals 

then, because of the clumps and voids in any given sample, there will be regions of the 

integral that are under represented as well as overrepresented. In the long run it is not a 

problem since we know that the numbers represent a uniform distribution well. But the 

long run means using lots of iterations.  

Probably the most effective way to speed up the convergence of Monte Carlo integration 

is to use quasi-random numbers instead of pseudo-random numbers for choosing the 

points. In general this change will cause the integration estimate to converge towards the 

actual solution like nn N /)(ln  (where N is the number of dimensions in the integral) 
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instead of the usual n1 . This improved convergence is considerably better, almost as 

fast as n1 .  

 

4.3.2 Variance Reducing Technique  

4.3.2.1 Importance Sampling 

Importance sampling is a technique for numerically approximating an integral. It is also 

called biased sampling and is one of the variance-reducing techniques in Monte Carlo 

methods.  It is mentioned here as a basis for the numerical concepts which follow. It is 

similar to stratified sampling in that the fundamental idea is that the sampling process is 

distorted, to take into account the weighting of the underlying distribution. An example 

of importance sampling in a Monte-Carlo context, but the basic principle is as follows; In 

wanting to estimate:  

∫
∞

∞−
= dxxfxgI )()(          (4.25) 

where f(x) is a density function, one could sample n values of x from f(x) and then 

approximate with  

∑
=

=
n

i
ixg

n
I

1

)(1)
         (4.26) 

Alternatively, m values of x could be sampled from another density h(x) and then I could 

be estimated using  
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         (4.27) 

Consideration can then be made as to how h(x) may be chosen so that the estimator is 

most efficient. It turns out that the most efficient form for h(x) samples from areas where 

g(x) is large, provided that f(x) is not small, [23]. Such ideas are important in any method 

when simulating from the posterior.  

4.3.2.2 Stratified Sampling 

Consider a set of N types of job within an organization, which has a total of M 

employees. Let jJ  where Nj ≤≤1 be the number of people who have a job of type j with 

all people doing the same type of job getting paid the same salary. Then, clearly;  

MJ
N

j
j =∑

=1
          (4.28) 

If interested in the average salary paid and if M is very large the average may be 

approximated as follows;  

∑
=

==
m

i
iX X

m
X

1

1µ          (4.29) 

where we sample a total of m people from the organization and iX is the salary paid to 

the ith person we sampled. Ordinary random sampling would involve picking the m 

people uniformly from the total population of M people in the organization. However, 

another method would be to ensure that the probability of choosing a person from job 
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type j is the number of people doing job type j divided by the total number of people, M. 

This latter idea is just stratified sampling and is an important and well known sampling 

technique.  

 

4.4 Metropolis Hastings Algorithm 

The Metropolis-Hastings algorithm is a Markov chain Monte Carlo method as described 

previously. The algorithm sets about constructing a Markov matrix which has as its 

equilibrium distribution some target densityφ , of interest to the operator. The algorithm 

requires the specification of a proposal density, i
jq , which is a probability density for j 

and may depend upon i. This is then used in order to propose transitions from i. The 

condition of detailed balance is then imposed in the following fashion.  

Construct i
jα by imposing detailed balance, so that the matrix with entries given by 

i
j

i
j

i
j qM α•= is a Markov matrix. This is done as follows: 

1 then , === j
i

i
jj

j
ii

i
j qqIf ααφφ         (4.30) 

Otherwise, assume (without loss of generality) that:  

,j
j

ii
i
j qq φφ >           (4.31) 

then setting 1=j
iα , and constructing:  
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α =           (4.32) 

detailed balance holds. Thus, by defining in general:  

,1,min
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α          (4.33) 

detailed balance is satisfied. In order that what has been constructed is a Markov matrix 

which will generate a chain having φ  as the invariant distribution, it remains to show that 

M is indeed Markov. This imposes conditions on the form of q which is related in turn 

toφ . The conditions are as referred to before, aperiodicity and connectedness. These are 

indeed satisfied for quite a large family of densities [24, 25].  

The algorithm then, works as follows;  

1. Set i = 0; Set N = some large value; Choose an initial state x0.  

2. Propose y from ix
yq .  

3. Accept the proposal with probability ix
jα .  

4. If accepted, set yxi =+1 , else set ii xx =+1 .  

5. If i<N set i=i+1; and back to step 2.  

Although theory demonstrates that a chain constructed using this algorithm has a limiting 

distribution which is the target distribution, the question of the rate at which the limiting 

distribution is attained is still open.  
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Note that the samples ,...,...,, 10 jxxx  generated by the chain will depend upon the choice 

of 0x  and only when close to the limiting distribution are the samples to be considered as 

having come from the target distribution.  What size should N be, and for what minimum 

j should jx  be considered as a sample from the target? A number of methods have been 

proposed in order to answer these questions. Diagnostic methods of Gelman and Rubin 

[26] and others are reviewed by Cowles and Carlin [27]. Murdoch and Green have 

developed methods of demonstrating convergence [28], but these methods are far less 

practical than the heuristic diagnostics described elsewhere. A review of methods to date 

including those of Murdoch and Green is provided by Brooks and Roberts [29].  The 

Metropolis-Hastings algorithm is valid for sampling from the )(xφ , for nx ℜ∈ , that is for 

a general vector, x. However, in practice it can be more natural to consider x as the 

combination of subvectors { }21, xxx = . It turns out [30] that a transition matrix for a chain 

which converges to the target )(xφ may be constructed by considering matrices for a 

chain which samples from )|( 21 xxφ a The Metropolis-Hastings algorithm is a Markov 

chain Monte Carlo method as described previously. The algorithm sets about constructing 

a Markov matrix which has as its equilibrium distribution some target densityφ , of 

interest to the operator. The algorithm requires the specification of a proposal density, i
jq  

which is a probability density for j and may depend upon i. This is then used in order to 

propose transitions from i.  

 

 



 53

4.5 Remarks 

For the sampling schemes mentioned above, the target distribution is invariant and the 

rate of convergence issues will be important. Two issues arise for consideration, which 

are: 

• When will the samples be independent of the initial value, x0? 

• What number of samples, N is needed? 

The first question refers to the fact that the initial value is just some arbitrary guess and is 

unlikely to have come from the target distribution and it may actually take a while for the 

estimate to come from the actual target distribution, which is that time after which the 

samples can be used. This time is referred to as the burn-in time. Methods to determine 

this burn-in time are, however, tedious if not impracticable. The second point depends on 

what is being estimated and how accurate the estimator needs to be. The choice of the 

proposal distribution is determinative for the rate of convergence. It is also important that 

the target distribution be explored by the Markov chain. The acceptance rate is a measure 

of the level of exploring. If it is too low, then the chain is too stationary and does not 

move around much. If the acceptance rate is too high, this indicates that the chain does 

not have the opportunity to sample from the tails of the distribution. 

 

 

 

 

 

 



 54

 

 

 

CHAPTER 5 

 

Bayesian Methodology for Statistical Modeling 

 

This chapter focuses on the statistical methodology employed in the design process of 

this project which is the Bayesian approach. In Bayesian data analysis, all uncertain 

quantities are modeled as probability distributions, and inference is performed by 

constructing the posterior conditional probabilities for the unobserved variables of 

interest, given the observed data sample and some prior assumptions. This chapter 

focuses on the Bayesian approach for computational intelligence (Neural Networks). The 

major difficulty in neural networks model building is controlling the level of complexity 

of the model. With the standard neural network techniques, the correct model complexity 

is often chosen by crude methodology and is generally computationally expensive. 

Bayesian approach handles these issues by defining vague priors for the hyperparameters 

that determine the model complexity. The resulting model is averaged over all model 

complexities weighted by their posterior probability given the data sample. Another 

problem with standard neural network models is the lack of tools for analyzing the 
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results. The Bayesian analysis caters for this with the posterior distributions for the 

variables been estimated. In this chapter, the Bayesian approach in statistical modeling is 

discussed (5.1) [31]. 

 

5.1 Bayesian Approach 

Bayesian inference is different from classical inference. In Bayesian inference, previous 

information is important. The key principle of Bayesian approach is to construct the 

posterior probability distributions for all the unknown parameters of the model, given the 

data sample.  Bayesian statistics incorporates prior information directly into the analysis 

and it has a naturally formulated decision structure. Use of the posterior probabilities 

requires a definition of the prior probabilities for the unknown parameters.  

 

5.1.1 Bayesian Methodology 

Statistics is concerned with the estimation of numerical quantities. In the Bayesian 

context, the quantities of interest will be random variables or parameters. Before an 

experiment or survey, the prior knowledge about the quantities of interest is summarized 

in the form of a probability statement. Let the parameters of interests be θ and the model 

be represented by H. Also, H represents all the hypotheses and assumptions that are made 

when defining the model, for example the choice of multi-layer perceptron networks. The 

probability statement about initial beliefs is denoted )/( ΗθP and is termed the prior 

belief. Since this is a probability statement it takes the form of a probability distribution 

and is often referred to as the prior distribution, or more simply the prior. 
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5.1.2 Prior Knowledge 

It is essential, when considering θ as a random variable, to assign prior probabilities, 

simply because such must exist. In the case where prior knowledge shows that no 

particular value or values of θ are more likely than any others, then θ will be uniformly 

distributed. That is to say, )/( ΗθP tends to one. The prior might also take the form of a 

normal distribution with some mean and (perhaps large) variance. It should be noted that 

all generalization is based on prior knowledge. The training samples provide information 

only at those points, and the prior knowledge provides the necessary link between the 

training samples and the future samples not yet determined. 

 

5.1.3 Model or Likelihood 

The idea of likelihood is common to all statistical inference, and is well understood by 

Bayesian statisticians. The relationship between the parameters of a model and the 

observables is fundamental to the process of updating knowledge of parameters based 

upon the data. The likelihood is sometimes termed the model, and takes the form of a 

probability statement )/( HDP , where D represents the given data of the system. Note 

that the likelihood is a conditional probability statement as to how likely it is for D to be 

observed if the parameters take the value θ. In a statistical analysis, it is the knowledge of 

θ which is of interest, that is to say, the distribution of θ given that D is observed. This is 

termed the posterior, and is dealt in the next section. Other methods of inference 

concentrate on the likelihood in their analysis, in which case the focus is )/( θDP as a 

function of θ for fixed D. While 1 )/( =∫∇ dDDP
D

θ , the same is not true of the integral 
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with respect to θ. For this reason, and to avoid confusion, the likelihood is sometimes 

written )/( θDL .  

5.1.4 Posterior Distribution 

Of interest to the modeler, then, is the conditional distribution of the parameters, given 

the data, that is )/( DP θ . The posterior probability for the parameters θ in a model H 

given the data D is, according to Bayes’ rule, 

,
)|(

)|(),|(),|(
HDp

HpHDpHDp θθθ =        (5.1) 

Where ),|( HDp θ is the likelihood of the parameters θ (discussed in the previous 

section), )/( Ηθp is the prior probability of θ, and )/( HDp is a normalizing constant, 

called the evidence of the model H. The ),|( HDp θ distribution is termed the posterior 

distribution and describes the current state of knowledge about θ, given the initial 

knowledge of θ, together with the model H, such knowledge having been updated by 

information from the probability  

∫= θ
θθθ .)|(),|()/( dHpHDpHDp        (5.2) 

This normalization constant is the marginal probability of the data, conditional on H, 

integrated over everything with the chosen assumptions H, and prior 

distribution )/( Ηθp . The Bayesian method is then quite straightforward:  

• construct a model, obtaining a likelihood )/( θDp ;  
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• elicit a prior distribution )/( Ηθp ;  

• derive the posterior density ),/( HDP θ as above.  

5.2 Bayesian Learning for MLP Networks 

In this section of the chapter, a short overview of the Bayesian approach for neural 

networks is given. This section concentrates on the Multi-Layer Perceptron (MLP) 

networks and Markov Chain Monte Carlo (MCMC) methods for computing the 

integrations. The result of Bayesian modeling is the conditional probability distributions 

of the unknown parameters of interest, given the known data. In Bayesian MLP, the end 

parameters are the predictions of the model for new inputs. The posterior predictive 

distribution of output ynew for the new input xnew given the training data 

( ) ( )( ) ( ) ( )( ){ },,,...,, 11 nn yxyxD =  is obtained by integrating the predictions of the model 

with respect to the posterior distribution of the model, 

∫= ,)|(),|(),|( θθθ dDpxypDxyp newnewnewnew      (5.3) 

Where θ denotes all the model parameters and hyperparameters of the prior structures. 

The probability model for the measurements, p(y|x, θ), contains the chosen 

approximation functions and noise models. It defines also the likelihood part in the 

posterior probability term, p(θ|D) α p(D|θ)p(θ). The probability model in a regression 

problem with additive error is: 

,):( exfy w += θ          (5.4) 

Where f() is the MLP function: 
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( ) ).tanh(, 1122 xwbwbxf w ++=θ        (5.5) 

θw denotes all the parameters w1, b1, w2, b2, which are the hidden layer weights and 

biases, and the output layer weights and biases, respectively.  

5.3 Markov Chain Monte Carlo Method 

In Markov Chain Monte Carlo (MCMC) the complex integrals in the marginalization are 

approximated via drawing samples from the joint probability distribution of all the model 

parameters and hyperparameters. For example, with squared error loss the best guess for 

model prediction (with additive zero-mean noise model), corresponds to the expectation 

of the posterior predictive distribution in (5.3): 

[ ] ( ) .)|(,,|ˆ θθθ dDpxfDxyEy newnewnewnew ∫==      5.6 

This is approximated using a sample of values θ(t) drawn from the posterior distribution 

of parameters: 

( ) .),(1ˆ
1
∑
=

≈
N

t

tnewnew xf
N

y θ         5.7 

In the MCMC, samples are generated using a Markov chain that has the desired posterior 

distribution as its stationary distribution. Choosing the initial values with early-stopping 

can be used to reduce the burn-in time, when the chain has not yet reached the 

equilibrium distribution. In general, the author’s experience suggests that the 

convergence of the MCMC methods for MLP is slower than usually assumed, so that in 
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many of the published studies, the MCMC chains may have still been in the burn-in 

stage, producing a sort of early-stopping effect to the selection of the model complexity. 

 

5.4 Conclusion and Remarks 

Presented in this chapter is the Bayesian approach for statistical modeling. In the 

Bayesian approach, previous information is important for the analysis. This prior 

knowledge forms the prior probability distribution. The underlying principle is to 

construct posterior probability distributions for all the unknown parameters of the model, 

given the data sample. Also presented in this chapter is Bayesian learning for MLP 

networks. This is very important for the reformulated network methodology created 

(Section 1.2). The MCMC Bayesian learning implementation is also presented in this 

chapter, in Section 5.3. This was the implementation utilized for optimizing the 

reformulated network parameters, hence forms an important part of the thesis. The next 

chapter deals with the algorithms implemented. 
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Chapter 6 

 

Input Time-Window Optimization Algorithms 

 

This thesis started by introducing the stock market, and then proceeded to introducing 

neural network and the last chapter dealt with the Bayesian approach. The algorithms 

were implemented in neural networks using the various networks and later optimizing 

these networks. The methodology also included the use of Bayesian analysis. Both 

algorithms use the neural network NETLAB© toolbox that runs in MATLAB® [32]. 

 

The data used for this design was data obtained from the National Association of 

Securities Dealers (NASDAQ). The design process was divided into various stages. The 

following procedures are followed in designing the neural network architecture in this 

project: 

1. Specify and process the data required by the neural network for training, 

validation and testing. 

2. Create a neural network and train the neural network with the data in Step 1. 

3. Optimize the input time-window using polynomial approximation. 
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4. Optimize the input time-window by reformulating neural networks methods 

(Bayesian framework). 

5. Create an integrated infrastructure.  

6. Comparison of the different networks. 

This chapter would elaborate on the procedures stated above. 

 

6.1 Factors Specification and Processing 

The data used for the network design is obtained from the NASDAQ stock exchange. The 

NASDAQ all-share index was used as the sample data. The data for a two-year period 

was used as the analysis data. The output data set is obtained by calculating the average 

of the all-share index over 5 successive days. The data is then divided into 3 sets; 

training, validation and testing sets. The training data set is used to train the initial 

network. The validation data set is used to validate the network and the testing data set is 

used to confirm the predictability of the network. The division of data into three sets is to 

ensure that over-fitting and under-fitting are avoided. Over-fitting occurs when the 

network does not generalize but rather fits training data meanwhile underfitting occurs 

when the network does not follow the data at all. 

The output and input data sets are first preconditioned by normalising them before the 

network is trained. Normalising the data sets makes the data lie between 0 and 1. This 

caters for over-fitting since large inputs and outputs values used during training results in 

the learning rates in the different layers being different by significant amounts. With the 

large values, a very small learning rate will be needed meaning a lot of steps will be 



 63

required to move the bias across the network. The normalizing is done by getting the 

minimum and maximum values in the data set and conditioning the data so that they lie 

between zero and one. This reduces the error during training. The data is normalized by 

using the following formula: 

 

minmax

min

XX
XX

X norm −
−

=          (6.1) 

Where X is the actual data, Xmin is the smallest data in the data set (minimum data) and 

Xmax is the largest data in the data set (maximum data). The normalised training data set 

was then used in the next stage to train the neural networks. 

 

6.2 Creating the Neural Networks  

The neural networks used are created using the MLP and RBF network architectures, 

which are very suitable for regression problems. In creating the neural networks, the 

number of inputs was assumed to be arbitrary. This will be optimized at a later stage of 

the project. This stage entailed getting an optimal architecture for the neural networks 

that will yield good predictions. Designing the neural networks thus involved choosing 

the right number of neurons and the appropriate network architecture which would yield 

the most accurate results. The number of neurons is then optimised by minimising an 

error function mapping the number of hidden neurons to the root mean square error 

obtained from the output related to the target output, for both the training data set and the 

validation data set. The root mean square (RMS) error is calculated by averaging the sum 
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of the square of the difference between the actual data output and the network output over 

the whole data set as per the formula below: 

n

ty
E

n

i
ii

RMS

∑
=

−
= 1

2)(
         (6.2) 

Where y is the network output value, t is the actual output value and n is the number of 

data samples. 

The hidden neurons were tested by incrementing the neurons from 5 hidden neurons to 40 

hidden neurons in steps of 1 and training the network with the hidden neuron number. 

The root mean square error for each neuron number and each network architecture was 

then obtained. A committee of networks comprising of the average output of the MLP 

and the RBF networks was also obtained for each neuron number and the root mean 

square error of the output was also obtained. The output of the committee of networks 

was computed by averaging the outputs from the different network types as follows: 

2
RBFMLP yyy +

=          (6.3) 

A more complex committee of networks [33, 34] comprising of six MLP and six RBF 

networks was also created. The network structure is as shown in Figure 4. 
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Figure 4: Committee of networks for prediction 

 
The networks are then validated using the validation data sets. The root mean square 

error obtained for eight inputs for the various number of neurons is shown in Figure 5. 

 

Figure 5: Relationship between RMS error hidden layer neurons for the different 

architecture types 
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Upon getting the optimal network architecture which was the MLP and the optimal 

number of hidden units which was 12 hidden units, the design for the optimal input time-

window was tackled. The RBF network architecture also gave accurate results with 11 

hidden units being the optimal number of hidden neuron units. 

 

6.3 Optimizing the Input Time-Window Using Polynomial 

Approximation 

The next stage of the design was to optimally select an input time-window using 

polynomial approximation. The optimal network architecture, MLP and the optimal 

number of hidden neurons 12 was used to predict the input time-window. The RBF 

network was also verified by using the optimal number of hidden neurons 11. A set of 

networks was created with the number of days required to predict the output (average 

index of the next five days) ranging from 5 to 12. The output square error for each of the 

input days is then plotted and the optimal number of days required to predict the average 

of the next five days is obtained from the error function. Figure 6 shows the error plot 

obtained for various days: 
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Figure 6: Relationship between the RMS error and the number of input days for 

MLP and RBF networks 

As can be seen from Figure 6, the lowest error was obtained for the MLP and was 7 days. 

The RBF architecture also had an optimal input time-window of 7 days as can be seen in 

Figure 6 depicted by the red curve. The optimal input time-window from polynomial 

approximation is thus 7 days. Upon obtaining the optimal input time-window, the next 

stage of the design was then embarked on. 
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6.4 Optimizing the Input Time-Window by Reformulation of 

Bayesian Framework 

This stage comprised the design of a neural network model to predict the average of the 

next five days by reformulating the Bayesian framework. The Markov Chain Monte 

Carlo (MCMC) method was used in this design stage. The Metropolis-Hastings algorithm 

(Section 4.4) [35] was employed whereby if the energy function is greater than a 

threshold then a new state is accepted else an old state is accepted. This threshold value is 

the error tolerance and is specified during the training stage. The neural network model as 

explained above in Chapter 2, Section 2.1 comprises of weights and biases. A new 

parameter, a, was introduced into the network such that the network now looked as 

follows: 

 

Figure 7: The reformed network with discrete parameter 

This network parameter, a, is a discrete parameter which can have a value of 0 or 1. The 
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value of this parameter at the input neuron is dependent on the importance of the input at 

that neuron to the target output. A value of 1 means an input day is important for the 

prediction of the output and a value of 0 implies that an input day is not important 

towards the output prediction. The design involved the following steps: 

 

6.4.1 Creating the Network Architecture 

The first step involved creating the network architecture which had the binary (discrete) 

parameter. New network architecture types, discrete multi-layer perceptron (DMLP) and 

discrete radial basis function (DRBF) were created which will be initialised by stating the 

number of inputs, the number of hidden neurons in each layer, the number of outputs and 

the network function type. This multi-layer perceptron network contains 5 hidden 

parameters, w1, b1 (hidden layer 1 weights and biases), w2, b2 (hidden layer 2 weights 

and biases) and a, which is the input layer (discrete) parameter. The RBF network was 

also created and contains 5 hidden parameters, c, wi (first layer centres and widths), w2, 

b2 (hidden layer 2 weights and biases) and a, the discrete parameter. In this step all the 

parameters will be initialised with random values, which will later be optimised. 

 

6.4.2 Creation of the Discrete Feed-Forward Multi-Layer Perceptron 

In this step the feed-forward discrete MLP and RBF were written whereby the MLP and 

RBF network formula (5.5), (2.8) and (2.9) were modified with x being replaced by x’, 

( xax where •=′ ) and the equation now becomes: 
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This function takes in an initialised discrete network together with an array of input data 

sample and gives an output data set. 

 

6.4.3 Optimisation/Training Algorithm 

In this step the optimisation/training algorithm was created. A discrete/continuous 

network optimisation algorithm was written using the Metropolis-Hastings algorithm 

[34]. In this algorithm, the initial values of the weight are taken as the initial state of the 

variables. The continuous and the discrete variables are separated. The old energy state is 

computed by summing and averaging the difference between the actual output and the 

network output squared. The variables are then updated. The continuous variables are 

updated by adding a random number unto them as per the Metropolis algorithm. The 

discrete parameter is updated by choosing a new random number between 0 and 1 and 

rounding off the number to the nearest integer thereby ensuring that the number is a zero 

or a one. The new energy is calculated using (6.4) and the new parameters. The 

probability difference between the two energies is then obtained from: 

)( EnewEoldeP −=           (6.5) 

This probability is compared with a threshold value and if the probability is greater than 

the threshold value, the new state of the variables is kept as good samples. If the 

probability is, however, lower than the threshold value, then the old state is kept as the 

best sample. The number of samples used in training the network was 25000 for the MLP 
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network and 30000 for the RBF network. These numbers of samples was found to be the 

optimal values during validation. The variables were then obtained by taking the average 

of the samples stored for the continuous variables, and by rounding off the average for 

the discrete variable samples. The index averages are then predicted for the MLP 

network.  

 

6.4.4 Prediction of outputs by RBF network 

The RBF network was also used to predict the future average index and to select the input 

time-window optimally. The first stage in the RBF prediction was the selection of the 

input time-window. The algorithm in Section 6.4.3 was used to obtain the discrete 

parameter a, which depicts the input time-window. Upon obtaining the input-time 

window parameter (discrete parameter), the input was then pre-multiplied with this 

parameter and was used to train the second network which will do the prediction of the 

index average.  

 

Figure 8: Diagrammatic representation of the RBF input time-window optimisation 

methodology 

a Input Obtain discrete 
parameter 

Premultiply 
input by a 

Train network 2 with 
the premultiplied 
input and target 
output

Predict 
output with 
network 2 
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6.5 Simulation Results 

Figures 9 and 10 were obtained for the training and validating data set. Table 4 shows the 

value for alpha for Figures 9 and 10 as well as the network architecture type. An input 

window of 13 days was used in the training and validation and Table 4 shows the optimal 

time-window. The discrete parameter has a value of one where the input is important for 

the prediction yielded and a zero where the input is not important for the prediction 

yielded. Table 4 also contains the fraction of the samples rejected during the optimisation 

process. 

 

Figure 9: Predicted output by reformed MLP network 
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Figure 10: Predicted output by reformed RBF network 

The red graphs are the actual output values meanwhile the blue graphs are the network 

predictions. The solid graph is the training set data meanwhile the dotted graph is the 

validation data set. 

Table 4: The values of a, for the Figures 9 and 10 

Fig Network Type Value Of a Fraction of Rejected 

Samples 

9 MLP [0 1 1 0 1 0 0 1 1 0 0 1 1] 0.99968 

10 RBF [1 0 1 0 1 1 1 0 0 0 0 1 0] 0.8642 

Data Samples 

Pr
ed

ic
te

d 
V

al
ue

s 



 74

6.5.1 Testing and Comparison of Different Networks 

The optimal design from each type of networks are tested and compared. The networks 

are trained and validated as explained above. The networks are then tested and compared 

using the testing data. The mean square errors of the outputs of the networks are shown in 

Table 5. 

Table 5: The mean square errors of the outputs of the tested networks. 

 MLP RBF MLP+RBF 

Training    

RMS Error 0.0252 0.0548 0.0375 

Validation    

RMS Error 0.0251 0.0466 0.0299 

Testing    

RMS Error 0.2930 0.3750 0.3318 

 

The optimal prediction for the reformulated MLP and RBF frameworks were tested with 

the test data set and yielded the Figures 11 and 12. 
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Figure 11: Predicted output of the reformulated MLP network for test data 

 

Figure 12: Predicted output of the reformulated RBF network for test data 
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Where the red is the actual values and the blue is the predicted value. Hence the optimal 

value is the Figure 10 entry in Table 4. The root mean square error for the normalised 

data was 0.2686 for the reformulated MLP and 0.0133 for the reformulated RBF. The 

index average calculated by the MLP network has the lowest mean square error for the 

polynomial approximation meanwhile the RBF network has the lowest mean square error 

for the reformulated Bayesian framework architecture. The mean square error is high 

when RBF network calculates the average indices for the polynomial approximation.  

The outputs from the validation data for most cases have the least mean square error. The 

difference between the mean square errors of the outputs calculated using the training 

data and the mean square errors of the outputs calculated using the validation or the 

testing data is not significant. The difference is about 0.2 in the case of testing data and 

0.01 for the validating data (normalised value). This indicates that problem of over-fitting 

is not present. The outputs from the networks using the testing data are shown in Figures 

11, 12 and 13. The outputs from the network are compared with the actual index average. 

The output trends from each network confirm the mean square error calculations. The 

MLP network predicts the index average most accurately, meanwhile the RBF predicts 

the index average least accurately for the polynomial approximation. The networks 

predicts fairly accurately to the general trends of the target output.  
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Figure 13: Networks predictions of the average indices using testing samples for 

polynomial approximation. 

 

Figure 14: Networks predicted output standard deviations for the polynomial 

approximation 



 78

The deviations are small hence the index averages shown in Figure 13 can thus be 

considered as an accurate prediction. 

 

The last network under investigation was the complex committee of networks comprised 

of six MLP and six RBF networks combined. The committee was found to work 

effectively and had a root mean square error of 0.0054 for the normalized test data and 

also a root mean square of 9.8497e-004 for the validating normalized data. The 

committee, which is as shown in Figure 4, yields Figure 15 for the training, validating 

and testing data: 

 

 

Figure 15: Committee of networks predicted output for the training, validating and 
testing data 
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The committee of networks thus gives the most efficient output with a very high accuracy 

level compared to all the other networks. The committee of networks is, however, just an 

extended implementation of the polynomial neural network. 

 
6.3 Conclusion on Implementation 

In this chapter, two methodologies were implemented using neural networks to optimally 

select the input time-window. The first methodology uses polynomial approximation and 

neural networks. The second methodology uses Bayesian analysis with the neural 

networks and Markov Chain Monte Carlo (MCMC) methods to optimally select this time 

window for the MLP and RBF networks. The sampling algorithm used for this 

methodology is the Metropolis-Hastings algorithm discussed in Section 4.4. The 

algorithm testing and validation has been done in this chapter too. A committee of 

networks was also investigated in this chapter and yielded the most accurate result 

compared to all the other networks. The next chapter would focus on the evaluation of the 

methodology (the network created by the methodology) on the basis of accuracy. The 

testing is done on NASDAQ data not used during training time, validation or testing time.  
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Chapter 7 

 

 

Application of the Methodology Designed 

 

In this chapter, the previous discussions are concluded. In Chapter 2, neural network was 

introduced. In Chapter 4, the Markov Chain Monte Carlo methods was described and in 

Chapter 5, the Bayesian approach was also described. In Chapter 6 two algorithms were 

implemented. The first algorithm exceeded the second in performance but the second 

methodology, however, gave the detailed representation of the important days required 

for the prediction. In this chapter the performance of the methodologies is further 

analyzed using unseen data which is obtained from the NASDAQ stock market. The 

chapter concludes by giving a thorough analysis of the results and also relating the 

methodology’s performance to the existing methodologies for prediction. The 

background literature in Chapter 2, however, proved that there has not been 

methodologies implemented for the selection of an optimal input time-window, hence the 

methodologies implemented in the previous chapter as well as the network created in the 
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chapter are a novelty. The accuracy could be increased even further but such would be 

computationally expensive such as for the second methodology where the optimization of 

the parameters requires a lot of samples in order to converge as has been discussed in the 

Metropolis-Hastings algorithm section. The trade-off thus in the design was the 

convergence of the true result vis-à-vis the time required for the analysis. The results will, 

however, be analyzed in the last section of this chapter. 

 

7.1 Analysis Data 

The data to be used for the analysis is the NASDAQ data from 02 of January 2003 to 31 

of December 2003. This data was pre-conditioned as per the algorithm such that the data 

can be normalized between 0 and 1 and the normalized data was then used to test the 

network for predictability. It should be noted that the NASDAQ all-share index (N100 

index) is used as the analysis data set. 

 

7.2 Performance Measurement 

To determine the performance of the algorithms, two measures are used. The first 

measure is the root mean square error for the predicted average index and the second 

measure is the standard deviation of such predictions. The output of the algorithm 

(predicted value) is compared to the actual average index from the available data. The 

error can thus be obtained by just getting the squared difference between the actual value 

and the predicted value. Figure 16 shows the actual index for the NASDAQ data stated 

above: 
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1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241
 

Figure 16: NASDAQ test data set used for the analysis of the methodologies 

 

7.3 Methodology Analysis 

The output from the polynomial approximation methodology was obtained and is shown 

in the Figure 17. 
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Figure 17: Graph of the network predicted index average for MLP & RBF network 

for polynomial approximation 

In Figure 17 the root mean square errors were computed to be, 1.5978e-004 and 0.0040 

for the MLP and the RBF networks, respectively. The error profile for the data was 

obtained and is shown in Figure 18. 

 



 84

Error For the Average Predicted Data

-30

-25

-20

-15

-10

-5

0

5

10

15

20

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235

Days

Er
ro

r(
A

ct
ua

l-P
re

di
ct

ed
)

Error

 

Figure 18: The error between the predicted and the actual values 

The committee of networks was also investigated with this analysis data and yielded 
Figure 19. 
 

 
Figure 19: Committee of networks predicted output for unseen data 
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The root mean square error for the committee of networks prediction was 0.0016 for the 

normalized value, which was quite low. This network can thus predict the stock price 

average index accurately. Table 6 shows some of the data used in the analysis of the 

polynomial approximation together with the error obtained for this data. 

Table 6: Table showing the actual values for the analysis and the predicted value 

from the network as well as the error of prediction 

Actual Predicted  Error 

Actual Predict

ed 

Error Actual Predicted Error 

1080.056 1068.4 11.656 965.188 967.64 -2.452 1075.524 1071 4.524

1066.102 1058.9 7.202 961.458 966.64 -5.182 1072.4 1066.8 5.6

1051.286 1039.8 11.486 966.466 968.24 -1.774 1070.666 1065.1 5.566

1033.616 1029.2 4.416 975.456 979.27 -3.814 1067.004 1060.4 6.604

1025.432 1019.8 5.632 982.31 990.96 -8.65 1057.724 1059.1 

-

1.376

1012.376 1013.8 -1.424 991.25 1004.4 -13.15 1052.036 1044.6 7.436

1006.14 1006.6 -0.46 1004.054 1010.4 -6.346 1043.248 1040.3 2.948

1004.636 1007.5 -2.864 1006.574 1005 1.574 1042.68 1036.8 5.88

1006.646 1001.8 4.846 1003.448 1002.5 0.948 1043.106 1040.9 2.206

997.214 1000.5 -3.286 997.174 994.5 2.674 1043.904 1049.7 

-

5.796

994.588 997.16 -2.572 995.84 993.62 2.22 1050.828 1057.8 

-

6.972

994.72 995.16 -0.44 994.604 997.78 -3.176 1055.562 1052.5 3.062

988.784 986.8 1.984 993.88 992.89 0.99 1047.574 1043 4.574

979.266 980.95 -1.684 990.62 997.15 -6.53 1041.39 1035.9 5.49

976.274 975.62 0.654 993.764 993.89 -0.126 1036.478 1030.3 6.178
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The Bayesian framework yielded the following discrete parameter a = [1 0 1 0 1 0 0 1 1 1 

0 0 1]. 

 

7.3 Effect of the Simultaneous Use of Diverse Neural Networks on the 

Accuracy of Prediction 

The committee of neural networks architecture was presented in Section 6.2 of this thesis. 

This network was found to have a higher level of accuracy compared to the MLP and 

RBF networks. This implies thus that the simultaneous use of diverse neural networks is 

beneficial to the overall system. A more complex combination of diverse neural networks 

will, therefore, yield even better results. 

 

7.4 Conclusion  

An analysis of the methodologies, presented in the previous chapters, has been done in 

this chapter. The NASDAQ all-share index from 01 January 2003 to 31 December 2003 

was used as the test data. The MLP network yielded better results than the RBF network. 

The effect of the simultaneous use of diverse neural networks was also investigated in 

this chapter. This showed that the diverse neural network tracks the stock pattern for the 

average index more accurately than the MLP and RBF networks and also has a low rms 

error. To this effect, it can be concluded that the use of a committee of neural networks is 

beneficial and more efficient in the prediction of the stock prices and for trend tracking. 

This chapter illustrated the fact that a committee of networks increases the accuracy of 

the prediction; hence creating a more complex committee of networks will yield even 

more accurate results. 
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Chapter 8 

 

 

Conclusion 

 

 

Methods to optimally select the input time-window in the prediction of stocks were 

designed and implemented using polynomial approximation and also by reformulating 

the Bayesian framework to include a discrete parameter. This discrete parameter attaches 

a value to the importance of a particular day with respect to the output value whereby, a 

value of one implies importance and a zero implies unimportance, of the particular day 

towards the prediction of the output.  The architectures tested were the multi-layer 

perceptron (MLP), radial basis function (RBF) and two integrated infrastructures 

comprising of the two networks, simultaneously, which were presented in Chapters 6 and 

7. The methodology employed in designing was to first specify and process the data to be 

used for the design. At this stage, the data was normalized so that the values lie between 

zero and one, thereby reducing the effect of over-fitting (which leads to poor 
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generalization). This stage is known as preconditioning. Upon obtaining the 

preconditioned data, the polynomial approximation design was embarked on. The initial 

design phase of the polynomial approximation methodology involved optimizing the 

MLP and RBF networks by getting an optimal number of neurons in the hidden layer. 

The relationships between the number of neurons in the hidden layer and the mean square 

error of the outputs were then used to find the optimal parameter values for the MLP and 

RBF networks. It was found that 12 and 11 hidden neurons were optimal for the MLP 

and RBF networks, respectively. The performances of the two networks and the 

integrated network (committee of networks) were then compared using the testing data. 

The MLP network is best in predicting the index average meanwhile the RBF network is 

the worst in predicting the index average. The committee of networks yielded even better 

results than both the MLP and the RBF networks. This performance analysis done in 

Chapter 6, Section 6.2, was used to get the optimal architecture which was the MLP 

based on the root mean square (RMS) errors. Thus, the MLP is used for the first stage of 

the polynomial approximation to select an optimal input time-window design. Upon 

analyzing and optimizing the error function mapping the RMS error between the actual 

output and the predicted output, to the input days, an optimal time-window of seven days 

was obtained. The second design methodology involved the redesigning and 

reformulation of the Bayesian framework using the Metropolis-Hastings algorithm. The 

methodology employed here was firstly to create a discrete network for the MLP and 

RBF networks. This network contained a discrete parameter a. The parameter a, had a 

value of zero if a particular input day was not important towards the prediction, and the 

parameter had a value of one if the particular input day was important for the prediction. 
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This network architecture was presented in Chapter 6, Section 6.4. The discrete 

feedforward MLP and RBF networks were then created. Upon getting the discrete 

feedforward MLP and RBF networks, the Metropolis-Hastings algorithm was used to 

optimize the weights, biases and the discrete parameter in a discrete network as has been 

presented in previous sections. It was found that this reformed network yielded good 

result and could intuitively chose the number of days required to predict the index 

average. The average number of days required as the input time-window was found to be 

seven, which corresponded to the polynomial approximation as well. This methodology 

is beneficial since the number of input days required to predict the index average over the 

next five days do not have to be stated. A pool of data is rather entered into the network 

and the network is trained with this pool of the data. The network then recursively selects 

the input time-window. This methodology, however, had the limitation in that it was 

computationally expensive. The computational times spanned a period of more than 12 

hours compared to the 3 minutes, which the polynomial approximation approach takes. A 

faster Markov Chain Monte Carlo (MCMC) algorithm will thus result in the increase of 

the efficiency of this methodology vis-à-vis computational expense. The trade-offs then 

had to be computational time or higher accuracy. The MLP architecture can thus be used 

to predict the index average over the next five days accurately and can also be used with 

polynomial approximation to select an optimal input time-window. A reformulated MLP 

and RBF with a discrete parameter can also be used to predict index average over the 

next five days without specifications of what previous days’ data the network should use. 

The polynomial approximation is more efficient with respect to computational expense 

meanwhile the reformulated Bayesian neural networks are more efficient with respect to 
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accuracy. The effect of simultaneous use of diverse neural networks was also investigated 

and was found to yield more accurate results. The accuracy can thus be further increased 

by implementing a more complex committee of networks. Conclusively, neural networks 

using the MLP and RBF networks can be used with polynomial approximation to 

optimize the input time-window. A reformulated Bayesian MLP and RBF network can 

also be used to optimize this time-window. However, the MLP polynomial 

approximation is chosen as the optimal design since as the degree of accuracy is not 

much different from the Bayesian framework design, but the computational times is 

significantly different. Also, the use of simultaneous neural network engines as 

demonstrated in Chapters 6 and 7 results in the increase of accuracy and is thus 

encouraged. 
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Appendix A 
 

The Implemented Code for Methodologies Developed 
 

This appendix contains the different MATLAB codes implemented for the methodologies 

explained above in Chapters 6 and 7. 

 

A.1 Matlab Code to Optimize the Network Architecture 

 
clear all; 
load dataf2 
i=1; 
n=3; 
m=2; 
e1=length(datanasdaq7); 
f=floor(e1/3); 
g=2*f; 
e=3*f; 
 
while(i<=f), 
    p=i; 
    q=1; 
    n=p+6; 
    for a=p:n, 
        inpt(q,i)=datanasdaq(a,1); 
        q=q+1; 
    end 
     
    outpt(1,i)=datanasdaq7(i,1); 
         
        i=i+1; 
        
    end    
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h=1; 
while(i<=g), 
p=i; 
q=1; 
n=p+6; 
 
for a=p:n, 
   inpv(q,h)=datanasdaq(a,1); 
   q=q+1; 
end 
outpv(1,h)=datanasdaq7(i,1); 
        h=h+1; 
        i=i+1; 
    end    
     
k=1; 
 
while(i<=e), 
p=i; 
q=1; 
n=p+6; 
 
for a=p:n, 
   inpte(q,k)=datanasdaq(a,1); 
   q=q+1; 
end 
outpte(1,k)=datanasdaq7(i,1); 
 
        k=k+1; 
        i=i+1; 
        n=n+1; 
end    
     
   %Training data set 
    
    day1dt=inpt(1,:); 
    day2dt=inpt(2,:); 
    day3dt=inpt(3,:); 
    day4dt=inpt(4,:); 
    day5dt=inpt(5,:); 
    day6dt=inpt(6,:); 
    day7dt=inpt(7,:); 
    day8dt=outpt(1,:); 
 
   %Validating data set  
    day1dv=inpv(1,:); 
    day2dv=inpv(2,:); 
    day3dv=inpv(3,:); 
    day4dv=inpv(4,:); 
    day5dv=inpv(5,:); 
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    day6dv=inpv(6,:); 
    day7dv=inpv(7,:); 
    day8dv=outpv(1,:); 
 
     
    %Testing data set 
    day1dte=inpte(1,:); 
    day2dte=inpte(2,:); 
    day3dte=inpte(3,:); 
    day4dte=inpte(4,:); 
    day5dte=inpte(5,:); 
    day6dte=inpte(6,:); 
    day7dte=inpte(7,:); 
    day8dte=outpte(1,:); 
     
     
    %normalise the parameters 
     
    %Training data 
    minday1t=min(day1dt); 
    maxday1t=max(day1dt); 
    minday2t=min(day2dt); 
    maxday2t=max(day2dt); 
    minday3t=min(day3dt); 
    maxday3t=max(day3dt); 
    minday4t=min(day4dt); 
    maxday4t=max(day4dt); 
    minday5t=min(day5dt); 
    maxday5t=max(day5dt); 
    minday6t=min(day6dt); 
    maxday6t=max(day6dt); 
    minday7t=min(day7dt); 
    maxday7t=max(day7dt); 
    minday8t=min(day8dt); 
    maxday8t=max(day8dt); 
     
    day1t=(day1dt-minday1t)/(maxday1t-minday1t); 
    day2t=(day2dt-minday2t)/(maxday2t-minday2t); 
    day3t=(day3dt-minday3t)/(maxday3t-minday3t); 
    day4t=(day4dt-minday4t)/(maxday4t-minday4t); 
    day5t=(day5dt-minday5t)/(maxday5t-minday5t); 
    day6t=(day6dt-minday6t)/(maxday6t-minday6t); 
    day7t=(day7dt-minday7t)/(maxday7t-minday7t); 
    day8t=(day8dt-minday8t)/(maxday8t-minday8t); 
 
     
    %Validation data 
    minday1v=min(day1dv); 
    maxday1v=max(day1dv); 
    minday2v=min(day2dv); 
    maxday2v=max(day2dv); 
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    minday3v=min(day3dv); 
    maxday3v=max(day3dv); 
    minday4v=min(day4dv); 
    maxday4v=max(day4dv); 
    minday5v=min(day5dv); 
    maxday5v=max(day5dv); 
    minday6v=min(day6dv); 
    maxday6v=max(day6dv); 
    minday7v=min(day7dv); 
    maxday7v=max(day7dv); 
    minday8v=min(day8dv); 
    maxday8v=max(day8dv); 
     
    day1v=(day1dv-minday1v)/(maxday1v-minday1v); 
    day2v=(day2dv-minday2v)/(maxday2v-minday2v); 
    day3v=(day3dv-minday3v)/(maxday3v-minday3v); 
    day4v=(day4dv-minday4v)/(maxday4v-minday4v); 
    day5v=(day5dv-minday5v)/(maxday5v-minday5v); 
    day6v=(day6dv-minday6v)/(maxday6v-minday6v); 
    day7v=(day7dv-minday7v)/(maxday7v-minday7v); 
    day8v=(day8dv-minday8v)/(maxday8v-minday8v); 
 
 
    %Testing data set 
     
    minday1te=min(day1dte); 
    maxday1te=max(day1dte); 
    minday2te=min(day2dte); 
    maxday2te=max(day2dte); 
    minday3te=min(day3dte); 
    maxday3te=max(day3dte); 
    minday4te=min(day4dte); 
    maxday4te=max(day4dte); 
    minday5te=min(day5dte); 
    maxday5te=max(day5dte); 
    minday6te=min(day6dte); 
    maxday6te=max(day6dte); 
    minday7te=min(day7dte); 
    maxday7te=max(day7dte); 
    minday8te=min(day8dte); 
    maxday8te=max(day8dte); 
     
    day1te=(day1dte-minday1te)/(maxday1te-minday1te); 
    day2te=(day2dte-minday2te)/(maxday2te-minday2te); 
    day3te=(day3dte-minday3te)/(maxday3te-minday3te); 
    day4te=(day4dte-minday4te)/(maxday4te-minday4te); 
    day5te=(day5dte-minday5te)/(maxday5te-minday5te); 
    day6te=(day6dte-minday6te)/(maxday6te-minday6te); 
    day7te=(day7dte-minday7te)/(maxday7te-minday7te); 
    day8te=(day8dte-minday8te)/(maxday8te-minday8te); 
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a=length(day8t); 
q=1; 
for t=1:a, 
if t==1 
day8det(t,1)=0; 
day8dev(t,1)=0; 
day8dete(t,1)=0; 
end 
if t>1, 
    day8det(t,1)=day8t(q); 
    day8dev(t,1)=day8v(q); 
    day8dete(t,1)=day8te(q);     
    q=q+1; 
end 
end 
    for s=1:f, 
         
    invart(s,1)=day1t(s); 
    invart(s,2)=day2t(s); 
    invart(s,3)=day3t(s); 
    invart(s,4)=day4t(s); 
    invart(s,5)=day5t(s); 
    invart(s,6)=day6t(s); 
    invart(s,7)=day7t(s); 
    invart(s,8)=day8det(s); 
    outvart(s,1)=day8t(s); 
 
end 
 
j=1; 
f1=f+1; 
 
for s=f1:g, 
         
    invarv(j,1)=day1v(j); 
    invarv(j,2)=day2v(j); 
    invarv(j,3)=day3v(j); 
    invarv(j,4)=day4v(j); 
    invarv(j,5)=day5v(j); 
    invarv(j,6)=day6v(j); 
    invarv(j,7)=day7v(j); 
    invarv(j,8)=day8dev(j); 
    outvarv(j,1)=day8v(j); 
    j=j+1; 
 
end 
 
k=1; 
g1=g+1; 
for s=g1:e, 
    invarte(k,1)=day1te(k); 
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    invarte(k,2)=day2te(k); 
    invarte(k,3)=day3te(k); 
    invarte(k,4)=day4te(k); 
    invarte(k,5)=day5te(k); 
    invarte(k,6)=day6te(k); 
    invarte(k,7)=day7te(k); 
    invarte(k,8)=day8dete(k); 
    outvarte(k,1)=day8te(k); 
    k=k+1; 
end 
 
for u=5:40, 
     
%Initialising neural network parameters 
nin=8;%Number of input units is 8 
nhiddenm=u;%u hidden layers 
nhiddenr=u;%u hidden layers used  
nout=1;%One output value 
alpha=0.01; 
 
net1=mlp(nin, nhiddenm, nout, 'linear', alpha); %Linear MLP algorithm chosen 
net2=rbf(nin,nhiddenr,nout,'gaussian','linear',alpha);%RBF network architecture 
 
options = zeros(1,18); 
options(1) = 1; 
options(14) = 1000;%1000 iterations found to be accurate enough 
[net1, options, varargout] = netopt(net1, options, invart, outvart, 'scg'); 
 
%RBF Optimisation 
[net2, options, varargout] = netopt(net2, options, invart, outvart, 'scg'); 
yout1= mlpfwd(net1, invart); 
yout2= mlpfwd(net1,invarv); 
 
yout1r=rbffwd(net2,invart); 
yout2r=rbffwd(net2,invarv); 
 
 
Day8t1=(yout1(:,1)*(maxday8t-minday8t))+minday8t; 
Day8t2=(yout2(:,1)*(maxday8v-minday8v))+minday8v; 
 
Day8t1r=(yout1r(:,1)*(maxday8t-minday8t))+minday8t; 
Day8t2r=(yout2r(:,1)*(maxday8v-minday8v))+minday8v; 
 
Day8av1=(Day8t1+Day8t1r)/2; 
Day8av2=(Day8t2+Day8t2r)/2; 
 
m=length(Day8t1); 
sum1=0; 
sum2=0; 
sum1av=0; 
sum2av=0; 
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sum1r=0; 
sum2r=0; 
 
for n=1:m, 
    sum1=sum1+((Day8t1(n)-day8dt(n))^2); 
    sum2=sum2+((Day8t2(n)-day8dv(n))^2); 
    sum1r=sum1r+((Day8t1r(n)-day8dt(n))^2); 
    sum2r=sum2r+((Day8t2r(n)-day8dv(n))^2); 
    sum1av=sum1av+((Day8av1(n)-day8dt(n))^2); 
    sum2av=sum2av+((Day8av2(n)-day8dv(n))^2); 
 
 
end 
 
sum1=(sum1/m)^(1/2); 
sum2=(sum2/m)^(1/2); 
sum1av=(sum1av/m)^(1/2); 
sum2av=(sum2av/m)^(1/2); 
sum1r=(sum1r/m)^(1/2); 
sum2r=(sum2r/m)^(1/2); 
p=u-4; 
eror1t(p)=sum1; 
eror2t(p)=sum1r; 
eror1av(p)=sum1av; 
eror1v(p)=sum2; 
eror2v(p)=sum2r; 
eror2av(p)=sum2av; 
end 
 
x=[5:1:40]; 
plot(x,eror1t,'b')legend('error for training data-MLP') 
hold on 
plot(x,eror2t,'r')legend('error for training data-RBF') 
plot(x,eror1v,'b.')legend('error for validating data-MLP') 
plot(x,eror2v,'r.')legend('error for validating data-RBF') 
plot(x,eror1av,'k')legend('error for training data-MLP&RBF') 
plot(x,eror2av,'k.')legend('error for validating data-MLP&RBF') 

 

A.2 Matlab Code for the Polynomial Approximation Optimisation of the 

Input Time-Window 
The function input number below gets the RMS error for using the various number of 

days where mastdaysn represents a function which uses the number of days specified by 

the function to compute the RMS error with n representing the number of days. The 

generic function is as shown in A.2.2 below. 
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A.2.1 Input Number: 
 
function inputnum=erran() 
clear all; 
for i=5:12, 
    if(i==5) 
    optstring=['mastdays5']; 
end 
if(i==6) 
    optstring=['mastdays6']; 
end 
if(i==7) 
    optstring=['mastdays7']; 
end 
if(i==8) 
    optstring=['mastdays8']; 
end 
if(i==9) 
    optstring=['mastdays9']; 
end 
if(i==10) 
    optstring=['mastdays10']; 
end 
if(i==11) 
    optstring=['mastdays11']; 
end 
if(i==12) 
    optstring=['mastdays12']; 
end 
    [error1(i-4),error2(i-4)]=feval(optstring); 
     
end 
 
x=[5:1:12]; 
save errorf error1 error2 
  
A.2.2 Mastdaysn  

 

function [eror1,eror2]=mastdaysn() 
 
clear all; 
load dataf2 
i=1; 
e1=length(datanasdaqn); 
f=floor(e1/3); 
g=2*f; 
e=3*f; 
 
while(i<=f), 
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    p=i; 
    q=1; 
    t=p+n-1; 
    for a=p:t, 
        inpt(q,i)=datanasdaq(a,1); 
        q=q+1; 
    end 
     
    outpt(1,i)=datanasdaqn(i,1); 
         
        i=i+1; 
        
    end    
     
h=1; 
while(i<=g), 
p=i; 
q=1; 
t=p+n-1; 
 
for a=p:t, 
   inpv(q,h)=datanasdaq(a,1); 
   q=q+1; 
end 
outpv(1,h)=datanasdaq6(i,1); 
        h=h+1; 
        i=i+1; 
    end    
     
k=1; 
 
while(i<=e), 
p=i; 
q=1; 
t=p+n-1; 
 
for a=p:t, 
   inpte(q,k)=datanasdaq(a,1); 
   q=q+1; 
end 
outpte(1,k)=datanasdaq6(i,1); 
 
        k=k+1; 
        i=i+1; 
    end    
     
   %Training data set 
    
    day1dt=inpt(1,:); 
    day2dt=inpt(2,:); 
    day3dt=inpt(3,:); 
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    day4dt=inpt(4,:); 
    day5dt=inpt(5,:); 
    .       .   . 
    .       .   . 
    .       .   . 
    dayndt=inpt(n,:); 
    day(n+1)dt=outpt(1,:); 
 
   %Validating data set  
    day1dv=inpv(1,:); 
    day2dv=inpv(2,:); 
    day3dv=inpv(3,:); 
    day4dv=inpv(4,:); 
    day5dv=inpv(5,:); 
    .       .   . 
    .       .   . 
    .       .   . 
 
    dayndv=inpv(n,:); 
    day(n+1)dv=outpv(1,:); 
 
     
    %Testing data set 
    day1dte=inpte(1,:); 
    day2dte=inpte(2,:); 
    day3dte=inpte(3,:); 
    day4dte=inpte(4,:); 
    day5dte=inpte(5,:); 
    .       .   . 
    .       .   . 
    .       .   . 
    dayndte=inpte(n,:); 
    day(n+1)dte=outpte(1,:); 
     
     
    %normalise the parameters 
     
    %Training data 
    minday1t=min(day1dt); 
    maxday1t=max(day1dt); 
    minday2t=min(day2dt); 
    maxday2t=max(day2dt); 
    minday3t=min(day3dt); 
    maxday3t=max(day3dt); 
    minday4t=min(day4dt); 
    maxday4t=max(day4dt); 
    minday5t=min(day5dt); 
    maxday5t=max(day5dt); 
    .       .   . 
    .       .   . 
    .       .   . 
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    mindaynt=min(dayndt); 
    maxdaynt=max(dayndt); 
    minday(n+1)t=min(day(n+1)dt); 
    maxday(n+1)t=max(day(n+1)dt); 
     
    day1t=(day1dt-minday1t)/(maxday1t-minday1t); 
    day2t=(day2dt-minday2t)/(maxday2t-minday2t); 
    day3t=(day3dt-minday3t)/(maxday3t-minday3t); 
    day4t=(day4dt-minday4t)/(maxday4t-minday4t); 
    day5t=(day5dt-minday5t)/(maxday5t-minday5t); 
    .       .               . 
    .       .               . 
    .       .               . 
    daynt=(dayndt-mindaynt)/(maxdaynt-mindaynt); 
    day(n+1)t=(day(n+1)dt-minday(n+1)t)/(maxday(n+1)t-minday(n+1)t); 
 
 
    a=length(day(n+1)t); 
q=1; 
for t=1:a, 
if t==1 
day(n+1)det(t,1)=0; 
end 
if t>1, 
    day(n+1)det(t,1)=day7t(q); 
    q=q+1; 
end 
end 
    for s=1:f, 
         
    invart(s,1)=day1t(s); 
    invart(s,2)=day2t(s); 
    invart(s,3)=day3t(s); 
    invart(s,4)=day4t(s); 
    invart(s,5)=day5t(s); 
    .        .      . 
    .        .      . 
    .        .      . 
    invart(s,n)=daynt(s); 
    invart(s,n+1)=day(n+1)det(s); 
    outvart(s,1)=day(n+1)t(s); 
 
end 
     
%Initialising neural network parameters 
nin=n+1;%Number of input units is (n+1) 
nhiddenm=12;%12 hidden layers used (optimum value) 
nhiddenr=11;%11 hidden layers used (optimum value) 
nout=1;%One output value 
alpha=0.01; 
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net1=mlp(nin, nhiddenm, nout, 'linear', alpha); %Linear MLP algorithm chosen 
net2=rbf(nin,nhiddenr,nout,'gaussian','linear',alpha);%RBF network architecture 
 
options = zeros(1,18); 
options(1) = 1; 
options(14) = 1000;%1000 iterations found to be accurate enough 
[net1, options, varargout] = netopt(net1, options, invart, outvart, 'scg'); 
 
%RBF Optimisation 
[net2, options, varargout] = netopt(net2, options, invart, outvart, 'scg'); 
yout1= mlpfwd(net1, invart); 
 
yout1r=rbffwd(net2,invart); 
 
 
Day(n+1)t1=(yout1(:,1)*(maxday7t-minday7t))+minday7t; 
 
Day(n+1)t1r=(yout1r(:,1)*(maxday7t-minday7t))+minday7t; 
 
Day7av1=(Day7t1+Day7t1r)/2; 
 
m=length(Day(n+1)t1); 
sum1=0; 
sum1av=0; 
sum1r=0; 
 
for t=1:m, 
    sum1=sum1+((Day(n+1)t1(t)-day(n+1)dt(t))^2); 
    sum1r=sum1r+((Day(n+1)t1r(t)-day(n+1)dt(t))^2); 
    sum1av=sum1av+((Day(n+1)av1(n)-day(n+1)dt(n))^2); 
 
end 
 
sum1=sum1/m; 
sum1av=sum1av/m; 
sum1r=sum1r/m; 
 
 
eror1=sum1; 
eror2=sum1r; 
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A.3 The Matlab Codes Created for the Second Methodology 

 

A.3.1 The discrete MLP and RBF Networks 

 

a) MLP 

function netbin=mlpbin(nin,nhidden,nout,outfunc,prior,beta) 
 
netbin.type='mlpbin'; 
netbin.nin=nin; 
netbin.nhidden=nhidden; 
netbin.nout=nout; 
 
netbin.nwts=nin + (nin+1)*nhidden + (nhidden+1)*nout; 
 
outfns={'linear','logistic','softmax'}; 
 
if sum(strcmp(outfunc,outfns))==0 
    error('undefined activation function.Exiting.'); 
else 
    netbin.outfn=outfunc; 
end 
 
if nargin>4 
    if isstruct(prior) 
        netbin.alpha=prior.alpha; 
        netbin.index=prior.index; 
         
    else if size(prior)==[1 1] 
            netbin.alpha=prior; 
        else 
            error('prior must be a scalar or a structure'); 
        end 
    end 
end 
     
    netbin.a=round(rand(1,nin)); 
    netbin.w1=randn(nin,nhidden)/sqrt(nin+1); 
    netbin.b1=randn(1,nhidden)/sqrt(nin+1); 
    netbin.w2=randn(nhidden,nout)/sqrt(nhidden+1); 
    netbin.b2=randn(1,nout)/sqrt(nhidden+1); 
     
    if nargin==6 
        netbin.beta=beta; 
    end 
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b) RBF 

function netbin = rbfbin(nin, nhidden, nout, rbfunc, outfunc, prior, beta) 
 
netbin.type = 'rbfbin'; 
netbin.nin = nin; 
netbin.nhidden = nhidden; 
netbin.nout = nout; 
 
% Check that function is an allowed type 
actfns = {'gaussian', 'tps', 'r4logr'}; 
outfns = {'linear', 'neuroscale'}; 
if (strcmp(rbfunc, actfns)) == 0 
  error('Undefined activation function.') 
else 
  netbin.actfn = rbfunc; 
end 
if nargin <= 4 
   netbin.outfn = outfns{1}; 
elseif (strcmp(outfunc, outfns) == 0) 
   error('Undefined output function.') 
else 
   netbin.outfn = outfunc; 
 end 
 
% Assume each function has a centre and a single width parameter, and that 
% hidden layer to output weights include a bias.  Only the Gaussian function 
% requires a width 
netbin.nwts=nin*(1+nhidden) + (nhidden + 1)*nout; 
 
if strcmp(rbfunc, 'gaussian') 
  % Extra weights for width parameters 
  netbin.nwts = netbin.nwts + nhidden; 
end 
 
if nargin > 5 
  if isstruct(prior) 
    netbin.alpha = prior.alpha; 
    netbin.index = prior.index; 
  elseif size(prior) == [1 1] 
    netbin.alpha = prior; 
  else 
    error('prior must be a scalar or a structure'); 
  end   
  if nargin > 6 
    netbin.beta = beta; 
  end 
end 
a=round(rand(1,nin)); 
w1 = randn(1, (netbin.nwts-nin)); 
w=[a,w1]; 
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netbin = rbfunpakbin(netbin, w); 
 
% Make widths equal to one 
if strcmp(rbfunc, 'gaussian') 
  netbin.wi = ones(1, nhidden); 
end 
 
if strcmp(netbin.outfn, 'neuroscale') 
  netbin.mask = rbfpriorbin(rbfunc, nin, nhidden, nout); 
end 
 
 
A.3.2 Optimisation Algorithms for the MLP and RBF Networks 
 
function [x1,options,samples, energies, diagn] = metropbin(f, x1, options, gradf, varargin) 
 
 
if nargin <= 2 
  if ~strcmp(f, 'state') 
    error('Unknown argument to metrop'); 
  end 
  switch nargin 
    case 1 
      % Return state of sampler 
      samples = get_state(f); % Function defined in this module 
      return; 
    case 2 
      % Set the state of the sampler 
      set_state(f, x1);  % Function defined in this module 
      return; 
  end 
end 
 
display = options(1); 
if options(14) > 0 
  nsamples = options(14); 
else 
  nsamples = 100; 
end 
if options(15) >= 0 
  nomit = options(15); 
else 
  nomit = 0; 
end 
if options(18) > 0.0 
  std_dev = sqrt(options(18)); 
else 
  std_dev = 1.0;   % default 
end   
 
netbin=varargin{1}; 
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netbin=netbinunpak(netbin,x1); 
 
b=netbin.a; 
x2=[netbin.w1(:)',netbin.b1,netbin.w2(:)',netbin.b2]; 
nparams=length(x2); 
nparams1=length(b); 
 
f=fcnchk(f,length(varargin)); 
 
samples1=zeros(nsamples,nparams); 
samples2=zeros(nsamples,nparams1); 
 
if nargout>=2 
    en_save=1; 
    energies=zeros(nsamples,1); 
else 
    en_save=0; 
end 
 
if nargout>=3 
    diagnostics=1; 
    diagn_pos=zeros(nsamples,nparams); 
    diagn_pos1=zeros(nsamples,nparams1); 
    diagn_acc=zeros(nsamples,1); 
else 
    diagnostics=0; 
end 
 
x1=[netbin.a,netbin.w1(:)',netbin.b1,netbin.w2(:)',netbin.b2]; 
n=-nomit+1; 
Eold=feval(f,x1,varargin{:}); 
nreject = 0;  
t=0; 
 
while n<=nsamples 
    xold=x2; 
    aold=b; 
     
    x2=xold+randn(1,nparams)*std_dev; 
   b=round(rand(1,nparams1)); 
     
     
    x1=[b,x2]; 
    Enew=feval(f,x1,varargin{:}); 
     
    p=exp(Eold-Enew); 
     
    if (diagnostics & n>0) 
        diagn_pos(n,:)=x2; 
        diagn_pos1(n,:)=b; 
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        diagn_acc(n,:)=p; 
    end 
     
    if (display>1) 
        fprintf(1,'New position is \n'); 
        disp(x1); 
    end 
     
    if p>rand(1) 
        Eold=Enew; 
        if (display>0) 
            fprintf(1,'Finished step %4d Threshold: %g \n',n,p); 
        end 
         
    else 
        if n>0 
            nreject=nreject+1; 
        end 
    
        x2=xold; 
        b2=aold; 
        if (display>0) 
            fprintf(1,'Sample rejected %4d. Threshold: %g \n',n,p); 
        end 
    end 
     
    if n>0 
        samples1(n,:)=x2; 
        samples2(n,:)=b; 
        if en_save 
            energies(n)=Eold; 
        end 
    end 
    n=n+1; 
end 
if (display>0) 
    fprintf(1,'\n Fraction of samples rejected: %g \n',nreject/nsamples); 
end 
if diagnostics 
    diagn.pos=diagn_pos; 
    diagn.acc=diagn_acc; 
    diagn.pos1=diagn_pos1; 
end 
 
options(8) = Eold; 
 
x3=sum(samples1)/(n-1); 
b2=round(sum(samples2)/(n-1)); 
 
x1=[b,x3]; 
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% Return complete state of the sampler. 
function state = get_state(f) 
 
state.randstate = rand('state'); 
state.randnstate = randn('state'); 
return 
 
% Set state of sampler, either from full state, or with an integer 
function set_state(f, x) 
 
if isnumeric(x) 
  
 rand('state', x); 
  randn('state', x); 
else 
  if ~isstruct(x) 
    error('Second argument to metrop must be number or state structure'); 
end 
  if (~isfield(x, 'randstate') | ~isfield(x, 'randnstate')) 
    error('Second argument to metrop must contain correct fields') 
end 
  rand('state', x.randstate); 
  randn('state', x.randnstate); 
end 
return 
 
 
A.4 Matlab Code for the Optimisation of the Input Time-Window 
 
A.4.1 MLP Network 
 
clear all; 
load dataf2 
i=1; 
n=3; 
m=2; 
e1=length(datanasdaq12); 
f=floor(e1/3); 
g=2*f; 
e=3*f; 
 
while(i<=f), 
    p=i; 
    q=1; 
    n=p+11; 
    for a=p:n, 
        inpt(q,i)=datanasdaq(a,1); 
        q=q+1; 
    end 
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    outpt(1,i)=datanasdaq12(i,1); 
         
        i=i+1; 
        
    end    
     
h=1; 
while(i<=g), 
p=i; 
q=1; 
n=p+11; 
 
for a=p:n, 
   inpv(q,h)=datanasdaq(a,1); 
   q=q+1; 
end 
outpv(1,h)=datanasdaq12(i,1); 
        h=h+1; 
        i=i+1; 
    end    
     
k=1; 
 
while(i<=e), 
p=i; 
q=1; 
n=p+11; 
 
for a=p:n, 
   inpte(q,k)=datanasdaq(a,1); 
   q=q+1; 
end 
outpte(1,k)=datanasdaq12(i,1); 
 
        k=k+1; 
        i=i+1; 
        n=n+1; 
end    
     
   %Training data set 
    
    day1dt=inpt(1,:); 
    day2dt=inpt(2,:); 
    day3dt=inpt(3,:); 
    day4dt=inpt(4,:); 
    day5dt=inpt(5,:); 
    day6dt=inpt(6,:); 
    day7dt=inpt(7,:); 
    day8dt=inpt(8,:); 
    day9dt=inpt(9,:); 
    day10dt=inpt(10,:); 
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    day11dt=inpt(11,:); 
    day12dt=inpt(12,:); 
    day13dt=outpt(1,:); 
 
   %Validating data set  
    day1dv=inpv(1,:); 
    day2dv=inpv(2,:); 
    day3dv=inpv(3,:); 
    day4dv=inpv(4,:); 
    day5dv=inpv(5,:); 
    day6dv=inpv(6,:); 
    day7dv=inpv(7,:); 
    day8dv=inpv(8,:); 
    day9dv=inpv(9,:); 
    day10dv=inpv(10,:); 
    day11dv=inpv(11,:); 
    day12dv=inpv(12,:); 
    day13dv=outpv(1,:); 
 
     
    %Testing data set 
    day1dte=inpte(1,:); 
    day2dte=inpte(2,:); 
    day3dte=inpte(3,:); 
    day4dte=inpte(4,:); 
    day5dte=inpte(5,:); 
    day6dte=inpte(6,:); 
    day7dte=inpte(7,:); 
    day8dte=inpte(8,:); 
    day9dte=inpte(9,:); 
    day10dte=inpte(10,:); 
    day11dte=inpte(11,:); 
    day12dte=inpte(12,:); 
    day13dte=outpte(1,:); 
     
     
    %normalise the parameters 
     
    %Training data 
    minday1t=min(day1dt); 
    maxday1t=max(day1dt); 
    minday2t=min(day2dt); 
    maxday2t=max(day2dt); 
    minday3t=min(day3dt); 
    maxday3t=max(day3dt); 
    minday4t=min(day4dt); 
    maxday4t=max(day4dt); 
    minday5t=min(day5dt); 
    maxday5t=max(day5dt); 
    minday6t=min(day6dt); 
    maxday6t=max(day6dt); 
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    minday7t=min(day7dt); 
    maxday7t=max(day7dt); 
    minday8t=min(day8dt); 
    maxday8t=max(day8dt); 
    minday9t=min(day9dt); 
    maxday9t=max(day9dt); 
    minday10t=min(day10dt); 
    maxday10t=max(day10dt); 
    minday11t=min(day11dt); 
    maxday11t=max(day11dt); 
    minday12t=min(day12dt); 
    maxday12t=max(day12dt); 
    minday13t=min(day13dt); 
    maxday13t=max(day13dt); 
     
    day1t=(day1dt-minday1t)/(maxday1t-minday1t); 
    day2t=(day2dt-minday2t)/(maxday2t-minday2t); 
    day3t=(day3dt-minday3t)/(maxday3t-minday3t); 
    day4t=(day4dt-minday4t)/(maxday4t-minday4t); 
    day5t=(day5dt-minday5t)/(maxday5t-minday5t); 
    day6t=(day6dt-minday6t)/(maxday6t-minday6t); 
    day7t=(day7dt-minday7t)/(maxday7t-minday7t); 
    day8t=(day8dt-minday8t)/(maxday8t-minday8t); 
    day9t=(day9dt-minday9t)/(maxday9t-minday9t); 
    day10t=(day10dt-minday10t)/(maxday10t-minday10t); 
    day11t=(day11dt-minday11t)/(maxday11t-minday11t); 
    day12t=(day12dt-minday12t)/(maxday12t-minday12t); 
    day13t=(day13dt-minday13t)/(maxday13t-minday13t); 
 
     
     
    %Validation data 
    minday1v=min(day1dv); 
    maxday1v=max(day1dv); 
    minday2v=min(day2dv); 
    maxday2v=max(day2dv); 
    minday3v=min(day3dv); 
    maxday3v=max(day3dv); 
    minday4v=min(day4dv); 
    maxday4v=max(day4dv); 
    minday5v=min(day5dv); 
    maxday5v=max(day5dv); 
    minday6v=min(day6dv); 
    maxday6v=max(day6dv); 
    minday7v=min(day7dv); 
    maxday7v=max(day7dv); 
    minday8v=min(day8dv); 
    maxday8v=max(day8dv); 
    minday9v=min(day9dv); 
    maxday9v=max(day9dv); 
    minday10v=min(day10dv); 
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    maxday10v=max(day10dv); 
    minday11v=min(day11dv); 
    maxday11v=max(day11dv); 
    minday12v=min(day12dv); 
    maxday12v=max(day12dv); 
    minday13v=min(day13dv); 
    maxday13v=max(day13dv); 
 
    day1v=(day1dv-minday1v)/(maxday1v-minday1v); 
    day2v=(day2dv-minday2v)/(maxday2v-minday2v); 
    day3v=(day3dv-minday3v)/(maxday3v-minday3v); 
    day4v=(day4dv-minday4v)/(maxday4v-minday4v); 
    day5v=(day5dv-minday5v)/(maxday5v-minday5v); 
    day6v=(day6dv-minday6v)/(maxday6v-minday6v); 
    day7v=(day7dv-minday7v)/(maxday7v-minday7v); 
    day8v=(day8dv-minday8v)/(maxday8v-minday8v); 
    day9v=(day9dv-minday9v)/(maxday9v-minday9v); 
    day10v=(day10dv-minday10v)/(maxday10v-minday10v); 
    day11v=(day11dv-minday11v)/(maxday11v-minday11v); 
    day12v=(day12dv-minday12v)/(maxday12v-minday12v); 
    day13v=(day13dv-minday13v)/(maxday13v-minday13v); 
 
 
    %Testing data set 
     
    minday1te=min(day1dte); 
    maxday1te=max(day1dte); 
    minday2te=min(day2dte); 
    maxday2te=max(day2dte); 
    minday3te=min(day3dte); 
    maxday3te=max(day3dte); 
    minday4te=min(day4dte); 
    maxday4te=max(day4dte); 
    minday5te=min(day5dte); 
    maxday5te=max(day5dte); 
    minday6te=min(day6dte); 
    maxday6te=max(day6dte); 
    minday7te=min(day7dte); 
    maxday7te=max(day7dte); 
    minday8te=min(day8dte); 
    maxday8te=max(day8dte); 
    minday9te=min(day9dte); 
    maxday9te=max(day9dte); 
    minday10te=min(day10dte); 
    maxday10te=max(day10dte); 
    minday11te=min(day11dte); 
    maxday11te=max(day11dte); 
    minday12te=min(day12dte); 
    maxday12te=max(day12dte); 
    minday13te=min(day13dte); 
    maxday13te=max(day13dte); 
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    day1te=(day1dte-minday1te)/(maxday1te-minday1te); 
    day2te=(day2dte-minday2te)/(maxday2te-minday2te); 
    day3te=(day3dte-minday3te)/(maxday3te-minday3te); 
    day4te=(day4dte-minday4te)/(maxday4te-minday4te); 
    day5te=(day5dte-minday5te)/(maxday5te-minday5te); 
    day6te=(day6dte-minday6te)/(maxday6te-minday6te); 
    day7te=(day7dte-minday7te)/(maxday7te-minday7te); 
    day8te=(day8dte-minday8te)/(maxday8te-minday8te); 
    day9te=(day9dte-minday9te)/(maxday9te-minday9te); 
    day10te=(day10dte-minday10te)/(maxday10te-minday10te); 
    day11te=(day11dte-minday11te)/(maxday11te-minday11te); 
    day12te=(day12dte-minday12te)/(maxday12te-minday12te); 
    day13te=(day13dte-minday13te)/(maxday13te-minday13te); 
     
a=length(day13t); 
q=1; 
for t=1:a, 
if t==1 
day13det(t,1)=0; 
day13dev(t,1)=0; 
day13dete(t,1)=0; 
end 
if t>1, 
    day13det(t,1)=day13t(q); 
    day13dev(t,1)=day13v(q); 
    day13dete(t,1)=day13te(q);     
    q=q+1; 
end 
end 
    for s=1:f, 
         
    invart(s,1)=day1t(s); 
    invart(s,2)=day2t(s); 
    invart(s,3)=day3t(s); 
    invart(s,4)=day4t(s); 
    invart(s,5)=day5t(s); 
    invart(s,6)=day6t(s); 
    invart(s,7)=day7t(s); 
    invart(s,8)=day8t(s); 
    invart(s,9)=day9t(s); 
    invart(s,10)=day10t(s); 
    invart(s,11)=day11t(s); 
    invart(s,12)=day12t(s); 
    invart(s,13)=day13det(s); 
    outvart(s,1)=day13t(s); 
 
end 
 
j=1; 
f1=f+1; 
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for s=f1:g, 
         
    invarv(j,1)=day1v(j); 
    invarv(j,2)=day2v(j); 
    invarv(j,3)=day3v(j); 
    invarv(j,4)=day4v(j); 
    invarv(j,5)=day5v(j); 
    invarv(j,6)=day6v(j); 
    invarv(j,7)=day7v(j); 
    invarv(j,8)=day8v(j); 
    invarv(j,9)=day9v(j); 
    invarv(j,10)=day10v(j); 
    invarv(j,11)=day11v(j); 
    invarv(j,12)=day12v(j); 
    invarv(j,13)=day13dev(j); 
    outvart(j,1)=day13v(j);    
    j=j+1; 
 
end 
 
k=1; 
g1=g+1; 
for s=g1:e, 
    invarte(k,1)=day1te(k); 
    invarte(k,2)=day2te(k); 
    invarte(k,3)=day3te(k); 
    invarte(k,4)=day4te(k); 
    invarte(k,5)=day5te(k); 
    invarte(k,6)=day6te(k); 
    invarte(k,7)=day7te(k); 
    invarte(k,8)=day8te(k); 
    invarte(k,9)=day9te(k); 
    invarte(k,10)=day10te(k); 
    invarte(k,11)=day11te(k); 
    invarte(k,12)=day12te(k); 
    invarte(k,13)=day13dete(k); 
    outvarte(k,1)=day13te(k); 
    k=k+1; 
end 
 
%Initialising neural network parameters 
nin=13;%Number of input units is 13 
nhidden=19%19 hidden layers used (optimum value) 
nout=1;%One output value 
alpha=0.01; 
 
net1=mlpbin(nin, nhidden, nout, 'linear', alpha); %Linear discrete MLP algorithm chosen 
 
options = zeros(1,18); 
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options(1) = 1; 
 
options(14) = 25000;%25000 iterations found to be accurate enough 
 
[net1, options] = netoptbin(net1, options, invart, outvart, 'metropbin'); 
 
yout1= mlpbinfwd(net1, invart); 
Day4=(yout1(:,1)*(maxday13t-minday13t))+minday13t; 
 
yout2= mlpbinfwd(net1, invarv); 
 
Dy4=(yout2(:,1)*(maxday13t-minday13t))+minday13t; 
 
c=length(Dy4); 
 
erro=0; 
 
for d=1:c, 
Err1(c)=Dy4(c)-day13dt(c); 
erro=erro+(Err1(c))^2; 
end 
 
erro=((erro)^(1/2))/c; 
 
plot(day13dt,'b') 
hold on 
plot(Dy4,'k') 
plot(Day4,'r') 
plot(day13dv,'b.') 
net1.a 
 
 
A.4.2 RBF Network 
 
clear all; 
load dataf2 
i=1; 
n=3; 
m=2; 
e1=length(datanasdaq12); 
f=floor(e1/3); 
g=2*f; 
e=3*f; 
 
while(i<=f), 
    p=i; 
    q=1; 
    n=p+11; 
    for a=p:n, 
        inpt(q,i)=datanasdaq(a,1); 
        q=q+1; 
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    end 
     
    outpt(1,i)=datanasdaq12(i,1); 
         
        i=i+1; 
        
    end    
     
h=1; 
while(i<=g), 
p=i; 
q=1; 
n=p+11; 
 
for a=p:n, 
   inpv(q,h)=datanasdaq(a,1); 
   q=q+1; 
end 
outpv(1,h)=datanasdaq12(i,1); 
        h=h+1; 
        i=i+1; 
    end    
     
k=1; 
 
while(i<=e), 
p=i; 
q=1; 
n=p+11; 
 
for a=p:n, 
   inpte(q,k)=datanasdaq(a,1); 
   q=q+1; 
end 
outpte(1,k)=datanasdaq12(i,1); 
 
        k=k+1; 
        i=i+1; 
        n=n+1; 
end    
     
   %Training data set 
    
    day1dt=inpt(1,:); 
    day2dt=inpt(2,:); 
    day3dt=inpt(3,:); 
    day4dt=inpt(4,:); 
    day5dt=inpt(5,:); 
    day6dt=inpt(6,:); 
    day7dt=inpt(7,:); 
    day8dt=inpt(8,:); 
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    day9dt=inpt(9,:); 
    day10dt=inpt(10,:); 
    day11dt=inpt(11,:); 
    day12dt=inpt(12,:); 
    day13dt=outpt(1,:); 
 
   %Validating data set  
    day1dv=inpv(1,:); 
    day2dv=inpv(2,:); 
    day3dv=inpv(3,:); 
    day4dv=inpv(4,:); 
    day5dv=inpv(5,:); 
    day6dv=inpv(6,:); 
    day7dv=inpv(7,:); 
    day8dv=inpv(8,:); 
    day9dv=inpv(9,:); 
    day10dv=inpv(10,:); 
    day11dv=inpv(11,:); 
    day12dv=inpv(12,:); 
    day13dv=outpv(1,:); 
 
     
    %Testing data set 
    day1dte=inpte(1,:); 
    day2dte=inpte(2,:); 
    day3dte=inpte(3,:); 
    day4dte=inpte(4,:); 
    day5dte=inpte(5,:); 
    day6dte=inpte(6,:); 
    day7dte=inpte(7,:); 
    day8dte=inpte(8,:); 
    day9dte=inpte(9,:); 
    day10dte=inpte(10,:); 
    day11dte=inpte(11,:); 
    day12dte=inpte(12,:); 
    day13dte=outpte(1,:); 
     
     
    %normalise the parameters 
     
    %Training data 
    minday1t=min(day1dt); 
    maxday1t=max(day1dt); 
    minday2t=min(day2dt); 
    maxday2t=max(day2dt); 
    minday3t=min(day3dt); 
    maxday3t=max(day3dt); 
    minday4t=min(day4dt); 
    maxday4t=max(day4dt); 
    minday5t=min(day5dt); 
    maxday5t=max(day5dt); 
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    minday6t=min(day6dt); 
    maxday6t=max(day6dt); 
    minday7t=min(day7dt); 
    maxday7t=max(day7dt); 
    minday8t=min(day8dt); 
    maxday8t=max(day8dt); 
    minday9t=min(day9dt); 
    maxday9t=max(day9dt); 
    minday10t=min(day10dt); 
    maxday10t=max(day10dt); 
    minday11t=min(day11dt); 
    maxday11t=max(day11dt); 
    minday12t=min(day12dt); 
    maxday12t=max(day12dt); 
    minday13t=min(day13dt); 
    maxday13t=max(day13dt); 
     
    day1t=(day1dt-minday1t)/(maxday1t-minday1t); 
    day2t=(day2dt-minday2t)/(maxday2t-minday2t); 
    day3t=(day3dt-minday3t)/(maxday3t-minday3t); 
    day4t=(day4dt-minday4t)/(maxday4t-minday4t); 
    day5t=(day5dt-minday5t)/(maxday5t-minday5t); 
    day6t=(day6dt-minday6t)/(maxday6t-minday6t); 
    day7t=(day7dt-minday7t)/(maxday7t-minday7t); 
    day8t=(day8dt-minday8t)/(maxday8t-minday8t); 
    day9t=(day9dt-minday9t)/(maxday9t-minday9t); 
    day10t=(day10dt-minday10t)/(maxday10t-minday10t); 
    day11t=(day11dt-minday11t)/(maxday11t-minday11t); 
    day12t=(day12dt-minday12t)/(maxday12t-minday12t); 
    day13t=(day13dt-minday13t)/(maxday13t-minday13t); 
 
     
    %Validation data 
    minday1v=min(day1dv); 
    maxday1v=max(day1dv); 
    minday2v=min(day2dv); 
    maxday2v=max(day2dv); 
    minday3v=min(day3dv); 
    maxday3v=max(day3dv); 
    minday4v=min(day4dv); 
    maxday4v=max(day4dv); 
    minday5v=min(day5dv); 
    maxday5v=max(day5dv); 
    minday6v=min(day6dv); 
    maxday6v=max(day6dv); 
    minday7v=min(day7dv); 
    maxday7v=max(day7dv); 
    minday8v=min(day8dv); 
    maxday8v=max(day8dv); 
    minday9v=min(day9dv); 
    maxday9v=max(day9dv); 
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    minday10v=min(day10dv); 
    maxday10v=max(day10dv); 
    minday11v=min(day11dv); 
    maxday11v=max(day11dv); 
    minday12v=min(day12dv); 
    maxday12v=max(day12dv); 
    minday13v=min(day13dv); 
    maxday13v=max(day13dv); 
 
    day1v=(day1dv-minday1v)/(maxday1v-minday1v); 
    day2v=(day2dv-minday2v)/(maxday2v-minday2v); 
    day3v=(day3dv-minday3v)/(maxday3v-minday3v); 
    day4v=(day4dv-minday4v)/(maxday4v-minday4v); 
    day5v=(day5dv-minday5v)/(maxday5v-minday5v); 
    day6v=(day6dv-minday6v)/(maxday6v-minday6v); 
    day7v=(day7dv-minday7v)/(maxday7v-minday7v); 
    day8v=(day8dv-minday8v)/(maxday8v-minday8v); 
    day9v=(day9dv-minday9v)/(maxday9v-minday9v); 
    day10v=(day10dv-minday10v)/(maxday10v-minday10v); 
    day11v=(day11dv-minday11v)/(maxday11v-minday11v); 
    day12v=(day12dv-minday12v)/(maxday12v-minday12v); 
    day13v=(day13dv-minday13v)/(maxday13v-minday13v); 
 
 
    %Testing data set 
     
    minday1te=min(day1dte); 
    maxday1te=max(day1dte); 
    minday2te=min(day2dte); 
    maxday2te=max(day2dte); 
    minday3te=min(day3dte); 
    maxday3te=max(day3dte); 
    minday4te=min(day4dte); 
    maxday4te=max(day4dte); 
    minday5te=min(day5dte); 
    maxday5te=max(day5dte); 
    minday6te=min(day6dte); 
    maxday6te=max(day6dte); 
    minday7te=min(day7dte); 
    maxday7te=max(day7dte); 
    minday8te=min(day8dte); 
    maxday8te=max(day8dte); 
    minday9te=min(day9dte); 
    maxday9te=max(day9dte); 
    minday10te=min(day10dte); 
    maxday10te=max(day10dte); 
    minday11te=min(day11dte); 
    maxday11te=max(day11dte); 
    minday12te=min(day12dte); 
    maxday12te=max(day12dte); 
    minday13te=min(day13dte); 
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    maxday13te=max(day13dte); 
     
    day1te=(day1dte-minday1te)/(maxday1te-minday1te); 
    day2te=(day2dte-minday2te)/(maxday2te-minday2te); 
    day3te=(day3dte-minday3te)/(maxday3te-minday3te); 
    day4te=(day4dte-minday4te)/(maxday4te-minday4te); 
    day5te=(day5dte-minday5te)/(maxday5te-minday5te); 
    day6te=(day6dte-minday6te)/(maxday6te-minday6te); 
    day7te=(day7dte-minday7te)/(maxday7te-minday7te); 
    day8te=(day8dte-minday8te)/(maxday8te-minday8te); 
    day9te=(day9dte-minday9te)/(maxday9te-minday9te); 
    day10te=(day10dte-minday10te)/(maxday10te-minday10te); 
    day11te=(day11dte-minday11te)/(maxday11te-minday11te); 
    day12te=(day12dte-minday12te)/(maxday12te-minday12te); 
    day13te=(day13dte-minday13te)/(maxday13te-minday13te); 
     
a=length(day13t); 
q=1; 
for t=1:a, 
if t==1 
day13det(t,1)=0; 
day13dev(t,1)=0; 
day13dete(t,1)=0; 
end 
if t>1, 
    day13det(t,1)=day13t(q); 
    day13dev(t,1)=day13v(q); 
    day13dete(t,1)=day13te(q);     
    q=q+1; 
end 
end 
    for s=1:f, 
         
    invart(s,1)=day1t(s); 
    invart(s,2)=day2t(s); 
    invart(s,3)=day3t(s); 
    invart(s,4)=day4t(s); 
    invart(s,5)=day5t(s); 
    invart(s,6)=day6t(s); 
    invart(s,7)=day7t(s); 
    invart(s,8)=day8t(s); 
    invart(s,9)=day9t(s); 
    invart(s,10)=day10t(s); 
    invart(s,11)=day11t(s); 
    invart(s,12)=day12t(s); 
    invart(s,13)=day13det(s); 
    outvart(s,1)=day13t(s); 
 
end 
 
j=1; 



 125

f1=f+1; 
 
for s=f1:g, 
         
    invarv(j,1)=day1v(j); 
    invarv(j,2)=day2v(j); 
    invarv(j,3)=day3v(j); 
    invarv(j,4)=day4v(j); 
    invarv(j,5)=day5v(j); 
    invarv(j,6)=day6v(j); 
    invarv(j,7)=day7v(j); 
    invarv(j,8)=day8v(j); 
    invarv(j,9)=day9v(j); 
    invarv(j,10)=day10v(j); 
    invarv(j,11)=day11v(j); 
    invarv(j,12)=day12v(j); 
    invarv(j,13)=day13dev(j); 
    outvart(j,1)=day13v(j);    
    j=j+1; 
 
end 
 
k=1; 
g1=g+1; 
for s=g1:e, 
    invarte(k,1)=day1te(k); 
    invarte(k,2)=day2te(k); 
    invarte(k,3)=day3te(k); 
    invarte(k,4)=day4te(k); 
    invarte(k,5)=day5te(k); 
    invarte(k,6)=day6te(k); 
    invarte(k,7)=day7te(k); 
    invarte(k,8)=day8te(k); 
    invarte(k,9)=day9te(k); 
    invarte(k,10)=day10te(k); 
    invarte(k,11)=day11te(k); 
    invarte(k,12)=day12te(k); 
    invarte(k,13)=day13dete(k); 
    outvarte(k,1)=day13te(k); 
    k=k+1; 
end 
 
%Initialising neural network parameters 
nin=13;%Number of input units is 13 
nhidden=19%19 hidden layers used (optimum value) 
nout=1;%One output value 
alpha=0.01; 
 
net1=rbfbin(nin,nhidden,nout,'gaussian','linear'); % discrete RBF network chosen 
 
options = zeros(1,18); 
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options(1) = 1; 
options(14) = 30000; 
 
 
[net1, options] = netoptbin(net1, options, invart, outvart, 'metropbin1'); 
 
 
 
[p1,p2]=size(invart); 
for n1=1:p1 
    invart1(n1,:)=invart(n1,:).*net1.a; 
    invarv1(n1,:)=invarv(n1,:).*net1.a; 
    invarte1(n1,:)=invarte(n1,:).*net1.a; 
end 
options(14) = 1000;%1000 iterations found to be accurate enough 
 
[net2, options, varargout] = netopt(net2, options, invart1, outvart, 'scg'); 
 
yout1r=rbffwd(net2,invart1); 
yout2r=rbffwd(net2,invarv1); 
 
yout1= rbfbinfwd(net1, invart); 
y3=rbfbinfwd(net1,invarv); 
 
Day13t1=(yout1(:,1)*(maxday13t-minday13t))+minday13t; 
Day13t2=(yout1r(:,1)*(maxday13t-minday13t))+minday13t; 
Day13t3=(yout2r(:,1)*(maxday13v-minday13v))+minday13v; 
 
 
 
subplot(2,1,1),plot(Day13t1,'b') 
hold on 
subplot(2,1,1),plot(day13dt,'r') 
subplot(2,1,1),plot(Day13t2,'y') 
subplot(2,1,2),plot(Day13t3,'b.') 
hold on 
subplot(2,1,2),plot(day13dv,'r.') 
 


