
 i

OPTIMAL SELECTION OF STOCKS USING

COMPUTATIONAL INTELLIGENCE METHODS

Brain Leke Betechuoh

A Dissertation submitted to the Faculty of Engineering and the Built Environment,

University of the Witwatersrand, in fulfilment of the requirements of the degree of

Master of Science.

Johannesburg 2004

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/39663983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

To Mom and Dad

&

To Maphefo

 i

 i

PREFACE

The work described in this dissertation was carried out in the University of

Witwatersrand, School of Electrical and Information Engineering in 2004. I would like to

acknowledge a couple of people who made this thesis a possibility by an extensive

support. Firstly, Prof Tshilidzi Marwala, who was my supervisor for this project and who

put so much insight into the development of the methodologies. I also thank him for all

the support, be it educational, financial or social. Thank you. I would also like to thank

my fellow masters students Mr Gerasimos Tselentis, Mr Opeyemi Oni, Mr. Lukasz

Machowski and Mr Micheal-Phillips Powell for their companionship and who always

gave me some insights and details into my project which I may have neglected if not of

their intervention. I also want to thank a couple of people who even though did not

intervene technically in this project made it a possibility through their moral and social

support. Firstly, my parents, Mr. Leke Casimir and Mrs. Leke Agatha, who have

supported me all through my educational years emotionally and financially. My family,

(Gwendoline, Clarence, Sydonie and Collins) for their support. Ms. Maphefo Matjeke,

for always being there with her spiritual guidance and emotional support. To Mr. Patrick

Katabua, Mr. Mphake Manyatshe, Ms. Loveness Msuku and Mr Tebatso Gillian for the

friendship and helping me focus. Except where reference is made to the work of others, I

affirm that this thesis is a result of my own original work. No part of this work has

already been, or is currently being, submitted for any other degree, diploma or other

qualification. This thesis is 136 pages in length with approximately 20814 words.

 B. Leke Betechuoh

 December 2004

 ii

Abstract

Various methods, mostly statistical in nature have been introduced for stock market

modelling and prediction. These methods are, however, complex and difficult to

manipulate. Computational intelligence facilitates this approach of predicting stocks due

to its ability to accurately and intuitively learn complex patterns and characterise these

patterns as simple equations. In this research, a methodology that uses neural networks

and Bayesian framework to model stocks is developed. The NASDAQ all-share index

was used as test data. A methodology to optimise the input time-window for stock

prediction using neural networks was also devised. Polynomial approximation and

reformulated Bayesian frameworks methodologies were investigated and implemented. A

neural network based algorithm was then designed. The performance of this final

algorithm was measured based on accuracy. The effect of simultaneous use of diverse

neural network engines is also investigated. The test result and accuracy measurements

are presented in the final part of this thesis.

Key words: Neural Networks, Bayesian framework and Markov Chain Monte Carlo

 iii

Table of Contents

Preface... i

Abstract.. ii

Table of Contents ... iii

List of Tables ... vii

List of Figures... viii

1. Introduction: The Stock Market ... 1

1.1 Background... 1

1.2 Research Focus and Motivation.. 6

1.3 Literature Review.. 7

2. Neural Networks ... 11

2.1 Introduction... 11

2.2 Neural Networks ... 12

2.2.1 What Are Neural Networks?.. 12

2.2.2 Why Neural Networks?.. 13

2.2.3 Neural Networks versus Other Methods and Linear Statistics 14

2.2.4 Applications of Neural Networks ... 14

2.2.5 Future of Neural Networks .. 15

2.2.6 Limitations of Neural Networks ... 15

2.3. Neural Networks Architectures.. 15

2.3.1 Multi-layer Perceptron ... 16

2.3.1.1 Linear Regression ... 18

2.3.1.2 Perceptron Algorithm.. 19

 iv

2.3.1.3 Activation Functions... 19

2.3.2 Radial Basis Function Networks.. 21

2.3.3 Recurrent Neural Networks ... 22

2.3.4 Hierarchical Mixtures of Experts... 23

2.3.5 Self-Organising Map Networks ... 23

2.3.6 Remarks on Network Architectures... 23

3. Conventional Statistical Methods .. 25

3.1 Moving Average Methods .. 25

3.1.1 Simple Average.. 25

3.2 Exponential Smoothing... 28

3.2.1 Single Exponential Smoothing .. 29

3.2.2 Double Exponential Smoothing... 29

3.2.3 Triple Exponential Smoothing... 30

3.3 Linear Regression ... 32

3.3.1 Least Squares ... 34

3.4 Remarks and Conclusion .. 36

4. Markov Chain Monte Carlo Sampling ... 38

4.1 Probability Density Function .. 43

4.2 Distribution ... 43

4.3 Monte Carlo Methods ... 44

4.3.1 Monte Carlo Integration... 46

4.3.2 Variance Reducing Technique... 48

4.3.2.1 Importance Sampling .. 48

 v

4.3.2.2 Stratified Sampling ... 49

4.4 Metropolis Hastings Algorithm .. 50

4.5 Remarks .. 53

5. Bayesian Methodology For Statistical Modeling ... 54

5.1 Bayesian Approach ... 55

5.1.1 Bayesian Methodology .. 55

5.1.2 Prior Knowledge .. 56

5.1.3 Model or Likelihood .. 56

5.1.4 Posterior Distribution... 57

5.2 Bayesian Learning for MLP Networks ... 58

5.3 Markov Chain Monte Carlo Method... 59

5.4 Conclusion and Remarks .. 60

6. Input Time-Window Optimization Algorithms ... 61

6.1 Factors Specification and Processing.. 62

6.2 Creating the Neural Networks .. 63

6.3 Optimizing the Input Time-Window Using Polynomial Approximation 66

6.4 Optimizing the Input Time-Window by Reformulation of Bayesian Framework.. 68

6.4.1 Creating the Network Architecture.. 69

6.4.2 Creation of the Discrete Feed-Forward Multi-Layer Perceptron..................... 69

6.4.3 Optimisation/Training Algorithm .. 70

6.4.4 Prediction of Outputs by RBF network ... 71

6.5 Simulation Results .. 72

6.5.1 Testing and Comparison of Different Networks.. 74

 vi

6.3 Conclusion on Implementation ... 79

7. Application of the Methodology Designed .. 80

7.1 Analysis Data .. 81

7.2 Performance Measurement ... 81

7.3 Methodology Analysis .. 82

7.3 Effect of the Simultaneous Use of Diverse Neural Networks on the Accuracy of

Prediction .. 86

7.4 Conclusion .. 86

8. Conclusion ... 87

Bibliography .. 91

A. The Implemented Code for Methodologies Developed... 95

A.1 Matlab Code to Optimize the Network Architecture ... 95

A.2 Matlab Code for the Polynomial Approximation Optimisation of the Input Time-

Window... 101

A.2.1 Input Number: ... 102

A.2.2 Mastdaysn ... 102

A.3 The Matlab Codes Created for the Second Methodology.................................... 107

A.3.1 The discrete MLP and RBF Networks.. 107

A.3.2 Optimisation Algorithms for the MLP and RBF Networks.......................... 109

A.4 Matlab Code for the Optimisation of the Input Time-Window 112

A.4.1 MLP Network ... 112

A.4.2 RBF Network .. 119

 vii

List of Tables

Table 1: Table of activation functions with the respective functions 18

Table 2: The Mean Square Error (MSE) = 2.018 as compared to 3 for a simple averaging

process... 28

Table 3: Table of yearly means... 31

Table 4: The values of a, for the Figures 9 and 10 ... 73

Table 5: The mean square errors of the outputs of the tested networks. 74

Table 6: Table showing the actual values for the analysis and the predicted value from the

network as well as the error of prediction... 85

 viii

List of Figures

Figure 1: Architecture of a neuron.. 12

Figure 2: 2-Layer multi-layer perceptron neural network .. 17

Figure 3: Architecture of a RBF neural network .. 22

Figure 4: Committee of networks for prediction .. 65

Figure 5: Relationship between rms error hidden layer neurons for the different

architecture types .. 65

Figure 6: Relationship between the rms error and the number of input days for MLP and

RBF networks ... 67

Figure 7: The reformed network with discrete parameter .. 68

Figure 8: Diagrammatic representation of the RBF input time-window optimisation

methodology ... 71

Figure 9: Predicted output by reformed MLP network... 72

Figure 10: Predicted output by reformed RBF network ... 73

Figure 11: Predicted output of the reformulated MLP network for test data.................... 75

Figure 12: Predicted output of the reformulated RBF network for test data 75

Figure 13: Networks predictions of the average indices using testing samples for

polynomial approximation. ... 77

Figure 14: Networks predicted output standard deviations for the polynomial

approximation ... 77

Figure 15: Committee of networks predicted output for the training, validating and testing

data.. 78

Figure 16: NASDAQ test data set used for the analysis of the methodologies 82

 ix

Figure 17: Graph of the network predicted index average for MLP & RBF network for

polynomial approximation .. 83

Figure 18: The error between the predicted and the actual values 84

Figure 19: Committee of networks predicted output for unseen data............................... 84

 1

Chapter 1

Introduction: The Stock Market

1.1 Background

The stock market appears in the news everyday [1], [2]. Every time it reaches a new high

or a new low there is talk about it. But what is the stock market? The stock market is

believed to have started at Wall Street. This is where the world's largest financial market

was born and prospered. From Wall Street sprang a new industry with its own language

and terminology. Wall Street can trace its name back to 1653. Originally it was set up for

defense and not for commerce. What helped Wall Street rise to pre-eminence was the

emergence of two great Stock Exchanges, which gave order to the chaotic trading and

gave birth to the financial markets as it is known today. In 1790 at Philadelphia in the

United States of America, the first stock exchange was founded. Two years later a group

of New York merchants met to discuss how to take command of the securities business.

The merchants founded what is now known as the New York Stock Exchange. But in

early 1817, the merchant group from New York, distressed at the sorry state of their stock

exchange, sent a representative to Philadelphia to observe how things were being done.

Upon arriving with news about the robust exchange in Philadelphia, the New York Stock

 2

and Exchange Board was soon formally organized. In the early 1900s massive amounts

of money were made and lost on Wall Street. But the boom period could not be sustained

indefinitely. And in 1929, the stock market seared the global-psyche and triggered what

was to be called the Great Depression. But the stock market crash of 1929 was just the

beginning of sorrows for Wall Street. For a while the economy eventually recovered from

its catastrophic losses, the market excesses that had factored into the crash in the late

1920s seeped back into the picture. The result was the stock market crash of 1987, which

saw the Dow Jones suffer what was the largest single-day loss in the stock market’s

history. The stock markets are now an integral part of the global economy, and so proper

safeguards to reduce the risks of another disastrous crash are necessary. A market can be

defined as a place which introduces a buyer to a seller. In the case of stocks the buyer and

seller are dealing in small ownership portions of companies or shares. A stock symbolizes

ownership in a company. The more stock investors hold in a particular company, the

larger the percentage of the company they own. For instance, if a corporation has 20000

shares of stock outstanding and a person owns 1000 of them, then he or she actually owns

5 percent of the corporation. Those who own stock become shareholders or stockholders

in the company from which they purchased the stock, and they remain shareholders for as

long as they own the stock. In this way, the stocks investors own, reflects the percentage

of the company they own. Stock markets perform the following functions:

• Connecting those who seek money with those who can provide it.

• Create an auction mechanism in which prices can be decided for investments.

• Distributing the future risk of investments across many millions of individuals.

• Providing the claim tickets upon which future wealth can be staked.

 3

• Connecting financial institutions together to create money.

The stock market is an important entity in a country because it indicates the state of the

economy. This state of the economy gives an indication of its stability, thereof, which

can in turn be linked to the stability of the nation. This information can be used as a

comparison of the nation’s economy to other well established economies. The stock

market has also become the very symbol of commerce in the modern world. They are

truly unique in their scope and in the complexity of the number of transactions they

handle each day. The economy of the world relies on the stock exchanges to facilitate

even trade in the stocks of companies. On an individual level, the stock market is a high

risk but high profit yielding investment. Due to the high risks involved in such an

investment, it is beneficial that some sort of analytical tool, which reliably predicts future

prices of stocks, be developed. The investments in the stock market are done by the

trading of stock shares based on intelligent decisions. These intelligent decisions are

generally made by stock brokers who based on analytic and statistical calculations decide

on whether a stock is viable for investment or not. In our current era anyone can easily

acquire for themselves the most popular stocks just by opening an online brokerage

account. Direct interaction with the selling floor of the exchanges gives the modern

investor more control than any other generation. There are a number of options available

for investors who want to learn the complexities of the stock market. One popular way is

to take a course on the stock market. What makes these lessons useful is that they usually

enable participants to take a proactive approach to the trading process without having to

assume any financial risk. Lessons dealing with the stock market, for instance, may

require participants to attend a class setting where they get into groups. These groups will

 4

then represent companies with CEOs, employees, human resources etc. These companies

then make various decisions and, according to the stipulations of the game, are asked to

react to various variables in the marketplace that emerge from time to time. Depending

on how these companies respond to the variables, their stock prices could go up or down.

What these stock market lessons do is to allow participants to gain an insider’s view of

the inner workings of a company and how these inner workings ultimately impact the

public’s perception of the company’s value. Participants are often asked to respond to

geo-political events, the need for layoffs, fiscal pressure, economic shifts and other

factors real-life companies have to deal with on a day-to-day basis. Another twist on the

educational front is to enable individual investors to learn about the stock market from

the perspective of someone who wants to purchase stocks in a company. This risk-free

option will enable participants to learn about the market without having to lose any real

money in the process. In such a program, participants invest in the stock market and

regularly research the companies they have invested in. Participants also learn how to

determine the best time to buy and sell their stocks. The stock market has an interesting

property in that since all of the buying and selling is done at one place the prices of the

stock can be known every second of the day. When it comes to investing in the stock

market, investors should know when to hold on to stocks and know when to unload them.

Most financial experts believe that the buy-and-hold strategy, which requires investors to

buy stocks and then keep them for the long term, is the best method for ultimately

making money on the stock markets. The rationale behind this strategy is that, while the

markets will likely experience ups and downs stemming from numerous factors, over

time the stock markets tend to push upwards. This means that those who use the buy-and-

 5

hold strategy stand to make money over time. While there are many experts who still

hold to this strategy, others point to some of the more catastrophic stock market crashes

of the past as proof that investors can literally lose everything they had gained in a bull

market (a bull market refers to the stock market when stock prices have gone up for a

certain period of time) to the impact of the bear market (a bear market occurs when the

stock market drops for a given period of time, caused often by lower than expected

quarterly earning reports, economic pressures or some other reason that gets market

participants jittery). This may be due to result of inflation and political instability. Rather

than adopt a buy-and-hold strategy, some financial professionals recommend that

investors take a more sophisticated approach to buying and selling stocks. This

necessitates monitoring market conditions and making changes as fluctuations in the

markets warrant change. What it does not mean is making change just for the sake of

making change. Some investors choose to go with a broker so as to bypass the pressures

of managing their own stock portfolios. Doing so requires them to look around for a good

broker, one who has a proven methodology and a solid track record. There are a number

of statistical analysis applications available these days to meet the needs of individual

investors or large corporations. Key components of any statistical analysis software

include the ability to:

• perform data management

• present data in graphs and reports

• access data at a moment's notice

A number of websites also offer plenty when it comes to stock market analysis. For

investors willing to pay, some companies provide a mix of services related to stock

 6

market analysis. For instance, some interpret the financial news of the day, highlighting

the implications of various developments and explaining how these developments could

impact the marketplace, in general, and investors, in particular. Other service, which

providers may offer relates to providing:

• details on which stocks could be hot or cold on any particular day

• analysis of earnings reports and what they mean

• updates on important events when they happen

• Signing up for free newsletters is another way to keep on top of developments in

the stock market as they happen.

Due to the high necessity of reliable software to do the analytical manipulation of stocks,

many different software systems have been developed of which this document focuses on

the development of such a software and also the design of the relevant methodology. The

next section deals with the literature survey of the previous methodologies developed for

analyzing stock portfolios.

1.2 Research Focus and Motivation

The aim of this project is to develop a computational intelligence procedure to predict the

future prices of stocks. The research also focuses on optimising the input time-window

required for the prediction of stocks and this was motivated by the fact that upon analysis

of the literature review, the optimisation of the time-window, which forms an important

part of the prediction process, had not been done before. In this thesis, the computational

intelligent method used is neural networks. The proposed procedure is to be tested on the

NASDAQ index [3]. This project will consist of the following tasks:

 7

1. Create an intelligent engine using computational intelligence methods. The aim of this

engine will be to predict the future stock prices from historical data.

2. Train the network method using a Bayesian framework [4].

3. Identify the optimal input time-window using polynomial approximation and by

redesigning the neural method to account for optimal selection of time-window and

compare the two approaches.

4. Investigate the effect of the simultaneous use of diverse computational intelligence

engines on the accuracy of the prediction.

The output of the design is thus a methodology that can be used to optimally select the

input time-window as well as predict the future stock prices.

1.3 Literature Review

Most of the conventional sales forecasting methods use time series data to determine

forecast. Lachtermacher and Fuller [5] conducted a survey which indicated that artificial

neural networks (ANN) are more appropriate for time-series data rather than

conventional regression methods. They developed a calibrated ANN model using the

Box-Jenkins methods to identify the input variables and also developed a methodology to

suggest the number of hidden units needed by the model. However, they did not suggest a

methodology to accurately choose an optimal time-window.

Bigus [6] used promotion, time of the year, end-of-month and weekly sales as inputs to

the ANN to forecast weekly demand. The results show a high degree of accuracy,

however, in his paper Bigus does a weekly forecast by using a number of inputs with no

 8

mention of how this number of inputs was determined. Agrawal and Schorling [7]

showed that ANN is able to predict future share prices quite well from time-series data

without the additional inputs that were used by the Bigus model [6].

Wang [8] proposed a methodology for the prediction of stock prices using a fuzzy grey

prediction system. In his paper, he uses a fuzzy grey prediction system with two modules

which are: the prediction agent and the graphic display agent. This method proved to be

unsuitable for predicting the behavior of the system due to the fact that an inaccurate

forecasting step was used. This method has the limitation in that it does not present a

methodology of selecting the optimal time-window needed for the prediction of the future

stock prices but states that 5 days can be used to predict future 2 days.

Kuo, Wu, Wang [9] proposed a methodology that uses artificial neural networks and

fuzzy neural networks with fuzzy weight elimination for prediction of share prices.

Previously, statistical methods which include the regression methods and moving average

methods were used for such prediction. These methods have the limitation in that they are

efficient only for data which are seasonal or cyclical. The results proved to be more

accurate than the conventional statistical methods. In their paper they use historical time

series data. Again, just as in Lachtermacher and Fuller [5], this methodology had the

shortfall in that there was no mention of a methodology to select the optimal time-

window even though the methodology gave adequately accurate results.

 9

Chapter 2 of this thesis focuses on introducing neural networks as well as providing a

rationale behind the increase in awareness of neural networks. This chapter also

introduces the fundamentals of neural networks. It begins by giving definitions for neural

networks. The different kinds of neural network architectures are looked into. It also

gives a layout on the advantages and benefits neural networks give as well as the

different applications in which neural networks are being used in. A brief discussion is

given on the present and future of neural networks as well as their limitations.

Chapter 3 of this document focuses on statistical analysis methods that have been applied

to the stock market.

Chapter 4 of this document then focuses on the Bayesian framework optimisation

method. This part of the document introduces the Markov Chain Monte Carlo (MCMC)

methods as well as the Metropolis-Hastings Algorithm, which is used to sample the

posterior distribution resulting from the implementation of Bayesian framework.

The methodologies developed are then discussed in the later chapters. Two approaches

are proposed to select the optimal time window. The first method is to use polynomial

approximation and the second one to reformulate the neural network architecture such

that the optimal time window is an inherent variable to be learned during the training

stages. The first approach entails the generation of a polynomial mapping the error

function to the number of inputs and minimizing this error function to get the optimal

input time-window required to give the best prediction. The second approach involves

 10

using the Markov Chain, Monte Carlo and Markov Chain Monte Carlo methods to

optimally select the appropriate time window while in the training stages of the neural

network. This will thus involve the reformulation of the Bayesian networks to suit the

optimal selection of the input time-window.

The focus of the second part of this document is on the design process: from the analysis

of the problem specification, to the choice of appropriate architectures, and finally to the

actual neural network design.

Some chapters end with remarks and conclusions, which give the relevance of the section

to the project discussed. These remarks give the relevance of such chapters to the project.

 11

Chapter 2

Neural Networks

2.1 Introduction

The recent rapid advances in neural network technology in many pattern recognition

systems, as opposed to the conventional statistical theory, have been attributed to the

ability of these neural networks to model any kind of a system, be it a linear or non-

linear. Due to the difficulty and complexity of all the various statistical methods

employed and the high level of expertise required for such methods such as; moving

averages and regression methods, there has been a significant increase in usage of neural

networks. This increase has also been due to the fact that neural networks can be applied

to virtually every field in the industry, such as the medical field e.g. AIDS modelling,

engineering e.g. control of the product quality. Neural network has gathered enormous

momentum in recent years and this field of study is currently being introduced in many

universities with the industry demanding more products which need neural networks.

This document constitutes a neural network design for:

 12

• Modelling stocks and

• Optimally selecting input time-window for stock market prediction.

2.2 Neural Networks

2.2.1 What Are Neural Networks?

Neural networks (NN) were first introduced in the early 40s based on the understanding

of neurology. An artificial neural network is a network consisting of neurons and paths

connecting the neurons. They are interconnected assemblies of simple processing nodes

whose functionality is loosely based on the animal neuron. NN can also be defined as

generalizations of classical pattern-oriented techniques in statistics and engineering areas

of signal processing, system identification and control. Figure 1 shows a neural network

model with the major components of the network. Each input is multiplied by weights

along its path and the weighted inputs are then summed and biased. This weighted input

is then biased by adding a value unto the weighted input. The output of the summation is

sent into a function which the user specifies (linear, logistic). The output of the function

block is fed to the output neuron.

Figure 1: Architecture of a neuron.

Neural networks (NN) consist of simple processing units which communicate with each

other by sending signals over a large number of weighted connections. The various

 13

aspects of the NN models are; neurons (a set of processing units); a state of activation for

every unit, equivalent to the output of the unit; connection between the units (each

connection is defined by a weight which determines the signal the unit j has on unit k); a

propagation rule (this determines the effective input of a unit from its external inputs); an

external input or bias for each unit; and a learning rule. NN are adaptable systems that

can learn relationships through repeated presentation of data, and are capable of

generalizing to new, previously unseen data. For Figure 1, the NN output equation is:

k
j

jjkk bywOutput +=∑ (2.1)

Where wj represents the j-th layer’s weights, b represents the bias at the node, yj

represents the output at the j-th layer’s node and k represents the output node.

2.2.2 Why Neural Networks?

Neural network has been motivated by the fact that [10, 11, 12] scientists are challenged

to use machines more effectively for tasks currently solved by humans. Neural networks

assist in systems where an algorithmic solution cannot be formulated. NN possess the

property of adaptive learning which is the ability to learn how to do tasks based on the

data given for training or initial experience [10]. NN can create their own organization or

representation of the information it receives during learning time from the data observed.

NN also possess the ability to represent any function and are known as universal

approximators. NN are insensible to noise or unreliable data. There is also no restriction

on the output type in neural networks. Neural networks are performed in very short

computational times.

 14

2.2.3 Neural Networks versus Other Methods and Linear Statistics

Statistical techniques on handling data have many drawbacks which neural networks do

not possess [12]. They impose restrictions on the number of input data which NN do not.

The regressions are performed using simple dependency functions (linear and

logarithmic), which are quite unrealistic. There is no need for intensive mathematical

methods to transform data for NN models meanwhile statistical methods require intensive

mathematical transformations. NN are non-linear hence are better able to account for

complexity of human behaviour. NN also give tolerance to missing or erroneous values.

2.2.4 Applications of Neural Networks [12]

Neural networks (NN) are currently being applied to nearly every field in the industry.

NN are used in the banking sector to predict the issuing of loans, and to predict the

recovery of bad loans (NN are used to predict the behaviour of new customers before

offering them loans). NN are also used in the finance market to predict share prices. This

helps for portfolio and asset management. NN are used in industry for the prediction of

product or service demand in order to do better production planning. NN are used in

administration for analysing and predicting crime, and tax return analysis for fraud

detection. They are used in the medical field to analyse the spread of AIDS and future

growth of the disease. NN are also used in game playing for games like Chess, Checkers

and Backgammon in order to learn new moves which may not have initially been stored

in the database.

 15

2.2.5 Future of Neural Networks

NN are already being used in intelligent refrigerators which do stock taking and order

those that are in shortage in the refrigerator. It is also predicted that neural networks,

integrated with other computational intelligence technologies and other technologies such

as genetic engineering will be used for the generation of life-forms whether man,

machine, or a hybrid. Neural networks will give humans the capability to explore new

dimensions which are currently only available through extensive training and discipline.

2.2.6 Limitations of Neural Networks [13]

The major issue in industry of NN is the integration of neural networks into the modern

environment. These results from the fact that NN sometimes become unstable when

applied to large scale problems and they also neglect the effect of noise hence would tend

not to react appropriately to sharp changes. There is also the problem that neural

networks are viewed as black boxes whose rules are unknown. The results obtained from

neural networks are thus not explained.

2.3. Neural Networks Architectures

There exist many kinds of network architectures, such as: [14, 15]

• Multi-Layer Perceptron (MLP)

• Radial Basis Function (RBF)

• Recurrent Neural Networks(RNN)

• (Hierarchical) Mixtures of Experts (HME) and

• Self-Organizing Map (SOM).

 16

2.3.1 Multi-layer Perceptron

The simplest network architecture consists of a single layer with directed inputs,

weighted connections to the output unit. These are very simple learning algorithms which

find the weights for linear and binary activation functions. However, these algorithms can

only work for a limited number of functions. The limitations are overcome by adding one

or more layers, known as hidden layers which are nonlinear units between the input and

the output. The architecture is a feedforward structure whereby each unit receives inputs

only from the lower layers units. Gradient methods are used to find the sets of weights

that work accurately for the practical cases. Backpropagation is also used to compute

derivatives, with respect to each weight in the network, of the error function. The error

function generally used in the neural network computation is the squared difference

between the actual and desired outputs. The activities for each unit are computed by

forward propagation through the network, for the various training cases. Starting with the

output units, backward propagation through the network is used to compute the

derivatives of the error function with respect to the input received by each unit. The

representation of such a network is as follows:

 17

Figure 2: 2-Layer multi-layer perceptron neural network

The learning algorithm and number of iterations determines how good the error on the

training set is minimized meanwhile the number of learning samples determines how

good the training samples represent the actual function. In multi-layer perceptron, a

number of layers are fully connected. The input to the activation function then becomes a

scalar product of the layer weight vector wi and input i, that is:

)(iwactfnOutput i ×= (2.2)

The different kinds of activation functions with their equations are as shown Table 1. The

perceptron learning rule is a method for finding the weights in a network. The perceptron

has the property that if there exist a set of weights that solve the problem, then the

perceptron will find these weights. This rule follows a linear regression approach, that is,

given a set of inputs and output values, the network finds the best mapping from inputs to

outputs. Given an input value which was not in the set, the trained network can predict

 18

the most likely output value. This ability to determine the output for an input the network

was not trained with is known as generalization.

Table 1: Table of activation functions with the respective functions

Multi-layer networks are known as approximators. Two-layer networks with a sigmoid

transfer function in the hidden layer and linear transfer functions in the output layer can

approximate any function provided a sufficient number of hidden units are available [16].

These hidden units make use of non-linear activation functions.

2.3.1.1 Linear Regression

Linear regression is the algorithm used to fit a model unto a set of data. If a data set of

inputs and outputs is given or can be obtained, it is then possible to fit in a model such

that based on this model outputs can be determined for an input which is not in the

NAME FUNCTION

Linear A

Sigmoid
()ae−+1

1

Tanh ()
()aa

aa

ee
ee
−

−

+
−

Exp ae

Softmax

∑
j

a
j

a

e
e

 19

original set. The simplest model that can be fit is the linear model which has the

following equation:

 21 wxwy += (2.3)

This equation describes a straight line with a slope w1 and an intercept w2. The major

problem in neural networks is choosing the parameters w1 and w2 for the given model,

which would imply choosing a line which goes through the data. This method uses a

supervised learning algorithm since the target values are available.

2.3.1.2 Perceptron Algorithm

The perceptron algorithm is as follows; initialize the weights, pick a learning rate η (this

is generally a number between 0 and 1) [15] and iterate until stopping condition is

satisfied, modifying the weights. For each training pattern (x, t) the following is done;

compute the activation function y=f(w,x), if y = t, do not change the weights else update

the weights. It should be noted that the choice of the learning rate does not matter

because it just changes the scaling of the weights, w and the perceptron is guaranteed to

converge in a finite number of steps if the problem is separable but may be unstable if the

problem is inseparable.

2.3.1.3 Activation Functions

There exist several activation functions. These are; identity function, step function,

logistic function (sigmoid), radial basis functions, derivatives and softmax.

a) Identity Function

The identity function is characterised by the equation:

 20

 xxf =)((2.4)

b) Step Function

The step function is characterised by the function:

 0 if 1)(and 0 if 0)(>=≤= xxfxxf (2.5)

c) Logistic Function (Sigmoid)

This function has the form axe
xf −+
=

1
1)(where a determines how steep the function is.

The larger a is the steeper the function. The sigmoid function is generally used for a two

class problem that has Gaussian input distributions.

d) Radial Basis Function

A radial basis function is simply a Gaussian; .)(
2axexf −= It is zero everywhere except in

a small region.

e) Derivatives

The derivative of the various functions above also form activation functions. The

derivative of the identity function yields 1. The derivative of the step function is

undefined, the derivative of the sigmoid function are easy to compute and yields:

))(1)((xfxf
dx
df

−= (2.6)

The tanh function is also used as an activation function and its derivative is:

.)(1 2xf
dx
df

−= (2.7)

f) Softmax Function

The softmax function is characterised by the equation:

 21

∑
j

a
j

a

e
e (2.8)

The softmax function is generally used for a multi-class problem.

2.3.2 Radial Basis Function Networks

These kinds of networks consist of 2 layers, stacked together. The first layer with a

Gaussian activation function and the second layer with a linear activation function. The

input to the activation function is the distance between the layer weight vector and i, that

is,)(wiactoutput −= . These networks are fast in training because the first layer can be

initialised with meaningful values and the second layer is found through matrix inversion

techniques. An iterative optimization technique is then used to refine the solution. RBF

network is not used in this project due to the fact that RBF networks require more

parameters than MLP neural networks. The computation nodes of the hidden layers of

such a network are different and serve a different purpose from the output layer of the

network as opposed to the MLP where the hidden and output layers share a common

neuron model. The hidden layer, as discussed above, for the RBF network is non-linear

and the output layer is linear hence the inability to approximate non-linear functions

whereas in MLP both layers are non-linear [14]. The RBF network has the following

architecture:

 22

Figure 3: Architecture of a RBF neural network

With the following equations representing this network:

j

n

j
jkjk bxwxy +=∑

=0
)()(φ (2.9)

And

 −
−= 2

2

2
exp)(

j

j
j

x
x

σ
µ

φ (2.10)

Where µ represents the centres and σ represents the widths of the network (training

parameters to be optimised).

2.3.3 Recurrent Neural Networks

In these networks, there is the presence of recurrent or loop connections. These recurrent

connections can, however, be unfolded to form feed-forward neural networks. These

networks make efficient use of time varying information but are, however, complex to

 23

design. This complexity arises from the fact that in order to use backpropagation

algorithms with such architecture, there is a need to make the architecture feed-forward

first, hence adding some computational expense. The inputs and outputs of this

architecture are of arbitrary length sequences of vectors, not vectors. This also makes the

handling of the input and outputs difficult to follow.

2.3.4 Hierarchical Mixtures of Experts

These networks are built out of modules, experts and gates, of which can be any of the

other neural network types. The experts work on the problem in a small domain;

meanwhile, the gates mix the opinions of the experts. The building of structure is data

driven which poses a problem since as the structure would tend to fit the particular data it

was trained for hence leading to over-fitting, which is a phenomenon to be avoided.

2.3.5 Self-Organising Map Networks

SOM is mainly used in the biomedical field such as in coronary heart risk assessment. It

is relatively easy to implement and evaluate and is computationally not expensive.

However, SOM has the problem of overcrowding and underutilization of the neurons in

the network due to the fact that the size and shape of the network is fixed before the

training phase begins.

2.3.6 Remarks on Network Architectures

The above sections have discussed briefly the different architectures available for neural

network. Each section has given the short-falls of the various networks. MLP are,

 24

however, the most appropriate network architecture for the project at hand since RBF

networks require more parameters than MLP, RNN are complex to design due to the fact

that they need to be unfolded, HME networks lead to over-fitting of the data and SOM

networks have the problem of overcrowding and underutilization of the neurons in the

network.

 25

Chapter 3

Conventional Statistical Methods

This section focuses on introducing the various statistical methods, which have been

applied to the stock market for stock prediction. The methods discussed in this chapter

are the moving average methods [17, 18], exponential smoothing and linear regression.

The chapter concludes with remarks and limitations of these statistical methods on the

stock prediction.

3.1 Moving Average Methods

3.1.1 Simple Average

This method is suitable for data series with no trend/horizontal series. That is;

yt = β0 + εt, εt ~ N (0, σ2) (3.1)

 26

where β0 may change slowly with time and εt is a noise signal with zero mean and a

standard deviation σ. In this approach, the first n data points are averaged and used to

forecast the next period as shown by formula (3.2).

∑
=

+ =
n

t
tt nyF

1
1 (3.2)

The simple average method is updated to a moving simple average whereby the n-period

moving average (MA) calculated at time period t-1 is the average of the n most recent

observations and this can be written as:

n
yyyyM ntnttt

t
−+−−−

−
++++

= 121
1

... (3.3)

As each new observation becomes available, a new moving average can be computed by

dropping the oldest value and including the newest one

n
yyyM nttt

t
11 ... +−− +++

= (3.4)

Mt can also be calculated by:

n
yyMM ntt

tt
−

−
−

+= 1 (3.5)

We use the moving average calculated at time t to forecast the y value at time t + 1

n
yyyyMF ntnttt

tt
111 ... +−+−− ++++

== (3.6)

It should be noted that when the data have large randomness, a large n is used. Otherwise

a small n is used. Data taken over a particular time always has some randomness

associated therein. There exist methods for reducing or canceling the effect due to

random variation. An often-used technique in industry is smoothing. This technique,

 27

when properly applied, reveals more clearly the underlying trend, seasonal and cyclic

components. There are two distinct groups of smoothing methods and these are;

averaging methods and exponential smoothing methods. An alternative way to

summarize the past data is to compute the mean of successive smaller sets of numbers of

past data as follows; consider the set of numbers 9, 8, 9, 12, 9, 12, 11, 7, 13, 9, 11, 10

which is the Rand amount of 12 suppliers selected at random. Let us set M, the size of the

smaller set equal to 3. Then the average of the first 3 numbers is: (9 + 8 + 9) / 3 = 8.667.

This is called smoothing (i.e., some form of averaging). This smoothing process is

continued by advancing one period and calculating the next average of three numbers,

dropping the first number. Table 2 summarizes the process, which is referred to as

Moving Averaging. The general expression for the moving average is

Mt = [Xt + Xt-1 + ... + Xt-N+1] / N (3.7)

a) Results of Moving Average

Unfortunately, neither the mean of all data nor the moving average of the most recent M

values, when used as forecasts for the next period, is able to cope with a significant trend.

There exists a variation on the MA procedure that often does a better job of handling

trend. It is called Double Moving Averages for a Linear Trend Process. It calculates a

second moving average from the original moving average, using the same value for M.

As soon as both single and double moving averages are available, a computer routine

uses these averages to compute a slope and intercept, and then forecasts one or more

periods ahead

 28

Table 2: The Mean Square Error (MSE) = 2.018 as compared to 3 for a simple

averaging process.

Supplier R MA Error Error squared

1 9

2 8

3 9 8.667 0.333 0.111

4 12 9.667 2.333 5.444

5 9 10.000 -1.000 1.000

6 12 11.000 1.000 1.000

7 11 10.667 0.333 0.111

8 7 10.000 -3.000 9.000

9 13 10.333 2.667 7.111

10 9 9.667 -0.667 0.444

11 11 11.000 0 0

12 10 10.000 0 0

3.2 Exponential Smoothing

Exponential smoothing is a technique used in time series analysis. This differs from the

simple moving average in that, whereas in the simple moving average, past observations

are weighted equally, exponential smoothing assigns exponentially decreasing weights as

the observation (data) gets older thereby ensuring that recent observations are given

 29

relatively more weight in the forecasting than the older data. There exists single, double,

and triple exponential smoothing which would be described in the next subsections.

3.2.1 Single Exponential Smoothing

In this technique, the first smoothed exponential prediction S2 is taken as the actual

observed value. For any time period, the exponential prediction is:

3 t 10)1(11 ≥≤<−+= −− ααα ttt SyS (3.8)

Where the parameter α is called the smoothing constant. The initial observation is

computed by averaging the first four or five observations or initializing it to y1.

3.2.2 Double Exponential Smoothing

It should be noted that single exponential smoothing does not excel in data where there is

a trend. As such, this situation can be improved by the introduction of a second equation

with a second constant, γ, which is chosen in conjunction with α. These two equations

are:

10))(1(11 ≤≤+−+= −− ααα tttt bSyS (3.9)

() () 10 1 11 ≤≤−+−= −− γγγ tttt bSSb (3.10)

ahead-periods-mfor Forecast)(ttmt mbSF +=+ (3.11)

S1 is generally set as y1, which is the original observation. Parameter b1 can be chosen as

follows:

121 yyb −= (3.12)

() () ()[] 33423121 yyyyyyb −+−+−= (3.13)

 30

() ()111 −−= nyyb n (3.14)

The first equation adjusts St for the trend of the previous period, bt-1, by adding it to the

last value, St-1. Meanwhile the second equation updates the trend. The value of the

parameters α and γ are obtained through non-linear optimization techniques, such as the

Marquardt Algorithm [19, 20].

3.2.3 Triple Exponential Smoothing

If the data, however, involves trend and seasonality, the double smoothing does not work.

A third equation is then introduced which takes care of the seasonality. There are thus

three equations and these sets of equations are known as the “Holt-Winters” (HW)

equations named after the inventors. The equations are:

()() Smoothing Overall 1 11 −−
−

+−+= tt
Lt

t
t bS

I
y

S αα (3.15)

() () Smoothing Trend 1 11 −− −+−= tttt bSSb γγ (3.16)

() Smoothing Seasonal 1 Lt
t

t
t I

S
y

I −−+= ββ (3.17)

Forecast)(mLtttmt ImbSF +−+ += (3.18)

Where y is the observation, S is the smoothed observation, b is the trend factor, I is the

seasonal index, F is the forecast at m periods ahead, t is an index denoting the time

period, and α, β and γ are constants to be estimated such that the mean square error is

minimized.

 31

A full season’s data is required in order to determine the seasonal parameter I, thereby

initializing the equations. The trend factor requires two complete seasons for its

determination since as a full season has L periods.

a) Initial values for the trend factor

Consider the example where the data consists of 6 years with 4 periods (that is, 4

quarters) per year. Then

Step 1: Compute the averages of each of the 6 years

∑
=

=
4

1i
ip yA p=1, 2,…, 6 (3.19)

Step 2: Divide the observations by the appropriate yearly mean

Table 3: Table of yearly means

1 2 3 4 5 6

y1/A1 y5/A2 y9/A3 y13/A4 y17/A5 y21/A6

y2/A1 y6/A2 y10/A3 y14/A4 y18/A5 y22/A6

y3/A1 y7/A2 y11/A3 y15/A4 y19/A5 y23/A6

y4/A1 y8/A2 y12/A3 y16/A4 y20/A5 y24/A6

Step 3: Now the seasonal indices are formed by computing the average of each row.

Thus the initial seasonal indices (symbolically) are:

() 6/6215174133925111 AyAyAyAyAyAyI +++++= (3.20)

() 6/62251841431026122 AyAyAyAyAyAyI +++++= (3.21)

() 6/62351941531127133 AyAyAyAyAyAyI +++++= (3.22)

 32

() 6/62452041631228144 AyAyAyAyAyAyI +++++= (3.23)

3.3 Linear Regression

The linear least squares regression is the most widely used modeling method [21, 22]. It

is sometimes referred to as “regression”, “linear regression” or “least squares” to fit a

model to their data set. It has also been adapted to a broad range of situations. Linear

least squares regression can be used to fit data with any function of the form:

() ...: 22110 +++= xxxf ββββ
ρρ (3.24)

Where ...,, 310 βββ are model parameters to be estimated.

In the least squares method the unknown parameters are estimated by minimizing the

sum of the squared deviations between the data and the model. The minimization process

reduces the over determined system of equations formed by the data to a sensible system

of Р (where Р is the number of parameters in the functional part of the model) equations

in Р unknowns. This new system of equations is then solved to obtain the parameter

estimates. Linear models are not limited to being straight lines or planes, but include a

fairly wide range of shapes. For example, a simple quadratic curve

2
1110);(xxxf ββββ ++=

ρ
 (3.25)

is linear in the statistical sense. A straight-line model in log(x)

)ln();(10 xxf βββ +=
ρ

 (3.26)

or a polynomial in sin(x)

 33

)3sin()2sin()sin();(3210 xxxxf βββββ +++=
ρ

 (3.27)

is also linear in the statistical sense because they are linear in the parameters, though not

with respect to the observed explanatory variable, x. Though there are types of data that

are better described by functions that are nonlinear in the parameters, many processes in

science and engineering are well-described by linear models. This is because either the

processes are inherently linear or because, over short ranges, any process can be well-

approximated by a linear model. The theory associated with linear regression is well-

understood and allows for construction of different types of easily-interpretable statistical

intervals for predictions, calibrations, and optimizations. These statistical intervals can

then be used to give clear answers to scientific and engineering questions. The main

disadvantages of linear least squares are limitations in the shapes that linear models can

assume over long ranges, possibly poor extrapolation properties, and sensitivity to

outliers. Linear models with nonlinear terms in the predictor variables curve relatively

slowly, so for inherently nonlinear processes it becomes increasingly difficult to find a

linear model that fits the data well as the range of the data increases. As the explanatory

variables become extreme, the outputs of the linear model will also always be more

extreme. This means that linear models may not be effective for extrapolating the results

of a process for which data cannot be collected in the region of interest. Of course

extrapolation is potentially dangerous regardless of the model type. Finally, while the

method of least squares often gives optimal estimates of the unknown parameters, it is

very sensitive to the presence of unusual data points in the data used to fit a model.

 34

3.3.1 Least Squares

In least squares (LS) estimation, the unknown values of the parameters, ,...,, 10 ββ in the

regression function,);(β
ρρxf , are estimated by finding numerical values for the

parameters that minimize the sum of the squared deviations between the observed

responses and the functional portion of the model. Mathematically, the least (sum of)

squares criterion that is minimized to obtain the parameter estimates is

[]∑
=

−=
n

i
ii xfyQ

1

2
);(β
ρρ (3.28)

As previously noted, ,...,, 10 ββ are treated as the variables in the optimization and the

predictor variable values, x1, x2, … are treated as coefficients. To emphasize the fact that

the estimates of the parameter values are not the same as the true values of the

parameters, the estimates are denoted by ,...ˆ,ˆ
10 ββ For linear models, the least squares

minimization is usually done analytically using calculus. For nonlinear models, on the

other hand, the minimization must almost always be done using iterative numerical

algorithms. To illustrate, consider the straight-line model,

εββ ++= xy 10 (3.29)

For this model the least squares estimates of the parameters would be computed by

minimizing

[]
2

1
10)ˆˆ(∑

=

+−=
n

i
ii xyQ ββ (3.30)

Doing this by

 35

1. taking partial derivatives of Q with respect to 0β̂ and 1̂β ,

2. setting each partial derivative equal to zero, and

3. solving the resulting system of two equations with two unknowns

yields the following estimators for the parameters:

∑
∑

=

=

−

−−
= n

i i

n

i ii

xx

yyxx

1
2

1
1

)(

))((
β̂ (3.31)

xy 10
ˆˆ ββ −= (3.32)

These formulas are instructive because they show that the parameter estimators are

functions of both the predictor and response variables and that the estimators are not

independent of each other unless 0=x . This is clear because the formula for the

estimator of the intercept depends directly on the value of the estimator of the slope,

except when the second term in the formula for 0β̂ drops out due to multiplication by

zero. This means that if the estimate of the slope deviates a lot from the true slope, then

the estimate of the intercept will tend to deviate a lot from its true value too. This lack of

independence of the parameter estimators, or more specifically the correlation of the

parameter estimators, becomes important when computing the uncertainties of predicted

values from the model. Although the formulas discussed in this paragraph only apply to

the straight-line model, the relationship between the parameter estimators is analogous

for more complicated models, including both statistically linear and statistically nonlinear

models. Like the parameters in the functional part of the model, σ is another measure of

the average quality of the fit of a regression function to a set of data by least squares,

 36

which is generally not known, but can be estimated from the least squares equations. The

formula for the estimate is

pn
Q
−

=σ̂ (3.33)

 =
pn

xfy ii

−

 −∑

2

)ˆ;(β
ρρ

 (3.34)

with n denoting the number of observations in the sample and p is the number of

parameters in the functional part of the model. Parameter σ̂ is often referred to as the

"residual standard deviation" of the process. Because σ measures how the individual

values of the response variable vary with respect to their true values under);(β
ρρxf , it also

contains information about how far from the truth quantities derived from the data, such

as the estimated values of the parameters, could be.

3.4 Remarks and Conclusion

Statistical methods employed in the prediction of stock market prices have been

presented in this chapter. These methods, however, involve complex and rigorous

manipulations as the data set tends to increase. As presented in Section 3.1.1, simple

average methods are suitable for data series with no trend (horizontal series) hence will

not be suitable in the stock market, which sometimes has trends. The selection of the

moving average model parameters in the statistical model, also involve further

complexities such as non-linear techniques, Marquardt Algorithm. Linear regression

methods discussed in Section 3.3 are disadvantageous in that they are limited in the shape

they assume over long ranges hence leading to poor extrapolation properties. Also, linear

 37

models with non-linear terms curve relatively slowly. Finally, while the method of least

squares often gives optimal estimates of the unknown parameters, it is very sensitive to

the presence of unusual data points in the data used to fit a model. To this effect the

neural network model is more beneficial for the prediction of stock market prices since

the mathematical process involved is minimal and a non-linear model can be developed

with less computation required compared to the statistical methods.

 38

Chapter 4

Markov Chain Monte Carlo Sampling

A Markov chain is a succession of elements each of which can be generated from a finite

(usually small) number of elements preceding it, possibly with some random element

added. A Markov chain can also be considered as a sequence of random values whose

probabilities at a time interval depends upon the value of the number at the previous time.

A simple example is the no returning random walk, where the walkers are restricted to

not go back to the location just previously visited. Sampling methods which rely on

Markov chain theory are iterative: the principle is to build a succession of states, and

once convergence is reached, the consecutive states are assumed to be drawn from the

target probability distribution. With these methods, it is possible to sample from general

probability distributions, whereas direct sampling algorithms only apply to specific

probability distributions such as the Gaussian distribution. The probability distribution

can be a posterior distribution in a Bayesian context, which makes Markov Chain Monte

 39

Carlo (MCMC) methods very attractive in Bayesian computation. Markov chain Monte

Carlo is a technique used by Bayesian practitioners to sample from the posterior

distribution. The Monte Carlo method is, in general terms, any technique used for

obtaining solutions to deterministic problems using random numbers.

Markov chain Monte Carlo methods can be used in importance sampling, when in

generating each point not only random numbers are used, but the previously generated

point(s) enter with some weight, in the simplest case by a random walk, where

rxx oldnew += , with r a random vector. The controlling factor in a Markov chain is the

transition probability; it is a conditional probability for the system to go to a particular

new state, given the current state of the system. Fairly efficient estimates can be

determined from the proper transition probabilities. Markov chains can be used to solve a

very useful class of problems in a rather remarkable way. Suppose we wanted to find the

value of the vector x that is the solution to,

fAxx += (4.1)

where the nxn matrix A, and the vector f are known. By setting up a random walk

through the matrix A we can solve for any single component of x. A little mathematics is

needed to see how this would work. First lets symbolically solve (4.1),

fAIx 1)(−−= (4.2)

This can be expanded to,

 40

∑
∞

=

=++++=
0

32 ...
m

m fAfAfAAffx (4.3)

Now lets suppose we have an nxn matrix of probabilities, P, such that,

0≥ijp (4.4)

1≤∑
j

ijp (4.5)

and we have an array,

∑−=ℑ
j

iji p1 (4.6)

further we will define,

=

≠
ℑ

=

0p if 0

0p if

ij

ij
ij

ij

ij pν (4.7)

P can then describe a Markov chain where the states of the chain are n integers. The

element ijp gives the transition probability for the random walk to go from state i to state

j. As long as g is not zero the walk will eventually terminate. The probability that the

walk will terminate after state i is given by iℑ . While taking the random walk we need to

accumulate the product,

mm iiiiiim vvvV
12110

...
−

= (4.8)

 41

and the sum,

∑=
k

m
mm

k
k fV

g
W 1 (4.9)

The final W value is important because it’s mean value (averaged over the walks that start

at index i) is,

∑∑ ∑ −−
⋅⋅⋅=

k i i
iiiiiiiiii

k

kkkkkk
gfvvppW

1

1111
/......

 (4.10)

 ∑∑ ∑ −
⋅⋅⋅⋅⋅⋅=

k i i
iiiii

k

kkk
faa

1

11
 (4.11)

 ⋅⋅⋅++++= iiii fAfAAff)()()(32 (4.12)

Notice that the final form of (4.12) is exactly the i-th element from (4.3). So to solve this

problem we have three major steps:

• Set up the probabilities p and g and start off the system at the index at which we

want to solve for x, lets call that index i.

• Then we take a random walk until the walk terminates, accumulating the product

V and the sum W.

• Then we take the average of the W values over several walks to obtain our

estimate of xi.

This will work as long as (4.3) converges, this will happen if the norm of A,

 42

= ∑

j
ij

i
aA max (4.13)

is less than one (the smaller A is the faster the Monte Carlo estimate will converge). If

the norm is larger than one, all is not lost; there is usually some manipulation that can be

done to get a new matrix that has a small norm. It turns out we can use this idea for all

sorts of problems that have the same general form as (4.1). If we write (4.1) as,

fAxx +=

and now consider A to be any linear operator that can operate on x, not just a matrix

multiply. Given the appropriate operator for a given problem, we can use the above

method to solve several kinds of problems. We can do a matrix inverse, i.e. solve

Hxf =

if we let A = I - H. Starting out at index i, will give us row i of 1−H . If we restrict the

chains to start at index i and end at index j, then we obtain a single element of the

inverse, 1−
ijH . Other problems that can be solved this way include the determination of

eigenvalues and eigenvectors, and integral equations of the second kind such as,

)()(),()(tfdssxtsAtx
b
a

+= ∫ (4.14)

Notice that (4.14) has the same kind of form as (4.1), (integration is a linear operator). If

we made a discrete grid upon which we wanted to solve (4.14) then we could use exactly

the same code that we used to solve (4.1). However, in a practical application the

 43

dimension of (4.14) would be extremely large, or),(tsA would be so complicated to

calculate that it is not really practical to create a giant matrix to approximate the integral.

Instead we free up our random walk to apply continuously within the range []ba, . These

probability density functions are explained in the next subsection.

4.1 Probability Density Function

If a random variable X has a cumulative distribution (Section 4.2) function F(x) which is

differentiable, the probability density function is defined as dxdFxf /)(= . The

probability of observing X in the interval dxxXx +≤≤ is then dxxf)(. For several

variables nXXX ,...,, 21 the joint probability density function is

() ()),...,,(...,...,, 212121 nn
n

n xxxFxxxxxxf ∂∂∂∂= (4.15)

The transformation of a given probability density function f(x) to the probability density

function g(y) of a different variable y = y(x) is achieved by

dxdy
xfyg)()(= (4.16)

The assumption has to be made for y(x) to be an increasing or decreasing function, in

order to have a one-to-one relation.

4.2 Distribution

A distribution of measurements or observations is the frequency of these measurements

shown as a function of one or more variables, usually in the form of a histogram.

 44

Experimental distributions can thus be compared to theoretical probability density

functions. The term distribution function is short for cumulative distribution function and

describes the integral of the probability density function: a random variable X has the

(cumulative) distribution function F(x), if the probability for an experiment to yield an X

< x is:

∫ ∞−
=<=

x
dfxXPxF ξξ)()()((4.17)

For several random variables),...,,(21 nXXXX = the joint distribution function is

),...,,(),...,,()(221121 nnn xXxXxXPxxxFxF <<<==
ρ (4.18)

The next section deals with the Monte Carlo methods.

4.3 Monte Carlo Methods

The systematic use of samples of random numbers in order to estimate parameters of an

unknown distribution by statistical simulation. Methods based on this principle of random

sampling are indicated in cases where the dimensionality and/or complexity of a problem

make straightforward numerical solutions impossible or impractical. The method is

ideally adapted to computers, its applications are varied and many, its main drawbacks

are potentially slow convergence (large variances of the results), and often the difficulty

of estimating the statistical error (variance) of the result. Monte Carlo problems can be

formulated as integration of a function)(xff ρ
= over a (multi-dimensional) volume V,

with the result

 45

∫ =
V

fVfdV , (4.19)

Where the average of f, f is obtained by exploring randomly the volume V.

Most easily one conceives a simple (and inefficient) hit-and-miss Monte Carlo: assume,

for example, a three-dimensional volume V to be bounded by surfaces difficult to

intersect and describe analytically; on the other hand, given a point (x,y,z), it is easy to

decide whether it is inside or outside the boundary. In this case, a simply bounded

volume which fully includes V can be sampled uniformly (the components x,y,z are

generated as random numbers with uniform probability density function), and for each

point a weight is computed, which is zero if the point is outside V, one otherwise. After N

random numbers, n N≤ will have been found inside V, and the ratio n/N is the fraction of

the sampled volume which corresponds to V.

Another method, crude Monte Carlo, may be used for integration: assume now the

volume V is bounded by two functions z(x, y) and z'(x, y), both not integrable, but known

for any x, y, over an interval x∆ and y∆ . Taking random pairs (x,y), evaluating

),(),(yxzyxzz ′−=∆ at each point, averaging to z∆ and forming zyx ∆∆∆ , gives an

approximation of the volume. Often, the function to be sampled is, in fact, a probability

density function. Variance-reducing techniques will then be indicated, like importance

sampling or stratified sampling.

 46

4.3.1 Monte Carlo Integration

There are two major Monte Carlo techniques for evaluating such integrals. The first

method is based upon an idea similar to the rejection method of generating random

variables for arbitrary distribution functions. Suppose we wish to evaluate the integral,

∫=
b
a

dxxgI)((4.20)

If we put a bounding box around the function)(xg , then the integral of)(xg can be

understood to be the fraction of the bounding box that is also within)(xg . So if we

choose a point at random uniformly within the bounding box, the probability that the

point is within)(xg is given by the fraction of the area that)(xg occupies. The

integration scheme is then to take a large number of random points with the box and

count the number that is within)(xg to get the area,

V
n

nI
*

≈ (4.21)

where, *n is the number of points within)(xg , n is the total number of points generated,

and V is the volume of the bounding box.

This method is very inefficient. Many points are required to make (4.21) converge

towards (4.20) with any degree of precision. A more efficient approach is to note that we

can write (4.20) as,

 47

∫∫ ==
b

a

b

a
Vdxxfxg

V
dxxfxgI)()(1)()((4.22)

if we define)(xf as,

=
otherwise 0

domain in the is x if 1
)(xf (4.23)

(again V is the volume of the domain). (4.22) can be interpreted as the expectation of the

function, Vxfxgxh)()()(= for the random variable x, which is uniformly distributed

within the domain. This then gives an approximate procedure,

∑∑ =≈
n

i
i

n

i
i xg

n
Vxh

n
I)()(1 (4.24)

Estimates based upon (4.24) converge much more quickly than those based upon using

(4.21). If pseudo-random numbers are used for the Monte Carlo evaluation of integrals

then, because of the clumps and voids in any given sample, there will be regions of the

integral that are under represented as well as overrepresented. In the long run it is not a

problem since we know that the numbers represent a uniform distribution well. But the

long run means using lots of iterations.

Probably the most effective way to speed up the convergence of Monte Carlo integration

is to use quasi-random numbers instead of pseudo-random numbers for choosing the

points. In general this change will cause the integration estimate to converge towards the

actual solution like nn N /)(ln (where N is the number of dimensions in the integral)

 48

instead of the usual n1 . This improved convergence is considerably better, almost as

fast as n1 .

4.3.2 Variance Reducing Technique

4.3.2.1 Importance Sampling

Importance sampling is a technique for numerically approximating an integral. It is also

called biased sampling and is one of the variance-reducing techniques in Monte Carlo

methods. It is mentioned here as a basis for the numerical concepts which follow. It is

similar to stratified sampling in that the fundamental idea is that the sampling process is

distorted, to take into account the weighting of the underlying distribution. An example

of importance sampling in a Monte-Carlo context, but the basic principle is as follows; In

wanting to estimate:

∫
∞

∞−
= dxxfxgI)()((4.25)

where f(x) is a density function, one could sample n values of x from f(x) and then

approximate with

∑
=

=
n

i
ixg

n
I

1

)(1)
 (4.26)

Alternatively, m values of x could be sampled from another density h(x) and then I could

be estimated using

 49

∑
=

=
m

i i

ii

xh
xfxg

m
I

1)(
)()(1)

 (4.27)

Consideration can then be made as to how h(x) may be chosen so that the estimator is

most efficient. It turns out that the most efficient form for h(x) samples from areas where

g(x) is large, provided that f(x) is not small, [23]. Such ideas are important in any method

when simulating from the posterior.

4.3.2.2 Stratified Sampling

Consider a set of N types of job within an organization, which has a total of M

employees. Let jJ where Nj ≤≤1 be the number of people who have a job of type j with

all people doing the same type of job getting paid the same salary. Then, clearly;

MJ
N

j
j =∑

=1
 (4.28)

If interested in the average salary paid and if M is very large the average may be

approximated as follows;

∑
=

==
m

i
iX X

m
X

1

1µ (4.29)

where we sample a total of m people from the organization and iX is the salary paid to

the ith person we sampled. Ordinary random sampling would involve picking the m

people uniformly from the total population of M people in the organization. However,

another method would be to ensure that the probability of choosing a person from job

 50

type j is the number of people doing job type j divided by the total number of people, M.

This latter idea is just stratified sampling and is an important and well known sampling

technique.

4.4 Metropolis Hastings Algorithm

The Metropolis-Hastings algorithm is a Markov chain Monte Carlo method as described

previously. The algorithm sets about constructing a Markov matrix which has as its

equilibrium distribution some target densityφ , of interest to the operator. The algorithm

requires the specification of a proposal density, i
jq , which is a probability density for j

and may depend upon i. This is then used in order to propose transitions from i. The

condition of detailed balance is then imposed in the following fashion.

Construct i
jα by imposing detailed balance, so that the matrix with entries given by

i
j

i
j

i
j qM α•= is a Markov matrix. This is done as follows:

1 then , === j
i

i
jj

j
ii

i
j qqIf ααφφ (4.30)

Otherwise, assume (without loss of generality) that:

,j
j

ii
i
j qq φφ > (4.31)

then setting 1=j
iα , and constructing:

 51

,
i

i
j

j
j

ii
j

q

q

φ

φ
α = (4.32)

detailed balance holds. Thus, by defining in general:

,1,min

=

i
i
j

j
j

ii
j q

q
φ
φ

α (4.33)

detailed balance is satisfied. In order that what has been constructed is a Markov matrix

which will generate a chain having φ as the invariant distribution, it remains to show that

M is indeed Markov. This imposes conditions on the form of q which is related in turn

toφ . The conditions are as referred to before, aperiodicity and connectedness. These are

indeed satisfied for quite a large family of densities [24, 25].

The algorithm then, works as follows;

1. Set i = 0; Set N = some large value; Choose an initial state x0.

2. Propose y from ix
yq .

3. Accept the proposal with probability ix
jα .

4. If accepted, set yxi =+1 , else set ii xx =+1 .

5. If i<N set i=i+1; and back to step 2.

Although theory demonstrates that a chain constructed using this algorithm has a limiting

distribution which is the target distribution, the question of the rate at which the limiting

distribution is attained is still open.

 52

Note that the samples ,...,...,, 10 jxxx generated by the chain will depend upon the choice

of 0x and only when close to the limiting distribution are the samples to be considered as

having come from the target distribution. What size should N be, and for what minimum

j should jx be considered as a sample from the target? A number of methods have been

proposed in order to answer these questions. Diagnostic methods of Gelman and Rubin

[26] and others are reviewed by Cowles and Carlin [27]. Murdoch and Green have

developed methods of demonstrating convergence [28], but these methods are far less

practical than the heuristic diagnostics described elsewhere. A review of methods to date

including those of Murdoch and Green is provided by Brooks and Roberts [29]. The

Metropolis-Hastings algorithm is valid for sampling from the)(xφ , for nx ℜ∈ , that is for

a general vector, x. However, in practice it can be more natural to consider x as the

combination of subvectors { }21, xxx = . It turns out [30] that a transition matrix for a chain

which converges to the target)(xφ may be constructed by considering matrices for a

chain which samples from)|(21 xxφ a The Metropolis-Hastings algorithm is a Markov

chain Monte Carlo method as described previously. The algorithm sets about constructing

a Markov matrix which has as its equilibrium distribution some target densityφ , of

interest to the operator. The algorithm requires the specification of a proposal density, i
jq

which is a probability density for j and may depend upon i. This is then used in order to

propose transitions from i.

 53

4.5 Remarks

For the sampling schemes mentioned above, the target distribution is invariant and the

rate of convergence issues will be important. Two issues arise for consideration, which

are:

• When will the samples be independent of the initial value, x0?

• What number of samples, N is needed?

The first question refers to the fact that the initial value is just some arbitrary guess and is

unlikely to have come from the target distribution and it may actually take a while for the

estimate to come from the actual target distribution, which is that time after which the

samples can be used. This time is referred to as the burn-in time. Methods to determine

this burn-in time are, however, tedious if not impracticable. The second point depends on

what is being estimated and how accurate the estimator needs to be. The choice of the

proposal distribution is determinative for the rate of convergence. It is also important that

the target distribution be explored by the Markov chain. The acceptance rate is a measure

of the level of exploring. If it is too low, then the chain is too stationary and does not

move around much. If the acceptance rate is too high, this indicates that the chain does

not have the opportunity to sample from the tails of the distribution.

 54

CHAPTER 5

Bayesian Methodology for Statistical Modeling

This chapter focuses on the statistical methodology employed in the design process of

this project which is the Bayesian approach. In Bayesian data analysis, all uncertain

quantities are modeled as probability distributions, and inference is performed by

constructing the posterior conditional probabilities for the unobserved variables of

interest, given the observed data sample and some prior assumptions. This chapter

focuses on the Bayesian approach for computational intelligence (Neural Networks). The

major difficulty in neural networks model building is controlling the level of complexity

of the model. With the standard neural network techniques, the correct model complexity

is often chosen by crude methodology and is generally computationally expensive.

Bayesian approach handles these issues by defining vague priors for the hyperparameters

that determine the model complexity. The resulting model is averaged over all model

complexities weighted by their posterior probability given the data sample. Another

problem with standard neural network models is the lack of tools for analyzing the

 55

results. The Bayesian analysis caters for this with the posterior distributions for the

variables been estimated. In this chapter, the Bayesian approach in statistical modeling is

discussed (5.1) [31].

5.1 Bayesian Approach

Bayesian inference is different from classical inference. In Bayesian inference, previous

information is important. The key principle of Bayesian approach is to construct the

posterior probability distributions for all the unknown parameters of the model, given the

data sample. Bayesian statistics incorporates prior information directly into the analysis

and it has a naturally formulated decision structure. Use of the posterior probabilities

requires a definition of the prior probabilities for the unknown parameters.

5.1.1 Bayesian Methodology

Statistics is concerned with the estimation of numerical quantities. In the Bayesian

context, the quantities of interest will be random variables or parameters. Before an

experiment or survey, the prior knowledge about the quantities of interest is summarized

in the form of a probability statement. Let the parameters of interests be θ and the model

be represented by H. Also, H represents all the hypotheses and assumptions that are made

when defining the model, for example the choice of multi-layer perceptron networks. The

probability statement about initial beliefs is denoted)/(ΗθP and is termed the prior

belief. Since this is a probability statement it takes the form of a probability distribution

and is often referred to as the prior distribution, or more simply the prior.

 56

5.1.2 Prior Knowledge

It is essential, when considering θ as a random variable, to assign prior probabilities,

simply because such must exist. In the case where prior knowledge shows that no

particular value or values of θ are more likely than any others, then θ will be uniformly

distributed. That is to say,)/(ΗθP tends to one. The prior might also take the form of a

normal distribution with some mean and (perhaps large) variance. It should be noted that

all generalization is based on prior knowledge. The training samples provide information

only at those points, and the prior knowledge provides the necessary link between the

training samples and the future samples not yet determined.

5.1.3 Model or Likelihood

The idea of likelihood is common to all statistical inference, and is well understood by

Bayesian statisticians. The relationship between the parameters of a model and the

observables is fundamental to the process of updating knowledge of parameters based

upon the data. The likelihood is sometimes termed the model, and takes the form of a

probability statement)/(HDP , where D represents the given data of the system. Note

that the likelihood is a conditional probability statement as to how likely it is for D to be

observed if the parameters take the value θ. In a statistical analysis, it is the knowledge of

θ which is of interest, that is to say, the distribution of θ given that D is observed. This is

termed the posterior, and is dealt in the next section. Other methods of inference

concentrate on the likelihood in their analysis, in which case the focus is)/(θDP as a

function of θ for fixed D. While 1)/(=∫∇ dDDP
D

θ , the same is not true of the integral

 57

with respect to θ. For this reason, and to avoid confusion, the likelihood is sometimes

written)/(θDL .

5.1.4 Posterior Distribution

Of interest to the modeler, then, is the conditional distribution of the parameters, given

the data, that is)/(DP θ . The posterior probability for the parameters θ in a model H

given the data D is, according to Bayes’ rule,

,
)|(

)|(),|(),|(
HDp

HpHDpHDp θθθ = (5.1)

Where),|(HDp θ is the likelihood of the parameters θ (discussed in the previous

section),)/(Ηθp is the prior probability of θ, and)/(HDp is a normalizing constant,

called the evidence of the model H. The),|(HDp θ distribution is termed the posterior

distribution and describes the current state of knowledge about θ, given the initial

knowledge of θ, together with the model H, such knowledge having been updated by

information from the probability

∫= θ
θθθ .)|(),|()/(dHpHDpHDp (5.2)

This normalization constant is the marginal probability of the data, conditional on H,

integrated over everything with the chosen assumptions H, and prior

distribution)/(Ηθp . The Bayesian method is then quite straightforward:

• construct a model, obtaining a likelihood)/(θDp ;

 58

• elicit a prior distribution)/(Ηθp ;

• derive the posterior density),/(HDP θ as above.

5.2 Bayesian Learning for MLP Networks

In this section of the chapter, a short overview of the Bayesian approach for neural

networks is given. This section concentrates on the Multi-Layer Perceptron (MLP)

networks and Markov Chain Monte Carlo (MCMC) methods for computing the

integrations. The result of Bayesian modeling is the conditional probability distributions

of the unknown parameters of interest, given the known data. In Bayesian MLP, the end

parameters are the predictions of the model for new inputs. The posterior predictive

distribution of output ynew for the new input xnew given the training data

() ()() () ()(){ },,,...,, 11 nn yxyxD = is obtained by integrating the predictions of the model

with respect to the posterior distribution of the model,

∫= ,)|(),|(),|(θθθ dDpxypDxyp newnewnewnew (5.3)

Where θ denotes all the model parameters and hyperparameters of the prior structures.

The probability model for the measurements, p(y|x, θ), contains the chosen

approximation functions and noise models. It defines also the likelihood part in the

posterior probability term, p(θ|D) α p(D|θ)p(θ). The probability model in a regression

problem with additive error is:

,):(exfy w += θ (5.4)

Where f() is the MLP function:

 59

()).tanh(, 1122 xwbwbxf w ++=θ (5.5)

θw denotes all the parameters w1, b1, w2, b2, which are the hidden layer weights and

biases, and the output layer weights and biases, respectively.

5.3 Markov Chain Monte Carlo Method

In Markov Chain Monte Carlo (MCMC) the complex integrals in the marginalization are

approximated via drawing samples from the joint probability distribution of all the model

parameters and hyperparameters. For example, with squared error loss the best guess for

model prediction (with additive zero-mean noise model), corresponds to the expectation

of the posterior predictive distribution in (5.3):

[] () .)|(,,|ˆ θθθ dDpxfDxyEy newnewnewnew ∫== 5.6

This is approximated using a sample of values θ(t) drawn from the posterior distribution

of parameters:

() .),(1ˆ
1
∑
=

≈
N

t

tnewnew xf
N

y θ 5.7

In the MCMC, samples are generated using a Markov chain that has the desired posterior

distribution as its stationary distribution. Choosing the initial values with early-stopping

can be used to reduce the burn-in time, when the chain has not yet reached the

equilibrium distribution. In general, the author’s experience suggests that the

convergence of the MCMC methods for MLP is slower than usually assumed, so that in

 60

many of the published studies, the MCMC chains may have still been in the burn-in

stage, producing a sort of early-stopping effect to the selection of the model complexity.

5.4 Conclusion and Remarks

Presented in this chapter is the Bayesian approach for statistical modeling. In the

Bayesian approach, previous information is important for the analysis. This prior

knowledge forms the prior probability distribution. The underlying principle is to

construct posterior probability distributions for all the unknown parameters of the model,

given the data sample. Also presented in this chapter is Bayesian learning for MLP

networks. This is very important for the reformulated network methodology created

(Section 1.2). The MCMC Bayesian learning implementation is also presented in this

chapter, in Section 5.3. This was the implementation utilized for optimizing the

reformulated network parameters, hence forms an important part of the thesis. The next

chapter deals with the algorithms implemented.

 61

Chapter 6

Input Time-Window Optimization Algorithms

This thesis started by introducing the stock market, and then proceeded to introducing

neural network and the last chapter dealt with the Bayesian approach. The algorithms

were implemented in neural networks using the various networks and later optimizing

these networks. The methodology also included the use of Bayesian analysis. Both

algorithms use the neural network NETLAB© toolbox that runs in MATLAB® [32].

The data used for this design was data obtained from the National Association of

Securities Dealers (NASDAQ). The design process was divided into various stages. The

following procedures are followed in designing the neural network architecture in this

project:

1. Specify and process the data required by the neural network for training,

validation and testing.

2. Create a neural network and train the neural network with the data in Step 1.

3. Optimize the input time-window using polynomial approximation.

 62

4. Optimize the input time-window by reformulating neural networks methods

(Bayesian framework).

5. Create an integrated infrastructure.

6. Comparison of the different networks.

This chapter would elaborate on the procedures stated above.

6.1 Factors Specification and Processing

The data used for the network design is obtained from the NASDAQ stock exchange. The

NASDAQ all-share index was used as the sample data. The data for a two-year period

was used as the analysis data. The output data set is obtained by calculating the average

of the all-share index over 5 successive days. The data is then divided into 3 sets;

training, validation and testing sets. The training data set is used to train the initial

network. The validation data set is used to validate the network and the testing data set is

used to confirm the predictability of the network. The division of data into three sets is to

ensure that over-fitting and under-fitting are avoided. Over-fitting occurs when the

network does not generalize but rather fits training data meanwhile underfitting occurs

when the network does not follow the data at all.

The output and input data sets are first preconditioned by normalising them before the

network is trained. Normalising the data sets makes the data lie between 0 and 1. This

caters for over-fitting since large inputs and outputs values used during training results in

the learning rates in the different layers being different by significant amounts. With the

large values, a very small learning rate will be needed meaning a lot of steps will be

 63

required to move the bias across the network. The normalizing is done by getting the

minimum and maximum values in the data set and conditioning the data so that they lie

between zero and one. This reduces the error during training. The data is normalized by

using the following formula:

minmax

min

XX
XX

X norm −
−

= (6.1)

Where X is the actual data, Xmin is the smallest data in the data set (minimum data) and

Xmax is the largest data in the data set (maximum data). The normalised training data set

was then used in the next stage to train the neural networks.

6.2 Creating the Neural Networks

The neural networks used are created using the MLP and RBF network architectures,

which are very suitable for regression problems. In creating the neural networks, the

number of inputs was assumed to be arbitrary. This will be optimized at a later stage of

the project. This stage entailed getting an optimal architecture for the neural networks

that will yield good predictions. Designing the neural networks thus involved choosing

the right number of neurons and the appropriate network architecture which would yield

the most accurate results. The number of neurons is then optimised by minimising an

error function mapping the number of hidden neurons to the root mean square error

obtained from the output related to the target output, for both the training data set and the

validation data set. The root mean square (RMS) error is calculated by averaging the sum

 64

of the square of the difference between the actual data output and the network output over

the whole data set as per the formula below:

n

ty
E

n

i
ii

RMS

∑
=

−
= 1

2)(
 (6.2)

Where y is the network output value, t is the actual output value and n is the number of

data samples.

The hidden neurons were tested by incrementing the neurons from 5 hidden neurons to 40

hidden neurons in steps of 1 and training the network with the hidden neuron number.

The root mean square error for each neuron number and each network architecture was

then obtained. A committee of networks comprising of the average output of the MLP

and the RBF networks was also obtained for each neuron number and the root mean

square error of the output was also obtained. The output of the committee of networks

was computed by averaging the outputs from the different network types as follows:

2
RBFMLP yyy +

= (6.3)

A more complex committee of networks [33, 34] comprising of six MLP and six RBF

networks was also created. The network structure is as shown in Figure 4.

 65

Figure 4: Committee of networks for prediction

The networks are then validated using the validation data sets. The root mean square

error obtained for eight inputs for the various number of neurons is shown in Figure 5.

Figure 5: Relationship between RMS error hidden layer neurons for the different

architecture types

 66

Upon getting the optimal network architecture which was the MLP and the optimal

number of hidden units which was 12 hidden units, the design for the optimal input time-

window was tackled. The RBF network architecture also gave accurate results with 11

hidden units being the optimal number of hidden neuron units.

6.3 Optimizing the Input Time-Window Using Polynomial

Approximation

The next stage of the design was to optimally select an input time-window using

polynomial approximation. The optimal network architecture, MLP and the optimal

number of hidden neurons 12 was used to predict the input time-window. The RBF

network was also verified by using the optimal number of hidden neurons 11. A set of

networks was created with the number of days required to predict the output (average

index of the next five days) ranging from 5 to 12. The output square error for each of the

input days is then plotted and the optimal number of days required to predict the average

of the next five days is obtained from the error function. Figure 6 shows the error plot

obtained for various days:

 67

Figure 6: Relationship between the RMS error and the number of input days for

MLP and RBF networks

As can be seen from Figure 6, the lowest error was obtained for the MLP and was 7 days.

The RBF architecture also had an optimal input time-window of 7 days as can be seen in

Figure 6 depicted by the red curve. The optimal input time-window from polynomial

approximation is thus 7 days. Upon obtaining the optimal input time-window, the next

stage of the design was then embarked on.

 68

6.4 Optimizing the Input Time-Window by Reformulation of

Bayesian Framework

This stage comprised the design of a neural network model to predict the average of the

next five days by reformulating the Bayesian framework. The Markov Chain Monte

Carlo (MCMC) method was used in this design stage. The Metropolis-Hastings algorithm

(Section 4.4) [35] was employed whereby if the energy function is greater than a

threshold then a new state is accepted else an old state is accepted. This threshold value is

the error tolerance and is specified during the training stage. The neural network model as

explained above in Chapter 2, Section 2.1 comprises of weights and biases. A new

parameter, a, was introduced into the network such that the network now looked as

follows:

Figure 7: The reformed network with discrete parameter

This network parameter, a, is a discrete parameter which can have a value of 0 or 1. The

Output
(O)

a1

x1

x2

x3

xn

an

a3

a2

 69

value of this parameter at the input neuron is dependent on the importance of the input at

that neuron to the target output. A value of 1 means an input day is important for the

prediction of the output and a value of 0 implies that an input day is not important

towards the output prediction. The design involved the following steps:

6.4.1 Creating the Network Architecture

The first step involved creating the network architecture which had the binary (discrete)

parameter. New network architecture types, discrete multi-layer perceptron (DMLP) and

discrete radial basis function (DRBF) were created which will be initialised by stating the

number of inputs, the number of hidden neurons in each layer, the number of outputs and

the network function type. This multi-layer perceptron network contains 5 hidden

parameters, w1, b1 (hidden layer 1 weights and biases), w2, b2 (hidden layer 2 weights

and biases) and a, which is the input layer (discrete) parameter. The RBF network was

also created and contains 5 hidden parameters, c, wi (first layer centres and widths), w2,

b2 (hidden layer 2 weights and biases) and a, the discrete parameter. In this step all the

parameters will be initialised with random values, which will later be optimised.

6.4.2 Creation of the Discrete Feed-Forward Multi-Layer Perceptron

In this step the feed-forward discrete MLP and RBF were written whereby the MLP and

RBF network formula (5.5), (2.8) and (2.9) were modified with x being replaced by x’,

(xax where •=′) and the equation now becomes:

 70

+

+′= ∑ ∑

= =

M

j
k

d

i
jijiinnerkjouterk wwxwfwfy

1

)2(
0

1

)1(
0

)1()2((6.4)

This function takes in an initialised discrete network together with an array of input data

sample and gives an output data set.

6.4.3 Optimisation/Training Algorithm

In this step the optimisation/training algorithm was created. A discrete/continuous

network optimisation algorithm was written using the Metropolis-Hastings algorithm

[34]. In this algorithm, the initial values of the weight are taken as the initial state of the

variables. The continuous and the discrete variables are separated. The old energy state is

computed by summing and averaging the difference between the actual output and the

network output squared. The variables are then updated. The continuous variables are

updated by adding a random number unto them as per the Metropolis algorithm. The

discrete parameter is updated by choosing a new random number between 0 and 1 and

rounding off the number to the nearest integer thereby ensuring that the number is a zero

or a one. The new energy is calculated using (6.4) and the new parameters. The

probability difference between the two energies is then obtained from:

)(EnewEoldeP −= (6.5)

This probability is compared with a threshold value and if the probability is greater than

the threshold value, the new state of the variables is kept as good samples. If the

probability is, however, lower than the threshold value, then the old state is kept as the

best sample. The number of samples used in training the network was 25000 for the MLP

 71

network and 30000 for the RBF network. These numbers of samples was found to be the

optimal values during validation. The variables were then obtained by taking the average

of the samples stored for the continuous variables, and by rounding off the average for

the discrete variable samples. The index averages are then predicted for the MLP

network.

6.4.4 Prediction of outputs by RBF network

The RBF network was also used to predict the future average index and to select the input

time-window optimally. The first stage in the RBF prediction was the selection of the

input time-window. The algorithm in Section 6.4.3 was used to obtain the discrete

parameter a, which depicts the input time-window. Upon obtaining the input-time

window parameter (discrete parameter), the input was then pre-multiplied with this

parameter and was used to train the second network which will do the prediction of the

index average.

Figure 8: Diagrammatic representation of the RBF input time-window optimisation

methodology

a Input Obtain discrete
parameter

Premultiply
input by a

Train network 2 with
the premultiplied
input and target
output

Predict
output with
network 2

 72

6.5 Simulation Results

Figures 9 and 10 were obtained for the training and validating data set. Table 4 shows the

value for alpha for Figures 9 and 10 as well as the network architecture type. An input

window of 13 days was used in the training and validation and Table 4 shows the optimal

time-window. The discrete parameter has a value of one where the input is important for

the prediction yielded and a zero where the input is not important for the prediction

yielded. Table 4 also contains the fraction of the samples rejected during the optimisation

process.

Figure 9: Predicted output by reformed MLP network

Data Samples

Pr
ed

ic
te

d
V

al
ue

s

 73

Figure 10: Predicted output by reformed RBF network

The red graphs are the actual output values meanwhile the blue graphs are the network

predictions. The solid graph is the training set data meanwhile the dotted graph is the

validation data set.

Table 4: The values of a, for the Figures 9 and 10

Fig Network Type Value Of a Fraction of Rejected

Samples

9 MLP [0 1 1 0 1 0 0 1 1 0 0 1 1] 0.99968

10 RBF [1 0 1 0 1 1 1 0 0 0 0 1 0] 0.8642

Data Samples

Pr
ed

ic
te

d
V

al
ue

s

 74

6.5.1 Testing and Comparison of Different Networks

The optimal design from each type of networks are tested and compared. The networks

are trained and validated as explained above. The networks are then tested and compared

using the testing data. The mean square errors of the outputs of the networks are shown in

Table 5.

Table 5: The mean square errors of the outputs of the tested networks.

 MLP RBF MLP+RBF

Training

RMS Error 0.0252 0.0548 0.0375

Validation

RMS Error 0.0251 0.0466 0.0299

Testing

RMS Error 0.2930 0.3750 0.3318

The optimal prediction for the reformulated MLP and RBF frameworks were tested with

the test data set and yielded the Figures 11 and 12.

 75

Figure 11: Predicted output of the reformulated MLP network for test data

Figure 12: Predicted output of the reformulated RBF network for test data

Pr
ed

ic
te

d
V

al
ue

s
Pr

ed
ic

te
d

V
al

ue
s

Data Samples

Data Samples

 76

Where the red is the actual values and the blue is the predicted value. Hence the optimal

value is the Figure 10 entry in Table 4. The root mean square error for the normalised

data was 0.2686 for the reformulated MLP and 0.0133 for the reformulated RBF. The

index average calculated by the MLP network has the lowest mean square error for the

polynomial approximation meanwhile the RBF network has the lowest mean square error

for the reformulated Bayesian framework architecture. The mean square error is high

when RBF network calculates the average indices for the polynomial approximation.

The outputs from the validation data for most cases have the least mean square error. The

difference between the mean square errors of the outputs calculated using the training

data and the mean square errors of the outputs calculated using the validation or the

testing data is not significant. The difference is about 0.2 in the case of testing data and

0.01 for the validating data (normalised value). This indicates that problem of over-fitting

is not present. The outputs from the networks using the testing data are shown in Figures

11, 12 and 13. The outputs from the network are compared with the actual index average.

The output trends from each network confirm the mean square error calculations. The

MLP network predicts the index average most accurately, meanwhile the RBF predicts

the index average least accurately for the polynomial approximation. The networks

predicts fairly accurately to the general trends of the target output.

 77

Figure 13: Networks predictions of the average indices using testing samples for

polynomial approximation.

Figure 14: Networks predicted output standard deviations for the polynomial

approximation

 78

The deviations are small hence the index averages shown in Figure 13 can thus be

considered as an accurate prediction.

The last network under investigation was the complex committee of networks comprised

of six MLP and six RBF networks combined. The committee was found to work

effectively and had a root mean square error of 0.0054 for the normalized test data and

also a root mean square of 9.8497e-004 for the validating normalized data. The

committee, which is as shown in Figure 4, yields Figure 15 for the training, validating

and testing data:

Figure 15: Committee of networks predicted output for the training, validating and
testing data

 79

The committee of networks thus gives the most efficient output with a very high accuracy

level compared to all the other networks. The committee of networks is, however, just an

extended implementation of the polynomial neural network.

6.3 Conclusion on Implementation

In this chapter, two methodologies were implemented using neural networks to optimally

select the input time-window. The first methodology uses polynomial approximation and

neural networks. The second methodology uses Bayesian analysis with the neural

networks and Markov Chain Monte Carlo (MCMC) methods to optimally select this time

window for the MLP and RBF networks. The sampling algorithm used for this

methodology is the Metropolis-Hastings algorithm discussed in Section 4.4. The

algorithm testing and validation has been done in this chapter too. A committee of

networks was also investigated in this chapter and yielded the most accurate result

compared to all the other networks. The next chapter would focus on the evaluation of the

methodology (the network created by the methodology) on the basis of accuracy. The

testing is done on NASDAQ data not used during training time, validation or testing time.

 80

Chapter 7

Application of the Methodology Designed

In this chapter, the previous discussions are concluded. In Chapter 2, neural network was

introduced. In Chapter 4, the Markov Chain Monte Carlo methods was described and in

Chapter 5, the Bayesian approach was also described. In Chapter 6 two algorithms were

implemented. The first algorithm exceeded the second in performance but the second

methodology, however, gave the detailed representation of the important days required

for the prediction. In this chapter the performance of the methodologies is further

analyzed using unseen data which is obtained from the NASDAQ stock market. The

chapter concludes by giving a thorough analysis of the results and also relating the

methodology’s performance to the existing methodologies for prediction. The

background literature in Chapter 2, however, proved that there has not been

methodologies implemented for the selection of an optimal input time-window, hence the

methodologies implemented in the previous chapter as well as the network created in the

 81

chapter are a novelty. The accuracy could be increased even further but such would be

computationally expensive such as for the second methodology where the optimization of

the parameters requires a lot of samples in order to converge as has been discussed in the

Metropolis-Hastings algorithm section. The trade-off thus in the design was the

convergence of the true result vis-à-vis the time required for the analysis. The results will,

however, be analyzed in the last section of this chapter.

7.1 Analysis Data

The data to be used for the analysis is the NASDAQ data from 02 of January 2003 to 31

of December 2003. This data was pre-conditioned as per the algorithm such that the data

can be normalized between 0 and 1 and the normalized data was then used to test the

network for predictability. It should be noted that the NASDAQ all-share index (N100

index) is used as the analysis data set.

7.2 Performance Measurement

To determine the performance of the algorithms, two measures are used. The first

measure is the root mean square error for the predicted average index and the second

measure is the standard deviation of such predictions. The output of the algorithm

(predicted value) is compared to the actual average index from the available data. The

error can thus be obtained by just getting the squared difference between the actual value

and the predicted value. Figure 16 shows the actual index for the NASDAQ data stated

above:

 82

Actual Average Values
90

0
11

00
13

00
15

00

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241

Figure 16: NASDAQ test data set used for the analysis of the methodologies

7.3 Methodology Analysis

The output from the polynomial approximation methodology was obtained and is shown

in the Figure 17.

 83

Figure 17: Graph of the network predicted index average for MLP & RBF network

for polynomial approximation

In Figure 17 the root mean square errors were computed to be, 1.5978e-004 and 0.0040

for the MLP and the RBF networks, respectively. The error profile for the data was

obtained and is shown in Figure 18.

 84

Error For the Average Predicted Data

-30

-25

-20

-15

-10

-5

0

5

10

15

20

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235

Days

Er
ro

r(
A

ct
ua

l-P
re

di
ct

ed
)

Error

Figure 18: The error between the predicted and the actual values

The committee of networks was also investigated with this analysis data and yielded
Figure 19.

Figure 19: Committee of networks predicted output for unseen data

 85

The root mean square error for the committee of networks prediction was 0.0016 for the

normalized value, which was quite low. This network can thus predict the stock price

average index accurately. Table 6 shows some of the data used in the analysis of the

polynomial approximation together with the error obtained for this data.

Table 6: Table showing the actual values for the analysis and the predicted value

from the network as well as the error of prediction

Actual Predicted Error

Actual Predict

ed

Error Actual Predicted Error

1080.056 1068.4 11.656 965.188 967.64 -2.452 1075.524 1071 4.524

1066.102 1058.9 7.202 961.458 966.64 -5.182 1072.4 1066.8 5.6

1051.286 1039.8 11.486 966.466 968.24 -1.774 1070.666 1065.1 5.566

1033.616 1029.2 4.416 975.456 979.27 -3.814 1067.004 1060.4 6.604

1025.432 1019.8 5.632 982.31 990.96 -8.65 1057.724 1059.1

-

1.376

1012.376 1013.8 -1.424 991.25 1004.4 -13.15 1052.036 1044.6 7.436

1006.14 1006.6 -0.46 1004.054 1010.4 -6.346 1043.248 1040.3 2.948

1004.636 1007.5 -2.864 1006.574 1005 1.574 1042.68 1036.8 5.88

1006.646 1001.8 4.846 1003.448 1002.5 0.948 1043.106 1040.9 2.206

997.214 1000.5 -3.286 997.174 994.5 2.674 1043.904 1049.7

-

5.796

994.588 997.16 -2.572 995.84 993.62 2.22 1050.828 1057.8

-

6.972

994.72 995.16 -0.44 994.604 997.78 -3.176 1055.562 1052.5 3.062

988.784 986.8 1.984 993.88 992.89 0.99 1047.574 1043 4.574

979.266 980.95 -1.684 990.62 997.15 -6.53 1041.39 1035.9 5.49

976.274 975.62 0.654 993.764 993.89 -0.126 1036.478 1030.3 6.178

 86

The Bayesian framework yielded the following discrete parameter a = [1 0 1 0 1 0 0 1 1 1

0 0 1].

7.3 Effect of the Simultaneous Use of Diverse Neural Networks on the

Accuracy of Prediction

The committee of neural networks architecture was presented in Section 6.2 of this thesis.

This network was found to have a higher level of accuracy compared to the MLP and

RBF networks. This implies thus that the simultaneous use of diverse neural networks is

beneficial to the overall system. A more complex combination of diverse neural networks

will, therefore, yield even better results.

7.4 Conclusion

An analysis of the methodologies, presented in the previous chapters, has been done in

this chapter. The NASDAQ all-share index from 01 January 2003 to 31 December 2003

was used as the test data. The MLP network yielded better results than the RBF network.

The effect of the simultaneous use of diverse neural networks was also investigated in

this chapter. This showed that the diverse neural network tracks the stock pattern for the

average index more accurately than the MLP and RBF networks and also has a low rms

error. To this effect, it can be concluded that the use of a committee of neural networks is

beneficial and more efficient in the prediction of the stock prices and for trend tracking.

This chapter illustrated the fact that a committee of networks increases the accuracy of

the prediction; hence creating a more complex committee of networks will yield even

more accurate results.

 87

Chapter 8

Conclusion

Methods to optimally select the input time-window in the prediction of stocks were

designed and implemented using polynomial approximation and also by reformulating

the Bayesian framework to include a discrete parameter. This discrete parameter attaches

a value to the importance of a particular day with respect to the output value whereby, a

value of one implies importance and a zero implies unimportance, of the particular day

towards the prediction of the output. The architectures tested were the multi-layer

perceptron (MLP), radial basis function (RBF) and two integrated infrastructures

comprising of the two networks, simultaneously, which were presented in Chapters 6 and

7. The methodology employed in designing was to first specify and process the data to be

used for the design. At this stage, the data was normalized so that the values lie between

zero and one, thereby reducing the effect of over-fitting (which leads to poor

 88

generalization). This stage is known as preconditioning. Upon obtaining the

preconditioned data, the polynomial approximation design was embarked on. The initial

design phase of the polynomial approximation methodology involved optimizing the

MLP and RBF networks by getting an optimal number of neurons in the hidden layer.

The relationships between the number of neurons in the hidden layer and the mean square

error of the outputs were then used to find the optimal parameter values for the MLP and

RBF networks. It was found that 12 and 11 hidden neurons were optimal for the MLP

and RBF networks, respectively. The performances of the two networks and the

integrated network (committee of networks) were then compared using the testing data.

The MLP network is best in predicting the index average meanwhile the RBF network is

the worst in predicting the index average. The committee of networks yielded even better

results than both the MLP and the RBF networks. This performance analysis done in

Chapter 6, Section 6.2, was used to get the optimal architecture which was the MLP

based on the root mean square (RMS) errors. Thus, the MLP is used for the first stage of

the polynomial approximation to select an optimal input time-window design. Upon

analyzing and optimizing the error function mapping the RMS error between the actual

output and the predicted output, to the input days, an optimal time-window of seven days

was obtained. The second design methodology involved the redesigning and

reformulation of the Bayesian framework using the Metropolis-Hastings algorithm. The

methodology employed here was firstly to create a discrete network for the MLP and

RBF networks. This network contained a discrete parameter a. The parameter a, had a

value of zero if a particular input day was not important towards the prediction, and the

parameter had a value of one if the particular input day was important for the prediction.

 89

This network architecture was presented in Chapter 6, Section 6.4. The discrete

feedforward MLP and RBF networks were then created. Upon getting the discrete

feedforward MLP and RBF networks, the Metropolis-Hastings algorithm was used to

optimize the weights, biases and the discrete parameter in a discrete network as has been

presented in previous sections. It was found that this reformed network yielded good

result and could intuitively chose the number of days required to predict the index

average. The average number of days required as the input time-window was found to be

seven, which corresponded to the polynomial approximation as well. This methodology

is beneficial since the number of input days required to predict the index average over the

next five days do not have to be stated. A pool of data is rather entered into the network

and the network is trained with this pool of the data. The network then recursively selects

the input time-window. This methodology, however, had the limitation in that it was

computationally expensive. The computational times spanned a period of more than 12

hours compared to the 3 minutes, which the polynomial approximation approach takes. A

faster Markov Chain Monte Carlo (MCMC) algorithm will thus result in the increase of

the efficiency of this methodology vis-à-vis computational expense. The trade-offs then

had to be computational time or higher accuracy. The MLP architecture can thus be used

to predict the index average over the next five days accurately and can also be used with

polynomial approximation to select an optimal input time-window. A reformulated MLP

and RBF with a discrete parameter can also be used to predict index average over the

next five days without specifications of what previous days’ data the network should use.

The polynomial approximation is more efficient with respect to computational expense

meanwhile the reformulated Bayesian neural networks are more efficient with respect to

 90

accuracy. The effect of simultaneous use of diverse neural networks was also investigated

and was found to yield more accurate results. The accuracy can thus be further increased

by implementing a more complex committee of networks. Conclusively, neural networks

using the MLP and RBF networks can be used with polynomial approximation to

optimize the input time-window. A reformulated Bayesian MLP and RBF network can

also be used to optimize this time-window. However, the MLP polynomial

approximation is chosen as the optimal design since as the degree of accuracy is not

much different from the Bayesian framework design, but the computational times is

significantly different. Also, the use of simultaneous neural network engines as

demonstrated in Chapters 6 and 7 results in the increase of accuracy and is thus

encouraged.

 91

Bibliography

[1] CNN Money: Markets and Stocks. www.money.com/markets. Last accessed: 2004 -

10 – 20.

[2] Stock Market News – World Markets – Stock Quotes, www.forbes.com/markets last

accessed: 2004 - 10 – 20.

[3] NASDAQ monthly share prices, http://www.marketdata.nasdaq.com/mr4b.html, last

accessed: 2004-05-30.

[4] Vehtari, A., and Lampinen, J. “Bayesian MLP neural networks for image analysis”.

Journal of Pattern Recognition Letters, 21, 2000, pp.1183-1191.

[5] Lachtermacher, G., and Fuller, J.D. “Backpropagation in time-series forecasting”.

Journal of Forecasting, 14, 1995, pp. 381-393.

[6] Bigus, J.P. “Data mining with neural networks: Solving business problems-from

application development to decision support”. Neural Networks, 15, 1996, pp. 909-

925.

[7] Agrawal, D., and Schorling, C. “Market shares forecasting: An empirical comparison

of artificial neural networks and multinomial logit model”. Journal of Retailing, 72:

(4), 1997, pp. 383-408.

[8] Wang, Y.-F. “Predicting stock price using fuzzy grey prediction system”. Journal of

Expert Systems with Applications, 22, 2002, pp. 33-39.

 92

[9] Kuo, R. J., Wu, P., and Wang, C.P. “An intelligent sales forecasting system through

integration of artificial neural network and fuzzy neural networks with fuzzy weight

elimination”. Neural Networks, 15, 2002, pp. 909-925.

[10] http://www.avaye.com/ai/nn/introduction/index.html. Last accessed: 2004-10-03.

[11] http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html#what. Last accessed: 2004-

10-11.

[12] http://www.willamette.edu/~gorr/classes/cs449/. Last accessed: 2004-10-08.

[13] http://www.avaye.com/ai/nn/overfitting/index.html. Last accessed: 2004-10-03

[14] Haykin, S. Neural Networks; A Comprehensive Foundation. Macmillan, 1994, pp.

45 – 87.

[15] http://wwwinf.ethz.ch/~schraudo/NNcourse/linear2.html. Last accessed: 2004-

10-10

[16] Bishop, C.M. Neural Networks for Pattern Recognition. Oxford University Press,

1995.

[17] Technical Analysis 101. “Moving Averages”.

http://www.fimi.com/studies/moving_averages.htm . Last accessed: 2004 – 10 – 20.

[18] “Forecasting Methods Used in ezForecaster”.

http://www.ezforecaster.com/fcmethod.htm . Last accessed: 2004 – 10 – 20.

[19] Efe, O.M., and Kaynak, O., “A novel optimization procedure for training of fuzzy

inference systems by combining variable structure systems technique and Levenberg

– Marquardt algorithm.” Fuzzy Sets and Systems, 122, 2001, pp. 153 – 165.

[20] Ranganathan, A. “The Levenberg-Marquardt Algorithm”, June 2004.

http://www.cc.gatech.edu/~ananth/lmtut.pdf . Last accessed: 2004 – 10 – 21.

 93

[21] G.E. Dallal. “Introduction to Simple Linear Regression”.

http://www.tufts.edu/~gdallal/slr.htm . Last accessed: 2004 – 10 – 20.

[22] Montgomery, D.C., Peck, E.A., and Vining, G.G. Introduction to Linear

Regression Analysis. 3rd edition, New York: Wiley, 2001.

[23] Kleijnen, J.P.C. Statistical Techniques in Simulation, New York: Marcel Dekker,

1974.

[24] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E.

“Equations of state calculations by fast computing machines”, Journal of Chemical

Physics, 21, 1953, pp. 1087-1092.

[25] Tierney, L. “Markov chains for exploring posterior distributions”, Annals of

Statistics, 22: (4), 1994, pp. 1701-1728.

[26] Gelman, A., and Rubin, D.B. “Inference from iterative simulation using multiple

sequences,” Journal of Statistical Science, 7, 1992, pp. 457-511.

[27] Cowles, M.K., and Carlin, B.P., “Markov Chain Monte-Carlo convergence

diagnostics: a comparative study,” Journal of the American Statistical Association,

91, 1996, pp. 883-904.

[28] Murdoch, D.J., and Green, P.J. “Exact sampling from a continuous state space,”

Scandinavian Journal of Statistics, 25 :(3), 1998, pp. 483-502.

[29] Brooks, S.P., and Roberts, G.O. “Assessing convergence of Markov Chain Monte

Carlo algorithms”, Journal of Statistics and Computing, 8: (4), 1998, pp. 319-335.

[30] Chib, S., and Greenberg, E. “Understanding the Metropolis-Hastings algorithm”,

The American Statistician 49: (4), 1995, pp. 327-335.

 94

[31] Lampinen J., and Vehtari A., “Bayesian approach for neural networks-review and

case studies”, Neural Networks, 14: (3), April 2001, pp. 7-24.

[32] Nabney, I.T. NETLAB: Algorithms for Pattern Recognition, Springer – Verlag,

London, Great Britain, 2003, pp. 325 – 365.

[33] Sridhar, D.V., Bartlett, E.B., and Seagrave, R.C., “An information theoretic

approach for combining neural network process models”, Neural Networks, 12, 1999,

pp. 915 – 926.

[34] Bakker B., and Heskes T., “Clustering ensembles of neural network models”,

Neural Networks, 16, 2003, pp. 261 – 269.

[35] Renshaw, E. “Metropolis-Hastings from a stochastic population dynamics

perspective”. Journal of Computational Statistics and Data Analysis, 45: (4), May

2004, pg 765-786.

 95

Appendix A

The Implemented Code for Methodologies Developed

This appendix contains the different MATLAB codes implemented for the methodologies

explained above in Chapters 6 and 7.

A.1 Matlab Code to Optimize the Network Architecture

clear all;
load dataf2
i=1;
n=3;
m=2;
e1=length(datanasdaq7);
f=floor(e1/3);
g=2*f;
e=3*f;

while(i<=f),
 p=i;
 q=1;
 n=p+6;
 for a=p:n,
 inpt(q,i)=datanasdaq(a,1);
 q=q+1;
 end

 outpt(1,i)=datanasdaq7(i,1);

 i=i+1;

 end

 96

h=1;
while(i<=g),
p=i;
q=1;
n=p+6;

for a=p:n,
 inpv(q,h)=datanasdaq(a,1);
 q=q+1;
end
outpv(1,h)=datanasdaq7(i,1);
 h=h+1;
 i=i+1;
 end

k=1;

while(i<=e),
p=i;
q=1;
n=p+6;

for a=p:n,
 inpte(q,k)=datanasdaq(a,1);
 q=q+1;
end
outpte(1,k)=datanasdaq7(i,1);

 k=k+1;
 i=i+1;
 n=n+1;
end

 %Training data set

 day1dt=inpt(1,:);
 day2dt=inpt(2,:);
 day3dt=inpt(3,:);
 day4dt=inpt(4,:);
 day5dt=inpt(5,:);
 day6dt=inpt(6,:);
 day7dt=inpt(7,:);
 day8dt=outpt(1,:);

 %Validating data set
 day1dv=inpv(1,:);
 day2dv=inpv(2,:);
 day3dv=inpv(3,:);
 day4dv=inpv(4,:);
 day5dv=inpv(5,:);

 97

 day6dv=inpv(6,:);
 day7dv=inpv(7,:);
 day8dv=outpv(1,:);

 %Testing data set
 day1dte=inpte(1,:);
 day2dte=inpte(2,:);
 day3dte=inpte(3,:);
 day4dte=inpte(4,:);
 day5dte=inpte(5,:);
 day6dte=inpte(6,:);
 day7dte=inpte(7,:);
 day8dte=outpte(1,:);

 %normalise the parameters

 %Training data
 minday1t=min(day1dt);
 maxday1t=max(day1dt);
 minday2t=min(day2dt);
 maxday2t=max(day2dt);
 minday3t=min(day3dt);
 maxday3t=max(day3dt);
 minday4t=min(day4dt);
 maxday4t=max(day4dt);
 minday5t=min(day5dt);
 maxday5t=max(day5dt);
 minday6t=min(day6dt);
 maxday6t=max(day6dt);
 minday7t=min(day7dt);
 maxday7t=max(day7dt);
 minday8t=min(day8dt);
 maxday8t=max(day8dt);

 day1t=(day1dt-minday1t)/(maxday1t-minday1t);
 day2t=(day2dt-minday2t)/(maxday2t-minday2t);
 day3t=(day3dt-minday3t)/(maxday3t-minday3t);
 day4t=(day4dt-minday4t)/(maxday4t-minday4t);
 day5t=(day5dt-minday5t)/(maxday5t-minday5t);
 day6t=(day6dt-minday6t)/(maxday6t-minday6t);
 day7t=(day7dt-minday7t)/(maxday7t-minday7t);
 day8t=(day8dt-minday8t)/(maxday8t-minday8t);

 %Validation data
 minday1v=min(day1dv);
 maxday1v=max(day1dv);
 minday2v=min(day2dv);
 maxday2v=max(day2dv);

 98

 minday3v=min(day3dv);
 maxday3v=max(day3dv);
 minday4v=min(day4dv);
 maxday4v=max(day4dv);
 minday5v=min(day5dv);
 maxday5v=max(day5dv);
 minday6v=min(day6dv);
 maxday6v=max(day6dv);
 minday7v=min(day7dv);
 maxday7v=max(day7dv);
 minday8v=min(day8dv);
 maxday8v=max(day8dv);

 day1v=(day1dv-minday1v)/(maxday1v-minday1v);
 day2v=(day2dv-minday2v)/(maxday2v-minday2v);
 day3v=(day3dv-minday3v)/(maxday3v-minday3v);
 day4v=(day4dv-minday4v)/(maxday4v-minday4v);
 day5v=(day5dv-minday5v)/(maxday5v-minday5v);
 day6v=(day6dv-minday6v)/(maxday6v-minday6v);
 day7v=(day7dv-minday7v)/(maxday7v-minday7v);
 day8v=(day8dv-minday8v)/(maxday8v-minday8v);

 %Testing data set

 minday1te=min(day1dte);
 maxday1te=max(day1dte);
 minday2te=min(day2dte);
 maxday2te=max(day2dte);
 minday3te=min(day3dte);
 maxday3te=max(day3dte);
 minday4te=min(day4dte);
 maxday4te=max(day4dte);
 minday5te=min(day5dte);
 maxday5te=max(day5dte);
 minday6te=min(day6dte);
 maxday6te=max(day6dte);
 minday7te=min(day7dte);
 maxday7te=max(day7dte);
 minday8te=min(day8dte);
 maxday8te=max(day8dte);

 day1te=(day1dte-minday1te)/(maxday1te-minday1te);
 day2te=(day2dte-minday2te)/(maxday2te-minday2te);
 day3te=(day3dte-minday3te)/(maxday3te-minday3te);
 day4te=(day4dte-minday4te)/(maxday4te-minday4te);
 day5te=(day5dte-minday5te)/(maxday5te-minday5te);
 day6te=(day6dte-minday6te)/(maxday6te-minday6te);
 day7te=(day7dte-minday7te)/(maxday7te-minday7te);
 day8te=(day8dte-minday8te)/(maxday8te-minday8te);

 99

a=length(day8t);
q=1;
for t=1:a,
if t==1
day8det(t,1)=0;
day8dev(t,1)=0;
day8dete(t,1)=0;
end
if t>1,
 day8det(t,1)=day8t(q);
 day8dev(t,1)=day8v(q);
 day8dete(t,1)=day8te(q);
 q=q+1;
end
end
 for s=1:f,

 invart(s,1)=day1t(s);
 invart(s,2)=day2t(s);
 invart(s,3)=day3t(s);
 invart(s,4)=day4t(s);
 invart(s,5)=day5t(s);
 invart(s,6)=day6t(s);
 invart(s,7)=day7t(s);
 invart(s,8)=day8det(s);
 outvart(s,1)=day8t(s);

end

j=1;
f1=f+1;

for s=f1:g,

 invarv(j,1)=day1v(j);
 invarv(j,2)=day2v(j);
 invarv(j,3)=day3v(j);
 invarv(j,4)=day4v(j);
 invarv(j,5)=day5v(j);
 invarv(j,6)=day6v(j);
 invarv(j,7)=day7v(j);
 invarv(j,8)=day8dev(j);
 outvarv(j,1)=day8v(j);
 j=j+1;

end

k=1;
g1=g+1;
for s=g1:e,
 invarte(k,1)=day1te(k);

 100

 invarte(k,2)=day2te(k);
 invarte(k,3)=day3te(k);
 invarte(k,4)=day4te(k);
 invarte(k,5)=day5te(k);
 invarte(k,6)=day6te(k);
 invarte(k,7)=day7te(k);
 invarte(k,8)=day8dete(k);
 outvarte(k,1)=day8te(k);
 k=k+1;
end

for u=5:40,

%Initialising neural network parameters
nin=8;%Number of input units is 8
nhiddenm=u;%u hidden layers
nhiddenr=u;%u hidden layers used
nout=1;%One output value
alpha=0.01;

net1=mlp(nin, nhiddenm, nout, 'linear', alpha); %Linear MLP algorithm chosen
net2=rbf(nin,nhiddenr,nout,'gaussian','linear',alpha);%RBF network architecture

options = zeros(1,18);
options(1) = 1;
options(14) = 1000;%1000 iterations found to be accurate enough
[net1, options, varargout] = netopt(net1, options, invart, outvart, 'scg');

%RBF Optimisation
[net2, options, varargout] = netopt(net2, options, invart, outvart, 'scg');
yout1= mlpfwd(net1, invart);
yout2= mlpfwd(net1,invarv);

yout1r=rbffwd(net2,invart);
yout2r=rbffwd(net2,invarv);

Day8t1=(yout1(:,1)*(maxday8t-minday8t))+minday8t;
Day8t2=(yout2(:,1)*(maxday8v-minday8v))+minday8v;

Day8t1r=(yout1r(:,1)*(maxday8t-minday8t))+minday8t;
Day8t2r=(yout2r(:,1)*(maxday8v-minday8v))+minday8v;

Day8av1=(Day8t1+Day8t1r)/2;
Day8av2=(Day8t2+Day8t2r)/2;

m=length(Day8t1);
sum1=0;
sum2=0;
sum1av=0;
sum2av=0;

 101

sum1r=0;
sum2r=0;

for n=1:m,
 sum1=sum1+((Day8t1(n)-day8dt(n))^2);
 sum2=sum2+((Day8t2(n)-day8dv(n))^2);
 sum1r=sum1r+((Day8t1r(n)-day8dt(n))^2);
 sum2r=sum2r+((Day8t2r(n)-day8dv(n))^2);
 sum1av=sum1av+((Day8av1(n)-day8dt(n))^2);
 sum2av=sum2av+((Day8av2(n)-day8dv(n))^2);

end

sum1=(sum1/m)^(1/2);
sum2=(sum2/m)^(1/2);
sum1av=(sum1av/m)^(1/2);
sum2av=(sum2av/m)^(1/2);
sum1r=(sum1r/m)^(1/2);
sum2r=(sum2r/m)^(1/2);
p=u-4;
eror1t(p)=sum1;
eror2t(p)=sum1r;
eror1av(p)=sum1av;
eror1v(p)=sum2;
eror2v(p)=sum2r;
eror2av(p)=sum2av;
end

x=[5:1:40];
plot(x,eror1t,'b')legend('error for training data-MLP')
hold on
plot(x,eror2t,'r')legend('error for training data-RBF')
plot(x,eror1v,'b.')legend('error for validating data-MLP')
plot(x,eror2v,'r.')legend('error for validating data-RBF')
plot(x,eror1av,'k')legend('error for training data-MLP&RBF')
plot(x,eror2av,'k.')legend('error for validating data-MLP&RBF')

A.2 Matlab Code for the Polynomial Approximation Optimisation of the

Input Time-Window
The function input number below gets the RMS error for using the various number of

days where mastdaysn represents a function which uses the number of days specified by

the function to compute the RMS error with n representing the number of days. The

generic function is as shown in A.2.2 below.

 102

A.2.1 Input Number:

function inputnum=erran()
clear all;
for i=5:12,
 if(i==5)
 optstring=['mastdays5'];
end
if(i==6)
 optstring=['mastdays6'];
end
if(i==7)
 optstring=['mastdays7'];
end
if(i==8)
 optstring=['mastdays8'];
end
if(i==9)
 optstring=['mastdays9'];
end
if(i==10)
 optstring=['mastdays10'];
end
if(i==11)
 optstring=['mastdays11'];
end
if(i==12)
 optstring=['mastdays12'];
end
 [error1(i-4),error2(i-4)]=feval(optstring);

end

x=[5:1:12];
save errorf error1 error2

A.2.2 Mastdaysn

function [eror1,eror2]=mastdaysn()

clear all;
load dataf2
i=1;
e1=length(datanasdaqn);
f=floor(e1/3);
g=2*f;
e=3*f;

while(i<=f),

 103

 p=i;
 q=1;
 t=p+n-1;
 for a=p:t,
 inpt(q,i)=datanasdaq(a,1);
 q=q+1;
 end

 outpt(1,i)=datanasdaqn(i,1);

 i=i+1;

 end

h=1;
while(i<=g),
p=i;
q=1;
t=p+n-1;

for a=p:t,
 inpv(q,h)=datanasdaq(a,1);
 q=q+1;
end
outpv(1,h)=datanasdaq6(i,1);
 h=h+1;
 i=i+1;
 end

k=1;

while(i<=e),
p=i;
q=1;
t=p+n-1;

for a=p:t,
 inpte(q,k)=datanasdaq(a,1);
 q=q+1;
end
outpte(1,k)=datanasdaq6(i,1);

 k=k+1;
 i=i+1;
 end

 %Training data set

 day1dt=inpt(1,:);
 day2dt=inpt(2,:);
 day3dt=inpt(3,:);

 104

 day4dt=inpt(4,:);
 day5dt=inpt(5,:);
 . . .
 . . .
 . . .
 dayndt=inpt(n,:);
 day(n+1)dt=outpt(1,:);

 %Validating data set
 day1dv=inpv(1,:);
 day2dv=inpv(2,:);
 day3dv=inpv(3,:);
 day4dv=inpv(4,:);
 day5dv=inpv(5,:);
 . . .
 . . .
 . . .

 dayndv=inpv(n,:);
 day(n+1)dv=outpv(1,:);

 %Testing data set
 day1dte=inpte(1,:);
 day2dte=inpte(2,:);
 day3dte=inpte(3,:);
 day4dte=inpte(4,:);
 day5dte=inpte(5,:);
 . . .
 . . .
 . . .
 dayndte=inpte(n,:);
 day(n+1)dte=outpte(1,:);

 %normalise the parameters

 %Training data
 minday1t=min(day1dt);
 maxday1t=max(day1dt);
 minday2t=min(day2dt);
 maxday2t=max(day2dt);
 minday3t=min(day3dt);
 maxday3t=max(day3dt);
 minday4t=min(day4dt);
 maxday4t=max(day4dt);
 minday5t=min(day5dt);
 maxday5t=max(day5dt);
 . . .
 . . .
 . . .

 105

 mindaynt=min(dayndt);
 maxdaynt=max(dayndt);
 minday(n+1)t=min(day(n+1)dt);
 maxday(n+1)t=max(day(n+1)dt);

 day1t=(day1dt-minday1t)/(maxday1t-minday1t);
 day2t=(day2dt-minday2t)/(maxday2t-minday2t);
 day3t=(day3dt-minday3t)/(maxday3t-minday3t);
 day4t=(day4dt-minday4t)/(maxday4t-minday4t);
 day5t=(day5dt-minday5t)/(maxday5t-minday5t);
 . . .
 . . .
 . . .
 daynt=(dayndt-mindaynt)/(maxdaynt-mindaynt);
 day(n+1)t=(day(n+1)dt-minday(n+1)t)/(maxday(n+1)t-minday(n+1)t);

 a=length(day(n+1)t);
q=1;
for t=1:a,
if t==1
day(n+1)det(t,1)=0;
end
if t>1,
 day(n+1)det(t,1)=day7t(q);
 q=q+1;
end
end
 for s=1:f,

 invart(s,1)=day1t(s);
 invart(s,2)=day2t(s);
 invart(s,3)=day3t(s);
 invart(s,4)=day4t(s);
 invart(s,5)=day5t(s);
 . . .
 . . .
 . . .
 invart(s,n)=daynt(s);
 invart(s,n+1)=day(n+1)det(s);
 outvart(s,1)=day(n+1)t(s);

end

%Initialising neural network parameters
nin=n+1;%Number of input units is (n+1)
nhiddenm=12;%12 hidden layers used (optimum value)
nhiddenr=11;%11 hidden layers used (optimum value)
nout=1;%One output value
alpha=0.01;

 106

net1=mlp(nin, nhiddenm, nout, 'linear', alpha); %Linear MLP algorithm chosen
net2=rbf(nin,nhiddenr,nout,'gaussian','linear',alpha);%RBF network architecture

options = zeros(1,18);
options(1) = 1;
options(14) = 1000;%1000 iterations found to be accurate enough
[net1, options, varargout] = netopt(net1, options, invart, outvart, 'scg');

%RBF Optimisation
[net2, options, varargout] = netopt(net2, options, invart, outvart, 'scg');
yout1= mlpfwd(net1, invart);

yout1r=rbffwd(net2,invart);

Day(n+1)t1=(yout1(:,1)*(maxday7t-minday7t))+minday7t;

Day(n+1)t1r=(yout1r(:,1)*(maxday7t-minday7t))+minday7t;

Day7av1=(Day7t1+Day7t1r)/2;

m=length(Day(n+1)t1);
sum1=0;
sum1av=0;
sum1r=0;

for t=1:m,
 sum1=sum1+((Day(n+1)t1(t)-day(n+1)dt(t))^2);
 sum1r=sum1r+((Day(n+1)t1r(t)-day(n+1)dt(t))^2);
 sum1av=sum1av+((Day(n+1)av1(n)-day(n+1)dt(n))^2);

end

sum1=sum1/m;
sum1av=sum1av/m;
sum1r=sum1r/m;

eror1=sum1;
eror2=sum1r;

 107

A.3 The Matlab Codes Created for the Second Methodology

A.3.1 The discrete MLP and RBF Networks

a) MLP

function netbin=mlpbin(nin,nhidden,nout,outfunc,prior,beta)

netbin.type='mlpbin';
netbin.nin=nin;
netbin.nhidden=nhidden;
netbin.nout=nout;

netbin.nwts=nin + (nin+1)*nhidden + (nhidden+1)*nout;

outfns={'linear','logistic','softmax'};

if sum(strcmp(outfunc,outfns))==0
 error('undefined activation function.Exiting.');
else
 netbin.outfn=outfunc;
end

if nargin>4
 if isstruct(prior)
 netbin.alpha=prior.alpha;
 netbin.index=prior.index;

 else if size(prior)==[1 1]
 netbin.alpha=prior;
 else
 error('prior must be a scalar or a structure');
 end
 end
end

 netbin.a=round(rand(1,nin));
 netbin.w1=randn(nin,nhidden)/sqrt(nin+1);
 netbin.b1=randn(1,nhidden)/sqrt(nin+1);
 netbin.w2=randn(nhidden,nout)/sqrt(nhidden+1);
 netbin.b2=randn(1,nout)/sqrt(nhidden+1);

 if nargin==6
 netbin.beta=beta;
 end

 108

b) RBF

function netbin = rbfbin(nin, nhidden, nout, rbfunc, outfunc, prior, beta)

netbin.type = 'rbfbin';
netbin.nin = nin;
netbin.nhidden = nhidden;
netbin.nout = nout;

% Check that function is an allowed type
actfns = {'gaussian', 'tps', 'r4logr'};
outfns = {'linear', 'neuroscale'};
if (strcmp(rbfunc, actfns)) == 0
 error('Undefined activation function.')
else
 netbin.actfn = rbfunc;
end
if nargin <= 4
 netbin.outfn = outfns{1};
elseif (strcmp(outfunc, outfns) == 0)
 error('Undefined output function.')
else
 netbin.outfn = outfunc;
 end

% Assume each function has a centre and a single width parameter, and that
% hidden layer to output weights include a bias. Only the Gaussian function
% requires a width
netbin.nwts=nin*(1+nhidden) + (nhidden + 1)*nout;

if strcmp(rbfunc, 'gaussian')
 % Extra weights for width parameters
 netbin.nwts = netbin.nwts + nhidden;
end

if nargin > 5
 if isstruct(prior)
 netbin.alpha = prior.alpha;
 netbin.index = prior.index;
 elseif size(prior) == [1 1]
 netbin.alpha = prior;
 else
 error('prior must be a scalar or a structure');
 end
 if nargin > 6
 netbin.beta = beta;
 end
end
a=round(rand(1,nin));
w1 = randn(1, (netbin.nwts-nin));
w=[a,w1];

 109

netbin = rbfunpakbin(netbin, w);

% Make widths equal to one
if strcmp(rbfunc, 'gaussian')
 netbin.wi = ones(1, nhidden);
end

if strcmp(netbin.outfn, 'neuroscale')
 netbin.mask = rbfpriorbin(rbfunc, nin, nhidden, nout);
end

A.3.2 Optimisation Algorithms for the MLP and RBF Networks

function [x1,options,samples, energies, diagn] = metropbin(f, x1, options, gradf, varargin)

if nargin <= 2
 if ~strcmp(f, 'state')
 error('Unknown argument to metrop');
 end
 switch nargin
 case 1
 % Return state of sampler
 samples = get_state(f); % Function defined in this module
 return;
 case 2
 % Set the state of the sampler
 set_state(f, x1); % Function defined in this module
 return;
 end
end

display = options(1);
if options(14) > 0
 nsamples = options(14);
else
 nsamples = 100;
end
if options(15) >= 0
 nomit = options(15);
else
 nomit = 0;
end
if options(18) > 0.0
 std_dev = sqrt(options(18));
else
 std_dev = 1.0; % default
end

netbin=varargin{1};

 110

netbin=netbinunpak(netbin,x1);

b=netbin.a;
x2=[netbin.w1(:)',netbin.b1,netbin.w2(:)',netbin.b2];
nparams=length(x2);
nparams1=length(b);

f=fcnchk(f,length(varargin));

samples1=zeros(nsamples,nparams);
samples2=zeros(nsamples,nparams1);

if nargout>=2
 en_save=1;
 energies=zeros(nsamples,1);
else
 en_save=0;
end

if nargout>=3
 diagnostics=1;
 diagn_pos=zeros(nsamples,nparams);
 diagn_pos1=zeros(nsamples,nparams1);
 diagn_acc=zeros(nsamples,1);
else
 diagnostics=0;
end

x1=[netbin.a,netbin.w1(:)',netbin.b1,netbin.w2(:)',netbin.b2];
n=-nomit+1;
Eold=feval(f,x1,varargin{:});
nreject = 0;
t=0;

while n<=nsamples
 xold=x2;
 aold=b;

 x2=xold+randn(1,nparams)*std_dev;
 b=round(rand(1,nparams1));

 x1=[b,x2];
 Enew=feval(f,x1,varargin{:});

 p=exp(Eold-Enew);

 if (diagnostics & n>0)
 diagn_pos(n,:)=x2;
 diagn_pos1(n,:)=b;

 111

 diagn_acc(n,:)=p;
 end

 if (display>1)
 fprintf(1,'New position is \n');
 disp(x1);
 end

 if p>rand(1)
 Eold=Enew;
 if (display>0)
 fprintf(1,'Finished step %4d Threshold: %g \n',n,p);
 end

 else
 if n>0
 nreject=nreject+1;
 end

 x2=xold;
 b2=aold;
 if (display>0)
 fprintf(1,'Sample rejected %4d. Threshold: %g \n',n,p);
 end
 end

 if n>0
 samples1(n,:)=x2;
 samples2(n,:)=b;
 if en_save
 energies(n)=Eold;
 end
 end
 n=n+1;
end
if (display>0)
 fprintf(1,'\n Fraction of samples rejected: %g \n',nreject/nsamples);
end
if diagnostics
 diagn.pos=diagn_pos;
 diagn.acc=diagn_acc;
 diagn.pos1=diagn_pos1;
end

options(8) = Eold;

x3=sum(samples1)/(n-1);
b2=round(sum(samples2)/(n-1));

x1=[b,x3];

 112

% Return complete state of the sampler.
function state = get_state(f)

state.randstate = rand('state');
state.randnstate = randn('state');
return

% Set state of sampler, either from full state, or with an integer
function set_state(f, x)

if isnumeric(x)

 rand('state', x);
 randn('state', x);
else
 if ~isstruct(x)
 error('Second argument to metrop must be number or state structure');
end
 if (~isfield(x, 'randstate') | ~isfield(x, 'randnstate'))
 error('Second argument to metrop must contain correct fields')
end
 rand('state', x.randstate);
 randn('state', x.randnstate);
end
return

A.4 Matlab Code for the Optimisation of the Input Time-Window

A.4.1 MLP Network

clear all;
load dataf2
i=1;
n=3;
m=2;
e1=length(datanasdaq12);
f=floor(e1/3);
g=2*f;
e=3*f;

while(i<=f),
 p=i;
 q=1;
 n=p+11;
 for a=p:n,
 inpt(q,i)=datanasdaq(a,1);
 q=q+1;
 end

 113

 outpt(1,i)=datanasdaq12(i,1);

 i=i+1;

 end

h=1;
while(i<=g),
p=i;
q=1;
n=p+11;

for a=p:n,
 inpv(q,h)=datanasdaq(a,1);
 q=q+1;
end
outpv(1,h)=datanasdaq12(i,1);
 h=h+1;
 i=i+1;
 end

k=1;

while(i<=e),
p=i;
q=1;
n=p+11;

for a=p:n,
 inpte(q,k)=datanasdaq(a,1);
 q=q+1;
end
outpte(1,k)=datanasdaq12(i,1);

 k=k+1;
 i=i+1;
 n=n+1;
end

 %Training data set

 day1dt=inpt(1,:);
 day2dt=inpt(2,:);
 day3dt=inpt(3,:);
 day4dt=inpt(4,:);
 day5dt=inpt(5,:);
 day6dt=inpt(6,:);
 day7dt=inpt(7,:);
 day8dt=inpt(8,:);
 day9dt=inpt(9,:);
 day10dt=inpt(10,:);

 114

 day11dt=inpt(11,:);
 day12dt=inpt(12,:);
 day13dt=outpt(1,:);

 %Validating data set
 day1dv=inpv(1,:);
 day2dv=inpv(2,:);
 day3dv=inpv(3,:);
 day4dv=inpv(4,:);
 day5dv=inpv(5,:);
 day6dv=inpv(6,:);
 day7dv=inpv(7,:);
 day8dv=inpv(8,:);
 day9dv=inpv(9,:);
 day10dv=inpv(10,:);
 day11dv=inpv(11,:);
 day12dv=inpv(12,:);
 day13dv=outpv(1,:);

 %Testing data set
 day1dte=inpte(1,:);
 day2dte=inpte(2,:);
 day3dte=inpte(3,:);
 day4dte=inpte(4,:);
 day5dte=inpte(5,:);
 day6dte=inpte(6,:);
 day7dte=inpte(7,:);
 day8dte=inpte(8,:);
 day9dte=inpte(9,:);
 day10dte=inpte(10,:);
 day11dte=inpte(11,:);
 day12dte=inpte(12,:);
 day13dte=outpte(1,:);

 %normalise the parameters

 %Training data
 minday1t=min(day1dt);
 maxday1t=max(day1dt);
 minday2t=min(day2dt);
 maxday2t=max(day2dt);
 minday3t=min(day3dt);
 maxday3t=max(day3dt);
 minday4t=min(day4dt);
 maxday4t=max(day4dt);
 minday5t=min(day5dt);
 maxday5t=max(day5dt);
 minday6t=min(day6dt);
 maxday6t=max(day6dt);

 115

 minday7t=min(day7dt);
 maxday7t=max(day7dt);
 minday8t=min(day8dt);
 maxday8t=max(day8dt);
 minday9t=min(day9dt);
 maxday9t=max(day9dt);
 minday10t=min(day10dt);
 maxday10t=max(day10dt);
 minday11t=min(day11dt);
 maxday11t=max(day11dt);
 minday12t=min(day12dt);
 maxday12t=max(day12dt);
 minday13t=min(day13dt);
 maxday13t=max(day13dt);

 day1t=(day1dt-minday1t)/(maxday1t-minday1t);
 day2t=(day2dt-minday2t)/(maxday2t-minday2t);
 day3t=(day3dt-minday3t)/(maxday3t-minday3t);
 day4t=(day4dt-minday4t)/(maxday4t-minday4t);
 day5t=(day5dt-minday5t)/(maxday5t-minday5t);
 day6t=(day6dt-minday6t)/(maxday6t-minday6t);
 day7t=(day7dt-minday7t)/(maxday7t-minday7t);
 day8t=(day8dt-minday8t)/(maxday8t-minday8t);
 day9t=(day9dt-minday9t)/(maxday9t-minday9t);
 day10t=(day10dt-minday10t)/(maxday10t-minday10t);
 day11t=(day11dt-minday11t)/(maxday11t-minday11t);
 day12t=(day12dt-minday12t)/(maxday12t-minday12t);
 day13t=(day13dt-minday13t)/(maxday13t-minday13t);

 %Validation data
 minday1v=min(day1dv);
 maxday1v=max(day1dv);
 minday2v=min(day2dv);
 maxday2v=max(day2dv);
 minday3v=min(day3dv);
 maxday3v=max(day3dv);
 minday4v=min(day4dv);
 maxday4v=max(day4dv);
 minday5v=min(day5dv);
 maxday5v=max(day5dv);
 minday6v=min(day6dv);
 maxday6v=max(day6dv);
 minday7v=min(day7dv);
 maxday7v=max(day7dv);
 minday8v=min(day8dv);
 maxday8v=max(day8dv);
 minday9v=min(day9dv);
 maxday9v=max(day9dv);
 minday10v=min(day10dv);

 116

 maxday10v=max(day10dv);
 minday11v=min(day11dv);
 maxday11v=max(day11dv);
 minday12v=min(day12dv);
 maxday12v=max(day12dv);
 minday13v=min(day13dv);
 maxday13v=max(day13dv);

 day1v=(day1dv-minday1v)/(maxday1v-minday1v);
 day2v=(day2dv-minday2v)/(maxday2v-minday2v);
 day3v=(day3dv-minday3v)/(maxday3v-minday3v);
 day4v=(day4dv-minday4v)/(maxday4v-minday4v);
 day5v=(day5dv-minday5v)/(maxday5v-minday5v);
 day6v=(day6dv-minday6v)/(maxday6v-minday6v);
 day7v=(day7dv-minday7v)/(maxday7v-minday7v);
 day8v=(day8dv-minday8v)/(maxday8v-minday8v);
 day9v=(day9dv-minday9v)/(maxday9v-minday9v);
 day10v=(day10dv-minday10v)/(maxday10v-minday10v);
 day11v=(day11dv-minday11v)/(maxday11v-minday11v);
 day12v=(day12dv-minday12v)/(maxday12v-minday12v);
 day13v=(day13dv-minday13v)/(maxday13v-minday13v);

 %Testing data set

 minday1te=min(day1dte);
 maxday1te=max(day1dte);
 minday2te=min(day2dte);
 maxday2te=max(day2dte);
 minday3te=min(day3dte);
 maxday3te=max(day3dte);
 minday4te=min(day4dte);
 maxday4te=max(day4dte);
 minday5te=min(day5dte);
 maxday5te=max(day5dte);
 minday6te=min(day6dte);
 maxday6te=max(day6dte);
 minday7te=min(day7dte);
 maxday7te=max(day7dte);
 minday8te=min(day8dte);
 maxday8te=max(day8dte);
 minday9te=min(day9dte);
 maxday9te=max(day9dte);
 minday10te=min(day10dte);
 maxday10te=max(day10dte);
 minday11te=min(day11dte);
 maxday11te=max(day11dte);
 minday12te=min(day12dte);
 maxday12te=max(day12dte);
 minday13te=min(day13dte);
 maxday13te=max(day13dte);

 117

 day1te=(day1dte-minday1te)/(maxday1te-minday1te);
 day2te=(day2dte-minday2te)/(maxday2te-minday2te);
 day3te=(day3dte-minday3te)/(maxday3te-minday3te);
 day4te=(day4dte-minday4te)/(maxday4te-minday4te);
 day5te=(day5dte-minday5te)/(maxday5te-minday5te);
 day6te=(day6dte-minday6te)/(maxday6te-minday6te);
 day7te=(day7dte-minday7te)/(maxday7te-minday7te);
 day8te=(day8dte-minday8te)/(maxday8te-minday8te);
 day9te=(day9dte-minday9te)/(maxday9te-minday9te);
 day10te=(day10dte-minday10te)/(maxday10te-minday10te);
 day11te=(day11dte-minday11te)/(maxday11te-minday11te);
 day12te=(day12dte-minday12te)/(maxday12te-minday12te);
 day13te=(day13dte-minday13te)/(maxday13te-minday13te);

a=length(day13t);
q=1;
for t=1:a,
if t==1
day13det(t,1)=0;
day13dev(t,1)=0;
day13dete(t,1)=0;
end
if t>1,
 day13det(t,1)=day13t(q);
 day13dev(t,1)=day13v(q);
 day13dete(t,1)=day13te(q);
 q=q+1;
end
end
 for s=1:f,

 invart(s,1)=day1t(s);
 invart(s,2)=day2t(s);
 invart(s,3)=day3t(s);
 invart(s,4)=day4t(s);
 invart(s,5)=day5t(s);
 invart(s,6)=day6t(s);
 invart(s,7)=day7t(s);
 invart(s,8)=day8t(s);
 invart(s,9)=day9t(s);
 invart(s,10)=day10t(s);
 invart(s,11)=day11t(s);
 invart(s,12)=day12t(s);
 invart(s,13)=day13det(s);
 outvart(s,1)=day13t(s);

end

j=1;
f1=f+1;

 118

for s=f1:g,

 invarv(j,1)=day1v(j);
 invarv(j,2)=day2v(j);
 invarv(j,3)=day3v(j);
 invarv(j,4)=day4v(j);
 invarv(j,5)=day5v(j);
 invarv(j,6)=day6v(j);
 invarv(j,7)=day7v(j);
 invarv(j,8)=day8v(j);
 invarv(j,9)=day9v(j);
 invarv(j,10)=day10v(j);
 invarv(j,11)=day11v(j);
 invarv(j,12)=day12v(j);
 invarv(j,13)=day13dev(j);
 outvart(j,1)=day13v(j);
 j=j+1;

end

k=1;
g1=g+1;
for s=g1:e,
 invarte(k,1)=day1te(k);
 invarte(k,2)=day2te(k);
 invarte(k,3)=day3te(k);
 invarte(k,4)=day4te(k);
 invarte(k,5)=day5te(k);
 invarte(k,6)=day6te(k);
 invarte(k,7)=day7te(k);
 invarte(k,8)=day8te(k);
 invarte(k,9)=day9te(k);
 invarte(k,10)=day10te(k);
 invarte(k,11)=day11te(k);
 invarte(k,12)=day12te(k);
 invarte(k,13)=day13dete(k);
 outvarte(k,1)=day13te(k);
 k=k+1;
end

%Initialising neural network parameters
nin=13;%Number of input units is 13
nhidden=19%19 hidden layers used (optimum value)
nout=1;%One output value
alpha=0.01;

net1=mlpbin(nin, nhidden, nout, 'linear', alpha); %Linear discrete MLP algorithm chosen

options = zeros(1,18);

 119

options(1) = 1;

options(14) = 25000;%25000 iterations found to be accurate enough

[net1, options] = netoptbin(net1, options, invart, outvart, 'metropbin');

yout1= mlpbinfwd(net1, invart);
Day4=(yout1(:,1)*(maxday13t-minday13t))+minday13t;

yout2= mlpbinfwd(net1, invarv);

Dy4=(yout2(:,1)*(maxday13t-minday13t))+minday13t;

c=length(Dy4);

erro=0;

for d=1:c,
Err1(c)=Dy4(c)-day13dt(c);
erro=erro+(Err1(c))^2;
end

erro=((erro)^(1/2))/c;

plot(day13dt,'b')
hold on
plot(Dy4,'k')
plot(Day4,'r')
plot(day13dv,'b.')
net1.a

A.4.2 RBF Network

clear all;
load dataf2
i=1;
n=3;
m=2;
e1=length(datanasdaq12);
f=floor(e1/3);
g=2*f;
e=3*f;

while(i<=f),
 p=i;
 q=1;
 n=p+11;
 for a=p:n,
 inpt(q,i)=datanasdaq(a,1);
 q=q+1;

 120

 end

 outpt(1,i)=datanasdaq12(i,1);

 i=i+1;

 end

h=1;
while(i<=g),
p=i;
q=1;
n=p+11;

for a=p:n,
 inpv(q,h)=datanasdaq(a,1);
 q=q+1;
end
outpv(1,h)=datanasdaq12(i,1);
 h=h+1;
 i=i+1;
 end

k=1;

while(i<=e),
p=i;
q=1;
n=p+11;

for a=p:n,
 inpte(q,k)=datanasdaq(a,1);
 q=q+1;
end
outpte(1,k)=datanasdaq12(i,1);

 k=k+1;
 i=i+1;
 n=n+1;
end

 %Training data set

 day1dt=inpt(1,:);
 day2dt=inpt(2,:);
 day3dt=inpt(3,:);
 day4dt=inpt(4,:);
 day5dt=inpt(5,:);
 day6dt=inpt(6,:);
 day7dt=inpt(7,:);
 day8dt=inpt(8,:);

 121

 day9dt=inpt(9,:);
 day10dt=inpt(10,:);
 day11dt=inpt(11,:);
 day12dt=inpt(12,:);
 day13dt=outpt(1,:);

 %Validating data set
 day1dv=inpv(1,:);
 day2dv=inpv(2,:);
 day3dv=inpv(3,:);
 day4dv=inpv(4,:);
 day5dv=inpv(5,:);
 day6dv=inpv(6,:);
 day7dv=inpv(7,:);
 day8dv=inpv(8,:);
 day9dv=inpv(9,:);
 day10dv=inpv(10,:);
 day11dv=inpv(11,:);
 day12dv=inpv(12,:);
 day13dv=outpv(1,:);

 %Testing data set
 day1dte=inpte(1,:);
 day2dte=inpte(2,:);
 day3dte=inpte(3,:);
 day4dte=inpte(4,:);
 day5dte=inpte(5,:);
 day6dte=inpte(6,:);
 day7dte=inpte(7,:);
 day8dte=inpte(8,:);
 day9dte=inpte(9,:);
 day10dte=inpte(10,:);
 day11dte=inpte(11,:);
 day12dte=inpte(12,:);
 day13dte=outpte(1,:);

 %normalise the parameters

 %Training data
 minday1t=min(day1dt);
 maxday1t=max(day1dt);
 minday2t=min(day2dt);
 maxday2t=max(day2dt);
 minday3t=min(day3dt);
 maxday3t=max(day3dt);
 minday4t=min(day4dt);
 maxday4t=max(day4dt);
 minday5t=min(day5dt);
 maxday5t=max(day5dt);

 122

 minday6t=min(day6dt);
 maxday6t=max(day6dt);
 minday7t=min(day7dt);
 maxday7t=max(day7dt);
 minday8t=min(day8dt);
 maxday8t=max(day8dt);
 minday9t=min(day9dt);
 maxday9t=max(day9dt);
 minday10t=min(day10dt);
 maxday10t=max(day10dt);
 minday11t=min(day11dt);
 maxday11t=max(day11dt);
 minday12t=min(day12dt);
 maxday12t=max(day12dt);
 minday13t=min(day13dt);
 maxday13t=max(day13dt);

 day1t=(day1dt-minday1t)/(maxday1t-minday1t);
 day2t=(day2dt-minday2t)/(maxday2t-minday2t);
 day3t=(day3dt-minday3t)/(maxday3t-minday3t);
 day4t=(day4dt-minday4t)/(maxday4t-minday4t);
 day5t=(day5dt-minday5t)/(maxday5t-minday5t);
 day6t=(day6dt-minday6t)/(maxday6t-minday6t);
 day7t=(day7dt-minday7t)/(maxday7t-minday7t);
 day8t=(day8dt-minday8t)/(maxday8t-minday8t);
 day9t=(day9dt-minday9t)/(maxday9t-minday9t);
 day10t=(day10dt-minday10t)/(maxday10t-minday10t);
 day11t=(day11dt-minday11t)/(maxday11t-minday11t);
 day12t=(day12dt-minday12t)/(maxday12t-minday12t);
 day13t=(day13dt-minday13t)/(maxday13t-minday13t);

 %Validation data
 minday1v=min(day1dv);
 maxday1v=max(day1dv);
 minday2v=min(day2dv);
 maxday2v=max(day2dv);
 minday3v=min(day3dv);
 maxday3v=max(day3dv);
 minday4v=min(day4dv);
 maxday4v=max(day4dv);
 minday5v=min(day5dv);
 maxday5v=max(day5dv);
 minday6v=min(day6dv);
 maxday6v=max(day6dv);
 minday7v=min(day7dv);
 maxday7v=max(day7dv);
 minday8v=min(day8dv);
 maxday8v=max(day8dv);
 minday9v=min(day9dv);
 maxday9v=max(day9dv);

 123

 minday10v=min(day10dv);
 maxday10v=max(day10dv);
 minday11v=min(day11dv);
 maxday11v=max(day11dv);
 minday12v=min(day12dv);
 maxday12v=max(day12dv);
 minday13v=min(day13dv);
 maxday13v=max(day13dv);

 day1v=(day1dv-minday1v)/(maxday1v-minday1v);
 day2v=(day2dv-minday2v)/(maxday2v-minday2v);
 day3v=(day3dv-minday3v)/(maxday3v-minday3v);
 day4v=(day4dv-minday4v)/(maxday4v-minday4v);
 day5v=(day5dv-minday5v)/(maxday5v-minday5v);
 day6v=(day6dv-minday6v)/(maxday6v-minday6v);
 day7v=(day7dv-minday7v)/(maxday7v-minday7v);
 day8v=(day8dv-minday8v)/(maxday8v-minday8v);
 day9v=(day9dv-minday9v)/(maxday9v-minday9v);
 day10v=(day10dv-minday10v)/(maxday10v-minday10v);
 day11v=(day11dv-minday11v)/(maxday11v-minday11v);
 day12v=(day12dv-minday12v)/(maxday12v-minday12v);
 day13v=(day13dv-minday13v)/(maxday13v-minday13v);

 %Testing data set

 minday1te=min(day1dte);
 maxday1te=max(day1dte);
 minday2te=min(day2dte);
 maxday2te=max(day2dte);
 minday3te=min(day3dte);
 maxday3te=max(day3dte);
 minday4te=min(day4dte);
 maxday4te=max(day4dte);
 minday5te=min(day5dte);
 maxday5te=max(day5dte);
 minday6te=min(day6dte);
 maxday6te=max(day6dte);
 minday7te=min(day7dte);
 maxday7te=max(day7dte);
 minday8te=min(day8dte);
 maxday8te=max(day8dte);
 minday9te=min(day9dte);
 maxday9te=max(day9dte);
 minday10te=min(day10dte);
 maxday10te=max(day10dte);
 minday11te=min(day11dte);
 maxday11te=max(day11dte);
 minday12te=min(day12dte);
 maxday12te=max(day12dte);
 minday13te=min(day13dte);

 124

 maxday13te=max(day13dte);

 day1te=(day1dte-minday1te)/(maxday1te-minday1te);
 day2te=(day2dte-minday2te)/(maxday2te-minday2te);
 day3te=(day3dte-minday3te)/(maxday3te-minday3te);
 day4te=(day4dte-minday4te)/(maxday4te-minday4te);
 day5te=(day5dte-minday5te)/(maxday5te-minday5te);
 day6te=(day6dte-minday6te)/(maxday6te-minday6te);
 day7te=(day7dte-minday7te)/(maxday7te-minday7te);
 day8te=(day8dte-minday8te)/(maxday8te-minday8te);
 day9te=(day9dte-minday9te)/(maxday9te-minday9te);
 day10te=(day10dte-minday10te)/(maxday10te-minday10te);
 day11te=(day11dte-minday11te)/(maxday11te-minday11te);
 day12te=(day12dte-minday12te)/(maxday12te-minday12te);
 day13te=(day13dte-minday13te)/(maxday13te-minday13te);

a=length(day13t);
q=1;
for t=1:a,
if t==1
day13det(t,1)=0;
day13dev(t,1)=0;
day13dete(t,1)=0;
end
if t>1,
 day13det(t,1)=day13t(q);
 day13dev(t,1)=day13v(q);
 day13dete(t,1)=day13te(q);
 q=q+1;
end
end
 for s=1:f,

 invart(s,1)=day1t(s);
 invart(s,2)=day2t(s);
 invart(s,3)=day3t(s);
 invart(s,4)=day4t(s);
 invart(s,5)=day5t(s);
 invart(s,6)=day6t(s);
 invart(s,7)=day7t(s);
 invart(s,8)=day8t(s);
 invart(s,9)=day9t(s);
 invart(s,10)=day10t(s);
 invart(s,11)=day11t(s);
 invart(s,12)=day12t(s);
 invart(s,13)=day13det(s);
 outvart(s,1)=day13t(s);

end

j=1;

 125

f1=f+1;

for s=f1:g,

 invarv(j,1)=day1v(j);
 invarv(j,2)=day2v(j);
 invarv(j,3)=day3v(j);
 invarv(j,4)=day4v(j);
 invarv(j,5)=day5v(j);
 invarv(j,6)=day6v(j);
 invarv(j,7)=day7v(j);
 invarv(j,8)=day8v(j);
 invarv(j,9)=day9v(j);
 invarv(j,10)=day10v(j);
 invarv(j,11)=day11v(j);
 invarv(j,12)=day12v(j);
 invarv(j,13)=day13dev(j);
 outvart(j,1)=day13v(j);
 j=j+1;

end

k=1;
g1=g+1;
for s=g1:e,
 invarte(k,1)=day1te(k);
 invarte(k,2)=day2te(k);
 invarte(k,3)=day3te(k);
 invarte(k,4)=day4te(k);
 invarte(k,5)=day5te(k);
 invarte(k,6)=day6te(k);
 invarte(k,7)=day7te(k);
 invarte(k,8)=day8te(k);
 invarte(k,9)=day9te(k);
 invarte(k,10)=day10te(k);
 invarte(k,11)=day11te(k);
 invarte(k,12)=day12te(k);
 invarte(k,13)=day13dete(k);
 outvarte(k,1)=day13te(k);
 k=k+1;
end

%Initialising neural network parameters
nin=13;%Number of input units is 13
nhidden=19%19 hidden layers used (optimum value)
nout=1;%One output value
alpha=0.01;

net1=rbfbin(nin,nhidden,nout,'gaussian','linear'); % discrete RBF network chosen

options = zeros(1,18);

 126

options(1) = 1;
options(14) = 30000;

[net1, options] = netoptbin(net1, options, invart, outvart, 'metropbin1');

[p1,p2]=size(invart);
for n1=1:p1
 invart1(n1,:)=invart(n1,:).*net1.a;
 invarv1(n1,:)=invarv(n1,:).*net1.a;
 invarte1(n1,:)=invarte(n1,:).*net1.a;
end
options(14) = 1000;%1000 iterations found to be accurate enough

[net2, options, varargout] = netopt(net2, options, invart1, outvart, 'scg');

yout1r=rbffwd(net2,invart1);
yout2r=rbffwd(net2,invarv1);

yout1= rbfbinfwd(net1, invart);
y3=rbfbinfwd(net1,invarv);

Day13t1=(yout1(:,1)*(maxday13t-minday13t))+minday13t;
Day13t2=(yout1r(:,1)*(maxday13t-minday13t))+minday13t;
Day13t3=(yout2r(:,1)*(maxday13v-minday13v))+minday13v;

subplot(2,1,1),plot(Day13t1,'b')
hold on
subplot(2,1,1),plot(day13dt,'r')
subplot(2,1,1),plot(Day13t2,'y')
subplot(2,1,2),plot(Day13t3,'b.')
hold on
subplot(2,1,2),plot(day13dv,'r.')

