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Memory-efficient approximate three-dimensional beamforming
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ABSTRACT:
Localization of acoustic sources using a sensor array is typically performed by estimating direction-of-arrival (DOA)

via beamforming of the signals recorded by all elements. Software-based conventional beamforming (CBF) forces a

trade-off between memory usage and direction resolution, since time delays associated with a set of directions over

which the beamformer is steered must be pre-computed and stored, limiting the number of look directions to

available platform memory. This paper describes a DOA localization method that is memory-efficient for three-

dimensional (3D) beamforming applications. Its key lies in reducing 3D look directions [described by azimuth/

inclination angles ð/; hÞ when considering the array as a whole] to a single variable (a conical angle, f) by treating

the array as a collection of sensor pairs. This insight reduces the set of look directions from two dimensions to one,

enabling computational and memory efficiency improvements and thus allowing direction resolution to be increased.

This method is described and compared to CBF, with comparisons provided for accuracy, computational speedup,

and memory usage. As this method involves the incoherent summation of sensor pair outputs, gain is limited,

restricting its use to localization of strong sources—e.g., for real-time acoustic localization on embedded systems,

where computation and/or memory are limited. VC 2020 Acoustical Society of America.

https://doi.org/10.1121/10.0002852

(Received 21 April 2020; revised 30 October 2020; accepted 10 November 2020; published online 7 December 2020)

[Editor: Karim G. Sabra] Pages: 3467–3480

I. INTRODUCTION

Beamforming or spatial filtering is a mature and widely

used technique for direction-of-arrival (DOA) estimation

using a spatially distributed array of sensors to sample the

incoming signal and phase-shifting (or time-aligning) these

signals into coherence. Originally developed for radar,1 con-

ventional beamforming (CBF)2 has found wide application

in communications,3 imaging,4 and, in particular, in

SONAR source localization, tracking, and classification.5–8

CBF performs poorly in its ability to resolve two

closely-spaced sources, and the desire to improve this angu-

lar resolution (this term is analogous to resolving power in

optical systems) for target tracking applications drove the

development of more computationally complex so-called

adaptive or super-resolution beamforming methods. These

include minimum variance distortionless-response (MVDR)

beamforming,9 which seeks to minimize the average output

power while passing a signal from a given look direction;

and the multiple signal classification (MUSIC) beamforming

method,10 which uses eigendecomposition of the autocorre-

lation matrix into signal and noise subspaces, and performs

a weighted beamforming of these components. More

recently, compressive sensing has been employed to

improve angular resolution;11–13 these methods solve the

linear set of beamforming equations formed by collecting a

set of steering vectors and performing convex optimization

under a sparsity constraint imposed by minimization of the

l1-norm of the signal.

In contrast to the amount of work done on improving

angular resolution, comparatively little has been done on

improving beamforming efficiency. Since early CBF oper-

ated in the time-domain, and with the desire to steer the

beamformer in small increments to increase direction reso-

lution, high sampling frequencies were necessary—as such,

early efficiency improvements looked to decrease the

amount of sampled data to be stored, using techniques such

as partial-sum, interpolation, and shifted-sideband (down-

sampling) methods.14 The shift to frequency-domain CBF

superseded these approaches by relaxing the sampling rate

to only satisfying the Nyquist criterion. More recent work

has used the fact that sensor arrays that sample uniformly in

space are analogous to uniform temporal sampling to exploit

the computational efficiencies afforded by the fast Fourier

transform; this was first proposed by Williams15 who

derived this spatial Fourier transform for a fast beamforming

algorithm for line arrays. This work was extended to uni-

form circular arrays16 and, finally, to uniform grid arrays.17

A recent extension of this method using the chirp Z-

transform (CZT) enables similarly efficient processing for

wideband beamforming.18 Each of these methods are lim-

ited by the need to use uniform (equispaced) arrays due to

their use of the spatial Fourier transform; the use of the non-

uniform fast Fourier transform (NUFFT) in recent work has

overcome this limitation.19 In each of the aforementioned

methods, the phase-shifts associated with all look directionsa)Electronic mail: nrypkema@whoi.edu, ORCID: 0000-0003-0874-8980.
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are stored—thus, they are computationally but not memory

efficient.

This paper introduces a technique for improved mem-

ory and computational efficiency for approximate three-

dimensional (3D) beamforming applications with small

arrays, termed sensor pair decomposition beamforming
(SPD-BF). As CBF typically requires the storage of phase-

shifts for the look directions over which it is steered, in 3D

beamforming this translates to a quadratic increase in mem-

ory usage with direction resolution since it must be steered

over both azimuth and inclination. SPD-BF ties memory

usage and computation time to the number of pairs of sen-
sors in the array, enabling a memory-efficient increase in

direction resolution. Since SPD-BF involves the incoherent

summation of sensor pair outputs, its gain is fixed and does

not increase with more array elements, resulting in degraded

angular resolution performance in comparison to CBF. Note

that “direction resolution” and “angular resolution” are dis-

tinct—the smaller the increment in steering angle for a set

number of look directions, the higher the direction resolu-

tion, while angular resolution concerns how well a beam-

former can resolve closely spaced sources. Thus, SPD-BF

achieves gains in computation time, memory efficiency, and

direction resolution at the expense of array gain and angular

resolution. This makes this method well-suited for applica-

tions where high signal-to-noise ratio (SNR) is anticipated,

e.g., beacon-based ultra-short baseline (USBL) or inverted

USBL localization systems. This paper details this approxi-

mate beamforming method, its advantages and limitations,

and its performance against CBF with simulated and real

data.

II. CONVENTIONAL BEAMFORMING

Given an arbitrary array with N sensor elements, a sig-

nal originating from direction a with speed c will, under a

far-field planar wave assumption, arrive at sensor i with

time delay,

si ¼
aTpi

c
; where a ¼

�sin ðhÞ cos ð/Þ
�sin ðhÞ sin ð/Þ
�cos ðhÞ

0
@

1
A: (1)

CBF applies phase shifts to the measured signals with the

goal of negating this natural array response to the incoming

wave as defined by these time delays, for a beamformed out-

put at a given look direction ðh;/Þ and wave frequency x of

Y x; h;/½ � ¼
XN

i¼1

Hi x; h;/½ � � Xi x½ �;

where Hi x; h;/½ � ¼ ejxsi ; (2)

and where Xi½x� is the Fourier transformed signal received

by sensor i. The top part of Fig. 1 shows this process. Often

the objective of this beamforming operation in reception is

DOA estimation, which in the case of wideband CBF is gen-

erally the power summed over all M frequencies,

j ~Y h;/½ �j2 ¼ 1

M

XM

k¼1

jY xk; h;/½ �j2: (3)

This output is computed over a set of look directions ðh;/Þ,
with estimated DOA selected as

~h; ~/ ¼ arg max
h;/
j ~Y h;/½ �j2: (4)

Computation time for estimating DOA in this manner scales

with the number of look directions, and since the phase

shifts associated with the look directions are typically pre-

computed and stored in memory to improve computation

speed, memory usage also scales similarly. For 3D beam-

forming this is particularly problematic, since the number of

look directions is Nangles ¼ NhN/, where Nh is the number of

look inclinations and N/ is the number of look azimuths.

For simplicity, consider dividing the azimuth and inclination

search space so as to have equal spacing, i.e., N/ ¼ 2Nh. If

we label Nh ¼ C, then the number of gridded look directions

is

Nangles ¼ 2C2: (5)

Estimating DOA with Eq. (4) over this grid is thus quadratic

in the parameter C (OðC2Þ); pre-computation and storage of

the phase shifts drastically reduces the computation time for

each look direction, but introduces a memory requirement

also on the order of C2. This scaling factor can severely

restrict the direction resolution of beamforming in computa-

tionally and/or memory limited systems.

III. MEMORY-EFFICIENT APPROXIMATE 3D
BEAMFORMING

A. Key insight and application to example array

Array steering in 3D CBF requires calculating time

delays that are dependent on array geometry and the look

direction using Eq. (1). However, when performing CBF

with a 1D linear array, placing the sensor elements on the

z–axis as is convention reduces this equation to

si ¼
�cos ðhÞzi

c
: (6)

Thus, for linear arrays, any 3D look direction given by /
and h can be solely described using its inclination angle h;

this insight manifests in the well-known conical beampat-

tern of a linear array. In essence, this means that sets of 3D

look directions that point along the surface of a cone induce

the same time delays at the sensors of a linear array, allow-

ing these look directions to be described by a single conical
angle f.

Consider the 3-element right-angle planar array in the

leftmost plot of Fig. 2, along with a desired set of 16 look

directions to beamform at as red arrows. Now, instead of

beamforming at each of these look directions, the array is

decomposed into its unique pairs of sensors, as shown in the
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next three plots of Fig. 2. This decomposition reveals that

for the vertical sensor pair, the set of 16 look directions

can be represented by just 4 conical angles, a reduction

factor of 4. For the horizontal sensor pair, the look direc-

tions can be reduced to 6 conical angles, while for the final

(diagonal) sensor pair, no reduction is possible and 16

conical angles remain. Using these conical angles, we

must beamform at a total of 4þ 6þ 16 ¼ 26 angles, rather

than the original 16 look directions; thus, in this example

it is less efficient in terms of both computation and

memory to do so as compared to 3D CBF, but this exam-

ple provides an intuitive understanding of our approximate

beamforming approach.

B. Approximate beamforming using conical angles

To demonstrate how our approach can improve effi-

ciency, instead of finding conical angles from look direc-

tions as in Sec. III A, look directions can be determined

from the set of conical angles of the three sensor pairs, as

illustrated in Fig. 3. In the left-hand plots, the vertical sensor

pair conical angle space is divided into 3 conical angles, as

is done for the horizontal sensor pair; and for the diagonal

sensor pair, the space is divided into 5 conical angles. In the

rightmost plot, all three sets of conical angles and the full

array are plotted—it is apparent that the three sets of cones

from each sensor pair intersect at exactly 9 look directions,

shown as arrows in the rightmost plot. Thus, in this

FIG. 1. (Color online) Top: In CBF, the output power is calculated over a set of look directions; when the look direction is pointing toward the incoming sig-

nal, measured signals are phase-shifted into alignment and the output power is maximum. Bottom: In SPD-BF, the array is decomposed into sensor pairs

and CBF is performed over a set of conical angles for each pair; the output power of each pair is then summed to obtain the final output for improved mem-

ory and computation performance for 3D beamforming with small arrays.

FIG. 2. (Color online) Look directions can be represented by conical angles in the space of the array’s decomposition into sensor pairs—the 3-element array

on the left is decomposed into its three unique sensor pairs, shown on the right; the set of 16 look directions can be collapsed to 4 conical angles for the verti-

cal sensor pair, into 6 conical angles for the horizontal sensor pair, and remains as 16 conical angles for the diagonal sensor pair.
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example, 3þ 3þ 5 ¼ 11 conical angles have been used to

represent a set of only 9 look directions, which is again less

efficient. However, note that if the number of look directions

in the constructed “grid” is continually increased, the corre-

sponding number of conical angles to construct that grid

scales at a significantly slower rate. For C conical angles in

the vertical and horizontal sensor pairs of this array, the

number of intersections scales as C2, while the number of

conical angles across all three pairs scales as

Ctotal ¼ Cþ Cþ ð2C� 1Þ ¼ 4C� 1: (7)

Thus, for this particular case, the total number of conical

angles grows linearly, while the total number of constructed

look directions grows quadratically—consequently, for a

large number of look directions, our approximate beam-

forming method has a greater efficiency in terms of compu-

tation and memory usage.

Figure 3 highlights a couple of caveats with our beam-

forming approach. First, note that each sensor pair has its

own phase center half-way between its two sensors—these

phase centers are termed pair phase centers. Since pair

phase centers are not aligned with the array phase center (as

shown in the rightmost plot of Fig. 3), the output of our

beamformer is only an approximation of the CBF output—

this limitation is briefly expanded upon later in the paper.

Second, notice that the construction of the look directions is

dependent on the geometry of the array—depending on how

conical angles are constructed, in general, intersections will

only occur between two sensor pairs. For example, if the

diagonal element pair in Fig. 3 had only a single conical angle

at 90�, only three of the resulting look directions will intersect

along the conical angles of all sensor pairs. The accuracy of

the look direction construction is thus a complicated function

of the number of array sensor pairs, array geometry, and the

number of conical angles for each sensor pair.

These toy examples highlight the simple intuition

behind our approximate beamforming method, the steps of

which are illustrated conceptually at the bottom of Fig. 1.

The three-element array in this figure is first decomposed

into its three sensor pairs, each within its own coordinate

system (z12, z13, z23); this allows each sensor pair to be

treated as a linear array, whose phase center is halfway

between the sensors (the pair phase center). This is followed

by performing CBF over a set of conical angles (shown in

red, blue, and brown) for each of the sensor pairs. Conical

angles for each pair are not selected such that they intersect

exactly as in Fig. 3, but instead a single set of C conical

angles is used for all pairs,

Sconical ¼ ff1; f2;…; fCg; (8)

where 0 � fi < 180�. Generally, the 180� domain of conical

angles is divided uniformly to generate this set. Finally, to

get the approximate beamforming output for a desired look

direction (shown in green), the CBF output of the conical

angle that is nearest to the look direction is found from each

sensor pair, and these are averaged together.

An example illustration of the output resulting from our

approximate beamforming method is shown in Fig. 4. For

each sensor pair of the triangle array in this figure, CBF is

performed along a set of conical angles with a half-degree

resolution. The beamformed output for each pair is shown

by projecting the output for each conical angle onto the

sphere—the resulting rotationally symmetric “banding”

illustrates the ambiguity associated with conical angles per

sensor pair. The approximate beamforming output is

obtained by summing the outputs of the array’s pairs, disam-

biguating the direction of the incoming wave through con-

structive and destructive summation.

C. Memory efficiency

The computational and memory cost of CBF was shown

previously to be proportional to the number of look direc-

tions, which is approximated in Eq. (5) as 2C2 for a grid

covering the sphere. For our approximate beamforming

method, if the same number C is taken as the number of

conical angles for each sensor pair, then the computational

and memory cost grows as the product of the number of

array sensor pairs and the number of conical angles,

Nangles ¼ PC; (9)

where P is the number of sensor pairs. This PC value is sig-

nificantly smaller than the 2C2 value obtained for CBF in

the case of small arrays: where the total number of pair com-

binations is typically much smaller than the desired number

of conical or inclination angles C. In addition, PC is an

upper bound on memory usage because a further efficiency

FIG. 3. (Color online) Look directions can be constructed by conical angles in the space of the array’s decomposition into sensor pairs—each pair contrib-

utes a set of conical angles to the approximate beamforming output, as shown in the three leftmost plots; these conical angle sets intersect along nine look

directions, as shown as red arrows on the right. The number of look directions scales quadratically with a linear increase in the number of conical angles per

sensor pair.
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can be exploited: if two sensor pairs within an array have

elements that are separated by the same distance, and the

same set of conical angles is used for both pairs, then these

two pairs are identical linear arrays and the phase shifts

stored for both are also identical; as a result, only one set of

phase shifts has to be stored in memory for both sensor

pairs. As an example, the memory savings for a regular tet-

rahedral array are enormous, since all six sensor pairs are

separated by the same distance—the computational cost is

approximately 6 C, while the memory cost is only C.

Since one of its core concepts is the decomposition of

the array into sensor pairs, our approximate beamforming

method is termed sensor pair decomposition beamforming
(SPD-BF).

D. SPD-BF formulation

Given some arbitrary array defined by its N sensor posi-

tions pi, the array is first decomposed into its NðN � 1Þ=2 sen-

sor pairs. The unique combinations of pairs of elements are

described by the elements above the diagonal of an N�N
matrix, where the row indexed by i encodes the first element

and the column indexed by j encodes the second element,

1st el:i

2nd el:j

� ðp1; p2Þ ðp1; p3Þ � � � ðp1; pNÞ
� � ðp2; p3Þ � � � ðp2; pNÞ

� � � . .
. ..

.

� � � � ðpN�1; pNÞ
� � � � �

2
66666664

3
77777775
; (10)

Sunique ¼ fðp1; p2Þ;…; ðpi; pjÞg
such that i 6¼ j: (11)

For each sensor pair, the distance between elements is

Dij ¼ jjpi � pjjj: (12)

The sensor pairs are constructed as a set of linear arrays in

their own coordinate systems, with each pair phase center

halfway between the elements,

Spairs ¼
�D12

2

D12

2

� �T

;…;
�Dij

2

Dij

2

� �T
( )

¼ fP12;…;Pijg; (13)

where

Pij ¼ Pi Pj½ �T with Pi ¼
�Dij

2
; Pj ¼

Dij

2
: (14)

This unique coordinate system in which a sensor pair linear

array resides is referred to as the conical angle space. In the

conical angle space, the time delay experienced by each ele-

ment of the pair referenced to the pair phase center is given by

sij ¼
�cos ðfÞ

c
Pij; (15)

where f is the conical angle and c is the signal speed. The

wideband CBF spatial filter for the sensor pair is given as

Hij x; f½ � ¼ ejxsij ¼
Hi x; f½ �
Hj x; f½ �

" #
¼ ejxsi

ejxsj

" #

¼ ejx1si ejx2si … ejxMsi

ejx1sj ejx2sj … ejxMsj

" #
: (16)

The beamformed output of the sensor pair for a given coni-

cal angle is thus given by

Zij x; f½ � ¼ 1

2
Hi x; f½ � � Xi x½ � þHj x; f½ � � Xj x½ �
� �

;

(17)

where � is the element-wise multiplication operator, and

Xi½xk� is the kth FFT bin from element i. The frequency-

averaged output for a given sensor pair at a particular coni-

cal angle is then

jẐ ij f½ �j ¼ 1

M

XM

k¼1

jZij xk; f½ �j: (18)

To average across all sensor pairs, a conversion must be

done from the azimuth-inclination (/; h) space of look

FIG. 4. (Color online) Illustration of

how the output of SPD-BF is con-

structed from sensor pair CBF out-

puts—the full approximated output in

the rightmost plot is generated by sum-

mation of the CBF outputs over the

conical angles for each sensor pair on

the left. The ambiguity associated with

the CBF output of each pair is removed

via constructive/destructive summa-

tion, enabling the array to detect the

DOA as indicated by the red arrow.
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directions to the conical angle space (f). This is done by cal-

culating the angle between the vector joining the two ele-

ments, and the vector represented by the look direction

Let aij ¼
pi � pj

jjpi � pjjj
; bð/; hÞ ¼

sin ðhÞ cos ð/Þ
sin ðhÞ sin ð/Þ

cos ðhÞ

2
4

3
5
(19)

then

f ¼ arccosðaij • bð/; hÞÞ: (20)

Rewriting Eq. (18) in terms of the look direction

jẐ ij /; h½ �j ¼ 1

M

XM

k¼1

jZij xk; arccosðaij • bð/; hÞÞ
� �

j: (21)

The full approximate beamforming output for a given look

direction is finally calculated by averaging over all sensor

pairs,

jẐ /;h½ �j

¼ 1

M

2

NðN� 1Þ
XN�1;N

i;j

XM

k¼1

jZij xk; arccosðaij • bð/;hÞÞ
� �

j:

(22)

In principle, given a static grid of look directions, the

required conical angles may be pre-calculated for each ele-

ment pair to intersect the look directions precisely using Eq.

(20). However, in practice, for more flexibility the phase

shifts for a static set of conical angles are pre-computed per

sensor pair, and Eq. (20) is used to find the nearest pre-

computed conical angle in the set, providing the benefit of

the greater memory savings due to identical pair separation

distances. Thus, the output for a given look direction is the

summation of the nearest neighbor conical angles for each

sensor pair. If the grid of look directions is static, a look-up

table can also be constructed to bypass the use of Eq. (20)

during runtime, providing an additional speedup.

IV. SIMULATION COMPARISONS

To evaluate the performance of SPD-BF, it is compared

to CBF in terms of fundamental properties such as its beam-

pattern, accuracy, angular resolution, and processing speed.

In this section simulations are used to provide a comparative

analysis between the two approaches, using the base param-

eters listed in Table I.

A. Beampattern

The outputs using the uniform line array (ULA) and

regular cube array geometries listed in Table II were used to

compare the beampatterns produced by CBF and SPD-BF.

The 1D ULA was included for easy visualization of the 2D

beamformed output, beamforming over a single inclination

angle (h) for this geometry.

An incoming acoustic plane wave was simulated in all

cases using a 8.25–10.25 kHz, 20 ms linear frequency modu-

lated (LFM) chirp, incident onto the array from a randomly

selected azimuth-inclination (/; h) look direction; each ele-

ment of the array records 8000 samples, which represents

213.3 ms of data; the center frequency of 9.25 kHz is chosen

such that the minimum element spacing of the arrays in

Table II is one half the wavelength of this center frequency.

Representative examples of the normalized beamformed

outputs from both approaches are shown in Figs. 5 and 6 for

the line and cube arrays.

The beampatterns from both methods share similar fea-

tures, and similar maxima positions. It is apparent that the

maximums occur close to the true DOAs, indicating that

both approaches share a similar level of accuracy. The

increased “floor” of SPD-BF due to sensor pair summation

is especially apparent in the beampatterns of the cube array,

where the floor is approximately 0.4. This suggests a reduc-

tion in the resolving power of the array using SPD-BF for

the same look-angle resolution, due to the increase in the

half-power beamwidth.

B. Accuracy

To estimate the accuracy of both methods, the simu-

lated measurement on each sensor is corrupted with white

Gaussian noise. Increasing levels of noise were added to

vary the signal-to-noise ratio (SNR) from 25 to 5 dB, and to

0 dB. Two hundred simulations were performed for each

array and SNR level, and the angular difference between the

true DOA and the arg-maximum value from the response of

both CBF and SPD-BF was determined as

� ¼ arccosðvmax •vtrueÞ; (23)

where vtrue is the unit vector pointing toward the true

DOA and vmax is the unit vector pointing in the arg-

TABLE I. Base parameters for comparative analysis of SPD-BF and CBF.

fs c Sangles Sconical

37.5 kHz 1480 ms�1 h ¼ 0� : 1� : 179� f ¼ 0� : 1� : 179�

/ ¼ 0� : 1� : 359� (180 angles)

(180� 360 angles)

TABLE II. Array sensor positions (x, y, z in cm) to compare outputs of

CBF and SPD-BF.

Element ULA Regular tetrahedral Regular octagonal Regular cube

1 (0, 0, 0) (0,0,6.54) (0,0,5.66) (4, 4, 4)

2 (8, 0, 0) (4.62,0,0) (4, 4, 0) (�4,4,4)

3 (16, 0, 0) (�2.31,�4,0) (�4,4,0) (4,�4,4)

4 (24, 0, 0) (�2.31,4,0) (4,�4,0) (�4,�4,4)

5 (32, 0, 0) — (�4,�4,0) (4,4,�4)

6 (40, 0, 0) — (0,0,�5.66) (�4,4,�4)

7 (48, 0, 0) — — (4,�4,�4)

8 (56, 0, 0) – – (�4,�4,�4)
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maximum direction as determined by the two methods. The

accuracy statistics resulting from these simulations are plot-

ted in Fig. 7. These plots show the probability distribution

of the errors (�) over all SNRs on the left axis, and the

empirical cumulative distribution function (CDF) of error

for individual SNRs on the right axis. Two observations are

consistent across both CBF and SPD-BF: the error distribu-

tion of accuracy improves as the number of array sensors

increases, since the noise gets “averaged out” over more

sensors and beamwidth reduces; and as the SNR increases,

the accuracy improves. An interesting characteristic of the

ULA is that its accuracy distribution has a long tail, with a

wide variation; this is due to the degradation in the array

response as the source moves from broadside to end-fire.

Looking at the CDFs across all geometries, it is apparent

that, in general, the accuracy of SPD-BF is slightly worse

than that of CBF, likely due to larger beamwidths associated

with the SPD-BF method as shown in Sec. IV C. In low

SNR (high noise) situations, the accuracy of both methods

are comparable, which is especially apparent at 0 dB across

the three 3D arrays, and at all noise levels for the ULA. In

contrast, at the high SNR of 25 dB, the CDFs for the 3D

arrays show that the accuracy of CBF is significantly better

than that of SPD-BF—this suggests that at low SNR, noise

is the predominant cause of accuracy loss for both methods;

however, high SNRs reveal limitations in accuracy of our

method. It is likely that these limitations are due in large

part to the number of conical angles used in SPD-BF for

these simulations—indeed, we show in Sec. IV E that

increasing the conical angle resolution significantly miti-

gates this loss in accuracy seen in the low-noise scenario.

C. Half-power beamwidth

The half-power beamwidth of the main lobe represents

the �3 dB level from the peak, or about the 0.707 level in

the array response of both approaches. This can be estimated

by

FIG. 5. (Color online) Sample beampatterns from CBF and SPD-BF for an 8 element uniform line array—the true DOA is indicated by the solid red line,

and the estimates from maximums using CBF and SPD-BF are indicated by the dashed blue and black lines respectively. Top: beampattern from CBF.

Bottom: beampattern from SPD-BF. Note the difference in scale.

FIG. 6. (Color online) Sample beampatterns from CBF and SPD-BF for an 8 element regular cube array—the true DOA is indicated by the red circle, and

the estimates from maximums using CBF and SPD-BF are indicated by the blue and black crosses respectively. Top: beampattern from CBF. Bottom: beam-

pattern from SPD-BF. Note the difference in scale.
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BW3 dB ¼ 2ð min
v3 dB2S3 dB

arccosðv3 dB •vtrueÞð ÞÞ; (24)

where S3 dB is the set of all directions that occur at the

�3 dB level, and v3 dB are the corresponding unit vectors

pointing in these directions. The statistics for the estimated

beamwidth over 200 simulations with added white Gaussian

noise are shown in Fig. 8, with distributions of beamwidths

over all SNR levels on the left axis, and CDFs for individual

SNRs on the right axis. As expected, the increase in the floor

of the SPD-BF beampattern from incoherent summation of

sensor pair outputs has increased its resulting half-power

beamwidth. The SNR level was found to have a much larger

effect on SPD-BF in comparison to CBF—as SNR decreases

the beamwidth of SPD-BF increases. This is likely due to

more noise signal being added to the floor of the beampat-

tern at low SNR, resulting in a higher floor after summation

and a wider beamwidth. This effect is not as evident for the

ULA, since its geometry already results in a widely varying

beamwidth that changes with steering direction.

D. Speed-up factor

The computation time of CBF and SPD-BF were mea-

sured on a standard laptop computer (equipped with 8 GB of

memory, and an Intel Core i7–3630QM CPU @

2.40 GHz� 8 processor). For the three 3D arrays, the beam-

former was steered over a full grid of 180� 360 look direc-

tions, with 180 conical angles used for SPD-BF per pair; for

the uniform line array, 360 azimuths were used at a single

inclination of 90�. Six sensor pairs describe the tetrahedral

array; 15 sensor pairs describe the octahedral array, and 28

sensor pairs describe the 8-element line array and cube

array. The statistics of the computation time for both

approaches are shown as distributions in Fig. 9, with the left

and right axes corresponding to the computation time of

SPD-BF and CBF respectively. This figure shows that for

3D arrays SPD-BF achieves more than an order of magni-

tude decrease in computation time versus CBF when evalu-

ating the output over the full grid of look directions. This

speed up is due to the fact that CBF must evaluate

180� 360¼ 64 800 look directions, while SPD-BF is evalu-

ated only 6� 180¼ 1080 times, 15� 180¼ 2700 times, or

28� 180¼ 5040 times, for the tetrahedral, octahedral and

cube arrays respectively. As expected, SPD-BF is slower

than CBF for the ULA, since the beamformer is only steered

in a single dimension, negating the efficiency advantages of

our method.

E. Direction resolution, accuracy, speed, and memory
usage

To better understand the relationship between the reso-

lution of the grid of look directions and the accuracy of the

subsequent DOA estimate from both CBF and SPD-BF, the

grid resolution was varied, observing the impact on accu-

racy, computation time, and memory use. Configurations for

these simulations are listed in Table III—the 360� azimuth

and 180� inclination domains are divided equally into N/

and Nh angles, respectively, giving a Nh � N/ look direction

FIG. 7. (Color online) Comparison of accuracy of CBF and SPD-BF—accuracy is calculated as the angular difference between the true DOA and the arg-

maximum value from both methods over 200 simulations for varying SNR; error distributions over all SNRs are on the left axis, while empirical CDFs for

different SNR levels are shown on the right axis.

FIG. 8. (Color online) Comparison of the half-power beamwidth of CBF and SPD-BF—beamwidth is calculated as the angular difference between the arg-

maximum direction and the nearest –3 dB direction from both methods over 200 simulations for varying SNR; beamwidth distributions over all SNRs are on

the left axis, while empirical CDFs for different SNR levels are shown on the right axis.
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grid; the number of conical angles in the 180� conical angle

space is set equal to the number of azimuthal angles.

Section IV B noted that conical angle resolution signifi-

cantly impacts accuracy at high SNR—the number of coni-

cal angles is doubled here in comparison to Sec. IV B, so as

to reduce the accuracy gap between CBF and SPD-BF, since

improvements in speed and memory use for a given level of

accuracy is the primary interest here.

The LFM chirp described previously is corrupted by

white Gaussian noise to achieve random SNRs anywhere

between 0 and 25 dB. True DOA was selected randomly

from the set of look directions in Table III for a given con-

figuration. For each configuration listed, 200 simulations

were completed for both beamforming methods, using the

regular tetrahedral, octahedral and cube array geometries,

with the root-mean-square of the angular errors (RMSE) cal-

culated over all simulations. Mean computation time was

also calculated. The plot of Fig. 10 shows the RMSE for

both CBF and SPD-BF, and illustrates that these configura-

tions achieve a similar level of accuracy between both meth-

ods, allowing computational and memory efficiency to be

fairly compared between both.

Figure 11 plots the computation time averaged over all

runs for each of the configurations for both methods: as

expected SPD-BF is significantly more computationally effi-

cient for the same accuracy because as the direction resolu-

tion increases, the computation time for CBF increases

quadratically, while for SPD-BF the computation time

increases linearly. The speedup factor for computing the

various grid configurations is plotted in Fig. 12: SPD-BF is

able to speed up the computation time of a 180� 360 grid

of directions by more than 10 times with negligible loss in

accuracy.

Memory use was also evaluated for each beamforming

approach. For CBF, the phase shifts over all M frequencies

for each look direction in the grid and for all N elements in

the array must be stored—this requires Nh � N/ �M � N
complex doubles. In comparison, SPD-BF requires the stor-

age of the phase shifts over all M frequencies for all conical

angles belonging to all unique sensor pairs. For the regular

tetrahedral array, there is only one unique pair, since all sen-

sors have the same separation distance; for the regular octa-

hedral array, there are two unique pairs; and for the regular

cube array, there are three unique pairs. As such, our method

requires a much smaller amount of memory, equal to storing

N/ �M � Punique complex doubles, where Punique is the

number of unique sensor pairs. The plot of Fig. 13 illustrates

the amount of memory required by both methods using

M¼ 512. This figure illustrates the remarkable memory sav-

ings of SPD-BF, with the memory required being more than

two orders of magnitude less than CBF for a 180� 360 grid

of look directions. This means SPD-BF provides a signifi-

cant increase in direction resolution as compared to CBF for

a given amount of memory.

F. Issues and limitations in array gain and array size

A well-known fact of the CBF is that its gain increases

linearly with the number of elements, since it forms a coher-

ent sum of the signal over all N elements, resulting in a

10 log ðNÞ dB SNR. This result is clearly shown in the top

plot of Fig. 14, which illustrates simulated responses of both

CBF and SPD-BF with a ULA of increasing size, using a

single narrowband source at 90� and in the absence of

FIG. 9. (Color online) Comparison of the computation times of CBF and SPD-BF—computation time is measured on a standard laptop computer using both

methods over 200 simulations for varying SNR; distributions of computation time per simulation are shown on the left and right axes for SPD-BF and CBF

respectively. Note that the left and right axes have different ranges.

TABLE III. Look-angle configurations for comparative analysis of speed

and memory usage.

Configuration Sangles ðNh � N/Þ Sconical ðN/Þ

1 23� 45¼ 1035 look directions 45 conical angles

2 45� 90¼ 4050 look directions 90 conical angles

3 68� 135¼ 9180 look directions 135 conical angles

4 90� 180¼ 16200 look directions 180 conical angles

5 113� 225¼ 25425 look directions 225 conical angles

6 135� 270¼ 36450 look directions 270 conical angles

7 158� 315¼ 49770 look directions 315 conical angles

8 180� 360¼ 64800 look directions 360 conical angles FIG. 10. (Color online) Root-mean-square of DOA estimate errors for CBF

and SPD-BF with varying direction resolution from Table III.
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noise—the main lobe of the CBF amplitude response has a

uniform dB increase as the number of elements in the array

is doubled. In contrast, the SPD-BF response shown in the

lower plot of Fig. 14 illustrates that its gain is roughly fixed

regardless of the number of elements in the array—in fact,

the floor of its amplitude response appears to increase up to

a limit as the array grows, suggesting a limited decrease in

gain. This result is expected, since unlike CBF where a com-

mon origin is used to align and coherently sum the signal

from all elements, SPD-BF uses a separate origin for

each sensor pair, limiting coherent array gain to 10 log ð2Þ
¼ 3 dB, followed by the incoherent summation of the mag-

nitude outputs of each pair. This significant limitation in

gain suggests that SPD-BF can only be used to detect strong

sources, whose levels are within approximately 3 dB of each

other. However, it is interesting to note from Fig. 14 that the

main lobe for both CBF and SPD-BF experiences a similar

rate of decrease in beamwidth with increasing array size.

Thus, the increased beamwidths of SPD-BF obtained in Sec.

IV C and Fig. 8 are primarily affected by its fixed gain, and

may not accurately represent its ability to resolve multiple

sources, as long as these sources are of similar power.

As elements are added to an array, the number of pair

combinations grows with number of elements N,

P ¼ N
2

� 	
¼ N!

2!ðN � 2Þ! ¼
NðN � 1Þ

2
: (25)

This factorial growth means that SPD-BF is most valuable

when the number of array sensor pairs is small in compari-

son to the desired resolution of the output, i.e., PC	 C2.

This limitation is illustrated in the approximated theoretical

cost map of Fig. 15; the computational cost over a grid of

look directions for CBF is roughly estimated as 2C2 (where

C is the number of angles), while that of SPD-BF is esti-

mated as PC—this figure illustrates that, for example, using

a grid of 100� 200 look directions in inclination and azi-

muth, respectively, SPD-BF will computationally outper-

form CBF for arrays with 20 elements or fewer. A feature

of SPD-BF that we term anytime stopping, illustrated in

Fig. 16, further extends the applicability of this technique to

larger arrays. In anytime stopping, a subset of sensor pairs

may be used to reduce computation cost in exchange for

accuracy. Figure 16 shows that SPD-BF is able to estimate

the DOA to within 1� after the summation of only 3 of the 6

sensor pairs in a regular tetrahedral array.

Another issue with SPD-BF is the use of nearest neigh-

bor summation of sensor pair conical angles to construct the

full output: full output accuracy is dependent on the number

of conical angles used for each pair, the geometry of the

array, and the set of desired look directions. Figure 16 illus-

trates the effect of the level of discretization of the conical

angle space on SPD-BF accuracy—accuracy of SPD-BF

improves in a non-trivial manner with the increase in the

number of conical angles used.

The aforementioned use of separate origins or phase

centers for each sensor pair in SPD-BF results in fixed

coherent gain, and an increase in the floor of its response as

more pairs are added—this is a result of the fact that the

CBF magnitude response of individual sensor pairs is

FIG. 12. (Color online) Speedup of SPD-BF over CBF with varying direc-

tion resolution as listed in Table III.

FIG. 13. (Color online) Memory usage of CBF and SPD-BF with varying

direction resolution as listed in Table III.

FIG. 14. (Color online) CBF and SPD-BF responses of a uniform line array

with varying number of elements to a narrowband signal arriving from 90�,
illustrating linear increase in gain of CBF, and fixed gain of SPD-BF.

FIG. 11. (Color online) Computation time of CBF and SPD-BF with vary-

ing direction resolution as listed in Table III.

3476 J. Acoust. Soc. Am. 148 (6), December 2020 Rypkema et al.

https://doi.org/10.1121/10.0002852

https://doi.org/10.1121/10.0002852


always greater than zero, raising the floor via incoherent

summation, and is clearly visible in Fig. 14. To better under-

stand the behavior of SPD-BF stemming from this incoher-

ent summation, we simulate two narrowband sources at 40�

and 100�, with the second source at a lower power than the

first. The responses in the absence of noise of a ULA

with increasing size for both CBF and SPD-BF are shown in

Fig. 17. The CBF responses clearly indicate, again, the

increase in gain with number of elements—for the 4, 8, 16,

and 32 element ULAs, we expect gains of 10 log ðNÞ 
 6, 9,

12, and 15 dB, respectively, and we clearly see that this is

roughly the case: with 4 elements the second source merges

with the sidelobe below –9 dB, and with 8 elements the sec-

ond source is around the same level as the first sidelobe at

–12 dB; the 16 and 32 element ULAs have a first sidelobe

level of about –12 and –15 dB, respectively; thus, with the

addition of more elements, the CBF is able to distinguish a

second source of increasingly reduced power thanks to the

linear increase in gain. Additionally, the amplitude responses

of CBF accurately reflect the relative power of the two

sources—the difference in peaks between the main lobe and

the second source lobe is roughly equal to the reduction in

power of the second source, something we see is not the case

for the SPD-BF response. Looking at the SPD-BF responses

in the lower plots of Fig. 17, we again see that the gain is

essentially fixed, evidenced by the similar dynamic range

across ULAs of different size. Interestingly, however, the

second source is effectively visible in all arrays at a power

level of –6 dB, and arguably even at –9 dB. Thus, even

though the expectation is that individual sensor pairs would

be unable to discern a secondary source 3 dB lower than the

primary source, the incoherent summation of CBF outputs of

all pairs together provide enough gain so as to enable the

SPD-BF to discern a secondary source up to 9 dB lower.

Incoherent summation across sensor pairs produces this sur-

prising result, and indicates that the behavior of SPD-BF can-

not be explained adequately within the classical

beamforming framework—nulls and sidelobes from different

sensor pair outputs combine and negate each other, leading to

a very flat floor, which does not reflect the relative gain loss

away from the main lobe. This is very clearly demonstrated

in the relative levels of the main and second source lobes, as

well as the level of the second source lobe as its power is

decreased as shown in Fig. 17—the 3 dB step-changes in

power of the second source are not accurately reflected in the

SPD-BF responses. It is for this reason that we describe SPD-

BF responses as having a floor rather than sidelobes, and why

we do not usually display them on a dB scale. In addition, the

standard rule used to determine an array’s ability to resolve a

secondary source, that in which the second source must be at

least a half-power beamwidth away from the main source, is

not applicable to SPD-BF—for example, the SPD-BF

response of the 32 element ULA with a second source at

–3 dB has a dynamic range less than 3 dB (indicating infinite

beamwidth); however, the second source peak is clearly visi-

ble. The empirical results illustrated by these simulations

demonstrate the strict limitations of SPD-BF, and indicate the

need for in-depth theoretical analysis of its behavior, an anal-

ysis that is out of the scope of the current paper.

FIG. 15. (Color online) Approximated theoretical difference in computa-

tional cost of CBF and SPD-BF as a function of number of elements and

number of angles for 3D beamforming; areas greater than 0 indicate that

SPD-BF is less costly than CBF.

FIG. 16. (Color online) Top: the effect of conical angle resolution on SPD-BF output—the use of nearest neighbor summation means that the number of conical

angles used significantly impacts SPD-BF output quality. Bottom: SPD-BF implicitly features anytime stopping by only summing subsets of sensor pairs; this

allows computation time to be capped. True DOA is shown as the red circle at h; / ¼ 90�, and the maximum output of SPD-BF is shown as the black cross.
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The two most significant limitations of SPD-BF of an

essentially fixed array gain and the restriction of applica-

bility to small arrays, means that this method is not well-

suited to the application of resolving or tracking multiple

acoustic sources—a single source of much higher sound

pressure level would effectively drown out other sources,

and even if that were not the case, the wider beamwidths

associated with smaller arrays would limit angular resolu-

tion. Thus, SPD-BF finds its greatest utility in tracking a

single strong source, which we illustrate using experimen-

tal data in Sec. V.

V. EXPERIMENTAL COMPARISONS

A. Setup

Acoustic data were gathered by the WAM-V autono-

mous surface vehicle (ASV)20 shown in Fig. 18, equipped

with an 8-cm pyramidal hydrophone array as described in

Ref. 21. The ASV is a 5 m long, differential drive platform,

outfitted with a Hemisphere V102 DGPS receiver for

navigation, providing an accuracy in positioning of 1 m or

less and heading of 0.75�. The pyramidal array consists of

five HTI-96-Min hydrophones with 8 cm edge spacing. The

array is attached to the end of a 1.5 m port-side aluminum

boom using a 3D-printed mount. Acoustic energy captured

by this array is digitized using a USB-1608FS-Plus data

acquisition (DAQ) device. The custom acoustic beacon for

transmission consists of a GPS receiver, Arduino Uno,

Wave Shield and Lubell 3400 underwater speaker, allowing

transmission of user-defined signals.

An acoustic data set was collected by the ASV running

on the Charles River by the MIT Sailing Pavilion in

November 2017. The acoustic beacon was attached to the

Pavilion dock at a 1 m depth, and set to transmit a 11–9

kHz, 20 ms LFM chirp every second as triggered by the

pulse-per-second (PPS) signal from its GPS. The ASV drove

the lawnmower track shown in Fig. 19, recording 16 000

acoustic samples every second from each hydrophone at

37.5 kS/s. Sampling was performed in sync with beacon

FIG. 17. (Color online) CBF and SPD-BF responses of a uniform line array with varying number of elements to two narrowband sources—a source at 40�

and a second source of lower and varying power at 100�. Top: CBF response accurately reflects the relative power of both sources, while the SPD-BF

response (bottom) does not.

FIG. 18. (Color online) The WAM-V ASV equipped with 8-cm pyramidal

hydrophone array (inset yellow), and Hemisphere V102 DGPS receiver

(inset red).

FIG. 19. (Color online) ASV DGPS track in a local coordinate frame in

black, with beacon position as the green circle.
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transmission via triggering of the DAQ at the start of each

second using GPS PPS.

B. Results

The collected acoustic data were processed using CBF

and SPD-BF using configuration 8 in Table III. The data

were pre-processed by normalizing each sample by the

magnitude of its Fourier transform (the so-called phase-

transform), then transformed into the frequency domain

using the chirp Z-transform (CZT) with 2048 frequency

components—this allows for the efficient time-to-frequency

transformation of the signal, constraining the frequency

domain to the subset of bins containing only the relevant

frequencies between 9 and 11 kHz.

The plots in Fig. 20 illustrate the outputs from CBF at

top, and that from SPD-BF at bottom, over the duration of

the entire experiment. These plots show the outputs over

azimuth (/) only, with the azimuthal slice selected across

the arg-maximum value of inclination (h). The true DOA in

azimuth is shown as the dashed red line, calculated using

the position and heading recorded by the ASV’s DGPS

receiver. It is apparent from these plots that SPD-BF produ-

ces a very similar output to CBF. Qualitatively, the maxi-

mum for both methods follows the true azimuth well,

indicating that both methods are able to track the acoustic

source. As expected from simulation, the summation of the

outputs of sensor pairs has resulted in a higher floor in the

output of the SPD-BF method, clearly seen as the major dif-

ference between the two plots.

Taking the arg-maximum azimuths from the outputs of

both methods, and comparing them to the true azimuths cal-

culated using DGPS measurements, allows the probability

distribution plot of azimuthal error in Fig. 21 to be gener-

ated. This figure shows that a major percentage of errors in

azimuth are <15�, with about 92% of measurements from

both CBF and SPD-BF falling into this category.

Approximately 80% of measurements from both methods

have an error of <8�. What is clearly apparent is that both

CBF and SPD-BF have a comparable level of accuracy, as

the profile of the error distributions for both methods are

very similar. There is a 0� or 1� difference between the CBF

and SPD-BF DOA estimates in 90% of the measurements,

illustrating their similarity in output. The close match of

results between techniques on real data, coupled with the

computation and memory gains, shows the utility of SPD-

BF for efficient DOA estimation of a single strong source.

VI. CONCLUSION

This paper describes a novel approximate beamforming

method that is computationally and memory efficient for

arrays with a small number of sensors, termed sensor pair

decomposition beamforming (SPD-BF). The key insight of

this method is that any given look direction for an arbitrary

3D array can be described in the conical angle space of the

array’s sensor pairs by a single conical angle rather than the

usual two angles in azimuth and inclination. This insight

allows the search space of a grid of look directions to be col-

lapsed from two dimensions to one—rather than beamform-

ing at every look direction on a grid, SPD-BF instead

beamforms at every conical angle of each sensor pair, and

constructs an approximation from these outputs on the

original grid of look directions. This results in significant

FIG. 20. (Color online) Outputs from CBF and SPD-BF using experimental acoustic data gathered by an ASV—outputs over azimuth are shown by selecting

the azimuthal slice corresponding to the inclination along which the maximum occurs; red dashed line is the true DOA in azimuth calculated using DGPS

position and heading.

FIG. 21. (Color online) Probability distribution of error between true azi-

muth calculated from DGPS position/heading and the arg-maximum outputs

from CBF and SPD-BF.

J. Acoust. Soc. Am. 148 (6), December 2020 Rypkema et al. 3479

https://doi.org/10.1121/10.0002852

https://doi.org/10.1121/10.0002852


improvements in memory and computation efficiency for sim-

ilar direction resolution and accuracy in 3D beamforming on

small arrays. Results from simulations illustrated the advan-

tages and limitations of SPD-BF in comparison to conven-

tional beamforming (CBF), with the main advantage being an

order of magnitude improvement in computation time and

memory use in certain use-cases, and the main limitation

being a fixed gain. Experimental results using acoustic data

gathered by an autonomous surface vehicle (ASV) equipped

with a five-element pyramidal hydrophone array demonstrated

the utility of SPD-BF in processing sensor data more effi-

ciently and at a similar level of accuracy as CBF for direction-

of-arrival (DOA) estimation of a single strong source. These

results indicate that SPD-BF may be particularly useful for

high-resolution, real-time acoustic localization on low-power

embedded systems, where computation and/or memory may

be limited and where the memory usage of CBF may over-

whelm available resources. For example, wideband CBF using

a four-element array on a 180� 360 grid of look directions

with 512 FFT bins requires 180� 360� 512� 4 16 byte

complex doubles, equivalent to approximately 4.2 GB—this

amount of memory is far beyond that available on a

BeagleBone Black or a Raspberry Pi 3 embedded computer;

in contrast, with 360 conical angles, SPD-BF requires only

360� 512� 4� 16 bytes, or about 11.8 MB.

Future work may examine how the unique features of

SPD-BF can be used to increase computational efficiency in

specific applications. For example, SPD-BF with a low coni-

cal angle resolution and a small subset of an array’s sensor

pairs can be used to very quickly discard erroneous directions

for DOA estimation; this can then be followed by an iterative

refinement of the estimated DOA via an increase in the num-

ber of conical angles, or the addition of additional sensor

pairs, to iteratively converge on the true DOA. Alternatively,

once SPD-BF has been used to provide a quick and rough

estimate of the true DOA, CBF can be performed over a

smaller subset of look directions. The incorporation of other,

more precise beamforming methods may be another direction

of future work. By using conical angles to reduce the cost of

computing/storing steering vectors while integrating weight-

ing concepts from MVDR or MUSIC, an improvement in

angular resolution and gain of SPD-BF may be possible while

maintaining some of the benefits in speed and memory effi-

ciency afforded by our method.
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