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ABSTRACT

Four state-of-the-art satellite-based estimates of ocean surface latent heat fluxes (LHFs) extending over

three decades are analyzed, focusing on the interannual variability and trends of near-global averages and

regional patterns. Detailed intercomparisons are made with other datasets including 1) reduced observation

reanalyses (RedObs) whose exclusion of satellite data renders them an important independent diagnostic

tool; 2) a moisture budget residual LHF estimate using reanalysis moisture transport, atmospheric storage,

and satellite precipitation; 3) the ECMWF Reanalysis 5 (ERA5); 4) Remote Sensing Systems (RSS) single-

sensor passive microwave and scatterometer wind speed retrievals; and 5) several sea surface temperature

(SST) datasets. Large disparities remain in near-global satellite LHF trends and their regional expression over

the 1990–2010 period, during which time the interdecadal Pacific oscillation changed sign. The budget residual

diagnostics support the smaller RedObs LHF trends. The satellites, ERA5, and RedObs are reasonably

consistent in identifying contributions by the 10-mwind speed variations to the LHF trend patterns. However,

contributions by the near-surface vertical humidity gradient from satellites and ERA5 trend upward in time

with respect to the RedObs ensemble and show less agreement in trend patterns. Problems with wind speed

retrievals from Special SensorMicrowave Imager/Sounder satellite sensors, excessive upward trends in trends

in Optimal Interpolation Sea Surface Temperature (OISST AVHRR-Only) data used in most satellite LHF

estimates, and uncertainties associated with poor satellite coverage before the mid-1990s are noted. Possibly

erroneous trends are also identified in ERA5 LHF associated with the onset of scatterometer wind data

assimilation in the early 1990s.

1. Introduction

Latent heat flux (LHF1) is a major linkage between

the global ocean and overlying atmosphere, directly

controlling the mass and energy exchanges between

them. Each of the seven WCRP Grand Challenges
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(https://www.wcrp-climate.org/grand-challenges/grand-

challenges-overview) involves the hydrosphere and re-

quires improved process understanding, more accurate

measurement, and improved modeling of water cycle

fluxes. Addressing the question of ‘‘How is the water

cycle changing?’’ has important hydrologic and plane-

tary energy balance aspects that require LHF accuracy

beyond that currently provided by satellite-based esti-

mates or in situ data. Atmultidecadal to centennial time

scales, atmospheric radiative constraints on hydrologi-

cal trends are expected to hold increases in global mean

precipitation P or evaporation E2 to less than a 2%K21

rise in global surface temperature rise (Manabe and

Wetherald 1975; Allen and Ingram 2002). This contrasts

with changes in the water holding capacity of the at-

mosphere that roughly scale at the Clausius–Clapeyron

rate of ;7%K21 temperature rise (Held and Soden

2006). On interannual to decadal scales, natural climate

variability is enhanced by coupled atmosphere–ocean–

land dynamics (Allan et al. 2013; Trenberth and Fasullo

2013; Miralles et al. 2014). Because the observational

record from satellites now barely encompasses multi-

decadal time scales, detecting and separating these two

components using models and observations remains

problematic. Climate variability accessible since the

beginning of passive microwave satellite data is largely

that of ENSO and interdecadal signals such as the IPO

(Power et al. 1999; Henley et al. 2015) and the so-called

warming hiatus during the 2000s (Easterling and

Wehner 2009; Kosaka and Xie 2013).

Fromahydrologic cycle perspective, evaporation plays a

major role in ocean surface salinity changes (Durack and

Wijffels 2010; Helm et al. 2010) and on shorter time scales,

ocean mass balance (Boening et al. 2012; Cazenave et al.

2012; Stammer et al. 2013). Quantifying freshwater flux

(E 2 P) and global ocean mass changes potentially also

enables accurate land discharge estimates (Syed et al.

2010). Reconciling satellite-derived E 2 P and reanalysis

moisture fluxdivergencewith space-based ocean altimetric

and gravimetric water storage histories is a promising area

of active research (Chen et al. 2005; Trenberth and Fasullo

2013; Rodell et al. 2015). How these variations behave in

the emerging multidecadal record and how refined ocean

evaporation estimates, particularly in concert with pre-

cipitation, can contribute is an urgent question.

From a planetary energy balance perspective, satellite

LHF estimates have been far too uncertain to assist in

determining ocean heat storage. Reanalysis vertically

integrated energy flux divergence and observed TOA

fluxes have been used together to arrive at the net sur-

face energy exchange as a residual (Trenberth 1997; Liu

et al. 2015, 2017). Interannual variations in TOA fluxes

(Loeb et al. 2012) are of the same size as current estimates

of Earth’s energy imbalance (EEI) at TOA—in the range

of 0.6–1.2Wm22 (Roemmich et al. 2015; von Schuckmann

et al. 2016; Cheng et al. 2017). At present we have little

understanding of how the net surface flux components vary

together in time as ocean heat storage changes and how

LHF changes come into play.

Can we expect improved remote sensing strategies to

meet these challenges? Passive and active microwave

satellite observations can determine near-surface hu-

midity, temperature, and wind speed and have now

amassed 301 years of data. When coupled with SST

retrievals and applied as input to comprehensive bulk

parameterization retrievals of LHF (Fairall et al. 2003;

Edson et al. 2013), satellite-based LHF datasets have

yielded encouraging improvements (Liu 1984, 1988;

Schulz et al. 1993; Bentamy et al. 2003, 2013, 2017; Yu

2019). The bulk method takes the form

LHF5L
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2Q
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where Qs and Qa are specific humidities of the ocean

surface and overlying atmosphere (typically at 2m),U is

10-m wind speed, ro is atmospheric density, Ly is the

latent heat of evaporation, and CE is the exchange co-

efficient (Dalton number).

However, persistent challenges have made the de-

velopment of stable LHF climate records problematic.

Sensor-related issues include orbital drift through the

diurnal cycle, sensor Earth incidence angle variations,

on-board calibration stability, changing antenna emis-

sivity, variable channel central frequency, and footprint

size. Determining accurate differences between Qs and

Qa from space is difficult since passive microwave

channel weighting functions are broad and do not di-

rectly measure the near-surface humidity; rather, they

determine the lower tropospheric water vapor burden,

which is reasonably correlated with 2-mQa (Schulz et al.

1993). The character of Qa variability itself depends on

different ‘‘dynamical weather regimes’’ such as warm

pool quasi-equilibrium radiative/convective balance, sub-

tropical subsidence, or midlatitude baroclinic weather

systems (Yu 2019; Roberts et al. 2019). Passive micro-

wave wind speed retrievals, while more directly related

to surface wind stress, are sensitive to temporal stability

in the 37-GHz channels that, as we will see later, are

more problematic in the SSMIS than the SSM/I sensors.

Additionally, both near-surface Qa and wind speed re-

trievals have regimebiases from thepresence of cloud liquid

water and its links to atmospheric dynamics. Uncertainties

2E 5 LHF/Lyro, where Ly is the latent heat of evaporation and

ro is ocean water density.
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in SST and, thus, Qs have received less scrutiny than Qa in

the context of developing ocean LHF estimates. But

SST records typically involve multiple observing plat-

forms, both in situ and space-based. We will see that dif-

ferences among SST climate data records have important

consequences for decadal variability of LHF estimates.

Nevertheless, these error sources are gradually being

reduced. As one example, recent algorithm advances

(Bentamy et al. 2013; Tomita et al. 2018; Roberts et al.

2020) have incorporated ancillary information account-

ing for water vapor scale height and/or SST changingwith

dynamical regime. Merged passive/active wind speed es-

timates as climate records arematuring steadily (Bentamy

et al. 2012, 2017; Wentz et al. 2017). Many of these same

problems of sensor calibration and regime-dependent

biases still affect satellite-derived precipitation (Adler

et al. 2018) and thus, E 2 P retrievals. Accuracy and avail-

ability of in situ training/validation data (Berry and Kent

2017) remain persistent challenges although continuing data

recovery efforts benefit in situ records (Freeman et al. 2017).

Comprehensive or ‘‘full input’’ reanalyses assimilate a

broad array of observations including passive and active

microwave radiances and retrievals (Fujiwara et al.

2017). Through parameterized physics they provide an

internally consistent framework for simultaneously de-

termining turbulent and radiative fluxes. But because

model physics are imperfect, assimilating models tend

to drift toward their own climate in the absence of

sufficient observational data to constrain analyses.

Consequently, the continual but discrete introduction of

new satellite sensors in recent decades has resulted in

offsets or steps in fluxes and other variables that can

distort natural variability and induce artificial trends

(Trenberth and Fasullo 2013; Robertson et al. 2014).

One class of reanalyses, which we refer to as reduced

observation reanalyses (RedObs), assimilates varying

degrees of only conventional in situ observations, thus

permitting much longer study periods. Although these

products may lack details and fidelity in their depiction

of weather in a deterministic sense and systematic model

physics biases undoubtedly persist, evidence is emerging

that they capture interannual to decadal signals rea-

sonably well (Compo et al. 2011; Feng et al. 2018;

Laloyaux et al. 2018). RedObs do share SST and sea ice

forcing used in comprehensive reanalyses but their

omission of satellite temperature, moisture, and wind

speed retrievals makes them valuable for intercompar-

ison and a contribution to validation. There are caveats,

of course. The model moisture fields (e.g., Qa) are con-

trolled by model physics. Declines in some marine data

observations (Kent et al. 2006) also likely have some

effect. We interpret these datasets as a compromise

between AMIP experiments, where lower boundary

forcing and radiative forcing are the only external con-

straints, and conventional reanalyses that have to ac-

commodate tremendous changes in observing systems.

The RedObs strength of greater internal consistency in

flux products because of smaller assimilation increments

is used in this study to help identify uncertainties in

satellite derived LHF estimates. Our analysis provides

additional diagnostic results that support the utility and

interpretation of RedObs products.

Our objectives in this work are threefold: 1) to

quantify interannual to interdecadal LHF variability in

recent updates to ocean satellite-derived LHF estimates;

2) to trace differences in LHF variability to differences in

satellite-derived wind speed and near-surface humidity

forcing for bulk aerodynamic estimates; and 3) to assess

the consistency between satellite-estimated and RedObs

LHF variability and determine to what extent these

simpler reanalyses can be used as a partial validation

source to identify potential quality issues.

2. Datasets and methodology

Our analysis will focus exclusively on variability of

monthly mean values rather than climatological structure.

The common period 1992 through 2010 is used to define

monthly resolved climatologies of each dataset which, when

subtracted from the total fields, yield monthly anomalies.

This period is bounded by the beginning of IFREMER4.1

(Institut Français pour la Recherche et l’Exploitation de la

Mer, version 4.1) and the end of CERA-20C (ECMWF

coupled ERA twentieth century integration) archives.

Whilemost LHFestimates are produced at 0.258 resolution,
all data used here were either accessed at or remapped to

common 1.08 grids. We use the region 608N/S to represent

the global domain, acknowledging that important variability

inpolar regions exists but is fraughtwithproblems in current

satellite estimates because of undetected sea ice and a lack

of in situ validation data.

a. Satellite-derived bulk estimates

In addition to the discussion below, further details of

the satellite algorithms and reanalysis properties are

presented in Tables 1 and 2, respectively. An important

point for the satellite LHF estimates is that the starting

Level 1B Fundamental Climate Data Records (FCDRs)

of sensor channel brightness temperature (Tb) differ for

each algorithm as noted below and in Table 1. While all

estimates are based on theCOAREbulk algorithm (Fairall

et al. 2003), version updates vary among the four systems.

1) IFREMER4.1

Bentamy et al. (2013) detail the updated empirical

model for Qa used in the latest version of air–sea fluxes
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produced by the IFREMER4.1 (hereafter IFREMER4).

Estimates of Qa use Tb from the Colorado State

University (CSU FCDR; Kummerow et al. 2013), and

the latest reprocessed International Comprehensive

Ocean–AtmosphereDataset (ICOADSversion 3; Freeman

et al. 2017) as input. To extend the flux record beyond the

CSU FCDR’s end in June 2017, the Remote Sensing

Systems (RSS) FCDR (Wentz 2013) Tb values are used.

TABLE 1. Properties of the four satellite-based latent heat flux retrieval algorithms. See text in section 2a for amore detailed description of

individual algorithms. Also see section 2a for references and brief discussion of OAFlux V3, a blended satellite/reanalysis product.

Dataset (institution)

Level-2 retrieval

collocation Qa Wind speed SST

Data availability and

references

IFREMER v4.1

(Institut Français
pour la Recherche

et l’Exploitation

de la Mer)

NOCS 2.0 q10m and

SSM/I(IS) satellite

matchups done at

0.258 if occurring
on the same day

and if the

separation

distance is less

than 100 km

In addition to

satellite Tb

retrieval

predictors include

OISST-AVHRR-

Only SST and

ERA-I SST and

T2m difference

Bentamy et al.

(2017); ERS-1,

ERS-2,

QuikSCAT and

ASCAT RSS V7

wind speeds used

as ancillary data to

gap fill

scatterometers

AVHRR-Only SST

(Reynolds

et al. 2007)

Data: ftp://o1ef56@

eftp.ifremer.fr/

oceanheatflux/

data/third-party/

fluxes/ifremerflux_

v4.1_monthly/

ERA-Interim Q10

and T10m

occurring if within

50 km and 3 h of

SSM/I(IS)

An external drift

constraint at the

daily level is

applied via use

ERA-I q2mm

Retrieval algorithm:

Bentamy et al.

(2013, 2017); wind

speed: Bentamy

et al. (2017)

HOAPS 4 (Hamburg

Ocean

Atmosphere

Parameters and

Fluxes from

Satellite Data)

SSM/I(IS) retrievals

at swath level

(HOAPS-S);

HOAPS-C, G

aggregate to 6 h

and monthly 0.58
respectively;

upgraded

COARE 2.6 flux

retrievals

Linear regression of

19V, H, 22V,

37VH; trained

with 1 yr of

Atlantic ICOADS

ship data

(Bentamy

et al. 2003)

1D-VAR retrieval of

10-m wind speed

and column water

vapor; fixed

ECMWF forecast

climatological

background

atmospheric

profiles with

RTTOVS forward

modeling of TBs

NOAA 0.258 daily
OISST, version 2,

AVHRR-Only

(Reynolds et al.

2007; Reynolds

2009); skin tem-

perature estimate

follows Donlon

et al. (2002)

https://doi.org/

10.5676/EUM_

SAF_CM/

HOAPS/V002

FCDR: Fennig

et al. (2019)

Andersson

et al. (2010)

J-OFURO3

(Japanese Ocean

Flux Datasets with

Use of Remote

Sensing

Observations)

COARE 3.0 driven

with daily means

of input variables

on 0.258 grid

RSS column water

vapor W and

ERA-I and

ICOADS 10-m

moisture qy are

used to define

water vapor scale

height, Hy 5 W/

(raqy) over six

different moisture

stratification

regimes enabling

Qa5 Qa(Tb, Hy)

retrieval

RSS V7.1 retrievals:

SSM/I, SSM/IS,

AMSR-E, TMI,

WindSat, AMSR2,

ERS-1 and ERS-2,

QuikSCAT,

ASCATA,

OSCAT, NOAA

ASCAT/B

Ensemble-median

SST blends

12 Level-3 and

-4 datasets to

reduce random

error yet minimize

rms departures

from buoys

Data: https://j-

ofuro.scc.u-

tokai.ac.jp

Tomita et al. (2019)

Tomita et al. (2018)

SeaFlux V3 (NASA

MSFC/Woods

Hole

Oceanographic

Institution)

Neural net algorithm

trained using 3-h

window

collocations of

ICOADS V3 and

swath data on

0.258 grid

MERRA-2 a priori estimates of water vapor

stratification and the surface to 850-hPa

mean layer temperature to address the

regional biases found in Roberts

et al. (2019)

NOAA 0.258 daily
OISST V2,

AVHRR-only

with a specified

diurnal cycle

applied as input is

weakly impacted

by the NN

retrieval

Roberts et al. (2010)

AMSR-E, TRMM,

AMSR2, GPM

sensors included;

COARE 3.5 flux

retrievals

Qa and 10-m wind speed output from

10-node, one hidden layer neural

net algorithm

Roberts et al. (2020)
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TABLE 2. Relevant properties of reduced observations reanalyses (RedObs) and reanalyses.

Dataset(institution) General reanalysis characteristics Dataset availability and documentation

Twentieth Century Reanalysis (20CRv3)

[National Oceanic and Atmospheric

Admin. (NOAA), Cooperative

Institute for Research in

Environmental Sciences (CIRES), and

Department of Energy (DOE)]

1836–2015 record; uses 2017 NCEP GFS

assimilation model, ;0.78 grid
resolution, 80-member ensemble

Kalman filter with 4D incremental

analysis update (Bloom et al. 1996; Lei

and Whitaker 2016)

https://www.esrl.noaa.gov/psd/data/

20thC_Rean/

Assimilates International Surface

Pressure Databank v4.7

Compo et al. (2011)

1981–2015 HadISST2.2 SSTs, (Rayner

et al. 2006; Slivinski et al. 2019)

Slivinski et al. (2019)

1836–1980 SODAsi.3 SSTs (Giese

et al. 2016)

JRA-55 [Japan Meteorological

Agency (JMA)]

1973–2012 record; uses 2009 JMA semi-

Lagrangian, 4D-Var, operational model

(;55-km grid resolution); COBE SST

(Ishii et al. 2005)

https://jra.kishou.go.jp/JRA-55/

Extensive conventional upper-air, satel-

lite, aircraft, ship, and in situ observa-

tions assimilated; JRA-55C (1973–2012)

Note: JRA-55C assimilated conven-

tional observations only.

Kobayashi et al. (2014)

Kobayashi et al. (2015)

CERA-20C (ECMWF) 1901–2010 record; 10-member ensemble

integrations of CY41R2 of ECMWF

Integrated Forecast System; 125-km

atmosphere grid resolution (110-

km ocean).

https://www.ecmwf.int/en/forecasts/

datasets/reanalysis-datasets/era5

Ps and marine wind observations are

assimilated in the atmospheric model,

from the ISPDv3.2.6 (Cram et al. 2015)

and ICOADSv2.5.1 (Woodruff

et al. 2011)

Laloyaux et al. (2016)

SST relaxed to HadISST2 monthly

ensemble product (Titchner and

Rayner 2014); ocean subsurface T and

salinity from bias-corrected EN4.0.2

dataset (Good et al. 2019)

Laloyaux et al. (2018)

ERA5 (ECMWF) 1950–present; 31-km grid resolution;

hourly archival; Integrated Forecasting

System (IFS) Cy41r2.31; model 12-h

window for 0000, 1200 UTC 4D-Var

Assimilation.

https://cds.climate.copernicus.eu/

cdsapp#!/dataset/reanalysis-era5-

single-levels-monthly-means?

tab5overview

Extensive conventional upper-air, satel-

lite, aircraft, ship, and in situ observa-

tions assimilated

Hersbach et al. 2020

SST/sea ice from HadISST2 through Aug

2007, OSTIA from September 2007 to

present (Hirahara et al. 2016)

MERRA-2 [National Aeronautics and

Space Administration (NASA) Global

Modeling and Assimilation

Office (GMAO)]

GEOS version 5.12.4 uses 3D-Var

atmospheric data assimilation system

with 6-h incremental analysis update;

0.58 3 0.6258, 72 level grid, available

from 1980 to present.

https://disc.gsfc.nasa.gov/MERRA-2

Extensive conventional upper-air, satel-

lite, aircraft, ship, and in situ observa-

tions assimilated

Gelaro et al. (2017)

Reynolds et al. (2007) SST with OSTIA

(Donlon et al. 2012) after 2006

Bosilovich et al. (2017)

1 OCTOBER 2020 ROBERTSON ET AL . 8419

Brought to you by MBL/WHOI Library | Unauthenticated | Downloaded 02/17/21 07:19 PM UTC

https://www.esrl.noaa.gov/psd/data/20thC_Rean/
https://www.esrl.noaa.gov/psd/data/20thC_Rean/
https://jra.kishou.go.jp/JRA-55/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
https://disc.gsfc.nasa.gov/MERRA-2


The Qa estimates use as predictors not only SSM/I Tb

but also ERA-Interim (ERA-I) SST and 2-m tempera-

ture (T2m)/SST stratification. Coefficients of this em-

pirical relationship are determined through a maximum

likelihood method using ICOADS v3 data and ERA-I

SST and 10-m temperature (T10m). Spatially and tem-

porally dense ERA-I reanalysis Qa data are used as an

external constraint applied on a daily basis to the tem-

porally sparser satellite retrievals. The 2-m ERA-I and

ICOADS data are adjusted to 10-m levels using the

COARE 3.0 algorithm (Fairall et al. 2003). Wind speeds

are a combination of scatterometer and RSS radiometer

retrievals (Bentamy et al. 2017). Turbulent fluxes are

estimated using the COARE 3.0 algorithm with SST es-

timates from OISST AVHRR-only (hereafter OISST-A;

Reynolds et al. 2007) and the above described winds,

near-surface humidity, and temperature.

2) J-OFURO3

The latest update to the J-OFUROdatasets, J-OFURO3.

1.1 (hereafter JOFURO3; Tomita et al. 2019), offers

a broad array of surface turbulent, freshwater, and ra-

diative flux components and employs virtually all

available satellite-borne microwave radiometers and

scatterometers. RSS V7.1 brightness temperatures con-

stitute the FCDR. To develop theQa algorithm, column-

integrated water vaporW from retrievals by Wentz et al.

(2013), surface air density, ra 5 1.2kgm23, and ERA-I

Qa are used to define the water vapor scale height, Hy 5
W/(raQa), over six different categories with differing

moisture stratification regimes (Tomita et al. 2018). The

termHy is then used in conjunction with ICOADSV3Qa

and RSS brightness temperatures to train a Qa retrieval

algorithm for each Hy category. The Qa retrievals are

subsequently intercalibrated relative to F13. Surface

wind speed retrievals blend RSS v7 passive microwave

products as well as Centre ERS d’Archivage et de

Traitement (CERSAT) scatterometer retrievals from

ERS-1 andERS-2, QuikSCAT,ASCAT-A andASCAT-B,

and OceanSat Scatterometer (OSCAT) produced by

NASA JPL. A new ensemble median SST (EMSST)

product has also been produced that blends 12 different

SST analyses.

3) HOAPS-4

Intercalibrated and homogenized SSM/I and SSMIS

Tb values from the EUMETSAT Climate Monitoring

Satellite Applications Facility FCDR (Fennig et al.

2015, 2020) comprise the fundamental Level 1 input for

Hamburg Ocean Atmosphere Parameters and Fluxes

from Satellite Data version 4 (HOAPS-4) estimates

(hereafter HOAPS4). Among others, turbulent and

freshwater fluxes over the ice-free global oceans from

July 1987 through 2014 are estimated with the COARE

2.6a bulk aerodynamic algorithm (Fairall et al. 1996,

2003; Andersson et al. 2010). Six-hourly composites and

monthly averages are available on a global 0.58 3 0.58
latitude/longitude grid. Near-surface 2-m specific hu-

midity retrievals use the Bentamy et al. (2003) algo-

rithm. The 10-m neutral surfacewind speed and vertically

integrated water vapor are retrieved via an updated

Numerical Weather Prediction Satellite Applications

Facility 1D-Var routine. Radiative transfer modeling of

Tb for channel-specific wavelengths based on atmo-

spheric background fields (13 000 over ocean) uses a

predefined 91-level atmospheric profile database con-

structed from ECMWF short-range forecasts (Chevallier

et al. 2006). NOAA 0.258 daily OISST-A, version 2

(Reynolds et al. 2007; Reynolds 2009), is used as input

with a skin temperature estimate following Donlon

et al. (2002).

4) SEAFLUX-V3

Multiple improvements have been made to the

SeaFlux-CDR, termed SeaFlux-V3 (hereafter SeaFluxV3;

Roberts et al. 2020). These estimates have been devel-

oped using the latest Global PrecipitationMeasurement

Mission Level 1C Intercalibrated brightness tempera-

ture record (Berg et al. 2018). The nonlinear neural

network (NN)-based retrievals of wind speed, air tem-

perature, and air specific humidity (Roberts et al. 2010)

were updated to include a priori estimates of water va-

por stratification and the surface to 850-hPa mean layer

temperature from MERRA-2 to address the regional

biases found inRoberts et al. (2020); like JOFURO3 this

approach tries to accommodate variable water vapor

stratification. A total of 14 available microwave imagers

are used including SSM/I, SSMIS, TMI, AMSR-E,

AMSR-2, and GMI. Near-surface LHF estimates from

each sensor were further intercalibrated using collo-

cated estimates; the intercalibration was chained back-

ward in time using GMI as the primary reference.

Diurnally varying sea surface temperatures generated

for the SeaFlux-CDR recordwere applied to theOISST-A

for all surface flux computations using the COARE-3.5

(Edson et al. 2013) algorithm.

5) OAFLUXV3

Monthly Objectively Analyzed Air–Sea Fluxes ver-

sion 3 data (OAFluxV3; Yu and Weller 2007; Jin et al.

2015) goes beyond using just satellite-derived near-sur-

facemeteorology (Jackson et al. 2009; Shie et al. 2012); it

also takes these quantities from reanalyses and blends

these using objective analysis constraints. The COARE

3.0 algorithm synthesizes fluxes from these input fields

andOISST-A (Reynolds et al. 2007). Because distinguishing
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the influence of satellite versus reanalysis input sources

on the variability within this dataset is difficult, we show

OAFluxV3 time series for comparison purposes without

further analysis.

b. RedObs

Since high-resolution gridded validation data atmonthly

to interannual scales are essentially nonexistent, we

appeal to three reanalyses that have no assimilation of

satellite atmospheric moisture or temperature data

(RedObs). As discussed earlier these integrations are

not regarded as validation but are informative because

they are not subject to uncertainties stemming from

discrete changes in satellite data assimilation, particu-

larly that of atmospheric moisture. Details of these three

reanalysis datasets—the ECMWF coupled ERA twen-

tieth century integration (Laloyaux et al. 2018), the

NOAA–CIRES–DOE Twentieth Century Reanalysis,

V3 (Compo et al. 2011; Slivinski et al. 2019), and the

Japanese Meteorological Agency JRA-55C (Kobayashi

et al. 2014, 2015)—are provided in Table 2. These da-

tasets (hereafter CERA20C, 20CRv3, and JRA55C)

extend through 2010, 2015, and 2012, respectively. Their

suite of assimilated observations differs between ingest-

ing surface pressure andmarine wind speed (CERA20C),

only surface pressure (20CRv3), or all nonsatellite data

(JRA55C). To produce an ensemble, we first deseason-

alized each of theRedObs around the respectivemonthly

climatologies defined over the 1992–2010 period and then

averaged these anomalies. Because the datasets end at

different times between 2010 and 2015, this insures that

interannual and longer signals are not confounded with

any offsets in climatological amplitudes.

For comparison to the RedObs and satellite LHF es-

timates we focus on the ECMWF reanalysis, ERA5

(Hersbach et al. 2020), the newest comprehensive sys-

tem assimilating extensive conventional and satellite

data records (see also Table 2).

c. Supporting ancillary data

Another estimate of LHF can be constructed as a

residual in the atmospheric moisture budget:

LHF5L
y
r
o
[Div(qV)1P1 dW/dt], (2)

where reanalysis3 vertically integrated moisture flux

divergence, Div(qV), and storage dW/dt are combined

with satellite P. Brown and Kummerow (2014) have

used this approach to study regional tropical moisture

budget behavior using GEWEX flux products. In rean-

alyses, Div(qV) is generally regarded as more accurate

than E 2 P since the former is strongly influenced by

observed, assimilated state variables whereas E and P

are products ofmodel physics (Trenberth andGuillemot

1998; Trenberth et al. 2011). The moisture flux diver-

genceDiv(qV), from theERA5, JRA-55, andMERRA-2

reanalyses (see also Table 2) is combined with two

satellite precipitation datasets to infer ocean LHF for

evaluating the RedObs and satellite-based estimates.

GPCP v2.3 precipitation (Adler et al. 2017, 2018) is a

widely used benchmark for climate studies. For com-

parison, RSS V7 SSM/I, SSMIS, AMSR-E, and WindSat

precipitation retrievals (Hilburn and Wentz 2008;

Wentz 2015) are also used. We intercalibrated P re-

trievals from these individual sensors to that of SSM/I

F13 using a zonal mean, multiplicative rescaling

averaged during sensor overlap periods. Averaged lati-

tudinally, these adjustments were on the order of 1%–

2% at most. The dW/dt constructed from centered

monthly differences of ERA5W is found to be van-

ishingly small on global-ocean scales compared to the

other terms. As added context for the RedObs, a five-

member LHF ensemble was made using AMIP6 inte-

grations from five randomly selected modeling groups

(Table 3). Experiment members were downloaded

from https://esgf-node.llnl.gov/search/cmip6/.

To aid in interpreting how wind speed uncertainties

affect LHF estimates from satellites and reanalyses, we

use 10-m neutral wind speed retrievals from the RSS V7

collection encompassing individual SSM/I and SSMIS,

QuikSCAT, WindSat, and Advanced Scatterometer on

MetOp-A (ASCAT-A) sensors. These retrievals are

unbiased versus global buoys, with an uncertainty of

about 0.1m s21 for global monthly averages. Details

of these retrievals are found in Wentz (2013, 2015),

Ricciardulli and Wentz (2015), and Wentz et al. (2017).

Additional documentation and data access are available

at www.remss.com.

Because Qs(SST) plays a fundamental role in bulk

aerodynamic estimates of turbulent fluxes analyses, we

examine a number of SST datasets in addition to those

associated with the reanalysis and the satellite estimates.

Chief among these are SSTs from the European Space

Agency Sea Surface Temperature Climate Change

Initiative (ESA SST CCI; Merchant et al. 2014, 2019).

The Along Track Scanning Radiometer (ATSR) and

Advanced ATSR (AATSR) instruments provide skin

temperature measurements with consistently small SST

biases (Embury et al. 2012; Merchant et al. 2012, 2019)

and significant reduction of aerosol effects compared to

3Reanalyses contain an additional term Lyro(Qana) on the right-

hand side of (2) containing moisture increments necessary to

preserve a closed budget in the face of reconciling model physics

and assimilated observations. Since (2) does not directly involve

model physics this term is absent.
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other single-angle viewing sensors. The retrievals rely

on line-by-line radiative transfer modeling and are also

essentially independent of any in situ SST measure-

ments. While available from October 1991 through

October 2010, there are a number of data gaps (April–

June 1996 and most of January–February 2001). ESA

CCI has used an optimum interpolation methodology to

calibrate AVHRR data to the ASTR record providing a

20-cm depth, level-4 product, ESA SST CCI v2.1 (Good

et al. 2019), that extends through 2016. The stability of

the global SST relative to drifting buoys is within

0.003Kyr21 (Merchant et al. 2019). We use this as a

benchmark for judging other SST and Qs(SST) records

and how they affect LHF estimates and reanalyses. For

comparison we also examine the SST records of COBE-

2 (Hirahara et al. 2014) and ERSST-5 (Huang et al.

2017), which are datasets of SST from in situ sensors,

interpolated using different methods.

3. Intercomparison of LHF anomalies

a. Globally averaged time series

Near-global (608N/S area-weighted average) anoma-

lies, constructed as described in section 2 from the four

LHF estimates, RedObs, and the ERA5 reanalysis are

shown in Fig. 1a and for the individual RedObs in

Fig. 1b. For display purposes a 3-month running mean

filter has been applied. Immediately apparent is the

contrast in trends and decadal-scale variability among

the satellite estimates and the smaller trends for the

RedObs. Note also the relatively small size of all

anomalies compared to the climatological means and

their diversity (side panels in Fig. 1). Low-frequency

behavior and decadal-scale trends are much greater

in IFREMER4 and HOAPS4 with JOFURO3 and

SeaFluxV3 somewhat closer to the RedObs. ERA5, the

most recent and comprehensive reanalysis, has a smaller

increase than IFREMER4 and HOAPS4 during the

post-2000 era, but when considering the period back

to 1980, also has a much larger trend than the RedObs.

The contrast of this trend with that of the CERA20C

RedObs member, which uses a closely related atmo-

spheric model and assimilation system, motivates us

to consider temporal differences in near-surface wind

speed and Qa behavior with time which we examine in

section 4. OAFluxV3 trends upward strongly before

2000 but then decreases strongly thereafter. The spread

in trends over the period 1990–2010 among satellite es-

timates themselves is substantial and larger than each of

the RedObs (Fig. 1b). The smaller RedObs trend is not

due to averaging out ‘‘noise’’ or differences among the

three individual members. Although CERA20C and

20CRv3 time series themselves are each an ensemble

average there is strong coherence between the three

individual RedObs time series. An ensemble mean of

five AMIP6 experiments (Table 3) similarly indicates

little or no multidecadal trend yet shows noticeably

reduced-amplitude interannual signals. This reduction

comes largely from the damping of each member’s dif-

ferent internal atmospheric variability by the ensemble

averaging and illustrates the difference between the

AMIP simulations and RedObs reanalyses.

A further assessment of the diversity in decadal-scale

variability among the satellite-based estimates and

RedObs LHF comes from the budget residual estimate

in Eq. (2). The Div(qV) anomalies from the three full-

input reanalyses (Fig. 2a) show consistent variability

with global ocean moisture convergence (divergence)

slightly leading ENSOwarm (cold) events.Multidecadal-

scale trends are small compared to the much larger

monthly to interannual signals and are not significant at

the 90% level. Global ocean precipitation time series

(Fig. 2b) from GPCP (Adler et al. 2017, 2018) and RSS

(Hilburn andWentz 2008; Wentz 2015) show consistency

with large interannual variability and small, uncertain

trends.

LHF anomalies estimated from (2) are shown in

Fig. 2c along with those of the RedObs ensemble mean

and JOFURO3. Like the RedObs, the budget residual-

based LHF calculations using each of the two P esti-

mates clearly have very small decadal trends and agree

TABLE 3. AMIP6 experiments used in making a five-member en-

semble used in this study.

Institution Experiment member

NCAR CESM2 (National

Center for Atmospheric

Research Community Earth

System Model 2)

hfls_Amon_CESM2_amip-hist_

r3i1p1f1_gn_197001–

201412.nc

CNRM-CERFACS (Centre

National de Recherches

Météorologiques–Centre
Européen de Recherche et de

FormationAvancée en Calcul

Scientifique)

hfls_Amon_CNRM-CM6–1_

amip-hist_r10i1p1f2_gr_

187001–201412.nc

CAMS-CSM1 (Chinese

Academy of Meteorological

Sciences Climate System

Model 1)

hfls_Amon_CAMS-CSM1–0_

amip-hist_r2i1p1f1_gn_

187001–201412.nc

MIROC6 (Japan Agency for

Marine-Earth Science and

Technology. Model for

Interdisciplinary Research on

Climate)

hfls_Amon_MIROC6_amip-

hist_r4i1p1f1_gn_197001–201

IPSL (Institute Pierre Simon

Laplace)

hfls_Amon_IPSL-CM6A-LR_

amip-hist_r3i1p1f1_gr_

187001–201412.nc
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reasonably well on interannual time scales (e.g., the

1997/98 and 2009/10 El Niño events). This level of

agreement is noteworthy given that any residual method

potentially suffers from error accumulation by the con-

tributing terms. JOFURO3 exhibits larger negative

values over the 1990s and thus a larger decadal-scale

trend. Comparing Figs. 2c and 1a shows that the other

three satellite LHF estimates have similar or even larger

decadal variations than JOFURO3. To first order

Div(qV) and P are independent of the satellite LHF

estimates. Although reanalyses assimilate passive mi-

crowave radiances and near-surface wind retrievals, the

Div(qV) data are short-term forecasts from the rean-

alyses. GPCP and RSS P retrievals depend on passive

microwave emission signatures by liquid water whereas

satellite Qa and wind speed retrievals are only made in

non-raining sensor footprints.

Several important points should be noted here.

Despite the agreement between reanalysis and RedObs

LHF trends at global ocean scale, patterns of these

trends appear distorted at regional and local scales in

the reanalyses, particularly in the tropical Western

Hemisphere (not shown). This is likely due in part to the

fact that the Div(qV) results here have not yet been

corrected for atmospheric mass balance (Trenberth

1991; Trenberth and Fasullo 2018; Mayer et al. 2017) as

is necessary for far more sensitive energy budget cal-

culations. However, the close agreement of the three

independent reanalyses and with RedObs (Fig. 2) sug-

gests that at these near-global scales wind component

corrections to ensure mass balance do not significantly

alter Div(qV) time series. Furthermore, preliminary

work (not shown) examining E 2 P from observation-

ally constrained land surface models and, thus, implied

moisture exchange with ocean areas, also strongly con-

firms the reanalysis global ocean Div(qV) variability in

Fig. 2a. These results justify interpreting the budget

residual-based LHF estimates as evidence for the utility

of the RedObs and strongly suggest that current larger

decadal trends in the satellite LHF retrievals are exag-

gerated to varying degrees.

Comparing the amplitude of the LHF global mean

excursions to the respective climatological amplitudes

(side panels in Figs. 1a,b) reveals that seasonal to in-

terannual variability is on the order of 2%–3%. But over

the 20-yr period beginning in 1990, some satellite esti-

mates increase by as much as 5%–10%, as does ERA5,

which is anomalously low before that time. During this

period global SST has increased about 0.13Kdecade21.

Consistent with scaling arguments alluded to earlier

(Allen and Ingram 2002; Held and Soden 2006) one would

expect trends near 0.26Wm22 decade21 (;100Wm22 3
0.13Kdecade213 0.02K21), or about 0.5Wm22 over this

20-yr period for purely externally driven radiative ef-

fects. However, this estimate is based on an equilibrium

response and neglects possible higher-frequency variations

FIG. 1. (a) Time series of area-averaged ocean latent heat flux anomalies (Wm22; left axis) over 608N/S. Base

climatology is 1992–2010. (b) As in (a), but for individual RedObs and the ensembleRedObs andAMIP6 ensemble

means. Anomalies are departures frommonthly resolved, 1992–2010 climatologies; the latter are shown in the right

panels. Solid gray shading is SST anomaly (K; right axis). A 3-month running mean filter has been applied to each

anomaly time series.
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due to natural climate variability. All of the satellite

estimates in Fig. 1a exhibit LHF increases more than an

order of magnitude larger than 0.5Wm22. The RedObs

and residual-diagnosed LHF changes over this period

are systematically much smaller but still larger spanning

the period roughly 1990–2010 than scaling estimates

from external forcing alone. There are at least two

possible explanations for these differences. Given the

spread of satellite retrieval trends, there are errors that

most likely trace back to the input near-surfacemoisture

and wind data driving the COARE flux algorithm. But

by selecting the period spanning 1990–2010 we also

capture a number of ENSO events and a large change in

IPO signals (Zhang et al. 1997; Power et al. 1999;

England et al. 2014). Variability induced by these cli-

matemodes could produce LHF anomalies that partially

explain the larger trends.

b. Signal-to-noise structure

Examining maps of signal-to-noise (S/N) for the LHF

estimates and for the RedObs provides a basic metric of

agreement between datasets on temporal variability at

the grid point scale. The signal sn at any grid location is

the temporal average standard deviation of the ensem-

ble mean anomalies from their respective climatologies.

The noise sn is the temporal average standard deviation

of the anomalies around their ensemble mean x; that is,

S/N5s
n
/s
n
5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

x2i

s , ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

(x
i
2 x)2

s
, (3)

where x denotes anomalies with respect to the 1992–

2010 climatology for each of the ‘‘n 5 4’’ retrieval esti-

mates (or three reanalyses), x is the ensemble mean

anomaly, and the bar indicates averaging over the pe-

riod 1992–2010.

Satellite LHF S/N maxima (Fig. 3a) exceed 4.0 in the

NorthAtlantic with weaker maxima east of Japan where

storm tracks originate over poleward western boundary

currents. Other maxima are located over the Southern

Ocean, poleward of the SPCZ, and also in the tropical

eastern Pacific associated with ENSO variance. RedObs

S/N strength is systematically smaller over most of the

global oceans with values as low as 1.0 in the Indo-

Pacific region. An exception is in the eastern basin re-

gions of the NHextratropics where values exceed 5. This

is likely due to the high density of marine data available

for assimilation.

Wind speed S/N amplitudes contrast vividly between

the satellite estimates and the RedObs (Figs. 3c,d).

Retrieval maxima near 5.0 dominate the equatorial date

line region with smaller values extending eastward.

Pronounced minima (maxima) in wind speeds are found

here in conjunction with El Niño (La Niña) events

(Bjerknes 1969). TAO buoy array Qa and wind speed

strongly constrain most of the estimates when used as

algorithm training data and affect data assimilation as

well. Agreement also runs in a diagonal region south-

westward over Hawaii. A similar band of maxima ex-

tends northwestward along the equatorward reaches of

the southeast Pacific anticyclone (Zhang et al. 2014).

Other smaller S/N maxima found in the subtropical

Atlantic, again likely in conjunction with ENSO-related

variations of inflow to the Amazon basin. In contrast the

RedObs show much weaker S/N values in the tropics

as a whole although the pattern structure is somewhat

similar—relative maxima over the equatorial date line,

in the periphery of the SH eastern Pacific anticyclone,

and (weakly) in the NH subtropics. Much more pro-

nounced S/N maxima are found in the eastern extremi-

ties of NH storm tracks, consistent with the LHF S/N

maxima. Radiometer wind speed retrievals are input

common to all satellite LHF estimates and may explain

their higher S/N. In the case of RedObs, assimilated

wind observations in CERA-20C and JRA55C are not

FIG. 2. (a) Anomalies of vertically integrated moisture flux di-

vergence Div(qV) from three reanalyses and the three member

RedObs ensemble area-averaged over the global oceans, 608N/S

(Wm22). (b) As in (a), but for two precipitation datasets. (c) LHF

anomalies calculated as a residual in the atmospheric moisture

budget [Eq. (2)] using the ensemble reanalysis Div(qV) 1
ERA5 dW/dt 1 either of the two P estimates in (b). Also shown

are JOFURO3 and RedObs LHF anomalies. See section 2c in

text for details. A 3-month running mean filter has been applied

to each anomaly time series.
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dense over the tropics as a whole and are not used at all

in 20CRv3. Large-scale pressure gradient changes are

linked to large-scale flow structures on the interannual

to decadal scales of interest here (Vecchi et al. 2006), but

not the details of synoptic-scale systems that the grid-

point S/N diagnostic measures.

For both the satellite and RedObs, Qs and Qa S/N

patterns and amplitudes (Figs. 3e,f) are much more

similar to the LHF patterns than they are to the wind

speed patterns with maxima found in extratropical

storm tracks and in the equatorial eastern Pacific.

4. Variability and consistency of bulk variables

In this section we pursue the origin of these differ-

ences among LHF estimates and, where possible, iden-

tify error sources in the near-surface meteorological

inputs.

a. Wind speed

Near-surface wind speed anomaly time series over the

global oceans are given in Fig. 4a with the individual

RedObs time series in Fig. 4b. Peak interannual and

decadal extrema are on the order of 0.1–0.2m s21 cor-

responding to roughly 3%–5% or less of global means

(not shown). Interannual wind speed anomalies associated

with large El Niño events (1997/98, 2009/10, 2015/16)

show a characteristic drop prior to global SST maxima

and then change to positive values as the events mature

and subside. This behavior is a signature of weakening

easterlies along the equatorial central Pacific followed

by their resurgence as cold equatorial water and in-

creased west to east pressure gradients strengthen again.

Over a longer period from the early 1990s to nearly 2010,

wind speeds increase for all datasets consistent with the

increasingly negative IPO index (de Boisséson 2014;

England et al. 2014). There is also an emerging reversal

of this upward wind speed trend after 2010 shared by the

satellite estimates and the RedObs.

Several instances of disagreement among the time

series are notable in Fig. 4. JOFURO3 has positive

anomalies in the late 1987–90 period, during the tenure

of SSM/I F08. The single satellite F08 coverage and its

lone year overlap with F10, which has an anomalously

eccentric orbit with temporally drifting equatorial cross-

ing times, increases uncertainties early in the record. The

1991/92 El Niño, which should favor wind speed reduc-

tions followed by increases during this period, further

complicates intersensor calibration. Wentz (2013) doc-

ument suspiciously low 37-GHz antenna temperatures

and resulting wind speeds in the first two years for

F11, which they address by modifying the antenna

FIG. 3. Signal-to-noise (S/N) maps of LHF, 10-m wind speed, and Qs 2 Qa for satellite retrievals and RedObs

using data over 1992–2010 period. The signal at any grid location is the temporal average standard deviation of the

ensemble mean anomalies from their respective climatologies. The noise is the temporal average standard devi-

ation of the anomalies around the ensemble mean of the anomalies.
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temperature at 37GHz during this period (Wentz 2013).

However, this issue is not noted in any of the other

FCDRs. Although the GPM Level 1C documentation

does not explicitly identify any drift with the first two

years of F11, SeaFluxV3 documentation (Roberts et al.

2020) ignores the first two years of F11 in developing

post-retrieval intercalibration of the individual sensors

but subsequently weights these data low in subsequent

averaging of the sensor estimates.

HOAPS4 exhibits outlier wind speeds in 2008/09.

After 2009, SSM/I F13 coverage ends and only SSMIS

sensors continue (F16, F17, and F18, respectively).

Despite having the same window channel frequencies,

they differ from the SSM/I sensors in important engi-

neering aspects. Adjustments in FCDR brightness tem-

peratures (Berg and Sapiano 2013; Wentz 2013; Fennig

et al. 2015, 2020) for an emissive antenna, the occurrence

of solar and lunar intrusions into the warm and cold cal-

ibration loads, and an obstruction within limb fields of

view (Bell et al. 2008; Swadley et al. 2008) are more se-

vere than for the SSM/I sensors.

To examine SSMIS wind speed retrievals more closely,

the individual SSMIS wind speed retrievals available

from HOAPS4, SeaFluxV3, and RSS V7 were differ-

enced from the more stable RSS WindSat retrievals

(Wentz 2015) spanning the SSMIS record (Fig. 5). Even

after adjustments to FCDR brightness temperatures, all

retrievals show evidence of suspicious annual cycles and/

or temporal changes in the resulting wind speed record.

Retrievals based on F16 (Fig. 5a) show decreases in time

of 0.25–0.5ms21 compared to WindSat, with HOAPS4

and RSS having the steepest trends and SeaFluxV3 hav-

ing the smallest. These trendsmay bear some relationship

to the F16 precession through the diurnal cycle since

trends for retrievals based onF17, which does not precess,

are much smaller (Fig. 5b). It is possible that the sensor

calibration issues mentioned earlier (e.g., solar and lunar

intrusions into sensor feedhorns, or antenna emissivity)

may vary according to differing sensor orientation with

respect to the sun in ways not yet understood. Wind

speeds from F18, whose equator crossing time also pre-

cesses, exhibit a change in annual cycle with time com-

pared to the nonprecessing WindSat. The SeaFluxV3

wind speeds based on F18 also have an especially pro-

nounced downward trend and amplifying annual cycle

compared to those based onWindSat (Fig. 5c). Differences

between WindSat and other independent sensors in-

cluding RSS ASCAT-A and SeaFluxV3 TMI and GPM

as well as RedObs indicate that each of these wind speed

records has very little temporal drift compared toWindSat.

The low bias in the SeaFluxV3 TMI and GMI re-

trievals compared to RSS WindSat (Fig. 5d) largely re-

flects SeaFluxV3’s retrieval of actual 10-m wind speeds

compared to RSS neutral stability values (Roberts

et al. 2020).

Finally, ERA5 and RedObs global mean wind speeds

agree well (Fig. 4) on interannual scales. However, an

examination of their differences suggests that ERA5

wind speeds increase systematically by about 0.10–

0.15m s21 between 1995 and 1998 and equilibrate to a

difference of ;0.07m s21with the RedObs by 2010

(Fig. 6a). This increase is focused in the tropical Pacific

with two centers of positive increases straddling the

equator (Fig. 6b, and gray curve in Fig. 6a) and is partly

responsible for the upward ERA5 LHF trend seen in

Fig. 1. The sudden increase in the amount of SSM/I wind

data available during the mid-1990s, particularly the

addition of F13 in early 1995, may drive this sudden

change. Another factor with potential impact is the as-

similation of scatterometer data from ERS-1 and ERS-2

in 1991 and 1995, respectively. Complicating any inter-

pretation is the strong 1997/98 El Niño and subsequent

cool period; however in testing a variety of different

periods to make the difference plot, very little pattern

change was noted. We suspect that this pattern reflects a

different intensity with which the SSM/I and scatter-

ometer (e.g., ERS-1 and ERS-2, QuikSCAT) sensors

detect the ‘‘hiatus’’-related wind speed changes com-

pared to that which the atmospheric model used in

ERA5 would produce if run with no satellite-derived

near-surface wind assimilation.

b. Water vapor deficit (or gradient) Qs 2 Qa

In this section we examine the behavior of satellite-

retrieved Qs 2 Qa as well as Qa and Qs separately.

Comparisons to RedObs are also made since they have

no input of satellite moisture data. The distinct trend

FIG. 4. Global average (608N/S) 10-m wind speed anomalies.

Colors as noted in the legend. Gray shading is global ERA5 SST

anomalies (K; right axis). A 3-month running smoother has been

applied to each time series.
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behavior of ERA5 is also explored. A less-studied issue

is impact of variation in Qs(SST) stemming from em-

ploying different SST analyses. SST estimates come

from a research community using algorithms that do not

simultaneously retrieve other geophysical quantities. So

physical consistency betweenQa retrievals andQs(SST)

is not guaranteed. This is exactly so for HOAPS4 and

JOFURO3 since their specified SST fields, though dif-

ferent from each other, do not enter directly into theQa

algorithm. SeaFluxV3 uses the OISST-A with a speci-

fied diurnal cycle applied as input and is very weakly

impacted by the NN retrieval. IFREMER4, however,

does incorporate ERA-I SST in its Qa retrieval. We use

CCI Level 4 SST to benchmark these differences and

also compare with ERSST-5 and COBE-2 data.

1) Qa

ENSO variability dominates global mean Qa signals

(Figs. 7a,b). This is partly because of the nonlinear

Clausius–Clapeyron (C-C) temperature/moisture rela-

tionship amplifying tropical signals over those in higher

latitudes. But given the lagged remote SST response to

SST forcing in the central and eastern equatorial Pacific

(Klein et al. 1999; Alexander et al. 2002) the signal is not

purely from the eastern Pacific. There is good agreement

between all Qa values at the interannual scale. Note,

however, the post-June 2017 drop in IFREMER4 Qa

induced by the FCDR change. At decadal scales there is

an upward trend in Qa with subtle yet important dif-

ferences in the datasets (Table 4, Fig. 7c). Over the

1990–2010 period ERA5 has the lowest and CERA20C

the largest trend (2.3% and 9.6%K21, respectively).

The retrievals tend to be somewhat below, and the

RedObs above, a C-C rate of ;6.5%K21. These trends

are somewhat sensitive to the period chosen. Using the

1993–2010 period increases the rates on the order of

15% and perhaps double that for ERA5 (from 2.3% to

3.0%K21). But the RedObs remain larger and ERA5

much lower compared to the satellite retrievals.

Differencing the satellite and ERA5Qa fromRedObs

values (Fig. 7c) provides a closer look at temporal con-

sistency. Although assimilating model physics, SST

choice, and assimilated conventional observations de-

termine the RedObsQs2Qa variability, the omission of

assimilated satellite moisture data enables an internally

FIG. 6. (a) Time series of area-averaged ERA5 minus RedObs

10-mwind speed (m s21) over the global oceans (black) and eastern

tropical Pacific (1808–2908E, 208N/S) domain (gray). (b) Decadal

difference (1997–2008 minus 1988–97) of ERA5 minus RedObs 10-m

wind speed (m s21).

FIG. 5. Globally averaged (608N/S) SSMIS (a) F16, (b) F17, and (c) F18minusWindSat 10-mwind speeds (m s21)

for three different retrieval algorithms.WindSat data areRSS retrievals. Differences aremadewith total signal, not

anomalies. (d) 10-m wind speed differences of individual sensors and ensemble RedObs with WindSat. ASCAT

wind speeds are RSS V7 products and TMI and GPM winds are produced by the SeaFlux v3 retrieval algorithm

(Roberts et al. 2020). A 3-month running smoother has been applied to each time series.
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consistent, if qualitative, benchmark. ERA5 is biased

moist compared to the RedObs before the mid-1990s

and then becomes drier than the RedObs. This differ-

ence trend arises almost entirely over the deep tropics

(not shown). We hypothesize that the gradual increase

in assimilated satellite data permits stronger drying to

combat a climatological model moist bias when run in a

free, nonassimilating mode. Further analysis of ERA5

analysis increments is needed to evaluate this. Overall,

HOAPS4 has no trend relative the RedObs but it has

offsets relative to RedObs (mainly the sudden drop in

1991). SeaFluxV3 drops from slightly positive to nega-

tive differences relative to the RedObs after 2003 but

becomes larger after 2010. All of the datasets show a

strongQa increase after 2012, but during this period only

one RedObs (20CRv3) is available so the origin of this

disagreement is not yet clear.

2) Qs 2Qa

Global mean Qs 2 Qa variations (Fig. 7d) have

smaller amplitude than Qa due to the strong thermo-

dynamic coupling of the overlying air to the ocean sur-

face. Global time series still indicate positive excursions

associated with the large 1997, 2010, and 2015 El Niño
events. Distinct upward trends are noted for the satellite

retrievals (and the ERA5 reanalysis if the pre-1988 pe-

riod is considered). For the 1992–2010 period the

IFREMER4 rate of increase of 36.6%K21 (using ERA5

SSTs) is nearly matched by HOAPS4 (30.0%K21), the

former driven in part by large positive Qs excursions in

the 2007–11 period associated with a positive jump in the

OISST-A SST version used by IFREMER4 (discussed

below). In contrast, the RedObs have almost no signif-

icant trend (1.7%K21). IFREMER4 also shows a jump

in July 2017 coincident with change from the CSU to

RSS FCDRmirroring the downward step inQa (Fig. 7a).

ERA5 Qs 2 Qa anomalies are persistently negative

prior to SSM/I ingest in 1988 but increase to positive

values after the mid-1990s as the SSM/I sensor pop-

ulation becomes more robust. We examine the effects of

SST uncertainty more closely below.

3) Qs

Recall that three of the LHF algorithms (IFREMER4,

HOAPS4, andSeaFluxV3) useOISST-A,while JOFURO3

employs its own ensemble median SST record, EMSST

(Tomita et al. 2018). COBE and HADISST 2.2 SSTs are

used in the RedObs. In examining the SST records used

by the satellite estimates and the reanalyses, we found a

larger global mean trend associated with OISST-A is

present relative to that of RedObs, ERSST-5, ERA5,

JOFURO3, and CCI v2.1 (not shown), but with sig-

nificant interdecadal variability in difference values.

Banzon et al. (2016) and Fiedler et al. (2019) note that

AVHRR input to OISST-A changed from the NOAA

Pathfinder to the U.S. Navy Operational product in

2007. A change from ICOADS 2.4 to NCEP SST cali-

bration data also occurred. Figure 8 shows differences

FIG. 7. Global ocean area averaged (608N/S) time series (g kg21) of (a)Qa anomalies of retrievals and reanalyses,

(b)Qa anomalies of individualRedObs and their ensemblemean, (c) anomaly differences ofQa relative toRedObs,

and (d) anomalies of Qs 2Qa for retrievals, RedObs, and ERA5. Gray shading is ERA5 SST anomalies (K).

A 3-month running mean smoother has been applied.

TABLE 4. Global mean (608N/S) trends of variousQa retrievals, RedObs members, and ERA5 over the period January 1990–December

2010. Units are percent per kelvin SST change; 1.0 SD trend errors are in parentheses.

IFREMER4 JOFURO3 SeaFluxV3 HOAPS4 CERA20C JRA55C 20CRv3 ERA5

Trend (%K21 dSST) 4.9 (1.9) 4.8 (2.3) 8.3 (2.7) 3.2 (1.9) 9.6 (2.5) 6.0 (2.4) 8.8 (2.5) 2.3 (2.0)
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between anomalies of Qs(SST) based on OISST-A and

those of other datasets. (Note that here anomalies are

based on a 1995–2010 climatology spanning the ATSR

SSTs). HOAPS4 and SeaFluxV3, which use only

OISST-A, are not shown since their differences are

much smaller. IFREMER4 also uses OISST-A; how-

ever, it uses a different version during the period

January 2007 through December 2011 since there is a

temporary Qs increase of ;0.05 g kg21 globally aver-

aged. CCI v2.1 is thought to have a stability relative to

drifting buoys of 0.003Kyr21 at the 95% confidence

level (Merchant et al. 2019). For a representativeQs(SST)

of 20gkg21 and an assumed Clausius–Clapeyron rate

ofQs change this corresponds to about 1.5gkg21K21. So,

for an SST trend precision of 0.03Kdecade21 this amounts

to a Qs trend uncertainty of ;0.05 g kg21 decade21.

Between the late 1990s and late 2000s, OISST-A de-

velops the largest Qs exceedance over other datasets

before then relaxing to little difference by 2012. For the

period 1997–2009 (picked to start and end in the years of

developing ENSO warm events to minimize any bias)

the difference inQs trends for OISST-Aminus CCI v2.1

is 0.14 g kg21 decade21, a value roughly 3 times as large

as the CCI v2.1 trend uncertainty. Other SST datasets

aside from OISST-A show upward Qs difference trends

that are smaller but exceed the CCI v2.1 Qs uncertainty

(Table 5). In short, OISST-A is used in several of the

satellite-based LHF records, but its trend appears as an

outlier among several independently constructed SST

estimates.

The spatial structure of theseQs trend differences with

CCI v2.1 is concentrated in the tropical band, 308N/S,

and primarily over the Pacific (Fig. 9). The maxima tend

to be focused off the equator at roughly 158–208N/S with

peak differences near 0.4 g kg21. Some negative areas

indicating OISST-A Qs trends weakening compared to

the others also are present, primarily over the extra-

tropical North Pacific. Very similar Qs trend difference

patterns and amplitudes are present for the RedObs

(Fig. 9b). JOFURO3 differences reveal a similar pattern

but with reduced amplitudes (not shown).

Taken together these diagnostics of SST and Qs raise

concerns about the impact of SST choices used in LHF

estimates as well as uncertainties present in each of the

datasets discussed. Comparing Figs. 7d and 8, it is ap-

parent that global mean Qs trend uncertainties on the

order of 0.05–0.10 g kg21 decade21 are significant com-

pared toQs 2 Qa variability. In fact, the inference from

Fig. 8 is that if CCI v2.1 were used for the satellite LHF

estimates, the Qs 2 Qa trends would be substantially

reduced and closer to that of the RedObs.

5. Spatial structure of decadal-scale trends

The focus of our analysis has been on assessing the

diversity of algorithm differences, sensor intercalibra-

tion uncertainties, and bulk aerodynamic meteorologi-

cal forcing dataset characteristics. We now examine how

these factors contribute to thermodynamic and kine-

matic processes that generate variability at the longest

scale that the near-30-yr satellite record can support.

By logarithmically differentiating the LHF formula

[Eq. (1)] with respect to time, we can write

dLHF

dt
5

dLHF

Û

dU

dt
1

dLHFdQs2Q
a

d

dt
(Q

s
2Q

a
), (4)

where we now assume ro, CE, and LV are invariant. This

formulation allows us to estimate separate contributions

by winds U and thermodynamics to LHF changes. We

evaluate the temporal change terms by differencing

decadal means of the quantities and using the climato-

logical quantities denoted by the ‘‘hat’’ operator.

Resulting maps of LHF trends and the two contributing

factors (Fig. 10) indicate significant agreement in large-

scale structure between the satellite estimates and

the RedObs reanalyses. Particularly for wind speed,

FIG. 8. Differences in Qs anomalies (OISST AVHRR-Only mi-

nus various datasets) averaged over 608N/S global domain (g kg21;

left axis). Anomalies are with respect to a 1995–2010 base clima-

tology. OISST-A SST anomalies are shaded (K; right axis).

A 3-month running mean smoother has been applied.

TABLE 5. TheQs difference trends (OISSTminus others; g kg21 decade21) over the period January 1997 throughDecember 2009. Values

are for averages over the global oceans, 608N/S.

CCI

v2.1

Ensemble

RedObs ERSST5 COBE2 JOFURO3 HOAPS4 IFREMER4 SeaFluxV3

Qs OISST minus (. . .)

(g kg21 decade21)

0.12 0.11 0.09 0.08 0.07 0.0 20.03 0.01
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prominent central equatorial Pacific increases are pro-

ducing LHF increases of order 10–15Wm22. This ramp

up in tropical central and eastern Pacific wind speed is

associated with the so-called warming hiatus (Kosaka

and Xie 2013; de Boisséson et al. 2014; England et al.

2014) characterized by increased SST and surface pres-

sure contrast across the equatorial Pacific. Immediately

to the southwest, wind-driven LHF decreases are com-

mon to all estimates and the reanalyses. Offsetting these

wind speed effects is a wedge-shaped area of Qs 2 Qa

driven LHF decreases just to the east and fanning out

poleward along the western coasts of the Americas.

These changes are also consistent with the ‘‘warming

hiatus’’ and the change in sign of the IPO occurring

sometime near 2000 (Henley et al. 2015), which was

characterized by a switch toward cooler SSTs in this

wedge-shaped area east of the date line. The RedObs

trends replicate this structure of LHF changes, evenwith

some regional fidelity, including the westward extension

of LHF decreases off the coasts of Peru and western

North America and the centroid of LHF increases over

the area near 1608W, 7.58S, with negative values imme-

diately to the southwest. The RedObs and SeaFluxV3

show closest agreement in the Qs 2 Qa-driven LHF

decreases. There are notable structural differences be-

tween the ERA5 LHF trends and those of both RedObs

and the satellite estimates stemming in particular from

the large lobe of high wind speed trends in the North

Pacific discussed with Fig. 6b. The decadal-scaleQs2Qa

decreases in that region are also weaker than in the

other datasets.

Especially notable in JOFURO3 and IFREMER4 are

‘‘bull’s eye’’ LHF structures located in the TAO buoy

array along the equatorial Pacific that relate toQs 2Qa

changes. We noted in section 2 that both of these algo-

rithms use other information in addition to the channel

brightness temperatures to account for varying depen-

dence of Qa with vertical moisture and temperature

stratification. JOFURO3 used ERA-I moisture profile

data in identifying six scale height bins that were used to

developQa retrievals. In the case of IFREMER4, ERA-

I SST–T2m stability data were used as aQa predictor and

ERA-IQa data were used to fill daily data voids globally

via a temporal drift constraint. Indeed, we find over the

1992–2014 period the correlation between ERA-I and

IFREMER4 Qa averaged over the 608N/S domain is

0.98. Josey et al. (2014) noted that time-dependent Qa

biases in the ERA-I analysis over the equatorial Pacific,

relative to buoy values, exhibited these bull’s eye pat-

terns. Thus, it is likely that the assimilation of buoy data

is acting to correct regime-dependent biases in the

ERA-I assimilating model. These time-dependent

moisture biases in ERA-I are apparently being transferred

to some degree to the JOFURO3 and IFREMER4 Qa

retrievals. These artifacts are not apparent in the RedObs,

HOAPS4, or SeaFluxV3. The latter uses relative verti-

cal moisture structure from MERRA-2. Overall, the

satellite estimates exhibit a largerQs 2Qa contribution

to upward LHF trends compared to the RedObs. This is

related to the larger upward trend of Qs(SST) used in

the satellite estimates (Fig. 8) as well as their weaker

upward Qa trends (Fig. 7).

6. Discussion and final remarks

We have analyzed four recently updated state-of-the-

art satellite LHF estimates, focusing on variability of

near-global, over-ocean averages as well as regional

trends and pattern agreement. A number of other

datasets have served as critical comparison points. Among

these are three reduced observation reanalyses, a budget

residual LHFestimate combiningGPCPandRSS satellite

precipitation and reanalysis assimilated Div(qV); ERA5,

the most recent comprehensive reanalysis; RSS single-

sensor passive microwave and scatterometer wind speed

retrievals; and a selection of SST datasets including

CCI v2.1.

A central question of our analysis was the degree to

which consistency in interannual to decadal LHF vari-

ability could be found among these datasets.We showed

that, at the global scale, satellite LHF trends during the

1990–2010 period are 3–5 times larger than those of the

RedObs and residually diagnosed estimates (Figs. 1 and

2). These latter two sources together provide evidence

that existing upward trends in global ocean satellite

LHF products are exaggerated to varying degrees. We

FIG. 9. The Qs differences (g kg21) between 2005–10 and 1999–

2004 periods for (a) OISST minus CCIv2 and (b) OISST minus

ensemble mean RedObs.
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emphasize that the interdecadal trend studied here is not

to be construed as a secular trend but rather as a

sampling-dependent estimate of internal climate vari-

ability for the current satellite record. In terms of re-

gional trend structure over the 1990–2010 period, there

is significant commonality in the patterns among the

satellite estimates and the RedObs ensemble (Fig. 10),

most notably in the strong wind speed increases in the

central Pacific associated with the increasingly negative

IPO index (de Boisséson et al. 2014; England et al. 2014)

and the ‘‘warming hiatus’’ (Easterling and Wehner

2009). The Qs 2 Qa trend patterns show somewhat

lesser regional similarity among the estimates and the

ensemble RedObs reanalyses with satellite estimates

showing consistently larger positive trend pattern am-

plitudes than the RedObs.

Another leading objective of this work was to trace

differences in LHF variability to various algorithm ap-

proaches in satellite-derived meteorological forcing

(wind speed, near-surface humidity) and associated

differences in FCDR Tbs. Our analysis has identified

what we believe to be systematic discrepancies:

1) SSMIS wind speeds (F16, F17, and F18) exhibit

ephemeral or episodic differences compared with

other more stable sensors: WindSat, ASCAT, and

TMI. F16 and F18 are more problematic than F17

and also happen to have orbits that drift substantially

through the diurnal cycle. Given the more serious

problems of solar reflector intrusions into the warm

load reference targets and unknown emissivities of

the reflector (e.g., Kunkee et al. 2008) compared to

FIG. 10. (left) LHF decadal differences (Wm22), 2010–1999minus 1999–90, for satellite retrievals (IFREMER4,HOAPS4, JOFURO3,

SeaFluxV3), RedObs ensemble (CERA20C, JRA55C, 20CRv3), and ERA5. (center) 10-m WSPD contribution to the LHF decadal

difference (Wm22). (right)Qs 2Qa contribution to the LHF decadal difference (Wm22). See text for explanation of how contributions

are calculated.
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that of their SSM/I counterparts it may be that these

factors interact in some way that has yet to be fully

resolved by any of the FCDRs. The difficulties

apparently affect the 37-GHz channel the most since

Qa retrieval disparities are not nearly as noticeable.

2) Figure 7a provides evidence for strong agreement in

global Qa retrieval response to ENSO interannual

variability. At the same time, Fig. 7c illustrates that

there are time-dependent offsets relative to the

RedObs for some Qa retrievals. Whether these dif-

ferences arise from weather regime dependencies in

the retrievals or remaining sensor intercalibration

issues remains to be understood. As demonstrated by

Bentamy et al. (2013), Tomita et al. (2018), and

Roberts et al. (2019), regime dependencies inQa that

are associated with synoptic weather states can be

handled by appealing to ancillary data, yielding

measurable improvements inQa estimates. However,

current ancillary data are not independent of re-

analysis vagaries. For example, the biases in ERA-I

Qa related to the assimilation of TAO buoy moisture

(Josey et al. 2014) produce spatial noise in trend pat-

terns over the 1990–2010 period for both IFREMER4

and JOFURO3 (Fig. 10). SeaFluxV3 apparently

avoids this problem by use of MERRA-2 as ancillary

data. It would be preferable if, in the future, esti-

mating water vapor scale height could be done in-

dependently of reanalysis fields. For example, TOA

shortwave and longwave radiative fluxes, cloud

forcing, and SST might be used to identify synoptic

regimes via their tie to atmospheric dynamics.

3) Historically, there has been little attention paid to

the degree to which Qs(SST) from different SST

datasets affects LHF estimates. Our analysis shows

that in terms of decadal length trends, there exist

important differences between OISST-A data used

in three of the new estimates (HOAPS4, SeaFluxV3,

and IFREMER4) and other current global SST da-

tasets when compared to the CCI v2.1 standard. The

change from NOAA Pathfinder to U.S. Navy oper-

ational AVHRR data as well as changes in ICOADS

calibrating data are likely sources producing this

elevated SST trend. Our analysis suggests that

OISST-A-based Qs trends may be too large over

the 1997–2010 period, possibly in the range of

0.05–0.10 g kg21 decade21, globally averaged. A

number of other datasets show similar differences

during this period. A more immediately addressable

problem exists in IFREMER4 where for the period

2007–11 a different version of OISST-A has been used.

Our analysis also identifies other concerns. To extend

IFREMER 4.0 to 4.1, a switch from the CSU to the RSS

FCDR has resulted in an inadvertent decrease in re-

trieved Qa (Figs. 7a,d). Absolute differences in bright-

ness temperatures between FCDRs on the order of 1K

can arise because of different radiative transfer co-

des involved in the intercalibration process. Since

IFREMER4.1 uses scatterometer and RSS retrieved

winds the sudden increase in LHF (Fig. 1a) occurs solely

through the Qa discontinuity. Of more fundamental

importance is the sparse data coverage early in the SSM/

I era. The single satellite coverage of F08 (late 1987–91)

and its 1-yr overlap with F10, which has an anomalously

eccentric orbit and precession of equator crossing time,

serve to increase uncertainties across datasets early in

the record. Wentz (2013) document suspiciously low

antenna temperatures in the first two years of F11 but

these apparent problems are not evident in theCMSAF,

CSU, or GPM intercalibrated brightness temperatures.

We have also detected a significant upward trend in

ERA5 LHF compared to RedObs, which assimilate no

passive microwave data. A small but detectable jump in

ERA5 wind speed during the mid-1990s is present in

conjunction with the addition of the ERS-1 and ERS-2

scatterometer data streams and the increase in SSM/I

coverage. Furthermore, ERA5 Qa anomalies are more

moist than RedObs values before the mid-1990s but do

not trend upward in time as much as the RedObs; thus,

ERA5 Qs 2 Qa increases aid in the upward LHF trend.

Although RedObs climate model physics may possibly

constrain a more muted moisture variability we believe

the results more likely underscore the persistent prob-

lem of the heterogeneous and discrete nature of the

satellite record (here, passive microwave moisture) re-

sulting in a time-dependent ability to adjust assimilation

model climatological biases.

The three RedObs reanalyses combined with an in-

dependent residual-based LHF estimate are essential

components of our analysis. While they cannot be

regarded as absolute validation, the consistency be-

tween these two estimates has enabled us to narrow the

uncertainties for global trends during the satellite era.

This result justified using the RedObs to detect sus-

picious wind trends and anomalies in SSMIS wind

retrievals (Fig. 5), identify possible intercalibration

problems in Qa retrievals (Fig. 7c), and suggested the

presence of spurious changes in ERA5 Qa and 10-m

wind speed (Figs. 6, 7). While likely not adept in cap-

turing the details of synoptic-scale wind speed variability

in the tropics (Compo et al. 2006), the RedObs do cap-

ture interannual to decadal scale changes. Regional

details and the overall agreement of trend patterns in

LHF, wind speed, and Qa between the RedObs and

the satellite estimates in Fig. 10 are a strong partial

validation.
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Three recommendations also emerge from our anal-

ysis. We urge that the turbulent flux retrieval com-

munity place more emphasis on intercomparing

FCDRs, perhaps facilitated by a workshop to foster

collaboration on sensor intercalibration. SSMIS is-

sues in particular should be targeted. Also, of high

importance is a more thorough assessment of SST

datasets in the context of Qs 2 Qa ‘‘regimes,’’ better

estimates of skin temperature including the effects of

diurnal variability, and multidecadal trends. Finally,

we urge operational centers to prioritize the pro-

duction of RedObs experiments to accompany all

reanalyses, to extend them back as many decades as is

feasible, and to keep them updated to real time. This

will help bridge satellite flux estimates, reanalyses,

and climate simulations in working toward narrowing

uncertainties in answering the question ‘‘How is the water

cycle changing?’’.
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