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Abstract

Biomolecules such as proteins and nucleic acids are involved in all biological processes.

As they take part in these processes, biomolecules often undergo motions and changes in

their conformation that are related to their function. This thesis presents research into and

development of methods to support the study of the dynamics of these changes.

Due to the scale of the structures and speed of the changes, common methods of determin-

ing (or “solving”) the structures of biomolecules cannot capture the change in conformation.

Detail of the changes must be extrapolated from changes observed between multiple solved

states of the same structure. We present a novel method of visualising potential motions of

atoms comprising biomolecules, estimated from solved structures at the start and end of the

trajectory. Comparisons show that our method produces atomic coordinates that pass closer

to known intermediates than those produced by similar existing methods.

Our visualisations treat each atom as an individual body, but the conformational changes

of proteins can be broken down into the motions of “dynamic domains”, which are sections of

proteins that move semi-rigidly, controlled by flexible hinge bending regions. Tools such as

the DynDom program identify and analyse the motions of these dynamic domains displayed

between pairs of solved structures. We designed and developed DynDom6D, a new version

of the DynDom program for very large macromolecules that assigns atoms to domains or

hinge bending regions using 6-dimensional k-means clustering.

Several methods, including DynDom and DynDom6D, determine proteins’ hinge bending

regions from one or multiple solved structures. Previous attempts to identify the hinge
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bending regions of a protein from its sequence of amino acids, without structural information,

have proven less accurate. We used kernel logistic regression to train and test models on

sequence information labelled by DynDom, with modest predictive results. We identified

residues and patterns of amino acids that showed a significant propensity to be either present

or absent in the hinge bending region.
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Chapter 1

Introduction

Biomolecules are an important part of biological processes of the cell. Proteins, formed

of folded chains of amino acids, are biomolecules that act as natural molecular machines,

physically and chemically controlling biological processes such as the Krebs cycle, and liver

function. DNA and RNA are molecules comprised of nucleotides which encode and decode

the sequence of amino acids that make up the proteins. As these biomolecules perform

their tasks they change shape in ways that are directly linked to their function. For example,

the protein aspartate transcarbamoylase (ATCase) is an enzyme that catalyses a reaction

on a pathway which has the nucleotide CTP among its end products[57]. When the CTP

structure binds to the ATCase, the enzyme undergoes a large conformational change which

inhibits further catalysis. Understanding the mechanism of the conformational changes of

biomolecules such as these grants us an understanding of biology at a molecular level.

Bioinformatics is the application of computer science to biology to provide tools and

insight, often for problems where this would otherwise be difficult or impossible to obtain.

One example of such a problem is the comparison of sequences of amino acids that make up

the chain of a protein with others for the purposes of finding common patterns. To perform

this alignment manually would be impractical and would require expert judgement, but
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Fig. 1.1 The conformational change of calmodulin analysed by the DynDom program. The
two dynamic domains are highlighted in red and blue, and the hinge-bending region is
highlighted in green.

algorithms like the dynamic programming alignment methods Needleman-Wunsch [115] and

Smith-Waterman [150] make this a fast and easy process.

Many individual proteins have been studied to determine their structure, sequence of

amino acids, function, physical properties and family, building databases of experimentally

derived knowledge. These provide potentially useful datasets for areas of computer science

such as machine learning, where supervised classification and regression methods may learn

from data labelled by observation to provide predictions for properties of proteins that have

not yet been fully studied. This has had success in the prediction of secondary structure

[134][165][46], disordered regions [100][108], and other structural properties.

Proteins undergo shape-changing movements during function. Sometimes, this confor-

mational change can be described as the movements of "dynamic domains" [70], semi-rigid

bodies that move relative to one another, facilitated by flexible hinge-bending regions that

control the conformational change. These domains can be identified from experimentally-

derived structures using methods such as HingeProt[44], FlexProt[145] and DynDom[95][69].

Figure 1.1 shows an example of calmodulin domains calculated by the DynDom program,

where the green region acts as a hinge about which the red domain moves towards the blue

domain.
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This thesis presents the development of new bioinformatics methods and tools, many

including implementations of machine learning algorithms, in order to derive new knowledge

about the conformational changes that biomolecules undergo, and potentially to gain insight

into mechanism and function.

1.1 Aims and objectives

This work describes the development of new methods and tools for the analysis of protein’s

structural changes.

• The first aim is to produce a new "protein morphing" method by which intermediate

structures can be created that form a fluid transition from one solved structure to

another. This allows the movements of specific atoms and amino acids to be noticed

easier than by studying and comparing the static end-points. The method will be

based on Multi-Dimensional Scaling (MDS), a family of techniques which attempt

to construct a set of coordinates from a similarity or dissimilarity matrix such that

similarity between items is represented by proximity in the created structure. In our

method, the "dissimilarity" between atoms will be an ideal Euclidean inter-atomic

distance created by interpolating the inter-atomic distances of atoms in the known

structure.

In working towards this aim, the thesis will attempt to achieve the following objectives:

– The protein morphing method is intended to create an informative visualisation

of a conformational change, so the animations created by viewing the frames

sequentially should be smooth and easy to follow.

– Conformational changes often accompany an interaction between biomolecules,

but existing morph methods act on single structures. A novel version of morphing



4 | Introduction

will be developed that is tailored to the visualisation of the interaction between

two biomolecules.

– While the visualisation is unlikely to be a true representation of the exact move-

ments of the atoms, the intermediate frames should be physically plausible with

feasible bond lengths and torsion angles and no clashes between atoms.

– It is possible to accurately predict the movements of atoms using Molecular Dy-

namics (MD), which simulates the physics underlying their behaviour. However,

this method is extremely computationally expensive. As our method is more

for visualisation rather than accurate prediction it should be considerably faster,

preferably working within seconds or minutes.

– It is assumed that the morphs will have more use as visualisations than as pre-

dictions of the movements of atoms, but the latter would give the morphing tool

additional uses in studying proteins’ movement. Where intermediate structures

are known, the morphing tool would be particularly useful if it could be shown

that its constructed intermediate frames pass as close as possible to the known in-

termediate conformation. A comparison with MD simulations may also indicate

how well the visualisations reflect a plausible trajectory.

• The DynDom program for the identification of domains and hinge-bending regions

described in the opening section operates on the backbone of a single chain of a

protein, clustering segments of the backbone based on the similarity of the rotation

they undergo. Macromolecules consisting of multiple chains may exhibit interesting

domain movements to which several chains contribute, such as the ATCase example

from the introduction. Advances in methods for solving proteins have provided high-

resolution structures for larger macromolecules but these are not suitable for the

original DynDom algorithm. A further method, DynDom3D[60], extended DynDom

to identify domain movements in protein structures that contain multiple chains, but
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required a computationally expensive connected-set algorithm that restricted the size of

protein on which it could operate and used only 3 of the 6 degrees of freedom required

to describe a rigid body movement to identify the domains. The second aim of this

thesis is to develop a new DynDom program that can identify dynamic domains within

large macromolecules by performing k-means clustering on all 6 dimensions required

to describe the movement of a rigid body between two positions.

This aim will require the following objectives:

– The results should be similar to the results of DynDom and DynDom3D where

the comparison would be appropriate (that is, where the protein is a single chain

or small enough to run in a reasonable time using DynDom3D).

– Because the atoms are clustered on more information than previous iterations

of the DynDom algorithm, the connected set algorithm may no longer be useful

as additional features will separate distant sections that happen to have similar

rotation vectors.

– The method should perform well with very large macromolecules, and be

able to accept mmCIF formatted files which are necessary for the latest large

biomolecules.

– The program should work when the input contains protein chains, DNA, RNA or

other molecules, including a complex that contains a mix of protein and nucleic

chains such as the ribosome.

– DynDom identifies hinge-bending regions, but DynDom3D did not. DynDom6D

should have a method for locating the hinge-bending regions as well as the rigid

domain areas.

• Within the protein, domain movements are controlled by hinge-bending regions, which

are short, flexible segments. Studies have shown that they are often positioned between
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the termini of secondary structures[62]. A proposed predictor of the location of hinge-

bending regions from sequence first predicts the protein’s secondary structure from

the provided sequence, and then predicts the location of the hinge-bending region

given its predicted structural information [12]. There have been investigations into

the composition of the sequences of amino acids that make up the hinge-bending

region [52], but predictors based on this information do not show high accuracy. The

final aim of this thesis is the application of kernel logistic regression (KLR) to this

problem. KLR models the likelihood that a feature vector belongs to a given class; we

will use it to predict the likelihood that a residue belongs to the hinge-bending region

given which amino acid it is and its neighbours are. Sequence data and labelling of

"hinge-bending region" and "not hinge-bending region" classes will be taken from the

DynDom database.

This aim will require achievement of the following objectives:

– The predictor should be able to predict the location of hinge-bending regions

using only the sequence of amino acids, with no additional information about the

protein’s solved structure.

– The predictor should have a high accuracy, as measured by training on one

partition of our data and testing on a reserved set of non-redundant sequences.

– A benefit of the KLR algorithm is that trained models can be examined to

identify which features had strong positive or negative discriminatory value. We

will extract this information from successful models to look for patterns with

potential biological insight into the composition of the hinge-bending region and

its surrounding area.
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1.2 Publications

The work included in this thesis was written about in the following publications:

• Veevers, Ruth, and Steven Hayward. "Morphing and docking visualisation of biomolec-

ular structures using Multi-Dimensional Scaling." Journal of Molecular Graphics and

Modelling 82 (2018): 108-116[160].

• Veevers, Ruth, and Steven Hayward. "Methodological improvements for the analysis of

domain movements in large biomolecular complexes." Biophysics and Physicobiology

16 (2019): 328-336[161].

• Veevers, Ruth, Cawley, Gavin and Steven Hayward. "Investigation of sequence features

of hinge-bending regions in proteins with domain movements using kernel logistic

regression." BMC Bioinformatics 21 (2020): 1-18[159].

1.3 Thesis structure

Chapter 2 covers the background, motivation and relevant literature regarding the biological

applications of the research. The properties and functions of biomolecules will be explored

in more depth.

Chapter 3 is a review of literature relating to the computational processes required for

understanding the research. The mathematical basis of the work, methods and comparable

techniques will be described here. This chapter will describe existing methods of protein

morphing, and explain the various MDS methods which our morphing method will use. A

review of protein docking methods will provide background for our tailored docking morphs.

An overview of MD will provide context for its comparison to morphing methods in later

chapters. The machine learning methods used for domain identification and hinge-bending

region prediction will be explored, with descriptions of the k-means clustering and KLR
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algorithms. The tests that we will use to assess the performance of these methods will also

be provided in Chapter 3.

The development of our MDS-based approach to protein morphing is described in

Chapter 4. A test set of pairs of structures depicting protein domain movements was taken

from the DynDom database, which covers a wide range of motions. These pairs were

morphed using a number of versions of our method and assessed to find the MDS method

that provided the best trade-off between speed and accuracy. The MolProbity[29] validation

tool is used to compare how possible the constructed protein structures are in terms of the

known limits of bond lengths and torsion angles, and timing experiments show the efficiency

of the method and the improvement that can be gained from a GPU implementation. The

methods were also compared against existing methods using a metric designed to measure

how close a protein morph can come to a known intermediate structure. The extension of

our method to allow all biomolecules and to provide visualisations of docking morphs is

also included in Chapter 4. This technique is fast and while it performs well when there

is a known intermediate structure, to know how possible it is to use the MDS morph as a

prediction of the real path it should be compared to the true path of a conformational change.

As recording is not possible, we turn to the gold standard, MD simulation. This chapter

also describes the application of both the MDS morphing method and recent state-of-the-art

MD technique PACS-MD to a test case, innovative and promising cancer drug nivolumab

interacting with its target protein, programmed death-1 (PD-1). The relative timing of small

internal movements are examined to compare the resulting paths.

Chapter 5 discusses the development of DynDom6D, a new generation of the domain-

finding algorithm DynDom3D, which is aimed at macro-molecules for a problem domain

where newly-solved proteins are increasingly huge machines with multiple moving parts.

The previous versions of DynDom are described and details are provided for each step of the
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DynDom6D process. Results are listed for four example biomolecules showing a range of

domain movements.

Our investigation into applying Kernel Logistic Regression (KLR) to the prediction of

hinge-bending regions from sequence data is described in Chapter 6. The chapter covers

the creation of the dataset by filtering sequences from the DynDom database to find domain

movement with strong hinge motions, and the effects of further filtering to reduce redundancy.

The choice of window length to surround each residue is examined, and results are shown

from a range of window lengths. A range of linear and non-linear kernels were used to map

the input vector to feature space, and the results of varying this kernel are examined. Weights

are extracted from the trained models and examined.

Chapter 7 summarises and discusses results from previous chapters, outlines potential

directions for future work, and concludes the thesis.





Chapter 2

Biological Background

The following chapter describes the biological background and motivations underlying the

subsequent work in this thesis. The composition and structure of proteins will be examined,

as well as the way these structures can change shape in the course of a protein’s function.

This chapter will describe the physical constraints to which proteins must adhere as they go

about these conformational changes, and which our method of visualisation (described in

Chapter 4) should respect if it is to create plausible motions. It will also cover the ways in

which these movements are described as the motions of semi-rigid bodies within the protein,

driven by a flexible hinge-bending region, which will be detected in the method described in

Chapter 5 and predicted in Chapter 6.

2.1 Protein Structure

Given that the mechanism by which a protein operates is known to be intimately linked with

its structure, it is important to be able to formally describe these structures. Protein structure

is relevant to the understanding of biological processes and for drug design[32]. There are

four levels of structure which will be referenced in this work[122].
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Amino acid name Three-letter code Single-letter code
Alanine Ala A
Cysteine Cys C
Aspartic acid Asp D
Glutamic acid Glu E
Phenylalanine Phe F
Glycine Gly G
Histidine His H
Isoleucine Ile I
Lysine Lys K
Leucine Leu L
Methionine Met M
Asparagine Asn N
Proline Pro P
Glutamine Gln Q
Arginine Arg R
Serine Ser S
Threonine Thr T
Valine Val V
Tryptophan Trp W
Tyrosine Tyr Y

Table 2.1 The names, three-letter codes and single-letter codes for each amino acid[122]

2.1.1 Primary Structure

The main chain of a protein is arranged as a "backbone" consisting of a repeating pattern

of oxygen, carbon, and nitrogen atoms. The alpha carbon (or Cα) atom is located at the

branch between the main chain and a side chain. The side chain, which typically takes one of

twenty standard shapes, distinguishes the different amino acids, or residues, from which the

protein is made. Table 2.1 lists the names and common abbreviations of the 20 amino acids.

The body of this work will use the long names of amino acids, but some figures will use the

single-letter code for clarity.

The atoms are bonded using several different interactions [122]. These bonds have

standard ranges of distances depending on the type of bonds and the amino acids and atoms

involved; studies of experimentally ascertained bond distances have created lists of expected
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Fig. 2.1 A representation of a segment of protein chain consisting of three amino acids,
labelled by atom name. Oxygen atoms are coloured red, nitrogen atoms are blue, and carbon
atoms are coloured according to amino acid: carbon atoms are coloured green in the aspartic
acid residue, cyan in the glutamic acid residue and pink in the lysine residue.

values [120][45]. The amino acids are joined with covalent "peptide" bonds, which have

expected lengths of around 1.3Å[11]. Covalent disulphide bonds form bridges between a

pair of cysteine amino acids[11] with a typical distance of 2.2Å. Van der Waals interactions

are weak interactions that occur over distances of around 3.5Å, and hydrogen bonds are

non-covalent interactions around 3Å[122].

Figure 2.1 shows an example of the arrangement of atoms in a segment of protein chain

comprised of an aspartic acid, a glutamic acid and a lysine residue. Each atom is labelled with

its name, which begins with its chemical element, sometimes followed by a code describing

its position in the residue. The backbone runs along the bottom of the figure.

Each amino acid has a set of physical characteristics that determine its chemical and

physical effect on the protein. A residue may be hydrophilic or hydrophobic, which would

affect its behaviour in relation to the solvent surrounding the protein. These categories

depend on the polarity and charge of the amino acid which dictates the interactions in which
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it may take part. The size and shape of each residue will also influence its position in the

protein.

The "primary structure" or "sequence" of a protein is a list of its amino acids in the order

that they appear along the backbone. It is typically represented as a string of letters, where

each letter represents an amino acid as in Table 2.1.

There are methods for predicting properties of the structure, function and family of a

protein from its sequence of amino acids. Chapter 6 will describe an attempt to train models

on sequence data to predict which parts will make up a flexible region that controls the

protein’s movements.

Primary sequences are stored in databases such as the UniProtKB database, which is

annotated with functional information [17] [118].

2.1.2 Secondary Structure

Sections of proteins frequently consist of recurring structural "building blocks" that provide

another way of describing a protein, referred to as the "secondary structure". These are

formed by regular patterns of main chain hydrogen bonds, and are heavily influenced by the

properties of the amino acids in the sequence.

Two of the most common types of secondary structure are the α-helix and the β -sheet.

The α-helix is a cylindrical structure formed when the backbone of residue (at position n)

is hydrogen bonded to the main chain of the amino acid that follows it four residues later

in the chain (n+ 4). The pattern is repeated; the backbone of residue n+ 1 is hydrogen

bonded to the main chain of residue n+5, continued until the end of the helix [122]. The

β -sheet is formed when repeated hydrogen bonds along a segment of main chain connect

it to the residues of another segment of the main chain that runs in either the same or the

opposite direction to the original segment[122]. There are two types of β -sheet, parallel and

anti-parallel, which refers to the relative directions of the strands of which it is composed.
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The secondary structure is often represented as a sequence of characters of the same

length as the primary sequence, where each character represents the type of secondary

structure feature to which the corresponding residue belongs.

The prediction of secondary structure from sequence data alone is a common application

of machine learning in the study of proteins. Previous techniques are covered in more

detail in Chapter 3 as the problem involves similar experimental design as the prediction

of the location of hinge-bending regions, which is the problem we approach in Chapter 5.

These problems are potentially related, as hinge-bending regions have shown a preference to

belonging to the termini of secondary structure features [62].

2.1.2.1 Torsion Angles

As well as the lengths of bonds, and the angles between bonds that share an atom, there are

physical constraints on the torsion or dihedral angles that can be found along the backbone

[88]. The φ -angle and ψ-angle describe the rotation of the Cα - N bond and the rotation

of the Cα - C bond respectively[11]. These angles fall within allowed ranges, though the

favoured φ and ψ angles are different in different secondary structures. These values are

commonly plotted against one another in Ramachandran plots. Figure 2.2 shows an example

Ramachandran plot where the φ -angles and ψ-angles for a solved calmodulin structure

are shown. The allowed areas are outlined in orange, while the core regions for different

secondary structures are outlined in red. The ω-angle is an additional torsion angle describing

the rotation about the C - N bond, which is usually constrained at approximately 180°[122].

There are also constraints on the torsion angles between the backbone and the side chains,

which fall into a range of values depending on which amino acid the side chain is[141].
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Fig. 2.2 Ramachandran plot for calmodulin (PDB code 1CLL)

2.1.3 Tertiary Structure

The tertiary structure of a protein is specified by the Cartesian coordinates of the atoms of

which it consists. The tertiary structures can be stored in a file containing lists of the chains,

residues and atoms which can be read and interpreted by molecular visualisation software

such as Pymol [38] and Rasmol [140]. These files are stored in the Protein Data Bank [10],

where they are assigned four-character codes. The tools developed using the methods we

cover in Chapter 4 (MorphIt Pro) and Chapter 5 (DynDom6D) both accept tertiary structure

files as input in the PDB format[9] which uses a column-based layout. Atoms are represented

by a line of text, where the characters at set positions in a line correspond to a property of

the atom. This format imposes a limit on the number of atoms and residues that the file can
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contain, so the DynDom6D program also accepts mmCIF files, which are a dictionary-based

format that was developed to store the details of macromolecules [16].

2.1.4 Quaternary Structure

Some macromolecules consist of multiple folded chains called "subunits". The position of

chains within a macromolecule is referred to as its quaternary structure. The tool developed

in Chapter 5 was designed to work on these large collections of chains.

2.2 Solving Protein Structure

The process of determining the tertiary structure of a given protein from some experimental

data is known as "solving" it. Using x-ray crystallography, this experimental data is obtained

through crystallising a protein and subjecting it to x-ray beams, and then studying the resulting

diffraction patterns to get information about the crystal’s contents, which are combined with

pre-existing knowledge of its covalent structure to build a model of the structure[151][170].

Nuclear magnetic resonance (NMR) spectroscopy uses the magnetic properties of the protons

and isotopes of nitrogen and carbon in the protein’s atoms, which respond to different mag-

netic fields and eletromagnetic frequencies depending on their surroundings; by observing

protons’ reactions to variation in the magnetic field or applied electromagnetic frequencies

deductions about those surroundings can be made[7][26]. Technological advances in the

process of cryo-electron microscopy (cryo-EM), in which macromolecules are studied with

electron microscopes after being frozen at very low temperatures, have resulted in the solution

of structures of large macromolecules from small samples [5].
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2.3 Conformational Changes in Proteins

As proteins perform their functions they undergo changes in shape, often in the course

of an interaction with another molecule [61][6]. Understanding the mechanism by which

they perform their function provides understanding of the biological processes to which

they belong. The drug design process involves detailed study of the mechanism underlying

biological processes in order to design drugs that can obstruct or assist the process. For

example, research into the the interaction between the PD-1 protein and its PD-L1 or PD-L2

ligands has led to the development of targeted antibodies and small molecule drugs for the

treatment of cancers[149]. This interaction triggers the inhibition of the immune system,

preventing an immune response to tumours[30]. This interaction will be modelled in Chapter

4, so more information is provided below.

2.3.1 PD-1 and Nivolumab

The pathway by which PD-1 inhibits the immune system’s response to tumours is a relatively

recent discovery [80], which has introduced a new area for potential treatments of previously

untreatable cancers[65]. The immune system eliminates disease within a host, but to do this

it must distinguish what is part of the host itself in order to prevent damage[53]. The PD-1

protein forms a complex with its ligand, PD-L1, and this interaction has an inhibitory effect

on the immune response[171]. The interaction between PD-1 and its other ligand, PD-L2,

similarly inhibits the immune response though there are some differences in the mechanism

of the response[174].

Positive expression of PD-1 and PD-L1 has been reported in patients with particular

cancers, including advanced non-small cell lung cancers [65], particularly in current smokers

and patients with certain mutations [40].
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Drugs targeting the interaction between PD-1 and either PD-L1 [111] or PD-L2 [94]

have been the focus of recent trials and studies. Five have been approved by the FDA

for use in the USA[107]: pembrolizumab and nivolumab which target PD-1 itself, and

atezolizumab, durvalumab and avelumab which target PD-L1. Research into small-body

molecules is also ongoing [149][171]. While studies into the performance and safety of PD-1

targeting monoclonal antibodies is still ongoing, results indicate that they are potentially

effective at combating cancers that were previously resistant to treatment such as advanced

squamoous-cell carcinomas [109], advanced kidney cancers, and advanced non-small cell

lung cancers.

Structures of human and murine PD-1 and its ligands have been solved; the human

and murine ligands have been shown to interact differently with the human PD-1[162].

Investigations into the motion of the binding have found that two flexible loops in the PD-1

are used in binding with PD-L1 [146].

2.3.2 Domains

There are multiple definitions of "domains"[125] in proteins; the division can be based

on structural features, evolutionary homology, function or dynamics. Domains form the

basic structural element used in many of the databases of proteins’ sequences and structures.

The Pfam database contains sequences organised into "families", clusters of domains with

similar sequences, classified by using hidden Markov models[152][43]. CATH is a database

of structural families hierarchically grouped by shared structural properties and features

[119][121]. SCOP[112] and SCOP2[3] are also structural databases grouped by similar

structures and evolutionary homology, where entries are initially manually classified[148];

The following chapters will focus on dynamic domains, which are domains defined

from conformational change. Dynamic domain information is stored in the DynDom

database[95][69]. Residues in a dynamic domain will move rigidly or semi-rigidly rel-
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ative to another domain. Domain movements have been classified according to this relative

movement as "predominantly hinge", "predominantly shear", or not predominantly either

[59], where hinge motions are also described as interface-creating, and shear motions as

interface-preserving [154]. Hinge motions are a large movement about a flexible hinge, which

brings the domains into contact, whereas shear motions are made of multiple smaller motions.

These flexible hinge-bending regions control the conformational change; by maintaining

rigid domains and allowing hinge-bending residues to flex, conformational changes can be

reproduced [71].

In the technical background in Chapter 3, Algorithms for determining these dynamic

domains will be covered further (Section 3.8). Chapter 5 will describe a method for identify-

ing dynamic domains and hinge regions from a pair of structures, and Chapter 6 will cover

the use of machine learning to predict the location of the hinge-bending region given only

sequence data.



Chapter 3

Technical Background

The chapter provides background knowledge and a review of the literature regarding the

key methods of the following chapters. Section 3.1 introduces a method for bringing pairs

of sequences into alignment, which will be used in later methods to find corresponding

atoms in biomolecular structures. Section 3.2 describes previous approaches to the problem

of protein morphing. The development of our docking morph technique was inspired by

methods of predicting the docked conformation of unbound proteins using methods described

in Section 3.3. The gold standard of protein morphing is achieved by Molecular Dynamics,

which is covered in Section 3.6. The next two sections relate to methods we use in our own

protein morphing approach: Section 3.5 provides background on the linear algebra used

in this and later methods; Section 3.6 is a detailed look at multi-dimensional scaling and

its variants. Section 3.7 covers the two machine learning algorithms that are used in the

following chapters. In Section 3.7.1, we examine the k-means clustering algorithm that will

be used to identify dynamic domains in Chapter 5, while in 3.7.2 kernel logistic regression

is explained. In Chapter 6 we will use kernel logistic regression to predict the location of

hinge-bending regions from primary sequence alone; Section 3.8 discusses previous attempts

to predict the hinge-bending region and Section 3.9 covers the specific case of using a sliding

window to generate input for a machine learning model.
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3.1 Sequence Alignment

There are procedures which require every residue or atom of a pair of proteins to be in

alignment, so that they might be compared or processed. The morphing method in Chapter 4

requires a one-to-one correspondence of atoms in a pair of structures so that it can produce

a visualisation of how each atom moves between the two states. The domain identification

tool in Chapter 5 also requires two aligned structures so that it can calculate the movement

required to take small subsets of atoms from their positions in one structure to their positions

in the other. Sequences may be entirely distinct or almost identical, or they may contain

some similar and some different segments, or have insertions and deletions such that a large

part of two very closely related sequences may be unaligned if they were to be compared

residue by residue.

Both Chapter 4 and Chapter 5 use approaches to sequence alignment that are based in

dynamic programming. Dynamic programming uses an efficient matrix-based algorithm to

find the optimum alignment between two sequences. There are various dynamic programming

algorithms, but the method used in the following chapters is the Needleman-Wunsch [115]

algorithm.

The alignment depends on the construction of a dynamic programming matrix, an example

of which is shown in Table 3.1, which shows the alignment of two short dummy sequences.

One sequence is place into the top row, and the other into the leftmost column. The first

cell inside these headers is given a value of zero, and the algorithm constructs the cell from

top-to-bottom and left-to-right using this zero as a starting point. When considering which

value to put in the cell in row i and column j, Di, j, the three cells immediately above (Di−1, j),

to the left (Di, j−1), and diagonally to the top-left (Di−1, j−1) are considered, and a score is

calculated for each. The maximum of these three scores is then stored in the cell:
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L Q E L L Q K A
0 -8 -16 -24 -32 -40 -48 -56 -64

Q -8 -2 -3 ?

D -16

L -24

Q -32

L -40

A -48

K -56

T -64
Table 3.1 An example of the dynamic programming matrix for an alignment of a pair of short
sequences (sequences created for demonstration purposes)

Di, j = max


Di−1, j +g

Di−1, j−1 +Mx,y

Di, j−1 +g

(3.1)

The score from the top cell represents a deletion or insertion, and is calculated as the

value of the cell above minus a gap penalty, g. The score from the left cell similarly represents

a deletion or insertion from the other sequence, and is the value currently in the left cell

minus the gap penalty. The score from the top-left cell represents an alignment between

the ith amino acid in the first sequence (x) and the jth amino acid in second sequence (y),

and is calculated as the sum of the value in the top-left cell and the match score between

x and y looked up in a substitution matrix, M. The methods in the following work use the

BLOSUM62 [74] substitution matrix.

For an example, the shaded cell will consider three values. The score from the left will

be −3 (from the cell directly to the left) minus the gap penalty score (8 in this example).

Scoreleft =−3−8 =−11 (3.2)
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The score from above is calculated in a similar way, subtracting the gap penalty from the

value in the cell above:

Scoretop =−24−8 =−32. (3.3)

The score from the top-left will take the score from the diagonal cell and add the score

given by BLOSUM62 for the match between a glutamine (Q) and a glutamic acid (E), 2:

Scoretop-left =−16+2 =−14. (3.4)

The maximum value of the three scores is given by the left, so −11 is placed in the cell.

A record of the direction that give the cell its value is also stored. When the matrix has been

completed, the matrix will be traversed using a pointer that starts in the bottom-right corner.

The direction stored for the cell is retrieved, and the aligned sequence is built from the end to

the beginning. If the score came from the left, a gap is inserted into the sequence on the left,

and if the score came from above then a gap is inserted into the sequence on the top. If the

score came from the top-left then the two corresponding residues are aligned. The pointer

then moves following the stored direction.

3.1.1 Sequence Identity and Homology

Finding an optimal alignment between two proteins allows for a measure of similarity.

Similar sequences are likely to belong to proteins with similar structure and functions, so it is

useful to have a measure of how alike two proteins’ sequences are. Given a pair of sequences

aligned as best as possible (see Section 3.1), with nmatch matching amino acids in aligned

length n.

SeqID =
nmatch

n
×100 (3.5)
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A pair of sequences with high sequence identity is likely to be homologous, having the

same shape; Sander and Schneider[138] plots the relationship between sequence identity and

structural similarity for sequences and structures from the EMBL/Swissprot and Protein Data

Bank databases as a function of sequence length, showing that the threshold of sequence

identity at which a pair of proteins are likely to be homologous decreases as the length

increases. Rost[133] examines pairs whose sequence identity falls within the "twilight zone"

in which proteins may be homologous but also difficult to align. While these findings also

note that shorter sequences require a higher cut-off, Rost[133] places a threshold around 30%,

above which pairs of proteins are very likely to be homologous, and another around 25%,

below which pairs are very unlikely to be homologous. This is relevant when attempting to

learn from sequence data as in Chapter 6.

3.2 History of Morphing Techniques

Section 2.2 discussed how static conformations of proteins can be determined through NMR

spectroscopy or X-ray crystallography. Conformational changes accompany protein function,

such as receptors changing shape during ligand binding[131] and changes between active

and inactive enzyme states[143]. The solved structures known for such a protein will be

snapshots of specific states, usually either the bound or the unbound state. Understanding

the changes undergone during the course of a protein’s function assists in understanding

the mechanism by which the protein contributes to important biological processes. This

understanding will benefit drug design, where a full view of a protein’s mechanism may give

insight into how it may best be targeted, or how a new drug may compete with a native ligand

to disrupt a disease-causing interaction.

Experimental NMR techniques can monitor a number of properties that inform on the

likely dynamics of the subject protein [81] but the complete structural pathway of a protein

as it changes conformation can not yet be recorded. A simple before and after comparison of
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the location of atoms may provide the viewer with a general idea of what a path between

the two states may have looked like, but this requires an understanding of correspondence

between atoms which may not be apparent, and tracking a single point from one structure

to the next which may be difficult to parse, particularly in a large motion. The problem of

constructing a potential pathway between known conformations is referred to as "protein

morphing".

Computational protein morphing techniques require only the two known structures to

construct a path between them which can assist in visualising the changes and obtaining

potential intermediate structures. Presenting these paths as an animation aids the viewer in

understanding the motion as individual atoms and residues can be followed as they move

along their path.

The underlying forces that drive the changes can be modelled using Molecular Dynamics

simulation packages such as GROMACS[1] and AMBER[25]. This process is described in

more detail in Section 3.4. These results are physically plausible as they provide intermediate

structures derived from a physically accurate energy function. However, the dynamics are so

computationally expensive that MD is only a viable option for long-term in-depth research

into a protein; it can take weeks or months to generate output. It also relies on pre-processing

of the proteins to ensure that they have no missing sections. Additionally, rare events may

not occur during the time frame of the simulation, so other techniques are required to induce

the desired behaviour. To get fast results, it is necessary to use simpler techniques.

Simple Cartesian linear interpolation techniques such as the early methods used by

Vonrhein et al.[163] incrementally move each atom of the protein from their start position

to their end position. This grants a quick result but for many motions the intermediary

structures are infeasible; bond lengths and angles are not considered and so atoms can

overlap, causing clashes which would make the resulting energy improbably high. For

example, a phenylalanine residue contains two side-chain single bonds leading to a benzyl
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ring. The ring must remain planar but it may "flip over" between solved structures, rotating

180° about one of the single bonds. This would contain two pairs of atoms that appear to

change places between the two structures. In a linear interpolation the atoms would attempt

to pass through one another on their way to the opposite side of the residue, whereas a more

realistic morph would show this as a rotation which maintains fixed inter-atomic distances

within the residue.

Many methods are available; methods commonly involve elements of Cartesian interpola-

tion, inter-atomic interpolation and energetics.

The MolMovDB web server, developed by Krebs and Gerstein [91], has been described

as "probably the most popular online method"[167] of protein morphing. The process begins

with a linear interpolation, but at each step the protein’s atom locations are adjusted to

minimise its energy. In their approach, one domain is held fixed, whilst the other moves.

The method proposed by Kim et al. [87] begins with an interpolation not of the Cartesian

co-ordinates but of the inter-atomic distances between nearby Cα atoms in the two solved

states. A cost function is minimised at each frame of the interpolation in order to construct a

3-dimensional structure that best fits these interpolated values. The cost function consists of

the sum of squared distances between a linear interpolation of the start and end co-ordinates

and the solved structures’ Cα atoms with some displacement applied. Their technique for

this minimisation is described as a form of Elastic Network Model where the distances

between pairs of atoms are modelled as "springs". This method has been made available

on the NOMAD-REF server. Similarly, MinActionPath[55] is an energetic Cα ENM-based

approach that aims to construct a trajectory between conformations that minimizes the

Onsager and Machlup action.

The CLIMBER[168] technique incrementally advances atoms towards their destination

using a method that combines inter-atomic distance interpolation and energy minimisation.

At each step, a structure is found by minimising the internal energy, with added restraints
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based on gradually removing the difference between Cα distances in the current structure

and the target structure.

The FATCAT [173] server contains, among other tools, FATCAT-pairwise, a morphing

tool which brings the pair of structures into structural alignment and attempts to morph

between the conformations in terms of the fewest possible rigid body rotations about flexible

hinge regions. This provides a flexible superposition of the two structures as well as a visual-

isation of the path taken to create the superposition. As-Rigid-As-Possible (ARAP)[117] is

another method which specifically attempts to create rigid motions between solved structures.

It uses mesh distortion techniques originating from computer graphics. A mesh topology is

created using information about which atoms are bonded; after interpolating the Cartesian

coordinates of a single atom, the rest of the atoms are updated to minimise cell energy.

3.3 Protein Docking Visualisations

Conformational changes frequently accompany the process of protein interaction during the

formation of complexes, wherein one protein (or other biomolecule), referred to as a ligand,

is bound to a larger biomolecule known as a receptor. In these cases it may be informative

to visualise the intra-molecular changes of each constituent in relation to the other. Unlike

protein morphing, there are few available methods to perform this visualisation. Protein

visualisation and animation software that currently exists such as UCSF Chimera [123]

typically uses a rigid-body linear interpolation of start and end positions provided by the

users, with any morphing happening in a separate process. The web server MovieMaker

[105] automates the position and trajectory of the constituents from an input docked complex,

but operates entirely rigidly, offering no input for the undocked constituents. To find relevant

literature and explore the requirements of such a program, we looked to the related problem

of docking.
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Docking is the problem of predicting how two biomolecules will form a complex, given

their unbound states. There are many protein docking methods available and in development.

As with protein morphing, Molecular Dynamics (Section 3.4) provides a very realistic

depiction of the interaction between biomolecules, provided they can be induced to perform

the docking.

Frequently docking techniques contain two common stages: in the first, many (usually

tens of thousands) potential docked complexes are generated, and in the second a chosen

scoring system is applied to attempt to identify native or near-native structures [132][78].

Methods of the search for candidate complexes vary, but typically involve rigid-body scans

wherein a moving ligand molecule is rotated and translated about the stationary receptor

molecule. There are very many potential positions so docking methods accelerate this

scan, often using similarity to known "templates" obtained from solved complexes [127],

for example ClusPro [90] uses a Fast Fourier Transform approach. At this stage, some

information-driven docking techniques such as HADDOCK [84][158] integrate data re-

garding shapes, orientations, interface restraints and other properties which are observed

experimentally or predicted using bioinformatics methods.

While treating the constituents as rigid bodies is computationally convenient, flexibility

of both backbone and side chain atoms has been shown to be important to the success

of docking even when the conformational changes undergone are very small [127][42].

Therefore docking techniques attempt to incorporate flexibility in various ways [14]. For

some techniques, such as ICM-DISCO[49] and ProPOSE[76], flexibility is applied to the side-

chain or backbone atoms during a further refinement step after allowing some clashes during

the rigid-body scan, sometimes referred to as “soft-docking”. Other methods incorporate

flexibility by repeating the scan using various pre-generated conformations, referred to as

“ensemble” docking[2], or by explicitly allowing flexibility at various stages during the

search for candidates (as in RosettaDock’s fixed-backbone optimisation [142]).
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However it is introduced to a docking methods’ constituents, it is apparent that flexibility

is a goal for recent docking prediction techniques. Candidate structures found by docking

methods can therefore vary not only in the relative position of the ligand and receptor but

also in their conformations, making a visualisation that clarifies the relation between atoms

in the start and end structures particularly useful.

3.4 Molecular Dynamics

Molecular Dynamics is a computational technique for simulating the movements and in-

teractions of molecules[85]. Trajectories plotting the motions of the atoms that make up

a molecule are created by modelling approximations of their underlying physics[41]. The

accuracy of the structural information that can be obtained using MD simulations makes

them suitable for use in drug design, in the modelling of potential drugs, targets, and their

interactions[37].

The simulations are typically created from experimental data and simulate a given period

of time, split into discrete steps[137]. At each step, the forces currently acting on each atom

are calculated using equations that approximate the effects of the inter-atomic interactions

(section 2.1.1)[137]. Some ab inito MD methods calculate electron behaviour, but these

calculations are computationally expensive[157]. This makes makes ab initio MD most

suited for specific problems that require details on the making and breaking of bonds. More

commonly, the atoms are considered to be solid bodies, with no modelling of the motion

of individual electrons or other subatomic particles[41]. The effects of the electrons are

modelled implicitly using force fields, which are sets of parameters and functions defining

how different atoms will interact[85]. Each atom’s position in the next step is then calculated

from the approximated forces.
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As well as the molecule itself and its constituent atoms, the environment surrounding it

must also be modelled. The solvent surrounding the molecule, and the temperature of the

solvent, have been shown to have a strong impact on the resulting simulation[85].

3.4.1 PaCS-MD

The method of classical MD as described requires a set time frame. In cases where MD

is used to examine or simulate a specific conformational change or interaction, there is no

guarantee that the desired behaviour will occur fully or at all within the set time frame,

particularly when the desired event is rare. Initial attempts to overcome this involve applying

external factors within the simulation: Steered MD (SMD) applies a force to an atom or

atoms to induce a movement, and Targeted MD (TMD) applies holonomic (relating only to

the time and coordinates) constraints based on the target structure. These approaches have

drawbacks resulting from the external influences on the system, as both can result in large,

unnatural distortions[67].

PaCS-MD [67] creates a transitional pathway between an initial and target structure

without the application of external forces or constraints using cycles of parallel simulations.

An initial short simulation is performed from the target structure, and then each step of

the resulting trajectory is ranked against the target. The PaCS-MD paper [67] describes a

ranking based on RMSD to a given target structure, but we use minimum distance between

atoms of two docking molecules. The top ranged structures are then selected as the starting

positions for a short cycle of multiple independent molecular dynamics. The trajectories

of each independent run are also ranked according to the same ranking metric, top ranked

structures again forming the initial structures of the next cycle. This continues until the

RMSD to the target structure reaches an acceptable value. Trajectories between the initial

structure and the final structure can be concatenated, creating one single path that the PaCS

paper refers to as the "reactive" trajectory.
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3.5 Linear Algebra

Methods in the following sections will rely on linear algebra; this section will briefly outline

properties and methods that will be important for future methods.

3.5.1 Vectors

The manipulations of vectors will be relevant for methods used in DynDom6D and our hinge

prediction investigations, where position vectors are used for the calculation of motion and

feature vectors are used in the machine learning processes. These will involve the calculation

of the inner product of two vectors, a and b, in a vector space. The inner product is a function

to multiply two vectors that yields a scalar that we will denote < a,b >[166]. The standard

inner product when a and b contain n real numbers is[18]:

< a,b >= aT b =
n

∑
i=1

aibi. (3.6)

The cross product is a product of two three-dimensional vectors, a = a1i+a2j+a3k and

b = b1i+b2j+b3k, which yields another vector that is perpendicular to both[147]:

a×b =

∣∣∣∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣∣
(3.7)

The magnitude, or Euclidean norm, of n-dimensional vector a can be calculated from[18]:

∥a∥=

√
n

∑
i=1

a2
i (3.8)
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3.5.2 Matrices

Our morphing method will require a square matrix, A, with elements:

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 (3.9)

The transpose of A is a matrix where the elements of the rows and columns have [changed

place]:

AT =


a11 a21 a31

a12 a22 a32

a13 a23 a33

 (3.10)

When A is equal to AT , the matrix is symmetric[156].

Some of our methods require the calculation of eigenvalues and eigenvectors, paired

scalar λ and vector v values such that[129]:

Ax = λx (3.11)

There are many methods for calculating eigenvalues and their corresponding eigenvectors

given the matrix A; we use the LAPACK implementation of the QR method integrated

into MATLAB [63]. The version of the QR method implemented in LAPACK is more

complicated, with shifts and matrix reductions selected to better find solutions for input

matrices A with different properties1, but a simple version of the QR method is as follows, as

described in [129]. An orthogonal matrix Q is initialised as the identity matrix, and a matrix

T is initialised as a copy of A. An iterative process follows, where at step k, Tk is factorized

into Qk and a triangular matrix Rk such that:

1https://uk.mathworks.com/company/newsletters/articles/variants-of-the-qr-algorithm.html
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Tk −µI = QkRk, (3.12)

where µ is a shift value and I is the identity matrix. The value of Tk is changed:

Tk = RkQk +µI. (3.13)

On convergence, the diagonal of T will contain the eigenvalues of A if real eigenvalues

are possible[129].

A matrix of real numbers is described as positive definite if it adheres to the formula

(Ax,x)> 0 ∀x ∈ Rn, x ̸= 0 (3.14)

or semi-definite if it instead adheres to the formula[129]:

(Ax,x)≥ 0 ∀x ∈ Rn, x ̸= 0 (3.15)

3.6 MDS

Multi-Dimensional Scaling is the name for a family of techniques intended to construct

co-ordinates for a set of objects, where similarity between the objects is represented as the

proximity between their associated points in a space. Performing any MDS method requires

a set of n objects and an n×n matrix D, where each element Di j represents the dissimilarity

between objects i and j. This similarity can be a real measure or perceived value; MDS

has been used in psychological fields to plot relative judgements about topics. In the study

of proteins, MDS has been used to reconstruct the physical structure of a protein given

information about which residues are in contact[124].
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3.6.1 Classical MDS

Classical MDS uses eigenvalue decomposition to construct the 3× n coordinate matrix

X from the distance matrix D[15]. Cox and Cox describe the classical MDS method as

follows[33].

The inner product matrix B is first determined from the distance matrix through double

centering.

A =−1
2

D2
t (3.16)

H = I−n−1111111T (3.17)

B = HAH (3.18)

Here, I is the identity matrix of size n×n, and 111 is an n×n matrix where every element

is 1.

The coordinate matrix is then derived from the eigenvalues of the inner product matrix.

B = XXT (3.19)

From writing B as a product of its spectral decomposition:

B = VΛΛΛVT (3.20)

The n-dimensional coordinate matrix X can be obtained from Equation 3.19:

X = V1Λ
1
2

1 (3.21)

Where Λ1 is the diagonal matrix of the first n eigenvalues and V1 is the first n eigenvectors.
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We see how well the constructed coordinates fit with our ideal distances by calculating

the strain, which is calculated by the sum of the first n eigenvalues divided by the sum of

all non-zero eigenvalues. Where the strain is close to 0 the co-ordinates adhere closely to

the ideal distances in D, but when the strain is non-zero, the distances between points in the

co-ordinates contain more discrepancies with the target distances.

3.6.2 SMACOF MDS

Classical MDS is a reasonably fast method, but further MDS techniques been developed that

better reproduce the ideal distances. These modern methods incrementally adjust a starting

set of co-ordinates to minimise an error criterion, commonly the stress (σ) function. These

coordinates are commonly the results of classical MDS, but can be obtained by any other

means such as randomisation. Different choices of the stress function give different forms

of modern MDS, which can be either metric MDS, which attempts to reconstruct the exact

dissimilarities, or non-metric MDS, which focuses only on reconstructing the ranking of the

dissimilarities. A common metric MDS method uses a simple weighted sum of squares stress

function of the form:

σr(X) =
N

∑
i< j

wi j(di j(X)−δi j)
2 (3.22)

Where δi j is the ideal distance between atoms i and j, di j is the distance between i and

j in the constructed coordinates, and wi j is the weight to apply to each pairwise distance.

Weighting is frequently used to emphasise or negate the impact of pairings that have not been

measured, for example, if the similarity between a pair of objects has not been measured.

The Scaling by MAjorizing a COmplicated Function (SMACOF) method, using de

Leeuw’s iterative majorization process, derives a monotonic function where the coordinate

matrix X is repeatedly updated using a majorization process, until the resulting stress is

sufficiently small or improves by a sufficiently small amount. The majorization process is a
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means of finding the minimum of a complicated function by iteratively minimising a simpler

one[33]. The following explanations are based on the descriptions in De Leeuw[34][35] and

Cox and Cox[33].

The stress function in Equation 3.22 is expanded to multiply out the brackets:

σr(X) = ∑
i< j

wi jδ
2
i j +∑

i< j
wi jd2

i j −2 ∑
i< j

wi jδi jdi j(X). (3.23)

This is rearranged to highlight the three sum of squared distance terms:

σ (X) =
n

∑
i=1

n

∑
j=1

wi jδ
2
i j +

n

∑
i=1

n

∑
j=1

wi jd2
i j(X)−2

n

∑
i=1

n

∑
j=1

wi jδi jdi j(X), (3.24)

The terms are given the notation:

σ (X) = η
2
δ
+η

2(X)−2ρ(X). (3.25)

The η2
δ

term, obtained from the distance matrix and weighted matrix, will remain constant,

as the initial similarity matrix and weighting will not change during the MDS process.

The second term, η2(X) can be rewritten as:

η
2(X) = tr XTVX (3.26)

The tr operation, called the "trace", is the sum of the elements on the diagonal of a matrix.

V is defined as the following, where A is the row- and column-centred matrix:

V =
n

∑
i=1

n

∑
j=1

wi jAi j, (3.27)

The final term, ρ(X), can also be written:

ρ(X) = tr XT B(X)X, (3.28)
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where:

B(X) =
n

∑
i=1

n

∑
j=1

wi jsi j(X)Ai j, (3.29)

si j(X) =


δi j
di j

, if di j(X)> 0

0, if di j(X) = 0.
(3.30)

When majorizing a complicated function, f (x), a majorizing function g(x,y) is chosen

such that for all values of x, g(x,y)≥ f (x), and g(y,y) = f (y). At each step, i, of the iteration,

yi+1 is set to the minimum of g(x,yi). This continues until convergence; the minimum of

g(x,y) at convergence is taken as the minimum of f (x).

The SMACOF algorithm is minimizing the stress function, written using the above terms

as:

σ(X) = η
2
δ
+ tr XTVX−2tr XTB(X)X, (3.31)

using the majorization function:

T (X,Y) = η
2
δ
+ tr XTVX−2tr XTB(Y)Y. (3.32)

The minimum of T (X,Y) lies where:

δT
δY

= 2VX−2B(Y)Y = 0. (3.33)

Using the Moore-Penrose inversion of V, V+, the updated coordinate matrix X is calcu-

lated at each iteration from the previous coordinate matrix Y using the Guttman transform:

Xu = V+B(Y)Y. (3.34)
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3.6.3 Multi-Grid Acceleration

The SMACOF method offers improved accuracy over classical MDS, but it does so at

the expense of more computational complexity which leads to longer runtime. Multi-grid

acceleration offers a method of improvement for the runtime of SMACOF MDS[21]. The

multi-grid acceleration method achieves this by SMACOF-like optimisation of coarser

representations of the set of objects.

From a set of all objects A, a hierarchy is constructed where each level of the hierarchy is

increasingly coarser. Level l1 contains all objects in A, layer l2 is a subset of l1, layer l3 is a

subset of l2, and so on. Each object in layer lr that is not represented in lr+1 will be assigned

an object in lr+1 that "stands in" for it. These relationships will define how coarse results

are extrapolated onto finer layers and how results from high-resolution levels are applied

to coarser levels. They are established in a pair of matrices for each level referred to as the

restriction operator and interpolation operator[22]. If level lr contains n objects and level lr+1

contains m objects, the restriction operator Pr+1
r is an n+1×m sparse matrix that defines

which object in the next coarsest level that stands in for each object. The element (i, j) in

Pr+1
r is 1 if the ith object in lr+1 stands in for the jth object in level lr, and 0 otherwise. The

interpolation operator Pr
r+1, which defines how lr+1 is interpolated into lr, is typically the

transpose of Pr+1
r .

The multi-grid MDS solution is found by applying a V-cycle algorithm to initial sets of

coordinates representing the objects in each level, X1. At level lr, the coordinate matrix Xr is

optimized K times to minimize stress producing X
′
r. The full solution, where the gradient

of the stress is 0, is sought using the approximate solutions, where the gradient of the stress

is a residual value T , on coarser sets of objects which are computationally less expensive

to find[21]. This requires a new stress function which is a variation on the sum of squared

errors stress in Equation 3.22
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σr(X) =
N

∑
i< j

wi j(di j(X)−δi j)
2 +λ

m

∑
j=1

( N

∑
i=1

xi j

)2
. (3.35)

Bronstein et al.[22] define a single V-cycle recursively: if the current level has the

lowest definition, then the minimization is performed using iterations of a SMACOF-like

minimisation and returned. Otherwise, the stress on Xr is optimized to produce X′
r. A coarser

set of coordinates, X′
r+1, is produced from X′

r by multiplying it with the restriction operator

Pr
r+1. The value of the residual is assigned from the gradients of the stress:

Tr+1 = ∇ŝr+1(X′
r+1)−Pr+1

r ∇ŝr(X′
r). (3.36)

The procedure is then recursively called passing in X′
r+1 and parameters pertaining to

level lr+1, resulting in coordinates X′′
r+1. Errors are smoothed using the interpolation function

and the resulting coordinates are optimized K′ times and returned.

The entire method consists of multiple V-cycles.

Further acceleration has been achieved by moving the calculations required to perform

multi-grid MDS onto GPU architecture. [79]

3.7 Machine Learning

The following sections cover the machine learning methods that will be used in the following

chapters. Section 3.7.1 details the process of k-means clustering which we will use in the

DynDom6D method in Chapter 5, and Section 3.7.2 describes the kernel logistic regression

algorithm that we will apply to sequences in Chapter 6.

3.7.1 k-means Clustering

k-means clustering is a machine learning algorithm used for the task of separating objects

into k groups of similar items according to their features [8] [68]. Given a set of k clusters
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C1...Ck, and a set of samples x1...xn, the samples are assigned to the clusters to minimise the

distances between points and the mean (or "centroid", c j) of the cluster to which they belong

according to a chosen distance metric, here the sum of squared errors[8]:

∑
j=1:k

∑
xi∈C j

∥xi − c j∥2 (3.37)

The classical algorithm starts with k randomly chosen centroids, then assigns each item

to the cluster containing the nearest centroid. After assigning each item to one of the k

clusters, the centroids are moved to the new mean point calculated from all items in the

cluster. The assignment of items to their nearest centroid and the re-calculation of mean

points are continued until the clusters converge at a local minimum. This is an unsupervised

method; no labelled training data is required.

The process of k-means clustering makes numerical data the most appropriate type of

feature, but an input vector can contain data from different feature spaces. The scale and

the range of values of these features may be very different, which may make features more

influential over the mean. For example, if input vectors contained information about people

including their height in miles and their weight in milligrams, then the heights’ numerical

values would be much less than zero and the weights’ values would be in the order of 107;

variation in the weight would cause greater differences in the mean than variation in the

height. On the other hand, if irrelevant or redundant data is included, or if some features

are more strongly correlated with a good separation, it may improve the clustering if some

features are more influential than others[101][83]. Many methods of filtering the features

to retain only the most informative have been proposed for k-means clustering and other

machine learning problems [83]. For example, Lu et al. [103] uses PCA to reduce the large

feature set extracted from videos of changing facial expressions. Modha and Spangler [110]

applies varying weight factors to features from different feature spaces in a pre-clustering step,

which attempts to optimise the similarity within the clusters and the separation between them.
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Other methods take place during the normal operation of the machine learning algorithm[83];

Huang et al. [77] iteratively updates a similar weighting during the clustering process[101].

The classical algorithm requires a pre-selected set of k initial centroids, but the ideal

choice for the number of clusters to use may not be clear. There have been many approaches

to this selection, often focussing on repeating the clustering with different values of k and

choosing the best results based on some criteria such as a measure of the variance within

clusters, or a comparison between the similarity within a cluster and the similarity between

items in different clusters [31]. The location of the initial centroids is also important to the

method’s results, as the classical algorithm is only guaranteed to find a local optimum which

may change with different starting positions [8][86].

3.7.2 Kernel Logistic Regression

The KLR in this thesis was performed using the UEA’s machine learning toolbox [27].

Kernel Logistic Regression takes as its input a matrix of input vectors x, and performs

some non-linear transformation mapping x onto a representation in feature space resulting in

a feature space representation φφφ(xxx). KLR aims to train a vector of primary model weights w

and a scalar bias parameter b [175] [27] such that:

logit{y(x)}= w ·φφφ(((x)))+b. (3.38)

The logit link function,

logit{p}= log
{ p

1− p

}
(3.39)

is a standard link function that provides as an output an a-priori estimate of the likelihood

of a given input vector belonging to the target class.
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The mapping of xxx to φφφ(xxx) does not need to be manually enumerated; by defining <

x1,x2 >, the inner product of any two given input vectors x1 and x2, the mapping to features

space is implicitly defined. As long as the selected inner product function adheres to a set

of criteria known as Mercer’s conditions, the feature representation is implicitly defined

by the calculation of the function. The condition for a valid function defining this implicit

mapping, or kernel function, is that the resulting kernel matrix K for any set of input vectors

x must be positive semi-definite (see 3.5). This transformation into a new space can map

non-linear features into a representation in which they are linearly separable, which allows

the training problem to be the simpler case of finding a linear separation of the feature space

representations of the data.

K (x,x′) = φφφ(x) ·φφφ(x′) (3.40)

We will look at three specific kernels, which are the three that will be used in the KLR

results chapter.

The linear kernel,

K (x,x′) = x ·x′ (3.41)

is a straightforward implicit mapping where the input vector is the same as the representa-

tion in feature space, and hence a weight is associated with each input feature. This provides

a linear separation of the original data.

The polynomial kernel,

K (x,x′) = (x ·x′+ c)d (3.42)

incorporates both the linear terms and products of the primary input vectors, as well as

scalar hyper-parameter c.
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The radial basis function (RBF) provides a Gaussian separation of the data with Gaussian

spread controlled by the hyper-parameter θ :

K (x,x′) = exp
{
−θ∥x−x′∥2}. (3.43)

Given a set of l training examples, where xi is the ith training sample’s input vector and ti

and yi are its actual and predicted outcome respectively, the regularised "cross-entropy" loss

function:

E =
1
2
||w||2 − γ

2

l

∑
i=1

[ti log{yi}+(1− ti) log{1− yi}], (3.44)

is minimised during the training process, which iteratively updates the applied weights

until either a limit is reached or a minimum is found. The models in Chapter 6 are trained

using an iteratively reweighted least squares training procedure [27] on the training data.

This minimisation is solved in the dual representation, where the dual model parameters

are contained in the vector α:

w =
l

∑
i=1

αiφφφ(xi). (3.45)

From these trained models, the expected outcome is calculated from an input vector

using:

logit{y(x)}= ∑αiK (xi,x)+b, (3.46)

where:

∥w∥2 = α
TKα . (3.47)
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The trained model is then applied to the reserved test data for the final assessment of its

accuracy.

These weights can be extracted from the trained model in order to identify and examine

the features that were most discriminative during training.

These kernels and processes require the selection of hyper-parameters such as the constant

θ in the RBF kernel (Equation 3.43) or the regularization parameter γ in the loss function,

Equation 3.44. The hyper-parameters were tuned using the Nelder-Mead simplex [116] using

approximate leave-one-out cross validation [27].

3.7.3 Accuracy of Machine Learning Techniques

A typical method for assessing a machine learning model for classification or regression is

partitioning of labelled data into separate sets for training and testing. After the model has

learned from the training data, it is applied to the test data, so for each input vector of the test

data xi, an expected value ti and a predicted value yi are obtained. There are various ways

that the discrepancy between the ground truth and the output of the model can be quantified.

The following will discuss performance using the Receiver Operating Characteristic (ROC)

curve[48], which plots the rate of false positive results on the x axis against the rate of true

positive results on the y axis. The area under the ROC (AROC) can be taken as a single

measure of the performance of a model. In a random model assigning one of two classes

by chance, the false positive and true positive rates would be expected to progress linearly

and evenly, creating an ROC curve where the with an AROC of 0.5. A perfect model that

accurately classifies every input would be reflected in an ROC that reaches a true positive

result of 1 while still having a false positive rate of 0, which would result in an area under

the ROC of 1.
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3.7.3.1 Significance of AROC

The Mann-Whitney U-test is a non-parametric test of the significance of the difference

between two populations[106]. It can be used to gauge the significance of a model’s per-

formance by studying the predicted values [113], divided into two sets. One set is built by

taking the predicted values for all input vectors where the expected outcome is positive (the

sample belongs to the target class), and another set is constructed from the predicted values

of negatively labelled samples. If the model has no predictive power, with an AROC of

0.5, the two sets would be expected to be randomly drawn from the same population. If the

model does exhibit predictive power then the mean of the positively labelled set should be

higher than that of the negatively labelled set; a randomly selected sample from the positively

labelled set is likely to be higher than a randomly selected sample from the negatively labelled

set.

Samples from both sets are ranked according to their predicted value, and a U statistic is

calculated for each set corresponding to the number of times its elements are greater than

elements of the other set in a pairwise comparison[113]. For small sets, a p-value is retrieved

from a set of tables based on the smallest U statistic and the number of elements in each set,

and for larger sets the p-value comes from an approximation using the normal distribution

[106].

The Mann-Whitney U-test is similar to the Wilcoxon rank-sum test [169].

3.7.3.2 Comparison of AROC

When the AROC is used as a measure of a model’s performance, comparing the performance

of two models on the same test set requires a comparison between AROC values. A higher

AROC indicates more accurate results, but the significance of the difference between two

AROCs must be calculated to identify the confidence with which the performance can

meaningfully be described as better. The DeLong test[39] is a non-parametric indication of
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statistical significance for the difference between AROCs achieved by different models that

have been tested on the same samples, taking the paired relationship into account.

3.8 Algorithms for Identifying Dynamic Domains and Hinge-

Bending Regions

We discussed in Section 2.3.2 how proteins undergoing conformational change can be

divided into semi-rigid dynamic domains. Protein domain movements have been described

as categorised as predominantly hinge and predominantly shear [59]. Hinge, or interface-

creating [154], motions are characterised by the large, perpendicular relative movements of

rigid domains, aided by a flexible hinge-bending region or regions. Both these hinge bending

regions and the domains themselves can be identified algorithmically.

Dynamic domains can be determined through analysis of a pair of structures solved

before and after the conformational change has taken place. If two structures are known,

FlexProt [145] performs a flexible alignment by finding all possible alignments of sections

and finding an optimal subset that best connects the segments. The subset is found from a

directed weighted acyclic graph, where nodes are the possible segments and edges are the

hinge regions [144].

DynDom [95] [69] also requires two structures to perform domain assignment. The

structures are superposed and a window is slid over the main chain to create overlapping

segments of backbone. The rotations required to bring the atoms comprising each segment

in the first conformation into alignment with the corresponding atoms in the second confor-

mation are calculated. The underlying principle behind DynDom is that as domains move

semi-rigidly, parts of a protein that are in the same domain will display similar rotations

between conformations, whereas the rotations of parts in different domains will be different.

These calculated rotation vectors are treated as points in a 3-dimensional feature space, in
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which groups of similar rotations are found using the k-means clustering algorithm (which is

detailed in section 3.7.1). Residues are considered part of hinge bending regions if they are

both located between a pair of domains along the backbone and not within the "ellipsoids of

constant probability density" that surround the domain clusters [73]. The DynDom program

also performs analysis of pairs of domains by describing the movement of a domain relative

to another domain that is held in a fixed position between conformations, which yields the

location of a screw axis, the rotation about it, and the translation along it that the moving

domain undergoes. As the window is only slid along atoms belonging to the backbone, the

method is restricted to a single chain of a protein and ignores atoms belonging to side chains.

The DynDom method was extended by DynDom3D [126][60] which replaces the original

sliding window with a sliding block which is placed over all atoms.

The Motion Tree method [89] also examines different structures of the same proteins.

They construct distance matrices for each conformation of the protein then find distance

difference matrices that compare pairs of distance matrices, which identify areas of the

protein that have moved relative to other parts. These motions are hierarchically clustered

and represented as dendograms; domain level motions are displayed as the parents of smaller

motions to allow study of the details of a protein’s motions.

Other methods predict the location of dynamic domains or hinge bending regions from

only one structure. Methods based on Normal Mode Analysis (NMA) [72] investigate the

flexibility of a protein’s structure. While proteins have an extremely high number of potential

conformations, their experimentally-derived conformations are usually small variations on

a global energy minimum referred to as the "native" structure [4]. NMA investigates the

potential fluctuations around this global minimum, constructing approximate representations

of the motions of domains through calculation of the derivative of the potential energy

function at points in the protein [24]. These studies have yielded techniques that can identify

the low-frequency, high-amplitude motions that occur during domain motions [75].
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HingeProt [44] applies Elastic Network Model analysis to fluctuations of residues cal-

culated using NMA. If a pair of residues have correlated fluctuations, they are assumed to

move in the same direction. The structure is divided into fragments of correlated residues,

and the final rigid sections are found using "spatial fragment clustering". FlexOracle [50]

repeatedly slices a chain along the backbone and assesses the energetic cost of separating

the remaining segments, on the grounds that this will require the least energy when the slice

occurs in a hinge-bending region rather than in a stable domain.

Fewer options are available for identifying a hinge bending region from a single confor-

mation or from the sequence alone. One example of a sequence-based predictor is proposed

in Flores, et al [52], in which the authors constructed annotated datasets of hinge bending

regions, based on the Database of Macromolecular Movements [58]. From statistical analyses

of their composition, they created a predictor that required sequence information alone. They

calculated log-odds frequencies for a 17-residue-long sliding window, run across sequences

in a training subset of their computer-annotated dataset. This assigned scores to the presence

of given amino acids at each location in the window. They scored their test set, also taken

from their computer-annotated dataset, by applying the same window to each residue and

summing the score across each window, assigning the central residue to a hinge bending

region if the summed score was above a given threshold. However, the results achieved in

this test set did not appear to be significantly different to randomly assigning each residue to

either the “hinge bending region” or “not hinge bending region” class. They incorporated

information about secondary structure and active site location into a further predictor, Hinge-

Seq, which improved the predictive power over sequence alone. This was incorporated into a

later predictor, HingeMaster [51], which also used hinge predictions obtained through NMA

and structural comparisons.

Boden and Bailey [12] also use the relationship with secondary structure for a predictor

of hinge-bending regions. The process first predicts the secondary structure from a sequence
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of amino acids, using a method that outputs a probability for each residue to belong to a sec-

ondary structure class, and therefore indicates segments of the sequence that are confidently

and inflexibly within one type of secondary structure and segments that are likely to have

varying secondary structure [13]. From these "continuum secondary structures" they then

predict the location of flexible regions.

The FlexPred web server [93] uses support vector machines to predict “conformational

switches”, which they describe as areas of flexibility that drive conformational changes [92].

As with HingeAtlas, they also incorporated structural and biological information, and found

that this improved performance over sequence-based methods alone.

3.9 Applications of Machine Learning to Protein Sequences

Machine learning techniques have been applied to other questions related to classification and

regression from protein sequences, including the problems of secondary structure prediction

[46] [134] [172] and homology prediction [97]. The “sliding window” used by the approach

of Flores, et al. [52] to input vectors, as described above, is used to build input vectors for

many of these sequence based methods. The optimal length of the window varies from study

to study but common values are between 9 and 17. MUFOLD-SS [46] predicts secondary

structure using a full sequence of up to 700 residues, split into a deep “inception-inside-

inception” neural network. Convolutional layers with windows of up to 9 are applied to

combine local and global context. Fang, et al.[46] compared results with those reported in

Wang et al. [165] and Busia and Jaitly[23], convolutional neural network methods that use

fixed 11 and 17 residue windows, and reported that MUFOLD-SS outperformed them both.

The window lengths used by the FlexPred conformational switch prediction server [92] are

among the smallest, at 3 and 5 residues.



Chapter 4

Biomolecular Morphing using

Multi-Dimensional Scaling

Chapter 2 contained a background on the motivation behind protein morphing: as proteins

perform their functions, they change shape, and while structures at points along this tra-

jectory may have been solved, it is easier to visually follow changes in an animation than

identifying changes by examining before and after images. The link between protein function

and conformational change makes understanding the dynamics of a protein’s movements

important, as through understanding this mechanism we gain insight into how a biological

process works and, in the case of drug design, how this process may be helped or hindered.

In Chapter 3, existing algorithms that constructed intermediate frames between solved struc-

tures were discussed. These incorporated three common elements: interpolation of Cartesian

coordinates, interpolation of inter-atomic distances, and energetic approaches. Interpolation

of inter-atomic distance derives from the principle that these distances in the solved structures

are based on important properties of protein structure. Moving from one set of distances to

the other, while keeping all distances between the two solved values, should then change

the shape of the protein without allowing the structure to counter the physical constraints of
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protein structure. These interpolated distances may not all be simultaneously achievable, so

it is desirable to find a method for creating the best fit to the set of ideal distances.

The method of Kim et al. [87] is described as a form of Elastic Network Model where

the distances between pairs of atoms are modelled as "springs". Each inter-atomic distance is

interpolated at each frame, creating an n×n distance matrix. To create a set of coordinates this

is reduced down to an n×3 matrix, with x, y and z coordinates for each atom, by minisiming

a cost function. This process can be seen as a form of Multi-Dimensional Scaling (MDS).

While Kim et al.’s concept offers a strong compromise between computational performance

and quality of output, there are faster and more accurate approaches to multi-dimensional

scaling which could offer improvements in both areas. Their implementation can also be

improved on as structures which it cannot morph correctly result in ”exploding” morphs

which are neither plausible nor easy to follow.

We present a method of morphing that starts with an inter-atomic distance interpolation

and creates intermediate structures from these ideal distances using a blend of methods

from the MDS family. The technical background in Chapter 3 describes some of the MDS

methods by which a matrix of dissimilarity can be turned into a plot with a chosen number

of dimensions. In our case, a matrix of inter-atomic Euclidean distances is built into a

3-dimensional co-ordinate set for each frame of the interpolation. This method is compared

to similar protein morphing techniques in terms of the quality of the produced structures

and of closeness to a known intermediate. In addition to proteins, the method has been

extended for DNA and RNA morphing. A novel version focuses on producing visualisations

of biomolecular docking to present a trajectory where the relative motions of each component

can be observed.

However, MDS protein morphing is based primarily on geometry. The method uses

knowledge about the nature of proteins as polypeptides to construct a hierarchy of atoms and

residues for use in the multi-grid acceleration, and similarly the structure of DNA and RNA
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used to build a hierarchy of nucleotides and atoms, but after this pre-processing the method

relies only on information derived from the Cartesian co-ordinates. The only constraints

applied to the structure after creating this hierarchy are holonomic, relating only to the

inter-atomic distances and time in the path. There are no tests for physical constraints like

bond length and bond angles. The docking version of our biomolecule morphing method

was implemented to assist in tasks frequently required during the process of structure-based

drug design: the study of mechanism of interaction between a protein and its ligand or the

study of the interaction between a target protein and candidates for potential drugs[36]. For

our method to be helpful in this context we need to study how accurately it performs against

a method that is known to accurately model the true path a biomolecule might take.

Section 3.4 described the family of techniques referred to as Molecular Dynamics (MD),

which simulate the behaviour of molecules by calculating the effects of atoms on one another

by integration of interaction forces at a series of time intervals. This simulation is extremely

accurate, though computationally very expensive. A simulation lasting 100 nano-seconds

can take days to weeks to produce, depending on system size and hardware.

We will apply both the MDS morphing technique and the "gold standard" MD to an

example of a particular interaction, the binding of cancer drug nivolumab to its target protein,

programmed death protein-1 (PD-1), in order to examine the interaction in detail and to

identify potential areas of improvement for the MDS protein morphing technique.

The results have been published in the Journal of Molecular Graphics and Modelling[160].

A web server for performing the developed method is available at http://morphit-pro.cmp.uea.ac.uk/.

4.1 Morphing Process

The motion from one configuration to the other is created by interpolating the distances

between pairs of atoms at the start and end configuration and then creating structures that

best fit these intermediary distances using MDS.
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We interpolate for a series of m intervals where the time t is between 0 and 1 in increments

of 1
m . Distance matrices D0 and D1 are constructed from the n

2(n−1) atom pairs in the start

and end conformers respectively, such that Dt i j is the distance between atom i and atom j at

time t, where the distance metric used is the Euclidean distance,

di j =
√
(xi − x j)2 +(yi − y j)2 +(zi − z j)2. (4.1)

At each interval between the start and end frames we take a value, λ , and calculate the

interval’s ideal interatomic distances from Equation 4.2.

Dt = (1−λ )D0 +λD1 (4.2)

In reality, each pair of atoms will have a distinct value of λ at each time step. For the

sake of computational complexity we use a consistent linear value of λ = t. This produces a

morph that moves steadily from one conformation to the other in a consistent motion, where

halfway through the morph the protein is halfway between the end states.

A value between 1 and 0 for λ means distances in our ideal distance matrix will be

between the distances at the start and end of the morph. Provided that we can create atomic

positions that maintain these pairwise distances these values should remain in the allowed

ranges of bond lengths and bond angles.

This gives us a series of distance matrices which represent ideal distances between atoms

at each position in the morph, but these distance pairs may not all be simultaneously possible.

We construct a model of atoms by assigning positions that most closely fulfil the n
2(n−1)

distance pairs using MDS.

We use three of the MDS methods described in Section 3.6. Classical MDS is a fast

eigenvalue-based method which we use to build our initial set of coordinates from the distance

matrix. As the chapter will show, classical MDS alone does not result in plausible structures,

so further improvements are gained by applying more modern MDS techniques. Figure 4.1(a)
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(a) Solved structure (b) Classical MDS (c) SMACOF (d) Weighted

Fig. 4.1 A comparison of a single phenylalanine residue taken from a solved structure (pdb
code 1CLL) and from the intermediate frames created by various MDS morphs from 1CLL
to 1CM1: a) the original solved structure; b) classical MDS; c) SMACOF MDS with no
weighting applied; d) SMACOF MDS with weighting applied up to a cut-off distance of 4Å.

shows the actual shape of a single phenylalanine in a solved calmodulin structure with PDB

code 1CLL, and Figure 4.1(b) shows the results from an intermediate structure created by a

classical MDS morph attempting to create frames between the 1CLL structure and another

solved calmodulin structure, 1CM1. The ring should rotate 180° but maintain its shape. In

the classical MDS version of the morph, the ring is skewed and bonds are clearly distorted;

the two bonds parallel to the stalk have been compressed, and the other four bonds making

up the ring have been stretched.

The Scaling by MAjorization of a COmplicated Function (SMACOF) method is an

iterative method that repeatedly applies a monotonic update function to the set of coordinates,

minimising a cost function (Equation 3.24) that incorporates a measure of distance between

desired and observed results (stress) until either a limit or a local minimum is found. Because

the method is not guaranteed to find the global minimum, the initial position of each atom

has an effect on the results; we use the results of classical MDS as the input to SMACOF

MDS. Figure 4.1(c) shows the results of classical MDS followed by SMACOF MDS. The

bonds are closer to their original length, but still show distortion. However, an advantage of

SMACOF over classical MDS is that weighting can be applied to the stress function, making

some distances more important than others. In Figure 4.1(d), inter-atomic distances greater
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than 4Å are zero-weighted during optimisation, so the distances between pairs of atoms that

are close enough to be bonded are considered, whereas more distant atoms are ignored. In

this version the bonds are visibly improved, with no apparent distortion. Section 4.4.2 will

elaborate on how the 4Å was chosen.

The third MDS method examined here is multi-grid MDS[21], which uses the relationship

between atoms on a coarse level of points and atoms on levels with a finer resolution to

achieve faster minimisation of a stress-like function. The principles of the updates applied at

each step are based on those of the SMACOF method, but the hierarchical method provides

better performance.

Our multigrid acceleration was based on the implementation provided by Bronstein and

Bronstein[21], with minor changes to the code in order to implement weighting and faster

running by moving the matrix multiplication to the GPU.

We construct our 3-level hierarchy from the hierarchy inherent in the biomolecule. When

the structure to be morphed is a protein, the full protein with all atoms is our first level, with

the highest resolution. The second level is coarser, and includes only the backbone atoms

from each residue. Finally we use only the Cα atoms from each residue in the coarsest

level. The restriction matrix P2
1 defines the restriction from the first (all-atom) level, l1, to

the second (backbone) level, l2. If the first level contains n atoms, and the second m, P2
1 is a

sparse matrix of size m×n, where element (i, j) is 1 if the ith atom in level 2 is the closest

backbone atom (belonging to the same residue) as the jth atom in level l. The interpolation

matrix P1
2 describes the inverse of this relationship, and is set as (P2

1 )
T. The restriction matrix

P3
2 sets element (i, j) to 1 if the ith element in level 3 is the Cα atom belonging to the same

residue as the jth element in level 2. Again, the interpolation matrix P2
3 is set to the transpose

of the restriction matrix.

Weighting is applied to the multi-grid MDS method by weighting inter-atomic distances

in the stress function as in the standard SMACOF technique; these weights are assigned
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a value of 0 if the atoms are more than a set distance apart. We use three different "cut-

off" distance thresholds as the three different levels will have different atomic density. We

restricted the thresholds such that they would increase linearly in order to reduce the space to

search for optimal values, though other weighting patterns were considered in Section 4.4.4.

When DNA or RNA is to be morphed, a similar approach is taken. All atoms make up the

finest layer, which is restricted to the sugar-phosphate backbone’s atoms in the middle layer,

and then a single carbon atom (the 5′ carbon) from each nucleotide in the coarsest layer.

All versions of MDS considered for this process require some post-processing to form a

coherent animation, as MDS is concerned with the relative position of objects and not their

location in a set of coordinates. For example, if an MDS method was passed a dissimilarity

matrix derived from the distance between cities, and output a set of 2-dimensional coordinates

to act as a map, there would be no means of identifying their true orientation with regard to

the cardinal directions, and the set of cities may have been flipped about the North-South

or East-West axis. It is important for our method to maintain the same orientation between

frames in order for the viewer to follow the motions of the morph, and because changing

the chirality of the structure would have physical implications. We perform a Procrustes or

least-squares best fit alignment to bring each frame into alignment with the initial solved

structure, allowing rotation and inversion of the atoms’ coordinates but maintaining the scale.

Tests for the following results were conducted on several groups of test data. Preliminary

work was conducted using T4-lysozyme and calmodulin, representing an easy and a difficult

case respectively. To explore the relationship between the angle of rotation undergone during

a morph and its strain, a test set of 19 pairs of structures were taken from the DynDom

database which represent a range of angles. For a larger bulk set of results, the chains entered

for 100 DynDom runs were selected at random. The full lists of the latter two datasets are

included in Appendix A.
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Fig. 4.2 Angle of rotation versus accuracy (strain) of 20 classical MDS morphs, using pairs
of structures chosen for their range of rotation angles.

4.2 Accuracy of morph versus angle of domain rotation

During development of the method, preliminary tests were performed on T4-lysozyme and

calmodulin, on the basis that the method should be able to morph small, direct changes like

the T4-lysozyme as well as large rotations and translations like the 149.6° rotation displayed

by calmodulin. This assumption was investigated using classical morphs of the 19 structures

in our dataset containing a range of rotations. Figure 4.2 shows the accuracy achieved by

each of these morphs produced using classical MDS as a function of their rotation angle,

which in general supports this principle. Figure 4.3 shows the same plot using the 100 pair

dataset, which contains a spread of rotation angles more representative of the DynDom data

as a whole. While both plots feature some low-accuracy outliers among their small rotation

angles, most morphs of small rotations have an accuracy close to 1, while accuracy of morphs

of larger rotations is more spread out.

4.3 Calmodulin example

Among the pairs of structures used for preliminary testing, a pair of calmodulin structures

(PDB codes 1CLL and 1CM1 as shown in Figure 4.4) were used as an example of a
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Fig. 4.3 Angle of rotation versus accuracy (strain) of 100 classical MDS morphs.

pronounced domain motion, where the large rotation of 149.6° presented a difficult challenge

for the morphing methods. The following subsection details the results of the preliminary

testing on these calmodulin structures. In particular, this will focus on the components of the

structure that are included in the MolProbity score, the validation method which we will use

as a measure of successful morphing in the next section.

We examined the central frame of the morph, as it represents the furthest point from

either solved structure. Figure 4.5(a) shows this frame taken from a classical MDS morph

between the two solved structures, which exhibits visible distortion in its bond lengths.

The domains appear flatter and more skewed when compared to their shapes in the known

conformations. Figure 4.5(b) shows the same frame taken from a morph created using the

multi-grid SMACOF method.

The torsion angles were calculated for the middle frame of the animation, and have been

plotted in Figure 4.6. As discussed in section 2.1.2.1, these Ramachandran plots show the

φ and ψ angles calculated along the backbone. The marked regions show areas where the

angles are permitted for valid protein structures, where the red sections are the most favoured

regions. The classical result in Figure 4.6(a) and the weighted multi-grid SMACOF method

in 4.6(b) both feature disfavoured φ -ψ pairs, but the classical plot’s points are more scattered

and less tightly clustered in the favoured regions.
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(a) Calmodulin structure with PCB code
1CLL

(b) Calmodulin structure with PCB code
1CM1

Fig. 4.4 Solved calmodulin structures in open and closed conformations.
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(a) Central frame of a classical MDS
morph between solved calmodulin struc-
tures.

(b) Central frame of a multigrid SMA-
COF MDS morph between solved
calmodulin structures.

Fig. 4.5 The central frame of a morph between solved calmodulin conformations.



62 | Biomolecular Morphing using Multi-Dimensional Scaling

Fig. 4.6 Ramachandran plot for the central frame of a calmodulin morph (PDB codes: 1CLL
to 1CM1) using the classical MDS (top) and multigrid MDS (bottom) methods.

It is a particular problem for both the clarity and feasibility of a protein structure when

atoms clash. The result will be both incorrect and difficult to follow due to overlapping

objects, and the stretching or compressing of bonds would violate physical laws. Therefore

intermediate structures should maintain numbers of atomic pairs with short inter-atomic

distances. Figure 4.8 shows a histogram containing counts of shorter inter-atomic distances.

The initial structure, PDB code 1CM1, contained 13,092 inter-atomic distances below 4Å

and the end structure contained 12,898. The central frame of the classical morph contained

22,304, whereas the MG MDS morph contained 12,976, which is very close to the mean of

the solved structures, 12,995.

The principle of protein morphing methods that use inter-atomic distance interpolation is

that the interpolated target distance, if faithfully reconstructed, would yield a valid structure

on the path between the two solved structures. We have plotted how well our (good) multi-

grid result, and our (poor) classical result adhere to their ideal distances in Figure 4.9. Figure

4.10 shows these distortions limited to the atom pairs that may be bonded in the pair of solved

structures; their inter-atomic distance is less than or equal to 4Å in both. For the multi-grid

method, the mean difference is 0.0388Å when restricted to bonded atoms and 2.4586Å for
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Fig. 4.7 Histogram showing counts of inter-atomic distances of 4Å or less in calmodulin
morphs (top: original 1CLL structure; middle: classical MDS).
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Fig. 4.8 Histogram showing counts of inter-atomic distances of 4Å or less in calmodulin
morphs, using multi-grid MDS morphing with a cut-off distance of 4Å.
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all atom pairs. The classical method had a smaller overall mean difference, 1.5864Å, but

a longer mean difference of 0.4503Å. Due to the weighting applied to the multi-grid MDS

method, there are no constraints looking at the longer inter-atomic distances, so while the

multi-grid MDS method reproduces the short distances very accurately it has much larger

discrepancies beyond the longest (12Å) cut-off, as seen in Figure 4.11. This figure contains

a point for each atom pair, marking the difference between the ideal and observed distance

between them as a function of their initial inter-atomic distance. The high performance of

multi-grid MDS compared to the classical method, despite the fact that it is on average worse

at reproducing all ideal distances, indicates that the most important atom pairs to consider

are those with small inter-atomic distances in the solved structure.
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Fig. 4.9 Histogram showing absolute difference in Å between ideal and constructed inter-
atomic distances in the central frame of a calmodulin classical (top) and MG MDS 4 (bottom)
morph.
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Fig. 4.10 Histogram showing absolute difference in Å between ideal and constructed inter-
atomic distances in the central frame of a calmodulin classical (top) and MG MDS 4 (bottom)
morph, looking only at potentially bonded atoms (distances less than or equal to 4Å.
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Fig. 4.11 Plot of inter-atomic distance in initial structure against difference between inter-
polated and actual distance for calmodulin morph (top: classical MDS; bottom: MG MDS
cut-off 4Å.
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4.4 MolProbity Score

The following sections will consider our set of 100 protein morphs, to identify whether the

findings of the calmodulin study apply in these other cases and to gauge the the overall

performance of our methods. With a larger dataset, we require a quantitative measure of

structural quality. There are many properties of biomolecular structures that should fall

within known parameters. As discussed in relation to our preliminary tests on calmodulin,

the lengths of bonds and angles between bonded atoms must adhere to known ranges. For

our bulk study, the quality of constructed structures as proteins was ascertained using the

MolProbity validation tool[29]. This identifies various statistics such as bond angles, clashes,

and bond lengths, and also returns a single score which can be used as an overall measure of

quality.

Sval = 0.42574× ln(1+clashscore)

+0.32996× ln(1+max(0,rotamers−1))

+0.24979× ln(1+max(0,100−ramachandran−2))

+0.08755

Where clashscore is the number of atoms that overlap by at least 0.4Å per 1000 atoms,

rotamers is the percentage of side-chain rotamers which have been classed as outliers, and

ramachandran is the percentage of angles which do not fall within favoured Ramachandran

regions. This code snippet is taken from the MolProbity source code1 with variable names

changed for clarity. Higher scores represent worse structures, and the scale of the measure is

logarithmic.

1https://github.com/rlabduke/MolProbity
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Fig. 4.12 Each morph created using Cartesian interpolation’s MolProbity result plotted
against the corresponding classical MDS MolProbity score from every frame of the 100
13-frame test morphs.

4.4.1 Classical MDS and Cartesian interpolation

To compare our method with a naive approach, we performed a basic Cartesian interpolation

on each of our 100 DynDom examples, as well as creating classical MDS morphs for the

same set of inputs.

Figure 4.12 shows a plot of the MolProbity of each Cartesian interpolation against the

result of the frame of the corresponding classical MDS morph for every frame of every

morph, including the initial and final structures. A dashed black line marks the x = y line;

points above this line represent morphs that were poorer using the classical MDS method than
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Fig. 4.13 The worst MolProbity score of each Cartesian interpolation morph plotted against
the worst MolProbity score of the corresponding classical MDS morph for each of the 100
13-frame test morphs.

the Cartesian interpolation, and points below this line are morphs where the classical MDS

morph produced a better structure than the Cartesian interpolation. Most low MolProbity

scores were near this line. Towards the poorer scores, there were more differences between

methods but not consistently in either method’s favour. Paired t-testing shows no significant

difference between the two sets of results - the null hypothesis could not be rejected (p-value

= 0.6031). Comparing the scores of each intermediate frame, the classical MDS result was

on average very slightly poorer, with a mean increase in MolProbity score over the Cartesian

result of 0.0171 (with a standard deviation of 0.5058).

Figure 4.13 shows a similar plot, where for each morph only the worst-scoring frame

was included. Again, the methods performed similarly, with no strong preference either way.



72 | Biomolecular Morphing using Multi-Dimensional Scaling

Paired t-tests failed to reject the null hypothesis with a p-value of 0.9841. The classical MDS

results for the worst frames in each morph were on average very slightly better than their

corresponding Cartesian peaks, with a mean improvements of 0.0018 (std=0.2319).

4.4.2 Selecting the cut-off radius

Modern MDS methods allow a weighting to be applied to particular target distances when

calculating the loss resulting from a constructed set of coordinates. We apply a weighting

to atom pairs based on their distance in the solved conformations; if the atoms are above a

distance cut-off, then their weight is set to 0, otherwise the pair’s weight is set to 1. We sought

a constant value for the distance cut-off that would most often provide the best maximum

MolProbity score. The cut-off was chosen to restrict the interatomic distances considered in

MDS to each atom’s closest pairs, which we found important for maintaining appropriate

bonds lengths and angles, while also ensuring that all atoms have enough considered distance

pairs to recreate their position within the protein. To select a value for this cut-off distance we

morphed our sample of 100 proteins taken from the database of protein domain movements

on the DynDom server. A series of cut-off distances were tried, between 2Å and 10Å at an

interval of 0.5Å. A short thirteen-frame morph was produced for each protein at each cut-off

distance, and for every frame a MolProbity score was calculated to determine the plausibility

of the structure as a protein.

The MolProbity scores obtained from the MDS method have been compared against

those achieved by MolMovDB, such as their result for calmodulin shown in Figure 4.16.

The effects of varying the chosen cut-off radius on the resulting MolProbity score for our

example calmodulin are shown in Figure 4.14. In order to find the cut-off distance which

gives the most consistently good performance, we took the highest (worst) MolProbity score

from each morph as its representative. The worst MolProbity scores achieved at each cut-off

distance are plotted in Figure 4.15, which shows a minimum at 4Å.
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Fig. 4.14 The effect of cut-off radius on MolProbity score running on Calmodulin (Protein
Data Bank IDs 1CM1 and 1CLL).

These peak MolProbity scores from each morph were compared against the peak scores

achieved by other morphs created from the same initial and final structures, identifying a

cut-off distance at which the worst MolProbity score was lowest (and therefore gave the

least implausible structure). The proteins’ optimal cut-off distances were calculated and then

tallied. Plotting the frequencies of proteins which have the best peak score at each cut-off

identified that, as in the calmodulin example, a cut-off of 4Å most commonly gave the best

results as shown in Figure 4.17.

We re-ran this experiment with the same 100 proteins, focusing only on the 3.5Å to 4.5Å

cut-off distances with a smaller interval of 0.1Å, which again identified 4.0Å as the most

commonly optimal cut-off distance.

4.4.3 Influence of weighted MDS

In the calmodulin example, weighting the inter-atomic distances such that only small dis-

tances affect the MDS result improved the resulting intermediate structures. These improved

structures were both easier to follow due to a lack of atomic clashes and much more plausible

according the MolProbity validation tool. We performed both classical MDS and weighted
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Fig. 4.15 The worst MolProbity score achieved by metric MDS morphs of calmodulin across
a range of cut-offs (top: metric MDS; bottom: multi-grid SMACOF).
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Fig. 4.16 The MolProbity result from the MolMovDB web server running on Calmodulin
(Protein Data Bank IDs 1CM1 and 1CLL).
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Fig. 4.17 From 100 protein morphs tested, the amount of times each potential cut-off radius
between 2 and 10 yielded the best MolProbity peak.
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SMACOF MDS on each of our 100 DynDom test cases using the GPU-accelerated multi-grid

method for computational performance. The coarser layers could not use the 4Å cut-off as

this would leave atoms without enough weighted distance pairs to anchor their position in

the protein so we applied a linear increase in cut-off distance between layers. This had little

impact on the MolProbity results when compared to the original SMACOF results provided

the cut-off was not very small (3Å or smaller). Figure 4.15 shows the MolProbity values for

calmodulin using the multi-grid and original SMACOF methods. The results of each of the

multi-grid morphs, using the selected optimal weighting values of 4Å, 8Å, and 12Å for each

layer, were compared to initial results using only classical MDS. One morph (PDB code

1DF1, chains A, to chain B of the same PDB file) was edited for both sets of results to remove

a misaligned atom that caused the MolProbity attempts to fail even for the solved structures;

other MolProbity runs that failed due to problems created by the morphs are represented with

a score of 0.

Figure 4.18 shows the MolProbity of all frames, with the x-axis showing the classical

result and the y-axis showing the multi-grid result. A dotted line represents the x = y - the

case where both methods achieved the same result. The majority of cases achieved a lower

(and therefore better) result for the weighted multi-grid version of the method. A paired

t-test of the MolProbity scores rejected the null hypothesis with a p-value of 9.26×10−20,

showing a significant separation between the sets of results. Removing the scores from the

solved structures, which must be the same for each method, the multi-grid method achieved a

mean improvement over the classical method of 0.3676, with a standard deviation of 0.6541.

Figure 4.19 shows the same plot, but each point represents the worst frame of the morph.

Again, most cases are on or below the dotted x = y line, showing an improvement of the

multi-grid method over the classical method. Paired t-testing rejected the null hypothesis

with a p-value of 5.23×10−4. The mean improvement achieved by the multi-grid method

was 0.3509, with a standard deviation of 0.5389.
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Fig. 4.18 Each classical MDS MolProbity result plotted against the corresponding 4Å multi-
grid SMACOF MDS morph MolProbity score from every frame of the 100 13-frame test
morphs.



78 | Biomolecular Morphing using Multi-Dimensional Scaling

Fig. 4.19 The worst MolProbity score of each classical MDS morph plotted against the worst
MolProbity score of the corresponding 4Å multi-grid SMACOF MDS for each of the 100
13-frame test morphs.
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4.4.4 Alternative weighting patterns

The layers of the multi-grid method have a linearly increasing cut-off; the all-atom layer

has a cut-off of 4Å, which increased to 8Å for the backbone layer and 12Å for the Cα

layer. Alternative increments for the cut-off were explored both for our difficult test case

calmodulin, and for each of the 100 test morphs.

With the 100 morphs in our DynDom dataset, we again focussed on the central frame.

Figure 4.20 shows eight example heat maps displaying the MolProbity scores for the central

frame of each morph. Where Figure 4.20(c) has a MolProbity score of 0, the structure was

too poor to return a score at all. Most of the morphs showed a similar pattern: very short

initial cut-off lengths with small increments obtained the poorest results, but for initial cut-off

lengths of roughly 4.5Å or more, there is little change in MolProbity score when the gradient

is varied. The overall minimum was commonly seen around the 4Å initial cut-off found by

the linear optimisation. Where the results dramatically differed from this pattern, as in Figure

4.20(d), all MolProbity scores were poor (above 5).

4.4.5 Smoothness of Motion

The smoothness of motion from one conformation to the other was a key priority for this

implementation. The MDS method does this as when taking an interval λ = 0.5 halfway

along the timeline, the RMSD from the start model to the model at λ and the RMSD from

the final model to the model at λ are both likely to be close to 0.5. This shows a smooth

transition from one state to the other with its midpoint roughly halfway through the morph.

Figure 4.21 shows the progression of RMSDs from one structure to the other for all 100

morphs.

Comparing the plot of RMSD against time from the MDS method against other morphing

methods shows that this is a particular feature of our method. Figure 4.22 shows a comparison
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(a) Aac(6’)-II (b) Adenylate cyclase

(c) Exocyst complex component Exo70 (d) Igg2a fab fragment

(e) D-glyceraldehyde-3-phosphate dehy-
drogenase

(f) GluXyn-1

(g) Helicase pcrA
(h) Electron transfer flavoprotein alpha-
subunit

Fig. 4.20 MolProbity scores for the central frame of examples from the 100 DynDom morph
examples.
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Fig. 4.21 Percentage of maximum RMSD from start and end structures against progress for
each of the 100 proteins in the sample.

Fig. 4.22 RMSD from start (solid) and end (dashed) models in each domain for a morph of
calmodulin.

between the changes in RMSD for a protein morph of Calmodulin (PDB files 1CLL to 1CM1).

Our results show that as the RMSD from the start conformation increases, the RMSD from

the end structure decreases, resulting in a smooth crossover from one structure to the other.

The MorphServer, Climber, FATCAT, and MinActionPath methods cross further from the
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central x = 0.5, y = 0.5 position. The Nomad-Ref result is showing jagged peaks where it

was unable to smoothly morph part of the trajectory.

4.4.6 Comparison with Known Intermediate

Weiss and Levitt [168] propose a measure of quality for protein morphs based on the similarity

between frames along the produced path and a solved intermediate structure (B) that lies

between the two end conformations (A and C). RMSD values are calculated between each

model in the morph and the intermediate structure, represented as rmsd(iB). An improvement

score is calculated from:

min[rmsd(AB),rmsd(CB)]−min[rmsd(iB)]
min[rmsd(AB),rmsd(CB)]

×100 (4.3)

Thus the improvement score is a percentage between 0% and 100%, where a higher

scoring morph will pass much closer to the intermediate frame than to either of the initial

solved structures that were used to create it.

In addition to proposing this metric, Weiss and Levitt [168] identify five cases where as

well as solved structures at the start and end of the conformational change, a third structure

has been solved at an intermediate stage.

Figure 4.23 shows the improvement score achieved by each method on each of the 5

test cases. Both the all-atom multigrid MDS with a 4Å cut-off (MDS_4) and a Cα-only

SMACOF MDS with a 12Å cut-off (MDS_CA12) were included. As there is no single

method that outperforms all other methods in every example, we looked to ranking systems

like the Condorcet system of voting [20]. In Condorcet voting, a comparison is performed

between each pair of candidates’ votes. A candidate is elected if they receive more votes

than each of their competitors in the pairwise comparisons. We created Table 4.1, in which

each cell contains the number of times the method in the row outperformed the method in the
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Fig. 4.23 A comparison of the performance of the MDS morphing technique compared with
competing methods using the measure of improvement proposed by Weiss and Levitt[168].

column on the five test cases. We found that both versions of the MDS method outperformed

the other methods on more test cases than they were outperformed on.

4.4.7 Performance

The suitability of protein morphing techniques relies on striking a balance between accuracy

and speed, providing results to the user ideally within minutes. Table 4.2 lists the average

number of seconds taken to produce each frame for five 24-frame morphs where the start and

end structures were selected for their range of sizes. The SMACOF morphs were produced

using a fixed 20 iterations. The multigrid method always used 16 iterations per cycle, but the

number of cycles varied; the method was run for each until either three cycles were complete

or the stress reached the stress calculated at the final step of the SMACOF run.

All calculations were performed on the same machine. CPU operations were performed

on an Intel Core i7 870 @ 2.93 GHz processor, with 16 GB RAM. GPU versions of the

SMACOF and multigrid methods were performed on an NVIDIA Titan X card.
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MDS_4 - 1 3 3 4 4 3

MDS_CA12 4 - 4 4 4 4 4

Climber 1 1 - 2 4 3 1

FATCAT 2 1 3 - 3 3 3

MinActionPath 1 1 1 1 - 3 2

MolMovDB 1 1 1 1 1 - 2

Nomad-Ref 2 0 3 2 3 2 -
Table 4.1 A representation of pairwise comparisons of protein morphing techniques’ im-
provement score.

The following PDB structures and chains were selected: the pyruvate kinase structures

used were PDB codes 1E0T (chain A) and 1E0U (chain A); glycogen phosphorylase b 1GPB

(A) and 1GPA (C); hirustasin 1HIA (I) and 1BX7(A); the heavy chain of Fab frag 7G12

1N7M (H) and 1NGY (A); and phosphoenolpyruvate carboxykinase 2RKA (C) and 2QF2

(A). The morphs cover a range of small to medium rotations, from 11.1° to 60.6° . All results

include an initial classical MDS stage for each frame. All results include the initial classical

MDS step to get the starting coordinates for each frame.

The SMACOF operation contains many repetitions of matrix operations which are

particularly suited to efficient calculation on the GPU [47], which is reflected in the results

listed in Table 4.2. The multigrid method in particular benefited from this GPU acceleration.

The performance of the CPU-based multigrid method appears to be poorer than the CPU-

based SMACOF method. This is potentially in part due to additional calculations performed

when restricting and interpolating that are not required by the basic SMACOF algorithm. It

may also be a result of the chosen number of cycles and iterations, as identified when the

experiment was repeated on the Fab frag 7G12 alone. With the selected 20 iterations of the
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Protein No. atoms Average MDS runtime per frame (seconds)

SMACOF
SMACOF
(GPU)

Multigrid
Multigrid
(GPU)

Hirustasin 350 0.09 0.06 0.17 0.61
Fab frag 7G12 1,638 2.92 0.67 5.32 0.71
Pyruvate kinase 3,300 13.89 4.73 23.40 1.93
Phosphoenolpyruvate car-
boxykinase

4,844 33.60 14.16 64.14 4.23

Glycogen phosphorylase
B

6,656 74.65 35.95 112.17 8.83

Table 4.2 A comparison of the runtimes of implementations of SMACOF and multigrid MDS
on the CPU and GPU.

basic SMACOF method, as with 30 and 40 iterations in the repeated experiment, the final

stress reached was achieved within the first cycle of the multigrid method. This resulted in

an unchanged performance for the multigrid method compared to a poorer performance for

the SMACOF algorithm.

4.4.8 Lambda Optimisation

As described earlier in the chapter, during the interpolation of inter-atomic distances (Equa-

tion 4.2) we assume that our interpolation function λ operates linearly with the time step, t,

for every atom pair. This is not likely to be the case during an actual morph, as shown by the

stress, which would be zero at every frame if the interpolated distance matrix were perfectly

possible. Some investigations were made into whether it would be possible to optimise this

function by minimising a cost function for a single morph: either the MolProbity score or the

stress resulting from the morph. However, it was found that the computational expense of

optimising a λ value for every weighted atom pair in every frame quickly became untenable

even for small substructures of proteins.
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4.4.9 Energy Minimisation

We considered whether we could further improve the results of the MDS morphs by perform-

ing on the intermediate frames Energy Minimisation (EM) using GROMACS. This would

resolve any clashes or unrealistic bond lengths and angles that were causing implausibly

high energy. The EM process is affected by missing or incomplete residues, so a pair of

zinc peptidase structures, chains A and C in PDB 1AMJ, were chosen as a member of the

available DynDom motion pairs that did not require any reconstruction. Figure 4.24 shows

the MolProbity scores resulting from the original multi-grid MDS morph, and from MDS

with EM applied at various different stages. Methods which did not end on a round of EM

performed poorer, and the most consistently low MolProbity score was achieved when the

MDS was both preceded and followed by EM. This result is not surprising as properties

that will raise a protein’s MolProbity score would be targeted by the EM. However, the

additional processing time and the requirement that structures be complete detracted from the

advantages of the MDS method, which on its own is fast and can accept any coordinate set.

4.5 Docking Visualisation

In this chapter, conformational changes have been described as the motions of a single

molecule operating in isolation, but these changes are often the result of the interaction be-

tween multiple biomolecules. These conformational changes may accompany the interaction

between an enzyme and a substrate, or the binding of a protein ligand to a protein receptor.

Section 3.3 discusses the lack of comparable available servers; visualisations offered typ-

ically either use a linear Cartesian interpolation or protein morphing within each component

without considering the location of the other component’s atoms. We looked to the related

problem of docking prediction for insight in the requirements of docking visualisation. From

two unbound structures, docking prediction methods seek to predict the formed complex.
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Fig. 4.24 Impact of energy minimisation on the MDS morph process when applied at different
stages: the MDS results without EM, MDS with EM applied after each step, EM performed
on the start and end structures before MDS, and EM performed on both the starting structures
and the resulting frames.
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The key finding of this literature review is that recent docking prediction methods are at-

tempting to achieve higher levels of flexibility in proteins to improve their accuracy due to

conformational changes on binding. It is hoped that our tailored docking morph method has

the potential to provide demonstrative visualisations that may help docking teams investigate

these interactions.

Morphit_Pro’s docking server produces animations showing each constituent moving

into its docked configuration as well as intramolecular conformational changes. As with

protein morphing for the visualisation of conformational changes, docking visualisation is

useful in that it allows the user to track movement they might otherwise have missed by

showing each atom move from start to end, and shows areas where clashes occur or where

parts of the proteins would have to move out of the way.

The docking morph takes as its input three PDB files containing the coordinates of protein

or DNA / RNA molecules. The user then indicates which chains of the bound structure

should be considered the receptor and which chains are part of the ligand, and highlights

these chains in the unbound ligand and receptor structures. In the output trajectory, the

receptor will be held stationary while the ligand is translated towards it.

In order for the morph to focus on the docking motion, the ligand and receptor are placed

in an initial structure such that only a small translation is required to bring them together.

This initial positioning, the "near-approach pose", is created by superposing each component

in its unbound conformation onto its corresponding molecule in the bound structure, and then

translating the ligand until no atom of the ligand is within 4Å of any atom of the receptor.

However, these near-approach poses do not represent a known real structure. When

building the weighting matrices for our multi-grid MDS we take only the inter-atomic

distances from solved structures; intra-molecular distances in the near-approach pose, and

both intra- and inter-molecular distances from the experimentally derived native complex

structure.
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Fig. 4.25 MolProbity results for Cartesian and MDS morphing on 189 docking cases taken
from the Protein-Protein Docking Benchmark 5.0. From each morph, the MolProbity score
is the worst score yielded by any frame’s structure.

We created docking visualisations for 189 cases from the Protein-Protein Docking Bench-

mark 5.0 [164]. Some examples had to be removed from the dataset due to memory limita-

tions; the input to the multi-grid MDS method is restricted as the GPU’s memory is lower

than typical allowances for the CPU.

Due to the lack of comparable methods available online, we implemented a Cartesian

interpolation of the same data for comparison. The maximum MolProbity score for each

Cartesian result against the MolProbity score for the corresponding maximum peak of the

MDS morph is shown in Figure 4.25. Almost all of the MDS morphs achieved a lower

MolProbity result than their Cartesian counterparts. There were just two examples where the
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Cartesian interpolation performed slightly better (by 0.03 and 0.06) than the MDS method.

A paired t-test indicated that this separation is significant, with a p-value of 1.48×10−32.

The difficulty level set by the Protein-Protein Docking Benchmark 5.0 appears to be

correlated with the MolProbity result. The benchmark divides its test cases into three

categories. In the lowest difficulty category, "rigid body", the Cartesian method achieved

a mean peak MolProbity score of 3.67, with a standard deviation of 0.365, while the MDS

method achieved a mean peak of 3.04 with a standard deviation of 0.473. On the middle

category, "medium difficulty", the Cartesian interpolation had a mean score of 3.90 (standard

deviation 0.294), and the MDS method’s mean score was 3.34 (standard deviation 0.300).

Finally, for cases in the "difficult" category the Cartesian and MDS methods achieved mean

MolProbity scores of 4.07 (0.741) and 3.55 (0.580) respectively.

4.6 Web Server

The method is available on a web server at http://morphit-pro.cmp.uea.ac.uk/MorphItPro/.

The single structure morphs and the docking morphs are both available. Figure 4.26 shows

the input form for the single structure morphs. Start and end structures are chosen as PDB

files, and can either be uploaded by the user or selected from a mirror of the PDB database

using the four-letter PDB code. Morphs that are created using only files from the mirrored

PDB repository, or where the "include in database" option is selected, are stored in a database

that is also accessible on the web server. After the user has selected PDB files, they are

parsed by the server and displayed to the user in the JSmol [66] viewer, so that the user can

select the chains on which the morph can be performed. Morphs can be between 3 and 30

frames, and either all-atom or Cα only. Completed morphs are presented to the user through

the JSmol viewer, with options on the results page for downloading a PDB file containing a

model for the structure in each frame.
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Fig. 4.26 A screenshot of the input form for the single structure morphs in the Morphit Pro
web server.
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Fig. 4.27 A screenshot of the input form for the docking visualisation morphs in the Morphit
Pro web server.
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Figure 4.27 shows the input form for the docking visualisation version of the morph.

Three PDB files are entered: the bound complex containing both the receptor and the

ligand, the unbound receptor and the unbound ligand. The results are shown on a similar

JSMol viewing page with additional options for showing the ligand and receptor structures

separately.

The web server was implemented in JavaScript and Java Server Faces 2.0 using Facelets.

The morphs are performed using a single Nvidia Titan X GPU, so requested morph jobs are

placed into a queue and performed one at a time. The 30-frame limit is intended to keep jobs

moving quickly through the queue, and a limit of 10,000 atoms in a structure is imposed due

to memory limitations of the GPU.

4.7 Molecular Dynamics and MDS Morphing

4.7.1 Molecular Dynamics

We performed classical MD simulations of the PD-1 structure (with PDB code 2M2D) and

its complex with nivolumab (PDB code 5GGR, shown in Figure 4.28). We constructed

the near-approach pose as is done in the MDS morph method, by superimposing unbound

versions of each structure over their positions in the complex and then moving the nivolumab

fragment away along the line connecting the two molecules’ centres of mass until there was

a minimum distance between the two of 4Å.

The nivolumab molecule contains two chains, between which the PD-1 is bound. To

reduce the number of atoms in the structure, each chain was cut in half and the section

of each chain furthest from the binding sites were removed. The ends of the chains were

capped with acetyl and n-methyl residues to prevent unnatural interactions involving the

newly-created terminals. The structure contains some missing atoms in the flexible loop; this

missing section was also capped.
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Fig. 4.28 The complex formed by PD-1 (the pink chain) and nivolumab (the cyan and green
chains) with PDB code 5GGR.
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The AMBER 99SB-ILDN forcefield was selected for all simulations.

Our initial MD simulations ran from the constructed near approach pose with no attempts

to induce docking, to investigate whether simulating from the near-approach pose alone was

enough to simulate a native or near-native complex. We found that this was not the case,

as the nivolumab would immediately bind to the nearest part of the PD-1 in a non-native

position and become "stuck". This may indicate that the enforced 4Å minimum distance in

the near-approach pose should be longer if the method is to replicate the native binding.

4.7.2 Steered Molecular Dynamics

We used Steered Molecular Dynamics to apply force to the PD-1 ligand in order to separate it

from its complex with nivolumab (PDB code 5GGR). This applies force to the ligand, PD-1,

pushing it away along the line connecting the centres of mass while holding the nivolumab

in place. Figure 4.29 shows the progression of the PD-1 across the frames of the steered

MD simulation; the distance between the two components’ centres of mass are plotted in red

using the right y-axis and the force applied is plotted in blue using the left y-axis. A frame is

added to the output trajectory every picosecond.

4.7.3 PaCS-MD

We used PaCS-MD[67] to generate as realistic a docking visualisation as possible from

a position like our near-approach pose to the bound structure. We started with a short

simulation of the starting structure and used the minimum distance between atoms of the

nivolumab and atoms of the PD-1 protein to control the MD. First, snapshots were chosen to

increased this minimum distance until it reached 4Å, and then the snapshots that decreased

this minimum distance were chosen, to guide the components to form the complex and then

guide them apart. The PaCS-MD was performed with 10 parallel iterations over 50 cycles.
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Fig. 4.29 Frames of a steered MD simulation, plotted against distance between centres of
mass of nivolumab and PD-1 (right, red) and force applied (left, blue).

Fig. 4.30 Interface RMSD over time for all snapshots from each cycle of PaCS-MD.
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The nivolumab was fully separated from the PD-1 during the first, 23rd, 37th and 50th

cycles, so the full PaCS process simulated three full bindings and separations. The interface

RMSD (iRMSD) [96] was calculated for each snapshot from each cycle by searching the

solved bound structure for atoms within 10Å of atoms in another chain. Cα atoms from this

interface section were then aligned to the corresponding atoms in the PaCS-MD snapshots,

and the iRMSD for each structure was the RMSD between these Cα atoms. Figure 4.30

shows a scatter plot of these iRMSDs.

We also investigated the contacts between atoms in our simulated structures to identify

whether the same contacts were made in our predicted frames as in the native structure, using

the fractions of native and non-native contacts [96]. Figure 4.31(a) shows the fraction of

native contacts achieved by each snapshot taken from each cycle. The fraction of native

contacts is found by counting the number of residue pairs that are in contact in both the PaCS

snapshot structure and the native structure (PDB code 5GGR), divided by the number of

native contacts. Figure 4.31(b) shows the fraction of non-native contacts, which is found by

counting contacts in the snapshot structure that do not exist in the native structure, divided

by the amount of contacts in the snapshot. Contacts in both calculations were defined as

residues within 5Å of one another.

The closest that our results came to the native structure occurred during the first iteration

of the 18th cycle, though the PaCS-MD attempted to further minimise the inter-atomic

distances until it reached its minimum during the 22nd cycle. This minimum point has

greater than 0.5 fraction of native contacts, an iRMSD greater than one, and a ligand RMSD

of 2.790, which puts it in the "medium" category of CAPRI’s docking judging criteria [96].

We produced docking morphs from the 1st to the 18th cycle using our MDS-based method

(without constructing the near-approach pose) and a simple linear interpolation of Cartesian

points.
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Fig. 4.31 Fraction of native contacts (top) and fraction of non-native contacts (bottom) for
snapshots from each cycle and iteration of PaCS-MD. Size of point indicates number of
iterations in the cycle with the same fraction.
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Figure 4.32 shows the iRMSD produced by the morphing methods. Figure 4.32(a) shows

the morphs created from the first snapshot to the start of the 18th cycle, and 4.32(b) shows the

morphs that run to the start of the 22nd cycle which is the first point at which the PaCS-MD

changed direction.

We calculated the RMSD of the loop sections that are involved in the binding of PD-1

and PD-L1, using the native bound structure 5ggr and the separated and relaxed unbound

structure after MD. The FG loop, which spans residues 127 to 134, seems to have a more

pronounced correlation with the positions in the MD as plotted in Figure 4.35. The BC loop

(residues 57-63) is plotted in Figure 4.34.

4.8 Conclusion and Discussion

We have developed a new protein morphing technique using classical and weighted multi-

grid SMACOF MDS to create structures that optimally satisfy a matrix of interpolated

inter-atomic distances. The method has been applied to visualisations of the conformational

changes of single proteins and other biomolecules. In addition, we have tailored our method

to create a novel tool that creates morphs showing biomolecules taking part in docking

interactions.

4.8.1 Validity of constructed intermediate structures

Our aims for this method was that the animations resulting from our output frames should

be smooth and easy to follow, and that each frame should depict a physically plausible

structure. The MolProbity validation tool was used to determine the quality and validity

of our structures, providing a metric for clashing atoms and unrealistic bond lengths and

angles.We found that using classical MDS on our interpolated distance matrix yielded

intermediate structures that were not on average better than a simple linear interpolation of
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Fig. 4.32 Interface RMSD over time for each frame of the MDS multi-grid docking morph
and the linear Cartesian interpolation between snapshots from the first and 18th cycles (top)
and the first and 22nd cycles (bottom).
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Fig. 4.33 Fraction of native and non-native contacts over time for each frame of the MDS
multi-grid docking morph and the linear Cartesian interpolation between snapshots from the
first and 18th cycles (top) and the first and 22nd cycles (bottom).
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(a) PDB code 5GGR
(b) PDB code 5GGR after separation and
relaxation

(c) PDB code 2M2D (d) PDB code 5RRQ

Fig. 4.34 RMSD of the PD-1 BC loop (57-63) in the PaCS-MD simulation, compared to the
solved complex 5GGR, the unbound relaxed 5GGR produced by our earlier MD simulations,
and the solved structures 2M2D and 3RRQ.
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(a) PDB code 5GGR
(b) PDB code 5GGR after separation and
relaxation

(c) PDB code 2M2D (d) PDB code 3RRQ

Fig. 4.35 RMSD of the PD1 FG loop (127-134) in the PaCS-MD simulation, compared to
the solved complex complex 5GGR, unbound relaxed 5GGR, 2M2D and 3RRQ.
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Cartesian coordinates. However, by using modern MDS we were able to apply weighting to

the inter-atomic distances, selecting only atom pairs that were close enough to be bonded.

This had a significant positive impact on the appearance of the morph animations and on the

validity according to the MolProbity score.

4.8.2 RMSD from Intermediate Structures

We applied our method to the performance metric and test cases proposed by Weiss and

Levitt[168], in which a morph is performed from a start structure to an end structure, and

then compared at each resulting frame to a solved intermediate that is known to lie along the

trajectory of the conformational change.

The improvement scores shown in Figure 4.23 do not show any one morphing technique

to consistently outperform the others, though our MDS method performs well on all but

one of the morphs. The ranking table in Table 4.1 shows that when compared to each other

method, the MDS_CA12 version of our technique outperforms the other method on four of

the five cases. For each method, MDS_4 outperforms on more cases than it is outperformed,

apart from against MDS_CA12. The high performance of MDA_CA12 compared to the

all-atom version is initially surprising as it could be assumed that using all atoms in a morph

would result in a more accurate morph.

A large (96° rotation) conformational change in the 5’-nucleotidase protein was morphed.

Our method achieved the same improvement score as the FATCAT([173]) morph method,

which was the highest scoring technique measured for this morph by [167].

The poorest result for both of our methods was obtained from the skeletal muscle Ca2+-

ATPase protein, which produced a 0% improvement score as our morph was as closest to

the intermediate structure at the end as in the middle of the morph. While none of the

tested methods achieved an improvement score higher than 11.6%, MDS was particularly

unsuccessful. The protein used was undergoing a large conformational change in which
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three domains are translated and rotated[155]. Our method would assume that these motions

happen synchronously, but as the domains are well-separated it is possible that they do not

which would explain why the intermediate structure was not reached.

RNase III also provided a difficult test case for the morphing methods, as none achieved

an improvement score above 50%, which was achieved by Nomad-Ref and MDS_CA12. The

Myosin morph result demonstrates our strongest result wherein the MDS method achieved an

improvement score of 64%, higher than the NOMAD-Ref([99]) method’s previous highest

score of 58%. The ribose-binding protein morphed produced similar results across the

morphing techniques, with improvement scores ranging from 47% to 68%. Our MDS

improvement score was 63%, which was lower than that of FATCAT but higher than all

others.

4.8.3 Docking morphs

Our docking morphs are a feature not included in other protein morphing web servers, so

our only comparison is to a naive linear interpolation of Cartesian coordinates. However,

the performance improvement that the multi-grid MDS method showed over the Cartesian

interpolation is large and significant. We hope that this tool will be useful in the study of

observed and predicted interactions between biomolecules, as well as providing illustrative

animations for use in presentations and demonstrations.

4.8.4 Molecular Dynamics

We used Molecular Dynamics to investigate the interaction between the drug nivolumab and

its target, PD-1.

MD from the near-approach pose has the molecules come together too quickly to observe

much, which could indicate that the 4Å near-approach pose is too close for the docking

morph.
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When the components first come together the native contacts and non-native contacts

appear roughly negatively correlated, as the PD-1 moves first towards its native position

between the heavy and light chains of the nivolumab, and then away from it and towards a

single chain. Later retreats and re-approaches are roughly correlated.

The PD-1 molecule’s motion into its near-native position was simple, which makes it

difficult to compare to our morphing method. While the MDS morph emphasises the changes

in the two PD-1 loops, the Cartesian linear interpolation which suggests that the docking path

simulated by the MD was too subtle to provide a good test case for a comparison of docking

visualisations. However, studying the produced MD trajectory along with the Cartesian and

MDS morphs underlined the usefulness of docking morphs as a tool for creating a short,

clear indication of movements during an interaction between two proteins.

4.8.5 Limitations and future work

While the MDS approach achieves good results in structural validation and in approaching

solved intermediate structures, as a mostly geometric approach the results are not guaranteed

to show the exact trajectory between the initial and end structures. We make an assumption

that all changes within the biomolecule are happening steadily and simultaneously, which

results in smooth and direct motions but is not necessarily realistic. We made a preliminary

investigation into optimising the interpolation function for atom pairs but this was very

computationally expensive. A potential future direction for this work would be to cluster

the atoms into groups that move together between the conformations and optimise the

interpolation functions for distances between and inside these groups, which would require

far fewer iterations.

While the most commonly optimal cut-off distance was 4Å, this was not unanimous.

It could be interesting to study the relationship between properties of a structure and the

cut-off distance that provides its optimal result. Additionally, some initial explorations of
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alternatives to the linearly incremented weights of the multi-grid layers were performed, but

a full investigation and optimisation of these values would have taken an impractically long

time.





Chapter 5

Improvements to the Identification of

Dynamic Domains using 6-Dimensional

k-means Clustering

5.1 Introduction

Chapter 4 described the development of a method of visualising a conformational change

which treats the biomolecules involved as a geometric structure of points, with a motion

that is calculated residue-by-residue (or nucleotide-by-nucleotide) and atom-by-atom. This

method was compared to MD simulation where the indivisible units are atoms. We will

now look at biomolecules using the concept of domains. Section 2.3.2 discussed a number

of definitions of protein "domains", including the dynamic domain: a rigid or semi-rigid

globular region connected to a separate dynamic domain by flexible hinge-bending regions.

It is this definition that will be the focus of the following two chapters.

Identification of these domains, and of their motions relative to one another, yields a

quantifiable and analysable description of the motion undergone during the conformational

change. A single chain can contain multiple domains, as in the calmodulin structure that was
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examined in detail in Chapter 4; the large globular areas at each end of the calmodulin struc-

ture remain semi-rigid as they move relative to one another, whereas the thin middle segment

is flexible and so can enable the large, twisting closure motion. In large macromolecules, a

domain can consist of many chains, which can combine to form complex motions acting as

molecular machines. ATP is synthesised from ADP in a process that includes the F0F1-ATP

synthase protein [19]. The process features a mechanism that involves domain movements in

the β subunits in F1 being driven through rotation of the central γ-subunit which acts as a

rotor shaft connecting the F0 motor to F1. The ribosome, recently examined in high resolution

using new cryo-electron microscopy techniques [102], exhibits a ratchet-like motion [54] as

strands of messenger RNA and transfer RNA are translocated between its two subunits.

A number of methods exist to determine the domains within a protein. Several examples

of these are discussed in Section 2.3.2; here we will examine the DynDom family of programs.

The DynDom program slides a window over the backbone atoms of a given protein structure,

then calculates the rotation vectors required to bring each overlapping window into alignment

with the corresponding atoms in a second structure. A stand-alone program, DynDom3D,

developed this method further, selecting atoms by sliding a 3-dimensional block over a grid

rather than focussing solely on the main chain.

This chapter will focus on the implementation of improvements that take the DynDom

method to its conclusion,identifying dynamic domains using all 6 dimensions required to

define a rigid body motion, and to make the program usable on the very large macromolecules

solved using cryo-electron microscopy. The new software tool, DynDom6D, produces

domain classifications for structures containing protein, DNA and RNA chains. Where

results can be compared with the original DynDom program or with DynDom3D, they

are in reasonably good agreement. The implementation was successful without the costly

connectivity step that caused size limitations in DynDom3D, meaning that the new software

can be used on very large structures that would have previously been impossible to analyse.
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The software was tested on macromolecules with known interesting machine-like motions

such as the motor-like F0F1-ATP synthase and the ribosome, and the domains performing

these motions were identified.

Results from this work were published in Biophysics and Physicobiology [161].

5.2 Previous DynDom Methods

5.2.1 DynDom

The DynDom [95][70][73][128] program accepts as its input a pair of protein structure

files which contain the same chain in two different conformations. It assigns residues in

the chain to dynamic domains by finding sections that move semi-rigidly. The program

moves a sliding window over the backbone of a protein chain, building a list of overlapping

segments. The whole chains from both conformations are superposed, and then each segment

is examined to calculate the rotation vector required to bring it into alignment with the

corresponding segment of the other conformation. The rotation vectors are treated as points

in three-dimensional space and a k-means clustering algorithm is called on these points,

under the assumption that as domains are semi-rigid, segments of a protein are likely to

undergo similar rotations to other parts of the same domain, and less likely to undergo similar

rotations to segments from another domain.

Because the rotation vectors are calculated from movements of the main chain, it takes as

input a pair of structures for a single chain; when a macromolecule is entered to the program,

the user must select one of the chains and all others are ignored. Additionally, any potentially

informative side-chain motions are ignored as only the backbone atoms’ positions are used in

the fitting procedure. These limitations were addressed by the next iteration of the DynDom

method, DynDom3D.
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5.2.2 DynDom3D

DynDom3D [126] extends this concept to macromolecules by taking an all-atom, spatial

approach. As in the original DynDom program, rotation vectors are calculated that describe

a movement between the start and end positions for subsets of atoms, and these vectors are

clustered to give groups of similar rotation vectors that are considered potential domains.

Atoms are assigned to the cluster to which the majority of subsets it belongs to were assigned.

However, the sliding window from the original DynDom algorithm is replaced by a block;

the overlapping subsets of atoms are created by taking the atoms that fall within the block at

each of its positions. The following section will describe this algorithm in more detail.

The two structures are input and aligned into one-to-one correspondence, and the coordi-

nate system is changed to that of the principal axes of the first structure. A 3-dimensional

cubic grid is constructed around the protein, with points separated in each dimension by a

grid length parameter g. A block is slid through the grid such that at each point it contains

everything within a scalar parameter b3 grid points, or b grid points in each dimension, where

b is an integer referred to as the "block factor".

For each block the corresponding atoms in the second structure are identified and a least-

squares best fit method calculates the rotation vector required to bring them into alignment.

DynDom3D then performs k-means clustering on the blocks based on the rotation vectors,

resulting in groups with similar rotations. Provided these groups meet a ratio criteria wherein

their relative movement with respect to another domain is greater than their internal change,

they are treated as valid domain pairs. Results for k are only stored if every pair of potential

domains is a valid domain pair.

In k-means clustering, a valid value of k must be chosen. DynDom3D begins with a

single cluster and repeats for increasing values of k, until a value of k is found which gives

results where a minimum domain size threshold has not been met.
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The atoms in a group may be spatially separated, so a computationally expensive connec-

tivity algorithm selects only atoms which form a connected domain.

5.3 DynDom6D

DynDom6D is a new generation of the DynDom method in which the k-means clustering

is performed on all 6 dimensions describing a rigid body movement as a rotation about a

screw axis according to Chasles’ theorem. DynDom3D performed clustering on the rotation

vector alone, so regions of the protein that had a similar rotation about distinct axes would

be clustered together. A costly post-processing step was implemented to fix this by testing

for connectivity between the atoms assigned to a domain using a memory intensive and

time consuming subroutine. DynDom6D includes additional information about each blocks’

movements to prevent the initial incorrect clustering so that the connectivity testing is no

longer required. This dramatically reduces the computational complexity of the procedure,

allowing the technique to be performed on larger macromolecules which would previously

have either taken a very long time or require more memory than was available. Additionally,

because the atoms no longer need to be fully connected, the input structures may now include

missing or incomplete sections. The new implementation also allows for DNA or RNA

structures as input.

The method contains several subroutines and processes. Figure 5.1 shows an overview of

the key steps of the DynDom6D process, which will be explained in the following section.

5.3.1 Chasles’ theorem

The principle behind the 6 dimensions of DynDom6D is Chasles’ theorem [28], which states

that any rigid body motion between two positions and orientations can be described in terms
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Fig. 5.1 Flowchart of the key stages of the DynDom6D process.
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Fig. 5.2 Diagram of a rigid body motion about a screw axis (represented by a dashed line),
where r is a point on the screw axis, nnn is the axis’ unit vector, h is the translation along the
axis and θ is the rotation about it.

of the location and direction of a unique screw axis, and the degree by which the body is

rotated about this axis, and the translational movement that the body undergoes along it.

Figure 5.2 shows a diagram of the movement of a rigid body, in this example a cube.

Here, nnn is the unit vector in the direction of the axis, rrr is a point on the axis given as a

position vector from the origin, θ is the rotation about the axis, and h is the translation along

the axis.

5.3.2 Parameters

There are user-defined parameters which will be referred to in the explanation of the algorithm,

which control the specificity and tolerance of the program. The function and default value of

each parameter have been listed for reference in Table 5.1.

5.3.3 Pre-processing

The program takes as its input a pair of structural files containing chains of protein, DNA

and/or RNA structures, representing points at either end of a biomolecule’s conformational

change. These can be files in either PDB or mmCIF format. These structures are brought into

alignment using a dynamic programming-based sequence alignment, which was originally
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Parameter Default
Value

Description

Grid Size (Å) 4.0 Distance between grid points in each dimensions

Block Factor 2 Number of grid points per block in each dimension

Occupancy 0.4 The maximum number of atoms in a single block
is found and multiplied by this factor. Blocks with
occupancy below this product are discarded

Minimum Domain Size 200 Minimum number of atoms in a valid domain

Hinge-Bending Thresh-
old

0.51 Threshold for confidence in domain assignment,
below which an atom or residue is assigned as a
hinge-bending region

Assign domains by
residue

True Perform domain assignment for each residue (if
true) or each atom (if false)

Perform feature scaling True Perform feature scaling before clustering (if true)

Save clustering results if
ALL domain pairs meet
ratio

True Results will only be returned if every pair of do-
mains meet a given ratio of external to internal
movement (if true), or results are returned if at least
one domain pair meets this ratio (if false)

Table 5.1 The purpose and default value of each DynDom6D parameter requested from the
user.
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implemented by Girdlestone and Hayward[60] for the DynDom3D software, adjusted to

allow the alignment of sequences of nucleotides as well as amino acids.

The alignment operates first on the chain level, removing any chains that do not have

a corresponding chain in the other model. Each of these chain pairs are then aligned

using dynamic programming (see Section 3.1), performing a global alignment with the

BLOSUM62 substitution matrix for chains of amino acids and the NUC44 substitutional

matrix for chains of nucleotides. Finally, the atoms in each amino acid or nucleotide are

brought into alignment using dynamic programming on the atoms’ names, using the identity

matrix for the substitution matrix.

After alignment, the coordinate system is changed to the principal axes system. A least-

squares best-fit routine superposes the second model onto the first to bring the structures into

an initial all-atom alignment.

5.3.4 Grid points and blocks

A 3-dimensional grid is constructed over the co-ordinates of the first structure by creating

a 3-dimensional array of "cell" objects. Each cell represents a g×g×g cube where g is a

cell length parameter (see Table 5.1), and contains a list of the atoms that it encloses. The

"sliding block" is then simulated by creating a "block" object for each grid point, where b

cells in each dimension are considered to be inside the block. This integer block factor, b, is

another user-defined parameter with a default value of 2; for any b above 1, atoms will each

belong to multiple blocks, which has a smoothing effect as each atom belongs to different

subsets of atoms.

Figure 5.3 shows a diagram visualising this process, in which grid points are constructed

that separate the space into cells which contain atoms, and blocks overlap to create subsets

of cells. The block highlighted in red will contain all atoms in the blue cell, as well as the
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Fig. 5.3 The assignment of atoms to grid cells and blocks. Each grid point is separated in
each direction by the grid length parameter g. The block factor is two; each edge of the block
contains two cell edges.
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other 7 cells. Blocks are constructed at each grid point, so the blue cell and its atoms will be

included in several blocks.

Before clustering, we discard blocks containing very few atoms, as they are likely to

contain noisy surface motions rather than acting as part of a dynamic domain. The number

of atoms N in each block is counted, and all blocks where the number of contained atoms is

less than the product of Nmax and the occupancy parameter (see Table 5.1) are not passed to

the clustering subroutine.

5.3.5 Features for clustering

A quaternion-based fitting method begins the process by superposing the block’s first and

second model atoms; as it is a quaternion method, the rotation unit vector nnn and angle of

rotation θ can be extracted from the subroutine’s results directly.

The following process now distinguishes it from DynDom3D, which clusters only on

θnnn. The axial climb, h, is determined by the dot product of nnn and the vector of external

displacement calculated during fitting. The calculated values of h, nnn and θ are then used to

identify the location of a point on the screw axis. The rotational components are calculated

by subtracting hnnn from the vector of external displacement, obtaining the vector of the

rotational component as the square root of the sum of squares of the rotational components.

Dividing each rotation component by this magnitude gives the unit vector in the direction of

the rotational components, from which the perpendicular vector can be calculated to yield a

vector in the direction of the axis from the atoms in the block. By adding this vector to an

original position vector, we then have a point on the screw axis, rrr.

The program then has all of the information it needs to pass features fully describing

the motion to the k-means clustering subroutine. The first 3 dimensions of clustering are

provided by the three dimensions of the rotation vector θnnn. The fourth dimension is the axial

climb, h. The remaining dimensions are provided by the screw axis location and represented
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in the clustering features by rrr+nnnτ , which is the equation of the straight line that coincides

with the screw axis. The point on the axis rrr adds a further three dimensions bringing the total

to seven, which one more than strictly needed to describe a rigid-body movement. However,

we deal with this issue in a variant of the k-means clustering as described below. The screw

axis could be fixed in place by giving the coordinates at which it crosses a 2-dimensional

plane, however this may result in points that are more spread out than they would be if

clustered in 3-dimensional space.

5.3.6 Feature Scaling

The blocks are clustered on an orthogonal combination of the rrr+nnnτ , θnnn and h features, but

the scale of the blocks’ features often differ. This could affect the clustering, as differences

between features with a greater scale would then contribute more to the distance between a

point and a cluster’s mean than a feature where blocks’ values fall within a smaller range.

An optional scaling of the features was implemented in order to prevent the larger features

from outweighing the smaller features and, when requested by the user, is performed for

each feature space as follows.

Each translation along the axis is scaled by the mean of h values from all blocks:

h′i =
hi√

1
N ∑

N
i=1 h2

i

(5.1)

Points on the screw axis are scaled by the magnitude of the points’ position vectors:

rrr′i =
rrri√

1
N ∑

N
i=1|rrri|2

(5.2)

The rotational parts are scaled by the mean angle of rotation, θ :
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θ
′
i nnni =

θinnni√
1
N ∑

N
i=1 θ 2

i

(5.3)

This ensures that features within the same space, such as the x, y and z co-ordinates of

the arbitrary point on the screw axis, are scaled by the same amount.

5.3.7 6-Dimensional Clustering

In Section 5.3.5 the features for clustering were listed: θnnn, h, and rrr+nnnτ . Each block is now

represented as a point in our 6-dimensional feature space, and to find domains containing

atoms that make very similar movements, we will look for clusters where points are close

together in the feature space. Each cluster will identify a set of atoms that are moving in a

very similar manner, which will indicate that they belong to a semi-rigid domain.

The k-means clustering algorithm, as described in Section 3.7.1, requires a predetermined

value of k, but the number of domains is not known until after clustering is completed. We

take an iterative approach, starting at k = 1 and incrementing k after each cycle of clustering

until either a stopping criterion is reached or k reaches the maximum number of clusters,

which we set high at 100. After each cycle, if the clustering is to be continued then the cluster

with the highest variance is split at its mean, and the next cycle begins with k+1 clusters.

5.3.7.1 Clustering of Lines

To assign a point in our feature space to a cluster, we find the distance between the point and

the mean of each cluster, and add the point to the cluster with the closest mean. The mean of

h and each dimension of the θnnn values for a given cluster can be calculated using the normal

method for calculating the mean of a set of numbers. However, the mean of the screw axes

rrr+nnnτ requires a new process.
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The mean of a set of values is the point at which the distance to each value is minimised.

If cluster l contains blocks Sl , this mean point would then be the point with position vector

RRRl that minimises the distances to the screw axes of every block j in Sl:

Dl = ∑
j∈Sl

|(rrr j −RRRl)×nnn j|2. (5.4)

Where "×" is the cross product. For each line j we construct from the unit vector a

matrix:

ηηη jjj =


n2

y j +n2
z j −nx jny j −nx jnz j

−nx jny j n2
x j +n2

z j −ny jnz j

−nx jnz j −ny jnz j n2
x j +n2

y j

 . (5.5)

These matrices are summed together to form the 3 × 3 matrix NNN. We define PPPl =

∑ j∈Sl
ηηη jrrr j, and Ql = ∑ j∈Sl

rrrt
jηηη jrrr j for each block.

Equation 5.4 can be rewritten as:

Dl = RRRt
lNNNlRRRl −2RRRt

lPPPl +Ql , (5.6)

so the position vector to the minimum point Rl will be located where:

▽Dl = 2NNNlRRRl −2PPPl = 0. (5.7)

Therefore, for each cluster we can use the calculated NNNl matrix and PPPl to find our

minimum point RRR by solving:

RRRl = NNN−1
l PPPl . (5.8)

Distances to the mean are then calculated from the sum of Equation 5.4 and the sum

of squared differences for the h, θnnnx, θnnny, and θnnnz features. All blocks are assigned to the
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cluster with the minimum distance to the mean, and the mean for each cluster is recalculated

based on its new population. This step is repeated until either the means stop changing or the

maximum number of iterations (50) is reached.

5.3.8 Voting

In order to produce domain assignments from the clustered blocks, a "voting" procedure is

performed. By default this is performed for each residue, and the rest of this section will

proceed under the assumption that this has not changed, but this may be performed for each

atom instead by changing the appropriate parameter (see Table 5.1).

For each cluster, every block that was assigned to the cluster is examined in turn. Every

residue that contains at least one atom in the block is given one "vote" for the cluster. When

every block in every cluster has voted, for each residue the votes are counted, such that vl is

the number of votes that the residue belongs to cluster l. Residues are assigned to whichever

cluster gave it the most votes, vlmax .

5.3.8.1 Hinge Assignment

While the original DynDom program returned the location of hinge-bending regions, Dyn-

Dom3D only returned information about regions that belonged to domain clusters and did

not provide any assignment of potential hinges. The DynDom6D program uses the outcome

of the voting to identify potential hinge-bending regions.

We find the ratio of votes each residue receives towards the domain to which it is

eventually assigned,

vlmax

∑l vl
, (5.9)

and the result is compared to bend, the bending threshold parameter in Table 5.1. Where

the ratio is less than the threshold, the residue is added to a hinge-bending region.
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This identifies regions which do not move entirely rigidly with the domain to which they

have been assigned, on the grounds that the hinge bending region is more flexible. However,

this also selects residues that happen to make small movements that are not part of the main

domain movement, which results in the selection of areas on the outside of protein surfaces

that do not actually belong to the hinge-bending region.

This does not identify all hinge-bending regions, so an additional procedure runs over

the atoms or residues in sequence order, and wherever it encounters two adjacent residues

belonging to different domains, the two residues at the boundary are changed to hinge-

bending regions.

DynDom6D is sensitive to potentially distant noise as small disconnected areas that

happen to move similarly to a domain are not be removed by a connected set algorithm. If

these areas are surrounded by residues belonging to another domain then they are likely to

fall below the hinge threshold due to votes for the other cluster from the overlapping blocks.

Therefore, in contrast to DynDom, DynDom6D removes hinge-bending regions from the set

of residues or atoms within a domain to reduce the effect of noise on the following stages.

5.3.8.2 Stopping criterion

After the clustering is complete and atoms have either been assigned to a domain or labelled

as a hinge-bending region, the domains are examined in turn to count the number of atoms

each contains. If any domain contains fewer atoms than the limit imposed by the "minimum

domain size" parameter (see Table 5.1), the clustering ends. The domains are discarded, and

the final set of domains are returned to the main method.

5.3.8.3 Ratio for accepting clusters

If the set of domains passes the minimum domain size criteria, the proposed domains are

examined to determine whether they would describe valid domain movements. Every pair of
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domains is considered as a "domain-movement pair". A set of co-ordinates for each model is

constructed containing only the atoms belonging to the two domains. One domain is selected

to be held static and the relative movement of the other is calculated, producing vectors

of displacement for each atom i, ∆di. The models are aligned using only the atoms of the

static domain, and the motion required for the moving domain to (move) between its two

positions are calculated. We compare the displacement within each domain to the relative

displacement, with a weighting applied based on the number of residues in the domains, NA

and NB, using the ratio described in Hayward and Berendsen[70]:

√√√√√√√√√
( NA

∑
i

∣∣∣∆dext
i

∣∣∣2/NA

)
+
( NB

∑
i

∣∣∣∆dext
i

∣∣∣2/NB

)
( NA

∑
i

∣∣∣∆dint
i

∣∣∣2/NA

)
+
( NB

∑
i

∣∣∣∆dint
i

∣∣∣2/NB

) (5.10)

Where the ratio is greater than 1 there is more external displacement than internal

displacement, which we consider necessary for a valid domain-movement pair.

By default, DynDom6D requires every pair of domains found by the k-means clustering

to be a valid domain pair. If the clustering for a given value of k results in a pair of clusters

that fail to meet this ratio then all domains from this k-means step are discarded, and the

subroutine continues, setting k = k+1. The user may request a more lenient criterion instead,

where the results are saved as long as at least one domain pair meets the required ratio.

5.3.9 Post-processing

Output files showing the assigned domains are created and presented to the user, along with

a report file listing the properties of each domain pair. The aligned models are (built) in the

PDB or mmCIF format, and a PyMol script file is created which loads each structure and

colours atoms according to their domain. During the calculation of the ratio of internal to

external displacement, the rotation vector and screw axes defining the relative movements of
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the each domain pair are obtained. These axes are drawn into the output and coloured using

the colouring of the static (shaft) and moving (head) domains.

5.4 Results

5.4.1 Citrate Synthase

The program was run using open and closed citrate synthase structures with PDB codes

1CTS and 2CTS. All parameters were left on their default settings.

As a protein consisting of a single chain that displays a clear domain movement, [130],

citrate synthase presents a good test case for comparison with the original DynDom method.

The application of DynDom to citrate synthase was the focus of a previous study [70] which

identified one large and one small domain, and highlighted the screw axis passing between

the N and C terminals of a β -hairpin. This β -hairpin loops from the larger, blue domain but

moves with the smaller red domain.

While there are some small differences between the two sets of results, the same features

can be seen in the DynDom6D output. The screw axis again passes through the β -hairpin,

which emerges from the blue domain, into a hinge-bending region, into the red domain, and

then loops back into the larger domain.

5.4.2 Aspartate transcarbamoylase

Aspartate transcarbamoylase (ATC-ase) provides a more challenging test case as a larger

enzyme, which consists of 12 chains arranged symmetrically. A pair of larger trimers make

up catalytic units, and three smaller dimers each contain two regulatory chains [64]. We

performed a DynDom6D run using ATC-ase structures with PDB codes 1AT1 and 1RAA,

where the grid length parameter was set to 6Å and the block factor was set to 5.
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Fig. 5.4 Citrate synthase domains assigned by DynDom6D (left) and DynDom (right).

This symmetry can also be seen in the domain assignments shown in Figure 5.5. Five

domains were identified, which each encompass one of the two dimers or three trimers. Each

pair of domains met the ratio of external to internal motion required to be classed as a valid

domain pair; the two catalytic trimers rotate and translate relative to one another about the

axis of symmetry.

5.4.3 Bovine heart mitochondria ATP Synthase

The F0F1-ATP synthase protein is an important molecular machine that resembles a motor

[114] [136] [19], consisting of an F0 subunit that acts as a rotor for the F1 subunit.

We ran DynDom6D on bovine heart mitochondria ATP synthase using structures with

PDB codes 5ARA and 5ARH, using the default parameters. The F0 subunit and rotor stalk

comprise the red domain, which rotates about a central axis while the F1 subunit and stator

make up the blue domain which is held in place.
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Fig. 5.5 DynDom6D results on aspartate transcarbamoylase.

Fig. 5.6 DynDom6D results on bovine heart mitochondria ATP synthase.
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Fig. 5.7 DynDom6D results on the 70S ribosome (left), and a diagram showing the 50s and
30S subunits highlighted in orange and magenta respectively (right).

5.4.4 Ribosome

The E. Coli 70S ribosome is a large macromolecule, consisting of a 50S subunit and a smaller

30S subunit, both made up of chains of rRNA and protein[102]. As it carries out its function,

the ribosome exhibits a "ratchet-like" motion [54] whereby the 30S subunit rotates relative to

the 50S subunit. Due to the scale of the ribosome, and its inclusion of RNA, both DynDom

and DynDom3D would be unable to take it as input in their current implementation and

server architecture.

Figure 5.7 shows the results of the DynDom6D program run on the E. Coli 70S ribosome,

using PDB entries with codes 5UYL and 5UYM. Default parameters were used, apart from a

grid size of 8Å and a block factor of 4. Two domains were identified: the arrow shows the

smaller red domain, which contains residues from the 30S subunit, moving about the larger

blue domain, which contains all of the 50S subunit and part of the 30S subunit.
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5.5 Discussion

This chapter presented the methods and results of the development of DynDom6D, a new

generation of the DynDom domain movement analysis programs. On single-chain proteins,

the program produces similar domains to the existing DynDom web server. In addition, the

program produces results for input structures that would have been previously unobtainable

due to this scale, presence of RNA or DNA chains, or missing or incomplete sections.

The program has produced interesting results on the selected test cases, particularly on

aspartate transcarbamoylase which displays strong symmetry of domain boundaries that

mirrors the structural symmetry.

However, there are some limitations of the process as it is currently working. Feature

scaling is performed to prevent larger Cartesian co-ordinate values from outweighing the

much smaller rotation features, resulting in a similar range of values in all three feature

spaces. This assumes that each has equal discriminatory value, but if that assumption does

not hold then there is a potential for improvement in exploring whether separate weighting

of each of the three outputs of feature scaling may achieve better results.

There is further room for improvement through additional optimisation of the parameters.

As can be seen in the results on our selected test cases, it is sometimes necessary to alter

the parameters in order to achieve a result. Through the process of finding parameters that

worked in each case it was observed that rough patterns were emerging: larger proteins

performed better with larger grid sizes, and proteins that contain both dense areas and

thin isolated chains like F0F1-ATP synthase obtain better results with a lower occupancy

threshold. However, these are general patterns observed on a small sample of inputs. The

lack of labelled data makes the programmatic optimisation of parameters more challenging.

The DynDom web server only stores the results of the DynDom program on single protein

chains, so optimal parameters found using this data may favour small proteins.



Chapter 6

Investigations into the Location and

Composition of Hinge-Bending Regions

using Kernel Logistic Regression

6.1 Introduction

Chapter 4 described the development and application of a method of visualising conforma-

tional changes undergone by biomolecules, using a largely geometric series of calculations

working from a known set of start and end co-ordinates. Chapter 5 detailed a method for

analysing conformational changes to identify parts of the structure that move as a semi-rigid

body. This method, DynDom6D, operated on pairs of co-ordinates for each atom, taken from

structures solved before and after the motion. The starting biomolecular structure is divided

into overlapping blocks of atoms, which are clustered on information about the rigid body

movement that would superpose them into the positions that they take in the ending structure.

Atoms belonging to blocks that shared similar movements are assigned to domains. Atoms

that do not strongly belong to a domain are identified as potential hinge-bending regions,

which are flexible regions between domains that drive conformational change.
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The location of hinge-bending regions are important for understanding the motion under-

gone by a protein. Chapter 2 (Section 2.3.2) discusses the properties of the hinge bending

region in more detail. Chapter 3 (3.8) outlines existing methods that seek to identify the

location of hinge-bending regions. Some methods, like FlexProt[145] and the programs in

the DynDom family, begin with a pair of solved structures. Others attempt to find the hinge-

bending residues using only a single structure, through graph theoretical approaches[82],

energetics[50], or Normal Mode Analysis[24]. Some [52][12] have attempted to build

methods that find the hinge-bending region from sequence data alone, with mixed success.

The following chapter details the training and testing of a series of predictors that operate

on protein sequence data taken from the DynDom database, with hinges labelled using

DynDom’s hinge assignments. We use Kernel Logistic Regression, as described in Section

3.7.2, which models the likelihood that an input vector belongs to a target class. The models

take as input a segment of a sequence of amino acids, and output the likelihood that the

central residue of the segment will belong to the hinge-bending region. The weights applied

to sequence features by the models will be examined for potential biological insight into the

composition of hinge bending regions.

A predictor using the trained models, is available at http://hingeseek.cmp.uea.ac.uk. A

paper describing the method and its results was published in BMC Bioinformatics[159].

6.2 Methods

KLR maps an input vector of feature onto a feature space, where it can find a linear separation

of non-linear data. By using a kernel function which defines the inner product of feature

vectors, this mapping to feature space is implicitly defined. We use three kernels for the

following methods as defined in Section 3.7.2 the linear kernel, the polynomial kernel

(quadratic and cubic), and the radial basis function (RBF) kernel.
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6.2.1 Constructing the Datasets

Data was taken from DynDom’s user constructed database [95] and non-redundant databases

[128]. These databases contain examples of different classes of motion; some are clearly

defined hinge motions, some shear, and some mixed [154]. In order to use examples of clear,

defined hinge motions, some filtering was performed as in Table 6.1. Two datasets were

created, Group 1 which was smaller and more stringently filtered and the more lenient Group

2. Both datasets permitted only two-domain proteins, and where each domain contained

at least 80 residues. The relative angle of rotation between the domains has a minimum

value for a pronounced motion about the hinge. A limit on the length of the bending region

is imposed to prevent apparent "bending" regions that are actually long areas of disorder.

Each group has a restriction on number of bending regions as low quality results commonly

contained many scattered bending regions.

To build the training and test data sets from the sequence and bending region data, a

sliding window was placed over each sequence, resulting in a subsequence centred on each

amino acid. A series of window lengths were used. Section 3.9 discussed the previous

application of machine learning to protein sequences and found a range of optimal window

lengths between 3 and 20, so an initial window length range of 1-31 was used. As the results

were returned, performance improved with window length, so this range was increased to

1-101 until the results stopped improving.

To get from our windowed sequence to a suitable input vector we employ “one-of-

n-encoding”. For each residue in the sequence we add 24 columns to the input vector

corresponding to the 24 letters in our alphabet: 20 amino acids represented by their standard

single character code; “B”, “X” and “Z”, standing in for ambiguous amino acids; “-” as a

dummy character if there are fewer residues to one side of the central character than required

by the sequence length. The value of each of these 24 columns is set to zero, apart from a

one in the column corresponding to the character in the sequence.
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Criterion Group 1 Group 2
Number of domains 2 2

Minimum number of residues in domain 80 80

Minimum angle of rotation 20° 15°

Maximum intradomain backbone RMSD 2.5 Å 3.0 Å

Maximum number of bending regions 3 5

Maximum number of residues in a bending region 10 15

Number of domain movements before CD Hit filtering (90%) 910 1389

Number of domain movements after CD Hit filtering (90%) 241 372

Number of domain movements after CD Hit filtering (40%) 171 268
Table 6.1 Dataset criteria for training and test data.

10% of each dataset, selected at random, was retained as test data and the remaining 90%

was used as the training data. This proportion allowed a larger sample of the dataset to be

learned from, but at the expense of a smaller test set. The time taken to train the model meant

that 10-fold cross-validation would have been prohibitively computationally expensive.

6.2.2 Redundancy

The CD-hit [98] web server was used to filter the data such that no two proteins had greater

than a 90% sequence identity, following Flores et. al[52]. This dataset, referred to as CDHit-

90, still allowed for a high likelihood of homologous pairs in the test and training sets, so an

additional dataset, CDHit-40, was created using a sequence identity cut-off of 40%. This

was selected due to the work of Sander and Schneider [138], as discussed in Section 3.1.1.

This resulted in a large reduction in the number of sequences contained in the dataset, so it

was deemed appropriate to perform 10-fold cross validation rather than rely on the results of

a single partition of test and training data.

Further work was performed using a 20% sequence identity, which is the strictest bound-

ary. This was based on the work of Rost[133], who identified the "twilight zone" of homology

to be between 20% and 35% sequence identity. A CD-hit filtered dataset, CDHit-20, was
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produced, which contained 136 sequences. Due to concerns that this was too small a dataset

to achieve significant results, a series of tests were performed as a form of leave-one-out

cross validation of the CDHit-90 and CDHit-40 datasets, where each sequence was selected

in turn, and then a training set was produced by removing all of the remaining sequences

that had a sequence identity with the selected test sequence greater than or equal to 20%.

There were subsequent concerns that this was an unfair test as it was selecting a maximally

different training set for each test sequence, so a 10-fold cross validation experiment was

also performed on the CDHit-20 data.

6.2.3 Balance

The full group 1 dataset contained 7,395 residues that were considered part of a hinge

and 296,818 that were not; positively labelled data was greatly outnumbered by negatively

labelled data. The training process takes considerably longer for larger datasets, and because

of the large window lengths, the training process was already lengthy. Therefore some

negatively labelled data was discarded from the training set in order to bring the total number

of training examples down while retaining the same number of positively labelled examples.

This was performed using a number of different ratios, but a 1 : 9 ratio of positive : negative

data was selected due to a trade-off between running time and effect on accuracy.

6.3 Results

6.3.1 Hinge Index

In order to get an insight into the propensities of occurrence of amino acids, we calculated

the "Hinge Index" (HI) values for each amino acid using the CDHit-90 versions of our group

1 and group 2 datasets, following the process proposed by Flores et al.[52]. This yielded

for each amino acid the HI, which measures how over- or under-represented it was in the
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Fig. 6.1 Hinge Index results from Group 1 of CDHit-90.

hinge-bending regions as compared with the rest of the dataset, and its p-value, signifying

the statistical significance of the HI.

The HI is calculated for a given amino acid a from the prior probability of an amino acid

belonging to class c, p(ac), and the probability that it occurs in a hinge region (h), p(ac|h):

HI(ac) = log10
p(ac|h)
p(ac)

(6.1)

These prior probabilities are estimated from frequencies observed in the dataset. A

positive HI value indicates the amino acid is over-represented in the hinge-bending regions,

whereas a negative value indicates under-representation.

Figure 6.1 shows both of these results for group 1, with the HI value shown by the line

and the left y axis, and the p-value shown as a bar and the right y axis. Figure 6.2 shows the

same values for group 2. Many of the HI results did not pass the test of statistical significance,

in both our calculations and in the original Flores paper, but those that did were generally

in agreement. Our most consistent HI results with high significance were those of proline
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Fig. 6.2 Hinge Index results from Group 2 of CDHit-90.

and cysteine; proline yielded the highest HI in both group 1 and group 2, whereas the HI for

cysteine was the lowest in both datasets. The numerical value of these results is consistent

with those of Flores et al., though they reported higher p-values for both. Serine, Flores et

al.’s most positive HI, was also significantly over-represented in the hinge-bending regions

of group 1; serine achieved a positive HI in group 2 but did not quite achieve statistical

significance. Glycine, which Flores et al. reported as having a significant high HI, yielded a

slightly positive HI without statistical significance in our datasets.

Along with cysteine, group 1’s significantly under-represented amino acids were methio-

nine and phenylalanine. In group 2, methionine and phenylalanine did not pass the test of

statistical significance; tryptophan, arginine and leucine joined cysteine in the lower end of

the HI results in group 2.
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Fig. 6.3 AROC across window length for linear, quadratic, cubic, and RBF KLR models
trained on group 1 for CDHit-90.

6.3.2 Accuracy

The areas under the ROC curves (see Section 3.7.3) results from the linear, quadratic, cubic

and RBF kernel models on the CDHit-90 filtered group 1 sequences are shown in Figure 6.3.

The predictive power increases with the window size beyond the initially considered range;

the optimal window length for each of the models is listed in Table 6.2.

To judge the significance of these AROC results, they were compared to the performance

of a random classifier with Mann-Whitney U-test [106]. The predicted values from the model

are divided into two subsets: one where the true outcome was positive and one where the

true outcome was negative. The Mann-Whitney U-test is a test of the hypothesis that the

populations have different distributions. In the first result, the input vectors consist of a single

amino acid and so the output was the same for each kernel. This failed to reject U-test’s

null hypothesis; the AROC was 0.501 and the p-value 0.95, showing a result with the same
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Kernel Optimal Window Length AUC p-value
Linear 99 0.687 2.9 × 10−20

Quadratic 87 0.749 9.5 × 10−35

Cubic 43 0.746 7.0 × 10−34

RBF 91 0.734 7.0 × 10−31

Table 6.2 The optimal window length for each kernel trained on group 1, with p-value from
Mann-Whitney U-test.

predictive power as a random classification. As the window length increases and the AROC

rises, the performance becomes statistically significant. For the linear kernel, this is reached

for all window lengths longer than 7 residues. All other kernels fail only when the window

length is 1. The values listed in Table 6.3 are the results from each kernel’s optimum window

length.

The graph appears to show a separation between the linear kernel and the non-linear

kernels, which outperform the linear kernels at every window length. We performed a

pairwise comparison of the kernels’ results using DeLong’s algorithm for the comparison of

AROC results [39], implemented by Sun and Xu[153]. This algorithm is suitable for such a

comparison as it takes into account the correlation of the test and training data between the

different kernels’ results, as the same partitions were used for all models. Again, results from

window length 1 were identical, so no separation was observed. After that, the separation

between linear and quadratic results was always significant, with a minimum p-value of

3.53×10−12. Between the quadratic, cubic and RBF kernels, the separation varies across

the range of window lengths. The quadratic generally outperforms the RBF kernel, but the

cubic kernel is often not significantly different to the performance of the other non-linear

kernels. Table 6.3 shows the results for the linear kernel’s optimum window length (99).

Figure 6.4 shows the AROC results from group 2. Fewer window lengths were tried due

to the increased computational expense of the larger dataset, but the window lengths spanned

the same range. The optimal values are listed in Table 6.4 along with the p-values from the
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Linear Quadratic Cubic RBF
Linear - 1.17 × 10−5 0.0013 2.22 × 10−5

Quadratic 1.17 × 10−5 - 0.0811 0.0091

Cubic 0.0013 0.0811 - 0.8983

RBF 2.22 × 10−5 0.0091 0.8983 -
Table 6.3 The p-values resulting from statistical comparison of the AUC results from pairs of
models trained on group 1, with a window length of 99.

Fig. 6.4 AUC across window length for linear, quadratic, and cubic KLR models trained on
group 2.

Mann-Whitney U-test, which all kernels passed at all window lengths. Pairwise comparisons

of results using Delong’s significance testing are listed in Table 6.5. The linear model showed

significantly poorer results than the non-linear models at almost all window lengths.

Each kernel performed worse on the group 2 data than on the data from group 1. A paired

t-test was performed on the results at each window length, which rejected the null hypothesis

for each kernel; the linear model gave a p-value of 5.3×10−8, the quadratic model 0.0042,

and the cubic 2.69×10−4.
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Kernel Optimal Window Length AUC p-value
Linear 81 0.650 2.8 × 10−20

Quadratic 101 0.710 3.3 × 10−40

Cubic 41 0.685 1.9 × 10−31

Table 6.4 The optimal window length for each kernel trained on group 2, with p-value from
Mann-Whitney U-test.

Linear Quadratic Cubic
Linear - 4.44 × 10−16 0.0111

Quadratic 4.44 × 10−16 - 3.61 × 10−8

Cubic 0.0111 3.61 × 10−8 -
Table 6.5 The p-values resulting from statistical comparison of the AUC results from pairs of
models trained on group 2, with a window length of 101.

6.3.3 Balancing the Data

The effects of varying the enforced ratio of positively to negatively labelled results can be

seen in Figure 6.5, which plots the ROC curves of models trained on data filtered to have

different ratios. The effect is minimal, with slightly poorer results from the much larger

ratios, possibly due to the lower amount of training data.

6.3.4 Varying the Sequence Identity Threshold

Inspecting the structures allowed in each group indicates that out of the 241 sequences in

group 1’s CDHit-90 data, a group of 48 antibodies with similar homology dominate the

population. This raises the possibility that the models were over-fitting to emphasise features

that appear around the hinge-bending regions common to this group.

The weights assigned by the models were extracted as described in detail later in this

chapter (see Section 6.3.5), and examined for evidence of such a bias. The highest weighted

product feature in this model was the product of serine at 13 residues after the central

position, and leucine 9 residues after the central position. A study of the structures where
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Fig. 6.5 ROC curves for a quadratic model with window length 15 trained on the same dataset
randomly discarded down to a range of ratios.
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this occurred showed no clear structural reason that this pair would influence the location of

the hinge-bending region; in the proteins examined, these residues were at some distance

from the bending residues, and would move rigidly as part of their domain with no changes

to which other residues they were in contact with. However, the majority of these structures

belonged to the group of antibodies.

Figure 6.6(a) shows an MDS plot where each point represents a sequence from the

CDHit-90 group 1 data. The sequence identity between each pair was calculated, which

was used as the similarity matrix for non-metric MDS; more similar pairs of sequences are

more closely positioned in the plot. Sequences that exhibited the S13, L9 pair around a

hinge-bending region’s residue are highlighted in red. The dense cluster on the left consists

of antibodies; there is a large subset of these antibodies that contain the feature. Figure 6.6(b)

shows the same plot constructed for the CDHit-40 dataset, which shows a more even spread

of the sequences. Only 4 of the 171 proteins included in this data are antibodies. Figure

6.6(c) shows the CDHit-20 version of this plot, which shows the most even spread of data

of the three plots. 6 out of the 136 sequences are antibodies (the CDHit-20 dataset is not a

subset of the CDHit-40 set).

6.3.4.1 40% Sequence Identity

This change in the dataset was influential on the ROCs achieved. CDHit-90’s peak result

from the quadratic model, 0.749, was considerably higher than the maximum result seen on

the equivalent CDHit-40 quadratic peak, 0.61. Similarly, the linear peak was reduced from

0.69 to 0.57. This is not unexpected as the amount of data in the training set was considerably

reduced by the increased filtering. Despite the lower peak AROC, the models still exhibited

predictive power. The quadratic results are still significantly better than the linear results as

shown by a paired t-test of the means of the folds’ results; the p-value was 1.0958×10−4.
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(a) 90% sequence identity

(b) 40% sequence identity
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(c) 20% sequence identity

Fig. 6.6 MDS plot of every sequence in group 1 using pairwise sequence identity to build the
similarity matrix. Sequences containing the S13, L9 pair are highlighted in red. Datasets
filtered to various sequence identity thresholds.

The results the linear model on each fold of the training data were compared to random

chance using the Mann-Whitney U-test, achieving p-values as plotted in Figure 6.8. The

required p-value for a confidence level of 95% is indicated with a black dashed line. Most

folds of the linear kernel reached the threshold for rejecting the hypothesis of the Mann-

Whitney U-test by window length 16, but two of the folds dip above and below this threshold,

and one fold only briefly passed below it, indicating that the linear model could not beat

random chance when trained on this fold of the training data. Figure 6.9 shows the p-values

obtained from the Mann-Whitney U-test performed on the results of the quadratic kernel.

Most folds showed no significant difference from the random classifier on the smallest

window lengths, but began to reject the null hypothesis after a window length of 20 to 40

residues.

The Hinge Index values and p-values, as plotted for the CDHit-90 dataset in Figure 6.1,

were calculated for the CDHit-40 data and plotted in Figure 6.10. Serine and proline are again
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Fig. 6.7 The mean AUC values for 10 folds of results of linear and quadratic models trained
on group 1, filtered to CDHit-40.

Fig. 6.8 Window length vs p-values for CDHit-40 (linear kernel).
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Fig. 6.9 Window length vs p-values for CDHit-40 (quadratic kernel).

significantly over-represented in the hinge-bending region, and cysteine and phenylalanine

are under-represented. Methionine receives a similarly negative value for its Hinge Index as

for the CDHit-90 group, but in this case it does not achieve a sufficiently low p-value to be

considered significant.

6.3.4.2 20% Sequence Identity

Figure 6.11 shows the Hinge Index results calculated from the CDHit-20 data. The HI

values for proline, cysteine and phenylalanine continue to support the results found for less

strenuously filtered data. The result for serine is still a positive HI value, but a slightly weaker

one, with a p-value which does not allow it to be considered significant.

We performed leave-one-out cross validation on the CDHit-90 data, filtering the training

data each time to remove sequences with greater than 20% sequence identity with the chosen

test case. One window length was used due to the time taken to train each model, 87 was

selected as the optimal window length for the CDHit-90 data. The quadratic kernel gave a

mean AROC of 0.6058, but the Mann-Whitney U-test showed significance for only 79 out of

241 (32.92%) of the test cases. The same experiment was run using the CDHit-40 data, which

gave a mean result for the quadratic kernel of 0.5705. This time, 46 of the 171 cases passed
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Fig. 6.10 The Hinge Index values calculated on the CDHit-40 group 1 data.

Fig. 6.11 The Hinge Index values calculated on the CDHit-20 group 1 data.
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the Mann-Whitney U-test (26.90% of the sequences). Given that each run has the same

maximum amount of homology between proteins in training and test data, the difference

is performance is potentially due to the reduction in training data. For the linear data, the

models trained on the CDHit-90-derived dataset achieved a mean AROC of 0.5875, where 63

of the 241 cases passed the Mann-Whitney U-tests (26.14%), and the models trained on the

CDHit-40 data achieved a mean result of 0.5875, with 51 of 171 (29.82%) test cases proving

to be significant. While the linear results were poorer for the CDHit-90 data (31.95% were

significantly different according to the DeLong significance testing, though this includes both

the 130 cases where the quadratic result was higher and the 111 cases where the linear result

was higher), they were slightly better for the CDHit-40 cases.

The preceding approach was selected because it would result in more training data than

would be obtained by 10-fold cross validation on the CDHit-20 group 1 data. However, in

practise it was creating a more difficult problem for the training of each model as every

sequence was trained on a maximally different training set, which is reflected in its poor

performance. Additionally, the test sets for each fold became very small; each test set

consisted of the residues of one sequence, and so contained a few hundred negatively labelled

examples and a proportionally very small amount of positively labelled data (on average 8.08

residues per sequence in the CDHit-90 data and 9.04 in the CDHit-40 data), which resulted

in low statistical power for the tests of significance. Therefore we also applied the same

10-fold cross validation to the CDHit-20 dataset that was used on the CDHit-40 data.

As with the reduction from CDHit-90 to CDHit-40, the dataset became smaller as the

sequence identity restriction became stricter. Again, the performance decreased at this level

of sequence identity. Variation between folds was high, and while some folds performed well,

others failed to show predictive power. Figures 6.12 and 6.13 show the linear and quadratic

kernel models’ performance on each of the fold across all tested window lengths. Results

from the Mann-Whitney U-tests are listed in Table 6.6, which shows that while some folds
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Fig. 6.12 AUC across a range of window lengths for linear and quadratic kernel KLR models
trained on folds 1-6 of CDHit-20.

pass this test (and can thus be said to be significantly distinct from the results of a random

classifier) on nearly all of their windows for one or both kernels, other folds fail on a majority

of windows. The 5th fold in particular resulted in extremely poor performance, wherein no

models trained on any window length produced a significant result.

The mean results for each window, combining the performance of all of these folds,

are shown in 6.14. The mean results are lower than those of the CDHit-40 and CDHit-90

datasets. The quadratic kernel achieved a maximum average AUC of 0.5722 on window

length 89, which supports results from the less stringently filtered datasets where window

lengths between 80 and 90 residues were optimal. On the other hand, the linear kernel’s

maximum result, 0.5570, was achieved with a much shorter window length of 17 residues;

AUCs for longer window lengths fluctuated but generally trended downward.
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Fig. 6.13 AUC across a range of window lengths for linear and quadratic kernel KLR models
trained on folds 7-10 of CDHit-20.

Fold Linear Quadratic
1 8.16% 12.24%

2 79.59% 87.76%

3 0.00% 4.08%

4 0.00% 71.43%

5 0.00% 0.00%

6 36.73% 93.88%

7 24.49% 87.76%

8 73.47% 44.90%

9 93.88% 97.96%

10 100.00% 97.96%
Table 6.6 Percentage of window lengths at which models trained on each fold passed a
Mann-Whitney U-test.
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Fig. 6.14 Mean AUC across a range of window lengths for linear, quadratic and cubic kernel
KLR models trained on 10 folds of CDHit-20.

While numerically there is a very small difference between the means, at most 0.0216,

the quadratic kernel’s mean was consistently above the linear kernel’s mean. Paired t-testing

between the means can reject the null hypothesis with a p-value of 2.5160×10−11. As with

previous datasets, there was little separation between the quadratic and cubic kernels.
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6.3.5 Weights

We stored the trained models for each of the preceding experiments, including their training

samples’ input vectors and the α values assigned to them as in the dual model representation

of KLR (shown in Equation 3.45). Feature weights can be calculated from these stored

values and considered, in order to potentially gain insight into the structure of hinge-bending

regions.

6.3.5.1 Linear Weights

The following section describes examples of the information that linear weights can reveal,

showing the weights assigned to linear features extracted from KLR models, trained with

a linear kernel on CDHit-90 and with a quadratic kernel on CDHit-40 and CDHit-20. All

models used the quadratic kernel’s optimum window length: 87 on CDHit-90 and CDHit-20

and 81 on CDHit-40. While there are some differences between the models, they are in

general agreement, particularly around the strong peaks and troughs. The scale of each

model’s weights varied, so the weights are plotted as a ratio of each weight divided by the

strongest weight assigned by the same model in each graph.

Figure 6.15 shows the weights assigned to proline throughout the window length. As well

as the strongest positive HI value, proline was assigned the strongest positive linear weighting

in the central residue by all models, indicating a clear preference for being part of the hinge-

bending region. The weighting trends negative at either end of the window. The relationship

between secondary structure and hinge-bending region makes this an interesting result. Hinge-

bending regions have been shown[69] to be more frequent at secondary structure termini,

and proline is both suited to terminating secondary structures and unsuited to belonging to

α-helices and β -sheets [104]. Proline has also been shown to be overpopulated in linker

regions [56], sequences of amino acids that join pairs of domains [62].
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Fig. 6.15 Linear weights for proline residues at various positions in an 87 residue sliding
window.
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Fig. 6.16 Linear weights for cysteine residues at various positions in an 87 residue sliding
window.
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Fig. 6.17 Linear weights for isoleucine residues at various positions in an 87 residue sliding
window.

The linear weights assigned to cysteine are plotted in Figure 6.16. Cysteine’s disincli-

nation towards being in the hinge-bending region is expressed here as well as in its HI;

cysteine received the most negative weighting in the central residue by the linear model,

though phenylalanine was more strongly negative in the weights assigned by the quadratic

models. Cysteine has positive weightings around 20 residues before and after the centre of

the window, indicating a possible preference towards the centre of a domain, which could be

due to its ability to form disulphide bonds.

The weights for isoleucine as plotted in Figure 6.17 contain more disagreement than

those for proline and cysteine and show either ambivalence or a slight disinclination toward

the central residue. The peak around 6 residues before the centre is seen strongly in all three
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Fig. 6.18 Linear weights for aspartic acid residues at various positions in an 87 residue sliding
window.

models, and is among the most strongly weighted linear feature in all three models. A weaker

peak can be seen around 6 residues after the central residue.

The results for cysteine, proline and, to a lesser extent, isoleucine display rough symmetry

about the central residue. Aspartic acid, as seen in Figure 6.18, displays a less symmetrical

pattern of peaks and troughs. It shows ambivalence towards the central residue, with positive

peaks around 15 and 25 residues before the centre and 35 residues after, and negative peaks

around 35 and 5 residues before the centre and 10, 20 and 30 residues after.

The weights associated with tryptophan, shown in Figure 6.19, are a particularly strong

example of asymmetry. Most of the positions are weakly weighted, with disagreement on

sign and magnitude between models, but all three are in agreement regarding a large peak

around 40 residues after the central residue.
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Fig. 6.19 Linear weights for tryptophan residues at various positions in an 87 residue sliding
window.
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Fig. 6.20 The sum of normalised absolute linear weights from all amino acid.
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The results for all amino acids have been combined in Figure 6.20, which shows the sum

of absolute weights (normalised by the maximum weight) assigned to all amino acids in

each position. These show fluctuation but results in each chart are similar across the entire

sequence, indicating that the model’s output is equally influenced by the amino acid in the

centre of the window as by the distant amino acids up to 43 residues away. The results for

the CDHit-90 group are less similar than the corresponding results for the CDHit-40 and

CDHit-20 groups, and show strong weights at a small number of positions mostly around or

before the centre of the window. Given the finding that a group of proteins within CDHit-90

have high sequence identities, these outlier weights potentially correspond to amino acids in

positions that characterise this overrepresented group.

6.3.5.2 Product Weights

In a similar manner, trained quadratic models can be examined to reveal the weights that

they associate with product features, indicating the influence on predictions of pairs of amino

acids at specific positions.

These extracted weights can be plotted as heat maps, as in Figures 6.21, 6.22, and 6.23.

The cells in Figure 6.21 are shaded to represent the weight applied to a pair of amino acids

in the sliding window where one of the pair is a cysteine residue and the other is a serine

residue. The numbers along the x axis describe the location of the serine residue relative to

the central residue of the window, and the y axis gives the location of the cysteine residue

relative to the centre of the window. Positive weights are shown in red and negative weights

in blue; weights that are close to zero are pale or white. The weights in this graph are mostly

dominated by the effects of the cysteine’s position, which mirror its linear weights as it shows

a generally negative weight, with positive weights when the cysteine residue is around 20

residues before or after the central residue. A patch of strong positive weights around C+25,

S+15 suggests that the model has inferred that a serine residue in this location may make
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Fig. 6.21 Heat map showing weights extracted from the quadratic model with window length
87, sequence identity 90%, for the product features relating to the positions of cysteine (rows)
and serine (columns).
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Fig. 6.22 Heat map showing weights extracted from the quadratic model with window length
87, sequence identity 90%, for the product features relating to the positions of proline (rows)
and threonine (columns).

the central residue more "hinge-like", though it is hard to say whether this has a structural

explanation or whether it is due to being a shared feature in homologous proteins.

Figure 6.22 shows a similar map for proline and threonine. Again, the weights assigned

to the product features share similar patterns to the weights assigned to the linear features

containing these amino acids; there is a region of mostly positive weighting whenever proline

is around the central residue. However, there are areas in the map where the strength or

sign of the weight appears to be effected by the presence of a threonine residue: the map

has a patch of strong positive weights around the centre, where proline is either the central

residue itself or within the next ten residues, and threonine is also around the central residue.

Figure 6.23 shows the heat map for the products of proline and asparagine residues, and
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while there are some positive weights when proline is around the central residue, the centre of

the map is mostly negative, which suggests that the presence of both proline and asparagine

around the same residue would cause the model to assign the residue a lower likelihood

of belonging to the hinge class. These maps suggest relationships between pairs of amino

acids that may offer more subtle discriminatory value available to the quadratic model which

would explain its higher performance over the linear model; while proline has generally the

highest propensity to being present in a hinge bending region, the presence or absence of

other amino acids like threonine or asparagine may support or mitigate this propensity.

The diagonal lines in all heat maps are weighted zero in every cell unless the amino acids

in both axes are the same, as two different amino acids cannot both exist at the same position

in a sequence.

6.4 Discussion

The location and composition of hinge-bending regions is an important component in un-

derstanding a protein domain movement, as it defines how the domains may move relative

to one another. The preceding chapter detailed the application of a range of kernel logistic

regression models to protein sequence data, labelled by a method which uses solved structural

information to identify hinge-bending regions from known conformational change. The

trained models were shown to have modest predictive power, showing a statistically signifi-

cant improvement over a random classifier. While the accuracy of the model is lower than

that obtained by machine learning approaches to secondary structure predictions, it showed

greater accuracy than the propensity-based method of Flores et al [52] which achieved an

AROC of 0.5 when using sequence data alone. KLR models using polynomial kernels were

shown to significantly outperform those using linear kernels, indicating that the problem

is not linearly separable. The weights assigned by these models to individual and product

features were generally consistent across method, window length and sequence identity
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Fig. 6.23 Heat map showing weights extracted from the quadratic model with window length
87, sequence identity 90%, for the product features relating to the positions of proline (rows)
and asparagine (columns).
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allowed between testing and training data, which could point towards further biological

understanding of the composition of hinge-bending regions and their surrounding amino

acids.

6.4.1 Accuracy

Several parameters were varied throughout testing, which resulted in a wide range of AUC

results.

The length of window used for training and prediction was a key parameter to optimise.

Initial values focussed on window lengths between 3 and 30 residues, with an expectation

that the highest accuracy would be obtained for window lengths between 11 and 19 following

the findings of other works (see Section 3.9) that apply machine learning to other problems

of prediction from protein sequence. After these initial tests resulted in optimal window

lengths at the higher end of the range, further testing was performed, revealing that the

AROC generally increased with window length up to a window between 80 and 90 residues

long for the CDHit-90 groups 1 and 2 datasets. These long windows also produced the best

performance in the CDHit-40 group 1 data tests, and for the quadratic result of the CDHit-20

dataset. Models trained on the CDHit-20 dataset using a linear kernel had a much smaller

optimal window length of 17 residues, which falls more in line with the initially expected

results as found in similar works. Given the general poor performance on this dataset, it is

unclear whether the linear model’s change in behaviour is due to the lack of sufficient data or

whether the lower sequence identity threshold has resulted in the removal of homologous

proteins that were affecting other datasets’ results.

Four kernels were used for the initial KLR tests on the CDHit-90 group 1 data: linear,

quadratic, cubic and RBF. The difference between the linear and non-linear kernels had a clear

impact on the accuracy on this data, as the quadratic, cubic and RBF kernels significantly

outperformed the linear. Among the quadratic, cubic and RBF kernels there was little
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difference in accuracy; the quadratic kernel achieved the highest results at longer window

lengths, but this difference was not always significant. Due to the similarity in performance,

further experiments did not include the RBF and sometimes cubic kernels which were

computationally more expensive. The separation between linear and quadratic kernels was

seen again in the CDHit-90 group 2 data and in the CDHit-40 data. While performance on

the CDHit-20 data was generally poor, a slight but statistically significant separation was

found.

As indicated above, the sequence identity allowed between pairs of proteins in the dataset

affected accuracy. Lowering this threshold introduces two elements of difficulty: the dataset,

which was already stringently filtered, becomes smaller; the proteins within the dataset have

less chance of homology. At the 20% sequence identity level we conducted two sets of

experiments. In one we created maximally different training sets from larger data sets, which

resulted in a generally poor performance, though the statistical power of the significance

testing was questionable due to the very small test sets. In the other, we trained the models on

folds of a CD-Hit filtered dataset. These models produced lower AROCs than the CDHit-40

and CDHit-90 datasets.

6.4.2 Weight Assignment

A benefit of the KLR method is that the linear and product weights are easy to retrieve

from the trained models, which can be examined for potential biological significance. While

some strongly weighted pairs appear to be artefacts of overly homologous data, others were

consistent across the various experiments.

Linear results, particularly those regarding the central residue, generally supported the

Hinge Index findings; proline had the highest HI, and commonly the strongest weighting in

the central residue. Cysteine had the lowest HI, and very negative weighting in the central

residue, and very positive weighting around 20 residues either side, indication a tendency to
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be buried within a domain possibly stemming from its ability to form disulphide bonds. The

isoleucine linear weighting provided some information not included in the HI results. While

it is ambivalent or weakly disinclined towards the central residue, it is strongly positively

weighted in the 5 to 9 residues immediately before it.

6.4.3 Limitations and Further Work

The accuracy of the models is modest, but statistically significant. When filtering the data

to no more than 90% sequence identity we achieved a maximum AROC of 0.75, which

compares favourably to the results of Flores et al.[52], whose sequence-based predictor had

no predictive value after training on data filtered to the same level. A lower accuracy was

obtained by models trained on datasets with a lower sequence identity threshold, which may

be explained by the smaller amount of examples in these datasets.

The use of one-of-n encoding to build our features could be improved on to potentially

improve the accuracy; because our feature vectors are arrays of zeros and ones, the kernel

results are based on exact matches, whereas it is known that some pairs of amino acids are

more interchangeably than others. The use of string alignment kernels would allow compar-

isons to incorporate substitution matrices. Additionally, secondary structure prediction using

machine learning was greatly improved by using multiple sequence alignments as input,

showing possible variation in the sequences. This may have a similar impact here.

The sequences selected for groups 1 and 2 are heavily filtered in order to confidently

build a dataset of strong hinge motions, particularly in the requirement that each sequence

should contain only two domains. It would be interesting to see whether the findings here are

consistent when models are trained or run on sequences from less filtered data.





Chapter 7

Conclusion

The following chapter will summarise how this thesis met its research objectives and outline

the key findings revealed. In addition, a number of limitations will be discussed and potential

directions for further research will be proposed.

7.1 Thesis Summary

Chapter 1 gave an overview of the motivation behind the study of protein domain movements

and explained some of the key concepts that would be required in future chapters. It outlined

the aims and objectives for the chapters that followed it and listed those chapters’ structure.

Chapters 2 and 3 provided background knowledge and literature review of the biological

applications and motivations of the work. Chapter 2 focussed on the structure of proteins

and their conformational changes, while Chapter 3 described existing approaches to solving

problems like protein morphing, docking, and the assignment of domains and hinge-bending

regions. The methods used in later chapters were also covered in this chapter; linear algebra

common to several methods was explained, along with various MDS methods. There was

a description of the two machine learning algorithms that we used, which were k-means

clustering and kernel logistic regression.
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In Chapter 4, a method was developed for visualising the conformational changes of

biomolecules, either alone or as part of an interaction with another biomolecule. The

technique was based on using inter-atomic distances calculated from the solved structures

to interpolate ideal distances along the pathway between them. These ideal distances were

reconstructed into a set of coordinates using MDS methods. An initial attempt, which used a

simple eigenvalue calculation known as classical MDS, achieved results that were no better

than a naive interpolation of the Cartesian points, so further "modern" MDS methods were

applied to the results of the classical MDS to refine the results. We used a version of MDS

that minimises a weighted cost function based on the distance between each atom pair’s

ideal distance and distance in the created structure, and we applied weights such that the cost

function only considers the distances between pairs of atoms that are close enough, applying

a cut-off distance that was determined using the MolProbity measure of quality. This resulted

in morphs that were much more physically plausible according to the MolProbity validation

tool, and which contained less obviously distorted structures. We used a metric proposed by

Weiss and Levitt[168] to measure the ability of a morph to recreate a solved intermediate

that lies between its start and end confirmations, comparing our method’s performance to the

published results of other methods. No method scored the highest on every test case, but in a

pairwise comparison of the rankings both all-atom and Cα-only MDS morphs outperformed

the other methods on more test cases than they were outperformed. We attempted to compare

result of an MDS docking morph between a promising cancer drug and its target with a

recent and highly accurate MD method, PaCS-MD. Using PaCS-MD we able to simulate a

near-native complex with medium accuracy according to the CAPRI guidelines.

Chapter 5 looked at conformational changes as the semi-rigid motions of "dynamic

domains", which are parts of the protein that move relative to one another with little internal

change. These movements are controlled by hinge-bending regions. The chapter focussed on

the development of DynDom6D, a program that finds these dynamic domains by clustering
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the components of atoms’ motion between one solve structure and another. A grid is

constructed over one of the solved structures, and overlapping blocks are constructed at the

grid points. The atoms within each block are fitted to the corresponding atoms in the other

structure using a quaternion-based least squares best fit procedure. The motion required to

bring each block to its second position is expressed as a position in feature space created

by the rotation vector, the translation along the axis, and the screw axis location, combined

orthogonally. Similar points are gathered using k-means clustering. Each block contributes a

vote for its assigned cluster to all of the atoms that it contains; atoms or residues (depending

on user preference) are assigned to the domain for which it receives the most votes. The

domain movements that the potential domains would produce are examined to determine

whether the domains are viable. Atoms or residues with a lot of disagreement during the

voting are labelled as hinge-bending regions. A post-processing routine scans to find any

points where two residues are adjacent in a chain’s sequence but belong to different domains,

and creates a small hinge-bending region from the two residues.

Chapter 6 was a description of the development of a tool for predicting the location of

hinge-bending regions without including structural information but from sequence alone.

Kernel logistic regression was used to train models on labelled sequences taken from the

DynDom database. When tested on reserved test sets, the models displayed modest but

statistically significant predictive power. It showed that the problem was non-linear, as models

that mapped the sequence features into non-linear feature space significantly outperformed

the linear method. The effect of window length on the predictions’ accuracy was investigated

and it was found that the optimum window length for this problem was far longer than that

identified by similar machine learning approaches that used a sliding window on protein

sequences, applied for the prediction of other properties. The level of redundancy allowed in

the testing and training data was examined, and results were poorer when the level of allowed
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homology was decreased, but the key findings of the dataset that allowed 90% sequence

identity were supported by the results of the more strictly filtered data.

7.2 Objectives and Key Findings

The following are the main objectives of the work, how they were achieved, and the key

findings resulting from each objective.

• A novel visualisation technique which uses multi-dimensional scaling to construct

each frame of a protein morph

– A protein morphing technique was developed which uses a blend of MDS methods

in order to efficiently create intermediate structures between two sets of co-

ordinates.

– The method performed better than comparable techniques, maintaining stronger

stereochemical feasibility against the currently most popular technique imple-

mented at the Morph Server, and passing closer to known intermediates on more

test cases than any other method.

– The protein morphing method was extended to work with other types of biomolecules.

– A further extension was tailored to the problem of visualising protein docking, a

novel application of protein morphing that specifically focused on the interaction

between two biomolecules.

– The method was made available as a web server, at http://hingeseek.cmp.uea.ac.uk.

• Development of the next generation of the DynDom dynamic domain classifier

(DynDom6D).
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– A new program, DynDom6D, was produced which classifies all atoms of a

protein, or DNA or RNA molecule, into dynamic domains by clustering on all

six dimensions of freedom required to define a rigid body movement.

– Areas of uncertainty are identified as hinge bending regions.

– Due to the efficient approach, the program can achieve results on extremely

large biomolecules which are becoming more common thanks to next generation

methods for solving proteins.

• Machine learning investigation into finding location of hinge-bending regions from

sequence data alone

– A series of regression models trained on labelled sequences showed predictive

power, albeit limited.

– Model weights extracted from the most successful KLR models gave some

indication towards sequence patterns that occur more prominently around the

hinge-bending region.

– In particular, the discovery of the inflexible proline residue as the amino acid most

over-represented in the hinge-bending region is an unexpected and interesting

result.

7.3 Limitations and Future Work

7.3.1 Protein Morphing

The MDS protein morphing method makes strict assumptions of linearity which are known

to not hold true in all conformational changes. A method that explored unique values for

λ was attempted, but the current implementation would approach MD in computational
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time. Potential areas of improvement would be either a more efficient implementation of

the optimisation process, perhaps assisted with future developments in GPU technology. Or

a smaller optimisation problem using one single λ function for each pair of atoms in two

rigid areas, perhaps using a version of the DynDom6D program to identify a fixed amount of

smaller clusters of rigidity.

In finding the optimal cut-off lengths, it can be observed that varying the cut-off produces

very different results for each protein. A pattern of identifying the optimal cut-off from the

geometry of the structure was not observed from the experiments conducted, but further

investigations with more sophisticated regression techniques may be more successful, and

allow a version of the method that selected a set of predicted optimal cut-off lengths based

on the input structures.

7.3.2 DynDom6D

While the DynDom6D method performed efficiently, and was able to identify interesting

dynamic domains on our test examples, it required some experimentation with parameters

to achieve each result. There was no set of parameters which performed well on all test

cases. However, some simple patterns were potentially observed, such as larger grid sizes

helping for larger molecules. An automated optimisation process would not be easy for this

problem, as there is no objective method by which the results can be judged - results of

previous iterations of DynDom can only be obtained for single backbone chains (DynDom)

or smaller molecules (DynDom3D). Further investigations into parameter selection would

make this program more easily usable.

7.3.3 Hinge-Bending Prediction

The results of the KLR investigations into prediction of hinge-bending regions showed some

weak predictive power. Further work could be done to improve these results. The current
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kernels only take into account exact matches of amino acids in a given position, whereas

there are known substitution matrices that describe the interchangeability of pairs of amino

acids. String alignment kernels using these substitution matrices may provide better accuracy.
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Appendix A

PDB Codes for MDS Morph Test Cases

PDB Code 1 Chain ID 1 PDB Code 2 Chain ID 2
2a4n B 1b87 A
1i9b A 1i9b B
1cjk A 2gvd A
1xjb A 1j96 A
1b8g B 1ynu A
1i8m A 1kb5 L
2b48 A 2p1l A
1at1 A 1raa A
1wp9 E 1wp9 C
4tnw A 4tnv A
1g3j A 2bct
1ux5 A 1ux4 A
1k8t A 1xfx D
4jz7 C 4jz9 C
2gjz B 2gk0 H
1yy9 C 1yy8 A
1zu0 A 1zty A
2i7v A 2i7t A
1rid A 1y8e B
1ghq C 1ly2 A
1tij A 1r4c G
1k1q A 1k1q B
2gd1 R 1nq5 A
1y1v I 1r9s I
1mmi A 1jql A
2iuu F 2iut A
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PDB Code 1 Chain ID 1 PDB Code 2 Chain ID 2
2a1t R 1efv A
1k3x A 1q3b A
2b7m A 2b1e A
1yuh A 1sm3 L
1ezf B 1ezf A
1r19 D 1r17 A
1jbw A 2gc5 A
2i02 A 2i02 B
2j6h A 1jxa C
1xw5 B 1hnb A
1axk B 1axk A
3nyn A 2acx A
1qcf A 2c0t B
2pjr A 1pjr
1gp9 C 1gmo C
1a9e A 2bvp A
3loc A 4jyk A
1ptm B 1r8k A
1vdw A 1vdw B
1jt0 A 1jum A
2gfb J 1kno D
1za6 B 1za6 D
1mju L 1uz8 A
1i40 A 1i6t A
1ic1 B 1ic1 A
1t09 A 1t0l D
1zi7 A 1zhx A
1y1x A 1y1x B
8adh 1a71 A
1kwh A 1j1n B
2obg A 1peb A
1ewk B 1ewk A
2gid K 2gia B
1nc2 D 1nc2 B
2azo A 2azo B
2nmt A 1iic A
2f8v C 2a38 C
1df1 A 1df1 B
1ho5 A 1oid A
1ttt A 1ob5 A
1ynp A 1ynp B
1mwr B 1vqq B
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PDB Code 1 Chain ID 1 PDB Code 2 Chain ID 2
2pah A 2pah B
1quk 1oib A
1au7 A 1au7 B
2oqg B 2oqg C
2ff4 B 2ff4 A
1ks2 A 1ks2 B
1y0z B 1y0z A
4hfi A 4hfi B
1t33 A 1t33 B
2g50 E 1aqf H
2gil B 2ffq A
3g56 A 3frq A
1x86 A 1txd A
2h23 A 2h21 B
2c9o A 2c9o B
1hf2 C 1hf2 A
1o9x A 1e7e A
1kyq B 1kyq C
2qkm B 2qkm D
1o9l D 1o9l A
1e4w H 1e4x I
1kei A 1kkk A
1qxx A 1u07 A
1rfy A 1rfy B
3ice C 1pv4 F
1aro P 1h38 A
2c5j A 2c5k T
2ag6 A 1u7d B
1gqq A 1p3d A
1ufq C 1uei B
1rke A 1rkc A
1o89 A 1o8c B





Appendix B

Protein Sequences Used in KLR Test and

Training Data

B.1 Group 1

Protein Name Conformer 1 Conformer 2
PDB Code Chain ID PDB Code Chain ID

Dna-Directed RNA Polymerase II Largest Sub-
unit

1i50 A 2nvq A

Damage-Specific DNA Binding Protein 1 2b5m A 2hye A
Pullulanase 2yoc A 2yoc B
Glucansucrase 3klk A 4amc A
Ubiquitin-Activating Enzyme E1 1 4ii3 A 4ii2 A
Leucyl-Trna Synthetase 1wz2 B 1wkb A
DNA Polymerase 1ig9 A 2dy4 C
Ns5 Polymerase 4k6m A 5ccv A
Pyruvate,orthophosphate Dikinase 1vbh A 2r82 A
T7 Lysozyme 1h38 A 1s77 D
Importin Beta-1 Subunit 2bku B 2bpt A
Protein Translocase Subunit Seca 3jv2 A 1m6n A
Isocitrate Dehydrogenase [Nadp] 3mbc A 1j1w A
Programmed Cell Death 6-Interacting Protein 2oev A 4jjy A
Lactoferrin 1bka A 1cb6 A
Argonaute 3hk2 A 3f73 A
Atp-Dependent DNA Helicase Rep 1uaa A 1uaa B
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Protein Name Conformer 1 Conformer 2
PDB Code Chain ID PDB Code Chain ID

Polyphosphate Kinase 2o8r A 2o8r B
Calpain 2, Large [Catalytic] Subunit Precursor 1u5i A 2ary A
Secreted Effector Protein 2qyu A 2qza A
Glucosamine-Fructose-6-Phosphate Amino-
transferase

2j6h A 1jxa C

Protein Phosphatase Pp2a 2nym D 2ie4 A
Flavocytochrome C Fumarate Reductase 1d4e A 1qo8 A
Phosphoenolpyruvate-Protein Phosphotrans-
ferase

2hwg A 1zym A

Acyl-Coenzyme A Synthetase Acsm2a, Mito-
chondrial Precursor

3b7w A 3c5e A

Long Chain Fatty Acid-Coa Ligase 1ult A 1ult B
Chitin Oligosaccharide Binding Protein 1zu0 A 1zty A
D-3-Phosphoglycerate Dehydrogenase 1ygy B 1ygy A
5”-Nucleotidase 1hp1 A 1hpu C
Groel 1aon H 2c7e A
5”-Nucleotidase 4h2g A 4h2i A
Diphtheria Toxin 1f0l B 1tox B
Luciferase 1lci A 2d1r A
Pyruvate Kinase Isozymes M1/m2 4fxj A 3srh A
Periplasmic Oligopeptide-Binding Protein 1rkm A 2rkm A
Lethal Factor 1yqy A 1jky A
Nitrite Reductase 1hzv A 1nir B
Metabotropic Glutamate Receptor Subtype 1 2e4u A 3sm9 A
2,3-Bisphosphoglycerate-Independent Phospho-
glycerate Mutase

1o98 A 2ify A

Ba3-Type Cytochrome-C Oxidase 2ify A 4my4 A
Dipeptide-Binding Protein 1dpe A 1dpp A
4-Chlorobenzoyl Coa Ligase 3cw8 X 3cw9 A
Pyruvate Kinase 1pkl A 3hqp A
Nickel-Binding Periplasmic Protein 2noo A 1zlq B
Macromolecule-Binding Periplasmic Protein 1kwh A 1j1n B
Algq1 1y3q A 1y3n A
Fimbrin-Like Protein 1pxy B 1pxy A
Chaperone Protein Htpg 1y4s B 2iop A
Malonyl Coa Synthetase 4fut A 4fuq A
Intermedilysin 1s3r A 4bik A
2-Succinylbenzoate–Coa Ligase 5buq B 5bur A
Atp Synthase Beta Chain, Mitochondrial 2hld N 2hld M
F1-Atpase 1sky E 1bmf F
Son Of Sevenless Protein Homolog 1 1xd2 C 2ii0 A
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Atp Synthase Subunit Beta 2jdi E 1h8e D
Metabotropic Glutamate Receptor Subtype 1 1ewk B 1ewk A
Udp-N-Acetylmuramate-L-Alanine Ligase 1p3d A 1gqq B
3-Phosphoshikimate 1-Carboxyvinyltransferase 2gg4 A 2gg6 A
Integrin Beta-3 1tye B 1jv2 B
3-Phosphoshikimate 1-Carboxyvinyltransferase 3roi A 3slh A
Protein (Udp-N-Acetylmuramoyl-L-Alanine:d-
Glutamate Ligase)

3uag A 1e0d A

5-Enolpyruvylshikimate-3-Phosphate Synthase 1rf6 C 1rf5 B
Type I Restriction-Modification Enzyme, S Sub-
unit

1yf2 B 1yf2 A

Elongation Factor 1-Alpha 1jny A 1f60 A
Isocitrate Dehydrogenase 1sjs A 1hj6 A
3-Phosphoglycerate Kinase 13pk A 1php A
Isocitrate Dehydrogenase [Nadp] Cytoplasmic 1t09 A 1t0l D
Isocitrate Dehydrogenase 1lwd A 3mas A
Putative Fimbrial Subunit 4hss A 4hss B
Gamma-Aminobutyric Acid Type B Receptor
Subunit 1

4mqe A 4ms3 A

Heat Shock Locus U 1do0 A 1do0 B
D-3-Phosphoglycerate Dehydrogenase (Phos-
phoglycerate 3 Dehydrogenase) (E.C.1.1.1.95)

1psd A 1sc6 B

Molybdopterin Biosynthesis Protein Moea 2nqq C 2nqq A
47 Kda Membrane Antigen 1o75 B 1o75 A
Elongation Factor Tu 1ob5 C 2c78 A
Protein (Eukaryotic Peptide Chain Release Fac-
tor Subunit 1)

1dt9 A 3e1y A

Aminopeptidase T 2ayi D 2ayi B
Succinyl-Coa Synthetase, Beta Chain 1eud B 2fp4 B
Acarbose/maltose Binding Protein Gach 3k01 A 3jzj A
Polymerase (Dna Directed) Kappa 1t94 B 2oh2 B
Molybdopterin Biosynthesis Moea Protein 1wu2 A 1wu2 B
Udp-N-Acetylglucosamine 2-Epimerase 3beo A 1o6c A
Actin 2zwh A 1j6z A
Maltose Abc Transporter, Periplasmic Maltose-
Binding Protein

2gha A 2ghb B

D-Maltodextrin Binding Protein 1anf A 1jw5 A
Chemotaxis Protein Chea 1b3q A 2ch4 A
Collybistin II 2dfk A 2dfk C
Rho Guanine Nucleotide Exchange Factor 12 1x86 A 1txd A
Uncharacterized Protein 4xe8 A 4xe7 A
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Udp-N-Acetylglucosamine 2-Epimerase 4neq A 4nes A
3-Isopropylmalate Dehydrogenase 2y3z A 4f7i A
Choline Kinase Alpha 2ckq B 2i7q A
Dbh Protein 1k1q A 2rdi A
Leu/ile/val-Binding Protein 1z15 A 1z16 A
Nagk Protein 2ch6 D 2ch6 B
DNA Polymerase IV 3qz7 A 3bq1 A
Purine Nucleotide Synthesis Repressor 1jft A 1dbq A
Atp-Dependent Hsl Protease Atp-Binding Sub-
unit Hslu

1im2 A 1qg4 A

Twitching Motility Protein Pilt 2gsz A 2gsz E
DNA Polymerase III, Delta Subunit 1jqj D 1xxh F
D-Lactate Dehydrogenase 1j49 B 1j4a D
Ovotransferrin 1tfa A 1iej A
Rfcs 1iqp C 1iqp D
DNA Polymerase Beta 1bpd A 2bpg B
Igg Heavy Chain 1za6 B 1za6 D
Serotransferrin 1ryo A 1bp5 C
Atp-Dependent Clp Protease Atp-Binding Sub-
unit Clpx

3hws A 3hws B

Parm 1mwk A 1mwm A
M-Calpain 1kxr A 1ziv A
Thioredoxin Reductase 1tde A 1f6m A
Translation Initiation Factor Eif-2b, Delta Sub-
unit

3a9c A 3vm6 A

Xylanase J 2dck A 2dcj A
Calpain 9 1ziv A 2p0r A
Ig Epsilon Chain C Region 4j4p B 1o0v B
Spectrin Alpha Chain, Brain 1u4q B 1cun B
Sugar Transport Protein 1tjy A 1tm2 A
Nuclear Factor Nf-Kappa-B P105 Subunit 1ooa A 2i9t B
Manganese-Dependent Inorganic Pyrophos-
phatase

1k20 B 1k23 B

Interleukin-1 Receptor 1itb B 1g0y R
Manganese-Dependent Inorganic Pyrophos-
phatase

1k23 A 1wpm A

Guanine Nucleotide Exchange Factor Dbs [Frag-
ment]

1rj2 G 1rj2 J

D-Galactose-Binding Periplasmic Protein 2fw0 A 2hph A
Sugar Abc Transporter, Periplasmic Sugar-
Binding Protein

3c6q A 3c6q C
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D-3-Phosphoglycerate Dehydrogenase, Putative 4nfy A 4njm A
Nf-Kappa-B P65 1nfi C 2ram B
Mrna Decapping Enzyme 1xmm B 1xml B
Probable Transcriptional Regulator 2esn A 2esn C
Virb11 Homolog 1nlz F 1nlz E
Hexokinase 2e2n A 2e2o A
Type IIe Restriction Endonuclease Naei 1ev7 A 1iaw A
2-Dehydropantoate 2-Reductase 1ks9 A 2ofp B
Ribose Abc Transporter, Periplasmic Ribose-
Binding Protein

2fn9 A 2fn8 A

Titin 2ill A 2nzi B
Serine/threonine-Protein Kinase Pak 4 2cdz A 2c30 A
D-Allose-Binding Periplasmic Protein 1gub A 1rpj A
Glutamate [Nmda] Receptor Subunit Zeta 1 1y20 A 1pbq A
Nuclear Factor Of Activated T-Cells, Cytoplas-
mic 2

1owr Q 1owr M

Potassium Channel 2wln A 2wlk A
Pantothenate Synthetase 3ag5 A 3ag6 A
Diaminopimelate Epimerase 2q9h A 2gke A
Mhc Class I H-2dd Heavy Chain 1qo3 A 1ddh A
Glutamate Receptor Ionotropic, Nmda 2A 4nf5 B 3oel A
D-Ribose-Binding Protein 1ba2 A 1urp C
Osmoprotection Protein (Prox) 1sw4 A 1sw5 C
Udp-2,3-Diacylglucosamine Pyrophosphatase
Lpxi

4ggm X 4j6e A

N-Methyl-D-Aspartate Receptor Subunit 1 1pbq B 1pb7 A
Pectocin M2 4n58 A 4n59 A
Spac19a8.12 Protein 2qkm B 2qkm D
Phosphate-Binding Protein Psts 1 4exl A 4lat A
Probable Translation Initiation Factor 2 Alpha
Subunit

1yz6 A 1yz7 A

Glutamate Receptor Subunit 2 1ftj B 1fto A
Glutamate Receptor 3 3dln A 1fto A
Acetylglutamate Kinase 2wxb A 1gs5 A
Glutamate Receptor, Ionotropic Kainate 1 2f34 B 1ycj B
Betaine Abc Transporter Permease And Sub-
strate Binding Protein

3l6g A 3l6h A

Glutamate Receptor, Ionotropic Kainate 1 1s7y B 1fto A
Vinculin Isoform Vcl 1ydi A 1rke A
Glutamate Receptor, Ionotropic Kainate 3 4e0w A 1fto A
Nopaline-Binding Periplasmic Protein 4pow A 4p0i A
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Angiostatin 1ki0 A 2doh X
Endonuclease VIII 1k3x A 1q3b A
Major Surface Antigen P30 1kzq A 1ynt G
Alpha-1 Catenin 1h6g A 1l7c C
Mg2+ Transporter Mgte 2yvy A 2yvz A
Tight Junction Protein Zo-1 3lh5 A 3kfv A
Replication Protein A 70 Kda Dna-Binding Sub-
unit

1fgu B 1fgu A

Dihydrodipicolinate Reductase 1yl7 C 1p9l A
Hypothetical Protein 2i76 A 2i76 B
Dihydrodipicolinate Reductase 3qy9 B 3qy9 D
Putative Abc Transporter, Periplasmic Binding
Protein, Amino Acid

2yln A 3zsf A

Lysine, Arginine, Ornithine-Binding Protein 2lao A 1lst A
Glutamate Receptor Delta-2 Subunit 2v3t A 2v3u A
Windbeutel Protein 2c1y A 2c0e A
Dna-Directed RNA Polymerase Alpha Chain 1ynj A 1ynn B
Dna-Directed RNA Polymerase Alpha Chain 2a6h A 1iw7 L
Fab 17B Heavy Chain 1rz8 B 2i60 R
Igg1 Antibody 58.2 (Heavy Chain) 1f58 H 3f58 H
Abc-Type Transporter, Periplasmic Subunit Fam-
ily 3

4psh A 4prs A

Fab-Ysd1 Heavy Chain 1za3 H 1za3 B
Glutamine Binding Protein 1wdn A 1ggg B
Hyb3 Heavy Chain 1w72 H 1dfb H
Calcium-Gated Potassium Channel Mthk 2fy8 C 2fy8 H
Chimera Of Fab2c4: "Humanized" Murine Mon-
oclonal Antibody

1l7i H 1s78 F

Igg1 Fab Fragment 1igc H 2aab H
Catalytic Elimination Antibody 13G5 Heavy
Chain

2gjz B 2gk0 H

Chimeric Germline Precursor Of Oxy-Cope Cat-
alytic Antibody Az-28 (Heavy Chain)

1d5i H 1d5b B

Fab Fragment, Heavy Chain 2h2s E 2htl C
Igg1 Fab Fragment (Hc19) 1gig H 2vir B
Antibody Light Chain 1jgu L 1baf L
Fab Fragment, Antibody A5b7 1ad0 B 1rmf H
Igg Heavy Chain 2dd8 H 1rzi F
Fab Fragment Of 8F5 Antibody Against Human
Rhinovirus 3 Serotype 2 4

1bbd L 1hin L

K42-41l Fab Light Chain 1mju L 1uz8 A
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28B4 Fab 1kem H 1q9l B
Pc283 Immunoglobulin 1kcr H 1kcu H
Anti-Idiotypic Monoclonal Antibody (Light
Chain)

2aab L 1iqw L

Igg 5C8 15c8 H 1fgn H
Antibody M41 1gpo L 1keg L
Fab Heavy Chain 1xf3 H 1i8m B
Immunoglobulin Gamma-1 Heavy Chain Con-
stant Region

1e4k B 2iwg A

Igg1 Antibody 58.2 (Light Chain) 1f58 L 3f58 L
Immunoglobulin G1 (Igg1) 2mcg 1 2mcg 2
Loc - Lambda 1 Type Light-Chain Dimer 3bjl B 1bjm A
Mature Metal Chelatase Catalytic Antibody,
Heavy Chain

1ngy B 1n7m L

Dihydrodipicolinate Reductase 1vm6 C 1vm6 B
Igg2a Fab Fragment (50.1) 1ggi M 1ai1 L
Igm-Kappa Cold Agglutinin (Light Chain) 1dn0 C 1rhh A
Immunoglobulin Lambda Light Chain 1jvk B 1jvk A
Monoclonal Antibody 2D12.5, Igg1 Gamma
Heavy Chain

1gig L 1q0x L

Antibody Light Chain 11K2 2bdn L 1osp L
Immunoglobulin 48G7 Germline Fab 1gaf L 1gpo L
Fab 17B Light Chain 1rz8 A 2ny1 C
Fab Fragment Of Murine Monoclonal Anti-
body An02 Complex 3 With Its Hapten (2,2,6,6-
Tetramethyl-1-Piperidinyloxy- 4 Dinitrophenyl)

1baf L 1cz8 L

33H1 Fab Light Chain 1ors A 1fig L
Humanized Antibody Hfe7a, Light Chain 1it9 L 2gcy A
Igg Antibody (Light Chain) 1emt L 2a6i A
Igg2b (Kappa) 1cgs H 2cgr H
Monoclonal Anti-Estradiol 10G6d6 Im-
munoglobulin Gamma-1 Chain

1jn6 B 1jnh B

Pc287 Immunoglobulin 1kcu L 1fsk K
Antibody Light Chain Fab 1i8m A 1qbm L
Erythropoietin Receptor 1eer B 1ern B
17E8 1eap A 1a0q L
Fab E51 Light Chain 1rzf L 1q1j M
Fab Fragment, Antibody A5b7 1ad0 A 1rmf L
Germline Metal Chelatase Catalytic Antibody,
Chain H

1n7m H 1ngy A

Humanized Antibody D3h44 1pg7 H 1jps H
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Immunoglobulin 1ce1 L 1t04 C
Lambda III Bence Jones Protein Cle 1lil A 1lil B
Chimeric Germline Precursor Of Oxy-Cope Cat-
alytic Antibody Az-28 (Light Chain)

1d6v L 1axs L

Hyb3 Light Chain 1w72 M 1adq L
Fibroblast Growth Factor Receptor 2 1e0o D 1djs A
Septum Site-Determining Protein Minc 1hf2 C 1hf2 A
Vascular Cell Adhesion Molecule-1 1vsc B 1vca A
P58-Cl42 Kir 1nkr A 2dli A
N2b-Titin Isoform 2f8v C 2a38 C
Transcriptional Regulator, Tetr Family 1zkg A 1z77 A
Hypothetical Transcriptional Regulator In Qaca
5”Region

1jt0 A 1jtx A

Muscle-Specific Kinase Receptor 2iep B 2iep A
Transcriptional Regulator 3vok A 3vp5 A
Tenascin 1qr4 B 1qr4 A
Fatty Acid-Binding Protein, Epidermal 4azr B 1b56 A
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Protein Name Conformer 1 Conformer 2
PDB Code Chain ID PDB Code Chain ID

Dna-Directed RNA Polymerase II Largest Sub-
unit

1i50 A 2nvq A

Damage-Specific DNA Binding Protein 1 2b5m A 2hye A
Pullulanase 2yoc A 2yoc B
Glucansucrase 3klk A 4amc A
Ubiquitin-Activating Enzyme E1 1 4ii3 A 4ii2 A
Leucyl-Trna Synthetase 1wz2 B 1wkb A
DNA Polymerase 1ig9 A 2dy4 C
Ns5 Polymerase 4k6m A 5ccv A
Pyruvate,orthophosphate Dikinase 1vbh A 2r82 A
T7 Lysozyme 1h38 A 1s77 D
Importin Beta-1 Subunit 2bku B 2bpt A
Protein Translocase Subunit Seca 3jv2 A 1m6n A
Isocitrate Dehydrogenase [Nadp] 3mbc A 1j1w A
Programmed Cell Death 6-Interacting Protein 2oev A 4jjy A
Lactoferrin 1bka A 1cb6 A
Argonaute 3hk2 A 3f73 A
Atp-Dependent DNA Helicase Rep 1uaa A 1uaa B
Polyphosphate Kinase 2o8r A 2o8r B
Calpain 2, Large [Catalytic] Subunit Precursor 1u5i A 2ary A
Secreted Effector Protein 2qyu A 2qza A
Glucosamine-Fructose-6-Phosphate Amino-
transferase

2j6h A 1jxa C

Protein Phosphatase Pp2a 2nym D 2ie4 A
Flavocytochrome C Fumarate Reductase 1d4e A 1qo8 A
Phosphoenolpyruvate-Protein Phosphotrans-
ferase

2hwg A 1zym A

Acyl-Coenzyme A Synthetase Acsm2a, Mito-
chondrial Precursor

3b7w A 3c5e A

Long Chain Fatty Acid-Coa Ligase 1ult A 1ult B
Chitin Oligosaccharide Binding Protein 1zu0 A 1zty A
D-3-Phosphoglycerate Dehydrogenase 1ygy B 1ygy A
5”-Nucleotidase 1hp1 A 1hpu C
Groel 1aon H 2c7e A
5”-Nucleotidase 4h2g A 4h2i A
Diphtheria Toxin 1f0l B 1tox B
Luciferase 1lci A 2d1r A
Pyruvate Kinase Isozymes M1/m2 4fxj A 3srh A
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Periplasmic Oligopeptide-Binding Protein 1rkm A 2rkm A
Lethal Factor 1yqy A 1jky A
Nitrite Reductase 1hzv A 1nir B
Metabotropic Glutamate Receptor Subtype 1 2e4u A 3sm9 A
2,3-Bisphosphoglycerate-Independent Phospho-
glycerate Mutase

1o98 A 2ify A

Ba3-Type Cytochrome-C Oxidase 2ify A 4my4 A
Dipeptide-Binding Protein 1dpe A 1dpp A
4-Chlorobenzoyl Coa Ligase 3cw8 X 3cw9 A
Pyruvate Kinase 1pkl A 3hqp A
Nickel-Binding Periplasmic Protein 2noo A 1zlq B
Macromolecule-Binding Periplasmic Protein 1kwh A 1j1n B
Algq1 1y3q A 1y3n A
Fimbrin-Like Protein 1pxy B 1pxy A
Chaperone Protein Htpg 1y4s B 2iop A
Malonyl Coa Synthetase 4fut A 4fuq A
Intermedilysin 1s3r A 4bik A
2-Succinylbenzoate–Coa Ligase 5buq B 5bur A
Atp Synthase Beta Chain, Mitochondrial 2hld N 2hld M
F1-Atpase 1sky E 1bmf F
Son Of Sevenless Protein Homolog 1 1xd2 C 2ii0 A
Atp Synthase Subunit Beta 2jdi E 1h8e D
Metabotropic Glutamate Receptor Subtype 1 1ewk B 1ewk A
Udp-N-Acetylmuramate-L-Alanine Ligase 1p3d A 1gqq B
3-Phosphoshikimate 1-Carboxyvinyltransferase 2gg4 A 2gg6 A
Integrin Beta-3 1tye B 1jv2 B
3-Phosphoshikimate 1-Carboxyvinyltransferase 3roi A 3slh A
Protein (Udp-N-Acetylmuramoyl-L-Alanine:d-
Glutamate Ligase)

3uag A 1e0d A

5-Enolpyruvylshikimate-3-Phosphate Synthase 1rf6 C 1rf5 B
Type I Restriction-Modification Enzyme, S Sub-
unit

1yf2 B 1yf2 A

Elongation Factor 1-Alpha 1jny A 1f60 A
Isocitrate Dehydrogenase 1sjs A 1hj6 A
3-Phosphoglycerate Kinase 13pk A 1php A
Isocitrate Dehydrogenase [Nadp] Cytoplasmic 1t09 A 1t0l D
Isocitrate Dehydrogenase 1lwd A 3mas A
Putative Fimbrial Subunit 4hss A 4hss B
Gamma-Aminobutyric Acid Type B Receptor
Subunit 1

4mqe A 4ms3 A

Heat Shock Locus U 1do0 A 1do0 B
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D-3-Phosphoglycerate Dehydrogenase (Phos-
phoglycerate 3 Dehydrogenase) (E.C.1.1.1.95)

1psd A 1sc6 B

Molybdopterin Biosynthesis Protein Moea 2nqq C 2nqq A
47 Kda Membrane Antigen 1o75 B 1o75 A
Elongation Factor Tu 1ob5 C 2c78 A
Protein (Eukaryotic Peptide Chain Release Fac-
tor Subunit 1)

1dt9 A 3e1y A

Aminopeptidase T 2ayi D 2ayi B
Succinyl-Coa Synthetase, Beta Chain 1eud B 2fp4 B
Acarbose/maltose Binding Protein Gach 3k01 A 3jzj A
Polymerase (Dna Directed) Kappa 1t94 B 2oh2 B
Molybdopterin Biosynthesis Moea Protein 1wu2 A 1wu2 B
Udp-N-Acetylglucosamine 2-Epimerase 3beo A 1o6c A
Actin 2zwh A 1j6z A
Maltose Abc Transporter, Periplasmic Maltose-
Binding Protein

2gha A 2ghb B

D-Maltodextrin Binding Protein 1anf A 1jw5 A
Chemotaxis Protein Chea 1b3q A 2ch4 A
Collybistin II 2dfk A 2dfk C
Rho Guanine Nucleotide Exchange Factor 12 1x86 A 1txd A
Uncharacterized Protein 4xe8 A 4xe7 A
Udp-N-Acetylglucosamine 2-Epimerase 4neq A 4nes A
3-Isopropylmalate Dehydrogenase 2y3z A 4f7i A
Choline Kinase Alpha 2ckq B 2i7q A
Dbh Protein 1k1q A 2rdi A
Leu/ile/val-Binding Protein 1z15 A 1z16 A
Nagk Protein 2ch6 D 2ch6 B
DNA Polymerase IV 3qz7 A 3bq1 A
Purine Nucleotide Synthesis Repressor 1jft A 1dbq A
Atp-Dependent Hsl Protease Atp-Binding Sub-
unit Hslu

1im2 A 1qg4 A

Twitching Motility Protein Pilt 2gsz A 2gsz E
DNA Polymerase III, Delta Subunit 1jqj D 1xxh F
D-Lactate Dehydrogenase 1j49 B 1j4a D
Ovotransferrin 1tfa A 1iej A
Rfcs 1iqp C 1iqp D
DNA Polymerase Beta 1bpd A 2bpg B
Igg Heavy Chain 1za6 B 1za6 D
Serotransferrin 1ryo A 1bp5 C
Atp-Dependent Clp Protease Atp-Binding Sub-
unit Clpx

3hws A 3hws B
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Parm 1mwk A 1mwm A
M-Calpain 1kxr A 1ziv A
Thioredoxin Reductase 1tde A 1f6m A
Translation Initiation Factor Eif-2b, Delta Sub-
unit

3a9c A 3vm6 A

Xylanase J 2dck A 2dcj A
Calpain 9 1ziv A 2p0r A
Ig Epsilon Chain C Region 4j4p B 1o0v B
Spectrin Alpha Chain, Brain 1u4q B 1cun B
Sugar Transport Protein 1tjy A 1tm2 A
Nuclear Factor Nf-Kappa-B P105 Subunit 1ooa A 2i9t B
Manganese-Dependent Inorganic Pyrophos-
phatase

1k20 B 1k23 B

Interleukin-1 Receptor 1itb B 1g0y R
Manganese-Dependent Inorganic Pyrophos-
phatase

1k23 A 1wpm A

Guanine Nucleotide Exchange Factor Dbs [Frag-
ment]

1rj2 G 1rj2 J

D-Galactose-Binding Periplasmic Protein 2fw0 A 2hph A
Sugar Abc Transporter, Periplasmic Sugar-
Binding Protein

3c6q A 3c6q C

D-3-Phosphoglycerate Dehydrogenase, Putative 4nfy A 4njm A
Nf-Kappa-B P65 1nfi C 2ram B
Mrna Decapping Enzyme 1xmm B 1xml B
Probable Transcriptional Regulator 2esn A 2esn C
Virb11 Homolog 1nlz F 1nlz E
Hexokinase 2e2n A 2e2o A
Type IIe Restriction Endonuclease Naei 1ev7 A 1iaw A
2-Dehydropantoate 2-Reductase 1ks9 A 2ofp B
Ribose Abc Transporter, Periplasmic Ribose-
Binding Protein

2fn9 A 2fn8 A

Titin 2ill A 2nzi B
Serine/threonine-Protein Kinase Pak 4 2cdz A 2c30 A
D-Allose-Binding Periplasmic Protein 1gub A 1rpj A
Glutamate [Nmda] Receptor Subunit Zeta 1 1y20 A 1pbq A
Nuclear Factor Of Activated T-Cells, Cytoplas-
mic 2

1owr Q 1owr M

Potassium Channel 2wln A 2wlk A
Pantothenate Synthetase 3ag5 A 3ag6 A
Diaminopimelate Epimerase 2q9h A 2gke A
Mhc Class I H-2dd Heavy Chain 1qo3 A 1ddh A
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Glutamate Receptor Ionotropic, Nmda 2A 4nf5 B 3oel A
D-Ribose-Binding Protein 1ba2 A 1urp C
Osmoprotection Protein (Prox) 1sw4 A 1sw5 C
Udp-2,3-Diacylglucosamine Pyrophosphatase
Lpxi

4ggm X 4j6e A

N-Methyl-D-Aspartate Receptor Subunit 1 1pbq B 1pb7 A
Pectocin M2 4n58 A 4n59 A
Spac19a8.12 Protein 2qkm B 2qkm D
Phosphate-Binding Protein Psts 1 4exl A 4lat A
Probable Translation Initiation Factor 2 Alpha
Subunit

1yz6 A 1yz7 A

Glutamate Receptor Subunit 2 1ftj B 1fto A
Glutamate Receptor 3 3dln A 1fto A
Acetylglutamate Kinase 2wxb A 1gs5 A
Glutamate Receptor, Ionotropic Kainate 1 2f34 B 1ycj B
Betaine Abc Transporter Permease And Sub-
strate Binding Protein

3l6g A 3l6h A

Glutamate Receptor, Ionotropic Kainate 1 1s7y B 1fto A
Vinculin Isoform Vcl 1ydi A 1rke A
Glutamate Receptor, Ionotropic Kainate 3 4e0w A 1fto A
Nopaline-Binding Periplasmic Protein 4pow A 4p0i A
Angiostatin 1ki0 A 2doh X
Endonuclease VIII 1k3x A 1q3b A
Major Surface Antigen P30 1kzq A 1ynt G
Alpha-1 Catenin 1h6g A 1l7c C
Mg2+ Transporter Mgte 2yvy A 2yvz A
Tight Junction Protein Zo-1 3lh5 A 3kfv A
Replication Protein A 70 Kda Dna-Binding Sub-
unit

1fgu B 1fgu A

Dihydrodipicolinate Reductase 1yl7 C 1p9l A
Hypothetical Protein 2i76 A 2i76 B
Dihydrodipicolinate Reductase 3qy9 B 3qy9 D
Putative Abc Transporter, Periplasmic Binding
Protein, Amino Acid

2yln A 3zsf A

Lysine, Arginine, Ornithine-Binding Protein 2lao A 1lst A
Glutamate Receptor Delta-2 Subunit 2v3t A 2v3u A
Windbeutel Protein 2c1y A 2c0e A
Dna-Directed RNA Polymerase Alpha Chain 1ynj A 1ynn B
Dna-Directed RNA Polymerase Alpha Chain 2a6h A 1iw7 L
Fab 17B Heavy Chain 1rz8 B 2i60 R
Igg1 Antibody 58.2 (Heavy Chain) 1f58 H 3f58 H
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Protein Name Conformer 1 Conformer 2
PDB Code Chain ID PDB Code Chain ID

Abc-Type Transporter, Periplasmic Subunit Fam-
ily 3

4psh A 4prs A

Fab-Ysd1 Heavy Chain 1za3 H 1za3 B
Glutamine Binding Protein 1wdn A 1ggg B
Hyb3 Heavy Chain 1w72 H 1dfb H
Calcium-Gated Potassium Channel Mthk 2fy8 C 2fy8 H
Chimera Of Fab2c4: "Humanized" Murine Mon-
oclonal Antibody

1l7i H 1s78 F

Igg1 Fab Fragment 1igc H 2aab H
Catalytic Elimination Antibody 13G5 Heavy
Chain

2gjz B 2gk0 H

Chimeric Germline Precursor Of Oxy-Cope Cat-
alytic Antibody Az-28 (Heavy Chain)

1d5i H 1d5b B

Fab Fragment, Heavy Chain 2h2s E 2htl C
Igg1 Fab Fragment (Hc19) 1gig H 2vir B
Antibody Light Chain 1jgu L 1baf L
Fab Fragment, Antibody A5b7 1ad0 B 1rmf H
Igg Heavy Chain 2dd8 H 1rzi F
Fab Fragment Of 8F5 Antibody Against Human
Rhinovirus 3 Serotype 2 4

1bbd L 1hin L

K42-41l Fab Light Chain 1mju L 1uz8 A
28B4 Fab 1kem H 1q9l B
Pc283 Immunoglobulin 1kcr H 1kcu H
Anti-Idiotypic Monoclonal Antibody (Light
Chain)

2aab L 1iqw L

Igg 5C8 15c8 H 1fgn H
Antibody M41 1gpo L 1keg L
Fab Heavy Chain 1xf3 H 1i8m B
Immunoglobulin Gamma-1 Heavy Chain Con-
stant Region

1e4k B 2iwg A

Igg1 Antibody 58.2 (Light Chain) 1f58 L 3f58 L
Immunoglobulin G1 (Igg1) 2mcg 1 2mcg 2
Loc - Lambda 1 Type Light-Chain Dimer 3bjl B 1bjm A
Mature Metal Chelatase Catalytic Antibody,
Heavy Chain

1ngy B 1n7m L

Dihydrodipicolinate Reductase 1vm6 C 1vm6 B
Igg2a Fab Fragment (50.1) 1ggi M 1ai1 L
Igm-Kappa Cold Agglutinin (Light Chain) 1dn0 C 1rhh A
Immunoglobulin Lambda Light Chain 1jvk B 1jvk A
Monoclonal Antibody 2D12.5, Igg1 Gamma
Heavy Chain

1gig L 1q0x L
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Protein Name Conformer 1 Conformer 2
PDB Code Chain ID PDB Code Chain ID

Antibody Light Chain 11K2 2bdn L 1osp L
Immunoglobulin 48G7 Germline Fab 1gaf L 1gpo L
Fab 17B Light Chain 1rz8 A 2ny1 C
Fab Fragment Of Murine Monoclonal Anti-
body An02 Complex 3 With Its Hapten (2,2,6,6-
Tetramethyl-1-Piperidinyloxy- 4 Dinitrophenyl)

1baf L 1cz8 L

33H1 Fab Light Chain 1ors A 1fig L
Humanized Antibody Hfe7a, Light Chain 1it9 L 2gcy A
Igg Antibody (Light Chain) 1emt L 2a6i A
Igg2b (Kappa) 1cgs H 2cgr H
Monoclonal Anti-Estradiol 10G6d6 Im-
munoglobulin Gamma-1 Chain

1jn6 B 1jnh B

Pc287 Immunoglobulin 1kcu L 1fsk K
Antibody Light Chain Fab 1i8m A 1qbm L
Erythropoietin Receptor 1eer B 1ern B
17E8 1eap A 1a0q L
Fab E51 Light Chain 1rzf L 1q1j M
Fab Fragment, Antibody A5b7 1ad0 A 1rmf L
Germline Metal Chelatase Catalytic Antibody,
Chain H

1n7m H 1ngy A

Humanized Antibody D3h44 1pg7 H 1jps H
Immunoglobulin 1ce1 L 1t04 C
Lambda III Bence Jones Protein Cle 1lil A 1lil B
Chimeric Germline Precursor Of Oxy-Cope Cat-
alytic Antibody Az-28 (Light Chain)

1d6v L 1axs L

Hyb3 Light Chain 1w72 M 1adq L
Fibroblast Growth Factor Receptor 2 1e0o D 1djs A
Septum Site-Determining Protein Minc 1hf2 C 1hf2 A
Vascular Cell Adhesion Molecule-1 1vsc B 1vca A
P58-Cl42 Kir 1nkr A 2dli A
N2b-Titin Isoform 2f8v C 2a38 C
Transcriptional Regulator, Tetr Family 1zkg A 1z77 A
Hypothetical Transcriptional Regulator In Qaca
5”Region

1jt0 A 1jtx A

Muscle-Specific Kinase Receptor 2iep B 2iep A
Transcriptional Regulator 3vok A 3vp5 A
Tenascin 1qr4 B 1qr4 A
Fatty Acid-Binding Protein, Epidermal 4azr B 1b56 A
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