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Abstract

Small RNAs (sRNAs) are a broad class of short regulatory non-coding RNAs

that play critical roles in many important biological pathways. They suppress the

translation of messenger RNAs (mRNAs) by directing the RNA-induced silencing

complex to their sequence-specific mRNA target(s). In plants, this typically results

in mRNA cleavage and subsequent degradation of the mRNA. Cleaved mRNA frag-

ments can be captured on a genome-wide scale using a high-throughput sequencing

technique called degradome sequencing, which can then be used to identify causal

sRNAs.

Recent improvements to sequencing technologies have resulted in typical se-

quencing experiments now producing millions of unique reads. This has led to new

challenges in bioinformatics regarding the computation time and resources required

to perform sRNA and degradome data analyses. In this thesis, we present three new

sRNA and degradome analysis tools that we have developed called PAREsnip2,

PAREameters and NATpare.

PAREsnip2 is a tool we developed to predict sRNA targets, on a genome-wide

scale, using degradome data and configurable targeting rules. Employing novel

sequencing encoding and data structures, PAREsnip2 outperforms existing tools in

computation time, at times by more than two orders of magnitude, with minimal

computational resource requirements.

PAREameters is a computational method for inference of plant microRNA

targeting rules, using the degradome, that can then be employed by PAREsnip2.



Benchmarking on multiple A. thaliana datasets show that the computationally

inferred criteria outperform currently used criteria in terms of sensitivity on all

datasets while maintaining precision on most.

NATpare is a tool for high-throughput prediction and functional analysis of

nat-siRNAs using the degradome. NATpare is the first tool of its kind to combine

nat-siRNA prediction with functional analysis using the degradome. Compared to

current methods, our new algorithm speeds up computation time by over two orders

of magnitude when analysing an A. thaliana dataset. We also demonstrate that it is

the only computational method able to complete analyses of non-model organisms

within a reasonable time frame.

We exemplify the use of these computational methods by performing functional

analysis of CMV D-satRNA derived sRNA in S. lycopersicum to better understand

their role in virus induced plant death.

vi
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Chapter 1

Introduction

Small RNAs (sRNAs) are short (19-24 nucleotide) RNA molecules that are in-

volved in many important and diverse biological pathways such as growth and

development, disease resistance, and stress response [194, 54]. The mechanisms in

which they function, a process known as RNA interference, where sRNAs regulate

the expression of their target messenger RNAs (mRNAs), was discovered by [67],

who were awarded a Nobel Prize for their work. In plants, sRNA mediated gene

regulation typically happens through messenger RNA cleavage and these cleavage

products can be captured on a genome-wide scale using a high-throughput sequenc-

ing technique called degradome sequencing. Recent advances in next-generation

sequencing technologies have resulted in increased availability, higher through-

put and reduced cost. Consequently, this has enabled generation of sRNA and

related sequencing data from a wide range of species, tissues and conditions [58]

in addition to sequencing datasets in general growing larger in both size and read

count.

High-throughput sequencing has become one of the de facto experimental

techniques for identifying sRNAs. However, it can still be quite challenging

to identify and confirm their targets, a fundamental step in understanding their
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function. Degradome data has proven to be a valuable resource that can be used

to quantify mRNA cleavage products and to help identify possible causal sRNAs.

Many computational methods exist for the identification of sRNA targets, some

of which also incorporate degradome data into their prediction pipeline. However,

these methods present various weaknesses, in particular with their computation

time and resource requirements, but also their prediction accuracy. In this thesis, we

develop user-friendly software for sRNA and degradome analysis that is scalable

with recent sequencing datasets.

For each tool presented, we provide detailed descriptions of the methods im-

plemented and perform in-depth computational analyses and benchmarking that

demonstrates their usefulness to the field of sRNA research. Through collaboration

with experimental biologists, we also utilize our software to perform computational

analyses in Solanum lycopersicum that helps answer their biological questions.

Moreover, further experimental validation of the predictions made using our tools

provides verification of the computational methods developed and presented in this

thesis.

We hope that our software contributions will enable the use of specialist bioin-

formatics tools without the need for any computational expertise and in doing

so, will contribute towards new discoveries within RNA silencing pathways in all

manner of experimental contexts.

We now give an overview of the contents of each chapter in this thesis.

Chapter 2. In this chapter, we provide an introduction into the relevant bio-

logical background information necessary to the work presented in the rest of this

thesis. We focus on sRNA biogenesis and function, more specifically, their role

in post-transcriptional gene silencing in plants. We then provide an overview of

methods to obtain sequencing data from biological samples, which leads onto a

discussion about quality control of sequencing data. This is followed by a descrip-
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tion of some of the software tools available for classification of sRNAs. We then

introduce tools available for sequence-based sRNA target prediction and discuss

the search parameters they use. Finally, we introduce a high-throughput technique

for validating sRNA targets in plants called the degradome.

Chapter 3. In this chapter, we introduce how degradome data can be used to

support computational prediction of sRNA targets in plants. This leads onto a review

of current methods and tools available for degradome analysis. We then introduce a

new algorithm and software tool, called PAREsnip2, that can be used to quickly

and efficiently identify sRNA targets on a genome-wide scale using configurable

targeting rules. We evaluate the computational and prediction performance of

PAREsnip2 and compare the results to those of currently available methods. The

algorithms and software implementation, experimental testing and the generation

of results were my contribution to this work. The idea to develop a new tool for this

type of analysis was conceived jointly between myself, Dr. Leighton Folkes and

Prof. Vincent Moulton. The growing of the plants and generation of the sequencing

data was performed by members of the Dalmay lab at UEA.

Chapter 4. In this chapter, we introduce PAREameters, a tool for computa-

tional inference of plant microRNA (miRNA) targeting criteria using degradome

sequencing data. This tool was developed to assist the user when selecting tar-

geting parameters for predicting sRNA targets using PAREsnip2. We then eval-

uate current, manually inferred and computationally inferred criteria on a set of

high-confidence experimentally validated Arabidopsis thialiana miRNA targets

in multiple datasets. We investigate the differences in inferred targeting criteria

of conserved and species-specific miRNAs, which then leads onto the analysis of

targeting criteria in non-model organisms. Finally, we compare the differences in

inferred criteria between high and low confidence miRNA targets. The algorithms

and software implementation, experimental testing and the generation of results

were my contribution to this work. The idea to develop a new tool for this type
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of analysis was conceived jointly between myself, Dr. Irina Mohorianu and Prof.

Vincent Moulton. The R code used for the statistical analyses presented in this

chapter was written by Dr. Irina Mohorianu.

Chapter 5. In this chapter, we introduce a new tool, called NATpare, for

classification and functional analysis of natural anti-sense short interfering RNAs

(nat-siRNAs) using degradome data. We begin by discussing the use of degradome

data besides from sRNA target prediction. We then introduce the new software

pipeline and accompanying algorithm. We then discuss the evaluation process and

compare the results to that of other publicly available tools. Finally, we exemplify

the use of NATpare by performing an investigation into nat-siRNAs identified in

different tissues and stress conditions. The idea to develop a new tool for this type

of analysis was conceived jointly between myself, Dr. Leighton Folkes and Prof.

Vincent Moulton.

Chapter 6. In this chapter, we perform analyses on sRNA and degradome

libraries obtained from S. lycopersicum infected with Cucumber mosaic virus

(CMV) and D-satellite RNA (D-satRNA) using the UEA sRNA Workbench. We

begin by introducing the virus and satellite RNAs and the effect they have on

various plant species. We then explain the data we are using, how it was obtained,

how it was processed and the results of the quality checking. This is followed by an

investigation into the possible function of necrogenic D-satRNA derived sRNAs

using PAREsnip2. Through the degradome, we identify a number of putative targets

for the sRNAs containing necrogenic nucleotides that are found exclusively within

the D-satRNA libraries. We then investigate these target genes in more detail by

comparing the target site to homologous genes found in surviving plants. Finally,

we present the results from some experimental validation of these candidates. All

computational analyses presented in chapter are my contribution to this work.
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Chapter 7. In this final chapter, we discuss some future directions and exten-

sions to this work
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Chapter 2

Background

2.1 Summary

This chapter provides an introduction to the biology and a review of computational

methods relevant to the work presented within this thesis. This starts with a

description of RNA silencing, as it is fundamental to the rest of this work, which

includes a brief account of the biogenesis and function of sRNAs. This leads onto

an introduction to the computational side of this work, starting with the generation,

quality control and processing of sequencing data obtained from biological samples.

We then discuss the currently available tools for the classification of sRNAs from

sequencing data. Finally, we discuss current computational methods used for the

prediction of sRNA targets, the parameters they employ, and the high-throughput

methods used to validate these predictions.

2.2 DNA and RNA

Deoxyribonucleic acid (DNA) is a nucleic acid sequence that stores the genetic

instructions used in the development, functioning, and reproduction of all known
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organisms, usually referred to as the organisms genome. The information in DNA

is stored as a sequence made up of four nucleotide (nt) bases: adenine (A), guanine

(G), cytosine (C), and thymine (T). It is composed of two separate strands where

the nucleotides are bound together through Watson-Crick base pairs, i.e. pairs in

the form of guanine:cytosine (G:C) and adenine:thymine (A:T) hydrogen bonds

[210], and this results in double-stranded DNA that forms a helix structure. To

represent direction on a sequence of nucleotides, the terms five prime (5’) and three

prime (3’) are used, with 5’ referring to the start and 3’ referring to the end of the

sequence.

Ribonucleic acid (RNA) is another type of nucleic acid sequence that is pro-

duced from a DNA template through a process called transcription. This is the

first step of gene expression, in which a section of DNA is copied into RNA by the

enzyme RNA polymerase, with the resulting RNA sequence being either coding

or non-coding RNA (ncRNA). Coding RNAs, also known as messenger RNAs

(mRNAs), serve as a template for protein synthesis through translation, which

is part of the central dogma of biology [45], shown in Figure 2.1. Alternatively,

the transcribed RNA may encode for a non-coding RNA, such as a microRNA

(miRNA), transfer RNA (tRNA) or ribosomal RNA (rRNA), each with their own

specific functions within a cell [55].

Although DNA and RNA are both nucleic acids sequences, they differ in

a number of important ways. Firstly, RNA contains the base uracil (U) rather

than thymine (T). Second, DNA is a blueprint for genetic information contained

within the organism, whereas RNA employs this information to produce proteins or

functional ncRNAs. Finally, DNA consists of two strands, arranged in a double helix

[209], whereas RNA is usually only single stranded and folds upon itself to form

different structures depending on its required function [170]. The way the RNA

sequence folds and the structure that is formed is dependent on the intra-molecular
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Fig. 2.1 The central dogma of molecular biology. Demonstrating the process of
DNA replication, transcription of DNA to RNA and the translation of RNA into
functional proteins. Figure obtained from Wikipedia under CC-BY-SA 3 license.

interactions between the nucleotides through complementary Watson–Crick base

pairs [210].

2.3 RNA interference

RNA interference (RNAi), also known as RNA silencing, was discovered in both

animals and plants in the 1990s [156, 66, 67]. The work in this thesis is focused

exclusively on plants in which there exists at least three different RNAi pathways

[16]. A common feature of each pathway is the excision of double stranded RNA

(dsRNA) by RNase-III-type enzymes called Dicers [16]. In plants, there exists at

least 4 different Dicer-like (DCL) proteins, each with a specific role within the

RNAi pathway. Cleavage of dsRNA by one of the Dicer-like proteins results in the

production of double stranded ncRNAs called small RNAs (sRNAs) which are in

the range of 19-25 nucleotides (nt) [20]. After the cleavage process, the new double

stranded fragments are separated into two single stranded RNAs. One of these

single stranded RNAs, known as the guide RNA strand, is loaded into a member

of the Argonaute (AGO) protein family, whilst the other strand is degraded. AGO

forms part of a larger and complex system known as the RNA Induced Silencing
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Complex (RISC), where mRNA targets are identified based on complementary

Watson-Crick base pairing between the mRNA sequence and the guide sRNA

sequence [226]. Once a target has been found, RISC can silence it through one of

three mechanisms [34].

In plants, the sRNA-directed mRNA targets are generally silenced through

cleavage and degradation due to the high degree of complementarity between the

guide sRNA and the mRNA sequences [8]. This cleavage is highly specific and

usually occurs between nucleotide positions 10 and 11 of the sRNA sequence

[139, 59]. A simplified representation of this process is presented in Figure 2.2.

The other two mechanisms are cytoplasmic siRNA silencing and suppression of

transcription by DNA methylation [16], however these methods are not relevant to

the work presented in this thesis, which is primarily focused on silencing through

mRNA cleavage. Whilst the RNAi pathway is common to all sRNAs, the specific

details differ based on the class of sRNA being processed. The following section

summarises the differences in biogenesis and function of different classes of sRNA.

2.3.1 MicroRNAs

First discovered within the nematode model organism Caenorhabditis elegans in

1993 [119], miRNAs are a class of endogenous sRNA typically around 21nt in

length. They are unique in that they are derived from a longer, single stranded

precursor sequence that folds into an imperfect hairpin type structure known as a

hairpin RNA (hpRNA). They can be found in plants, animals and even some viruses,

and they play important roles in post-transcriptional regulation of gene expression

[32, 108]. The biogenesis and mode of action of miRNAs differ in both plants

and animals. In plants, the production of a mature miRNA is a multi-step process

and starts with a single stranded primary miRNA (pri-miRNA) that is transcribed

from a miRNA gene by an RNA polymerase II enzyme [120]. The pri-miRNA
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Fig. 2.2 Part of the RNAi pathway focusing on the involvement of RISC. This
includes RISC binding double-stranded RNA, degrading one of the strands and
using the other to target complementary messenger RNA resulting in cleavage and
subsequent mRNA degradation.

then folds to form a hairpin structure and is processed by a DCL enzyme resulting

in a precursor miRNA (pre-miRNA) with 2nt 3’ overhang [91]. A DCL enzyme,

typically DCL1, then further processes the pre-miRNA into a double stranded RNA

(dsRNA) duplex consisting of the mature miRNA strand and its complementary

sequence called the miRNA star (miRNA*) strand. Finally, the dsRNA duplex is

separated by a helicase enzyme and the mature strand is loaded into a member of

the AGO protein family and forms the RISC [149].

The primary mechanism of miRNA-mediated gene silencing in plants is through

mRNA cleavage, however translational repression has also been observed [207].

Over the last 15 years, much emphasis has been placed on identifying plant miRNAs
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and investigating their involvement in plant development stages and stress response.

The rapid growth of the miRNA field led to the miRBase database being created

which provides comprehensive miRNA sequence data, annotation and predicted

gene targets to the scientific community [77]. As of 2020, miRBase, which is

currently on version 22, contains miRNA sequences from 271 organisms consisting

of 38 589 hairpin precursors and 48 860 mature miRNA sequences [110].

Previous studies in both in model and non-model plants show that miRNAs

play crucial roles in many biological processes including development, growth

and response to different environmental abiotic and biotic stresses. In Arabidopsis

thaliana, for example, miR167 targets auxin response factors (ARFs) in order to

regulate the emergence of shoot-borne roots [81] and both miR156 and miR172

work together to regulate developmental timing and juvenile to adult transition

[213]. It has also been shown that many miRNAs, including miR156, miR164,

miR168, miR171, miR393, miR396 and miR398, are associated with a broad range

of plant defense responses to stresses including drought, salt, and cold (see review

paper [174]).

2.3.2 Small interfering RNAs

Found in both plants and animals, small interfering RNAs (siRNAs) are similar to

miRNAs in that they are produced from the processing of long dsRNA precursors

with 2nt 3’ overhang and are involved in the RNAi pathway [33]. The primary

difference between miRNAs and siRNAs is that miRNAs are derived from a single

stranded hpRNA, whereas siRNAs are formed by the intermolecular hybridization

of two complementary RNA sequences [9]. The dsRNA precursors of siRNAs can

arise from the hybridization of sense and anti-sense transcripts, from the folding

of an inverted-repeat sequence, from the hybridization of two unrelated RNA

molecules with highly complementary sequences or, most commonly, following
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synthesis by RNA-dependent RNA polymerases (RDR) [25], as shown in Figure

2.3. We now briefly introduce the biogenesis of different classes of siRNAs, with

the exception of heterochromatic small interfering RNAs (het-siRNAs) as they do

not induce mRNA cleavage.

Fig. 2.3 Hierarchical classification system for endogenous plant sRNAs. Thick
black lines indicate hierarchical relationships. Figure from Axtell et al. [9] with
permission from Annual Reviews, Inc.
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2.3.2.1 Secondary small interfering RNAs

Secondary siRNAs are a type of sRNA derived from dsRNA precursors that are

generated from prior sRNA processing [9]. Cleavage of mRNA transcripts can

lead to synthesis of dsRNA by a RDR, which can then be processed by a DCL

protein into secondary siRNAs. Current understanding of their biogenesis requires

initiation by miRNAs or other secondary siRNAs, RDR6 and DCL4 [9]. Secondary

siRNAs can be separated into two classifications: phased siRNAs (phasiRNA)

and trans-acting siRNAs (ta-siRNA), based on their origin and function. In both

cases, they are able to function similarly to miRNAs by directing the RISC to

induce cleavage of target mRNAs. The difference between these two classes is that

ta-siRNA are able to induce the cleavage of mRNAs in trans, i.e. genes other than

that of their originating mRNA [63].

The first miRNA-triggered ta-siRNA producing loci were initially identified

and characterized in A. thaliana and these secondary ta-siRNA were found to

suppress the expression of genes that were unrelated to their originating transcript

[164, 206]. Currently, four families of ta-siRNA producing loci have been identified

in A. thaliana: TAS1 and TAS2, cleaved by miR173, and TAS3 and TAS4, which

are cleaved by both miR390 and miR828 [164, 206, 3, 211, 168]. Additional

TAS genes, TAS5-10, have been identified or predicted in other plant species,

suggesting that many secondary siRNA-producing loci may not yet be known

[6, 124, 231, 241]. Since the discovery of TAS derived siRNA, the importance

of these secondary siRNA has been the focus of much attention, for example, in

2006 Fahlgren et al. reported that juvenile-to-adult phase transition is controlled by

TAS3 derived ta-siRNAs through negative regulation of ARF3 mRNA [62]. It has

also been shown that failure of the ta-siRNA pathway to regulate ARF3 and ARF4

underlies tomato shoestring leaves, a symptom often associated with plant virus

infection [223].
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2.3.2.2 Natural anti-sense transcript small interfering RNAs

Natural anti-sense transcript small interfering RNAs (nat-siRNAs) are a unique class

of siRNA that originate from the overlapping region of two complementary tran-

scripts. These nat-siRNAs are induced by abiotic and biotic stresses [104, 26, 97] or

accumulate in specific developmental stages [172, 238]. The founding example was

identified in A. thaliana, where a pair of cis-NATs, SRO5 and P5CDH, were shown

to be involved in the response to salt tolerance through the RNAi pathway [26].

During salt stress, SR05 is expressed and can form a complementary overlapping

region with the constitutively expressed P5CDH, which is then further processed by

a specific biogenesis pathway to produce a 24nt nat-siRNA. This nat-siRNA then

directs the cleavage of P5CDH, which is subsequently used as a template by RDR6

to produce dsRNA that is then processed by DCL1 to produce 21nt secondary

nat-siRNAs, triggering a reinforcement phase [26]. Further information relating to

this class of sRNA can be found in Chapter 5.

2.4 Sequencing of biological samples

Sequencing is the process of determining the order of the four nucleotide bases, A,

C, T and G, that comprise a DNA sequence and is crucial to biological research

amongst other fields [85]. The original methods for DNA sequencing were devel-

oped in 1977 and are now considered as first generation sequencing techniques.

The first was called chemical cleavage sequencing and was developed by Maxam

and Gilbert [147]. The second was called Sanger sequencing and was developed by

Sanger and collaborators [176] building on a previously developed approach called

plus and minus sequencing [175]. Chemical cleavage sequencing was not widely

used due to the use of hazardous chemicals and the large amount of DNA that was

required. Sanger sequencing however, due to its simplicity and reliability, became
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the dominant method for sequencing at the time [82]. Further development into

sequencing technologies resulted in the development of the first automatic sequenc-

ing machine in 1987 by Applied Biosystems, called the AB370, based on Sanger

sequencing. The Sanger sequencing technique has been used in several sequencing

projects of different plant species including A. thaliana [92], Oryza sativa (rice)

[75] and Glycine max (soybean) [178]. Further improvements to these automatic

sequencing instruments and their software aided the completion of the human

genome in 2001 [42], which led to the development of Next Generation Sequencing

(NGS) technologies [181], also referred to as High-throughput Sequencing (HTS)

or Second Generation Sequencing (SGS).

NGS technologies differ from the original sequencing technologies in that they

are massively parallel, high-throughput and lower in cost, and this development

has enabled the generation of sequencing data on a massive scale [145]. Below, we

briefly describe some of these technologies.

2.4.1 Roche/454 sequencing

Roche/454 sequencing was the first to achieve commercial introduction and is an

approach that uses pyrosequencing, a technique that detects light emitted when

additional nucleotides are added to a complementary strand of DNA being syn-

thesized from a template sequence. This approach to sequencing is known as

sequencing-by-synthesis [71]. In pyrosequencing, when an additional nucleotide

is ligated it results in the release of a pyrophosphate, which initiates a number

of subsequent downstream reactions that ends with the production of light by the

enzyme luciferase. Through the detection of light after each subsequent additional

nucleotide, the sequence of the DNA fragment is determined [144]. The use of a pi-

cotiter plate allows for a large number of reactions to occur in parallel, considerably

increasing the sequencing throughput.
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The Roche/454 sequencing technology is able to generate relatively long reads

which are subsequently easier to map to a reference genome. However, it does

have shortfalls when there exists homopolymer regions, i.e. large regions of a

single nucleotide, resulting in insertion and deletion errors. This is because the

identification and length of homopolymer regions are determined by the intensity

of the light emitted and signals with very high or very low intensity levels may lead

to miscalculating the number of nucleotides [90].

2.4.2 Illumina sequencing

Developed initially by Solexa and then later purchased by Illumina, the Illumina

sequencing technology is a sequencing-by-synthesis approach and is currently the

most used technology in the NGS market. The first sequencing machine released

by Illumina/Solexa was the Genome Analyzer and was able to produce very short

reads, roughly 35nt in length, and gave researchers the power to sequence 1Gbp of

data in a single run. More recently, the output of the Illumina sequencing machines

is much higher, around 600 Gbp, and the read lengths are longer, roughly 100bp, in

length [113]. In brief, the Illumina sequencing method starts with the libraries being

randomly fragmented and adaptors ligated to both ends of each fragment. Next,

clusters are generated by loading the fragments onto a flow cell containing short

sequences that are complementary to the library adaptors. Each fragment is then

amplified into clonal clusters through a process called bridge amplification. During

the sequencing process, the addition of a single nucleotide through synthesis emits

a light signal which is detected by a camera and then translated into a nucleotide

sequence through computer algorithms.
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2.4.3 Ion Torrent sequencing

Life Technologies released the Ion Torrent’s semiconductor sequencing technology

in 2010. The preparation and sequence process are similar to that of the Roche/454

pyrosequencing platform. However, during the sequence synthesis process, instead

of identifying light signals, Ion Torrent’s semiconductor sequencing measures the

pH changes induced by the release of hydrogen ions during DNA extension [173],

which are then converted into a voltage signal and used to generate the nucleotide

sequence [169]. One of the major advantages to the Ion Torrent sequencer is that

they are able to produce reads with lengths up to 600bp.

2.4.4 Pacific Biosciences

Pacific Biosciences developed the first sequencer that uses single-molecule real-time

sequencing (SMRT) and is an example of a third-generation sequencing technology.

It uses the same light labeling process as other SBS technologies but does it in

real time when the nucleotide additions occur rather than in cycle. Similar to

other methods, the detection of the light emiting nucleotides makes it possible to

determine the sequence composition. Compared to SGS, this approach has the

advantage of being very fast to prepare [136] and allowing for sequencing of very

long reads, currently averaging roughly 10 kbp but up to 60 kbp [39]. However,

this approach has a high error rate, around 13% [113], consisting of predominantly

insertion and deletion errors.

2.4.5 Sequencing data repositories

Given the increased use of sequencing in all manner of experimental and research

contexts, a number of public repositories have been made available to freely store

sequencing data and make it accessible to the wider community. Owing to the
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current increase in throughput of modern sequencing machines, these repositories

are vital for researches to store and share their data. In the context of nucleic

acid sequences, the predominant data repositories are the National Center for

Biotechnology Information (NCBI) Sequence Read Archive (SRA) [122], the

NCBI Gene Expression Omnibus (GEO) [56], the European Nucleotide Archive

(ENA) [121] and GenBank [19].

2.5 From biology to bioinformatics

Over the last 20 years, computational techniques have been fundamental to biologi-

cal research [146]. With the ever increasing amount of biological data that we have

available, it is impractical for manual analyses and instead, a large number of com-

putational methods and tools have been developed to both aid our understanding

and to extract meaningful information from our data. In this section, we discuss

the steps taken to process sequencing data obtained from a typical sequencing

experiments and introduce some of the software tools that are relevant to this work.

2.5.1 Quality control and processing of sequencing data

In this thesis, we focus exclusively on data obtained from Illumina sequencing

machines. Here, we discuss the steps taken for performing quality control and

processing of sequencing data.

Typically, the data obtained from an Illumina sequencing experiment will be

in FASTQ [41] format with the 5’ adaptor removed but the 3’ adapter still present.

Removal of the adapter sequence is a crucial step in in the quality control process

and ensures that a valid sequence will map back to the reference genome. This is

commonly done by matching the first ∼8nt of the adapter sequence to the generated

read, trimming the adapter away and returning the remaining sequence for further
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processing. Any sequences where the adapter can not be found are discarded. In the

case where high-definition (HD) adaptors [219] are used, after trimming the adapter

sequence an additional 4 nucleotides from both the 5’ and 3’ end are removed.

After adapter trimming it is necessary to filter out some additional sequences, such

as those that contain unknown bases, usually denoted as ‘N’, as matching them

back to the reference genome may not provide accurate alignment. In addition,

reads should be filtered based on their expected lengths, for example with sRNA

and degradome sequencing, where the expected length ranges are 21-24nt [25] and

20-21nt [74], respectively.

After performing adapter trimming and length filtering, the next step is to

perform further quality control by aligning the reads to the reference genome, with

any sequences failing to align being discarded. Typically, due to the read length

of sRNA and degradome data, mismatches and gaps are not permitted during the

alignment process. Many short read sequencing alignment tools make use of hash

table or tree based data structures as a core part of their algorithm to improve

computation time [127]. Common software tools for short read alignment include

PatMaN [165], Bowtie [117], [116], BWA [125], SOAP2 [132] and Bowtie2 [116].

Pattern Matching in Nucleotide databases (PatMaN) [165] is a short read align-

ment tool that allows for both gaps and mismatches within the alignment search.

The algorithm starts by building a tree of all the query sequences such that ev-

ery short read is placed into the tree as a path from the root node that ends at

a leaf node containing the identifier for the query sequence. It then performs a

non-deterministic search on the tree to find matches within the reference sequence.

An advantage of PatMaN is that it does not require any pre-processing of the input

data.

Bowtie is a fast and memory efficient alignment tool designed for the alignment

of short read sequences to large genomes [117]. It indexes the reference sequence
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using a system based on the Burrows-Wheeler Transform (BWT) [30] and the

full-text minute-space (FM) index [64, 65], which allows it to keep a small memory

footprint. The Bowtie algorithm introduced two novel extensions to an existing

exact matching algorithm for searching in an FM index, developed by Ferragina

and Manzini [64], that allow for the technique to be applied to short read alignment.

The first of these extensions was the development of a quality aware backtracking

algorithm that allows for mismatches and also favours high quality alignments. The

second extension was a double indexing strategy to avoid backtracking unnecessar-

ily. At the time of publication, Bowtie showed a large performance advantage over

other tools available, which included MAQ [128] and SOAP [131], when aligning

short reads to the human genome with comparable accuracy.

Short oligonucleotide alignment program (SOAP) 2 [132] is a revised version

of the original SOAP algorithm [131]. The new algorithm uses BWT indexing of

the reference sequence as a way to reduce the memory footprint. Exact matching is

performed by constructing a hash table to search for the location of a read within the

BWT reference index. In order to find non-exact alignments, a split-read strategy

was developed. This works by splitting the read into a number of fragments, based

on the number of mismatches allowed, and then counting the number of mismatches

contained within the fragments. For example, to allow for one mismatch the read

is split into two fragments. The mismatch can then exist in, at most, one of the

two fragments. This method was able to give considerable performance increases

compared to the original SOAP algorithm with a decreased memory requirement

[132]. It was then compared to the other BWT alignment tool at the time, Bowtie,

and it was found that they had very similar results when it came to the accuracy of

the alignments and the memory required during the alignment process.

Similarly to Bowtie, the Burrows-Wheeler Aligner (BWA) [125] is based on the

BWT FM index that enables fast exact matching. BWA supports gapped alignments

and the default output alignment format is SAM (Sequence Alignment/Map format)
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[126]. BWA was compared against Bowtie, MAQ and SOAP2. At the time of

publication, SOAP2 and Bowtie were the other BWT based short read aligners,

whilst MAQ indexes reads using a hash table. The results from [125] showed that

on simulated data BWA was more accurate than Bowtie and SOAP2, with similar

accuracy to MAQ. In terms of memory footprint, BWA and Bowtie were very

similar, both outperforming SOAP2. MAQ achieved the lowest memory footprint

on the simulated dataset and was identified to be linear with respect to the number

of reads to be aligned.

Bowtie 2 [116] extends the FM index based approach of the previous version of

Bowtie to allow for gapped alignments. Alignment gaps can occur from sequencing

errors or from true insertions and deletions, and the original Bowtie algorithm

will fail to align reads that contain gaps resulting in the alignment being missed.

Furthermore, the inclusion of gapped alignments within the search greatly increases

the size of the search space, substantially slowing the aligners dependent on index

based approaches. Bowtie 2 attempts to resolve this issue by dividing the algorithm

into two steps. The first step is to extract seeds from the query reads and to perform

a gap free seed alignment, that uses the speed and memory advantages of the FM

index found in the original Bowtie algorithm, in order to align the seed to the

reference. The second step is to extend the seed alignment into a full alignment

by performing dynamic programming that benefits from the efficiency of single

instruction multiple data parallel processing that is available on modern processors.

The benchmarking results from [116] show that Bowtie 2 was able to perform

sensitive gapped alignments without any significant computational penalties and

it was able to improve on the previous Bowtie algorithm in terms of speed and

percentage of reads aligned.
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2.5.2 Computational classification of plant sRNAs

In this section, we introduce software tools that can be used to classify sRNA

sequences.

2.5.2.1 miRNA prediction

As discussed previously, miRNAs are known regulators of essential biological

processes in plants and their biogenesis is key to their discovery. The surge of

research interest in miRNAs led to the development of a number of miRNA predic-

tion tools, each attempting to closely model the miRNA biogenesis pathway during

prediction. Early tools developed for prediction of plant miRNAs include miRCat

[155], miRDeep-P [222], miRDeepFinder [215], miRPlant [5] and more recently,

miRCat2 [158]. These tools have been used to successfully predict plant miRNA in

several organisms, including grapevine [160], wheat [79] and tomato [159].

Typically, these tools will align the sRNA sequences to the genome, extract

longer sequences from the alignment site and attempt to fold them into a hairpin

like structure using an RNA folding algorithm such as RNAfold [88], RNALfold

[89] or RANDfold [24]. The candidate sRNAs that successfully fold into hairpins

are then further processed using rule based models to minimize the reporting of

false positives [150, 12]. Standard filtering criteria for miRNA candidates include:

discarding those that match to the genome multiple times as genuine miRNAs are

unlikely to be derived from highly repetitive regions of the genome [150, 111];

those that do not fit the typical length of a mature miRNA sequence (21-23nt);

and where candidates do not have miRNA-like read alignment e.g. candidates

filtered on the presence of a miRNA star (miRNA*) sequence resulting from precise

processing of the pre-miRNA sequence [38]. Indeed, each tool may also have their

own additional criteria that candidates must adhere to, for example the entropy-
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based detection of miRNA loci designed to cope with the high sequencing depth of

current NGS datasets implemented within miRCat2 [158].

2.5.2.2 Secondary siRNA and ta-siRNA prediction

Unlike miRNAs with their well defined secondary structure characteristic, sec-

ondary siRNA precursors, such as TAS genes, require alternative computational

prediction strategies [153]. Typically, this type of computational analysis uses

sRNA sequencing data and a genomic reference to look for phased alignment

patterns. The UEA sRNA Workbench [192], ShortStack [10], pssRNAMiner [48]

and shortran [80] all implement slight variations of the method described by Chen

et al. [37] for predicting phased sRNA. This approach identifies sRNA alignment

clusters and the occurrence of phased patterns within them. In an attempt to better

model the DCL processing of dsRNA, the UEA sRNA Workbench and ShortStack

both introduced a 2nt shift that adjusts the start position of the sRNA located on the

opposite strand during the prediction process.

2.5.2.3 NATs and nat-siRNA prediction

Annotated genomes/transcriptomes have been used in conjunction with sRNA

sequencing datasets to predict NATs and NAT-siRNAs in a number of organisms

[167, 141, 235, 233]. Recently, NATs were identified from public sequencing data

in 69 plant species and a database called PlantNATsDB was constructed [35]. This

database includes information regarding sRNAs originating from overlapping and

non-overlapping regions of NAT transcript pairs. However, computational tools

for the prediction of NATs and NAT-siRNAs are limited in number. Currently,

two methods exist for this type of analysis: the NASTI-seq R package [133] and

NATpipe [224].
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NASTI-seq focuses exclusively on cis-NAT identification and uses strand-

specific RNA sequencing data as input. NATpipe, which is currently the only

tool developed for identifying both cis- and trans-NATs, uses transcript sequences

as input and performs a BLAST [105] search to identify candidate NATs with

annealing potential. These are then subject to an RNAplex [195] analysis to ex-

amine their secondary structure against a set of criteria [224]. If sRNA data is

also provided as input, NATpipe will align these to the NAT sequences looking for

phasing patterns, similar to that of ta-siRNA or phasiRNA.

2.5.3 Computational prediction of small RNA targets in plants

In this section, we introduce some of the widely used criteria for the prediction of

plant sRNA targets. We then describe briefly some of the software tools and web

servers that are available for predicting plant sRNA targets.

The majority of plant sRNA target prediction tools use fixed rule-based targeting

criteria inferred from experimental observations. The first set of criteria derived

for plant miRNA target prediction was published by Jones et al. [100] and then

further refined by Allen et al. in 2005 [3]. The criteria were inferred from an

analysis of 94 experimentally validated miRNA targets in A. thaliana and two

defining features were identified. First, the position and frequency of miRNA-target

mismatches were recorded and second, the predicted stability of the miRNA-target

duplex was determined. All miRNA-target duplexes within the set of 94 validated

targets contained four or less unpaired bases, four or less G:U pairs, up to one

gap, and a total of seven or fewer total unpaired and G:U bases. Figure 2.4A

shows the distribution of mismatches and G:U pairs across the miRNA sequence

for all miRNA-mRNA duplexes. It was observed that positions 2-13 formed a core

segment with relatively few mismatches compared to positions 1 and 14-21. A

scoring system was defined where mismatches and gaps were scored as 1 and G:U
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pairs were scored as 0.5. The difference compared to the previously published

criteria [100] was the inclusion of a x2 score multiplier for mis-paired bases within

the core segment. Using this criteria, a score of ≤ 4 captured 91 out of 94 validated

targets.

To calculate the stability of the miRNA-mRNA duplex, the minimum free

energy (MFE) ratio was calculated. This was determined using a hypothetical

duplex consisting of the miRNA sequence and a perfectly complementary target

sequence for each miRNA within the set of validated targets. Next, the minimum

free energy of each actual miRNA-target duplex was determined using RNAFold

[88]. The MFE ratio was then calculated by dividing the MFE of the actual duplex

by the MFE of the perfectly complementary duplex for each of the 94 miRNA-

mRNA interactions. It was shown that 89 out of 94 validated miRNA-mRNA

duplexes in the rule set had an MFE ratio of at least 0.73, as shown in Figure 2.4B.

A later study, published in 2010, by Noah Fahlgren and James Carrington [61],

performed a similar analysis but on a larger set of 155 experimentally validated

miRNA-mRNA interactions. The postulated scoring system did not differ from that

of the previous study [3], however by analysing a larger set of validated targets,

it was observed that there exists mis-paired bases at position 10 of the miRNA in

some experimentally validated targets, as shown in Figure 2.5.

Below, we briefly introduce and discuss popular computational methods and

tools used to predict sRNA targets using sequence-based complementarity criteria.

Plant Small RNA Target Analysis Server (psRNATarget) [49] is a web server

that can be used for plant sRNA target prediction and builds upon a previous tool for

target prediction called miRU [234]. The motivation behind its development was

that the majority of target prediction tools developed at the time of publication were

specifically developed for animal sRNAs [130], which are significantly different

to plant sRNAs in the target recognition process [15]. The alignment algorithm
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Fig. 2.4 Percent of mismatched and G:U base-pairs at each target position in the
rule development set. (B) Minimum Free Energy (MFE) ratio of target-miRNA
duplexes from the rule development set. Every miRNA-mRNA duplex in the rule
development set had a MFE ratio of at least 0.73. Figure from Allen et al. [3] with
permission from Elsevier.

used by psRNATarget is an implementation of the Smith-Waterman algorithm [186]

called ssearch [162]. psRNATarget gives the option of two sets of default criteria

for prediction, V1 [49] and V2 [50], the former uses the same scoring system as

miRU [234] complemented with an analysis of the target site accessibility using

the RNAup program [78]; the latter is based on the V1 criteria with and increased

size of the seed region, from 2–8nt to 2–13nt based on a previous study [9].

TAPIR [23] is another popular tool that follows similar prediction methods

used in psRNATarget. It allows a fast search using the FASTA algorithm [163],

for which the ubiquitous FASTA format was first designed [135], and for filtering

results uses RNAhybrid [112]. Targetfinder [61] and Target-align [216] are other
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similar methods that fall into the same category, i.e. using implementations of

the Smith-Waterman algorithm to identify possible targets based on sequence

complementarity.

Fig. 2.5 (a) The distribution of mismatches, gaps and G:U base pairs from 155
genuine miRNA-mRNA target duplexes in A. thaliana. (b) A. thaliana miR172a
and its target , At4g36920, illustrating the alignment scoring system used to predict
targets. The coloured box highlights positions 2 through 13, relative to the miRNA 5’
end, indicating the region where penalty scores are doubled. Figure from Fahlgren
and Carrington [61] with permission from Springer Nature.

2.6 Validation of sRNA targets

An important step in understanding the biological function of a sRNA is to identify

its targets. As we have seen, most computational tools for plant sRNA target predic-

tion use techniques that search for complementarity between a sRNA sequence and

a potential target sequence [229]. These types of prediction use stringent position-

based targeting rules that tend to report a high number of predictions and offer
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little flexibility. Whilst these results will almost certainly contain genuine targets,

many of the predictions may be false positives [229]. Therefore, the predicted

targets must undergo further experimental validation before we can confident that

the interaction is genuine.

As discussed above, the typical process of post-transcriptional gene silencing

by sRNAs in plants is through mRNA cleavage and subsequent degradation. Exper-

imental analysis of sRNA-directed AGO-mediated mRNA cleavage showed that it

generally happens between the 10th and 11th position of the sRNA [139, 59]. The

resulting upstream fragment of a cleaved mRNA degrades very quickly, however

the downstream fragment is stable in vivo owing to the presence of the poly-A

tail [51]. One such technique for validating sRNA targets is 5’ rapid amplification

of cDNA ends (RACE) [70] that works by identifying cleavage fragments for a

specific mRNA. However, this method is time consuming as it must be performed

for every cleavage site on each mRNA of interest. In addition, it also requires prior

knowledge of the flanking regions adjacent to the expected cleavage site. Thus, this

technique is best suited for validation of a small number of sRNA targets.

To identify and sequence the degraded mRNA cleavage products on a genome-

wide scale, a number of different techniques have been developed, including Parallel

analysis of RNA ends (PARE) [74], genome-wide mapping of uncapped and cleaved

transcripts (GMUCT) [76] and nanoPARE [179]. However, for simplicity, we shall

refer to the output of these techniques as the degradome for the rest of this thesis.

PARE, developed in 2008 [74], is a high-throughput technique for identifying

sRNA mediated mRNA cleavage products on a genome-wide scale. The protocol

combines a modified 5’RACE [70] with high-throughput deep sequencing to create

libraries that contain 3’ cleaved mRNA fragments. The cleavage products of sRNA-

directed AGO activity differ from other isolated mRNAs as they lack a 5’ cap and

are therefore ligation competent. This technique selectively clones all uncapped
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RNA molecules which have a 3’ Poly-A tail, resulting in a snapshot of the mRNA

degradation profile. GMUCT [76], also published in 2008, is, in essence, the

same technique as PARE in that it uses a modified 5’ RACE to identify sRNA-

mediated mRNA cleavage sites. One issue with these methods is that they often

require large amounts of input RNA, typically only obtainable from bulk samples.

Consequently, nanoPARE [179] was developed as an alternative to conventional

degradome techniques that can accurately profile mRNA 5’ ends on a genome-wide

scale using low amounts of total input RNA.

2.7 Discussion

In this chapter, we have provided an introduction to RNA interference, an overview

of plant sRNA biogenesis and a brief description of the different classes of plant

sRNA that exist for regulating gene expression in plants. We discussed various

sequencing techniques and tools used to identify different classes of sRNA from

HTS data. We then introduced methods for the prediction of plant sRNA targets

and the parameters that they use. Finally, we introduced the degradome, a high-

throughput strategy for the validation of sRNA targets in plants. In the next chapter,

we expand on this validation method and introduce a new algorithm and software

tool for degradome analysis.
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Chapter 3

High-throughput sRNA-mRNA

target prediction using the

degradome

3.1 Summary

In the previous chapter, we introduced high-throughput experimental methods for

validating sRNA targets in plants called degradome sequencing. In this chapter, we

describe a software tool, called PAREsnip2, that we developed to predict sRNA-

mRNA target interactions from degradome sequencing data using configurable

targeting rules. Although PAREsnip2 uses a different approach, we give it this name

since it is freely available in the UEA sRNA Workbench [192] where its predecessor,

PAREsnip [68], is also implemented. We start by introducing how degradome data

can be used to support sRNA target prediction, followed by the current software

tools available for this type of analysis alongside their their shortcomings. Next, we

describe the input, output and the methods we developed for PAREsnip2. We then
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evaluate the performance of the tool and discuss results from several degradome

analyses.

This chapter is an adapted version of the work published in Nucleic Acids

Research [198].

3.2 Background

As discussed in Section 2.5.3, an important step in understanding biological function

of a sRNA is to identify and validate its targets. Most computational tools for plant

sRNA target prediction use techniques that search for complementarity between

a sRNA sequence and a potential target-sequence using stringent, position based

targeting rules, such as those derived by Allen et al. [3]. Whilst these results will

almost certainly contain genuine targets, many of the predictions may be false

positives [157]. Therefore, the predicted targets must undergo further experimental

validation. Degradome sequencing captures the uncapped 5’ ends of cleaved mRNA

sequences, giving a snapshot of the mRNA degradation profile, and can be used as

evidence to identify causal sRNAs, see Figure 3.1.

We now discuss tools developed specifically for this type of analysis.

3.2.1 CleaveLand

CleaveLand [1] was the first tool developed specifically for the analysis of de-

gradome data and it has been used to successfully identify miRNA targets in a

number of plant organisms [160, 134, 187, 123, 2]. The tool is implemented using

the Perl programming language and the most recent version of the tool, Cleave-

Land4, was published in 2014 [29]. The first stage of the CleaveLand algorithm

is to align the degradome data to the reference transcriptome. This is done using

bowtie [117] and if needed, the bowtie indices for the transcript are built with
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Fig. 3.1 A sRNA is loaded into an Argonaute (AGO) protein and can target the
mRNA leading to endonucleolytic cleavage. The resulting mRNA fragments that
are un-capped at the 5’ end after cleavage can be obtained using high-throughput
sequencing methods. (B) Cleavage that has been mediated by an sRNA can be seen
as a cleavage signal when they are realigned to the mRNA reference sequence.

bowtie-build using default parameters. The bowtie alignment parameters allow

up to 1 mismatch and align to only the forward strand of the transcriptome. In

the case of multiple valid transcript alignments for a given degradome read, only

one is randomly selected and reported. Alignments are then processed to quantify
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the strength of the cleavage signal at each alignment site using a category system.

Specifically, the category system is defined as follows:

Category 4: just one read at that position

Category 3: greater than one read, but below or equal to the mean depth of

coverage on the transcript

Category 2: greater than one read, above the mean depth, but not the maxi-

mum on the transcript

Category 1: greater than one read, equal to the maximum on the transcript,

when there is more than one position at maximum value

Category 0: greater than one read and is the maximum value on the transcript,

when there is only one maximum value

The next stage of the CleaveLand algorithm is to find potential target sites of a

given sRNA. This is done using a Perl script, which is provided with CleaveLand,

called GStar that is a wrapper and parser for RNAplex [195], a tool created to

search for possible interactions between two RNA sequences using an energy

model [201, 239, 240]. GStar employs the search functionality of RNAplex to align

sRNA sequences against the reverse complement of a set of transcript sequences.

For each input sRNA sequence, the MFE, described in Section 2.5.3, of a perfectly

complementary sequence is calculated under default parameters. Next, the same

sRNA is analyzed against the entire transcriptome input and potential target sites

where the MFE ratio, defined as the target site MFE divided by the perfect MFE, is

greater than a given cutoff are kept for further processing. Reported sites are then

processed to identify the putative target site, which is the position on the transcript

opposite position 10 of the sRNA, and also the alignment score at the target site.

This score is based on the position-specific properties, as defined by Allen et al.

[3] and described in the previous chapter. Specifically, mismatched bases or gaps,
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are penalized with a score of 1, G-U wobbles are penalized with a score of 0.5 and

penalties are double within positions 2-13 of the sRNA.

After the reporting of potential target sites with GSTAr, the results are combined

with those from the degradome read alignment stage to identify any matches

opposite the predicted cleavage site (position 10 of the sRNA). If so, analysis

progresses for that sRNA-mRNA target interaction and a p-value is calculated.

Prior to the development of CleaveLand3, the p-value was calculated using a

random shuffle system to indicate how likely the reported duplex occurred by

chance. This was done by randomly shuffling the sRNA sequence and counting

the number of times it produced a valid alignment duplex with all other peaks of

the same category. This was repeated over a number of reshuffles, e.g. 100, and

the p-value was reported as the proportion of the shuffles that successfully aligned.

Since the development of CleaveLand3, the p-value is calculated using a cumulative

binomial distribution function to determine how likely a given degradome hit is to

occur by chance, given in equation 3.1, where n represents the number of predicted

targets between 0 and a threshold, i.e. the number of predicted targets with score

≥ 0 and ≤ 5, for a given sRNA. The probability, p, of a given position on a

transcript having a cleavage peak of a certain category is c
L−(t∗l) , where c is the

number of peaks with a given category, L is the sum of all transcript lengths, t is the

number of transcripts and l is the average length of the degradome fragments. Any

sRNA-mRNA interactions that pass the p-value filtered are reported to the user.

P(X > 0) = 1−
n

∑
x=0

 n

x

 px(1− p)x−n where p =
c

L− (t ∗ l)
. (3.1)
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3.2.2 SeqTar

Sequencing-based sRNA target prediction (SeqTar) [236] is a method developed

to identify miRNA targets that combines degradome data with a modified Smith-

Waterman [186] alignment algorithm. The motivation for the development of

SeqTar was that the only publicly available method for degradome analysis, Cleave-

Land, employed the stringent Allen et al. [3] targeting criteria that was known to

miss genuine miRNA-mRNA targets. As described previously, this scoring scheme

does not allow mismatches or G:U pairs at positions 10 or 11 and suggests discard-

ing targets with an alignment score greater than 4. However, it has been shown that

alignments that do not fit this criteria can also guide the cleavage of their target

transcripts. For example, ath-miR159a can induce cleavage of AT5G18100 despite

having a score of 6.5, corresponding to 4.5 mismatches [74]; ath-miR390 success-

fully guides the cleavage of TAS3b transcript although the complementary site has

a score of 7, corresponding to 6.5 mismatches [11]; miR167 can lead to cleavage of

Os06g03830 despite having a mismatch at position 11 [134]; and ath-miR173 suc-

cessfully induces cleavage of AT1G50055 even though position 10 of the miRNA at

the target site is a mismatch [3]. Instead of using a rule-based model and to reduce

false positive predictions, SeqTar implemented two statistical methods to control

the number of alignment predictions reported by the Smith-Waterman alignment.

SeqTar was evaluated on a set of experimentally validated miRNA targets and the

results compared to the version of CleaveLand available at the time. The results

showed that SeqTar outperformed CleaveLand by identifying 43% and 42% more

interactions in Arabidopsis thaliana and Oryza sativa, respectively, suggesting

that SeqTar was a more effective method for degradome-supported miRNA target

prediction.
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3.2.3 PAREsnip

PAREsnip [68] is the first cross-platform bioinformatics tool for the analysis of

degradome data. It was developed to overcome the speed limitations with Cleave-

Land and to enable high-throughput analysis of recent sequencing datasets within

a reasonable time frame. At the time, due to the algorithms implemented within

CleaveLand, it was impractical to analyse all possible sRNA targets and instead

was used to find cleaved targets of a small number of sRNAs, such as known or

candidate miRNAs. For performing degradome analysis on a given organism, the

input for PAREsnip are a reference transcriptome, a degradome dataset, a sRNA

dataset, and, optionally, a reference genome. The input sRNAs are then filtered

to remove low abundance or low complexity reads and if a genome is provided,

any reads that do not align are discarded. Degradome reads are then aligned to the

reference transcriptome and sorted into a category system as defined in CleaveLand

version 2, which are:

Category 4: just one read at that position

Category 3: greater than one read at the position and the abundance at that

position is less or equal to the median value for that transcript.

Category 2: greater than one read at the position and the abundance at that

position is greater or equal to the median value for that transcript.

Category 1: greater than one read, equal to the maximum on the transcript,

when there is more than one position at maximum value

Category 0: greater than one read and is the maximum value on the tran-

script, when there is only one maximum value

In addition to the raw abundance, PAREsnip included the option to determine

the category for a given transcript signal using weighted fragment abundance.

Weighted abundance is calculated by dividing the abundance of a degradome read
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by the number of positions across all transcripts to which the sequence aligns and

this is the default configuration for PAREsnip.

Given that a DNA/RNA sequence can be made up of four nucleotides (A, C,

G and T/U), a core part of the PAREsnip algorithm is the construction of a 4-way

search tree using the four letter alphabet. The tree is then used to encode each

sRNA into a unique path within the search tree. This means that similar sequences

will lie on the same path until the similarity ends, reducing the possible search

space. Once the tree has been constructed and the degradome reads aligned, the

search for potential targets can be performed. The pairs of nodes at level 10 and 11

of the tree are collected and put into one of 16 bins, representing the possible 2nt

sequences. Searches for sRNAs that could cause cleavage at a given degradome

peak start by identifying the bin corresponding to nucleotides 10 and 11 of the

candidate sequence and the tree is then traversed from nucleotide 10 towards the

root. As it does this, it performs a nucleotide comparison between the sRNA and

the target sequence checking to see if any of the Allen et al. targeting rules [3] have

been broken, and updating an alignment score if necessary. If no rules are broken,

it then returns to position 10 and traverses towards the 3′ end of the sRNA, again

checking at each positions if any of the rules have been broken, and updating the

score. Once it reaches a terminator node within the tree and if no rules have been

broken, it records it as a potential target and is subject to further processing before

being reported to the user. PAREsnip uses a sRNA shuffle system, similar to the

one implemented in earlier versions of CleaveLand, to calculate the p-value of the

potential target duplex. If the p-value for the predicted sRNA target is within a

given threshold, ≤ 0.05 by default, it is reported to the user.
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3.2.4 sPARTA

Small RNA-PARE Target Analyzer (sPARTA) [101] is a command line degradome

analysis tool that is capable of predicting sRNA targets on a whole genome scale.

The motivation behind the development of sPARTA was that the tools available at

the time (CleaveLand, SeqTar and PAREsnip) assumed that there exists a positive

correlation between complementarity in the canonical seed region and probability

of actual cleavage and by using SeqTar it is not feasible to perform the analysis

on a whole genome scale. Furthermore, these tools require a set of reference

sequences as input, which typically comprise the annotated portion of the genome

and new genomes can be poorly annotated in their initial release. Therefore, using

the annotated portion of the genome alone could lead to potential targets within

intergenic regions (IGRs) being missed [101]. Alongside this, recent studies have

found that even in well annotated genomes, there are still targets being found in the

IGRs [7, 98, 188]. Currently, other available tools will miss these targets without

an alternative reference sequence input being compiled to include IGRs, however

the creation of such a reference would require time and a level of bioinformatics

expertise that some users may not have. In an attempt to solve this, sPARTA

allows the user to input a genome and generic feature format 3 (GFF3) file to

automatically extract reference sequences, allowing the user to search for targets

within the intergenic regions without creating their own reference sequence.

The sPARTA algorithm has four stages, the first is the fragmentation of features

from the input files, this is done using either the transcriptome or a GFF file

and corresponding genome. The next step is to map the degradome reads to the

feature set, this is done using Bowtie 2, where an FM index [64] is created for

each component of the feature set.The third step of the sPARTA algorithm is the

prediction of sRNA targets within the feature set using a built in target prediction

module called miRferno. This module has two prediction modes allowing the user
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to optimise for time versus sensitivity. The heuristic mode is designed to be fast but

less sensitive and works by extracting multiple seeds of length 6nt in 4nt intervals

from the sRNA sequence. These seeds are then aligned to the FM indexes from

the feature set with a maximum allowed mismatch of 1. If an alignment is found,

it is extended to complete the alignment of the small RNA. The exhaustive mode

is developed for improved sensitivity and extracts a smaller seed of 4nt with a

3nt interval, improving the efficiency of finding targets. During target prediction,

miRferno offers two scoring systems: standard and seed free. The standard system

is based on previously experimentally validated targets and the complementarity

rules based on the seed region [61]. The seed free scoring system was added as

studies [236, 29] have shown that there are miRNA target interactions that differ

from the canonical targeting rules. In this system, mismatches in positions 10 and

11 are allowed.

The final stage of the sPARTA algorithm is to combine the predicted targets

and the degradome reads with the aim of validating potential targets through

cleavage evidence in the degradome. When aligning the degradome reads to the

transcript sequences, a similar category system to PAREsnip and CleaveLand is also

implemented within sPARTA. A p-value is then calculated using a modified version

of the method implemented within CleaveLand version 3 and 4. The difference is

how the number of trials is chosen, in CleaveLand the number of trials is the number

of predicted targets with a score between 0 and a some threshold. In sPARTA, the

number of trials is the number of predicted targets within a score bracket, i.e. the

number of predicted targets with score ≥5 and ≤6. This change is useful for cases

where miRNA-target interactions have weak complementarity or for when a single

miRNA cleaves a large number of targets. Performance benchmarking showed a

considerable improvement compared to CleaveLand in terms of computation time

and it was also able to capture a larger number of miRNA targets, however no

benchmarking comparing sPARTA to PAREsnip was performed.
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3.2.5 Web-based tools

Alongside the previously described stand-alone downloadable tools, two web-based

services have been developed for performing degradome analysis.

StarScan (sRNA target Scan) [138], was the first publicly available web-server

for identifying sRNA targets from degradome sequencing data. On release, StarScan

contained one hundred degradome libraries from 20 species with reference genome

sequences and gene annotations obtained from the Ensembl Plants Database [106].

StarScan takes as input a set of sRNA sequences in FASTA format, the user then

selects the species and degradome library to be used during analysis. StarScan

implements a category and p-value system similar to that of CleaveLand4 and

sPARTA. Predicted targets that pass the results filtering stages are reported to the

user and include the cleavage position, sRNA and target gene names, transcript

ID, target gene types (e.g. protein coding or ncRNA), cleavage site (position 9,

10 or 11 of the sRNA), penalty scores and the category of the degradation signal.

In addition to the data obtained from plants, StarScan also provided the ability to

perform degradome analysis on animal data, for example using the data obtained

from a previous human study [183].

Web-based pipeline of RNA degradome (webPORD) is the most recent web-

server for the analysis of degradome data [212]. It works in a similar way to

StarScan but is currently only populated with data obtained from Homo sapiens,

Mus musculus (mouse), O. sativa and A. thaliana.

3.2.6 Issues with current methods

Recent advances in high throughput sequencing technologies has resulted in larger,

more complex genomes being sequenced such as Pinus taeda [237] or Triticum

aestivum [43], both being many times larger than that of popular model organisms.
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Moreover, not only are larger genomes being sequenced, but degradome and se-

quencing datasets in general are growing ever larger in size and read count, with a

typical sequencing experiment now containing millions of distinct reads in a single

sample. In addition, the need for multiple samples and replicates is becoming the

de-facto standard for biological experiments, further adding to this sequence-data

deluge.

All of the tools for degradome analysis mentioned above are unable to process

the volume of data currently being produced without imposing considerable time

and resource constraints. In addition, the accuracy of these tools is primarily

determined by the targeting rules that they apply and each tool uses a different set of

fixed rules, which reduces their flexibility. Indeed, the rules currently implemented

by the tools are inferred from the analysis of experimentally validated miRNA

targets in A. thaliana. This was first performed on 94 validated miRNA-target

duplexes by Allen et al. [3], influenced by an earlier study [100], and then, through

a similar approach, on a larger set of 155 validated target duplexes by Fahlgren and

Carrington [61]. As our understanding of miRNA targeting improves, these rules

may change, and so current tools risk becoming obsolete.

3.3 Methods

We now introduce a novel degradome analysis method and software tool, called

PAREsnip2, that is scalable with current sequencing datasets. The PAREsnip2

algorithm is split into three main stages. The first stage is the input of the sequencing

data and targeting rules, the second is the pre-processing steps (developed to

improve the speed and efficiency of an analysis), and the third is the prediction of

sRNA targets. A visual overview of the steps involved in performing an analysis on

the input data is shown in Figure 3.2A. We now explain each stage of the algorithm

in more detail.
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3.3.1 Data input

To perform an analysis using PAREsnip2 for a specific organism, the user must

input the following data:

• a reference file (transcriptome) in either FASTA format or Generic Feature

Format version 3 (GFF3) with corresponding genome;

• a genome file (optional unless using GFF3 as reference);

• one or more sRNA library replicates;

• one or more degradome library replicates

A reference file and at least one sRNA and degradome library are required to

perform an analysis. If the user chooses to use a GFF3 file as a reference then a

corresponding genome must also be provided. When extracting the gene sequences

from the genome using a GFF3, the user has the option to include or exclude

untranslated regions (UTRs).

The sRNA and degradome libraries must be in redundant FASTA format with

the adapters trimmed.
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3.3.2 Sequence filtering

Several optional filtering techniques can be applied to the input data to remove

low quality reads, sequencing errors or sample contamination. First, any sequence

containing ambiguous bases are discarded, as they cannot be accurately aligned.

Second, a low complexity sequence filter is applied based on the sequence single,

di- or tri-nucleotide composition. This works by discarding any sequences that

contain more than 75%, 37.5% and 25% of a single, di- or tri-nucleotide compo-

sition, respectively. Third, we provide the functionality to filter sequences using

conservation over multiple samples where sequences will only be considered if

they are present within each sample. Finally, when a genome is provided, sRNA

sequences can be aligned to the genome using PatMan [165], with any sequences

that do not align being discarded.

3.3.3 Binary encoding of sequence input

A core component of the PAREsnip2 algorithm is the encoding of sequence data

into a number system, shown in Figure 3.2B. Given that a sequence is composed

of four nucleotide bases (A, C, G, T/U), it is possible to represent each nucleotide

using two bits of computer memory, see Table 3.1, known as the base 2, or binary

representation, of a nucleotide. We represent a whole sequence as a single decimal

number by concatenating the binary representations of each nucleotide and convert-

ing the resulting, longer binary representation into decimal. We use this encoding

technique to reduce the memory footprint of storing sequence data in memory and

to speed up analysis. Furthermore, sRNA and mRNA sequences have an inverse

encoding (Table 3.1), such that if a sRNA and mRNA sequence are represented by

the same number then they will be perfectly complementary.
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2-bit Representation Small RNA Messenger RNA
0 0 A U or T
0 1 C G
1 0 G C
1 1 U or T A

Table 3.1 The 2-bit encoding of nucleotides

3.3.4 Target candidate generation

To search for potential sRNA targets, we first generate a set of potential target-

sequence candidates from the input data. The alignment of the degradome fragments

to the reference gene sequences can inform us of potential sRNA cleavage events,

with higher abundance fragments at a specific position more likely to be true cleav-

age signals. We developed a novel technique for exact match sequence alignment

that uses the sequence encoding described above. First, degradome sequences are

read from file, encoded as a number, and stored into a list. Once all the reads have

been encoded and stored, the list is sorted into ascending order. Next, we split the

reference sequences into subsequences using a sliding window and encode each

of these into a decimal number. The size of the sliding window and the number of

extracted subsequences are dependent on the accepted size range of the degradome

reads. We then search the sorted list of encoded degradome fragments for the en-

coded reference subsequence using a binary search. If the number representing an

encoded subsequence is found, an exact match has been identified at that position

and is recorded. Once each reference sequence has been searched, the aligned

degradome fragments are further processed to generate the set of target-sequence

candidates. From the alignment position, we take 16nt towards both the 5’ and 3’

ends, resulting in a 32nt mRNA target-sequence candidate.

The newly generated target-sequence candidates are then sorted into one of five

categories based on those previously defined in CleaveLand V4 [1] with a minor
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modification. In our modification, we do not consider those fragments with an

abundance of 1 during the average coverage calculation. This helps us to distinguish

true lower abundance peaks from background degradation upon the transcript. An

overview of the category system is provided below:

• Category-0 peaks are those that have greater than one read and are the

maximum on the transcript when there is only one maximum;

• Category-1 peaks are those that have greater than one read and are the

maximum on the transcript, but there is more than one maximum;

• Category-2 peaks are those that have greater than 1 read and are above the

average fragment abundance on the transcript;

• Category-3 peaks are those that have greater than 1 read and are below or

equal to the average fragment abundance on the transcript;

• Category-4 peaks are those that have just one read at that position on the

transcript

3.3.5 Region extraction and candidate grouping

Three regions of length 7nt (7mer) are extracted from both the input sRNA se-

quences and the generated target-sequence candidates. These are named region

R1, R2 and R3 for the sRNA and target region TR1, TR2 and TR3 for the target-

sequence. The position of the extracted target-sequence regions are based on a

potential cleavage position i.e. where the sRNA would align if there were no gaps

or bulges within the duplex (Figure 3.2Bi). The extracted region sequences are

then encoded into their decimal number format and stored for later use. Finally,

the generated target-sequence candidates are grouped together using the decimal

representation of their TR2 sequence such that any candidates sharing the same

7mer at their TR2 will be grouped together.
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3.3.6 Predefined and user configurable targeting rules

Since the discovery of miRNAs and their regulatory role in plants, there has been

much discussion on the rules that should be used when predicting plant miRNA

targets [100, 3, 101, 61, 29, 28, 161, 137, 107]. To the best of our knowledge,

there are two generally accepted and widely used targeting rules for plant miRNAs.

These rules are implemented within a position dependent scoring system based on

the number of mismatches, G:U wobbles and target-bulged bases within the duplex.

The first of these were inferred by Allen et al. in 2005 [3] and the second, through

a similar approach with a larger set of validated targets, by Fahlgren and Carrington

in 2010 [61], as described in the previous chapter. During a PAREsnip2 analysis,

the user can choose between two sets of default targeting rules, either the Allen

rules or the Fahlgren and Carrington rules. The difference between them is that

the Fahlgren and Carrington rules permit a mismatch or G:U wobble at position

10 and 11 of the sRNA, based on our interpretation of their results [61]. However,

these rules are based on a small set of experimentally validated miRNA targets

and as more miRNA targets are experimentally validated, our understanding of

these targeting rules may change. To address this, we offer the ability to search

for potential targets based on a user configurable rule set. The rules that can be

configured by the user and used during the search for potential targets are shown in

Table 3.2.
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Criteria Allen et al. Fahlgren & Carrington
Maximum score 4 4
Maximum adjacent mismatches 2 2
Maximum G/U Wobble Pairs 4 4
Maximum Mismatches 4 4
Mismatch Score 4 4
G/U Wobble Score 0.5 0.5
Gap Score 1 1
Permissible Mismatch Positions all all
Non-permissible Mismatch Positions 10, 11 none
Core Region Start Position 2 2
Core Region End Position 12 12
Maximum Mismatches Core Region 2 2
Maximum Adjacent Mismatches Core Region 1 1
Allow Mismatch Position 10 false true
Position 10 Mismatch Score 1 1
Allow Mismatch Position 11 false true
Position 11 Mismatch Score 1 1
Core Region Multiplier 2 2
Max Gaps Allowed 1 1
G/U Wobble Counts as Mismatch false false

Table 3.2 Features within a sRNA–mRNA alignment which are used during the
duplex alignment process and their default values but can also be configured by the
user.

3.3.7 Computing valid region alignment matrices

As discussed previously, we can represent biological sequences using a decimal

number system. 7mers that are comprised of a four-letter alphabet (A, C, G and

T/U), where each nucleotide is encoded using 2 bits of computer memory, are

represented by a decimal number between 0 and 16383. For each of the three

regions, we create a 16384 × 16384 matrix that represents all possible combinations

of alignments between 7mers. Within these matrices, row numbers represent

encoded sRNA 7mers and column numbers represent encoded mRNA 7mers. The
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matrices are then populated by attempting to align the decoded sRNA and mRNA

7mers using the user’s chosen set of targeting rules. If a valid alignment is found

within the matrix, we set that position to true otherwise it is set to false. This is

repeated for every possible combination of alignments between 7mers for each of

the three regions.

3.3.8 Three-stage candidate filtering

We developed a three-stage candidate filtering technique to reduce the search space

and therefore the computation time required to perform an analysis. When searching

for degradome peaks potentially resultant of sRNA mediated endonucleolytic

cleavage, we use the valid region alignment matrices to discard candidates that

do not fit the chosen targeting rules (shown in Figure 3.2C). In the first stage of

this technique, we consider only those target-sequence candidates where their TR2

7mer can successfully align to the R2 7mer of the sRNA. This is done by looking at

the encoded sRNA R2 7mer row in the R2 valid region alignment table and taking

all target-sequence candidates grouped on the columns set to true on that row.

In the second and third stages, we discard any target-sequence candidates where

their TR1 or TR3 regions do not successfully align to the R1 or R3 regions of the

sRNA. This is performed by first looking at the cell (R1base10, TR1base10) in the R1

valid region alignment matrix to see if it is set to true and if so, we do the same for

the R3 and TR3 region, discarding any candidates if the cell values are set to false.

3.3.9 Target search and results filtering

Any target-sequence candidate that passes all stages of the three-stage candidate

filtering process is aligned to the sRNA sequence using our duplex alignment

algorithm employing the chosen targeting rules. When attempting to align a sRNA
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to a potential target-sequence candidate, the search process starts at the cleavage

site and then traverses towards the 5’ end of the sRNA and at each position performs

a nucleotide comparison between the two sequences. If the alignment towards the

5’ end is successful, it then performs the same process towards the 3’ end. If there

is a mismatch, it will attempt to insert a gap and continue the alignment. If at any

point one of the user’s selected rules are broken then the alignment is discarded.

This process will find all valid alignments based on the chosen targeting rules and

the best possible alignment based on the users chosen criteria is selected. We first

attempt to select the alignment that has the lowest alignment score and if there

are multiple valid alignments with this score, the alignment with the fewest gaps

is reported. If there are multiple alignments with the same number of gaps, the

alignment with the fewest number of mismatches and G:U wobble pairs is reported.

Once a potential target has been identified, two optional filtering processes

can be performed to improve the confidence of each prediction. The first is the

application of a MFE ratio filter and the second is a p-value filter. The MFE

is calculated using RNAplex [195], which was shown to score favourably for

sensitivity and precision when compared to other similar methods in a recent

benchmarking of performance [202]. The MFE ratio is calculated by dividing

the predicted target duplex MFE by the MFE of a perfectly complementary target

site. Any predicted target site that has a MFE ratio less than a given cut-off is

discarded. The default cut-off ratio is 0.7, as suggested by Allen et al. [3], but can

be configured by the user. The second optional filtering process uses the binomial

distribution p-value system implemented within CleaveLand V4 [1] but with the

modification that the probability is calculated on a transcript by transcript basis.
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3.3.10 Implementation and output

The algorithm has been implemented using the Java programming language and

a user-friendly, cross-platform software package has been incorporated into the

UEA sRNA Workbench (26). Analysis can be performed through the graphical user

interface (GUI) or through the command-line interface (CLI) allowing PAREsnip2

to be used in other bioinformatics pipelines or workflows.

The results of PAREsnip2 are provided in comma-separated value (CSV) format,

allowing them to be viewed in any CSV file viewer. They include information about

the transcript peak such as cleavage position, abundance and weighted-abundance

at the cleavage site, and the category of the peak on the transcript. A visual

representation of the sRNA–mRNA duplex is displayed along with its alignment

score. The sequence read abundance for small RNA and degradome data are

provided in both raw and normalized values so that sequencing libraries can be

compared. It is also possible to produce target plots from PAREsnip2 results using

the T-plot tool contained within the UEA Small RNA Workbench [192].

3.3.11 Degradome library construction

Three A. thaliana degradome replicates were constructed using wild type Columbia

(Col-0) plants grown at 22◦ with 16 hours light and tissue was harvested when plants

were at growth stage 5, as defined by Boyes et al. [27]. For each replica, RNA was

isolated from a pool of all leaves taken from nine plants with TRI reagent following

manufacturer’s instructions. This RNA was then used to construct degradome

libraries following Zhai et al. protocol [230], with the only difference being that

SuperScript II reverse transcriptase was used instead of Superscript III.
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3.3.12 Sequence datasets

The sequencing datasets analysed in this chapter are described in Appendix A Table

1. Briefly, the transcriptome used in all of our analyses on A. thaliana was obtained

from TAIR10 [115]. The computational performance benchmarking was carried

out using a publicly available A. thaliana mature leaf degradome dataset [197].

Additionally, we simulated 9 sRNA datasets of increasing size to use as input data.

These sRNAs were generated by first aligning the D1 reads to the reference and then

extracting 19–24nt sequences centred on cleavage positions. Transcripts, cleavage

positions and sRNA sequence lengths were selected at random.

The prediction performance benchmarking was performed using the three A.

thaliana degradome replicates, which we described above, and A. thaliana mature

miRNA sequences obtained from miRBase (v21) [77].

To perform genome-wide degradome analyses on A. thaliana, we obtained the

corresponding sRNA libraries, which were previously published by our lab [158],

for each of the A. thaliana degradome replicates. Additionally, we performed a

genome-wide analysis on T. aestivum using publicly available sRNA and degradome

datasets [196] and the T. aestivum transcriptome (cDNA) obtained from Ensembl

Genomes [106].

3.4 Results

3.4.1 Sequencing data

We processed the raw data using tools provided within the UEA sRNA Workbench

[192]. The adapter trimming tool was used to trim the adaptor sequences in each of

the three degradome replicates. Next, using the Filter tool, we discarded sequences

that contained any ambiguous bases and aligned the remaining sequences to the
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genome (TAIR10) with no mismatches allowed. When mapping to the genome,

81%, 82% and 82% of trimmed reads successfully aligned in replicates D2A, D2B

and D2C, respectively. Table 3.3 gives a summary of the statistics for the three

replicates and Appendix A Figure 1 shows the read length distributions and as you

would expect, the reads are primarily 20 and 21nt in length.

Replicate Raw Raw (NR) Trimmed (NR) Genome Aligned (NR)
D2A 45 581 525 15 267 190 11 114 679 9 009 977
D2B 34 915 085 13 385 729 10 103 828 8 316 470
D2C 26 067 832 10 199 905 7 715 372 6 337 667

Table 3.3 Summary statistics (number of reads) from the sequencing of three A.
thaliana degradome replicates (NR = non-redundant).

3.4.2 Computational performance benchmarking

To measure the computational performance of the PAREsnip2 algorithm, i.e. the

time and memory required to perform an analysis, we carried out computational

benchmarking and compared our results to those of other publicly available methods.

This benchmarking was performed on a desktop computer running Ubuntu 16.04

equipped with a 3.40GHz Intel Core i7-6800K six core CPU and 128GB RAM.

Each tool was run using the authors default suggested parameters and for the

fairest comparison, we included all filtering and pre-processing options available

in PAREsnip2. Additionally, we set the number of threads to be used by the tools

during the analyses to 12, except for CleaveLand as it is not an option.

For this benchmarking, we used the D1 dataset, the simulated sets of sRNA

sequences and the TAIR10 cDNA transcriptome. Whilst the tools were performing

the analysis on the simulated data, we monitored their peak memory usage using

an in-house script and recorded the time they took to complete the analysis. The

results of these analyses for both time and peak memory usage is shown in Table
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3.4. Additionally, if the tool did not complete the analysis within 10 days, we

recorded it as did not finish (DNF).

The results show that the newly developed PAREsnip2 algorithm substantially

outperforms all the currently available tools on the simulated datasets. The largest

dataset for which any of the existing tools could process in under 10 days contained

250 000 sequences. When performing analysis on this dataset, PAREsnip2 showed

319× improvement in computation time. Additionally, the results suggest that the

computation time of PAREsnip2 grows linearly with the number of input sequences,

taking just 1 h and 44 min to process the largest of the simulated datasets (1 000

000 sRNAs).

# Seqs CleaveLand4 GB PAREsnip GB sPARTA GB PAREsnip2 GB
1 19m 23s 1 9m 30s 58 12m 48s 25 5m 38s 5

10 27m 32s 1 9m 50s 58 12m 53s 25 5m 36s 5

100 1h 52m 1 12m 35s 58 13m 55s 25 5m 44s 5

1,000 15h 8m 1 44m 51s 58 1h 11m 26 6m 15s 6

10,000 6d 6h 48m 8 6h 25m 64 4d 6h 59m 37 6m 32s 6

100,000 DNF - 2d 15h 16m 66 DNF - 15m 1s 6

250,000 - - 6d 10h 49m 68 - - 29m 6s 7

500,000 - - DNF - - - 53m 11s 8

1,000,000 - - - - - - 1h 44m 8

Table 3.4 Benchmarking results for both time and memory usage in Gigabytes (GB)
from running each tool using the generated small RNA datasets. If the entry is DNF
it means that the tool did not complete the analysis within the 10 day cut-off. A
‘-’ means that we did not attempt to run the tool. Benchmarking results show that
PAREsnip2 was able to complete analysis considerably faster than all other tools
with low resource requirements.

3.4.3 Prediction performance benchmarking

To evaluate the prediction performance of each tool we collected a set of experimen-

tally validated A. thaliana interactions by combining those previously published in
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the literature [68, 191, 53] and those contained within miRTarBase [40] with any

duplicates being removed. In total, we collected 616 validated interactions compris-

ing 135 miRNAs. Out of these 135 miRNAs, 90 of them had unique sequences and

were involved in 387 distinct miRNA–mRNA interactions. See Appendix A Table

2 for the complete list of curated validated targets.

Any of the validated interactions with a category-4 signal at the cleavage

position on the transcript within the D2 degradome datasets were excluded from

the benchmarking. These signals were excluded because it is difficult to distinguish

between true miRNA cleavage products and random degradation with such low

abundance. To identify the cleavage positions, we obtained the miRNA sequence

from miRBase and the transcript sequence for each of the validated miRNA targets

and performed the alignment between them using loose targeting rules, allowing a

maximum of seven mismatches. In the case that multiple alignments were found

between the miRNA and its target, we retained the alignment(s) with the best

alignment score and MFE ratio. The position on the transcript opposite position

10 of the miRNA was recorded as the miRNA cleavage site. The category of the

signal on the transcript was determined by aligning the D2 degradome datasets

to the transcript and recording the abundance at the cleavage position. Out of a

possible 387, we included 243, 239 and 224 validated interactions comprising 61,

60 and 58 miRNA sequences for datasets D2A, D2B and D2C, respectively.

We performed an analysis with each tool using the miRNA sequences contained

within the validated set of miRNA–mRNA interactions, the A. thaliana transcrip-

tome and the three D2 degradome datasets described previously. Each tool was

run using the default parameters recommended by the authors but with category-4

interactions discarded as they were not considered previously. When benchmarking

PAREsnip2, we performed the analysis using both sets of default targeting rules and

the MFE filter with cut-off score of 0.7. The results produced by each tool when

analyzing the three datasets were then compared against the set of validated targets
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and are shown in Table 3.5. The results show that both sets of default targeting rules

implemented within PAREsnip2 captured more of the experimentally validated

interactions than the currently available tools. The differences between the results

produced by the tools are likely due to variations in the implemented targeting rules

and the filtering techniques applied. Additionally, the lower number of interactions

reported by CleaveLand may be due to the way it handles degradome reads that

map to multiple transcripts. If a degradome read aligns to more than one transcript,

only one is randomly selected and reported by CleaveLand.

Replicate D2A Replicate D2B Replicate D2C
Tool Name V NV %PV V NV %PV V NV %PV
sPARTA 171 120 70% 169 121 70% 162 127 72%

PAREsnip 177 48 73% 179 50 75% 167 57 75%

CleaveLand4 88 20 36% 95 26 40% 87 25 39%

PAREsnip2

Allen et al.
193 41 79% 191 39 80% 181 33 80%

PAREsnip2

Fahlgren &

Carrington

219 48 90% 219 43 91% 205 37 91%

Table 3.5 The results from the accuracy performance benchmarking of each tool
over the three biological replicates. V = validated targets, NV = non-validated and
%PV = percentage of possible validated targets that could be found. Results show
PAREsnip2 captures a larger number of the experimentally validated A. thaliana
targets compared to other publicly available tools using both sets of default targeting
criteria.

3.4.4 Evaluation of the optional filtering methods

To evaluate the success of the filtering techniques implemented within PAREsnip2,

we repeated the prediction performance benchmarking on the D2B degradome

dataset using the 60 miRNA sequences known to have existing targets, the default
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Fahlgren and Carrington targeting rules, and increasing filtering cut-off values. The

results of the MFE analysis are shown in Figure 3.3 and the results of the p-value

analysis are shown in Figure 3.4.

When evaluating the MFE filter, we start with a cut-off score of 0.45, as this

captures all possible interactions, and with increments of 0.05 thereafter, we record

the number of validated and non-validated targets being captured. Using the initial

value, we captured a total of 342 miRNA–mRNA interactions from 60 miRNAs

with 223 being part of the validated set and 119 were non-validated. At the other

end of the scale, by using a filter cut-off value of 1 we captured just 5 interactions,

all of which are part of the validated set. The default value of the MFE ratio filter

(0.70) for PAREsnip2 captures a total of 262 interactions and of these the filtering

process kept 219 (98%) from the possible 223 validated interactions.

Fig. 3.3 The number of interactions reported when using MFE as a filter. As
the MFE filter ratio increases, there is a reduction in the number of captured
sRNA–mRNA interactions. A cut-off score of 0.70 captures 98% of the possible
validated interactions.

Similarly, when evaluating the success of the p-value filter, we started with a

cut-off score of 1, as this captures all possible interactions, and then repeated the

analysis each time lowering the cut-off score and recorded the number of validated

and non-validated targets being captured. A total of 342 interactions, with 223
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validated and 119 non-validated, were captured using a cut-off score of 1 and a

total of 174 interactions, with 165 validated and 9 non-validated, were captured

using a score of 0.01. The default value for the p-value filter implemented within

PAREsnip2 (0.05) captures a total of 209 interactions. Of these, the filtering process

kept 191 from the possible 223 (85.6%) validated interactions.

Fig. 3.4 The number of interactions reported when using p-value as a filter. As
the cut-off decreases, there is a reduction in the number of captured sRNA–mRNA
interactions. The default cut-off score of 0.05 captures 85.6% of the possible
validated interactions.

3.4.5 Genome-wide analysis of degradome datasets

To illustrate the use of PAREsnip2, we carried out a genome-wide scale degradome

analysis of dataset D2 using the sRNA–mRNA target interaction rules as described

by Allen et al. [3]. For this analysis, we used the default stringent parameters,

which discards category-4 signals and permits a minimum sRNA abundance of 5

reads. Additionally, the built-in conservation filter was used to increase confidence

in the reported interactions. In total, PAREsnip2 captured 2008 sRNA–mRNA

interactions (Appendix A Table 3), which comprised 960 category-0, 79 category-1,

511 category-2 and 458 category-3 interactions. To consider how the Allen et al.

rules fared in capturing known interactions that have previously been validated, we
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compared the results with the set of curated validated targets. We found that 178

of the validated targets were conserved within the three replicates of the dataset

(degradome signal and miRNA sequence), and of these the Allen et al. targeting

rules captured 132 (74%), which were predominantly category 0 interactions.

Interestingly, 46 of the validated interactions within the sequencing data were

missed. This could have been due to the stringency of the parameters that were used,

or that fact that the Allen et al. rules were based on a small set of experimentally

validated interactions and are somewhat outdated in their representation of the

requirements of miRNA mediated cleavage activity. Therefore, to test this we

repeated the analysis on the same dataset but using the Fahlgren and Carrington

targeting rules where mismatches or G:U wobble pairs at positions 10 and 11 are

allowed. This analysis identified 1072 category-0, 91 category-1, 611 category-2

and 529 category-3, making a total of 2303 interactions of which 151 (85%) of the

possible validated interactions were captured (Appendix A Table 4). This shows a

11% improvement in identifying the known validated interactions compared to the

Allen et al. targeting rules, which otherwise would have been missed. Performing

this analysis using the Allen et al. rules took just 11 minutes and 32 seconds and

the Fahlgren and Carrington targeting rules completed the analysis in 26 minutes

and 48 seconds.

The timings for degradome analysis in A. thaliana led us to investigate the

performance of PAREsnip2 on more complex species and larger genomes. The T.

aestivum genome is much larger than A. thaliana, containing more than 155 000

transcript sequences within the genome annotation. We carried out a genome-wide

analysis of the T. aestivum dataset (GEO accession GSE36867), which comprised a

degradome of 4 306 082 non-redundant sequences and a corresponding sRNAome

of 14 133 641 NR sequences. The default stringent parameters identified 25 063

interactions (Appendix A Table 5), which comprised 12 120 category-0, 1026

category-1, 5576 category-2 and 6341 category-3 interactions and completed in
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just 31 minutes and 29 s. To investigate how using less stringent parameters would

impact on the run-time performance of the tool, we repeated the analysis using the

default flexible parameters. The tool identified 389,238 interactions (Appendix A

Table 6), which comprised 83 409 category-0, 13 943 category-1, 79 935 category-2,

95 783 category-3 and 116 168 category-4 interactions with a run-time of 19 h and

39 min.

3.5 Discussion

In the age of genomics, the cost of sequencing has become cheaper and more

accessible than ever before [203]. This had led to many more genomes being

sequenced, some of which are much larger and significantly more complex than

popular model organisms. Many genomes are used in large scale studies from

human health [84] to food production [180]. Additionally, with the increasing

number of reads being produced from sequencing experiments, the development

of scalable and efficient algorithms for computational analysis of sequence data

are becoming more and more important. In this chapter, we have developed

a novel tool which is scalable with the increasing size and complexity of new

genome releases and can perform a large scale degradome analysis using minimal

computation resources. As an illustration, we ran our tool on wheat (T. aestivum),

which in terms of base pairs is two orders of magnitude larger than A. thaliana.

Using the default flexible parameters on the publicly available dataset described

previously, the analysis took just 19 h and 39 min with a peak memory usage of

16GB and identified 389 238 targets by 169 636 sRNA sequences. In comparison,

we terminated the execution of PAREsnip after 25 days on the same dataset, after

which time it only reported 18% completion with a peak memory requirement of

175GB, far exceeding the resources you would expect to find in a typical desktop

machine. Moreover, these results suggest that PAREsnip2 is the only tool capable
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of performing degradome analysis over multiple biological replicates within a

reasonable time scale.

Despite the improvements in computation time made possible with the newly

developed algorithm, advancements to NGS technologies will continue to be de-

veloped, such as the illumina NextSeq 2000, which will be able to produce up to

1 billion reads per run. Therefore, changes to the current implementation of the

algorithm may be required to avoid the tool becoming obsolete, such as harnessing

the power of the GPU for the parallelizable target search.

As part of our performance comparison, we demonstrated that PAREsnip2 was

able to outperform existing tools in terms of sensitivity when evaluated on a set

of experimentally validated miRNA targets in A. thaliana. However, owing to

limitations with the available data (i.e. the lack of an extensive set of true negatives),

a full description of the performance of each tool using a confusion matrix was

not possible. In the context of miRNA targets, a true negative is a miRNA-mRNA

interaction with experimental evidence that the interaction does not occur and so this

is often not reported in the literature. Furthermore, as the set of true positives used

for this evaluation is almost certainly incomplete, further experimental validation of

the perceived false positive predictions would provide a more accurate evaluation

of the tools.

The miRNA targeting rules implemented within the currently available tools for

degradome assisted target prediction are based on the analysis of experimentally

validated miRNA targets in A. thaliana. These rules have been successfully applied

to multiple other species during degradome analyses and sRNA target prediction

with some predicted targets being further experimentally validated. However,

probably in part due to the current lack of experimental evidence and to the best of

our knowledge, no studies on miRNA targeting rules comparable to those performed

on A. thaliana have been applied to other plant species. This may have resulted
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in over-fitting our current understanding and implementation of these rules on

A. thaliana. By providing the functionality to search for sRNA targets using

configurable rules, users will be able to search for non-canonical targets that the

existing rules would otherwise miss [236, 101, 29] and enable the potential to use a

species specific set of rules if proven to be the case.

In its current form, PAREsnip2 is most suitable for the analysis of plant de-

gradome datasets, as the primary mechanism for RNA silencing in plants is mRNA

cleavage, whereas in animals the primary mechanism is translational repression.

However, if the degradome data is available, PAREsnip2 could, in principle, be

used for analysing sRNA mediated cleavage products in animals.

As is the case with many rule based systems, there exist a number of exper-

imentally validated miRNA targets that do not fit the canonical set of targeting

rules [236, 101, 29]. By adjusting the parameters so that these targets are found,

PAREsnip2 may run the risk of increasing the rate at which false positives are

reported. One potential solution to this would be to perform an analysis using a less

stringent set of targeting rules alongside the built-in conservation filter. For example,

if a high confidence, i.e. high abundance and low category peak, miRNA-target

is reported across multiple biological replicates then further investigation, such as

other experimental validation techniques, could be used to confidently determine if

the reported interaction is real.

The PAREsnip2 algorithm has been implemented into a user-friendly and cross-

platform (Windows, Linux and MacOS) application that enables users to analyse

their data without the need for dedicated bioinformatics support or specialized

computer hardware. Additionally, the tool can be run using the command line

for users who wish to incorporate PAREsnip2 into more complex computational

pipelines. Enabling the use of specialist bioinformatics software without the need
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for any computational expertise will hopefully lead to new discoveries within RNA

silencing pathways in all manner of experimental contexts.

3.6 Conclusion

In this chapter we introduced PAREsnip2, which is a fast and configurable software

tool for analysing plant sRNA and degradome datasets. We discussed that the

miRNA targeting rules implemented within the currently available tools are based

on the analysis of experimentally validated miRNA targets in A. thaliana. Indeed,

many predicted targets using these rules have been experimentally validated in

other species. However, no studies investigating miRNA targeting rules of tissue

specific or species specific miRNAs have been performed. In the following chapter,

we employ the configurability of PAREsnip2 to investigate the differences between

targeting criteria of multiple subsets of miRNAs.
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Chapter 4

Computational inference of plant

microRNA targeting rules using the

degradome

4.1 Summary

In the previous chapter, we introduced PAREsnip2, a software tool for the analysis

of plant sRNA and degradome datasets. PAREsnip2 has two sets of default targeting

criteria, the Allen et al. rules, which were inferred in 2005 on 94 experimentally

validated miRNA targets in Arabidopsis thaliana and the Fahlgren and Carrington

rules, which are based on a larger set of 155 interactions [61]. However, these

criteria may not be optimal across all datasets e.g. for specific organisms, tissues or

treatments. In this chapter, we present a new tool, PAREameters, for data-driven

inference of plant miRNA targeting criteria. Using publicly available sequencing

datasets, we illustrate how PAREameters extracts information from paired sRNA

and degradome sequencing data, in conjunction with miRNA annotations (e.g. from

miRBase [110]), to infer criteria that results in increased sensitivity when evaluated
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in A. thaliana. We show that different subsets of miRNA–mRNA interactions, such

as those containing conserved or species-specific miRNAs, those found in monocots

and dicots, and those identified in model and non-model organism, display variation

in their target interaction properties. The tool is freely available, open source and

provided as part of the UEA sRNA Workbench [192].

This chapter is an adapted and extended version of the work published in

Nucleic Acids Research [200].

4.2 Background

Improvements to Next Generation Sequencing technologies have resulted in larger

and more diverse experiments, including those that make use of multiple data types,

for example, to increase prediction accuracy of regulatory interactions by combining

sRNA sequencing and mRNA quantification [148]. These improvements have also

led to the sequencing and annotation of different organisms’ genomes and facilitated

functional studies outside of the context of model organisms [69]. However, a vast

proportion of our understanding of specific biological mechanisms is based on the

study of model organisms, mostly due to their lower regulatory complexity and

availability of extensive, varied, public sequencing datasets. Many computational

methods designed for extracting information and features from sequencing data (e.g.

sRNA classification and target prediction) often summarize the data-mining results

into rule-based models, derived from experimental observations. However, this

approach carries the risk of over-fitting a model (e.g. set of thresholds or accepted

ranges) on specific sets of observations.

As discussed in Section 2.3, sRNAs play important roles in transcriptional and

post-transcriptional gene regulation in eukaryotes [143]. In plants, the latter mode

of action is achieved predominantly through miRNAs, which reduce the amount of
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mRNA available for translation by directing the RISC to their sequence-specific

mRNA target(s) and inducing cleavage and subsequent degradation of the mRNA

[28]. The miRNA classification criteria were first proposed by Ambros et al. [4]

and Meyers et al. [150]; however, more recently these criteria have been updated

based on a substantial increase in publicly available sequencing datasets and known

miRNA annotations by Axtell et al. [12]. For example, the new miRNA annotation

criteria [12] increased the number of allowed mismatches and asymmetric bulges

compared to the previous annotation model [4, 150]. In this chapter, we investigate

the applicability and portability of the current miRNA target interaction model.

Most miRNA target prediction tools use fixed rule-based targeting criteria,

the majority of which are variations of the rules inferred by Allen et al. [3] on

experiment specific, low-throughput validated A. thaliana miRNA–mRNA inter-

actions (discussed in Section 2.5.3). One particularly prominent problem with

fixed, sequence-based targeting criteria is how they address miRNA–mRNA target

sites that contain central mismatches [12], e.g. psRNATarget classifies all inter-

actions containing central mismatches as translational repression ones [49, 50].

However, this contradicts the more refined set of potential outcomes illustrated

in the literature, namely that central mismatches can induce mRNA cleavage [3],

act as target-mimics [94, 137], cause translational repression [95] or simply be

non-functional [129]. Thus, without additional data it is difficult to predict miRNA

function based solely on complementarity patterns.

One such type of additional data is degradome sequencing [74, 179], which

captures the 5’ ends of downstream cleaved mRNAs, described in Chapter 3.

Tools for predicting miRNA targets that combine the Allen et al. criteria, with

minor variations, and degradome sequencing data are described in Chapter 3. The

performance evaluation, over three biological replicates, that we performed (see

Table 3.5) demonstrated that even the most sensitive tool, PAREsnip2, was only able

to capture ∼80% of the expressed and experimentally validated interactions when
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using the Allen et al. criteria. Further analyses revealed that the remaining ∼20%

were missed mostly due to discrepancies in the number or position of mismatches,

gaps, G:U pairs and the MFE ratio.

These results suggest that the current targeting criteria may be too stringent or

over-fitted on a small set of organism, tissue or treatment specific experimentally

validated miRNA–mRNA interactions. Analyses of miRNA–mRNA interactions in

various organisms have shown that currently implemented criteria do not capture

all known and expressed miRNA–mRNA interactions (e.g. in A. thaliana [29] and

Oryza sativa [236]). This is further borne out by a preliminary analysis, where

we show that, by following a similar approach for manually inferring targeting

criteria as Allen et al., parameters shown in Table 4.1, we achieve a sensitivity

increase of ∼15% when evaluating on experimentally validated interactions in

A. thaliana, presented in Appendix B Table 1 and discussed in Section 4.4.1. In

addition, the portability of current criteria across organisms and tissues has not

yet been quantitatively evaluated. Furthermore, the sensitivity and precision of a

set of predictions may differ based on the size or characteristics of the input data.

For example, functional analysis of a specific miRNA may benefit from reduced

precision, yet good sensitivity, to increase the number of candidates for further

investigations; whereas an analysis on the entire set of sRNAs requires concerted

high sensitivity and precision. We now present a method that aims to overcome

some of these drawbacks.

4.3 Methods

4.3.1 The PAREameters pipeline

As mentioned above, our new method is called PAREameters. In Figure 4.1, we

present an overview of the PAREameters pipeline. The input consists of synony-
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mous sRNA and PARE samples; technical or biological replicates can be used for

assessing technical variation and noise between samples or for the exclusion of

spurious results. An annotated reference genome and transcriptome, and a set of

known plant miRNAs (e.g. from miRBase [110]) are also required. The tool’s

output consists of miRNA predictions and their mRNA targets, based on a set of

highly permissive parameters. PAREameters also provides a set of suggested tar-

geting criteria, based on these predictions, but also provides the properties of these

interactions as individual outputs. In doing so, the user can interpret the results

manually to infer criteria that satisfy their sensitivity and precision requirements.

The first stage of the pipeline is to remove low quality reads, sequencing errors

or to identify sample outliers. PAREameters includes several optional filtering

methods: (i) sequences containing ambiguous bases (e.g. Ns) are discarded; (ii) a

low sequence complexity filter is applied based on the single, di- or tri-nucleotide

frequencies (described in Section 3.3.2), with set thresholds of 75%, 37.5% and

25%, respectively; (iii) all reads that do not align to the provided reference genome

are discarded. We now explain each of the other stages of the pipeline in more

detail.
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Fig. 4.1 PAREameters pipeline. The input and output data are represented by
continuous rounded rectangles, processes are represented by straight rectangles
and the different steps of the analysis are represented by dashed rounded rectan-
gles. PAREameters takes as input two types of sequencing samples, paired sRNA
and degradome, a genome with corresponding annotations and current miRBase
miRNA annotations. The output is a set of data-inferred thresholds for a rule-based
prediction of miRNA–mRNA interactions using e.g. PAREsnip2. The sRNAome
and degradome inputs are the experiment-specific datasets whereas the genome,
transcriptome and annotated miRNA inputs are part of the species annotation.
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4.3.2 miRNA prediction

The miRNA candidates used as input for PAREameters are obtained via two ap-

proaches: (i) with focus on conserved miRNAs, the input sRNA samples are aligned

(positive strand only) to all known plant miRNA sequences, obtained from miRBase

[110], allowing up to two mismatches and no gaps. The selected sequences are then

used as input to miRPlant [5]. Candidates that fulfill the criteria for miRNA predic-

tion (default parameters) are then retained for the subsequent steps; (ii) with focus

on all miRNAs (conserved and new) as predicted using miRCat2 [158] (default

plant parameters) with the whole sRNA sample as input. All data pre-processing

required steps to run the miRNA prediction tools, such as building the bowtie index

[116] and organizing the sequencing data into non-redundant format, are handled

by PAREameters.

4.3.3 Target prediction using permissive criteria

The sRNAs that satisfy miRNA biogenesis criteria (as described above) are provided

as input to PAREsnip2 [198]. In addition and to compensate for the stringent criteria

of miRNA prediction tools, the user can provide their own annotated miRNA entries

if they have an abundance ≥5 (user-defined parameter) but did not fulfill the criteria

of the prediction tools. The target prediction is then performed on the input data

using a set of highly-permissive, user-configurable, parameters, shown in Table 4.1.

The miRNA–mRNA interactions predicted by PAREsnip2 are kept if the abun-

dance of the peak of interest is ≥5 and are further classified into high-confidence

(HC) or low-confidence (LC). For the former, the peak is the highest across the

whole transcript (i.e. Category-0 or 1); for the latter, the peak is not the highest

on the transcript (i.e. Category-2 or 3). The categorization of miRNA–mRNA

interactions is based on the distribution of abundances of the degradome reads
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Parameter Allen et al. Manually Inferred PAREameters
Allow MM at pos 10 No Yes Yes
Allow MM at pos 11 No Yes Yes
Max # adj mm in CR 1 0 2
Max # MM in CR 2 2 3
Max score 4 5 6
Max # MM 4 4 6
Max # G:U 4 3 5
Max # adj MM 2 1 4
MFE ratio cut-off 0.7 0.65 0.6

Table 4.1 The PAREsnip2 parameter values for the Allen et al., manually inferred
and PAREameters permissive criteria. The Allen et al. criteria were previously
inferred in 2005 [3]. The manually inferred criteria was inferred on a set of 387 ex-
perimentally validated A. thaliana interactions. The permissive parameters are used
initially by PAREameters to find high-confidence (HC) interactions. The inferred
criteria are then extracted from HC interactions using the retain rate parameter. MM
= mismatch, CR = core regions (positions 2-13 of miRNA), MFE = minimum free
energy.

aligned to each transcript, as described in the Section 3.3.4. Peaks with abundance

less than 5 are excluded as it is difficult to distinguish between true miRNA cleavage

products and random degradation at such low abundance.

When comparing the results of PAREameters, where similar results were ob-

served for all replicates, only one was randomly selected to illustrate the conclusions

for all the subsequent comparative analyses.

4.3.4 miRNA–mRNA duplex analysis and inference of target-

ing criteria

Valid miRNA–mRNA duplexes, based on the analysis of the degradome data

coupled with the miRNA prediction, are characterized using specific properties,

such as the number and location of mismatches, G:U wobble pairs and adjacent

mismatches, the alignment score and the MFE ratio. The algorithm then infers a
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set of targeting criteria that attempts to retain at least 85% (user-defined parameter)

of the valid miRNA–mRNA duplexes. We chose the default value of the retain

rate parameter based on the analysis of sensitivity gain against precision loss of

inferred criteria across an incremental range of retain rate values on a benchmark

leaf A. thaliana dataset comprising three replicates [198], presented in the results.

The biological interpretation of the retain rate threshold is that a higher degree of

complementarity between a miRNA and its target results in higher confidence that

the interaction is genuine, whereas interactions with weaker complementarity may

require further experimental validation before you can be confident that they are

genuine.

Using a set of experimentally validated interactions as validation (Appendix A

Table 1, described in Section 3.4.3), we focused on HC interaction pairs at known

target sites with corresponding miRNAs. The validation classes: true positives (TP),

false positives (FP) and positives (P) are used in a loose sense, i.e. TP consists of

the predicted interactions with experimental validation, FP is the set of predicted

interaction for which, currently, there is no experimental validation, and P is the set

of experimentally validated interactions with corresponding HC peaks. For each set

of targeting rules, we present the sensitivity as Se = TP / P (proportion of predicted

validated interactions) and the precision as PPV = TP / (TP+FP) (proportion of

validated interactions, out of the total number of reported interactions). In our

evaluation, we did not include specificity as a measure of performance because

the class of true negatives (TN) cannot be accurately determined. The set of TN

comprises the interactions for which there is experimental evidence that interactions

do not occur; since the current available information is based on positive events, i.e.

experimental validation confirming the interaction happens within an experimental

context, it is not possible to obtain a comprehensive set of TN data. Moreover,

degradome based miRNA target prediction tools are validation-driven, i.e. they

only report interactions that are predicted to be TP based on the defined criteria,
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which makes it impossible to perform the specificity calculation as perceived TN

results are not reported.

In addition, PAREameters provides a summary of the interaction properties,

enabling the manual interpretation of the results and allowing the user to choose a

set of targeting criteria that satisfies their choice of sensitivity and precision.

The significance of the distribution of properties with respect to a reference

set of miRNA–mRNA interactions (Appendix A Table 1, described in Section

3.4.3) was calculated using offset χ2 tests and the contribution of each feature was

assessed using individual Fisher exact tests [152], e.g. when comparing conserved

versus species-specific interactions, the former is considered the reference. The

χ2 tests were used to assess the overall differences in distributions, across all 21

positions, whereas the Fisher exact tests compared the values for each individual

position, against the sum of values for all remaining 20 positions. To control

false discoveries from multiple testing we corrected the reported p-values using

the Benjamini-Hochberg correction [18] for all the χ2 and Fisher’s exact tests.

Finally, the relative distributions of miRNA–mRNA duplex MFE ratios [3, 198]

were analyzed using Kolmogorov–Smirnov tests; briefly, the distributions were

first sampled, without replacement, to the same number of entries (given the high

number of measurements present in each of compared subsets, this did not distort

the original MFE distributions); next, the cumulative distributions were directly

compared using the Kolmogorov–Smirnov test and the p-value was reported. The

significance threshold for all statistical tests was set at 0.05.

4.3.5 Implementation of PAREameters

We implemented the PAREameters tool in Java (version 8); the code used to create

the plots and perform the significance tests is implemented in R (version 3.5.1,

Apple Darwin) and is invoked from the PAREameters pipeline using system calls,
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assuming a valid version of R is installed and correctly configured on the users

PATH. All computational analyses and benchmarking were performed on a desktop

machine running Ubuntu 18.04 equipped with a 3.40GHz Intel Core i7–6800K

six core CPU and 128GB RAM. PAREameters is optimized both in run-time and

computational resource usage, as shown in Appendix B Table 2; the analysis of a

typical A. thaliana and Triticum aestivum sample completes in ∼30 min and 1 day

10 h, with 6 and 10 GB memory (RAM) requirements, respectively. PAREameters

is a user-friendly, cross-platform (Windows, Linux and MacOS) application that

enables users to analyze sequencing datasets without the need of specialized support

or dedicated hardware.

4.3.6 Datasets

The sequencing datasets analysed in this chapter are described in Appendix B Table

3. Briefly, the A. thaliana datasets comprise paired sRNA and PARE samples:

wild-type leaf triplicates [158, 198], wild-type leaves in multiple growth stages

[197] and wild-type flower, leaf, root and seedling of plants grown at 15◦C [83].

The genome and transcriptome used for all A. thaliana were obtained from TAIR10

[115].

In addition to the A. thaliana datasets, we exemplify the usage of PAREameters

on sRNA and corresponding PARE datasets from Amborella trichopoda leaf and

opened female flower, Glycine max leaf [36], Oryza sativa inflorescence [214] and

T. aestivum 2.2mm spikes [196]. The transcriptome and genome sequences for

organisms other than A. thaliana were obtained from EnsemblPlants Release 43

[22].

Summaries of each sRNA dataset, such as the number of raw and unique reads,

genome matching reads and the number of known miRNAs present (based on

current miRBase (Release 22) [110] annotation) are presented in Appendix B Table
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4. Summaries for each of the PARE data are presented in Appendix B Table 5 and

include the number of transcriptome matching reads (positive strand only).

4.4 Results

4.4.1 Evaluation of inferred targeting rules in A. thaliana

We first illustrate the differences in sensitivity and precision between two sets of

manually inferred criteria in A. thaliana. These criteria are those previously defined

by Allen et al. [3] and those we manually inferred on a larger set of experimentally

validated interactions (Appendix A Table 1). We then highlight the advantages of

the data-driven approach implemented in PAREameters by presenting the increase

in sensitivity of the computationally inferred targeting rules compared with the

Allen et al. criteria when benchmarked on multiple A. thaliana datasets.

Using the A. thaliana leaf dataset D1, we employed two sets of targeting criteria,

the Allen et al. criteria and criteria we manually inferred from a larger set of

validated A. thaliana miRNA–mRNA interactions (Table 4.1). These criteria were

provided as input parameters for PAREsnip2 for target prediction. The evaluation

of these manually inferred criteria, presented in Appendix B Table 1, showed an

increase in sensitivity between 11.43% and 19.82% when benchmarked on multiple

A. thaliana datasets. Upon further inspection, the majority of validated interactions

that were missed using the criteria we manually inferred were due to having an

MFE ratio less than the selected cut-off value of 0.65. The MFE ratio quantifies the

hybridization strength between the miRNA and its target and thus a higher cut-off

value may result in interactions more likely to cause cleavage being reported.

The increase in performance of the manually inferred criteria may be due to over-

fitting on the larger set of interactions. In addition, due to the scarcity of validated
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interactions, either as number of valid interactions or localization of specific modes

of action in different cell types [140], these criteria may not be portable between

various organisms or tissues. Therefore, we used the PAREameters tool to infer

targeting criteria from the A. thaliana D1, D2 and D3 datasets. The resulting criteria,

presented in Table 4.2, were then utilized by PAREsnip2 for target prediction and

the results evaluated and compared to the predictions obtained using the Allen et al.

criteria. The evaluation method used is identical to that of the manually inferred

criteria. Specifically, for each dataset, the class of positive (P) data included

experimentally validated miRNA–mRNA interactions with HC transcript peaks and

corresponding miRNA sequence with abundance ≥ 5.

Parameter D1A D1B D1C D2A D2B D2C D3A D3B D3C D3D
MM at pos 10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
MM at pos 11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Max adj MM CR 0 0 0 0 0 0 0 0 0 0
Max MM CR 1 1 1 1 1 1 1 1 1 1
Max score 4.50 4.50 5.00 5.00 5.00 4.50 4.00 4.50 4.50 4.50
Max MM 3 3 3 3 3 3 3 3 3 3
Max G:U 2 2 2 2 2 2 2 2 2 2
Max adj MM 1 1 1 1 1 1 1 1 1 1
MFE ratio cut-off 0.69 0.70 0.69 0.66 0.65 0.67 0.72 0.71 0.70 0.71

Table 4.2 The PAREameters inferred criteria for each of the A. thaliana datasets.
MM = mismatch, CR = core region (2-13nt of miRNA) and MFE = minimum free
energy. datasets. MM = mismatch, CR = core region (2-13nt of miRNA), adj =
adjacent and MFE = minimum free energy.

The results, presented in Table 4.3, show that the computationally inferred

criteria provides increased sensitivity compared to the Allen et al. criteria, whilst

also maintaining precision on most datasets. Over all datasets, PAREameters

inferred criteria with a median sensitivity of 88.5% (range: 82.8–89.4%) versus

81.4% (range: 75.6–84.6%) for the Allen et al. criteria. The median precision for

the PAREameters inferred criteria was 91.3% (range: 80.1–96.8%) versus 91.4%
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(range: 83.8–97.5%) for the Allen et al. criteria. We also evaluated the time and

memory performance of PAREameters on each dataset. The run-time of the pipeline

depends on the size of the input data (sequencing depth of the sRNA and PARE

samples and the size of the reference genome). On A. thaliana D1, D2 and D3

datasets, the run-time range was 16 min and 52 s to 1 h 4 min (this excludes the

time taken to build the bowtie index as this is only done once per species) and

the memory usage varied between 5GB and 8GB (see Appendix B Table 2). The

inference component of PAREameters is linear on the size of the sRNA and PARE

input data.

4.4.2 Evaluation of data input size and retain rate on sensitivity

and precision

We now demonstrate that the increase in sensitivity of the PAREameters inferred

criteria when compared to the Allen et al. criteria is not a result of over-fitting on

the input data by evaluating performance using a cross-validation approach. We

then show how increasing the amount of training data may lead to a more accurate

representation of inferred targeting criteria. Finally, we assess how the retain rate

parameter impacts sensitivity and precision of the PAREameters inferred criteria.

Based on the properties of HC miRNA–mRNA duplexes with cleavage signal

confirmation in the PARE data, PAREameters inferred targeting criteria that in-

creased the sensitivity and retained precision versus existing fixed criteria when

tested against the set of experimentally validated interactions in A. thaliana. To

avoid the over-fitting of targeting criteria based on characteristics of the input data,

we tested the stability of the inferred properties using a cross-validation technique

and the set of experimentally validated A. thaliana miRNA–mRNA interactions on

the D1, D2 and D3 datasets. Specifically, we used the HC interactions with corre-

sponding miRNA sequences in each dataset as a starting point. We then randomly
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split the HC validated interactions in each dataset to form two groups: the training

group, containing 75% of the data, and the testing group, which contained the

remaining 25%. PAREameters was used to infer parameters on the training set and

these were employed by PAREsnip2 for target prediction on the test set. We then

calculated the sensitivity and precision of the inferred parameters on the training

set and on the test set. The random cross-validation was repeated 50 times and the

results, presented in Table 4.4, show that PAREameters is able to infer targeting

parameters with a median sensitivity of 77.5% (range: 67.0–81.3%) and precision

83.2% (range: 75.0–100.0%) when evaluated on the unobserved testing data.

Dataset Test Inferred Se Test Inferred PPV
D1A 81.3% 83.0%
D1B 78.1% 83.3%
D1C 80.0% 82.1%
D2A 79.0% 78.0%
D2B 77.0% 87.3%
D2C 67.0% 89.0%
D3A 68.4% 78.0%
D3B 77.0% 75.0%
D3C 78.0% 96.0%
D3D 76.0% 100%

Table 4.4 The median sensitivity (Se) and precision (PPV) values for the cross-
validation experiments on the A. thaliana datasets. The cross validation was done
on a 75/25% split for training and testing, respectively. Each analysis was repeated
50 times and the median value was recorded.

The decrease in sensitivity from our previous analysis likely originates from the

fact we are inferring criteria from one set of miRNA–mRNA interactions and testing

on a different set of miRNA–mRNA interactions. Whereas previously, we were

inferring criteria from the whole set of PAREameters predicted HC miRNA–mRNA

interactions. This further supports our hypothesis that miRNAs may have different

modes of action or target complementarity requirements and demonstrates that
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using just one set of fixed criteria may not be sufficient when performing miRNA

target prediction.

To investigate further how increasing the amount of training data may lead

to a more accurate representation of inferred targeting criteria, we evaluated the

computationally inferred criteria produced by PAREameters on different sized

subsets of the experimentally validated interactions contained within the D1 datasets.

Starting with 10% of the validated data, followed by increments of 10% until the

final value of 90%, we used PAREameters to infer criteria on the training subset

and then evaluated those criteria on the remaining unseen data. Analysis on each

subset was performed 50 times and the results shown in Table 4.5. On each

dataset, increasing the amount of training data resulted in an overall increase in

sensitivity. Intriguingly, the increase in training data resulted in a decrease in

precision. However, this should not be seen as a negative result, as we’ve previously

stated, the class FP is the set of predicted interactions for which, currently, there

is no experimental validation. Indeed, the current class of positive data is almost

certainly incomplete, therefore further experimental validation can only increase

the sensitivity and precision values for the inferred criteria.

Training size D1A Se D1A PPV D1B Se D1B PPV D1C Se D1C PPV
10% 69.0% 95.2% 48.7% 97.2% 71.8% 90.9%
20% 70.9% 93.8% 59.6% 94.8% 66.7% 90.4%
30% 77.2% 92.4% 64.3% 94.5% 73.8% 89.4%
40% 79.2% 91.5% 75.6% 91.9% 70.8% 88.2%
50% 78.1% 89.9% 76.9% 89.7% 77.5% 86.4%
60% 75.5% 88.0% 77.9% 87.5% 77.1% 84.1%
70% 79.0% 85.3% 76.9% 85.3% 77.8% 83.8%
80% 82.0% 80.8% 80.8% 83.3% 79.2% 82.4%
90% 83.3% 78.2% 84.6% 79.3% 79.2% 80.0%

Table 4.5 The median sensitivity (Se) and precision (PPV) values for the training-
size experiment on the A. thaliana D1 datasets. For each dataset, an increase in
training-size resulted in an overall increase in sensitivity.
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To assess how changes to the PAREameters retain rate parameter impact sen-

sitivity and precision, we evaluated the computational inferred targeting criteria

produced by PAREameters on the D1 dataset with increasing retain rate values. The

results of this analysis are shown in Appendix B Table 6 and Appendix B Figure

1. Starting with an initial value of 0.5 and with increments of 0.05 thereafter, we

recorded the number of validated and non-validated interactions being captured

and determined the differences between Se and PPV for each incremental range.

Next, we calculated the absolute value of the ratio between the increases in Se

with respect to loss in PPV. For example, the Se and PPV values obtained using a

retain rate value of 0.75 on the D1A dataset was 75.2% and 95.1%, respectively,

and the Se and PPV values obtained using a retain rate value of 0.80 were 83.7%

and 93.9%, respectively. This resulted in a Se increase of 8.5% and a loss in PPV

of -1.2% for the 0.75–0.80 range and a Se/PPV ratio of 7.1, specifically, there

was a 7.1x increase in Se with respect to the loss in PPV for this range increment.

The optimal value for the retain rate parameter is obtained at the first increment

range that results in a Se/PPV ratio < 1 (i.e. the loss in precision is greater than the

increase in sensitivity), presented in Appendix B Table 7. In the A. thaliana D1

data used to exemplify the selection of the retain rate parameter, the first increment

range with a Se/PPV ratio < 1 was the 0.85–0.90 range, which resulted in the value

of 0.85 being selected as the default for the retain rate parameter.

Using the initial value on the D1A dataset, we capture a total of 30 miRNA–mRNA

interactions, all of which are experimentally validated interactions. At the other end

of the scale, using a retain rate of 1.0 captured 156 interactions, which comprised

128 validated and 28 non-validated. The default parameter value (0.85) captures a

total of 120 interactions and provides a sensitivity value of 86.8% and precision

value of 93.3%. A visual representation of these results of all three replicates

in D1, which show similar results, can be found in Appendix B Figure 1. The

increment range of 0.85–0.90 was the first to have a Se/PPV ratio less than 1 and
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was consistent across three biological replicates. In experiments for which the

values vary between samples, we recommend the usage of a consistent threshold

across all samples of the experiment.

4.4.3 Consistency of attribute distributions and inferred crite-

ria across miRNA subsets in A. thaliana

To evaluate the portability of targeting criteria (and distribution of properties) across

miRNA subsets, we inferred criteria on a set of conserved and species-specific A.

thaliana miRNAs [110] and their experimentally validated targets (Appendix A

Table 1, described in Section 3.4.3). The group built on the conserved miRNAs

comprised 201 miRNA–mRNA interactions from 42 unique miRNA sequences

(Appendix B Table 8). The group built on miRNAs specific to the Brassicaceae

family comprised 184 interactions from 47 unique miRNA sequences (Appendix

B Table 9). The summaries of the position-specific property distributions, which

include the localizations of gaps, mismatch, and G:U wobbles and the MFE ratio

distributions for the conserved and specific miRNA interactions are presented in

Figure 4.2 panel A and panel B, respectively. In Figure 4.2A, the Brassicaceae

specific miRNAs show highly similar results to that of Allen et al. [3] (Figure

2.4), i.e. a large proportion of mismatches or G:U wobble pairs at position 1, no

mismatches at the canonical positions 9 and 10 and relatively few mismatches in

the 5’ core region (positions 2–13) of the miRNA when compared to the 3’ end. In

contrast, the requirements for complementary of species-specific miRNAs appear

to differ when compared to conserved miRNAs, especially at the miRNA 5’ end,

with mismatches being tolerated at positions 5, 8 and 9, in addition to the canonical

position 10 of the miRNA.

To evaluate whether the differences in properties between specific-specific and

conserved miRNA interactions in A. thaliana are significant, we performed χ2 tests
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of significance using the conserved properties as the expected distribution and the

species-specific properties as the observed distribution. Additionally, we use the

Fisher’s exact test to determine the specific property at each position responsible

for the significance of the differences. The results of the significance analysis for

the position-specific property distributions are presented in Table 4.6. Based on the

χ2 tests, significant differences between properties can be found at positions 1, 16

and 21. Based on the Fisher’s exact test, positions 8, 14, 16 and 21 have significant

differences in their proportion of mismatches. We also analyzed the differences in

MFE ratio distributions between conserved and species-specific miRNAs, shown

in Figure 4.2B, and the significance of the differences were evaluated using a

Kolmogorov–Smirnov test, which reported a p-value of 8.57 x 10−10. These results

may suggest a higher complementarity requirement between conserved miRNAs

and their targets than that of species-specific miRNAs.

To investigate the portability between criteria inferred exclusively on conserved

or species-specific miRNA interactions, we evaluated the inferred rules of each

set of interactions (all four pairwise combinations: conserved rules on conserved

interactions, conserved rules on species-specific interactions and the similar pairs

on the species-specific rules), using PAREsnip2. The results, presented in Table 4.7,

show a consistent decrease in sensitivity for both the conserved and species-specific

miRNAs when inferring criteria on the other subset of miRNA–mRNA interac-

tions. Specifically, a decrease from 82.1% to 65.7% and 76.1% to 56.0% for the

conserved and species-specific miRNA–mRNA interactions, respectively. Further

investigation into these differences support our previous observation regarding the

differences in MFE ratio of conserved and species-specific miRNA interactions,

with the inferred values being 0.75 and 0.68, respectively, further supporting our

previous observation regarding an increased complementarity requirement for con-

served miRNAs. Another intriguing difference between the inferred criteria is
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miRNA position χ2 MM G:U Gap
1 0.039 0.268 0.120 1.000
2 0.779 1.000 0.870 1.000
3 0.811 1.000 0.870 1.000
4 0.322 1.000 0.454 1.000
5 0.085 0.147 0.497 1.000
6 0.811 1.000 0.837 1.000
7 0.811 1.000 0.870 1.000
8 0.085 0.017 1.000 1.000
9 0.637 0.276 0.870 1.000
10 0.392 0.276 0.741 1.000
11 0.779 0.747 0.870 1.000
12 0.811 0.747 1.000 1.000
13 0.288 0.479 0.497 1.000
14 0.085 0.017 1.000 1.000
15 0.996 1.000 1.000 1.000
16 0.002 0.017 0.06 1.000
17 0.637 0.747 0.870 1.000
18 0.779 1.000 0.870 1.000
19 0.687 0.402 0.896 1.000
20 0.288 0.172 0.879 1.000
21 0.039 0.011 1.000 1.000

Table 4.6 Offset χ2 and Fisher’s exact test significance results on the position-
specific properties for conserved and species-specific miRNA–mRNA interactions
in A. thaliana. The contribution of specific properties, such as mismatches (MM),
G:U pairs and gaps are assessed using Fisher exact tests. Values at or below the
significance threshold (0.05) and highlighted in bold.

an allowed mismatch or G:U pair at position 10 of the species-specific miRNAs.

Complete list of inferred parameters can be found in Appendix B Table 10.
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Inferred on Evaluated on Possible Captured Sensitivity

Conserved Conserved 201 165 82.1%

Specific Conserved 201 132 65.7%

Specific Specific 184 140 76.1%

Conserved Specific 184 103 56.0%

Table 4.7 Sensitivity on cross pairwise comparisons for criteria inferred on con-
served or species-specific miRNAs for the validated A. thaliana interactions. The
targeting criteria were inferred using a retain rate of 0.85 and a considerable decrease
in sensitivity was observed for the mismatched pairs i.e. training on conserved
interactions and testing on specific interactions.

The differences between the properties of conserved and species-specific inter-

actions highlight the need for customization in the set of criteria used for describing

and capturing miRNA–mRNA interactions when conserved or species-specific

miRNAs are involved.

4.4.4 Evaluation of miRNA targeting criteria in non-model or-

ganisms

Current miRNA targeting rules, inferred on interactions mostly consisting of con-

served miRNAs from A. thaliana [3], have been applied to other species for target

prediction [160, 134, 123, 103]. However, to the best of our knowledge, no com-

prehensive investigation into the suitability of these fixed targeting criteria has been

performed in non-model organisms. The characterization of miRNA–mRNA inter-

actions has been facilitated by both the increased complexity of experiments involv-

ing non-model plant species and through the analysis of RNA degradation profiles

(PARE [74] sequencing and more recently NanoPARE [179]), which despite tech-

86



nical limitations, e.g. sequencing bias [190], can provide reliable high-throughput

validation of miRNA-mediated cleavage sites.

To investigate the suitability and portability of the fixed Allen et al. criteria

on non-model organisms and evaluate the scope for customized, organism-specific

rules, we conducted an exploratory analysis using as input the HC degradome-

supported miRNA–mRNA interactions reported by PAREameters. We compared

the inferred rules for flower and leaf tissues in several organisms to produce a

quantitative summary of the variation ranges of thresholds for the selected rules.

Appendix B Table 11 shows these summaries of inferred criteria per organism;

Figure 4.3A illustrates the position-specific distributions of G:U pairs, mismatches

and gaps, and Figure 4.3B shows the MFE ratio distributions for the miRNA–mRNA

duplexes from flower tissue across organisms in A. thaliana, A. trichopoda, O. sativa

and T. aestivum. Similar plots for leaf tissue in A. thaliana, A. trichopoda and G.

max are presented in Appendix B Figure 2.
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The distributions of position-specific properties in flower tissue show interesting

variations between species. To evaluate whether the non-model organism distri-

butions differ from the A. thaliana distributions, we used the offset χ2 test and a

localized Fisher’s exact test, presented in Appendix B Table 12. The former show

significant differences at positions 1, 9, 14, 17 and 20 in O. sativa and position

2 in T. aestivum. The results of the localized Fisher’s exact test show significant

differences at positions 1, 14 and 20, and positions 1, 9 and 17 in O. sativa for

mismatches and G:U wobble pairs, respectively. Moreover, the Fisher’s exact test

reported a significant difference in the proportion of gaps at position 2 in T. aestivum.

Alongside the position-specific properties, the MFE ratio was also investigated as a

discriminative feature (appendix B Figure 2B) and the Kolmogorov–Smirnov test

was used to evaluate differences between distributions of different species. The

distribution of MFE ratios and results of the statistical test, presented in Appendix B

Table 13, illustrates the differences between monocots and dicots, with significant

differences only reported when comparing different groups. The identification of

these subtle differences when compared to A. thaliana support the conclusion that

species-specific and data driven criteria could facilitate a better description of the

miRNA–mRNA interactions.

The differences observed between conserved and specific-specific miRNAs in A.

thaliana prompted a similar investigation in other, non-model organisms. Similarly,

as for A. thaliana miRNA interactions, we classified the miRNAs that had HC

predicted interactions, as reported by PAREameters, into conserved or species-

specific for each of the non-model organisms. Specifically, miRNAs present only

in an individual clade, based on current miRBase annotations (Release 22) [110],

were considered species-specific; otherwise they were classified as conserved. The

conservation analysis was done against the current miRNA variants from miRBase,

allowing up to two mismatches, at any positions, and no gaps. If a miRNA predicted

on a non-model organism dataset did not match any miRNA variant in miRBase or
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aligned only to a known species-specific miRNA, then it would be classified as a

species-specific, otherwise the miRNA was classified as conserved. The summaries

of the position-specific properties distributions and MFE ratio distributions for each

of the non-model organisms are presented in Appendix B Figures 3–7. The results

of the significance tests comparing the conserved and species-specific properties

are presented in Appendix B Tables 14–18.

To illustrate the impact of the differences between targeting properties and

subsequently inferred targeting criteria in non-model organisms, we focus on

the results in T. aestivum, presented in Appendix B Figure 7 and Appendix B

Table 18. Out of the 21 positions analysed, 7 had significant differences based on

the χ2 tests (the conserved properties were considered the expected distribution

and the species-specific properties were the observed distribution), with three

of these differences in the miRNA core region (positions 2, 3 and 12). Also

showing a significant difference were the MFE ratio distributions, evaluated using

the Kolmogorov–Smirnov test, which reported a p-value of p < 0.001. Also, other

non-model organisms showed significant differences within the miRNA core region,

for example in O. sativa inflorescence (Appendix B Figure 6 and Appendix B Table

17). Moreover, significant differences between the MFE ratio distributions are

also observed in A. trichopoda flower (Appendix B Figure 4) and G. max leaves

(Appendix B Figure 5).

4.4.5 Employing data-driven targeting criteria on non-model

organisms

To evaluate the differences in number and identity of predicted miRNA targets

when using the Allen et al. and PAREameters inferred criteria on the non-model

organisms, we performed target prediction using PAREsnip2. The inferred criteria

were able to capture a larger number of interactions; the only exception was
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observed for the D6 (O. sativa) dataset for which 149 interactions from 42 miRNAs

were found using the Allen et al. criteria and 115 interactions from 33 miRNAs

using the inferred rules with an overlap of 100%. The larger number of interactions

reported for the D5 (G. max) and D7 (T. aestivum) datasets when compared to D4

(A. trichopoda) and D6 (O. sativa) may have arisen from number of repeat regions

or duplicated transcripts present within the current genome annotation.

We then investigated the overlap between the miRNAs and their interactions

for each set of criteria, presented in Appendix B Table 19, and concluded that,

except for D6 (O. sativa), a higher number of miRNAs and their interactions were

specific to the inferred criteria, highlighting yet again the distance from the Allen

et al. criteria. For the above analysis, we used the default retain rate of 0.85 so to

explore its effect on the overlap between the Allen et al. criteria and the inferred

criteria, we repeated the analysis using a retain rate value of 1, to capture all

PAREameters reported HC interactions. All of the captured interactions using the

Allen et al. criteria were a subset of the interactions captured by the PAREameters

inferred criteria when using a retain rate of 1 (Appendix B Table 20); the increase

in miRNAs with targets varies between 4 (D6) and 102 (D7) and the increase

in reported interactions varies between 12 (D6) and 783 (D7), depending on the

organism or dataset. These results further suggest that the Allen et al. criteria may

have been too stringent, or inadequately calibrated for the specific organism or

miRNAs in question.

4.5 Discussion

The comparison of validated miRNA–mRNA interaction properties between con-

served and species-specific miRNAs in A. thaliana highlighted interesting and

perhaps previously unknown differences. When investigating the features of con-

served miRNA interactions, we observed similar patterns to that of Allen et al.
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[3] regarding complementarity in the core region of the miRNA (2–13) and at

the canonical position 10. This observation is further supported by a recent study

of highly conserved miRNAs in N. benthamiana [137], where it was shown that

a single mismatch at the 5’ end of miR160 significantly diminished target site

efficacy, and two or more consecutive mismatches at the 5’ end fully abolished it.

Furthermore, the authors highlighted that a single-nucleotide mismatch at positions

9 and 10, in addition to combinations of mismatches at positions 9, 10 and 11 led

to the complete elimination of the responsiveness of miR164. However, the species-

specific miRNAs tended to tolerate more flexibility at these positions. These results

motivated a similar analysis in non-model organisms and the results of which did

mirror the trends observed in A. thaliana. However, it is important to emphasize that

these result from a series of predictions, and are subject to changes from additional

validations. Nonetheless, this output highlights, yet again, the potential differences

in the range of suitable thresholds used for predicting targets for subsets of miRNAs

and reiterate the remark that one set of fixed criteria for inferring miRNA–mRNA

targets may not be sufficient.

Throughout this chapter, we used exclusively the HC interactions, reported by

PAREameters, for all comparative analysis. This is in part because the strongest

degradation signal on a transcript is likely a result of miRNA cleavage and focusing

on this subset of interactions increases the confidence in the prediction results.

However, it has been shown that weaker/lower abundance degradation signals may

also be caused by miRNAs; these can be captured during target prediction, albeit

with lower prediction confidence. These lower abundance signals may be a result

of lower miRNA expression, reduced cleavage efficiency or even sequencing bias

[190]. Indeed, it is also possible that the degradation fragments may not be caused

by miRNA cleavage but instead are a result of noise or random degradation of the

transcript. It has been shown that real miRNA cleavage sites tend to be conserved

across biological replicates and therefore, we further tested the hypothesis that
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the properties of genuine miRNA–mRNA interactions will be consistent between

biological replicates. To investigate this, we re-ran the analysis of the A. thaliana

D1 dataset, allowing both HC and LC interactions to be reported, and compared the

results, across replicates, using the same statistical evaluations, as described in the

methods.

The outcome of these analyses, presented in Appendix B Figures 8 and 9, show

a consistent decrease in the number of LC interactions reported compared to the

number of HC interactions and a higher variability in distributions of properties,

across replicates, for the LC interactions. This remark supports our previous obser-

vation that genuine miRNA cleavage signals are likely to have the strongest signal

(Category-0 or 1) on transcripts. The consistency of the MFE ratio distributions

and the position-specific properties of HC interactions between replicates is re-

markable, with no significant differences in properties reported (Appendix B Table

21), supporting our previous hypothesis that genuine miRNA cleavage sites are

conserved between biological replicates. Conversely, when comparing the property

distributions of LC interactions between replicates, we observe a higher variation

in the proportions of interactions with specific properties, however no significant

differences were reported by the statistical tests (Appendix B Table 22). We specu-

late that the cause of these variations of properties between replicates is due to the

higher proportion of putative false positive predictions, i.e. the Category-2 and 3

interactions comprise a combination of genuine target sites and random degradation

illustrated by the lower abundance of the transcript degradation signals.

When performing an investigation into the differences between properties of

conserved and species-specific miRNA interactions reported by PAREameters in

the non-model organisms, we identified statistically significant differences in the

O. sativa and T. aestivum datasets. However, as these results are based solely

on predictions made using the degradome, it is difficult to determine if these

observations are caused by genuine biological differences or if they are a result of
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prediction artefacts. Nonetheless, we hope that these observations will prompt the

creation of an extensive set of experimentally validated miRNA-mRNA interactions

in a wide range of tissues and treatments from various species that could give a

more conclusive answer to whether there exists differences between conserved and

species-specific miRNA interactions.

In this chapter, we also highlighted that targeting criteria inferred on non-model

organisms or subsets of interactions are less compatible with current fixed criteria

and often lead to a decrease in sensitivity. Given the current, limited understanding

of the miRNA–mRNA interactions in various species, it is difficult to propose

a biological interpretation of these variations, however, based on the side-by-

side analysis of various datasets, we can conclude that a customized selection of

parameters may result in a higher precision output that could facilitate a more

detailed overview of regulatory interactions and an in-depth assessment of the

underlying regulatory networks. Furthermore, the differences observed in the flower

tissue between monocots and dicots emphasize the usefulness of data-inferred,

species and tissue specific thresholds. We have demonstrated that PAREameters

is applicable for a wide variety of experimental designs in both model and non-

model organisms and could enable further understanding of the subtle variations

in miRNA–mRNA interactions in different species, tissues and treatments. In

addition, this novel data-driven approach may enable new discoveries, i.e. regulatory

sequences or modes of action, within the RNA silencing pathways.

4.6 Conclusion

In this chapter, we describe PAREameters, a novel approach and tool that enables

data-driven inference of plant miRNA targeting criteria that can be used by PAREs-

nip2. Through refining the targeting criteria, the discovery and characterization

of new miRNA–mRNA interactions per tissue or organism (both model and non-
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model) becomes possible. When evaluating the performance of the PAREameters

inferred criteria, we observed an increase in sensitivity compared to the Allen

et al. criteria over all the A. thaliana datasets, whilst also maintaining precision

on most datasets, when benchmarked against a set of experimentally validated

miRNA–mRNA interactions. In the next chapter, we describe a new software

tool, called NATpare, that we developed to predict nat-siRNAs from sRNA and

degradome sequencing data.
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Chapter 5

High-throughput prediction and

functional analysis of nat-siRNAs

using the degradome

5.1 Summary

Throughout this thesis, we have used degradome data as a resource for improving

confidence when predicting sRNA targets. However, this data can also be used to

capture cleavage products generated through Dicer-mediated processing of sRNA

precursors, as demonstrated with miRNA biogenesis [134, 2, 225]. In this chapter,

we describe a new software tool, called NATpare, that we developed to predict

nat-siRNAs from sRNA and degradome sequencing data. NATpare takes sRNA,

transcriptome and, optionally, degradome data as input and enables the identification

of both cis- and trans-nat-siRNAs. It is scalable with the increasing size of modern

sequencing datasets and enables comprehensive analysis of nat-siRNAs in more

complex transcriptomes for the first time within a reasonable time frame. In addition,

if corresponding degradome data is available, NATpare provides the reported nat-
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siRNAs to PAREsnip2 for prediction of potential mRNA targets based on evidence

within the degradome.

We start by introducing the background followed by a description of the meth-

ods that we used to create the tool. After this, we perform computational and

prediction performance benchmarking of NATpare and compare the results with

that of another publicly available tool for this type of prediction. We then perform

prediction and differential expression analyses on control and stress treated samples

in Arabidopsis thaliana. Finally, we perform functional analysis, using PAREsnip2,

of cis- and trans-nat-siRNAs in multiple A. thaliana tissues before concluding with

a discussion.

This chapter is an adapted version of "NATpare: a pipeline for high-throughput

prediction and functional analysis of nat-siRNAs.", which is published in Nucleic

Acids Research [199].

5.2 Background

Natural antisense transcripts (NATs) are endogenous RNA transcripts that share

sequence complementary with other RNA transcript sequences [60]. They have

been identified in multiple eukaryotes, including Homo sapien, Mus musculus,

Saccharomyces cerevisiae, Oryza sativa and A. thaliana [204]. NATs include both

protein coding (PC) and non-protein coding (NPC) transcripts [118] and can be

classified into either cis-NATs or trans-NATs based on their genomic origin. cis-

NATs are transcribed from the same genomic location but on opposite strands,

resulting in sections of perfectly complementary dsRNA forming from the two

transcript sequences. Conversely, trans-NATs originate from different genomic

locations and can form imperfect dsRNA [204]. There are three types of NAT

orientation that can form dsRNA: 5’ overlap (head-to-head), 3’ overlap (tail-to-tail)
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and the complete enclosure of one transcript by the other (full overlap) [118], shown

in Figure 5.1. Although current understanding is limited, research has suggested a

variety of regulatory roles for NATs, such as RNAi, alternative splicing, genomic

imprinting, and X-chromosome inactivation [204, 31, 26].

Fig. 5.1 The three types of NAT orientation that can form dsRNA: 5’ overlap (head-
to-head) (A), 3’ overlap (tail-to-tail) (B) and the complete enclosure of one transcript
by the other (full overlap) (C). Transcript sequences are always transcribed in the
5’ direction and are represented by coloured arrows. Regions of complementarity
between the two sequences are represented by dashed lines.

Over the last few years, much research attention has been focused on the biogen-

esis and function of nat-siRNAs [26, 87, 172, 227, 233]. The founding example was

identified in A. thaliana, where a pair of cis-NATs, SRO5 and P5CDH, were shown

to be involved in the response to salt tolerance through the RNAi pathway [26].

During salt stress, SR05 is expressed and can form a complementary overlapping

region with the constitutively expressed P5CDH, which is then processed by a

biogenesis pathway dependent on Dicer-like 2 (DCL2), RNA-dependent RNA poly-

merase 6 (RDR6), Suppressor of Gene Silencing 3 (SGS3) and DNA-directed RNA

polymerase IV subunit 1 (NRPD1) to produce a 24nt nat-siRNA. This nat-siRNA

then directs the cleavage of P5CDH, which is subsequently used as a template

by RDR6 to produce dsRNA that is then processed by DCL1 to produce 21nt

secondary nat-siRNAs [26].

In 2012, Zhang et al. [231] performed a genome-wide analysis of plant nat-

siRNAs in both O. sativa and A. thaliana, which revealed insights into their distri-

bution, biogenesis and function. In this study, more than 17 000 unique siRNAs

corresponding to cis-NATs from biotic and abiotic stress challenged A. thaliana

and 56 000 from abiotic stress treated O. sativa. These siRNAs were enriched in
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the overlapping region of NAT pairs and displayed either site-specific or distributed

patterns.

Current tools available for the prediction of NATs and nat-siRNAs are limited

in both number and functionality. NATpipe [224] suffers from limitations in its

run-time and also requires a large number of third party dependencies that must

be installed and configured by the user. This requires computational expertise

that some users may not have. Additionally, NATpipe is developed to exclusively

discover phased-distributed nat-siRNAs, however based on a previous study [231],

nat-siRNAs production can also follow site-specific patterns and thus would be

missed by NATpipe. Moreover, the results reported by NATpipe do not give any

indications into the possible function of any predicted nat-siRNAs. Finally, based on

our prediction performance benchmarking, limitations with the implementation of

the NATpipe algorithm causes some known cis-NAT pairs and their corresponding

cis-nat-siRNAs to be discarded.

5.3 Methods

The NATpare algorithm is split into four main stages with the final stage being

optional and dependent on the input data. The first is the pre-processing of input

sequencing data and the approaches taken to reduce the possible search space. The

second stage is the identification of potential NAT pairs. In the third stage, potential

nat-siRNAs are identified and additional quantitative information is extracted and

reported. Finally, and if degradome data is provided, the candidate nat-siRNAs

are subject to functional analysis using PAREsnip2 to search for potential mRNA

targets. A visual overview of the steps involved for performing analysis on the

input data is shown in Figure 5.2. We now explain each stage of the algorithm in

more detail.
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Fig. 5.2 A visual overview of the NATpare pipeline. Input and output data are
represented by rounded rectangles and processes are represented by straight rectan-
gles. Data input or processing steps surrounded by dashed lines are optional and
dependent on the provided input data. NATpare takes as input HTS data (sRNA
and degradome) along with a reference transcriptome and outputs a list of predicted
nat-siRNA. Additional annotation information, in the form of a GFF3 file, can be
used to annotate the predicted NATs (cis or trans).
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5.3.1 Data input and configuration

To perform an analysis using NATpare for a specific organism, the user must input

the following data:

• A reference file (transcriptome) in either FASTA or Generic Feature Format

version 3 (GFF3) with the genome sequence in the GFF file;

• A genome file (optional unless using GFF3 as reference);

• A set of sRNAs in redundant FASTA format

• A degradome library in redundant FASTA format (optional)

A reference file and at least one sRNA library are required to perform analysis.

If the user chooses to use a GFF3 file as a reference then a corresponding genome

must also be provided. When extracting the gene sequences from the genome using

information from the provided annotation (GFF3), the tool will include all splice

variants of a given transcript that are detailed within the annotation. The input

sRNA library must be in redundant FASTA format with the adaptors trimmed. Tools

available to processing FASTQ files, such as adaptor trimming and other quality

checking, can be found in the UEA sRNA Workbench [192], where NATpare is

also implemented. When performing analysis, the user has the option to configure

a number of parameters to meet their requirements, which are shown in Table 5.1.

The most notable parameters are the number of expected sRNA phases, which is

defined as the number of expected adjacent sRNAs, with or without overlap, that

align to a given transcript for it to be reported, as shown in Figure 5.3, and the

minimum overlap length between two NATs (i.e. the minimum overlap length

considered possible to produce sRNAs).
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Fig. 5.3 The two types of adjacent sRNA alignment phases considered by NATpare.
Adjacent sRNA phases without overlap are when the first position at the 5’ end of an
aligned sRNA is adjacent to the last position at the 3’ end of another aligned sRNA.
Adjacent sRNA phases with overlap are where sRNA sequences align contiguously
to a given transcript.

5.3.2 Sequence filtering

Several optional filtering techniques can be applied to the input data to remove

low quality reads, sequencing errors or sample contamination. First, any sequence

containing ambiguous bases are discarded as they cannot be accurately aligned. Sec-

ond, a low complexity sequence filter is applied based on the sequence composition,

described in Section 3.3.2. Specifically, this works by discarding any sequences

that contain more than 75%, 37.5% and 25% of a single, di- or tri-nucleotide com-

position, respectively. Finally, if a genome is provided, sRNA sequences can be

aligned using PatMan [165], with any sequences that do not align being discarded.

5.3.3 Search space reduction

A core component of the NATpare algorithm is the pre-processing of the input data

to reduce the possible search space and thus reduce the required run-time of a given
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analysis. In the first step, the sRNA and optional degradome libraries are aligned

to the provided transcript sequences in the positive direction with no mismatches

allowed. For this, we use the Binary Search Alignment algorithm described in 3.3.4.

Next, we extract sub-sequences based on the following criteria:

• Adjacent aligned sRNA sequences, either at the 5’ end or 3’ end, that meet

the minimum number of expected phases (configurable parameter)

• If provided, degradome tags where the first position aligns adjacent to the 3’

position of an aligned sRNA, which results in a ∼40nt sequence

The use of degradome data is to find DCL-mediated cleavage evidence and to

determine those sRNA that may be site-specific, i.e. there is a preferential DCL

cleavage site, based on the types of distribution patterns found in a previous study

[233].

Once the longer sub-sequences that meet either of the above criteria have been

extracted, we take their reverse complement and perform exact match sequence

alignment to all other transcripts using PatMan [165]. This process gives us potential

overlapping regions, that may give rise to sRNAs, between two transcripts and are

then subject to more a comprehensive analysis.

5.3.4 NAT pair search

After the generation of the candidate NATs from the search space reduction tech-

nique, they are subject to an alignment search using BLAST [99]. If the alignment

length is greater than or equal to the expected minimum, the NAT pair is then identi-

fied as either cis or trans. If a GFF3 file is provided as input this will be determined

by the genomic origin of the two transcripts, otherwise it will be determined based

on previously described criteria [224]. Specifically, if the overlapping region is

perfectly complementary, it will be considered as a cis-NAT, otherwise it will be
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considered as a trans-NAT, albeit without genomic location information. In the case

of trans-NATs, the reported alignment is further analysed using RNAplex [195] to

verify the annealing potential of the BLAST-predicted alignment at the secondary

structure level. The results from RNAplex must meet the following criteria for the

NAT pair to be considered for further analysis:

1. The reported annealing region should overlap with the BLAST reported

complementary region by at least 80% (configurable parameter)

2. Any unpaired region within the annealing region should be no longer than

10% (configurable parameter) of the total length of the overlapping region

Unlike NATpipe, we only do the hybridization analysis if the reported BLAST

alignment or genomic location information suggests that the NAT pairs work in

trans. In addition and to compensate for the long processing time of RNAplex, if

the length of either transcript of the NAT pair is greater than 5000nt, we omit the

hybridisation step and instead just proceed with the reported BLAST alignment.

Once all of the candidate NATs have been processed, those passing all the

required criteria are categorized into the following groups:

• High-coverage (HC): the complementary region is longer than 50% of the

length of either transcript

• 100nt: the complementary region is 100nt or longer in length

• Low-coverage (LC): the complementary region is less than 100nt in length

5.3.5 Categorization of candidate nat-siRNAs

Once the overlapping regions between NATs have been determined, the pipeline

extracts the sRNA sequences that aligned to these positions. Rather than just
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providing the user with a set of aligned sRNAs, we developed a system to categorise

each sRNA based on the current understanding of the sRNA biogenesis model.

For this system, we also include degradome data (if provided) as this provides

a snapshot of the mRNA degradation profile, which can include Dicer-mediated

cleavage products [134, 2, 225]. In addition, by looking at the degradation profile,

it can also give us an indication as to what mRNAs are currently being expressed,

as the mRNA must be expressed in order to be degraded, and thus improve our

nat-siRNA prediction model.

For each biogenesis group, we define the mature sRNA as the one originating

from the transcript currently being investigated. For example, given the NAT pair

consisting of transcripts A and B, when investigating sRNA alignments to transcript

A, those sRNAs aligning to B will be considered the star sequences, and vice-versa

when investigating transcript B, those aligning to A will be considered the star

sequence.

• Group 1: sRNA and sRNA* sequence present with 2nt 5’ overhang and both

sequences supported by the degradome data

• Group 2: sRNA and sRNA* sequence present with 2nt 5’ overhang and only

mature sequence supported by the degradome data

• Group 3: sRNA and sRNA* sequence present with 2nt 5’ overhang

• Group 4: sRNA present with degradome evidence but no sRNA*

• Group 5: Only the sRNA aligning to the overlapping region
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5.3.6 NAT alignment distribution and sRNA alignment densi-

ties

To determine the distribution pattern of aligned sRNAs for a given NAT pair, we

implemented a method described previously [231]. Specifically, starting from the

first aligned sRNA closest to the 5’ end of a transcript, sRNAs are clustered if

their first nucleotide is within a 10nt long segment of the starting sRNA, with any

cluster containing more than 5 reads being retained for further analysis. For each

NAT, we record the number of clusters and the percentage of the unique reads in

these clusters relative to the whole transcript. Alignments are considered to be

site-specific if a transcript contains 10 or less clusters and the percentage of unique

reads within these clusters is 50% or greater than that over the whole transcript,

otherwise it is categorized to have a distributed pattern.

For each NAT pair, we also report the sRNA alignment density for the over-

lapping region and for the whole transcript. To do this, we implement the same

methods as described previously [231]. Briefly, for each NAT pair, we counted the

number of unique sRNAs, denoted as No, mapping to the overlapping region and

the total number, denoted as Ng, mapping to both transcripts. We then measured the

length of the overlapping region, denoted as Lo, and the sum of the length of both

transcripts, denoted as Lg. Finally, the ratios No/Lo and Ng/Lg were reported as the

sRNA alignment densities for the overlapping region and for the overall transcript

sequences within the NAT pair, respectively.

5.3.7 Functional analysis of candidate nat-siRNAs

It has been shown that cis-nat-siRNAs can direct the cleavage of their mRNA targets

[26]. Therefore, to provide further indication of the function of the reported nat-

siRNAs and if degradome data is provided as input, we incorporate the predicted
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nat-siRNAs into PAREsnip2. For target prediction, we allow the user to configure

their own parameters or alternatively use the default configurations provided in

PAREsnip2. Additionally, if the user has a version of R installed and is correctly

configured on their PATH, the pipeline can automatically produce t-plots to provide

a visual representation of the reported interactions.

5.3.8 Implementation and output

The algorithm has been implemented using the Java programming language and a

user-friendly, cross-platform software package has been incorporated into the UEA

sRNA Workbench [192]. Analysis using NATpare can be performed through the

command-line interface as a standalone application or alternatively be incorporated

into larger and more complex bioinformatics pipelines or workflows. The results of

NATpare are provided in comma-separated value (CSV) format, allowing them to

be viewed in any CSV file viewer.

5.3.9 Sequencing datasets

The sequencing datasets analysed in this chapter are described in Appendix C Table

1.

To enable a comprehensive evaluation of the NATpare tool, we performed

computational benchmarking on multiple plant species with varying transcriptome

sizes (Appendix C Table 2), including A. thaliana, Solanum lycopersicum, O. sativa,

Glycine max and Triticum aestivum. The transcriptome used for all species in the

computational performance benchmarking were extracted from genome and GFF

files obtained from Ensembl Plants [22]. 100 000 sRNA sequences were used in

the computational benchmarking for each species and were simulated from the

overlapping region of two randomly selected cis-NAT pair, based on the genomic
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information provided within the genome annotation. All generated sequences were

21nt in length and were randomly selected to be extracted from either transcript

within the NAT pair.

For the prediction performance comparison between NATpare, NATpipe and

those reported by a previous study, we used the G. max datasets (sRNA and tran-

scriptome) described in Appendix C Table 1. The control and stress treated A.

thaliana sRNA sequences that were used for the seedling salt stress analysis were

obtained from [13] and the flower, root, seedling and leaf libraries, with corre-

sponding degradome data, were obtained from [83]. For all A. thaliana analysis,

besides from the computational benchmarking, we used the TAIR10 reference

transcriptome [115].

5.4 Results

5.4.1 Benchmarking and comparison with NATpipe

To measure the computational performance of the newly developed NATpare al-

gorithm, i.e. the time and memory required to perform an analysis, we carried out

computational benchmarking and compared our results to those of the other pub-

licly available method. This benchmarking was performed on a desktop computer

running Ubuntu 18.04 equipped with a 3.40GHz Intel Core i7-6800K six core CPU

and 128GB RAM.

For this benchmarking, we used the simulated set of sRNA sequences and the

reference transcriptome, produced using the GFF file obtained from Ensembl [22],

as described in the methods, for each species. The reason that we used simulated

data is that it allows us to generate nat-siRNAs that we know should be captured

by the tools and thus allows for the fairest possible comparison. As NATpipe
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can only predict nat-siRNA originating from cis-NATs, we adjusted the NATpare

parameters to also have this restriction. We recorded the time taken for each tool

to perform analysis on the simulated data and the results of these analyses are

shown in Table 5.2. If a tool did not complete the analysis within 10 days, we

recorded it as did not finish (DNF). The results show that the newly developed

algorithm substantially outperforms NATpipe on the simulated datasets in terms of

computation time. For the A. thaliana dataset, the only dataset that NATpipe was

able to complete within the 10 day cut-off limit, the newly developed method was

able to complete the analysis 227 times faster. For all tested datasets, the memory

requirement varied between 4GB and 8GB depending on the number of transcript

sequence within the reference annotation. The timing results suggest that the time

taken is dependent on the number of transcripts and transcript pairs that contain

overlapping and complementary regions, for which the exact number is difficult

to determine, particularly when you consider trans-NATs, as this information is

not possible to obtain, even with a complete genome annotation, without thorough

computational analysis. However, the results of the computational performance

benchmarking demonstrate NATpipe’s speed limitations and the need for additional

pipelines or software tools for the prediction of nat-siRNAs.

Species Annotation # Transcripts NATpipe NATpare
S. lycopersicum SL3.0 33925 DNF 4m 52s
O. sativa IRGSP-1.0 42378 DNF 5m 38s
A. thaliana TAIR10 48359 1d 18h 34m 11m 15s
G. max G. max v2.1 88412 DNF 1h 5m
T. aestivum IWGSC 133744 DNF 13h 2m

Table 5.2 Computation performance comparison between NATpipe and the newly
developed NATpare pipeline when evaluated on the simulated datasets. If the tool
did not finish within 10 days it was recorded as did not finish (DNF).

Next, we wanted to evaluate the predictions reported by the tools on real se-

quencing data. However, unlike other classes of sRNA, such as miRNAs, there
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is no extensive set of true positives to evaluate against. Nevertheless, a number

of previous studies have manually predicted NATs and nat-siRNAs in both model

and non-model plants, for example, A. thaliana [231], G. max [235] and Z. mays

[218]. As NATpipe is currently the only publicly available tool for the prediction of

nat-siRNAs, we performed an analysis on a publicly available G. max dataset and

investigated the overlap in the number of nat-siRNAs reported by computational

methods, NATpipe and NATpare, and those found previously during manual anal-

ysis [235]. For this analysis, we used the G. max cDNA reference transcriptome,

obtained from Phytozome and the D1 sRNA dataset, as described in the methods. In

addition, to compensate for the long processing time required by NATpipe and the

fact that it is only able to predict cis-nat-siRNAs, we restricted the input transcript

sequences only to those with perfectly complementary overlapping regions, as

reported by a BLAST search using those transcripts previously found to produce

nat-siRNAs [235] as input.

The results from the top 10 NAT pairs, based on number of generated nat-

siRNAs, are presented in Table 5.3 and the rest in Appendix C Table 3, show that

NATpare is able to capture a larger number of the previously reported nat-siRNAs in

G. max compared to NATpipe. To investigate the overlap in results between the two

tools, we compared the results and found that all of the NATpipe reported nat-siRNA

were a subset of those reported by NATpare. In addition, further investigation into

the NAT pairs missed by NATpipe showed that the RNAplex hybridization step of

the algorithm did not always correspond to the alignment reported by BLAST, thus

no results were reported, which supports our decision to perform RNA hybridization

exclusively on trans-NATs. Interestingly, we observed differences between the

numbers of reported nat-siRNAs from the previous study [235] and the prediction

tools and consider this likely to be a result of minor discrepancies between the

different filtering and prediction methods applied to the input sRNAs.
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Gene A Gene B
Overlap
length

Zheng et al. NATpare NATpipe

Glyma13g11940 Glyma13g11970 542 1864 1802 0
Glyma13g11820 Glyma13g11830 428 1285 1406 0
Glyma13g11940 Glyma13g11950 147 724 576 0
Glyma13g11940 Glyma13g11960 118 509 487 0
Glyma11g30060 Glyma11g30070 392 244 237 209
Glyma13g21780 Glyma13g21790 355 28 28 0
Glyma15g06490 Glyma15g06500 156 26 26 0
Glyma17g23860 Glyma17g23870 174 18 11 11
Glyma03g22390 Glyma03g22400 276 17 17 16
Glyma15g37470 Glyma15g37480 764 15 15 0

Table 5.3 Top 10 reported G. max cis-NATs with the highest number of unique
reported nat-siRNAs by Zheng et al. [235] and the prediction results from NATpare
and NATpipe

5.4.2 Comparing the expression of nat-siRNAs in A. thaliana

control and salt stress treated samples

The current understanding of NATs and nat-siRNAs is that they are expressed

during certain stress conditions, development stages or disease response [26, 231,

232]. To illustrate the use of NATpare and to validate the results reported by the

tool, we performed analysis on a publicly available dataset, D2, obtained from

A. thaliana seedling under salt stress, a type of abiotic stress in which the plants

response has been previously shown to involve nat-siRNAs [26]. Before performing

analysis using NATpare and to increase confidence within the predictions, we

discarded any sRNAs that were not conserved between at least 2 out of 3 biological

replicates. Next, we further filtered the data to remove any known miRNAs or

isomiRs by aligning the sRNAs to all known plant miRNAs, obtained from miRBase

(release 22) [110], allowing up to 2 mismatches. In addition, we removed any

sRNA that may have originated from tRNA or rRNA sequences using the filtering
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methods implemented within the UEA sRNA Workbench [192]. The results for this

analysis, including the breakdown of the NAT and nat-siRNA prediction categories,

can be found in Appendix C Table 4. After performing analysis on the filtered

data using NATpare, we then investigated the overlap between the control and

treatment samples and the results show that there exists a clear separation in the

reported nat-siRNAs between treatment and control, with just 281 overlapping

sequences within the intersection, yet 877 and 581 being specific to control and

treatment, respectively. As the biogenesis of nat-siRNAs require both transcripts to

be expressed simultaneously within the same cell, the separation and differences in

the number of nat-siRNAs that are reported between control and treatment may be

due to transcriptional changes in response to the stress.

To investigate these results further, we performed differential expression analy-

sis with iDEP [73], using the default parameters, which reported 31 differentially

expressed (DE) nat-siRNAs using a false discovery rate of 0.1. These comprised of

29 up-regulated nat-siRNAs in the treatment datasets, presented in Table 5.4, and

two up-regulated nat-siRNA in the control datasets. For each of the up-regulated

nat-siRNAs identified in the treatment datasets, we examined the current annotation

model (TAIR10) and found that 10 of the 29 sequences originated from a NAT pair

where one of the transcripts is currently annotated as a potential natural antisense

gene. Majority of the other up-regulated nat-siRNAs in the treatment datasets origi-

nated from transcripts annotated as either unknown protein or other RNA Further

analysis of all NAT pairs giving rise to DE nat-siRNAs, besides for AT5G01600.1

and AT5G01595.1, showed that the sRNA alignment density within the overlapping

region was greater than that of the whole transcript, suggesting that sRNAs are

more likely to originate from overlapping regions of these NATs.
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5.4.3 Investigation into the function of cis- and trans-nat-siRNAs

in different A. thaliana tissues

In a previous study by Yuan et al. [228], manual analyses of 40 publicly available

A. thaliana sRNA datasets obtained from flower, leaf and seedling tissues identified

5385 nat-siRNAs that could be mapped to the overlapping region of a single cis

or trans-NAT pair and were conserved between at least three of the 40 datasets.

Of these, 1548 were found to be conserved between each tissue whereas 945

and 142 were specific to seedling and flower, respectively. Analyses into the

function of nat-siRNA has shown that they can act as post-transcriptional gene

regulators, like miRNAs, by directing the RISC to sequence-specific mRNA targets,

usually in cis [26, 205]. Degradome data provides experimental support that

increases confidence with sRNA target prediction and the NATpare pipeline includes

PAREsnip2 for target prediction and functional analysis of reported nat-siRNA

candidates. To illustrate the usefulness of combining prediction with functional

analysis, we performed analysis using NATpare on the D3 dataset, which consists

of two synonymous A. thaliana sRNA and degradome biological replicates obtained

from each flower, leaf, root and seedling.

For this analysis, and similar to the analysis performed in a previous study [228],

we configured NATpare to report both cis and trans-nat-siRNAs. Similar to our

previous analysis, we removed any sRNAs that were not conserved between both

replicates and also removed predictions that aligned to any known miRNA, rRNA

or tRNA sequences using the UEA sRNA Workbench. After performing analysis

on the filtered sRNAs (Appendix C Table 5), we further processed the results to

remove any predicted nat-siRNAs that were reported to originate from multiple

transcripts. In total, there were 2962, 1505, 2701, 3562 nat-siRNAs candidates

reported in flower, leaf, root and seedling, respectively. We then investigated the

overlap between the nat-siRNAs reported from each tissue and found that 613
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nat-siRNAs (9.6% of all reported sequences) were conserved between each of the

tissues. The tissue with the largest number of uniquely reported nat-siRNAs was

seedling, with 1438 (22.6% of all reported sequences), and the tissue with the

fewest uniquely reported sequences was leaf with just 272 (4.3% of total reads).

These results are consistent with those reported by Yuan et al. [228], where it

was also found that seedling tissue produces the largest number and leaf tissue

produces the smallest number of unique nat-siRNAs. A Venn diagram, created by

InteractiVenn [86], showing the overlap between all tissues within the D3 dataset

can be found in Figure 5.4. Further analysis into the nat-siRNA candidates found

that 96.5%, 98.5%, 98.1% and 97.6%, of nat-siRNAs identified in flower, leaf, root

and seedling, respectively, were uniquely reported in this study, when compared to

those previously reported [228].

To identify the possible function of the captured nat-siRNAs, we performed

target prediction with PAREsnip2, using default targeting criteria but without addi-

tional filtering (Appendix C Table 6 and Table 3.2), on the dataset D3 degradome

libraries. The sRNA input for degradome analysis on each tissue were the captured

nat-siRNAs that passed all filtering methods described above. The results of each

analysis can be found within Appendix C Table 7. The time taken to perform target

prediction on each dataset was 5 minutes with a peak memory usage of 4GB.

After performing analysis on each dataset, we extracted the reported targets that

were conserved between each of the replicates. This resulted in 6 targets from 4

nat-siRNAs captured in flower, 29 targets from 8 nat-siRNAs captured in leaf, 63

targets from 29 nat-siRNAs captured in root and 35 targets from 9 nat-siRNAs cap-

tured in seedling. To exemplify the use of degradome data for functional analysis

of the predicted nat-siRNAs, we further investigated the targets reported by the root

nat-siRNAs. We found that out of the 63 reported targets, 31, 12 and 1 were also

found in seedling, leaf and flower, respectively, suggesting that nat-siRNAs may

play both tissue-specific and wide-spread roles.

117



Fig. 5.4 Venn diagram showing the overlap of nat-siRNA predictions between all
tissues within the D3 dataset.

5.5 Discussion

Small RNAs that originate from endogenous RNA transcripts that share sequence

complementary to other RNA transcript sequences are termed nat-siRNAs, and

like miRNAs, they have been shown to regulate the translation of specific mRNAs

through mRNA cleavage [26]. Recently, there has been increase in the amount of

research focused on classifying this type of sRNA and investigating their possible

function. Even so, bioinformatics tools designed to identify nat-siRNAs from

high-throughput sequencing data are limited in both number and function.
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The founding examples of nat-siRNAs were in A. thaliana seedling, where a pair

of cis-NATs, SRO5 and P5CDH, were shown to be involved in salt tolerance through

the RNAi pathway [26]. We demonstrated the use of NATpare by performing

analysis on a publicly available A. thaliana seedling dataset, consisting of control

and salt stress libraries, followed by a DE analysis on the reported nat-siRNAs.

Intriguingly, NATpare did not capture the same salt stress responsive nat-siRNAs as

reported in a previous study [26] and further investigation showed that the previously

found sequences were not present within the more recent salt stress dataset that

we analysed. However, we did identify a number of DE nat-siRNAs in salt stress

treated A. thaliana seedling whose originating transcripts are currently annotated as

either potential natural antisense genes, unknown protein or simply described as

other RNA. These results suggest that more work is required into the role of these

sRNA in salt stress and also additional work into whether nat-siRNAs are specific to

salt stress or indeed play a responsive role in plants under various stress conditions.

However, based on previous findings [26], the function of these up-regulated nat-

siRNAs may be to ensure the down-regulation of the corresponding protein coding

transcripts contained within the NAT pair. Additionally, the identification of nat-

siRNAs originating from transcripts where the annotation is currently unknown,

for example AT3G41762.1, may enable additional annotation information to be

included, similar to AT1G05562.1, which is labelled as a potential natural antisense

gene in the current annotation.

In plants, post-transcriptional regulation by sRNAs usually result in mRNA

cleavage and subsequent degradation. Degradome data is a useful resource for

identifying the potential function of a sRNA as it captures the uncapped 5’ ends of

cleaved mRNAs for sequencing, which can then be aligned back to the reference

transcripts and used to identify causal sRNA(s). We used a combination of NATpare

and PAREsnip2 on the A. thaliana D3 dataset to predict and identify the possible

targets of nat-siRNAs that were conserved between two biological replicates in
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flower, leaf, root and seedling tissues. In this analysis, we identified a number of

interactions, conserved between replicates, which were found to be either tissue-

specific or present within multiple of the analysed tissues. However, as these results

are based solely on predictions, without further experimental validation it is difficult

to determine the exact role or function that these nat-siRNAs play. Nonetheless,

bioinformatics approaches to identify possible targets from sequencing data and

subsequent validation is a vital step in understanding the function of a sRNA. Thus,

we hope that the development of NATpare will lead to further understanding of the

origin and function of nat-siRNAs in all manner of experimental contexts.

5.6 Conclusion

In this chapter, we describe a new software tool and pipeline, called NATpare, which

is able to perform analyses on recent sRNA sequencing datasets within a reasonable

time frame for the very first time. When compared against the only available tool

for this type of analysis, NATpare achieved a speed up of 227x (1 day, 18 hours

and 34 minutes compared to just 11 minutes and 15 seconds) when benchmarked

on a simulated A. thaliana dataset. In addition, NATpare was able to complete

all analyses of the simulated non-model organism datasets, including T. aestivum

which took just 13 hours and 2 minutes, whereas NATpipe was unable to complete

any non-model organism analysis within the 10 day cut-off. Prediction performance

benchmarking of NATpare demonstrated its ability capture a larger number of

previously reported nat-siRNAs in G. max when compared with NATpipe.

In the next chapter, we exemplify the use of PAREsnip2 by performing de-

gradome analyses on sequencing data obtained from S. lycopersicum to better

understand the mechanisms by which the plant dies from Cucumber mosaic virus

D-satellite RNA infection.
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Chapter 6

Functional analysis of necrogenic

CMV D-satRNA derived sRNA in

Solanum lycopersicum

6.1 Summary

In Chapter 3, we introduced a software tool developed for analysing sRNA and

degradome sequencing data called PAREsnip2. In this chapter, we use PAREsnip2

to perform degradome analyses on data obtained from Solanum lycopersicum

infected with Cucumber mosaic virus (CMV) and D-satellite RNA (D-satRNA)

to identify the possible function of necrogenic D-satRNA derived sRNA. We start

by introducing CMV and satRNA and then discuss the impact that they have on

host plants. We then outline the conditions in which the plants were grown, how

they were infected and how the libraries were prepared for sequencing. This is

followed by a description of how we pre-processed the sequencing data ready

for analysis. We then explain the steps we performed to both analyse the data

and to experimentally validate the results obtained. Next, we present the results
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obtained from the degradome analyses followed by a comparison of the identified S.

lycopersicum target sites to that of other species known to survive infection. Finally,

we discuss the results from experimental validation of one of the more promising

candidate targets.

This work produced in this chapter is from collaboration between the UEA

Computational Biology group and Dr. Ping Xu’s research group at Shanghai

Normal University.

6.2 Background

Plant diseases pose a serious threat to global food security by reducing global food

production by more than 10% [193]. Plant viruses are one type of disease-causing

pathogen (others include bacteria, fungi and parasitic plants) that can affect the

normal development of host plants and sometimes cause rapid plant death, often

resulting in complete crop loss [102]. Lethal viral infection has occurred in many

important crops such as Zea. mays (maize) [177], Glycine. max (soybean) [142] and

S. lycopersicum (tomato) [208, 102]. Tomato is the second most important fruit or

vegetable crop, behind potato, and is cultivated for its fresh fruit and processed food

products [166]. Currently, China produces the largest quantity of tomato worldwide

but viral infection is one of the major limiting factors in its tomato production

[217].

Cucumber mosaic virus (CMV) is a plus-strand RNA virus with three RNA

genomes, RNA1, RNA2 and RNA3 [96]. These three RNAs encode five proteins,

1a, 2a, 2b, movement protein (MP) and coat protein (CP). While proteins 1a and 2a

are responsible for the replication of the virus, protein 2b interferes with the host

RNAi pathway [154]. The function of the MP and CP is to allow movement from

one infected cell to another [96]. CMV has the largest host range of any known

122



plant virus, infecting more than 1000 species [57]. Symptoms of CMV can vary

depending on the species of plant infected and the environmental conditions but

include mosaic pattern on the leaves, stunted growth, and malformation of leaves or

other growing points (Figure 6.1).

CMV can also harbour small, linear RNA molecules known as satellite RNAs

(satRNAs) [221]. These satRNAs are dependent on CMV for their replication but

are not necessary for the survival of the helper virus. They can attenuate or worsen

the symptoms induced by CMV in specific plant hosts. For example, B-satRNA

and WL1-satRNA induce chlorosis and attenuate symptoms, respectively, in CMV

infected S. lycopersicum [72]. D-satRNA is another strain of CMV satRNA that

induces a lethal systemic necrosis in S. lycopersicum, presented in Figure 6.1, and

its close relatives, which has been reported as an epidemic in France, Italy, and

Spain [102]. In Nicotiana tabacum, however, D-satRNA attenuates the symptoms

of CMV infection [72]. The mechanisms to which D-satRNA induces necrosis in

CMV infected S. lycopersicum remain unknown, however the specific nucleotides

of D-satRNA responsible for necrosis have been determined [185, 184]. Mutations

at these positions, 285 (G to A), 290 (T to G) and 292 (C to T), result in the plant

surviving infection and having reduced symptoms of CMV [220].

Recently, a study has shown that a sRNA derived from Y-satRNA reduces

the expression of a chlorophyll synthesis related gene through the RNAi pathway,

which results in leaf yellowing symptoms in CMV infected N. tabacum [182].

Further analyses in Arabidopsis thalaina and S. lycopersicum infected with CMV

and Y-satRNA demonstrated that the leaf yellowing symptoms failed to develop,

suggesting a specific interaction between Y-satRNA and N. tabacum. However,

modification of the Y-satRNA sequence to enable complementarity to the A. tha-

laina and S. lycopersicum homologous genes resulted in the development of leaf

yellowing symptoms [182].
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In this chapter, we perform degradome analyses on sequencing data obtained

from CMV and D-satRNA infected S. lycopersicum to investigate if D-satRNA

derived sRNA may be targeting specific host genes that contribute towards plant

death.

Fig. 6.1 Symptoms of CMV and D-satRNA infection in S. lycopersicum. Panel A
is the control (Mock), B is CMV infected, C is CMV D-satRNA infected and D
is CMV D-satRNA infected S. lycopersicum. CMV D-satRNA infection induces
necrosis while Dm-satRNA attenuates some symptoms of CMV infection.
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6.3 Methods

6.3.1 Plant materials and growth

Wild-type tomato (S. lycopersicum L. cv. Rutgers) and Nicotiana benthamiana

were grown with 16 hours of light at 25-28◦C and 60%-70% humidity, and 8 hours

at night at 15-18◦C and 60%-70% humidity. In vitro transcription products of CMV,

D-satRNA and Dm-satRNA were obtained using methods previously described

[221, 93]. CMV, CMV D-satRNA and CMV Dm-satRNA were inoculated using

the friction inoculation method. The plants inoculated with phosphate buffered

saline were set as the control group.

6.3.2 RNA extraction, library construction and sequencing

When the second immature stem segment close to the shoot tip of S. lycopersicum

seedlings infected with CMV D-satRNA showed minimal death spots, the shoot tip,

including the stem above the 2nd node, were collected from the plants inoculated

with mock, CMV, CMV D-satRNA and CMV Dm-satRNA. The total RNA was

extracted using Tri-reagent (Sigma) according to the method provided by the

manufacturer. Samples for each group were extracted from 5-10 infected plants or

virus-free plant controls and each group consisted of three biological replicates.

For all samples, 10µg of total RNA was used for the construction of each sRNA

library and 100µg of total RNA was used for each degradome library. The sRNA

libraries were constructed with HD-adapters using the previously published protocol

[21]. The degradome libraries were constructed with the modified 5’ RNA adapter

following the previously published protocol [230]. The libraries were sequenced

using HiSeq2500 platform by Berry Genomics in Beijing, China.
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6.3.3 Pre-processing of sequencing libraries

FASTQ files were processed by the UEA Small RNA Workbench [192]. Adapters

were trimmed using the Adapter Trimming tool and, as these libraries were con-

structed using HD adapters to reduce ligation bias [219], the additional random

nucleotides at the 5’ (PARE and sRNA) and 3’ (sRNA) end of the sequences were

also removed. Trimmed sequences shorter than 15 nt were discarded and sequences

mapping to rRNA or tRNA sequences were also removed. After trimming of the

adapter sequences, the FASTQ files were converted into FASTA format. Next,

we performed sequence alignment to both the host and viral genome allowing 0

mismatches and 0 gaps using PatMaN [165]. The host genome and transcriptome

versions used were SL3.0, and ITAG3.2, respectively, and were obtained from

the International Tomato Genome Sequencing Project [44]. The CMV genome

(strain Fny) and D-satRNA sequences were obtained from NCBI [14]. The mutated

D-satRNA sequence (Dm-satRNA) was obtained using the mutated nucleotides

identified in a previous study [93]. A full description of the data used in this study

can be found in Appendix D Table 1.

6.3.4 Identification of necrogenic sRNA

As discussed above, the necrogenic nucleotides of D-satRNA have been identified

as positions 285, 290 and 292 [93]. To investigate whether D-satRNA derived sRNA

could be targeting specific host genes leading to plant death, we first identified

sRNA reads that aligned to either strand of the D-satRNA sequence and contained

at least one of the necrogenic nucleotides within each of our D-satRNA libraries.

These reads were then extracted and used to create the necrogenic sRNA datasets

for each CMV D-satRNA infected library.
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6.3.5 Target prediction

Target prediction was performed with PAREsnip2 using the D-satRNA derived

sRNA and corresponding degradome libraries as input. To maximise the number of

predictions for further analyses, we removed the core region 2x score multiplier

from the PAREsnip2 targeting criteria and lowered the MFE ratio cut-off to 0.65.

We excluded filtering the results based on their p-value, however the value was still

reported. For this analysis and to increase confidence, we configured PAREsnip2 to

discard Category-3 and 4 interactions. We then post-processed the results to remove

any interactions that had a cleavage signal with an abundance, raw or weighted,

less than 5 as it is difficult to distinguish between true sRNA cleavage products and

random degradation at such low abundance. Where multiple sRNAs were predicted

to target a single site, we selected only one to present in the results. Targets that

were identified in at least 2 out of the three replicated were kept for further analyses.

Target plots (t-plots) were generated using the T-plot tool within the UEA sRNA

Workbench.

6.3.6 Target validation

To validate the targeting sites of the candidate genes and to determine if this results

in reduced expression, we used a green fluorescent protein (GFP) reporter system

in CMV D-satRNA and Dm-satRNA infected N. benthamiana. By attaching a

reporter gene to the targeting sequences from our candidates of interest, if the RISC

is successfully guided to the recombinant GFP mRNA by D-satRNA derived sRNA

for cleavage, we should see a reduction in the amount of expressed GFP or its

fluorescence intensity. If we see a reduction in the amount of expressed GFP in

CMV D-satRNA infection compared with Dm-satRNA, we can deduce that the
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D-satRNA derived sRNA is targeting the candidate gene at the predicted site for

degradation.

6.4 Results

6.4.1 Sequencing data

After performing the pre-processing steps on the sequencing data we aligned the

sRNA and PARE libraries to the reference sequences. Summary statistics regarding

each sRNA and PARE library can be found in Table 6.1 and Table 6.2, respectively.

The number of sRNAs aligning to each of the virus reference sequences can be

found in Table 6.3. Sequence length distribution for the sRNA and PARE libraries

can be found in Appendix D Figures 1-4 and 5-8, respectively. Sequence length

distribution for the sRNA and PARE libraries confirm that the predominant read

lengths were within the expected range (21-24nt for sRNA and 19-21nt for PARE).

The results of the sRNA host genome alignment, presented in Table 6.1, show that

in each library ∼80% of reads successfully aligned. The proportion of aligned

reads are slightly lower in the virus infected samples and this may be a result of

the additional virus-derived sRNA present within the library. With the exception

of CMV1, similarly large read counts and proportion of aligned reads were also

observed for the PARE libraries, presented in Table 6.2. The results obtained for

the CMV1 PARE library suggest that there were issues with either the library

construction or the sequencing experiment and therefore we decided to exclude

it from any further analysis. In addition, there was an issue with the library

construction of the M1 degradome library and as such, it was also excluded from

further analyses. The virus reference sRNA alignment shows that there may be

minor sample contamination, such as D-satRNA aligned sRNAs in CMV1 and
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M3, however the number of aligned reads is considerably lower than that of the

corresponding libraries.

sRNA library Total Unique # aligned % aligned
M1 20 881 841 11 639 845 9 641 632 82.83%
M2 27 451 115 15 193 577 12 608 442 82.99%
M3 20 089 549 12 098 427 10 095 620 83.45%
CMV1 25 136 965 12 431 862 9 922 251 79.81%
CMV2 27 354 231 13 159 140 10 509 188 79.86%
CMV3 19 544 307 10 533 855 8 473 386 80.44%
D1 24 487 617 9 870 311 7 881 618 79.85%
D2 18 115 577 7 463 839 5 981 753 80.14%
D3 19 454 258 8 730 499 7 090 078 81.21%
Dm1 18 432 744 8 924 919 7 220 300 80.90%
Dm2 20 489 244 10 122 811 8 255 131 81.55%
Dm3 27 031 049 13 509 139 11 042 624 81.74%

Table 6.1 The number of redundant, non-redundant and S. lycopersicum genome
aligned reads in each of the sRNA libraries.

PARE library Total Unique # aligned % aligned
M2 26 179 791 7 761 293 6 419 156 82.71%
M3 23 031 781 6 561 469 5 362 282 81.72%
CMV1 20 576 18 819 15 951 84.76%
CMV2 24 706 048 8 149 176 6 729 119 82.57%
CMV3 23 955 530 7 660 919 6 269 994 81.84%
D1 21 055 183 7 177 706 5 920 495 82.48%
D2 18 165 314 5 386 997 4 411 624 81.89%
D3 50 400 671 11 202 525 8 956 440 79.95%
Dm1 22 485 867 7 349 439 5 930 472 80.69%
Dm2 15 606 177 3 876 219 3 136 670 80.92%
Dm3 24 942 614 7 269 483 5 847 360 80.44%

Table 6.2 The number of redundant, non-redundant and transcriptome aligned reads
(positive direction only) in each of the PARE libraries.
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6.4.2 Necrogenic D-satRNA derived sRNA

We identified potential necrogenic sRNA by aligning reads within each of the

D-satRNA sRNA libraries to the D-satRNA sequence (plus or minus strand) and

extracted those that contained at least one of the necrogenic nucleotides. The

results of these can be found in Table 6.4 and the overlap between each replicate

can be found in Figure 6.2. The results show a considerable overlap in sequences

containing necrogenic nucleotides between replicates. We now further investigate

the function these sequences by performing target prediction using PAREsnip2.

sRNA library Total aligned reads Unique aligned Reads
D1 267 719 690
D2 187 209 799
D3 222 345 646

Table 6.4 The number of redundant and non-redundant reads that align to the D-
satRNA sequence and contain at least one of the necorogenic nucleotides in each of
the CMV D-satRNA infected sRNA libraries.

6.4.3 Identification of host mRNA targets

Using as input the potential necrogenic D-satRNA derived sRNA (described above),

we performed target prediction with PAREsnip2 using the criteria described in

Section 6.3.5. Before performing the conservation and cleavage signal abundance

filtering, the number of predicted mRNA target sites for each category are shown

in Table 6.5. We then further filtered the results using the previously defined

criteria (Section 6.3.5) and the number of unique reported target sites meeting these

criteria are shown in Table 6.6. The filtering process removed 22, 21 and 38 lower

confidence (Category-2) interactions in D1, D2 and D3, respectively, but kept all of

the high confidence (Category-0) interactions in each dataset.

131



Fig. 6.2 Venn diagram showing the overlap of unique sRNA containing at least
one of the necorogenic nucleotides in each of the CMV D-satRNA infected sRNA
libraries.

sRNA library Category-0 Category-1 Category-2
D1 4 0 54
D2 2 0 59
D3 2 1 86

Table 6.5 The number of unique target sites and their categories reported by PAREs-
nip2 when analysing the potential necrogenic sRNAs and corresponding degradome
in each of the CMV D-satRNA infected libraries.

sRNA library Category-0 Category-1 Category-2
D1 4 0 32
D2 2 0 28
D3 2 0 48

Table 6.6 The number of unique target sites and their categories reported by PAREs-
nip2 that are also conserved between at least two replicates and have a cleavage
signal with abundance ≥ 5.
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We now focus on the 3 Category-0 target candidates, predicted in D1, that are

conserved between each of the CMV D-satRNA infected libraries. These candidates

are:

1. Solyc02g093935.1.1 Sister chromatid cohesion 1 protein 2 (SCC1P2)

2. Solyc07g065660.3.1 Cellulose synthase family protein (CSFP)

3. Solyc07g053740.1.1 Ethylene Response Factor F.4 (ERF4)

Below, we discuss each of these target interactions in more detail.

6.4.3.1 SCC1P2

The function of SCC1P2 in S. lycopersicum is not well understood but the homolo-

gous gene in A. thaliana, RAD21, has been studied. RAD21 acts as part of the sister

chromatid cohesion process in dividing cells and also genomic DNA break repair

in other cells [46, 47]. It exhibits higher expression in shoot apex but its expression

is low in other tissues. Many chromosome breaks were found in germ cells of A.

thaliana RAD21 mutants and, under UV or other stresses, plants would die from

defective DNA break repair. Hence, RAD21 is essential for the normal development

of A. thaliana [46, 47]. In CMV D-satRNA infected S. lycopersicum, primary cell

death occurs in specific cells near the shoot apex. It also occurs in infected cells

that are differentiating right after cell division, where DNA fragmentation occurs in

the nucleus [52, 114]. Therefore, if the function of SCC1P2 in S. lycopersicum is

similar to that of RAD21 in A. thaliana and its expression is reduced by D-satRNA

derived sRNA, this may result in plant death.

The target site for SCC1P2 is conserved between each replicate and has a

Category-0 signal in each. The T-plots for the interaction are shown in Figures

6.3, 6.4 and 6.5 for D1, D2 and D3, respectively. The sRNA predicted to target
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SCC1P2 originates from the positive strand of D-satRNA, is 21nt in length and

contains all three of the necrogenic nucleotides (positions 5, 10 and 12). All of these

positions are within the sRNA core region (positions 2-13). which are considered

to be important for sRNA-induced mRNA cleavage [3]. As such, mutations at these

positions would greatly reduce the complementarity between the sRNA and mRNA,

potentially abolishing the ability to locate and induce cleavage of the target mRNA.

We then examined the degradation signals on this transcript in the other libraries

and found that no other treatments showed signals of cleavage at this position, as

demonstrated with Dm2 in Appendix D Figure 9.

Fig. 6.3 T-plot showing the degradation activity for SCC1P2 in the D1 degradome
dataset. The cleavage signal is Category-0 and the interaction has a p-value of 0.

6.4.3.2 ERF4

As with SCC1P2, the functions of ERF4 in S. lycopersicum is not fully understood.

However, the homologous gene in A. thaliana has been studied. ERF4 belongs to

the AP2/ERF family of transcription factors and is the terminal regulatory gene
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Fig. 6.4 T-plot showing the degradation activity for SCC1P2 in the D2 degradome
dataset. The cleavage signal is Category-0 and the interaction has a p-value of
0.001.

Fig. 6.5 T-plot showing the degradation activity for SCC1P2 in the D3 degradome
dataset. The cleavage signal is Category-0 and the interaction has a p-value of 0.001
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of the ethylene signal transduction pathway. The ERFs of S. lycopersicum play

a role in fruit development and stress response, however the specific role of each

ERF is not clear [109]. ERF4 in A. thaliana regulates the expression of CATALASE

through differential splicing after transcription, which regulates the accumulation

of reactive oxygen species (ROS) in cells and the process of cell senescence [171].

It has been shown that the ethylene signal transduction pathway is activated in

CMV D-satRNA infected S. lycopersicum [52], which participates in the burst of

ROS and the occurrence of secondary cell death in tissues. Thus, the decrease of

ERF4 expression by D-satRNA derived sRNA may affect the ERF4-regulated ROS

accumulation that is correlated with secondary cell death.

The target site for ERF4 is conserved between each replicate. The interactions

are Category-0 in D1 and Category-2 in D2 and D3. The T-plots for the interaction

are shown in Figures 6.6, 6.7 and 6.8 for D1, D2 and D3, respectively. The sRNA

predicted to target ERF4 originates from the negative strand of D-satRNA, is 22nt

in length and contains one of the necrogenic nucleotides at position 5. Upon further

investigation, there also exists a highly abundant 21mer that could target this site

within each CMV D-satRNA sRNA library. However, the sRNA-mRNA duplex

containing the 21nt sRNA does not meet the MFE ratio cut-off value of 0.65. As

with SCC1P2, the necrogenic nucleotide is contained within the sRNA core region.

As such, a mutation at this position may reduce the complementarity such that the

sRNA can no longer induce cleavage of the mRNA, especially with how close this

would be to the two mispaired bases at positions 7 and 8. We then examined the

degradation signals on this transcript in the other libraries and found that, although

signals were found, as demonstrated with Dm2 in Appendix D Figure 10, the

signal at the target site was considerably lower than that of the D-satRNA infected

libraries.
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Fig. 6.6 T-plot showing the degradation activity for ERF4 in the D1 degradome
dataset. The cleavage signal is Category-0 and the interaction has a p-value of 0.002

Fig. 6.7 T-plot showing the degradation activity for ERF4 in the D2 degradome
dataset. The cleavage signal is Category-2 and the interaction has a p-value of
0.082.
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Fig. 6.8 T-plot showing the degradation activity for ERF4 in the D3 degradome
dataset. The cleavage signal is Category-2 and the interaction has a p-value of 0.121

6.4.3.3 CSFP

CSFP plays a vital role in the biosynthesis of cellulose and hemicellulose in S.

lycopersicum [189]. The target site for CSFP is conserved between each replicate.

The interactions are Category-0 in D1 and D2 and Category-2 in D3. The T-plots

for the interaction are shown in Figures 6.9, 6.10 and 6.11 for D1, D2 and D3,

respectively. The sRNA predicted to target CSFP originates from the positive strand

of D-satRNA, is 20nt in length and contains two of the necrogenic nucleotides

(positions 2 and 4). Upon further investigation, there also exists a highly abun-

dant 21mer that could target this site within each CMV D-satRNA sRNA library.

However, this sRNA contains an additional mismatch at the 5’ end and so does

not meet the employed PAREsnip2 targeting criteria. Mutations at positions 2 and

4 greatly reduce the complementarity between the sRNA and mRNA, especially

with how close these would be to the two mispaired bases at positions 5 and 6.

Thus, additional mismatches may reduce or abolish the ability to locate and induce
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cleavage of the target mRNA. We then examined the degradation signals on this

transcript in the other libraries and found that, although signals were found, as

demonstrated with Dm2 in Appendix D Figure 11, the signal at the target site was

considerably lower than that of the D-satRNA infected libraries.

Fig. 6.9 T-plot showing the degradation activity for CSFP in the D1 degradome
dataset. The cleavage signal is Category-0 and the interaction has a p-value of 0.001

6.4.4 Target site conservation in lethal and non-lethal infection

CMV D-satRNA infection is also lethal in some close relatives of S. lycopersicum,

for example in Solanum pennelli and Solanum habrochaitis, but attenuates symp-

toms in other species, such as N. tabacum and Solanum tuberosum. Additional

work by Dr. Ping Xu isolated a surviving line of S. habrochaitis, where the infected

plants do not show lethal systemic necrosis.

We now investigate whether the target sites of our candidates are conserved

between homologous genes in these species that are known to survive or die from

CMV D-satRNA infection. The reference sequences for other species were obtained
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Fig. 6.10 T-plot showing the degradation activity for CSFP in the D2 degradome
dataset. The cleavage signal is Category-0 and the interaction has a p-value of
0.001.

Fig. 6.11 T-plot showing the degradation activity for CSFP in the D3 degradome
dataset. The cleavage signal is Category-2 and the interaction has a p-value of 0.041
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through a BLAST [14] search using the NCBI website (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

The target sequence from the surviving line of S. habrochaitis was identified by

sequencing the corresponding genomic regions.

6.4.4.1 SCC1P2

We compared the sequences of SCC1P2 in S. lycopersicum to its homologous genes

in S. pennelli, S. habrochaitis, N. tabacum and S. tuberosum. The gene sequences

are highly conserved among the above species, but with mutations at the targeting

site, as shown in Table 6.7. For the plants with lethal response to the infection, the

mutation is a substitution at the 13th position of the target site, with respect to the

sRNA sequence, replacing an A-T pair with a G-T wobble pair. This mutation does

not reduce the complementarity between the sRNA and mRNA too much and thus,

the mRNA may still be silenced in these species. The SCCIP2 homologous gene in

the surviving S. habrochaitis line was cloned. Its target site contained an additional

mutation at position 16. This mutation replaced a C with a T, which removed the

G-C pair at the target site.

Analysis of the N. tabacum homologous gene shows that it contains four mu-

tations. These are found in the 11th, 13th, 14th and 17th position of the target

site.

Analysis of the S. tuberosum homologous gene shows that it contains two

mutations. These are found at in the 13th and 14th position of the target site.

Additional mismatches at the target site in homologous genes may reduce the

complementarity between the sRNA and the target mRNA enough that the sRNA

fails to recognize and/or induce cleavage. In particular, when these additional

mismatches are at the core or central region of the sRNA.
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Species Target site
S. lycopersicum (D) 5’ ATCAGCACAGCATGGGCCTGC 3’
S. habrochaites (D) 5’ ATCAGCACGGCATGGGCCTGC 3’
S. pennelli (D) 5’ ATCAGCACGGCATGGGCCTGC 3’
S. habrochaites (S) 5’ ATCAGTACGGCATGGGCCTGC 3’
N. tabacum (S) 5’ ATCAACAAGGGATGGGCCTGC 3’
S. tuberosum (S) 5’ ATCAGCAAGGCATGGGCCTGC 3’

Table 6.7 The mutations at the target site of the conserved SCC1P2 homologous
genes in species known to survive or die from CMV D-satRNA infection. Mutations
relative to the S. lycopersicum target site are highlighted. S = survives infection and
D = dies from infection.

6.4.4.2 ERF4

We compared the sequences of ERF4 in in S. lycopersicum to its homologous genes

in S. pennelli, S. habrochaitis, N. tabacum and S. tuberosum. The gene sequences

are highly conserved among the above species, but with mutations at the targeting

site in the species known to survive infection, as shown in Table 6.8. The results

from the BLAST search on two closely related species that die from infection, S.

pennelli and S. habrochaitis, showed that the target site of their homologous genes

are identical to that of ERF4 in S. lycopersicum.

Analysis of the N. tabacum homologous gene shows that it contains three

mutations. These are found in the 3rd , 14th and 17th position of the target site.

Analysis of the S. tuberosum homologous gene shows that it contains a single

mutation. This is found in the 9th position of the target site.

Additional mismatches in homologous genes may reduce the complementarity

between the sRNA and the target mRNA enough that the sRNA fails to recognize

and/or cleave the target site. Particularly if they are found within the core or central

region of the sRNA.

142



Species Target site
S. lycopersicum (D) 5’ GGAGGAAGCGGCTAAGGCTTA 3’
S. habrochaites (D) 5’ GGAGGAAGCGGCTAAGGCTTA 3’
S. pennelli (D) 5’ GGAGGAAGCGGCTAAGGCTTA 3’
N. tabacum (S) 5’ GGAAGAGGCGGCTAAGGCGTA 3’
S. tuberosum (S) 5’ GGAGGAAGCGGCGAAGGCTTA 3’

Table 6.8 The mutations at the target site of the conserved ERF4 homologous genes
in species known to survive or die from CMV D-satRNA infection. Mutations
relative to the S. lycopersicum target site are highlighted. S = survives infection and
D = dies from infection.

6.4.4.3 CSFP

We compared the sequences of CSFP in S. lycopersicum to its homologous genes

in S. pennelli, S. habrochaitis, N. tabacum and S. tuberosum. The gene sequences

are highly conserved among the above species, but with mutations at the targeting

site in the species known to survive infection, as shown in Table 6.9. The results

from the BLAST search on two closely related species that die from infection, S.

pennelli and S. habrochaitis, showed that the target site of their homologous genes

are identical to that of CSFP in S. lycopersicum.

Analysis of the S. tuberosum and N. tabacum homologous gene shows that they

contains two mutations. These are found at in the 1st and 17th position of the target

site. These additional mismatches reduce the complementarity between the sRNA

and the target mRNA and may result in the sRNA failing to recognize and/or cleave

the target site.
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Species Target site
S. lycopersicum (D) 5’ CTCGGAGATCAGCAATGCAC 3’
S. habrochaites (D) 5’ CTCGGAGATCAGCAATGCAC 3’
S. pennelli (D) 5’ CTCGGAGATCAGCAATGCAC 3’
N. tabacum (S) 5’ CTCAGAGATCAGCAATGCGC 3’
S. tuberosum (S) 5’ CTCAGAGATCAGCAATGCGC 3’

Table 6.9 The mutations at the target site of the conserved CSFP homologous genes
in species known to survive or die from CMV D-satRNA infection. Mutations
relative to the S. lycopersicum target site are highlighted. S = survives infection and
D = dies from infection.

6.4.5 Validation of targets

We now present the results from target validation for two of the candidate genes,

CSFP and SCC1P2. Experiments to validate the ERF4 target site are currently in

process.

CSFP The results from experimental validation of CSFP, presented in Figure

6.12, do not show a clear reduction in the intensity of GFP in D-satRNA infected N.

benthamiana compared with Dm-satRNA.

SCC1P2 The results from experimental validation of SCC1P2, presented in

Figure 6.13, show a clear reduction in the intensity of GFP in D-satRNA infected N.

benthamiana compared with Dm-satRNA. These results suggest that this would

also be the case in S. lycopersicum, where CMV D-satRNA infection leads to plant

death.
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6.5 Conclusion

CMV is one of the most widespread plant viruses, infecting a large number of plant

species worldwide. CMV can also harbour satRNAs which usually attenuate virus

symptoms, however D-satRNA in S. lycopersicum is an exception that eventually

leads to plant death. The necrogenicity of D-satRNA has been identified as positions

285, 290 and 292, and mutations at these positions result in S. lycopersicum

surviving infection and having reduced symptoms.

In this chapter, we exemplified the use of PAREsnip2 to identify potential

host mRNA targets of necrogenic D-satRNA derived sRNA. Employing a slightly

relaxed set of targeting criteria, we identified multiple mRNA targets for these

sRNA evidenced through the degradome. Three of these candidate, SCC1P2, ERF4

and CSFP, had conserved cleavage signals between three biological replicates, with

at least one of these signals being Category-0. In addition, previous work into

the impact that down regulation of the homologous ERF4 and SCC1P2 genes in

A. thaliana, suggest that there may be correlation with CMV D-satRNA induced

necrosis.

Investigation into sequence variation at the target site of homologous genes in

species known to survive CMV D-satRNA infection show mutations that reduce

complementarity to the sRNA, further supporting our hypothesis that down regula-

tion of these genes may be involved in plant death. Preliminary experimental work

has confirmed the down regulation of one of these targets, SCC1P2, by D-satRNA

derived sRNA.

Without further experimental validation, it is difficult to determine whether the

down regulation of SCC1P2 contributes towards plant death. However, additional

experimental work is now being prepared to confirm if it does play a role in plant

death and these are outlined in the future work section of this thesis.
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In the next chapter, we detail possible future directions and extensions to this

work.

Fig. 6.12 Target validation results for CSFP in CMV D-satRNA and Dm-satRNA
infected N. benthamiana. Panel A is the predicted target site, panel B is the cleavage
signal, panel C is fluorescent intensity in D-satRNA and panel D is fluorescent
intensity in Dm-satRNA.
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Fig. 6.13 Target validation results for SCC1P2 in CMV D-satRNA and Dm-satRNA
infected N. benthamiana. Panel A is the predicted target site, panel B is the cleavage
signal, panel C is fluorescent intensity in D-satRNA and panel D is fluorescent
intensity in Dm-satRNA. The results from this experiment show a clear reduction
in the fluorescent intensity in D-satRNA when compared to Dm-satRNA.
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Chapter 7

Future work and thesis conclusion

7.1 Summary

In this thesis, we have provided an introduction into sRNA biology and an overview

of the computational methods used for analysing sRNA and degradome sequencing

data. We presented three new tools that we developed for this type of analysis and

benchmarked them against other publicly available methods, demonstrating clear

improvements in computation time and/or prediction accuracy. In Chapter 6, we

exemplified the use of PAREsnip2 by performing degradome analyses to better

understand the role of D-satRNA derived necrogenic sRNA. In this chapter, we

discuss possible extensions to this work followed by a conclusion of this thesis.

7.2 Future work

7.2.1 Combining existing workflows

There exists many individual analysis tools within the UEA sRNA Workbench,

ranging from data pre-processing and quality control to sRNA classification and
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functional analyses. Currently, each of the tools we have presented in this thesis are

standalone applications, with all functionality required to perform analysis built-in.

While each of these tools have some data pre-processing and filtering methods

available, such as read length and abundance filtering, these methods are not as

comprehensive as those contained in the quality checking, normalization, and differ-

ential expression tool [17]. Through combining our new tools with this existing tool,

it would enable a standardised filtering, normalization and quality checking process.

Consequently, this may result in more confidence in the predictions reported and

may provide a more complete overview of the information contained within the

sequencing data.

Moreover, the inclusion of the differential expression analysis tool may pro-

vide greater indication into the function of specific sRNAs when combined with

classification or functional analysis using NATpare or PAREsnip2. This could also

be coupled with mRNA differential expression analysis using RNAseq data and

FiRePat [151] to further support prediction of sRNA function. For example, if

a sRNA is determined to be up-regulated in a given treatment, a target for this

sRNA is identified using PAREsnip2 and the target mRNA is determined be down

regulated by FiRePat, this may give a more complete picture of the regulatory

processes at work.

7.2.2 Further work into sRNA targeting criteria

In Chapter 4, we introduced a software pipeline, called PAREameters, for inference

of plant miRNA targeting criteria using degradome data. In that chapter, we

performed a comparison of criteria inferred between species and also between

tissues. This work could be extended by performing experimental validation of

these miRNA targets to confirm the reported discrepancies between species or

tissue specific targeting criteria. In addition, and as we have seen in Chapter 5,
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miRNAs are not the only class of sRNA that induce mRNA cleavage and subsequent

degradation. In Chapter 6, we performed target prediction using virus derived sRNA

and a more flexible set of targeting criteria with one of these targets being confirmed

experimentally.

These results suggest that an analysis into the targeting criteria employed by

different classes of sRNA may lead to the identification of previously unknown

sRNA-mRNA interactions. Furthermore, analyses of these interactions may lead

to the identification of previously unknown differences between how each class of

sRNA recognise their mRNA target(s). One such example of these differences may

be whether the core region (positions 2-13) is equally important across all classes

of sRNA.

7.2.3 Further work into necrogenic sRNA

In Chapter 6, we identified three target candidates for CMV D-satRNA derived

sRNA that were conserved between three biological replicates and had a Category-0

signal in at least one of them. Experimental validation confirmed that one of the

targets, SCC1P2, was down regulated by D-satRNA derived sRNA. However, CSFP

was shown to have little to no visual change in expression in Dm-satRNA infected

plants. Experiments to confirm the cleavage and down regulation of ERF4 are

currently being performed.

To investigate whether the down regulation of these genes is actually involved in

plant death, there are two experiments planned. The first is to express the D-satRNA

derived sRNA in healthy S. lycopersicum. If the down regulation of this gene

contributes towards plant death and the sRNA works in the same way as when it

is expressed by CMV D-satRNA infection then, in principle, this would also lead

to plant death. The second approach is to over-express the candidate genes with

mutations at the target sites similar to that of surviving species. This should result
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in reduced or complete removal of the sRNAs ability to induce cleavage of the

target mRNAs. If these genes are involved in plant death, we would expect that the

transgenic plants survive the infection.

7.2.4 Impact of CMV infection on host gene expression

For our analyses in Chapter 6, we focused exclusively on the sRNA originating

from the necrogenic region of D-satRNA when performing degradome analysis

using PAREsnip2. This meant that we ignored a large proportion of our sRNA

data, potentially missing the identification of sRNA-mRNA interactions that may

contribute towards CMV symptoms. Future work on this project will focus on three

classes of sRNA: miRNA, ta-siRNA and virus-derived sRNAs.

With focus first on miRNAs, we will use miRCat2 to identify potential novel

miRNAs in each of our treatments. Next, we will perform differential expression

analyses to identify if any known or novel miRNAs are up regulated in specific

treatments. These miRNAs will then be subject to target prediction using PAREs-

nip2 and the corresponding degradome libraries to identify possible mRNA targets.

Candidates will then be investigated further based on their biological function

and some selected for experimental validation. Further experiments will then be

performed to determine if the down regulation of these genes play a part in virus

defence or response.

Second, we will focus on ta-siRNA (described in Section 2.3.2.1), as it has

been previously shown that failure of TAS3 derived ta-siRNA to regulate ARF3

and ARF4 results in wiry leaf syndrome [223] in tomato, a common symptom of

CMV infection. We will first perform sequence alignment of the sRNAs to the

known TAS genes. Next, and similar to the miRNAs, we will perform differential

expression analyses between treatments using the identified ta-siRNAs. We will

then perform target prediction using the differentially expressed ta-siRNAs to first,
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determine if these can target ARF3 or ARF4 for regulation, and second, to identify

any other targets that may contribute towards virus symptoms.

Finally, we will investigate if any other virus-derived sRNA, originating from

CMV, D-satRNA or Dm-satRNA, could target host genes for degradation. This

will be done by first aligning the sRNA sequences to the viral reference sequences.

We will then perform target prediction using PAREsnip2 and the corresponding

degradome libraries for each dataset of virus-derived sRNA. Candidates will then

be investigated further based on their biological function and some will be selected

for experimental validation. If these candidates are confirmed, further experiments

will then be performed to determine if the down regulation of these genes by viral

sRNA contribute towards virus symptoms.

7.3 Thesis conclusion

Research into the role of non-coding RNAs is moving away from typical model

organisms and samples are now being collected from a wide range of species,

tissues and conditions, ready for sequencing and computational analyses. Recent

advances in high throughput sequencing technologies has resulted in larger, more

complex genomes being sequenced. Moreover, not only are larger genomes being

sequenced, sequencing datasets in general are growing ever larger in size and read

count, with a typical sequencing experiment now containing millions of distinct

reads in a single sample. In addition, the need for multiple samples and replicates

is becoming the de facto standard for biological experiments, further adding to this

sequence-data deluge.

The development of our new bioinformatics tools will enable processing of

recent sRNA and degradome sequencing data obtained from both model and non-

model organisms, something that was not previously possible without considerable
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time or resource constraints. This may open new avenues of sRNA research, in

particular, in the context of nat-siRNAs, which are a class of sRNA that have not

yet been extensively studied. Perhaps one reason for this may be to do with the

lack of available computational methods for identification and prediction of their

function. Previously, nat-siRNAs have been shown to play a role in response to

salt stress in A. thaliana [26] and we also identified some differentially expressed

nat-siRNAs in the same organism and condition (Chapter 5). One possible use for

our new tool NATpare would be to investigate if nat-siRNAs are also involved in

salt stress response in other species. If proven to be the case and then combined

with further experimental verification, this may lead to increased research interest

into nat-siRNAs and therefore further understanding of the regulatory roles they

play.

As demonstrated in Chapters 4 and 6, the mechanisms in which sRNAs identify

their target mRNAs is not fully understood. In Chapter 4, we demonstrated that

by using the degradome to infer targeting criteria, we were able to increase the

sensitivity of miRNA target prediction when compared to the Allen et al. [3]

rules. In Chapter 6, we demonstrated that a virus-derived sRNA was able to cleave

its target mRNA despite having 3 mispaired bases within the sRNA core region,

giving it an alignment score of 6 using the previously defined model [3]. The

development of PAREamters, combined with the configurability of PAREsnip2,

will hopefully contribute towards better understanding of sRNA-mRNA interactions,

especially when combined with additional data, such as mRNA expression profiles,

or experimental validation. Improving our understanding of the way sRNAs identify

their targets may allow us to discover new regulatory interactions or networks,

some of which may play critical roles in important biological pathways yet to be

discovered.
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Appendix A

Some of the tables referenced within Chapter 3 contain a large number predicted

targets and are not practical to include within this thesis. However, for complete-

ness, a brief description of each table is provided below and the actual data is

freely available to download from Nucleic Acids Research Online at the following

url: https://doi.org/10.1093/nar/gky609. We have also included these tables as

supplementary information with this thesis.

Appendix A Table 2 We collected a set of experimentally validated A. thaliana

interactions by combining those previously published in the literature [68, 191, 53]

and those contained within miRTarBase [40] with any duplicates being removed.

In total, we collected 616 validated interactions comprising 135 miRNAs. Out of

these 135 miRNAs, 90 of them had unique sequences and were involved in 387

distinct miRNA–mRNA interactions.

Appendix A Table 3 contains the results of the degradome analysis of dataset

D2 using the sRNA–mRNA target interaction rules as described by Allen et al. [3].

For this analysis, we used the default stringent parameters, which discards category-

4 signals and permits a minimum sRNA abundance of 5 reads. Additionally,

the built-in conservation filter was used to increase confidence in the reported

interactions. In total, PAREsnip2 captured 2008 sRNA–mRNA interactions, which

comprised 960 category-0, 79 category-1, 511 category-2 and 458 category-3

interactions.
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Appendix A Table 4 contains the results of the degradome analysis of dataset

D2 using the Fahlgren and Carrington targeting rules, which allow mismatch and

G:U wobble pairs at positions 10 and 11. Additionally, the built-in conservation

filter was used to increase confidence in the reported interactions. This analysis

identified 1072 category-0, 91 category 1, 611 category 2 and 529 category 3,

making a total of 2303 interactions

Appendix A Table 5 contains the results of a genome-wide degradome anal-

ysis of the T. aestivum dataset (GEO accession GSE36867), which comprised a

degradome of 4 306 082 non-redundant sequences and a corresponding sRNAome

of 14 133 641 non-redundant sequences. The default stringent parameters identified

25 063 interactions, which comprised 12 120 category-0, 1026 category-1, 5576

category-2 and 6341 category-3 interactions and completed in just 31 minutes and

29 s.

Appendix A Table 6 contains the results of a genome-wide degradome anal-

ysis of the T. aestivum dataset (GEO accession GSE36867), which comprised a

degradome of 4 306 082 non-redundant sequences and a corresponding sRNAome

of 14 133 641 non-redundant sequences. The default flexible parameters identified

389 238 interactions, which comprised 83 409 category-0, 13 943 category-1, 79

935 category-2, 95 783 category-3 and 116 168 category-4 interactions with a run

time of 19 h and 39 min.
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Dataset # sRNAs # PARE seqs Run-time (hh:mm:ss) Memory (GB)
D1A 134 284 6 111 145 49 00:18:51 6
D1B 109 334 4 101 036 90 00:17:41 6
D1C 110 622 2 771 525 1 00:17:11 6
D2A 193 502 5 199 306 92 00:31:18 8
D2B 908 368 194 704 87 00:38:09 8
D2C 568 633 727 512 3 01:04:24 8
D3A 379 756 1 246 325 1 00:18:15 5
D3B 163 373 0 230 054 1 00:16:52 5
D3C 283 730 4 397 528 0 00:20:30 5
D3D 117 642 4 903 209 3 00:17:59 5
D4A 176 589 3 430 500 9 01:30:15 6
D4B 456 068 4 399 261 8 01:34:12 6
D5 237 030 0 770 447 4 02:00:26 7
D6 199 194 2 250 552 3 00:41:43 5
D7 517 858 7 14363576 34:37:10 10

Appendix B Table 2 The timing and memory usage results for the PAREameters
analysis of all datasets. The size of the input data (in terms of unique sequences)
and complexity of the underlying genome are the main drivers for both run-time
and resource usage.
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Dataset Raw reads NR reads Genome matched % matched # miRNAs
D1A 6 664 998 1 342 846 1 006 022 74.92% 230
D1B 4 492 236 1 093 344 818 760 74.89% 213
D1C 5 148 552 1 106 222 837 919 75.75% 230
D2A 27 870 710 1 935 025 1 091 177 56.40% 252
D2B 26 211 889 908 368 525 503 57.90% 239
D2C 28 700 595 568 633 240 613 42.31% 209
D3A 18 460 973 3 797 561 2 534 869 66.75% 200
D3B 10 408 796 1 633 730 1 101 861 67.44% 186
D3C 19 946 757 2 837 304 1 647 286 58.06% 211
D3D 6 645 127 1 176 424 836 656 71.12% 141
D4A 18 092 450 1 765 893 656 968 37.20% 153
D4B 25 781 233 4 560 684 2 685 317 58.88% 161
D5 33 230 948 2 370 300 1 641 914 69.27% 309
D6 4 029 462 1 991 942 1 991 720 99.99% 227
D7 12 541 386 5 178 587 4 325 043 83.51% 168

Appendix B Table 4 Summary statistics of the sRNA sequencing data analysed
within this chapter. The number of raw (redundant), unique (NR), genome matched
reads and the number of miRNAs in the dataset. In order for an annotated miRNA
to be considered present, it must have had an abundance ≥ 5 within the dataset.
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Dataset Raw reads NR reads Transcriptome matched % matched
D1A 44 871 978 11 114 549 8 802 080 79.19%
D1B 34 315 808 10 103 690 8 176 679 80.93.%
D1C 25 588 818 7 715 251 6 251 721 81.03%
D2A 115 224 802 19 930 692 10 565 361 53.01%
D2B 107 999 423 19 470 487 11 187 427 57.46%
D2C 191 294 550 7 275 123 1 734 835 23.85%
D3A 5 263 291 2 463 251 2 131 493 86.53%
D3B 4 809 175 2 300 541 1 998 764 86.88%
D3C 12 666 325 3 975 280 3 454 112 86.89%
D3D 53 840 936 9 032 093 6 824 080 75.56%
D4A 19 990 216 4 305 009 1 940 976 45.09%
D4B 12 609 502 3 992 618 1 679 932 42.08%
D5 26 251 057 7 704 474 6 230 026 80.86%
D6 4 426 044 2 505 523 2 268 297 90.53%
D7 35 477 509 14 363 576 10 366 761 72.17%

Appendix B Table 5 Summary statistics of the degradome sequencing data analysed
in this chapter. Table presents the number of raw (redundant), unique (NR) and
transcriptome (positive strand only) matching reads within each degradome dataset.
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Appendix B Table 8 A subset of the experimentally validated miRNA targets

(Appendix A Table 1) containing only conserved miRNAs, which comprises 201

miRNA–mRNA interactions from 42 unique miRNA sequences. Full table can

be downloaded from NAR online: https://doi.org/10.1093/nar/gkz1234. It is also

included as supplementary information with this thesis.

Appendix B Table 9 A subset of the experimentally validated miRNA targets

(Appendix A Table 1) containing miRNAs specific to the Brassicaceae family,

which comprises 184 interactions from 47 unique miRNA sequences. Full table

can be downloaded from NAR online: https://doi.org/10.1093/nar/gkz1234. It is

also included as supplementary information with this thesis.

Parameter Conserved Species-specific
Allow MM at pos 10 No Yes
Allow MM at pos 11 Yes Yes
Max # adj mm in CR 0 0
Max # MM in CR 1 1
Max score 4 4
Max # MM 3 2
Max # G:U 2 2
Max # adj MM 1 1
MFE ratio cut-off 0.75 0.68

Appendix B Table 10 The PAREameters inferred parameters for the conserved and
species-specific miRNA targets in A. thaliana.
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Species A. thaliana A. trichopoda O. sativa T. aestivum
A. thaliana 1 0.331 2.54x10−4 6.89x10−6

A. trichopoda 1 1.93x10−7 1.38x10−8

O. sativa 1 0.166
T. aestivum 1

Appendix B Table 13 Results of the Kolmogorov-Smirnov test when evaluating the
differences between MFE ratio distributions of HC miRNA-mRNA interactions
found in flower tissue in model and non-model organisms. The results highlight the
significant differences observed between dicots (A. thaliana and A. trichopoda) and
monocots (O. sativa and T. aestivum).

miRNA position χ2 MM G:U Gap
1 0.991 1.000 1.000 1.000
2 0.991 1.000 1.000 1.000
3 0.991 1.000 1.000 1.000
4 0.991 1.000 1.000 1.000
5 0.991 1.000 1.000 1.000
6 0.991 1.000 1.000 1.000
7 0.991 1.000 1.000 1.000
8 0.991 1.000 1.000 1.000
9 0.991 1.000 1.000 1.000
10 0.991 1.000 1.000 1.000
11 0.991 1.000 1.000 1.000
12 0.991 1.000 1.000 1.000
13 0.991 1.000 1.000 1.000
14 0.991 1.000 1.000 1.000
15 0.991 1.000 1.000 1.000
16 0.991 1.000 1.000 1.000
17 0.991 1.000 1.000 1.000
18 0.991 1.000 1.000 1.000
19 0.991 1.000 1.000 1.000
20 0.991 1.000 1.000 1.000
21 0.991 1.000 1.000 1.000

Appendix B Table 14 χ2 and Fisher’s exact test significance results on the position-
specific properties for conserved and species-specific miRNA-mRNA interactions
in A. trichopoda leaf.
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miRNA position χ2 MM G:U Gap
1 0.390 1.000 0.085 1.000
2 0.390 1.000 0.085 1.000
3 0.954 1.000 1.000 1.000
4 0.954 1.000 1.000 1.000
5 0.516 1.000 0.129 1.000
6 0.848 1.000 1.000 1.000
7 0.954 1.000 1.000 1.000
8 0.921 1.000 0.741 1.000
9 0.516 0.734 1.000 1.000
10 0.954 1.000 1.000 1.000
11 0.921 1.000 1.000 1.000
12 0.954 1.000 1.000 1.000
13 0.954 1.000 1.000 1.000
14 0.921 1.000 0.589 1.000
15 0.954 1.000 1.000 1.000
16 0.954 1.000 1.000 1.000
17 0.921 1.000 1.000 1.000
18 0.954 1.000 1.000 1.000
19 0.954 1.000 1.000 1.000
20 0.921 1.000 1.000 1.000
21 0.921 1.000 0.741 1.000

Appendix B Table 15 χ2 and Fisher’s exact test significance results on the position-
specific properties for conserved and species-specific miRNA-mRNA interactions
in A. trichopoda flower.
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miRNA position χ2 MM G:U Gap
1 0.981 1.000 1.000 1.000
2 0.981 1.000 1.000 1.000
3 0.981 1.000 1.000 1.000
4 0.981 1.000 1.000 1.000
5 0.981 1.000 1.000 1.000
6 0.981 1.000 1.000 1.000
7 0.981 1.000 1.000 1.000
8 0.981 1.000 1.000 1.000
9 0.981 1.000 1.000 1.000
10 0.981 1.000 1.000 1.000
11 0.981 1.000 1.000 1.000
12 0.981 1.000 1.000 1.000
13 0.981 1.000 1.000 1.000
14 0.981 1.000 1.000 1.000
15 0.981 1.000 1.000 1.000
16 0.981 1.000 1.000 1.000
17 0.981 1.000 1.000 1.000
18 0.981 1.000 1.000 1.000
19 0.981 1.000 1.000 1.000
20 0.981 1.000 1.000 1.000
21 0.981 1.000 1.000 1.000

Appendix B Table 16 χ2 and Fisher’s exact test significance results on the position-
specific properties for conserved and species-specific miRNA-mRNA interactions
in G. max leaf.
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miRNA position χ2 MM G:U Gap
1 0.326 0.249 1.000 1.000
2 0.143 0.249 1.000 0.840
3 0.808 1.000 1.000 1.000
4 1.000 1.000 1.000 1.000
5 0.880 0.747 1.000 1.000
6 0.045 0.249 0.052 1.000
7 0.580 0.249 1.000 1.000
8 0.588 0.602 1.000 1.000
9 0.204 0.059 1.000 1.000
10 0.880 1.000 1.000 1.000
11 0.880 1.000 1.000 1.000
12 0.128 0.147 0.936 1.000
13 0.980 1.000 1.000 1.000
14 0.045 0.045 1.000 1.000
15 0.174 0.228 1.000 1.000
16 0.880 1.000 1.000 1.000
17 0.880 0.602 1.000 1.000
18 0.880 1.000 1.000 1.000
19 0.880 0.602 1.000 1.000
20 0.143 0.059 1.000 1.000
21 p < 0.001 p < 0.001 0.004 1.000

Appendix B Table 17 χ2 and Fisher’s exact test significance results on the position-
specific properties for conserved and species-specific miRNA-mRNA interactions
in O. sativa inflorescence. Values below the significance threshold (0.05) are
highlighted in bold. Any extreme p-values (i.e. p < 0.001) were reported as p <
0.001.
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miRNA position χ2 MM G:U Gap
1 p < 0.001 0.516 p < 0.001 1.000
2 0.040 0.757 0.505 0.098
3 0.045 0.342 0.052 1.000
4 0.445 0.342 1.000 1.000
5 0.521 0.516 0.767 1.000
6 0.213 0.171 0.505 1.000
7 0.651 0.757 0.602 1.000
8 0.145 0.725 0.147 1.000
9 0.651 0.615 0.865 1.000
10 0.651 0.342 1.000 1.000
11 0.791 1.000 0.602 1.000
12 0.005 0.003 0.586 1.000
13 0.261 0.342 0.602 1.000
14 0.005 0.002 0.667 1.000
15 0.014 0.011 0.505 1.000
16 0.068 0.011 0.865 1.000
17 0.129 0.227 0.147 1.000
18 0.001 0.003 0.147 1.000
19 0.521 0.584 0.767 1.000
20 0.145 0.120 0.752 1.000
21 0.272 0.171 0.505 1.000

Appendix B Table 18 χ2 and Fisher’s exact test significance results on the position-
specific properties for conserved and species-specific miRNA-mRNA interactions
in T. aestivum spikes. Any extreme p-values (i.e. p < 0.001) were reported as p <
0.001.
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Appendix B Table 19 Intersection analysis of interactions predicted using the Allen
et al. rules and the PAREameters inferred rules on various datasets. The number in
brackets represents the miRNAs and interactions specific to the criteria used. The
exact sensitivity and precision values cannot be computed on non-model organisms
due to the lack of a large enough set of validated interactions

Dataset Allen et al. miRNAs Allen et al. interactions Inferred miRNAs Inferred interactions
D4A 70 203 87 272
D4B 66 174 79 208
D5 143 2118 190 2842
D6 42 149 46 161
D7 91 1257 193 2040

Appendix B Table 20 Intersection analysis of interactions predicted using the Allen
et al. rules and the PAREameters inferred rules when using a retain rate of 1 on
various datasets. All of the Allen et al. reported interactions are a subset of the
inferred criteria reported interactions when using a retain rate of 1.
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Appendix C

Some of the tables referenced within Chapter 5 contain a large number predicted nat-

siRNAs or their targets and are not practical to include within this thesis. However,

for completeness, a brief description of each table is provided below and the actual

data is provided as supplementary information included with the thesis.

Appendix C Table 2 The number of transcripts and cis-NATs, based on the

genome annotations, in the plant species used for the computational benchmarking.

Appendix C Table 3 A comparison between the G. max cis-nat-siRNAs re-

ported by Zheng et al. [235] and the prediction results from NATpare and NATpipe.

Appendix C Table 4 The results from the NATpare analyses on the A. thaliana

control and salt stress tissues.

Appendix C Table 5 The nat-siRNAs, as predicted by NATpare, when per-

forming analyses on the A. thaliana D3 dataset comprising of flower, leaf, root and

seeding datasets.

Appendix C Table 6 The PAREsnip2 parameters used to predict targets for the

reported nat-siRNAs.

Appendix C Table 7 The targets, predicted by PAREsnip2, when performing

analyses on the nat-siRNAs identified by NATpare in the D3 dataset comprising of

flower, leaf, root and seeding tissues.
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Appendix D Figure 9 The degradation activity for SCC1P2 in the Dm2 degradome
dataset. There exists no evidence of mRNA cleavage at the predicted SCC1P2
target site (position 1883).

Appendix D Figure 10 The degradation activity for ERF4 in the Dm2 degradome
dataset. There exists some evidence of mRNA degradation around the predicted
target site (position 179), but this is considerably lower than in the D-satRNA
libraries.
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Appendix D Figure 11 The degradation activity for CSFP in the Dm2 degradome
dataset. There exists some evidence of mRNA degradation around the predicted
target site (position 940), but this is considerably lower than in the D-satRNA
libraries.
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