
ISSN: 2050 -1277 (online) 2050 -1269 (print)

THE PRIMARY
PRIMARY FOCUS

p2-3

Miles Berry on the primary challenge

p4-5

Getting to grips with the primary PoS

p6-7

Inspiration from the primary classroom

p8-9

More winning ideas for you to try

p10-11

Programming and control at KS2/3

p12-13

Art, algebra and a mini game jam

p14-15

A new approach to STEM

p16-17

CAS: what we’re doing, who we are

p18-19

How do you teach programming?

p20-21

Logic, Minecraft and the Raspberry Pi

p22-23

Ciphers, App Inventor and physical

computing

p24-25

From bits to chips - the basic concepts

p26-27

Ways to challenge gender imbalance

p28-29

A fully functional computer simulator

p30-31

Book review, grants and Scottish news

p32

A pause for thought , news from cs4fn

CHALLENGE
The new national curriculum makes clear the ambition to “catch ‘em young”.

Computing is back on the curriculum for primary and secondary pupils alike. We

know that young children can, given the right context, think in computational

terms. Seymour Papert, the father of Logo, pointed to the explosive potential of

children, computers and powerful ideas way back in the 1980’s. A lot has

changed since then, but many of his insights remain true. Indeed, the develop-

ment of new, engaging visual languages, epitomised by the ready adoption of

Scratch by many schools suggests children of the twenty first century will devel-

op further and faster than their counterparts from the earlier Logo generation.

Whether that is true will depend on the degree to which the pedagogy that un-

derpinned Papert’s ‘constructionism’ is rediscovered, disseminated and devel-

oped. The pedagogical challenge is the primary challenge now facing those

who have so successfully fought to establish Computing in schools.

The first half of this issue is focused on encouraging developments in primary

schools. It teems with stories of teachers and pupils trying things and reflecting

on what works.

There is no doubt

that many of the

new visual pro-

gramming re-

sources provide

hugely motivating

environments for

pupils. Reading

the stories and

seeing what is

already happen-

ing makes you

wonder just what

is possible!

The “Computing At School” group (CAS) is a membership association in collaboration with BCS, The Chartered Institute for IT

and supported by Microsoft, Google and others. It aims to support and promote the teaching of computing in UK schools.

COMPUTING AT SCHOOL NEWSLETTER AUTUMN 2013

In collaboration with BCS, The Chartered Institute for IT

INSIDE THIS
ISSUE

Im
a
g
e
 b

y
ki

n
d
 p

e
rm

is
si

o
n
 o

f K
ris

ta
 S

h
a
p
to

n
 (h

ttp
://

w
w

w
.k

sh
a
p
to

n
.c

o
m

)

THE ENDURING LEGACY
OF FREDRICH FROEBEL
Froebel is best known for his pio-

neering work in early childhood

education, specifically the inven-

tion of the Kindergarten, literally,

'children's garden'. It's absolutely

no coincidence

that the semi-

ubiquitous pri-

mary program-

ming toolkit,

Scratch, owes

its origins to

Mitch Resnick's

Lifelong

Kindergarten

Group at MIT.

As Resnick

puts it: “We are

inspired by the ways children learn

in kindergarten: when they create

pictures with finger paint, they

learn how colors mix together;

when they create castles with

wooden blocks, they learn about

structures and stability. We want

to extend this kindergarten style of

learning, so that learners of all

ages continue to learn through a

process of designing, creating,

experimenting, and exploring.”

The main feature (right) looks at

four key elements in Froebels ed-

ucational philosophy. There are,

I'm sure, many other insights to be

gained into a pedagogy of primary

computing from Froebel's pioneer-

ing work, as well as the ideas of

other educationalists including

Maria Montessori (both of Goog-

le's founders attended Montessori

schools, incidentally), John Dew-

ey, Jean Piaget, Loris Malaguzzi

and Seymour Papert.

With a new programme of study for computing there is at least a
framework for thinking about what we teach. It's now time to turn
our attention to the question of how we teach computing argues
Miles Berry, Senior Lecturer at The University of Roehampton.

COMPUTING: IT’S NOT JUST WHAT
WE TEACH, BUT HOW WE TEACH IT

A fresh curriculum gives us a chance

to think about a fresh pedagogy. How-

ever, I don't think there's any need to

start from, er, scratch here, as looking

back into the history of primary educa-

tion can give some powerful insights

into how we might best move forward.

One source that's particularly worth

investigating is the work of the 19th

century German educationalist Frie-

drich Froebel. I'd like to pick out a few

aspects of Froebel's vision for the Kin-

dergarten and think about applying

those to teaching computing, particu-

larly, but not only, using Scratch.

The garden: One of the things which

set Froebel's Kindergartens apart from

other schools of his day was the em-

phasis on providing children with an

incredibly rich environment in which to

learn, not so much through being

taught as through purposeful explora-

tion and discovery. We've the chance

to do the same in the virtual realm too:

providing a diverse collection of devic-

es, software and curated sites might

well be sufficient for much meaningful

learning to take place, especially if we

are on hand to provide the motivation

and challenge to boost our pupil's nat-

ural curiosity. The benefits of a rich

virtual environment are so evident on

the Scratch website itself. Whilst many

might argue for the superiority of

BYOB/Snap!, Logo or even Python,

the opportunities for peer to peer

learning are so great, so readily avail-

able with the Scratch community, that

they make it easy for children to pur-

sue their own individual and shared

interests, learning from and building

on others' algorithms and code.

It should be admitted that the natural

world is central to Froebel's philoso-

phy, and this might seem at odds with

a subject that seems so focussed on

technology. I'm not sure that this dis-

tinction is helpful, as I think there's a

strong case for CS as the 'zeroth' sci-

ence, acknowledging that there's

something absolutely fundamental

about the difference between what is

and what is not computable, the no-

tion of information as an emergent

property of organised matter, and the

idea of CS as a lens through which to

understand natural systems, as we

had in the earlier draft of the pro-

gramme of study.

Building blocks: Froebel came up

with a sequence of gifts: carefully

crafted and carefully sequenced col-

lections of objects, from brightly col-

oured yarn balls through to complex

construction sets. Probably best

known of the gifts are the sets of geo-

metric building blocks, 19th century

pre-cursors to Meccano, Lego and

Stickle Bricks. Through playing with

these, children discover some of the

properties of shape, space and mat-

ter: they learn how structures work,

they express themselves creatively,

they develop fine motor skills, they

work collaboratively. Translating this

to the online world, in Scratch (and

other block based programming lan-

guages) children can learn through

play and experiment about how pro-

grams work; better still, they get to fit

the pieces together to make their own

programs, and have the crucial experi-

ence of fixing these when they don't

work. It grieves me to see classes

copying down Scratch programs from

a worksheet or the IWB, when there's

so much more that can be learnt from

structured and scaffolded creative

play with these virtual building blocks.

Imagine a reception class where all

the children have to copy the teach-

er's building block creation: is that

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 2222

mers in large scale waterfall projects

might seem somewhat removed,

craft coders, agile hackers and hob-

byist makers seem to be engaged in

the sort of activities which look, to

my naïve eyes, an awful lot like ut-

terly absorbing play.

Just as agile methods place individ-

uals and interactions at the heart of

the development process, so a per-

sonalised approach to education

should place the child, and the

child's own enthusiasms, talents and

character at the centre.

3333

really any different from a 'copy my

example' approach to Scratch coding?

I don't think any of us would think that

we give young children building blocks

to play with so that they become ar-

chitects or construction workers in

later life, although interestingly Froe-

bel himself briefly studied architecture

and American architect Frank Lloyd-

Wright attended a Froebel kindergar-

ten. Similarly, whilst there will be

those we teach who go on to become

software developers and computer

scientists, this isn't sufficient reason

for teaching computing in primary

schools; it's more about computing,

like music and poetry, being part of a

modern liberal education, and about

the way the subject contributes to an

all-round understanding of the world.

Occupations: Alongside the gifts,

Froebel identified a number of occu-

pations or activities as part of kinder-

garten education: these were creative

things such as painting, drawing, ori-

gami and embroidery. These, of

course, still have a part to play in pri-

mary education, but for a generation

of 'digital natives', the distinction be-

tween creative work in a digital, virtual

domain and in the analogue, real

world is perhaps not as stark as it is

for us, their 'digital immigrant' teach-

ers. Is finger painting with Brushes on

the iPad *that* different from poster

paint on sugar paper? In the days of

the old ICT curriculum, we built up a

tradition of creative work across a

range of digital media in primary edu-

cation, from 100 Word Challenge

blogging through stop motion anima-

tion to original compositions in Garage

Band. I see no reason to abandon

these activities as we move from ICT

to Computing. Indeed there's some

fertile territory to explore at the digital

media edge of Scratch et al, for exam-

ple turtle

graphics, music

composition,

scripted animation

and, of course,

game design.

Play: Froebel

recognised the

seriousness of

children's play,

seeing it as their

work. In early

years education,

practitioners and

theorists still see

play as funda-

mental to the

learning process; for example EYFS

guidance back in '08 included state-

ments such as:

• Play allows children to test their

ideas

• Play lets children learn from mis-

takes

• Play fosters imagination and flexibil-

ity of mind

It occurs to me that we could do a

search and replace 'Play' with

'Programming' above, and have state-

ments which remain true. Whilst per-

haps the work of jobbing program-

THE FREEDOM TO PLAY
OR PLAYING GAMES?
There's a difference between play

and playing games. There's more

freedom in the former, there are

rules and objectives in the latter. The

latter also translates quite well into

school terms, where agreed rules

and objectives are not unheard of,

hence, I think, memes such as game

based learning and gamification.

Rules and objectives fit well, too,

with programming, and ideas such

as interactivity, feedback, challenge,

resilience, progression and flow,

which its advocated claim for game

based learning, seem to apply just

as well to programming: coding is

the new gaming? Perhaps. But even

if not, I know many of us have found

that computer games offer a very

motivating context for teaching pro-

gramming, as well as developing

pupils' criticality in this medium.

Johann Sperl’s 1885 painting ‘Kindergarten’

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk

FLEXIBLE TEACHING AND
DIFFERENTIATION ARE KEY

Programming is very open ended, which is

wonderful for pupils but can be scary for

teachers who like to stay in control. There

will be pupils in your class who have

enough time on their hands to learn more

than you. We need to embrace this, en-

courage them to extend their learning even

further and harness their expertise to men-

tor others. This is one area where you are

unlikely to be the expert for long. However

far pupils extend their programming

knowledge they will still need us to build a

framework of computational thinking on

which they can hang their new found

knowledge and understanding.

The degree of differentiation can be enor-

mous. Some pupils will download the soft-

ware at home and complete tasks outside

school. Planning for this is important either

by careful questioning that draws out the

next step, having extension tasks to hand

or new projects they can go on to. I often

find by the end of a module of work in Year

5 & 6 that I will have small groups of pupils

working on their own projects that have

evolved from our common starting point.

It’s important not to be too rigid in our defi-

nition of those we see as high flyers and

those we see as strugglers. As you switch

from one type of programming to another,

even within the same language, different

pupils will shine as the new task grabs

their imagination.

Pupils work best where they can collabo-

rate, magpie ideas and re-purpose them.

They may be working individually but the

importance of sharing ideas informally

shouldn't be underestimated. A lot of pro-

gramming starts with other people’s ideas

that you use and adapt.

Last September, Hampshire Computing Lead teacher, Phil
Bagge embarked on an adventure to start teaching com-
puter science at Key stage 2 in four schools. One year on,
he looks back on what he has learnt.

REFLECTIONS ON TEACHING
COMPUTING AT KEY STAGE 2

The challenge at the time was to build a new curriculum to include pro-

gramming. Programming is challenging and can be hard. Miles Berry

aptly described it as ‘struggle ware’. In the last six months the learning

opportunities I have provided have far exceeded anything taught over

the previous 20 years. Seeing pupils rise to the challenge is the reward.

Pupils who enjoy the ordered sequence of a well thought out quiz may

not be the same pupils who enjoy creating a racing game. Giving chil-

dren a variety of different types of programming is important. Let’s not

get stuck creating endless arcade games or we will lose some pupils’

interest. Programming is often seen as a male pursuit so I do go out of

my way to try and teach a variety of different types of programming.

Whilst maths may be seen at undergraduate level as an indicator of an

aptitude for computing science, things are not quite as clear at primary

level. Whether our maths and literacy schemes of work at primary have

identified that capacity for logical thinking is open to question. However,

a smart teacher will harness their pupils’ new-found interest in applied

mathematics, whether using decimal fraction to speed up a costume

change or Cartesian coordinates to place objects on the screen. Don’t

be put off by the advanced nature of some of the maths used. Pupils

rarely need to understand every aspect to use it. They are adding anoth-

er layer to their understanding which pays dividends in both disciplines.

We need to free pupils up so that they can make mistakes. Too much

ICT is taught whereby the correct outcome is expected first time. Pupils

come to believe that they should get everything right first time. The op-

posite is true in computing science. Making mistakes is totally normal

and part of the process of trial, error and debugging. For many pupils

this is liberating. When we combine this with the principles of debugging,

finding and fixing their own errors, we enable pupils to be far more inde-

pendent and have positive coping strategies to find and fix failure.

Some of the best learning takes place away from computers. In Year 3

we debug logo code by stepping through shapes on the carpet whilst

recording them using a whiteboard. We dance ‘Gangnam Style’ to help

pupils appreciate repeat loops. In Year 4 we design algorithms for early

morning routines. In Year 5, write detailed instructions for their robot

teacher to create a jam sandwich. Some of this learning is invaluable.

Teaching computing science totally without computers would be boring

but the judicious use of unplugged time is important. You can find more

details of our work at http://code-it.co.uk/index.html.

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 4444

P
R

IM
A

R
Y

F
O

C
U

S

The name change to Computing is a

simple expression of the curriculum

developments but there is nothing

simple about the classroom level strat-

egies required to change the pupils'

experience from simply ‘using comput-

ers’ to ‘understanding how they

work’. This article is no blueprint to

success but it does describe a strate-

gy for primary phase ICT coordinators

to ensure that their teachers move

forward with the agenda to introduce

computer science to all pupils.

The first in the strategy is, “do not

stop doing ICT!” That is, enabling

the pupils to be both productive and

creative through using the computer –

those activities continue to be part of

the curriculum. Do not stop using ICT

to support other subjects such as

sensing devices in science, the weath-

er station, digital devices in PE and

using the learning platforms to deliver

teaching and learning materials – this

sort of use is now coined "technology

enhanced learning".

Secondly, at this stage, “do not say

to your teachers that this is new or

difficult” – it need not be new or diffi-

cult. The National Curriculum for Com-

puting (2014) through its Aims and

Subject content provides a rationale

for doing many of the activities already

embedded in the ICT classroom prac-

tice of colleagues. The sidebars in this

Primary Focus contain quotes from

the National Curriculum for Computing

and their exemplification. However,

there is a big difference in outcomes –

not only are the pupils expected to

"do" but they are expected to

"understand". With that understand-

ing, the teaching comes with a new

set of vocabulary associated with

computational thinking; words that will

become as familiar as onomatopoeia

and phonemes are: algorithm, ab-

straction, debugging, logical reason-

ing, decomposing, variables…

The starting point for ICT coordinators

could be:

• examine the current long, medium

and short term plans and identify ac-

tivities that can be called computer

science, for example, programming a

toy to carry out a task;

• re-label those activities on the cur-

riculum computing (CS) - the other

computer activities are likely to be

Computing (IT);

• identify any gaps in provision by

checking the NC document;

• identify any expertise in the school

to teach programming. Programming

is an effective way of teaching compu-

tational thinking;

• ensure that all teachers are familiar

with the words of computer science

through a short CPD session;

• start introducing activities from CS

Unplugged and cs4fn. These do not

require pupils to use a computer to

complete, they are easily integrated

practical classroom activities.

Developing an after-school club can

be the starting point for creating a

team of expert pupils who can support

the whole class in programming activi-

ties. If you are initiating a program-

ming activity in your school, the natu-

ral starting point is an environment like

Scratch. A really good starting point is

http://code-it.co.uk/scratch/

scratchplan.html.

Teachers work best in collaboration

and it is strongly recommended that

you join CAS and interact with the

CAS forum. Join the Primary forum

and don’t be reticent about seeking

help. Remember, by seeking help

others are also helped.

GETTING TO GRIPS WITH THE
NEW NATIONAL CURRICULUM
John Woollard, Programme Director for the PGCE Primary at
Southampton University offers some words of advice for teach-
ers grappling with the change of emphasis implied by the new
Computing programme of study.

NATIONAL CURRICULUM:
SOME SIMPLE IDEAS
In Key Stage 1 pupils should be

taught to understand what algo-

rithms are, how they are imple-

mented as programs on digital

devices, and that programs exe-

cute by following a sequence of

instructions

Give them a simple instruction list

to walk to the school office using

forward x paces; turn rt/lt; etc.

The instructions are a form of al-

gorithm. An algorithm is a com-

plete list of clearly defined instruc-

tions for completing an activity.

Write and test simple programs

After using a programmable toy to

follow a route by direct com-

mands, ask the pupils to write

down a list of commands before

entering them into keypad; if it is

not right they change their written

‘program’ before re-entering the

instructions - the pupils are, in

effect programming

Use logical reasoning to predict

the behaviour of simple pro-

grams

Here are three simple examples.

Ask, what letter does this draw?

Forward 1,

Repeat 4 [Forward 1, Right 90]

End

Ask, what shape does this draw?

Forward 1,

Repeat 4 [Right 90, Forward 1]

End

Talk about what these instruction

do

01- Box A contains 9

02- Box B contains 3

03- Working out

04- Take 1 out of Box A

05- Take 1 out of Box B

06- If Box B is NOT empty THEN

go to ‘Working out’

07- How many is in Box A?

The pupils could act out the se-

quence. To help them understand

what is happening you could ask

What does 9 - 3 = ?

5555 SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk

NEW NATIONAL CURRICULUM:
SOME MORE SIMPLE IDEAS
Some of the later statements relating to

Key stage 1 are probably more familiar to

many primary teachers.

In Key Stage 1 pupils should be taught

to organise, store, manipulate and re-

trieve data in a range of digital formats

using a word processor and saving work;

taking photographs and storing on the

computer; recording an MP3 file and sav-

ing on a computer; making a presentation

communicate safely and respectfully

online

use email to exchange messages with

friends, experts and automatic systems,

talk about being thoughtful and respectful

keeping personal information private

talk about profiles such as Whizzkids. Dis-

cuss who has access to it and why they

should not tell others their password

recognise common uses of information

technology beyond school

discuss with pupils: barcodes on shopping,

traffic light systems, CCTV cameras, on-

demand television, voice-over-internet.

Take a look around your locality, can you

find other examples to use? Perhaps you

could arrange a ‘technology walk’?

Yasemin Allsop, ICT Co-ordinator at Wilbury Primary
School in London shares her experiences of how pupils
knowledge and skills are largely shaped by how game de-
sign challenges are approached.

TEACHING GAME DESIGN IN
THE PRIMARY CLASSROOM

I have been teaching game design to a Year 6 class using the ‘Alice’

software once a week since January. I have been keeping a journal of

my experience to gauge the role of the teacher in the classroom when

teaching digital game design. Similarly, some children have also kept a

learning journal to record their perspective on their learning. They use

screen shots of their problem scenes or codes as a record, then explain

how they designed a solution to solve this problem. They also included

their feelings and emotions when they were making their digital games.

Some of the children are also in my maths group. This allowed me to

monitor if their game design activities impacted on their mathematical

thinking. During one session, learning about rotating 3D shapes, I asked

the class to explain their strategies for solving this type of problem. One

pupil stated that he thinks about the Alice world and visualizes the shape

rotating exactly how he rotated the objects on the screen. I started to

understand, not only the link between spatial-visual skills and game

making, but also how children transferred knowledge from one area to

another to solve problems by connecting them. The children saw digital

game design as a very similar activity to mathematics, because in their

words ‘Digital game design was all about problem solving’.

Whilst making games, children transform their mind into a virtual lab

where they can develop and test their designs, through thinking

(dialogue with ‘self’ and ‘others’) and action (dialogue with design) be-

fore turning these into reality using software. This is a continual ‘making

sense’ process, where children exercise their planning, decision-making,

organizing, testing and evaluating skills; a foundation to learning in many

areas. How the game design activities manifests into knowledge is main-

ly shaped by how it has been taught in practice.

I have been recording not just the children’s activities, but also my own

thinking of my role as a teacher. I wasn’t very familiar with the ‘Alice’

program, so I was really worried about how to approach teaching it.

What I realized is, that by staying in the background and acting as a fa-

cilitator, I allowed the children to take part in structuring the lesson in a

way more relevant to their needs. In one of the sessions, I used a simple

task for designing a quick game on the Internet and modelled it to the

class. I wanted to show another one, but the children wanted to be left

alone to just get on with it. They wanted to explore Alice further. So I

changed my lesson structure and let them experiment with Alice for the

rest of the lesson. They wanted to walk around and see what their peers

were working on. Freedom of movement and freedom to discuss with

their peers allowed the learning to develop in different nodes. This em-

phasizes the importance of the teacher understanding their own role in

the classroom when teaching game design. I became part of the learn-

ing cycle, by learning with the learners. Hopefully I will finish my own

game soon, although it is no way near as close to the standards set by

some of the children’s designs.

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 6666

Code Club, one of Google's 2013 RISE

Awardees, is taking the UK by storm.

Now in over 900 schools and spreading

globally with the launch of Code Club

World. Google has been supporting Code

Club to expand access to coding for 9-11

year olds and have just announced a partner-

ship between themselves, Camden, UCL and

Code Club to put a club in every Camden

primary school by the end of the year. Let’s

hope this will be replicated elsewhere.

P
R

IM
A

R
Y

F
O

C
U

S

Rishworth School hosted a Computing

Day for Year 5 pupils from six local

primary schools. The pupils visited for

two sessions, each lasting two hours,

aimed at introducing the fundamentals

of Computing: Computational Thinking

and Programming concepts. The ses-

sions started with everyone dancing

the Hokey Cokey - yes, even the

teachers! This introduced pupils to the

idea that algorithms are everywhere

and that computers use algorithms to

carry out instructions. Pupils were

then given flowchart symbols and

asked to arrange them into an algo-

rithm to explain to an alien (or a com-

puter) how to do the Hokey Cokey.

To turn their new-found knowledge of

algorithms into a programming task, I

had prepared a Scratch template. Pu-

pils used this to create a program that

switched the ‘costume’ of an alien

sprite that we named Janice. By

pressing a letter on the keyboard the

program switched Janice’s costume,

thus creating movement. By pressing

different keys in a particular order,

pupils ‘instruct’ her to dance the Ho-

key Cokey! All the pupils had Janice

dancing in no time.

The Scratch template is shared on the

Scratch community here: http://

scratch.mit.edu/projects/11002706/.

It shows one way of accomplishing a

dancing Alien. However, you could

extend this task, too! I’d love to see

how you would modify the program

and iterate it to do something awe-

some! Maybe you could sequence the

instructions to execute without the

need for separate keyboard inputs?

Maybe you could create some differ-

ent costumes for Janice and then pro-

gram her to do the Harlem Shake? I

wish I had some time to do that!

Please have a go and hopefully you

can share your work and comment on

that of others (as is the ethos of the

CAS and Scratch Communities).

But we had some code breaking to do,

so we moved along... I told the pupils

that there was someone else in the

room who liked to dance the Hokey

Cokey. The pupils had to decrypt a

message to uncover who it was, using

a Caesar Cipher....to hack the code

and uncover the secret dancer: a Hu-

manoid robot that I had built and pro-

grammed using Lego Mindstorms,

over two "gruelling" afternoons.

The pupils then enjoyed some snacks

and Bob The Tree oversaw the recy-

cling. Appropriately fuelled with E

numbers, the pupils continued their

coding endeavours, this time to trigger

sound effects and light displays on

Sense Boards. As their final task, the

pupils debugged a program that moni-

tored a sound sensor, which they then

used to control an animation of an

exploding Angry Birds character when

they made some NOISE!

WHAT IF THE HOKEY COKEY IS
REALLY WHAT IT IS ALL ABOUT?
What do you get when you mix 34 primary school children, 15 Sense
Boards, a robot, an alien called Janice, a tree called Bob, some
emergency snacks, the Hokey Cokey, Angry Birds and Julius Cae-
sar? Pete Bell from Rishworth School, West Yorkshire explains.

7777

Throughout, the pupils had been

introduced to a range of ideas in the

Programme of Study for Computing.

In the flowchart task, pupils applied

abstraction to decompose a problem

into smaller parts. They also applied

repetition and sequencing.

During the Cipher task, they used

logical reasoning and during the

Sensor Board tasks, pupils were

introduced to selection, comparison

operators and the use of variables to

temporarily store changeable values.

Of course, given the time con-

straints, these Computational con-

cepts were not explored explicitly;

instead, I took an experiential, con-

structivist approach.

At the end of the first session (and

ever the professional), I started my

plenary by asking "so, what have

you done today?" One pupil simply

shouted out: "WE'VE HAD

FUUUUNNNN!!!!!" For me, that was

mission accomplished.

Janice

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk

NEW NATIONAL CURRICULUM:
SIMPLE IDEAS FOR KS2
Some of the terminology used at Key

Stage 2 may be less familiar but they

begin to introduce some of the fundamen-

tal concepts that the children will be re-

peatedly exposed to as they progress

through school.

In Key Stage 2 pupils should be taught

to: design and write programs that ac-

complish specific goals

use Scratch to design an electronic fish

tank

write programs in LOGO to draw polygons

including stars and combine with RAND to

create artistic designs

including controlling or simulating physical

systems;

use Commotion control to create an inter-

active pedestrian crossing

use Flowol to control a ‘Ferris’ wheel

use Scratch to model a line following vehi-

cle - use of feedback in a control system

solve problems by decomposing them

into smaller parts

Ask how do we get to school? (break into

stages, describe each stage separately)

how do we build a plane from plastic

bricks? (describe the stages)

Point out that the children are decompos-

ing complex tasks. A good introduction to

decomposition can be found at http://

games.thinkingmyself.com

use sequence, selection, and repetition

in programs;

These constructs lie at the heart of pro-

gramming. Repeated exposure in lots of

contexts is essential.

sequence - a list of instructions

selection - instructions with IF conditions

repetition (iteration) - a list of instructions

with parts that repeat

At the end of the CAS Conference, attendees were given a
postcard to write down one thing that would do on their
return to work. Dawn Walker, from Bentley Federation
near Walsall wrote: ‘make programming real world’.

ENGAGING YEAR THREE WITH
SOME ENCHANTING IDEAS

Anyone who attended the CAS Conference Primary Forum with Phil

Bagge and Jane Waite will know my ideas were shamelessly stolen from

them. We had used the Lego NTX robots and Mindstorms software with

Year Five and Six pupils over the last 12 months and I was keen to intro-

duce them to the younger children. I discovered a piece of software

called ‘Enchanting’, a variant of Scratch that allows programming of the

NTX robots using the familiar, user-friendly ‘Scratch’ style environment. I

was keen to trial it, so when I was asked to work with a Year 3 class on

a robot themed cross curricular project, I jumped at the chance.

I would always introduce any robot project with some ‘people program-

ming’. This helps pupils grasp key points about algorithms such as accu-

racy and order. The children are amused when I walk into a wall or keep

‘turning’ around because a command is wrong! As part of the introduc-

tion we also discussed algorithms and learnt a saying/action as a

memory prompt. We recently introduced iPads and I was interested to

know what value they might have for devel-

oping the children’s understanding. We used

an App called ALEX, similar to the Bee-bot

Early Years App. After 15 minutes we start-

ed working with the Enchanting software. I

set the children the challenge of making their

robot move in a square. With some trial and

error getting the turning angles correct, most

managed it without any help. Pupils then

started to explore what we would have to

change (and keep the same) in order to map out a rectangle or triangle,

so developing confidence applying the techniques to different situations.

By variously applying the programming techniques on humans and

iPad / robots, the pupils were able to consolidate understanding and

solve the problems posed more intuitively than in previous NTX-based

projects we have run. At the end of the lesson I asked the children what

they would like to program the robot to do next time. One little boy sug-

gested programming the NTX to take a biscuit to the teacher in the next

room. This really made me smile as I couldn’t think of anything more

‘real world’ than that...

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 8888

P
R

IM
A

R
Y

F
O

C
U

S

This STEM project is designed to

teach sensing and control with feed-

back to children aged 10 to 12. It does

not require any specialist knowledge.

Physical computing is a perfect con-

text for teaching computing at KS2

and KS3. A common misconception is

that hardware is complicated to set up

and this is a difficult topic to teach.

The project makes use of two motors,

switched on if a light sensor receives

light and off if the sensor is dark. A

black line drawn on a table provides

the input by reducing the light level

falling on the sensor.

To help understand the theory chil-

dren can be given a line following

problem in Scratch. Once they have

solved the problem (above) they

should have a good understanding of

sensing and control using feedback.

The children can take some time to

develop their vehicles, evolving them

from manual control to computer con-

trol. The starting point is to glue two

motors, with wheels attached, at the

back of a piece of MDF with a skid (a

simple bolt) through the front of the

MDF chassis. The motors are wired to

the 6v power supply (remove 1 cm of

insulation from each, twist together

and wrap with insulating tape) and

each controlled via a push switch. If

the wires are long the vehicle can be

steered from a standing position.

Having experienced two motors being

used to steer a vehicle you can dis-

cuss the line following problem. How

can the vehicle sense a line painted

on the floor? It needs to be able to see

the line. Children can experiment with

an LDR, discovering that less light is

reflected off a black surface.

The next stage is to glue the two

LDRs onto the underside of the chas-

sis, slightly further apart than the width

of the black line. A hole can be drilled

for the LED to provide the light which

enables the vehicle to see the line. A

resistor is wired in series with the LED

to protect it from high current. The

final stage of the build is to remove

the push switches and wire the com-

ponents to the FlowGo interface. Con-

nections are made using 4mm spring

connectors.

FlowGo Connections:

Left LDR to input 1

Right LDR to input 2

Output 1 to left motor

Output 2 to right motor

Output 3 to LED

HOW CAN CHILDREN PROGRAM
A ROBOT TO FOLLOW A LINE?
With 30 years experience teaching Computing and ICT, Graham
Hastings (Head of ICT at St John’s College School, Cambridge)
remains passionate about physical computing because he
knows how engaging and enjoyable the children find it.

THE PREREQUISITES
OF A GOOD PROJECT
You will need Scratch, Flowol and

the FlowGo interface (but you can

substitute FlowGo with Arduino,

IQ4, Raspberry Pi & PiFace or

any suitable micro controller (an

increasing number on the market).

Components: x2 3-6v motors with

200:1 gear box, x2 LDRs, x2 push

switches, x1 bright white LED, 300

ohm resistor, x10 spring connect-

ors, 2 metres of red and black

single ply wire, 6v battery pack (x4

AAA batteries), x2 MDF wheels

and a skid (small bolt), a small

sheet of 2 mm MDF. Cost about

£15 but all can be recycled.

Previously the children should

have been introduced to sensing

and control through Scratch or

Flowol. They should be able to

program an output to respond to a

specific input. Ideally they will al-

ready have come across exam-

ples of feedback systems (such as

a thermostat) in which the output

produces an effect on the input.

9999

The control program is set to Re-

mote to save it in the interface

memory. The interface is mounted

on the vehicle and powered by the

6v battery pack. A black line (1 cm

wide) is drawn on a light background

for contrast. Position the vehicle so

that the line runs between the two

LDRs and press GO. The bolt not

only acts as a skid to allow the vehi-

cle to turn but also provides fine

height adjustment. By turning the

bolt you can tweak the distance be-

tween the line and the LDRs until the

vehicle responds. The optimum dis-

tance is usually 2mm. Search

YouTube for ‘Flowgo Vehicle’ to

watch the vehicle being tested.

The underside of the robot chassis

Flowcharts for the motor outputs and LED

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk

NEW NATIONAL CURRICULUM:
MORE IDEAS TO USE IN KS2
The key areas in the new KS2 programme

of study relate to programming. Some

terms may be a little unfamiliar. Here are

some easy to implement interpretations

In Key Stage 2 pupils should be taught

to: work with variables

create a Scratch game that keeps the play-

er’s score

and various forms of input and output

generate appropriate inputs and predicted

outputs to test programs

simple escape the maze activity in LOGO -

load an image of a maze with the turtle at

the centre - children have to plan a se-

quence of instructions that will steer the

turtle out of the maze.

use logical reasoning to explain how a

simple algorithm works and to detect

and correct errors in algorithms and

programs

See the introduction to algorithms at http://

games.thinkingmyself.com

A := B means ‘make the contents of A be-

come the same as the contents of B’

A := A + B means ‘make the contents of A

become the same as the contents of A

added to the contents of B’

A := 7 means ‘make the contents of A be-

come 7’

A can be a box (of counters on the desk),

cell (of a spreadsheet) or memory location

(in a computer). Using the following:

A := 5

B := 7

A := A + B

B := A - B

A := A - B

What is the content of A now?

What is the content of B now?

What does the program do?

Matthew Parry is a Primary trained teacher working in a
Special School in Derbyshire for students with autism and
BESD. A CAS Master Teacher, he reflects on the value of
using physical interfaces with programming.

INTERFACING WITH SCRATCH:
LEGO WEDO AND PICOBOARDS

Using Lego WeDo Construction Kits and Picoboards enables a more

kinaesthetic approach to lessons and gives students a more real world

reason for programming. Lego WeDo kits contain the usual Lego bricks

and four extra parts: a motion sensor (used for proximity), motor, tilt sen-

sor (to determine orientation) and a USB hub to connect the motor and

sensors to a computer. Scratch needs no extras to make it work with

Lego WeDo. The sensors are automatically enabled but you may need

to Enable Motor blocks from the Edit menu to use the motor.

To start I demo a model croc-

odile with a motor to open

and close the mouth and a

motion sensor to sense if

anything was in the mouth. I

then show how to create a

simple scratch script that

snaps the mouth shut if my

finger (or anything else) is

placed between the jaws.

The students then build their own models using the kits and building in-

structions which I have downloaded and put on our iPads. Working in

pairs facilitates collaboration and encourages sharing of ideas. I do not

give them any scripts but try to get them to work out how to get their

models to work. They soon get birds moving and tweeting, monkeys

drumming and a spinning top humming.

We then attach the Picoboards which allow us to add more control to the

models by providing several inputs: a sound sensor, light sensor, push

button, slider (potentiometer) and four resistance measuring inputs. After

installing the necessary drivers, Scratch 1.4 automatically enables all of

the sensors and the students soon work out how to control their models

by clapping or pressing the button. Some use the slider to control the

speed of the WeDo motor; some build fancy mechanisms to control the

amount of light and hence the volume of sounds they are playing. Other

students investigate resistance of everyday objects by connecting all

sorts of things to the resistance inputs to see what works best.

The kits are quite expensive, almost £80 for a WeDo kit, but as they use

standard Lego bricks they are extendable and are accessible for all ages

from infants to seniors. The Picoboard (£35) is not limited to being used

with WeDo kits but can be used to interface with any Scratch program.

Using the kits has allowed my students to be creative and to explore

areas of Scratch they would otherwise not experience if they only used

the computers. I try to not be prescriptive in what I want them to achieve

allowing them instead to discover what they can do and share with each

other their results. The only limit is the students’ imaginations. For CAS

members, links to helpful resources can be found on the Community at

http://community.computingatschool.org.uk/resources/1211

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 11110000

P
R

IM
A

R
Y

F
O

C
U

S

COMPUTING DAYS HELP FORGE
PRIMARY / SECONDARY LINKS
Inviting primary schools to a computing event can be a source of
inspiration for all involved. Sue Gray, who teaches at Fakenham
High School in Norfolk, reports on a couple of very successful
intensive days they organized for local primary school children.

11111111

CAS COMMUNITY LETS
US SHARE RESOURCES
I am a Year 1 teacher at West

Hove Infant School in Sussex. We

are a large 8 form infant school. I

am always keen to acquire great

ideas and resources from other

teachers that I can easily share

with my colleagues. The CAS

Community Resources allows

teachers to post, share and re-

work resources. I had been trawl-

ing the CAS forums for ideas and

resources to help us explain the

web to our little 5 year old pupils

and came across a fantastic KS2

Powerpoint ‘Modelling the WWW’

from Graham Hastings

(community.computingatschool.or

g.uk/resources/178).

I altered it only slightly for KS1.

The presentation gives you all the

instructions to undertake an un-

plugged lesson with children role

playing Webservers around the

world, Google and a Researcher.

The children found it hilarious that

they got answers back from ‘Who

wrote Winnie the Pooh’ as a

Pooh Holiday Park; a picture of a

Polar Bear and a lady with a nick-

name of ‘Winnie’. It was a great

lesson as it started to dawn on

them that maybe the web was not

as ‘clever’ as they thought and

maybe it didn’t always tell them

what they needed.

We followed this up with the super

Netsafe Utah video on “What is

the Internet” http://

www.netsafeutah.org/kids/

kids_videos.html. Then I went on

one of our learning platform blogs

and we posted something as a

class. Suddenly lots of them were

asking, so we could say anything

on the web, and anyone might put

anything and they could be any-

where. It was a light bulb lesson

and we keep referring back to it

when ever we are looking at is-

sues to do with the internet. It’s a

great lesson. I’d recommend it for

KS1 or KS2! Jane Waite

In June a group of primary pupils visit-

ed us for a fun day of Maths and ICT.

We began with Stompy Zombie Ro-

bots in the Drama studio! Two teams

programming ‘real’ (pupil) robots to

fire tissue paper missiles.

Then off to the ICT room

to learn some control with

Flowol. Pupils created

flowcharts to control flash-

ing lights and use inputs

such as sensors. Finally

the main event – learning

to program the Lego Mind-

storms robots. But first,

some maths to do – gath-

ering data on how far ro-

bots run on 50 or 75%

power for 5 or 2 seconds etc. Entered

into a spreadsheet, we could then

analyse the data. Various challenges

built on the data gathered. First the

robots had to move between two floor

crosses. The next involved a 90 de-

gree turn. Finally came the maze,

each team programming the robot to

run through without touching the sides

– tricky stuff but one group did an a-

maze-ing job! Our winners were fan-

tastic, with only a slightly dodgy 3rd

turn, they ended almost exactly on the

finish X!

The pupils were put into random

groups so developing the team spirit

as soon as possible was essential.

They were great at working together.

It was a fabulous day and thoroughly

enjoyed by pupils and staff alike.

In July a smaller G & T primary group

joined us for an intense two day expe-

rience. We planned to teach them a

little Scratch, set them loose with a

couple of worksheets and then give

them a challenge. As it turned out a

couple of them had already experi-

enced Scratch through an after-school

Code Club. These pupils were keen to

demonstrate their skills. Others had

no experience at all but quickly picked

up enough skills to create a very sim-

ple platform game.

We also had the opportunity to play

with Makey Makey and the Picoboard

– both were judged to be “awesome”.

Using the Makey Makey board we

wired up some cherry tomatoes and a

banana (my lunch!) and used them to

control a character. The Picoboard did

a similar thing using a slider control,

the button and sound sensor. This

was fantastic as they could shout at

the character to make it jump!

Once we’d made our games we

moved on to marketing – a bit like The

Apprentice! On the second day we

created an insert for a CD case and a

poster using our game colours and

some of the lettering from Scratch.

Finally, pupils had to write a script for

a 25 second radio advert which

proved quite hard. All left with a USB

containing their Scratch game, pdf

files of their CD insert and poster as

well as media files of their advert. All

the pupils thoroughly enjoyed their

visit. The only real downside to the

two days was that there were no girls.

Next year we will try to encourage the

primary schools to put more girls for-

ward for these intensive days.

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk

NEW NATIONAL CURRICULUM:
MORE IDEAS TO USE IN KS2
In Key Stage 2 pupils should be taught

to: understand computer networks in-

cluding the internet;

‘draw the internet’ activity following some

descriptive input/experience http://

www.canyoudrawtheinternet.com/uk to

develop a collective understanding - the

teacher should identify and correct misun-

derstandings/misconceptions

how they can provide multiple services,

such as the world-wide web;

The internet is used to carry information

via web pages, email, voice messages, file

transfer and many other means using pro-

tocols such as http, ftp and smtp. https is a

secure way of sending information through

web pages; it is used by banks and shop-

ping web sites.

and the opportunities they offer for

communication and collaboration

Here are some of the ways that the inter-

net offers means for communication:

Wikis, forums, e-portfolios, blogs, chat

rooms, voip and social networking. How

many have your pupils used?

describe how internet search engines

find and store data;

A search engine uses a program called a

spider to visit web pages and put them into

lists according to their content. The pages

are ranked by popularity. Pages with the

most links to them or the most used are

ranked higher. When you use keywords in

a search engine, the web page displays

the links from the most appropriate list.

use search engines effectively;

this requires the use of appropriate key-

words (what are good words) and being

discerning in evaluating digital content.

For three years Amanda Wilson’s PhD research at Univer-
sity of the West of Scotland has focused on Games-based
learning in Upper Primary Education, working with local
schools and using Scratch to construct games.

PRIMARY PUPILS ENJOY A
FULL DAYS MINI GAME JAM

As this year was the last year of my data collection I thought about an

event to give something back to the schools and also show the skills

children have picked up while being part of the research. The Scottish

Game Jam (an intense weekend of game design) inspired me to organ-

ise a one day game jam of my own for children. After lots of emails and

preparation the Mini Game Jam took place in June. 52 children from

Royston and Carntyne Primary in Glasgow (mainly primary 7’s but a few

primary 6’s) attended the University of the West of Scotland to partici-

pate. The day started with the children being put into teams for the day

which meant working with children from the other school – I would have

been more popular saying they had to work with aliens for the day! That

aside, the teams worked well and given most are headed to the same

secondary school it was a great transition exercise too.

During the day the children came up with lots of great ideas from quiz-

zes to football games to maze games. Later they were transferred from

paper to the screen. By the time 3pm came most of the groups had man-

aged a game (some more complete than others) and some even had

time to do some play testing to ensure things were working. While chil-

dren enjoyed a snack the games were judged, the winner picked for its

originality. Their game, Nector Collector, involved controlling a bee to

collect nector (coloured circles) while avoiding black blocks in a fixed

time. The game can be played online at http://scratch.mit.edu/users/mini

-game-jam/ along with some of the other games created on the day.

I was lucky enough to have Dr Daniel Livingstone as a volunteer and he

kindly gave the children a talk about the games industry in Scotland and

where graduates go once they leave UWS. It was a very informative talk

for the children and hopefully gave them all something to think about.

I would also like to thank the following people without whom the event

would not have been possible. Prof Thomas Connolly – for letting me go

ahead with my idea in the first place. Simon Kelly and Jo Church –

Heads of both schools for their help along the way and letting their

schools participate. Dr Thomas Hainey, Dr Jon Sykes, David Moffat and

Maxine Dodds for coming along and helping out. Finally the School of

Computing UWS, Computing At School, Computing At School Scotland

and Science Connects for all their help with sponsorship of the event

and prizes too.

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 11112222

From paper to screen—constructing a game

P
R

IM
A

R
Y

F
O

C
U

S

This lesson has been designed to

make algebra more relevant to pupils

by applying it to real life scenarios

whilst teaching computational thinking

concepts. It is a lesson that really in-

spires the pupils by helping them to

see the relationships between Com-

puter Science and the other subjects

they study! It also provides an excel-

lent opportunity to teach the basics of

and give pupils of all ages an introduc-

tion to recursion.

The idea for this lesson came from the

Computer Science For Fun (CS4FN)

website which highlights the relation-

ship between Fibonacci Series and

the Golden Ratio which is evident in

both nature and man-made objects

throughout the ages e.g. pine cones

and ancient greek architecture. The

school’s Art department teach the

introduction to the Golden Ratio and

relate it to their curriculum through the

study of portraits. They also use the

Internet searching and referencing

skills that have been previous devel-

oped in IT lessons to undertake re-

search projects into where the Golden

Ratio occurs.

The Digital School House teacher

begins the lesson by investigating

what the Golden Ratio is and where it

appears in nature. Pupils then develop

their artistic skills by drawing portraits

of one another using the Golden Ratio

to help them. Using the Golden Ratio

pupils are then introduced to the Fibo-

nacci Series and they are supported

and encouraged to spot the pattern

i.e. the new number is equal to the

previous two numbers.

If the pupils have not covered what

variables are then the DSH teacher

introduces them to the concept by

completing some simple mental maths

where the missing number floats be-

tween the two numbers to be added

and the answer. Pupils record the

answers on personal whiteboard –

drawing a flow diagram to represent

the calculation. The purpose of doing

this is so that the pupils can analyse

the structure of the equations i.e.

number 'a', followed by the 'operator'

and then number 'b' is equal to ‘c’ i.e.

'c' = 'a' + 'b'. The teacher uses this

introduction to algorithms by getting

the pupils to make a simple calculator

in Scratch (using their flow diagram as

guidance) enabling the teacher to cov-

EXPLORING ALGEBRA, ART AND
FIBONACCI THROUGH COMPUTING
Langley Grammar School's Digital School House (DSH) project
has worked with their Maths and Art departments to combine the
teaching of algebra with the Golden Ratio. Mark Dorling explains
how maths, art and computing can combine.

11113333

er the difference between 'constants'

and 'variables'. It is essential to do

this activity before progressing on to

solving the Fibonacci Series. Pupils

are then supported to model (using a

flow diagram) the pattern they spot-

ted previously in the lesson

(Fibonacci Series) and now that they

know what a variable is and what it

does, they are able to further devel-

op their flow diagram to include the

movement of values between varia-

bles. Pupils are then introduced to

iteration (repetition) with the purpose

of growing the Fibonacci Series. Fi-

nally, pupils are encouraged to fur-

ther develop their Scratch program

(above) by modelling the Fibonacci

Series using their flow diagram to

guide them. You can download the

resources from http://tiny.cc/tps70w

FREE RESOURCES FOR
THE NEW CURRICULUM
In January Primary schools across

the country will, courtesy of Mi-

croso� and Rising Stars, be receiv-

ing a free starter pack of ‘Switched

on Compu#ng’ resources to help

them get started with the new

curriculum for compu#ng. The

resources will be full of engaging

and fresh ideas that bring the pro-

gramme of study alive, with sup-

port for teachers who need a help-

ing hand.

The resources are a taster for the

bigger Switched on Compu#ng

scheme also published by Rising

Stars in January. Teachers can pick

up free copies at BETT and digital

versions will also be available on

the Rising Stars and Microso� site.

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk

A BIT OF BACKGROUND
In 2001, Sir Gareth Roberts re-

viewed the supply of science and

engineering skills in the UK. `SET

for Success’ was published in

2003. It set out 37 recommenda-

tions to develop the supply of peo-

ple with STEM skills into research

and industry. All were accepted,

including the establishment of a

national and nine regional Science

Learning Centres. It also estab-

lished the Science Council, along-

side the Engineering Council, and

effectively recognised mathemat-

ics as a science. However, the

strategy which followed concen-

trated mainly on enrichment in

science. It paid little attention to

technology, engineering or com-

puting. There is a need to estab-

lish coherent cross-curricular ac-

tivities to encourage the personal,

learning and thinking skills de-

manded by employers and HE.

The CBI and other employers’

federations have regularly report-

ed on the effects of skills shortag-

es on key UK business, such as

aerospace. NESTA published its

`Next Gen.’ report in 2011 pointing

to the severe skills shortage in the

video, games, animations and

special effects aspects of creative

industries. The `Next Gen Skills

Campaign’, backed by Google,

Microsoft, BCS and e-skills,

played a key part in ICT being

replaced by Computing. It re-

ceived a significant boost when

Eric Schmidt (Google) noted:

"Over the past century, the UK

has stopped nurturing its poly-

maths. You need to bring art and

science back together."

The STEM strategy has not had the desired effect on the skills shortages threaten-
ing UK economic competitiveness. We need a solution which can be implemented
speedily, cheaply and with as little disruption as possible, argue Adrian Oldknow
and Tony Houghton from The Centre for Innovation in Technological Education.

DESIGN BRIEF: AS IT’S BROKE, LET’S FIX IT
REFORMING TECHNOLOGICAL EDUCATION

The DfE have now published the out-

come of their curriculum review. It is

clear that schools will have considera-

ble adjustments to make from Sep-

tember 2014 so now is a good time to

encourage a broad review of techno-

logical education.

A group of school leaders and STEM

subject associations (ASCL, ASE,

CAS, DATA, MA, NSEAD and Primary

Engineer) developed the SySTEMiC

strategy to embed STEM in the curric-

ulum. It was very well received, but no

organisation was forthcoming to take it

on board so we decided to do it our-

selves, establishing the Centre for

Innovation in Technological Education

in Cambridge (CCITE – http://

ccite.org). ASCL and CBI are sup-

porting CCITE’s development of

`Technological Education For All Pu-

pils’. By the end of 2014 it will have

assembled and tested a complete

know-how kit for schools on how to

deliver and manage a whole-school

approach to technological education.

This will support schools delivering the

new D&T and Computing curricula as

well as enhancing maths and science.

It will also develop pupils’ personal

learning and thinking skills in aspects

such as problem-solving, team work

and communication, much sought

after by employers. A key component

is resources for 20 half-termly, cross-

curricular, problem-solving projects in

both Key Stages 2 and 3 – the `20-20

CCITE STEM projects’.

Students apply maths, science and

computing skills to design solutions to

challenging problems and make arte-

facts. They will build up an accredited

portfolio of work, and will be in a posi-

tion to make well-informed choices

about future subject choices. They will

also be better equipped to see the

importance of curriculum subjects

such as science, D&T, computing and

mathematics and better motivated to

achieve good results. Schools will

receive guidance and support on a

variety of ways to engage talented

members from a wider community

including parents, governors, older

students, employers and employees.

So let’s get started. Putting the UK’s

technological education on a secure

footing is a vital and challenging task.

We believe we have come up with the

principles to tackle this successfully

within the constraints of time, money

and disruption. We estimate the costs

to flesh these out, test, modify and

disseminate to be around £2m over 2

years. It is important for the financial

stakeholders to be drawn widely—

mainly from business and industry, but

with opportunities for charities, philan-

thropists, government and others to

participate. We just need to find

around 40 contributors to take out

shares to raise the capital required. As

well as help in raising funds, we need

participation of experts from many

fields to flesh out the detail – particu-

larly the content of the 20-20 projects.

We also need early adaptor schools,

colleges and academies (5-19) to test

out and help develop the materials.

You can contact Dr Tony Houghton –

CCITE Education Development Direc-

tor on ajh249@gmail.com and Prof

Adrian Oldknow – CCITE Founder via

adrian@ccite.org

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 11114444

Adrian Oldknow

From arriving at University station on the Thursday

evening until the final plenary session, I was wel-

comed by smiling student ambassadors, provided

with ample food and drink, and had queries dealt

with efficiently and helpfully. At the Thursday even-

ing reception, hosted by OCR, we were offered

wine, soft drinks and a tasty buffet – and more wine

(so glad I wasn’t driving!). This was followed by an

excellent talk and demonstration of “blockly” by Neil Fraser, and then a

“Dimbleby-style” Question Time session which sparked some interesting debate.

Having registered and signed up for the workshops (of which there was a vast

selection) the previous evening meant a respectable 9.00am start on Friday. The

first talk, by Michael Kölling, introduced ways to motivate students through pro-

gramming. There was a collective “Wow!” when Michael demonstrated how the

Xbox Kinect can be hooked up to Greenfoot to create games where the player

actually appears on the screen – just like something out of The Matrix. Next

came a demonstration, by Lee Stott and David Renton, of how Microsoft’s

TouchDevelop can be used to create an inspiring games development curricu-

lum. Having played with TouchDevelop I hope to use it in my classroom soon.

After a refreshment break delegates were then dispersed to their chosen work-

shops. I chose sessions with a focus on techniques for teaching computational

thinking, engaging and inspiring students and building an outstanding curriculum.

Looking back on these sessions some common themes emerged:

• You can teach computational thinking away from the computer (CSUnplugged

has great resources)

• Relate programming exercises to real life problems that interest your students

• Hacking (modifying existing code) can be an effective teaching tool

One of the great things about attending the CAS conference was the opportunity

to meet and chat to other teachers and IT professionals. It was reassuring to dis-

cover that my school is not the only one where more time has been allocated to

core subjects, languages and humanities, leaving little time for computing in Key

Stage 3. I was encouraged by the experiences of others and by the sheer enthu-

siasm that so many at the conference have for our subject. I felt very much at

home amongst members of my local hub and colleagues from similar schools. I

came away feeling that I belong to a fantastic community of like-minded profes-

sionals who really want to inspire and excite young people about computing.

Main Highlight? Alan O’Donohoe’s session – need I say more!

THE FIFTH ANNUAL CAS TEACHER
CONFERENCE THE BIGGEST YET
“This was my first time at the CAS Conference for Teachers and
the energy and excitement I felt was amazing – there was a real
buzz” reports Liz Hadley, the Head of ICT
at Kenilworth School, West Midlands.

POPULARITY GROWING
AS CAS HUBS DOUBLE
There are now 70 registered CAS

Hubs, a 100% increase since last

year, with our first steps into Eu-

rope with the CAS Western Eu-

rope Hub being launched in Brus-

sels! A warm welcome to new Hub

groups recently set up in Kirklees,

Stockport, Wirral, East Surrey,

Sunderland, Edinburgh and North

Kent. Also there are three dedi-

cated Hubs aimed at offering com-

puting support to Primary audi-

ence – East Suffolk, Southamp-

ton and Stockport. Phil Bagge is

leading the Primary Groups.

There are still areas of the country

which have no hubs within rea-

sonable travelling distance, so you

may want to volunteer to set up

your own. Experience shows that

the local Hubs are the main mech-

anism through which to encourage

collaboration and development at

a local level. To find your nearest

Hub, check the CAS Community

interactive map or your CAS Com-

munity profile will inform you of

the nearest one. Claire Davenport

11115555

Applications for the next round of Google RISE Awards will close on 30th September. Details at http://www.google.com/

edu/programs/google-rise-awards. RISE Awards are designed to promote access to Computer Science education and give

students aged 9 to 18 the opportunity to become creators - and not just consumers - of tomorrow’s technological innova-

tions. We award funding to, and partner with, organizations running programs that inspire, engage, and retain students on

a long-term path in the field. Organizations will be chosen for their track record of success, focus on underrepresented

minorities in the field, potential to scale, and positions as changemakers in their respective countries for Computer Science

at the Pre-University level. Peter Dickman

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk

A year ago this month the Net-

work of Teaching Excellence in

Computer Science (NoE)

launched. CAS, working in collab-

oration with the BCS Academy co-

ordinates and provides training

opportunities for both existing

teachers and those training for the

profession. The DfE have sup-

ported the application made by

CAS/BCS to continue and expand

the NoE. The heart of the pro-

gramme is to build a high-quality,

sustainable CPD infrastructure at

low cost. This will be achieved by

nurturing long-term, bottom-up

collaboration between employers,

universities, professional bodies,

schools and teachers. In the first

six months of the scheme 622

schools and 70 universities com-

mitted to being involved. 120

schools self-designated as lead

schools and 28 CAS Master

Teachers were recruited and ran

over 700 hours of local CPD

events. All the evidence so far

points to this being a model that is

valued by teachers.

The new funding is for two years

but we are working on a five year

programme to:

• Recruit and train 600 Master

Teachers (primary and secondary)

• Harness university expertise to

train and develop Master teachers

• Maintain classroom resources

for all key stages

• Enhance professional status for

all Heads of Computing in schools

We’ve made a start already but

time is short. If you haven’t al-

ready done so, please register

your school as part of the Net-

work. By doing this your school is

saying that Computing is im-

portant. Register your school as

a Lead School to support col-

leagues in other schools and con-

sider applying to be a CAS Mas-

ter Teacher. Don’t be shy. Re-

member, there is no them, only us!

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 11116666

NOW WE ARE
CAS has trebled in size in the last year, and trebled in
size the year before. The majority of CAS members have
joined in the last couple of years and might not be aware
of where we came from. As our sixth anniversary ap-
proaches, SwitchedSwitchedSwitchedSwitchedOnOnOnOn provides a quick history lesson.

In early 2008 a small group of con-

cerned individuals started to discuss

the lack of computing in schools. CAS

was born, but none could have imag-

ined back then that within six years

Computing would be part of the Na-

tional Curriculum. Indeed, the first

tasks facing this small group was to

get anyone to listen! As the driving

force and Chair of the group, Simon

Peyton-Jones, explains, “It was rather

like being at the bottom of a deep well,

looking upward and shouting

‘Computer Science is important!’”.

Although small, the initial meetings

drew individuals from a wide variety of

backgrounds including teachers, aca-

demics, parents, representatives from

industry and examining bodies. The

lack of hierarchy and broad composi-

tion continues to have a lasting im-

pact. CAS is fundamentally a grass-

roots organization, interested primarily

in ‘walking the walk’. If something

needs doing, people step forward and

do it.

From the start, it was clear that CAS

had touched a nerve. Many individuals

felt, for various different reasons, that

things had gone wrong. In the high

tech industries, areas of research

were expanding but there was a short-

age of capable graduates. At under-

graduate level, the intake for Comput-

er Science degrees had fallen to wor-

rying levels, and within schools there

was a growing concern about the type

of course that had come to dominate

KS4 provision, which subsequently

shaped what was taught lower down.

But there was also a thirst to rediscov-

er some of the concepts and peda-

gogy that had driven earlier curricula.

Initiatives like cs4fn (Queen Mary Col-

lege, London) and CS Inside

(Glasgow University) had a small but

appreciative audience amongst teach-

ers. The first CAS Teacher Confer-

ence took place in June 2009, drawing

many of these individuals together,

with a keynote address from Tim Bell

who had pioneered the hugely suc-

cessful CS Unplugged initiative.

Over the next five years, CAS trans-

formed itself, from a small ‘guerilla

group’ into the subject association for

Computer Science teachers. Its activi-

ties diversified. If CAS wanted Com-

puter Science to be embraced in

schools it needed, in conjunction with

others, to make the case at a national

level. Several strategically placed

CAS Board members have worked

hard to gain the ear of the DfE and

many have contributed submissions to

various reports and consultations. The

most significant was the18 month

study by The Royal Society which

culminated in the influential report

‘Shut Down or Restart?’. Published in

January 2012 it marked a turning

point. Only 18 remarkable months

later, in September 2013; the DfE

published the new National Curricu-

lum for Computing that establishes

computer science as a core subject

discipline, from primary school on-

wards, one of CAS’s key goals.

As well as lobbying for change CAS

were busy building the foundations of

a network of support.

The number of

local hubs grew

quickly. These

have become the

bedrock of CAS,

over 70 now meet

regularly. Their suc-

cess, particularly in

developing face to

face contact and

building mutual trust

It might seem strange to those who are new to CAS, particularly given the multi-

tude of events that are now being organized, but the structure of CAS is very sim-

ple, and small. The CAS Board (above) oversees the day to day running. Formal-

ly, CAS is part of the BCS Academy who provide welcome financial and adminis-

trative support. Bill Mitchell, Director of the BCS Academy of Computing has

worked tirelessly lobbying on behalf of CAS. Two other significant sponsors are

Microsoft and Google, represented on the board by Clare Riley and Peter Dick-

man. Iain Phillips represents the Council of Professors and Heads of Computing

and other key contributors from University Computer Science departments are

Michael Kölling, developer of Greenfoot (University of Kent), Stephen Hunt

(University of Hertfordshire) and Tom Crick (Cardiff Metropolitan). Teachers in-

clude Shahneila Saeed (Graveney School, London), Mark Clarkson (Egglescliffe,

Cleveland), Roger Davies (QES, Cumbria) and John Stout (King George V Col-

lege, Merseyside). Former teachers Simon Humphreys (national co-ordinator) and

Mark Dorling (CPD co-ordinator) work full time for CAS. John Woollard (University

of Southampton), Pete Bradshaw (Open University) and Miles Berry

(Roehampton) are all involved in teacher education. Kevin Bond is Chair of Exam-

iners (AQA Computing) and Thomas Ng works for West Berkshire’s School Im-

provement Team. Through this group we try to maintain contact across all inter-

ested parties. The board meets twice a year at open working group meetings to

which other active members are encouraged to come along and get involved.

LEADING COMPUTING
IN SECONDARY SCHOOLS

The National STEM Centre in as-

sociation with CAS and NAACE is

offering intensive professional

development in leading a compu-

ting department to new and aspir-

ing heads of Computing/ICT in

secondary schools. It will cover

leadership, monitoring, coaching

and developing team members

through six days of residential

development and three on-line

gap tasks. It will be set in the con-

text of the substantial curriculum

changes that are happening in the

subject area of Computing.

FIRST RESIDENTIAL

Day One: Creating a Vision for

you and your Department. How

did we get here? Identifying the

challenges and the opportunities.

Day Two: Computational thinking,

computer science and computing.

The pedagogical and infrastructur-

al challenges of the new curricu-

lum. Assessing learning.

Day Three: Developing outstand-

ing teaching and learning. A Com-

puting team rather than a Compu-

ting department.

Gap Tasks look at understanding

your personality type, identifying

where are you now and recognis-

ing infrastructure challenges.

SECOND RESIDENTIAL

Day One: Using Data, Action

Planning, Monitoring and Evalua-

tion. Getting the CPD required.

Day Two: Project work. Creative

and cross-curricular work. Digital

literacy. Design cycle.

Day Three: Coaching. Developing

momentum and delivering the

vision for your department.

The residential programme will be

held at the National STEM Centre,

University of York. It will run in

Autumn 2013 and Spring 2014.

For further information go to: http:/

www.nationalstemcentre.org.uk/

computing Paul Browning

11117777

has had a profound impact on shaping

the ethos of the developing Network of

Excellence. The enthusiasm embodied

in CAS is rooted in practice. It is no

talking shop, but a body that does

things, with few resources, little fund-

ing but an abundance of energy. The

key challenge now is to win the hearts

and minds of ICT teachers across the

UK, many of whom do not have a

background in Computer Science.

Perhaps the most significant contribu-

tion to this is CAS Online. Developed

by Michael Kölling and Neil Brown,

based on their successful Green-

room Community, it provides a fast

growing resource repository and

active forum. CAS Online’s mem-

bership trebled in the year 2011/12,

and trebled again in 2012/13; we now

have close on 6,000 members.

We want to encourage new teachers to

raise questions. There is an unparal-

leled generosity of spirit amongst CAS

members. Those outside teaching

want to help those at the cutting edge.

We need teachers to tell us what the

problems are and point the way to so-

lutions. We want to provide a welcom-

ing environment where no question is

too small or simple. CAS doesn’t have

all the answers. Humility is more im-

portant than subject expertise. We

have a once in a lifetime chance to

shape our subject. Just like children,

we will learn through what we do.

The CAS Board is chaired by Simon Peyton-Jones (right).

Left to right, top row; Bill Mitchell, Simon Humphreys, Shahneila Saeed, Thomas

Ng, Michael Kolling and John Woollard. Middle row; Kevin Bond, Kate Farrell, Peter

Dickman, Mark Clarkson, Mark Dorling and Pete Bradshaw. Bottom row; Clare

Riley, Miles Berry, Tom Crick, Roger Davies, John Stout and Stephen Hunt.

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk

TEACHING IS DIFFICULT BUT
TEACHERS ARE GOOD AT IT
Please indulge me while I explain that

teaching is difficult but UK teachers are

good at it. I feel the need to do this be-

cause no matter how well intentioned, it is

easy for those outside the profession to

believe that anyone who has brought up

kids, has been to school themselves or run

a club can do it—an idea often pedalled by

the media and politicians.

Teachers have the job of enthusing, inspir-

ing and encouraging 30 children at a time

to work hard on subjects they may find

difficult, have no natural interest in and are

under a compulsion to study. The lessons

must show clear aims, include formative

and summative assessment and pupils

must make demonstrable progress. Sub-

sequent lessons must be planned based

on the outcomes of these assessments.

And yet, teachers are judged against that

one inspirational teacher that everyone

had when they were young. They are

judged to have failed if their lessons are

not outstanding. Teachers' ability, like eve-

ry other trained professional, is bell-

shaped. Even average teachers, those of

us that have more than the occasional bad

day, are doing a remarkable job. That

grades have improved over the last 30

years is a measure of that. Teachers con-

stantly improve their strategies to help chil-

dren through new hoops and new specifi-

cations. UK teachers are good at teaching.

How to teach programming… It might

seem an overwhelming task: Which lan-

guage to teach? What languages should

students learn? How can we expect ICT

teachers without programming experience

to teach sound coding principles? A simple

suggestion follows, but one thing is certain,

teachers will rise to the challenge

A key aspect of Computer Science is programming. Teaching young pupils how to
program is not an easy task but teachers are definitely up to it argues Chris Roffey.
The key is not to try to cover it all at once. Chris teaches at Ewell Castle School in
Surrey and is author of the Coding Club series of books.

HOW DO YOU TEACH PROGRAMMING?
YOU CAN’T DO EVERYTHING AT ONCE

How to teach programming… Although it might seem overwhelming this

article really makes only one point: It is very important that we do not

feel the need to teach everything at once. Seems obvious, but just wait

until you start discussing with programmers what to leave out. To get

this right requires mutual respect between all in CAS and for teachers to

value their own skills. I would suggest, for example, that in year 7, teach-

ers choose to only teach 'while loops'. "But they are not appropriate for

iterating through arrays!" some will scream. Then don't teach arrays in

year 7! There is plenty of fun to be had with 'while loops' and simple

functions, but more importantly the students can become experts in

them before reaching year 8. Then they will appreciate how much more

useful 'for loops' are in certain circumstances. Most importantly they will

not become overwhelmed and turned off in year 7.

I have found gifted year 6 students can cope well with one sort of loop,

writing functions and simple variables but when presented with arrays

they start to moan: "This is really hard sir." On the other hand average

students in year 8 (progressing through the same material at a similar

pace) do not hit this wall. Other teachers I have spoken to report similar

experiences. Most pupils at year 6 do not appear to have the cognitive

tools. Arrays are more difficult to learn than simple integer and string

variables. Consequently we must not ask children to move on too soon

as this will only confuse them. We must give time for consolidation.

My experience is that children that have tried to jump to arrays and

stumbled have still enjoyed going back to carefully selected projects

which allow them to consolidate and use, in new ways, what they have

learnt before but which is not yet secure. When they are ready, they will

then be able to cope with more advanced material.

I suggest educationalists resist the advice of those who say we cannot

leave anything out; who say that some children will never be able to

code; who propose that the best way to learn is for children to do it

themselves. Like any subject, programming can be introduced to every-

one in carefully structured manageable parts. The reason some people

"do not get programming" is because they do not have the necessary

foundations and are expected to suddenly learn everything. This is not

how Maths or Science is taught. Teachers of Maths and Science have

an unfair advantage though, they have carefully planned teaching

schemes that have evolved over a long time, time that has not been

available to Computer Science teachers.

If a carefully planned programme was introduced nationally teachers

without a computing background could more easily be trained. Teachers

could become competent exponents at certain levels without worrying

about being expert programmers overnight. In other words we could ex-

pect teachers to train themselves up in carefully structured chunks with

time to consolidate their skills, just like their students. This is another

thing UK teachers are really good at.

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 11118888

Incredible momentum has been build-

ing internationally around the idea of

putting computational thinking and

programming into schools. Many have

stepped up to answer the important,

lingering question: “How?”

The SGD Initiative, a collaboration

between the University of Colorado’s

School of Education, Department of

Computer Science, teachers and soft-

ware company AgentSheets Inc. re-

volves broadly around making compu-

tational thinking accessible (to both

teachers and students), and exciting

(through game design and STEM sim-

ulation creation). The approach solves

the cognitive challenges of accessibil-

ity by going beyond “drag and drop”

visual programming. Drag and drop

can be compared to spelling and

grammar checkers for writing; while

useful to help reduce errors, they can’t

automatically turn anyone into a best-

selling author. Visual programming,

pioneered in the AgentSheets soft-

ware, can go far beyond creating pro-

grams with the correct syntax. That

reduces language-specific frustrations

but does not help students understand

program meaning, or semantics.

Based on over 15 years of research

and study, the AgentSheets and

AgentCubes environments used in the

program have visual programming

capabilities, but include extremely

powerful debugging tools that help

students to create programs that work

properly. They have been used with

pupils from 7 years old. SGD teachers

are supported through training pro-

grams, curricular resources and auto-

matic evaluation tools.

Identified as the Affective Challenge,

SGD acknowledges that students are

not interested in programming per se.

They want to create animations, bring

stories to life, and build games. The

approach allows students to design

and create 2D and 3D video games

that work in four to five contact hours.

Creativity and ownership are key com-

ponents that make programming excit-

ing. All may create an arcade game,

for example, but each pupil can make

the game their own by designing and

creating unique characters and

worlds. AgentCubes extends this po-

tential to 3D games through casual

design tools that let users create 3D

characters with Inflatable Icons.

Our results consistently surpass Mi-

chael Gove’s vision (“we could have

11-year-olds able to write simple 2D

computer animations”), even in some

of the toughest, poorest and most

isolated schools in the US. SGD stu-

dents can design and build working 2

or 3D video games based on ad-

vanced mathematics and artificial in-

telligence concepts. More importantly,

our students, especially girls and un-

derserved minorities, are motivated to

pursue further studies in technology

and other STEM subjects. More infor-

mation can be found at http://goo.gl/

AYWtYl and http://goo.gl/VuzQgY.

Contact Dr Alexander Repenning via

alexander.repenning@colorado.edu

SGD: GOING BEYOND DRAG AND
DROP VISUAL PROGRAMMING
In the USA the Scalable Game Design (SGD) Initiative has be-
come the largest National Science Foundation funded study of
game/simulation design at middle school level. Principle Investi-
gator, Alex Reppening from the University of Colorado explains.

With over 10,000 students partici-

pating, the SGD Initiative has

moved beyond motivated students

in after-school clubs and summer

camps. SGD partners with school

districts to run a one-week unit in

classes. Research has evaluated

the strategy on four principles:

• Exposure. Reaching every stu-

dent by injecting an easy-to-teach

module into computing classes.

• Motivation. Carefully balancing

challenges through activities that

range from simple ‘Frogger-like’ to

advanced ‘Sims-like’ games.

• Education. An approach in-

spired by latent semantic analysis

determines computational thinking

and skill transfer between game

design and simulation creation.

• Pedagogy. Investigating peda-

gogical approaches and motiva-

tion levels across genders and

ethnicities. With an optimal peda-

gogical approach, 35 hours of

careful instruction is enough to

train teachers to teach SGD cur-

riculum in a gender-friendly way.

In 22 years teaching in diverse

Aurora, Colorado, Mark Shouldice

tells us he’s never seen a more

engaging tool. Mark’s results are

mirrored in our study. Generally

74% of boys, 64% of girls, and

69% minority pupils wish to take a

more advanced

course at the

end of the first.

11119999 SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk

LOGICAL THINKING ACTIVITIES
TO SUPPORT PROGRAMMING
Students are, typically, very good at learn-

ing things. If you write a solution to a pro-

gramming problem you can walk your stu-

dents through it and get them to learn it,

but the chances are they will be incapable

of solving a remarkably similar problem.

Programming constructs are like Lego

blocks. With a set of prescribed steps you

can build a helicopter, truck or police sta-

tion. But students need to be encouraged

to play with the blocks, apply them in dif-

ferent ways and build things of their own

devising, without blindly following a recipe.

Before my GCSE students do any pro-

gramming at all, we spend a number of

weeks looking at logical thinking and logi-

cal problem solving. Easy examples in-

clude the Leapfrog game [http://

akidsheart.com/math/mathgames/

leapfrog.htm], Towers of Hanoi [http://

www.mathsisfun.com/games/

towerofhanoi.html] or Bloxorz [http://

www.coolmath-games.com/0-bloxorz/].

These interactive puzzles and games en-

courage logical thinking as well as provid-

ing instant feedback to students. As a fur-

ther challenge, students could be asked to

document or describe their algorithms.

There is a wealth of logic puzzles available

out there, and there are few better starting

points than the Logic Puzzles resource

created by Stephen O’Callaghan [http://

community.computingatschool.org.uk/

resources/82].

By working through logical challenges that

relate to problem solving, decomposition

and truth tables, students gain an insight

into the strategies involved.

Whilst such activities might not map easily

into a scheme of work for programming,

the ability to think, to experiment, to identi-

fy strategies and to describe algorithms is

essential for students who are looking to

become better programmers. And, per-

haps more importantly, those who become

better programmers will be better equipped

to think, to experiment, to identify strate-

gies and to describe successful algorithms

in whatever field they find themselves in

the future. Mark Clarkson

Minecraft is a phenomenon. Over 20 million copies are regis-
tered, not including the free version available by typing "try
Minecraft for free" into Google. But it's just a game, right?
Not really, says Ben Smith of AKS in Lytham St Annes.

THE POWER OF REDSTONE
USING MINECRAFT IN CLASS

There are two classic modes of use in Minecraft - survival and creative.

This article focusses on creative. Think of a giant virtual box of Lego. It

has the most potential for teamwork and education. It removes the need

to fight off beasties which plague the survival mode and allow pupils full

control over the powerful command line interface. I've been teaching

Minecraft to KS3 for half a term now. I normally split the lesson into two

interlaced activities. I introduce each logic gate with a quick explanation

then ask them to recreate it in their own world. Once complete I ask

them to build me their dream house with a swimming pool, conservatory

& rooftop terrace. The real challenge is to get the logic gates to control

the features of their house to make a fully automated home.

The logic gates in Minecraft have become a sub culture in the genre. A

YouTube search will reveal a gluttony of podcasts explaining how to

make all manner of gizmos using sticky pistons to push and pull objects

based on a virtual current supplied by the key ingredient - Redstone.

The real draw for me is the ability to model logic circuits, binary maths

and even ultimately create a fully functional low level computer which the

pupils can walk round within the 3D world. Basic AND, OR and NOT

gates lead quickly to half adders and full binary calculators. If... Then...

Else is a short step away. I've been playing a month and even the free

online version allows anyone to quickly & easily model a logic driven

binary addition. The raspberry Pi version shows even more potential with

the ability to create sequences of instructions and loops in basic python -

I was shocked at how simple it was to create a 3D traffic light sequence.

I have joked with colleagues trialling the program about "Griefing" - a

term I wouldn't have even known how to pronounce a month ago but

which has become as ubiquitous to my vocab with the kids as "cool" or

"sick". I used to think Minecraft was just another silly game that I would

steer clear of - much like my aversion to Candy Crush or Farmville. I

now see it as a vehicle for introducing algorithms to pupils in a 3D envi-

ronment in much the same way as Scratch does in 2D. You really should

try it. It'll cost you nothing to put your kids on for a lesson and within

10mins they'll be desperate to show you what they can achieve.

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 22220000

Logic gates created with Redstone in Minecraft

The Raspberry Pi is a weird little beast

designed to encourage play, experi-

mentation and physical computing.

But making a bare-board, system-on-

chip, Linux based computer with SD

card storage has had its problems.

People who have only ever been ex-

posed to mass-consumer hardware

and software often take some con-

vincing that the Raspberry Pi is a

proper computer and not just some

esoteric, specialist circuit board.

Times are hopefully changing but in

the meantime we want to help people

break away from the sealed-box para-

digm and help teach computing in

creative ways. One way we are doing

this is by producing resources.

"Resources" sound pretty mundane to

the average man on the Bridgend om-

nibus but to teachers resources are

currency: buy, sell, swap, donate,

"borrow". If teachers were boxers, all

a trainer would have to if they were

KO’d would be to whisper, "Free re-

sources!" and they'd leap up shouting

"Where, where?!" and "Are they Crea-

tive Commons?!" It's hard-wired into

their cerebellum. It's not that teachers

aren't capable of making their own

resources but there's the "T" word.

Yes—"terrapin". (Or perhaps "time", I

can't read my notes.)

Quality resources can be the differ-

ence between teaching something

new this term or sticking with what

you've got. And in computing, the

"new" has to be the way to go every

time. So one of our main priorities is to

help teachers who want to use Rasp-

berry Pis in their classroom. We've

also been working with various part-

ners. For example, we've been work-

ing with OCR on all things related to

teaching computing, most recently the

Cambridge GCSE Computing Online.

Check out http://goo.gl/NIs0e3. OCR

are also producing a set of resources

for the Pi to liven up your lessons. The

first of these can be found at http://

goo.gl/jMCQWm. Currently there are

four self-contained "recipe cards" that

show you how to use the general pur-

pose input output pins (GPIO) to con-

nect to the real world. You can make

jelly babies sing, flash LEDs and con-

trol the Pi via Twitter.

There are also five Classroom Chal-

lenges that have detailed lesson

plans, student worksheets and even

drag and drop exercises. They high-

light how powerful the Raspberry Pi

can be in teaching computing con-

cepts, from hardware architecture to

networking. Every training day drags

out the old Confucian chestnut, "I hear

and I forget. I see and I remember. I

do and I understand" for a reason.

Actually overclocking a machine and

then benchmarking it will stick with the

student. Good luck doing that on the

school PCs! I actually teach this les-

son using a cheap infrared thermome-

ter to measure the temperature of the

processor. It gets their attention every

time and is a jump off point for discus-

sions on everything from computer

architecture to physics to computer

gaming (why does your laptop get

noisier when you're playing a

game?). So

download

some re-

sources and

have a play.

You never

know

where it

will take

you. Or

your

stu-

dents.

GETTING A HANDLE
ON A RASPBERRY PI
Clive Beale, Director for Educational Devel-
opment at the Raspberry Pi Foundation in-
troduces some excellent free classroom
resources produced by OCR.

WHAT EXACTLY IS
A RASPBERRY PI?
Computer Science pioneer Sey-

mour Papert wrote, “The role of

the teacher is to create the condi-

tions for invention rather than pro-

vide ready-made knowledge”. The

Raspberry Pi, costing about the

same price as a textbook (£18) is

one such tool. It encourages chil-

dren to tinker with little financial

risk, offering massive educational

value in return. The unconvention-

al, bare-bones appearance of the

Raspberry Pi computer frequently

prompts more questions than it

answers. In education, that is

surely a good thing.

Much like baking a cake, there are

an amazing wealth of recipes

online and different ingredients

you can purchase if you want to

add to those already in your

‘larder’. Making it work is the next

challenge. You will need an oper-

ating system, eg. Raspbian, on an

SD memory card. You can either

go for the home-baked ap-

proach or save a little time by buy-

ing a pre-loaded SD card.

I suggest that teachers launch a

classroom discussion by first ask-

ing your class to “Agree a defini-

tion of what a computer is”. Many

will say it must have a keyboard

and mouse. What about tablet

devices? The next discussion

could be “Are computers taking

over the world?” as it is dominated

more by embedded computers

tracking conversations, spending,

viewing habits and more.

I regularly meet teachers at the

Raspberry Jam events I attend,

driven there in the main by their

curiosity. 300 teachers attended

this years Raspberry Jamboree to

understand the educational poten-

tial of the Pi computer. Next year’s

Jamboree, planned for Feb 28 –

Mar 2 2014 looks certain to be

even bigger, perhaps we will see

you there? Alan O’Donohoe

22221111 SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk

ITICSE CONFERENCE INCLUDES
DEDICATED TEACHER DAY
The 18th Annual Conference on Innovation

and Technology in Computer Science Edu-

cation was held at the University of Kent in

July. This conference attracts academics

from around the world and this year, for

the second year running, included a spe-

cial “teachers’ day” with a focus on Com-

puter Science in school. Our own Simon

Peyton Jones gave the first keynote which

generated a lot of interest from other coun-

tries; this was followed by a panel discus-

sion looking at the progress made in USA,

Australia, Israel and

UK on transforming

Computer Science in

school. The issues we

have in the UK are

replicated throughout

the world as other

countries examine how

best to introduce com-

putational thinking to

children in school.

There were several posters and papers

focusing on issues relating to school in-

cluding assessment of KS3 programming

skills, gender and inclusivity issues, game

programming, and teachers’ perspectives

on what motivates students. Some of the

work carried out in universities on particu-

lar ways of supporting beginning program-

mers at undergraduate level is also very

applicable to students learning to program

in school, so hearing about developments

here was extremely interesting.

A highlight for me was the keynote on the

Bloodhound project which aims to interest

students through the development of a car

attempting the land speed record. The

conference was a great opportunity to

meet others working in school Computer

Science and I gathered many (too many!)

new ideas for future projects. Attending the

conference reinforced my view that it

would be good to develop more research

amongst the CAS community and I hope

that a model for achieving this can be es-

tablished in the near future. Do contact me

sue.sentance@computingatschool.org.uk

if you are a teacher interested in carrying

out an action research project in your

school. Sue Sentance

The Raspberry Pi is very versatile. CAS
Master Teacher, Chris Swan, outlines ways
to introduce physical computing and con-
trol using the GPIO pins.

GETTING PHYSICAL
WITH PIFACE PROJECTS

By using the GPIO (General Purpose Input Output) pins on a Raspberry

Pi, simple components such as LEDs and buzzers can be controlled by

writing programs using the Python GPIO libraries. The OCR “recipe

card” ideas mentioned on p21 provide a very interesting set of activities.

Components are cheap: LEDs, resistors and jumper wires are a few

pence each and the “singing Jelly Baby” activity is a hoot! Students learn

about simple components and circuits. Once the basics have been mas-

tered, they can switch on their inventing genes. I recommend perusing

the Pi [http://www.raspberrypi.org] and Adafruit [http://goo.gl/hZA9Bs]

websites and Carrie Philbin’s Geek Gurl Diaries blog [http://goo.gl/

ZsM1MJ] for more fantastic ideas. Invest in breadboards for prototyping

as these allow temporary circuits to be constructed.

So, what do you do if you are planning on building a Pi controlled car

with flashing lights, tweeters, sub woofers and a Jelly Baby driver? You’ll

need an interface board. My personal choice would be the Piface Digital

developed at the University of Manchester School of Computing by Dr

Andrew Robinson and his team: http://pi.cs.man.ac.uk/interface.htm. It is

robust and simple to set up, connect devices to and program. The

“Pifaced Raspbian” operating system contains: an emulator for testing

ideas and allows direct control; the PFIO libraries for Python and a spe-

cial version of Scratch. My Year 9 students very quickly wrote test pro-

grams using Scratch to prototype ideas without getting bogged down in

Python syntax. The Piface has LED indicators on the 8 output connec-

tions and also has two relays which permit safe connection to devices

such as motors without risking damage to your Pi. I used old Lego mo-

tors driven by batteries in a Lego chassis to make a simple buggy.

For input, switches are the simplest option. Piface has 4 onboard input

switches but you can connect your own external ones too. You will need

to add an Analogue to Digital Convertor (ADC) if you wish to connect

analogue sensors. I love the “hackability” of the Pi. Developing a project

taps into creativity, ingenuity, resilience, problem solving, planning and

deep thought. Everything is customisable. I have allowed my students to

“play” and try ideas out. So far, nothing has broken: not an SD card cor-

rupted or circuit shorted. Students take real care over the kit. I can also

see how the Raspberry Pi could easily go “cross curricular” and be used

in other lessons. For such a little box, it’s having a huge impact on my

teaching.

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 22222222

Emulator and PiFace interface board

App Inventor’s user base has grown

10-fold since April 2012 when it trans-

ferred from Google to MIT. Hal Abel-

son declared the Summit as the ‘Birth

of Inventing Personal Mobile Compu-

ting’ and set the agenda for how to

teach mobile computational thinking.

Hal was giving the opening welcome

and was on hand throughout listening

for new ideas and answering ques-

tions. Hal was the founder of App In-

ventor whilst on sabbatical at Google

and continues to lead App Inventor

development. It is being used in the

US in extra-curricular clubs, High

Schools and Universities.

Professor David Wolber has pro-

duced some excellent resources

including an online text book and a

course that he has run with under-

graduates of non-Computer Science

majors. You’ll find them, and lots of

other useful free resources at http://

www.appinventor.org/. Another useful

source of tutorials can be found at

http://appinventor.mit.edu/explore/

tutorials.html

App Inventor 2 was

unveiled by Andrew

McKinney, its Lead

Software Develop-

er and well re-

ceived. App In-

ventor 1, now

referred to as

Classic will con-

tinue to be sup-

ported until at

least July

2014. App

Inventor 2 is

available

now as an

alpha prod-

uct for pio-

neers and

will be released in the Autumn. Go on,

try it now at

www.ai2.appinventor.mit.edu It’s not

just an upgrade, but a new product

with the same screen design. A new

blocks editor works in the web, not

requiring Java, and it has an emulator

like the current version. Those at the

CAS Teacher Conference have al-

ready seen the Blocks editor, called

Blockly, demonstrated by Neil Fraser

from Google. It promises many im-

proved features. The Blocks Editor

loads quickly from screen design with-

out needing Java. The Designer and

the Blocks Editor both run in the

browser and are linked. It’s easier to

setup as Java is not required, so sav-

ing time on school networks. The con-

nection to the emulator is quicker.

Local Variables are available for pro-

cedures. The colour of the blocks is

much clearer than the pastel colours

of classic App Inventor. Available

blocks are less cluttered as properties

are hidden in pull-downs and fewer If

blocks are initially presented, though

all are available using mutators

There are some current limitations.

Classic App Inventor is not compatible

with App Inventor 2, although MIT

plan to offer upgrading apps soon.

There is little documentation as yet,

nor any zoom capability within the

blocks editor, like the one in Classic.

However, I am excited by App Inven-

tor 2 and will trial it in the classroom

from September, in parallel with clas-

ses using Classic. The new product is

continually going through changes

and therefore I recommend users not

wishing to pioneer stay with App In-

ventor 1 for the moment. It is stable

and has excellent educational re-

sources readily available. For further

information you can contact me via

trevor.bragg@computingatschool.org.uk

ANDROID APPS FOR
BEGINNING CODERS
Uptake of App Inventor is growing fast in
the UK. Trevor Bragg, from Southfields
Academy in South West London reports
from the recent MIT App Inventor Summit.

ARE YOU READY FOR THE
NEXT CIPHER CHALLENGE ?
The National Cipher Challenge

run by Southampton University

costs nothing and runs annually,

from September through to De-

cember/January. Harry, the organ-

iser and moderator, makes it real-

ly easy to sign up. Each week's

challenge is issued on a Thursday

at 3.30pm. As the weeks go on

the challenges get harder, that's

all part of the fun. I've been taking

part in the cipher challenge for 5

years now and have loved every

part of every challenge, regard-

less of whether or not I can do

them. For those few months every

Thursday I would rush home to

get an early start on that weeks

challenge, always beginning by

searching for patterns and, in the

later stages failing to find any!

Every time I finished part A I got a

sense of relief - only to remember

the harder more important part B

needs to be cracked as well, all

before midnight (for maximum

points)! The challenges are woven

into a story which spurs you on.

Though I have not, as yet, solved

the final challenge, I always check

to see the end of the story.

I have had to learn about Ceasar

shift, beaufort, and vignere ci-

phers, transposition, substitution

and frequency analysis. Last year,

I progressed through challenges 1

to 8, adopting various techniques

that I had not come across before,

without being aware of the differ-

ent methods I'd learnt until I

looked back at the end. I would

whole-heartedly recommend the

challenge to anyone, regardless of

ability. It is really fun and the pro-

spect of prizes help! I don't think I

can do the competition justice as it

really is a unique and rewarding

undertaking. Michael Harkness

Michael is just starting Year 12 at

Queen Elizabeth School, Cum-

bria. More details from http://

www.cipher.maths.soton.ac.uk/

22223333 SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk

Having a conceptual understanding of all aspects of digital systems
is important. Building that strong foundation begins at school. Arun
Warhadpande, a retired radar data processing specialist offers a ho-
listic introduction for teachers new to computing.

FROM BITS TO CHIPS: CONCEPTS
BEHIND A DIGITAL COMPUTER

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 22224444

DIGITAL COMPUTERS
In these machines all inputs are

sensed by a sensor, converted into

an electrical form by a transducer

and then digitized by an analogue to

digital converter. Digitization involves

breaking down the input into steps

and keeping a count of the steps. The-

se are then stored and processed.

The digital output so obtained is then

given to an output system. The output

system does the reverse process of

an input system i.e., a transducer con-

verts the digital input into analogue

electrical form which activates the

output device.

THE RELEVANCE OF BINARY AND
BOOLEAN ALGEBRA
It may be noted that in digital comput-

ers, the count is kept with the help of

switches and processing done by

controlling switching sequence.

Switches have only two states, ON

and OFF thus implying that by using a

binary system we can achieve any-

thing. Binary cannot be more difficult

than decimal as counting to one is

much easier than counting up to nine.

Boolean Algebra is an algebra in

which an element can have only one

of two values, you may term them,

TRUE and FALSE, 0 and 1, OFF and

ON etc. The operators are only three,

namely OR, AND and NOT. Logic

gates are designed to perform these

operations. It is amazing to observe

that any logical argument can be

represented and arithmetic opera-

tions performed by suitably inter-

connecting these gates.

We can develop arguments by repre-

senting statements using Boolean

variables and interconnecting them

with Boolean operators AND, OR and

NOT. All logical arguments and arith-

metic operations can be performed by

Boolean expressions. By suitably

combining the basic OR, AND and

NOT gates we can get the EXCLU-

SIVE OR , NOR and NAND gates.

Playing around with logic gates for

implementing Boolean expressions is

quite fascinating.

With the current developments in

semiconductors it is possible to inter-

connect millions of logic gates on a

single chip. A single chip is thus capa-

LOGICAL ARGUMENTS AND ARITHMETIC

• This class is empty. This statement is true if teacher is not there is true AND

students are not there is true. This class is not empty is true if teacher is there

OR students.

• By a combination of gates we can make circuits to add bits (Adders)

• Subtraction is done by negative numbers using a representation called 2’s

complement for the negative number. This can then be added it to the number

to be subtracted from.

• Subtraction can therefore be done by circuits for addition. Since multiplication

is repeated addition and division is repeated subtraction. Circuits for addition

can perform all arithmetic operations.

The most popular computer sys-

tem these days is the Stored Pro-

gram Digital Electronic General

Purpose Computer. These ma-

chines have been made extremely

user friendly. Almost all of us are

familiar with some aspects of this

system. I am making a humble

attempt at giving a holistic picture

of the system. Each aspect though

is a discipline in its own right.

COUNTING AND PLACE VALUE
People the world over have been

devising different methods of

counting since very early days. It

was only after the use of place

value system and the concept of

Zero (0) supposedly used by Ary-

abhatta in the fifth century, that

the current system evolved. In this

system the base could be consid-

ered to be any selected number of

digits. For example in Decimal

the maximum digits (Base) is 10

(0 to 9). Adding 1 to 9 we get 10.

Place values in Decimal are:

In Binary the maximum digits

(Base) is 2 (0 to 1). Adding 1 to 1

we get 10. Binary place values are:

So in the place value system one

can choose any base. 2,8,10,16

are the popular bases for binary,

octal, decimal, hexadecimal re-

spectively. Children might want to

consider why an hour has 60

minutes and a minute 60 se-

conds? Why is a circle divides into

360 degrees, a dozen consist of

12 items or why the decimal sys-

tem is most popular the world over?

A ‘full adder’ adds 2 bits and a carry from the

previous column. Built from OR, XOR and AND.

ble of performing logic and arithmetic

functions. This chip could form the

Central Processing Unit of a computer

system. Millions of logic gates inte-

grated in a single chip for processing

is a microprocessor.

MACHINE LANGUAGE
Every design of CPU will have its

unique Instruction Format for per-

forming operations. Instruction For-

mats will have some bits for the oper-

ation code (Op Code). Each opera-

tion (add, subtract, compare etc) will

have its unique combination of bits.

Other bits in the format are reserved

for address specifications. Address

specifications will enable fetching of

the operands (data) on which the op-

eration is to be performed.

Let us for example consider a model

16 bit machine. The instruction format

may look like the example below.

We could have the most significant

four bits as the Op Code, thus provid-

ing 16 unique combinations for opera-

tions like add, subtract, compare etc.

The next three bits are for addressing

modes of the source operand (MSc)

(8 combinations) and the next three

for specifying the Register of the

source operand (Rsc) (8 combination).

The next six bits are for destination

operands.

A machine language program would

contain several such instructions. If

you know the machine language of a

processor, you can write a program in

binary store it in the memory and exe-

cute it by accessing the memory. No

systems program is required.

Using mnemonics for the operations

to be performed and describing the

address specifications would ease the

programmer’s effort. This is what is

done in assembly language. It is also

machine dependent and will require

the development of an assembler to

convert the assembly language in-

struction to machine language.

MAKING THE MACHINE USER
FRIENDLY
We are always working to make life as

easy as possible. The example ma-

chine will need a lot of specialization

for us to use it. Besides binary (not

very difficult) one needs to know the

Instruction Format (not difficult either).

The addressing modes and utilization

of registers are a little tricky and keep-

ing a track of resources is rather trou-

blesome. A machine like this is unlike-

ly to become popular and people

would rather find alternate methods

for solving their problems.

In order to make the machine user

friendly a host of different software is

developed. Some of it is mentioned

below:

• Operating Systems provide a varie-

ty of functions to manage the re-

sources such as the peripherals,

memory, storage and processor time.

• Language convertors (see sidebar).

• Diagnostics programs

• Utilities that will carry out a variety

of ‘housekeeping’ tasks.

This category of software does not

solve user defined problems but

serves to make the machine user

friendly. Collectively it is referred to

as Systems Software.

In order to make the machine even

more user friendly many different

common user software packages

have been developed like the word

processors, spreadsheets, presen-

tation packages, paint etc. The are

also numerous packages to help

professionals in Architecture, Law,

Music and so on.

THE FINAL SYSTEM
We have just glanced through the

various stages that are involved in

providing us with a system which we

now commonly refer to as a comput-

er. It may be appreciated that the

rapid growth in semiconductor tech-

nology is to a great extent responsi-

ble for bringing these machines from

research institutions to the lap of the

common man and woman.

LOW LEVEL AND MACHINE DEPENDENT

• Machine languages are different for different CPU designs. These are also

called the lowest level languages because they are closest to the machine.

• Instructions in machine language can be directly executed by the machine.

• The binary code if grouped in threes (octal) or fours (hexadecimal) it is easier

for humans to remember. No machine actually follows octal or hex, it is only

easier than binary for humans to remember.

• While using machine code, the programmer has to manage the resources of

the computer as well.

HIGH LEVEL LANGUAGES AND
CODING
Over the years a large number of

machine independent languages

have been developed. These lan-

guages are a lot closer to the com-

monly understood languages and

are machine independent. To write

programs in these languages the

programmer need not know the ar-

chitecture/organization of the ma-

chine. The development of these

high level languages meant pro-

gramming could be oriented on the

user rather than the machine

Programming is the term applied to

developing programs to solve prob-

lems. The language used could be

anything from the machine language

to any high level language. Coding

involves writing instructions in the

syntax of the language chosen for

programming.

The syntax of a high level language

is machine independent but the lan-

guage convertor (a compiler or

interpreter) for the language is ma-

chine dependent.

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 22225555

BCS GLOSSARY
OF COMPUTING
It is difficult to get a

glossary right in a

subject like compu-

ting (or ICT!). In its

13th edition how-

ever this glossary

promises to catch

up with the ever-

changing and

expanding termi-

nology. Primari-

ly aimed at school and

college students, and useful to those early

on in higher education, this is a compact

and neat dictionary of terms compiled in a

single source.

The glossary is divided in four main sec-

tions: how computers are used, what they

are made up of, how they communicate

and how they work (architecture). Each of

the sections are further divided up into

subtopics that are relevant to the field. This

structure serves an additional purpose of

trying to build up knowledge in steps - tak-

ing one concept and developing it further

one by one. For example, the section on

'sound processing' starts from the basics

with frequency modification and takes it all

the way to sound formats, streaming audio

and mixing and sequencing. Each concept

is explained as a succinct description us-

ing accessible basic terms.

The book is appended with list of acro-

nyms, file format definitions and binary

logic descriptions. This is very welcome.

I recommend this book to those who are

new to the subject. Those more familiar

with the subject may find that some of the

terminology has moved on and perhaps

the book is too grounded. However, to

those who are new, and from a pedagogic

perspective, this is a good start and a

handy book to have on the shelf.

BCS Glossary of Computing and ICT (13th

Edition), BCS Academy Glossary Working

Party, BCS, 470pp, ISBN 9781780171500

£19.99 Reviewed by Dr Siraj A. Shaikh,

Senior Lecturer, Coventry University.

Further information:

www.bcs.org/books/glossary

At the end of the first year delivering OCR’s GCSE Compu-
ting course to years 9,10 and 11 at Stourport High School
and Sixth Form Centre, Worcestershire, Christine Swan
asked her students how they had found the course.

LOOKING BACK: END OF YEAR
REPORT FOR GCSE COMPUTING

Every response, without exception, said that they had enjoyed the expe-

rience. Many admitted that they had found it challenging but interesting.

Students undertook one controlled assessment task using the Little Man

Computer assembly language programming simulator. I had thought that

they might grow to enjoy this but a few students commented that they

had found this tricky to master. The second controlled assessment that

we did was a combination of Scratch and Python programming.

Students particularly enjoyed creating simple games on their journey

through learning Python. We started with simple number guessing

games and progressed to battleships, tic tac toe and simple graphics

and sound using Pygame. Considering that students had only experi-

enced Scratch when they joined the course, they learned Python very

quickly and by the end of the year were proficient at spotting errors and

writing their own programs from a blank canvas. I felt very proud when I

looked around the room and saw groups of students working together on

their ideas at the end of the year, just having fun coding.

One student commented that studying GCSE Computing had a wider

impact: “ I found the course very interesting as it was a new experience

as I had never done anything like this before. At first, I found it quite hard

but as I learned more and my experience grew I felt comfortable tackling

anything that was thrown at me – within reason! I think that what I have

learned through studying Computing will help me to think more logically

and approach problems in a different way.”

Another said: “Studying GCSE Computing has given me the skills to

begin coding my own games. I have learned Python which I know is

widely used in the software industry and has allowed me to do some-

thing that I love doing – programming!” One of the simplest responses I

received was: “Computing is the best subject in the world!”

Reflecting back on the year it certainly does feel like we have managed

to pack a huge amount of learning into it. Coding will still be offered as

an after school club to allow them to continue to practice their and refine

their skills. I’m going to use my ex-GCSE students as mentors to those

with less experience. I’ve already checked my group lists for next year. It

looks like another busy year ahead!

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 22226666

ADA LOVELACE DAY: A CHANCE TO CELEBRATE
Ada Lovelace Day will be celebrated on October 15th. It provides a

good opportunity for teachers to bring the achievements of Ada, and

her unique contribution to the development of Computing. It’s also a

chance to highlight and celebrate the impact of the many other women

in Science, Technology, Engineering and Maths. You can find out more

information about events already being planned by visiting http://

findingada.com/

Held last June, the program appealed

to girls’ design aspirations by focusing

on creativity through technology and

computing. The sessions were run by

University lecturers ably assisted by IT

and Computing trainee teachers and

NQTs. Funding for the event was pro-

vided by CAS Include.

There were a host of activities and

hands on workshops including Explor-

ing Stereotypes, Looking at Wearable

Technology (delivered by Colette

Giblin), Designing Inspirational Apps

Using App Inventor (delivered by Pau-

la Beer) and Creating Small Computer

Games in Stencyl which I delivered.

The day went very smoothly and feed-

back throughout has been extremely

positive. As well as structured ques-

tions in the evaluation, the participants

were encouraged to suggest how the

day could be improved and asked why

they would recommend the day to

another school. The most frequently

occurring answer to these questions

was that the girls wanted more……

longer sessions, more sessions, even

more activities.

Several of the girls made the point

that they could achieve even more if

there had been enough time to ar-

range longer sessions and workshops.

Overall the feedback showed it was

fun, interesting and educational. Com-

ments from the girls included “It shows

that some jobs aren’t just for men”, “It

is inspiring and I don’t think people

realize that it’s not that hard” and “It

was fun and interesting to hear about

women in technology”.

Radio Lancashire asked for an inter-

view so Colette Giblin and I went to

the Blackburn studio to describe the

girls’ reaction to the day and explain

why the issue of underrepresentation

of girls in computing and technology is

so important.

ADA AT THE EDGE: PROMOTING
COMPUTER SCIENCE FOR GIRLS
Over sixty year 8 girls from Maricourt, St Bedes and Maghull
High Schools attended a free activity packed day at Edge Hill
University designed to enjoy computing in a mostly female, defi-
nitely fun atmosphere. Dawn Hewitson reports.

More than

a hundred

students

aged 11 to

13 years en-

joyed #define last

June - a free event

run by #include at Rugby School.

It aimed to encourage girls and

students from minorities to take up

Computer Science as a subject.

The day began with a talk from

multi-award winning designer

Laura Kalbag. Students enjoyed

workshops in the school’s IT

rooms and the new Modern Lan-

guages labs. Activities included

making games in Greenfoot, pro-

gramming Python and lighting

LED lights using the Raspberry Pi.

The day was a huge success.

Students created mobile apps and

programmed Lego robots to move

around a classroom, transformed

into a robot garden. Some made

controllers for their software from

everyday objects including the

floor, themselves and even Blu

Tack in the Makey Makey work-

shop. A teacher from The King-

swinford School in Dudley com-

mented: "The event was jam

packed with things to do. It was

exceptionally well run with a time-

table of events that allowed for the

broadest experience possible for

all. A great day for the students

and accompanying staff." Gener-

ous sponsorship from OCR and

Pimoroni enabled winning stu-

dents from each workshop to take

away a Raspberry Pi to practise

what they had learned during the

day. Laura Dixon

22227777

PROGRAMMING CHALLENGE 4 GIRLS
At Fakenham High School all Year 9 girls did programming

for a day. We played around with Alice. It was very funny, as

many people in my group had heads, legs, arms and bodies

flying off the screen everywhere. Task 1 was to design a

marine biologist taking a picture of a fish, getting bitten by a

bigger fish and swimming off screen. Task 2 was to create a

skate girl skateboarding up ramps and back down again.

Both were harder than they sounded but the whole day was

very interesting and funny. A huge thank you to Mrs Gray for

organising it. Laura (Y9 student at FHS)

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk

THE EARLY HISTORY OF
COMPUTER SIMULATORS
In 1968, Bell Telephone Laboratories pub-

lished CARDIAC, a CARDboard Illustrative

Aid to Computation designed to teach

schoolchildren how computers worked.

The kit consisted of a die-cut cardboard

‘computer’

and instruc-

tion manual.

Once assem-

bled you

could write

programs

and execute

them by

sliding cards.

It had 100 memory locations, worked in

base 10 and used a set of 10 instructions,

allowing it to add, subtract, test, shift, in-

put, output and jump. The instruction man-

ual covers topics such as Basic Units of

a Simple Computer, Flow Charts, Loops,

Instructions, Data, Addresses, Multiplica-

tion, Shifting Digits, Bootstraps, Subrou-

tines, Assemblers and Compilers.

It was a wonderful tool and my A Level

students still enjoy using a replica. Manu-

ally manipulating the sliders, doing the

arithmetic and writing values in locations

bring home to students the low level

steps required to accomplish even simple

operations. You can watch one being op-

erated at http://goo.gl/MvW8YH, find

plans to build your own at http://goo.gl/

JwKJk6 and view an original in the Bell

Labs archive at http://goo.gl/Det1Jv.

Online simulations of Cardiac also exist,

and you’ll find links and further infor-

mation on Wikipedia. Roger Davies

The VISIble Academic Computer (VISIAC) is a web based
emulation of a simple computer designed to be used as a
computer science teaching aid. Developer Hans Pufal out-
lines its specification and remarkable capabilities.

VISIAC: A TOOL FOR EXPLORING

COMPUTER SCIENCE CONCEPTS

All programming languages are abstractions of the processor on which

their programs ultimately run. For that reason, an understanding of a

processor and its operations can be helpful in mastering any computer

language. Algorithms are also abstractions, the visualisation of their exe-

cution can be a valuable aid in understanding them. VISIAC uses mod-

ern web based technology to significantly update earlier teaching aids

such as the Bell Labs CARDIAC and Little Man Computer (see left). Un-

like these predecessors, VISIAC is a fully capable computer designed to

be used in the teaching and study of many facets of computer science.

The implementation as a JavaScript web application makes it easily ac-

cessible to anyone with a modern web browser regardless of host ma-

chine architecture or operating system. It has been demonstrated on the

Raspberry Pi, Apple iPad and on Android tablets as well as on the more

traditional Windows and Linux PC's. VISIAC can be started by browsing

to its online web page, or the entire application can be downloaded and

run offline on the host system. Currently being tested, it will be available

soon from http://pufal.net/VISIAC/

THE USERS VIEW
Multi-panel, on-screen help detailing all aspects of the VISIAC is provid-

ed. The help panel can be opened in a separate window to allow consul-

tation while operating VISIAC.

Register and memory are displayed in their respective panels and the

contents may be freely edited. A set of control buttons allow the user to

start execution of a program or to single step instructions. When running,

the VISIAC continuously updates the register and memory content dis-

plays. As each instruction is executed, changes in register contents and

memory can be observed. By continuously highlighting the memory loca-

tion of the currently executing instruction, the concept of flow of control

takes on an almost physical reality. The stack is also highlighted and its

use during the execution of an algorithm can be clearly seen. All num-

bers are displayed in decimal for easy interpretation.

The first simple programming exercises will entail typing numbers into

memory. Educational as this intimate interaction with the raw processor

may be it soon becomes tedious and error prone. More elaborate pro-

grams can be developed using the built in symbolic assembler which

provides the first level of abstraction of the processor. Access to the as-

sembler is provided by the toolbar item labelled programs. Here a set of

pre-written examples are provided which the user can use as models to

develop their own programs. Editing can be done from within VISIAC or

by using an external editor and the program source copy/pasted into

VISIAC. The single pass assembler provides for symbolic addressing of

memory, forward reference resolution and operands specification as

simple values or complex expressions. The assembler is invoked by

pressing the load button, any errors in the program will be reported and

the load aborted. Continuity with numeric programming is provided by

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 22228888

Hans Pufal is a soft-

ware engineer and

computer historian.

Like many Hans caught

the computer bug when

in his teens and taught

himself to program.

Unlike many that was

in the mid 1960's when

computers filled an entire room. His interest

in computer history leads him to write emula-

tors so that he can run and study old soft-

ware. The development of VISIAC is just a

step removed from that passion.

listing the corresponding numeric code next to the source. If no errors

are found, the resulting numeric form of the program is loaded into VISI-

AC memory and debugging can commence.

THE ARCHITECTURE
Reminiscent of the DEC PDP-8, a 1970's era minicomputer, VISIAC's

single accumulator architecture operates on words of 52 bits (the largest

integer value in JavaScript). Up to 1000 words of memory can be ad-

dressed. The instruction set provides 45 distinct instructions. Five arith-

metic operations (add, subtract, multiply, divide and modulus) are provid-

ed in three variants: from memory, literal value, or stack relative. In each

case the second operand and result are the accumulator. A stack regis-

ter provides an in memory stack usable for both user data and subrou-

tine calling.

The VISIAC character set consists of 100 characters which provide a full

set of alphanumerics including upper and lower case and a variety of

special characters. The decision to not use a standard character set is

deliberate to provoke the discussion of how computers communicate.

In the basic configuration, input-output consists of text input and text out-

put. The IO operations provide for reading and writing single characters

or decimal numbers. Additional facilities allow for the status of the input

to be tested so that interactive programs can be written. Up to 8 addition-

al IO "devices" may be configured. A device is an independent JavaS-

cript module with a well defined interface. It is envisioned that advanced

students could develop their own IO modules. See the side panel for a

list of possible IO devices.

To make VISIAC useful in a teaching environment an extensive set of

tutorials and exercises are required. Some of these are under develop-

ment whilst others will hopefully be contributed by the early adopters. It

is hoped that these can be used to explain computer science concepts in

the context of an easily understood machine architecture. See the box

right for further suggestions.

VISIBLE ACADEMIC COMPUTER
TECHNICAL SPECIFICATION
VISIAC is not just another computer simu-

lator. It offers far more than most simple

models found online, as can be seen from

the specification outlined below.

Word size: 52 binary bits, 15.9 decimal

digits.

Memory: Up to 1000 words.

Registers: Accumulator, stack pointer and

program counter.

Instruction set: 45 distinct instructions

including: load, store and 5 arithmetic op-

erations to memory; literal operations;

stack push, pop, and relative access; full

complement of test and branch operations.

Execution speed: Variable 1 to 1000 in-

structions per second.

Input-Output: Text or numeric input out-

put, extensible with up to 9 external I/O

devices.

There are many possibilities this opens up.

Some of the outcomes could be:

• Switches, lights, 7 segment readouts

• Turtle or plotter

• Karel the Robot

• IO interrupt controller

• Remote terminal adapter

• Inter VISIAC networking

• Disk drive

• Virtual memory controller

22229999

CAN YOU HELP DEVELOPMENT?
Possible example tutorials might focus on:

Programming language variables

Explained in terms of memory location, the

variable name is the address, the value its

contents. Thus the often confusing a = a + 1

can be seen to be lda a; add #1; sta a when

translated into assembler.

Recursion

The stack clearly shows how each call pre-

serves information.

Scalability

By examining the possible ways of summing

10 numbers in memory, the concept of the

scalability of an algorithm is developed.

If VISIAC seems a useful addition to your

teaching aids please consider helping to de-

velop the necessary supporting infrastructure

by contacting Hans.Pufal@gmail.com

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk

THE SIMPLE IDEAS THAT
MAKE COMPUTERS WORK
There are few authors in the sphere of

computer science who have the ability to

present ideas in an accessible fashion like

Danny Hillis. Few authors have his pedi-

gree either. Using simple language, meta-

phor and analogy Hillis wrote ‘The Pattern

On The Stone’ in 1998. Although now out

of print, there are many second hand cop-

ies available.

Buy one! The clarity of

Hillis’s prose gets straight

to the heart of what

makes computers tick.

Starting from the bottom

up, he provides an out-

line of basic logic and

its implementation in a

machine. It introduces

all the important con-

cepts in computer science

such as finite state machines, program-

ming languages, Turing universality, algo-

rithms and algorithmic complexity. If some

of these terms are intimidating, by chapter

three you’ll feel at home. This is a cracking

read that focuses on ideas. Certain con-

cepts recur throughout, in particular the

idea of functional abstraction, making com-

puters understandable by decoupling the

ideas from the specific technologies.

Once readers are comfortable with these

foundations Hillis proceeds to introduce

notions such as uncomputable functions,

heuristics, parallel computing, neural net-

works and machine learning. These higher

ideas ignite his excitement, yet are all ex-

plained in easy to follow terms. He writes,

“It is certainly true that a computer can

incorporate and manipulate all other me-

dia, but the true power of the computer is

that it is capable of manipulating not just

the expression of ideas but also the ideas

themselves… The computer is not just an

advanced calculator or camera or paint-

brush; rather, it is a device that accelerates

and extends our processes of thought.”

This book allows you to appreciate why

computing concepts go far deeper than the

information technologies for which they are

used. It is, in my view, one of the best in-

troductions to the ideas behind computer

science available. Roger Davies

CS4HS is Google's main annual grant scheme to support Univer-
sities in their work with schools. Much activity is focussed on
teacher workshops, but there is also limited sponsorship for direct
engagement with students and resource creation activities.

CS4HS: GRANTS FOR UK AND
ONLINE TEACHER COURSES

The 2013 EMEA (Europe, Middle East and Africa) round saw 125 appli-

cations from 108 universities in 40 countries, resulting in funding

for 28 projects from 18 countries. As always, there were many strong

applications from the UK and six were successful:

• The University of Kent, who produce Greenfoot as well as running the

CAS Online forum system, is receiving funding for delivery of teacher

workshops for Computing teachers, both in the UK and internationally,

along with the development of an online tutorial video series.

• Queen Mary, University of London, receives a continuation grant in

support of their cs4fn magazine, website and activities.

• The University of Manchester is receiving funding to help produce and

host online a set of fun, practical, activities so anyone can deliver a

workshop on computing based around the Raspberry Pi. The activities

will be made available to every teacher in the country (and international-

ly) so they can excite the next generation with Raspberry Pi.

• The University of Worcester receive funding for a workshop to provide

training for teachers specifically in computer programming, including the

Python language, Processing (KS3) and C++/Java (A-Level) and crea-

tive programming using HTML Canvas and JavaScript.

• Teesside University receive funding for a two day workshop to provide

teachers with the foundation computer science knowledge they require

to deliver the non-programming elements of secondary computer sci-

ence in UK schools.

• The University of Warwick is being funded to provide a “supported

MOOC'' course to give teachers from a wide geographical area the op-

portunity to learn the new topics they will soon be expected to teach,

followed by a workshop for participants.

The Warwick MOOC is just one of several such activities being funded

by CS4HS globally this year. For example, the Colorado State Universi-

ty's global campus will offer an eight week problem-based self-paced

online workshop to encourage non-CS teachers to integrate computer

science concepts into their curricula, and Harvard started a six week

online CS course for beginners in June, focussing on Scratch and Com-

putational Thinking. If you have access to a Lego Mindstorms NXT kit,

Rowan University’s laboratory for educational robotics will offer an online

workshop for teachers, in August, that may be of interest. "Start Your

Own Robotics Club: LEGO Mindstorms Programming for Absolute Be-

ginners" will help teachers get started in robotics. Peter Dickman

SSSSWWWWIIIITTTTCCCCHHHHEEEEDDDDOOOONNNN: www.computingatschool.org.uk 33330000

GETTING STARTED RUNNING CPD COURSES
If you are a university department or school within the Network of Ex-

cellence and would like to run your own CPD courses for teachers,

there is some help in terms of sample course structures and down-

loadable materials from Anglia Ruskin University available at: http://

networkofexcellencecpd.net . Sue Sentance

Schools in Scotland are currently un-

dergoing the largest change in a gen-

eration to qualifications and assess-

ment, with the implementation of the

‘Curriculum for Excellence’ now al-

most complete. Amongst the new

qualifications, Computing Science will

be offered at National 3 – 5 (GCSE

equivalent), Higher (A level) and Ad-

vanced Higher.

The new qualifications put much more

emphasis on topics such as computa-

tional thinking and problem solving in

programming. Programming-lite op-

tions such as Information Systems will

no longer be offered, presenting a

challenge for many teachers who

have little programming experience.

The Scottish Government recognised

this and began working with con-

cerned parties – including CAS Scot-

land – last year. Dr Allan’s announce-

ment has been well received north of

the border, and constitutes the largest

investment in Computing training

since Computing Studies was first

introduced in the ‘80s.

During his speech he made several

important points that CAS Scotland

members feel haven’t always been

understood by some of our other

teaching colleagues, school leader-

ship teams and parents. In particular,

“CfE recognises computing science as

both science and technology” and that

“For our society and our economy,

young people need to be as aware of

this new science as they are enthusi-

astic about using the technologies

based upon it.” The full statement is

online at http://goo.gl/rjiTt6

We now have a unique opportunity to

explore the most up to date thinking

on CS pedagogy in the pre-certificate

levels and new national qualifications

in Computing Science. We also have

the chance to create some time and

space to think about important issues

such as broadening participation, de-

veloping computational thinking and

improving progression so that our

learners don’t end up stuck in the

shallow end.

At the heart of the proposal put to the

government by CAS Scotland are:

• the creation of local teacher com-

munities where a lead teacher can

work with others to investigate new

practices and techniques in a support-

ive environment, similar to the Master

Teacher programme in England.

• working in partnership with a range

of organisations in HE, FE and indus-

try, linking them with lead teachers.

• a flexible professional learning pro-

gramme primarily focused on the ped-

agogy of teaching Computing, linked

to the new qualifications that teachers

can quickly apply.

Teachers’ professional development

needs are being surveyed by CAS

Scotland to provide a detailed picture

for the project officers carrying out

planning work. Several one day

events are being considered to ad-

dress teachers’ immediate needs ear-

ly in the autumn term. The training of

the first group of lead teachers will

focus around non-certificate levels

and National 4 and 5 qualifications.

During the first phase of the pro-

gramme CAS Scotland aims to devel-

op 20 lead teachers linked with FE or

HE institutions in their area, a cus-

tomisable programme of professional

learning for developing computational

thinking in the BGE and National 4/5

Computing Science and delivering this

to over 220 teachers across Scotland.

A NATIONAL PROGRAMME OF
PROFESSIONAL DEVELOPMENT
In June at Holyrood Dr Alasdair Allan MSP announced an addi-
tional £200,000 worth of funding per year for the next two years
to support us in delivering computing science in Scotland’s
schools. Mark Tennant and Peter Donaldson explain the details.

SWITCHEDON SCOTLAND
ISSUE THREE PUBLISHED
The third issue of our CAS News-

letter specifically aimed at mem-

bers in Scotland, was published

before the summer break. The

issue is shorter than previous

ones but was rushed out to en-

sure teachers received the won-

derful and reassuring news about

the new funding proposals for pro-

fessional development. It includes

a call for teachers to get involved

in the working group and details of

how to access the skills survey.

But that’s not all that is covered.

Inside you will find a major fea-

tures on pedagogy and the limits

of online tutorials written by

Quentin Cutts, which places the

classroom as central to effective

learning. Charlie Love continues

the pedagogy theme by exploring

how teachers of Computer Sci-

ence can make use of flipped

classroom techniques.

33331111

CAS SCOTLAND TEACHER
CONFERENCE OCT OBER 26
Preparations are well underway for

this year’s Conference. Last year’s

event in Edinburgh proved a huge

success. This year we have moved

the venue to Glasgow University so

we can accommodate more dele-

gates. Make sure you register quick-

ly. Full details on CompEdNet.

Computing At School
are supported and
endorsed by:

LOOKING AT LANGUAGE
It may seem odd to the uninitiated but

language – that most human of inven-

tions – is also a core topic of computer

science. Computers are just machines

that can follow instructions. Those

instructions have to be written in spe-

cial languages (programming lan-

guages) that are precise and unam-

biguous. New languages are being

invented all the time each designed to

make something easy for computers

to do. Some make it easier to write

programs while others are used to

check that computer systems behave

the way they should, for example.

Language isn’t just the thing that

makes computers tick, a lot of excit-

ing computer science goes in to allow-

ing them to do things with human lan-

guages. Computer science is inextri-

cably linked with the way we com-

municate. The Autumn issue of cs4fn

is all about computer science and lan-

guage. We look at how a thought

experiment about language has been

used to argue that computers can't be

truly intelligent and how zombies are

attacking that argument. We explain

what programming is all about and

give you a yummy recipe at the same

time. We explore the role language

skills play in computer security and

how messages

can be hidden

in the silence

of video

calls. We

look at the

limitations

of video

conferenc-

ing and

how the

umms

and ahhs of language

matter. Computers help us translate

from one language to another; per-

haps they may even help to save

threatened languages. Language is

the essence of computer science.

cs4fn is widely read in UK schools and

much admired. But did you know that

some of the material has been trans-

lated into other languages? Find them

at http://www.cs4fn.org/translations/

Over the years, cs4fn magazines,

booklets and activi-

ties have been

translated into Ger-

man, French, Rus-

sian, Italian,

Welsh, Portu-

guese, Greek,

Chinese and

Slovenian.

A PAUSE FOR THOUGHT
Remember the Y2K Bug? Now

Y2K38 looms. The problem stems

from applications storing their

date/time data in 32-bit form, eg

using Unix Timestamp. A

timestamp is the number of se-

conds between a specific date

and the Unix Epoch on 1 January

1970. It is essential to systems

handling dated information in dy-

namic and distributed applica-

tions, client-side and online.

In C, the value type time_t stores

time as a 32-bit signed integer,

using one bit for the sign, giving

us a range from -2³¹ to 2³¹-1, or

minus 2,147,483,648 to

2,147,483,647. So on the 19 Jan-

uary 2038, when the number of

seconds since 00:00:00

01/01/1970 passes

2,147,483,647, the Unix

Timestamp will likely fail due to a

32-bit overflow.

Embedded 32-bit processors re-

side in many systems. All 32-bit

systems using Unix Timestamp

are affected, unlike 64-bit sys-

tems. There is no universal fix, but

solutions have been proposed.

Systems can switch to unsigned

integers, the span then being from

1970 to the year 2106 but unwork-

able for systems storing dates

before 01/01/1970. Perhaps all

systems will be 64-bit by then, but

some think such an upgrade may

not be possible for some existing

embedded systems.

Meanwhile, it gives us a useful

illustration when teaching our kids

about future-proofing. Try for your-

self: log out of an online service

eg Yahoo Messenger. Now

change your system clock to a

date after January 2038. Try log-

ging back in to your messenger

account: it will likely give you an

error and fail to log in.

 Lyndsay Hope

Computing At School was born out of our excitement with the discipline, combined with a
serious concern that students are being turned off computing by a combination of factors.
SWITCHEDSWITCHEDSWITCHEDSWITCHEDONONONON is published each term. We welcome comments, suggestions and items for
inclusion in future issues. Our goal is to put the fun back into computing at school. Will you
help us? Send contributions to newsletter@computingatschool.org.uk

Many thanks to the following for help and information in this issue: Yasemin Allsop, Phil

Bagge, Clive Beale, Pete Bell, Miles Berry, Jonathan Black, Trevor Bragg, Neil Brown, Paul Browning,

Mark Clarkson, Paul Curzon, Claire Davenport, Roger Davies, Peter Dickman, Laura Dixon, Peter Don-

aldson, Mark Dorling, Kate Farrell, Sue Gray, Liz Hadley, Michael Harkness, Graham Hastings, Dawn

Hewitson, Lyndsay Hope, Alan O’Donohoe, Adrian Oldknow, Matthew Parry, Hans Pufal, Alex Re-

penning, Chris Roffey, Sue Sentance, Siraj Shaikh, Andrew Shields, Ben Smith, Chris Swan, Mark

Tennant, Jane Waite, Dawn Walker, Arun Warhadpande, Amanda Wilson and John Woollard.

Cover image/ primary graphic by kind permission of Krista Shapton (see http://www.kshapton.com/blog)

www.computingatschool.org.uk

