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ABSTRACT

Small angle neutron scattering (SANS), muon spin rotation (/rSR) and associated
characterisation techniques have been used to measure novel properties of supercon¬

ducting materials.
The coexistence of Type-I and Type-II behaviour in LaNiSn has been observed

using /rSR and the thermodynamic phase boundary has been identified between this
behaviour and that of a conventional Type-I superconductor. In a zero field cooled
state the existence of a pure Meissner state is observed only at this thermodynamic
phase boundary.

The magnetic phase diagram of the high temperature superconductor La1.83Sro.17
CuCL has been investigated. SANS has provided the first microscopic observation of
a vortex lattice and the first unambiguous evidence for a field induced hexagonal to

square vortex lattice structural transition in the high temperature superconductors.
This is supported by //SR measurements, which also yield information on vortex
lattice pinning and the melting transition.

A preliminary SANS experiment on Lai.gSro.iCuCL at low fields suggests a Bragg
glass (BG) with nominally a hexagonal structure. pSR has provided unambiguous
evidence for a field induced crossover from a BG to a more disordered vortex glass

(VG) state and an upper limit on the crossover field is given. This is the first
measurement of a disordered VG state on a system of well coupled vortex lines.
Furthermore, a study of the evolution of short range order is presented that is of
universal significance, as it provides experimental insights into space averaged many

particle correlations in bulk systems.
Direct evidence for the coexistence of a spin density wave (SDW) with bulk

superconductivity in a Ferromagnetic/Superconducting/Ferromagnetic trilayer has
been obtained using low energy //SR. The apparent enhancement of the SDW am¬

plitude in the superconducting state and the n/2 phase shift of one component of
the SDW below Tc indicates a profound coupling of these two forms of spin order.
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constrained to the values found above Tc 207
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1.1 Organisation of this Thesis

This work is devoted to the understanding of magnetic phenomenon in several super¬

conducting materials. The main topics of interest are the superconducting properties
of LaNiSn, the vortex matter of La2_xSrxCu04 and the interaction of magnetism
and superconductivity of Fe/Pb/Fe. Several complementary techniques have been
employed and a summary of the techniques used and organisation of this thesis is

given below. Due to the differences between the different materials used in this

work, each chapter has a separate introduction and conclusion, some of which is

repeated in the last chapter (Conclusions, Chapter 7). There is also some overlap
between the introduction given in this chapter and with various parts of this thesis.

In Chapter 2, an introduction to some of the relevant theories of superconduc¬
tivity is given. Furthermore, a summary of vortices in superconductors is given
followed by an introduction to magnetism. This chapter is intended as an overview
to some of the physics investigated in this thesis and not as an in-depth review.

Chapter 3 contains a review of the major experimental techniques and subsequent
data analysis for the work presented in this thesis. The experimental techniques
covered are Small Angle Neutron Scattering (SANS), Muon Spin Rotation (pSR)
and Low Energy Muon Spin Rotation (LEM). Although other techniques have been
used these are not included in this chapter, as they are either sample characterisation
or are not relied upon for any major conclusions. For this reason, only a very brief
description of the technique is included in the main discussion and not a more in-

depth (stand alone) review, as found in Chapter 3.
Chapter 4 contains pSR measurements on LaNiSn. Measurements were per¬

formed at ISIS and the Paul Scherrer Institute (PSI). It contains a discussion of the
coexistence of Type-I and Type-II behaviour in LaNiSn and subsequent interpreta¬
tion.

Chapter 5 contains measurements on the HTC La2_a:SrICu04 and it is divided
into four sections. Firstly, bulk magnetisation measurements for overdoped (Lai.83
Sro.17 CuCL) and underdoped (Lai.gSro.jCuCL) compound are considered, followed
a section detailing a SANS study of the vortex lattice in the overdoped regime.

Thirdly, a study of the overdoped regime using muon spin rotation is combined
with the first two sections to form a magnetic phase diagram. The fourth and final
section deals with muon spin rotation studies on the underdoped compound and
once combined with the bulk magnetisation, a magnetic phase diagram is formed.
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Chapter 6 contains the work carried out on Fe/Pb/Fe thin films. Firstly, a dis¬
cussion of film preparation (Magnetron Sputtering) and characterisation is carried
out. Techniques used for characterisation are Low and High Angle X-Ray Reflectiv¬
ity, Polarised Neutron Reflectivity, AC-Transport and Magnetisation measurements.
The final section on Low Energy Muon Spin Rotation and the associated analysis
contains the main results of this chapter.

A summary of the conclusions for the whole thesis and discussion of possible
further work can be found in Chapter 7.

1.2 Historical Overview

Superconductivity was first discovered in 1911, when the Dutch physicist Heike
Kamerlingh Onnes measured zero electrical resistance in mercury [Onnes, 1911].
This was possible due to his successful liquification of helium on July 10 1908, thus
allowing experiments to be performed at unprecedentedly low temperatures. A sec¬

ond characteristic of superconductors, the expulsion of an external magnetic field,
was discovered later in 1933 by Meissner and Ochsenfeld [Meissner and Ochsen-
feld, 1933], establishing that the superconducting state forms a new thermodynamic
phase. Perfect diamagnetism was first described by the London brothers in 1935

[London and London, 1935] (as well as other numerous thermodynamic and electro¬
magnetic aspects of the superconducting state) by assuming the superconducting
state is described by a spatially invariant order parameter. However discrepancies
with experiment remained, particularly in films subject to a parallel magnetic field,
where the expression for the critical field Hc|| failed. The London approach was
also insufficient to describe the Shubnikov phase observed in 1937 [Shubnikov et al.,
1937], a mixed state of normal and superconducting regions, commonly referred
to as a vortex state. A spatially varying order parameter was first introduced by
Ginzburg and Landau [Ginzburg and Landau, 1950] in 1950, based on Landau's
phenomenological theory of phase transitions [Landau, 1937]. In setting up their
famous energy functional they allowed for the presence of a magnetic field. The
ability to incorporate variations in the order parameter due to boundary conditions,
external magnetic fields and currents, allowed them to remedy the deficiencies of
the London theory, thus providing the complete phenomenological description of a

charged quantum fluid.
A convincing microscopic theory of superconductivity was developed by Bardeen,



1.3. The High Temperature Superconductors 4

Cooper and Schrieffer (BCS) in 1957 [Bardeen et al., 1957b,a]. In the BCS-theory,
an electron-phonon interaction results in the formation of pairs of electrons (Cooper
pairs) below a critical temperature Tc. The different pairs are strongly coupled
to each other and form a condensate consisting of a fraction of the conduction
electrons. Due to a finite pair size, one cannot break up a single Cooper pair without
affecting all the others. As a consequence, the amount of energy to break a Cooper
pair must exceed a critical value, known as an energy gap. Another significant
theoretical advancement came in 1962 when Brian D. Josephson, a graduate student
at Cambridge University, predicted that electrical current would flow between two

superconducting materials - even when they are separated by a non-superconductor
or insulator [Josephson, 1962], This tunnelling phenomenon is today known as

the "Josephson effect" which has been applied to many electronic devices (such as

a SQUID magnetometer) and is a useful construct when understanding a layered
system such as the High Temperature Superconductors.

1.3 The High Temperature Superconductors

In 1986, Georg Bednorz and Alex Miiller, working at IBM in Zurich, were experi¬

menting with a particular class of metal oxide ceramics called perovskites, surveying
hundreds of different oxide compounds. Working with ceramics of lanthanum, bar¬
ium, copper and oxygen they found indications of superconductivity at 35 K, a

startling 12 K above the old record for a superconductor [Muller and Bednorz, 1986]
(see Figure 1.1). In February of 1987 [Wu et al., 1987], a perovskite ceramic material
was found to superconduct at 90 K. Because these materials superconduct at signif¬
icantly higher temperatures than previously thought possible (currently up to 164
K for HgBa2Ca2Cu309 under pressure), they are referred to as High Temperature
Superconductors (HTC).

The HTC's have a complex layered metal oxide structure and display the me¬

chanical and physical properties of ceramics. For example, YBa2Cu3Ox (YBCO) is a

very common Type II superconductor and its crystal structure is depicted in Figure
1.2. A key element to the behaviour of these materials is the presence of planes
containing copper and oxygen, yielding anisotropic electrical and magnetic proper¬

ties (both in the normal and superconducting state). The HTC's are considerably
different from their conventional counterparts. Not only do they have much larger
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Figure 1.1: The history of superconducting transition temperatures.
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Figure 1.2: The crystal structure of YBCO

critical temperatures, the current density and upper critical Held are also consider¬
ably higher, as can be seen from Figure 1.3. Furthermore, the HTC's anisotropy

coupled with the higher temperatures and Helds allows an interesting and varied
vortex matter behaviour to be measured.

All cuprates have similar properties and structural peculiarities. These materials
are all built of a stacking of Cu02 planes separated by different layers (the charge
reservoirs) and it is generally believed that the copper oxide planes are essential to
the mechanism of the HTC's. While conventional superconductors are good metals
in their normal state and are well described by the Fermi liquid theory, HTC's are

highly correlated electron systems and bad metals, with normal state properties
that do not resemble at all those of a Fermi liquid [Varma et al., 1989; Varma, 1997;
Nakamae et al., 2003].

The parent (non-superconducting) compound of each family of the HTC's is an

antiferromagnetic Mott insulator, which is transformed into a metal by introducing
a concentration of doped charge carriers into the Cu02 planes. The doping is usually
done by chemical substitution: for example, one can induce holes by substituting
La3+ ions with Sr2+ ions in La2_xSrxCuO,j(LSCO) or increase the oxygen content
in YBCO and Bi2Sr2CaCu208+x(BSCC0). The generic phase diagram of an HTC
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Figure 1.3: The relationship between critical current, critical field and critical tem¬
perature for several superconductors.

is shown in Figure 1.4. As a function of increasing doping, the Neel temperature is
suppressed to zero and long-ranged antiferromagnetism is replaced by a "strange"
metal. At low temperatures the system eventually becomes superconducting with a

transition temperature Tc which first increases (underdoped region), then reaches a

maximum value at an optimal doping level, decreases (overdoped region) and finally
vanishes. The so called "pseudogap" corresponds to a region in which a number
of quantities, including the spin susceptibility and electronic density of states, are

suppressed [Timusk and Statt, 1999].
pSR. reveal the presence of a "spin-glass" like state in the underdoped regime of

LSCO [Niedermayer et al., 1998] and inelastic neutron scattering experiments re¬

veal the existence of spin excitations in the overdoped regime [Yamada et al., 1998].
In optimally doped YBCO, the spin excitation spectrum obtained from inelastic
neutron scattering experiments is dominated by a so-called "magnetic resonance"
located at the commensurate AF zone centre (tt, tt) [Rossat-Mignod et al., 1991],
which has been shown to be of magnetic origin [Mook et al., 1993]. Similar obser¬
vations have been noted in other HTC systems [Fong et al., 1999; He et al., 2001;
Mesot et al., 2000; He et al., 2002], More recently, incommensurate peaks have been
observed in YBCO [Bourges et al., 2000; Dai et al., 2001; Hayden et al., 2004], An
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Figure 1.4: Generic phase diagram of an HTC.

introduction to some of the issues specific to LSCO can be found in Chapter 5.
The numerous types of competing magnetic order that coexist with the HTC's

and the failure of Fermi liquid theory to describe the normal state requires an entirely
different approach to understand much of the physics and the mechanism of the
HTC's. Almost 20 years after their discovery and after ~100,000 scientific papers,

the mystery of the HTC's is still unresolved.

1.4 The Magnetic Phase Diagram

The superconducting mixed state provides an intriguing system for investigation,
from both a fundamental research and applications point of view. Superconduct¬
ing vortex physics provides a unique system to study the crystal structure, as one

can change the vortex density simply by varying the magnetic field. By perform¬
ing investigations as a function of applied field, temperature and anisotropy (by
varying doping in the HTC's, for example), it is possible to measure a wealth of
information as the vortices go through various thermodynamic phase transitions.

Furthermore, the "magnetic crystal" has a considerably larger lattice parameter
than any perturbing influence (such as pinning to the crystal lattice), providing the
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Figure 1.5: Schematic diagram of the generic magnetic phase diagram for an HTC,
consisting of the Meissner state, a Bragg Glass, Vortex Glass and Vortex Liquid.

unique opportunity to investigate the combined effects of disorder and thermal fluc¬
tuations on a crystal. For the HTC's, some of these features are depicted in Figure
1.5. This will be dealt with in more detail in Chapters 2 and 3 [for a full review,
please consult Blatter et ai, 1994].

From a practical point of view, several of the applications of superconductivity
require operation at high temperatures (i.e above liquid N2) and high magnetic
fields, as well as the capability to deal with large currents without dissipation. From
Figure 1.3, it is clear HTC's are well suited to these requirements. However, if an

external current is applied perpendicular to the vortex lattice, the field generated
due to this current will create vortices. These vortices feel a Lorentz force which

causes them to move, resulting in an electric field. Therefore the system would have
finite resistance. In order to have resistance-free bulk transport one must reduce
flux-flow to a minimum, which can be achieved by introducing additional pin sites

by materials processing.
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1.5 Previous Work on Vortices in the High Tem¬

perature Superconductors

Macroscopic measurements (e.g. DC magnetisation, AC susceptibility, resistivity...)
have been extensively used to characterise the properties of the HTC's. Not only
are these techniques extremely useful to check sample quality (e.g width of super¬

conducting transition) one can extract some key parameters, such as the coherence
length, penetration depth and the anisotropy [See, for example, Sasagawa et al.,
1998, 2000; Li et al., 1993; Suzuki and Hikita, 1991; Hofer et al., 2000]. Furthermore,
large scale changes in the vortex behaviour can be mapped out with magnetisation
data. A considerable body of literature is devoted to such studies [See, for example,
Dewhurst et al., 1996; Kes et al., 1996; Klein et al., 1994], A full review of vortex
matter in the HTC's can be found elsewhere [Blatter et al., 1994].

Despite belonging to the family of the first HTSC to be discovered, the mag¬

netic phase diagram of LSCO has not been extensively investigated using micro¬
scopic techniques when compared with some of the other cuprates, such as YBCO
or BSCCO. This is in part due to large, high quality single crystals being unavailable
until recently and some limitations due to fundamental parameters.1 As a conse¬

quence, studies of the vortex matter phase diagram for single crystal LSCO have
mainly been restricted to magnetisation measurements [See, for example, Radzyner
et al., 2002b,a; Kimura et al., 1992; Kodama et al., 1997]. A second peak in the
M-H loops ("fishtail") is observed and usually interpreted as indicating a vortex
order-disorder transition. In depth studies of the subtle differences in the details of
the fishtail anomaly (width, temperature dependence, time dependence and history
effects) have yielded many conclusions regarding the vortex matter of LSCO, but
few or no microscopic measurements were taken in support. Although features in

magnetisation data can be useful to track large scale vortex transitions in consid¬
erable detail, any attempt to interpret these features without a good microscopic

investigation should be treated with caution. Similar bodies of evidence exist for
YBCO and BSCCO [See, for example, Dewhurst et al., 1996; Kes et al., 1996; Klein
et al., 1994], but with the advantage of microscopic studies being available to aid
the interpretation.

There is a large body of literature associated with the microscopic study of
vortex matter of YBCO and the discussion here has been limited to the study

1e.g the penetration depth is much longer for LSCO than in either BSCCO or YBCO, yielding
difficult SANS experiments.



1.5. Previous Work on Vortices in the High Temperature
Superconductors 11

of microscopic single crystal data.2 Most of the work has been measured using
twinned crystals (until around 1999, when large de-twinned crystals necessary for
SANS and /zSR experiments became available), leading to confusion over the origin
of observed vortex matter phenomenon. For example, although an intrinsic square

flux line lattice (FLL) in YBCO has very recently3 been observed in an untwinned
crystal [Brown et al., 2004], the origin of an observed square diffraction pattern in
a SANS experiment remained a source of debate for some time [Keimer et al., 1994;
Johnson et al., 1999; Yethiraj et al., 1993; Forgan and Lee, 1995]. It was found that
twin plane pinning has a significant effect on the vortex orientation [Johnson et al.,
1999], explaining the misinterpretation of the original diffraction data [Keimer et al.,
1994], Despite this confusion, it is now generally believed that the intrinsic vortex
lattice symmetry of untwinned YBCO is hexagonal at low magnetic fields, gradually
changing to square on approaching 11T [Brown et al., 2004],

In YBCO, SANS experiments gave the first indications for an abrupt change of
the flux lattice structure along a line in the B-T phase diagram [Forgan et al., 1990;
Yethiraj et al., 1993], commonly referred to as a "melting line". However, the twin
planes in YBCO can also mask the underlying nature of the melting transition. The
melting transition has been argued to be a continuous transition [Gammel et al.,
1988], which was later shown to be a 1st order transition [Schilling et al., 1997] in
untwinned samples using differential thermal analysis. It was found the order of
the transition is influenced by the number of defects within the crystal, where an

"excess" of pinning of any kind drives the transition to be second order. However,
it is possible to achieve a first order transition in a heavily twinned sample above
a field of 6T, but second order transition is observed at lower fields [Junod et al.,
1997], indicating the nature of the transition has a field dependence. Microscopic
measurements remained elusive until relatively recently due to the effects of twin

planes [Aegerter et al., 1998], where a second order melting transition was observed
in a twinned crystal. However, SANS experiments indicate a "smoothed" first order
transition in untwinned crystals [Aegerter et al., 1999].

The question regarding what a melting transition actually "is", is considered in
the literature [for a review, see Blatter et al., 1994]. The point at which the vortices
become irreversible, corresponding to when the vortices have sufficient energy to
overcome the pinning potentials, does not always coincide with the melting line.
There is debate regarding whether one can describe the FLL to be melted when it is

2There is also a large(r) body of work performed on polycrystalline samples. This work has not
been discussed.

3The results on LSCO presented in this thesis precedes the YBCO work by around 2 years
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still irreversible; the vortices can not be interacting as a "liquid" when their motion
is still governed by pinning potential. The related effect that is commonly referred
to as the "depinning" line [See, for example Brandt, 1991b; Bondarenko et al., 2004]
is readily observed in the HT phase diagram of the HTC's. As discussed above,
features observed in the magnetisation data are usually attributed to a change in
the pinning regime. There is no firm consensus between experimental results from
different samples of nominally the same compound or the exact origin of the observed
features, as individual samples will have different crystallographic defects or sample
geometry. The features, however, are generally present in all HTC's, even if they
are not completely reproducible.

The highly anisotropic nature of BSCCO complicates the vortex structure in
this compound considerably, as highly flexible vortex lines make them extremely
susceptible to thermally and pinning induced disorder [Cubitt et al., 1993; Lee et al.,
1993, 1995]. A more appropriate description is obtained by considering the vortices
as a string of 2D "pancake" vortices, each confined to a CuO layer weakly coupled
between layers [Lee et al., 1997]. Weak electromagnetic coupling dominates large
areas of the magnetic phase diagram. Consequently, a first order melting transition
is easily observed well below Tc [Cubitt et al., 1993; Lee et al., 1993, 1995, 1997],
where the vortices melt into a 2D pancake gas. The 2D nature of the vortices in
BSCCO allowed the melting line to be measured with relative ease [Cubitt et al.,
1993; Lee et al., 1993, 1995], where it is also possible to measure a crossover from a

3D to 2D state as the magnetic field is increased.
As briefly mentioned above, the measurement of microscopic transitions of the

FLL in LSCO has remained elusive. SANS measurements remain difficult, as the

penetration depth is Aab=2400A for x=0.17, which is considerably longer than in
BSCCO or YBCO. This reduces the neutron scattering intensity considerably in a

SANS experiment, as I oc 1/A*6 (Equation 3.31). There is also a problem with twin
planes as the low temperature CuO structure is orthorhombic, yielding multi-domain
vortex lattices with different orientations governed by the twin orientation, increas¬

ing the complexity of SANS diffraction patterns considerably. Another obstacle is
that it is relatively difficult to grow the high quality, large single crystals needed
for both /rSR and SANS experiments. Experiments on polycrystalline samples yield
results that are averaged over many different magnetic (vortex) domains pinned to
different crystal orientations and grain boundaries.

Despite these problems, LSCO has some very attractive properties for studying
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the FLL. LSCO has an anisotropy in the region of 7 ~20, which puts it directly be¬
tween the extreme 2D nature of BSCCO and the 3D nature of YBCO. Additionally,
7 can be controlled systematically by varying the Sr doping. The significance of
these parameters can be understood by considering the Josephson length Aj = 7s,

where s is the spacing between CuO planes. The ratio of Aj to Xab determines the
effectiveness of the Josephson currents tunnelling between planes which maintain
the stiffness of the vortex. In BSCCO Xj/Xab > 1 leading to extremely flexible 2D
vortices and in YBCO Xj/Xab < 1, so rigid vortex lines are formed. LSCO has a

Aj « 250A, meaning the vortices are relatively straight but susceptible to transverse
fluctuations.

Quenched random pinning of vortices destabilises the long ranged translational
order of the vortex lattice, leading to a disordered "glassy" phase [Blatter et al.,
1994]. At least two glassy phases exist as a consequence of such disorder [Fisher
et al., 1991; Nattermann, 1990; Giamarchi and Doussal, 1995, 1997]. The most
ordered of these phases is the Bragg glass phase,4 where translational correlations

decay as power laws [Nattermann, 1990; Giamarchi and Doussal, 1995, 1997], lead¬
ing to quasi-long range order of vortices in the superconductor. At increased levels
of pinning, the Bragg glass is unstable and a vortex glass (VG) phase is formed,
where the translational correlations decay exponentially [Giamarchi and Doussal,
1997; Gingras and Huse, 1996]. The VG phase has been reported to be a distinct
thermodynamic phase [Fisher et al., 1991], separated from the disordered liquid
phase by a continuous phase transition [Giller et al., 1997; Misat et al., 1999], also
known as a crossover. The properties of LSCO make it an ideal candidate for micro¬

scopically measuring the predicted VG phase [Brandt and Mikitik, 2001; Giamarchi
and Doussal, 1997], as the vortices are still "lines" but susceptible to transverse
fluctuations.

1.6 Previous Work on Magnetic/Superconducting
Multilayers

Advances in thin film fabrication techniques [Jin and Ketterson, 1989, and refer¬
ences therein] have renewed research interest in Superconducting (S) / Ferromag¬
netic (FM) multilayers and a number of new and sometimes controversial phenomena

4When referring to a "vortex lattice", one usually means a "Bragg glass". These two terms are
used indistinguishably in this thesis.
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have been observed. For S/FM multilayers, it is expected that the superconduct¬
ing transition temperature decreases monotonically with increasing magnetic layer
thickness. Not long after non-monotonic behaviour was observed [see, for example
Wong et al., 1986], the possibility of an oscillating Tc as the magnetic layer thick¬
ness increased was shown theoretically [Radovic et al., 1991], where it was found the
phase of the superconducting wavefunction exhibits oscillations in the FM layer.

For the case of a magnetic layer bounded on both sides by superconducting
material, the phase of the order parameter across the two superconducting layers
can be different, which was convincingly reported recently [Kontos et al., 2001,
2002; Guichard et al., 2003]. The value of the phase difference depends on the
layer thickness compared to the wavelength of the spatial oscillation. For example,
with an odd number of half wavelengths across the layer the phase difference would
be 7r radians. However, the theoretical construct outlined above [Radovic et al.,
1991] is only valid in the case of high transparency of the S/F boundary and for
the specific structure of a FM between two superconducting films. Although a

number of publications observed the non-monotonic behaviour of Tc in relevant

systems see for example, [Strunk et al., 1994; Jiang et al., 1995; Ogrin et al., 2000]),
which is predicted by this theory, a number of groups observed similar behaviour
in FM/S/FM tri-layers [Muhge et al., 1996, 1997]. This theoretical description is
therefore insufficiently general to explain these results.

An alternative theory explains both the trilayer and multilayer phenomena [Khu-
sainov and Proshin, 1997, 2000] with no limitations on boundary transparency. The
mechanism is built on a Larkin Ovchinnikov Fulde Farrell (LOFF) type mechanism,
where the superconducting pairs tunnel into the FM region (the proximity effect)
and acquire finite momentum. The superconducting ground state is therefore differ¬
ent from that of a BCS paired state. In this theory, the exchange held is periodically
compensated by oscillations in the superconducting pair amplitude, leading to an

oscillatory SDW. This oscillatory behaviour leads to a non-monotonic oscillatory
dependence of the critical temperature as a function of FM thickness.

The theoretical advances described above have led to considerable experimental
interest in S/FM thin films. Unfortunately, in most experimental systems studied,
complications due to interface roughness/alloying mean there is not always a sharp
S/FM interface, but a continuous change between the superconducting and ferro¬
magnetic properties; the theoretical predictions are only valid for clean S/FM inter¬
faces. Firstly, oscillatory behaviour of Tc was observed in V/Fe multilayers [Wong
et al., 1986], but later not observed in the same system [Koorevaar et al., 1994], The
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non-monotonic behaviour was reported for Nb/Gd multilayers and Nb/Gs/Nb tri-
layers [Jiang et al., 1996, 1995], for Fe/Nb/Fe trilayers [Muhge et al., 1996, 1997] and
for Nb/Co and V/Co multilayers [Obi et al., 1999]. However, negative results were

reported for Nb/Gd/Nb trilayers [Strunk et al., 1994], for Ge/Nb bilayers [Muhge
et al., 1998] and for Nb/Fe multilayers [Verbanck et al., 1998]. Therefore it is highly
desirable to have a system in which very little alloying occurs. For this reason the

Pb/Fe system is an ideal system, as there is very little solubility between the metals
(even in the liquid state!) [Kubaschewski, 1982; Lazar et al., 2000]. Indeed, non¬

monotonic oscillations in Tc as a function of FM thickness are observed in sputtered

Fe/Pb/Fe trilayers [Lazar et al., 2000], although a non-ideal growth mechanism can

lead to large interface roughness [Garif'yanov et al., 1998].
For a normal metal/ferromagnet multilayer, the exchange field can cause a pe¬

riodic oscillation of the electron-spin density inside the normal layer. The period of
the oscillation is determined by extremal spanning vectors of the Fermi surface, via
an enhancement of the wavevector-dependent susceptibility at these values [Martin,
1967], similar to the RKKY interaction. Using a spherical Fermi surface, RKKY pre¬

dicts a single short oscillation [Yafet, 1987], corresponding to the Fermi wavevector.
When a more realistic Fermi surface is used (i.e non-spherical), however, multiple-
period oscillations are expected [Roth et al., 1966], corresponding to spanning vectors
connecting different parts of the Fermi surface. Another model which may be used
in this situation is a quantum confinement of conduction electrons in the normal
metal spacer layer [Bruno and Chappert, 1991; Bruno, 1991; Bruno and Chappert,
1992], leading to sharp features in the density of states at specific q-vectors.

There have been a number of observations of multi-periodic oscillations in the

coupling of two FM layers across a non-magnetic wedge shaped spacer (using scan¬

ning electron microscopy with polarisation analysis), most notably in the Fe/Cr/
Fe(001) system [Unguris et al., 1991], with the superposition of short (~2 mono¬

layers) and long (~10 monolayers) periods. Other systems to have been measured
are Fe/Mn/Fe(001) [Purcell et al., 1992], Co/Cu/Co(001) [Johnson et al., 1992]
and Fe/Au/Fe(001)[Fuss et al., 1992]. Further observations of interlayer exchange
coupling in ferromagnetic/normal metal thin films are numerous. For example, sys¬

tems such as Fe/Cu, Pd, Ag, Au/Fe trilayers [Celinski and Heinrich, 1991], Co/Cu
and Fe/Cu trilayers [Coehoorn, 1991], Fe/Ag trilayers [Celinski et al., 1993; Unguris
et al., 1993, 1994, 1997] and Gd/Y trilayers [Majkrzak et al., 1986] have been studied.
These experimental observations agree well with current theoretical understanding.
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Low Energy /iSR has recently been successfully applied to investigating the prop¬

erties of an Fe/Ag/Fe film [Luetkens et al., 2003], where a Spin Density Wave (SDW)
emanating from the Fe into the Ag has been directly observed. As mentioned above,
the existence of a LOFF type state inside the ferromagnetic layers has been con¬

vincingly reported [Khusainov and Proshin, 1997, 2000; Kontos et al., 2001, 2002;
Guichard et al., 2003], but relatively little attention has been paid to the related ef¬
fects in the superconducting layer. The Low Energy /j,SR technique is ideally suited
to investigating these superconducting properties.



Chapter 2

Introduction to Theory
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2.1 Introduction to Superconductivity

2.1.1 The London Model

In 1935 the London brothers [London and London, 1935] showed that perfect dia-
magnetism observed in 1933 [Meissner and Ochsenfeld, 1933] could be described
easily by the assumption that the supercurrent density Js is proportional1 to the
vector potential A. They suggested that for a superconductor

AJ8 = ~[i0A (2.1)

where A = me/2nce2 and me is the effective mass of the current carriers, nc the
corresponding Cooper pair number density and e electronic charge. Substituting
Maxwell's equations into Equation 2.1 yields the following result

V2B = A (2.2)
Al

where A/, is the characteristic length known as the London penetration depth (A//i0)^
= (me/2nce2)5. A simple solution to this is of the form B(r) = Ba exp (—r/Xi),
where B{r) is the magnetic field penetrating the sample at a distance r from the
surface and Ba is the field at r = 0. It follows that any applied magnetic field
will penetrate the sample with an exponential decay, characterised by A^, which
has the effect of expelling flux from the bulk of the sample, thus explaining perfect
diamagnetism.

The crucial assumption made by the London brothers was that the superconduct¬

ing state can be described by a spatially invariant macroscopic order parameter2,
T, and related to the current density as

jph 9p2
Js = (tf'W - tfW) WA (2.3)

2me me y '
which can be simplified by writing $ as an amplitude and phase y/n^ete, to

AJs = ~ (Jt-V9 + A^j (2.4)
1 Since the London formalism directly relates the supercurrent density with the vector potential

(and not the spatial or time derivative of the vector potential), it will only be valid for a particular
choice of gauge - in this case the London gauge V • A = 0.

2The macroscopic order parameter is defined here to be ns = 2nc, the supercurrent number
density, which does not vary in the London formalism. An explanation of this definition is dealt
with in the section on Ginzburg Landau theory.
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from which Equation 2.1 can be calculated. This does not allow for areas of the

superconductor which are non-uniform such as magnetic domain boundaries, surface
superconductivity and the proximity effect. In particular it does not explain the
existence of the Schubnikov phase, more commonly known as the vortex state, which
was first observed in 1937 [Schubnikov, 1937]. In 1950, a modification to London
theory allowed for possible spatial variation of [Ginzburg and Landau, 1950].

2.1.2 The Two Fluid Model

The two fluid model is a phenomenological description of the temperature depen¬
dence of the superconducting pair density. Electronic heat capacity measurements
of tin in the superconducting state vary roughly as T3 [Tinkham, 1996; Waldram,
1996], increasing to above the linear heat capacity of the normal state, only to re¬

duce to the normal state level sharply at Tc. This anomaly was similar to one

associated with a higher order3 phase transition to an ordered state. This and other
evidence [Tinkham, 1996], suggested the existence of a group of electrons which
have condensed into a new type of ordered quantum state, so a two fluid model was

introduced. The electrons are divided into a normal fluid and a superconducting
fluid, carrying no entropy and subject to no scattering. It was proposed the free en¬

ergy of the normal fluid was proportional to V7n, where /„ is the fraction of normal
electrons. This was to take account of the T3 dependency of the heat capacity. The
density of the superfluid is

n,(T) = n,(0)[l-(T/Tc)4], (2.5)

meaning the temperature dependence of the penetration depth is

MT) = A(0) 1 (2.6)
y/l - (T/%)»

It should be noted that this model has some basis in microscopic theory, but should
be used with some caution as it is only very approximate in certain limits.

2.1.3 The Ginzburg Landau Free Energy

Ginzburg Landau (GL) theory was developed from the Landau theory of phase tran¬
sitions [Landau, 1937] and allowed for the spatial variation of the superconducting
order parameter. For a more complete review, it is best to consult one of the many

3Greater than 1st order
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books concerning this subject [including Waldram, 1996; de Gennes, 1966; Tinkham,
1996]).

Landau's fundamental postulate is that a phase transition can be regarded as a

transition from an ordered to a disordered state. It can be shown by thermodynamic
arguments that when a phase transition occurs, one of the free-energy functions is
the same for both phases; for example, in the liquid-vapour transition it is the Gibbs
free energy.

In a first order transition the first order derivatives of the free energy are different
in the two phases. This means there is a latent heat associated with the phase
transition. In a second (or higher) order transition, the first order derivatives of the
free energy are continuous, but quantities which are proportional to higher order
derivatives (such as heat capacity) are discontinuous.

For a first order transition, suppose the free energy, F(\1*), has two separate
minima whose heights change with temperature. The transition will occur when
one minima moves below the other minima. The higher minimum, although less

thermodynamically stable, may be more locally stable (thus providing a model for
supercooled/superheated states, often seen in liquid-vapour transitions). The phases
corresponding to the two minima will be distinct from one another.

For a second order transition, suppose at the transition temperature Tc, the
minima at T = 0 becomes a local maximum and two new minima appear at T =

±Vv As the temperature falls, these minima move further away from T = 0, as

shown in Figure 2.1. Thus, there are no supercooled or superheated states and there
is no distinction between ordered and disordered states. This is the model used for

the superconducting transition in zero magnetic field.
The order/disorder transition can be described by an order parameter T, such as

the magnetisation in ferromagnetism or the effective pair density in superconductiv¬
ity nc = ns/2. If this order parameter can be externally constrained, the Helmholtz4
free energy will be a definite function F(T), with the order uf the transition depen¬
dent on the form of F(^).

Landau proposed that F(T,T) was an analytic function which can be expanded
in powers5 of T and (T — Tc)

F(T, T) = Fn(T) + r (T)V + Q(T)T2 + 7(T)T3 + ^/?(T)T4 + • • •. (2.7)
4In the case of superconductivity, the relevant free energy is the Helmholtz.
5There are systems where this simple expansion is not possible, but this assumption holds for

superconductivity.
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Figure 2.1: The GL free energy for T < Tc (a < 0) , T = Tc (a = 0) and T > Tc
(a > 0).
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The equilibrium phase corresponds to a minimum in

When T = 0 (in the normal state) there must be a minimum, which suggests
T = 0 for T > Tc. The assumption that T can be expanded as a power series in

(T — Tc) leads to T = 0 at all temperatures. Furthermore, it is not possible to have
a measurable quantity 6 proportional to a wavefunction, so the T3 term should also
be removed, leaving

, T) = Fn(T) + o(T)T2 + \p{T)<H\ (2.9)£

For T = ip0, Equation 2.8 gives

aV>0 + /?Vo = 0 (2.10)

which has solutions ipo — 0 and ^ = —a/p.
It is required that the only solution above Tc is ipQ = 0 and for below Tc ip0 ^ 0.

This can be achieved if —a//3 < 0 above Tc and —a/P > 0 below Tc. If /? < 0, the
free energy would decrease indefinitely for large values of T. Therefore /? must be
positive for all temperatures and the simplest solutions are

a(T) = A(T - Tc)

(3(T) = p{Tc) = P (2.11)

where A and p are positive constants. This leads to Equation 2.10 having the

following solutions

T >TC Vo = 0
±

T<TC i^ (212)
which represent the minima shown in Figure 2.1. In addition to these solutions,
there exists a solution at ipo = 0 for T < Tc, which corresponds to the maxima.

It was stated earlier that GL theory allows the order parameter to be a function

6Odd powers of ^ leads to the free energy being proportional to and d'2 is defined here as
the supercurrent density ns which is a measureable quantity.
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of position. This can be achieved by redefining Equation 2.9 to be an expression
for the free energy density at position r, which is integrated over volume to get the
total free energy density. If T is a function of position, a kinetic (gradient) term of
the form |V^|2 is also expected in the free energy

F(r)=Fn + a|4(r)|2 + i/3|*(r)|4 + V>t(r)|2. (2.13)

A magnetic term must also be included in the GL free energy by adding a vector

potential A, which gives rise to a field H = V x A. This is achieved by the
replacement V —> V ± 2ieA/Ti in Equation 2.13. A magnetic field energy of the
sample and of the coils must also be added thus

F(r) = Fn + a\y(r)\2 + ±0\*(r)\4 + ~\(-ihV + 2eA)y(r)\2 +^ +^. (2.14)
The volume integral of F(r) is the Gibbs free energy density G = U — TS + H ■ M.
The coefficient in the kinetic term is h/2m, where m is the electronic mass and has
no physical meaning [de Gennes, 1966]. It only determines the normalisation of T.

The introduction of the kinetic term effectively limits from changing too

rapidly, as a large gradient in 4/ would lead to a large contribution to F(r). This
is characterised by a length scale over which T can vary, the GL coherence length

[Waldram, 1996]

Cm = (h2/2m\a\)* (2.15)

with a corresponding second critical field

HC2 = *o/27rM2(T). (2.16)

By minimising Equation 2.14 with respect to T using the Euler-Lagrange equa¬

tions of the calculus of variation7 and choosing the correct gauge (V • A = 0) the
1st GL equation can be formed

- 2eA)H + atf + /?|T|2^ = 0. (2.17)
ZJ III

By minimising Equation 2.14 with respect to A and applying Maxwell's equations,
the second GL equation is formed

7This is beyond the scope of this thesis.
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jpfi 4-
Je =— (2.18)

m ' m v '
If a non-spatially varying wavefunction is imposed, V\P = 0 the current density
simply becomes

Je = (2'19)

so the penetration depth can be defined

which is in agreement with the London formalism. The two lengths A and £ have
the same dependency on a and hence T. They both diverge as (Tc — T)~5 when
approaching Tc.

2.1.4 The NS Boundary Energy

Circumstances can arise where there is a boundary between a normal (N) and su¬

perconducting (S) region. In general, the boundary is able to move and if there is
a magnetic field of magnitude Bc in the N region, the movement of the boundary
will not change the total free energy. If the boundary contributes a positive free
energy to the system then the boundary will be stable and will lead to large normal
regions, but a negative free energy contributed to the system implies an unstable
system. A system trying to maximise the area of boundaries will lead to the normal
region breaking up into a finely divided structure of N and S regions.

Pippard was the first to point out that the free energy depends on the relative

magnitudes of A and £, as shown in Figure 2.2 [de Gennes, 1966]. If A £ the
magnetic field will penetrate some distance into the superconductor but the free
energy will not be depressed significantly. The reduction in the field self energy

per unit area due to the penetration will be of the order AF > /, so a negative
boundary energy is expected. If £ 3> A, the opposite is true.

The ratio k = A/£ can be used to determine whether the boundary energy is
positive or negative. It can be shown [Waldram, 1996] by considering the extreme
values of k that the condition n = l/\/2 separates two types of behaviour. Type
I superconductors have n < ly/2 and positive NS boundary energy, whilst Type II

superconductors have k > ly/2 and negative NS boundary energy.
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Figure 2.2: The coherence length, £, and penetration depth, A, for two different n
values: a) k > l/\/2 negative boundary energy b) k < l/\/2 positive boundary
energy.

2.1.5 Type II Superconductivity

When the NS boundary energy is negative, it is energetically favourable to try and
maximise the size of the NS boundaries. Consequently, tiny lines of magnetic flux
thread through the superconductor, with the flux density within minimised. A flux-
line consists of a normal (non-superconducting) core with a radius of the order of
£ (the distance at which the order parameter can change), with circulating super-

currents falling off as exp(—r/A) at large distances. The nature of the circulating
supercurrents is similar to a vortex in a non-viscous liquid, so the flux lines are often
referred to as vortices. The vortices are also quantised. By taking a line integral
of Equation 2.4 around a loop which remains entirely inside a superconductor, it is
clear that it must be a multiple of 2ir and leads to

where n is an integer. Well away from an isolated vortex core, Js — 0, so the left
hand side becomes § A - dl, which is just the flux <E> passing through the loop. Thus

(2.21)

<f> = n<E>0 (2.22)

where <f>0 is the flux quantum

(2.23)
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For a system with negative NS boundary energy, the minimum energy state will be
one where the NS boundary area is maximised. It follows that n=l. Note that this

argument only holds on a loop where Js = 0, which is not possible in rings thin
compared to the penetration depth and in Josephson junctions, to mention just two.

The interactions between vortices are strong, but become vanishingly small when
the average distance between the vortices is much larger than the penetration depth.
For isotropic superconductors, the net interaction between vortices is repulsive and a

perfect lattice of flux lines is formed8. Abrikosov [Abrikosov, 1957] first predicted the
lowest free energy for a flux line lattice (FLL) was square, but it was subsequently
shown that the lowest free energy is in fact gained from a hexagonal symmetry

[Matricon, 1964],

8 Assuming there is no disorder introduced by pinning or thermal fluctuations, for example.
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2.2 High Temperature Superconductors

2.2.1 Anisotropy

In the Lawrence-Dorniach model [Lawrence and Doniach, 1970], layered supercon¬

ductors are modelled as a stack of two dimensional superconductors coupled via

Josephson currents between layers. The GL free energy for such a system is then

[Tinkham, 1996]

F(r) = £F„ + a|«<(r)|2 + i/?|f(r)|4 + J?- d^i(r)
dx

h2

+
d4fi(r)

dy

2mrs2 I^M-vp^r)!2 (2.24)

where the vector potential and magnetic field energy have been removed from the
free energy and an expansion of the derivative for the 2 term is added, both for

simplicity. The summation is performed over i layers, 2 is the coordinate along the
c-axis, x and y are the coordinates along the ab-plane, s is the inter-planar distance
and the masses mab and tnc are the anisotropic effective masses of the electrons. The
mass anisotropy alters the definition of the coherence length, so that it is anisotropic,
to

t(T) = {h2/2mj\*\)1i (2.25)

where rrij are components of the anisotropic mass tensor for the three principle axes

a, b and c. The quantity 7 can be defined as the anisotropy factor [Tinkham, 1996]

^ / rnc \ Ac ^ab Hc2\\ab ^ci\\ab ^ 20^\TflabJ Aab Sc Hc'2\c 11cl :1c

It is clear that when applying a magnetic field parallel to the c-axis, the structure
of the induced vortices will be affected by anisotropy of the system. In a layered
system like the HTc's, one can think of the superconductor as an array of thin films
separated by insulating layers. Two situations arise that are of interest and can be
thought of in the following manners.

Firstly, the case where the tunnel currents between layers are assumed to be zero

[Efetov, 1979; Artemenko and Kruglov, 1990; Buzdin and Feinberg, 1990]. In this
case, the vortices form 2D pancakes which are coupled together logarithmically and
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Figure 2.3: Schematic diagram of a layered vortex structure.

are schematically shown in Figure 2.3. The attractive interaction potential V(R)
between two isolated pancake vortices at a distance R from one another on different

superconducting layers is purely of electromagnetic origin [Blatter et al., 1994] and
is given by

Vem{R) « ^o^e-l2l/A In ^ (2.27)
for A R and

Vem(R) « 2de0 In f-M (2.28)

for |z| <C R A, where d is the superconducting layer thickness, 2 the pancake
separation perpendicular to the film surface, which is approximately the layer sep¬

aration 2 ft: S.

The second situation is when the currents between layers are not negligible, where
in addition to the electromagnetic coupling, Josephson coupling occurs [Artemenko
and Kruglov, 1990; Chakravarty et al., 1990; Feigelman and Vinokur, 1990]. At this
point it becomes convenient to introduce a screening length [Blatter et al., 1994]

T = d/7. (2.29)

For R < T, the Josephson currents are small and the system essentially acts as

a system of 2D layers, where electromagnetic coupling is dominant, as above. For
R > T, currents between layers are present and continuous anisotropic 3D behaviour
occurs. The interaction potential is given by [Blatter et al., 1994]
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Vj(R) = de0(R/ r)2ln (2.30)

for R <C T,

(2.31)

for T <SC R <C A/7, and

Vj(R) ~ 2dco"p~ (2.32)

for A/7 <C i2.
When considering the role of electromagnetic coupling and Josephson coupling,

it becomes clear electromagnetic coupling is larger at very small distances, rapidly
falling off at larger distances but extends weakly over very large (infinite) dis¬
tance. Consequently, predominantly 2D behaviour is predicted, with pancake vor¬

tices formed within the layers that interact weakly between the layers. The vortices
exhibit long range ordering (of sorts) along the c-axis, but with large short wave¬

length transverse fluctuations. Josephson coupling is dominant if the currents are

able to flow between layers (R > T). Consequently, in the Josephson coupling
regime, one would expect some flexibility within a vortex line, compared to the

weakly interacting 2D pancakes observed when electromagnetic coupling is domi¬
nant.

Inhomogeneities in the crystal structure can perturb the superconducting wavefunc-
tion and act as pinning sites for vortices, thus disturbing both the short and long
range order of the FLL. The pinning sites can originate from point-like defects of
similar size to £ (such as oxygen defects in the high temperature superconductors
(HTc's) ) or from extended defects (such as twinning or grain boundaries). It has
been shown [Giamarchi and Ledoussal, 1994; Blatter et al., 1994] that in equilib¬
rium, the crystalline long range order of the vortex lattice is unstable when random
pinning is introduced, for dimensions less than 4. Thus, real vortex systems can

never have a long range ordered lattice in the presence of arbitrarily small quenched
disorder [Blatter et al., 1994]. Hence the phrase Bragg Glass (BG) has been coined
as a better description than flux line lattice. In this thesis, BG and FLL are used

indiscriminately. For an extensive review of the effect of pinning on vortices (among

2.2.2 Pinning
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other things), please refer to Blatter [Blatter et al., 1994],
Single point-like defects will have a small effect on stiff vortices, as the reduc¬

tion in the free energy due to the single pinning defect will be much smaller than
the effect of the Lorentz force acting on the vortex. Vortices pinned to correlated
collective inhomogeneities, on the other hand, may reduce the free energy of the su¬

perconductor significantly, as the reduction in free energy due to the pinning defects
along the line of the vortex are added together. When the disorder is produced by
an extended defect, the pinning potential is correlated over the size of the defect.
For point-like defects perturbing the superconductor, the correlation lengthscale is
smaller than the coherence length and therefore is effectively zero. In this case, the
smallest possible transverse fluctuations are given by the coherence length [Blatter
et al., 1994]. Correlated pinning, such as twin boundary pinning, therefore has a

much larger effect on the vortex lattice compared to uncorrelated pinning. The vor¬

tices are attracted to the twin planes, leading to a higher concentration of vortices
in the twin boundaries than in the bulk. Motion along the twin boundaries is also
affected, as demonstrated by the field and current density along the twin planes,
which are more hindered than in the bulk [Blatter et al., 1994].

2.2.3 FLL Melting

Another property of the vortex lattice is the appearance of a vortex liquid; a state
in which the vortices are free to move and all long range spatial order is absent,
occurring within a particular temperature and field range of the magnetic phase
diagram. Fluctuations give rise to overdamped phonon-like excitations of the vortex

position and when these fluctuations get sufficiently large, the lattice melts into a

liquid. In conventional superconductors fluctuation effects are generally quite small,
since the fluctuation length is determined by the flux quantum and temperature

[Fisher et al., 1991]

?t=St <2'33>
which is much larger than any other length (penetration depth, coherence length
etc.), unless close to Tc. The comparatively large superconducting transition tem¬

perature of the HTc's, large anisotropy, shorter coherence length and longer pene¬

tration depth increase the effects of thermal fluctuations. A consistent theory for
bulk 3D melting is lacking, so the position and shape of the vortex lattice melting
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is usually (somewhat unsatisfactorily) determined by the Lindemann criterion [Lin-
demann, 1910; Blatter et al., 1994]. In the intermediate range Hc\ <C H <C Hc2, the
melting line takes the form

where the Lindemann number cl — 0.1 — 0.2 and G, is the GL number. Not only
does the melting line depend on the temperature, but also the applied field. With
decreasing field, the vortices increase their separation and eventually the vortex-
vortex interaction becomes exponentially small, so consequently the shear modulus
decays rapidly and the melting line develops a re-entrant behaviour [Blatter et al.,

A related effect is the irreversibility line (IL), where the vortices cross over from
a dissipative to non-dissipative regime. If one increases the temperature at a fixed
field (such that it will cross the melting line), one would expect the vortices to
overcome any pinning potential and be free to move. However, vortices that have
melted may still be dissipative due to the pinning landscape still having an effect
on the vortices. By increasing the temperature further, there comes a point where
the vortices are no longer dissipative due to their increased thermal energy. The
superconductor is said to be irreversible and features related to this can be observed
in magnetisation measurements.

(2.34)

1994],
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2.3 Introduction to Magnetism

2.3.1 Overview

From a simplistic point of view, a magnetic moment is a vector quantity and is due
to moving charges. In atomic systems there is a contribution from both spin and
orbital angular momentum (AM). Atomic systems have many electrons contributing
to the magnetic moment and in this case the total momentum is the vector sum

of all contributions from all electrons. Classically, when electrons are paired, the
contribution from the two electrons "cancel" each other out, analogous with the two
electrons orbiting "clockwise" and "anti-clockwise". Systems with non-interacting
unpaired electrons, where orbital and/or spin AM are not cancelled, are known as

paramagnetic. Materials without a paramagnetic moment show a weak negative
susceptibility and are known as diamagnetic. Ferromagnetic materials exhibit a

long-range ordering phenomenon which causes unpaired electron spins to line up

parallel with each other via an exchange interaction. An anti-parallel alignment of
spins can occur, known as antiferromagnetism, which depends on the details of the
interaction between spins.

For a single electron, the orbital AM contributes

to the magnetic moment, where p# is the Bohr magneton, I is the quantum number
associated with orbital AM and takes a value I = 0,1,2.... The spin AM can be
treated in a similar manner to orbital AM and contributes

where s is the spin quantum number, gs is the Lande g-factor and for an electron,
s = ±h. For a multi-electron atom,9 where the electrons are combined via Hund's

rules, the magnetic moment of the atom can be thought of as a vector sum of all
contributions from all electrons in the atom. The total angular momentum, J, for
an atom is then given by the addition of the orbital L — ]T]Z and spin S =

angular momentum contribution

(2.35)

(2.36)

J = S + L

9Valid for a "light" atom, where j-j coupling is negligible.

(2.37)
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and the magnetic moment is

A4 = A4bQJJ, (2.38)

where gj is the Lande g-value [Blundell, 2001].
In an applied magnetic field, B, the energy of the system is

U = —fx ■ B = —jiB cos 9. (2.39)

The minimum energy of the system is when cos 9 = 1, so there is a torque on the
moment to align it with the applied field. If an object has an AM, whose magnitude
is constant, the moment associated with that AM is at an angle to the applied field.
A torque is present that can not align the moment with the applied field, leading to
a precession around the field. The total AM must change direction with respect to
time but with constant magnitude and projection along field (mz).

In the non-relativistic limit, the Hamiltonian for a charged particle i at position r in
a magnetic vector potential, assuming non interacting electrons, is [Blundell, 2001]

The dominant perturbation to the original Hamiltonian, TC0 is usually hb(L + gsS) ■

B, the paramagnetic term and requires "unpaired spins". In the absence of inter¬
actions between the unpaired spins, the paramagnetic term will only present in an

applied field. The third term, (e2/8me)J2i(B x r\)2, is the diamagnetic moment
and is summed over all electrons and only present in an applied field.

All materials exhibit diamagnetism. The effect is often explained using a classical
view. However, the origin of diamagnetism is purely quantum mechanical. Assuming
the paramagnetic part of Equation 2.40 is zero (i.e no unpaired electrons) and using
1st order perturbation theory, it can be shown that the diamagnetic susceptibility
is [Blundell, 2001]

for N ions, each with Z electrons.

Paramagnetism corresponds to a positive susceptibility with respect to an applied

2.3.2 The Different Types of Magnetism

n = Ho + Vb(L + gsS) • B + ±- J2(B x r,)2. (2.40)

(2.41)
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magnetic field and one has to take into account the total AM, as demonstrated in

Equation 2.40. For free paramagnetic ions in the absence of an applied field, the

paramagnetic moments point in random directions. Using semi-classical arguments,
it can be shown that the paramagnetic susceptibility is [Blundell, 2001]

for n magnetic moments, /i, per unit volume. This is inversely proportional to

temperature and known as the Curie law.
In order to understand ferromagnetism, antiferromagnetism or any other type

of long-range magnetic order, one must consider the exchange interaction. This is

nothing more than the Coulomb interaction reducing or raising the energy when two
or more electron wavefunctions overlap. The spin dependent term in the effective
Hamiltonian between the ith and jth interacting spins, Sl and Sj, can be written

where J is the exchange constant between the two electrons and the sign of the ex¬

change constant determines whether there is ferromagnetism or antiferromagnetism.
If two electrons on neighbouring atoms interact via an exchange interaction, then
this is known as "direct exchange". Direct exchange between magnetic ions is rela¬
tively uncommon. Usually long range magnetic order occurs via one or more complex
mechanisms; for example, super-exchange, band ferromagnetism and coupling via

spin density waves.

2.3.3 Spin Susceptibility of the Electron Gas

When a magnetic field is applied to a metal, the energy of each electron is raised or

lowered according to the electron's spin. This is schematically shown in Figure 2.4.
For non-interacting particles, neglecting Fermi surface smearing at finite tempera¬
tures and the orbital AM contribution, the magnetisation of a state with unequal
spin up and down electrons is

assuming the Lande factor, gs=2. The magnetic susceptibility is then [Blundell,

(2.43)

M = pB(nT - rq) = y/4# (2.44)

2001]
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Figure 2.4: Occupied electronic states in an applied field. Those electrons with
spins parallel to the applied field are of lower energy. The energy gap is greatly
exaggerated.

m _ M _ 3^ (2 45)
This simple approach is more commonly referred to as Pauli Paramagnetism. Even
though the expression in Equation 2.45 is temperature independent, if the temper¬
ature dependence was included via the Fermi-Dirac function, it would only show
moderate temperature dependence. This is in direct contrast with the susceptibility
of paramagnetic insulators (see above), where there is a large temperature depen¬
dence as described by the Curie law. This is due to the number of electrons involved,
as generally in an insulator at least one electron per magnetic atom contributes to
the susceptibility. By contrast, it is only those electrons close to the Fermi surface
that contribute in a metal. This is in good qualitative agreement with experimental
evidence, as the susceptibility of many metals10 varies only by a few percent over a

500K range [Martin, 1967].
Implicit in the argument presented above is a non-spatially varying magnetic

field, which is insufficient to describe a number of systems. For example, in metallic
systems with dilute paramagnetic impurities, the electron gas will respond to this
perturbation according to the wavevector dependent spin susceptibility [Blundell,
2001; Martin, 1967]. Assuming the electrons see a spatially varying magnetic field

10Transition metals can be somewhat more complicated and will not be dealt with here.
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H(r) = Hq cos(</ • r) (2.46)

the perturbing Hamiltonian is

Hm = \Hq\ cos(q • r) (2.47)

for both spin orientations. A plane wave il>k±(f) = (l/\/K)e,fc'r|±) is weakly per¬

turbed into "0(fe+q)±(r) and '0(fc-q)±(r) such that the wavefunction becomes

Mr) = (e± gi(q+fc)-r gi(q-k)-r
+

Ek+q Ek Ek—q Ek l±> (2.48)

where Ek = h2k2/2me. It can be shown that [Blundell, 2001]

h/>fe±(r)|2 = -(l± 9 qVne
r

+
(k + q)2 — k2 (k — q)2 — k2

cos q • rj ,
(2.49)

and by summing over all electrons in the Fermi sphere and using

M(r) = ^r^(l^fc+(r)|2 - \^k-ir)\2)
it can be shown that [Blundell, 2001]

'i Ak2 — n2
x(q) — Mq/Hq= x(0) ( - ■+ 'n

2kp + (j

(2.50)

(2.51)2kp — q

This neglects the Coulomb and direct exchange interaction of the itinerant electron
gas and assumes the electrons are in quasi-free plane wave states.

The q-dependent paramagnetic susceptibility of the electron gas has significant
consequences for the real space magnetic behaviour of a system with a delta function
perturbation. A delta function can be decomposed into a sum of all frequencies

H(r) = S(r)H = ^ j Hqexp^rd3q. (2.52)

The response of the electron gas to a delta function can be calculated by a simple
Fourier transform [Martin, 1967]

X<r)=(2^/^(1 +
4kj, - q2

4kpq
In

2kp -j- q

2kp — q
exp

ig.rd3t (2.53)
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Figure 2.5: A plot of the RKKY interaction.

which reduces to

. . 2kFx(0) f s'm(2kFr) — 2kFr cos(2kFr)xM = ; [
and is plotted in Figure 2.5. This is more commonly referred to as the Ruderman
Kittel Kasuya Yisida (RKKY) interaction. The susceptibility (and hence magneti¬
sation) is proportional to cos(2kFr)/r3 at large distances and diverges at small r.

This divergence is a consequence of the assumed delta function and is a reason¬

able approximation for the effect the RKKY interaction was initially proposed for.
It was used to explain a localised nuclear moment polarising the electron gas and
the subsequent interaction of the electron gas with a second nuclear moment. This
indirect exchange can be ferromagnetic or antiferromagnetic, depending on the dis¬
tance (and oscillation period) between nuclear moments (which determines the sign
of the exchange constant). The influence of a non-spherical fermi surface [Roth
et ai, 1966] or of quantum confinement of electrons in metallic thin films [Bruno
and Chappert, 1991; Bruno, 1991; Bruno and Chappert, 1992] in the context of the
RKKY interaction will be dealt with in Chapter 6.

(2.54)
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Figure 2.6: x(q) in the normal and superconducting state.

2.3.4 Magnetism and Superconductivity

Until the Bardeen, Cooper and Schrieffer (BCS) theory of superconductivity [Wal-
dram, 1996] the only magnetic effects taken into account were in prevailing phe-
nomenological theories associated with the motion of the superfluid. These were de¬
scribed by the London equation or Pippard's generalisation [Waldram, 1996]. BCS
theory predicts that the superconducting state could be described by the tendency
of the electrons near the Fermi surface to form a coherent state in which pairs of
electrons, known as Cooper pairs, are bound with anti-parallel spins and equal and

opposite momentum. Because the Cooper pairs are of finite size and not point-like
particles, they spatially overlap with one another and strongly interact. Conse¬
quently the binding energy becomes cooperative and the energy released when a new

pair joins the condensate depends on how many pairs are already bound [Waldram,
1996]. Thus, BCS predicts a single transition temperature, below which bound pairs
exist in equilibrium with common pair momentum, above which no pairs exist. In a

spatially varying exchange field, such as one described in the section above, the con¬

duction electrons must have an average polarisation which is not possible according
to the "simple" BCS picture.
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However, the coexistence of superconductivity with magnetism is indeed ob¬
served. There are a number of possibilities that exist in the BCS formalism that can

take account of this. A spin dependent scattering process can restore some electron
spin polarisability in the superconducting state in a particular direction in k-space.
Another possible mechanism is a non uniform arrangement of spin impurities (para¬
magnetic impurities) which favour one particular Fourier component of the electron
gas [Anderson and Suhl, 1959]. The spin susceptibility of the superconductor Xs

with zero wavenumber is zero. At wavenumbers approaching the coherence length,
Xs approaches the normal state susceptibility Xn> although it is always less than Xn-

Figure 2.6 shows a schematic diagram of the different q-dependent susceptibilities
for a normal metal and a superconductor. By considering free energy arguments, it
has been shown that the maximum in Xs(q) is [Anderson and Suhl, 1959]

qD ~ (37t£^/£0)1/3 (2.55)
and for a typical metal, 1/<7d ~ 50/1.

Ferromagnetic alignment of paramagnetic impurities when dissolved in non¬

magnetic metals is a well known phenomenon. However, when the host metal is
a superconductor, Larkin, Ovchinnikov, Fulde, and Ferrell (LOFF) proposed [Fulde
and Ferrell, 1964] a theoretical construct to take account of the experimental evi¬
dence of the ferromagnetic alignment persisting into superconducting state [Matthias
et al., 1958; Phillips and Matthias, 1961; Matthias, 1962], This superconducting
ground state is indeed quite different from that of a conventional BCS ground state.
To tackle the problem, it is assumed there is no superelectron scattering and the
superconducting electrons are assumed to be in a constant exchange field which only
acts upon their spin. By assuming the exchange field can split some of the Cooper
pairs into "normal" electrons, whilst some coherent pairing takes place, it was shown
the pairing state has finite momentum. This is because the Fermi surface is assumed
to have a cap-shaped portion which is only occupied by unpaired electrons of one

spin orientation (along the exchange field), with the corresponding opposite portion
absent of electrons of opposite spin. These regions, whilst lowering the magnetic

energy, are lost to the BCS pairing state, which therefore gives less energy lowering
than the BCS state. The pairing state must also be modified for another reason.

The asymmetric distribution of spins in the Fermi surface implies a net current, so

the remaining super-electrons must carry a counter current. Therefore the super-

electrons are paired with wavenumbers of -k and k+Q, such that the momenta do
not lie in the "blocked" region of unpaired electrons. The choice of Q depends on
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the size of the "blocking" region and the magnitude of the superconducting gap.
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3.1 Small Angle Neutron Scattering

3.1.1 Overview

Small angle neutron scattering is a well established technique in condensed matter

physics. The neutron can penetrate most materials deeply into the bulk and since
the wavelength of thermal neutrons is comparable to atomic spacing, diffraction
(and coherent interference) from periodic structures yields unique information on

the microscopic scale. The neutron's magnetic moment also allows scattering from
magnetic structures, so SANS is a useful technique in investigating magnetism and

superconductivity; it allows scattering from vortices and magnetic moments. The
technique will be summarised in this section, but a more rigourous and in-depth
review can be found elsewhere [for example, Byrne, 1994; Bacon, 1975]).

3.1.2 Fundamentals of Neutron Scattering

The neutron is a spin-half particle, with zero overall charge, a mass of 1.007 a.m.u.

and a magnetic dipole moment of -1.913/r^. In the neutron scattering experiments

presented here, the neutrons are produced by either a spallation source (at the Paul
Scherrer Institute (PSI)) or result from a nuclear fission process (at the Institute
Laue Langevin (ILL)).

SINQ is situated at the end of a cascade of three accelerators that deliver a

proton beam of 590 MeV in energy at a current up to 1.8 mA. The neutron beams
are extracted from a heavy water moderator surrounding the target, which is an

array of lead rods enclosed in stainless steel tubes and cooled in cross flow by heavy
water coolant. The Small Angle Neutron Scattering (SANS) instrument covers the
Q-range from 6 x 10~3 nm"1 to 5.4 nm-1 for the detector displaced laterally by
50 cm up to 10.5 cm. Incident neutron flux is 9.02xl07 Ncm_2s_1. The two-

dimensional detector has 128 x 128 elements of 7.5 x 7.5 mm2 and can be positioned
at any distance between 1.4 and 20 m from the sample. The magnet used is an 11T

cryomagnet, which can be tilted in both directions by up to 10° and rotated through
a full circle and has a sample temperature range of 1.5K to 300K. The investigation
of structures ranging from about 1 to 400nm can be measured by this instrument,
making it ideally suited for investigations of fluxlines in superconductors.

At the ILL, the "high-flux" reactor operates at a thermal power of 58 MW using
a single fuel element and an operating cycle of 50 days. There are hot, thermal and
cold neutrons available at different beam tubes. The single fuel element sits in the
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centre of a tank of 2.5m diameter containing the heavy water moderator. Cooling
and moderation is by heavy water circulation passing through the fuel element,
which is then cooled by the heat exchangers. Biological shielding is provided by a

light water assembly surrounding the reflector tank, encased in dense concrete. D22
has a very high flux (1.2xl08Ncm~2s_1) at the sample in a wavelength range of 0.45
to 4 nm. The detector is similar to that of the PSI SANS detector with 128 x 128,
7.5 mm2 pixels and can be positioned from 1.25 to 18m. The horizontal offset can

be set from -5cm to 50cm and the rotation about both axis is ±2°. The magnet
used is a 3T cryomagnet which has a sample temperature range of 1.8K to 300K.

Neutrons undergo both nuclear and magnetic scattering and can be understood
by a simple optical model. The refractive index n of the neutron, in accordance to
Snell's law, is

sine*! Vi
=

T7 = n (3-1)
Sin Ct2 V2

where 1 and 2 correspond to two different media, a is the angle of incoming/outgoing
neutrons and V is the neutron velocity. For de Broglie waves, where the relevant
velocity is the group velocity (and not the phase velocity as is the case with electro¬
magnetic waves), the correct definition of the refractive index is

ko Ai . .

n=kl = T2 <3'2)
where k is the wavevector and A is the wavelength of the neutron. The neutron
refraction phenomena can be understood in terms of the neutron's total energy. If
a neutron with a kinetic energy of £*. = |mw2 enters a medium where the neutron
interacts, the total energy of the neutron must remain constant. For a constant
interaction energy U, the total energy of the neutron is

1 h2k2 h2k2
2 1 2 i y t /1 n\-mvt = —— — — b U. (3.3)2 1 2m 2m v '

Thus, the refractive index is related to the kinetic energy relative to the interaction

energy

(3-4)

The interaction potential of a neutron in a simple form is

o 12

V(r) = b8(r — rN) (3.5)
m
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where <5(r — rjv) is a Dirac delta function and the vectors r and r^ the position of
the nucleus and neutron respectively. The total interaction energy is the sum of all
potentials over all positions rjv, which leads to a refractive index of

n
, 4?rNb1 - (3.6)

where the average coherent scattering length is given by

(3.7)
JV

1=1

This scattering length is general for both magnetic and nuclear scattering, as the
neutron has a magnetic moment. In fact, if a ferromagnet is used as the scatter¬

ing surface inside a beam guide, the spin dependence of the refractive index is an

effective way of producing spin polarised neutrons. This is possible because it can

be arranged that only one spin state will undergo specular reflection inside a beam

guide. Neutron scattering lengths for both nuclear and magnetic scattering will be
discussed in more detail later.

A typical value for the refractive index (from nuclear scattering only) is 10~6,
which is extremely small compared to unity. This leads to a small critical angle 9C —

cos-1 n 1CT3 degrees. This principle is the one used to transport low background,
long wavelength neutrons from the source to the instruments. The extremely low
critical angle reduces flux considerably, as many neutrons escape the beam pipe near

the source. But this in fact acts as a filter, as fast (short wavelength) neutrons will
not fulfill the critical reflection condition, resulting in a beam consisting of only long
wavelengths and experimental areas relatively free from gamma radiation, as typical
neutron guides are 10-100m away from the production target/reactor.

Both SANS instruments used here use similar physical and experimental prin¬

ciples and a diagram of a SANS instrument is shown in Figure 3.1. The velocity
selector consists of a spinning drum of neutron absorbing material, with propagation
channels to let the neutrons through. By placing the velocity selector at an angle
to the incident beam and rotating the drum at a given speed, both neutron velocity

(hence wavelength) and bandwidth can be selected. The collimation section is used
to define beam divergence and comprises of two pinholes of varying sizes and sepa¬

ration. Typical diameter used is 16-25mm, with a spacing of up to 20m (depending
on detector distance). The detector consists of a 20m long stainless steel tube (18m
on D22), with a 3He enriched gas inside. As the neutron passes through the gas,

it undergoes nuclear capture (n+3He—> p+3H) and the proton consequently ionises
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Figure 3.1: A schematic diagram of a SANS instrument.

^He, which is detected by a grid of wires (anode) at a high potential. The grid is
moveable within the detector tube, to allow a large range of scattering angles to be
measured.

3.1.3 Neutron Diffraction, the Reciprocal Lattice and the
Ewald Sphere

Standard methods of optics can be used to describe neutron diffraction from slits and

periodic arrays. The similarities between neutron diffraction and X-ray diffraction
are apparent and it is immediately obvious that if a beam of neutrons leaves a system
of slits in a neutron absorber (shown in Figure 3.2), the condition of constructive
interference is

nX = dsin 9. (3.8)

For a periodic lattice of scatterers in 3 dimensions, diffraction is easier to under¬
stand in terms of translational vectors of a unit cell. The unit cell of a Bravis lattice

can be described by three basis vectors, a. b and c, such that the unit cell position
is given by

r = n\a + n2b + n3c (3.9)

where 0 < n* < Ni — 1 and N = NiN2N3 is the total number of unit cells. The
basis vectors of the reciprocal lattice a*, b* and c* are defined as
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Figure 3.2: Periodic slit diffraction.

* 271"
a = —b x c

2tt
b = —c x a

* O

c* = X b (3.10)
*O

where V0 is the unit cell volume. The amplitude of the incident neutrons at r is

A = A0eiKr, (3.11)

which are diffracted by the lattice. Assuming only elastic scattering, the observed
amplitude at a point R is

A = A0eiK'Rfei(K'-K>r (3.12)

where the initial and propagation vectors of the incident and scattered neutrons are

denoted by K and K', respectively, and / is the fraction scattered. The scattering
vector q can be defined as

K' = K — q. (3.13)
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Figure 3.3: The Ewald Sphere construct in Reciprocal space. In order to satisfy
the Bragg condition the scattering vector must coincide with a reciprocal lattice
vector, which is also demonstrated by the reciprocal lattice points lying on the
Ewald Sphere.

The sum of scattered neutrons over all lattice sites is

A = A0eiK'Rf ^2 e^K' _/c)'(Tlia+Tl2b+n3C) (3 14)
ni,n2,ri3

In order to see non-zero diffraction, all unit cells must add up in phase, which implies

q ■ a = 2irh

q ■ b = 2nk

q-c = 2nl (3.15)

where h,k and I are integers. From equations 3.10 and 3.15 it can be seen that the
diffraction condition is

q = ha* + kb* + Ic* (3.16)
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for planes with Miller indices (h,k,l), i.e q is confined to a reciprocal lattice vector. It
is useful to conceptualise this with the Ewald sphere construct, as shown in Figure
3.3. It is clear from the Ewald condition that Equation 3.13 corresponds to the

Bragg condition

q — 2K sin#. (3-17)

Unless a quantitative set of scattering intensities is required, Bragg's law is all
that is needed to conduct a Small Angle Neutron Scattering (SANS) experiment.
However, detailed analysis of the scattered intensities allows the absolute form factor
to be determined and thus physical quantities may be extracted, as discussed for
the flux line lattice in Section 3.1.7.

3.1.4 The Differential Scattering Cross Section

The scattering intensity is found from the differential scattering cross section, which
describes the fraction of neutrons per second that are scattered into a solid angle

dQ, and is given by

2

(3.18)

where n is the sum over all scatters and bn is the scattering length of the n'th scat-
terer. Magnetic and nuclear scattering is contained within the different expressions
for the scattering length.

da

dVt
,iQrn

3.1.5 Nuclear Scattering

Nuclear scattering is a short range interaction that acts over distances of the order
10-14m and a schematic diagram of potentials is shown in Figure 3.4. The nuclear
cross section is calculated from the sum of scattering over all atoms, which can

be split into two sums: the first sum is over atomic positions within one unit cell
and the second over all unit cells in the crystal. Given the position of atoms to be

(riih + n2fc + n3Z)+rm, where rm is the atomic position within the unit cell, the
nuclear differential cross section is

da

dfl y* e2ni(nih+n2k+n3l) gW Tf-rm
^ vUm^

711,2,3

where bm is the nuclear scattering length for elements/isotopes. The first sum in

(3.19)
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Equation 3.19 can be expressed as a sum of delta functions, positioned at all recip¬
rocal lattice vectors Q = ha* + kb* + Ic* [Eskildsen, 1998; Bacon, 1975]

e'2ni(nih+n2k+n3l)
"1,2,3 Vo NJ26(q-Q). (3.20)

The nuclear structure factor can be defined as

F(q) = Ebmei"- f*m (3.21)

which leads to the following expression for the nuclear differential scattering cross

section

(3.22)

E= Iff
2m

V=0.

V=v„
-H K-

R~10
14

Figure 3.4: Potential well representing the neutron-nucleus interaction.

3.1.6 Magnetic Scattering

Any ordered magnetic structure in a sample will produce scattering due to the
neutron's magnetic moment. This leads to the scattering cross section having two

parts; nuclear (6jv) and magnetic (6m) scattering. The magnetic moments and fields
have a direction associated with them, which means the scattering length becomes
a vector quantity, with scattering dependent on the neutron spin, i<x, relative to
the magnetic moments/fields. Thus

where

6 — 6jv + 6m (3.23)
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bM — <5" • &m- (3-24)

In the Born approximation, the scattering length for a magnetic field distribution is

bM = - VJQ} (3.25)4nh /2mn
where mn is the neutron mass, V(q) is the Fourier transform of the interaction
potential, V(r), is

V(r) = ■ B(r), (3.26)

where 7 = 1.91 is the neutron gyromagnetic ratio and //jv = —9.65 x 10~27JT_1.
The potential can arise from any magnetic structure, such as the FLL, or magnetism
from the electronic structure of atoms. If the magnetic structure is commensurate,
a magnetic structure factor can be found in a similar way to the nuclear scattering
by summing just the magnetic unit cell. If it is incommensurate, the whole crystal
must be evaluated.

3.1.7 Scattering from the FLL

Scattering from the FLL can be thought of as scattering from periodic magnetic
moments. The scattering length for an Abrikosov lattice is

7V>N
jfll = 731X47Th /2mn

where B(r) is given by the Fourier series

J B{r)eiqrdr (3.27)

B{r) = Y,h(g)e"'. (3.28)

Thus from Equation 3.22, by measuring the scattered intensity from the FLL, the
magnetic form factor, |/i(q)|2, can be obtained. Due to imperfections in the FLL and
the finite instrument resolution, the Bragg peaks are not delta functions. In order to
relate the measured spot intensity to the form factor, the integrated intensity must
be measured by "rocking" through the reflections. The integrated reflectivity for a

FLL can be calculated from magnetic cross sections [Squires, 1978] and is given by
[Christen et ai, 1977]

/(««) = W (^)2 <3-29>
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where <t> is the incident neutron flux and V the sample volume. In practice the

integrated intensity is measured by fitting a Gaussian or Lorentzian to the intensities

(normalised to the full beam intensity) collected at discrete angles.
Calculating the magnetic form factor of a FLL requires an in-depth knowledge

of the exact field distribution. The simplest approximation is using the London
equations, which can be modified to contain a FLL

AlV x V x B + B = £$0X^20(7" - n). (3.30)
i

By taking the Fourier expansion in Equation 3.28,

h{q) = (3'31)

which is completely unphysical as it assumes zero core size. It is, however, a good
approximation for extreme type II superconductors [Aegerter et ai, 1998]. HTC's
are a good example of extreme type II superconductors due to their long penetration

depth and very short coherence length. Unfortunately, due to the long penetration

depths, the total scattering intensity of HTC's is considerably lower than for con¬

ventional superconductors.
For superconductors where the coherence becomes an issue, the effect of a finite

c2 2
core of radius £ can be represented by a Gaussian cut off 9 , where c is a constant

[Yaouanc et ai, 1997]. Therefore, measurements of the FLL form factor can be used
to calculate values for the penetration depth and coherence length. A more realistic
model for the form factor is the Clem model [Clem, 1975], which is more accurate
in the vicinity of the vortex core. This will not, however, be covered here.
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3.2 The nSR Technique

3.2.1 Overview

Muons are spin 1/2 leptons with a halflife = 2.19709(5)/lxs, ± one electronic
charge and a mass 105.65839(29) MeVc-2 [Anon., 1984], The use of spin polarised
muons to probe solids, liquids and gases is referred to as fiSR: Muon Spin Rota¬

tion/Relaxation/Resonance, where the "R" is determined by the nature of applica¬
tion of the muon. Both positively and negatively charged muons are used as probes.
When a negative muon is implanted into a solid, it is captured by an atom and cas¬

cades into the lowest muonic orbital. This is comparable with the radii of a heavy
nuclei, so it would normally undergo nuclear capture (//~p —► nv^). This results in
complex behaviour beyond the scope of this thesis, as this thesis is concerned only
with the use of positive muons. Positive muons implanted into a solid undergo a

rapid Coulombic thermalisation [Blundell, 1999], after which muons "stop" at inter¬
stitial sites due to electrostatic repulsion. Typical surface muon implantation depths
are 1.5mm in polythene and 0.65mm in aluminium. Time differential (TD) spectra
are produced by timing muons on entering the spectrometer and stopping the timer
when a positron is detected from the muon decay.

Positive muons implanted into a sample precess with a Larmor frequency uJtl =

7in the presence of a magnetic field B, the vector sum of the applied field and
local field due to the sample. The muon gyromagnetic ratio is 7^/2^=0.0135534(5)
MHzG-1 [Schenck, 1985]. The simplest TD /rSR technique is transverse field (TF)
muon spin rotation, where the magnetic field is applied transverse to the muon po¬

larisation. This technique is most widely used in the study of vortex lattices (VL) in
superconductors. Depolarisation due to irreversible processes, such as muon diffu¬
sion and muon spin flipping due to hyperfine interactions with electrons and nuclei,
is referred to as muon spin relaxation and is usually performed in a longitudinal
field (LF) or zero field (ZF).

fiSR experiments are performed at the Paul Scherrer Institute (PSI), Villigen,
Switzerland which is a continuous source beam and ISIS, Rutherford Appleton,
Abingdon, Oxon, UK which is a pulsed source.

3.2.2 Muon Production

At PSI, protons accelerated by a 590MeV ring cyclotron are guided to a pyrolytic
graphite target, either 5cm thick (target M) or 4cm thick (target E). The muon
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TIMC Incl

Figure 3.5: The time structure of the proton beam at ISIS. The muon beam preserves
this time structure, at 50Hz with a double pulse separated by 330ns and each sub-
pulse with a full width half maxima (FWHM) of 70ns [Lee et al, 1998a]

facilities at PSI are effectively a continuous beam. At ISIS, protons are accelerated

by a 800MeV synchrotron at a working frequency of 100Hz, but protons are produced
at a frequency of 50Hz with a double pulse structure, as shown in Figure3.5. The
muon target at ISIS is 5-10mm thick pyrolytic graphite, with 2-3% of the incident
protons interacting with the target.

Pions (7r) are produced by reactions of the incident protons (p) with protons and
neutrons (n) of the graphite production target

p + p^ir++p + n

p + n—>n+ + n + n

p + n^ir~+p + p.

(3.32)

The pions then decay via the weak interaction into muons (/i) and muon neutrinos

(fM) with a half life of 26.030(23) ns [Anon., 1984]

7T+ —> p+ + U/j,

7T~ —> pT + Vfi.

(3.33)

This is a two body decay, so the muon and neutrino are emitted in opposite
directions in the pion's rest frame in order to conserve momentum. The pion has
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spin zero and since neutrinos have their spins antiparallel to their momentum, the
muon from the pion decay must also have spin. Thus, the decay of positive pions

produces 100% longitudinally polarised positive muons [Riseman, 1993].
The positive muon decays in a vacuum with a mean half life = 2.19709(5)//s

into a positron (e+) and neutrino-antineutrino pair

//+ —» e+ + ve + (3.34)

and the positrons are subsequently detected using an array of photomultiplier tubes.
The positron is emitted primarily along the spin muon's direction. After inte¬

grating over all possible neutrino momenta, the probability W per unit time that
a positron will be emitted at an angle 6 with respect to the muon spin at time of
decay is

et/ru.
dW{e,6) = [1 + a(e) cos Q]n(e)ded cos Odt, (3.35)

where o(e) = (2e —1)/(3 —2e), n(e) = 2e2(3 —2e) and the reduced positron energy e is
defined as e = E/Emax, where Emax is the maximum positron energy Emax = 52.83
MeV. This relation is shown in Figure3.6.

3.2.3 PSI: Bulk /uSR

The bulk //SR facility used at PSI in the work presented in this thesis is situated
on the piM3 beamline. Two cryostats are permanently installed on piM3. The Low

Temperature Facility (LTF) instrument is an Oxford Instruments top-loading 3He
dilution refrigerator, with an operational temperature range of 20.3mK to 10K. A
3T superconducting magnet is contained within the cryostat which is parallel to the
muon momentum. An auxiliary lOOOe electromagnet perpendicular to the muon

momentum is also available. The General Purpose Spectrometer (GPS) instrument
is a Quantum Technology top loading continuous flow 4He evaporation cryostat with
an operational temperature range of 2K to 300K. The instrument has two sets of
Helmholtz coils to produce magnetic fields at the sample position. A 6.4kOe set of
coils along the muon direction used for LF and TF depending on the polarisation
of the muon spin and a 60Oe horizontal field perpendicular to the muon direction.
The latter field is usually used for calibration purposes or "T20" measurements in

LF, but can also be used in addition to the main coils to investigate the angular
field dependence of a sample at low fields. Both instruments have a typical muon

polarisation >95%, with the muon spin 6-60 degrees with respect to the muon
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Figure 3.6: Polar plot of positron emission probability as a function of reduced
positron energy, e.
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momentum.

Figure 3.7 shows the detector arrangement for both the GPS and the LTF in¬
struments. The GPS instrument has a detector arrangement which consists of a

muon detector (M) that is connected to two photomultipliers. This is the detector
which triggers the start of the timer. The five positron detectors are Forward (F),
Backward (B), Up(U), Down (D) and Right (R), which detect the decay positrons
from the muons and are used to trigger the timer to stop. It is not possible to
have a sixth (Left) detector due to the sample mount and helium inlet. The F and
B detectors are connected to two photomultipliers to allow for the beam and veto
detectors. The B veto detector allows for any muons which do not enter the sample
area by rejecting the muons (and associated positrons) - a form of "active collima-
tion". The F veto detector rejects any muons that do not stop in the sample and
is used with small samples. The LTF instrument has a similar arrangement, but
due to the nature of the dilution refrigerator it is only possible to have 4 detectors -

Forward, Back, Left (L) and Right. The active collimation/veto is currently under
development, but should work in a similar way to the GPS instrument. In addition
to the active vetos, the electronics for both instruments checks for and discard dou¬
ble events (i.e more than one muon entering the sample area), as it would not be
possible to connect a detected positron unambiguously to a given muon.

The muons are directed from the target with electrostatic fields, quadropole
magnets and dipole magnets through an evacuated beamline. Figure3.9 shows a

schematic diagram of the piM3 beamline magnets. Quadropole magnets are used
for beam focusing, dipole magnets direct the beam and electrostatic fields are used
to deflect muons either in combination with magnets or on their own. The intensity
of the incoming beam is controlled by variable slits positioned in front of the septum

magnets. It is possible to change the event rate of the two instruments individu¬
ally. As the number of incident muons increase the probability for a double event

increases, so opening the slits completely actually decreases the "good" events. It
can be observed experimentally that the optimum number of events per second is

approximately 30,000. Beam collimators are placed in front of the septum magnet
to allow the beam FWHM to be varied, so reducing the background from muons

hitting the sample surroundings. A typical muon beam profile is shown in Figure3.8.
In an ideal experiment, a TD spectra contains start/stop events belonging to

the same muon. The muon that starts the timer is the same muon that decays
and is detected to stop the timer. Experiments using continuous beams, however,
have a random background due to a number of muons escaping detection [Abela



Figure 3.7: The piM3 detector arrangement. Top: GPS facility - note the top and
bottom detectors have been removed for clarity. Bottom: The LTF facility - note
the active veto is currently under development for the LTF facility.
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Figure 3.9: The piM3 beamline at PSI. Items coloured red are quadropole focussing
magnets; items coloured blue are dipole steering magnets and items coloured light
blue are electrostatic fields. [Amato, 2003]

et al., 1999] or double events. This has the effect of limiting the histogram time
interval to no more than 10/rs and excludes investigations of low spin precession

frequency or slow relaxation rates. Pulsed muon beams do not suffer this problem,
as the unions are timed from the start of the moun pulse. In this technique time
resolution is limited by the width of the muon pulse, but backgrounds are typically
three orders of magnitude lower. The method to solve the large random background
problem is solved by extracting one muon at a time from a continuous beam - Muons
On REquest, (MORE). This is achieved by means of a fast switching electrostatic
"kicker", as shown in Fig 3.9. It consists of two lm long, 20cm wide electrodes
situated 20cm apart. They are powered by dc voltages up to ±5kV via switches
which contain fifteen fast (40kHz) high voltage MOSFET transistors. This allows
a potential difference of 20 kV, separating the muon trajectories by 5cm at 5m
from the kicker exit. A 0.1mm thick plastic scintillation counter is placed at the
bending magnet ASK31 to trigger the kicker. Alternatively, the muon detector in
the spectrometer (M-counter, Fig 3.7) can be used to trigger the kicker. The kicker is
switched to the spectrometer running in MORE mode a maximum of 40kHz at 5//s.
After the signal of the first muon to enter the spectrometer is detected (via ASK31
or M-counter), a minimum delay of 200ns is added before the kicker is switched back
to the spectrometer running in "parasitic" mode.

The application of MORE does not significantly reduce the count rate of the
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spectrometer. This is due to MORE producing twice as many results of higher
quality than a conventional experiment, as double events and escaped muons are

less likely. The background in MORE mode is at least two orders of magnitude lower
than conventional mode, but a small distortion in the spectra at times t < 450ns is
observed due to the delay in passage of the muon and the arrival of the trigger signal
at the kicker. This distortion is less pronounced if ASK31 is used rather than M-

counter, but the count rate is 6 times less when ASK31 is used. This is because the
beam is kicked back to the parasitic spectrometer even if the muon does not reach
the M-counter (e.g. hits the slits in the septum magnet). The MORE technique is
therefore not useful for fast relaxing signals, as cutting off the first channels has a

significant effect.

3.2.4 ISIS: Bulk //SR

The //,SR spectrometer at ISIS is a multi-purpose spectrometer which can be rotated
with respect to the incoming muon beam momentum, according to the required
experimental geometry. The detector array consists of 32 detectors arranged around
two circles, as shown in Figure 3.10. The number of detectors is considerably more

than at the PSI spectrometers, since ISIS is a pulsed source. Typically hundreds of
muons stop in the sample in each pulse, which is too high considering the typical
dead time of the detectors. Thus 32 detectors are used and the final data files contain

32 separate histograms, which can be reduced to a more convenient number at the
data analysis stage. When used in LF mode, the detectors are grouped together into
two groups - the forward and backward detectors each consisting of 16 segments. In
TF mode, the detector assembly is rotated by 90° and there are 16 detectors each
with 2 segments. The magnetic field is generated by water cooled copper coils with
an iron yolk present to maximise the field at the sample area.

The maximum field attainable in TF at ISIS is limited by the finite pulse width,
where the maximum field attainable at PSI is limited by the histogram time reso¬

lution. Thus, it is possible to use much higher fields at PSI than at ISIS. The pulse
FWHM at ISIS is 70ns and the pulse is "smeared" further by the 26ns lifetime of
the parent pions. It follows that the time dependant count rate is convolved with
the pulse shape of the incoming muon beam, which will have a significant effect
when there are variations in the count rate on a time scale comparable with this
pulse width. Thus, it is only important when the Larmor precession frequency is

high or there is a rapid muon depolarisation. Given that the muon pulse shape
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Figure 3.10: The fiSR spectrometer at ISIS [Scott, 1996].
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is a Gaussian1 W(t) = exp(—t2/r^), if studying a weakly damped sample such as

silver, the resulting signal would be a convolution of the ideal signal (1 + A cos(tPMf))
with W(t), where A is the ideal asymmetry and tw is the pulse width. The ef¬
fect of the convolution is to reduce the asymmetry to a value Aexp(—
Thus the asymmetry falls by 1/e of its ideal value at an applied field B given by
(u^/27t) = (7^/27r)i?i/e = 1/(ittw). So for a pulse FWHM of 70ns, tw =42ns leading
to a corresponding Bi/e=560G.

Detector deadtime is a well known problem in particle physics, but in the case

of jiSR, it is a larger problem with a pulsed technique than continuous source due
to the increased incident muon rate. The detectors have limitations on the speed at
which they are are able to respond, leading to a failure to record two positrons as

separate events. This is dealt with, to a certain degree, by increasing the number
of detectors around the sample. However, there is still a detector deadtime which
will lead to an observed event rate, which is less than the true rate obtained for a

system with negligible deadtime. In the simplest case, for a true rate, r, there is
no response for a time rd after each pulse but a perfect recovery after that. The
observed rate, rob, is then

r0b = r/(l + rrd). (3.36)

It is found experimentally that the distortion is typically 5% at the beginning of the
histogram [Scott, 1996], i.e. robTd & 0.05 and Equation 3.36 is adequate to adjust
the data.

3.2.5 PSI: Low Energy Muons

Conventional pSR beams deliver spin polarised muons in the MeV energy range,

resulting in a deep penetration depth into the sample. This renders conventional
/uSR only suitable for investigations into bulk properties of materials. A tertiary
beam of spin polarised muons has been developed at PSI where the muon energy is
tuneable between lOeV and 20KeV, leading to a muon penetration depth of fractions
of a nm to a few hundred nm. Thus //SR becomes accessible for the investigation of
thin films and surface physics.

The Low Energy Muon apparatus is situated on the piE3 beamline2, tuned to

1This is a gross over simplification. A better muon pulse shape is an inverted parabola con¬
voluted with a decaying exponential. However, a Gaussian dramatically simplifies the arguments
put forward here and does not detract from any conclusions made.

2The LEM apparatus is currently being moved to the purpose built beamline piE4.
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deliver a secondary surface muon momentum of 27.3MeV/c and an energy 4MeV.
Positron background in the beam is suppressed by an ExB separator adjusted to
transmit /r+, similar to the one situated on the piM3 beamline. Lead and copper

collimators define the beam spot before the muons enter the ultra high vacuum

(UHV) chamber through a 50/iin thick stainless steel vacuum window, shown in
Figure3.11.

Once inside the HV chamber, the muons are incident on a cooled 125pm Ag foil
with a downside solid rare gas (Ar, Ne), or solid nitrogen deposit 200 - 300nm thick.
This acts as a moderator, slowing the incident high energy muons to spin polarised
epithermal muons with an efficiency of 10-5 to 10~4 [Morenzoni et al., 1994]. The
beam momentum quoted above is chosen to maximise the stopping density on the
solid gas layer of the substrate, thus maximising the yield of epithermal muons

emerging from the moderator.
The main part of the moderation process consists of degrading a fraction of

the beam in the substrate to energies of a few tens of keV by ordinary ionisation

processes. These keV muons are further decelerated when passing through the solid

gas layer. In the solid gas layer, at energies of less than a few keV charge-exchange
processes are the dominant inelastic processes [Morenzoni et al., 1996]. The solid gas

layer is a wide band gap insulator, resulting in it being ionised by the incident muons

(and muonium), followed by the formation of muonium and subsequent break up by
further collisions with electrons. The band gap energy of the Noble gases are of the
order 20eV [Klein and Venables, 1976], so at energies approaching this the inelastic
energy loss mechanisms is strongly suppressed. Elastic energy loss resulting from
collisions with nuclei is inefficient as the muon is much lighter than the nuclei, so

once the muons are at epithermal energies they are emitted with no efficient energy

loss process. The number of elastic collisions at epithermal energies is sufficient to
ensure an isotropic angular distribution of muons. The moderation process in the
solid gas layer leads to an enhancement in the number of emitted muons with an

energy of 15eV with a FWHM of 20eV [Morenzoni et al., 1994], Other materials act
as a degrader, resulting in a relatively fiat energy spectrum down to zero eV. Only
a small fraction of the beam is moderated in the solid gas layer, with the majority
of muons leaving the moderator target with a mean energy of 500keV. There is also
80% probability that the muons will create muonium and thermalise or leave the
layer as muonium, which further reduces the efficiency to 10~4 - 10-5.

The epithermal muons are accelerated from the production area by electrostatic
fields to energies up to 20keV. Physical limiting apertures are not used once the
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Figure 3.11: Schematic diagram of the LEM apparatus.
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Figure 3.12: The trigger detector in the LEM apparatus [Morenzoni et al., 1996].

muons have been through the moderation process, as a significant reduction in the
count rate would result. The muons are focused by several liquid nitrogen cooled
"einzel" electrostatic lenses, one before the electrostatic mirror and two after. The
electrostatic mirror acts as an energy selector as high energy muons deflect little and
are subsequently detected on the MCP1 detector. This is used as a beam monitor
and to optimise the muon beam. The mirror has the effect of rotating the spin from
parallel to the muon momentum to perpendicular to the muon momentum. Between
the electrostatic mirror and sample, the trigger detector is used to start the timing
circuits used for TD /iSR. Since the yield of slow muons to incoming high energy

muons is <<1, a trigger detector in the main beam will not result in an accurate
start signal. Unfortunately a standard scintillation counter would significantly (if
not entirely) reduce the slow muon count rate at the sample if used for a trigger
detector. A specially developed detector has been implemented to deal with this
problem, as shown in Figure3.11. It consists of a carbon foil of about 50 - 70 atomic
layers combined with a microchannel plate3 (MCP) perpendicular to the foil. The
muons eject a few electrons from the foil, which are directed using electrostatically
charged grids to the MCP, as shown in Fig 3.12. This has the consequence of

3 An MCP is related to the photomultiplier tube. It consists of an annular array of tiny glass
tubes (12-23mm diameter and 0.5 to 1mm long) fused together to form an array of thousands of
independent electron multipliers.
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scattering the muons, accompanied by a spread in energy and the possible muonium
formation.

At the sample position, Helmholtz coils generate a 30000e field parallel to the
muon momentum and perpendicular to the sample surface. For experiments pre¬

sented in this thesis, a field parallel to the sample surface is used. This limits the
size of field available to ~2000e, as the sample cryostat region is crowded in the
area the magnets would need to be placed.
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3.3 fiSH Data and Analysis

3.3.1 Overview

//SR data from each detector consists of the time decay from an ensemble of muon

spins, typically 20 million events per detector for conventional //SR and 2 million
events per detector for slow //SR. Consequently, considerable attention needs to be

paid to data manipulation and analysis, as described in this section.

3.3.2 Data

The raw histogram data for a given detector m is given by

Nmith) = Nrn(0)nb5te~th^r,1[l + Ama(th, 0m)] +bmnbSt (3.37)

where 6t is the original time binning, nb is the additional software time binning

(dealt with below), Nm(0) is the event rate at time t = 0, bm the background.
The scaling factor Am takes into account that the measured total asymmetry may

differ between histograms, due to differing detector efficiencies. For a given time

th = hAt = hnb5t, a(th,^>m) is the asymmetry with the initial phase of the muons

with respect to the detector given by cj)m. A histogram may be a sum of counts from
different detectors, as in the //SR facility at ISIS. The exponential decay asymmetry

Dm{th) = Nm(0)Ate~th^T" Ama(th, (j)m) (3.38)

is the signal which is used in the subsequent analysis. Since the exponential decay
is not of interest, it is useful to combine two histograms 180° apart to remove the
effect of the muon lifetime

4 /, n, _ [NL(th) ~ bL} ~ [MR(th) - bR\AMth) - [NL(th)-bL] + [NR(th)-bRy (3-39)
3.3.3 Analysis in the Frequency Domain: Maxent

It is possible to attach a single number to a probability distribution which measures

the amount of uncertainty in that probability distribution; this number is known as

entropy. The Maximum Entropy Method (MEM) maximises this number in order to
reduce uncertainty. In the simplest case, consider N propositions labelled by n=l, 2,
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N and exactly one is true. Now assign to each of these propositions a probability
Pn of being true. The amount of uncertainty in this situation is [Shannon, 1948]

N

S = —k Pn In Pn (3.40)
n=1

where k is an arbitrary positive constant4. Equation 3.40 can represent the number
of questions (assuming yes/no answers) needed to isolate the true proposition, given
a suitable choice of k. For many applications, Equation 3.40 needs to be modified
to allow continuous probability distributions to be handled. The entropy for a

continuous distribution P(x) is

s='Ip^m^ (341)
where M(x) is a function determined by the exact nature of the problem. Maximis¬
ing this quantity when M{x) is constant, with mean and variance specified, leads to
a Gaussian distribution.

Maximum Entropy as applied to pSR uses a trial probability distribution P{Bi)
where in effect the magnitude of each probability at Bi is a fit parameter, implying
that no theoretical model is assumed when calculating the ME spectra. Effectively,
each parameter P(Bi) adds a non-relaxing cosine to the time domain asymmetry,
with hundreds of fields Bt leading to an underdetermined problem unless constraints
are added. Ideally, y2 should be constrained to the number of observable data points

y2 = MN, where M is the number of histograms and N is the number of bins per

histogram. This leads to an infinite number of solutions [Buck and Macaulay, 1994].
When dealing with underdetermined problems, MEM has been shown to be the

only consistent method for selecting a single spectra from a large number of spectra
that fit the data [Skilling and Bryan, 1984]. The final MEM spectra must be the
one which contains the minimum of information required to describe the data [Gull,
1989]. Thus, any departure from uniformity has to be present in the data and a

MEM spectra should not contain artefacts. However, because of the pressure of y2
towards unity, the peaks and troughs of a MEM spectra tend to be too low and high
respectively. Another limitation of the use of MEM is that the resulting spectra
must always be positive and non-complex, which is due to the logarithm used when
defining entropy in Equation 3.40. In fiSR this assumption is justified [Buck and
Macaulay, 1994],

4Equation 3.40 is identical in form to Planck's expression for thermodynamic entropy, when k
is chosen to be the Maxwell-Boltzman constant.
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In the algorithm used here, the trial distribution P(P,) is inverse Fourier trans¬
formed to provide a theoretical fit function Dm(th), from which y2 can be calculated

x2 = Y "£IggMzMgff. (3.42)
m=lh=ti/At amV'h)

where dm{th) is the experimental data. An entropy of

S = ln^|^ (3-43)
i ePd ePd v ;

is used to select the most likely solution, where Pd is related to the noise level in

P(P). The gradients of y2 and S are calculated with respect to P(Pj) to select the
next set of values for the trial P(Pj). The y2 term is added by use of a Lagrange
multiplier A to form the constrained entropy Sc, which is then maximised

SC = AS-T (3.44)

where 1 is the "looseness". Looseness allows the user to change the emphasis between
y2 and the entropy term in the fit to allow for errors not already accounted for in
the experimental errors5. A positive value of the looseness (typically not exceeding
1.02 for PSI and 1.04 for ISIS) allows the reduced y2 value to vary from 1, thus
shifting the emphasis in the fit towards the entropy. This changes the constraint to

y2 = l2MN.

3.3.4 The MEM Kernel

The MEM Opus kernel, Om^d, can be broken down into the following parts:

DM = Y. omXiP,(Bi) = Kr,
i h

Kaft £ IFTh iK{^ J2K*hP(Bt)
(3.45)

where Kfh allows for a finite field range of P(P,) and performs zero padding in
the frequency domain, K{ore is used to model the effect of convolutions in the time
domain which are then Fourier transformed to the frequency domain. IFT is the
discrete inverse Fourier transform, K'^1 performs the convolution operation due to
dipolar fields, Klh m is a matrix which contains the zero padded data and K£m maps
the trial data in K\ m onto histogram m.

5 A typical example of errors introduced which are not accounted for in the standard statistical
error is "jitter" in the timing circuitry.
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The kernel Km maps the orthogonal complex trial distribution Ym^ onto the
purely real histogram m with a phase (fim

Dm(th) = K>TnYmth = NoStAne-^Rle-^Y^]. (3.46)
The experimental data is available only during the time window tx and t2, where

0 < ti < t2. Zero padding to a value of N = 2Z is required by the IFT kernel to
lessen the number of calculations from N2 to -/Vlog2 N [Press et al., 1986]. The IFT
kernel requires a square matrix with 2Z rows/columns. The IFT is discussed in more

detail below. The two kernels K and K^h deal with the need for zero padding.
Km is a rectangular matrix with 1 + (t2 — ti)/At columns and 2Z > t2/At rows.
It is comprised of zeros apart from the diagonal starting at row t\ and finishing at
row t2. The amount of zero padding gives the field resolution AB = 2n/(,y^2zAt).
The field range Bx —» B2 does not have to range from zero to 2ZAB and is given by

K?h. This is a rectangular matrix with 22 columns and 1 + (B2 — BX)/AB rows and
the maximum possible field is given by B2 = 2n/(/y^2zAt). Again, it is comprised
of zeros, apart from the diagonal starting at column BX/AB and finishing B2/AB.
This imposes the assumption that P(B) is zero outside the field range.

The K)1/1 calculates the resolution function of the MEM lineshape by inverse
Fourier transforming a dipolar lineshape Pdip(Bi). The final MEM lineshape is
deconvolved from the resolution function.

The Klft kernel is used to model convolutions in the time domain, such as a

distribution of arrival times found in pulsed sources. It also performs the convolution
needed to have arbitrary time binning (greater than the intrinsic histogram binning).
The fore kernel is a complex quantity comprised of

K{ore = KnKKi, (3-47)

where Kf71, Kf and KJ are defined below.
Binning in the time domain is achieved by convolving the data with a square

function

hnbin+(nbin/2)

Kn(th) = £ Nm(nbin5t), (3.48)
n=hnbin (nbin/2)

where is the bin factor and the new time binning resolution At = ntnnSt. This
binning further limits the maximum B2 for P(B) as discussed earlier. The actual
convolution function has an asymmetric shape to account for the muon lifetime and
the Fourier transform of this forms part of the fore kernel
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UKfn = 77

<3K?n = 77

cos sinh^ + Bart sin cosh
Bi-y^cos sinh ^ - sin

2 )
Ba^At

At'

2rM}

cosh 1 ^)j (3.49)

where r\ — 2rM/(At(l + Ri7MrM)). The imaginary portion causes the asymmetry
function to change phase, but is negligible when At/2r^ <C 1.

The distribution of muon lifetimes observed in the pulse at ISIS is due to the

pion lifetime and proton pulse shape. The proton pulse is Fourier transformed to

give the purely real

kr f sin (icuy) cos(wuJi) (3.50)
\ (WLJi)3 (WLUi)2

where uy = 7The muon time spectra is also convoluted by exp(—t/rn) due to
the pion lifetime r„ and when Fourier transformed results in

RK7 = 1I 1 4- (0JiTn)2)
~UiTn

-

irra- <3-51>
An additional sub-kernel has been added to the fore kernel in order to deal with

LEM. With LEM experiments the muons have a distribution of arrival times due to
the straggle in energy, which has to be removed in order to use ME successfully.

3.3.5 MEM: Lagrange Multiplier

The ME search algorithm searches for the location in the "parameter space" P(Bj),
on a circle with y2 = l2MN, where normalised gradients of y2 and S are anti-parallel.
The ME calculation is seen to be complete when

-1 - s c» <3-52>

where Cme is a set convergence criteria, typically Cme=0.001. The Lagrange mul¬
tiplier, A, seen in Equation 3.44 is not needed in the search, but is calculated from
the final solution. From the final solution, the first derivatives Sc are zero and can

be used to determine the "local" Lagrange multiplier \ at each point
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0saHrw-^v'*2- (3'53)
The gradient of the entropy is easily calculated by

V.S = -4" 1" (3-54)
>d >d

The gradient of x2> however, is more complicated since y2 is calculated in the time
domain but Pm(Bi) is in the frequency domain. Thus

Vx2 = Of(2(Dm(th) ~ dm(th))^| (3 55)
\ C (^/i) /

3.3.6 MEM Errors: The Hessian and Covariance Matrix

The second derivative of Sc is used to calculate how much each parameter P(Bi)
needs to be changed to increase Sc by 1, which estimates the standard deviation of
errors. The second derivatives of Sc define the Hessian6 matrix thus:

h = [ VjVjisy
11

VjB +

where the second derivative of the entropy is

A iViVjS + ^VjVjX2 (3.56)

1

ePdPiBi)
and x2

ViVjS = —-—Sij (3.57)

ViV«2 k 2°' {Ad01) (3-58)
where the cross terms have been removed [Press et ai, 1986] and I is the identity
matrix. The Covariance matrix is then calculated by inverting the Hessian C —

H\

In order to ease the understanding of how VVS1 and VVx2 effect the covari¬
ance matrix, it is beneficial to consider them separately. VVS1 is simply inversely
proportional to P(Bi). However, VVx2 is °f Lorentzian nature

V^X2-7T77^ W\ v; (3-59)1 + ((BJ - Bx)i^f
which implies that the width and shape is independent of the time resolution of

6Note the indices i and j here simply an index to the 2D Hessian matrix.
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the data, the statistics, the time range zero padding and the nature of the relaxing
signal. This is representative, as O* acts as a Fourier transform of l/cr(bi)2 oc

exp(—th/Tfj), producing a Lorentzian. This indicates any correlations seen in P(S/)
are predominantly due to the muon lifetime.

The covariance matrix C is sharply peaked around the diagonal, with a damped
oscillatory behaviour around both sides of the diagonal. The probability densities

P(Bi) and P(Bj) are nearly uncorrected when Bt and Bj are far apart. However,
the large (but negative) value of the covariance matrix for P(Bi+i) adjacent to the
diagonal P(Bi) shows that the two are anti-correlated. That is, if P(Bi) is increased
and P(Bi+i) is decreased by the same amount, then there is little change in Dm[tj).
For this reason, (Cu) cannot be used as independent errors for P(Rj), as the
nearby off-diagonal negative elements lead to over estimates. However, it is still

possible to fit the data weighted by the inverse of the covariance matrix [Eadie and
Drijard, 1971].

In order to calculate independent errors it is necessary to use the method de¬

veloped by Sivia [Sivia, 1996]. Consider a point P(Bi) for which an estimate of
the independent error, e*, is required. If the ME lineshape is convoluted with a

weighting function Wi(Bj), which is a vector with its maximum at the field Bi and
a summation is performed

Pc(Bi) = (3.60)
2_,j

the error can be calculated

2/n\
_ Ejfc Wl{Bj)C.jkWl{Bk) /q( l) ' ( }

The natural choice for the weighting function Wi(Bj) is the Hessian [Eadie and
Drijard, 1971], meaning for a given value P(Bi), near the peak value of P(B), the
Hessian matrix, iq(Bj), is dominated by the y2 term. For a given value P{Bt) far
away from the peak value of P(B), Ui(Bi) is dominated by the entropy term.

The error, e(Hi), from the convoluted lineshape is a good estimate of the "in¬
dependent" error7 on P(Bi) [Riseman and Forgan, 2002]. This can then be used to
estimate the noise level8, Pn, such that the fractional error e(/?i)//J>(/l,;) < 1 for all
P(Bi) > Pn.

7This is not a true measure of the "independent" errors, as they may appear too large by a
factor related to the amount of time range padding [Riseman and Forgan, 2002].

8The default level Pd need not equal Pn.
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It is now possible to calculate first, second and third moments of P(Bi) rep¬

resenting the mean, width and skewness of P{Bi) respectively and the associated
errors on the quantities. Given a function y = F(P(B\), P(B2),...) the error ay
associated with y is given byfBevington, 1969]

°l = Y.vW>ciAj) dP^Bi) dP(Bj) (3-62)
where v is defined as 1 where P(Bi) > Pn and 0 where P(Bi) < Pn. Including v in
the calculation of moments and associated errors ensures the values are not distorted

by points deemed to be below the noise level. The rth moment, Mr with respect to
B is

Zk v(3'63)
and the ratio a = M^3/M^2 can be used to measure the skewness of P(Bi) inde¬
pendent of the distribution's width.

3.3.7 Analysis in the Time Domain: WiMDA

With a number of experiments it is not possible or sensible to work in the frequency
domain. Typical examples of this is LF /xSR or TF (iSR where there is a large
background, obscuring the signal of interest and confusing the search algorithm.
However, data presented in this thesis is predominantly analysed in the frequency
domain, as in order to fit in the time domain a model must be imposed on the data.
For example, it is common to assume the time domain relaxation is of Gaussian
or Lorentzian form. This has no solid theoretical grounding, as the distribution of
local fields in a VL is not Gaussian. For this reason, time domain fitting is has not
been used greatly in the work presented in this thesis, but should be mentioned as

a possible alternative analysis technique.
Windows Muon Data Analysis (WiMDA) is able to fit individual or multiple

raw data histograms and the asymmetry of two paired detectors (as in Equation
3.39). It is possible to remove the muon decay from the raw data histograms. In the
TF configuration, WiMDA estimates the relative detector efficiencies by adding the
front/back detector groups together. The added asymmetries should be zero when
the detector efficiencies are correct. WiMDA has automatic deadtime correction

which is calculated from a calibration run at the beginning of each cycle, using
silver. The relevant data is read from the headers of the data files and applied to the
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analysis automatically. Alternatively, deadtime can be estimated from measuring
silver at the beginning of an experiment. It is possible to bin the data in the time
domain in a similar manner to that used in MEM.
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3.4 /iSR and the Vortex Lattice

3.4.1 ^SR Lineshapes

Studies of vortex lattices are almost exclusively performed in TF, which means

Fourier analysis is best suited since there is no analytical function in the time domain
to fit to. The form of the magnetic field, B(r), will determine the relaxation of the
signal, as illustrated in Figure 3.13. Fourier analysis gives the probability, P(B), of
a particular magnetic field inside the sample, as the atomic spacing is much smaller
than the lengthscales of the vortex lattice, so the muons sample the internal flux

density randomly. The probability distribution is also shown in Figure 3.13 and
some distinctive features are present in the lineshape. The minimum field, Bmin is
from fields such as those labelled by a in the inset, the maximum field Bcore is the
core of the vortex and Bpk the most probable field which lies on the line between
point a and b.

P(B) can be easily calculated from a numerical calculation. In the high-K regime,
where A > ^, the London equations govern the response of the superconductor to

magnetic fields. The method is to calculate the FLL in real-space, approximating
the field h at a distance r from the vortex site is given by

Kr) = ^K/- (3.64)
where K0 is a zeroth-order Bessel function of the second kind. The London equations
are only valid in the vanishing vortex core limit, which is nonetheless valid for high-K
regimes such as the HTc's.

For an ideal FLL in intermediate fields (Bci B<^Bc2), the magnetic field will
be periodic and can therefore be represented by a Fourier series

B(r) = (B)J2bGexp(lG'r> (3.65)
G

where G is a vector of the reciprocal lattice and the mean field is (B}. In the London
limit, the Fourier components be are given by

b° =
1 + A2|G|2 ^3'66^

where the reciprocal lattice vectors are defined in Figure 3.14. In the simplest case,

the temperature dependence of A follows the two fluid model, A(T)aA(0)/(l — t")1/2
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where t = TjTc and n = 4.
The results from a /rSR experiment is the probability distribution of flux density

which can be calculated from B(r). It is convenient to write the calculation as

[Aegerter and Lee, 1997]

p<B'> = z/( dB(x, y) x 1
. dx (3.67)dy

where the integration is carried out over lines, L, of constant field B(x,y) = B'.
P(B) is thus a direct measure of the superconducting penetration depth.

3.4.2 //SR Lineshapes and Properties of the FLL

The second and third moments of field distribution can be calculated from Equation
3.63. Care has to be taken with performing this analysis, as it is highly dependent
on the counting statistics. The noise in the frequency domain reduces the more

statistics you have, so the long tail becomes increasingly relevant. The moments
can yield intimate information regarding the FLL structure and provide a direct
measurement of the penetration depth (the same calculation as in Equation 3.65).
The second moment is related to the penetration depth thus

<AB2> = <Jmo E+vPFF (3"68)
and in the limit A|G| 3> 1, an evaluation of the sum for a hexagonal lattice yields
[Brandt, 1988]

(AB ) = 0.00371-^j. (3.69)
The structure of the vortex lattice can be determined from the following [Sidorenko
et al., 1990b]

T = Bcore~ Bpk (3.70)
Bpk Bmin

which for a hexagonal lattice T=8 and for a square lattice T=2.5. Care must be
taken again, as counting statistics will effect the estimation of Bcore. The penetration

depth can also be extracted from [Sidorenko et al., 1990b,a]

<b>-b" = '"34^ <3'71)
where the mode of the distribution Bpk is statistics independent and (B) can be
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Figure 3.13: Top: Schematic diagram of the damped asymmetry arising from the
vortex lattice, after removing the muon lifetime. The form of this is intimately
related to the form of the flux density inside the sample. Bottom: Probability
distribution of the internal flux density for a superconductor in the mixed state,
calculated by performing a Fourier transform of the asymmetry above. The flux
density is shown in the inset [Lee et a/., 1998a].
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Figure 3.14: Schematic diagram of the reciprocal lattice for two vortex geometries:
hexagonal and square.

measure from magnetisation measurements.
Thermal fluctuations of vortices will have a significant effect on the shape of

a lineshape. The thermal melting of a FLL is observed by a sharp reduction in
skewness of the distribution, due to the truncation of the high field tail because of
the smearing of the core fields [Lee et al., 1993, 1997], as the fluctuations the muons

see are time-averaged due to their short timescale. The change in the lineshape
asymmetry can be observed in a change in sign of the parameter [Aegerter and Lee,
1997]

<Afl3)V3
(AB2)"2' ' '

A reduction in lineshape width would also be expected from thermal fluctuations.
The fluctuations of vortex positions can be taken into account by introducing a

Debye-Waller factor [Harshman et al., 1991] into Equation 3.68, yielding

(AB*)= £
B2 exp~G2<"2>

(3.73)
^(l + W2)2'

where (u2) is the mean square displacement of the vortices from their equilibrium
positions [Song et al., 1993; Song, 1995; Brandt, 1991a], This is valid for dynamic
and 2D static disorder if the timescale for the fluctuations is much greater than the
timescale of the measurement. Brandt showed that for extreme anisotropic pancake
vortex systems, transverse static disorder with short wavelength would lead to a

narrowing of the field distribution [Brandt, 1991a], This has been observed in the
quasi-2-dimensional system BSCCO-2212 [Lee et al., 1993],

For dynamic disorder, the form of (u2) depends on the relations between the
applied field and the field at which the vortices become 2 dimensional, B2d ~

<f>o/s272, where s is the interlayer spacing [Glazman and Koshelev, 1991], For B
B2d
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(3.74)

where a is the vortex lattice parameter and kmax is defined in Glazman [Glazman
and Koshelev, 1991]. At fields above B2d the interactions between pancakes within
the layers become greater than the interactions between layers. This quasi-2D fluc¬
tuation can be described as [Lee et al., 1995]

As the magnetic field is increased, the effect of the vortices becoming closer is
that any thermal fluctuations present will have a greater effect on the lineshape, as

the probability of a muon stopping near a core is increased as the density of the
cores increases. Also, at lower applied fields the ratio (u2) /d? in Equation 3.73 is
much more significant. Thus, both the width and the skewness of the lineshape are

expected to have a field dependence.
The effect of the coherence length on the lineshape can be dealt with in a similar

way to the effects of disorder. The effects of the core can be approximated by
inserting exp(—\/2^G) [Yaouanc et al., 1997] into the sum in Equation 3.68, or

alternatively exp(—2£2G2) [Brandt, 1992],
The effects of 3D static pinning will increase the width of the P(B)'s and are best

modelled in real space and not Fourier space, as the vortices cease to be periodic
over long lengthscales. It is possible, however, to model disorder analytically in
Fourier space given a suitable approximation for the disorder.

(3.75)
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4.1 Overview

LaNiSn has generated interest in recent times due to its structural analogue, CeNiSn.
Both CeNiSn and LaNiSn have an orthorhombic crystal structure [Daams and
Buschow, 1984], but LaNiSn is the non-magnetic analogue of the 4/ Kondo in¬
sulator CeNiSn. CeNiSn forms a small pseudo-gap at the Fermi Energy measured
by both NMR [Kyogaku et al., 1990] and magneto resistance [Takabatake et al.,
1987, 1998], which is due to the anisotropic hybridisation between the 4/ electrons
and conduction electrons [Ikeda and Miyake, 1996] in the orthorhombic structure.
Thus, a study of LaNiSn can lead to a greater understanding of CeNiSn. LaNiSn
is known to be a good metal [Takabatake et al., 1987; Nishigori et al., 1996] with
a electronic specific heat coefficient 7=11.4 mJ mol-1 K~2. With the onset of high
quality single crystals, LaNiSn was found to show evidence of superconductivity at
0.6K [Echizen et al., 1999].

This chapter describes TF pSR measurements of the superconducting state in
LaNiSn performed on the LTF instrument at PSI and on the pSR instrument at
ISIS. The results presented are from pSR experiments on a large single crystal, as

a function of temperature and applied field. The field dependence of the FC pSR
linewidths allow an estimate of the penetration depth and coherence length of this

system. The existence of an intermediate state below Hci in FC experiments has
also been directly observed. On cooling in zero field, complete flux expulsion occurs

only very close to the Hci phase boundary.

4.2 Experimental Setup

Until recently [Echizen et al., 1999] previous experiments on LaNiSn were performed
using polycrystalline samples [Takabatake et al., 1987, 1998; Nishigori et al., 1996].
The sample used here was a high quality single crystal grown by Takabatake's group

at the Department of Quantum Matter, ADSM, Hiroshima University and all sub¬
sequent sample processing was performed by this group. High purity constituent
materials La, Ni and Sn were melted into a polycrystalline ingot in a cold copper

crucible under a purified argon atmosphere. The single crystal was then grown us¬

ing the Chzochralsky pulling method [Echizen et al., 1999] using a radio frequency
induction furnace with a hot tungsten crucible. The crystal was cylindrical with a

diameter of ~5mm and a length of ~25mm. In order to decrease defects, strains



4.2. Experimental Setup 82

and impurity ions, the as grown crystal rod was treated using solid-state electro-
transport. The rod was heated to 1000°C by a direct current of 250Acm~2 for two
weeks under a vacuum of greater than 3xlO~8Pa. Crystallographic orientation was

determined by the back-scattering Laue method.
At PSI the temperature was varied over a range of 50mK - 1.1K, as Tc is ~0.6K,

with a typical magnetic field ranging 0 - 6000e applied perpendicular to the sample's
cylindrical axis and transverse to the muon spin direction. Figure 4.1 shows a

schematic diagram of the experimental setup and a schematic diagram of the LaNiSn
crystal structure [Daams and Buschow, 1984], The sample was glued using an

epoxy to a copper sample holder and surrounded by ~5mm of annealed haematite

(Fe2C>3) paste to ensure a rapid random depolarisation of any muons not hitting
the sample, thus reducing the background. The copper sample holder ensured the
sample was in good thermal contact with the heaters/cold finger and an accurate
sample temperature could be measured. The entire sample holder was covered in
a ~lmm thick silver protective case with a thin mylar thin ~0.1mm window to
allow muons to enter the sample. The beam was focused to ensure as little beam as

possible strayed from the sample.
The detectors were set up in order to attain maximum time range due to the

slow relaxation rate found in this sample. The Time Differential Controller (TDC)
resolution was set to 2.5ns, with 8000 bins per histogram, which meant the maxi¬
mum time attainable was 20.480/rs. In order to measure successfully at large times

(typically >12/xs) MORE is required. This has the effect of distorting the data at
early times but greatly improves the data taken at large times. This is seen as

acceptable considering the small relaxation in this sample.
The superconducting magnet was quenched prior to the experiment and the

earth's magnetic field was compensated by three electromagnets around the sample
space. Any remnant field remaining in the sample area was checked using a 3D
Gaussmeter and found to be negligible (5mG approx.). It is not possible to check
remnant field at the exact position of the sample using the Gauss meter, but only
around the outside of the instrument. Thus, a further check of remnant field in the

sample space was performed using muons and again any remnant magnetic held was

found to be negligible. All ZF measurements were performed before any held was

applied to the sample from the superconducting magnet, unless otherwise stated.
The sample had been stable at 50 ± lmK for an hour prior to commencing the
experiment to ensure the sample was in equilibrium.
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Figure 4.1: a) Schematic diagram of experimental setup at PSI. b) Schematic dia¬
gram of LaNiSn orthorhombic crystal structure [Daams and Buschow, 1984], Crys-
talographic orientations are labelled a,b and c.
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At ISIS the sample was mounted with one of the principal crystallographic paral¬
lel to the incoming beam direction. Unfortunately this meant applying the magnetic
field at 28° to the cylindrical axis, leading to an unknown demagnetisation factor.
The sample was mounted on and surrounded by a number of 3mm thick Heamatite
sintered plates, with any gaps filled in by Heamatite paste. The entire sample holder
was covered with a 12.5/rm thick silver foil.

As the data taken at ISIS was the first experiment to be performed on this sample,
applying the field parallel to a crystallographic axis was deemed more important than

any effects the geometry has on the demagnetisation factor. This was not found to
be the case, as LaNiSn has relatively isotropic superconducting properties [Echizen
et ai, 1999] and the effects of the demagnetising factor was found to be important,
as can be seen from the "messy" lineshapes. This does not effect mapping out the
magnetic phase diagram using the ISIS data, but these lineshapes were difficult to

interpret until "cleaner" linshapes were taken at PSI.

4.3 Demagnetisation Factor for the Geometry Used

If a magnetic field is applied to a superconductor which has a non-zero demagneti¬
sation factor, the magnetic field over part of the surface may exceed the critical
field even though the applied field is less than the critical field. The value of the
demagnetisation factor is dependent on the shape of the sample with respect to the
magnetic field, This can be calculated analytically in certain geometries by consid¬
ering Laplace's equation for a vector potential, A, [Kenyon, 1997]

where r, 9 and 2 are standard cylindrical coordinates, J is the current density and
Ho the permeability of free space. Assuming no 2 dependence (i.e. an infinitely
long cylinder) and zero current density in the bulk of the superconductor, the two
dimensional Laplace equation becomes

and for an applied field Be, perpendicular to the length of the cylinder, the solution
is expected to be a cylindrical harmonic [Bleaney and Bleaney, 1963]. As a trial

at PSI

(4.1)

(4.2)
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solution, the first order cylindrical harmonics1 are

Ai = b\r cos($) + b2r 1 cos($)
A2 = — Ber cos(6) + r-1 cos(0)

(4.3)

where b and a are the coefficients to be solved using Equation 4.2, for inside and
outside the superconductor denoted by 1 and 2 respectively. After imposing the
boundary condition that the vector potential is continuous across the superconduc¬

tor/air interface and solving at r = R, the cylinder diameter, the following solution
is found

Bx = -2^~^RBe sin(fl) (4.4)1 + Ab y J K J
where /ii is the effective permeability of the superconductor. Defining the demag¬
netisation factor, n, as [Waldram, 1996]

mom = T1)g! (4.5)1 + n(/q - 1)
leads to a demagnetisation factor n=l/2 for this sample. Figure 4.2 shows the
magnetisation of a cylinder in an applied magnetic field parallel and perpendicular
to the cylinder axis, where the demagnetisation factor changes from n=0 to n=l/2.
It can be seen that the magnetic field at which the superconductor changes from
being in a Meissner to an intermediate state is nBc for a Type I and nBci for a Type
II superconductor [Waldram, 1996].

4.4 Description of Data Analysis

The PSI data has been analysed using MEM with the following adjustable param¬

eters. Since MORE was used on the LTF experiment, the first 0.5/is of data is
distorted and therefore discarded. Thus, the time range used is 0.5/is to 19.7/is, the
maximum attainable with a histogram time resolution of 2.5ns. To's and Ti's were

estimated in the time domain from the positron peak and subsequent fall off for each
1 Higher order coefficients are found to be zero. This is because terms such as cos(n9) and

sin(mf?) do not satisfy the boundary conditions for all 6 because the potential varies only as cos(6)
[Bleaney and Bleaney, 1963].
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Type I Type II

Figure 4.2: Ideal reversible magnetisation curves as a function of applied field Ba,
for a long rod with field applied parallel (n=0) and perpendicular to the cylinder
axis for a Type I and Type II superconductor. The area of the curves is unaffected
by changes in n or k.

individual histogram. No additional time binning was required, as in all measure¬

ments the statistics were high enough at large times to satisfy standard errors. The
time range was zero padded typically by a factor of 102 in order to visually improve
the lineshapes. It was not necessary to use apodisation of errors in this analysis as

the errors had already become large enough at large times to mask any time window
cut off on the data. A looseness of 1.02 was used throughout the analysis to tackle

any discrepancies in the data not accounted for by standard errors, such as "jitter"
in the timing electronics.

The ISIS data was analysed under similar conditions, but apodisation of errors is

required to reduce the influence of data cut off at the end of the time window as the
maximum time range available is only 10/xs. Exponential apodisation of errors with
a time constant of 7ps was found to sufficiently reduce the "ringing" without overly
broadening the lineshape. The data was analysed from Tj as there is no distortion
at the beginning of the time window as with the PSI data. Detector deadtime was

estimated for different fields using a standard silver target, which was found to be
approximately Td=26ns and was removed using Equation 3.36.
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4.5 Field Cooled Measurements

Figure 4.4 shows the P(B)'s for a range of temperatures taken at PSI. The sample was

FC in 20Oe from above Tc to 50mK and measurements were taken on heating in steps
to above Tc. To ensure the sample was in thermal equilibrium, measurements were

not started until it was stable for more than 10 minutes at the desired temperature.
An initial qualitative description of the data shown in Figure 4.4 shows an in¬

crease in internal field as Tc is passed followed by a splitting of the peaks at lower
temperatures, one slightly lower than the applied field and the other at more than
twice the applied field. It is clear that if the whole sample was superconducting there
would not be an increase in mean field inside the sample. This has been interpreted
as two magnetic phases in the sample, as considering that the sample is of high
quality [Takabatake, 2001], it is unlikely the two phases are explained by structural
or chemical inhomogeneities. Since this sample has a non-zero demagnetising fac¬
tor, the two magnetic phases observed at the low temperatures are an intermediate
state, with vortices in the superconducting regions explaining the lower peak.

Figure 4.5 shows the two peak positions of a double Gaussian fitted2 to the

P(B) lineshapes shown in Figure 4.4. The lineshape was fitted with a Levenberg-
Marquardt non-linear regression, with errors estimated from the diagonalised co-

variance matrix of the fitting parameters [Dewhurst, 2001]. It is clear that there is
a suppression of magnetic field inside the superconducting region at lower tempera¬

tures, although there seems to be a discrepancy with the two lowest temperatures.
The rise in peak position between 550 and 500mK seen in Figure 4.5 is taken to

be Tc and agrees well with Tc measured using resistivity and susceptibility [Echizen
et al., 1999] on different samples. The increase in peak position at Tc is initially
a surprising result, as the mean magnetic field inside a superconductor is expected
to reduce when going through the transition. However, the associated reduction in

asymmetry as seen in Figure 4.6 can offer insight into this problem. A supercon¬

ductor which is in an intermediate state contains large volumes which are normal
and large volumes which are in the pure Meissner state. As the temperature is
reduced the Meissner volume fraction increases, with a corresponding reduction in
the normal volume fraction. Since the Meissner state is one of total flux expulsion it
is expected that the asymmetry reduces as the Meissner volume fraction increases,
which is indeed observed. Figure 4.3 shows a schematic diagram of the proposed
transition.

2See Appendix B for the details of the fitting routine[Dewhurst, 2001].
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Figure 4.3: A schematic magnetic field distribution. Blue: magnetic flux. White:
zero field, a) Normal state, b) Just below Tc. A very small volume of the sample is in
the Meissner state, whilst the normal regions experience a slightly larger flux density
due to this expulsion, c) At a lower temperature the Meissner regions become larger,
reducing the asymmetry of the muon signal, pushing more flux into the normal state
regions increasing the flux density further, d) The sample is now dominated by the
Meissner state, lowering the total asymmetry significantly further and pushing much
more flux into the ever smaller normal state regions. A small volume fraction also
contains a vortex lattice.

Applied Field / Oe 15 25 30 37 45 50 55

Tc / mK 480 390 380 325 280 185 170

Table 4.1: Table of Tc's at different applied fields, estimated from Figure 4.11.
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100

Figure 4.4: P(B) for 20Oe FC for a range of temperatures taken at PSI. Error bars
have been removed for clarity; typical errors on the amplitude do not exceed ±0.5,
so the line width is a good representation of the error. Plots are on the same linear
scale with arbitrary units and have been offset from the previous temperature by
100. The P(B)'s for T=500mK and T=550mK have not been included, but are
consistent with the general trends shown here.
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Figure 4.5: Peak position of Gaussian fits to the P(B)'s shown in Figure 4.4. The
size of the points are representative of the errors.
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Figure 4.6: Total percentage asymmetry of the P(B)'s shown in Figure 4.4.
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Figure 4.7: Field dependence of FC P(B)'s at 50mK, taken at PSI.
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Figure 4.8: Field dependence of the second moment of the P(B)'s shown in Figure
4.7.
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Figure 4.9: Field dependence of lineshapes at 47inK, taken at ISIS.
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Figure 4.10: Field dependence of the second moment for the lineshapes shown in
Figure 4.9. Errors are approximate.
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The point where the two peaks appear at ~320mK is taken to be the point
at which the sample goes through the phase transition shown in Figure 4.2. The
appearance of the second peak at a field below that of the applied field indicates

part of the superconducting region is no longer in the Meissner or normal state. The
significant increase in the peak corresponding to the normal fraction and the sudden

drop in asymmetry indicates a decrease in the volume fraction of the normal state
and increase in the volume fraction of the Meissner state. Thus the low temperature

lineshapes are consistent with a sample mainly comprised of the Meissner state with
some normal regions and a small fraction of the superconducting region in the vortex
state. This mixture of Type I and Type II superconductivity can be explained when
considering a superconductor on the Type I / Type II boundary, where small local
variations in the coherence length and/or penetration depth govern the nature of
the superconductor. There are few experimental studies in the literature which

probe the superconductivity of LaNiSn, so one can only suggest this as a possible
reason, k is unknown for this compound, as the penetration depth has not been
measured. However, the coherence length has been measured to be 1200A [Echizen
et al, 1999]. Another possible explanation is the sample is of finite length and may

not be perfectly cylindrical. Thus, different parts of the sample may have a different
demagnetisation factor, which could also govern the nature of the superconductor

(Type I or II behaviour).
Figure 4.7 shows the lineshapes of 50mK FC measurements taken at PSI. In order

to make a direct comparison between different fields, it was necessary to plot P(B) as

a function of (Bi~ Bpeak), where Bpeak is the field corresponding to the largest peak
and Bi is the magnetic field at a bin i. It is clear that changes in the lineshape as

the applied field is varied are more subtle than changes seen in Figure 4.4. Plotting
the lineshapes full width as a function of applied field is a more sensitive measure

of changes in the lineshape than simply inspecting it or fitting multiple Gaussian,
as can be seen in Figure 4.8. There is an initial increase in the width indicated with
an arrow, which is taken to be the onset of superconductivity. By fitting a number
of straight lines to a limited range of data, the critical field can be estimated to be
Hc ~1350e. After a plateau there is a dramatic increase in width indicated by the
second arrow, which is estimated to be ~70Oe and corresponds to the field at which
the intermediate state occurs. From these estimates it is possible to determine a

demagnetisation factor for this geometry to be ~0.5, which is consistent with the
calculations outlined above.

Figure 4.10 shows the lineshapes of field cooled measurements for different fields
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at a temperature 47mK taken at ISIS. The data has been plotted in a similar manner

to Figure 4.7. It is clear that the lineshapes shown here are not as "clean" as those
measured at PSI, but show the same generic trends seen in the PSI data as shown

by the two sets of arrows. Fitting two Gaussians to the data would not accurately
describe the situation as it did in the PSI data, as each lineshape would need to be
fitted to a different number of Gaussians. A better representation of this data is

simply to plot the second moment as a function of magnetic field, as shown in Figure
4.9, where it can be seen there is a significant increase in second moment at ~60Oe.
This point can be taken to be the second phase transition seen in the PSI data
at ~70Oe. Unfortunately due to the "messy" lineshapes and the lack of relevant
data it is not possible to estimate Hc as in the PSI data. However, the temperature

dependent changes in lineshapes are significantly larger and it is possible to estimate
Tc for different applied fields from the ISIS data. Figure 4.11 shows the temperature

dependence of the second moment for a number of fields. The critical temperature,

Tc, is estimated by the initial increase in width, which is indicated by the arrows

for different fields. A summary can be found in Table 4.1.
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4.6 Zero Field Cooled Measurements

The sample was zero field cooled to 50mK and kept constant throughout the mea¬

surement. A magnetic field of 250e was applied and field increased by 50e incre¬
ments and a spectra measured at each field. Figure 4.12 shows the muon decay time
spectra for three applied fields. At 250e, a weak oscillation in the decay spectra is

evident, which can be accounted for by areas of normal material due to an inter¬
mediate state in the sample. As the field approached ~ ^ Bc, an almost complete
Meissner state is observed, which is evident from the 60Oe decay spectra. As the
applied field is increased, it is expected the normal regions of the intermediate state
become larger, making an oscillation of larger amplitude. This result is repeatable
at both ISIS and PSI, although only the PSI data is shown here. If this result is

compared to the plots in Figures 4.8 and 4.10, it is clear this "entrant" Meissner
state at 60Oe corresponds to the thermodynamic phase boundary. Curiously, only
at this transition is a pure Meissner state truly observed. There is currently no

explanation for this phenomenon.

Time / gs

Figure 4.12: The asymmetry of LaNiSn initially cooled in zero field, then the three
different fields were applied. An offset on the y-axis has been included to improve
presentation.
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4.7 Concluding Remarks

The measurements presented in this thesis are the only microscopic study of the
superconducting properties LaNiSn. In a FC state, a combination of Type-1 and
Type-II properties has been observed; both a vortex lattice and intermediate state
is found to coexist. From the loss in asymmetry and the complex P(B)'s, the only
plausible explanation for this compound in a field cooled state is an intermediate
state with vortices in the Meissner state (between the normal regions). This has
been explained by a combination of the sample geometry with respect to the applied
magnetic field and the possible vicinity of LaNiSn to the Type-I/Type-II boundary.
In the ZFC state, a Meissner state is only observed on the thermodynamic phase
boundary where vortices begin to appear. These conclusions are only tentative, as a

full study of the bulk magnetisation has not been carried out. Consequently, a full
understanding and explanation of these results is not possible.
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5.1 Overview

One of the principle findings of the measurements on overdoped LSCO presented in
this thesis is the magnetic field induced square to hexagonal transition [Gilardi et al.,
2002], which is discussed in this chapter. An intrinsic square lattice indicates the
vortex lattice is coupled to some source of anisotropy, such as the effect of the d-wave
order parameter [Berlinsky et al., 1995; Xu et al., 1996; Shiraishi et al., 1999; Ichioka
et al., 1999] or the presence of stripes [Tranquada et al., 1995]. A fourfold pattern
could also result in pinning to twin planes [Johnson et al., 1999], but this has been
found not to be the case. An intrinsic square vortex lattice has not been observed
in an HTC before the work presented here, although it was claimed [Keimer et al.,
1994] to have been observed in twinned YBa2Cu307_5 (YBCO). After some debate
[Yethiraj et al., 1993; Forgan and Lee, 1995] it was confirmed that the square SANS
diffraction pattern observed was due to the effects of twin plane pinning [Johnson
et al., 1999], where a number of intrinsic hexagonal FLLs were pinned to particular
alignments which lead to overlapping of diffraction spots and therefore confusion
over the intrinsic symmetry. More recently than the work presented in this thesis,
however, a field induced intrinsic hexagonal to square transition has been observed
in YBCO [Brown et al., 2004],

Another measurement performed and presented here is the measurement of
the FLL melting at a temperature below Tc, which is highly dependent on the
anisotropy of the material in question. The degree of anisotropy in LSCO lies be¬
tween that of the two archetypical HTC's, YBCO and Ba2Sr2CaCu20s+x (BSCCO).
The extreme anisotropy of BSCCO leads to unusual vortex properties, as highly flex¬
ible vortex lines make them extremely susceptible to thermally and pinning induced

disorder[Cubitt et al., 1993; Lee et al., 1993, 1995]. A more appropriate description
is obtained by considering the vortices as a string of 2D "pancake" vortices, each
confined to a CuO layer weakly coupled between layers [Lee et al., 1997]. BSCCO
has Aat=1800A [Lee et al., 1993], 7 ~150 [Martinez et al., 1992] and the layer spac¬

ing s=15A [Lee et al., 1997], which means electromagnetic coupling dominates large
areas of the magnetic phase diagram. This is considerably weaker than Josephson
coupling. Consequently a first order melting transition is observed well below Tc

[Lee et al., 1993, 1995, 1997], where the vortices melt into a 2D pancake gas.

In YBCO, however, microscopic measurements remained elusive [Aegerter et al.,
1998] until relatively recently, where a second order melting transition was observed.
Until this measurement, microscopic measurements of melting transitions in YBCO
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were obscured by the effects of twin plane boundaries, which act as strong pinning
sites. Until large, high quality untwinned YBCO crystals were available, it was

necessary to rotate the applied field at large angles to the c-axis (51°) and twin
planes (45°)[Aegerter et al., 1998]. This minimised the effects of twin planes on the
vortex behaviour, but influenced the structure of the FLL considerably. YBCO is

considerably less anisotropic than BSCCO, with 7 ~5 [Palstra et al., 1990; Shibauchi
et al., 1994; Willemin et al., 1999]. The penetration depth of YBCO is Aa(,=1400A
and a layer spacing of s=8A leads to the coupling between layers being dominated
by Josephson coupling. Consequently the vortices after melting are considerably
more coupled than in BSCCO, so remain as vortices and do not melt into a 2D gas.

The measurement of microscopic transitions of the FLL in LSCO is even more

elusive, as the penetration depth is Aa(,=2400A for x=0.17 (see Table 5.1), which
is considerably longer than BSCCO or YBCO. This reduces the neutron scattering

intensity considerably, as in a SANS experiment (Equation 3.31) I oc 1/A£6. There
is also a problem with twin planes, as the low temperature CuO structure is or-

thorhombic, which distorts the FLL due to pinning. Another obstacle is that it is

relatively difficult to grow high quality, large single crystals, which are required for
both muon and neutron experiments.

Despite these problems, for studying the FLL, LSCO has some very attractive

properties. LSCO has an anisotropy in the region of 7 ~20, which puts it directly
between the extreme 2D nature of BSCCO and the 3D nature of YBCO. Addition¬

ally, 7 can be controlled systematically by varying the Sr doping. The significance of
these parameters can be understood by considering the Josephson length Aj = 7s,

where s is the spacing between CuO planes. The ratio of Aj to Aab determines the
effectiveness of the Josephson currents tunnelling between planes which maintain
the stiffness of the vortex. In BSCCO \j/\ab > 1 leading to extremely flexible 2D
vortices and in YBCO \j/\ab <SC 1, so rigid vortex lines are formed. LSCO has a

Aj ~ 250A, meaning the vortices are relatively straight but susceptible to transverse
fluctuations.

As the Sr doping of LSCO is decreased, SANS experiments become increasingly
difficult as Aab increases to approximately 3000A at x=0.10. For this reason most
of the work at x=0.10 is p.SR as the signal is not as limited by Aab1. A further
complication is that at this doping the vortex lattice is extremely susceptible to

disorder; the SANS intensity would fall off rapidly as the disorder is increased.
Muon probe measures the local field, which is determined by contributions from

1In reality, a SANS experiment becomes difficult due to the reduced intensity at A 3000A,
where as a pSR experiment becomes difficult due to field resolution at A 6000A.
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Figure 5.1: Crystal structure of Lai ^Sro.nCuOj. Inset: a sample mounted for a
SANS experiment.

vortices only within Aof the muon; hence, the general form of P(B) is remarkably
robust to changes in long range order [Brandt, 1988]. In contrast, the technique can

be highly sensitive to changes in the local environment due to thermally induced or

pinning-induced distortions [Aegerter and Lee, 1997], which allows the observation
of the transition from the ordered state to the VG phase. Consequently /vSR is the
main probe for the underdoped regime.

The structure of LSCO is a stack of C11O2 planes separated by La(Sr)0 blocks,
as can be seen in Figure 5.1. The room temperature lattice constants for La2Cu()4
circ 5.36A, b~5.40Aand 13.16A [Radaelli et al., 1994]. At low temperatures,
the crystal structure of LSCO is orthorhombic whilst at higher temperatures the
structure is tetragonal and the doping dependence of the transition temperature is
shown in Figure 5.1. In the low temperature orthorhombic (LTO) phase, planar
defects which mark the separation between domains of interchanging a and b are

present. As evidence of this, scattering from twin planes are clearly present in
unsubtracted SANS diffraction patterns (see Figure 5.8). The second order phase
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Sr concentration x

Figure 5.2: Transition temperatures of the tetragonal - orthorhombic transition in
LSCO as a function of Sr doping, x. Closed circle: transition temperature was
measured by our principle collaborators [Gilardi, 2003] using the same samples as
presented here. Open circles: Measurements performed elsewhere [Boni et al., 1988]
on different crystals than those used here.

transition to the LTO structure is cause by a tilting of the CuC>6 octahedra and is
related to the softening of phonon modes [Birgeneau et al., 1987]. The structural
phase transition is easily measured using elastic neutron scattering [Radaelli et al.,
1994; Birgeneau et al., 1987], as the crystallographic reflections for the two phases
will be different. Twin planes can have a significant impact on the vortex behaviour
of LSCO, as the twin planes are a ready source of pinning.

The phase diagram for LSCO is shown in Figure 5.3. It is characterised at
low Sr doping by an antiferromagnetic insulating phase, followed by a supercon¬

ducting phase at higher doping. The electron configuration of copper and oxygen

is 3d9 and 2p6 respectively. Therefore, the copper has a spin 1/2 in the d-shell.
By substituting Sr2+ for La3+, charge carriers are introduced and to maintain the
charge balance electrons are removed from the C11O2 planes. At a large enough
concentration of holes the superconducting phase appears (0.05< x <0.27). Above
Tc, a "pseudogap" has been observed in the underdoped regime [See, for example,
Julien, 2003]. However, most of the results have been obtained by indirect methods
such as resistivity, susceptibility, specific heat and neutron crystal field spectroscopy
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Figure 5.3: Generic phase diagram for LSCO. Inset shows the area in which dynamic
magnetic excitations exist, including the 1 /8th phenomenon [Julien, 2003; Tdn et al.,
1999; Braden et al., 1992; Yoshizaki et al., 1988; Takagi et al., 1992],
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measurements [RubioTemprano et al., 2002], Reliable and detailed tunneling and
photoemission investigations of the pseudogap are not possible because of the dif¬
ficulty to obtain high quality cleaved planes, although there is a body of evidence
from NMR measurements [See, for example, Walstedt et al., 1994].

From a magnetic point of view, the single layered LSCO compounds are rather

interesting. In the insulating AF region, LSCO has a magnetic peak at (7r, w) seen

in neutron diffraction studies [Vaknin et al., 1987], which is common in all HTC's.
Only a small number of holes are required to destroy AF order [Niedermayer et al.,
1998], at which point a "spin glass" is seen. Between the insulating and the su¬

perconducting phase, this spin glass phase has been observed in /rSR [Niedermayer
et al., 1998] and NMR experiments [Julien, 2003] as well as in magnetic suscep¬

tibility measurements [Chou et al., 1995; Wakimoto et al., 2000] and it survives
in the underdoped (superconducting) region. Interestingly, the spin glass freezing
temperature is enhanced around x=l/8, which coincides with a suppression of Tc.
This phenomena is referred in the literature as the "1/8 anomaly" and could be
explained by the formation of spin/charge order [Kivelson et al., 2003; Chen et al.,
2002]. Both the ID stripe model [Kivelson et al., 2003] and the 2D checkerboard
model [Chen et al., 2002] adequately explain the dominant magic doping fraction at
x = 1/8 observed in LSCO.

In optimally doped YBCO, the spin excitation spectrum obtained from inelastic
neutron scattering experiments is dominated by a "magnetic resonance" located at
the commensurate AF zone centre (ir, it) [Rossat-Mignod et al., 1991] which was

subsequently shown to be of magnetic origin [Mook et al., 1993]. The phenomenon
was observed below Tc [Bourges et al., 1996] up to the psuedogap [Dai et al., 1999].
Similar observations have been reported in BSCO [Fong et al., 1999; He et al., 2001;
Mesot et al., 2000] and in the single layer system Tl2Ba2Cu06 [He et al., 2002]. This
is not present in LSCO. For LSCO in the doping region 0.02 < x < 0.05, the system
is characterised by diagonal incommensurate peaks at (| ± | ± [Wakimoto
et al., 1999, 2000; Fujita et al., 2002], On increasing the hole concentration further,
parallel incommensurate peaks are observed at ± for the doping region
0.05 < x < 0.25 [Cheong et al., 1991; Yamada et al., 1998; Wakimoto et al., 2003].
Recently, however, incommensurate peaks have been observed in YBCO similar to
those found in LSCO [Bourges et al., 2000; Dai et al., 2001; Hayden et al., 2004],
indicating some universality between the HTC's.

Some of the current theories which attempt to explain these phenomena are

SO(5) theory [Demler et al., 2004], a Fermi surface/stripes approach [Si et al., 1993;
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Kivelson et al., 2003], but a detailed review is beyond the scope of this thesis. How¬
ever, recent experimental evidence for field induced magnetism inside the super¬

conducting dome of La2_xSrxCuO4(x=0.1) [Lake et al., 2002] have some important
implications on these theories. The results obtained are not compatible with the
Fermi surface/stripes picture, because of the prediction that the Neel temperature
rises significantly as the zero temperature ordered moment increases. This is not

observed; as the magnetic field is increased at base temperature, the magnitude of
magnetic moment per Cu2+ increases significantly, with no associated increase in
the Neel temperature at these fields. Secondly, the "hidden" SO(5) symmetry theo¬
ries have predicted antiferromagnetic vortices in an applied magnetic field, but are

confined to the vortex cores [Arovas et al., 1997]. However, the magnetic correla¬
tion length was measured to be greater than 400A [Lake et al., 2002], indicating the
magnetism is not confined to the vortex cores, but magnetism and superconductivity
exists simultaneously. By relaxing some of the constraints on the SO(5) symmetry,
it is possible to have antiferromagnetic correlations beyond the vortex cores [Demler
et al., 2001]. However, the approximations have been called into question in such a

model [Lake et al., 2002],
In order to ensure the effects of magnetism do not alter the results and con¬

clusions presented in this thesis, LF-pSR experiments were performed on the un-

derdoped samples. A magnetic signal suggesting the existence of a spin glass was

observed at low temperatures, disappearing at temperatures above 5K. For this
reason, all data presented in this thesis and the subsequent conclusions have been
restricted to temperatures no lower than 5K. Although magnetic fluctuations may

still exist at higher temperatures, the muon is not sensitive to them as they fluctuate
too fast.

This chapter is divided into several sections. First, DC magnetisation and AC
susceptibility measurements have been carried out to characterise the vortex phase
of La2_xSrxCu04 for the two dopings examined in this thesis; x=0.17 and x=0.1.
The magnetic field range in these measurements varies from 0 to 8T, perpendicular
to the CuO'2 planes. From these measurements, it is easy to see that the magnetic

phase diagram has a strong doping dependance, which supports the microscopic
measurements of the vortex state performed on these crystals. The second chapter
is concerned with a SANS experiment on the x=0.17 compound. Here, a field
induced hexagonal to intrinsic square transition is observed to occur at around 0.4T,
which persists up to the vortex lattice melting temperature. Further analysis of the

magnetic phase diagram of the x=0.17 compound is found in the third section, by
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^tSR measurements, where FLL melting and static disorder are investigated. Finally,
//SR measurements on the x=0.10 compound are discussed in the fourth section,
where a Bragg glass to vortex glass transition is observed.
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5.2 Magnetisation Measurements on L^-xSr^CuOq

5.2.1 Experimental Method

Macroscopic measurements have been extensively used to characterise the properties
of HTc's and is evident from the vast amount of literature available (see, for example,
[Sasagawa et al., 1998; Kobayashi et al., 1998; Cooper et al., 1997]). For example,
one can extract some key parameters, such as the coherence length, the penetration

depth and the anisotropy [Li et al., 1993; Sasagawa et al., 2000]. Magnetisation mea¬

surements also offer useful information regarding vortex dynamics and transitions,
which can be directly compared to the results obtained from microscopic techniques.

DC magnetisation and AC susceptibility measurements were performed on Lai.83

Sro.i7Cu04 using a commercial Quantum Design Properties Measurements System
(PPMS), situated at PSI. Measurements were performed by one of our principle col¬
laborators, Raffaele Gilardi and have been included here as the magnetisation data
is directly related to the interpretation of the microscopic measurements presented
in this thesis. DC Magnetisation measurements on Lai.gSro.ioCuCh were performed
in St. Andrews on a Quantum Design MPMS SQUID. The magnetic field, in both
sets of data, was applied approximately along the c-axis, which was determined by

x-ray Laue.
The x=0.17 crystal is a part of the crystal used for SANS and /iSR experiments.

The crystal used for most magnetisation measurements was a 293 mg cylindrical
crystal, but when performing zero-field cooled measurements the crystal was cut to
a 84 mg plate with the c-axis parallel to the largest face, because the diamagnetic
signal was too large to be measured. The x=0.10 crystal is a 37 mg plate with the
c-axis parallel to the largest face, which was cut from the larger crystal used in /iSR
experiments.

DC magnetisation measurements determine the equilibrium magnetisation of the
sample, measured by induction, for a given magnetic field. In AC susceptibility mea¬

surements, the DC magnetic field is applied in addition to a small AC field, causing
a time dependent magnetisation in the sample. At low frequencies, the magnetisa¬
tion inside the sample is similar to the DC magnetisation; Mac = X^ac cos(uAct)-
At higher frequencies, the induced AC moment lags behind the driving field. In this
case, x can be thought of as being complex; the real (in phase) and imaginary (out
of phase) components are
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1 r2n
x! = —ft— / M(uACt) cos (uAct)d(sjjt)ttHac JO

(5.1)

and

X" = —FT— / M(uAct) sin (ujACt)d(u>t)■jthac jo

1 r2ir
(5.2)

where x = x' + ^x"• x' is proportional to the time averaged magnetic energy stored
in the sample and x" >s proportional to the energy converted into heat during the
cycle of AC field.

5.2.2 Temperature Dependence

Figure 5.5 and 5.4 show a set of FC temperature scans of x'(T) for the two LSCO
samples at different magnetic fields. The magnitude of y'(0) is different between
the two samples, most probably because of the difference in shape of the crystals
leading to different demagnetisation factors. Although the ZF data is not included
in these plots, the sharpness of the superconducting transition (defined by the 10%-
90% criterion for x'(T) or by the width of the peak in x"(T)) is small, indicating the
samples are of high quality as the transition width is very small. The critical tem¬

perature for the two samples are shown in Table 5.1, measured by ZF magnetisation

measurements, resistivity and specific heat [Momono, 2003].
DC magnetisation measurements provide additional information regarding the

vortex behaviour. In Figure 5.6, ZFC and FC temperature scans are shown for the
two samples for different magnetic fields. Whilst AC susceptibility measurements
show little or no differences between a FC and ZFC state, the temperature at which
the DC magnetisation differs between the ZFC and FC measurements is the point
at which the superconductor becomes irreversible. It is due to the crossover from a

regime of pinned vortices which has finite critical current, to a regime of unpinned
vortices with zero critical current. This can be defined as the irreversibility temper¬

ature, Tir, when the vortex lines are thermally activated and can exit the pinning
centres. Note the peak in the DC magnetisation just before the irreversibility tem¬

perature, indicating that the irreversibility in magnetisation and the peak in x"(T)
are intimately related.
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Figure 5.6: Temperature dependence of the field cooled DC magnetisation for x=0.10
(R. Gilardi) and x=0.10 (R. Gilardi).
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on the St. Andrews SQUID.

5.2.3 Field Dependence of the Magnetisation

ZFC magnetisation measurements at different temperatures for x=0.10 are shown
in Figure 5.7. Starting from zero field, a maximum is observed which is labelled

Bon, followed by a minimum at B7,. Bon is related to flux-pinning [Koshelev and
Vinokur, 1998], whose origin is still a matter of debate amongst the literature. It
is clear, however, it must be related to a change in the pinning regime. A third
field can be identified at the point that the vortices become reversible, labelled with
Bir. These parameters can be plotted on a magnetic phase diagram as a function
of applied field and temperature. However, it is more informative to combine this
with microscopic measurements of the vortex lattice, so it will not be done at this
time (see Figures 5.31 and 5.42 for phase diagrams compiled from magnetisation
and microscopic measurements).
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5.3 Small Angle Neutron Scattering on La1.83Sro.17

Cu04

5.3.1 Experimental Detail

All measurements reported in this section were performed on Lai.g3Sr0.i7CuO4 with
a magnetic field ranging from lOOOOe to 10T, applied parallel to the crystallographic
c-axis after a field cool, unless otherwise stated. Measurements were carried out on

the SANS-I spectrometer at the PSI and on D22 at the ILL. The neutron wave¬

length was varied from 5A to 16A, with the collimator distance varied between 5m
and 18m. The detector was a 128x128 multidetector, with a pixel size of 7.5mm,
whose distance from the sample could also be varied depending on the applied field
and q-range required. The undiffracted main beam was intercepted by a cadmium
beamstop. The cryostat at PSI consisted of an 11T magnet and a variable tem¬

perature insert containing He exchange gas, allowing sample temperatures to be
controlled from 1.5K to 300K. At the ILL, the cryostat was an AS-Orange with a

3T magnet and a variable temperature insert containing He exchange gas, allowing
sample temperatures to be controlled from 1.5K to 300K. In order to satisfy the
Bragg condition for all spots, the cryostat could be rotated or tilted relative to the
incident neutrons in order to bring the FLL Bragg spots onto the Ewald sphere. Very

long counting times were required (1-3 hours per field/temperature plus a similar
background measurement) due to strong background scattering from crystal defects
and a small magnetic (superconducting) cross section.

5.3.2 Data Analysis

Data was analysed using Grasp [Dewhurst, 2004], In order to see the signal due to
the FLL above the small angle crystal defect scattering, it is necessary to subtract a

background from the data, which was obtained at low temperatures in zero field or

well above the superconducting transition temperature. The beam centre is found
from fitting a 2 dimensional Gaussian to an attenuated run without the beamstop,
for all wavelengths/detector distances. In order to stop bad background subtraction
in the central area distorting the scale, it was necessary to mask it out. Care was

taken to ensure the outer limit of the mask was well away from the expected position
of the FLL. Figure 5.8 shows a comparison between non-subtracted data below Tc
and the same data which has had a background subtracted. Smoothing is used when
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displaying 2D detector images for clarity, with a smoothing kernel consisting of a

3x3 pixel box, but all analysis is performed on the raw unsmoothed data.

o

Figure 5.8: Comparison of data with and without background subtraction. Left:
with subtraction, where the four diffraction spots are clearly evident. Notice the
bad background subtraction around the central beamstop, where crystallographic
scattering is large. Right: without subtraction. When plotted on a log scale, the
diffraction spots are barely visible.

5.3.3 Field Induced Hexagonal - Square FLL Transition

Figure 5.9 shows two plots of data when cooled to 1.5K in a 2kOe field, taken at

PSI. The left-hand side plot shows the data taken with the field parallel to the c-axis
and it is clear that it is difficult to determine the symmetry of the vortex lattice, as

there are a large number of spots distributed about a ring, representing a FLL which
is effectively polycrystalline. This diffraction pattern is very reminiscent of the one

found in untwinned YBCO [Johnson et al., 1999]. The wavevector of this ring is
consistent with the value expected of a hexagonal lattice, which can be calculated
using a Gaussian fit to a tangential average and will be discussed later. At this stage,
the low field symmetry needs to be clarified. In order to do this, it is necessary to
remove the large degree of degeneracy between the different FLL orientations. One
way to do this is to rotate the crystal such that the c-axis is at a large angle with
respect to the applied field, thus reducing the effects of twin planes [Johnson et al.,
1999],

Figure 5.9 also shows the diffraction pattern for the same field, with the c-axis
of the crystal at an angle 0=10° to the field. It is clear from this that the low field
structure is of hexagonal symmetry. Even at relatively large angles of ~5° a fraction
of vortices can remain pinned to the c-axis, since the vortices bend in order for part
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Figure 5.9: Left: SANS diffraction pattern taken at 1.5K after cooling in a field
of IkOe. A zero field background at 1.5K is subtracted. The c-axis is along the
direction of the field. Data taken at PSI. Right: SANS diffraction pattern taken at
1.5K after cooling in a field of IkOe. A zero field background at 1.5K is subtracted.
The c-axis is rotated off 9 =10° in order to lift the degeneracy between different
FLL orientations. Data taken at the ILL.
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of their length to lie on the planar defects [Blatter et al., 1994; Yethiraj et al., 1993].
For larger angles, the vortices tend to lie along the direction of the applied field

[Yethiraj et al., 1993]. Precise values for the critical angle, 0C, at which the vortices
overcome this pinning are not easily obtained [Blatter et al., 1994], but are expected
to decrease with field and they are not expected to be very different from YBCO
considering the values of 7 and A [Gilardi et al., 2002], However, it is clear that in
this sample at low fields, @c <10°.

Below 0C an intrinsic hexagonal lattice may not manifest itself as a diffraction
pattern with hexagonal symmetry, but in fact could appear fourfold. This fourfold
pattern was first observed by Keimer [Keimer et al., 1994] in twinned YBCO, but
unfortunately was attributed to an intrinsic fourfold symmetry and not the true

hexagonal symmetry [Johnson et al., 1999; Brown et al., 2004]. Distortion from the
a/b plane anisotropy present in the orthorhombic domain [Forgan and Lee, 1995;
Walker and Timusk, 1995] distorts the ring in which the Bragg spots lie. Coupled
with an overlapping of diffraction spots, it leads to four very strong spots with what
appears to be second order spots, which can be easily mistaken for an intrinsic square

pattern. This interpretation was confirmed 011 an untwinned YBCO sample [Johnson
et al., 1999] where diffraction spots were found distributed around an ellipse. This
indicates how large an effect twin planes have on the FLL orientation, as the sample
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Domain X/pix Y/pix Angle/deg
[100] 40.0 (0.9) 73.8 (0.6) 0.0 (4.0)
[100] 61.6 (0.4) 82.9 (0.4) 59.1 (1.1)
[100] 79.7 (0.7) 71.5 (1.0) 123.6 (0.8)
[100] 79.1 (0.9) 52.7 (0.7) 178.4 (0.7)
[100] 60.8 (1.3) 44.7 (0.4) 239.7 (4.0)
[100] 44.7 (2.1) 52.5 (0.1) 295.7 (14.0)
[100] 47.2 (0.4) 78.0 (0.6) 0.0 (1.0)
[100] 66.5 (0.5) 81.1 (0.4) 59.5 (1.0)
[100] 41.1 (0.5) 58.8 (0.6) 301.45 (4.0)
[100] 48.8 (0.2) 80.9 (0.2) 0.0 (1.5)
[100] 73.7 (0.5) 46.7 (0.4) 177.9 (0.4)

00It-H 53.4 (0.4) 44.4 (0.6) 238.0 (2.1)
[100] 55.5 (0.9) 83.0 (0.9) 0.0 (3.9)
[100] 78.4 (0.9) 77.0 (1.2) 60.3 (1.5)
[100] 81.1 (1.0) 59.1 (0.9) 117.9 (3.0)
[100] 66.6 (0.4) 41.6 (0.1) 182. (0.9)
[100] 46.9 (0.5) 49.1 (0.5) 242.2 (4.0)

Table 5.2: Spots shown in Figure 5.10 fitted to a 2D Gaussian. Errors have been
estimated from the fits using the Jacobian matrix and calculated using Adding in
Quadrature. The angle is defined as the angle between the first spot and current
spot. The arbitrary zero is defined by the first spot.

used in the experiment was a high quality untwinned single crystal with very few
residual twin planes. Multiple domains were superpositioned around the ellipse as

the FLL orientations were degenerate due to the residual twin planes. In the LSCO
sample measured in this work, many boundaries between twins are formed as the
sample goes through a tetragonal - orthorhombic transition between 80K - 300K

(depending 011 doping), as can be seen in Figure 5.2.
Now the underlying low field FLL symmetry is known, one must turn to a detailed

analysis of the polycrystalline FLL structure seen in Figure 5.9 to ascertain if the
role of the twin planes are similar to that found in underdoped YBCO. Ideally, one

must choose the lowest applied field possible. At IkOe the diffraction spots fall at

such a low (j that there is considerable crystallographic scattering to deal with.2
This leads to bad background subtraction and some difficulty in fitting the spots,
even though the initial inspection of the smoothed data shown in Figure 5.9 is good.

Scattering from randomly orientated scattering sites (such as the crystal defects in these sam¬
ples) for any distribution of sizes, is proportional to \/tf [Porod, 1951, 1952a,b], which is the same
as the magnetic scattering from a FLL. So in effect, it makes no difference whether measuring
FLL diffraction close to the central beam spot or not (since the q-dependence is the same), as long
as the spots are well separated from the beamstop. However, the lower error bars associated at
higher q allow easier representation of the data. Large error bars also confuse fitting rout ines!
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Figure 5.10: SANS diffraction pattern taken at 1.5K after cooling in a field of 2kOe.
A zero field background at 1.5K is subtracted. The c-axis is along the direction of
the field. Data taken at PSI.
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Increasing the magnetic field will move the diffraction spots to higher q and lead
to better background subtraction. A further reason to not choose the IkOe data is
that not enough statistics were taken to accurately judge whether a diffraction peak
is above the noise or not, due to a limited experimental time. Simply increasing

counting statistics considerably increases the ability to fit diffraction spots.
For these reasons, the 2kOe diffraction pattern shown in Figure 5.10 has been

fitted to a 2D Gaussian function and is shown in Table 5.2, where more statistics
are available and the diffraction spots are at a higher q. Although it has not been

possible to fit every spot of every domain, it is clear from the fits that there are

four hexagonal domain orientations; that is, 6 spots per domain separated by 60°.
One pair of orthogonal domain orientations have Bragg spots corresponding to the

a/b directions of the crystal, while the other pair correspond to an orientation along
each of the (110) directions of the crystal lattice. These domains are schematically
shown in Figure 5.2 and agree with the interpretation of untwinned YBCO [Brown
et ai, 2004], There is considerable error in spot positions and therefore angle,
which is understandable considering the expected intensity of the diffraction spots

due to the sample parameters (A «2400A) and the considerable crystallographic
scattering. The structure could equally well be 6 domains of 4 spots, although this
is considered unlikely, as there is no reason for there to be 6 domains, the data
rotated off is hexagonal and the spots fall on the desired q for a hexagonal lattice
at this applied field.

Now it is time to turn to the high field symmetry. As the magnetic field is
increased, the pattern changes such that there are four clear spots along the (110)
directions which form a perfect square, corresponding to the CuO bond direction.
This orientation does not change all the way up to the highest field attainable
10T. Figure 5.11a shows the diffraction pattern taken at IT and Table 5.3 shows
the position and angles of the spots obtained from 2D Gaussian fits. In order to
ascertain whether the square pattern observed is from an intrinsic square FLL or

from the effect of twin planes, the sample was rotated such that the c-axis is 30° to

the applied field and neutron momentum. Figure 5.11b shows the diffraction pattern
observed. 0C falls as the field is increased, so using a value of 0C «30° one can be
sure the critical angle is exceeded considering 0C <10° for low fields. Therefore,
the square symmetry observed is extremely unlikely to be an effect of twin plane
pinning. This data represents the first measurement of an intrinsic square FLL in a

cuprate HTC.
When rotated off the diffraction spots do not form a perfect square, as shown
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Figure 5.11: SANS diffraction pattern taken at 1.5K, after cooling from above Tc
in a IT field for B parallel to the c-axis and B rotated off the c-axis by 10°. A zero
field 1.5K background is subtracted.

Spot X/pix Y/pix Angle/deg
1 41.0 (0.3) 95.8 (0.5) 90.7 (0.4)
2 92.9 (0.2) 84.1 (0.3) 90.1 (0.5)
3 81.1 (0.6) 31.2 (0.7) 89.8 (0.4)
4 28.4 (0.4) 43.2 (0.5) 89.4 (0.5)

Table 5.3: Spots shown in Figure 5.11a fitted to a 2D Gaussian. The angle is defined
as the angle between the labelled spot and the next spot.
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in Table 5.4. The spots actually form a rhomboid, which can be explained by the
distortion of the FLL due to an increase in penetration depth in one direction, as

LSCO is uniaxially anisotropic. A2 can be thought of as proportional to the effective
mass tensor = Mitk/Mav, where Mi^ is the mass tensor defined in Thiemann's
work [Thiemann et al., 1988]. The free energy per unit length in the direction of
the vortices is then [Campbell et al., 1988]3

F = -^J(H2 + A2miMViHVkH)dxdy (5.3)
where dxdy is an element of area in the plane orthogonal to the vortex axis. The
vortices that are considered here are ones orientated at an arbitrary angle, 6 with
respect to the crystal frame (X,Y,Z), as shown in Figure 5.12a. In order to do
this, is transformed from the crystal frame (where rrixx = tuyy — and
mzz — m?,) to the vortex frame (x,y,z), also shown in Figure 5.12a, to

rrixx = m i cos2 9 + m3 sin2 9

Tnxy — — 0

777>yy — 7771

mzz — m i sin2 9 + m3 cos2 9

f^xz = (nri — m3) sin 9 cos 9. (5-4)

For a vortex lattice, H is a periodic function which can be represented by a

Fourier series with non zero components H(G), where G form the reciprocal lattice.
The free energy density is then [Kogan, 1981; Campbell et al., 1988]

p _ J_ R2y^ 1 + X2mzzG2 . .
8tt ^ (1 + MmzzG\ + A2m3G2)(l + A^G2)' 1 " '

The basis vectors, shown in Figure 5.12b, for the case where z||Z are given by

ri = L(x sin a + y cos a)

7*2 = L(x cos a — y sin ck). (5-6)

With uniform deformations due to rotating off (i.e H is still periodic), the deforma¬
tion in the x direction 7X differs from the deformation in the y direction 7y and the

3Note: this is in CGS units and free energies have been previously represented in SI. This has
been kept in the original form of the paper and not converted to SI.
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a b

Figure 5.12: a: Diagram of the crystal frame and vortex frame. (X,Y,Z) is the
crystal frame, with the XY coinciding with the a,b planes. The (x,y,z) frame is the
vortex frame, where z is the applied field direction and is obtained by rotating 6
about the Y axis, b: Diagram of pattern observed on the detector for the two cases.

Spot X/pix Y/pix Angle/deg
1 40.8 (0.2) 94.1 (0.1) 92.4 (0.3)
2 96.4 (0.1) 81.3 (0.1) 87.0 (0.1)
3 82.4 (0.1) 32.0 (0.1) 93.3 (0.3)
4 27.1 (0.1) 44.3 (0.4) 87.2 (0.1)

Table 5.4: Spots shown in Figure 5.11b fitted to a 2D Gaussian. The angle is defined
as the angle between the labelled spot and the next spot.
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basis vectors then become

51 = L(ixx sin a + 7vy cos a)
52 = L(7xx cos oc — 7yy sin a). (5.7)

Flux quantisation leads to the constraint that 7^7y = 1, as the unit cell area must
be conserved. Thus, 7 is defined

1
7 = 7x = — •

7y
(5.8)

By expanding Equation 5.5 in terms of L2/A2 it has been shown that [Campbell
et al., 1988]

7 = (mzz/m3)1/4.

By substituting mzz from Equation 5.4

72 =
— sin2 9 + cos2 9
m3

1/2
cos 9.

(5.9)

(5.10)

It is now possible to compare the rhomboid distortion found to that expected from
a uniaxial anisotropic superconductor. The best way to do this is to define two

quantities,

77 =
[sil
|«a| \

74 cos2 Of + sin a

74 sin2 a + cos2 a
(5.11)

(7 2 -72)sino:cosQ
Y74 sin2 a cos2 a + sin4a + cos4 a + 7~4 sin2 a cos2 a

Substituting a = 14 and 9 = 30 into Equation's 5.11 and 5.12 yields 77 = 0.88 and
/3 = 86.4, which are both in good agreement with the experimental values of 77 = 0.9
and (3 = 87.

Further evidence for the hexagonal to square transition is in the position of the
diffraction spots in q-space. The relationship between position and magnetic field
depends on a structure dependent quantity a — (2ir/q)2B/$o, where a is \/3/2
and 1 for hexagonal and square symmetries respectively, representing the cosine of
the angle between spots. Figure 5.13 shows the field dependence of this parameter
and is is clear that there is good agreement. An alternative way of measuring the

cos/3 =
S1-S2

lSl||S2|
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Figure 5.13: a) Field dependence of cr = (2n/q)2B/$0 at T=1.5K (black circles)
obtained from fits to the tangential averages, some of which are shown in b. The
expected values of a are 1 for square and y/3/2 for hexagonal FLL symmetry and
are shown on the plot. Also shown (open circles) is the intensity ratio of sectors
corresponding to the (1,0) and (1,1) directions. For a square FLL symmetry, this
ratio should approach 0 and for a hexagonal symmetry it should approach 1. b) Tan¬
gential average of the 2D diffraction pattern for B^O.IT (circles), B=0.5T (squares)
and B=1T (triangles), fitted to a Gaussian. The y-axis has been rescaled to allow
a common vertical axis.

transition is to monitor the ratio of intensities along the (1,0) and (1,1) directions,
where for a square FLL symmetry significant intensity along the (1,1) direction is
expected. This is in good agreement with the spot positions. Spot positions were

calculated by performing a tangential average and fitting a Gaussian to the resulting
spot q-dependent intensity and three typical examples at different fields are shown
in Figure 5.13b. All data and fits are of similar quality, but have not been shown to

improve clarity.
One further investigation which is of interest is the temperature dependence of

the square-hexagonal transition. A field cool (for different applied fields) to the base
temperature was performed, taking a diffraction pattern at different temperatures on

warming. Figure 5.14 shows a, the same parameter that has been plotted in Figure
5.13, as a function of temperature for 3 applied fields around the transition. It is
clear that within the errors of the measurement a is relatively flat, indicating that
the transition field does not change significantly as the temperature is increased.

As a general rule of thumb, the position relative to the crystal lattice of the FLL
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Figure 5.14: Temperature dependence of the spot position in cpspace for three mag¬
netic fields, obtained from fits to tangential averages. See Figure 5.13 and the text
for details.

is determined by the different forms of anisotropy present in the superconductor.
For example, the positioning of the FLL within the twin planes, already discussed
above. Other forms of anisotropy can originate from electronic anisotropy, such
as the anisotropic energy gap present in HTc's, which can alter the FLL symmetry
from the lowest energy, the hexagonal form. Since the difference in energy between a

square and hexagonal orientation is relatively low (~2%), relatively weak differences
in electronic properties can change the symmetry significantly.

Square FLL have been observed in many systems and can occur for many reasons.

In 1ow-k superconductors the cores are large, resulting in much larger non-linear
electrodynamic effects due to the large vortex cores [Waldram, 1996]. This may

result in a square FLL coordination, but at low magnetic fields, where the vortices
are well separated, or close to Tc where non-local effects are smaller, the FLL may

revert to a hexagonal symmetry. This, combined with the anisotropy in the Fermi
surface, is an explanation of the boron carbides [Levett et al., 2002; Kogan et a/.,
1997],

The presence of an anisotropic superconducting gap can also give to rise a square

FLL symmetry. Many theoretical papers [Franz et al., 1997; Won and Maki, 1996;
Han and Zhang, 1997; Morita et al., 1997; Ichioka et al., 1995; Chang et al., 1998]

1

I I
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T
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Hexagona
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5.3. Small Angle Neutron Scattering on La1.83Sro.17 CUO4 125

have been stimulated, albeit incorrectly, by the claimed observation of a square FLL
in YBCO [Keimer et al., 1994]. One such attempt is the theoretical study of an

isolated vortex, which finds the magnetic and supercurrent distributions around the
core have a fourfold symmetry [Ichioka et al., 1996; Mandal and Ramakrishnan,
2002], At low magnetic fields, the vortex cores have a square like pattern but are

too far apart for inter-vortex interactions. As the magnetic field increases, the cores

become closer together and the square symmetry gradually increases its effect on

the whole FLL. The field at which the FLL goes square is calculated to be 0.15Hc2,
which corresponds to an applied field of ~4.5T in LSCO, much higher than the field
at which LSCO becomes square. The square FLL nearest neighbour is found to
be energetically more favourable along the gap node directions. The square lattice
observed here has the lattice aligned along the Cu-0 bond direction, corresponding
to the minima in the Fermi velocity and not along the nodes of the energy gap.

The FLL remains along the Cu-0 bond direction until the highest field, 10T, which
means the measurements are inconsistent with current theoretical constructs.

5.3.4 Temperature Effects on the FLL

Thermal fluctuations can make flux lines deviate from their ideal, rigid lattice. A
large number of techniques are available to study the melting transition in cuprates,
but most are macroscopic techniques, such as magnetisation and transport measure¬

ments. The best techniques that can be used to understand the details of vortex
lattice transitions are those which probe on the microscopic scale, such as SANS and
HSR. This has been shown convincingly in the literature on YBCO and BSCCO [See,
for example, Aegerter et al., 1998; Sonier et al., 2000; Aegerter et al., 2003; Kes et al.,
1996; Lee et al., 1998b; Yethiraj et al., 1993].

Figure 5.15 shows the temperature dependence of the neutron scattering intensity
of four boxes at an applied field of 5T and 0.5T. Both have been normalised to the
neutron monitor counts and then the box area. At this point, it is not possible to

directly compare the intensities of the two sets of data, as the dependence of the
scattering intensity on the neutron wavelength has not been taken into account and
this is a straight through, non-rocked intensity. This will be dealt with later, when
the integrated intensity, which can be obtained from the rocking curve, is considered.

The temperature dependence is expected to arise from two causes: a) the varia¬
tion of superconducting penetration depth for a perfect FLL would give a tempera¬
ture dependence of the intensity according to Equations 3.31 (/ oc 1/A*b, assuming
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Figure 5.15: The temperature dependence of neutron intensity for 4 boxes, where
in the legend the coordinates are [xmm xmax ym;„ ymax] pixels. The 2D detector
diffraction pattern is shown in the inset, with the boxes used shown in red. The
sample was cooled to 5K in an applied field of 0.5T(left) and 5T(right). The in¬
tensity is normalised to the neutron monitor counts and then to the box area. The
temperature at which the FLL melts is defined to be where the scattering intensity
falls to zero. Consequently Tm is shown by the arrows.

GL behaviour); b) thermal disruption of FLL order increases as the temperature in¬
creases. Clearly, the latter cause is responsible for the intensity dropping to zero as

the FLL melts, which from now on will be the definition of the melting temperature,

Tm. This term also contributes to the temperature dependence below Tm, as vibra¬
tions in the FLL are still present. The first term also contributes to the temperature

dependence below Tm and therefore the shape of the temperature dependence of the
intensity, so should be taken into account.

In a conventional superconductor, the temperature dependence of the superfluid
density is weak at low temperatures as the superconducting gap is isotropic and
therefore reduces the ability to form quasiparticle (QP) excitations exponentially
with temperature [Uemura et al., 1991]. In a d-wave superconductor, the present of
nodes in the superconducting gap allows extremely low energy QP's to form [Hardy
et al., 1993]. Consequently a linear temperature dependence of A-2 is expected
[Amin et al., 1998]. Such behaviour has been observed in YBCO and LSCO using
//SR. but the data here is not seen to agree with such work [Amin et al., 2000; Luke
et al., 1997; Sonier et al., 1999]. As can be seen from Figure 5.16, the temperature
dependence at all the fields measured flattens off to a finite value. There are a

number of explanations for this discrepancy; such behaviour could be explained by
a decrease in the superfluid density at lower temperatures [Sonier et al., 1999], a

fully gapped state [Beck et al., 2004] or alternatively it could be due to non-linear or

non-local effects [Amin et al., 2000]. It should be noted that there is no appreciable
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Figure 5.16: Box intensity of spots at all the magnetic fields measured. Intensity
is arbitrary, normalised such that 1=1 for the lowest temperature. The points are
data and lines are linear fits to a selection of data near Tm. The black line at 1=0
was compared to the fits and used to estimate Tm by eye, shown by the coloured
arrows.

Field/T Tm/K ErrTm/K
0.2 32 3
0.5 25 4

0.6 34.5 3
0.8 29 2

1.0 24.5 1

5.0 24 2

Table 5.5: Table of fitted Tm at the different fields, as shown in Figure 5.31. Tm
was estimated by fitting a straight line to the intermediate temperatures, just below
the point at which the neutron intensity falls to zero and compared with the 1=0
line. Errors have been estimated using y2 (not shown) as a guide to the goodness
of fit, but additional errors are introduced by the density of points and deviations
from linear behaviour, which can not be estimated with a numerical technique.
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field dependence observed in Figure 5.16 and all of these possible explanations would
have a field dependence which would tend to enhance the deviation from linearity
as the field is increased.

It is possible to estimate Tm more accurately than "just by eye", by fitting a

straight line to the data at intermediate temperatures, close to the transition and

taking its intercept with 1=0 to be the melting temperature. This is achieved by
assuming the intensity for T<Tm is a straight line and for T>Tm 1=0. This analysis
relies on no solid foundation, but by inspection of the data seems a reasonable
method to extract Tm. Figure 5.16 shows the sum of all spot intensities at different

applied magnetic fields and Table 5.5 shows Tm for different fields obtained from
the fits. Again, absolute intensities are arbitrary, so have been omitted from the
table. Combining this melting transition with the square-hexagonal transition it is

possible to form a magnetic phase diagram. The low field phase diagram, however,
is better investigated by //SR, as it is not limited by the intensity fall off with
penetration depth and one does not have to deal with bad data subtraction due
to large crystallographic scattering. Further analysis and interpretation of the FLL

melting will be dealt with when considering the data obtained by //SR. experiments,
wdiere a phase diagram is compiled from a combination of SANS, magnetisation and
/iSR measurements.
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5.3.5 The Rocking Curve

The $ rocking curve for an applied field of 0.8T at a temperature of 2K is shown
in Figure 5.17 for the four diffraction spots 011 the detector image. It is clear 110

peak is seen and consequently 110 additional information can be obtained from per¬

forming rocking curve analysis. This result is most likely due to the entanglement
of the vortices (disorder along their length) and has also been observed in YBCO
using an electrical transport technique [Safran et al., 1992]. Numerical simulations
have shown this is the expected behaviour [Nordborg and Blatter, 1997] in SANS
measurements for entangled vortices. Any change in intensity as a function of an¬

gle can not be seen outside of experimental error, so it is not possible to measure

the integrated intensity and therefore penetration depth in these samples using this
method.

Theta / Degrees

Figure 5.17: The rocking curve taken at PSI in a field of 0.8T and at a temperature
of 2K. Rocking curves were calculated from the intensities in framed spots and
normalised to the standard monitor and box area. It is clear 110 information can be
obtained from performing rocking curve analysis.
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5.4 fiSH Measurements on Lai 83Sr0 17Cu04

5.4.1 Experimental Detail

All measurements reported in this section were performed on Lai.93Sr0.i7CuO,i using
the GPS spectrometer at PSI. The sample environment was the Quantum continuous
flow cryostat, with a base temperature of 1.7K. The sample was mounted with
the c-axis perpendicular to the applied magnetic field and was aligned by eye to
within 2 degrees of the crystal orientations measured by Laue x-ray diffraction. The
sample holder was a standard copper holder to ensure good thermal conductivity
between the sample environment and thermometers. The holder was encased in

polycrystalline haematite (Fe203) and the sample was mounted on top. This ensured
any stray muons not hitting the sample wonld not add a background frequency, as

the haematite used is an antiferromagnet with an internal magnetic field of 1.6T in
a random orientation. Typical statistics are 20 million muon detection events over

three detectors. Three detectors were used: Left, Right and Top. The time binning
was 625ps with a maximum count time of around 10/xs.

5.4.2 Data Analysis

The data was analysed using the Maximum Entropy Technique. Sigma Looseness
was 1.02 to account systematic errors in the data which are not reflected in the
statistics. This shifts the emphasis in the algorithm from the entropy term to the
X2 term. This has the effect of slightly broadening and smoothing out any sharp
changes in the frequency spectrum. The apodisation of errors was set to 7/xs, which
artificially increases the weight the algorithm puts on the data at lower times by
increasing the errors slightly at large times. This is to take account of the Central
Limit Theorem's break down with low statistics. It also helps to reduce "sincing"; a

convolution (in the frequency domain) of a sine function with the intrinsic lineshape
of the data, due to the abrupt cut off at the end of the time window.4 This has the
effect of broadening the lineshape slightly, but reduces abrupt changes in frequency
amplitude. The data was not binned other than that from the intrinsic binning of
the instrument and the full time measured range was used. The number of points
in the Fourier spectrum was 215, effectively "overbinning" by padding with zeros.

4The data in the time domain is described by the intrinsic data of the measurement multiplied
by a "top hat" function representing the finite window that is measured. The Fourier transform
of a top hat function is a sine function, which is then convoluted with the data in the frequency
domain.
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This has 110 effect on the analysis other than to artificially increase the number of
points in the frequency domain; effectively an interpolation.

5.4.3 Hexagonal to Square Transition

Figure 5.18 shows the field cooled field dependence of the //SR lineshape at 1.7K.

Although some differences can be seen between the lineshapes, it is not at all obvious.
For the manner in which the data is represented here, the lower applied fields extend
to a larger high held cut off than the high applied held, but it is hard to tell without

resorting to a logarithmic scale, as shown in Figure 5.19. O11 the logarithmic plot,
the instabilities in the lineshapes are a lot more obvious. Instabilities can occur for
a variety of reasons, for example the sincing effect discussed earlier or systematic
errors in the data which can not be accounted for using Gaussian errors. Outliers
can also confuse the maxent algorithm, but the algorithm will tend to reduce the
weighting put 011 them and so this is of less significance than the other factors.

These instabilities obscure the estimation of different parameters, such as the

high field cut off and the minimum point. However, FLL structural changes can

still be detected using these parameters and is a useful exercise to help map out the

phase transition. Table 5.6 shows estimated values for the minimum field Bmin, the

high field cut off Bcore and the most probable field Bpfc from which T (Equation 3.70)
can be calculated. These have been estimated by referring to the "default level'' - a

parameter calculated by maxent which represents the noise in the lineshape.
It is clear that T gradually falls from around 6 at low fields to around 3 at

higher fields. Although this is only an approximate guide to the FLL symmetry, T
is expected to be 2.5 with a square symmetry and 8 with a hexagonal symmetry

[Lee et al., 1998a]. This analysis relies on the Abrikosov limit to the GL equations,
where H~Hc2, which is not the case. Furthermore, the measurement of the core

field is intimately related to the counting statistics, as there is a small probability
of the muons sampling the core and is not observable above the experimental noise.
Therefore an underestimation of the core field can result in an underestimate of h's

value, as is the case. This analysis can, however, be a good indicator to the FLL
symmetry and is consistent when combined with the SANS results (shown in Figure
5.13). Figure 5.20 shows this comparison, with a transition field estimated to be
approximately 0.4T with 0.5T obtained from the SANS data. This transition field
is estimated by taking the point at which any 110 large change is observed in the
parameters and is only to indicate the consistency between the two sets of data.

Ideally model lineshapes should be calculated and directly compared to the data,
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Figure 5.18: Field dependent lineshapes at all fields measured for T=1.7K.

B/G Brnin/G Bpk/G Bcore/G d r

100 -50 (10) 0(2) 227 (15) 0.015 5.7 (0.3)
500 -50 (20) 0(2) 219 (15) 0.019 5.5 (0.5)
1000 -50 (10) 0 (2) 185 (30) 0.039 4.6 (0.3)
2000 -50 (10) 0 (2) 168 (10) 0.011 4.2 (0.3)
3000 -50 (10) 0(2) 153 (10) 0.011 3.8 (0.3)
4000 -50 (10) 0(2) 133 (20) 0.014 3.3 (0.3)
4500 -50 (30) 0 (2) 131 (15) 0.028 3.3 (0.7)
5000 -50 (20) 0(2) 116 (15) 0.011 2.9 (0.5)
6000 -50 (10) 0(2) 124 (30) 0.038 3.1 (0.4)

Table 5.6: Parameters estimated from the lineshapes shown in Figure 5.18. Errors,
estimated by eye are shown in brackets and are generally consistent with the default
level. Errors on T are calculated by Adding in Quadrature.
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Figure 5.19: Field dependent lineshapes (in Figure 5.18) at all fields measured for
T=1.7K, with a logarithmic scale. The estimation for Bpfc is indicated by the arrows.

1.0 0.2 0.4 0.6 0.8 1.0 1.2

Magnetic Field / Tesla

Figure 5.20: A comparison of the SANS parameter a (defined in Figure 5.13) and
the /rSR parameter F (in Table 5.6). It is clear the hexagonal - square transition is
consistent for both techniques.
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but it is difficult to model the FLL when it is neither a pure square or hexagonal
structure, especially so when the FLL is disordered. For intermediate fields, the
FLL is periodic (assuming little disorder) and can be represented with a Fourier
series (see page 75). Clem reported a solution to the GL equations for isotropic
superconductors at low applied fields (B<^Br2) [Clem, 1975]. For a Lorentzian order
parameter of an isolated vortex and large k

S is the surface of the FLL unit cell and K\(x) = —K0(x), from which the London
solution can be recovered at vanishing core size [Clem, 1975]. The calculation is
performed by a sum over reciprocal lattice, G and is defined in Figure 3.14 for
a square and hexagonal lattice. This can be extended to the case of anisotropic

superconductors by use of an effective mass tensor [Hao et al., 1991]. The cut off
due to the core, gh'i(g), can be approximated by exp( — y/2£G) [Yaouanc et al., 1997]
for all values of g, or alternatively exp(—2£2G2) [Brandt, 1992], Figure 5.21 shows
a 2D contour plot of the hexagonal and square FLL using typical parameters for
LSCO. Although a core correction was made [Brandt, 1992], it has a very small effect
due to a coherence length of ~20A and can not be observed in the plots. However,
if dynamic fluctuations of the vortices were taken into account, the effective size of
the core from the union's perspective would increase.

Using the FLL calculated in Figure 5.21, it is possible to calculate P(B) and com¬

pare directly with the data. Figure 5.22 shows the P(B) calculated for A = 2400A
and £ = 20A compared to the low field data shown in Figure 5.18. The penetra¬
tion depth here is consistent with surface impedance measurements performed for a

similar Sr content to the crystal used here [Shibauchi et al., 1994]. Only the P(B)
calculated for the hexagonal geometry is shown and the instrument resolution has
been taken into account by convoluting the model with a Gaussian fit to the normal
state lineshape, shown in Figure 5.23. The normal state lineshapes were found to
have a width of 3.6 T0.05G for both the lowest and highest applied fields of lOOOe
and 6kOe. As can be seen from Figure 5.22, there is considerable differences be¬
tween the data and the calculated lineshapes; the lineshape has to be convoluted
with a Gaussian of nearly double the width in order to be a fair representation of

(5.13)

where

g = V2£(G2 + \~2y/2 (5.14)
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x / nm x / nm

Figure 5.21: A hexagonal and square FLL has been calculated for an applied field
of lOOOe, with the penetration depth 2400A. P(B) can be directly calculated from
this and compared to experimental data.

Magnetic Field / T

Figure 5.22: Comparison of the lineshape calculated for a square and hexagonal FLL
for an applied field of lOOOe. The penetration depth is 2400A and the coherence
length is 20A. An unrealistic convolution width of 6.5G would be needed to represent
the data well.
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Figure 5.23: Gaussian fits to the normal state lineshape for 6kOe and lOOOe. Both
have width's of 3.6 ±0.05G. The fitting routine is explained in Appendix B.

the data. Another, more physically realistic solution is to include pinning into the
simulation. Unfortunately the effect of pinning on the lineshape is not possible to
calculate using a Fourier series, as the FLL is no longer periodic.

A simple model consisting of a random array of point-like defects [Chudnovsky,
1990] can describe this data, but must be calculated in real space, leading to a

slow bulky calculation which must be repeated multiple times. The calculation of a

FLL in real space is outlined on page 75, with the addition of the following simple
model for pinning. The pinning array is calculated by creating a XxY array mostly
consisting of zeros, with a probability pp for a particular array position to have a 1,
which are taken as pin sites. If the position of the ordered vortices are within a given
distance of the pin site, the vortex is placed on the pin site. Figure 5.24 shows the
typical vortex lattice positions resulting from this model, where the vortex position
moves to the pin site if it is within 6nm of the site and pp=0.05. The corresponding
contour plot of magnetic field is also shown in Figure 5.24.

Each FLL configuration will be different, due to the randomness of pinning over

the large muon sampling volume; vortex correlation lengths will be much smaller
than the sample dimensions. Figure 5.25 shows a comparison of the data to a

lineshape for this model with different penetration depths, using a similar field
profile to that shown in Figure 5.24. It is clear that there is only a small dependence
on the penetration depth. The symmetry chosen is hexagonal due to the earlier
confirmation of the symmetry. Although the pinning model is unrealistic, as it
does not take account of inter-vortex interactions, the relative strengths of pin sites
and the "bendiness" of the vortices in a 3D array of pin sites, it does shows the
correct generic trends and is a far better representation of the data. Although
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Figure 5.24: Left: Typical FLL positions calculated by a simple model (see text).
pp—0.05 for a hexagonal lattice with B=100Oe. Right: Contour plot of a sample of
the flux density under the same conditions with A=2400A.
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Figure 5.25: Lineshape and the pinning model (see text and Figure 5.24) for B=100
Oe with two different A's.
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Magnetic Field / G

Figure 5.26: Lineshape and the pinning model for 6kOe.

similar information can be obtained simply by convoluting a larger Gaussian than is

present in the normal state, this demonstrates the effect of quenched disorder on the

lineshapes directly. Unfortunately it is not possible to extract a FLL symmetry or

penetration depths from these lineshapes using this model with any great reliability
(see Figure 5.25), but the value obtained is consistent with the other work presented
elsewhere in this thesis.

It is also possible to show that pinning is reduced as the magnetic held is in¬
creased, reflecting inter-vortex interactions reducing the effect of pinning. Figure
5.26 shows the data at 6kOe with a considerably reduced pin site "area of effect",
for a FLL with square symmetry. Here, pp = 0.05 as the number of pin sites should
not have changed and the distance over which the vortex moves to the pin site has
been reduced to 2.2nm, representing an increase in the elastic interactions between
vortices reducing the effect of the pin site. It is clear that although this is a rea¬

sonable representation of the data compared to the non disordered lineshape (not
shown, but see for example Figure 5.22).

Thermal fluctuations also play a role and have an increasing influence as the
vortices become closer. Thermal fluctuations can be taken into account in a similar

manner to when calculating vortex lattices with Fourier series. A Fourier transform



5.4. //SR Measurements on Lai 83Sr0 17C11O1 139

of the Debye-Waller factor results in

4W)
(5.15)

which has been convoluted with the real space field distribution. Using this analysis,
it is clear that the pinning at higher fields is reduced, which is also evident when
calculating the second moment of the lineshapes. The observations here can also
be explained by a number of other phenomena, which will be discussed later, but
it becomes clear the analysis presented here is the most likely explanation of this
data.

5.4.4 Lineshape Characterisation

Careful analysis of //.SR lineshapes may reveal important information about the
superconducting penetration depth, as well as information regarding FLL cross overs

and phase transitions. Using the width of the probability distribution is often a more

convenient method to extract A, since it is easier to represent large amounts of data
011 one plot and the width can be modelled in a similar way to the calculation
of lineshapes using a Fourier series. Unfortunately, static disorder evident in the
lineshape is also found in the width; but dimensional cross overs and thermodynamic
transitions are still evident and are a good way to understand the FLL. Figures 5.27
and 5.30 shows the temperature dependence of the width and alpha of the lineshapes
respectively for various magnetic fields.

First, the behaviour observed in Figure 5.27 will be dealt with. It is clear that
around 15K and below there is a field dependence of the width which is entirely
unexpected when considering only the London model. Figure 5.28 shows a plot of
the expected width for a London model with thermal fluctuations in 3D vortex lines
taken into account, using Equations 3.73 and 3.74. This temperature dependence
of the lineshape width can be explained by the increasing temperature truncating
the high field tails, resulting from the increasing amplitude of thermally induced
fluctuations of the vortex positions, 011 a timescale faster than the characteristic
muon sampling time [Brandt, 1991a], The muons experience a time-averaged field
distribution in which the high field values arising from close to the vortex cores are

smeared out. A two fluid model (dashed, Equation 2.6) and GL temperature de¬
pendence of A (solid, Equation 2.20) has been used for the temperature dependence
in A, with 7=15 and A(0) = 2400A. A11 increase in the ratio (u2)l^2/d in Equation
2.20 results in the field dependence of the thermal fluctuations observed, but can
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Temperature / K

Figure 5.27: Temperature dependence of the square root of the second moment for
different applied fields, normalised to the normal state width. Inset: Fit of the
6kOe data using a London model with a GL temperature dependence for A. Note:
no account has been taken of the thermal fluctuations of the vortices in the fits.

not account for the low temperature lineshape widths. It is easy to see, however,
that a GL description of the temperature dependence of the penetration depth is a

better qualitative description of the measured width compared to a simple two fluid
model.

In the inset of Figure 5.27, a fit to the width of the largest field (where pinning is
at a minimum), is shown to be in good agreement with the data at low temperatures,
until the FLL finally begins to melt at around a temperature of 20K. Parameters
used here are 7 = 15 ± 2 and A = 2400 ± 50A.

There are several possible explanations for the field dependence of the lineshape
width at low temperatures, one of which has already been discussed in the section
above. Firstly, there is a hexagonal - square FLL symmetry change in this region of
the magnetic phase diagram. In a square lattice, it is expected that the width will
be larger than in a hexagonal lattice because the inter-vortex separation is larger for
a square geometry, so is opposite to what is observed in Figure 5.27. Consequently,
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Figure 5.28: Temperature dependence of the square root of the second moment for
different applied fields. Solid line: GL temperature dependence of A. Dashed line:
Two fluid temperature dependence of A.
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Figure 5.29: Temperature dependence of the lineshapes for GkOe showing the high
field cut off as the temperature increases.



5.4. /iSR Measurements on La[ 83Sr0.i7CuO i 142

Figure 5.30: Temperature dependence of a, defined in Equation 3.72, for different
applied fields.

any small change in width due to this transition is completely masked by other
phenomena.

Another possible explanation of the field dependent lineshape width was first

suggested by Sonier [Sonier et al., 1999]. The field dependence of the width was

observed in YBCO, at applied fields of up to 6T. The measurement shows similar¬
ities to what is observed in Figure 5.27, albeit at much higher fields. The YBCO
experiment was analysed by applying an analytical GL model [Yaouanc et a/., 1997]
and directly fitting the muon precession signal. From this analysis, a 25% reduction
in A is claimed on going from 0.5T to 6T, which was explained by the non local effect
of the supercurrent in the vicinity of the gap nodes [Amin et al., 1998]. However,
they failed to take into account thermal fluctuations and static disorder from pin¬

ning. Another consideration is the FLL symmetry transition recently measured at
these fields [Brown et al., 2004], which will have a considerable effect on the pinning
regime and intrinsic flux distribution inside the sample.

A narrowing of the lineshapes could also arise in a quasi-two dimensional pancake-
vortex system, from static or dynamical transverse fluctuations [Aegert.er and Lee,
1997]. However this would be extremely unlikely in this system considering the ef¬
fectiveness of the Josephson currents tunneling between planes, which maintain the
stiffness of the vortex. Furthermore, results presented later on the x=0.10 sample
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confirm the existence of a 3D vortex glass, which is incompatible with 2D fluctua¬
tions. Considering the x=0.10 sample has 7 in the region of 40, compared to around
15-20 for this doping, it is considered unlikely this is the reason for the reduction in
width observed.

A change in FLL pinning could show a similar behaviour to that observed here,
as an increase in the static disorder would be expected from a reduction of elastic
interactions between vortices as the vortices become dilute. A reduction in static

disorder will result in a decrease in lineshape width and is considered to be the most

likely account for what is observed, as has already been discussed when simulating
the lineshapes directly. As the field is increased, point-like defects have a decreasing
effect 011 the positions of the vortices, as elastic inter-vortex interactions become

stronger. It is only at fields above several hundred Gauss that the vortex separation
becomes less than the penetration depth, whereby the shear modulus for the lattice
increases significantly [Blatter et ai, 1994], This is the explanation favoured, as has
been demonstrated by the simulations of the lineshapes above.

Now FLL melting will be considered. In the inset of Figure 5.27, at around
20K the width deviates from what is expected for 3D fluctuations. This is tlu1
temperature at which the FLL begins the phase transition into a liquid state. At

just above 30K it is clear the width reduces to the normal state width, several

degrees Kelvin below the sample critical temperature, 37K. At this point the FLL is

completely melted into a liquid state. Figure 5.29 shows the lineshapes for selected

temperatures, at an applied field of 6kOe. The high field cut off due to thermal
fluctuations is evident in the data. This thermodynamic transition is also evident
in Figure 5.30, which represents the skewness of the lineshape. At low fields, the
lineshape is skewed to the right (high field tail) and a should be positive. As
thermal fluctuations begin to take effect, the core is smeared 011 the timescale of the

measurement, leading to the skewness reducing until finally the lineshape is almost
symmetrical. Alpha should reduce significantly to a "base level" with very large
error bars, which is indeed observed. The point at which alpha reduces to this base
level is defined to be the temperature at which the FLL is completely melted into a

liquid state.

Combining the magnetisation, SANS and //SR measurements, a vortex phase di¬
agram can be produced, as shown in Figure 5.31. The hexagonal to square transition
and melting line are shown and interestingly the peak in x" i11 the same vicin¬

ity as the melting transition, although it seems the peak in x" occurs at a slightly
higher temperature. It is unclear as to whether this peak is due to the melting, or
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Figure 5.31: Magnetic phase diagram of LSCO x=0.17, obtained from combining
results from magnetisation, //SR and SANS experiments.

a change in pinning regime [Blatter et al., 1994]. The magnetisation data reflects
the underlying disorder transition, but measures very different properties under dif¬
ferent conditions to //SR. The muons measure the field probability distribution in
a field-cooled state and the neutrons Bragg diffract from the ordered field cooled
state. The magnetisation measurements determine the macroscopic properties of a

disturbed system possessing strong macroscopic flux gradients and reflect the chang¬
ing dynamic response to pinning. However, the closeness of the peak in x" t° the

melting line measure by //SR and SANS suggests strongly these two phenomena are

i elated.

Also, the question regarding what a melting transition actually "is", is considered
in the literature [for a full review, see Blatter et al., 1994], For example, there is
debate regarding whether one can describe the FLL to be melted when it is still

irreversible; the vortices can not be interacting as a "liquid" when their motion is
still governed by pinning potential. More likely, the state observed here (between
Tm and the peak in x") is better described as a glass, but no firm consensus is

present in the literature. This, however, is somewhat irrelevant to this work, as the
general trends are primarily reported here and not the intricate details of vortex
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lattice dynamics.
The temperature dependence of the melting line for 3D vortex lines is predicted

to be [Blatter et al., 1994]

where t = T/Tc, n = 4 for the two fluid model and the Lindemann number Cl ~ 0.1
[Blatter et al., 1994], However, it does not describe the data well, although the
correct general trends are shown. Figure 5.31 shows for n = 3 with cl — 0.17
and n = 2 with cl = 0.2, which are in reasonable agreement with the data. A
possible explanation for this discrepancy, is that C/, could be doping dependent
[Blatter et al., 1994],

)(iy)- ....
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5.5 fjiSR Measurements on Lai.gSr0.ioCu04

5.5.1 Experimental Detail

All measurements reported in this section were performed on Lai.gSro.ioCuCLusing
the GPS spectrometer at PSI. The sample environment was the Quantum continuous
flow cryostat, with a base temperature of 1.7K. The sample was mounted with
the c-axis perpendicular to the applied magnetic field and was aligned by eye to
within 5 degrees of the crystal orientations measured by Laue x-ray diffraction. The

sample holder was a standard copper holder to ensure good thermal conductivity
between the sample environment and thermometers. The holder was encased in

polycrystalline haematite (Fe203) and the sample was mounted on top. This ensured
any stray muons not hitting the sample would not add a background frequency, as

the haematite used is an antiferromagnet with an internal magnetic field of 1.6T in
a random orientation. Typical statistics are 15 million muon detection events over

three detectors. The three detectors used were: Left, Right and Top. The time

binning was 625ps with a maximum count time of around 10/lxs.

5.5.2 Data Analysis

The data was analysed using the Maximum Entropy Technique. Sigma Looseness
was 1.02 to account systematic errors in the data which are not reflected in the
statistics. The apodisation of errors was set to 6/rs. The data was not binned other
than that from the intrinsic binning of the instrument and the full time measured
range was used. The number of points in the Fourier spectrum was 216.

5.5.3 Low Field Measurements

Figure 5.32 shows P(B) for low applied fields at a temperature of 5K and is the
shape expected from a conventional vortex lattice or Bragg glass. As the magnetic
field is increased, it is evident the distribution becomes curtailed at the high field
tail. This reduction in width can also be observed in the second moment as both the

temperature and magnetic field are increased, which is shown in Figure 5.33. The

lineshape asymmetry also decreases as the field and temperature is increased. This
is consistent with the x=0.17, where it is explained more thoroughly. A preliminary
SANS experiment has also been performed on this system, but has proved thus far
to be a challenging experiment due to the long Aab ~ 3000A and short range disorder



5.5. //SR Measurements on Lai 9Sr0.ioCuO4 147

CO

4 60

20

40

—*-B=800e
00- —#-B=2750€

80

—#-B=4000e
—#-B=5000e
♦~B=8000e

-20 0 20 40

Magnetic Field / G

Figure 5.32: P(B)'s for different applied fields, field cooled to 5K. Inset: A prelimi¬
nary SANS experiment on this system proved difficult, but shows what seems to be
a FLL with a hexagonal symmetry.

at higher fields. It is clear from the inset of Figure 5.32 the vortex lattice possesses

an hexagonal symmetry at B=150Oe.
The temperature dependence of the lineshapes has already been discussed for

the x=0.17 case. Such narrowing can be modelled in the same manner as explained
on page 75 and even though there is an increased gamma compared to the x=0.17

sample, 3D fluctuations are still more relevant than 2D fluctuations in this system.
At a given temperature the width decreases as the field is increased, mainly due

to an increase in the ratio (u2)1/2/^. The 3D fluctuations have been calculated in
the same way as the x=0.17 sample, by a Fourier series (detailed in section 5.4.3),
but the data is simply represented in a different manner. In these simulations,
Aab — 2900A, 7=40 and A(T) is given by the GL equations.

While the observed changes of the lineshapes show that this reduction in width
must at least partly be due to dynamical effects, the simulations in Figure 5.34 indi¬
cate that the magnitude of this narrowing cannot be entirely attributed to this. The

broadening towards lower fields must also include a contribution from an increase
in the static disorder due to the reduction of elastic interactions between vortices in

the dilute vortex state, as already discussed with x=0.17.
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Figure 5.33: Top: Temperature dependence of the square root of the second moment
of the lineshapes shown in Figure 5.32. Bottom: a for the same lineshapes.
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Figure 5.34: Square root of the second moment of the lineshapes shown in Figure
5.32. The lines are as expected from 3D thermal fluctuations, calculated using
the Fourier method described on page 134 with parameters consistent with those
expected in this system (see text).
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5.5.4 High Field Measurements

Quenched random pinning of vortices destabilises the long ranged translational or¬

der, leading to a disordered phase [Blatter et al., 1994], At least two glassy phases
exist as a consequence of such disorder [Fisher et al., 1991; Nattermann, 1990; Gi-
amarchi and Doussal, 1995, 1997]. The most ordered of these phases is the Bragg
glass phase, where translational correlations decay as power laws [Nattermann, 1990;
Giamarchi and Doussal, 1995, 1997], leading to quasi-long range order of vortices
in the superconductor. Measurements presented in the previous section support the
existence of a Bragg glass phase in HTc's at low applied fields.

At increased levels of pinning, the Bragg glass is unstable and a vortex glass (VG)
phase is formed, where the translational correlations decay exponentially [Giamarchi
and Doussal, 1997; Gingras and Huse, 1996]. The VG phase has been reported to be
a distinct thermodynamic phase [Fisher et al., 1991], separated from the disordered
liquid phase by a continuous phase transition [Giller et al., 1997; Misat et al., 1999],
also known as a crossover. The main result of the high field data can be appreciated

immediately by comparing the lineshapes of Figure 5.35, measured at 80Oe and
6kOe respectively at T=5K. While the 80Oe distribution has the characteristics of
an ideal vortex lattice described previously, the 6kOe signal is highly symmetrical,
indicating a strong departure from the ordered vortex lattice or BG state. This has
been interpreted as a BG to VG crossover

Conclusive evidence for the transition from a BG to a VG phase, independent
of any particular model, comes from considerations of the width of the lineshapes.
This is plotted in Figure 5.36 as a function of applied field, for several temperatures.
At low temperatures, the signal measured at 6kOe is considerably broader than
that at 80Oe. Such a broadening of the signal from the vortex lattice can only arise
from static disorder in the positions of vortex lines within a plane perpendicular
to the field [Menon, 2002]. This is because local vortex density variations, due
to positional disorder of the vortices, give rise to regions with field values both
higher and lower than in the well ordered lattice. In a system composed of two-
dimensional pancakes, transverse fluctuations having short wavelength along the
field direction would always lead to a narrowing of P(B). This is indeed the situation
found experimentally in the very anisotropic BSCCO [Aegerter and Lee, 1997]. Thus
it is clear that in this case a highly disordered vortex line arrangement exists, which
is identified as the vortex glass phase. The reduction in width with increasing field

(up to «ilkOe) has been discussed previously, but the minimum of the width can be
treated as the upper limit for the BG - VG transition.
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Figure 5.35: Lineshapes of B=150C)e, 3k0e and 6k0e showing the Bragg glass to
vortex glass transition.

Monte Carlo simulations of a disordered vortex system, having short-ranged
translational correlations of order a few inter vortex spacings [Menon, 2004], agree

well with the measured lineshapes. In these simulations, the loss of long range

order is due to a transition from a Bragg glass phase to a multi-domain glass,
comprising of a size distribution of domains within which the vortices are locally
ordered [Menon, 2002]. As the strength of pinning is increased compared to the
inter-vortex interactions, the crystal of vortices breaks up into small domains, with
a size of between 1-40 inter-vortex spacings. Therefore, increasing the field leads
to a rapid fall in the average domain size just above the Bragg glass phase. Figure
5.37 contains the P(B) derived from Monte Carlo simulations [Menon, 2004] of a

perfect triangular Abrikosov lattice and also for a vortex glass structure having short
range translational correlations, of the order of ten and two inter-vortex spacings

[Menon, 2002]. The disordered state was calculated by annealing 6400 rigid vortices
interacting through a power law central force potential and 3700 random quenched
pinning sites and the simulations were both written and performed by G. I. Menon.
The effects of instrument resolution and nuclear dipolar broadening are not included.
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Figure 5.36: Square root of the second moment of the lineshapes, some of which are
shown in Figure 5.35. As the applied field is increased, the increase in the width of
the distribution is clear. The line is a cubic spline through the points and is meant
as a guide to the eye only. Bcr is defined to be the minimum of the width and is
indicative of the crossover between a VG and BG. Note that the spline is just a

guide to the eye and can result in an incorrect judgement of Bcr.
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Figure 5.37: Field distribution from Monte Carlo simulations of the vortex state
at (ikG, for i) an ideal vortex lattice; ii) a VG phase with a transverse correlation
length of about eight lattice spacings; iii) a VG phase with correlations extending
to only one or two nearest neighbours [Menon, 2002].

It is clear the shape of these distributions are reflected well in the experimental data,
offering more conclusive proof a VG phase is present in this system.

The disordered VG state offers a unique opportunity to measure correlation func¬
tions in a bulk system. Explicit knowledge of three body correlation functions are

required in perturbation theories for static fluids [Stell et al., 1974; Madden et al.,
1978; Gray et al., 1978], for theories of transport properties for solvent reorganisa¬
tion processed around solutes [Scherwinski, 1990; Lazaridis, 2000] and in order to
understand the structural properties of 2D amorphous systems [Wang et al., 2002;
Dhont and Nagele, 1998]. The majority of information regarding correlation func¬
tions are from numerical work on hard sphere fluids [Muller and Gubbins, 1993] and
Lenard-Jones fluids [Rahman, 1964; Gupta et al., 1982; Mcneil et al, 1983], but
experimental measurements on bulk three body correlation functions have remained
elusive.

Indeed, two body correlations can be accessed directly and indirectly by a number
of experiments (see, for example [Jiang et al., 2004; Peter et al., 1994; Zondervan
et al., 1995; Kadija, 1996]), but have proved elusive to higher dimensions for bulk
measurements. Recently, 3 particle correlation functions have been measured in
colloidal systems [Zahn et al., 2003], where an ensemble of colloidal particles with
quasi-two dimensional order on a thin film was directly imaged. However, this is
still not in the bulk. The vortex glass measured here is the first bulk measurement,
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Figure 5.38: Alpha image plot as a function of applied field and temperature.

albeit indirectly, of 3 particle correlations in a bulk disordered state. The third
moment of the magnetic held distribution can be directly related to an integral over

a three particle structure factor [Menon, 2004], yielding information regarding pair
and triplet correlations in disordered vortex structures. The third moment is defined

([A£]3) = J J S^3\ki, k2)b(ki)b(ki)b(—k1 - k2)dkxdk2 (5.17)
where S^\k\,k2) is the triplet structure factor [Hansen and Macdonald, 1986] and
b(k) is the held due to a single vortex and for in the London model assumes b(k) =

B/( 1 + X2k2). The second moment is related to the two particle structure factor

([AH]2) =^ J S(k)b(k)dk. (5.18)
Figure 5.38 shows the lineshape anisotropy factor, a, as a function of magnetic

field and temperature. The data has been interpolated with a standard 2D cubic

spline in Matlab to fill in the missing data. Firstly, it is evident that at low tem¬

peratures and fields the value of a, is approximately 1, corresponding to a Bragg

glass [Menon, 2004]. As the field is increased to relatively low fields, alpha begins to
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Figure 5.39: Width image plot as a function of temperature and applied field. The
dashed line is the theoretical melting line using the Lindemann criterion and al¬
though only tentative, it follows the general trends of the data and acts as a guide
to the eye. The crossover from a Bragg glass phase to vortex glass phase is discussed
in more detail later in this chapter.
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Figure 5.40: a) Contour plot of a perfect lattice for an applied field of 6kG. b)
Contour plot for a disordered state with a translational correlation length of about
4 intervortex spacings. Note it lacks the precise six-fold symmetry in a), while the
local coordination is still approximately six-fold, indicating the preference for the
formation of triangles locally and thus the existence of local three-body correlations
in the disordered state. Supplied by G. I. Menon. c) Structure factor of the plot
shown in b).
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Figure 5.41: The normalised asymmetry, alpha, as obtained from experiments
(points) compared with the Monte Carlo simulations (supplied by G. I. Menon)
of disordered structures (line) with correlations of about 2-3 inter-particle spacings
[Menon, 2004].

decrease and goes through a sign change at ~45000e (at 5K) to an approximately
constant negative value. A negative skewness is also seen in pSR in liquid regimes

[Harshman et al., 1991; Blasius et ai, 1999] where the FLL has melted (as observed
with x=0.17 above). However, as discussed above, an increase in lineshape width
(Figure 5.39) is not compatible with what one would expect from a vortex liquid.

The London model, which yields the field distribution due to a single vortex,
results in a vortex which diverges at the core. This unphysical divergence can be
taken into account by a number of methods already discussed, but the result will

always yield positive value of the third moment. Whilst core cut-off factors will
reduce the value of the third moment, it will never change the sign. By allowing
thermal fluctuations, the rigid lattice model used can be relaxed by adding a Dbye
Waller factor expG"2)^ The third moment once again would reduce in scale and
eventually reach zero, but it would not change sign. Thus, the only factor to relax
is the rigidity of the structure.

One possibility is to assume non-interacting vortex lines, resulting in a com¬

pletely structureless liquid with no translational or orientational correlations, but
the skewness always remains positive. Even with some level of local translational
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order, the third moment can never be negative. The only model for the vortex posi¬
tions that will yield both the correct scale and sign of the third moment is a vortex

glass, consistent with a "frozen liquid" with short range translational and orienta-
tional correlations, extending to distances of a few inter-particle spacings [Menon,
2002],

The Monte Carlo simulations shown in Figure 5.37 reflect such a system, from
which a can be calculated and compared to the experimental values, as shown in

Figure 5.41. A contour plot of magnetic flux for a perfect lattice and a disordered
state with translational correlations of around 4 inter-vortex spacings are shown in

Figure 5.40. The corresponding structure factor is also included. Note the short

range order still remains hexagonal, but over larger distances the order is lost. The
calculation of a, resulting from Monte Carlo simulations of vortex arrangement
with some short ranged triplet correlations (which can be seen in the approximate
hexagonal arrangement of vortices in Figure 5.40), represents the data exceptionally
well, providing proof of the first indirect measurement of triplet correlations in
a disordered bulk system. It remains a challenge for the theoretical community
to develop analytical constructs for triplet structure factor and compare them to
this measurement, improving upon the numerical "proof-of-concept" comparison

presented here.

5.5.5 Magnetic Phase Diagram

In order to compile the magnetic phase diagram shown in Figure 5.42, it is in¬
formative to plot the width of the field distribution and a in an image plot with
magnetisation data overlaid. Firstly, T,r is obtained from the different between
FC and ZFC magnetisation data. This is the temperature at which the vortices
overcome pinning barriers and are free to move elastically in a liquid like state. A
related phenomenon, the melting line, is also plotted. FLL melting is when the
vortices become freer to move due to thermal excitations, thus reducing the effect
of pinning, but the vortices are still subject to dissipative interactions with pinning
sites. This is estimated at low fields (<10000e) from the /iSR data to be the point
at which the lineshapes obtain a constant negative skewness. At higher fields, it can

be correlated with the point at which the width falls to a constant value. From the
width colour plot in Figure 5.42, it is possible to observe the melting line directly
to be the point at which the colour changes from a light blue/turquoise colour to a

dark blue. It is also clear that this estimate is consistent with a at low fields. Bcr
is the minimum of the width at different applied fields, defined in Figure 5.36. The
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Figure 5.42: Magnetic phase diagram of LSCO x=0.1 obtained from //SR and mag¬
netisation measurements. A plot of a on the left (Figure 5.38) and the width on the
right (Figure 5.39). The lines are guides to the eye, to emphasise the general trends
found in the data.

exact value of Bcr is only approximate, as it is difficult to define the minima well

(especially at temperatures approaching 25K), but it is included as it corresponds
to the glass transition beginning to dominate the linewidth and is therefore an up¬

per limit on the BG-VG transition. It is worth noting that the muon is sensitive
only to the local magnetic field, so in general this transition from BG to VG will
be a crossover of behaviour which reflects the underlying transition. These results
should therefore be viewed as showing the vortex glass phase exists, rather than
being directly identified with the BG to VG transition.

The temperature dependence of Bm is also plotted, which corresponds to the
onset field of the second peak in the magnetic hysteresis measurements. This re¬

flects the change in macroscopic flux gradients inside the sample, most likely due
to a change in the pinning regime. It has been associated with the BG-VG tran¬

sition [Giller et al., 1997], which is why it has been included. Combining different
techniques can often lead to inconsistencies, such as the difference between Bon and

Bcr. This is to be expected, as they do not measure the same signal. The muons

measure the field probability distribution in a field-cooled state and the signature
reflects two competing field-dependent processes. The magnetisation measurements
determine the macroscopic properties of a disturbed ZFC system, which possesses

strong macroscopic flux gradients. However, the two different techniques can be
used complementary to each other in order to obtain a deeper understanding of the
system.
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Figure 5.43: Alpha image plot and width as a function of applied field and temper¬
ature, for an applied field and muon momentum ~10° from the c-axis. The colour
map has been kept the same as in Figure 5.42 to aid comparison.

Figure 5.43 shows a and the width as a function of field and temperature, with
the c-axis rotated off the direction of applied field by 10 degrees, which can be
directly compared to the plots in Figure 5.42. First, it is evident that the crossover

from a BG to VG occurs in a similar position in the phase diagram, as the minimum
in the width is almost unchanged between the two sets of data. However, the point
at which a goes negative is at a significantly higher field. The point at which a turns

negative depends on the initial disorder of the vortices. With the applied field close
to the c-axis, it is presumed the low field state (BG state) is more disordered than
when at 10° off. This additional disorder when the applied field is close to the c-axis

may be because the correlated pinning sites are more effective. In the case of LSCO,
extended defects throughout the sample corresponding to the boundaries along the
twin planes are significant pinning centers. So by rotating off by approximately 10

degrees, the effectiveness of the twin planes to pin the vortices would have been
reduced.

A rather strange feature is the "renetrant" behaviour of a observed at around
50000e at high temperatures, where a negative a at 40()0Oe becomes positive as the
field is increased, only to go negative at all temperatures at applied fields greater
than GOOOOe. At this point an explanation for this is not possible.
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5.6 Concluding Remarks

The work presented in this chapter represents the first systematic study of vortices
on large, high quality LSCO single crystals using both microscopic and macroscopic

techniques for two Sr dopings.
In the overdoped regime, SANS has been used to measure the first clear micro¬

scopic observation of a vortex lattice in LSCO and the first unambiguous evidence
for a field induced hexagonal to square vortex lattice structural transition, which
remains independent of temperature up to the FLL melting. At high applied fields,
the square diffraction spots are found to lie along the CuO bond direction, which is

incompatible with current theoretical constructs. The vortex lattice measurements
are supported by //SR measurements, which also yield information on FLL pinning
and provide further information regarding the melting transition. Combined with
magnetisation data, it has been possible to draw a magnetic phase diagram for this
compound.

In the underdoped regime, a preliminary SANS experiment at low applied mag¬

netic fields suggests a BG with nominally a hexagonal structure, although this ex¬

periment proved somewhat difficult. More detailed information on the vortex lattice
structure has been gathered with //SR. This is distinguished by the fact that it pro¬

vides unambiguous evidence for a crossover with increasing field from a BG phase
to a more disordered VG state and an upper limit on the cross over field has been
estimated. The VG phase has been theoretically predicted in the literature, but not
measured with local probes until now; this is the first measurement of a disordered
VG state in a system of well coupled vortex lines. Furthermore, a detailed study
of the evolution of short range order in the presence of weak pinning is of univer¬
sal significance, as it provides useful experimental insights into space averaged many

particle correlations in bulk systems. Experimental work that precedes the measure¬

ments presented here has either been limited to lower order correlation functions or

to systems of reduced dimensionality.
Further work could include a detailed SANS investigation of correlation lengths in

the underdoped compound, which could provide invaluable information and support
the results presented here. Another possible investigation a //SR measurement with
the field applied directly along the c-axis. This may determine the effectiveness
of correlated pinning on the initial FLL disorder, thereby providing a means of
measuring the different correlation lengths as a function of initial FLL disorder.
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6.1 Overview

The competition between superconducting and magnetic order has been a long¬

standing problem and an issue of interest in condensed matter physics. Magnetic
impurities tend to polarise the conduction electrons via the exchange interaction.
Superconductivity, on the other hand, generally forms spin singlet states. These
two phenomena are usually mutually exclusive, coexisting in only a small number
of materials. In a system where coexistence occurs among the same conduction
electrons, an exotic form of superconducting order may exist such as a "spin triple"
state, which may be compatible with ferromagnetic order. The magnetic excitations
may also play a key role in binding the Cooper pairs, analogous to the role of phonons
in conventional superconductors.

Conventional superconducting systems involve the formation of pairs of electrons
in which the spins are oppositely aligned to form a spin-singlet state, for which the
momenta of the electrons are also equal and opposite. A conventional Cooper pair
also possesses zero net angular momentum and by analogy with atomic orbitals is
described as an s-wave state. The presence of a magnetic impurity in such a system

gives rise to an exchange field that will tend to align the spins of the surrounding
electrons parallel to it. Since this process competes with the antiparallel alignment
of spins constituting the Cooper pairs, the impurity provides a "pair breaking"
mechanism which can ultimately destroy the superconducting state.

In order to explain the robustness of superconducting order to the presence of
magnetic species, more exotic scenarios have to be invoked. For example, the for¬
mation of a "spin triplet" state, in which the paired spins are aligned parallel to
one another, would not be susceptible to the pair breaking influence of the exchange
field [Maeno et al., 2001]. Due to the constraints imposed on Fermions, such a p-

wave pair would possess non-zero angular momentum. This is thought to be the
correct description of the superconducting state in Sr2Ru04 [Riseman et al., 1998].
By contrast another scenario considers the spin-singlet state to persist, whereby
the potential energy associated with the exchange field causes each of the two elec¬
trons to have different kinetic energy. The resultant linear momentum of the pair
leads to a spatial oscillation of the superconducting wavefunction, which periodically
reverses sign [Larkin and Ovchinnikov, 1964; Fulde and Ferrell, 1964], This Larkin-
Ovchinnikov-Fulde-Farrell (LOFF) state is thus an s-wave spin-singlet system but
possesses non-zero linear momentum and is therefore distinct from either a p-wave

or a conventional s-wave superconductor.
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Conventional //SR has played a pivotal role in investigating systems in which
magnetism and superconductivity coexist [Amato, 1997], but is unsuitable for thin
film investigations where typical film thickness is of the order of a few hundred
nm, as the typical conventional muon stopping depth is on the mm scale. The

recently developed Low Energy Muon technique [Morenzoni et al., 2001] addresses
this problem by providing a tuneable muon implantation depth, ranging from a

fraction of a nm to hundreds of nm. This technique is ideal for the study of the
competing order parameters in superconducting/ferromagnetic (S/FM) multilayers,
particularly in light of the recent application to measuring the depth profile of the

superconducting penetration depth in high temperature superconductors [Jackson
et al., 2000] and the measurement of a SDW in a Fe/Ag/Fe thin film [Luetkens
et al., 2003].

For a normal metal/FM multilayer, the exchange field can cause a periodic os¬

cillation of the electron-spin density inside the normal layer. The period of the
oscillation is determined by extremal spanning vectors of the Fermi surface, via an

enhancement of the wavevector-dependent susceptibility at these values [Martin,
1967], similar to the RKKY interaction. In the superconducting state such a pe¬

riodic spin-polarisation would seem incompatible with a uniform amplitude for the

superconducting wavefunction, due to the pair breaking effect of the spin polarisa¬
tion.

Advances in thin film fabrication techniques ([Jin and Ketterson, 1989] and ref¬
erences therein) have renewed research interest in S/FM multilayers and a number
of new and sometimes controversial phenomena have been observed. For S/FM
multilayers, it is expected that the superconducting transition temperature de¬
creases monotonically with increasing magnetic layer thickness. Not long after
non-monotonic behaviour was observed (see for example, [Wong et al., 1986]), the
possibility of an oscillating Tc as the magnetic layer thickness increased was shown

theoretically [Radovic et al., 1991], where it was found the phase of the supercon¬

ducting wavefunction exhibits oscillations in the FM layer.
For the case of a magnetic layer bound on both sides by superconducting mate¬

rial, the phase of the order parameter across the two superconducting layers can be
different, which was convincingly reported recently [Kontos et al., 2001]. The value
of the phase difference depends on the layer thickness compared to the wavelength
of the spatial oscillation. For example, with an odd number of half-wavelengths
across the layer the phase difference would be it radians. However, the theoreti¬
cal construct outlined above [Radovic et al., 1991] is only valid in the case of high
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transparency of the S/F boundary and for the specific structure of a FM between
two superconducting films. Although a number of publications observed the non¬

monotonic behaviour of Tc in relevant systems [see for example, Strunk et al., 1994;
Jiang et al., 1995; Ogrin et al., 2000]), which is predicted by this theory, a number
of groups observed similar behaviour in FM/S/FM tri-layers [Muhge et al., 1996,
1997]. This theoretical description is therefore insufficiently general to explain these
results.

An alternative theory explains both the trilayer and multilayer phenomena [Khu-
sainov and Proshin, 1997, 2000] with no limitations on boundary transparency. The
mechanism is built on a LOFF type mechanism, where the superconducting pairs
tunnel into the FM region (the proximity effect) and acquire finite momentum. The
superconducting ground state is therefore different from that of a BCS paired state.
In this theory, the exchange field is periodically compensated by oscillations in the
superconducting pair amplitude, leading to an oscillatory SDW. This oscillatory be¬
haviour leads to a non-monotonic oscillatory dependence of the critical temperature
as a function of FM thickness.

The theoretical advances described above have led to considerable experimental
interest in S/FM thin films. Unfortunately, in most experimental systems studied,
complications due to interface roughness/alloying mean there is not always a sharp
S/FM interface, but a continuous change between the superconducting and ferro¬
magnetic properties; the theoretical predictions are only valid for clean S/FM inter¬
faces. Firstly, oscillatory behaviour of Tc was observed in V/Fe multilayers [Wong
et al., 1986], but later not observed in the same system [Koorevaar et al., 1994], The
non-monotonic behaviour was reported for Nb/Gd multilayers and Nb/Gs/Nb tri-
layers [Jiang et al., 1996, 1995], for Fe/Nb/Fe trilayers [Muhge et al., 1996, 1997] and
for Nb/Co and V/Co multilayers [Obi et al., 1999]. However, negative results were

reported for Nb/Gd/Nb trilayers [Strunk et al., 1994], for Ge/Nb bilayers [Muhge
et al., 1998] and for Nb/Fe multilayers [Verbanck et al., 1998]. Therefore it is highly
desirable to have a system in which very little alloying occurs. For this reason

the Pb/Fe system has been chosen, as there is very little solubility between metals
(even in the liquid state!) [Kubaschewski, 1982; Lazar et al., 2000]. This suggests
the inter-diffusion at the S/FM boundary is negligible. Indeed, non-monotonic os¬

cillations in Tc as a function of FM thickness are observed in sputtered Fe/Pb/Fe
trilayers [Lazar et al., 2000], although a non-ideal growth mechanism can lead to
large interface roughness [Garif'yanov et al., 1998]. Thus, care must be taken when
growing films.
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While the spatial modulation of the superconducting order parameter inside the
ferromagnetic layer has been convincingly reported [Ryazanov et al., 2001; Kontos
et al., 2001], relatively little (microscopic) attention has been given to any related
effects occurring inside the superconducting layer, which is the motivation for this
work. This chapter reports the first depth resolved microscopic measurement of

magnetic flux density deep inside the superconducting layer of a Fe/Pb/Fe thin
film, offering direct evidence for a modified spin density wave which coexists with
bulk superconductivity. Moreover, this SDW is shown to accommodate to the pres¬

ence of superconducting order, indicating an intriguing interaction of the two order

parameters. This intimate coupling of the two order parameters has profound im¬

plications for theoretical descriptions of this and similar systems and could lead to
novel applications in hybrid magnetic-superconducting devices.
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6.2 Sample Characterisation

6.2.1 Sample Growth

The samples measured in the work presented here were grown using a DC magnetron

sputterer situated in the Department of Physics, University of Leeds and is shown
in Figure 6.1. The process of sputtering consists of the ablation of surface atoms
on the target, due to energetic particle bombardment. The bombarding particles
can be ions, neutral atoms, neutrons, electrons or energetic photons. A target atom
will become sputtered if the energy transferred to it has a component normal to
the surface which is greater than the surface binding energy. The sputtered atom is
then incident on a substrate (or target surroundings!) and binds to form a film. The
technique used at Leeds is called the dc planar magnetron sputtering, created by J. S.
Chapin [Chapin, 1979]. Magnetron sputtering is a magnetically assisted discharge
in which a permanent magnet array is placed underneath the target, creating a

magnetic field parallel to the target and perpendicular to the electric field. This
results in a closed toroidal trajectory for the electrons holding the glow discharge
plasma around the target, which can be observed in Figure 6.1.

Samples were grown on {100} polished Si substrates, which were cleaned prior to

growth in acetone followed by isopropanol, for approximately 30 minutes. Samples
were masked with either a 22 x 20mm or 4 x 12mm mask, the former being the
samples used for neutron and muon experiments and the latter for sample charac¬
terisation. The sputter chamber was pumped down overnight to 10~7 mbar before
a cold finger was cooled with liquid N2. This brought the vacuum down to approx¬

imately 10"9 mbar. Growth was carried out under 2.5 mTorr Ar, but occasionally
this had to be increased temporarily to 5-10 mTorr in order to achieve a stable
plasma. It was reduced back down to 2.5 mTorr before growth commenced. Ar is a

Noble gas, so does not chemically react with the target and has a mass sufficiently
large to be able to remove atoms from the target, so is an ideal plasma medium. Ta¬
ble 6.1 contains the growth conditions for all the different targets used. The targets,
shown in Figure 6.1, were cleaned before growth to maximise the purity of samples.
This was achieved by turning the magnetron gun on for a prolonged period of time
without a substrate present over the gun.

Substrates were rotated between guns in order to grow layers of different materi¬
als, with a mask covering substrates in order to shield them from any stray material
coming from the guns. Characterisation, unless otherwise stated, was performed
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Figure 6.1: Loft: Picture of targets in the sputterer. Right: Cleaning the surface of
the targets prior to growth.

Target GunPower/W GunCurrent/mA Groivthllate/As 1
Pb 7 20 5.9

Fe 37 100 2.9
Mo 20 50 3.0

Table 6.1: Sample growth parameters. Growth rates for these parameters were
calibrated with ex-situ X-Ray reflectivity and SPNR.

on the same sample as used in the muon and neutron experiments. Where this is
not possible, test samples, grown in the same batch under identical conditions, were

used for the characterisation.

6.2.2 Transport and Magnetisation Measurements

Figure 6.2 shows the resistance of an Fe30A/Pb2300A/Fe30A/Mol00A thin film
test sample. Measurements were carried out in St. Andrews with a general purpose

AS Orange cryostat. Contacts were made to the thin films using Dupont 6838
silver epoxy and cured at room temperature under a vacuum for approximately 2
weeks. Although 6838 is a high temperature curing epoxy, it was considered to be
inadvisable to heat the Pb films due to the possibility of oxidation. It was found
that by leaving it under a vacuum for 2 weeks, contact resistances were reliably low
and always considerably less than lOfl at room temperature. Measurements were

carried out using a standard 4 probe technique. In order to avoid sample heating,
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Figure 6.2: Temperature dependence of the resistance of a Fe/Pb/Fe thin film. It
is clear Tc=5.8K and the films are good quality.

an AC technique was used and the current was limited to 10/jA. It is clear from
Figure 6.2 that the superconducting critical temperature is 5.8K with a width of no

more than 0.02K, indicating the high quality nature of the film.

Figure 6.4 shows hysteresis loops of another Fe30A/Pb2300A/Fe30A/Mol00A
thin film test sample for above and below Tc. Measurements were carried out in
Leeds on an Oxford Instruments Vibrating Sample Magnetometer (VSM). Firstly,
from the above Tc data it is clear that the film is FM and saturates at a few hundred
Gauss. From the data below Tc, it is clear that the sample is a bulk irreversible
superconductor, which is exactly as expected. The irreversibility can be explained
in a number of ways; namely, the presence of vortices and the presence of large
volumes of normal metal due to an intermediate state Tinkham [1996]. This can

be clarified from magnetisation data on pure Pb thin films, where irreversibility is
also observed. Considering the demagnetisation factor is unity for a thin film when
the field is applied parallel to the surface, the only explanation for this behaviour
is the presence of vortices. Pb is typically a Type I superconductor, but for bulk
Pb k=0.45 - close to the k = l\/2 limit. The reduction in the coherence length and
an increase in the penetration depth that is expected from a dirty (polycrystalline)
thin film would result in Type II behaviour, as observed here. In this case, one

would expect the crystal domain size to be of similar order to (no larger than) the
coherence length [Niu and Hampshire, 2003]. X-ray diffraction should be able to
measure the average vertical grain size of the sample, which is discussed in the next
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Magnetic Field / T

Figure 6.3: The virgin branch of the magnetisation measurements on Pb/Fe/Pb,
shown in Figure 6.4 (top).

section.

To further the point, a Pb2000A/Mo90A film was grown and measured using
the St. Andrews SQUID magnetometer. Figure 6.5 shows a hysteresis loop at 2K,
where Type-II behaviour is clearly evident. Hci can be estimated from the point
at which the virgin branch deviates from linearity, which is approximately 3000e.
Hci can also be estimated for the Fe/Pb/Fe films, which is shown in Figure 6.3.
Here it is clear Hci is reduced to around lOOOe, lower than the pure Pb films, which
is expected due to the pair breaking mechanism associated with the ferromagnetic
layer.
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Figure 6.4: Hysteresis loop of a Fe/Pb/Fe thin film for T=6K (top) and T=2.3K
(bottom). A linear background has been subtracted.
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Figure 6.5: Hysteresis loop of a Pb thin film for T=2.0K (top) and the virgin branch
(bottom) from which Hcj can be estimated to be approximately 300Oe.
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6.2.3 X-ray Diffraction and Reflectometry

The structure of the sputtered Pb thin films (and therefore the electronic prop¬

erties) are likely to be governed by the rate of deposition, substrate temperature,

target composition and film thickness. The rate of deposition is a function of the
Ar pressure, target composition, magnetron power (and temperature) and target
thickness. Some of these are held constant; for example the substrate temperature,

target composition and its thickness. However, magnetron power and Ar pressure

can be varied and a growth rate can be established such that all films are grown at
similar rates.

X-ray diffraction/reflectometry provides information such as film thickness, grain
size and orientation and strain of the films. Typical X-ray instruments have a

wavelength in the range of 0.5-2.5 A. The wavelength of the X-rays used here is
1.54 A, which corresponds to Cu-Ka lines. The X-ray scans have been used mainly
to determine the growth rate of the samples, to measure roughness, the vertical
coherence length and mosaic spread distribution. All X-ray experiments presented
here were performed at the University of Leeds.

The instrument, located at the University of Leeds Department of Physics, is
a Siemens two circle diffractometer with an x-ray tube containing a Cu target.
Inside the tube there is a filament which creates a current of electrons of 30 mA,
accelerated by a voltage of 40 KeV and incident on a Cu target. The lines observed
are Cu Ka and Kp, due to the removal of an electron from the K shell of the Cu
atoms. An electron from an outer shell (L for a and M for (3) falls into the vacancy

in the K shell, emitting X-rays in the process and returning the atom to its normal
energy state. A Ni filter absorbs Cu-Kp, so the beam is close to monochromatic
(with a wavelength of 1.54 A). A Si monochromator is also used, placed before the
scintillation detector to completely eliminate the Cu-Kp radiation and also acts to
drastically reduce the background counts on the detector. Thin parallel metal sheets
are placed at the exit of the x-ray tube, as the source is isotropic, thus increasing
instrument resolution. A further increase in resolution can be achieved by placing
another slit before the sample, but this must be balanced by the counting statistics

required. Typical angular resolution for the measurements performed here is 2° and
4° for low and high angles experiments, respectively. The detector and sample are

rotated at constant angular velocity by motors in such a way that the velocity of
the detector is always twice the velocity of the sample.

9/29 scans have been performed both at high and low angles, the typical length
scales measured being different for each type of scan. At high angles, the scattering
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Target Current / mA Power / W Growth rate /As1
Pb 20 7 5.9
Fe 100 37 3.0
Mo 50 20 3.3

Table 6.2: Table of growth conditions for the different targets.

vector is of the order of the crystallographic reciprocal lattice vector and at low

angles, the scattering vector is of the order of the reciprocal layer thickness. The
scattering vector is always perpendicular to the surface of the sample, so only the
length-scales perpendicular to the surface of the film can be measured; no informa¬
tion regarding the in-plane structure of the sample can be obtained.

At low angles, fringes appear for thin samples due to interference of reflected
waves from the top air/metal interface and the metal/substrate interface and can

be observed above the critical angle of a film as a function of the reflected beam.
The reflectivity from a single layer deposited on a semi-infinite substrate is [Holy
et ai, 1999]

R =
r\ + r2e 2i/coz ^

1 + nr2e_2ifc°2< ^ ^
where r^2 are the Fresnel reflectivity coefficients of the free surface and substrate
interface, koz the vertical component of the wavevector transmitted through the
sample and t is the layer thickness. Thus a maxima exists when e~2lk°zt = 1 (at an

angular position denoted by cqm), which corresponds to

2t\Jsin2 aim — sin2 ac = m\ (6-2)

where m is an integer and the critical angle of total external reflection ac is defined
sin ac — n), where n is the layer refractive index.

Figure 6.6 shows the Kiessig fringes for a growth of 100s of Fe and Mo, grown

under standard conditions (described above). From these reflectivity curves it is
possible to calculate the layer thickness and therefore the growth rate in order to
ensure it is constant for all growth runs. It is also clear that the films are of good
quality (low roughness), as many fringes are evident. Table 6.2 contains the growth
rates, magnetron power and current used for all samples. For reasons unknown

(possibly due to absorption), it is not possible to perform the same analysis for the
Pb. SPNR was used to characterise the exact thickness of all the layers from the
same sample used in the LEM experiments.
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Figure 6.6: Keissig fringes for 100 seconds of growth time for Fe and Mo.
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Crystal dhki /A 1 29/degrees A x0/degrees B
Pb {111} 2.86 31.2 1.43 (0.06) 31.30 (0.01) 3.1xl0-3 (2xl0~4)
Pb {311} 1.57 62.1 0.09 (0.05) 62.19 (0.04) 2xl0~2 (lxlO-2)
Pb {222} 1.43 65.2 0.38 (0.09) 65.28 (0.03) 3xl0-2 (lxlO-2)
Si {400} 5.43 69.1 1.13 (0.05) 69.23 (0.01) 7.6xl0-4 (4xl0"5)
Si {400} 5.43 69.1 0.50 (0.04) 69.43 (0.01) 7.8xl0-4 (8xl0-5)

Table 6.3: Lorentzian fits to the high angle x-ray results, shown in Figure 6.2.3.

In order to determine the vertical grain size and crystallographic orientation, high
angle 9/29 scans were performed. These scans are also performed in the specular
condition, but the main difference between low angle scans and high angle scans is
the different length scales that can be probed. The distance between planes is given
by

dhkl ~

Vh2 + k2 + P ^
where h, k and 1 are the Miller indices of a particular set of planes. Applying Bragg's
law it is clear that it is possible to obtain crystallographic orientations. In the first
instance, one would simply use Braggs law to predict the angle where the peaks
are expected. However, it soon becomes evident in Figure 6.7 the 1st order peak
for Si {100} is not present, as the lattice parameter is 5.43A which corresponds to
29 = 16.3°. Si has a diamond crystal structure, which can be thought of as two

penetrating fee sublattices displaced from each other by the distance (}, }). The
basis of the fee structure is usually a cubic unit cell with 4 atoms per unit cube.These
four atoms can be chosen to have the locations at (0,0,0); (0,1/2,1/2); (1/2,0,1/2)
and (1/2,1/2, 0), so the Si structure factor is

Fdi{hkl) = fc [l + eni(h+k) + c"(fc+,) + e^h+l)] [l + e™(™) (6.4)

where fc is the atomic dispersion factor. As can be seen from the above equation,
reflections from the planes with Miller indices {200} and {n00}, where n is an odd
integer, have a zero structure factor. For this reason, the first set of planes which
can be observed is {400}, with a corresponding angle of 29 = 69.1°.

Figure 6.7 shows such a measurement performed on a thin (600A) test sample
of Pb and a strong peak at around 69° is observed. It is possible to fit these peaks
to a Lorentzian
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Figure 6.7: High angle X-Ray diffraction from a Pb thin film.
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Figure 6.8: High angle X-Ray diffraction fits to a Lorentzian. Double peaks are
fitted by the superposition of two Lorentzians.
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V = W+ (x-x^ + B (6'5)
which are shown in Figure 6.2.3, with the relevant fit parameters in Table 6.3. On
closer inspection of the Si peak, it is clear there are two peaks at 69 degrees, which
have been fitted to a linear superposition of two Lorentzians. The double peak is
most likely due to the Si having two crystal domains, at slightly different angles to
one another. Since this is a test sample, it is unknown if this is also the case with
the slow /iSR sample.

Pb has an fee crystal structure, so the structure factor is therefore

Ffcc(hkl) = fc [l + eni{h+k) + eni{k+l) + eni{h+l)] . (6.6)
Reflections then vanish if (hkl) contains a particular mixture of even and odd num¬

bers. Apart from the Si peaks, three further peaks are observed. The first at 31.3°

corresponding to the {111} planes, there is another at 62.2° corresponding to the
{311} planes and a third at 65.3° corresponding to the {222} planes. It is clear from
the intensity of the peaks that the major growth direction is (111), but it is unfor¬
tunately not possible to confirm that this is the only growth direction due to the
effects of the structure factor. However, it is considered unlikely there is any other
growth direction and therefore it has been assumed the (111) is the only growth
direction.

The vertical coherence length, C±, represents the vertical size of the grains

present in the sample. Assuming there is zero strain in the sample, the peak broad¬
ening is due to a finite number of crystal planes present in the sample, so the vertical
grain size can be calculated from the FWHM of the peaks [Holy et al., 1999]

Cx = (6.7)
7TCT COS 9

where A is the x-ray wavelength, 9 is the Bragg angle, A is a geometrical factor
related to the shape of the crystallites, approximated for these films to be 0.9 [Cullity,
1978] and a is the FWHM. By solving Equation 6.5 at y=l/2, with the correct
parameters from the fits for the {111} planes, it is possible to calculate the vertical
coherence length to be 24.4±0.6A.
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6.2.4 Spin Polarised Neutron Reflectivity

A neutron reflectometry experiment determines the variation of the intensity of a

beam of neutrons reflected from a surface as a function of the scattering vector

47T
q = —r sin© (6.8)

A

where A is the neutron wavelength and 20 is the scattering angle. The angle between
the plane of the sample and the incident beam is 6. This is illustrated in Figure
6.10. The reflectivity, R(q), in a neutron experiment, is defined as Ir(q)/Ii(q), where
Ir{q) is the reflected and Ii(q) is the incident intensity.

Spin polarised neutron reflectivity (SPNR) can be used to measure the thickness
and magnetisation profile of thin film multilayers. Neutron reflection provides the
composition variation normal to the surface of the film, with an accuracy on a sub-
nanometer length scale. This kind of information is also given by X-ray reflectivity,
however the neutron performs better in two important respects. Firstly, there is
the favourable difference in scattering properties between elements and isotopes of
elements. With X-rays, contrast between different regions of the sample is provided
by the electron density difference between molecules. The analogue for neutrons is
the neutron scattering cross section. Across the periodic table, this scattering cross

section appears to be not only of random magnitude, but also of sign and varies
even between isotopes of a specific element. The second major advantage is that the
neutron can penetrate through many engineering materials. This allows the use of
neutrons in complex sample environments without the worry of absorption, which
is a major problem with X-ray techniques.

The instrument used in the work presented here is CRISP, which is situated at
ISIS. The CRISP reflectometer is typical of a pulsed source time-of-flight (TOF)
instrument. A schematic illustration of the major optical components is shown
in Figure 6.9. The moderated neutrons pass through a disc chopper to select the
wavelength range. The beam is coarsely collimated by neutron absorbing jaws before
entering the experimental measurement area. Fine collimation is achieved by two
slits before the sample which define the illuminated area and resolution at the sample

position. The resolution is given by

Aq
_ tan_1((si + s2)/2L1) /a ^

q ~ 0 { '
where Sx and s2 are the heights of the two collimation slits, Lx is the distance between
the slits and 0 is the incident angle. The slit widths are generally fixed at 30mm,
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these widths do not effect the resolution in q.

The beam profile and intensity is monitored just before reaching the sample
using a scintillator detector. Post sample, the background noise is suppressed by
two further slits and a shielded detector nose cone. The nose cone is covered in

boron impregnated resin (a strong absorber of neutrons) which reduces the level of
background radiation on the detector. A number of other measures are taken to

reduce background count rates; when the protons strike the tantalum or uranium

target, a pulse of high energy neutrons and 7-rays is produced. A proportion of
the neutrons are not moderated and these along with the 7-rays will contribute to
the background. The chopper is timed such that it blocks the view of the target

during the period of the proton pulse. The supermirror1 will reflect neutrons into
the instrument in the useful wavelength range, but high energy neutrons and 7-rays

will pass straight through and are not detected. This reduces a major source of
background counts.

CRISP has a wavelength range of 0.5-6.5A with the disc chopper working at
50 Hz. This range can be extended to 12A if the disc chopper is operated at 25

Hz, although this has the drawback of less flux, since it only collects 1 in every 2

pulses of neutrons. The instrument has been designed to be able to measure liquid
surfaces and therefore has a horizontal sample geometry and an inclined beam at
1.5° to the horizontal, although this is somewhat redundant for the measurements
here. Computer controlled goniometers at the sample position allow movement of
solid samples (or confined liquids) to angles other than the 1.5°.

CRISP like other pulsed neutron source reflectometers has a fixed wavelength
range, therefore at each incident angle on the sample a limited q range is obtained.
The q range can easily be extended by running 2 or more incident angles and com¬

bining the data. The reflectivity profile at a fixed incident angle due to the poly¬
chromatic beam is therefore collected all at once and the time required to measure

the total spectrum is only limited by the statistics of the collected data. This offers
an advantage over other monochromatic instruments, as the resolution is not limited

by a finite angle step size. Therefore CRISP can measure much thicker samples at
a better resolution than other (non TOF) spectrometers, albeit with some loss of
statistics.

The sample environment is an Oxford Instruments continuous flow cryostat,

capable of a base temperature of 1.5K. The applied field is from a Helmholtz elec¬
tromagnet and typically does not exceed a few thousand Oersteds, which is applied

^ot shown in Figure 6.9, but is between the collimating jaws and the first slit.
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Figure 6.9: Schematic diagram of CRISP.

parallel to the neutron momentum and film surface.
The data analysis in this section concentrates on one method of data analysis -

the optical matrix method [Blundell, 1992], which is suitable for the systems studied
here. Appendix A deals with the model used in more detail. Two further methods
of analysis use partial structure factors [Crowley et ai, 1991] and indirect Fourier
transform [Pedersen, 1992] methods, which are not implemented.

The neutron reflectivity is modelled by considering the potential energy of the
neutron passing through a solid. The neutron undergoes both nuclear and magnetic

scattering, schematically shown in Figure 6.10b. Consequently, the potential energy

of a neutron in the ath region is the sum of a nuclear term and a magnetic term

h2
K ~ Pa^a ■ Ba (6.10)

27Tmn

where pLn is the neutron magnetic moment, ba is the coherent scattering length, B„
is the field due to the magnetisation in region a and pa is the atomic density. Thus,
the reflectivity depends on the relative orientation of the neutron spin and magnetic
field in each layer. By calculating a spin dependent transfer matrix (Appendix A),
it is possible to write [Blundell, 1992]

t\ — M33/(A/11 A/33 ~ M13M31)
= — M3i/(MnM33 — MI3M31)
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Figure 6.10: Schematic diagram of the geometry used for the CRISP experiments,
a) TOF geometry, where the wavevectors 1 and 2 are incident at different times
after the pulse, b) Spin dependent magnetic scattering.
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rj — (M21-M33 — M23M31) / (M11M33 — M13M3i)

ru = (M41M33 — / (M11M33 — M13M31)

td. = ~M13/(M11M33 — M13M31)

td ~ Ml1 /(M\1M33 — M13M31)

rd = (M23M11 — M21M13) / (M11M33 — M13M31)

rd = (M43M11 — Mi\M\3)/ {M11M33 — M13M31) (6-11)

where M is the transfer matrix, the subscripts 011 M are the indices to the ma¬

trix elements and the u and d correspond to the incident neutron spin. The spin

asymmetry is defined

(612)

which can be rewritten in terms of the four reflection processes in Equation 6.11 as

0 KP+kul2-!^!2-!^!2 / r? "1 q\
|rl|2 + |ri|2 + |r^|2 + |r^|2

Thus, by calculating and for a neutron particular potential it is possible to

directly fit both spin up and spin down reflections to obtain the layer thickness
and magnetic profile of each layer. Resolution effects can be taken into account by
using Equation 6.9. In an ideal world where data can be collected over an infinite

q range with no resolution effects, the reflectivity, R(q), is not unique to a single
composition profile because of the loss of phase information. Furthermore, a host
of different composition profiles may all have very similar reflectivity profiles and
in a real experimental situation these profiles will be essentially indistinguishable.
However, these samples are relatively simple with few constituent layers, so it is not

necessary to revert to a Maximum Entropy technique to solve this problem.
Sample roughness can seriously reduce the quality of the reflectivity curves. Fig¬

ure 6.11 shows a schematic diagram of the different forms of roughness. Part (a)
shows relatively realistic inter-diffusion and interlayer roughness between two layers
of a multilayer (left) and a simplistic model (right), which effectively takes an aver¬

age of the displacement over all of the sample. Part (b) is a description of the top

layer/air interface and can be modelled in the same way as part (a). Part (c) is a

description of the large scale roughness, which has not been taken into account in
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Figure 6.11: Schematic diagram of the different types of sample roughness, a) Left:
Inter-diffusion between layers and interface roughness, with a typical lengthscale of
less than lOnm. Right: The manner in which this type of roughness is modelled,
b) Intermediate roughness at the air/sample interface, with a lengthscale between
lOOnm and 5//m. c) Large scale roughness, which can include strain, substrate
bending and anisotropic growth. The lengthscale is typically greater than 50 /xm.
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this work. The model of roughness described here does not take into account con-

formal roughness, as it is an underdetermined problem which requires a maximum
entropy algorithm to solve. This algorithm is currently in development.

Conventional simulation and fit programs for (X-ray) specular reflectivity are

usually based on an independent, individual layer roughness model and this is the
model used here. It is proposed that the roughness follows a Gaussian profile for
random shifts from the ideal interface, leading to a Fresnel reflectivity to be altered
to [Holy et al, 1999]

r'a — rae <7"9"+1<r"/2 (6-14)

and a transmission of

t'a = tae2\ 2 ) (6.15)

for each interface, where aa is the root mean-square (RMS) displacement from the
ideal position for the interface between the ath and (a + l)th region. As can be seen,

the influence of roughness on transmission is relatively small, but the reflectivity is

exponentially diminished. The air/first surface roughness has the effect of reducing
the overall reflectivity and the interface roughness reduces the amplitude of the
interference fringes.

Figure 6.12 shows the neutron reflectivity of the same Fe/Pb/Fe/Mo thin film
used in the slow //SR measurements below. This measurement was performed above

Tc, where the difference between spin up and spin down represents the magnetic

scattering due to the Fe layers. The optical neutron reflectivity model described
above can be used to obtain the layer thickness and roughness to a high degree of
accuracy. Table 6.4 shows the thickness of the different layers and an estimate for
the roughness. Instrument resolution has been taken into account by convoluting
with a Gaussian, whose q-dependent width, Aq, is determined from Equation 6.9.
It is clear that the RMS displacement is of the same order of magnitude as the
vertical correlation length calculated in the section dealing with X-Ray diffraction.
It should be noted that the majority of the roughness comes from the Pb layer,
which is carried through the Fe and Mo layers. The Mo layer smoothes out some

of the roughness inherited from the Pb, so that the Mo/Air interface is less rough
than the Fe/Mo interface. The roughness in this sample is a thin layer (~lnm)
on the top surface of the Pb of unknown origin, which is not easily resolvable due
to the thinness of the layer. The effect of this layer is included in the slow nSR



6.2. Sample Characterisation 187

a Layer a ya/nm va,a-i/nm
7 Si Substrate N/A N/A
6 Fe 2.6 (0.2) N/A
5 Pb 215.0 (2.0) 1.2 (0.1)
4 Unknown 1.0 (0.5) 1.2 (0.5)
3 Fe 2.8 (0.2) 1.2 (0.1)
2 Mo 9.0 (0.5) 1.1 (0.1)
1 Air N/A N/A

Table 6.4: Sample parameters obtained from a fit to the data shown in Figure 6.12.
The roughness, crQ,a_i is between the current layer and the next layer closer to the
surface. If <r=N/A then it is not possible to measure the roughness with any degree
of accuracy and is not valid. The thickness is not valid for the air and Si substrate,
so ya=N/A in this case. Errors have been rounded up.

simulations, but is simply treated as the roughness associated with the Pb and it
is assumed the superelectrons tunnel into this layer. Another source of roughness
in the Pb is the vertical grain size. This model is too simplistic to take account of
both the non-conformal and conformal nature of the roughness, both of which are

present, other than by a simple change of the RMS roughness.
It should be noted that no incommensurate SDW can be observed with SPNR,

as the length scale of such an oscillation in spin density is governed by the extremal
spanning vectors of the Fermi surface, which are much smaller than the minimum

length scale CRISP is able to measure. On cooling below Tc, there is little change
in the reflectivity, indicating the contribution due to superconductivity is either too
small to be measured (compared to the magnetic layer signal) or the length scale is
also beyond the limit of the instrument (in the case of the SDW). This "masking"
is because the much stronger spin-dependent scattering from the magnetic layers
masks the much weaker, subtle effects from the superconductor. The local nature
of the slow /zSR technique avoids this difficulty and allows the effects inside the Pb
film to be seen without interference from the Fe films.

In order to fully understand the Fe/Pb/Fe/Mo system, one must take into ac¬

count superconductivity, as shall be discussed later. This measurement is not possi¬
ble in the magnetic sample using this technique for reasons already discussed, but it
is possible to take a Mo/Pb layer to draw some parallels with the magnetic system.
For this reason, a Pb/Mo layer was grown under identical conditions and growth
times to try and replicate grain size, roughness and layer thickness. The SPNR
measurement was performed under identical conditions as the Mo/Fe/Pb/Fe film,
apart from a higher magnetic field was used in order to increase the expulsion (and
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Figure 6.12: Spin up and down reflectivity of the PbFe rnuon sample. The lines are
a fit to the optical model described in the text, from which sample dimensions to a

high accuracy can be determined.
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therefore magnitude of the spin asymmetry) and to ensure the film is above Hcl.
The spin asymmetry is shown in Figure 6.13. The data is represented by the points
and a model (represented by a solid line) is fitted to the data2, which is described
below.

It is clear this is unlike the spin asymmetry expected from a pure Meissner state

(see, for example [Zhang et al., 1995]). Magnetisation measurements of a Mo/Pb
indicate these films are Type-II, so the model developed to describe this data is one

with a spatial distribution of vortices in the centre of the Pb. The field penetrating
from both surfaces of the film and the field from the vortices in the centre contribute

to the spin asymmetry. A magnetic field Hext parallel to the film yields [Han et al.,
1999; Zhang et al., 1995]

dr+B' (6'16)

where t is the film thickness, nv(r) = Z)p=]V^(r ~~ rp) *s the vortex density with N
vortices present, K0 is a modified zeroth order Bessel function of the second kind
and Bf is the field which satisfies the boundary condition B = fi0Hext.

The coherence length must also be taken into account. To a first approximation,
a simple core cut off is used, such that if the radius r < £, the field is set to the value
at r = £. A better approximation would be with a Gaussian, but this measurement
is not particularly sensitive to the subtle differences between the shape of the core,

especially considering this model may not be applicable to this situation. Consid¬
ering the approximations and incorrect assumptions in this model, it represents the
data exceptionally well. A better model would be to solve the GL equations directly,
but this is a considerable task and can not be achieved given the time constraints
of this Ph.D.

In this fit, the penetration depth was found to be 50nm, the coherence length
55nm and the vortices were found to be well spaced out. For a 2D linear arrangement
of vortices, d = y To/H, so one would expect a vortex spacing of approximately
200nm at 480Oe. The spacing was found to be just over twice the expected value,
at 450nm, indicating the 2D spacing does not apply to a linear arrangement of flux.

2For details of the fitting algorithm used, please consult Appendix B.
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Figure 6.13: Top: Spin asymmetry of a Pb test sample of the same thickness as
the PbFe muon sample, in an applied field of 48()0e. Bottom: Spin up and down
reflectivity, showing good agreement between fits (line) and data (points).
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6.3 Slow \iSR Results

6.3.1 Experimental Setup

The main description of apparatus has already been dealt with earlier. This is just
a short summary of conditions and issues involved with the measurement.

Direct microscopic measurement of spatial variation of magnetic field in thin films
can be achieved by the use of the LEM spectrometer. The temporal evolution of spin

polarised muons can be measured by detection of the positron emission during the
muon decay. Positrons are emitted primarily along the spin direction of the muon

at time of decay and are detected using an array of standard scintillation detectors.
The positron time spectra collected from the muon precession ensemble contains

damped oscillations from which the probability distribution of magnetic field can

be obtained. Typical counting statistics are 2 million decay events. This technique
offers a sufficiently high sensitivity to determine the induced polarisation at large
distances from the superconducting/magnetic interface, since magnetic moments as

small as 10~3 to lO"4/^ can be detected [Luetkens et al., 2003].
The muons are moderated from an incident energy of ~4MeV to epithermal

energies of ~15eV via a condensed van der Waals gas layer [Morenzoni et al., 1994]
consisting of 1100A of Ne and 15Aof N2, measured by a quartz crystal microbalance.
The epithermal muons are then extracted from the moderator layer by applying
20kV to the moderator substrate. After traversing an electrostatic mirror to filter
un-moderated muons and positrons, the final energy of the implanted muons is
determined by the potential applied to the sample. The incoming muons are detected
by a trigger detector consisting of a lOnm thick carbon foil, placed at an intermediate
focus upstream of the sample. Secondary electrons emitted by the foil are amplified
by an MCP [Morenzoni et al., 1996] and act as a trigger signal.

The sample is mounted in good thermal contact with an electrically insulated
high purity silver coated aluminium plate using silver epoxy. A silver epoxy electrical
contact on one corner was needed to ensure the sample was at the correct poten¬
tial. The experiments are conducted under UHV conditions, where typical chamber
pressure is lxlO~10mbar. The sample is cooled in a continuous flow cryostat with
a minimum temperature of 2.5K, well below the superconducting transition tem¬

perature. A magnetic field of 200Oe was applied parallel to the sample surface and

perpendicular to the momentum and spin of the incident muons. Prior to measur¬

ing, a magnetic field of IT was applied parallel to the film, exceeding the saturation



6.3. Slow //SR Results 192

Depth / nm

Figure 6.14: Stopping profile for muons at different energy, calculated from the
TRIM.SP algorithm. Approximately 500,000 muons are used.

field by at least a factor of 4. This ensured that the Fe was a single magnetic domain

prior to measurement. In a typical experimental run 2 million inuon decay events
were recorded and the probability distribution P(B) of the magnetic held sampled
by the muon ensemble were calculated by MEM analysis.

Low energy muons stop in the sample over a range of depths depending on the
incident muon energy. The muon implantation depth distribution shown in Figure
6.14 was calculated for the relevant implantation energy using the Monte Carlo
algorithm TRIM.SP [Eckstein, 1992]. This algorithm has been shown to calculate
muon implantation profiles accurately [Gluckler et al., 2000] and a Gaussian spread
of input energies of FWHM 0.5KeV has been included in the calculation to account
for the straggle introduced by the MCP trigger detector [Hofer, 1998]. The sample
dimensions were accurately determined from the SPNR results on this sample, shown
in Figure 6.12, to be Fe26A/Pb2150A/Fe28A/Mo90A. Note that the peak in Figure
6.14 at low depths is due to the muons reflecting from layers of different densities.
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6.3.2 Data Analysis

The following parameters were used in the MEM algorithm. Sigma Looseness was

1.03 and the apodisation of errors was set to 7/xs. The data was not binned other
than that from the intrinsic binning of the instrument and the full time measured
range was used. The number of points in the Fourier spectrum was 2lf).

6.3.3 Above Tc

Figure 6.15 shows the probability distribution of magnetic field P(B) inside the
sample in the normal metallic state at a temperature of 10K in a field of 2000e,
for union implantation energies corresponding to those shown in Figure 6.14. The
unusual p(B)s reflect a complicated flux density profile within the sample, which
can be identified as arising from an RKKY-type SDW, as previously demonstrated
for Fe/Ag trilayers [Luet.kens et al., 2003]. The peak in the centre of the field
distribution is partially due to a background fraction of ~10% of the muons that
miss the sample and hit the silver backplate. Local fields different from the central
peak are due to hyperfine interactions with the spatially oscillating electron spin

polarisation.
In Figure 6.15, the data obtained from the muon precession is represented by

the points whilst the shaded area results from a fit of a simple model'5, which as

can be seen, agrees very well with the data. The fits simply reflect the local depth-
dependent magnetisation due to the SDW, weighted by the muon stopping profile
of Figure 6.14. The magnetisation, M(z), within the Pb spacer layer is given by the
superposition of the magnetic profiles induced by each of the two Fe/Pb interfaces.
In the model, M(z) is assumed to take the following form [Luetkens et al., 2003]

(6.17)
i Xi

where = 2k{Z, ki are the wavevectors of the SDW, z the distance into the spacer

layer, At is an adjustable parameter for the coupling strength of the spins and 4>i the
phase of the electron spin polarisation. In t hese fits, two components to the SDW
were found to be present and the relevant parameters are given in Table 6.5.

An unfortunate complication to the model is the "aliasing" effect originating
from the position in which the muon stops within the discrete crystal lattice, as the
SDW's lengthscale is of the same order as the lattice parameter of Pb. The Pb grown

in these films has a (111) primary growth direction, with only small contributions
3For details of the fitting algorithm used, please consult Appendix B.
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Figure 6.15: The field probability distribution P(B) for the sample measured in an
applied field of 2000e at a temperature of 10 K, revealing the presence of a spin
density wave inside the Pb layer. The shaded areas are fits.

i k2 't'i Hi 4,
1 0.23 (0.02) 3tt/2 (0.01) 0.86 (0.02) 18

2 1.58 (0.02) tt/2 (0.01) 0.86 (0.02) 18

Table 6.5: Parameters obtained from the fits to the above Tc data. Errors represent
a 95% confidence interval.



6.3. Slow /zSR Results 195

Depth / A

Figure 6.16: Sampling of the spin density wave from one of the surfaces.

from other crystal orientations. The muon site is generally the most electronegative
point in the crystal lattice and in the case of Pb along the (111) direction, it will be
in the centre of the pyramid shown in Figure 6.17. With a Pb lattice parameter of
a=4.95A the central position is \J§a/16. Therefore the local magnetic flux density
due to the incommensurate SDW is sampled every yx>a/16 from the surface, from
which P(B) is directly calculated. Figure 6.16 shows the sampling of the SDW from
one of the surfaces. It is clear the SDW persists into the centre of the film.

The model is further complicated when sample roughness is taken into account.
The unions are implanted from the surface of the thin film, which is has an rms

roughness of approximately l.lnm. The SDW "starts" from the two Pb/Fe inter¬
faces, with a roughness of 1.2nm. For simplicity, it is assumed that there is only

roughness on the top Pb/Fe boundary and at the Mo/air surface, partly because
the SPNR is not sensitive to the layers at the bottom (and therefore proves difficult
to measure) and also because the muons only penetrate around half way in from the
surface.

The roughness is dealt with as follows. Both interfaces to be considered (Mo/air
and Pb/Fe) are assumed to be of a Gaussian nature, with the centre of the Gaus¬
sian corresponding to the mean interface position and the width of the Gaussian
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Figure 6.17: FCC crystal structure.

corresponding to the rms roughness measured with SPNR. Each SDW start point
in the simulation at the Pb/Fe interface is weighted by the Gaussian distribution
and summed to form the magnetisation the unions see. It should be noted that the
roughness of the Pb/Fe layer is larger than the lengthscale of the oscillation, so one

would expect the SDW to not be measurable. However, this can be explained by
the only plausible explanation, which is that the roughness is carried up through
the Mo, so the implanted muons are affected by the same roughness. Consequently,
the muon implantation is weighted by the Gaussian associated with the top sur¬

face and it is the difference between the two roughness' that is significant, which is

considerably smaller.'1
The multi-periodic oscillations observed in this system are not as surprising

as might be suggested at first inspection. There have been a number of observa¬
tions of multi-periodic oscillations in the coupling of two FM layers across a non¬

magnetic wedge shaped spacer (using scanning electron microscopy with polarisa¬
tion analysis), most notably in the Fe/Cr/Fe(001) system [Unguris et al., 1991],
with the superposition of short (~2 monolayers) and long (~10 monolayers) pe¬

riods. Other systems to have been measured are Fe/Mn/Fe(001) [Purcell et al.,
1992], Co/Cu/Co(001)[Johnson et al., 1992] and Fe/Au/Fe(001)[Fuss et al., 1992].
However, the lengthscale of these oscillations are considerably longer than those
measured here. These observations were only explained by the inclusion of discrete
lattice sites, which is exactly what has been used to model the slow /tSR results. If
it were not for the inclusion of the "aliasing", the wavevectors measured would in

4although there is no direct evidence for this, which could be achieved by performing an off
specular PNR experiment.



6.3. Slow pSR Results 197

fact be considerably longer than the ones quoted in Table 6.5. As a consequence,

the measurement presented in this work is an indirect microscopic measure of the

Fermiology of Pb.
The oscillatory behaviour observed in the data resembles the RKKY interaction

between magnetic impurities, so is a good starting point for the model used. How¬

ever, even though the model used to fit this data was based on a modified RKKY

interaction, there are some reasons why the simple RKKY model is unsuitable. For

example, when the free electron approximation is used when calculating the spin

susceptibility (assuming a uniform, continuous spin distribution in the FM layers),
RKKY predicts a single short oscillation[Yafet, 1987], corresponding to the Fermi
wavevector. Here two wavevectors are observed. Furthermore, the damping on the
SDW for a simple RKKY picture is expected to go as ~l/r3. Again, the model used
here differs from the simple picture and suggests the damping is closer to ~l/r.

When a more realistic Fermi surface is used (i.e non-spherical), however, multiple-
period oscillations are expected [Roth et al., 1966], corresponding to spanning vectors
connecting different parts of the Fermi surface. The magnitude of each oscillation
corresponds to the curvature of the Fermi surface along the direction under consid¬
eration. Indeed, it is well known that anisotropic Fermi surfaces can have regions
where scattering becomes more singular than in the isotropic electron liquid. When
two portions of the Fermi surface are flat and parallel, nesting occurs and the k-
dependant electron susceptibility diverges logarithmically, with a wavevector corre¬

sponding to the distance in k-space between the two portions of Fermi surface. To
understand the effect of anisotropic Fermi surfaces further, one must calculate the
real space electron-electron interaction <F(R), taking into account indirect coupling
due to conduction electrons between spins on lattice sites separated by R. This is
far beyond the scope of this thesis, so the main results will only be quoted here.
The electron-electron interaction is [Roth et al., 1966]

771* 777/*
$R (x ^2 1 3 cosQA:, — kj]R) (6.18)

i,j

where ki and kj are the wavevectors of two coupled electrons with an effective
mass m*, at a distance R from a magnetic impurity. As can be seen, even with
the inclusion of an anisotropic Fermi surface, this is consistent with a simple free
electron picture. However, the R dependence of $(i2) becomes longer range in
certain directions if m* becomes infinite. For parallel flat or cylindrical portions of
the Fermi surface, this is indeed the case. For two extended parallel flat regions of
area A, the coupling becomes [Roth et al., 1966] for R normal to the surface
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(d) (e)

Figure 6.18: (a) The 1st Brillouin zone (BZ) for the fee crystal structure, (b) Second
BZ for an fee crystal, (c) The free electron sphere for the trivalent fee Bravais lattice.
(d) Portion of the free electron sphere in the 2nd BZ translated back to the 1st zone.
(e) Portion of the free electron sphere in the 3rd zone, translated back onto the first
zone. [Ashcroft and Mermin, 1976].

<f>RocVA2 C°S^ki (6 19)
(2ir)5R\vi — Vj\

and for a cylindrical region of length L, with R perpendicular to the axis of the

cylinder

R oc ]T L2Sin(^ ~k£R). (6.20)tT 2(2tt)4R2 V
Thus by simply including the effects of an anisotropic Fermi surface, one can account
for a SDW with multiple oscillations which fall off as ~l/r using a simple RKKY
model.

Another model which can be used in this situation is a quantum confinement
of conduction electrons in the Pb spacer layer [Bruno and Chappert, 1991; Bruno,
1991; Bruno and Chappert, 1992], leading to sharp features in the density of states
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at specific q-vectors. In a trilayer consisting of a non-magnetic spacer between two

aligned magnetic layers, where a majority of the conduction band in the spacer layer
matches the conduction band in the magnetic layer, the majority of the electrons are

not scattered at the interface. However, the mismatch of the conduction band at the
Fermi level leads to enhanced scattering and reflection at the interface. In general,
multiple reflections at the interface lead to destructive interference and these states

can not exist. However, for specific wavevectors, the interference is constructive and
electrons become bound in quantum well states. These wavevectors correspond to
the same wavevectors as in the simple RKKY model. Both RKKY and quantum
well model imply the existence of a SDW in the non-magnetic spacer layer.

The generic Fermi surface for an fee crystal lattice (such as Pb) is to have the
1st Brillouin zone completely full, passing through the second zone into the third
zone and at the corners (very slightly) into the fourth zone, shown in Figure 6.18.
The schematic diagrams of the Fermi surface are for a trivalent fee crystal. Pb is

tetravalent, so the extended tubular zones in the 3rd BZ are expected to be larger
and flatter than those depicted here. The Pb Fermi surface is well understood by
de Haas-van Alphen measurements [Gold, 1958]. It was found that along the (111)
direction, the Fermi wavevector across the whole Fermi surface is 1.58A-1 and the
hole surface in the second zone and extended tubular surface in the third zone has a

wavevector 0.23A-1. These values agree exceptionally well with the values obtained
from the fits to Figure 6.15 and a damping of ~0.86 is extremely close to the value
expected from extended flat areas, as discussed above. It should be noted that when
the two wavevectors are allowed to vary in the fit, they converge to these two values
only when the initial guess parameters are sufficiently close to the final fit values.
For example, if either wavevector initial guess is more than approximately 25% away

from the values in Table 6.5, the fit fails to converge.

One further fit parameter is an energy dependent background field, correspond¬
ing to the applied magnetic field. This background peak consists of two components;
the Mo capping layer is at the applied field and the beam spot size is energy de¬
pendent. The background due to the Mo layer has been intrinsically dealt with in
the simulation, as the number of muons stopping inside the Mo layer is known. The
beam having a different optimal focus for different energies can lead to the beam
having a different spot size. The energy dependent background resulting from a

different proportion of the muons missing the sample has been taken into account

by adding a delta function to the P(B)'s at the applied field. The amplitude of
the delta function has been constrained to be no more than 10% of the peak at
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i ki 4>i rii A
1 0.23 (0.02) 2tt (0.01) 0.86 (0.02) 21.5
2 1.58 (0.02) tt/2 (0.01) 0.86 (0.02) 21.5

Table 6.6: Parameters obtained from the fits for the below Tc data. Errors represent
a 95% confidence interval.

the applied field resulting from the Mo, so is a relatively small contribution to the

P(B)'s and does not change the relative amplitudes or positions of the SDW peaks.

6.3.4 Below Tc

Attention is now turned to the below Tc data. Figure 6.19 shows the probability
distribution of magnetic field P(B) inside the sample in the normal metallic state
at a temperature of 2.5K in a field of 2000e, for muon implantation energies cor¬

responding to those shown in Figure 6.14. These measurements were performed

by field cooling immediately after the measurements were taken above Tc; nothing
was changed in the experiment apart from the temperature, thus ensuring a direct
comparison can be made between above and below Tc. Again, the fit is represented
by the shaded region under the data. A summary of fit parameters is given in Table
6.6.

At first inspection, it is clear the SDW somewhat remarkably persists into the
superconducting state, although there are some subtle differences. Secondly, it is

immediately obvious very little magnetic flux expulsion occurs. To understand these
differences, one must first turn to the field profile across a pure Pb thin film. The
SPNR measurements discussed in the section above, on a 220 nm Pb/Mo film yields
an answer. A non-magnetic sample is used, since using SPNR to study the effects of
superconductivity is not currently feasible on FM/S/FM trilayers. This is because
the much stronger spin-dependent scattering (Figure 6.12) from the magnetic layers
masks the much weaker, subtle effects from the superconductor. Figure 6.13 clearly
indicates the flux profile is rather different to that of a simple Meissner state, even

in a pure Pb film. It is expected that the effects of the magnetic layer would only
enhance the Type-II nature of the Pb.

Furthermore, the lack of flux expulsion in the Fe/Pb/Fe film (Figure 6.19) is
even more obvious when considering slow //SR measurements performed on a pure
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Figure 6.19: The field probability distribution P(B) for the sample, measured in an

applied field of 2000e, at temperature of 2.5 K. The shaded areas are fits involving
a similar model to that used above Tc, except for a 7r/2 shift in the spatial phase of
the short wavevector component of the SOW.
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Figure 6.20: P(B)'s of a 3000A Pb film for selection of implantation energies, demon¬
strating the main peak and energy dependent background peak.
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Figure 6.21: Comparison of the depth dependant flux density obtained from the fit
to the spin asymmetry in Figure 6.12 and the flux density independently obtained
in the below Tc slow muon results.

Pb film5. Figure 6.20 shows the probability of magnetic flux density for a num¬

ber of muon implantation energies. Two peaks are evident; one very sharp peak,

corresponding to an energy dependent background. This is due to the energy de¬
pendence in the proportion of muons missing the sample and the Mo capping layer.
The other, broader peak, represents the magnetic flux density profile within the film,

corresponding to the flux expulsion. This expulsion is not observed in the Fe/Pb/Fe
slow /xSR results, so the lack of expulsion has to be accounted for.

The model used for the Fe/Pb/Fe slow pSR data is consistent with a highly
concentrated row of vortices down the centre of the sample, leading to a flux profile
that exhibits a small amount of flux expulsion near the surface and a maximum in the
centre. This is consistent with the picture obtained from the SPNR measurements of

5The dimensions of the thin film were Pb3000A/Mo90A and although the film is thicker, the
data illustrates the point.
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vortices on the Pb/Mo films. It should be noted, however, the /rSR field profile was

obtained by fitting the data independently of the SPNR measurements, as SPNR the

experiment took place after the analysis of the pSR data. The SPNR experiment
then confirmed the existence of vortices in the pure Pb films. The model consists of
a simple linear superposition of the field profile shown in Figure 6.21 with the SDW.

A comparison of the field profile obtained from the /iSR and the SPNR profile is
shown in Figure 6.21. Although these profiles look to be somewhat different, they
are in fact very similar. The only differences are as follows. A longer effective super¬

conducting penetration depth and a slightly larger core size, as might be expected
if the ferromagnetism acts to suppress the superconductivity. The SPNR measure¬

ments were also taken at the somewhat higher field of 480Oe, so the magnitude of
the flux expulsion is larger. The concentration of vortices is considerably different
between the two films, with the Fe/Pb/Fe film being consistent with a higher con¬

centration of vortices than the pure Pb film. The SPNR measurements on the Pb
film reveal a low concentration of vortices at 480Oe which increases in concentration

at larger fields, although this data taken at higher fields remains difficult to model
successfully and quantitative vortex concentrations are difficult to obtain. Again, a

full solution of the current density within the film must be obtained from the GL
equations.

Another point to note is that in the centre of the film, the field profile according
to the muons is extremely flat. This may or may not be the case. As can be
seen from Figure 6.14, the muon stopping depth is considerably broad at large
implantation energies; and in order to probe the centre of the film, one must use

large implantation energies. Consequently, the muons are not sensitive enough to
detect the subtle changes of flux density in the centre of the film.

Further evidence for vortices exists if one plots the mode of the broad peak of
the Pb/Mo slow /iSR data as a function of implantation energy. This quantity
is plotted in Figure 6.23. Although it is not a one-to-one relationship between
energy and depth, as indicated by the Monte-Carlo simulations performed for this
sample (Figure 6.22), an interesting phenomenon is observed. It is clear this direct
measurement of flux density differs from that of a pure Meissner state. Note there
is a remarkable similarity between this profile and the flux profile obtained from the
SPNR fits, thus indicating the two techniques are indeed complementary. Although
this is only elementary analysis, it does illustrate that this film is not in the Meissner
state. A better form of analysis would be to fit the lineshapes directly, as performed
on the Fe/Pb/Fe films. Unfortunately, this is a rather large undertaking and is not
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Figure 6.22: Stopping profile of a Pb3000/Mo90 film for all the different depths in
Figure 6.23 for approximately 160,660 unions.

possible at this time.
The presence of vortices alone, however, does not account for the p(B) observed

in the slow pSR data below Tc. In order to successfully model the field profile
inside the Fe/Pb/Fe film, one must also take into account the spatial phase of the
oscillations. The model shown in Figure 6.19 includes a 7r/2 change in phase of one

of the spin density wave components compared to in the normal state, such that
and are 27r and 7r/2 respectively. To illustrate this dramatic change further, Figure
6.24 compares a single set of data taken below Tc using a model identical to the fits
of Figure 6.19, except that the phases were constrained to the values found above
Tc. From this, it is clear that the phase shift is necessary to accurately model the
data below Tc.

In FM/S/FM multilayers, Tc is known to oscillate as the FM layer thickness is
changed (see discussion above). In samples similar to the Fe/Pb/Fe measured here,
this non-monatonic behaviour has been observed using both magnetometry and
transport measurements [Brown, 2002; Lazar et al., 2000]. One of the competing
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Figure 6.23: Mode flux density of the main peak in the P(B)'s shown in Figure 6.20,
as a function of implantation energy. These were calculated by fitting a skewed
Gaussian to the top of the peak position. The errors are only representing the
uncertainty in peak position considering the quality of the lineshapes and closeness
of the different peaks and are not a true statistical representation of the uncertainty
in the positions.
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Flux Density (mT)

Figure 6.24: The lOKeV data set is shown in Figure 6.19 and compared with a
model identical to the fits of Figure 6.19, except that the phases were constrained
to the values found above Tc.

theories to explain this phenomenon of oscillating Tc's [Khusainov and Proshin,
1997, 2000] suggests the superconducting ground state is combined with a SDW in
the FM layer, where the exchange field is periodically compensated by oscillations
in the superconducting pair amplitude. This has been convincingly verified by a

number of measurements of the tunnel current across a S/FM/S junction [Kontos
et ai, 2001], Considering this, it is not a large "leap of faith" that the spatially
modulating wavefunction in the FM layer is related to the /rSR results presented
here, which confirms not only the persistence of a SDW inside the superconducting
Pb, but also that the SDW changes in order to accommodate the superconductivity.
Furthermore, the fits also require a ~25% increase in amplitude for both oscillations

(Table 6.6) to describe the date, suggesting an increase in the coupling of spins
below the superconducting transition. This suggests that what would normally
be considered as competing forms of magnetic order do in fact intimately couple
together to form a previously unobserved superconducting ground state.

It was proposed [Anderson and Suhl, 1959] that magnetic impurities present in
a superconducting system could couple to the superconducting state. It was sug¬

gested that the suppression of the spin-susceptibility in the DCS superconducting
state leads to a broad maximum at position in ([-space, given by Equation 2.55.

Substituting reasonable values (kf = 1.58A-1 and £ = 550A) for the parameters of
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the Fe/Pb samples gives qo =0.287A-1, which is extremely close to the second com¬

ponent of the SDW. This proximity to the natural wavelength for spin polarisation
may help explain why it is only this component of the SDW that undergoes a phase
change in the superconducting state.
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6.4 Concluding Remarks

In conclusion, an indirect measurement of the Fermiology of Pb has been possible,
where a SDW is seen to exist in the Pb spacer layer between two Fe layers. The SDW
is seen to have wavevectors that agree well with the Fermi surface of Pb. Direct
evidence for the remarkable coexistence of the SDW with bulk superconductivity
in the SC layer in a FM/SC/FM trilayer has been obtained. Furthermore, the
apparent enhancement of the SDW amplitude in the superconducting state and
moreover the tt/2 phase shift of one component of the SDW below Tc, indicates a

profound coupling of these two forms of spin order.
The intertwining of the phase of the superconducting wavefunction and that of

SDW suggests interesting possibilities for novel electronic devices. It remains, how¬
ever, a challenge to theory to explain fully this persistence and accommodation of
the SDW to the onset of bulk superconductivity in these systems. There remains
a possibility for further work in the investigation of the temperature dependence of
the SDW, possibly in a thinner sample to remove the effects of vortices. The tem¬

perature dependence of the spatial phase change of the SDW, will hopefully lead to
new insights in the theoretical mechanisms that describe superconducting/magnetic
systems. Furthermore, the development of an algorithm to solve the GL equations,
to obtain the current density of the non magnetic films from the SPNR and slow
/iSR data, should yield interesting results regarding the inter-vortex interactions in
constrained dimensionality.
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7.1 Overview

The results presented in this thesis can be separated into three main sections. Firstly,
a pSR study of LaNiSn has been carried out. Secondly, pSR, SANS and magnetisa¬
tion measurements have been performed to understand the vortex state of LSCO for
two different Sr dopings. Finally, an in-depth study of a Fe/Pb/Fe thin film yields
important results, as the coupling of a conventional superconductor to magnetic or¬

der has been observed. The main conclusions and possible further work are outlined
below in separate sections.

7.2 LaNiSn

The measurements on LaNiSn presented in Chapter 4 are the only microscopic

study of its superconducting properties. In a FC state, a combination of Type-I and
Type-II properties has been observed; both a vortex lattice and intermediate state
is found to coexist. From the loss in asymmetry and the complex P(B)'s, the only
plausible explanation for this compound in a held cooled state is an intermediate
state with vortices in the Meissner state (between the normal regions). This has
been explained by a combination of the sample geometry with respect to the applied
magnetic held and the possible vicinity of LaNiSn to the Type-I/Type-II boundary.
In the ZFC state, a Meissner state is only observed on the thermodynamic phase
boundary where vortices begin to appear. The conclusions are only tentative, as a

full study of the bulk magnetisation has not been carried out.

Future work:

• A full investigation of the ZFC and FC bulk magnetisation of the sample,
which would conhrm the microscopic measurements already performed.

• Heat capacity measurements would yield information on the sample's ther¬
modynamic phase transitions.
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7.3 La2_xSrxCu04

The work presented n Chapter 5 on LSCO is the first systematic study of vortices
on large, high quality LSCO single crystals using both microscopic and macroscopic

techniques for two Sr dopings. Characterisation using DC magnetisation and AC
susceptibility has also been carried out.

In the overdoped regime, SANS has been used to measure the first clear micro¬

scopic observation of a vortex lattice in LSCO and the first unambiguous evidence
for a field induced hexagonal to square vortex lattice structural transition, which
remains independent of temperature up to the FLL melting. At high applied fields,
the square diffractions spots are found to lie along the CuO bond direction, which is
incompatible with current theoretical constructs. The vortex lattice measurements
are supported by /zSR measurements, which also yield information on FLL pinning
and provide further information regarding the melting transition. Combined with
magnetisation data, it has been possible to draw a magnetic phase diagram for this
compound.

In the underdoped regime, a preliminary SANS experiment at low applied mag¬

netic fields suggests a BG with nominally a hexagonal structure, although this ex¬

periment proved somewhat difficult. More detailed information on the vortex lattice
structure has been gathered with /rSR. This is distinguished by the fact that it pro¬

vides unambiguous evidence for a crossover with increasing field from a BG phase
to a more disordered VG state. An upper limit on the cross over field has been
estimated. The VG phase has been theoretically predicted in the literature, but not
measured with local probes until now; this is the first measurement of a disordered
VG state in a system of well coupled vortex lines. Furthermore, a detailed study
of the evolution of short range order in the presence of weak pinning is of univer¬
sal significance, as it provides useful experimental insights into space averaged many

particle correlations in bulk systems. Experimental work that precedes the measure¬

ments presented here has either been limited to lower order correlation functions or

to systems of reduced dimensionality.

Future work:

• A detailed SANS investigation of correlation lengths in the underdoped com¬

pound would provide invaluable information on the glass state and would sup¬

port the /rSR results presented in this thesis.
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• A 11SR measurement in the underdoped compound, with the field applied
directly along the c-axis, is an important measurement to perform. This may

determine the effectiveness of correlated pinning on the initial FLL disorder,
thereby providing a means of measuring the different correlation lengths as a

function of initial FLL disorder.

• Further analysis and calculations based on the data already obtained may

yield a microscopic interpretation of the "second peak" observed in the mag¬

netisation data - previously attributed to a crossover from single vortex pin¬

ning to collective vortex pinning behaviour, with no microscopic interpretation

presented.

7.4 Fe/Pb/Fe Thin Films

The work presented Chapter 6 on Pb/Fe/Pb is the first depth resolved microscopic
measurement on the magnetic properties of a superconducting/ferromagnetic het-
erostructure. Characterisation using SPNR, X-ray reflectometry, DC magnetisation
and resistivity measurements have also been carried out.

Using the LEM technique, an indirect measurement of the Fermiology of Pb has
been possible, where a SDW is seen to exist in the Pb spacer layer between two
Fe layers. The SDW is seen to have wavevectors that agree well with the Fermi
surface of Pb. Direct evidence for the remarkable coexistence of the SDW with bulk

superconductivity in the SC layer in a FM/SC/FM trilayer has been obtained. Fur¬
thermore, the apparent enhancement of the SDW amplitude in the superconducting
state and moreover the 7t/2 phase shift of one component of the SDW below TC)
indicates a profound coupling of these two forms of spin order. The intertwining
of the phase of the superconducting wavefunction and that of SDW suggests inter¬

esting possibilities for novel electronic devices. It remains, however, a theoretical

challenge to explain fully this persistence and accommodation of the SDW to the
onset of bulk superconductivity in these systems.

Future work:

• A full investigation of the temperature dependence of the SDW may lead
to new insights in the theoretical mechanisms that describe superconduct¬

ing/magnetic systems.
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• Measurements should be performed on similar thin films, but with the Pb
thickness considerably thinner to remove the effects of vortices. This will be a

challenging experiment, as the reduced superconducting critical temperature

may be too low for the sample cryostat.

• Some questions remain as to whether this phenomenon (SDW persisting into
the superconducting state) is a "special case" or a generic property of super¬

conducting/magnetic multilayers. A full investigation of different supercon¬

ducting (e.g Pb, Nb, Pbln...) and magnetic (e.g rare earths, Co..) multilayers
would provide answers to these questions.

• The development of an algorithm to solve the GL equations, to obtain the
current density of the non magnetic films from the SPNR and slow /rSR data,
should yield interesting results regarding the inter-vortex interactions in con¬

strained dimensionality.

• An off specular SPNR investigation of the Pb/Mo thin films would offer
conclusive information on the roughness of the thin films.

7.5 Possible Future Publications

Publications already in print can be found in Appendix C. Possible publications in
the near future, as a direct result of the work presented in this thesis, are as follows:

1 Probing triplet correlations of flux lines in vortex glass phases through rnuon-

spin rotation experiments.
Menon GI, Drew A, Divakar UK, Lee SL, Gilardi R, Mesot J, Ogrin FY,
Charalambous D, Forgan EM, Momono N, Oda M, Dewhurst C, Baines C.
Submitted to Nature.

2 Coexistence and coupling of superconductivity and magnetism in thin film
structures.

Drew A, Lee SL, Divakar U, Charalambous D, Potenza A, Marrows C, Luetkens
H, Suter A, Prokscha T, Morenzoni E, Ucko D, Forgan EM.
Submitted to Physical Review Letters.

3 Confined vortices in Pb thin films.

Drew A, Wismayer M, Heron DOG, Lee SL, Potenza A, Marrows C.
In preparation for submission to Physical Review Letters.
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4 Direct measurement of a vortex glass correlation lengths using SANS
Drew A, Divakar UK, Lee SL, Gilardi R, Mesot J, Ogrin FY, Charalambous
D, Forgan EM, Momono N, Oda M, Dewhurst C.
In preparation for submission to Physical Review Letters.
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8.1 Appendix A - The SPNR Optical Model

SPNR can be understood in terms of the Schrodinger equation for a neutron with a

wavefunction \I>(r) [Blundell, 1992]

-h2
2mn

V2 + V(r) \I/(r) = E^(r) (8.1)

where mn is the neutron mass and V (r) is the neutron potential energy. The neutron
wavefunction can be written in terms of the neutron wavevector parallel to the
surface

<3?(r) = ip{y)e t/ciirii

such that

(P_
dy2

+
2mr

(.E-V)-kI ip(y) = 0.

(8.2)

(8.3)

The perpendicular wavevector, shown in Figure 6.10, is the only scattering vector
dealt with, such that

h2

2m,
■(I2 + *?) = (E - V) (8.4)

where the wavevectors for each scattering neutron are a function of time, due to the
polychromatic pulsed source at ISIS. For a multilayer sample containing n regions,
numbered so that 1 is a vacuum, n is the substrate and the sputtered regions are

2< a <n, for the a region one has to solve

<&_
dy2J-,2 ^ •0(y) = o (8.5)

where

Qa =
2m

hHE-i-Va) (8.6)

and E± = E — h kj/2mn. The solution to this is a sum of right and left travelling
waves

Mv) = aaeiqa{y=Va) + bae-iqa(y=Va).
If at the interface y = ya, ipa(y) is represented by a vector

(8.7)



8.1. Appendix A - The SPNR Optical Model 218

Mv) = (8-8)

then

Mn M12
rM21 M22

(8.9)

since at the first interface, y = yi = 0 so ip = (J) and at the last interface y = yn-i so

ip = (0). The transmission and specular reflection coefficients are defined t — 1 /Mu
and r = M21/M11. The transfer matrix M is defined

M = D'\qi) UmWPiqj^D-Hqj)]
3=2

D(qN) (8.10)

where D(qa) is the transmission matrix, P(qa,da) is the propagation matrix and
da — Ua — Va—i is the width of the ath region. By applying the boundary conditions
that and dijj/dy are constant, it can be shown [Blundell, 1992]

(8.11)
\ qa -qa )

and

0 a-*.*- j (8'12)
The neutron undergoes both nuclear and magnetic scattering, schematically

shown in Figure 6.10b. Consequently, the potential energy of a neutron in the
ath region is the sum of a nuclear term and a magnetic term

h2
Va ~ PoJ^a ' Ba (8.13)

27rmn
where pn is the neutron magnetic moment, ba is the coherent scattering length, Ba
is the field due to the magnetisation in region a and pa is the atomic density. Thus,
the reflectivity depends on the relative orientation of the neutron spin and magnetic
field in each layer. Consequently, it can be shown that the spin dependent transfer
matrix is [Blundell, 1992]
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r/v-i

M — D (qi,qi)R(9i.2) II 1(<zI.9ii)-R(0a,Q+i)}
La=2

where the 4x4 generalisation of the transmission matrices is

,TJU|^) °D(qlqla) = , i ,V 0 £>(g£) /
the 4x4 generalisation of the propagation matrix is

D(aN, aN),

(8.14)

(8.15)

P{ql,Qla,da) =
D(ql,da) 0

(8.16)
0 D(qla,da) J

and the matrix rotating the magnetic field at the interface a — {a + 1) by an angle
@a,a+l IS

R{9a,a-1) =
cos(0a>Q+i/2)J sin((9QiQ+i/2)J

(8.17)
-sin(0a,a+i/2)j cos(0q,q+i/2)i )

where I is the identity matrix. From this spin dependent transfer matrix, it is

possible to write [Blundell, 1992]

ty, = M33/(Ml\M33 — M13M31)

t-u = — M3i/(Mi\M33 — M13M31)

ru = (M21M33 — M23M31) / (M11M33 — M13M31)

ru = (-^41-^33 ~ M43M31)/(M11M33 — M13M31)

^d = —Mi3/(MnM33 — M13M31)
= Mh/(MuM33 — M13M31)

= (M23M11 — M2iM\3)/ — M13M31)

rd = (M43MU — / (MnM33 — M13M31) (8.18)

where the subscripts on M are the indices to the matrix elements of M and the u

and d correspond to the incident neutron spin. The spin asymmetry is defined

S = ~ Rl
R-\ + R[

(8.19)
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which can be rewritten in terms of the four reflection processes in Equation 8.18 as

O
_ kll2 + kul2 ~ kdl2 ~ \rd\2 /O 9fp~~

|fu|2 + |ri|2 + |rjj|2 + \r^\2 ^
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8.2 Appendix B - Non-Linear Regression

Every non-linear regression method follows these steps:

1. Start with an initial estimated value for each variable in the equation. The

program can not determine the best-fit values unless it is first given some

estimates. In most cases, these estimates do not have to be very accurate.

2. Generate the curve defined by the initial values and calculate the sum-of-squares.

3. Adjust the variables to make the curve represent the data points more accurately.

4. Repeat for many iterations.

5. Stop the calculations when the adjustments are within a stopping criteria (the
sum of squares is within a certain limit).

The precise values obtained will depend in part on the initial values chosen in

Step 1 and the stopping criteria of Step 5. This means that repeat analyses of the
same data will not always give exactly the same results. For Step 3, the algorithm
used in the work in this thesis is the method of Marquardt and Levenberg, which
blends linear descent and Gauss-Newton methods of descent.

If each data point (x,,y,) has its own known standard deviation cq, then the
maximum likelihood estimate of the model parameters is obtained by minimising
the quantity

where parameters ai, 02, • • •, (Im are varied to minimise x2-
The method of linear descent follows a very simple strategy. Starting from

the initial values try increasing each parameter a small amount. If the sum of
squares goes down, continue. If the sum of squares goes up, reverse the direction of
change. Repeat as many times as necessary, reducing the sum of squares on each
step wherever possible.

Sufficiently close to a minimum, the x2 function in parameter space is expected
to be well approximated by a quadratic form [Press et ai, 1986], which can be
written as

(8.21)

X2(u) ~ 7 — d ' a + -a • D • a
&

(8.22)
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where d is a vector with a length M and D is an M x M matrix1. If the approx¬

imation is a good one, then it is possible to jump directly from the current trial
parameters acur to the correct ones arnin

a-min = acur + D~1 • [-'Vy2(cw).] (8.23)

However, if the approximation is poor, there is no option but to use a linear step,
thus

anew — acur CVy (flcur) (8.24)

where the constant C is small enough not to exhaust the down hill direction.
The Gauss-Newton method is somewhat more complex. As with the method

of linear descent, it starts by computing how gradient of y2 with respect to the
parameters. If the equation is linear, this is enough information to determine the

shape of the entire sum of squares surface and thus calculate the best fit values in one

step. With nonlinear equations, the Gauss-Newton method will not find the best-fit
values in one step, but that step usually improves the fit. After repeating many

iterations, the best fit is obtained. The first and second order derivative (Hessian)
of y2 are used to estimate the direction and distance of the new values of a

anew ar

'dx2(acur)\
v 9ak J

C
(8.25)

The gradient is

dy2(<w) 0 A [yi - y{xi; a)] dy{xi\a)=

Z5 bT—dak fr[ of dak
and second derivative is

d2X2(acur)
dakdai

N

= 2£
i=1

dy{xua) dy{xi,a)
dak da,i [Vi ~ y(xi\ a)] d2y(xj] a)

dakdat (8.27)

for k = 1,2, • • •, M. Second derivatives occur because the gradient already has a

dependence on dy(xi, a)/dak. The second derivative term can be dismissed when it
is zero or small enough to be negligible when compared to the term involving the
first derivative. Inclusion of the second-derivative term can in fact be destabilising
if the model fits badly or is contaminated by outlier points that are unlikely to be

1D is in fact the Hessian matrix.
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offset by compensating points of opposite sign.
The method of linear descent tends to work well for early iterations, but works

slowly when it gets close to the best-fit values (and the surface is nearly flat). In
contrast, the Gauss-Newton method tends to work badly in early iterations, but
works very well in later iterations. The two methods are blended in the method of
Marquardt (also called the Levenberg-Marquardt method). It uses the method of
linear descent in early iterations and then gradually switches to the Gauss-Newton
approach.

The method is based on two elementary, but important, insights. Consider the
constant C in Equation 8.24. There is no information about the scale (or even the
order of magnitude!) of C in the gradient. Marquardts first insight [Press et ai,
1986] is that the components of the Hessian matrix, even if they are not directly
usable, give information about the order of magnitude scale of the problem. His
second insight was to realise it is possible to combine Equations 8.23 and 8.25 if a

new matrix a is defined

a« = ^H(l + C) (8.28)
and for j ^ k

d2x2{acur)
a* = da,Bat (8 29)

such that

Q/nf>in CLr
(dx2(acur)\
\ dak J

Oikl
(8.30)

when C is very large, this is exactly Equation 8.25. When C approaches zero, it
reverts to Equation 8.23.

The Marquardt recipe for a given set of parameters is then

1. Calculate x2(a)-

2. Pick a modest value of C, for example 10~4.

3. If x2(a + da) > X2(a)> increase C by a factor of 10; goto 2.

4. If x2(a + ^a) ^ X2(a)> decrease C by a factor of 10, substitute a with a + 6a;
goto 2.

5. 10 print "home"; 20 print "sweet"; 30 goto 10;
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It is also necessary to have a stop condition, which is defined as the nth occasion x2
decreases by a negligible amount.

It is common practice to summarise the errors in parameter estimation in the
form of confidence limits. A confidence region (or confidence interval) is just a

region of that M-dimensional space that contains a certain percentage of the total
probability distribution. For a given confidence region of 99%, there is a 99% chance
that the true parameter values fall with in this region around the fitted value.
Most errors in this thesis are quoted as confidence intervals, defined as constant

X2 boundaries in parameter space.




