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Abstract

This thesis is concerned with the numerical solution of the

reaction-diffusion equation

8u a2(um) p r,..
— = - cuF, c^O, p>l, m>l. (1)

Modified versions of the algorithms of Graveleau § Jamet and

Tomoeda are first tested on the simpler porous medium equation

3u
_ 32(um)

at ax2

and then applied to the initial value problem for (1) and initial

data with finite support. The results are compared with the analytic

large time solution for various regimes in p-m parameter space.
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1. INTRODUCTION

In this thesis we study the initial and initial-boundary value

problems associated with the nonlinear diffusion-reaction equation

_cuP > X € fR* , t ^ o (1-1)

where m>l; c^O and p>0. This equation serves as a model in many fields

of applied mathematics such as population dynamics (Okubo((1980)),

flow of chemically reacting fluids (Aris (1975)) and in plasma physics

where (1.1) describes the evolution of a temperature jump in a plasma

with a power law conductivity and nonlinear absorption.

In each of these areas of activity two problems associated with

(1.1) are important. The first is of initial value type where (1.1)

is solved subject to

u(x,0) - uo(x) (1.2)

where Uq(x) £ 0 has finite support. We call this problem I. The

second is the initial-boundary value problem where we are required to

solve (1.1) together with (1.2) for x$0, and the boundary condition

u(o,t)rU(t) >

This is called problem II.

As a preliminary to studying these problems for (1.1) we first

consider the simplified equation with the reaction term absent

- j>(um) (1.4)
St " V J

which, because of its utility as a model for flow in a porous medium;

is often referred to as the porous medium equation. Our motivation

in studying (1.4) is twofold. In the first place the solution of (1.4)

has many features in common with that of (1.1) and since it has a more

complete general theory, it is useful and instructive to deal with this

first. Furthermore as (1.4) is a simpler equation the numerical schemes



2. THE POROUS MEDIUM EQUATION '

One of the earliest analytic solution to the porous medium

equation was due independently to Barenblatt (1952) and Pattle (1959).

This has the form of a similarity solution and can be written as

.0

; IxU M±)xio ['"[&] 1^
= 1 q-i)

o > Ul>/ X(t)
Ulher-c X(j) - ^ ZmChnfi) ^ • t>0 (2-2)

and the origin of t is arbitrary so can be replaced by t+tQ. This

so-called Barenblatt-Pattle solution reveals an important general

property of solutions to the porous medium equation namely if the

support is finite at some time t=T then it remains so for t>T1. The

paths in the (x,t) plane separating regions where u>0 from those where

u=0 are called interfaces or fronts. In the case of the Barenblatt-

Pattle solution these are given by

x = ±\U) (2.3)

with S-function initial data. In general, any positive initial data

with finite support will generate two interfaces S^(t), i=lf2 with
S1(0)<S2(0), which must be determined as part of the solution. It

was shown by Kalashnikov (1967) that for t>T, Te[0,oo) then

is a non-decreasing function of t. Knerr (1977) went a little further

and proved that there exists a T^^O such that (-l)1S^(t) is strictly
increasing and S^(t) = S^(0) if 0<:t$T^. Furthermore Knerr gave an

important result concerning the velocity of the interfaces; viz.,

JJL - -_m__ 1 ) 1 = --in- (^ \ (2.5)
dLt " Cm-i) I J - MUxj '
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As we shall see later (2.5) forms the basis of schemes for the

numerical tracking of interfaces. The existence of interfaces

prompts several questions, the most important being that of what

boundary conditions hold there. Clearly u=0 on S=S^(t) (2.6) and, as
far as most applications go, the other is concerned with the flux

which can either be negative or zero. So we have the conditions,

additional to (2.6),

^>{urn) - _ L ? L y o (,2'7)
Of

cX-Um) = 0 (2. -8)

on S=S. (t) .
l

By for the most relevant is (2.8) which is sometimes called the zero-

flux boundary condition. Although the condition (2.7) has physical

relevance, particularly in heat conduction problems, it has been

rarely used in mathematical analyses of the porous medium equation.

So for the purposes of this thesis we require (2.6) and (2.8) to hold

on any interface.

The results of Knerr leads one to the question of the waiting

time. This is the time lag, from the applications of the initial

data, during which an interface is stationary. In the above notation

this is denoted by T.. It has been known for some time that anJ
l

interface where u=0 can either move immediately or remain stationary

for a finite time and then move off. In this connection there are

two distinct situations to consider, distinguished by the mechanism

by which the interface beings to move. The first is where the initial

motion is governed purely by the initial data at the interface and the

second by conditions within the support of uQ(x). The former has come

to be called the local case and the latter global.



At this stage it is convenient to make the change of variable

v=um ^ and consider the equation
2 2

- _>n_ I \ m, 0" g\
M " (W i>x2 ^ 1

In the analysis that follows we may treat each interface separately

and for convenience we take this to be initially at x=0. In order

that the solution for v(x,t) is unique (2.9) has to be supplemented

by two boundary conditions (2.6) and (2.8) on the interface x=S(t),

andl = o (2..0)
7 - O (i.u)i C^X

Considerable insight into the nature of the waiting time problem

was gained by Kath 8 Cohen (1982) who took the limit im*l. This led

Grundy (1983) and Lacey (1983), to formulate the following results.

With initial data

V0 nu°M } =fw
CX

where f(x) 'v Ax , x->-0.

Three cases can be distinguished

(1) a<2. Here the left-hand interface moves immediately and the

waiting-time is zero. The initial motion of this unknown
i

boundary is governed purely by the local behaviour of f(x) as

x->-0. This is termed a local case.

(2) a>2. Here the interface begins to move when a singularity,

characterized by a discontinuity in (8v/9x) which develops

within the support of f(x), reaches x=0. The waiting-time t* is

positive and, since the initial motion of the boundary is

governed by the nature of f(x) away from x=0, we call this a

global case.
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(3) a=2. Here two possibilities may occur.

(a) If f"(x) is a maximum at x=0 then the singularity will form

This is considered a local case.

(b) If f"(x) has a maximum at some point in the interior of the

support of f(x) then the singularity develops at this point

and the interface begins to move when this reaches x=0.

This is a global case.

The local structures of the solution as x->0 and t-*t* in the

global case when t-»-0 in the local cases can be found by the similarity

solution of Lacey, Ockendon and Taylor (1982). Estimates of waiting

times have recently been given by Aronson, Caffarelli and Kamin (1983).

By for the most important role played by the Barenblatt-Pattle

solution in particular and similarity solutions in general is in the

large time limit of the solutions to problem I and II for the porous

medium equation.. It was shown by Kamin (1973) that for problem I
9 (um)

with u=0 and —^— = 0 on the interface then u(x,t) as t-*°°.approached
o X

the Barenblatt-Pattle similarity solution. The eigenvalues of this

solution were obtained by Grundy f) McLaughlin (1982a) thus determining

in principal the asymptotic expansion of u(x,t) as t-*». For problem
9 rumq

II with u=0 and —A—— = 0 on the interface a similar exercise can be

at x=0 and the interface begins to move when t=t*={2f"(0)} .

3x

undertaken,and Peletier (1971) showed that as t-*» the solution

converged to the similarity solution

(2W3)

^ = X/-^ £ (2.14)

where h(£) satisfies the boundary value problem

(2.15)

(X.I6)

(2-. 17)
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Here nQ is determined numerically by integrating (2.15) from 5=1 to

5=0 to obtain h(0).

Whence

To complete the picture Grundy f) McLaughlin (1982 b) constructed a

rational asymptotic expansion of u(x,t) as t-*» with the above

similarity solution as the leading term.

The analytic properties of the porous medium equation which we

have outlined above will be used in section 4 to provide a quantitative

test of the numerical procedures. Of particular importance in this

respect is the waiting time analysis and the large time comparison.

We now go on to give a similar, but necessarily less complete

review of the reaction diffusion equation. Questions regarding

waiting times for these equations are still open as is a large portion

of the theory for the initial-boundary value problem, problem II.

The only aspect of the theory which we can deal with with any certainty

is the pure initial value problem which, for initial data with finite

support, has an almost complete description. This we deal with in the

next section.

and so the interface is given by

S(t>= t\ t4'o (1-19)



3. THE INITIAL VALUE PROBLEM FOR THE DIFFUSION-REACTION EQUATION

Here we consider the large time solution for the inital value

problem for (1.1) with (1.2). (Problem I). In general it is known

that for m>l and initial data with finite support there exist two

interfaces along which u=0. In many model situations involving (1.1)

the addition boundary condition>

_ 0
bx

usually holds at the interface. So we solve (1.1) and (1.2) with

U = o

and (u—L - 0
bx

} (B-l)

along left and right interfaces

% = S.(t) , • ^ \,1 .

Tlie results we describe below are due to Grundy (1986) and are,

by necessity, somewhat more involved than that for the porous medium

equation, in that the nature of the asymptotic solution depends on the

location in (p-m) parameter space. The situation is shown schematically

below.

tY\

I

t p = 1
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HI / n / I
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/
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/
/
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/
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3.1 p>m+2

In this regime of parameter space the result we base our

analysis on is due independently to Kersner (1979) and Knerr (1979).

This states that if S(t) = |S^(t)|, i=l,2, then as t-*>°
'/(m + i) ... ,'/(rn-H) ,^ ^ I (3*1*0

where A and B are positive constants. This result suggests we

consider the similarity variable

r'/Cm+O
Tl - X t (J.l.i)

and put 06

u(x,t) ~ t
where v(n,t) is bounded as t-*», n=0(l). Thus the exponent a gives

the temporal decay of u(x,t) as t-**>.

In terms of n and v (1.1) becomes

(m+i)t^ V - (W+.,) f(n,_,)v mfT -(nn,)X vP (3.1.4)
bt *n
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A non trivial second order equation for v emerges if the first term on

the right hand side of (3.1.4) dominates the second term as t-*°, and at

the same time balancing the order unity terms. This happens if

oc - -l/(rr»+l) (3.1.5")

P y m +. a (3.1.6")

Proceeding further we formally expand

Y
= V0(T,) + t' -V

in the limit t-*°, n=0(l) with Rey <0.

This gives
/ m o (z+r\-P)/( m+l) p

vo+"1lvo + (™+l)(vo ) -(™+0 t vo -V

Y

^ v' _Y, (m+f) V, -V m(rn-vi)Cvlv™ ' )' ^ ^ + -O (3A-S)
Thus equating terms of 0(1) gives

vo + "n vo' + (m + 0 C vr )" = O

For the next order we have two possibilities.

First

= (2 + Tn - P)/(pn + 0 (3.1 A®)

and

or

fh(m+0(vt v, -tm+0 r: o (3.Mf)

Re(t,) <( 2 + m-f)/(m + l)
and

m(hi+0(vi J :o (3-wi)
The equations (3.1.9), (3.1.11), (3.1.12) have to be solved subject

to the appropriate boundary conditions at the interface. For (3.1.9)

this means

V0 - (V<T / - 0 at ry]',Y\t y 0.U3)
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where the interfaces have the expansions

S,(t> = ^ t/<m+" ^ + 0(o}

Sjt) = [\ + 0(0 }
as t-*». A straightforward integration of (3.1.9) subject to (3.1.13)

yields the Barenblatt-Pattle similarity solution

and so n1=—n2=r|o • Since (1.1) does not have a mass invariance
property, n0 cannot be determined by such considerations. It will,
one suspects, depend in some way on the initial conditions.

As far as the error term goes y1 is either given by (3.1.10) or

the solution of the eigenvalue problem (3.1.12) with the appropriate

boundary conditions. For a discussion of this problem see Barenblatt

(1952) or Grundy § McLaughlin (1982a).

3.2 m<p<:m+2

The analysis of the previous section depended on the reaction

term in (3.1.4) being negligible as t-*». This is no longer true when

p=m+2. In fact as we shall see, throughout the regime m<p<:m+2 we

need to seek an alternative expansion for u as t-*°°. The starting

point is a result due to Bertsch, Kersner and Peletier (1982) which

states that

£ P

where

P = ( P_m)/2( P- I)

and A and B are positive constants. So with (3.2.1) in mind we

introduce the similarity variable
-P

-VJ 5 * t Ig-*-7-)

and put -l/(P-l)
u(x,-t) = -t (3.2.3)
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It was noted in the above paper that this substitution makes the

reaction'and diffusion term of the same order as t-*». If we now

formally expand

r s/eCn) +0(»)

then v. satisfies
0

nv9' + (P-0(V©) -(P-|)V0 -o

The boundary conditions on Vg- are

on ; I s i,av. =("?)'=o

(3-*-4)

(3.1.6)

Since the support is increasing for all time we look for solutions of

(3.2.5) and (3.2.6) which are even about n=0. So putting

\ > 1 ~ 1>Z
and

1 = T\'\
(3.2.5) and (3.2.6) can be recast as the eigenvalue problem

(P-0(v™ f+ +£ [V0 + l£=aa v0' - ( p_ j) ] = O

vo = 0

when

1 = o

(3'Z.l)

J

Numerical experiments with this eigenvalue problem indicate that it

has a unique solution. This can be obtained by a shooting method

using the series solution to start the integration at £=-1. For the

particular case p=3, m=2 we have n0=3.4 to one decimal place.

3.3 l<p<m

We defer for the moment our discussion of the case p=m and

consider the form of the solution in the regime l<p<m which turns out

to be of a completely different character to that for p>m. Here the

support remains bounded, a conclusion originally due to Kalashnikov (1974)



Thus we may write

Set) —* X0 , -b —» «*» . C3-3-0

The result which forms the basis of our analysis is again due to

Bertsch, Kersner and Peletier (1982) and states that for any fixed

xe(-x0,x0) then

r'AP-i) -i/(p-i)
U(X, t) —>- (P -O t (3.3-1)

as t-*». We note two aspects of this result, firstly that the end

points are excluded and consequently the asymptotic solution does

not satisfy the boundary conditions at the interface. In other words

(3.3.2) is not a uniformly valid approximation in x to the solution

of (1.1). It turns out however that (3.3.2) defines the leading term

in an outer expansion when t-*», x fixed e(-x0,x0). So we construct

the expansion.

utx,t) = ip-r>,/lP~,> -t",/,p-,) * A, —"j. (3.3.3)

where A -*0 as t-*°°, x fixed. In order to satisfy the boundary conditions

at the interfaces this expansion has to be supplemented by an inner

expansion valid where the similarity variable
6

S = (* ± X0) t -0(1) (3-3-4)
We then construct an inner expansion

U(x»t) s t* £v0(*> + 0(1) J- (3-3-5)
valid as t->°°, C, fixed and 0(1). The indices a and 6 are chosen so

that> (3.3.5) matches with (3.3.3) and secondly so that vQ(C) satisfies
a second order equation enabling the boundary conditions at each

interface to be satisfied. As we will see below the choice

OC ~ -I /<P-1) , 8 =(m-P)/l(P-0 >0 (3-3.6)

satisfies these criteria.

The first step is to insert (3.3.5) with (3.3.4) and (3.3.6)

into equation (1.1) with boundary conditions (3.1).



We find that vQ(c) satisfies
lP-0(v* f-(P-i) v#P + vo - ^ vo' r O (3.3.7)

subject to the boundary condition

Cv; )' = Vc = o

at ?=Cqj where £ is at the moment unknown. Matching to first order
with the outer solution (3.3.3) requires that

—* IP-0"I/(P"° i |^1 —> *> (3-3.9)

where C>0 at the left hand interface and ?<0 at the right hand one.

The problem (3.3.7)-(3.3.9) is an eigenvalue problem for and may be

conveniently recast by scaling |c| with |?0|. Limits on |?Q| can be
obtained for this problem using a shooting method and a series solution

about 5=0. As an example we obtained 3.3170 < |c0| < 3.3172 for p=1.5,
m=2.

3.4 p=m

We now deal with the borderline case p=m which as we shall see

has certain features in common with both the cases considered above.

Bertsch, Kersner and Peletier showed for this case that

A 103 t ^ Sit) 4 B Log t (3.4.1)
So this suggests the variable

1 r S - ^ Log i (3.4.2)
together with the substitution

"(*,*) = t* v (3.4.3)

where is at the moment unknown.

In terms of v and £ (1.1) becomes

. _ ot«n+l-<* r -J/ 1

Remembering we require a second order equation so that the boundary

conditions are satisfied at the interface, we choose

06 r -1 / (m -1) •



At the same time we expand
~ Ve(^) + °C0 (3.4.5)

in the limit t-*>°, 5=0(1). The equation satisfied by vQ is therefore
/ /. n» nv

<*> Vo - "S0Vo = (Vo > - v0 (.3-4.6)

The boundary conditions at the interface where
T= s i * say # are

vo = (N0W )/ - O (3. 4-I)
The outer expansion in this case valid for t->°°, x=0(l) is simply

, , Mro-l) -'/(m-1) r , pi

and so the matching condition on vQ is
v° )/trn"° ' u i -*00 (?•*•*)

Hence ?0>0 and for matching at right hand interface while Cq<®'
5-^+0° for matching at the left hand one.

We determine as follows. Putting

V0 - V ^ P , P>« (3-4-»)
o

reduces (3.4.6) to

jtL.P — (m-pi*V/ — hn P2— ( w-0 ot- "W 4-(w-*) P (3.4.11)
dW m(yy\-»)"WP

where a2 = 1/qq2.
Referring to Fig.(1) there are two singular points of relevance; one

is at P=0, W=l/m-l (A) and the other is at P=(m-l)/m, W=0 (B). The

first is a saddle point with a left hand separatrix

Pr P(W- l/(ro-0) (3-4.li)

P - (Vn-l) - v/(vn-»f J/2M
while the other is also a saddle point with a right hand separatrix
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Now at the interface we can show that

xm*

and

w= + ^4-"°

vf — — *5 — im **il ^ _ __ _ (_3-4-A5')
o m v^x

We can invert (3.4.14) to give

/-c -t \ - -W W _ VY1 "VJX
So Vw'° **!<>«-»)*

Substituting into (3.4.15) gives

P = lm-0 _

m ~ m

at the interface, which is precisely the condition along the separatrix

at the saddle point (B) in the W-P plane. The matching condition (3.4.9)

is equivalent to

W - ' • \T ~ \ P z O

which can only be approached along the separatrix at the saddle point (A).

A study of the phase plane reveals that there is only one value of

which allows the separatrix emanating from B to enter A and this can

be found numerically. After some numerical experiments it was

realised that the exact solution

m P = (m_ I) - (m-i)1 V (3.4.16)

with

Y — + —!—-
Sc - (m-0

satisfied these requirements.

Returning now to the eigenvalue problem associated with (3.4.6) then

we can see from (3.4.16) and (3.4.10) that the solution for vQ is

given by

v0 = {_j_ j*-° ^ SV* «-- ^
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which satisfies the conditions (3.4.7) and (3.4.9). So £q is not in
fact given by the asymptotic analysis and must remain unknown. Thus,

returning to (3.4.2) the interface is given by
l

X£t) =± (m-D Log t + 0-4.1%)
as t-*°°.
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4. THE NUMERICAL SCHEMES

4.1 Introduction

In fact there are many different explicit and implicit numerical

schemes for solving the initial value problem of the porous medium

equation. So we found throughout our numerical experiments that the

explicit method which is mentioned by Mitchell Griffiths (1980) is

unstable. However we are interested in two of the implicit finite

difference schemes. The first scheme is due to GRAVELEAU-Jamet (1971).

This was specifically designed for the porous medium equation but has the

reputation of not tracking the interface accurately. To remedy this

the boundary condition at the interface, which is implied in Graveleau

and Jamet scheme, was specifically included in the formulation and gave

extremely accurate results for the motion of the interface. This

amendment to their scheme is described later. The other scheme is due

to Tomoeda (preprint). This appears to be the only one for the diffusion-

reaction equation which tracks the interface. However it has features

which demand rather cumbersome programing and it was decided to

modify the scheme particularly in the way the variable time step is

chosen. The details of these modifications will be described in 4.4.

4.2 The GRAVELEAU and Jamet algorithm

To describe the scheme, Graveleau and Jamet transformed (1.4),

(1.2) by setting v=um to

(4-2.

(4-2.2)

Equation (4.2.1) is split into two parts, via,

bv - m v v (4-2.3)

- a. {^L \2
bt lb*/

*



The difference scheme is based on dividing the operator

into two components
ji.

A v = rn v -P va- (4-x-&)

with a = m/(m-l)

So we define the difference operators

A.,h v" - m "l '21 * v'"'
n

and

= a[8 vtn (IS v? U S ^ -S v.",, (16 1 -5v.„,)]/2 (4-2-9)

where v™ = v(ih,nk); ih=x; nk=t; (i,n)$0 Integers; h,k are positive

numbers and dv!* = (v? , - v?)/h.
1 l+l xJ

Note that A, , and A . are the finite difference analogues of thel,h 2,h b

operator A^v defined by (4.2.6) and A2v defined by (4.2.7). Then the

difference schemes for (4.2.3) with (4.2.2) become

(\+* - vtw)/K r , vj r N»°(tVi)
and for (4.2.4) with (4.2.2) we have

K" - Vt")/K = \,K ^ - v°(ih)
Assuming that v^n is given for all i then the were computed by

n r
means of y intermediate functions v^' , l<:rgy:

«>o r\
V. = sJ, ,

L — L

(v*,r« _ _ f^h r o O^r^-I ,

n+>
_ V^)/K - K , .x t «. Z,h l

where y is a positive integer and K =K/y. The scheme was started by

taking v°=v°(ih) and the stability conditions are:

4( k,/\aa) ^ I
z a c,(K/Vi)<: I

where C( rrsupx | d N/°x)/d)(| •
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4.3 Tomoeda algorithm

This algorithm deals with (1.1). To describe the algorithm

Tomoeda put v=um ^ and recast (1.1), (1.2) as
t 9

.ft V = m v a. I _ (m -l)C V , 1+-3-0
T>t \ ?>%) '

( a = = (ro --2. + p)/(m->) ) »

o , o
- M (x) = (u(*)j . (4.3.i)

Eq.(4.3.1) is then split into three parts
.a

-2X. r n\ v -2-b' - o v j (4-3-3")

Jbv. - a /JftyL f : Hv , (4-3-4)V. ftY* /
<1

= -(m-l)CV = Dv. (4.3.5)
"2>t

and so the equation can be rewritten as

- (H"hp+-D)V (4-3-6)

This algorithm aimed to construct difference schemes P^, and for
P, H and D respectively and then unify suitably these schemes so as to

approximate (4.3.1), (4.3.2) (see (4.3.7)).

I The Difference Scheme

To see how this is done we let h be a positive number and (t }r n

be an increasing sequence. We denote by v[j(x) the difference
approximation for the solution of (4.3.1), (4.3.2) at t=t and

consider the sequence {v!1} . , „ C U, such thatn h n=0,l,2,... h

\ =(V(*/v) Dw)( h *(*,M) Ph) (Th+ K \)\ &3'n)
where I, is the identity operator, K=K =t ,-t is a variable timeh j r > n+1 n+1 n

step, v=v(n+l) and p=p(n+l) are integers depending on is the

set of non-negative continuous functions v, (^0) satisfying the

following properties
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(i) v. has compact support,-

(ii) v^ is linear on each interval [x^,x^+^] (ieZ) .

Here Z is the set of integers and {x.}. 7 = X(£,r) is the set of1 1 0 Lt

nodal points defined by

where

= x((-e,r) = -e

i c Z \^L (-e)-i, R(r)+l^
ULU)-i ,

i = R(*-) +» ,

*3*^

* =-e(vK) = sup ^ g JR1 > v(*)-o on (-oo,-^ J. ,

^ ^ g Irt ; V(X)rO on .,cd)^ ,

U(-e)~rn1n^LeZ ; L V> •> -e ,

R(^) = mi* £ i- € Z J uV\ < r | .

£(v^) and r(v^) denote the left and right interface of v^ respectively.

II The Difference Operator ^ = 1^ + KH^

For simplicity an operator ^ mapping from to is
introduced instead of H, . For v, eU. the numbers V and r* wereh h h

defined (which become the interfaces of by

€ - -e - a s^u_, K , r = i». a8vR K
where £=£(v^), r=r(v^), L=L(£), R=R(r) and

(4-3-

6^ -.6^1) = (\t*i,h - vv,(*OVF; '

From the conditions on K (see (4.3.12), (4.3.13)) it follows that

L.' = L. _ I Or- llzzVi 't R'rR+t or- Reft (4.3.10)

where L' = L(£') and R'=R(r'). Therefore (H^ KVh^xi'^ are defined for
all x. 'eX(£' ,r') by - +, + .

r v, + a(Sv£) K l eS - Ss \J s£ ,
v• »$ teS )

f Vi + 1 (S^ 'J I e 5 — VJ ^ >
(L/h-^)SVl '$ » fc'3-«)
(R'K-«-')Svr <5 is R'=(U»,
0 if



where

$£ = ,R]: Sv._( < Sv. W 6v,-_i >Sv? J '

= \U, „R} .-Sv.,., CSV; Sv- .c-Svt],
<={U ljl>,5 Sv/,_, >S^, >0} .

g, = [u {U..~.,R}: 0>Sv._, ^sm;} ,

s°-[te (u, ,R}: Sv._, ^ 0 >s^i} •
Note that the above definition is derived from construction of the

solution v(t,x) of (4.3.4) with an initial value

V(0,x) = ^(*> € So tWa.t v(K, %'.) =

holds for all x^'eX(£',r'). Before imposing the condition on K the
following lines were defined.

t , y^c-t) 5 r - 3- t ,

y;(t) = *; - ^(Sv{H -*-Sv.)t Jot- I e Sg U Ss ,

Z.(t):X. - 2l6v. t -aunci Z- (t) r X. - 2 a & \iv t
J 1 J J -1 J i- J u

f°" j « s;Ug;US0.
Lines y , y and y. are called shock lines of the solution of Burgers

jo I* 1

3 ^
equation —— = a(-r^- ) obtained by setting w = —— in (4.3.4). These

o L oX oX

relations are derived from the Rankine-Hugoniot jump condition. On

the wedge determined by two characteristics Z., and Z.„, the solution
ll J 2

w has a rare faction wave which connects the two states Sv. . and
l-l

5v^. The following condition on K was imposed:
^

The lines y. (t) , Z^(t) , , y^ (T) and
J y^ (-t) do not intersect edch ottier- on (o,K) (4.3-12)

^ |y. (JC) _x. U Vl 3 (s = h2;k;,jx<R>)



a £ V( K < JQ_ if Sv \ Sv. > 0
L-t ^4 L-l ' ^

_a&vR K ^ Jo. if Svr<Smr_, <0 3

dSv, k ^

A-

4-L, " NN T "'f S\>«V,>SV.i
-i£Vi K s< -V ;f sVi<5V<Sv« ;
K ^ C* if ^For- simplicity we put chI and SapJ

Under the condition (4.3.12) H, „v,eU, .v h,K h h

Difference Operator P,

For v, eU. let
h h

(P^ Vh)^>C0 - ^ Vi ^ Vt f0fV ^ Xr£^("e>r') (4-3-14")
where vi=vh(xi)> £=*(vh), r=r(vh) and

s\5l(sv, -sVlv(v,. + S-D (u: =xi+i- *:V
The interfaces of (1^+ (K/h)P^)Vh are the same ones of v^, and
(Ija+ (K/y)P^)Vj^eU^ holds from the following condition:

^Hv^ileo K £»/h* + 2/£ Vi (V\ + Yi.} J.J \ for- i= L-\, f?
(f-3-15)

4m II 1U K/(K + k.),-| for- I-L-i,g,

where K'=K/ii, L=L(£) and R=R(r).

Ill The Difference Operator D^

When q^l. For v.eU, leth h

D^v^(Xj) r (V.) for- all X. £ (4'3«'6)
and let the interfaces of (I^+(K/v)D^jv^ be the same ones of v^.

(I^+(K/v)Dji)v^eU^ holds from the following condition:
3-<

(K-KA>) (4-3-17")K (wr-f) c q II < |
To start the scheme (4.3.7) we take

■t0 - 0 3 *o = ■€ ( V® ) = a, , ^ = r- (v° ) r ,

V° (Xj) a vVo for- ^\\ X- £ X , r0) .

When c=0, equation (1.1) reduced to the porous medium equation

and of course the Tomoeda algorithm can be used for that equation.

The results are included in section 5.
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4.4 The amended algorithms

4.4.1 The GRAVELEAU and Jamet algorithm

We mentioned earlier in this section that this algorithm has

the reputation of not tracking the interface accurately. To remedy

this we have taken the variable time steps K^:
a m.a.* ^ Is vP 1 J- ) / h r: I

where 3. r JQCL. , Sv. ; (v. — V. *) / Vl » 1 j n € 2*
m-\ 1 V t+i \ J

such that the stability condition

a c, (K/h) < I (c(rsup ld\i°(*)/d*l)
and the boundary condition at the interfaces

hft-l.

dJL - - a i
dt b *

(S-SCti)

is satisfied at each step. The interface will therefore move a

distance h during the time step K and can be accurately tracked.

K+l

K

A

> f \ ( >/
x / k

/ y

> /

/

>

* )

< ;

* )

< P

s *

/
* /

*n+i
A b

-> h « * n-i

At the step K+l we used linear interpolation to calculate the value of

the function at the mesh point using two mesh points: xn_^ and xn+^-



To solve problem II for the porous medium equation it was

simply necessary to fix u at the mesh point x=0, i.e. v = 1 orU y «J

in general a function of J.

4.4.2 Amendments to Tomoeda algorithm

As we mentioned before it was decided to modify the algorithm

particularly in the way the variable time step is chosen. So instead

of using the conditions (4.3.12) and (4.3.13) on K we used the variable

time step:

Kl *= & mJlX £1 S v? ^ /of,
where

a - ; Sv" - v!\ — vj , Vt $ (,• ,n e 1)Yl\~\ 4 1+1 » v '
and

a efif .

Essentially we now compute a sequence of numerical solutions

which we expect to converge with a. This convergence is clearly shown

in section 5 thus justify our amended scheme. For each value of a, y

and v are chosen appropriately.



5. NUMERICAL EXPERIMENTS

In this section we display numerical results for problems I

and II, paying particular attention to both the numerical

demonstration of a waiting time for (1.4) and the large time

comparison for (1.4) and (1.1).

5.1 Numerical results for problem I for the

porous medium equation

To give some indication of the accuracy of each of our

numerical schemes we compare the numerical solution of (1.4) with

the exact Barenblatt-Pattle (B-P) solution. The easiest way to do

this is to take (2.1) at t=l as the initial condition (t=0) in our

numerical solution. The results are displayed in TABLES 1 and 2 for

the modified Graveleau-Jamet (G-J) and Tomoeda (T) schemes,

respectively.



TABLE 1

m = 2.0, h = 0.0229

Time
Numerical
solution

(u(0,tj)

Exact

solution

Cu CO,t))

Numerical
Interface

Exact
Interface

Error of
Interface

0.0 0.436 79 0.43679 2.29 2.29 0.0

0.29525262 0.40032914 0.400701921 2.4961 2.4956 0.0005

0.99999470 0.34590521 0.346680943 2.8854 2.8845 0.0009

3.02166314 0.27366620 0.274665653 3.6411 3.6408 0.0003

6.08878660 0.22638418 0.227378266 4.3968 4.3980 0.0012

12.18109703 0.18399900 0.184908013 5.4044 5.4081 0.0037

17.25427818 0.16503856 0.165889168 6.0227 6.0281 0.0054



TABLE 2

m = 2.0, h = 0.03125

Time
Numerical
solution

(u(0,t))

Exact
solution

(u(0,t))

Numerical
Interface

Exact
Interface

Error of
Interface

0.0 0.43679 0.43679 2.29 2.29 0.0

0.30302370 0.39985487 0.39990375 2.4910 2.50 0.009

0.99294132 0.34684142 0.34708945 2.8605 2.8811 0.0205

2.99454021 0.27466056 0.27528591 3.5973 3.6326 0.0353

5.99530458 0.22750115 0.22838665 4.3318 4.3785 0.0467

12.22583294 0.18364556 0.184699296 5.3546 5.4142 0.0596

17.25238800 0.16480850 0.165894894 5.9613 6.0279 0.0666



For purposes of tabulation the two solutions are compared at x=0

while the numerical solutions themselves are plotted in Figures 2

and 3, where the exact and numerical solutions are, on this scale,

indistinguishable.

The numerical interface for the G-J scheme is shown in Figure 4

while the results of the a-convergence modified T scheme is shown in

Figure 5. The convergence with a is evident up to a=7 but for a=9

the solution appears to be unstable at about t=7.0. We thus take the

numerical solution for a=7 as the converged solution.

5.2 Numerical results of problem II for the porous medium

equation using the modified G-J scheme

Here we compare our numerical results with the exact similarity

solution of section 2. Specifically we take (2.13)-(2.17) at t=l as

the initial value (t=0) for the numerical solution.

Table 3 compares the interface for the modified G-J scheme with

the exact value. The numerical solution is shown in Figure 6 and the

interface in Figure 7, which again is indistinguishable from the

exact solution.

The favourable comparison of our numerical results shows the

prima facie justification for extending the numerical schemes to more

general initial and initial-boundary value problems for both the

porous medium and reaction diffusion equations. This we do in

Sections 5.3 and 5.4.



table 5

m = 2.0, h = 0.0229

Time
Numerical
Interface

Similarity
Interface |error|

0.44105482 2.7480 2.749 0.001

1.10478282 3.3205 3.3223 0.0081

2.17237568 4.0762 4.0788 0.0026

3.20831561 4.6945 4.6977 0.0032

4.57814121 5.4044 5.4085 0.0041

6.03425455 6.0685 6.0736 0.005
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u (x)
0

5.3 The waiting time

The most suitable algorithm for calculating waiting time is

that of Tomoeda which we use here.

To demonstrate the existence of a waiting time, we take the initial

data uQ(x) as follows

'-L [(I -e) CO£2(X) + Q C0S4(X)] for
(5-3.1)

,0 forX/^,11)
where 0 £ [0,1]. As we mentioned earlier in section 2. Aronson,

Caffarelli and Kamin (1983) estimated the waiting time t* for the

above initial function. For 0 £ [0,3?], they found that

*

t r I (5-3.2)
2(m + i)(i_e)

while for 0 £ (^,1), then

'
C t* < ——L (5.3.3)

2(m-H)P v 2(w + l)(»-0)

where B is obtained by solving the nonlinear equations

Pf - uo(y) and 2 0yr(uo(y)j
/

Thus in the case 0 £ (^,1), only bounds for t* can be given.

The calculations of the waiting times were made for m=2 and 0 = 0.0,

0.1, 0.2, 0.25, 0.5 and 1.0. The resulting motion of the interface is

shown for various values of a in Figures 8-13. In each case we take

a=2.0 as the converged solution since for a>2.0 certain instabilities

occurrs. The results for a=2.0 are shown graphically in Figures 14-17

where they are compared, where possible, with the exact waiting times

calculated from (5.3.2). The agreement in each case is satisfactory.
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5.4 Numerical results for the diffusion-reaction equation

In this subsection we shall make a comparison between numerical

results obtained from implementing the modified T scheme and the

asymptotic theory discussed in section 3. To do this we have taken

the initial value for all regimes as

cos(ttx/2) £or 1*1<i ,-t = o

uocx> - (5-4.0

u 0 for I x I ^ I ,t-0
we shall discuss eacli of the parameter regimes separately.

(a) p>m+2

In this regime we have taken m=2, c=l and p=6, as an example.

The numerical right interface is shown in Figure 18, where convergence

with a is evident up to a=7, for a=9 the solution appears to be

unstable. We thus take the numerical solution for a=7 as the

converged solution. As we proposed in section 3 the similarity

interface for this regime is given by

S(t) r + *1 tl/<m+° J' + OO) } (5-4-2)
where n is at the moment unknown and the term of 0(1) represents the

error, which can be shown to be o(t

To indicate a comparison with the analytic estimates we plotted

the function

n(-t) r Sft) + (5-4-3)

in Figure 19. Clearly this is converging to a finite, non-zero limit as

t->°° and agrees with the result of Section (3.1). Figure 20 shows s(t) as

a function of time while Figure 21 gives the temporal evolution of the

solution profile. Taking t = 69.3 in (5.4.3) we used n(69.3) as the



value of n0 in (3.1.14). The resulting Barenblatt-Pattle solution
compared with the numerical solution in Figure 22; the convergence

as t-*» is impressive.
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(b) m<p£m+2

In this regime we take m=2, c=l and p=3. The same a-convergence

properties apply here (Figure 23) and we take a=7.0 as the converged

solution. The analytic estimate for the interface as t-»°° is given by

(3.2.2) as

/S r -P
- t no i A I + 0 (t ) V (5-4-4)

where 3 = h in this case. In section (3.2) we found that for the above
— 3

values of p and m ^ = 3.4. With this in mind n(t) = s(t) t was

plotted against t in Figure 24. We expect comparatively slow

convergence to n0 since the error term approaches zero slowly as

t-»°°, certainly slower than the corresponding function in the previous

regime. Looking at the numerical results however it is not

inconceivable that n(t) -*■ 3.4 as t-*>° but it would of course be better

to repeat the calculations for values of p and m which yield larger

values of 3. Nevertheless it is clear that s(t) does indeed have the

correct temporal decay, which is somewhat of a vindication for the

asymptotic theory, but solid confirmation has yet to be found.

The actual numerical solution is shown in Figure 25 for various

values of time.
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(c) l<p<m

In this regime we take m=2, c=l and p=1.5 in the numerical

example. The path of the interface, for various a, is shown in

Figure 26 and again we take a=7 as the converged solution. The

numerical results for the interface are clearly consistent with the

analysis of (3.3), where it was shown that the interface stabilizes

at some value of x (=xQ) which is undetermined by the asymptotic
analysis. The actual numerical solution profile is plotted in

Figure 27 and is consistent with the outer asymptotic estimate

u(x,t) ~ (5-4.5)

as t oo , l( x - x )\ - o( 0 .



-p



-J—i—I—i—:—s—!—I::if»



(d) p=m

We now come to the last regime where we take p=m=2, c=l.

Again similar a-convergence properties hold (Figure 28) and we take

a=7.

The analysis of section (3.4) proposes

S(t) ~ ^rn — i^ l-OCj t + Tg (5*4*6^

and so in Figure 29 we plot ^ ^ against t up to t=1000 (log t = 6.9).log I G

Convergence to the similarity form is clearly apparent, since for

example when t=1000

I *^°—
l03et 6-^

which is consistent with the numerical results. Figure 30 shows a

plot of the actual numerical solution for increasing t - again this

is consistent with analytic result

'/(m-i) -1/'fm-0
u(x,t) / _L_ \ "t • (5-4'f7)

In conclusion we have shown that, except in the case of

m<p£m+2, the asymptotic theory and numerical evidence are consistent.
. __ :.i L_il i____ ;

Although inconsistency is not evident for m<p<:m+2, further more

detailed and perhaps more delicate computations are required in this

regime before final confirmation of the analytic theory can be made.
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