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ABSTRACT

This thesis is a report of my research on the affine Kac-

Moody superalgebras B(1)(0/4), A(2>(2jM/0), AH)(2Jt/0) and

C(2)(Jt+1). These are infinite dimensional complex Lie

superalgebras and are canonically associated to irreducible

non-reduced affine root systems. They were initially

introduced by Kac(1978).

First the axiomatic foundation of irreducible affine root

systems is summarised. Then, starting with a Cartan matrix

corresponding to the class of irreducible non-reduced affine

root systems, the above superalgebras are constructed at an

abstract level in terms of "generators" and "relations".

The main interest lies in their explicit realisation

which leads to the complete description of their root

structure. This realisation is presented for all of the above

superalgebras and is based on the finite dimensional basic

simple classical complex Lie superalgebras B(0/it), A(2jM/0),

A(2Jt/0) and C(4+1). In particular, the determination of the

root structure of A<2)(2£-1/0), A(4)(2£/0) and C(2)(*+1)
involves certain automorphisms of the A(2jM/0) , A(24/0)

and C(*+1) superalgebras. These automorphisms are derived

and provide a neat way to determine the root structure.

Having achieved their realisation, a description of their

highest weight representations is presented which

facilitates the investigation of their relation with the

Virasoro algebra.

This relation is demonstrated by performing the

Sugawara construction. It is proved that these affine



superalgebras possess a semidirect sum structure with the

Virasoro algebra. Of special interest in physical applications

of these affine superalgebras might be the calculation of the

values of the central charge of the Virasoro algebra that has

been achieved.
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CHAPTER 1

INTRODUCTION

In recent years affine algebras and superalgebras have

become a important field of research and a line of

communication between mathematicians and particle

physicists. The remarkable success and richness of the

theory of affine Kac-Moody algebras and simple Lie

superalgebras has initiated in the last few years the study of

affine Kac-Moody superalgebras. Although their theory and

their applications have not yet been investigated in the same

depth as for the affine Lie algebras, one may say that they

have an even richer mathematical structure which might

allow for many interesting physical applications. There is,

however, a class of affine Kac-Moody algebras whose

structure and representations have been consistently

developed and which constitute a natural generalization of

affine Kac-Moody algebras. These are denoted by B(1)(0/4),

A(2)(24-1/0), A(4>(2*/0), and C(2)(4+1). A consistent

exposition and investigation of their structure,

representations and relation with the Virasoro algebras will

be the central content of this thesis.

The development of the theory of affine Kac-Moody

algebras was initiated by Kac and Moody independently in the

late sixties (Kac(1968), Moody(1967,1968,1969)). The

motivating idea was to generalise the definition of the

Cartan matrix of finite dimensional semi-simple complex Lie
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algebras and then attempt to construct Lie algebras in terms

of "generators" and "relations". Clearly this was a

generalisation of the process that Serre(1966) followed to

prove that all semi-simple complex Lie algebras can be

obtained starting from a Cartan matrix, instead of reaching

it as an end point (as was the case in Cartan's classification

of semi-simple complex Lie algebras).

The result of these attempts was the discovery of two

types of infinite dimensional Lie algebras which are known

as affine and indefinite Lie algebras. Moreover all the semi-

simple complex Lie algebras together with the affine and

indefinite Lie algebras, can be obtained from the generalised

Cartan matrices that they set up, and they constitute the

unique set of algebras obtained in this way. They are known

as Kac-Moody algebras and are special case of contragredient

Lie algebras. In particular, the semi simple Lie algebras and

the affine Kac-Moody algebras form the class of

contragredient Lie algebras of finite growth.

The theory of affine Kac-Moody algebras has been

considerably developed during the last twenty years. Their

structure is very similar to that of semi-simple Lie algebras

and many of the features of the latter algebras are

encountered in the former. The most striking new features

though are the infinite dimensionality and the concept of

imaginary roots. A consistent description of affine Kac-

Moody algebras can be found in Kac(1985) and

Cornwell(1989).

A few years after the discovery of affine Lie algebras,

the study of Lie superalgebras was initiated mainly for

2



physical reasons. Their complete description first appeared

in Kac's celebrated paper "Lie superalgebras" (1977). These

are Z2-graded vector spaces endowed with a generalised Lie

product and generalised Jacobi identity. It is the class of

(finite dimensional) basic classical simple Lie superalgebras

that are of great importance both because of the remarkable

resemblance of their structure with that of simple Lie

algebras and their wide application in physics. Moreover they

can be obtained from a particularly chosen Cartan matrix in

terms of generators and relations. Kac, generalizing the

concept of contragredient Lie algebras to the superalgebra

case, proved that the basic simple Lie superalgebras

constitute the class of finite dimensional simple

contragredient Lie superalgebras of finite growth. For an

extensive presentation of basic simple Lie superalgebras one

may be referred to the above article or to Cornwell(1989),

Scheunert(1979), Kac(1977b).

With this almost parallel development of the above two

theories the obvious question to arise was whether one can

obtain infinite dimensional Lie superalgebras of a similar

type to the affine Kac-Moody algebras whose structures will

be determined from basic classical simple Lie superalgebras.
In 1972 when the basic concepts of affine Kac-Moody

algebras were still under development, Macdonald presented

an axiomatic description and classification of irreducible

affine root systems. He also generalised the Weyl

denominator formula of finite reduced irreducible root

systems (which are the root systems of semi-simple Lie

algebras) to the case of affine irreducible reduced root
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systems. Although the concept of affine root systems was

new, their Weyl groups, being the affine Weyl groups of finite

root systems, had been known for a long time (see Bourbaki,

"Groupes et algebre de Lie" ch. 4,5 et 6). It turned out that the

new formula gave rise to multivariable identities associated

to each one of the affine root systems, the simplest

examples being that of Jacobi's triple product identity.

Moreover they revealed the relation of affine irreducible

reduced root systems with the famous Dedekind's r\-

function, ti(X). The above article not only initiated

various applications in pure mathematics, in topics like

modular forms, theta functions, etc., but also the study of

three theories: the integrable highest weight representations

of affine Kac-Moody algebras, the affine Kac-Moody

superalgebras and their integrable highest weight

representations.

With the real root systems of affine Kac-Moody algebras

being the affine irreducible reduced root systems of

Macdonald's classification, Kac(1974, 1978)) showed that

Macdonald's formula was to be interpreted as the Weyl

denominator formula of their trivial representations. In

particular the concept of integrabie highest weight

representations was first introduced together with the

construction of their character formula. It should be noted

that the concept of imaginary roots was absent from

Macdonald's description and in order to achieve the

generalisation he aimed at, he had to introduce certain

factors which in Kac's articles appeared naturally and which

corresponded to the imaginary roots.
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Together with the classification of irreducible reduced

affine root system, Macdonald also classified the non-reduced

irreducible affine root systems. In 1978 in an article by Kac

entitled "Infinite Dimensional Algebras, Dedekind's r|-

Function, Classical Mobius Function and the Very Strange

Formula", these root systems were canonically associated

with four classes of infinite dimensional Lie superalgebras of

finite growth which are denoted by B<1)(0/^), A(2)(24-1/0),

A(4)(24/0), and C(2)(4+1). These names are not accidental.

Their explicit realization is based on the basic classical

simple complex Lie superalgebras 13(0/4), A(24-1/0), A(24/0),

and C(4+1) respectively. The set of B(1)(0/4) affine

superalgebras are called untwisted because no non-trivial

automorphism of B(0/4) is needed in their realization. The

rest of the sets are called twisted because there are certain

non-trivial automorphisms of A(24-1/0), A(24/0), and C(4 + 1)

involved.

In the above article Kac established the abstract

structure of these superalgebras and outlined a method for

their explicit realization. One of the main objectives of this

thesis is to apply this method and give an explicit realization

of B0)(0/<), A(2)(24-1/0), A(4)(24/0), and C(2)(4 + 1).

The structure of all of the above affine superalgebras is

exceedingly similar to that of the case of affine Kac-Moody

algebras and most of the concepts and theorems of the latter

transfer smoothly to the former. This of course does not

imply that their superalgebraic nature plays a secondary role.
The generalised Cartan matrices are again the starting point

and are of affine type. These are the Cartan matrices
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obtained from the Dynkin diagrams of affine non-reduced

irreducible root systems. Moreover Kac described their

integrable highest weight representations and constructed

the character formula for them. For the trivial

representations this becomes the generalised Weyl

denominator identity for the non-reduced irreducible affine

root systems.

Although the development of affine Kac-Moody algebras

began in a pure mathematical context it soon accelerated

because of physical reasons and in particular because of the

increasing interest in two dimensional conformal field

theories. Affine Kac-Moody algebras (specially untwisted) and

their integrable highest weight representations became one

of the essential parts of string theories (for an extensive

review see for example Green et al.(1988), Goddard et al.

(1986), Lepowsky(1983)). They appear for example as the Lie

algebra of currents of fields defined in two dimensions.

Integrable highest weight representations of them are

obtained for example via the vertex construction or the

fermionic construction.

Although the affine Lie algebras have been used widely,

this is not the case of the affine superalgebras. Only recently

have they attracted the interest of mathematical physicists.

Untwisted superalgebras are involved for example in the

study of symplectic bosons (Goddard et al. (1987)) which

themselves appear in constructing superconformal ghosts of

fermionic string theories (see Friedan et al. (1986)).

Nevertheless, because of the boson-fermion correspondence

that they provide, the study of conformal field theories based
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on them looks quite promising. Obviously, in this context, one

can go further in the more attractive idea of constructing

conformal theories with twisted superalgebras following the

example of twisted string models (see Nepomechie(1986)).
All of the above considerations are of little value if one

has not established the relation of affine (super)algebras

with the central ingredient of any conformal field theory, the

Virasoro algebra. The Virasoro algebra arises naturally as

the central extension of the infinite dimensional Lie algebra

of the conformal group in two dimensions. The unitary

irreducible highest weight representations of the Virasoro

algebra have been studied extensively. These representations

are labeled by the specific values of the central charge Cv and
the eigenvalue h of the Virasoro operator L0 (see chapter 6).

The affine Kac-Moody algebras and the Virasoro algebras are

related in a semi-direct sum algebraic structure, which is

established via the Sugawara construction. The latter

involves obtaining an appropriate expression of the Virasoro

operators bilinear in operators of some representation of the

affine algebra such that the Virasoro algebra will be

satisfied. This process has an interesting consequence. It

provides us with representations of the Virasoro algebra

which are completely determined by those of the affine

algebra. Thus whether or not a conformal field theory that

incorporates an affine Lie algebra is physically meaningful

depends on the representations of the affine algebras.

This brings us to an other main objective of this thesis,

which is to establish the connection between the twisted

Kac-Moody superalgebras A(2)(2*-1/0), A(4)(24/0), and

7



C(2)(4 + 1) and the Virasoro algebra. The case of untwisted

superalgebras has already been treated previously both from

algebraic and field theoretical point of view but it will also

be presented.

Following the historical development presented a while

ago, in chapter two we refer first to the definition and some

important properties of the generalised Cartan matrices

whose complete theory can be found in Kac(1985). This

presentation was necessitated by the fact that these

matrices are the corner stone both of root systems and

affine algebras. In particular, given an indecomposable

symmetrisable affine Cartan matrix, via the uniqueness (up to

isomorphism) of its realization we can obtain on one hand all

irreducible affine root systems and on the other hand we can

generate from it an affine Lie (super)algebra. In addition, a

considerable part of this chapter is also devoted to the

axiomatic foundation of affine irreducible root systems as

was presented by Macdonald(1972), mainly because it was the

classification of non-reduced irreducible root systems that

led Kac to associate them with the affine superalgebras.

In chapter three we set up the abstract structure of the

affine Kac-Moody superalgebras B(1)(0/£), A(2)(2*-1 /0),

A(4)(2j?/0), and C(2)(£+1). We followed a more modern

approach than the one presented by Kac in the original paper.

Clearly it was the structure of the derived superalgebras of

the above algebras that was given by Kac. Our approach is the

same as that of affine Kac-Moody algebras that appears in

Cornwell(1989) and Kac(1985). In fact the method presented

is valid for any contragradient Lie (super)algebra.
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Chapter four is devoted to the explicit realizations of

B(1)(0/4), A(2>(2*-1/0), A(4)(2£/0), and C(2)(*+1). Certain

special automorphisms have been used to obtain the root

structure of A(2)(24-1/0), A(4)(2Jt/0), and C<2)(4+1). However,

the process presented here is of general validity. It can be

applied to any basic simple Lie superalgebra to obtain

untwisted Kac-Moody superalgebras and, if the former

possesses outer automorphisms, to obtain twisted Kac-Moody

superalgebras. This is suggested from the works of Frappat

et al. (1989), Serganova(1985) and Van der Leur(1985).

Chapter five is devoted to the presentation of integrable

irreducible representations of B(1)(0/4) A(2)(2£-1 /0),

A(4)(24/0), and C(2)(£+1). Again we slightly deviate from

Kac's original exposition, where the subject was treated for

the derived superalgebras of the above class.

Chapter six establishes a connection of the affine

superalgebras with possible physical applications in that it

demonstrate the relation of these superalgebras with the

Virasoro algebra. This has been done with the use of

Sugawara construction and the elements of the

representation theory of chapter five. The Sugawara

construction of untwisted superalgebras is not confined

merely to the case of B(1)(0/4) but applies to any untwisted

superalgebra based on a basic simple Lie superalgebra. This

construction has appeared a number of times in the literature

and it is treated here in less detail, but in a formulation that

is more consistent with other developments. However much

more detail will be given on the Sugawara construction based
on the twisted superalgebras A(2)(2JM/0), A(4)(2*/0), and

9



C(2)(*+1). Because of its originality and its complicated

nature, this construction will be explicitly presented.

Following the physical nomenclature we have distinguished
two cases, namely the Ramond case and the Neveu-Schwarz

case. Some interesting results concerning the values of the

central charge of the Virasoro algebra seem to suggest that

the expressions obtained are of a more general nature in that

they incorporate the cases of the Sugawara construction for

affine Kac-Moody algebras and untwisted Kac-Moody

superalgebras.

Finally certain concluding remarks can be found in

chapter seven. Certain tables with Dynkin diagrams and

Cartan matrices of (super)algebras can be found at the end of

this thesis.

As a result of this thesis the following articles have

been published:

(a) "Supercharacters and superdimensions of the irreducible

representations of B(0/4) orthosymplectic simple Lie

superalgebra"

I. Tsohantjis and J. F. Cornwell, International Journal of
Theoretical Physics, 29, 351(1989);

(b) "The complete root systems of the affine Kac-Moody

superalgebras"

I. Tsohantjis and J. F. Cornwell, Journal of Mathematical

Physics, 31, 1817(1990);

(c) "Sugawara type constructions of the Virasoro algebra
based on the twisted affine Kac-Moody superalgebras"

I. Tsohantjis and J. F. Cornwell, to appear in Journal of
Mathematical Physics.
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CHAPTER 2

GENERALIZED CARTAN MATRICES

AND AFFINE ROOT SYSTEMS

2.1 Introduction

In this chapter the aim is to present the basic concepts

of the axiomatic foundation of irreducible affine root

system, as given by Macdonald(1972) and the generalised

Cartan matrices as classified by Kac(1985). In the process

we shall briefly summarize the irreducible reduced and non-

reduced finite root systems which will help to develop the

formulation of the affine ones.

2.2 Generalised Cartan Matrices A

Consider anv square matrix A with entries in (C whose

rows and columns are labeled by an index set 1= {0,...,n-1}.

Definition 2.1 Realization of A

A realization of a n x n matrix A of rank 2, is the set

{?{, nv, n}, where # is a complex vector space, nv is a subset

of which consists of n elements (for all j e I ) of rt, and

II is a set of n linear functional otj (for all j e I ) of the dual
space #*, defined on #, such that

1 1



«j(H*k) - Akj (2.1)(a)

for all k, j g I,

(b) the dimension of M is dim # = 2n-£,

(c) the elements l-^ (for all j e I ) are linearly independent
(d) the elements ocj are linearly independent.

A is called svmmetrizable if it can be written as a product

of a symmetric matrix and a non-singular diagonal matrix and

it is called indecomposable if it does not have the block form

( A11

0

0

A22
(2.2)

where A11 and A22 are non-trivial submatrices, nor can it be

put in this form by any reordering of the index set I.

The requirement of A being symmetrizable is equivalent to

the condition that for any sequence i1( i2, ik, such that
0< i-iik < n-1 the following relation should hold:

Ajkii. = Aj2j1 jk. (2.3)

Note that when detA = 0 the elements Hxj and ocj (for all j e
I ) on their own, do not form base of ot and respectively.

Clearly n-* bases elements have to be added in each of the

above spaces. When detA * 0 then dim "H = dim o<* = £ and

the elements Hxj and otj form bases of and respectively.
Two realizations {M, nv, n} and {#■,, nv1; T^} are isomorphic

if there exists a vector space isomorphism <)> such that <)>(#") =

^1, <}>(nv) = nv! and <|>(n) = n . If the matrix A is not

indecomposable then its realization is a direct sum of

1 2



realizations in the following sense. Let us assume that A

can be put in the form (2.2) such that A1 and A2 are

indecomposable. Then a realization of A is given by

{ #,© #2. nvi x {0} u (0} x nv2, x {0} u {0} x n2},
and is called direct sum of the realizations {^1,nv1,n1} of
A1 and {#2> nv2, n2} of A2.

Proposition 2.1

For every square matrix A there exists a unique (up to

isomorphism) realization of A, and two such matrices A and

B are said to be isomorphic if and only if one can be obtained

from the other by a permutation of the index set I.

Proof (see Kac (1985))

Kac's classification on a particular set of matrices is given
in the following theorem.

Proposition 2,2

Let A be a n x n indecomposable real matrix, with I its

index set, such that its entries are subject to the following

constraints

(i) Ajk <0 for j * k j,k e I,
(ii) for j * k (j,k e I.) Ajk = 0 if and only if Akj = 0

Let u and v be column vectors, and adopt the convention that

u > 0 means that all the Uj > 0 (i e I) there being a similar
convention for u < 0. Then A satisfies one and only one of the

following three possibilities at a time :

1 3



(a) there exists a vector u > 0 such that Au > 0.

If v is a vector such that Av > 0 then v > 0. Moreover detA *

0 and all its principal minor are positive. These matrices are

called generalised Cartan matrices of finite type.

(b) there exists a vector u > 0 such that Au = 0.

If v is a vector such that Av > 0 then Av = 0. Moreover detA

= 0 and all its proper principal minors are positive. These

matrices are called generalised Cartan matrices of affine

iy&£-

(c) there exists a vector u > 0 such that Au <0. If v is a

vector such that Av > 0 and v > 0 then v = 0. These matrices

are called generalised Cartan matrices of indefinite type.

Proof (see Kac (1985))

The matrices of interest form a subset of those involved in

the above proposition and are defined as follows.

Definition 2.2 Generalized Cartan matrix

Let A be a n x n matrix, with integer entries, rank ft,

together with an index set 1= {0,1 ,...,n-1},which labels the

rows and columns of A such that the following conditions are

satisfied:

(i) Ajj = 2 for all j e I
(ii) Ajk is zero or a negative integer for j * k j,k e I,
(iii) for j k (j,k e I) Ajk = 0 if and only if Akj- = 0 (j,k e I).

It is obvious that for the matrices A of the above

definition, proposition 2.2 also applies. Then with the

requirement that A, is symmetrizable and indecomposable,

1 4



part (a) of proposition 2.2, provides us with the Cartan

matrices of ali the semi-simple complex Lie algebras

together with the basic classical complex Lie superalgebra

B(0/4). Part (b) provides us with the Cartan matrices of all

the affine Kac-Moody algebras. Finally part (c) provides us

with the Cartan matrices of the indefinite Kac-Moody

algebras.

Moreover as we shall see, there exists a class of affine

Kac-Moody superalgebras which are associated with a

generalized Cartan matrix of the type considered in

definition 2.1 and fall under part (b) of proposition 2.2.

As is well known, a very useful way of visualizing all

these cases is by associating a graph, called Dynkin diagram,

to each one of the Cartan matrices corresponding to the

(super)algebras just stated. It consists of a number of
I

vertices equal to the dimension of Cartan matrix. Each

vertex is associated with a simple root. Two vertices i,j are

connected by lines if A^O. The construction of these
diagrams is based in the following rules :

(i) To each ie I assign a vertex drawn as a circle

(ii) Draw Ly lines from the vertex i to the vertex j where
Ly = max{ |Ay|, jAjj | }

(iii) Add an arrow from the vertex i to j if |Ajj | > 1
(iv) If |AyAjj | > 4, draw a thick solid line. (2.4)

Given a Dynkin diagram we can construct, up to isomorphism,

the Cartan matrix, making use of the above rules.

Before closing this subsection it is worth making some

remarks on the Cartan matrices of the basic simple classical

1 5



Lie superalgebras other than B(0/<) and their affine partners

that have appeared in the literature (see for example

Kac(1977), Serganova(1983), Frappat et al.(1987)). These are

also associated with Dynkin diagrams which are constructed

using the same rules as above.

Consider first the case of the basic simple classical Lie

superalgebras other than B(0/Jt). Their structure and

classification can be found in Cornwell(1989), Kac(1977),

Scheunert(1978). The first important remark to be made is

that these superalgebras accept more than one, non-

isomorphic Cartan matrices because they accept more than

one non-equivalent (under the action of the Weyl group)

system of simple roots. Although each of these matrices is

indecomposable and symmetrisable and satisfies part (a) of

proposition 2.2, they are not generalized Cartan matrices in

the sence of the definition 2.2. They fail for example to

satisfy condition (i) of this definition since they always

possess at least one diagonal entry Ajj = 0.

Things are more complicated for the case of the affine

partners of the above superalgebras, other than the ones that

we examine in this thesis. Their Cartan matrices,

nevertheless are indecomposable, symmetrisable, satisfy

(b), and have detA = 0, however certain of their proper

principal minors are not positive, and the requirement (a) of

proposition 2.2 is not satisfied.

Let us now describe first the finite irreducible root

systems. For a detailed account see Helgason (1978),

Humphreys (1972) and N. Bourbaki Group et algebres de Lie

ch.VI. (1968).
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2.3 Finite irreducible root systems

Let E be a finite dimensional vector space over IR

equipped with a symmetric, positive definite non-

degenerate bilinear form < , >. Let e *0 be any element of E.

A reflection Se along e, in E, is an invertible linear

transformation such that Se e = -e and its fixed point set (i.e.

the set { e' e E | Se e' = e' }) constitutes a hyperplane Pe in E
for which Pe = { e' g E | <e',e> = 0}. The action of Se on E is
well defined by

(Se e') = e' - ( 2<e, e'>/<e, e> ) e (2.5)

and since any such transformation Se preserves the bilinear
form in E, Se is said to be orthogonal (For a detailed

exposition on this realization of Se see, for example,

Bourbaki(1968) ch.V). A finite root system in E is defined as

follows.

Definition 2.3 Finite Root system

A finite root system A in E is a finite set of non-zero

vectors a of E which satisfy the following conditions

(i) A spans E

(ii) for each a e A there exists a reflection Sa along

a defined as in (2.5) and leaving A invariant

(iii) the number 2<a, p>/<a, a> (a, (3 eA) is an integer.

Two root systems A and A' defined in the vector spaces E and

E' respectively, are said to be isomorphic if there exists a

vector space isomorphism E -» E' sending A -» A' .
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Proposition 2.3

Let a and p be proportional roots, i.e. a = mp (meIR). Then

m takes the values ±f, ±1, ±2.

Proof (see Helgason (1978)).

A root a e A such that fa e A is called indivisible-

Definition 2.4 Weyl group of A

The group generated by the reflections S& for all a e A

and leaves A invariant is called the Weyl group of A.

Definition 2.5 Reduced and non reduced finite root

system

The subsets a-, and a2 of a root system a that are

defined by

A-j = { aeA | a/2 e A } A2 = { ae A | 2a e A } (2.6)

are said to be reduced finite root systems in E. That is the

only proportional roots in A^ and A2 are those for which m =

±1. If both of subsets A^ and A2 are proper, A is said to be
non-reduced.

The following proposition embodies the most important

properties of a finite root system.

Proposition 2.4

Let a, p be any roots of a.

(i) if a, p are linearly independent roots then

(a) 0 < 4<p, a>2/<a, a><p, p> < 3
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(b) if 2<a, (3>/<a, a> > 0 then a - [3 eA

(c) if 2<a, p>/<a, a> < 0 then a + p eA.

(ii) if a, p are not proportional roots, then the set of roots of

the form p + ka is in the a-string containing p for every

integer k that satisfies the relation -p < k < q. That is p+ka
is an arithmetic progression

p-pa,..., p-a, p,..., p+qa.

Moreover, p and q are such that

p - q = 2<p, a>/<a, a>

Proof (see Helgason (1978)).

Definition 2.6 Basis of A

A subset n of A which is such that

(i) the elements of A form a basis of E, and

(ii) each a eA can be written as a linear combination of

elements from n with the coefficients all positive or all

negative integers is said to form a basis of A.

Consider the subset n of the above definition and denote its

elements by ,for all i =1,2 s. where S. is the dimension of

E

Proposition 2.5

(a) Each root system has a basis n, any two bases n, IT are

conjugate under a unique element from the Weyl group of A

and the integer 2<aj, aj>/<aj, aj> is non-positive for all a|, aj
that belong to n.
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(b) The Weyl group is generated by reflections relative to

the simple roots.

Proof (see Helgason (1978)).

Definition 2.7 Irreducible finite root system

A root system A is called irreducible if it can not be

decomposed in two disjoint non empty orthogonal subsets

with respect to the form < , > on V.

It can be proved that any root system decomposes

uniquely as the union of irreducible root systems. Its basis

elements also decompose in corresponding mutually

orthogonal subsets. Then the vector space E, in which the

root system is defined, accepts a direct sum decomposition

of mutually orthogonal subspaces too.

Let us briefly comment on the classification of finite

irreducible root systems.

Let n = (cci, a2,..., a*} be a basis of a root system A which

might be irreducible or not. Then the integers 2<aj,aj>/<aj, aj>
for all otj, aj e n are the entries of a matrix A which is called
the Cartan matrix of the root system A. From proposition 2.4

and 2.5 we deduce that the only possible values of its non-

diagonal entries are 0, -1, -2, -3. It can be easily checked

that A is a generalised Cartan matrix of finite type. If A is

irreducible then A is indecomposable. If A is reducible then

A accepts a decomposition as a direct sum of indecomposable

submatrices of A which are the Cartan matrices of the

irreducible root systems. Let A be irreducible.
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Then it can be shown (c.f. Humphreys(1972)) that the Weyl

group acts irreducibly on the vector space E (if this was not

the case then E would be a direct sum of two mutually

orthogonal non-empty subspaces which would be invariant

under the action of W).

It should be noted that the Cartan matrix depends on the

ordering of the basis n but this does not create any

complications since W acts transitively on the set of bases

and thus the Cartan matrix is independent of n. It can be

shown that given two bases n= {a1( a2,..., a*} and IT= {a^,

a'2 a't}, if <aj, ap = <a'j, a'p, then a bijection aj-> a'j,
extends uniquely to an isomorphism E -> E' mapping A -» A' .

This together with proposition 2.4 shows that the Cartan

matrix determines A completely. Thus classifying all the
irreducible indecomposable finite type Cartan matrices is

equivalent to classifying the irreducible finite root systems

and then using the rules of the previous section we can

construct their Dynkin diagrams.

Another equivalent method is by using connected Coxeter

graph (see Humphreys(1972), N. Bourbaki Group(1968)). This

is defined to consists of n vertices (n being to equal the

number of simple roots) such that the ith vertex is connected

with the jth by 4<aj,ap<aj,aj>/<aj, aj> <aj, ap lines, for all aj,
(Xj e n. Then from these graphs it is possible to obtain the
Dynkin diagrams of all irreducible root systems and thus the

systems themselves with their Cartan matrices. In fact the

underlying theory of this method is related to the Weyl group.

It can be proved that the Weyl group of irreducible reduced
finite root systems is an irreducible Coxeter group
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of finite order. These are groups generated by reflections in

an Euclidean space and might be of finite or infinite order.

They are defined as follows .

Definition 28 Coxeter group

The group generated by a finite set of elements Sj (ie I =

{1,..., n}) such that

(S,)2 - 1 and (Si Sjjmij = 1 (2.7)
where m,j are positive integers or °o is called a Coxeter
group.

These groups are associated with what we called above

Coxeter graph. They have been classified by Coxeter(1934).
The Dynkin diagrams and the root systems of all the finite

irreducible reduced root systems are listed in table I

together with a system of simple roots for each one of them.

There is only one finite irreducible non-reduced root

system which does not correspond to any complex simple Lie

algebra. From the known structure of the reduced root

systems it is now easy to determine this non-reduced one.

Let A be non-reduced. Take the subsets A-j and A2 of A which
are defined in (2.6). Since A1 , A2 and A have the same Weyl

group, from table I we conclude that A1f A2 should be B* or C^
and this is the only case. Thus we have only one non-reduced

system, denoted as BC* which is given in table II together
with a basis which is that of B* (since the simple roots

should be indivisible). Clearly the Cartan matrix of BC* is
also of finite type. From the known structure of the basic

classical Lie superalgebra B(0/4)(see Cornwell(1989)) we

can easily identify its root system with BC* .
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2.4 Affine irreducible root systems

Let us now describe the affine irreducible reduced and non

reduced root systems. For a detailed exposition see

Macdonald(1972) and also Bourbaki(1968) ch.V, VI. Whenever

necessary we will recall some notions on affine spaces (c.f.

Mac Lane and Birkhoff ch. XII).

Definition 2.9 Affine spaces.

Let V be a finite dimensional vector space over a field K.

Then an affine space E over K is an non-empty set whose

elements are called points, on which the vector space V acts,

the action being described by a function V x E -» E defined as

(v, p) -» v+p € E for any vector v of V and any point p of P such

that the following conditions are satisfied:
I

(i) for any vectors v, v' of V and any point p of E

0 + p = p, (v + v') + p = v + (v' + p)

(ii) for any two points p and q of E there exists one and only

one vector v of V such that

v + q = P

(iii) the dimension of E is the dimension of V.

i

From the definition of the action of of V on E it can be

easily deduced that the elements of V translate the points of

E. Thus V is called the space of translations of E. The

symbol + denotes both the action of V on E and the usual sum

of two vectors. The dimension of E is the dimension of V.

Given any finite dimensional vector space over K we can

construct an affine space E by regarding any vector of V as a
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point in E and V as the space of translations. From the

definition we deduce that the difference of two points is a

vector and thus there exists a map E x E -> V. Given a point p0

of E, the map p p - p0 is a bijection of E on to the
translation space V. We can identify E with V using this map

by considering p0 to be the origin in E.
An important characteristic of E is that given a list of

points p0, Pi, p* of E any other point can be uniquely written

as

p = D i=1 kjPj + p0 where Z j=1 kj = 1 (2.8)

where k, are scalars. In particular this set of points
constitute a frame in E if we chose p0 as an origin in E and if

the vectors Pj - p0 form a basis of the translation space V of
E (see Mac Lane and Birkhoff(1978)). By definition every

linear transformation from an affine space E to an affine

space E' (over the same field as E) that preserves relations

(2.8) is called an affine transformation. For example every

translation is an affine transformation.

Proposition 2.6

Let E and E' be two affine spaces over K and V, V' their

corresponding vector spaces of translations over K. Then to

each affine transformation f: E -> E' there exist a unique

linear transformation (Df): V -> V' such that

f(p + v) - (Df)(v) + f(p) (2.9)

for all v e V and all p e E. Also to each linear
transformation (Df): V -» V' and two points fje E and p^e E\
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there exists exactly one affine transformation f: E -» E' with

f(p0 ) = f(p^) defined by

f(P0 + v) = (Df)(v) + f(p^) (2.10)
for all v e V.

Proof (see Mac Lane and Birkhoff ).

Following Macdonald (1972), we call f affine linear and Df

derivative of f. In the special case where f is the map f: E-> K

(here K is assumed to be an affine space too) we say that f is

an affine linear function defined on E if and only if there

exists a linear form Df: V -> K such that the above theorem is

satisfied. Taking an origin in E and identify E with V, the

above theorem implies that every affine linear function f is

such that any point p: p X + (Df)(p) where f(f^ ) = X e K.
Then the set F of affine linear function f is a vector space

over K whose dimension is dim E +1.

By definition, the dual space V* of a vector space V over K

is V* = HomK(V,K) that is, it consists of all linear forms

to: V -> K. Then D is a linear map from F to V* and its kernel is

the subset of F of all constant affine linear functions f (i.e.
functions such that f(p + v) - f(p) = 0 for all p of E and all v

of V). Note that Df does not mean D of.

From now on we shall proceed assuming that K = IR and that

the vector space V is of dimension i, and is equipted with a

symmetric positive definite non-degenerate bilinear form

< , >. The lenght of a vector v is given as usual by |v| = <v,v>£
Then E is an Euclidean space and for any two points p and q of
E we denote by |p-q| the distance function on E. By Riesz
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representation theorem (2.9) takes the form

f(p + v) = < Df, v > + f(p) (2.11)

and Df is called the gradient of f. If f is a constant function

then Df = 0 and f is called isotropic. We identify V and V* in

terms of the the bilinear form of V.

We can define a bilinear form Fx F IR on F by

<f, f > - < Df, Df > (2.12)

This is a positive symmetric bilinear form because the left

hand side of (2.12) is the bilinear form on V* induced by the

one defined on V (note that Df e V*). If f is a constant

function then <f, f> = 0, so the bilinear form is positive semi

definite.

Definition 2.10 Affine hyperplane

The set Pf of points p of E which satisfy the condition

f(p) = k (k e IR), where f is a non-isotropic affine linear

function f, constitute an affine hyperplane Pf in E. That is,

Pf = { p € E | f(p) = k }.

Let us briefly recall some constructions that appear in E
because of the existence of hyperplanes which we will

encounter later.

Let P be a locally finite ensemble of hyperplanes of E. For

any two points p and q of E the equivalence relation "For

every hyperplane Pf of P either p and q belong to Pf or p and

q are contained in the same open subspace of E limited by

Pf", partitions E in classes of equivalence. We call these
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classes facettes relative to P. Obviously the set of facettes

is locally finite too. Consider a facette and a point p of it. A

necessary and sufficient condition for a hyperplane to

contain this facette is that p has to belong in this hyperplane.

It can be shown that the number of hyperplanes from the set

P, in which this point belongs is finite. They have as

intersection an affine subspace of E. We call this subspace
the affine support of the facette. Then (see Bourbaki(1968),

ch.V, p.58) the facette is an open convex set of its support.

Any facette C which is not contained in any of the

hyperplanes of P is called a chamber relative to the set P.

We call face of a chamber C every facette which is contained

in the closure C of the chamber C and whose support is a

hyperplane in E. Then every hyperplane which is a the support

of a face is called a wall of the chamber C. It is clear that

every wall of a chamber C belongs in the set P and is the

support of one an only one face of C. It can also be shown

that every hyperplane from the set P is the wall of at least

one chamber C. We can demonstrate some of the above

notions with an example that will be useful in what will

follow. We can define affine linear functions f0, f-i f^ on E
which assign a real number k, (i = 0, 1,..., Z) to each point p of
E . For each of the affine functions define affine hyperplanes

in E, P0, P1(..., P*, by f,(p) = 0. The set of points of E for which

fj(p) > 0 for all i = 0, 1,..., Z is called open simplex and

constitutes a chamber C relative to the set P of hyperplanes

P0, Pi P* . Its closure C, is the set of points such that fj(p)
> 0 for all i = 0, 1Z. Finally these hyperplanes are the

walls of C.
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Consider now linear invertible transformation w: E -» E.

These transformations are often called affine isometries or

rigid motions of the Euclidean space E. From proposition

(2.9) we deduce that for all points p of E and all vectors v of

the translation space V

w(p + v) = w(p) + w*(v) (2.13)

where w* is the unique linear transformation V -> V

associated with w. In addition w* preserves the bilinear

form defined on the translation space V of the Euclidean

space E and w preserves the distances in E.

Consider the set P of hyperplanes defined by Pf = { p e E |

f(p) = 0 } for all non-constant affine linear functions f. We

are interested in those of the affine linear transformations

that leave invariant the hyperplanes Pf and are involutive.
Such transformations will be denoted by Sf and are called

orthogonal reflections with respect to the hyperplane Pf.
Their action on any point p of E is defined by

Sf (P) = p - 2{f(p)/<f, f>}Df (2.14)

where < , > is as defined in (2.12).

Obviously this is involutive and if p € Pf then Sf(p) = p. By

transposition Sf acts on any f' of F as

Sf (f) = f - 2{<f, f>/<f, f>}f (2.15)

With the definition (2.14) the set consisting of Sf (for all

non-constant f) together with the identity reflection forms a

group which will be denoted by W.

From the definition of an affine transformation (2.11) it is
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clear that to each such affine transformation Sf there should

corresponds a unique linear transformation V-> V, the

translation space of E (which in the general case of (2.13)
was denoted by w*) which preserves the inner product in V.

We call this the derivative of Sf and denote it by DSf. Then
from (2.9), (2.11), (2.13) and (2.14) we obtain that

(DSf )(v) = v - 2{<v, Df>/<Df, Df>}Df. (2.16)

Using (2.16) we can easily obtain that (DSf )2(v) = v and that

<(DSf )(v), (DSf )(v')> = < v, v'>. Direct observation of (2.5)

shows that

DSf = SDf (2.17)

where Df € V. Thus Sf induces an orthogonal reflection in V
with respect to a hyperplane in V which consists of those

vectors v of V such that <Df, v> = 0.

Consider a set P of hyperplanes Pf (f being non-constant)
defined as before in the Euclidean space E and the group W

consisting of reflections Sf (for all f such that Pf belongs in

P) such that the following conditions are satisfied:

(i) for every S of W and every Pf of P, S(Pf) belongs in P;

(ii) W having the topology of a discrete group, acts properly

on E.

It can be shown that P is locally finite (see Bourbaki ch.V,

p.72 (1968)), and thus all constructions encountered a while

ago (facettes, chambers, etc.) can be applied.

Consider a chamber C of the Euclidean space which is

defined relative to those hyperplanes satisfying the
conditions (i), (ii) above. Then the following proposition is
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very important in the foundation of affine root systems that

will follow.

Proposition 2,7

(a) For every p of E, there exists an element S of W such

that S(p) belongs in C,

(b) for any chamber C' of E there exists an element S of W

such that S(C') = C,

(c) W is generated by a set of orthogonal reflections

relative to the walls of C.

Proof (see Bourbaki ch.V, p.73-74 (1968))

We are now in a position to give the definition of an affine

root system on E.

Definition 2.11 Affine root system

Let Aaf be the subsetof the set F of affine linear functions

which satisfies the following conditions:

(i) Aaf spans F and the elements of Aaf are non-isotropic

with respect to the form (2.12),

(ii) the reflections Sf (for all fe Aaf) defined by (2.14)
leave Aaf invariant,

(iii) the quantity 2<f, f>/<f, f> is an integer for all f, f

of Aaf,

(iv) the group Waf generated by Sf (for all f of Aaf) given as

in (2.14-15), (as a discrete group) acts properly on E,

Then Aaf is called an affine root system on E.

From now on we shall denote the members of Aaf by greek
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letters a, [5,..., etc. We call W the affine Weyl group of Aaf. As

in the case of finite root systems if ka is an affine root

proportional to the affine root a then k = ±f, ±1, ±2. The
definitions of reduced and non-reduced affine root systems

are exactly the same as for the finite ones. The rank of Aaf is

defined to be the dimension of E. If Aaf and Aaf' are two affine

root systems defined on E and E' respectively, then an

isomorphism of Aaf onto Aaf' is a bijection of Aaf onto Aaf'
induced by an affine linear isometry of E onto E'. We call

direct sum of affine root systems the affine root system

which is the union of a finite number of mutually

orthogonal(with respect to (2.12)) affine root systems i.e. Aaf
= Uj A|af . An affine root system Daf is said to be similar with
an affine root system Aaf if Daf is isomorphic to the direct

sum Uj kjAjaf, where Aaf = Uj A|af and kj are non-zero real
numbers. As in the case of finite root systems, every affine
root system is expressible as the direct sum of a finite

family of irreducible affine root system. This decomposition

is unique to within isomorpism. We call dual affine root

system Aaf the one obtained from Aaf by substituting each
root a of Aaf by 2a/<a, a>.

For each affine root a let P be the set of hyperplanes Pa in
E defined by

Pa = { p e E | a(p) = 0 }.

It is clear from the definition of the affine root system that

all such hyperplanes satisfy conditions (i) and (ii) mentioned
above and thus P is locally finite. Then all the constructions
mentioned above (i.e. facettes, chambers,e.t.c.) can be
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demonstrated. In particular the chambers of Aaf relative to P

are defined as follows.

Definition 2.12 Chambers of Aaf.

Consider the set E - Ua Pa. It is open in E and since E is

locally connected the connected components of this set are

also open. These connected components are the chambers of

the root system Aaf relative to the hyperplanes Pa-

It is not difficult to see that proposition 2.7 directly apply
to the chambers of the root system. In particular, all the

chamber of the affine root system are W-equivalent.
Moreover It can be shown that the Weyl group of Aaf acts

faithfully and transitively on the set of chambers (see

Macdonald(1972) and N. Bourbaki(1968), p.74 theorem"!).
Assume from now on that Aaf is irreducible, choose a

chamber C once and for all and points in C, p0, pi,..., p* (4= dim

E), called vertices, such that every other point in C is written

as p = Z f=0 kjPj with Z *=0 k, = 1 and all kj > 0 (obviously
this is a property of any affine space). Consider now the set

of indivisible affine roots a (i.e. such that {a e Aaf) with the

properties that

(i) a(p) > 0 for all p of C,

(ii) Pa is a wall of C.

Then the following proposition provides a basis for Aaf .

Proposition 2.8

(a) The set consisting of the indivisible affine roots with

the properties (i), (ii) above is a basis for the irreducible
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affine root system Aaf and consists of i +1 elements a0, a^

aj which are called simple affine roots. It is also a basis of

the vector space F.

(b) Each affine root a is written as a linear combination of

the basis elements with integer coefficients which are all

positive or all negative. In the first case a is called positive

and in the second case negative.

Proof (see Macdonald (1972))

From proposition 2.7 (c) the following proposition is

straightforward

Proposition 2.9

The Weyl group of Aaf is generated by reflections for
all j=0, 1 I, that is, reflections relative the walls of C.

Up till now nothing has been said about the relation of the the

affine root systems with the finite ones that we saw in the

previous section. The next proposition reveals their

connection.

Let Fj (for each i=0, 1I) be the set of affine linear
functionals from F that vanish at a vertex pj of the chamber C

a f
of Aaf and denote with A( the subset of Aaf which contains
those roots that vanish at pj. Also let W, be the subgroup of
W which fixes Pj.

Proposition 2.10

a f
(a) the set As forms a finite root system in Fj which is

reduced if Aaf is reduced.
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(b) Subtracting the simple root a, of Aaf from the set of

the simple roots of Aaf we get a basis of this finite root

system.

(c) The Weyl group is a subgroup of the Weyl group of Aaf
Proof (see Macdonald (1972))

With the use of above theorem Macdonald achieved one way

of classifying all the irreducible reduced affine root systems

in terms of the known finite irreducible root systems and
their affine Weyl group. One can notice that if we associate

a Dynkin diagram with the irreducible affine reduced root

system, (using the same rules as in the finite root system

case) the above proposition implies that removing any vertex

from it the remaining diagram should be that of a finite

reduced system. Now although, it has not been explicitly
stated above, the Weyl group of the affine irreducible reduced

root systems as constructed by Macdonald, is an infinite

order irreducible group generated by reflection in the affine

Euclidean space E. All such groups have been classified and

found to correspond to the affine Weyl groups of irreducible

finite root systems. Moreover they are irreducible infinite

order Coxeter groups. Macdonald achieved the classification

by obtaining the Dynkin diagrams of the irreducible affine

reduced root systems from the Coxeter graphs that are

associated with the affine Weyl groups.

A more explicit construction and classification of the

affine irreducible reduced and non-reduced root systems that

Macdonald also achieved was based on the notion of the

gradient of the affine root system.
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Definition 2.13 Gradient of an affine root system

The set A = DAaf = { Da ; for all a of Aaf } is called the

gradient of the affine root system Aaf.

Proposition 2.11

A is a finite root system in V, the translation space of E.

If Aaf is irreducible A is too. The map D: S-» DS, for all S e W,

is a homomorphism of the affine Weyl group to the Weyl

group of the finite root system. The kernel of this map is the

group of translation which is a subgroup of the affine Weyl

group.

Proof (see Macdonald (1972))

Note that if Aaf is reduced then A can be either reduced or

non-reduced.

Definition 2.14 Special point for Aaf
A point p of E is called special point for Aaf if there exists

affine roots vanishing at p, whose gradients form a basis of

A.

Proposition 2,12

(a) There exists a special point for Aaf which is also a

special point for its Weyl group.

(b) If C is a chamber of Aaf then there exists a vertex of C

which is special point for Aaf.
(c) Let Aaf be irreducible. Fix a chamber C and a basis n =

{a0, a, } corresponding to C. There exists a simple
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affine root a,, such that the gradients of the elements from

n - {aj} form a basis of the finite root system A = DAaf.
Proof (see Macdonald (1972)).

3 f
Note that if we consider the finite root system Aj of

proposition 2.14(c), obtained by taking the affine roots that

vanish at a point Pj (not necessarily a special one) of the
3 f

chamber C, and consider its gradient Aj = DAj , then Aj is a

subsystem of the finite root system A = DAaf and the gradient
3 f

map D: Aj -» Aj is an isomorphism of finite root system.
Then we can prove the following.

Proposition 2.13

Assume that Aaf is reduced and irreducible and a vertex

p, of C is a special point of Aaf. Let Aj be the set of gradients
of the affine roots which vanish on Pj. Then Aj is the set of
indivisible roots of the finite root system A = DAaf .

Let Pj be a special point for an irreducible affine root

system Aaf and Daj (i=0, 1 Z) be the gradients of the simple
roots of Aaf. Then by proposition 2.12 , the elements Daj (for
j*i) form a basis of a finite irreducible root system. Since
< Daj , Daj > < 0 with j*i, <-Daj , Daj > > 0. Thus -Daj is a

positive root of the finite root system A. Thus -Daj can be
written as

-Daj = Z . kj Daj (2.18)1 j * i J J v '

where the coefficients kj are positive integers and Daj are
the basis of A. Consequently we can write (2.18) as
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X^okjDccj =0 (2.19)

where kj = 1 and kj (for j*i) are as above. Now we can state a
very important proposition.

Proposition 2.14

Let Pj be a special point of an irreducible reduced affine

root system Aaf . Then there exists a constant, positive on

the chamber C, affine linear function g defined on E which is

given by

Y-Sf.0 kjaj (2.20)
where kj are positive integers such that for j=i kj =1. Every
other constant function belonging to the lattice generated by

the simple roots of Aaf is an integral multiple of y.

Proof (see Macdonald (1972)).

Note that from the definition of an affine root system it is

obvious that y does not belong in Aaf.

Proposition 2.15

For each affine root a, let a+ be the unique affine root such
that fa = a + - a is constant , positive and as small as

possible.

(a) If a e Aaf and k e IR, then a + k e Aaf if and only if k is

an integral multiple of fa .

(b) If a e Aaf and S e Waf, then fS(a) = fa .

(c) If Aaf is reduced, a e Aaf and 2a + k e Aaf for some k e

IR, then k = m fa where m is an odd integer.
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(d) fa is a positive integral multiple of y.

Proof (see Macdonald (1972)).

All of the above analysis makes obvious the direct

connection of finite and affine root systems. We shall now

describe explicitly the irreducible reduced affine root

systems.

2.5 Classification of irreducible reduced affine root

systems

Proposition 2.16

Let A be a reduced or non-reduced finite root system in a

finite dimensional real vector space V equipped with a

symmetric non-degenerate positive definite bilinear form

< , >. Let E be the Euclidean space whose space of

translations is V. For each a e A and each je Z the set of

affine linear functions defined on E of the form

f(p) -j + «x, p> (2.21)

where

jeZ if |a g A or je 2Z +1 if e A. (2.22)

is a reduced affine root system.

Proof (see Macdonald (1972)).
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Clearly the above proposition together with the analysis on

gradient root systems gives the classification of all

irreducible reduced affine root systems since we know the

irreducible reduced and nonreduced finite ones. We just have

to choose a point p, of the chamber C and consider it as an

origin in E. Then the vector space of translations V is

identified with E by means of the identification of a point a p

of E with the vector p-p, in V. In this way an affine linear

function f on E is identify with a linear functional defined on

V and sending every vector to v -> f(p,) + <Df, v> e R. Then we

can write the affine linear function as f(pj) + Df. If f(ps) = 0 ,

the affine linear function is identified with the linear

functional Df on V. Applying this method to affine root

systems, it is easily seen that Df would belong to the finite

root system which is the gradient of the affine one.

All the reduced irreducible affine root systems are listed

in table III together with their Dynkin diagrams and a system

of simple roots.

We can deduce a Cartan matrix A for the irreducible reduced

affine root system by

Ajj = 2< aj, <Xj > / < otj, <Xj > = 2< Daj, Dctj > / < Daj, Daj > (2.23)

for all i,j = 0,1,..., t (the left hand side being a consequence of

(2.12)), where aj are the simple roots.

Clearly A is indecomposable since if it was not the Dynkin

diagram would be disconnected i.e. the root system would not

be irreducible. It is symmetrisable as it can be easily
deduced from the left hand side of (2.23). Also, from the left
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hand side notice that Ajj = 2 since aj are non-constant

functions and the form <,> is positive definite. Making use of

proposition 2.12(a) and (c) , Ay is a negative integer for all i,
j = 0,1 t. and Ay = 0 implies that Ajj = 0 since the matrix is
symmetrizable. Consider the function given by (2.19) and

take the expressions 2<y, aj>/<aj, a; > for all i = 0,1 i.

Then from (2.12) and (2.23) we obtain

Ak = 0 and k > 0

where k is a column vector with entries kj > 0. Thus the
matrix A of the affine irreducible reduced root system is a

Cartan matrix of affine type.

In view of the known classification of the irreducible

reduced affine root systems it is a straightforward matter to

enumerate all the non-reduced irreducible ones. We shall use

the tool of the gradient of the affine root systems.

Let Aaf be an irreducible non-reduced affine root system.
3 f

Let A1 be the irreducible reduced root system which consists
3 f

of roots a of Aaf such that fa e Aaf and let A2 be the
irreducible reduced root subsystem which consists of roots a

of Aaf such that 2a <2 Aaf. Note that A*f, A2f and Aaf have the
same Weyl group. Consider now the gradient root systems A-,

3f ^ |
= DA1 , A2 = Da2 and A = DAaf. Since Aaf is non-reduced
according to proposition A is non reduced either (but it is

still irreducible). From table II we can identify A with BC*
since it is the only irreducible finite non-reduced root

system. Similarly, for At and A2 defined by (2.6) respectively,
direct observation of table I shows that At = B* and A2 = C* .

3 f
Then from table III we can easily deduce that At should be
one of A^\ B^1) or and A2f should be one of A^, A^ or
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r(1)

3 f at
The final step makes use of the fact that A1 , A2 must have

3 f a f
the same Weyl group. This occurs only for the pairs A1 - A2

given by

(a) Ci1) («2 1). (b) D<2>, - A<2) («> 1),

(c) B<" - A<2)., («> 3) and (d) d{2), - C<1) (<> 1).

We can assign a Cartan matrix to each class in the usual

way and the corresponding Dynkin diagrams are obtained

using the same rules as in the finite case. With the same

method as in the reduced case we can see that the Cartan

matrix of these root systems is of affine type too.

Up to similarity, these root systems are listed in table IV

with their Dynkin diagrams. The black nodes in the diagrams

of table IV denote that there is a non-simple root which is

twice the simple one corresponding to that node. These black

nodes will be identified later as the odd simple roots of the

superalgebras. Note that proposition 2.12 (c) is valid for

these non-reduced root systems too. Consequently if we

remove one of the vertices of the Dynkin diagram then the

remaining part is a Dynkin diagram corresponding to a non-

reduced irreducible or a reduced irreducible or a direct sum

of a reduced irreducible and a non-reduced irreducible finite

root system.
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Their respective names in terms of the superalgebras with
which they will be identified, are B(1)(0/4), A(4)(0/24),
A(2)(0/2iM) and C<2>(^ +1) (the correspondence being from (a)
to (d)). In the next two chapters we shall see how this can be

done.
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CHAPTER 3

ABSTRACT STRUCTURE OF

AFFINE KAC-MOODY SUPERALGEBRAS

3.1 Introduction

In this chapter the aim is to set up at an abstract level a

complex affine Kac-Moody superalgebra, whose structure will

be determined solely from a particularly chosen generalized

Cartan matrix A of affine type and its unique, up to

isomorphism, realization. It should be noted that the method

that will be demonstrated in section 3.2 of this chapter is

closely related to that of Kac-Moody algebras (see Kac

(1985), Cornwell (1989)). We shall concentrate only on these
affine superalgebras that appear in Kac (1978) although many

of their properties apply to other contragradient Lie

superalgebras, affine or simple finite dimensional.

3.2 Abstract construction.

Let A be a (4 + 1) x (4 + 1) an indecomposable matrix, with

entries in Z, rank i, together with an index set 1= {0,1,...,4},

which labels the rows and columns of A and a non-empty

subset z of I (which may not necessarily be a proper one) such

that the following conditions are satisfied:
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(i) Ajj = 2 for all j e I (3.1)

(ii) Ajk <0 for j * k j,k € I (3.2)

(iii) if j € x then AJk is a non-positive even integer (3.3)

(iv) for j * k (j,k e I) AJk = 0 if and only if Akj = 0 (3.4)

In what follows it will always be assumed that A is

symmetrizable, i.e. can be written as a product of a

symmetric matrix and a non-singular diagonal matrix as

fol lows

A = DB and Ajk = 8jBjk for all j.ke I. (3.5)

where D is the diagonal matrix with entries Ej and B is the
symmetric matrix with entries Bjk. Finally we set detA = 0
and demand that every principal minor of A is positive. Thus

we take A to be of affine type.

With all of the above assumptions it can be easily

checked that A is the Cartan matrix for the irreducible non-

reduced affine root systems of chapter 2. In table V, all

these Cartan matrices and their corresponding Dynkin

diagrams are presented. The entries of these Cartan

matrices have been determined relative to the enumeration of

the vertices of the Dynkin diagrams as indicated. The

integers above the vertices are the entries of the unique, up

to a constant factor, vector v such that Av = 0.

According to the definition 2.1 of chapter 2, a

realization of A is a complex vector space -H of dimension

*+2, together with a set of linearly independent elements
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Hxj (for all j e I) and a set of linearly independent elements
ocj (for all je I) of the dual space sK * such that

ak(Hxj) = Ajk. (3.6)
We denote by Q the lattice in ^ * defined by elements of

the form a = S-leIk| aj where k, are integers and let Q+
denote the subset of Q consisting of elements a such that kj
are positive integers. We call height of a linear functional a

e Q, and denoted by hi&, the integer his. = Z jeI kj .

We shall associate now with this Cartan matrix a Lie

superalgebra whose Cartan subalgebra will be and whose

simple roots will be identified with the linear functionals aj

(for all je I).

Consider first an auxiliary complex Lie superalgebra £s
whose set of generators are given by the basis elements of

and the 2(4+1) elements E a , E_aj (for all je I). The
defining relations of Is are as follows:

[ Eixj > E-ak ] = 8jk Hxj (for j, k e I) (3.7)

[h , kj - «k(h) 5xk (for alike I) (3.8)

[h,E.„k] = -«k(h)E.ak (for alike I) (3.9)

[ h , h' ] = 0 (for all h, h1 e tf). (3.10)

The Z2 grading is defined by

degh =0 (for all h e ?/), (3.11)

degEak = degE_ak = 0 for all ke I\x (3.12)

degEUk = degE.ak = 1 for all ke x. (3.13)
It should be noted that with h = (3.8) and (3.9) reduce, to
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[ , Eak ] - Ajk Eak (3.14)

[Ha.,E.ak] = -Ajk E-ak- (3.15)

Here and in what follows [ , ] denotes the commutator or the

anticommutator as is appropriate. I contains also all the

generalized Lie products of the form:

[L ot|<iE ak-]> [Ea^i C^ctk' ak" I 3> SO OT (3.16)

together with those of the form:

[E-ak,E-ak ], [E-ak,[E -ak-.E-ak ] 3. ©IC.. (3.17)

all subject to the generalized Jacobi identity. We denote by
i« M i

£. and L+ the subsuperalgebras of Ls generated by E„k and
(for all ke I) respectively.

The first thing that we have to establish is that Ls has a

decomposition of the form

Is = L, © X © L+ (3.18)
i i

and the spaces i . 1+ are freely generated by the elements

E_ak and E«k (for all ke I) respectively.
To achieve this we have to define a graded

representation of £s . Let T(V) be the tensor superalgebra
over the Z2-graded complex vector space V (see Scheunert

(1979)), whose basis elements are denoted by vk (for all ke

I). Clearly T(V) is by construction a Z-graded associative

superalgebra of the form

T(V) = © Tj(V) = C 0 V© (V<8> V) © (V <8> V ® V) © ...

(3.19)

where
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T°(V) = C, T1(V) = V, T2(V) = V ® V, etc, (3.20)
with a consistent Z2 grading inherited from V. Define an

action of the generators of Is on T(V) as follows :

E ,ak (v) = vk <S> v for any v e T(V) and all ke I (3.21)

h (I) = X(h) (3.22)

h (vk ® v) = - ak(h)E.ak<8> v + vk <8> h(v), for ve Tj"1(V) (3.23)

for all ke I, h e !H and where X is a linear functional on

S.k(0 = 0 (3.24)

^t(vk ® v) - 5jk Ha|(v) + (-1)de9^k d«9vk Vk 0 Eak(v) (3 25)

for vs T'"'(V), for all j, k s I and I is the unit in T(V).
Now it can be easily proved, that this action provides a

representation of Is on T(V). This can be done by checking
that relations (3.7) to (3.10) are satisfied. Moreover any

product of elements E ak, E,«k and h lies in L_ + !tf+L+.
Consider an element a of I of the form a = i + h + 4.

S +

where i., h, <+ are elements of the l', L '+ subspaces
respectively. Assume that a =0. Then in the representation

defined above a(l ) = (I) + X(h) I + i. (I) = >.(h)l + d>(Jt. )l = 0.

The structure of T(V) implies that X.(h)l = 0 and <3>(Jt. )l = 0.

Since X(h)l = 0 should hold for every X e 9f* we deduce that
h = 0. Now notice that under the map E _ak -> vk the

associative superalgebra T(V) is isomorphic with the
• • .

universal enveloping algebra U(1) of L and the map a. -»a .

<

(I) for all elements a. of L is the canonical even linear
« i

mapping of 1 into U(1). Consequential if I. (I) = 0 then Jt_=0
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and thus *+ = 0 too. Relation (3.18) is satisfied.
Since U(l) is the universal enveloping superalgebra of

L_ by Poincare-Birkhoff-Witt theorem 1. is freely generated

by E-ak . Next let us define the map

£(E.ak ) = - Ettk for all k e I

£(^xk ) = -(-1)de9^k E.ttk for all k e I (3.26)
£(h) = -h for all h e ^

It can be easily checked that the map <j> can be uniquely

extended to become a graded automorphism of Is of order 4.
Using this automorphism observe that L+ is also freely
generated by ^k for all ke I.

Now by relations (3.8), (3.9) each of the generalized

products in (3.16) and (3.17) are eigenspaces of adh with

eigenvalues,

o(h) - Sks , K°ak(h) (3.27)

where k" are all negative or all positive integers and | k™ | is

the number of times that the element E_ak or E^k appears in
the commutators. That is, a belongs in the root lattice Q.

We shall denote the subspace corresponding to the linear
• i i

functional a by L a . Moreover since L+ and 1. are spanned by
elements of the form (3.16) and (3.17) respectively we obtain

that

< - (3-28>

Q+ ® -a (3.29)

and i; = ( ZasQ+ ®l>#® (S06Q) ® ) (3.30)
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where a * 0. From relations (3.27) and (3.28) we deduce that

for all ke I the generators Eak and E_ak are members of £ak and

L'-ak respectively, dim£'ak = dim I'.ak = 1. By making the
obvious estimate that dimla <(dimA)hta, it follows dimla<oo.

Any ideal I of £s has the form

Sc,eQ ®K n ') <3'31)

and it is obviously Z2 graded. The sum of all ideals that
intersect M trivially is the unique maximal ideal R that

intersects trivially and it can be easily checked that it

possesses the decomposition :

R = (t'nR)®(ljnR) (3.32)

We define the complex Kac-Moody superalgebra Is based
on the affine Cartan matrix A, to be the factor algebra

is = ls / R (3.33)

Consequently Ls has no non-trivial ideals with trivial
intersection with X. We retain the same notation for the

elements E„k , E.ttk and hxk (for all ke I), under the natural
i

homomorphism of Is onto 1S/R. The commutative subalgebra
of Ls is still referred to as its Cartan subalgebra. Also the

set of elements aa of Is that have the property

[h.aa] = a(h)aa (3.34)
i

for all h e U is again said to form the root subspace Lza

corresponding to the root a. The set of all non-zero roots of

Ls will be denoted by A, the subset of positive roots by A+,
and the subset of negative roots by A.. Clearly A+ = A n Q+ ,

A. = A n -Q+. and A = A+ u A. . The set of linear functionals aj
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for alt je I, are said to be the simple roots oflg. If the root

subspace iSa belongs to the odd (even) part of then a is
said to be odd (even) root. We shall denote by A0 and A1 the

set of even and odd roots of £s. Also relation (3.30) takes
the form

£s - < ) e ( 2a6A+ ® i.a ). (3.35)
Finally the map $ defined by (3.26) induces a Cartan

automorphism ft of Is , of order 4, defined as in (3.26). This
maps the root subspaces corresponding to positive roots to

those corresponding to negative roots and thus, If a e A+ then
-a e A. and vice versa, and A+ = - A. .We call the generators

E -ak , ^k and lik (for all ke I) Chevallev generators. In the
same way as for the Kac-Moody algebras we can prove the

following.

Proposition 3.1

Let a belong to £+ be such that [ a , E.ak ] = 0 for all ke I.
Then a = 0. Also if a belongs to L and satisfies the relation

[ a , f^k ] = 0, for all ke I, then a = 0.

Proposition 2L2

With the generalized Cartan matrix defined as above, the

following relations hold in ls :

(ad Sxk - 0 (3-36)

and

(ad Ett| )0-y E.„k = 0 (3.37)
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Proof

To prove that (3.36) and (3.37) hold, it is sufficient to show

that

(adE.ai )(ad kj)<1-y £xk = 0 (3.38)

(ad^)(ad E.aj)d-V E-ak =0 (3.39)

for all i, j, ke I and j*k, and then make use of proposition 3.1.

Relations (3.38) and (3.39) can be shown to be true with the

use of the generalized Jacobi identity and relations (3.7-15).
Moreover if we prove (3.38) then (3.39) is obtained by using
the Cartan automorphism <J>.

From relations (3.36) and (3.37) and using the Leibniz

formula Dm [x,y] = £nm=0 Cm) [Dm x, Dn"m y] where
D is (adE ^ )(for k e IYr ) or (adE SXk )2 (for k e % ) we can find
that (adE iXk )(k e I) are locally nilpotent on Is .

As in the case of affine Kac- Moody algebras, the

following proposition holds.

Proposition 3-3

The set of elements h of "H such that

ak(h) = 0 for all ke I (3.40)

form the centre C of the Lie superalgebra Is and dim C =1.
Any heC is given by

h = Xj£l niKXi with Yj j£ jA jj n j = 0 (3.41)

where nj being real numbers.

The existence of the centre is a direct consequence that
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the generalized Cartan matrix is of affine type (see chapter 2

section 2.2). This can be shown by the second of the

relations (3.41), if we write it as An = 0 where n is a (4 + 1)

x 1 vector with entries ri\. Then because A is of affine type,

there exists n > 0 such that An = 0. With appropriate scaling

nj can be taken to be positive integers.

We must make now the following important remark.

Since A is of affine type, can have the decomposition

■H = © X" (3.42)

where is the set of all linear combinations of Hxj (for all
je I) and y{" is a complementary subspace with dimension one.

It can be easily seen that the subspace of £s generated by the
Chevalley generators, satisfying relations (3.7, 3.14-15) and

(3.34-35), together with all their commutators is a

subsuperalgebra of £ which differs with £ in that it does

not contain the subspace 9f". This indicates that this

subsuperalgebra is the derived superalgebra , [ £s , £s ], of £s.
In Kac's original paper, both the abstract form and the

explicit realization of the Lie superalgebras presented there

concerned the derived superalgebra . Clearly the situation is

the same as in the construction of Kac-Moody algebras that

appeared in the original papers of Kac and Moody. Later

Kac(1985) demonstrated a general method of abstract

construction for the Kac-Moody algebras which includes the

subspace straight from the beginning.

This method with slight modifications to fit the superalgebra

case is adopted throughout this thesis. Clearly this additional

subspace guarantees the non-degeneracy of the bilinear form
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on ;H and y{* as we shall see bellow.

3.3 The supersymmetric bilinear form

The next step is to define a supersymmetric invariant

non-degenerate bilinear form on ls. That is, a bilinear form
that satisfies the following conditions

(i) B(a, b) = (-1)de9ade9bB(b,a) (i.e supersymetric)

(ii) B(a, [b, c]) = B([a, b], c) (i.e invariant)

(iii) there does not exists an aels with a * 0, such that
B(a, b) = 0 for all be Is.

Due to the fact that £s is allowed to be infinite
dimensional the process of constructing the desired form

should be carried out in stages. First let us state a theorem

due to Kac (1978) that guarantees the existence of a

supersymmetric invariant bilinear form on the derived

superalgebra [ £s, Ls ], and is strictly related to the
properties of the Cartan matrix A.

Proposition 3.4

Let A be an indecomposable generalized Cartan matrix.

If A is symmetrisable then the derived contragradient Lie

superalgebra with this Cartan matrix has a unique up to a

constant factor bilinear supersymmetric invariant form such

that

B( Hxj . Htj ) > 0 for all je I and (3.43)

B(ia , lp) = 0 if a * - p for any roots a , (3 of £s. (3.44)
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Proof (see Kac (1968,1978))

Note that Kac's theorem does not imply non-degeneracy of the

bilinear form.

Clearly this theorem does not state anything about how

the bilinear form should be defined on the elements of the

complementary subspace . Thus first we have to define

B( , ) consistently on the whole of the Cartan subalgebra M

and then extending it to the whole of Ls such that the above
theorem would still be true. The process is identical with

that of affine Kac-Moody algebras.

We define B( , ) on #by

B( h , hi. ) = ocj(h)£j for all je I and all h e # (3.45)

B( h , h') = 0 and all h, h' e (3.46)

B( h , Hxj ) = B(Htj , h) for all je I and all h e rt" (3.47)

where £j are the non zero diagonal elements of the matrix D
(see 3.5) which can be taken to be real and positive. In

particular from relations <Xj(Hxk) = Akj, (3.5) and (3.47) for h =

Hak it is found that

B( lik , Hxj ) = Bkj £k £j (for all j, ke I) (3.48)
where Bkj are the entries of the symmetric matrix B of (3.5).

Proposition 3,5

The bilinear form defined by (3.45) to (3.48) is non-

degenerate on

Proof (see Cornwell (1989))
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This proposition allow us to define for each linear

functional a on # a unique up to a constant factor element ha

of 9{ by

B( ha , h) = a(h) (3.49)

and thus for any ha, hp we have

+ = ^a+p (3.50)

This bilinear form induces a symmetric bilinear form on

of defined by

< a, p > = B( ha , hp)

and a(hp) = p(ha) = < (3, a >. (3.51)

Then by (3.45) and (3.49) we can define "Weyl" type

generators hbk of tf', as

haR = H.t (3.52)

Also, it is not difficult to show that

< ak , ctj > = Bkj = e"1 Ajk , < <Xj, aj > = 2/ ^ (3.53)
and thus

Ajk = (2<aj, ak>)/<aj, ap and (3.54)

Kxk = 2<ak, ak>"1 bxk (3.55)

PrQpQgitiQn 3-g

The (C-valued bilinear form defined by (3.45) to (3.48) is

the unique, up to a constant multiplicative factor, consistent
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invariant supersymetric non-degenerate bilinear form on Ls
and such that (3.43) and (3.44) are satisfied and so for any

root vector ^ of Is

[ aa > 3-a ] = B( aa , a.a) h a- (3.56)

Proof This can be proved by checking each of the

assumptions of the theorem, inductively, on Ls, viewed as a

Z-graded Lie superalgebra. (See last section of this chapter

for the Z-grading of £s). Clearly the proof is the same as the
one appearing for Kac-Moody algebras in Kac(1985) , the only

difference here is that we demand that B( , ) has to be

supersymmetric.

3.4 The Weyl group

Consider now any linear functional (3 defined on # and

define the linear transformations §xj (for all je I) on the
elements of #* as

(S^pxh) = 0(h) - P(H,,) otj(h) - p(h) - 2<a' P> a,(h) (3.57)1 1

<aj aj>

for all he#. Clearly the are reflections on relative to

the simple roots otj(h), the fixed point set of each §, being
the set { X e #* | < X, ap = 0 } and (S&. <*j)(h) = - cij(h). These
reflections are called fundamental. If (3 = ak(h) then

(Stxj ak)(h) = ak(h) - Akj aj(h) for all h e H and je I. (3.58)

The set generated by the identity operator, the *+1

fundamental reflections SLj and all products of the
fundamental reflections $xj forms a group and is called the
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Wevl group W of the affine Kac-Moody superalgebra £ .

Using the definition (3.57) it can be easily checked that

the form < , >, induced on from the bilinear form on is

invariant under the action of the Weyl group.

For any aeA such that <a, a> > 0, we define an operator

Sa acting on any linear functional (3 of yf* as

(Sa (3)(h) = (3(h) - 2<a, (3><a, a>'1 a(h) (3.59)

and has the obvious properties

(i) (5x<x)(h) = -<x(h),

(ii) Sa ($x (3) = (3 for any linear functional (3 on X,

(iii) <§x(3,§iy> = <P>Y> for any (3, y defined on 9{,

(iv) for any two linear functional (3, y on M and any two

complex numbers X and p

sa (x{3 + py ) = ms* p) + f(s* y)-

Clearly ^ defined above is a reflection relative to the root a.

As we shall see in the next section all the roots a that

satisfy the condition <a, a> > 0 are the roots with the

property that there exist an element S of the Weyl group and

a simple root ak such that a = S aj. Then this last relation and
(3.57), imply that §* = S"1. Thus being a product of

fundamental reflections lies in W.

The structure of the Weyl group will be better

established, when we shall examine the explicit realization

of the affine Kac-Moody superalgebras in the next chapter.

Finally, recall the definition of the Coxeter group in the

previous chapter. With the fundamental reflections defined

as in (3.57) and the Cartan matrices given in table V, we can

verify (c.f. Kac (1985), proposition 3.13) that the Weyl group
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of I is an infinite order Coxeter group (see definition 2.8

chapter 2). Moreover for any pair of fundamental reflections

(Stej , Sak ) (j*k, e I) the order mjk of the product Sak is
related to the entries of the Cartan matrix as follows:

if Ajk Akj = 0, 1, 2, 3 or > 4, then mjk = 2, 3, 4, 6 or oo

respectively, the convention being that §»k)°° = 1.
It should be noted that whenever mjk = oo, this implies that
(Sotj 5*k ) is a translation (see of N. Bourbaki(1968) § 3, n° 4,
chapter V). For example from the Cartan matrix of B(1)(0/1),
in table V, (§*0 ) is a translation as will become apparent
in chapter 4.

3.5 The root system of Ls .

Let us now investigate some fundamental properties of
root system of the affine superalgebras of table V.

Proposition 3,7

If ccj is an odd simple root of Ls then 2aj is also a root
of I . Moreover 3ctj is not a root of
Proof One has to notice that

[ E-a., ^ ] = 2aj (Hxj)and that [ E .0JI (ad^ )2^( ] = 0
implies that there does not exist a simple odd root such that

3aj is a root.

This can be easily generalised to all the odd roots of Ls.

Definition 3.1 Real roots of Is
A root a of £ is called real if there exists an element S
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of the Weyl group and a simple root aj (jel) or a root 2aj
(jex) such that

a = StXj or a = 2S(Xj . (3.60)

The set of real, positive real and negative real roots will be

denoted by Ar, and Arrespectively.

Proposition 3.8

The real roots are characterized by the following

properties:

(a) if a e Ar then < a, a > >0;

(b) if a g Ar and p g A then there exist two non-negative

integers p and q (which depend on a and p) such that p+ka is

in the a-string containing p for every integer k that satisfies
the relation -p < k < q. That is p + ka is an arithmetic

progression

p-pa,..., p-a, p,..., p+qa

Moreover, p and q are such that

p - q = 2<p, axa, a>_1
and

Sap = p - 2<p, axa, a>*1 a

is a non-zero root . Moreover dim £3^ = dim 4^;
(c) the set Ar is invariant with respect to the Weyl group and

dimlgp = dim for any SgW and any Pg Ar.
(d) the root subspaces lSa of 1*. are all one dimensional for
any a g Ar;

(e) if a is real even root of then ka is a real root of if

and only if k = ±1. Similarly if a is real odd root of then ka

is a real root of if and only if and k = ±1, ±2.
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Proof (see Cornwell (1989)).
Part (a) follows immediate from the definition of the real

roots, the invariance of the form < , > under the Weyl group

and the fact that <ctj , cxj > > 0 for all simple roots oij .

To prove (b) we just have to notice that the adjoint

representation is an integrable representation (see chapter

5). Then (b) follows from similar steps as in the affine

algebra case by making use of proposition 5.1 and 5.2 (see
also Kac(1985), (1978),(1968) or Cornwell(1989)).
Part (c) follows from (b) and (d) is obvious for the simple

roots and for the rest of the roots it follows from (c).

Part (e) is evidently true for the simple even and odd roots

and for the rest of the roots we can prove it by using the

definition of the real roots and part (c).

One thing that has to be pointed out is that property (e)

includes the cases k = ±2. In the finite and affine Kac-Moody

algebra case these values do not appear since the finite or

affine root systems, are reduced root systems. That is if a

is a root of these root systems then |a is not. The

appearance of these values here reveals the non-reduced

character of the root system of the superalgebras under

consideration (see chapter 2).

Definition 3,2 Imaginary roots of Is
A root a that is not real is called imaginary. That is

there does not exist any element of W such that when acting
on a simple root gives a.

The set of imaginary, positive imaginary and negative
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imaginary roots will be denoted by a1, a^ and a' respectively.
The following proposition can be proved in exactly the same

way as in Kac(1968) or Cornwell (1989), and provides us with

a criterion for the existence of imaginary roots.

Proposition 3.9

Every one of the following three properties is equivalent

to a root a being imaginary:

(a) if a e A^ then there exists an S eW such that Sa = (3 e A^
and < (3, ocj > < 0 for all je I; (3.61)
(b) if a e A then a e A' if and only if < a, a > < 0

(c) if a e A' then ka e A for any integer k.

If a e A^ and Se W then Sa e A^. The set of imaginary roots
is Weyl-invariant.

Proof (See Kac(1978))

From part (a) and relation (3.27) we can write (3.61) as

< (3, ttj > =Sk 6 j Kj< < Cfc, CCj ><0
where > 0 for all k e I, or in a matrix form k > 0 and Ak <

0. Then since A is an affine matrix, by proposition 2.2(b)

chapter 2, Ak < 0 implies that Ak = 0. Thus the affine Lie

superalgebra possesses imaginary roots. Moreover, <(3, ap = 0
for all je I and < p, (3 > = 0 for every (3 e A1 .

Let us concentrate for the moment on the subspace X" of

the Cartan subalgebra. As we saw above the subspace is

one dimensional and rH is the direct sum of M ' and 9(". Its

basis will be denoted by d and will be called the scaling

element or derivation of L$. It is defined to be such that
ttj(d) » 1 if j«0 and aj(d) = 0 if j = 1, 2,...,<. (3.62)
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With these definitions it is clear that d does not belong in #".

From relations (3.50) to (3.50) we have that

B(d , d) = 0 (3.63)

B(d , Hxk ) = 2/<a0, a0> if k= 0 and B(d, hik) = 0 if k=1, 2 1.

(3.64)
The basis of M has thus been consistently established.

Consider a vector k > 0. Since A is of affine type Ak = 0

and we can assume that the entries kj (iel) of k after

appropriate scaling are positive integers. By the uniqueness

up to a constant factor, of such a vector we can take kj (ie I

to be for example, the labels of the Dynkin diagrams of table

V (this is usually the convention followed in the affine

algebra case). Now define a linear functional 6 on #" by

5 - Tsi ki«i (3.65)

It can be easily seen from (3.6) and the affine character of

the Cartan matrix that

5(Hxi ) = 0 for all iel. (3.66)

and consequently, 5(h) = 0, for all he#". Moreover by (3.65),

(3.66) and (3.62)

5(d) = k0 (3.67)

Moreover by (3.49), (3.50) the element h5 of #" corresponding

to 5 is given by

h8 -zi6i k, ho,, - 2lei Mr' h., (3.68)

where (3.56) has also been used. Then it is trivial to show
that ak(h5 ) = 0 and so by proposition 3.3 belongs in the
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center C of Is.
Relation (3.66) states nothing but < 5, cxj > = 0 for all je I

and < 5, 8 > = 0. Moreover all the conditions of proposition 3.6

are satisfied and thus 8 is an imaginary root . In addition, by

proposition 3.9(c), j8 (jeZ) is also an imaginary root and thus

< j8, j8 > = 0 too.

What remains now is to complete the basis of # * by

defining in a consistent way a basis for M"* corresponding to

the scaling element d. Let A0 be the linear functional defined
on itfas

A0(Hxk) = 1 if k=0 and A0(H*k) = 0 if k=1, 2 it.(3.69)

Using (3.49), (3.63-64) and the above relations, the element

hAo of corresponding to A0 is given by

hA0 = ?<«o - «o> d. (3.70)

Finally observe that because of (3.46) and (3.51)

<A0 , A0> = 0. (3.71)

Also from (3.65) and (3.67)

and 8(hAo ) = £<a0 , a0>k0. (3.72)
Both the role of d or hA and h5 will become more

apparent in the explicit realization of the affine

superalgebras. One thing that can be said concerns the

functional A0. A0 is nal a root of the superalgebra since it
does not have the property (3.28). In the next chapter amongst
other things, we shall determine explicitly the root structure

of the affine Kac-Moody superalgebras.
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3.6 t8 viewed as a Z-graded Lie superalgebra.

Definition 3.3 M-graded Lie superalgebras.

An M-grading of a Lie superalgebra L with respect to an

abelian group M is a decomposition of 1 in to a direct sum of

subspaces as:

L (3-73)

such that

C
+ n (3-74)

dimlm < 00 (3.75)

Then the Lie superalgebra is called M-graded.

An element a of L which belongs to the subspace A,m is
said to be homogeneous of degree m. A subspace V of L is

said to be M-graded if V = X m e m © ( ^ n Lm ). For example
the superalgebra itself is graded with respect to Z2. The root

decomposition (3.30) is a Q-grading on L.

Z-grading plays a very important role in the theory of

Lie algebras or superalgebras. It actually initiated the study

of what is now known as contragredient Lie algebras or

superalgebras (see Kac 1968,1977). These are Z-graded Lie

(super)algebras that are associated with an arbitrary matrix

A and a set of relations (3.7-15). The affine superalgebras

together with the basic classical superalgebras are special

cases of contragredient Lie superalgebras.

Consider now the expression (3.38) appearing in the

definition of the height of a root. Let aa be an element of the
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root subspace 4^a corresponding to the root a of height je Z.

Setting degaa = ht a = j (for all roots a) and degh = 0 (for all

h e # ) we can introduce the structure of a Z-grading in

described by

** = ^jez ® V f| = ^a|hta=j ® K. (3.76)
where

l0 = £, = I *,0 C(Ea,), £+, = Z ',0 C(S,|) (3.77)

£+ = sj21 0 1), £ - Z.2) 0 £j (3.78)
This is called the principal grading of ^.
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CHAPTER 4

EXPLICIT REALIZASION OF

AFFINE KAC-MOODY SUPERALGEBRAS

4.1 Introduction

The explicit realization of affine Kac-Moody

superalgebras is a natural generalization of the realization

of the affine Kac-Moody algebras (see Cornwell(1989), Kac

(1985)).

It should be noted that for any basic classical simple

complex Lie superalgebra and not only for A(24-1/0),

A(24/0), C(Jt+1) and B(0/4), there exists an affine Kac-Moody

superalgebra that has appeared in the literature. The

difference with our superalgebras is that the resulting

Cartan matrices are not those of the definition given in

chapter 3. It has been demonstrated (see Serganova(1983),
Van der Leur(1986)) that, with an approprately chosen

definition of a Cartan matrix, all the basic classical simple

complex Lie superalgebras and their affine (untwisted and

twisted) counterparts can be obtained, (including the ones

that we are examining here), together with a complete

classification of their Dynkin diagrams. This set constitutes

all the contragradient Lie superalgebras of finite growth that

exist. Since a lot of the characteristics of the twisted

superalgebras that we shall investigate are essentially the

same as those of the untwisted superalgebra BO(0/^)we
shall demonstrate them explicitly only for the untwisted
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superalgebras.

All information needed on the structure of A(24-1/0),

A(2*/0), C(4+1) and B(0/*) needed in the explicit realization

will be given on the process. In particular their Dynkin

diagrams with the distinguished choice of simple roots can

be found in table V at the end of this chapter. For more

information see Cornwell(1989).
In presenting the method of constructing untwisted and

twisted superalgebras in sections 4.2 A and 4.3 B we shall

deal with the more general case of constructing such

superalgebras based on any basic classical simple complex

Lie superalgebra.

This set of basic classical simple complex Lie superalgebra

consits of

A(r/s)(= sl(r+1/s+1; C))(r>s>0), A(r/r)(=sl(r+1/r+1; C))(r>1),

B(r/s)(= osp(2r+1/2s ; (C))(r>0 and s>1),

C(s)(=osp(2/2s-2; C))(s>2 ),

D(r/s)(= osp(2r/2s; C))(r>2 and s>1), D(2/1; a)(a * 0,1 ,«>)

F(4) and G(3). For more information see Cornwell(1989).
For a basic classical simple complex Lie superalgebra

1° it is assumed that B°( , ) is the Killing form (or if the

Killing form is identically zero then this is any other

supersymmetric invariant non-degenerate bilinear form),

that Ig has rank *°, that is its Cartan subalgebra, that
a° (for k = 1,2,...,*°) are its simple roots and that A°, A°, and
A° are its non-zero, positive, and negative root systems

respectively. We fix a maximal solvable subalgebra for

such that the set of simple roots will be the distinguished
I

one.
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A Weyl-type canonical basis will be chosen for 1° (see

for example Cornwell(1989)). Its elements will be denoted

by h£o e (for k = 1,2 4°), together with e°° (for all a° e

and these are assumed to satisfy the usual commutation

and anti-commutation relations. In a realization of in
5

which the elements of 1° are represented by supermatrices,

with e°ao being represented by e®0, the convention will be

adopted that

<&> - -(eS°)st (4.1)

for all a°of A°+, the superscripts st indicating that the

supertranspose must be taken.

Since B°( , ) a is symmetric non-degenerate bilinear

form on #°, for each linear functional a°on there exists

an element h°° of #° that is defined by by

B°(ha°,h0) = a°(h°) for all h°e . (4.2)

Then a symmetric non-degenerate bilinear form < , >° may be
* 0

defined in the dual space # of functionals defined on X

by

<otV>° - B°(h°°,hjfo (4.3)
for any pair of linear functionals a°and p°on #°. In addition
h°0+ hp°= hSo+p0. Contrary to the case of simple Lie algebras
<a°a°>° is neither always real nor always positive.
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4.2 Explicit realization of affine untwisted
~ (1 )

Kac-Moody superalgebras

A. Basic concepts and definitions

Let C [t,t"1 ] be the associative algebra of Laurent

polynomials in the indeterminate t. We define first the loop

superalaebra corresponding to the basic classical complex

simple Lie superalgebra as

£loop<£s°> = C[t,t-']®£°. (4.2.1)

This is an infinite dimensional complex Lie superalgebra and

the generalized Lie product is given by

[ ti <E> a° , tk 0 b° ] = ti+k 0 [ a0, b° ] (4.2.2)

for all integers j and k and all a°,b° e i°s, where the
generalized Lie product of the right-hand side of (4.2.2) is
that of The Z2 graduation is defined such that

deg (ti 0 a0) = deg a0 for any homogeneous element a0 of

This superalgebra may be extended by introducing an

additional even element c, with the generalized Lie product

being modified to become

[ ti 0 a0 , tk 0 b° ] = ti+k 0 [ a0, b° ] + j5i+k.° B0(a0,b°)c (4.2.3)

for all integers j and k and all a°,b°e and where it is
assumed that

[ ti 0 a° , c ] = 0 (4.2.4)
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for all integers j and all a0 e 1°. This latter Lie superalgebra

may be enlarged by adding a further even element d, for

which it is assumed that

[ d, ti ® a° ] = j ti ® a°, (4.2.5)

for all integers j and all a0 e 1°, and that

[d , c] = 0 . (4.2.6)
d

Clearly d acts as the operator t ^ on the loop superalgebra
and it can be easily seen that it is actually a superderivation
of it and is the extension of the derivation of the algebra of
Laurent polynomials from C [t,t"1 ] to l(s1Also it can be
shown that the additional sum on the right hand side of

(4.2.3) is the extension of the loop superalgebra by a two-

cocycle which for our case has this particular form. The

untwisted complex Lie superalgebra Ig1) is defined to be

Ig1) = (Cc) © (Cd) © ( C[t,f1] <S> ). (4.2.7)

Equation (4.2.3) shows that the set of elements t° © a0,

where a0 e 1°, form a subalgebra of £g1) that is isomorphic to
1°. The maximal abelian subalgebra of Ig1) is given by

#(1) = (Cc) © (Cd) © (t° ® M°) (4.2.8)

where #*°is the Cartan subalgebra of the basic classical

complex Lie superalgebra 1°. Clearly dim #(1) = 4°+2 where
Jt° is the dimension of By construction Ig1) has a one

dimensional center c = (Cc).

The deriyed superalgebra [£g1) , Ig1) ] is easily seen to
be given by
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[I<1), 1^1)] =(C[t,t-1]® 1° )© C. (4.2.9)

It can be checked that the following relations define a

unique (up to a constant) supersvmmetric invariant non-

degenerate bilinear form B(1)( , ) on Ig1):

B(1)(ti<8> a°,tk ® b°) = 5j+k,o B°(a0,b°), (4.2.10)

B(1)( ti <8> a°,c) = B(1)( ti <8> a°,d) = 0 , (4.2.11)

B(1)(c,c) = B(1)(d,d) = 0 , (4.2.12)

B(1)(c,d) = 1 , (4.2.13)

for all a°,b° € L° and all integers j and k. Clearly B(1)( , )

coincides with B°( , ) on the subalgebra of £(s1) that is
isomorphic to L°s.

The bilinear form defined above, being symmetric non-

degenerate on induces a symmetric non-degenerate

biliear form on the space of linear functionals (the dual

of ^T(1)). Then for every linear functional a of , there

exist an element ha of #"(1) defined by

B<1>(h, ha) = a(h) (4.2.14)

for all h e Consequently for any two functionals a, p

the induced form < , ><1>on is defined by

< a, p><1> = B<1>(ha, hp) (4.2.15)

Using the above two relations we deduce that

ha+ hp= ha+p (4.2.16)
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a(hp) = p(ha) = < a, p>(1> (4.2.17)

for all ha, hp of and all a and p of #(1) .

Every linear functional a°defined on #° can be extended

to become a linear functional on by the following
definitions

a°(t° <8> ha° ) = a°(ha)> ) (4.2.18)

a°(c) = 0 a°(d) = 0 (4.2.19)

for all k = 1,2 *°. Consequently the same is true for all the

roots of 1°. Next let us define a linear functional 5 on

by

5(t°® hao ) = 0 (for all k = 1,2 i°)

5(c) = 0 5(d) = 1. (4.2.20)

A non-zero linear functional a defined on is called

a root of £j.1> if there exists at least one element aaof!g1)
such that

[h, a«] = a (h) aa (4.2.21)

for all h e The set of elements a0, for each such a, that

satisfy the above relation form the root subspace of £[1).
Now the complete root system of Ig1) can be found by

using the defining commutations relations (1.1.2-6) of

Let e°0 be basis vectors corresponding to the root

a°of L°s and h^g (for all k = 1,2 4°) be the basis elements
of 9{°. Then from the commutation relations (4.2.2-6) we get:
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[ t°<8>h°° , foejo] = a°(t°<8>ha°) (tW^ , (4.2.22)

[c.taejo] = 0, (4.2.23)

[ d , J®e°a°] = j(t^<S>e°o), (4.2.24)

for any a° e A0 and for any integer j (and for k = 1,...,*°).

Taking in to account the definition of 8 and the extensions of

a°, the above relations become

[h.feeS0] = (jS(h)+a°(h)} tf®e°ao) (4.2.25)

for all h e ^(1). Thus t^e®0 corresponds to a root j8+oc° of

lg1). Moreover it is obvious that the root subspace ^i(j5+a0)
has dimension dim ^(jLaO) = 1 (except if 1° = A(1/1) in which
case the odd root subspaces have dimension two) with the

root basis vector being ^e®0 . Similarly, for any (3°eA° and

any non-zero integer j

[ t0<8>h2g , ttehgo] = 0, (4.2.26)

[c.fehjjo] = 0, (4.2.27)

[d.fehgo] = j(ti®hp°), (4.2.28)

and so, by the definition of 8,

[ h, tWhjjo] = j8(h) (t'® hp°) (4.2.29)

for all h e Thus t^hpQ corresponds to a root j8 of L^\
Moreover there are <° linearly independent elements with

this property, namely h°o (for k = 1,2,...,^°), and, as there are

no further elements of lg1) to consider, the root subspace of
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j8 must have dimension it0 (for j * 0).
It follows from (4.2.14), and (4.2.10) to (4.2.11) that

hao = t°<8>ha0 , (4.2.30)

for each a°e A0 (and its extension), and hence by

(4.2.15),(4.3), (4.2.10), and (4.2.16) to (4.2.18) that

<aV>(1> = <a°,p°>° (4.2.31)

for every pair a°,p°e A0 (and their extensions). Also

(4.2.12), (4.2.13), and (4.2.19) to (4.2.21) imply that

h5 = c (4.2.32)

That is, 5 is the root of l(s1) corresponding to the basis
element c. The above analysis reveals that the system of

non-zero roots of £g1) is given by

A<1) = {j5 + a0 for all a0 <= A°and j e Z,

jS for all j e Z-{0} } (4.2.33)

and that lg1) admits the decoposition

I<1) = W(1» ® {Z ea(1)® £™} (4.2.34)
We shall describe as even roots the roots j5 and the roots

j5 + a0 , where a0 is an even root of £g1). The odd roots are

of the form j8 + a0, where a0 is an odd root of lg1)(Note that
these definitions are direct consequences of the Z2-

graduation of £g1) as defined above).
As in the case of affine untwisted Kac-Moody algebras

the simple roots a0, a! a* of the affine untwisted Kac-

Moody superalgebra are taken to be
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a0 = 5 - aH ,

ak = a° for k = 1,2, ... ,4°, (4.2.35)

where the a° of (4.2.35) are the extensions of the simple
roots of Ig and is the highest root of 1°. Then the set a|1)
of positive roots of Ig1) is given by

A+1) = {j5 + a0 for all a0 e A° and j e Z+-{0},

j8 and j e Z+-{0},

a0 for all a0 e A° }

and we have a similar expression for the set A(1) of negative

roots of Ig1). The only exception is A^1 >(1 /1) in the case each
odd root is both negative and positive. Then for £g1) we have
the following root decomposition of :

^ ' = { ^<O0^(j5) } ® { ^<0 ^a°eA0 ® *S(j8+a0) }

© { 2^° © £s(-a0) 1 © ^<1) © { ^°eA° © ^(aO) }

0 {*>O0 ^s(jS) } 0 { ^>0W ® *$(j5+a°) }•

Proposition 4.1

Ig1) does not contain any non-trivial ideal hi such that
n = 0.

Proof . Assume that there exists such an ideal % Obviously it

is graded with respect to the root decomposition. Consider an

element ti<8> aa° , of n .corresponding to some root j5 + a0 of
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£g1). Then for an element tf ® a_a° we should have that

[ ti <8> aa° , t"i ® a_a° ] e it. But clearly [ ti <8> aa° , tf <8> a_a° ]
s #(1) and thus [ ti<8> aa° , t-i <8> a_a°] e it n Since we

have assumed that it n #(1)= 0, [ ti® aa° , H ® a_a° ] should
be zero which is a contradiction and thus it - 0.
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B. The B(1)(0/*)(<>1) untwisted Kac-Moody superalgebra

The rest of the analysis we will be focused on IJ
B(0/£) alone. Obviously all of the above considerations apply

unaltered in this case too so we will demonstrate only those

elements that will establish the isomorphism of BO)(0/£)
with the affine Kac-Moody superalgebra of chapter 3 with

Dynkin diagram and Cartan matrix given in figures 1,2 of

table V. All information needed on B(0/4) can be found in

appendix A(3) and table II chapter 2.(See also

Cornwell(1 989)).

(a) The root system of B(1)(0/4)

The simple roots otj (for all j=0,1,..,Jt) of B(1)(0/4)
according to the previous analysis are the extensions of the

even simple roots a°, ..., a^, of B(0/Jt) and the odd simple
root a° of B(0/£), together with ao- Since the highest root

of B(0/4) is even and is given by

o
„ o

<*H = ^ r=1 ar (4.2.36)

it follows that

(4.2.37)

which is an even root of B(1)(0/£).

If a° is the extension of any simple root of B(0/£), then from

(4.2.10), (4.2.15), (4.2.30-32) folows that

<8,o£> = 0 for all k = 1 i (4.2.38)

77



<jS,j5> = 0 (4.2.39)

•oO.-O 0 0 0 . . _ ,

<j8+a ,j5+a > = <a ,a > >0 (4.2.40)

for every integer j and every non-zero root a° of B(0/Jt).

Every non-zero root of the form j5 will be called "imaginary",
and every root of the form j8+a° "real". The adaptation of

these names is a direct consequence of propositions 3.5 and

3.6 of chapter 3. The latter are easily checked to be valid if

we take in to account the properties of the root system of

B(0/£) and the structure of the Weyl group of B(1)(0/£) which

will be demonstrated below.

We can express the roots of B(0/Jt) in terms of the

linearly independent functionals Ej (i<j<4) defined on 9{° (see
table II and Cornwell(1989)). Then the set of real roots Ar(g|
of B(1)(0/Jt) is given by

= { m8 ± (ej ± £j) with 1< i < j < I,

mS ± £j with 1< i < Z , m8 ±2e| with 1< i < I , me 2} (4.2.41)

and the simple roots are given by

a0 = 8 - 2e1 aj = Ej - £j+i 1< i < i -1 = e* (4.2.42)

(b) The Cartan matrix

We define the Cartan matrix A of BC)(0/^) to be given by

Ay = 2<otj, aj>/<aj, aj> for all i,j = 0,1 Z,

where <,> = <, >(1) is evaluated taking in to account (4.2.31)

and the information given in appendix A(3). The following
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verify that this is actually an affine Cartan matrix according

to definition of chapter 3.

(i) The fact that it symmetrizable is straightforward.

From the above relation A can be written as A = DB where D

is non-singular and has diagonal entries 8j = 2/<aj, aj> (i =

0,1 it). The matrix B has entries By = <aj, aj> and is
obviously symmetric.

(ii) Ajj = 2 (i = 0,1

(iii) For i,j = 1 1, Ay are the entries of the Cartan
matrix of B(0/4), which is a Cartan matrix of finite type. In

particular the root system of B(0/£) is the unique finite non-

reduced irreducible root system of type BC* and with a* being
the odd simple root, 2a t is also a (even) root of B(0/4).
Moreover (j = 1 is an even non-negative integer.

(iv) We have to show that Aj0 and A0j are also non-

negative integers. The highest root of B(0/*) is nothing but
the highest weight of the adjoint representation of B(0/*)

and thus it can be written in terms of the fundamental

weight At . As = 2 At = 2 Xj=1 a° .

a n / A V * 0 0 0, 0 0 0
Ajo = 2<aj, ao> /<aj, aj> = -4 ^r=1 <otj , ar > /<a] , aj >

Direct observation of appendix A(3) shows that

Aj0 = -4 if i - 1 and for i > 2 Aj0 = -2 if j=1 and 0 in any
other case.

= 1, for j=1 and 0 in any other case. Thus A10 = -4 and Aj0 =

0 for j=2,..X

For A0j (j = 1,similar arguments show that Aoj * 0 if j=1
and in this case A01 = -1. A0j = 0 in any other case.
(v) Finally we have to establish that A is of affine type.
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From relation

s o Y*° 0o = ao + aH =ao + 2Z/r_1 ar.

Let Hak, k = 0,1 ,...,4, be the Chevalley basis of (see

below). Then, since 5(Hak ) = 0 for all k = 0,1,...,4, X*=0 8(Hak)
= 0 which by the use of the above relation and the definition

of the Cartan matrix, imply that Ak = 0, where k is a vector

with entries k0 = 1 and kj = 2 for all i=1,2,Thus A is of

affine type and det A = 0.

It is easily checked that the the generalized Dynkin

diagrams of B(1 )(0/1) and B(1)(0/£) (for Z > 2) evaluated using

the above Cartan matrices are those of Figures 1 and 2

respectively.

(c) The Weyl group

Definition 4.2 Scaled root lattice Qv of B(1)(0/£)

The scaled root lattice Qv of B(1)(0/-2) is defined to be

the set of all linear functional av defined on which have

the form

«V - 2*_0 ^ a* (4.2.43)
where a.v is given by

(*jV = {2/< , a. >}cj for all j = 0,1 I (4.2.44)
and kj takes any integral value.

Since neither B(0/*) nor B(1)(0/4) are simply laced, in

general av + (3V * (a + p)v.
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We can investigate now the structure of the the Weyl

group. Since we have identified the Cartan matrix, from

section 3.4 we deduce that it is generated by reflections

relative to the simple roots as found above which act on any

functional p of as in (3.56).

For every element av of the scaled root lattice Qvof

B<1)(0/*) and every linear functional p defined on #(1),
consider the following linear operator Tav acting on p that is
defined by

Tav (p) = p + <p, 5> av - { <p, av> + £ <ocv, av><p, 5>}5.(4.2.45)

In particular if p = a, where a e AC), or p = 6 then

Tav (a) = a - <a, av>5 and Tav (5) = 8 . (4.2.46)

As in the case of affine Kac-Moody algebras (see

Cornwell(1989), Kac(1978)) the following properties can be

easily established

Proposition 4.2

(a) For every two elements av and pv of the scaled root

lattice Qv

Tav Tpv = Tav+Pv (4.2.47)
(b) For every element av of the scaled root lattice Qv

T0V = n*,, ( T0» )kj = n( Ss-^Sh^i , (4.2.48)
where are the scaled simple roots of B(1)(0/4), which are

extensions of the simple roots of B(0/4), and kj are the
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integers of the expansion (4.2.43). In particular

Tav - §i-aj§ii (j-1>2,...,*). (4.2.49)

(c) The set T of elements of the form (4.2.42) is an invariant

abelian subgoup of the Weyl group of B<1>(0/*). Moreover, the

Weyl group of B<1)(0/*) has the semi-direct product structure

where Ws is the Weyl group of B(0/*) (i.e. the Weyl group of

the even part, C* , of B(0/*)).

Proof (see Cornwell(1989))

(d) The Chevalley generators

The basis vectors of the root subspaces corresponding

to the simple roots and their negatives are given by

e±ak = t° ® e?ag for all k = 1,2,...,*, e±(Xo = t±1 <8> e?a°

W = T©WS (4.2.50)

(4.2.51)

Now note that

[ e°° , e°£ ] - B°(e°°H, <&• )hS»H (4.2.52)

and thus

[ eao , e_ao ] = -1° ® [ eS» , e^o ] + B°(e£° , e°ao )c

= B°(e°o , eScO ) {-® hjo + c} (4.2.53)

Consequently we may define an element hao of #(1)
corresponding to the simple root a0 by
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hao = c - to ® h°o . (4.2.54)

We can normalize e®0 and e^x° appropriately such thatH H

B°(E£h , E^O ) = 2/<a°, a°>° (4.2.55)
where E°° , EV denote the normalized vectors e°° and e^o .H H H H

A similar argument can be applied to e±ctk (for all k = 1,2,...,it)
with B°(E°o, E^o ) = 2/<a°, a°>°. Then we get the "Chevalley"

type basis vectors E±CXo and E±ak are given by

E±ak = t° ® E?ao for all k = 1,2,...,it and E±ct0 = t±1 <8> E?a°

Ha0 = { 2/<«0, «0>}ha0 = 2/<«H' aH>0 {' t0 ® ha° + C }

H„k = { 2/<ak, ak>} httk = 2/<a°, a°>° {tO <8> hjjg } (4.2.56)

for all k = 1,2 I. Then it can be easily deduced that all

relations (3.7) to (3.10) are satisfied and that the elements

(4.2.56) generate B<1 >(0/^). Moreover the sets {Httk for all k =

0,1,2,...,it}, { ak for all k = 0,1,2 it} together with the (it + 2)-

dimensional complex vector space provide a realization

of the affine Cartan matrix of B<1)(0/it).

Finally in accordance with chapter 3, let A0 be the linear
functional defined on #"(1) by

A0(Hxk) = 1 if k=0, and A0(Hxk) = 0 if k=1, 2 it. (4.2.57)

Let hAo be the corresponding element on #(1). It is easily
obtained that

, i ° ° o AhA0 = ¥<aH- aH> d'
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A0 (hg) = i<aS, (Xh>0 and A0(hao) = 0 ,

<A0, A0> = 0. (4.2.58)
for any a°e A0 (and its extension). The set { A0 , ak for all k
= 0,1,2 *} provide a basis of

Finally the even part of B(1>(0/4) is easily recognized to
be B(1>(0/*)0 = C<1).
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4.3 Explicit realization of affine twisted
~ (m)

Kac-Moody superalgebras L,

A. Basic concepts and definitions

Let be one of the basic classical simple complex Lie

superalgebras. Let <|> be an graded automorphism of £° of

finite order q*1, such that under its action, £° is decomposed

as

£° - ®Ep^0 £7 . (4.3.1)
where £gpq) are the subspaces of 1° that consists of all the
elements a0 of 1° such that

<b{a°) = e27tPj/q a° , (4.3.2)

where p = 0,1, ... ,q-1. That is, £°pq) are eigenspaces of § with
corresponding eigenvalues e2jtP'/P and (4.3.1)describes a Zq-
graduation of £° . It follows that £°so) 's a Lie
(super)algebra, and that for each p taking the value 1,2, ..., q-

1 the subspace £°spq) provides a carrier space for a
representation TP of £°oq) by the prescription

[aSr,a°r.] = E^ = 1rP(a°r)°v a°r. (4.3.3)

for all aj,. of £°oq), where np is the dimension of £gpq) and a^r
(for r = 1,2, ... ,np) are the basis elements of £spq)- We assume
that <|> leaves invariant at least one simple component of the

, ~o
even part of Ls .

The main interest is the case in which <> is an outer

automorphism. The structure of the group Out(£°) of outer
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automorphisms of 1° was demonstrated by

Serganova(1983,1985). Moreover Serganova has shown that if

<)> belongs to the connected component of the identity of the

group of automorphisms of 1° , the twisted loop superalaebra

defined by

£pq-io2f..» (tqi*P®C>
is not a subsuperalgebra of the loop superalgebra of Ig1), but
is actually isomorphic to the loop superalgebra of £g1). These
untwisted and twisted loop superalgebras were termed

infinite-dimensional contragredient Lie superalgebras, and

their root systems, together with all their inequivalent

systems of simple roots (and Dynkin diagrams) were

presented by Serganova. Later in the work of Van der

Leur(1986) a more consistent description of them was

presented , in which it was shown that they are the only

infinite dimensional contragredient Lie superalgebras of

finite growth. Because of the their profound similarity with

the affine Kac-Moody algebras, they were termed affine too.

In this connection it may be noted that Frappat eiai (1989)

have shown that it is sometimes possible by using non-

distinauished sets of simple roots to construct generalized

Dynkin diagrams for the basic simple Lie superalgebras
which possess rotational symmetries that do correspond to

outer automorphisms of these superalgebras. However this
is not possible in every case, the simplest example where it

cannot be done being A(2/0).

In addition they showed that by folding symmetric

generalized Dynkin diagrams of untwisted Kac-Moody

superalgebras we can construct twisted Kac-Moody
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superalgebras. In what follows we shall outline the explicit

realization of twisted Kac-Moody superalgebras and then we

shall study the affine Kac-Moody superalgebras A<2>(2^-1 /0),

A(4>(2*/0), and C(2>(* + 1).
We can associate with the outer automorphism <{> a

subsuperalgebra tgq)of£(s1> whose set of basis elements
consists of c, d, and, for p = 0,1 and q-1, of all ti<S>a0 for

every integer j that is such that j mod q = p and every basis

element apr e £°Spq) . This may be summarized by the
statement that

£<q,= (€c) ® (Cd) e £p"! „ If. ... j mod q , p (t1 ® £°pq>)
(4.3.4)

or equivalently

£™- (Cc) e (Cd) ® I^ 0 If. .. (tqi+p «I°pq)) (4.3.5)

(4.3.4) will be called affine twisted Kac-Moodv superalaebra.

Its derived superalaebra is simply

r r(q) r(q), /r„x m yq-1 y00 /+qi + p r°(q\[ *-s > Ls J = (Cc) 0 = o = — (4 0 ^-sp )•
The generalized Lie products of £s are then those inherited
from £g1) and so are given by (4.2.2) to (4.2.6). Let ?f0 be the
Cartan subalgebra of 1° and consider the subset #o(q) of

S

elements of given by

#o(q) = y-fo pi (4.3.6)

It can be easlily seen that the maximal set of commuting

elements in (4.3.4) is then given by
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#(q) = (Cc) © (Cd) © (t°® #°(q)) (4.3.7)

and thus consitutes the £ail3£L£yMfl.ebra of iiq).
The supersvmmetric invariant non-degenerate bilinear

form Bf , ) of may taken to be such that

B(q>(a,b) = \l B(1)(a,b) (4.3.8)

for all a,b e £(sq , p being an arbitrary constant which may be
chosen in any way and B(1\a,b) is as in (4.2.10-13). As the

subset of elements of I(sq) of the form t°®a° (for all the
elements a0 of £°) form a subalgebra that is isomorphic to

£g, a particularly convenient choice is to let p be such that
B(9)( , ) coincides with the supersymetric invariant non-

degenarate bilinear form , ) of L°Qq), that is, so that

BW(t0<g>a0,t°<S>b°) = B°oq)(a0,bO) for all a°,b° of (4.3.9)

Since B°( , ) is invariant under the automorphism <J) it is not

difficult to show that for any two basis elements a°r ans ajj.,..
of the subspaces and respectively,

B°(apr,ap.r.) # 0 if and only if (p+p') mod q = 0 (4.3.10)
for all p,p' = 1,...q-1, r = 1,...np, and f = 1,...,np-.

Every linear functional a°defined on #<1) that is an

extension of a linear functional defined on 0 can be

restricted to become a linear functional on by the

following definitions

a°(t° <8> h) = a°(h), a°(c) = 0, a°(d) = 0 (4.3.11)

for all h e #0(q). Consequently all the roots of t°s are
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restricted to #"0(q). Next let us define a linear functional 8 on

#-(q) by

8(t° <8> h)= 0 (for all h e #0{q)), 5(c) = 0, 8(d) = 1.(4.3.12)

With these definitions the determination of the root

structure of £(sq) follows the same steps as in the untwisted
case.

A non-zero linear functional a defined on #(q) is called a

root of Z(q) if there exists at least one element aaofI(sq)
such that

[ h, a«] = a (h) a„ (4.3.13)

for all h e #(q). The set of elements aa, for each such a, that

satisfy the above relation form the root subspace Z(sq) of Z(sq\
We denote by A^(q) the set of roots of £°oq) anc' by Ap<q) (P

= 1 q-1) the set of weights of the representations that the

pth subspace provide for and by A°(q) the set of all roots

and weights from Ap(q) (p = 1,...,q-1). All the elements of the
above sets are defined on #"0(q). With the obvious

modification of (4.2.22) to (4.2.25) becomes

[h.tW] = {j8(h)+a(h)} (teea) (4.3.14)

for all h all integers j such that jmodq=p and where

eais the element of the Oth subspace corresponding to the
root of ig(0ql or an element of the pth (p = 1,...,q-1) subspace
corresponding to the weight ae A°(q) (p = 1 q-1). Obviously

t^<8>ea corresponds to the root j5+a of £(sq). Any such root
will be called 'real'.

Similarly, for any |3 e Aq(C|) and hp e ^0(q) and any non-
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zero integer j such that jmodq = 0, (4.2.29) imply that

[ h, tWhp ] = j5(h) (tahp) (4.3.15)

for all h e #(q). Thus t1® hp corresponds to the root jS of Ig1)
such that jmodq = 0. Moreover there are s. linearly

independent elements with this property, corresponding to

the basis elements of Thus the root subspace of jS

such that jmodq = 0 must have dimension i (for j * 0).

Finally for any zero weight of the q-1 representations

similar reasoning implies that there exist roots j5 such that

jmodq = p (p = 1,2 q-1) and their multiplicity is the

dimension of the corresponding weight subspaces. The roots

of the form j5

are called 'imaginary'.

Since B^)( , ) is symmetric non-degenerate in #(q) for

every linear functional a defined on #(q) an element haof
#(q) may be defined such that

B(q)(h, h„) = a(h) (4.3.16)

and thus a bilinear form on the dual space 5/"(q)* is defined by

«x, p>«« =B<q>(ha,hp) (4.3.17)

The definition of B^)( , ) together with (1.1.5-6) and (4.3.17)

imply that

h5 = (1/p) c, (4.3.18)

<j8, j8>fa) = 0 and <j8+a, j8+(3 = <a, p>(c') (4.3.19)

where a and |3 are extensions of non-zero linear functionals
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defined on ^/*0(q).

In what follows we shall establish using particular

automorphisms of A(24-1/0), A(24/0), and C(4 + 1), that the

corresponding superalgebras A(2)(2jM/0), A(4)(24/0), and

C (2)(+1) (whose structures are given by (4.3.5)) are

isomorphic to the affine superalgebras of chapter 3, and

have the Dynkin diagrams and Cartan matrices as indicated in

figures 3 to 8. The existence and the order of the

automorphisms together with the explicit realization just

described was demonstrated by Kac(1978) for A(2)(2jM/0),

A(4)(2Jt/0), and C(2)(* + 1).

Consider the Dynkin diagrams of figures 3 to 8
^ / pp j

corresponding to the Kac-Moody superalgebra £g and choose
^ / pp \

the node corresponding to any simple root a« of lg . Suppose
that the corresponding numerical mark is Nk. Let q be the

integer defined by

q = mNK . (4.3.20)

Then (see Kac(1978)) there exists an automorphism of 1° of

order q such that (4.3.1) and (4.3.2) hold and such that Igoq)
is a Lie (super)algebra whose Dynkin diagram is the one that

remains from the Dynkin diagram of lgm) when the kth node is
removed together with all the lines attached to it.

Inspection of Figures 3 to 8 in table V shows that the only

possible values of q are 1, 2, and 4 and that £°oq) is either
simple or is the direct sum of simple Lie superalgebras.

Clearly if Igm) has only one odd simple root and if the chosen
node corresponds to this odd simple root, then i°s0q) will

~0(q) ...

contain no non-trivial odd part, and so in this case ls0 will

91



be a semi-simple Lie algebra. Also the r1 representation

which the Ig5q)subspace provides on I°Qq) is irreducible.
We fix an enumeration of the nodes of the Dynkin

diagram as shown in Figures 3 to 8. The choice of the node to

be removed is the far right one for A(2)(2*-1/0) and

A(4)(24/0), the middle one for A(2)(3/0) and the far left one

for C(2>(4+1). Thus q = 4 or 2 for A(2)(2jM/0), A<4)(2*/0), and

C(2)(4+1) respectively. Moreover,direct observation of the

Dynkin diagrams of A<2)(2jM/0), A(4)(2j?/0), and C(2)(4 + 1)

shows that Bj and B(0/Jt) respectively. It should
be noted that the above reasoning can also be applied for

B(1)(0/£) by chosing for example the far right node with N« =

2. This implies that q = 2. But B(0/4) does not posseses any

outer automorphisms and thus B<2)(0/*) = B(1)(0/4)-

The obvious choice of the automorphism <|) of order 4 of

the simple Lie superalgebra L°s (= A(2jM/0), A(24/0)) is the
"canonical" 4-fold automorphism y that is defined by

i

y (h°) = -hO (for all h° of ^C°), (4.3.21)

y(e^ = e°a°

(if a° (e is even or is odd and negative), (4.3.22)

and 1

\

y(e£°) = -eV (if a°(e is odd and positive) (4.3.23)

(see Scheunert (1978)). With this choice (4.3.2) implies that

(i) the basis elements of lgoq) may be taken to be:
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e°°+eV, for all even positive roots a°e A°;
(ii) the basis elements of may be taken to be:

e£° +ieV. for all odd positive roots a°e A°;
(iii) the basis elements of may be taken to be:

e°o -e^o, for all even positive roots a°e A°,
and

hjo , for k = 1,2,...,4°;

(iv) the basis elements of may be taken to be:

e2° -ie^o for all odd positive roots a°e A°
This automorphism has been used by Golitzin(1988) to find
the simple roots and generators of A(2)(24-1/0) and

A(4)(2*/0).

Although these basis elements are very straightforward,

the difficulties start arising with this choice of

automorphism when one tries to determine explicitly the
^ / pp \

complete root structure of the Kac-Moody superalgebra Vs .

(m)
The problem is that if the Cartan subalgebra of Vs is chosen
to be in £°oq), (as in the case q = 1), it cannot consist of c, d
and elements of the form t°®hS° (for k = 1,2,...,4°), for the

elements h„g are not members of £sc>q)- Instead the simplest
choice is c, d, and certain linear combinations of

t°0(ea° +e^ (for the even positive roots a°e A°). To find

the roots it is then necessary to evaluate the generalized Lie

products of these with all the elements of the sets (i) to (iv)

above, taking appropriate linear combinations of the latter in

order satisfy the root equation (4.3.13). Not only is this

messy, it also makes no direct use of the known root

structure of the simple Lie superalgebra Indeed the
situation here is very similar to the one that occurs in the
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standard method of determination of the Iwasawa and

Langlands decompositions of the simple Lie algebras, and the

resolution of the problem is based on essentially the same

idea as that of the "direct" determination of these

decompositions that was given by Cornwell (1975, 1979).
The most general 4-fold automorphism <j> of

£° (= A(2<-1/0), A(2*/0)) has the form

<j> = e*1 \j/ 0 (4.3.24)

where y is the canonical 4-fold automorphism of defined

above and 0 is any automorphism of 1°. If 0 can be chosen so

that enough elements of the form t°®hag lie in £s(0q) then the
roots of the Kac-Moody superalgebra will be very easy to

obtain. In investigating this condition it is useful to note

that if the simple Lie superalgebra 1° is expressed in terms

of supermatrices with the graded partitioning
( A d \

M = ~ (4.3.25)
I £ B J

then

( -A C
V(M) = -Mst = £ 1 (4.3.26)

I "6 "B
where A denotes the ordinary transpose of A.

As for the two-fold automorphism of C(4+1), one could

naturally use \|/2 but as we shall see this would only lead to

l°gq) = C* and not to B(0/<).
Incidentally, it is clear that the canonical 4-fold

automorphism y of £° is not associated with any rotation of
the usual generalized Dynkin diagram of 1° based on the

distinguished simple roots, because for
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A(24-1/0), A(2*/0), and C(i+1) the generalized Dynkin
diagrams exhibited in Figures 10, 11 and 12 possess no

symmetries.

The choice of 0 will first be investigated first for the

Kac-Moody superalgebras of the form A(2)(24-1/0) (for i. =

2,3,... ).
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B. Root structure of A(2)(24-1/0) (for 4 = 2,3,... )

(a) The 4-fold automorphism

An explicit realization of the simple Lie superalgebra

A(24-1/0) is provided by s4(24/1), considered as a complex

superalgebra, s4(24/1) being defined as the set of

(24 + 1 )x(24 + 1) complex supermatrices with the grading

partitioning
f A B A

M =

C D

that are subject to the supertrace condition that

(4.3.27)

str M = 0 . (4.3.28)

(Here A, B, C, and D are of dimensions 24x24, 24x1, 1x24, and
1x1 respectively). The rank 4° of A(24-1/0) is given by 4° =

24. The generalized Dynkin diagram of A(24-1/0) is shown in

Figure 10, which indicates that its distinguished simple

roots a° are even for k = 1,2 24-1, but that is odd.

With the bilinear form B°( , ) being defined by

B°(M,N) = 2(24-1) str (MN) , (4.3.29)

the basis elements of its Cartan subalgebra may be taken

to be

h?» ={1/2(2<-1)) {ek,k - Sk+1 ,k+i}. (for k = 1,2,...,2«-1) (4.3.30a)

and

h£°jj = {1/2(24-1)} {e2<,2< + e2<+i,24+i} • (4.3.30b)
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Here er>s is the matrix of dimension (2< + 1 )x(2* +1) that is

defined by

(g.r,s)jk = 5rj5Sk (for j,k = 1,2 2£+1), (4.3.31)
so that with this choice all the matrices of are diagonal.

The positive even roots pjj.k) and positive odd roots 5(1) of
A(2jM/0) are given in terms of the distinguished set of

simple roots a°, a°, ... , of A(2£-1/0) by

P°,k) = a° (for j,k = 1,2, ... , 21, with j < k),(4.3.32a)

and

5(j) = (for j = 1,2, ,21), (4.3.32b)
r=j

for which the corresponding basis elements of A(2£-1/0)

may be taken to be
o o

Vow " " a."(,or i-k-1'2 2«;i< k><4-3-33a>
= (fori = 1.2 2<).(4.3.33b)

The basis elements belonging to the corresponding negative

roots may be chosen in accordance with (4.1).

Taking the node corresponding to the odd simple root a*

of A(2)(2jM/0) for I > 3, and to the odd simple root ai of

A(2)(2jM/0) (= A(2)(3/0)) for Z = 2, as the corresponding

numerical mark has value 2, (c.f. Figures 3 and 4) q = 4. It

follows from (4.3.2) that if the automorphism (4.3.26) is

employed then the subalgebra consists of the

supermatrices whose submatrices satisfy the conditions
-A = A, -B = C, C = B, and -D = D,

which when taken together, along with the fact that D is 1x1 ,

imply that
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-A = A, B = 0, C = 0, and D = 0. (4.3.34)

Thus subalgebra 's isomorphic to the set of 24x2 4

complex antisymmetric matrices and hence is isomorphic to

the simple complex Lie algebra D*, which is simple if 4 > 2

but is only semi-simple if 4 = 2, for then D2 = A-i © A-|. As

expected from the comments of the previous section, none of

the basis elements of the Cartan subalgebra of A(24-1/0)

are members of this Lg(0q) (because all the members of this

£°oq) are non-diaaonal matrices).
A realization of D* in which the basis elements of the

Cartan subalgebra of D* are given by diagonal matrices is

given by the 24x24 complex matrices A' that satisfy the

condition

A'G + GA' - 0 , (4.3.35)

where

G =

f 0 U ^

1 f 0
(4.3.36)

i* uv ~ J

This realization will be referred to as the "canonical" form

of D*. These matrices A' are related to the 24x2 4

antisymmetric matrices A by

I"1 A I = A', (4.3.37)

where T is a certain 24x24 complex matrix that maps the Lie

algebra so(2N) in to its canonical form and satisfies the
condition

TT = G (4.3.38)
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(see Cornwell(1975) for the actual form of T). In what

follows only (4.3.38) is needed).
This mapping can be extended to an automorphism of 0 of 1°
(= s4(24/1)) by the definition

(4.3.39)

for all M of s*(2*/1). Then, by (4.3.24), (4.3.38) and (4.3.39),

(4.3.40)

The 4 subspaces £s°p(4) (for p = 0,1,2,3) corresponding to
the automorphism <)> of (4.3.40) will now be considered in
turn:

( T
0(M) =

9 U
M
( I"1

0

0

il

(( A
<!>
vv

B ^

D
jj

( -GAG GC

-BG -D
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(b) The subspace

By (4.3.2) the subalgebra £°s(04) consists of the

supermatrices whose submatrices satisfy the conditions

-GAG = A, -BG = C, GC = B, and -D = D,

which when taken together, along with the fact that D is 1x1,

imply that

§§ + §A = 0, B = 0, C = 0, and D = 0, (4.3.41)

and so is isomorphic to the canonical form of D*.

Before proceeding it will be useful to recall some

properties of the canonical form of D* (see Konuma et

al(1963) and Cornwell(1975)). Its Killing form BD<( , ) is

given by

Bd<(A,A') = 2(4-1) tr(AA') , (4.3.42)

(for all A and A' of the canonical form). Thus, by (4.3.3),

B°(
( A 0 \

v 3 S

( A' 0 \
)={(24-1 )/(<-1 )}Bd<(A ,A ') (4.3.43)

v 2 3 j

for all A and A' of the canonical form. This implies that

(4.3.8) is satisfied if

p = (4-1 )/(24-1) . (4.3.44)

Denoting the simple roots of D* by (for k = 1,2 4), the

corresponding basis elements of the Cartan subalgebra
of D* defined by

BD*tt£'h) = aJ<(h) for all h e ^D<. (4.3.45)
k

are
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~aD< ~ {1/4(4-1)} {ek.k - ©k+i,k+* "Ek+1,k+1 + Sk+4 + 1 ,k+4 + 1},
k

(for k = 1,2, . . . ,4-1) (4.3.46)
and

~aD< = 0/4(4-1)} {e*-i,<-i - e2*-i,2<-i + e<,< ~ £2<,2<} .(4.3.47)

The associated root subspace basis elements are

= (1/2(4-1 )}{e.k,k+i - ek+<+i,k+< },(for k = 1,2,...,4-1)(4.3.48)
k

and

£a0< = (1/2(4-1)} {ejM,2* - e^,2^-1} , (4.3.49)
r

the normalization factors being chosen so that

BD'(^,,e^0<) = -1, (4.3.50)
k k

where, as usual,

= "I%, ■ (4.3.51)k k

The diagonal basis elements of £°J4) will be considered
first. As they may be taken to consist of the set {ek,k-ek+4,k+*

| for k = 1,2, ... ,4}, it follows that they are all members of

the Cartan subalgebra #0(4) (= ?CDi) of D* (as expected). As

ek,k - 6kt<,k+< = 2(2<-1)2rt"k b°? (4.3.52)

(for k = 1,2, ... ,4, by (4.3.30a)), the most general element of
^0(4) has the form

^A = iKk(§,k,k " 6k+<,k+<) = 2(24-1 )^£^k = 1 Pkh,a° ,(4.3.53)
where k1(k2, ... , k* are any complex numbers, and where

Pk = 2r = 1 Kr (for k = 1,2, ... ,4),
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and

Pk+< = 2r = k+1 Kr (for k = 1,2 *-1).
Thus on #0(4) the simple roots of A(2jM/0) are given by

ak(h) = Kk-Kk+1 (for k = 1,2, ... ,*-1),

a°(h) = ki + k* ,

(4.3.54)

(4.3.55)

ak+<(h) = -(Kk-Kk+1) (fork = 1,2 *-1), (4.3.56)

a2Jt(h). = "K< .

However, from (4.3.46) and (4.3.47)

* ux rVk+JM D#
gk,k - £k+*,k+* = 4QM )| y t r _ k h aDt

(for k = 1,2, ... ,1-2),

ihD«2 ~ ^

£Jt-1 ,<-1 " e2JM,2<-1 = 2(«-i){&°5,t + h0oy,
and

ei,<-e2<,2< = 2(i-1)(-h^ + h^) ,
so

(4.3.57)

ihD< I2 ~

S'k . i*k(ek,k - ek+»,k+«) = 4(«-1)^*k , , Hk!l^ ,(4.3.58)
where

= Xkr=i Kr (fork = 1,2 i-2),

v-l-l = iXrll Kr - |K<,
and

- ?X*r=1 Kr •

Thus for h e #*0(4) (= ttDt)
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<*k*(h) = Kk-Kk+1 (for k = 1,2, ... ,4-1), (4.3.59)

and

a^(h) = k^-i + K* . (4.3.60)

Comparison of (4.3.54) to (4.3.57) with (4.3.59) and (4.3.60)
then shows that for h e ^0(4) (= 9{Dt) of D* the simple roots

of D* and a° of A(24-1/0) are related by

a°(h) = -a°+Jt(h) = a°*(h) for k = 1,2, ... ,*-1, (4.3.61)

«°(h) = Xrl%rD'(h) + a°<(h) , (4.3.62)
and

«°t(h) - - }a°'(h) . (4.3.63)

(When 4 = 2 the first term of (4.3.62) do not appear).

Finally it follows from (4.2.10-11), (4.3.8), (4.3.16)

(4.3.46-47), and (4.3.52) that corresponding elements of the

Cartan subalgebra of the Kac-Moody superalgebra are

haD;t = = {(2lM)/2(<-1))t°®{h°rh°oJ (4.3.64)

(for k = 1,2, ... , 4-1), and

ha5, = ,0®h«?< - «2<-1)/2(«-1>} t°®fe,+2^;2h°0 +h°oJ.

(4.3.65)
__ ~0(4)
The non-diagonal basis elements of £s0 will now be

examined. They fall into 4 sets:

(i) For j,k = 1,2 4, with j < k:

eik-ek+4i+i = e„o + e°g , (4.3.66)~K+<,J+ < ~p(jfk) --P(j+<>k+<)
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where £p° k) ar|d §^ ^ ^ are given by (4.1) and (4.3.33a).
As (4.3.61) implies that

P<U>(h) - "&<!♦«,k»<>(h) = • (4.3.67)

(for j,k = 1,2 i, with j < k, and for all h e #0(4) (= #D<)),
the basis element (4.3.66) corresponds to the root p(°j,k)(h) of
D<.

(ii) For j,k = 1,2, ... , i, with j < k:

■SKI * SHMt ' S\.k, + S
which corresponds to the root -p(jik)(h) of D*, where P?j,k)(h)
is given by (4.3.67).

(iii) For j,k = 1,2, ... , I, with j < k:

o o
ejk+i-eki+i = e„o - e„o , (4.3.69)~J' ~ ,J ~P(j,k+<) ~P(k,j+i) v '
o o

where e^o, and ^ are again given by (4.3.33a). As
(4.3.61) and (4.3.62) imply that for all h e #0(4) (= #D<)

P(j,k+«)(h) = P(kj+*)(h)
1 k-1 r\ 11-2 n n n

2^r=jar (h) + 22^r=k«r (h) + + «< W
(for j,k = 1,2, ... , *-2, with j < k),

X'.V'C1) + °£» + a«'<h)

(for j = 1,2, ... , £-2, and k = *-1),

(4.3.70)

X'r'-A'fb) + a°>)
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(for j = 1,2, ... , 3-2, and k = 3), and

a^h), (for j = i-1 and k = 3),
the basis element (4.3.69) corresponds to the root p(j,k+«)(h)
of D*.

(iv) For j,k = 1,2 3, with j < k:

o o
e j+i k - e j = -e o + e 8 . (4.3.71)~l • ~-P(k,j+<) -P(j,k+i) v '

which corresponds to the root -p°j,k+i)(h) of D*, where

P(j,k+i)(h) is given by (4.3.70).
As expected the elements of (4.3.40), (4.3.42), (4.3.43),

and (4.3.71) are even members of A(24-1/0). It is easily

checked that the set of 2*(JM) non-zero roots of (i) to (iv)

above, together with the 3 zero roots, are all weights of the

adjoint representation of D*. For 3 > 4 the highest weight is

A = A!?' = + 2Xk=2ak' + «?1 + (4.3.72)
while for 3 = 2. and 3 the second term on the right-hand side

of (4.3.72) does not appear and

A - A^+A?- Xk.1ak' (4.3.73)
as expected (see Appendix A(1)).

(c) The subspace

By (4.3.2) the subspace L °s\4} consists of the
supermatrices whose submatrices satisfy the conditions

-GAG = iA, -BG = iC, GC = iB, and -D = iD,

which when taken together, along with the fact that D is 1x1,

imply that

A = 0, D = 0, and C = iBG . (4.3.74)
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The basis elements of £s°{4) fall into 2 sets:

(i) For j - 1,2 *:

ej)2i+i + ie2i+i,j+< = e°0) - ie°£(j+j?) , (4.3.75)
oo

where ego and ie_£ ^ are given by (4.1) and (4.3.33b). For
all

he #°(4) (= #D<) (4.3.61-63),imply that

4(h) = -5(U(h)

l::«-(h) + *<*?» + £a>) , for j < <-2,

fa^(h) + la^(h) , for j = <-1, (4.3.76)

-?a<-i(h) + iai*(h) , for j =

In all cases the basis element (4.3.75) corresponds to the

root 5°j)(h) of D<.
(ii) For j = 1,2, ... , i:

- e2i+i.j + ieM>2i+1 = ej(j) + ie°o+^ , (4.3.77)
which corresponds to the weight —S§)(h) of D< (5(j)(h) being as
in (4.3.76)).

These weights all belong to a 2i-d i m e n s i o n a I

irreducible representation of D* with highest weight

A - A,D< = Xkli + +*«»*. (4.3.78)

(where for I = 2 the first term on the right-hand side of

(4.3.78) does not appear). It should be noted that all the

elements of (4.3.75) and (4.3.77) are odd members of
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A(2£-1/0), so all the elements of Igj4) are odd.

~ 0(4)
(d) The subspace 2

By (4.3.2) the subalgebra i°sl24) consists of the
supermatrices whose submatrices satisfy the conditions

-GAG = -A, -BG=-C, GC = -B, and -D = -D,

which when taken together, along with the fact that D is 1x1 ,

imply that

AG - GA = 0, B = 0, C = 0, (4.3.79)

with D being determined only by the supertrace condition tr A

= tr D. On using (4.3.30), the diagonal basis elements of

may be taken to consist of the set

{1/2(2^-1)} (ekk + ek+*,k+i + 2e2*+i,2*+i}

- EX'1 + 2Xr'k+« b°«f (4.3.80)

(for k = 1,2 it), which each corresponds to zero weight of

D*.

The non-diagonal basis elements of ^ *a" 'nt0 ® sets:

(i) For j,k = 1,2, ... , i, with j < k:

ej>k + ek+<j+< = e°o - e°c (4.3.81)1 ' P(j,k) -P(j+*,k+*)

0 0
where eQo and e a are given by (4.1) and (4.3.32a),~P(j,k) --fyj+i.k+i) y / v / \ /.

and

P§,k)(h) (= -p(j+iik+i)(h)) is given for all h e #0(4) (= #D<) by
(4.3.67), so this basis element (4.3.81) again corresponds to

the root p(j,k)(h) of D*-
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(ii) For j,k = 1,2, ... , *, with j < k:

-ew-8H.w - • <4-3-82>

which corresponds to the root -P(j,k)(h) of D*. where p(j,k)(h)
is given by (4.3.67).

(iii) For j = 1,2 i\

Hi* ' Vu.M,' (4'3'82»
0

where e„o ) is given by (4.3.32a), which corresponds to the

weight p(j,j+<) of D*. By a further application of (4.3.61) and
(4.3.62) p(j,j+*)(h) can be rewritten for h e ^0(4) (= tfDi) as

+ o£,(h) + a,D'(h) (for j . 1,2

P8.J-0<h> - + a«'(h> (for j = it -1), (4.3.84)

+ a°'(h)(for j = <).

(iv) For j. 1,2 <:

-8f«J - M(jJ+<). (4.3.59)
which corresponds to the weight
Po>j+<)(h) of D<, where p§j+<)(h) is given by (4.3.84).

(v) For j,k = 1,2, ... , Jt, with j < k:

o o
}n° + eQo'P(j,k+<) ~P(k,j+<)

where e~o and e~o are again given by (4.3.32a). As~P(j,k+<) ~P(k,j+<)

6j,k+< + ek,j+* = eR0 + eRo , (4.3.86)

0 0
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P(j,k+<)(h) (= p(k,j+<)(h)) is Qiven for all h e #0(4) (= #D<) by

(4.3.70), so this basis element (4.3.86) again corresponds to

the root p(j,k+<)(h) of D*.
(vi) For j,k = 1,2, ... , 4, with j < k:

o o
- Gj+i.k = e a + e a , 4.3.87)1 J -l%k+«) _P(k,j+*)

which corresponds to the root -J3(j,k+i)(h) of D*, where

P(j,k+i)(h) is given by (4.3.70).
These 242+4 weights belong to a representation of D*

which is the direct sum of the trivial 1-dimensional

irreducible representation with highest weight A = 0 and the

(24 2+ 4-1 )-dimensional irreducible representation with

highest weight

A = 2A1°< = 2JLk=iakD< + ai-l + a?> (4.3.88)
(where for 4 = 2 the first term on the right-hand side of

(4.3.88) does not appear). It should be noted that all the

elements of J>4) are even members of A(24-1/0).

(e) The subspace £,03(4)

By (4.3.2) the subspace £°s(34) consists of the
supermatrices whose submatrices satisfy the conditions

-GAG = -iA, -BG = -iC, GC = -iB, and -D = -iD,

which when taken together, along with the fact that D is 1x1,

imply that

A = 0, D = 0, and C = -iB G . (4.3.89)

The basis elements of £s°34) fall into 2 sets:
(i) For j = 1,2 4:

109



§j,2i+i - ie2i+i,j+i - e°o) + ie°£(j+i) , (4.3.90)
o o

where ego^ and ie^ are given by (4.1) and (4.3.32b). As

5(j)(h)

(= -8(j+*)(h)) is given for all h € #0(4) (= ^D<) by (4.3.76) so

the basis element (4.3.90) again corresponds to the root

5°)(h) of D*.

(ii) For j = 1,2 2\

~£2i+i,j - iej+*,2i+i = - ie°o+^ , (4.3.91)
which corresponds to the weight -5(j)(h) of D*, 5(j)(h) being as

in (4.3.76).

These two sets of weights are exactly the same as for

so they all belong to a 22 -dimensional irreducible

representation of D* with highest weight A is given by

(4.3.84) and (4.3.83). All the elements of ^4) are odd.

(f) The roots of A(2)(2<-1/0)

Defining 5(h) as in (4.2.20), it follows from the above

analysis and relations that the roots a(h) and the

corresponding basis elements ea of A<2)(24-1/0) are as

follows:

(i) a(h) = 4J5(h), (for J = 0,±1,±2, ... ). There are 2
(k)

linearly independent basis elements ea corresponding to this
root which may be labeled by an additional superscript, so

that
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eik)= {(2«-1)/2(J!-1)} - h°oj() (for k . 1,2 J?-1),
and

eo ' = {(2<-1)/2«-1)) + 2^r""2h°o +

(which reduce to (4.3.64) and (4.3.65) in the special case J =

0).

(ii) <x(h) = 4J6(h) ± p(j,k)(h), (for j,k = 1,2, with j <

k, and for J = 0,±1,±2, ... ), where p(j,k)(h) is the extension of
the weight of D< that is given by (4.3.67) and

. , 0 0
ea = t4J®{e a + exa }.l~+p(j,k) ~+P(j+i,k+i)J

(iii) a(h) = 4J5(h) ± p°j|k+<)(h), (for j,k = 1,2, , 4, with j
< k, and for J = 0,±1,±2, ... ), where P(j,k+*)(h) is the extension
of the weight of D| that is given by (4.3.70) and

.. _ . o o
ea = 'a-t ®{E±g(.jk+i) ®+t(kij+<)^"

(iv) a(h) = (4J+1)8(h) ± 5(j)(h), (for j= 1,2 4, and for J
= 0,±1,±2, ... ), where 8§)(h) is the extension of the weight of
D< that is given by (4.3.76) and

ea = t4J+1®{e% + ie°5 }.±®(j)

(v) a(h) = (4J+2)5(h), (for J = 0,±1,±2, ... ). There are 4
(k)

linearly independent basis elements ea corresponding to this
root which may be labeled by an additional superscript, so

that

eik)=t4J+2®{Xkr=k"1^? + 2X rfk+i ha°l(for k= 1,2,..., 4);
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(vi) cc(h) = (4J+2)8(h) ± p(jik)(h), (for j= 1,2, ... , i, with j
< k, and for J = 0,±1,±2, ... ), where P(j,k)(h) is the extension of
the weight of D* that is given by (4.3.67) and

(vii) a(h) - (4J+2)8(h) ± P(j.j+f)(h), (for j - 1,2 S, and for

J = 0,±1,±2, ... ), where P°j,j+<)(h) is the extension of the

weight of D* that is given by (4.3.84) and ea = t4J+2®e°§
~±p(j,j+<)

(viii) a(h) = (4J+2)8(h) ± P°j,k+i)(h), (for j,k = 1,2,
with j < k, and for J = 0,±1,±2, ... ), where p(j,k+*)(h) is the
extension of the weight of D* that is given by (4.3.70) and

ea = t4J+2<S>{e% + e°x> }.
-P(j-k+i) ~+P(k,j+«)

(ix) a = (4J+3)8(h) ± 8{j)(h), (for j= 1,2 3, and for J =

0,±1 ,±2,...), where 5°)(h) is the extension of the weight of D*
that is given by (4.3.76) and

ea = t4J+3<8>{e% ± ie% }.

(x) a(h) = 0, with c and d as basis elements.

With chosen as in (4.3.44) , it follows that

<a°p°> = <a°p°>D< (4.3.92)

where on the right-hand side of (4.3.66) a° and (3° are any

pair of linear functionals defined on (= 9{Dt)} the

evaluation being performed with respect to the Killing form

of Di, and where on the left-hand side of (4.3.92) a° and (3°
denote the corresponding extensions to the Cartan subalgebra
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of the Kac-Moody superalgebra A(2)(2jM/0), the evaluation

being performed with respect to its supersymmetric bilinear

invariant form B( , ). As D* is a semi-simple Lie algebra,

<a°a°>D< > 0 for every non-zero linear functional a° defined

on so <a°,a°> > 0 for the corresponding extension.

Moreover (4.3.18) imply that

h5 = {(2i-1)/(*-1)} c . (4.3.93)

Thus, if a° is the extension of any simple root of ij, then

<8,a£> = 0 (4.3.94)

and

<j8,j8> = 0 . (4.3.95)

Thus <j8,j8> = 0 for integer j, so every non-zero root of

A(2)(2jM/0) belonging to the sets (i) and (v) is "imaginary".

Moreover, because <j8+a°J8+a°> = <a°,a°>D< and because

<a°a°>D< > 0 for linear functional a° and its corresponding

extension (as has just been noted), it follows that every root

of A(2)(2jM/0) belonging to the sets (ii), (iii), (iv), (vi), (vii),

(viii), and (ix) is "real". All the elements mentioned in the
above sets are even, except for those in the sets (iv) and (ix),

which are odd.

In relating these roots to the simple roots of the Kac-

Moody superalgebra A(2)(2£-1/0) it is necessary to consider
the cases S. = 2 and I > 2 separately because the labeling of

the generalized Dynkin diagrams of A(2)(24-1/0) is different
in the two cases.
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For A(2)(3/0) (i.e. for 2 = 2) the simple roots may be
taken to be

2 0
ao = a1 , ai = o - aH , a2 = a2 ,

where

- lXLia? (4.3.96)

is the highest weight of the representation of for which

IS°1(4) is the carrier space and af2 and a^2 are the extensions
of the simple roots a° and a° of D2. As pXl appears in the set
(iv) it follows that pXl is odd, so ai is an odd root of the Kac-
Moody superalgebra A(2)(3/0). All the other simple roots of

A(2)(3/0) are even.

For A(2)(2jM/0) for 2 >2 the simple roots may be taken

to be

a, = 8 - a„ , (4.3.97)

and

ctk = cx°fk (for k = 0,1, ... ,*-1) (4.3.98)

where

«H - A?' = + t4-3 ")

is the highest weight of the representation of £°£4) *or which
I°{4) is the carrier space and the ak* are the extensions of the
simple roots of D*. As appears in the set (iv) it follows

that et is odd, so a« is an odd root of the Kac-Moody

superalgebra A(2)(24-1/0) (for 2 > 2). All the other simple
roots of A(2)(2jM/0) are even (for 2 > 2).
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In terms of these simple roots the positive and negative

roots of A(2)(2^-1/0) are defined as in the case of B(1>(0/Jt)-
The quantities <a°,a0>D< can be computed from appendix A(1).
It is then easily checked with arguments very similar to the

ones presented for 1 >(0/J?) that the Cartan matrices of

A(2)(3/0) and A(2)(24-1/0) (for t > 3) evaluated using

definition (2.15) are of affine type. Their corresponding

Dynkin diagrams are those given in Figures 3 and 4.

In terms of the linearly independent functionals Ej (i^4)
defined on ^/*D*(see Cornwell(1985), and table I chapter 2) the

I

roots of A(2)(2jM/0) are given by

A = { 2m5 ± (ej ± £j) with 1< i < j < Z , (2m+1)5 ± Ej with 1< i < 2.
(4m+2)5 ± 2ej with 1< i < 2. all with me Z

and 2m5 with j*0 and me Z}

(4.3.100)

The basis is given by

a0 = e4-1+ ei Ctj = Ej - £j+i 1< i < I -1 = 5 - £•)

(4.3.101)
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C. Root structure of A(4)(24/0) (for 4 = 2,3,... )

(a) The 4-fold automorphisms

The general line of argument for A(4)(24/0) is very

similar to that given for A(2)(24-1/0) in the previous section,

so its presentation can be given more briefly. An explicit

realization of the simple Lie superalgebra A(24/0) is

provided by s4(24+1/1), considered as a complex

superalgebra, where s4(24+1/1) is defined as the set of

(24 + 2)x(24 +2) complex supermatrices that satisfy the
condition (4.3.28). The grading partitioning may be taken to

be as in (4.3.27), but now A, B, C, and D are of dimensions

(24 + 1 )x(24+1), (24 + 1 )x1, 1 x(24+1), and 1x1 respectively. The

rank 4° of A(24/0) is given by

4°=24+1. (4.3.102)

The generalized Dynkin diagram of A(24/0) is shown in Figure

11, which indicates that its distinguished simple roots aj
are even for k = 1,2,...,24, but that is odd. With the

bilinear form

B°( , ) being defined by

B°(M,N) = 44 str (MN) , (4.3.103)

the basis elements of its Cartan subalgebra may be taken

to be

= {1/4<}{eklk-el»1,k+1}, (for k = 1,2 2 (4.3.104)

and
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= {02<+i,2i+i + e2<+2,2<+2} • (4.3.105)

Now er>sis the matrix of dimension {2i + 2)x(2* +2) that is
defined by

(®r,s)jk = 8rj8Sk (for j,k = 1,2,...,2^+2), (4.3.106)

so that with this choice all the matrices of 570 are again

diagonal. The positive even roots p^k) and positive odd roots

8(j) of A(24/0) are given in terms of the distinguished set of

simple roots a°, a° a2t+i of A(2j^/0) by

P(j,k) = * 1«° (for j,k = 1,2, ... , 24+1; j < k),(4.3.107a)

and

0 ^2< + 1 0
5(j) = 2^ ar (for j - 1,2, ... ,2< + 1), (4.3.107b)

for which the corresponding basis elements of A(24/0) may

be taken to be

o o
<=0 = e o o o = ejk (for j,k = 1,2, ... , 24+1; j < k),~P(j,k) ~aj+aj+1 + ...4ak,1 ~J'* ' 1

(4.3.108a)

and

4i) " " Sj.2<*2<f0r J = 1 -2 2« + 1>-
(4.3.108b)

The basis elements corresponding to the corresponding

negative roots may be chosen as stated in the introduction.

(For further information on A(24/0) see Cornwell(1989)).

Taking the node corresponding to the odd simple root a*

of A(4)(24/0) for 4 > 1, as the corresponding numerical mark
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has value 1, (c.f. Figures 5 and 6) q = 4 again. It follows

that if the automorphism \jr is employed then the subalgebra

Iso4) consists of the supermatrices whose submatrices

satisfy the conditions (4.3.34), so that the subalgebra L0^ is
isomorphic to the set of (24 + 1 )x(24 +1 ) complex

antisymmetric matrices and hence is isomorphic to the

simple complex Lie algebra B*. As expected none of the basis

elements of the Cartan subalgebra 0 of A(24/0) are

members of this L°s^ (because all the members of this i°oq)
are non-diagonal matrices).

A realization of B* in which the basis elements of the

the Cartan subalgebra of B* are given by diagonal matrices is

given by the (24 + 1 )x(24+1) complex matrices A' that satisfy

the condition (4.3.9), but where now
r b 0 0 A

6 = 0 0 U

v S U 0 J
This realization will be referred to as the "canonical" form

of B*. These matrices A' are related to the (24 + 1 )x(24 +1 )

antisymmetric matrices A by

T1 AT = A' , (4.3.110)

where I is a certain (24 + 1 )x(24+1) complex matrix such that

(4.3.110) maps the Lie algebra so(2N+1) into the canonical
form of B*, and satisfies the condition

11=6, (4.3.111)

G being as defined in (4.3.109) (see Cornwell(1975) for the
actual form of T in this case too). In what follows again,
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only (4.3.111) is needed). This mapping can be extended to
~ 0

an automorphism of 0ofls (= s4(2*+1/1)) as in the previous
case.

_ ~0(4)
The 4 subspaces (for p = 0,1,2,3) corresponding to

the automorphism <|> of (4.3.14) will now be considered in

turn.
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(b) The subspaces l^o4*

By (53) the subalgebra i°s(04) consists of the

supermatrices whose submatrices satisfy the conditions

(4.3.41) (with G given by (4.3.109)),and so is isomorphic to

the canonical form of B*.

Some properties of the canonical form of B* (c.f. Konuma

et al(1963) and Cornwell(1975)) will first be summarized.

Its Killing form Bb*( , ) is given by

Bb<(A,A') = (24-1) tr(AA') , (4.3.112)

(for all A and A' of the canonical form). Thus, by (4.3.103),
( A 0 \

B°(
0

( A' 0 \~ ~

)-{4</(2<-1)J Bb,(A,A')
V 2 2 ,

(4.3.113)

for all A and A' of the canonical form. This implies that

(4.3.8) is satisfied if

p = (24-1 )/(44) . (4.3.114)

Denoting the simple roots of B* by aB* (for k = 1,2, ... ,4), the

corresponding basis elements of the Cartan subalgebra #B<
of B* defined by

BB<(hBB, , h) = aB*(h) for all h e (4.3.115)"k

are

g
hJ. ={1/(24-1)} {ek+-i,k+i - gk+<+i,k+<+i-ek+2,k+2 + ek+i+2,k+i+2}.

k

(for k = 1,2 4-1) (4.3.116)
and

120



baBt = {"1/(2^-"1)} {&4 +M + 1 - g.2< + 1,2< + 1} • (4.3.117)

The associated root subspace basis elements are

g

~<xB< = {1/2(24-1)} {ek+i,k+2 - ek+*+2,k+*+i }>k*

(for k = 1,2 4-1) (4.3.118)

and

= {1/2(2<-1)}{8i.2<+i - gt+i,i} , (4.3.119)

the normalization factors being chosen so that

BB<<sl • = -1, (4.3.120)
k k

where, as usual,

&, ' -1% ■ (4.3.120)k k

The diagonal basis elements of £°q4) w'" considered
first. As they may be taken to consist of the set

{ek+i,k+i-ek+<+i,k+<+i I for k = 1,2, ... ,4}, it follows that they
0(4) d

are all members of the Cartan subalgebra 9{ (= M *) of Bi

(as expected). Thus the most general element of ^/*0(4) is of

the form

X*k = iKk(ek+i,k+i-gk+4+i,k+<+i) . (4.3.122)
where ki,k2, ... , k* are any complex numbers, which can be

rewritten, by (4.3.104), as

4*5?k-2Pk!!&. (4.3.123)
where

Pk = 2;', , K, (for k = 2 Jt+1). (4.3.124)
and
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Pk+< = Sr = kKr (for k = 2 *). (4.3.125)

Thus on #0(4) the simple roots of A(24/0) are given by

a?(h) = "K-j , (4.3.126)

ak(h) = Kk.i - Kk (for k = 2,3, ... ,i), (4.3.127)

a°+1(h) = ki + k< , (4.3.128)

ak+<(h) = "(Kk-1 - Kk) (for k = 2,3 i), (4.3.129)

a2<+i(h) = -

which implies that on #0(4) (= ^B<)

ak(h) = "ak+<(h) (for k = 2>3> •

«i(h) =

<+1

k=2
ak(h) ,

and

• ,*),

°4ui(h) = -ia°+i(h) + ak(h) •
X-Uk=2

(4.3.130)

(4.3.131)

(4.3.132)

Consideration of a similar argument for the simple roots ak*
0(4) R

of B* then shows that on the Cartan subalgebra M (= M *)
B 0

of Bit the simple roots ak* of B< and ak of A(2*/0) are related
by

ai°(h) = "Xr=iarB< (h) , (4.3.133)

«>) = -«k+<(h) = a^(h) (for k = 2,3, ... ,<),

«?+i(h) = X!liarB<(h) + 2a?(h) '

(4.3.134)

(4.3.135)
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a2*+i(h) = -a?(h) . (4.3.136)

Finally it follows from (4.3.104), (4.3.105), (4.3.116),
and (4.3.117) that corresponding elements of the Cartan

subalgebra of the Kac-Moody superalgebra are

haa< = t°®h^ = (2^/(2^-1)} tO(S>{h°o+i - h°o+<+i}
(4.3.137)

(for k = 1,2, ... , 4-1), and

h«B, - t0®h!B, - {2«/(2<-1» t°®(2r"ltX?}.(4.3.138)
The non-diagonal basis elements of £°o4) w'" now be

examined. They fall into 6 sets:

(i) For j = 1,2 4:

e,,H-eM+1J - Sp(1j+1) + ®-^(1>j+J(+1, • <4-3-139>
0 0

where e „o and e a are given by (4.1) and

(4.3.108a). As (4.3.133) and (4.3.135) imply that

P°1,H>(h) = -p?1,l+«+1)(h) = -X'r=Ja'B"(h) ' (4.3.140)
(for j = 1,2, ... , 4, and for all h e #0(4) (= #*B')), the basis

element (4.3.138) corresponds to the root P(1 ,j+i)(h) of B*.
(ii) For j = 1,2, ... , 4:

- eHil + e,.j+<„ = + V„.M+D ' (4'3'141)
which corresponds to the root -p{i,j+i)(h) of B<, where
P°i,j+1)(h) is given by (4.3.140)).

(iii) For j,k = 1,2 4, with j < k:

eK,.k+i - ek+t+,.i+t+i - »S||+ljw1) + «!#|M+1ik+u„-(4-3-1«>
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0
, 0where e„o and e o are given by (4.1) and~P(j+i,k+i) ~-P(j+<+i,k+i+i) y J v ; "

(4.3.108a).

As (4.3.134) implies that

P<j*i,k+i)(h) = -P«.ui,k+<.i)(h) - Xt-Vr^h) .(4-3.143)
(for j,k = 1,2, ... , I, with j < k, and for all h e 5/"0(4) (=
the basis element (4.3.142) corresponds to the root

P§+i,k+i)(h) of B*. (This set does not appear when I = 1).

(iv) For j,k = 1,2 with j < k:

- £k+i,j+i + §j+*+i.k+* +1 = B-S(j+1|k+l) + ep°(j»ui,k+<+D '

(4.3.144)

which corresponds to the root

-pQ+1,k+1)(h) of B<, where p(j+1,k+i)(h) is as in (4.3.143). (This
set does not appear when i = 1).

(v) For j,k = 1,2, ... , i, with j < k:

o o
ej+i k+i+i - ek+i i+i+1 = e„o - e„o . (4.3.145)J t,v+*+l ~P(j+i,k+i+i) ~P(k+i,j+<+i) v '

o o
where e„o and eQo are given by (4.1) and~P(j+1,k+t+l) ~P(k+1 ,j + < + 1)
(4.3.108a). As (4.3.134) and (4.3.135) imply that

P(Uk+<+1>(h) = p?kt1J+<+„(h) = Xkr.1ja'B<(h) + 2X<r.karB'(h),
(4.3.146)

(for j,k = 1,2, ... , i, with j < k, and for all h e 5T0(4) (= ^B*)),
the basis element (4.3.142) corresponds to the root

P(j+i,k+*+i)(h) of B*. (This set does not appear when t = 1).
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(vi) For j,k = 1,2 Jt, with j < k:

o o
- £k+*+i,j+i + ej+*+iik+i = e a - e a .......~P(j+1 ,k+*+1) ~P(k+1,j+< + 1)

(4.3.147)

This corresponds to -pjj+1,k+<+1)(h) of B<, where p°j+1)k+1)(h) is
given by (4.3.146)). (This set does not appear when s. = 1).

As expected the elements of (4.3.139), (4.3.141-144),

and (4.3.147) are even members of A(2i/0).

It is easily checked that the set of 242 non-zero roots of

(i) to (vi) above, together with the £ zero roots, are all

weights of the adjoint representation of BFor i > 2 its

highest weight is

A = Ag* = af* + 2^,*=? , (4.3.148)

while for 3. = 1 it is

A = 2A1B< = af* (4.3.149)

as expected ( Appendix A(2)).

(c) The subspace 1^01(4)

By (4.3.2) the subspace consists of the

supermatrices whose submatrices satisfy the conditions

-GAG = iA, -BG = iC, GC = iB, and -D = iD,

which when taken together, along with the fact that D is 1x1 ,

imply that

A = 0, D = 0, and C = iBG . (4.3.150)

The basis elements of fall into 3 sets:
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(i) For] - 1,2 <:

®j+1,2<+2 + ie2«+2,j+«+i - g°o+i) - ie°|at<+1) , (4.3.151)
0 0

where §5°+1) and e_£ ^ ^ are given by (4.1) and (4.3.108b).
As (4.3.134), (4.3.3135), and (4.3.136) imply that for j = 1,2,

... , 3 and for all h e ^0(4) (= #B<)

S(j+i)(h) = -5g+jt+,)(h) = , (4.3.152)

the basis element (4.3.50) corresponds to the weight 5(j+i)(h)
of Bjj.

(ii) For j - 1,2,

-£24+2,j+1 + iej+<+ii2<+2 = M(j+1) + ie°o+<+i) ,(4.3.153)
which corresponds to the weight -5(j + i)(h) of B*, where

5(]+i)(h) is given by (4.3.152).
(iii) The single basis element:

o o

£1,24+2 + '§2^+2,1 = e8o - ie_£ , (4.3.154)
0 0

where ego^ and are Qiven by (4.1). However, by
(4.3.130) to (4.3.132) 5°1}(h) = 0 for all h e #°(4) (= #B<), so

(4.3.154) corresponds to a zero weight of B*.

These weights all belong to a {23 +1 )-dimensional

irreducible representation of B* with highest weight

A - A? - XL°k'- (4.3.155)
It should be noted that all the elements of (4.3.151),

(4.3.153), and (4.3.154) are odd members of A{23/0), so all
the elements of Ig{4) are odd.
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(d) The subspace

By (53) the subalgebra 10S(24) consists of the
supermatrices whose submatrices satisfy the conditions

-GAG = -A, -BG = -C, GC = -B, and -D = -D,

which when taken together, along with the fact that D is 1x1 ,

imply that

AG - GA = 0, B = 0, C « 0, (4.3.156)

with D being determined only by the supertrace condition

tr A = tr D. On using (4.3.104) and (4.3.105), the diagonal

basis elements of maY be taken to consist of the 2 sets:

(i) The single basis element

(1/44){ei(i + e2i+2,2t+2} = X(r=1 ba? • (4.3.157)

(ii) For k = 1,2, ... ,4:

(1/44){ei<+itk+i + ek+*+i,k+*+i + 2e2^+2,2i+2}

Xk+£ n + 1 nr=k+i 6°? + 2.Lr.kt»*i h°o. (4.3.158)

Each of these corresponds to zero weight of B*. so that the

zero weight has multiplicity i + 1.

The non-diagonal basis elements of Z°^ fa" 'nt0 8 sets:
(i) For j = 1,2 V.

0 0
ei i+i + ei+i+1 1 = eQo -eg , (4.3.159)

0 0
where eQo and e a are given by (4.1) and~Pd,j+i) ~ — p(1 ,j+4 + 1) y j \ 1
(4.3.108a), andp(°1ij+i)(h)(= -p(i,j+<+i)(h)) is given for all h e
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#"0(4) (= #B<) by (4.3.140), so this basis element (4.3.159)

again corresponds to the weight p°ij+1)(h) of B*.
(ii) For j = 1,2 <:

-ej+1i1-e1iM+1 = e^(i>j+i)-e°po(i.+j5+i), (4.3.160)
which corresponds to the weight

-P(l1,j+i)(h) of B<, where (3° ,j+1)(h) is given by (4.3.140).
(iii) For j,k = 1,2 Z, with j < k:

gjt1,k+1 + gk+n-1,jti+1 = 2p0(j+1 kH-1) " M(M+1,k+<+1) ' <4-3-161'
0 0

where e„o and e q are given by (4.1) and~P(j+i,k+i) ~-P(j+*+i,k+<+i) a
(4.3.108a), and p°+i,k+1)(h) (= -p(j+<+1>k+*+1)(h)) is given for all
h e #0(4) (= 9{Bt) by (4.3.143), so this basis element

(4.3.161) again corresponds to the weight P(j+iik+i)(h) of B*.
(This set does not appear when Z = 1).

(iv) For j,k = 1,2, ... ,Z, with j < k:

ek+1 ,j+i - ej+*+i,k+* +i - e_$(.+1k+1) - Spy+<+1fk+<+1) •

(4.3.162)

This corresponds to the weight - p(j+i,k+i)(h) of B*, where

P(°j+i|k+i)(h) is given by (4.3.143). (This set does not appear
when Z = 1).

(v) For j,k = 1,2, ... , Z, with j < k:

Bl+i,k+<+i +Sk+i- ~p1j+1 k+<+i) + ~P{k+i.j+<+i) ' (4-3-1®3)
where e°o and e°o are given by (4.1) and~P(j+1,k+<+1) ~P(k+1,j+<+1)

(4.3.7a), and Py+1 ,k+<+i)(h) (= P°k+i,j+<+i)(h)) is given for all h
e ^7°^4) (= #B<) by (4.3.146), so this basis element (4.3.163)
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again corresponds to the weight P(j+1ik+*+i)(h) of B<. (This set
does not appear when 2 = 1).

(vi) For j,k = 1,2, ... , 2, with j < k:

0 0
■ 6k+*+i,j+i - ej+<+i,k+i = 6 A + e a _ .' 1 P(j+1,k+*+1) P(k+1 ,j+<+1)

(4.3.164)

This corresponds to the weight -(3(j+i,k+4+i)(h) of B$, where

P(j+ipk+<+i) is given by (4.3.146). (This set does not appear

when 2 = 1).

(vii) For j = 1,2, ... ,2:

o
ei+1 j+4+i = efto (4.3.165)'J ~P(j+i,j+<+i)

o
where e„o is given by (4.1) and (4.3.108a). Thus the

basis

element (4.3.165) corresponds to the weight |3(j+ij+Jt+1 )(h) of
Bjj, where (4.3.134) and (4.3.135) imply that

P°i+i,jt<+i)(h) ■= 2Xlia^(h) , (4.3.166)

(for j = 1,2, , 2, and for all h e #"0(4) (= itfB<)).

(viii) For j = 1,2, ... ,2:

~§j+<+i,j+i = gV < . , . (4.3.167)1 ' ~P(j+i ,j+<+i)

which corresponds to the weight -P(j+1ij+*+u(h) of Bj?, where

p(j+iij+J(+i)(h) is given by (4.3.166).
These 2£2+34+1 weights belong to a representation of B*

which is the direct sum of the trivial 1-dimensional

irreducible representation with highest weight A = 0 and the
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(242 + 34 )-dimensional irreducible representation with

highest weight

A = 2Af* = 2^k=1a^. (4.3.168)

It should be noted that all the elements of £°24) are even

members of A(2£/0).

~ 0(4)
(e) The subspace

By (53) the subspace £s°34) consists of the supermatrices
whose submatrices satisfy the conditions

-GAG = -iA, -BG = -iC, GC = -iB, and -D = -iD,

which when taken together, along with the fact that D is 1x1 ,

imply that

A = 0, D = 0, and C =-iBG . (4.3.169)

The basis elements of £gg4) fall into 3 sets:
(i) For j = 1,2, ... , <:

ej+i,2<+2 - ie2*+2,j+<+i = ^5(j+1) +'--^+<+1) ' (4-3-170)
o o

where e o and e p are given by (4.1) and (4.3.108b),
(j+1) ~-°(j+* + 1)

and

8(°j+1)(h) (- -5(j+<+i j(h)) is given for all h e W0<4> (. ?fB<) by
(4.3.152), so this basis element (4.3.170) again corresponds
to the weight 5(j+i)(h) of B*.

(ii) For j = 1,2 *:

-e2*+2,j+i - igj+*+i,2<+2 = M(j+1) " 'SsJ+i+D > (4-3-171)
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which corresponds to the root -5(j+i)(h) of B*, where 5°j+-j)(h)
is given by (4.3.152).

(iii) The single basis element:

61,24+2 " 1624+2,1 = ego + iep , (4.3.172)

0
owhere ego^ is given by (4.1) and (4.3.107b). As 5(i)(h) = 0 for

0(4) rall h g # (= ^ *), (4.3.71) corresponds to a zero weight
of Bjj.

These weights all belong to a (2£ + 1 )-dimensional
irreducible representation of B* whose highest weight is
given by (4.3.155). All the elements of are odd.
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(f) The roots and root basis vectors of A(4)(2*/0)

Defining 6(h) as before, it follows that the roots a(h)

and the corresponding basis elements ea of A(4)(24/0) are as

follows:

(i) a = 4J6(h), (for J = 0,±1,±2, ... ).
(k)

There are i linearly independent basis elements e^
corresponding to this root which may be labeled by an

additional superscript, so that

e'k|- {2</(2<-1)}t"J®(h°j- h°ot<>|) (for k - 1,2 <-1),
and

ea> ~ (2</(2*-1)}

(which reduce to (4.3.137) and (4.3.138) in the special case J
= 0).

(ii) o(h) = 4J8(h)±Po,1+1)(h),
(for j = 1,2, ... , I, and for J = 0,±1,±2, ... ), where P°f ,j+i j(h) is
the extension of the weight of B< that is given by (4.3.140)

and

ea = t4J®{e°Q + }.±p(i ,j+i) -+P(i,j+<+i)1

(iii) a(h) = 4J5(h) ± p(j+1>k+1)(h),
(for j,k = 1,2 i, with j < k, and for J = 0,±1,±2, ... ), where

P(j+i,k+i)(h) is the extension of the weight of that is given
by (4.3.143) and
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ea=t4J®{e% + 6-(P }•±P(j+l ,k+1) ~+P(j+*+1,k+* + l)J

(iv) a(h) = 4J5(h) ± P(j+i,k+i+i)(h),
(for j,k = 1,2, ... , I, with j < k, and for J = 0,±1,±2, ... ), where

pfj + 1 ,k+< + i)(h) is the extension of the weight of B* that is
given by (4.3.146) and

ea=t4J®{e% - e°o }.±P(j+1,k+i + l) +P(k+1 ,j+* + l)

(v) a(h) = (4J+1)8(h) ± 8(j+i)(h), (for j = 1,2, ... , *, and for
J = 0,±1,±2, ... ), where 5(j+i)(h) is the extension of the weight
of B* that is given by (4.3.152) and

ea = t4J+1®{e% + ie°i> }.
—"(j+1) ~+®(j+i + i)

(vi) a(h) = (4J+1)5(h), (for J = 0,±1,±2, ... ), with

ea = t4J+1®{e°o - ie°o }.
(1) ~"W

(vii) a(h) = (4J+2)5(h), (for J = 0,±1,±2, ... ). There are
(k)

X+1 linearly independent basis elements ea corresponding to
this root which may be labeled by an additional superscript,

so that

e^k)= t4J+2® {XKr=k+i hi? + 2^ r=k+i+ 1 ,(for k= 1,2, .<)
and

erl)- ^;

(viii) a(h) - (4J+2)S(h)±p?1,j+1)(h), (for j = 1,2 i,
and for J = 0,±1,±2, ... ), where Po,j+1)(h) is the extension of
the weight of B* that is given by (4.3.140) and

1
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©a = t4J+2<8>{e% - e°x> }.±3(1,1+1) +P(i,j+*+i)J

(ix) a(h) = (4J+2)5(h)±p8+1,k+„(h),
(for j,k = 1,2, ... , I, with j < k, and for J = 0,±1,±2, ... ), where

P(j+1 ,k+i)(h) is the extension of the weight of B* that is given
by (4.3.143) and

ea = t4J+2<8>{e°o - e°x> }.±P(j+i,k+i) ~+P(j+i+i ,k+*+i)

(x) a(h) - (4J+2)8(h) + pfj+i.k+i+ijth),
(for j,k = 1,2, ... , t, with j < k, and for J = 0,±1,±2, ... ), where

P(j + 1 ,k+i + i)(h) is the extension of the weight of B* that is
given by (4.3.4146) and

ea = t4J+2®{e% + e°.o } .±P(j+l .k+i+1) ~+P(k+l ,j+i + i)

(xi) a(h) = (4J+2)5(h)± p(j+1lj+i+i)(h), (for j = 1,2, ... , i,
and for J = 0,±1,±2, ... ), where P(j+ij+^+i)(h) is the extension
of the weight of B^ that is given by (4.3.166) and

ea = t4J+2<8>e%
~±P(j+i,j+i+i)

(xii) a(h) = (4J+3)5(h) ± 6(j+1)(h), (for j = 1,2, ... , I, and
for J = 0,±1,±2, ... ), where 5(j+i)(h) is the extension of the
weight of B* that is given by (4.3.152) and

ea = t4J+3<8>{e% ± ie°o } .

(j+1) ~+5(j+«+i)

(xiii) a(h) = (4J+3)6(h), (for J = 0,±1,±2, ... ), with

ea = t4J+3<S>{e°o + ie°p }.
(i) ~-hW

(xiv) a(h) = 0, with c and d as basis elements.

With |i chosen as in (4.3.114), it follows that
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<a°(3°> = <a°,p°>B< (4.3.173)

where on the right-hand side of (4.3.173) a° and (3° are any

pair of linear functionals defined on (= #"B<), the

evaluation being performed with respect to the Killing form

of Bjj, and where on the left-hand side of (4.3.173) a° and (3°
denote the corresponding extensions to the Cartan subalgebra

of the Kac-Moody superalgebra A(4)(24/0), the evaluation

being performed with respect to its supersymmetric bilinear

invariant form B( , ). As B* is a simple Lie algebra,

<a°,a°>B< > 0 for every non-zero linear functional a° defined

on ^7b<, so <a°,a°> > 0 for the corresponding extension.

Moreover (4.3.114) imply that

h5 = (4*/(2<-1)} c . (4.3.174)

Thus, if a° is the extension of any simple root of £°, then

<5,c£> = 0 (4.3.175)

<j8,j5> = 0 . (4.3.176)

Thus <j5,j5> = 0 for integer j, so every non-zero root of

A(4)(24/0) belonging to the sets (i), (vi), (vii), and (xiii) is

"imaginary". Moreover, because <jS+a°,j5+a°> = <a°,a°>B* and
because <a°,a°>B< > 0 for linear functional a° and its

corresponding extension (as has just been noted), it follows

that every root of A<4)(2*/0) belonging to the sets (ii), (iii),

(iv), (v), (viii), (ix), (x), (xi), and (xii) is "real". All the
elements mentioned in the above sets are even, except for

those in the sets (v), (vi), (xii) and (xiii), which are odd.
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For A(4)(24/0) for i > 1 the simple roots may be taken to

be

at = 5 - <*h , (4.3.177)

<xk = c£k (for k = 0,1, ... ,4-1) (4.3.178)

where

«H - A,81 - Xk.lak' (4.3.179)

is the highest weight of the representation of f°r which

Ig{4) is the carrier spaceand the ajf* are the extensions of the
simple roots of B*. As appears in the set (v) it follows

that px< is odd, so a« is an odd root of the Kac-Moody
superalgebra A(4)(2*/0). All the other simple roots of

A(4)(24/0) are even.

It is then easily checked that the Cartan matrices of

A(4)(2/0) and A(4)(2*/0) (for i > 2) evaluated using the

definition on section (4.1.5) correspond to the generalized

Dynkin diagrams given in Figures 5 and 6 respectively. The

quantities <a°,a°>B< can be found in appendix A(2).

In terms of the linearly independent functionals Ej

(i<j<4) defined on 57B<(see Cornwell(1984) and table I,

chapter 2) the roots of A(4>(2j?/0) are given by

A = { 2m5 ± (ej ± Ej) with 1< i < j < I , m8 ± Ej with 1< i < I
(4m+2)5 ± 2£j with 1< i < i all with me Z

and m5 with m*0 and me Z} (4.3.180)

The basis is given by

a0 = Ejj ex; = ej - ej+i 1< i < i -1 a* = 8 - e1 (4.3.181)
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D. Root structure of C(2>(4+1) (for 4 = 1,2,3,... )

(a) The 2-fold automorphisms

An explicit realization of the simple Lie superalgebra

C(4+1) is provided by the orthosymplectic algebra

osp(2/24 ;(C), considered as a complex superalgebra, where

osp(2/24 ;C) is defined as the set of (24+2)x(24+2) complex

supermatrices with the grading partitioning
f A B A

M =

v £ B x

that are subject to the condition that

(4.3.182)

Mst K + (-1)deg 0 K M = 0

where

K =

( G

v 8

9 N

J

(4.3.183)

(4.3.184)

with

( 0
G =

ii "l
0

(4.3.185)

and

J =

0 it

8 y

(4.3.186)

(Here A, B, C, D, K, G and J are of dimensions 2x2, 2x24, 24x2,

24x24, 24 + 2)x(24+2), 2x2, and 24x24 respectively). The

condition (4.3.2) implies that

AG + GA = 0, (4.3.187)
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DJ + JD = 0 , (4.3.188)

and

BG - JC = 0 . (4.3.189)

The rank 4° of 0(4+1) is given by 4° = 4+1.

The generalized Dynkin diagram of 0(4+1) is shown in Figure

12, which indicates that its distinguished simple roots a°
are even for k = 2,3 4+1, but that a° is odd. With the

bilinear form B°( , ) being defined by

B°(M ,N) = -24str(MN), (4.3.190)

the basis elements of its Cartan subalgebra may be taken

to be

h£° = -{1/44} {e 1,1 - §2,2 + §3,3 - e*+3,*+3}> (4.3.191)

tlS° = {1/4*} {§k+i,k+i " ek+<+i,k+4+i - §k+2,k+2 + §k+<+2,k+*+2}.

(4.3.192)

(for k = 2,3,...,4) and

ba5+1 = {1/24} {e^+2,a+2 - 62^+2,2^+2} ■ (4.3.193)

Again er>s is the matrix of dimension (24+2)x(24+2) that is
defined by (4.3.186), so that with this choice all the
matrices of are again diagonal.

The positive even roots J3(jj<) and pjj.k) and positive odd
roots 8°j} and 5(jj of 0(4+1) are given in terms of the
distinguished set of simple roots a°, a°, ... , a°+1 of 0(4+1) by
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0- X ^ * o
Pu.k) = ) ar (for j,k =1,2 i, j < k), (4.3.194)

AmU r=i+1r=j+1
n0+ V1 k 0 0 0
j,k> = s f ■ • "r + s * ar+a*+1r=j + 1 LW r=k+1

(for j,k = 1,2 *-1, j < k), (4.3.195)

P(J.+<) = ^ a° + a°+i (forJ = 1'2' - ' *"1>' (4.3.196)
r=j+1

P(jJ) = 2V * a?+ a°+1 (for j = 1,2 *-1), (4.3.197)£-4 r=j+1

P(M) = a°+1 , (4.3.198)

8(°)" = a° (for j = 1,2, ... (4.3.199)

a° + 2V ar° + a°+1 (for j = 1,2 4-1),JLU r=1 r=j+1

(4.3.200)
and

0+ x 1 *+1 0
5«) = > ttr . (4.3.201)

The corresponding basis elements of C(£+1) may be taken to

be

0

ep°(:k) = ej+2,k+2 - ek+*+2,j+<+2 , (for j,k = 1,2, ... j < k),

(4.3.202)

ejj>jk) = ej+2,k+x+2 + ek+2,j+i+2 , (for j,k = 1,2, ... j < k),

(4.3.203)

e°°- = e-ij+2 + ej+<+2,2 , (for j = 1,2 1), (4.3.204)

139



and

o

e5o+ = ei,j+<+2 - ej+2,2 , (for j - 1,2 4). (4.3.205)

The basis elements corresponding to the corresponding

negative roots may be chosen in accordance with (4.1). (For

further information on C(4+1) see Cornwell(1989)).

Taking the node corresponding to the odd simple root a0

of C(2)(4+1), as the corresponding numerical mark has value

1, (c.f. Figures 7 and 8) q = 2. Moreover inspection of Figures
7 and 8 shows that the generalized Dynkin diagram with the

chosen node and attached lines removed corresponds to

B(0/4), the subalgebra l°o2) has to be isomorphic to B(0/4).
The complex simple Lie superalgebra B(0/4) may be

realized as osp(1/24;C), which is the set of (24 + 1 )x(24 + 1 )

supermatrices m of the form
0 b \

m = ~
c Dv ~ ~ J

(4.3.206)

where b and c are submatrices of dimensions 1x2it and 24x1

respectively that experience the constraint

b-Jc = 0, (4.3.207)

and D is a 24x24 submatrix such that

DJ + JD = 0 , (4.3.208)

(J being defined in (4.3.186)). This will be called the
canonical form of B(0/4).

One possible two-fold automorphism of C(4+1) is

provided by \j/2, where y is the automorphism of (4.3.26).
However, as

140



v2(o) = -(-as,)st =
( a

v -e

-B

5 ,

it follows from (53) that if this automorphism is employed
then the subalgebra L°q2) would consist of the supermatrices
with B = C = 0, and with A and D satisfying (4.3.187) and

(4.3.188) respectively, so that the subalgebra £°c>2) wouId
isomorphic to the even part of C(4+1), and not to the

superalgebra B(0/4). Consequently \\r2 is not an appropriate

choice of automorphism.

As will be demonstrated explicitly in the next

subsection the correct choice is actually given by

0(d) = L-1(-Ms%

where

L =

0 A

~ ,

(4.3.209)

so that

0(M) =

v -J"1§
(4.3.210)

-A CJ

It is easily checked that this provides a two-fold

automorphism of C(4+1).
"0

The 2 subspaces 1S|
automorphism <{> of (4.3.28) will now be considered in turn:

The 2 subspaces ls0p(2) (for p = 0,1) corresponding to the
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(b) The subspaces ^°0(2)

By (53) the subalgebra I°s(02) consists of the

supermatrices whose submatrices satisfy the conditions - A

= A and CJ = B in addition to (4.3.187), (4.3.188), and

(4.3.189). Together these imply that A = 0 and that
7 - b \

B = 2?
v & ,

and C = 2D( -c c ), (4.3.211)

where b and c are submatrices of dimensions 1x24 and 24x1

respectively that experience the constraint (4.3.207). It is

easily checked that subject to these conditions the mapping
70 b "\ 70 B N

v £ D
) =

B y

(4.3.212)

r 0(2)is an isomorphic mapping of B(0/4) onto £sq , (the factors of
2-t in (4.3.211) being inserted to help give this result).

Some properties of the canonical form of B(0/4) and its

image under the mapping (4.3.212) will first be summarized

(the conventions being those of Cornwell(1989)). The Killing
form BB(0/i)( , ) is given by

BB(0/<)(m,m') = -(24+1) str(mm') , (4.3.213)

(for all m and m' of the canonical form of B(0/4)). Then, by

(4.3.212),

BB(0/i)(m,m') = -(24+1) str(T(m)^(m')) , (4.3.214)

and so, by (4.3.190),

B°0F(m),¥(m')) = {24/(24+1)} BB{on)(m ,m ')(4.3.215)

for all m and m' of the canonical form. This implies that
/V

(4.3.8) is satisfied if
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p. = (2< +1)/(2*). (4.3.216)

Denoting the simple even roots of B(0/it) by a®(oa) (for k =

1,2, ...,*-1) and the simple odd root of B(0/4) by the

corresponding basis elements of the Cartan subalgebra
y/B(0/i) of B(0/4) defined by

BB(0")(haBS , h) = for all he (4.3.217)
k

are

B (0/J£)
tlaB(o/<) ={"' /(2^ + 1 )}{eK+i ,k+1" g.k+Jt+1 ,k+Jt+1 -£k+2,k+2 + §.k+4+2,k+4+2} >

k

(for k = 1,2 4-1) (4.3.218)
and

kaB(o*) = {1/(2^+1)} {e*+i,*+i - e2<+i,2Jt+i} • (4.3.219)

Thus

^(baBtO/O ) ={1/(2^ + 1 )}{ek+2,k+2 - ek+^+2,k+<+2 -ek+3,k+3 +
k

ek+i+3,k+<+3},

(for k = 1,2 JM) (4.3.220)

and

*(h4» - !1/(2«+1)} (e<t2,«+2-e2St2,2<+2) .(4.3.221)
The riianonal basis elements of £°o will be considered

first. As they may be taken to consist of the set

{ek+2,k+2-ek+<+2,k+<+2 | for k = 1,2 *}, it follows that they
are all members of the Cartan subalgebra #"0(2) (= 0f

B(0/4) (as expected). By (4.3.192) the most general element
of #0(2) has the form
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= 1Kk(6.k+2,k+2"6.k+i+2,k+i+2) = 44 = 2 Pkh »

where ki,k2 k* are any complex numbers, and where

Pk = 2"r = 1 K|* (for k = 2- - .<).

and

P<+1- = - 1 Kr .

Thus on #0(2) the simple roots of C(*+1) are given by

a°(h) = -Ki , (4.3.222)

a°(h) = Kk-i - Kk (for k = 2,3, ... ,*), (4.3.223)
and

a°+1(h) = 2k< , (4.3.224)
which implies that on #0(2) (= #*B<0/<))

<x°+1(h) = -2V ak°(h) . (4.3.225)
JLU k=1

However, as (4.3.220) and (4.3.221) imply that

x*k = iKk(ek+2,k+2-ek+<+2,k+<+2) = 2(2*+1 )^k=i Pk^Chfifo/^)
t

with

= Xkr=i Kr (fork =1,2 <),
it follows that on #"0(2) (= #B(0/<))

akB(0/<)(h) = Kk + Kk-i (for k = 1,2, ... ,<-1), (4.3.226)

and

aB(0/<)(h) = ^ . (4.3.227)

Comparison of (4.3.222) to (4.3.224) with (4.3.226) and

(4.3.227) then shows that on the Cartan subalgebra on #"0(2)
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(= #B(0/*)) of B(0/£) the simple roots a^0/i) of B(0/^) and
a° of C(4+1) are related by

<*?(h> = -S^t«rB<0'S,(h) ■ (4.3.228)

a°(h) = ^"'(h) (for k = 2,3 1), (4.3.229)

and

a°+1(h) - 2a<B(0/>) . (4.3.230)

Finally it follows from (4.2.10) to (4.2.11), (4.3.8),

(4.3.16), (4.3.192), (4.3.193), (4.3.220), and (4.3.221) that

corresponding elements of the Cartan subalgebra of the Kac-

Moody superalgebra are

\B,c« - t0®^(b0BB,0o",)) - (2«/(2i+1)l (4.3.231)
(for k = 1,2, ... , *).

The non-diagonal basis elements of 1°^ will now be
examined. They fall into 6 sets:

(i) For j,k = 1,2 with j < k: For the basis element

e°o- of (4.3.202), it is implied by (4.3.194) and (4.3.229)

that this corresponds to the root

of B(0/4) (for j,k = 1,2 t, with j < k, and for all h e #0(2)
(- ^B(0/<))).

(ii) For j,k = 1,2 i, with j < k:

Pa,'k)(h) - EHo.^0,tHb), (4.3.232)

o
(4.3.233)-ek+2,j+2 + ej+*+2,k+<+2 = £-£(j>k) >
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which corresponds to the root -pjfk)(h) of B(0/it), where

P(j,k)(h) is as in (4.3.232).

(iii) For j,k = 1,2, ... , i, with j < k: For the basis element

eJt of (4.3.203), it is implied by (4.3.195), (4.3.196),P (j>K)

(4.3.229), and (4.3.230)

that this corresponds to the root

Paw(h) - Skr'.j«®<0")(h) + 2XJ=k«?<0">(h) , (4.3.234)

of B(0/4) (for j,k = 1,2, ... , i, with j < k, and for all h e

(= #B(0/<)), the first term on the right-hand side of (4.3.234)
not appearing if j = k).

(iv) For j,k = 1,2 <, with j < k:

o

-ek+4+2,j+2 - £j+<+2,k+2 = (4.3.235)

which corresponds to the root -p°jj<)(h) of B(0/<), where
P(j,+k)(h) is as in (4.3.234).

(v) For j-1,2 <:

o o
~Sj+2,1 + ®j+2,2 + g2,j+i+2 - gi,j+<+2 = -ego+ + e_go - , (4.3.236)

o o
where ego: and e are given by (4.1), (4.3.204) and

(4.3.205). As (4.3.199), (4.3.200), (4.3.201), (4.3.228),
(4.3.229), and (4.3.230) imply that

5<>) - "«<>) - X'r.j<*?(0,<,(h> ■ (4.3.237)

(for j = 1,2, ... , it, and for all h e #0(2) (= the basis

element (4.3.236) corresponds to the root 5(j)+(h) of B(0/<).
(vi) For j- 1,2 I:
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0 0

ei,j+2 - e2,j+2 + ej+i+2,2 - ej+5+2,1 = £go- + , (4.3.238)
0 0

where ego^ and e go.+ are given by , (4.3.204) and (4.3.205),
which corresponds to the root -5(j)+(h) of B(0/4), where 5(jf(h)
is as in (4.3.238).

All the elements of the above sets are even members of

C(4+1), except for those of (4.3.236) and (4.3.239), which are

odd.

It is easily checked that the set of 24(4 + 1) non-zero

roots of (i) to (vi) above, together with the 4 zero roots, are

all weights of the adjoint representation of B(0/4), whose

highest weight is

A = 2A1B(0/*) = 2^k=i «k(0/i) ■ (4.3.240)

- 0(2)
(c) The subspace IS1 :

By (4.3.2) the subspace £°s\2) consists of the
supermatrices whose submatrices satisfy the conditions A =

A, DJ - JD = 0, and CJ = -B in addition to (4.3.187), (4.3.188),

and (4.3.189). Together these imply that D = 0, that
( b \

and C = 2-i( £ c ), (4.3.241)B = 2i

where b and c are submatrices of dimensions 1x24 and 24x1

respectively that experience the constraint (4.3.207)*, and
that

7 a 0
(4.3.242)A =

0 -a

where a is any complex number. Thus £s°1(2) possesses a single
diagonal basis element
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(1/4J?){e1,i - e2,2} = -ih2°+1 - &S? . (4.3.243)

which corresponds to a zero weight of B(0/*).

The non-diagonal basis elements of * fall into 2 sets:

(i) For j = 1,2, ... , <:

o o

~Sj+2,1 - gj+2,2 + H2,j+i+2 + e-i.j+i+2 = ego+ + e go - ,(4.3.244)
o o

where ego^ and e go^+ are given by (4.1), (4.3.204) and
(4.3.205), and 5(°j)+(h)(=-8(j)"(h)) is given for j = 1,2, ... , it, and
for all h € #"0(2) (= by (4.3.238), the basis element

(4.3.244) corresponds to the weight 8(j)+(h) of B(0/it).
(ii) For j = 1,2 I:

o o

§i,j+2 + e2,j+2 + ej+i+2,2 + ej+i+2,1 = ego^ - . (4.3.245)
o o

where e o- and e o+ are given by (4.1), (4.3.204) and~

(j) ~"5(j)
(4.3.205), which corresponds to the root -5°jf(h) of B(0/it),
where 5(j)+(h) is as in (4.3.238).

The diagonal basis element (4.3.243) is an even element

of C(< + 1), but all the non-diagonal elements of the sets (i)

and (ii) are odd members of C(4 + 1).

They form the carrier space of an irreducible

representation of B(0/it) of dimension 2£ + 1 whose highest

weight is

A = A,B(0/:e) = £*=1 a^(0/i) . (4.3.246)

(See Tsohantjis and Cornwell(1990) for a discussion of the

supercharacters and superdimensions of B(0/it)).
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(d) The roots of C<2)(* + 1)

Defining 8(h) as in subsection 4.2, it follows that the

roots a(h) and the corresponding basis elements e« of

C(2)(4+1) are as follows:

(i) a = 2J5(h), (for J = 0,±1,±2, ... ). There are i linearly
(k)

independent basis elements ea corresponding to this root
which may be labeled by an additional superscript, so that

e<k)= {2*/(2S + 1)} t2J<S>h°o+i (for k = 1,2, ... , *),

(which reduces to (4.3.231) in the special case J = 0).

(ii) a(h) = 2J5(h)± p(°k)(h), (for j,k = 1,2, ... , I, with j <

k, and for J = 0,±1,±2, ... ), where (3°,k)(h) is the extension of
the weight of B(0/*) that is given by (4.3.232) and

ea = t2J<S>e°a-
—P(j,k)

(iii) a(h) = 2J8(h) ± p°j*k)(h), (for j,k = 1,2 i, with j <
k, and for J = 0,±1,±2, ... ), where P°jTk)(h) is the extension of
the weight of B(0/i) that is given by (4.3.234) and

ea = t2J®e°a +~±P(j.k)

(iv) a(h) = 2J5(h) ± 8°j)+(h), (for j = 1,2, ... , I, and for J =

0,±1,±2, ... ), where 5°jf(h) is the extension of the weight of
B(0/4) that is given by (4.3.238) and

0
- o

ea = t2J®{e o- + e ,4 +}.% ±"(j)

(v) a(h) = (2J+1)8(h), (for J = 0,±1,±2, ... ), with

ea = t2J+1<8>{|hS°+1 + X!=1 tlS? }•
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(vi) a(h) = (2J+1)5(h) ± 5(j)+(h), (for j = 1,2, ... , S., and for
J = 0,±1,±2, ... ), where S°j)+(h) is the extension of the weight
of B(0/4) that is given by (4.3.238) and

_. o o
ea = t2J<S>{ e q - ± e ,a +}.—"sa) ~^(j)

(vii) a(h) = 0, with c and d as basis elements.

With |i chosen as in (4.3.216) , it follows that

<a°P°> = <a°,p°>B(0/J0 (4.3.247)

where on the right-hand side of (4.3.247) a° and (3° are any

pair of linear functionals defined on (= j?7B(0/j:)), the

evaluation being performed with respect to the Killing form

of B(0/jO, and where on the left-hand side of (4.3.247) a° and

P° denote the corresponding extensions to the Cartan

subalgebra of the Kac-Moody superalgebra C(2)(* + 1), the

evaluation being performed with respect to its

supersymmetric bilinear invariant form B( , ).

As <a°,a°>B(0/*) > 0 for every non-zero linear functional a°
defined on then <a°,a°> > 0 for the corresponding

extension. Moreover (4.3.216) imply that

h6 = (2*/(2<+1)} c . (4.3.248)

Thus, if a° is the extension of any simple root of L°s, then

<5,c£> = 0 (4.3.249)

and

<j8,j8> = 0 . (4.3.250)
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Thus <j5,j5> = 0 for integer j, so every non-zero root of

C(2)(Jt + 1) belonging to the sets (i) and (v) is "imaginary".

Moreover, because <j8+a0,j5+a°> = <a°,a°>B'0/^ and because

<a°a°>B(0/J{) > 0 for linear functional a° and its corresponding
extension (as has just been noted), it follows that every non¬

zero root of C(2)(£+1) belonging to all the above sets except

(i) and (v) is "real". All the elements mentioned in the above

sets are even, except for those in the sets (iv) and (vi), which

are odd.

For C(2)(4+1) the simple roots may be taken to be

ct0 = 5 - och , (4.3.251)

and

ak = akB(0/Jl) (for k = 1 it) (4.3.252)

where

a° = A,®'0'*' - Xk.1 "k'0"' (4.3.253)

is the highest weight of the representation of L°s for which

£°i 's carrier space and the are the extensions of
the simple roots of B(0/4). As Qx0 and appear in the sets
(vi) and (iv) respectively, it follows that Qx0 and are odd,
so ao and a* are odd roots of the Kac-Moody superalgebra

C(2)(it+1). All the other simple roots of C(2)(*+1) are even.

It is then easily checked that the Cartan matrices of

C(2)(2) and C<2)(*+1) (for 2 > 2) when evaluated correspond to

the generalized Dynkin diagrams given in Figures 7 and 8.
The quantities <a°,a°>B(0/<) can be found in appendix A(3).
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In terms of the linearly independent functional Ej (i<j<<)
defined on ^B(0/*) (see Cornwell(1989)) the roots of

C(2)(*+1) are given by

A = { 2m5 ± (Ej ± Ej) with 1< i < j < I , m5 ± Ej with 1< i < I
2m5 ± 2£j with 1< i < i ail with me Z

and m5 with m*0 and me Z} (4.3.254)

The basis is given by

oc0 = 8 - E-j Ejj aj = £j - £j+i for 1< i < 4-1 a* = e*

(4.3.255)

This brings us in to the end of the description of the

structure of the affine Kac-Moody superalgebras. All the

theory of the sections 4.2.B regarding the B(1)(0/*) can be

applied with minor but straight forward modifications to the

twisted superalgebras as well.

Before leaving this chapter it would be worth making

some remarks. Had we chosen one of the far left nodes of

the Dynkin diagrams of A(2)(24-1/0) and A<4)(24/0) we would

eventually have come up with a second order automorphism

for A(2)(2jM/0), although that of A<4)(24/0) would still be

fourth order. However both cases would be different from

previously. £°oq) wou,cl be B(0/4) in both cases but the root

systems of A<2)(24-1/0) and A<4)(24/0) would not be the

same.

If we denote with £Loop(£(q)) the loop algebra of the
affine Kac-Moody superalgebra l(q) then the even parts of

A<2)(2jM/0) and A<4)(24/0) and C(2)(4+1) are given by

A<4)(2*/0)0 = C[t2,t-2]IL00P(A®) e Sj" f.T h°o © (Cc) ® (Cd)
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C(2)(«+1)0 = C[t2,t'2]iLoOp(Cj1))®^" c;

A«a>(2<-1/0)o = C[t2,f2]iLoop(A®,) ® I," ..|U.20(X rk=k 1 ba?
+ 2Sr'k;♦< bo?} © (Co) ® (Cd),

for k being one of the k = 1,2, ... , i. and c being the basis of

the one dimensional abelian subalgebra of C(4+1)0.
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CHAPTER 5

HIGHEST WEIGHT REPRESENTATIONS OF AFFINE

KAC-MOODY SUPERALGEBRAS

5.1 Introduction

In this chapter we shall describe the structure of

highest weight representations of the complex affine Kac-

Moody superalgebras where ls denotes one of the B(1>(0/4)
(for I >1), A(2)(2*-1/0) (for i >2), A(4)(2*/0) (for i. >1), and

C(2)(Jt+1) (for i >1). These representations are almost

identical with those of the affine Kac-Moody algebras (see

Kac(1985), Cornwell(1990)), although some of their features

are the same as for the representations of the basic classical

simple complex Lie superalgebras. In fact, although it will

be not explicitly stated again, the carrier spaces will be Z2-

graded and all the operators acting on them will preserve

this grading. The analysis will be confined mainly to the very

interesting class of integrable irreducible highest weight

representations. It should be noted that the description of

such representations is not restricted only to these

superalgebras but also to any affine Kac-Moody algebra as

well. In particular the result on complete reducibility (see

section 5.3) was first obtained in Kac(1978) within a wider

content including the affine Kac-Moody algebra and

superalgebras. The integrable irreducible highest weight
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representations of the affine Kac-Moody algebra and

superalgebras that appeared in Kac(1978) are particular

examples of a more general theory of representations using
Verma modules. This theory refined and applied in the case

of affine Kac-Moody algebras can be found in Kac(1985) (see

also Dixmier(1974)). A byproduct of the representation

theory of these superalgebras is certain multivariabie
identities for the non-reduced affine root systems which

were not included in Macdonald analysis of reduced ones but

which can be found in Kac(1978). Since the superalgebras

under consideration are infinite dimensional, their

representations are in general infinite dimensional, though

the weight subspaces will be finite dimensional. The general

notions (universal enveloping superalgebra, induced modules,

etc.) of Lie superalgebra representations can be found in

Kac(1977), Scheunert(1978) and Cornwell(1990).

5.2 Basic notions and definitions

The starting point in the representation theory is as

usual the universal enveloping superalgebra of the affine

Kac-Moody superalgebra ls. This is will be denoted by U(ls)
and can be regarded as the infinite dimensional Z2-graded

complex vector space of polynomials in the elements of the

superalgebra £s. It follows from the Poincare-Birkhoff-Witt
theorem that the basis elements of U(£s)(for some fixed
ordering of the basis of ls) are given by the set of
polynomials of the form
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x

(e(1) )Sl''(e<2> )Sl'2...(e<v) (Me" )S2."(e<2> )s"...(e(,l) )S2." ...x~Yl ~Yl v "Yl ~Y2 ~Y2 "Y2

(h, )Pi(h, )P2 (t\+2)P»+2 x

(e<yi-1(e<2y,>.2...(elyi.v(e1y2^e*T"...(e,T'2'11...\ yj/ \ Y1 / v yj/ v 72 v 72 72
.(v\s'i.v/«(1\s,2.1//.(2\s,: >\s'2 (5.1)

(k) ~

where, (e Q) (k = 1,..., mult £,« ) are basis of the even root±Pi ^Pi
^ (kl)

subspace corresponding to the root ±pjf (e±yj)(k=1 ,...,mult
£±Yi ) are basis of the odd root subspaces 1±T corresponding
to the odd roots ±yif h, are basis elements of the Cartan

subalgebra of £s, r^ , r'y and pj are non-negative integers
and s'j j Sj j e {0,1}.
Because of the triangular decomposition of £s, L. © #" © L+

U(IS) can also be put in the form

U(ls) = U(l.) <8) U(^) 0 U(i+) (5.2)

where U(£ ) . U(#) and U(l+) are the universal enveloping
superalgebras of the negative root subspace, the Cartan

subalgebra and the positive root subspace of respectively.

Now consider the sub-superalgebra H of £s given by
# = X ® L+ (5.3)

We call H the Borel sub-superalgebra of Is .

Using the method of the induced representation we can

construct highest weight irreducible representations of Is
induced by a particular representations of CB .
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Let VA be a one dimensional complex vector space with

basis denoted by \jr(A). Assume that a trivial /2-gradiation is

defined on VA by (VA )0 = VA and (VA ), = 0 (so deg y(A) = 0).
Let O(h) and 0(aa) (for all h of M and all a e A+ be operators

acting on VA such that

(i) <D(h)\|/(A) = A(h)\jr(A) for all he ?/;

(ii) 0(aa)v(A) = 0 for all a e A+; (5.4)

where A(h) is a linear functional, defined on o<.

The operators are assumed to be Z2-graded. That is deg O(h)
= 0 for all h e "H and deg 0(aa) = 0 or 1 depending on whether
the a is even or odd root of Zs. Clearly this action defines a

graded representation of the subsuperalgebra rB. The pair

(O, VA) consisting of the operators <D, as defined above, and
the vector space VA is often called an even ^-module. Since

(O, VA ) is a ^-module it becomes naturally an U(#)-module,
where U[CB) is the universal enveloping superalgebra of H.

Consider now the /2-graded space

U(IS) <8> VA (5.5)
and for any element a of L define operators ^(a) acting on

the above space as

xF(a)(u ® v ) = (au) ® v (5.6)

for all u e U(ls) and all v e VA. Clearly this action defines a

graded representation of £s and U(is) ® VA is its carrier
space. Now let a <= U(ls) and be U($). The elements of
U(IS) ® VA of the form

(ab)® v - a ® 0(b)v, (5.7)
where O(b) are operators defined in (5.4) and v e VA ,
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generate a subspace I of U(ZS) ® VA and it can be easily
checked by applying (5.6) on (5.7) that it is an invariant

subspace. We can form now the quotient space U(£fe) <8) VA / /
and consider this as the carrier space of the representation.

This is called the tensor product space of U(IS) and VA over

U((B) and is denoted by U(£s) <8>u(«)VA. Under the canonical
projection of U(ls) <8> VA on to U(ls) ® VA // , I projects on 0,
and thus in U(£s) ®U(e )VA

(ab)® v = a <8> 0(b)v. (5.8)

The pair (T'(a), V (A)) for all a of ls, where
V (A) - U(^)®u{e) VA , (5.9)

and *F(a) are operators acting on the carrier space V(A) by
left multiplication on the U(£s) component, form a graded
representation of ls induced by the representation of CB as
defined in (5.4). It is called the induced £s- module. From
Poincare-Birkhoff-Witt theorem the basis element of V (A)

can be found to be

(e<4)ri-1(e<^)ri'2-4e^/l^(e^/2.He<.2p/"...(e«)r^ x

(e^)Sl-'(e® )Sl-2...(e<^i)Sl.v(e<.,^)si'(e(.^)sM...(e<.^)82J'..®v(A)
(5.10)

(k) ~

where, (®_p.) (k = 1mult 1^. ) are basis of the even root
subspace £p. corresponding to the negative root -pj,
(k) ' „ ^

e (k=1 mult Ly. )are basis of the odd root subspaces Ly.
corresponding to the negative odd roots -y\, are non-

negative integers and sMe {0,1}.'»J

It is not difficult to show, by acting on the basis
elements with O(h), that V(A) accepts the following
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decomposition

V(A) = ©,VX (5.11)
where Vx is the subspace of V (A) spaned by the elements

(5.10) such that the linear functional X defined on M is given

by

X = A - {(ru + r1>2 rlv )p1+ (r2>1 + r2 2 r2^ )p2 + + + (su
+ s1>2 sl v )yj+ (s2 j + s22 s2)y2 + ....}• (5.12)
Since all the quantities appearing in the brackets are non-

negative the above expression can be simplified writing
X = A-Zf=0 kjCXj , (5.13)

where k, are non negative integers and a| are the simple
roots of Is. We define by D(A) the set consisting of all linear
functional X defined on and having the form (5.13). Then

(5.11) can be written as

V(A) = ©XeD(A) V\- (5-14)
The linear functional X is called a weight of the

representation if the corresponding supspace 0, and Vxis
called a weight subspace. The dimension of Vx is the

multiplicity of the weight X.

Generally V(A) contains proper invariant subspaces

graded with respect to (5.14). The quotient space of V(A)

with such a graded subspace is the carrier space of a highest

weight representation. The union of all these subspaces
constitute the unique maximal invariant subspace R(A). Then
the space V(A) = V(A)/R(A) is the carrier space of an

irreducible representation of Iswith highest weight A. In
this case if X is any weight of the representation then X < A .

159



Definition 5.1 The category <M

The category <M. is defined to be the set of

representations (O, V) of Is whose carrier space V satisfy
the following conditions

(i) <E>(h)v(^) = X(h)\|/(?i) for all he 'H and \\r{\)eVx

(ii) dim Vx < °o

(iii) ^(a« )VX C Vx+0 (a e A)

(iv) chV = £Xe?r(dimVx)exe £
where ch denotes the character of the representation and £ is

the space of all functions on which vanish outside the

union of a finite number of sets of the form D(A) (for more

information of the space £ see Kac(1978, 1985 §9.7) and

Dixmier(1977 §7.5)).

It can be shown that both V(A) and V(A) belong in <M. In

the Kac-Moody algebra case the module (0,V(A)) is the

equivalent of a Verma module (see Kac(1985) ch. 9)

Definition 5.2 The category M0

The category is a subcategory of M which consists of

those representations from M for which the operators

<1>(E _a.) (for all ieI) are locally nilpotent. That is 0(E .aj)nv(>.)
= 0 for some positive integer n, all ie I and every weight
vector \|/(X) of the carrier space of the representation.

From the definition of the Cartan matrix given in chapter

3, we obtain the following proposition which plays a very

important role in the study of the representations of ls.
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Proposition 5.1

Let A be a Cartan matrix as defined in chapter 3 and let

A' be the Cartan matrix obtained from A by dividing the ith

row and multiplying the ith column by 2 for every ie t. Then

the affine Kac-Moody superalgebra Is corresponding to A
contains a subalgebra with generators ELj = Eaj , E!aj = E.aj ,

H'aj = Haj , for all je I\t and

E'dj = £[Eaj . Eaj ] , E'aj = ^[E-aj . E.aj ], = |Haj , for all je x

which is isomorphic to a factor algebra of the Lie algebra

whose Cartan matrix is A'.

A direct consequence of the above proposition on the

structure of representations of I is revealed by the

following proposition.

Proposition 5.2

Let (O, V) be a representation of ls such that
(') V -®XVX;

(ii) 0(K>,) V(X) = v(X) for all je I and v(X)e Vx ;
(iii) <*>(aa )VX c Vx+a

(iv) ^(^xj) and 0(E.aj ) (iel ) are locally nilpotent on V;
then, with respect to the three dimensional subalgebra

generated by E^ , E!aj and (and being isomorphic to An),
(<X>, V) is a direct sum of finite dimensional representations

of this subalgebra.

Proof Let \|/(?i)e Vx . Then the subspace of V of the form
v = ))■»(♦(£■.„, ))" v(X). m,n eZt) is finite
dimensional since <J>(Edj) and 0(E;aj ) are locally nilpotent on
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V. It can be easily proved that the action of 0(Ea. ) , <J>(E'aj )
and O(Haj) leaves V' invariant. This proves the proposition.

This direct sum structure of a representation of Is defined
as above is an extremely useful property in describing the

weight system of such representations. In fact, as we will

see shortly, the representation of Is with the properties of
this proposition are the most interesting ones.

5.3 Integrable highest weight representations.

Definition 5.3 Integrable representations
A representation (O, V) of Is is called integrable if the

following two nilpotencv conditions are satisfied

(a) d>(Eaj )ny = 0

(b) 0(E.aj )n> = 0

for some positive integers n and n', all jel and every y of the
carrier space V of the representation.

If the integrable representation is of highest weight A

then condition (a) is redundant and we can say that the

highest weight representation is integrable if and only if

condition (b) is satisfied. This is a consequence of the fact

that ad(E ai ) (iel ) is locally nilpotent on I and thatJ S

0(1^. )\j/(A) = 0 . A highest weight representation together

with condition (b) of the above theorem is often called

auasisimple (see Kac(1978)).

162



It should be noted that a representation of Is can be
integrable without being a highest weight one. An example of

this case is the adjoint representation of £s. Its weights are
the roots of Ls. It is not a highest weight one, since it
contains roots of the form j5 for all integers j. Since we saw

in chapter 3 that ad(Eaj ) and ad(E.aj )(for all jel) are locally
nillpotent on Is and since there exists a finite number of
times that ad(E 0j ) and ad(E.aj ) have to act on the generators
of Is to give zero, the adjoint representation of £s is
integrable (see Kac(1985) ch. 3).

Definition 5.4 Dominant highest weight

A highest weight A is called dominant if A(Hxj ) is a non-
negative integer for all jel. In particular if jet, then A(Hxj )
must be even.

\

Proposition 5,3

(a) The irreducible highest weight representation (<D,V(A))

(where V(A) = V(A)/R(A)) is integrable if and only if A is

dominant.

(b) If (0>,V(A)) (where V(A) = V(A)/R(A)) is an integrable

irreducible highest weight representation with dominant

highest weight A then,

V(A). V(A)/Sf,0 U(£s ) {<J>(E_aj) A(Hj)+!} VA (5.15)

where U(Is ) is the universal enveloping superalgebra of
Ls and Hj = Httj for all je I.

Proof To obtain the first part merely involves showing
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that O(E.oij) A(Hj) + i v(A) e R(A) if A(Haj) satisfies the
requirements of definition 5.3 or else, <D(Eaj)m y(A)« R(A) for
some j and all m. The second part is a consequence of the

first part. It is the equivalent of Harish-Chandra's theorem

(For details see Kac(1978,1985 ch.10 or Dixmier ch.7).

Since for integrable irreducible highest weight

representation of Is the highest weight is dominant, all
these representation can be described by the set of non-

negative integers given by

2< A, ak >/< ak, ak > = nk (for all k= 0, 1,..., 2). (5.16)

If nk = 0 for all k= 0, 1,..., 2 then the above equation accept

the solution of the form A = C(5). This corresponds to the

trivial representation of the derived superalgebra [ls,
with highest weight A(#') = 0 (where = £*=0 ^(F^ ) is the

i

Cartan subalgebra of derived superalgebra), and to a family

of one dimensional irreducible representations of 1 defined

by

o(d) \j/(A) = A(d)\|/(A) = [i 5(d) y(A) = (I \j/(A) (I e C

O(a) \\f{A) = 0 for all a e [Xs, £s], (5.17)

In fact an irreducible representation of ls will correspond
to the direct product of the above representation with one of

highest weight A(#") * 0. Also note that the trivial

irreducible representation is the one for which A(^7) = 0.
The above analysis suggests a less formal proof of the

following proposition.
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Proposition 5.4

The restriction of an integrable irreducible highest

weight representation of Ls on to the derived superalgebra
[I , I] remains irreducible.S S

Proof It is essentially the same as that appeared in

Kac(1985)).

Definition 5.5 Standard irreducible representation

We call standard irreducible representation of Is an

integrable irreducible highest weight representation of 1

whose highest weight is given by

A = E* n. A:j=o i J
where nj are nonnegative integers for which at least one is
non-zero and Aj are the fundamental weights (see (5.18).

From definition 5.3 it follows that, the representation

considered in proposition 5.2 is an integrable representation

and thus belongs in af0. Comparison of the definition 5.2 of

the category fW0 and the definition of the representation

considered in proposition 5.2, shows that this latter one
i

belongs in 3tf0. Moreover every highest weight representation
which belongs in is integrable and satisfies proposition
5.2. Finally the irreducible highest weight representations of

Ls with dominant highest weight are by proposition 5.3(a)
integrable and thus belong in rw0 too.

After these remarks, using proposition 5.2 and 5.3 and the
second order Casimir operator (see section 5.5) it is possible
to prove the equivalent of Weyl's complete reducibility

theorem in the affine Kac-Moody algebra case.
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Proposition 5,5

Any integrable representation of ls belonging in <M0 is
completely reducible.

Proof (See Kac(1978))

In fact this proposition was derived by Kac for the Kac-

Moody algebras as well, and it was the major step regarding

their representation theory. A more elaborate exposition can

be found in Kac (1985, ch. 10)

5.4 The weight systems of integrable irreducible

highest weight representations.

We shall investigate now certain properties of the

weight systems of the above representations and in

particular those of definition 5.5 (i.e. the standard ones).

The following proposition embodies some of the most

important properties of the weight systems of the integrable

irreducible highest weight representations. It is heavily

based on propositions 5.2 and 5.3(a).

Proposition 5,6

Let (O,V) be an integrable irreducible highest weight

representations of £s. Then
(a) if X is a weight of the representation then X+ a is also a

weight for each non-zero root a such that 0(ea)y(^) * 0;

(b) for any weight A. and any real root a, 2<A.,a>/<a, a> is an

integer;
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(c) for every simple root a, and a weight X of the

representation, there exist two non-negative integers p and q

such that X + kcq is in the ocj-string of weights containing X

for every integer k that satisfies the relations -p<k<q and

p-q = 2<A.)ai>/<aj, oij> . The same is true for every real root a.

(d) The weight system of an integrable irreducible highest

weight representation of £s is invariant under the Weyl group
of Is;
Proof (see Kac(1978), (1985), Cornwell(1990)).

For the imaginary roots, although one can notice that part (a)

and (d) are still apply, the situation in general is different

as the following theorem states.

Proposition 5,7

Let (<t> , V) be an integrable highest weight

representations of Is . If X is a weight of the representation
and a is an imaginary root of £s then <X, a> > 0. Moreover if
<X, a> > 0 then X - ka is a weight of the representation for

any non-negative integer k.

Proof (See Kac(1978)).

Definition 5.6 Fundamental weights

The linear functional of defined by

2< Aj, aj >/< ocj, (Xj > = 5y Aj(d) =0 (5.18)

for all i,j = 0, 1 i are called fundamental weights.
In particular, comparison of the above definition with (3.67)
shows that A0 is the linear functional that corresponds to the
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scaling element d.

If we consider the submatrix A0 of the Cartan matrix of

A of Is (see table V) obtained by deleting the row and column
of A corresponding to an odd node of the Dynkin diagram then

A0 is the Cartan matrix of the semi-simple Lie algebra D$, B*,
or the basic simple Lie superalgebra B(0/4). Then for all i,je

I-{k} where k is the index of the removed node, these

relations (5.18) are nothing but the defining relations of the

fundamental weights of the above algebras. Then it is not

difficult to show that are satisfied with
i

Aj = A® + nrijAk, (5.19)

where

mj.-ZicMk} Aki((A°)"1)ij (5.20)

and je I-{k} with k=0 or s. (see table V).

From relations (5.19) and (5.20) and the Cartan matrices of

table V, we can obtain all the possible fundamental weights

of A(2)(2*-1/0) (for i >2), A(4)(2S/0) (for I >1), and C<2)(* + 1)

(for I >1). In fact it not difficult to see that all of the above

analysis of integrable irreducible highest weight

representation of Ls when restricted to their subalgebras D^,
Bjj, or B(0/*) is nothing but the theory of finite dimensional
irreducible highest weight representations of these algebras.

In particular no problem arises for B(0/£) since all of its

representation of this kind are typical. Certain construction

of standard irreducible highest weight representation of

A(2)(2*-1/0), A(4)(2£/0), and C(2)(*+1) can be found in

Feingold and Frenkel(1985) and Golitzin(1986).
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Definition 5.7 Maximal weight

Let (<D, V) be an integrable irreducible highest weight

representation of Is with dominant highest weight A and 8 be
the imaginary root of £s. A weight X of the representation is
called maximal if X + 8 is nM a weight of the representation.

It will be denoted by Xmax. Moreover if Xmax(4c ) (f°r a" >eI)
i

is a non-negative integer then \max 's called maximal

dominant weight.

Proposition 5.8

For every integrable irreducible highest weight

representation of JL with dominant highest weight A:

(a) the highest weight A is a maximal dominant weight;

(b) if X is a weight of the representation then X - k8 is also a

weight for all non-negative integer k.

(c) Any maximal dominant weight ^.max has the form

^•max = A - Sj_0 kjCXj = A (5.21)

where kj are non-negative integers and ajare the simple
roots.

(d) there exists only a finite number of maximal dominant

weights.

(e) with respect to the finite set of maximal dominant

weights Xt (i=1,2,..., m) the set of the weights of the

representation is given by

{S(A.j) - kS, for all Se W and any non-negative integer k}. (5.22)

Proof (See Kac(1978)).
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Definition 5.8 Level of a standard irreducible highest

weight representation

The level of a irreducible representation of highest

weight A is defined to be the number given by

level(A) = 2A(h5)/< ak, ak > (5.23)

where h5 is the central element (appropriately normalized) of
the affine superalgebra and ak corresponds to one of the

simple roots of the Dynkin diagram of Ls selected for the
explicit realization (see chapter 4). In particular since

< Ak, 8 > = |< ak, ak > for k=0 or i. (see chapter 4) then

level(Ak) = 1

Generally if A is dominant then the level is always a non-

negative integer.

Consider the eigenvalues of the central element c in

some irreducible highest weight representation of Ls. Since c
i

belongs in the Cartan subalgebra of Ls and commutes with
all the elements of Is, it follows that

O(c) = cA I

O(c) \|/(A) = cA y(A)

for every weight A of the representation and where cA is a

number that depends on the highest weight A, and I is the

identity operator.

From the second of the above relations we can easily see that

with A = A the eigenvalues cA are given by

cA = A(c) (5.24)
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Then, consideration of the expressions of the element h5

obtained from the previous chapter (4.2.32, 4.3.93, 4.3.174,

4.3.248) and for a standard irreducible representation of £s it
follows that

cA = p<A, 5> (5.25)

Expressing 8 in terms of the simple roots found in the

previous chapter, and with A given as in (5.18) it follows that

cA is always a positive number except if A = 0. Then the

level can be expressed as level(A) = 2cA /< ak, ak >.

The final proposition is related with the tensor product of

two irreducible representation.

Proposition 5.9

Let r = r(AO ® T(A2) be a tensor product of two

irreducible representation of ls with dominant highest
weights A-,, A2.

Then r is completely reducible and the highest weights of

the irreducible components of r have the form A-|+ -j5 for j
> 0 and {X^ } is a finite set of weights of r(A2) and t takes all
non-negative integral values.

Proof (see Kac(1978)).

5.5 The generalized Casimir operator

We define a linear functional p on by

2<p, aj>/<aj, ex; > = 1 for all ie I and p(d) = 0. (5.26)

Definition 5.9 The generalized Casimir operator

Let eka and ek.a be dual basis with respect to the
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invariant supersymmetric non-degenerate bilinear form of

Ls corresponding to the positive roots a and k =1,..., m, m

being the multiplicity of the root subspace La . That is

B(ejx , ek.a ) = 5jk for all a eA+ . We also choose hj (i=1,2,...,
Z+2) to be dual basis of Finally let Hp be the element of H
corresponding to the functional p defined above. Then in

analogy with the affine algebraic case the second order

Casimir operator of an integrable irreducible highest weight

representation of ls is defined by

C2 - 2®(Hp)+ Z';,2 4>(hi)2 + 2Z eA+ Z™ , <t>(ek.0 )o(ek„ )

(5.27)

where O are the operators of the representation. Actually

this is a more general definition of any representation that

belongs in the category <M. In particular, it is the property of

the representations that belong in the category <M to be

restricted,( that is, if for every weight vector \\r{X) of the

representation ^(Qj )\j/(>.) = 0 for all but a finite number of

positive roots a Ls ) which allows the definition (5.27). It
can be easily checked that C2 commutes with all the

operators of the representation belonging in the category <M.

Since the representations that belong to this category are

restricted, the third term when acting on any weight vector

gives a finite result. Also since the first two terms

when acting in any \\r^k) give <X + 2p, 'k>, relation (5.27)

impliesthat
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C2 vM = <U2p, X>\|f(X) + 2Z6A+ Zkm=1 0(ek.a )0(eka )y(X) (5.28)
For a highest weight integrable irreducible representation

C2 V(X) = <A+2p, A>\)/(X) (5.29)

for any \y(X) of the representation with highest weight A.

5.6 The character formula

We shall now give the character formula for integrable

irreducible representation of dominant highest weight A. The

construction of the character formula follows the same steps

as for the affine algebras with only minor modifications

related with the existence of odd roots. The underlying

general theory of characters of representations of infinite

dimensional algebras or superalgebras is a consistent

modification of that of finite dimensional representations of

finite dimensional algebras or superalgebras.

Consider the space x introduced in section 5.2 above and

define the function L on •>{* by

l . {eP rw (1- e-« )}/ n asi+ (1+ e-° ) (5.30)
0 1

where each root is taken with its multiplicity.

Let (3 be any linear functional defined on y{ given by

P - " SaEA+ k«a
where ka is a non-negative integer if aeA+0 and ka = 0,1 if a

eAj. The Kostant function K((3) defined on is the number of
finite sets {ka} in the above expression. It can be shown that
KL = eP.
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Let e, be a homomorphism from the Weyl group to the

multiplicative group {1,-1}, defined by e(^Xj ) = -1 for all jel,

Saj being the generators of W. Note that for any element S of
W, e(S) = (-1)'(s) where l(S) is the number of factors in the

shortest expression of S in terms of . It can be proved

that for any S e W, S(L) = e(S)L.

For the module V(A) constructed in the beginning of the

chapter it can be easily obtained using the weight structure

of V (A) in relation with the properties of the space <e that

chV(A)- SlsD(A) K(X-A)e*- (5.31)
and so since KL = ep,

LchV(A) = eA+p. (5.32)

Proposition 5.10

For an integrable irreducible representation of dominant

highest weight A of an affine Kac -Moody superalgebra Ls the
character formula is given by

chV = L"1 £SeW e(S)es<A+P> (5.33)

or equivalently in its Weyl form

chV = £SeW e(S)es<A+P>/2ssw e(S)esd» (5.34)

Proof (See Kac(1978))

To obtain (5.34) we have used relation (5.33) and the

fact that chV = 1 in the case where A = 0. In particular for

A = 0, (5.30) becomes the equivalent of Weyl's denominator

formula and is given by
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n aei* (1- e-» )/ n os4+ (1+ e-« ) = ZSsW e(S)es<P)-P (5.35)

Then the Kostant's formula is obtained by multipling both

sides of (5.33) with Ke_pL

chVx = ZS6W e(S) K((Up)-S(A+p)) (5.36)

Also the character formula (5.34) can be rewritten using the

weights X-t - j5 (je Z) of multiplicity m^j), where X-, is the i-th

dominant maximal weight (see proposition ), as :

chV(A) = If„, { E ~0mi(j)e'i5l }{ 2SeW eS|xi' )/s (5.37)

where s is the number of the dominant maximal weight.

Finally it can be shown that (5.34) is equivalent to the so

called 'star' formula

^sew e(S)dimVx+P-S(p) = 0 for ^ g R(A) - A (5.38)

where R(A) is the set of all weights of the module V(A).

Kac(1978) showed that from (5.30), under certain

manipulations involving the root structure of the

superalgebra, we can obtain the multivariable identities for

non-reduced irreducible root system that did not appear in

Macdonalds(1972) work.

As it is well known the carrier space of an integrable

irreducible representations carries a contravariant hermitian

form which allows for the definition of unitarity of

representations.

Clearly a similar similar notion for affine superalgebras is

still lacking. Actually, following the example of finite
dimensional Lie superalgebras, it would be interesting to

investigate the existence and reducibility of representations
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whose carrier spaces is endowed with a hermitian or

superhermitian form. This would also demonstrate how we

can define a suitable adjoint operation .
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CHAPTER 6

SUGAWARA CONSTRUCTIONS OF THE

AFFINE KAC-MOODY SUPERALGEBRAS

6.1. Introduction

Affine Kac-Moody (super)algebras together with the

Virasoro algebras play a central role in two dimensional

conformal field theories. It is well known that together they

possess a semidirect sum algebraic structure. This is

usually demonstrated by expressing the Virasoro generators,

which are related to the energy momentum tensor in two

dimensions, bilinearly in operators of some representation of

the Kac-Moody (super)algebra, the latter being considered to

correspond to currents. This idea dates back to

Sugawara(1968). Physical reasons demand that the Sugawara

construction has to be unitary. Thus the interest is in

unitary irreducible highest weight representations of the

Kac-Moody algebras which give unitary representations of

the Virasoro algebra. The main objective of this chapter is

to investigate the case of the Sugawara construction of the

twisted Kac-Moody superalgebras C(2)(£+1) A(2)(24-1/0) and

A(4)(2*/0), but we shall also demonstrate the Sugawara
construction of untwisted Kac-Moody superalgebras

(including B(1)(0/4)). As the Sugawara construction requires

great care even in the simplest case of an untwisted affine

Kac-Moody algebra, its extension to the much more
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complicated situation of a twisted affine Kac-Moody
superalgebra is inevitably appreciably more elaborate.
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6.2. The Virasoro algebra

The Virasoro algebra (Virasoro(1970)) is the infinite-

dimensional Lie algebra with basis elements Lj ( for J = 0, ±1

±2,....), and Cv, satisfing the following commutation relations
relations:

[Lj ,Lk] = (J-K) Lj+k + (1/12) CvJ(J2-i)5j,k,O . (62.1)

[Lj,Cv] - 0 (for all J = 0,±1 ,±2 ). (6.2.2)

together with the Jacobi identity.

This algebra first appeared in the dual resonance models

for hadrons, or what is thought now to be the early days of

string theories (see Scherk(1970)). It arises naturally as an

extension of the infinite-dimensional Lie algebra of the

conformal group in two dimensions, the latter being given by

(6.2.1) without the second term. In this context the Virasoro

algebra is one of the basic ingredients of any two dimensional

theory that possess conformal invariance. Together with its

unitary highest weight representations, it has attracted the

interest of mathematicians and physicists since its

appearance, and it has beeen studied extensively both on its

own or in relation with physics. (See for example Kac and

Raina(1977), Friedan, Qiu and Shenker(1984b), Gorman

et.al.(1989), Goddard, Kent and Olive(1986), Goddard and

Olive(1988)).

Treating the basis of the Virasoro algebra as operators,

let V be a carrier space on which they act, provided with an

inner product (\jr, \y) > 0 , for all \\r e V allowing the possibility
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of (y, y) = 0 with y * 0. Assuming that V has no proper

invariant subspace the operators form an irreducible

representation of the Virasoro algebra, in which case

Cv=CvI, (6.2.3)

where cv is a constant known as the central charge of the

Virasoro algebra. If in addition there exists a vector y(h) of
V such that

Ljy(h) = 0 for all J > 0, (6.2.4)

L0y(h) = hy(h) . (6.2.5)

then the set of Virasoro operators is said to form an

irreducible highest weight representation, the highest

weight vector being y(h). Then all the other basis elements
of V are obtained from y(h) by succesive action of Lj
according to the prescription

Ldl Lj2 Lj3 ... LJn y(h) (6.2.6)

where n e Z+ and (J^ J2, J3 Jn) is any set of negative

integers which satisfy the relation J-i < J2 < J3 < ^ Jn •

Unitarity is achieved by demanding that

(Lj)t =L_j and (Cv )t= Cv (6.2.7)

in which case cv is always real.
For unitary irreducible highest weight representations of the
Virasoro algebra for which the inner product on V is non-

negative it has been established (see Friedan, Qiu and
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Shenker(1984, 1984b) that the only possible values of cv and
h are restricted to be either

cv > 1 and h > 0 , (6.2.8)

or

c
V (m+2)(m+3) (6.2.9)

and

h
{(m+3)p-(m+2)q}2-1

4(m+2)(m+3) (6.2.10)

for m e z + > p = 1,2, m+1, and q = 1,2 ,p. L0 has always a

spectrum which is bounded below.

Affine Kac-Moody algebras and superalgebras, as well as

being important mathematically, play a vital role in the

study of two-dimensional physical systems. In particular

untwisted Kac-Moody algebras (see Goddard and Olive(1986))
arise naturally in the study of current algebras in two space-

time dimensions and when the space itself is compact (e.g.

S1). The simplest case is that of the current algebra of free

massless fermions fields defined on the circle, where their

current algebra is recognized as an untwisted Kac-Moody

algebra with the central extension term identified as the so

called Schwinger term and representing second order

quantum effects. A more complicated example is that of

current algebras of boson fields.

Affine Kac-Moody algebras together with the Virasoro

algebras are the basic ingredients of any two dimensional

comformal field theory. They are related by means of a

semi-direct sum structure given by the relations
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[ Lj , 0(tk (8) as) ] = -kO(tJ+k ® as) , (6.2.11)

[Lj,0(c)] = 0, (6.2.12)

for all k, J e Z and where <t>(tk <8> as), <D(c) are operators

representing tk <S> as and c, as being any basis elements of the

simple Lie algebra on which the affine algebra is based. The

above relations imply that it is the derived algebra of the

affine algebra that possesses such structure with the

Virasoro algebra.

This structure is usually demonstrated by expressing
the Virasoro generator, bilinearly in operators of some

representation of the Kac-Moody algebra. This idea

originated from Sugawara(1968) who proposed that the

energy-momentum tensor of four-dimensional theories can

be expressed bilinearly in terms of currents taking into

account the Schwinger term. In this context the Virasoro

generators correspond to the energy-momentum tensor and

the Kac-Moody generators to the currents.

That the Sugawara construction exists and satisfies the

relations (6.2.11-12) for untwisted and twisted algebras and

untwisted superalgebras has already been demonstrated, (see

Goddard and Olive(1986), Goddard, Nahm and Olive(1985),

Nepomechie(1986), Zheng and Kim(1990), Goddard and Olive and

Waterson(1986), Hennigson(1990)).
Another objective of the Sugawara construction is to

find the eigenvalues of Cv and Lq which might be of physical

interest, particularly in string theories. In this process

unitary irreducible highest weight representations of the
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Virasoro algebra are obtained from those of the affine Kac-

Moody algebra or superalgebra, which themselves may be

determined by the representations of their underlying

algebras or superalgebras (see Goddard, Kent and

Olive(1985,1986), Bernard and Thierry-Mieg(1987)).

Consequently the eigenvalues of Cv and L0 depend on the

highest weights of these latter representations. It should be

noted also that the existence of the Sugawara construction is

guaranteed by the existence of a second order Casimir

operator of the underlying algebras or superalgebras.

Finally it should be noted that there also exists

supersymmetric extensions of the Virasoro algebra, namely

the Virasoro superalgebras which contain the Virasoro

algebra as their even part (for details on this subject see

Cornwell(1989)).

6.3. Sugawara construction for affine

untwisted Kac-Moody superalgebras

The Sugawara construction of the untwisted Kac-Moodv

superalaebras obtained from basic simple Lie superalgebras

was first carried out in Goddard et al(1987) in a field

theoretical content closely related to string theories. This
was an intermediate stage for a more important result to

which we shall briefly refer because it reveals the crucial

role of affine (super)algebras in physics.

It is known that from a N-dimensional representation of

a finite dimensional compact Lie algebra tc described by real

antisymmetric matrices we can obtain a representation of an
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untwisted Kac-Moody algebra associated with lc, by

intoducing N fermi fields (periodic or antiperiodic,

i.e.Ramond or Neveu-Schwarz) defined on the unit circle in

the complex plane. The Kac-Moody generators will then be

bilinear in these fields. The Sugawara construction of the

untwisted algebra will then give Virasoro operators

quatrilinear in the fields. There exists also a consrtuction of

the Virasoro algebra based on the energy-momentum of the

free fermion fields which is bilinear in the fields. The

equality of these two constructions is achieved by means of

the symmetric space theorem.(For details see Goddard and

Olive(1986)).

Applying the same proccess, we can obtain now

representations of an untwisted Kac-Moody algebra from real

N'-dimensional symplectic representations of a possible non-

compact real Lie algebra L using N' boson fields. Then the

equality of the two constructions of the Virasoro algebra is

provided by means of the superalgebra theorem which states

that these two constructions are equal if and only if the

above mentioned representation is the one provided by the
odd part of a superalgebra whose even part contains L and

possessing a second order Casimir operator. In addition it

was also shown that the superalgebra theorem holds in the

most general case where 1 is a reductive Lie algebra.
At this stage the Sugawara construction for a Lie

superalgebra possessing a second order Casimir operator has

to be carried out. Then in order to put these two cases

described above, together, we can start with orthosymplectic

representations of a Lie superalgebra and express the even
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and odd generators of an untwisted Kac-Moody algebra
associated with it, bilinearly in the fermionic and bosonic

fields. Then it has been demonstrated that the Sugawara
construction of this untwisted superalgebra equals the sum

of the bilinear constructions of the Virasoro algebras of the

free fermions and the symplectic bosons by means of the

supersymmetric space theorem. (For details see Goddard
Olive and Waterson (1987)).

It should be noted that the demand of equality between

the two Virasoro constructions in any of the cases referred
to above is very crucial. In the case of fermions for example,

by chosing an appropriate symmetric space as the symmetry

group of our theory we can reduce the study of interacting

fermions to free ones. This in turn has unexpected

consequences related to a highly non-linear theory, namely

the Wess-Zumino model, which now is quantum equivalent to

a free fermion theory.

We shall now briefly demonstrate the Sugawara

construction of untwisted Kac-Moody superalgebra using

algebraic methods.

Let £g1) be a complex untwisted Kac-Moody superalgebra
as described in chapter 4. Let m be the dimension of the even

part and n the dimension of the odd part of where 1° is

one of the basic simple complex Lie superalgebras. We can

choose an even basis of 1° which, with respect to the Killing
form (or any other supersymmetric non-degenerate bilinear

form, if the Killing form is identically zero) of 1° can be

normalized as
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B°(ap,c£) = 6pq for all p,q = (6.3.1)
#

where ap is called the "dual" of ap and is defined such that
#

ap = - ap. Then B°( ap , ap- ) = - 5pq. Such a choice is given for
example by

(i) iHj for all j = 1,2,...,it0, where B°( Hj , Hk) = 8jk, and Hj are
basis of the Cartan subalgebra of and it0 is its rank,

(ii) i {2B°( aa , a a )}-* (aa + a a ), - {2B°( aa , a a )}-* (aa - a a )
for each positive even root a of

There exists a particularly convenient choice (see

Cornweil(1989)) for the odd basis elements b1 ,b2,...,bn of 1°,
which is such that the matrix B° defined by

(B°)pq = B°(bp,bq) (for all p,q =1 n) (6.3.2)
is given by

(B°) = -J , (6.3.3)~

pq ~pq

where J is a n x n antisymmetric matrix of the form

J = diag (b, b, b )

and

b =
f 0 1 1
, -1 o ;

It can be easily seen that with the choice of basis
(B°)"1=- B° = J

Such a choice is realized by

(iii) ba+ = {2B°( a_a , a^}"* (aa+ a a)

(iv) ba_ = {2B°( a_a , aa)}'» (a„ - a «)
for every positive odd root a.

(6.3.4)
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Then for each graded representation of 1°, the second

order Casimir operator has the form

C2 = -Z^=10(ar)<D(ar) -Ip=1Jpq0(bp)0(bq) , (6.3.5)
and identifing ar and bp as above, it takes the form

c2 = r^o(Hj)2 + Sa64.c.(ha) - 2e4+o<ha)

+ \eA+ 2d)(a_a)<D(aa) / B°( aa , aa).

(6.3.6)

With this form of C2 and for the adjoint representation of

it can be proved that the eigenvalue of the second order

Casimir operator is 1 if t°s has non-zero Killing form and is 0
if it has identically zero Killing form.

Consider now the bosonic operators 0>(tj<S> ap), O(c), O(d)
and the fermionic operators <X>(tk® bq), for all p »1 m, q =

1,...,n, and j e Z and k e Z or k e 1+\. Following the

terminology of Goddard et al(1987), and by analogy with the

usual nomenclature for the Virasoro algebras, the situation

for which j,k e Z will be called the "Ramond" case, and that

with j e Z and k e Z+f will be referred to as the "Neveu-
Schwarz" case. (In this description the untwisted affine

Kac-Moody superalgebras B(1)(0/4) (for t = 1,2, ... ) are

examples of the Ramond case). Let V(A) be a carrier space of

a highest weight representation of £g1) on which the above
operators act, the highest weight vector being y(A). The
action of the operators on V(A) is described by

<t>(tJ ® ap) \j/(A) = 0 for all p - 1 m and all j > 0,
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0(ti <S> bq) \|/(A) = 0 for all q = 1 and all j > 0,

in the "Ramond" case and

<D(tJ+i ® bq) y(A) = 0 . for all q = 1,...,n and all j > 0,

in the "Neveu-Schwarz" case, where j e Z, and

<D(c) y(A) = ca\j/(A) ,

<D(d) \j/(A) = A(d) \|/(A) . (6.3.7)

Let y(?i) be any weight vector of V other than y(A). Then
there exists a non-negative integer K depending on the

weight X such that

0(tJ ® ap) v(X) = 0

0(tJ+iE <s> bq) V(X) = 0 (6.3.8)

for all j > K-| e, GeZ) p = 1 q = 1 n and where e = 0

and 1 for the Ramond and Neveu-Schwarz cases respectively.

Finally the generalized Lie products between the operators O

are those of chapter 4 for Every \j/(A,) will be obtained

from \j/(A) by the action of a linear combination of products of

a finite number of operators on it. On the subsuperalgebra of

£g1) which is isomorphic to 1° this representation will
provided a highest weight representation of Moreover on

the even part of 1° this will provide a highest weight

representation too.

Then the Sugawara construction for Lj is given by
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, , . even . odd , 1 v,m v100 , _ /. ij.i , i

Ljy={Lj + Lj } y= - - Lp=1 Zj=.co {:<D(tJ+J 0 ap)0(t-J 0 ap):)y

+ ^Sp.1 z;., 2," „ Jpq{:<!>(tj+i ® b ) 0(t-f ® b ):} v

+ rie8JioY. (6.3.9)

for every y g V(A) and where e = 0 and 1 for the Ramond and
Neveu-Schwarz cases respectively, k is an appropriate

"normalization" constant to be found together with r|. Clearly

k has to be inserted to give the desired relations (6.3.12a,b)

below, thereby establishing the semi-direct sum of the

Virasoro algebra with The first sum is identified as

LjVen and the last two sums as L°jdd. The normal ordering for
the bosonic operators is given by

: 0(tj <8> ap) o(tk <8> aq) : =

<D(t^ <8> ap) 0(tk <8> aq) , if j < k,

f{<J>(tj <S> ap) 0>(tk 0 aq) + <D(tk 0 aq) <D(tj 0 ap) , if j = k,

<D(tk 0 aq) <D(tj 0 ap) , if j > k. (6.3.10)

where j, k g Z, and for the fermionic operators

: <D(tj 0 bp) o(tk 0 bq) : =

<D(tj 0 bp) <D(tk 0 bq) , if j < k,

H^>(tj 0 bp) 0(tk 0 bq) - <D(tk 0 bq) <D(tj 0 bp) , if j = k,

- 0>(tk 0 bq) <t>(tj 0 bp) , if j > k. (6.3.11)
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where j, ke Z, in the Ramond case and j, ke Z + } in the
Neveu-Schwarz case.

It can be proved that with definition (6.3.9)

[ Lj , <P(tj (8) ar) ) = -jO(tJ+j 0 ar) , (6.3.12a)

[ Lj , 0(tk ® bq) ] = -k<D(tJ+k ® bq) , (6.3.12b)

for all j e Z and all k e Z or Z+±,

[Lj ,0(c)] = 0, (6.3.13)

provided that k is given by

k = 2ca+1 = 2cA + C2(ad) (6.3.14)

if 1° has non-zero Killing form and

k = 2ca= 2ca + C2(ad) (6.3.15)

if has identically zero Killing form, where C2(ad) is the

eigenvalue of C2 in the adjoint representation.

Having established the above results we can check that

(for J+K * 0) [Lj , Lk ] \|/(A.) = (J-K)Lj+k \y(X.) in both the Ramond
and Neveu-Schwarz case. Finally the full commutation

relations of the Virasoro algebra are obtained by evaluating

the commutator [Lj , LK ] y(A) with J+K = 0. Since this step is
the most crucial one we should distinguish the two cases.

(a) The Ramond case

Without loss of generality we may assume that J > 0 and

thus K = -J < 0. By evaluating first [Lj , LeVjen ] \|/(A) it is
found that

[Lj , Lejen ] v(A) = {-(2J/K)Zp., <J>(t° ® ap) 4>(t° ® ap)
I
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+ (1/12)J(J2-1 )(2cAm/K)} \j/(A). (6.3.16)

However LQVen \j/(A) is easily shown, by considering the Le0ven
of (6.3.9) and taking into account the normal ordering and the

action on y(A), to be given by

Lo^ V(A) = - ^ Xp=1 O(t0 ® ap) O(t0 ® ap) \(/(A) (6.3.17)
For [Lj , L° jd ] v(A) we get

[Lj , L° jd ] v|/(A) = {(2J/K)Zp=i £q = 1 Jpq{<D(t° <S> bp) <t>(t° 0 bq)}

- (l/12)J(J2-1)(2cAn/K)} v(A). (6.3.18)

By considering the Lgdd of (6.3.9) and taking into account the
normal ordering and the action on y(A.) we can easily find

that

CV(A)= O(t0 ® b }v(A)(6.3.19)

Thus comparing (6.3.16) and (6.3.18) shows that in the

Ramond case

the value of the central charge cv is given by

cv = 2cA(m-n)/K , (6.3.20)

and the eigenvalue ofL0 is given by

L0V(A) = {C2s(As°)/K) V(A) (6.3.21)
where C2s(A0) is the eigenvalue of the second order Casimir

operator in the representation of the Lie superalgebra
with highest weight A0.

(b) The Neveu-Schwarz case
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Again without loss of generality, we may assume that J > 0

and thus K = -J < 0. By evaluating first [Lj , LeVj0n ] \|/(A) we

get exactly the same result as in the Ramond case.

For [Lj , L° jd ] V(A) we get

[Lj , L?jd ]¥(A) = {(2ncA/K)<- (1/12)J(J2-1) - (1/8)J}y(A).

(6.3.22)

L0 d \j/(A) is easily shown, by considering the L°0dd of (6.3.9)
and taking into account the normal ordering and the action on

\|/(A), to be given by

L^d \)/(A) = - (ncA/8ic) \j/(A) (6.3.23)

Thus in the Neveu-Schwarz case the central charge is as

before but the eigenvalue of L0 is given by

LqV(A) - (1/8k){ 8C20(Ao) - ncA} y(A) (6.3.24)
where C2o(Ao) is the eigenvalue of the second order Casimir
operator of the representation of the even part of t°s with
highest weight Aq.

The final stage is the determination of the relation of

O(d) with the Virasoro algebra. It can be easily observed

that [ L0, O(d) ] commutes with all the operators of the

representation of I*1) and thus by Schur's lemma and theo

eigenvalues of L0 found above

L0V(A) = {- o(d) + A(d) + h}\j/(A) , (6.3.25)

where h is given by (6.3.21) or (6.3.24).

Some important remarks are in order. We drescribe as

"critical representations" of l(s1) those representations for
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which the Sugawara construction fails. This is the case

where the constant k = 0 i.e. when cA = -£ or cA = 0. Consider

BC)(0/Jt). According to chapter 5, in a standard irreducible

highest weight representation of B<1)(0/Jt) the eigenvalue cA

of such representation is given by cA = < A , 5 > where A is the

highest weight of the representation. From relations (5.19),

(5.20) of chapter 5 we deduce that cA is always positive and

thus no such representation is critical. Examples of critical

representations are provided by certain representations of

the real untwisted superalgebra osp(1)(24 + 1/*; IR)(see

Goddard, Olive and Waterson(1987))
i

The existence of unitary irreducible highest weight

representations of £(s1), which will lead to unitary
representations of the Virasoro algebra, have recently been

investigated in Jarvis and Zhang((1988),(1989)). They

considered irreducible representations of the untwisted

superaglebras £g1), built from unitary irreducible
representations of 1°. It was demonstrated that with

appropriately chosen adjoint operation on the elements of a

real untwited Kac-Moody algebra based on a real compact or

non-compact form of £°, unitarity will restrict the values cA

and cv. Constraints on cA were found and come both from the
even and odd roots of 1° It was shown that the only

o

candidates for unitary representations are untwisted

superalgebras obtained (i) from the compact real forms of

A(r/0) and C{2. + '\), su(r+1/1) and osp(2/24;IR) respectively,
I

(ii) the non-compact real forms of A(1/s), D(r/2) and B(r/1),

su(1,1/s+1), osp(2r/2; IR) and osp(2r+1/2; IR) respectively and

(iii) non-compact real forms of D(2/1; a), F(4) and G(3)
\
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whose even parts are given by su(2) © su(2) ®su(1,1), su(1,1)

0 so(7) and G2 © su(1,1) respectively. The representations of

the untwisted superalgebras are built from those of the

superalgebras mentioned above, the latter being such that

those of case (i) are unitary finite dimensional irreducible

and of highest weight but in the rest of the cases are unitary

irreducible but infinite dimensional. From case (ii) it is

obvious that we cannot obtain unitary representations of the

Virasoro algebra constructed as in (6.3.9) with being

osp(1/2£; IR)(i^1). In the case of osp(1/2; !R) we do obtain

such representations but we have to consider infinite

dimensional representations of osp(1/2; IR). Finally it should

be noted that unitarity of representations of have recently

been investigated by Gould and Zhang(1990).
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6.4. Sugawara construction for A(2)(24-1/0)
and A(4)(24/0)

6.4.1. Choice of basis for the (p=0,1,2,3)

subspaces.

The first step in the construction is to define

appropriate normalisation amongst the basis of I°p(4)
subspaces with respect to the Killing form of A(24-1/0) and

of A(24/0) . A convenient choice is to work is with the dual

basis, ajjr, of the Ip(4) subspaces defined by

B°(ap,, a£.r.) = 5pp.8rr. (6.4.1)
for all p,p' = 0,1,2,3, and all r =1,2,...,np, r'=1,2 np., B°( , )
being the Killing forms of A(24-1/0) or A(24/0). Recall that

these as given by:

B°(M,N) = 2(24-1) str(M,N) (6.4.2)

for all N,N supermatrices of s4(24/1) ( = A(24-1/0) ) or

B°(M,N) = 4* str(M,N) (6.4.3)

for all M,N supermatrices of s^(2it+1/1) ( = A(24/0) ) .

(i) For p = 0, £q(4)= Djj or Bjj, which has dimension n0 =

<(2i-1) or *(24 + 1) respectively. With basis elements

denoted by a0r (r = 1,...,n0), relation (4.1) gives:

B°(a0r, a^r.) = 5rr., for all r,r'=1,...,n0, (6.4.4)
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where ajr. is the dual basis of s^r Since £3(4) consists of
even elements, we can always choose the basis %r such that

B°(a0r , %r.) = -5rr. , for all r,r' =1,...,n0, (6.4.5)

and thus their duals can be defined by

a3r = -£fer , for all r=1 n0. (6.4.6)

It is also assumed that these basis satisfy the following

relations between the Killing forms of A(24-1/0) or A(24/0)

and Djj or Bt respectively(see chapter 4):

B°(a0f,%r.) = (2«-1)/(*-1) BD<(a0„ %r.) _ . 8rr., (6.4.7)

for all r,r' = 1,...,n0= 4(24-1).

B°(a0r, %r.) - (4i)/(2«-1) BB«(a0r , = - 5rr. (6.4.8)

for all r,r' = 1,...,n0= 4(24 + 1).

(ii) For the and £^(4) subspaces of A(2>(24-1/0) and
A(4)(24/0), which have dimensions = n3 = 21 and 24+1

respectively, all the elements are odd. Consequently the
basis elements will be denoted by b1p and b3p, and relation
(6.4.1) becomes

B°(b1p , b*p.) - 8pp- , for all p,p' = 1 n,, (6.4.9)

B°(b3p,bJp.) = 5Pp., for all p,p' - 1 n3 , (6.4.10)

where, as before, b1p and b3p are the duals of b1p and b3p
#

respectively. It can be easily checked that b1p should belong
in £3(4) and b^p in Thus we can define
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b?p = -b3p> (6.4.11)

bjp = bip . (6.4.12)

(Note that such choice is consistent with (2.33a)).

(iii) For the £°24) subspace of A(2)(24-1/0) and

A(4)(24/0), which has dimension n2 = 2Z2+Z and 2£2+3*+1

respectively, all the elements are even. Denoting its basis

elements by a2s for all s = 1,...,n2, relation (6.4.1) becomes

B°(a2s,a2s.) = 5ss. , (6.4.13)
#

where a^ is the dual of a2s. Since a2s are even basis we can

always orthonormalize them with respect to the Killing form

B°( , ) by requiring that

B°(a2s>a,s,) = -5SS. (6.4.14)
# ~ 0(4)

and thus define a2s = -a2s. In the case of L 2 attention
should be concentrated on the fact that it provides a

representation of £q(4) which is the direct sum of the trivial
representation with the (2Jt2+*-1) or (242+34)-dimensional
irreducible representation of or respectively. Thus a

particular basis element has to be picked out from the

commutative subspace of £2W, which together with the rest
of the basis will satisfy (4.1) and be the basis of the trivial

representation. The choice of this element in terms of the
basis found in chapter 4 is unique in a sense that will become

apparent from the analysis below.

Let C2(ad) be the quadratic Casimir operator of
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A(2^-1/0) or A(24/0) in the adjoint representation. If a2s is
a basis element of 12(4) then

C2(ad) a2s = a2s, (6.4.15)

with basis elements a0r, a2s, b1p, and b3p satisfying (6.4.1).
C2(ad) is given by

C2(ad) = -2"°1®(a0,)<I>(aor) - 2"^<t(a2s)<t>(a2S)

-Snp^®(b1p)<l>(b*p) - Znp3_,<t.(b3p)<I>(bJp) , (6.4.16)
where O are operators of A(2£-1/0) or A(2£/0) belonging in

the adjoint representation. From (6.4.16) it follows that

C2(ad) a2s- = -Xr®10(a0r)<l>(aor) a2s'" ^s^1^>(a2s)<^>(a2s) a2s*

-^pii^>(bip)0(b*p) a2s. - S33p<D(b3p)0(b|p) a2s..(6.4.17)
The first sum can be evaluated to give

rf1^)(a0r)<^>(a0r) a2s' = rfi^s-=i (E2(a0r)E2(a0r))s"s' a2s" -

(6.4.18)

where r2 is the representation of D* or B* provided by L^.
The second sum can be evaluated to give

" Xs^0)(a2s)O(a2s) a2s* = "^rfi^s-=i (T2(aOr)T2(aor))s"s* a2s" •

(6.4.19)

Similarly the third sum yields

- Z^ 0(b1p)0(b?p) a2s- = -Zp^ [ b1p , [ a2s., b3p ]], (6.4.20)
and the fourth sum can be evaluated to produce
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- Zp3=1o(b3p) 0(b3p) a2s- = Ep3=1 [ b3p , [ a2s., b1p ] ]

= [ bip ,[ a2s., b3p ]]. (6.4.21)

Thus it follows from (6.4.16) to (6.4.21) that

■2 ^pli [ b-ip > [ a2s'. b3P ] ]

= s2s- + 2 ^s?=1 ( T2(a0r)r2(a0r) )s-s- a2s- . (6.4.22)
If the basis element a2s> corresponds to the trivial

representation then the second term on the r.h.s. gives zero

and

^pli t bip >[ a2s'. b3P ] ] = -| a2s< . (6.4.23)
On the other hand, if a2s- belongs to the non-trivial

irreducible representation of D* or then

^s-_i ( r2(aor)r2(aor))s"s' a2s- = - p-1(n0/n2) y2 a2s' >

(6.4.24)

(see Appendix B (1)), where y2is the Dynkin index of the non-

trivial representation of or , which is given by(see

Cornwell(1989):

y2 = (2*2+«-1)/{(2<-1)(*-1)} or (2^2+3^)/{(2^-1)^)(6.4.25)
respectively, and p is given by (see (6.4.7) and (6.4.8)):

p = (2*-1)/(<-1) or 4^/(2^-1)) (6.4.26)

respectively. Then, from (6.4.22) and (6.4.24)-(6.4.26), it
follows that
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Epl, [ b1p> [ a2s.,b3p ] ] = {1/2(2^-1)} a2s- , if l°0W = (6.4.27)

Spli [ blp, [ a2s.,b3p ] ] = (1/4*) a2s. , if Z°(4) = .(6.4.28)
A basis of the trivial representation of D* , that would

satisfy (6.4.23), (6.4.1), and belong in £2(4)'can be chosen to
be

1
cO . (6.4.29)2^ ~

where c° is the basis element of the even Abelian part of

A(2*-1/0) given by co = - (1/2*-1 )diag (J^*.1)- Similarly for
the trivial representation of B^ the basis element can be
chosen to be

1
cO, (6.4.30)

V2(2*+1)
where c° is the basis element of the even Abelian part of

A(2*/0) given by c° = - (1/2*)diag (i2<+i>*0- Note that c°
commutes with any even element of A(24-1/0) or A(24/0).
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6.4.2. Sugawara Construction for A<2)(2*-1/0) and

A(4)(24/0) in the "Ramond" case

Let us now introduce the following operators which will

assumed to belong to a highest weight irreducible

representation of A<2)(2jM/0) or A<4)(2Jt/0) (as appropriate):

<D(t4J <8> a0r) (for all r = 1 n0 and all jeZ),

0(t4i+2 <S> a2s) (for all s = 1 ,...,n2 and all jeZ), (6.4.31)

O(c) , O(d) ,

which are all considered to be even, and

<t>(t4i+1 ® b1p) (for all p = 1,...,^ and all jeZ),

<X>(t4i+3 ® b3p) (for all p = 1,...,n3 and all jeZ), (6.4.32)

which are all considered to be odd. Because all the exponents

j are assumed here to be integers, this will be referred to as

the "Ramond" case. These operators will act in a carrier

space V(A) with a highest weight vector y{A) such that:

0(t4J <S> a0r) \j/(A) = 0 for all r = 1,...,n0 and all j > 0,

0(t4J+P ® apr) v(A) = 0

(for all j > 0, and all r = 1,...,np, with p = 1,2,3),

O(c) \j/(A) = ca\k(A) ,

<D(d) \)/(A) = A(d) . (6.4.33)
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Let \)r{\) be any weight vector of V other than \j/(A). Then there

exists a positive integer K depending on the weight X, such

that

0(t4i+P 0 apr) \\f{X) = 0 (6.4.34)

for all j > £( K-p), (jeZ), p = 0,1,2,3, and r = 1,...,np. Finally
the generalized Lie products are given by

[ o(tj 0 apr) , o(tk 0 apV) ] = o(tj+k 0 [ apr , ap.r. ])
+ j5j+k'°B0( apr.ap'r') o(c) ,

[ c>(d) , 0(t' 0 apr) ] = jO(tj 0 apr) ,

[ <D(C) , 0(tj 0 apr) ] = 0 ,

[O(c) , <t>(d)] =0, (6.4.35)

for all j mod 4 = p, k mod 4 = p', for p,p' = 0,...,3, for r =

1,...,np, and r'=1 np.
We can now define the following highest weight

representation of the Virasoro algebra using the operators of

A(2>(2jM/0) or A(4)(2*/0) discussed above:

Lj = ~ { ® a0r) <i>(t'4i ® a*r) :

+ 2ns!, : 0(t4J+4^2 9 a2s) 0(f4)"2 9 a*. ) :

- 2". Sp1.,: o(t4J+4'+1 9 b1p) otf4'"1 9 b*p) :

- £p3.,: *<t4J*4i+3 • b3p )a>(t'4i"3 9 b»p):}
+ v Sj qI (6.4.36)

The normal ordering , : : ,is defined by

;o(t4J+4j+p 0 apr)o(t"4j"p 0 apr): =
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0(t4J+4j+p ® apr)<D(f4j-p ® apr) , if 4J+4j+p < -4j-p,

±{<D(t4J+4j+p 0apr)O(f4j-p ®apr) + o(f4j-p®apr)cD(t4J+4j+p ®apr)}

if 4J+4j+p = -4j-p ,

<D(t"4j"p <8> apr)<D(t4J+4j+p ® apr) , if 4J+4j+p > -4j-p, (6.4.37)

for all bosonic operators with p = 0 or 2 and with r = 1,...,n0
or n2, and by

. 0^4j+4j+P 0 bpr)o(t"4j"p ® bpr) : =

O(t4J+4j+p0 bpr)0(t"4j-p® bpr) , if 4J+4j+p < -4j-p,

i{0(t4J+4j+p ® bpr)0(f4j"p ®bpr) - 0(f4j"p®bpr)0(t4J+4j+p ®bpr)}

if 4J+4j+p = -4j-p ,

- O(t"4j"p0 bpr)O(t4J+4j+p0 bpr) , if 4J+4j+p > -4j-p (6.4.38)
for all fermionic operators with p = 1 and 3 with and r =

1,..•,n-j or n3.

In what follows we shall prove that the Virasoro

generators defined as above and the A(2)(2*-1/0) (or

A(4)(2j?/0) as appropriate) superalgebra together form a

semi-direct sum, with the Lj satisfying the relations (2.1).
We shall also find the values of Cv and the eigenvalues of Lq .

, i

(a) Evaluation of the product [ Lj , <D(t4j ® a0r.) ] \|r(X), for
YWeV(A):

After some algebra it can be shown that
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[ Lj , <S(t4' ® a„,) ] V(X) =

- ^{ 2j--- £n,!i{o(t4Jt4i ® a0r)O(t"4i+4i ® [ a0r, a0r. ])

+ <j>(t4J+4^4i'® [ a0r, a0r, ])0(f4i ® ^f)}
- 2£- 2ns2.,{l'(t4Jt4i+2 ® a2s)0(t-4i-244'® [ %1 , a0, ])

+ <j>(t4J+4i*2+4i' ® [ a2s, a0r. ])o{f4'-2®%s)}

+ 2j:._ £pl1{®(t4J+4i+1 ® b1p)®(t^« [ b,p , a0r.])

+ 8 j bi^ aori j, od-oi-1®^)}
" 2," - 2np3,,{®(t4J+4i+3 ® b3p)®(f4l-3+4'' ® [ b1p, a0,])

+ ® [ b3p , a0f, ])o(t-4'"3 ® b,p)}}y(X)
■ (4j7k) 2cA4>(t4J+4i' ® a0l.) V(X) , (6.4.39)

where (6.4.35) and (6.4.36) have been used. In order to

evaluate the infinite sums in (6.4.39), we have to introduce

partial sums and make use of (6.4.34)(For more information
on this method see Cornwell(1989), Knizhnik

Zamolodchikov(1984), Goddard and Olive(1985),

Todorov(1985), Goodman et al(1984,1984b)).

Then the infinite sums in (6.4.39) can be written as

= (6.4.40)

limrn-» r=i 0(t4J+4j ®a0r) 0(f4j+4j' ®[ a0rJ)
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- S^.K/4 Z"!, <t>(t4j44|+41'® [ aor. a0r, ]) <t(f4) ® a0r)

•^H'W Z^Od4344'42® a2s) ®(f4i'2441'® [%s,a0,])

+ 2jl(K+2)/4 ®(t4J+4i+2+4'' ® I a2s 'a0f 1) ®(t'41'2 ® %s)

+ ^j=J'-(K+1 )/4 Zp1,,®(t4j44i41 ®b1p) d)(t"4i"'44i'® [ (jp,a0r.])

+ 2™.(K+,),4 2np1.1 o(t4j44i4l44i'® [ b1p, a0r,]) ®(t-4i"1® b,p)

" 2^,(k+3)(4 Znp3,1®(t4J+4i43® b3p)0(t-4i-344i'® [b1p, a0,])

+^.(K+3)/42np3,1<l>(t4j44i4344)'®[ b3p, a0r.])O(t"4'"3® b1p)}} V(X).
Now observe that

[ a0r . a0r' ] = ^r°=i^rr' a0r" (6.4.41)
r"

where {r. are antisymmetric structure constants of Djj or ,

^n2
[ a0r' . a2s ] = ^s.=ir2(a0r')s,s a2s' » (6.4.42)

where r2(a0r.) denotes the non-trivial representation of or

Bjj whose carrier space is the subspace, and where

r2(aor')s's = —r2(aor')ss'- (It should be noted that n^ = 242+£-1
or 242+34 in the two cases). Also

[ a0r > ^1p ] = ^p'=i ^(^OrOp'p t> 1 p» ,

[ ao,, b3p ] - Z£, n(a0r.)p.p b3p., (6.4.43)
where r^aorO and r3(a0r') denote the representations of D* or

Bjj whose carrier spaces are provided by the £°(4) and Hg(4)
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subspaces respectively. It can be easily checked using the

invariance property of the Killing form that

rl(aor')PP' = -r3(aOr0p-p- Defining D(a0r.) = ri(a0r.), relations
(6.4.41) can be written as

[ a0r > b"lp ] = ^p'=i ^(a0r')p'pblp' >

[a0r,b3p] = -2^ D(a0,)pp. b3p. . (6.4.44)
Using the above definitions, and after some algebra, (6.4.40)
becomes

- lirrwJ- MzT-m-r*, C {o(t4J+4i- • [ aor , a0r ])K

+ 0(t"4j ® a0r)O(t4J+4j+4j' ® a0r") + (4J+4j+4j') 54J+4I,.° ca B0(a0r..,a0r)} }

- —{Xj=m-j'+i X s=i Xs2=1 r2(a0r.)s,s {^(t4J+4^ ® [ a2s , a2s- ])1C

+0(t"4j+2®a2S')^)(t4J+4j+4j +2®a2s)+(4J+4j+4j'+2) 54J+4j,-°cAB°(a2s,a2s.)} }

- M 2 T-m-i'+i I'X, D(a0r.)p.p { «(t4Jt4r ® [ b,p. , b3p ))
K

-<D(t"4j-1®b3p)0(t4J+4j+4j'+1®b1p.)+(4J+4j+4r+1) 54J+4j'.0cAB°(b1 p',b3p)}}

- 1-{ 2T-m-iv, Z*, D(a0,)pp. {o(t4J+4i' ® [ b3p. . blp ])

- o(t"4j'3 ® b1p) o(t4J+4j+4j,+3 ® b3p.)

+ (4J+4j+4j'+3) 84J+4i'-0 cA B°( b3p. , b1p)}}} V(*.).(6.4.45)

It may now be observed that
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no pA r1'

Xr=i Xr,,=1 frr- B°(a0r.. , a0r) = 0 ,

2=1 ^=1 r2(aor')s's B°(a2s ,32s') = 0 • (6.4.46)

Xp=i ^p,1=i ^(aor')p'p B°(biP' ,b3p) = 0 ,

Xp=t Xp?=1 D(aor')pP' B°(b3p. ,b1p) = 0 ,

r"
(because of the antisymmetry of fr. and the fact that the
trace of any representation of a semi simple Lie algebra is

zero). Consequently, for sufficiently large m, (4.45) becomes

(6.4.47)

■ SXt f>(t4J*4i' ® I aor . aor I) }
IV

- — {Sj=m-j'+i X^ Xs,'=1 r2(a0r.)S'S 3>(t4J+4^ ® [ a2s , a2s. ])}

- — {Xj=m-j,+i Sp=i X ' D(aOr0P'p 0(t4J+4^ ® [ b1p- , b3p ] )}

- ^{S,m,m.r+1 Ip3., Zn?=1D(a0,)pp. {®(t4J+4i' ® [ b3p. , b,p ])}}V(X) .IV

It can be easily checked that (see Appendix B(1))

Xr=i X,0 = 1fr,[ a0r» , a0r ] = p^aor1 , (6.4.48)

C Xs'=ir2(a0r.)s-s [ a2s , a2s- ] = y2^_1 aor' (6.4.49)

Zpl, Zp.1=1D(a0,)p.p[ b1p- , b3p ])

= Xp!1 Xp?=1D(a0r.)pp- [ b3p. , b1p ] - -yd p"1 a0r., (6.4.50)
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where p and y2 are as in (6.4.25) and (6.4.26) and yD is the
Dynkin index of the representation of D* or , provided by
the and subspaces, given by

yD = {2(<-1 )}-i for , yD = (2<-1)-i for B, . (6.4.51)

Thus applying (6.4.48)-(6.4.51) to (6.4.47) and taking the
^ m

limit we obtain (on noting that 2aj=m-j'+i 1 = j' )

[ L,, O(t"l'®a0r.) ] V(M -

(X)} • (Sj'/k) cA4>(t4J+41' ® a0r.)

= - j" ®(t4J+4' ® a0r') , (6.4.52)

provided that

k = 8ca+1 . (6.4.53)
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(b) Evaluation of [ Lj , 0(t4i,+2®a2s.) ] for y(X)<= V(A):

(1) Consider first the case where a2s. is not a basis

element of the trivial representation of D^ or B* , providedby
~0(4)

the subspace L2 . Relation (6.4.39) will have the form

[ Lj , <D(t4j'+2 <g>a2s.) ] v(M

- {-^{ 2j:..£"!i{<l»(t4jH-4l®a0r)<I>(f4i+',i't2® [aopa2s.])

+ <t,(t4J+4i+4i'+2 ® [ a0r, a2s. ]) 1>(t'4' ® a0f)} }

{ 2". 2^{0(t4J^®a2s)0(t-4i-4i'® [%s,a2s.]>

+<C(t4J+4i+4+4i' ® [ a2s,a2s.]) <t>(t'4i'2 ®a,s)} }

+ 1 { 2". 2np:,{ 0(t4j44l" ® b1p) ® [ *p , a2,])

+ 0(t4J+4'*u4' ® [ b1p, a2s.]) 4>(t"4'"1 <s.t%p)} }
- I { 2,:._ Sp3,,{<l>(t4J*4i43 ® b3p) o(t-4'-1+4'' ® [ b1p, a2s.])

+ <t(t"J+4j.5.4j- g, [ b^_ a2sJ) <t(t'41'3 ® b1p)}}} y(X)

■(4(2j'+1)/K) cA®(t4J*4r+2 ® a2s.) V(X).(6.4.54)

As in the previous case we shall use partial sums to evaluate
the infinite sums in (6.4.54)
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limm^JAmV(X) } (6.4.55)

= limm->oo{"^{^j=j'+i(2"K) £ r=i<f(t4J+4j ® a0r) <D(t"4j+4j,+2 ® [ aQr a2s,])

+ Zj=-iK Ir=°i o(t4J+4j+4j'+2® [a0r> a2s. ]) o(t"4j <g> a0r)}
- '-{ Z™,{K Zns2,<i>(t4J*4i+2 0 a2s) a>(t'4i*4i'® [a,s,a2s.])

+ 2M(k+2)£s2.i <S>(t4J+4|+4t4i'® [a2s,a2s.]) Off41"2® a,s)}

+
k t £J-MO-K) 2pli®(t4J+4i41 ® b1p) o(f4i+1+4'' 0 [b3p,a2s.])
+ ®(t4J*4it3+4i' ® [ b1p, a2s,]) ®(f4'"1®^p)}

" i{^H(K+„ rp>(t4^ • b3p) 0(t-4i-l44i" ® [ blp, a2s.]>

+ £M(k*3> £p3,, ®(t4J+4i*5+4i'® [ b3p, a2s,]) 4>(t-4i"3® b1p)}}v(X).
Now since [ a2s , a2s. ] e 1,J(4) , define the quantities Wsrs. by

[ a2s > a2s' 3 = ^rf-| Wss. a0r. (6.4.56)

Then, using (6.4.42) and the invariance property of the Killing
form, it is easily shown that:

Wsrs. = r2(a0r)s-s • (6.4.57)

Similarly, defining the quantities Bg.p and 7jp by

[a2s.,b3p] = r;.,B^b1pl, (6.4.58)

[a2s.,b1p] - Xp?,, b3p., (6.4.59)
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it can be easily shown using the invariance property of the

Killing form that

BSP.P - Bg.p. and Tp.p = Tp.p. . (6.4.60)
With the help of (4.56)-(4.60), and after some algebra, (4.55)

becomes

) - (6.4.61)

s",°, s"2 r2(a0r)s.s{a.(t4J+4i'*2®[a0r, a2j)
IV

+ <D(t"4j"2 ® a2s) o(t4J+4j+4j'+4 ® a0r)} }

+ 1{ 2* r2(a0r)s-s{O(t4J+4)'+2 « [ a2s , a0r ])
lv

+ ®(t'4i ® a0r) o(t4J+4it4|'t2 ® a2s)}}

+U zr.m-r 2pi, zp_, Bj; {o(t4J+4i'+2 ® [ b,p. b1p. ])K

-0>(f4j-3 ® b1p.) d)(t4J+4j+4j'+5 (8) b1p)}}

- '-{ Zr.m-M 2£l 2p?„, TsP.p {<I.(t4J+4i'+2 ® [ b3p , b3p. ))
- o(t"4i"1 ® b3p.) o(t4J+4i+4i'+3 ® b3p) }}}y(\) .

For sufficiently large m the second , fourth, sixth and eighth

terms of (6.4.61) give zero and, of course, 2,j=m-j' 1 = j + 1.
Now observe that

n0 „n2
^r=1 ^S=1 r2(a0r)sis [ 3or ' a2s ] = (no/) p"1 Y2 a2s' > (6.4.62)
and that

£pli Sp!., Bp.p [ b,p , b,p.] - Zpl, [ b,p . [ a2s., b3p ], (6.4.63)
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which is given by (6.4.27) or (6.4.28). Also,

= -^p=i [ t>ip . [ a2s- . b3p ] . (6.4.64)

(because of the Jacobi identities). Then, substituting

(6.4.62)-(6.4.64) into (6.4.61) and after some algebra, we

finally deduce that

[ Lj, a>(t4j,+2<g>a2s.) ] V(X)

- limm_>oo{Am\|/(?t)} -{(4r+2)/k}2cA0(t4J+^'+2® a2s.) v(X)

= - i(4j'+2) 0(t4J+4j'+2 ® a2s.) V(X) , (6.4.65)

provided k is given by (6.4.53).

(2) Consider the case where a2s- is a basis element of the
trivial representation. If a2s- is the basis of the trivial

representation of D* or B* mentioned above then the only non¬

zero contributions in the sums are obtained from the last

four sums of (6.4.54). These can be dealt in exactly the same

way as above, but now (6.4.63) is given by (6.4.23) instead of

(6.4.27) or (6.4.28). Again we get the same results as in

(6.4.65).

(c) Evaluation of [ Lj , 0(t4i,+1<8>b1p-) } \jr(X), for e V(A):

Using definition (6.4.36), properties (6.4.35), and

applying the method of partial sums we get
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[ Lj , <t>(t4iv,®b1p.) ] y(X) = limm_«,{Amy(X.)}

- {<4j'+1 )/k} 2ca a.(t4J+4j'+1 ®b,p.)y(X) (6.4.66)

where, by properties (6.4.34), we find that

limm^„{ArnVW}- (6.4.67)

= 2 ,!,<!>(t4J+41 ® a0r) ®(t"4j+4j+1 ® [ a0ri blp.])

+ Z™.4k Z"!i 4,(t4J-4j-4''*1 ® [a0r, b1p. ]) ®(f4' ® a0r)}

Z".2.,®^*41*2 ® a2s) •(t-Ml1-1® [%s,blp.])

+ £M(K+2)£.:i <t>(t4J+4J*3*4i'® [a2s,blp.]) 0(f4''2®%s)}

^np1,,fl>(t44*41*1®b,p) <t>(t'4i+4i'® [bjp,b1p.])
- SmIK.I)2?-! fl.(t4J+4'42+4i'® [ b1p, b1pJ ®(f4i'1®b3p)}

£np>(t4J+4i+3® b3p) ®(f4i-244i' ® [b1p, blp.])
- £J^-t(K+3) 2p3,, ®(t4J+4i*4+4i'®[ b3p, b,p.]) ®(t-4''3®blp)}}y(^)}.
Defining the quantities A^,p by

[ b3p , b1p. ] = X"°, Ap.p a0r , (6.4.68)
and using (6.4.44) and the invariance property of the Killing
form, we deduce that

Ap.p - D(a0r)pp. . (6.4.69)

Similarly defining Spp. and Rsp. by
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t b1p , b1p. ] = S^Sp^, (6.4.70)

[a2s,blp.] = Sp^R^bap, (6.4.71)
it is easily checked that

f£p. = rspp and Spp. = -rpp. (6.4.72)

Using (6.4.68)-(6.4.72) in (6.4.67) and after some algebra we

find that

H'TWjAmVP.)} (6.4.73)

- £"fl£pllD(a0r)pp'{o(t4J+4i'+1® [a0r, b,p ])

+ a>(t-4j-3 0 b1p) 0(t^4+4j+4j'+4 0 a0f)

• £"!, ^pliD(a0r)pp. {<t.(t4J.4iV, ® [ blp , a0r])

+ <D(t-4i 0 a0r) <x>(t4J+4j+4j'+i 0 M)

♦ i{2^+t 0 [ a2s , b3p])

+ <D(t-4j-i <8> b3p) <D(t4J+4j+4i,+2 0 a2s)}}

• ^{S)m.m.r+1£n412:p.21Rpp. {d>(t44+4j'+i » [ b3p , a2s ])

+ o(t-4i-2 0 a2s) o(t4J+4i+4i'+3 0 b3p)}}\|/(X,)}.
For sufficiently large m the second, fourth, sixth, and eighth
terms give zero. In order to proceed the following relations
are needed:
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^r=1 ^p=1 ^(aOr)pp' [ ®0r > b1p ] ~ " M- 1 (no/^ 1) Yd b1 p' (6.4.74)

(see Appendix B(1)), where p, yD are given by (6.4.26) and

(6.4.51) for the two cases being considered,

^»=1 3 £S=1 Rsp t a2s . t>3P] = a2s . [ a2s > b1p- ] ]

- £p^""3) [ b3p . [ blp , b1p. ] ] . (6.4.75)
where (6.4.70) and (6.4.71) have been used. Using the Jacobi

identity, relation (6.4.68), and the fact that

2pl(r3> [ b3P ■ biPl - °. (6.4.76)

(6.4.75) becomes

tb3P. [b1p. b1p.i ].. z;r3) i blp, t blp., b3p] i

_ _2no 2"pl<-n3)2nOiArp [aor bip]

_ D(a0r^p.[a0r,b1p]

= -P"1 (n0/ni) Yd bip" ■ (6.4.77)

Finally, substituting (6.4.74)-(6.4.77) in (6.4.73), we find

(after some algebra) that

[ Lj , <J>(t"i'-i® b1p-) ] y(X)

- limm-,«.{Amv(Jt)} - «4j'+1)/K) 2cao(t4J+4'+1 ® b,p.) y(X)

= - i(4j'+1) t>(t4J+4''+1 ® b1p.) V(X) , (6.4.78)

provided that k = 8cA+1.
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(d) Evaluation of [ Lj , 0(t4J'+3 <S> b3p.) ] y(X), for y(X) e V(A):

Using definition (6.4.36), properties (6.4.35), and

applying the method of partial sums we get

[ Lj , O(t4i'+3 <g> b3p.) ] V(X) = lirnm_>oo{Am¥(X)}

- {(4j'+3)/K) 2cA0(t4J+4j'+1 <8> b1p.) y(k) (6.4.79)

where, by properties (6.4.34),

= (6.4.80)

limm^J- ;Pr.KO-K) 2 r!if(t4J*4i ® a0r) Off4'*4''*3 ® [ aQri b3p. ])

+ £"!i o(t4-,*4i*4i''*3 ® [ a0r, b3p, ]) 0(f4j ® a0r)}
- ^{2£W,i-k, Z".2.,®^4'48 ®a2s) ®(f4^1® [%s,b3p.])

+Sj!-i(Kt2) 2ns!, o(t4Jt4j+5+41' ®[a2s,b3p.]) o(f41'2 ®a,s)}
+ l{Sr.M(2.K) 2npLto(,4J^1 ®b1p)®(f^. [tbp.b3p.])

- K'.< 4>(t4Jt4it4+4i' ®[ b1p, b3pJ ® ttjp)}

■1-{ X':hk E"pil<fi(t4J*t'*3®b3p) 0(t"4'*4'' ®(b|p, b3p.])

-^r-i(K+3)2np3.,1>(t4Jt4i+6+4i'®: b3p, b3p. ]) ®(f4i'3 ®b1p)}}}v(X).
Defining the quantities N^p. by

[ b1p , b3p. ] = X^Npp.ao,. (6.4.81)
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it follows from relation (6.4.49) and the invariance property
of the Killing form that

Npp- - D(a0r),,p ■ (6.4.82)
p" sSimilarly defining Mgp. and Ppp. by

[ a2s • b3p* ] = ^p"=i Msp'bip"- (6.4.83)

[ b3p , b3p- ] = ^s_i Ppp' a2s • (6.4.84)

it is easily shown using the invariance property of the Killing
form that

P®p. = Mspp . (6.4.85)

On applying (6.4.81)-(6.4.85) to (6.4.80), and after some

algebra, we get

l™m^JAmV(».)} " (6.4.86)

lirnm->oo{" ^ rfl^'pllD(a0r)p'p{<I>(t4J'f'li'*3 ®[ a0r . t>3p ])

+ o(t-4H 0 b3p)<£(t4J+4i+4J,+4 ® a0r)}

+ ~ {^j=m-j'+1 ^ r=1 ^pliD(a0r)p'p{<1)(t4J+4j,+3 ®[ b3p . a0r ])

+ 0(t"4i 0 a0r)<l>(t4J+4j+4i,+3 0 b3p)} }

+ l{S-m,.Znp';n3Ssn.2,Mpp.{ 0(H^+4j'+3 • [ a2s, blpl)

+ o(t-4j-3 0 b1p)<P(t4J+4i+4j,+6 0 a2s)}

- ^ {££m,.£np3=,2:?XP'{ •[ b1p, a2s I)

21 7



+ 0(t-4j-2 <g> a2s)<D(t4J+4j+4i'+5 <S> b1p)}}}y(?0}.
For sufficiently large m the second, fourth, sixth, and eighth

terms give zero. Now observe that

^rfi ^ pti D(a0r)p.p [ a0r , b3p ]) = pr1 (n0/n3) yD b3p. (6.4.87)

(see Appendix B(1)). Also,

^pli 3>W,[ a2s > bip ]) = V=1 [ a2s ,[ a2s, b3p. ] ] (6.4.88)

£plS""3) [ b,p, [ b3p ,b3p. ] ] - Pspp. [ a2s, b1p ]

(6.4.89)

Then, using (6.4.85), from (6.4.89) and (6.4.88) we obtain

2sfi[ a2s '[ a2s. b3p- ] ] = - Spl^ 3) [ b-ip , [ b3p ,b3p. ] ].

(6.4.90)

Using now the Jacobi identity on the left of (6.4.90) in

relation with (6.4.76), it is easily seen that

a2s >[ a2s » b3P- ] ] = 3) [ b3p , [ b1p ,b3p- ] ] .

(6.4.91)

Finally, because of (6.4.81), (6.4.82) and (6.4.44), we obtain

Z£i[ a2s ,[ a2s , b3p. ] ] = Zpi(;n3) [ b3p , [ b1p ,b3p- ] ] (6.4.92)

^pli 3^r=i ^(aor)p'p [ b3P , a0r ] = - p.-1 (n0/n3) Yd^' .
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Thus, on applying (6.4.87)-(6.4.92) on (6.4.86), we find after

some algebra that

[ Lj , <D(t4i,+3 <8> b3p.) ] v(X)

- l'mm^00{AmV(X)} - {(4j'+3)/k} 2ca o(t4J+4' +1 0 b3p.) V(X)

- " ;«4j'+3) 4>(t4J+4'-+3 0 b3p.) V(X) , (6.4.93)

provided that k = 8cA+1.
The results of (a)-(d) can be summarized in the single

formula:

[ Lj , d>(tj ® apr) ] = - ij <D(t4J+j ® apr) , (6.4.94)

which is valid for all j such that j mod p = 4, all p = 0,1,2,3,

all r = 1,2,...,np, and J =0+1 provided that

k = 8ca+1 . (6.4.95)

Having established the (6.4.94), it is a matter of lengthy

but essentially trivial algebraic manipulations to check that

[ Lj , l_K ] \jr = (J-K) Lj+k \J/ (6.4.96)

for any \j/ e V and all J,K e Z, such that J+K * 0. As usual the

interest is in the case where J+K = 0, which we will now

examine closely. Let \|/(A) be the highest weight vector. From
the definition (6.4.36) and the properties (6.4.35) we get

[Lj , L_j]V(A)

= £r!i { <D(f4J+4j <8) a0r) 0(t4J"4j ® a*,) (4j)
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- <D(t4j <g> a0r) <t>(f4j ® a*r) (-4J+4j)}

+ Zns2=1{<D(f4J+4j+2 ® a2s) o(t4J"4j"2 <8> a#s) (4j+2)

- <D(t4j+2 <8 a2s) <D(t"4j"2 ® a2s) (-4J+4j+2)}

■ £j~~ Snp1=1{o(t-4J+4^1 » b1p) o(t4J-4j-1 0 b#p) (4j+i)

- o(t4j+1 <s> b1p) o(t"4j"1 ® b#p) (-4J+4j+1)}
- Zp3=1{d,(t"4J+4j+3® b3p) <D(t4J-4j"3® b3#p) (4j+3)

- O(t4j+30 b3p) <t>(f4j"3® bj ) (-4J+4j+3)} \jf(A).(6.4.97)
Because of the properties (6.4.33), the sums that appear to be

infinite are actually finite, and each one of them can be spit

up in to three subsums as

£■_ - Kl'K;♦*£>♦, <6-4-98>
Then the first and the second terms of (6.4.97) will give a

contribution of the form

2j{^£r=°i{ O(t0 ® a0r) <D(t° <S> aJr)}v(A) + 4C6AKn° J(J2-1)v(A),
(6.4.99)

the second and the third terms of (6.4.97) will give a

contribution of the form

f4cAn2 - cAn2 ■»

1) + irJ'v(A)' (6.4.100)
the fifth and the sixth terms of (6.4.97) will give a

contribution of the form
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, 4cAn! o 3cAn1 ,{" V(A) , (6.4.101)

and finally the last two terms of (6.4.97) will give a

contribution of the form

r 4cAn3 3cAn3 ,{ - - "77" J} V(A). (6.4.102)
Consequently

[Lj.Lj]¥(A) ■= {2J L0 + J(J2-1 )cv} V(A) , (6.4.103)

where the values of the central charge of the Virasoro

algebra are given by

_ 8(m-n)cA 8(m-n)cACv " 8ca+1 ~ K ' (6.4.104)
with m and n being the even and odd dimension respectively

of A(24-1/0) or A(24/0). Clearly m-n is the superdimension

of A(2jM/0) or A(24/0), which is positive. L0 y(A) is found
to be

L0 V(A) = {4>(t° ®a0r) 0(t" ®a") + v I} y(A) (6.4.105)
iv

where v is given by

(m-n)cA
v -

4k (6.4.106)
and a0r are the basis elements of or B<. From (6.4.105) we

deduce that the eigenvalues of L0 are given by

C2(A°) (m-n)cA
+ ~^T~ ' (6'4'107)

where C2(A°) is the value of the second-order Casimir

operator of the representation of Djj or with highest

weight A0. The factor ji in front of the first term in (6.4.107)
is the same as that of (6.4.26) and has to be inserted to allow
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for the appearance of C2(A°). Clearly, any highest weight A
of A(2)(2jM/0) or A(4)(2*/0) is reduced on the Cartan

subalgebra of l£(2) (= D< or t0 A° •
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6.4.3. Sugawara Construction for A(2)(2*-1/0) and

A(4)(2</0) in the "Neveu-Schwarz" case

The first question to be discussed is the appropriate

definition of the "Neveu-Schwarz" superalgebras

corresponding to twisted Kac-Moody superalgebras. For an

untwisted Kac-Moody superalgebra the corresponding Neveu-

Schwarz superalgebra is obtained by allowing the exponent j
of the odd elements of the superalgebra to take values in 2+ £

(as was mentioned in Section 6.3), and thus merely

corresponds to replacing j by j+f in the expressions for the

basis elements of the Kac-Moody superalgebra. However we

cannot follow exactly the same procedure for the twisted

superalgebras. The reason for this is associated with the

closure of the twisted superalgebra when the exponent j of
i

the odd elements takes half-integer values.

To see this consider the values of j for the odd

elements.of the I1°(4) and subspaces. These are given by
i

j mod 4 = 1 and j mod 4 = 3, or, equivalently, by j = 4k+1 and

j = 4k+3 (for keZ) respectively. In the Neveu-Schwarz case

one might think that they should be replaced by j = 4k+1+£
and j = 4k+3+£ respectively (where again keZ). However with
the values of j of the Iq(4) and subspaces given by j = 4k
and j = 4k+2 (keZ) respectively, it can be easily checked that

t
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[ t4k+2 <g> Jl2<4) , t4k'-<-1+i <S> £°(4) ] £ t4m+3+i <g> 1°(4) ,

[ t4k+2 (g> I°(4) , t4k'+3+{ <g) l°3W ^ t4m+1 +{ ® £°(4) ,

(6.4.108)

[ t4k+1 +i <8> I°(4) , t4k'+3+i (8) l3(4) ] £ t4™ <g> I°(4> ,

[ t4k+W <g> I°(4) , t4k'+1+i <8> I°(4) ] £ t4m+2 <8> l2(4) -

[ t4K+3+f ® £°{4) _ t4k'+3+i <g> £°(4) ] g {4 m+2 <g> £°(4) >

(6.4.109)

(for all k, k', and m taking values in Z).

Nevertheless there is a unique solution to the problem of

obtaining a closed superalgebra with half-integer exponents,

as we shall now demonstrate. Consider the following values

of j:

for the Iq(4) subspace let j = 2k (keZ),
for the £g(4) subspace let j = 2k+1 (keZ),
for the £°1(4) subspace let j = 2k+| (ke Z ) ,

(6.4.110)

for the £g(4) subspace let j = 2k+1+f (keZ).
The corresponding generalized loop algebra may then be taken
to be

zPq:1o ^:.»wi,him„dlq,iP{ ti®£°P(4)>- (6.4.11D
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Thus the "Neveu-Schwarz" version of the twisted

superalgebra is the unique subalgebra of the untwisted one

whose loop algebra given by (6.4.111)

We define operators

0(t2J 0 a0r) (for all r = 1,...,n0 and all jeZ),

0(t2i+1 <8> a2r) (for all r = 1,...,n2 and all jeZ),

O(c) , and <t>(d) (6.4.112)
to be even, and

<t>(t2W 0 a1r) (for all r = 1,...,n1 and all jeZ),

0(t2i+1+i 0 a3r) (for all r = 1,...,n3 and all jeZ) (6.4.113)
to be odd. These operators will be assumed to act in a

carrier space V(A) with a highest weight vector y(A) such

that:

<D(t2i 0 a0r) \y(A) = 0 (for all j > 0),

0>(t2i+1 0 a2r) \j/(A) = 0 (for all j > 0),

<I>(t2i+i 0 a1r) y(A) = 0 (for all j > 0),

C>(t2i+1+i0a3r)f(A) = 0 (for all j > 0),

O(C) \)/(A) = CaV(A),

C>(d) \j/(A) = A(d) (6.4.114)

(for all p = 0,1,2,3 and r = 1,...,np).
Let \\f(X) be any weight vector of V other than \|/(A) ,then

there exists a positive integer K depending on the weight X

such that

0(t2j+»P 0 apr) y(X) = 0 (6.4.115)

for all j > |( K-jrp) (jeZ), with p = 0,1,2,3, and r = 1,...,np.
Finally the generalized Lie products are as in (6.4.35).
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From these operators a highest weight representation of

the Virasoro algebra can be obtained by the following
definition:

Lj = ^ { £j™.„ E"!, : <t>(t2J+2i ® a0r) o(t"2' ® a*r) :

+ E%: ®(t2J+2i+1 ® a2s ) flXt"*1 • ) :

- Ij:.„ Enp1,,: 0(t2J+2'+* « b1p ) 0(f2H ® b*.) :

- 2j:._ EH,: ® b3p ® b*p:}
+ ti8j,0I (6.4.116)

the normal ordering being as in (6.4.37) and (6.4.38).

Repeating the same procedure as in subsections (a)-(d) above,

we find that

[ Lj . <t>(t2'+*p ®apr) ] v(l)= - 4(2j+ip) o(t2J+2j+*p «>apr)

(6.4.117)

provided k is given by

k = 4cA+1 . (6.4.118)

Similarly it is found that

[ Lj , L K ] y(X) = (J-K)Lj+k#) (6.4.119)

for J+K * 0 and any \|r(X) of V(A).

As in the Ramond case, the main interest lies in the L 0

term. In this case relation (6.4.97) becomes

[ Lj , L _j ] v(A) =
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~

_ Z°°, { <»(t"2J+2i ® a0r) <&(t2J'2i ® a*,) (2j)

- 0(t2i ® a0r) 4>(t"2' ® a*r) (-2J+2j)}

♦ 2£_ £ns2,{4.(f2J^1 ® a2s) o(t2J"2'"1 ® a*s) (2j+1)

- <D(t2j+2 ® a2s) 0>(t'2j"2 ® a*s ) (-2J+2j+1)}

- snp1=1{^(t-2J+2j+i ® b1p) o(t2j-2i- * bfp)(2j+1)

+ <D(t2j+i ® b1p) O(t 2j * 0 b* )(-2J+2j+±)}
- b3p) 0(t2J-2j-1-^b3#p(2j+i+i)
+ a>(t2j+1+i <s>b3p )0>(t"2j"H ®b|p )(-2J+2j+1 +{)}v(A).

(6.4.120)

Because of the properties (6.4.34), the sums that appear to be

infinite are actually finite, and each one of them can be spit

up into three subsums as in (6.4.98). The first and the second

terms of (6.4.120) will then give a contribution of the form

2j{^Er„° { <l>(t° ® a0r) <t>(t° ® a*) }V(A) + J(J2-1)v(A),

(6.4.121)

the second and the third terms of (6.4.120) will give a

contribution of the form

r 4c*n2 cAn2 ■»{ ltrJ(J 1) + 27 ¥(A)' (6.4.122)
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the fifth and the sixth terms of (6.4.120) will give a

contribution of the form

{ 4cAni 3cAn1 ,{- v(A)' (6.4.123)

and finally the last two terms of (6.4.120) will give a

contribution of the form

f 4cAn3 3cAn3 ,{ - J(J2-D - -^-J}V(A). (6.4.124)
Consequently

[Lj,L.j]¥(A) = {2J L0+^J(J2-1)CV} v(A) ,(6.4.125)
where the values of the central charge of the Virasoro

algebra are given by

4(m-n)ca 4(m-n)cA
■ "ktr - ■ (6-4-126)

with m and n being the even and odd dimension respectively

of A(2j?-1/0) or A(2*/0). It follows that

i-o V(A) = {~2^° <l>(t0 ®a0r) O(t0 <8>aJr) + r| 1} \j/(A),k

(6.4.127)

where t| is given by

(m-n)cA
ti = 8k (6.4.128)

and the a0r are the basis elements of D* or B^. From (6.4.127)
we deduce that the eigenvalues of L0 are given by

C2(A°) (m-n)cA
M- + o ' (6.4.129)k 8k

where C2(A°) is the value of the second-order Casimir

operator of the representation of or B< with highest
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weight A0 and k is given by (6.4.118).

(6.4.26).

The factor p. is given by
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6.5 Sugawara Construction for C(2)(* + 1)

In this Section we shall denote by a0r (r = 1,2,...,^) and

b0p (p = 1,2,...,n,) the even and odd basis elements of £q(2)=
B(0/Jt) respectively, where = 3(24+1) is the dimension of

C j; and r\ = 23 is the dimension of the irreducible
representation of C* provided by the odd subspace of B(0/Jt).
In addition the single even basis element (see chapter 4) of

will be denoted by c' and the odd basis elements of 110(2)
will be denoted by b1p (p = 1,2,...,n,).- We shall work again
with dual basis elements defined with respect to the Killing
form of C{3+"\) that is given by It is always possible to

choose the even basis elements of Ip(2) in such a way that

B°(a0r,aorO = - 8rr., which implies that we shall take

a0r ~ -a0r- (6-5.1)

For the odd basis elements of £-□ the situation is more

complicated. The odd basis elements can be chosen such that

the n1 xn<\ matrix B with entries given by

(B)pq = B0(b0p,b0q) , (6.5.2)

(for all p , q = 1 n-| and where B°( , ) is the Killing form of

C(4+1)), is antisymmetric and its nonzero entries take values

+1 or -1. (For more information on this choice of odd basis
#

see Cornwell(1989)). Defining b0p by

bop - boq , (6.5.3)
#

it can be easily checked that B0(b0p,b0p) = 1, for all p =

1,2 n,.
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Turning now to the £°(2) subspace, the even basis element

may be chosen to be

C = ^c0 (6.5.4)
where c° is the basis element of the Abelian part of C(£ + 1)

that is given by

c° = e-) 1 - e22 ■ (6.5.6)

so that

(c')# = -c' , (6.5.5)

The 22 odd basis elements of I1°(2) can be chosen in the same

way as those of the subspace. To this end let B' be the

nlXq antisymmetric matrix with entries given by

(B')pq = B°(b0p,b0q) (for all p , q - 1 q ), (6.5.7)

where B°( , ) is the Killing form of C(i + 1), and its nonzero

entries take values +1 or -1. Consequently we can take B' = B,

so B will be used henceforth in this role. Thus

b?p - S"ii(B)pq b1q . (6.5.8)
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6.5.1 Sugawara Construction for C<2)(4 + 1)

in the "Ramond" case

As in the previous section let us introduce the following

operators belonging to an irreducible highest weight

representation of C<2)(4 + 1):

0(t2J <8> a0r) , 0(t2i+1 0 c') , O(c) , O(d) (6.5.9)

(for all r = 1,...,n0(=*(2Jt+1)), and all jeZ), which are all even,
and

<D(t2i 0 b0r) , 0(t2J+1 0 b1r) (6.5.10)

(for all r = 1 .....n-, ( = 21), and all jeZ), which are odd. As

before, because all the exponents j are assumed here to be

integers, this will be referred to as the "Ramond" case.

These operators satisfy relations (6.4.35) with the

appropriate values of j and k and act on a vector space V(A),

with highest weight vector y(A), according to the

prescription:

<D(t2i <S> a0r) \|/(A) = 0 , for all r = 1,...,n0, and all j > 0,

<j>(t2i+1 0 c') y(A) = 0 , for all j > 0,

0(t\s(2j) 0 b0p) y(A) = 0 , for all p = 1 .....n-, and all j>0,

<E>(t2J+1 0 b1p) \j/(A) = 0 , for all p = 1 n}, and all j>0,

<D(C) Y(A) = c(A)y(A)= Ca\|/(A) ,
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O(d) v(A) = A(d) v(A) for all j e 2. (6.5.11)

Let \|/(A,) be any weight vector of V other than \jr(A). Then

there exists a positive integer K depending on the weight X

such that

0(tJ<8>apr) v(X) = 0 (6.5.12)

for all integers j such that j > K and j mod 2 = p, where p = 0

and 1, and where r = 1,...,np.
We define the generators Lj in the Ramond case by

Lj = I{£i-- {2r°i : fl>(t2J+2i ® a0r) ®(t'2i ® a*0r) :

■ Zpl, : <s(t2Jt2i ® b0p) <s(t"2i ® bjp) : }

+ 5}".. { : o(t2J+2j+1 ® c*) o(t"2j"1 ® c* #) :

- : o(t2J+2j+1 ® b1p ) o(t'2H ® b*p ) : }}
+ vSj,of» (6.5.13)

where the normal ordering : : is defined as follows:

;0(t2J+2j+p 0 0(t-2j-p 0a#); =

<D(t2J+2j+P ® a) 0(t"2j"p <8> a#) , if 2J+2j+p < -2j-p,

i{0(t2J+2j+p <8> a) 0(t"2j'p ® a#) + 0)(t"2j"p ® a#) <i>(t2J+2j+p ® a)}

if 2J+2j+p = -2j-p

<j>(t"2j"p ® a#)0(t2J+2^+p ® a) , if 2J+2j+p > -2j-p , (6.5.14)
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for all bosonic operators with p = 0 and 1 and a = a0r or c\
and

: o(t2J+2i+p 0 bpr) o(t"2j"p 0 bpr): =

0(t2J+2j+p 0 bpr) 0(t"2j"p 0 bpr), if 2J+2j+p < -2j-p,

i{O(t2J+2j+P0 bpr)0)(t"2j"P 0 bpr) - O(t"2j"P0bpr)O(t2J+2j+P 0 bpr)}

if 2J+2j+p = -2j-p ,

- <D(t"2j"p 0 bpr) <D(t2J+2j+p 0 bpr), if 2J+2j+p > -2j-p,(6.5.1 5)
for all fermionic operators with p = 0 and 1 and with r =

1,...,^.
In order to prove that (6.5.13) satisfy the Virasoro

algebra and to find the values of v , cv and the eigenvalues of
L0we proceed as before evaluating separately the products
[ Lj.O] from the various subspaces of the superalgebra.

(a) Evaluation of [ Lj , O(t2j,0 aQr.) ] \|r(k), for \|/(X)e V(A):
Using (6.5.13), (6.4.35), and the fact that c' commutes

with all the even basis elements, we get

[ Lj , 0(t2j' 0 aor.) ] y(k)

= ^{Xj=.oo {-{ O(t2J+2j0 a0r) <X>(f2j+2j'0 [ ,aQr, ])

0(t2J+2J+2r ® [ aQr , aQr, ]) 0(t"2j 0 a0r) } }

+ 2^ ^ql-| {(§ 1 )pq 0(t2J+2i 0 b0p) O(t-2^0 [ , %t ))

234



+ (B'1)pq ®(t2J+2|+2i'® [ t),p , % ]) 0(t"2i ® bQq)}
+ ®(t2J+2i+1® b,p) 0(t"<2i+1»*2i'® [ b,q, %r ])

+ (§ 1 )pq 0(t2J*2i+,+2i'® [ i}p , ]) 0(f2'-' ® b1q)}} v(M
- (2j'/K) 2ca 0(t2J+2''® a0[.) V(X) . (6.5.16)

Using the method of partial sums and the properties (6.5.12)

the infinite sums above may be evaluated as

limm^co{Amv(?t)} =

limm-*c»{"^{^H'"iK £r=1 0(t2J+2j <8> a0r) O (f2j+2j0 [aQr , a^,])

+ EjH-iK Zm O(t2j+2j+2j,0 [ , a0r, ]) <D(t"2j 0 a0r)}

+ ~{^H'-1K £pll Xqll (§-1)pq 0(t2J+2^ 0 b0p) <D(t"2j+2j'0 [ kfcq , ^ ])

+Zj!.iK Xpli zq1=1 (B-1)pq <D(t2J+2j+2j,0 [tbp,a0r.]) <t>(f2j0 b0q)}

+ ^{^H,-i(K+i)SpliSqii (B-1)pqO(t2J+2j+1 0 b1p)O(t"2j"1+2j'0[b1q)aor,])

+5^4(^1)5:^2:^! (§"1 )pq^>(t2J+2^+1 +2j0[b,p ^r.])O(f2j"10b1q)}}¥(?i)

(6.5.17).

Now we have to make use of the following relations:

PIq __ Pin _ Hn r"
Er-1 [ » 3Qr, ] = ^-r=i Z)r"=i frr' aor" > (6.5.18)

r"
where \x< are antisymmetric structure constants of C* ,

235



^P=1^q=l(B'1)pq [t^p, ^r, ] - -XP=1 Xq=iZs=i(B"1)pq D(^r,)spb0s ,

(6.5.19)

Sp=iXq=i (B"1 )pq [b,p, ^r, ] = - £p=i Zq=iZs=i(B"1)pq Q^Jspb-is '

(6.5.20)

where D^,) is the irreducible representation of C*. provided
by the odd subspace of B(0/*) and the odd subspace 1° \
Then relation (6.5.17) becomes

limm^JAmVM} =

limm-+oo{-H^=j'-'K ^r!l^r"=1 C (t2J+2j®a0r) O (t'2j+2j® aor)IV

+ X]Tik x frrr. a>(t2J<2|+2|,0 a0r„) ®(t"2j® a0r)}
- ^{X,m-HK Xnp1,lXql,Xsli(B-,)pqB(^,)Sp4>(t2J+2i® b0p)<t>(t"2'+2i )® b0s)

+ X".»K xnpl,x^,x:i, (B"')pq B<V>sp <K(t2J+21+2i® b0s) ®(f2i ®b0q)}
1 v^i i\ . .

-~l-^j=j'-i(K + 1) ^ p=1^q=1-^s=l(§" )pq B(a0r.)sp x

o(t2J+2j+1®b1p)o(t"2H+2j'® b1s)
m v-<n1 v-«n1 v«n1

+ 2jj=-{(K+1 )2 p=-)2^q=iZ/s=i (B "')pq B(%.)sp *

4>(t2Jt2)+1® b„) 4>(f2i',+2i'® b1q)}}}v(X).(6.5.21)
The first two terms of the above relation become
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+i{sr.m-M sx zx, frr;.'{<t(t2j^'® [ aor, aor»

+ <S(f2'® a0r..) C(t2Ji2i+2j' <S a0r)}V(>.) , (6.5.22)

where we have used the fact that

■r-.HO v,nO r"^r=1 ^r" = 1 W' ®(aor>aor") = 0 • (6.5.23)

The next two terms become

1 rvm v-ni N7n1 / , . x
+ \Z)j=m-j'+1 Zj q=iZ/s=l(Q(aor,)l)sq x (6.5.24)Iv

{-o(t-2i ® bo<) 4>(t2J<-2i+2''® b0s) + <t>(t2J+2>'® [ b0s . b0q ])}vW
where we have used the relation

Zq=1Zs=1(D(ao,)B)sq §sq = tr D(a0r.) = 0 , (6.5.25)

and the fact that (B"1)pq = (B)qp. Finally the last two terms
may be treated in the same way as (6.5.24) giving

1 f m ni n-|
~ |z)j=m-j'+i S q=iXs_i (D(a0r')B)Sq x (6.5.26)

{-o (t-2i ® b1q)l>(t2J+2j*2J'® b1s) + o(t2J+2'-® [b1s , b1q ])}v(X).
Now observe that

^r=1 Sr"' = 1 frr* [ a0r » aOr" ]

vn° vn° C
= 2jr"<-1 tr(ad(a0r.)ad(a0r».))a0r». = ^rM,=i B *(aor'>aor"') aor*"

(6.5.27)
r"

where frr- = ad (a0r)r"r>, ad( ) denotes the adjoint

representation, tr the trace, and Bc<( , ) is the Killing form
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of C*. The relation between the Killing form of C(4 +1) and
that of B(0/4) is given by

BC(*+1)( 1 } = 2UA bB(°M)( > ) • (6.5.28)
and since

, ) = (1-t)B°<( , ) - ^J7TjB°*( . ) ,(6.5.29)
then

BC(*+1)( , ) = {4/(4+1)} Bc<( , ). (6.5.30)

Thus

Xr,M=i B^*( a0r', a0r,M) a0r"' = ~{(^ + 1)/^} a0r' • (6.5.31)

Defining the quantities A^q by
-rino r

[ bos . t>Qq ] = 2wr=i A~q aor, (6.5.32)
it can be easily proved that

^sq = (§D(a0r))sq • (6.5.33)

Thus from (6.5.31) , (6.5.32) and (6.5.33)

^qll Zsli (6(a0r')§)sq [ ^Os > ^Oq ] = Yd {(* + 1)/*} a0r' >

(6.5.34)

where yD is the Dynkin index of the 24-d i m e n s i o n a I

representation of C$ provided by the odd part of which

is given by

Yd - ({1/2(4+1)} . (6.5.35)

Similarly
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^q=1 *s=1 (6(a0r') §)sq t ^1s » ^1q ] ~ Yd {(* + "0/4} aor' »

(6.5.36)

where we have defined

[bis,b-|q] = ^r=1 a0r > (6.5.37)

and proved that

Bsq = (BD(a0r))sq • (6.5.38)

Applying all of the above results to (6.5.21) and taking the
limit m-> oo we get

[ Lj , ®(t2'® a^)} v(l)

= linim—fAmVW} - (2j'/K) 2oa <I>(t2J*2i' 9 aj y(\)

= -j'®(t2J+2r® a0r,)¥(>.) , (6.5.39)

provided that

k = 4ca +1 . (6.5.40)
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(b) Evaluation of [ Lj . ®(t2'® bQ|) J y(X), for y(X) s V(A):

[ Lj . a»(t2' ® b01) ] V(X)

= ®(f2Jt2i ® a0r) ®(f2i+2''® [ a0r , bot ])

+ o(t2J+2j+2j® [ a0r , bot ]) <D(t~2j<S> a0r)}}

+ £pll Sqlr {(B"1)pq ®(t2J+2i® b0p) ®(f2't2''® [ b0q , b0, ])

" (g-'lpq ®(t2Jt2i+2i'® [ b0p , aot ] ) ®(f2i® b0q)}}
+ 3=-~ {-0(t2J+2j+1 <S> c') <D(t"(2j+1)+2r® [ c' , bot ])

- 0(t2J+2j+1 +2j- 0 J c,( bot ^ 0(t-(2j+1) 0 c-)}

+ 2pll sqlt {(§'1)pq ®(t2Ji2i+1® blp) ®(f'2i*1)*2i'® [ b,q , bot ])

- (B"1)Pq ®(t2J*2i+U2i'® [ l}p , bot ]) ®(f2'-1® b,q)}}} V(A)
- (2j'/K) 2ca ®(t2J+21' ® bot) <f(X) , (6.5.41)

where we have made use of the relation

^p=1 ^q=1 1)pq (§)qt ^Op = ^Ot = ~^p=i ^q=1 1)pq (§)pt ^Oq

Using the method of partial sums and the properties (6.5.14)

we get

''^m-»oo{AmV(^)} =
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limm->oo{-^{£j=HK Zr.°i 0>(t2J+2j<s> a0r) 0(t"2j+2j'® [a0r , bot ])

+ Xj=-{K Z r=i 0(t2J+2j+2j' ® [ a0r , bot ]) O(t"2j<8> a0r)}

+ ~{^j=j'-lK^ pliZqlt(B"1)pq 0(t2J+2j<S> bOp)O(t"2j+2j,0[bOq> bot ])

- ZMKZpitZqlt (§ 1 )pq O(t2J+2j+2j'0 [ tfcp> bot ]) <*>(t"2j® b0q)}
+ ~{^j=r-{(K+i)ZpliZqli (B"1 )pq O(t2J+2j+10b1p)O(t"2j*1+2j,0 [ t}q .bot ])

- Zj=-±(K+1 )Z pltZqlt (B-1)pq O(t2J+2j+1+2j'0 [ k^p , bot ] ) <E>(f2j"1® blq)
- Ih4(K+D a>(t2J+2j+1 <g> C') 0(t-2j-1+2j'® [ c' , bot ])

-SJ=.i(K+i)O(t2J+2j+1+2j,0[c,I bot ])O(f2j-10 c' )}}}V(X).(6.5.42)
Now defining A.(t) , Ttp and "^q by

[ c' , bot ] - Zsli A3(,)b1S( (6.5.43)

[b,p)bot] = TPC'• (6.5.44)
it can be easily checked using the invariance property of the

Killing form that

T,p - - Ssli Ai" (B ^ , (6.5.45)
In addition, with the definitions

[ a0r ' bot ] = Zs-1 B(aOr)st bos • (6.5.46)

and

vno r
[ bop , bot ] = ^r=i Apt aQr , (6.5.47)
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it can be checked that

Apt = (BD(a0r))tp. (6.5.48)

On applying (6.5.43)-(6.5.48) to relation (6.5.42) it is found

that

''^m—»oo{Amv|r(A.)}

limm_*~{-r{£H'-iK ^r!i^s1=i D(a0r)st 0(t2vJ+2j<S>aor)#(t"2j+2j'®b0s])
Iv

+ Zj-.jK 2r°iSs1,, D(a0r)s, ®(t2J+2l+2j'® b0s ]) 0>(t"2J<S> a0r)}

+ pl,Sql,Z"f1(g-1)pq(gC!(a0r))qt4>(t2J*2|®b0p) <l>(t'2i+2l'®a0r)
-SMK£np1.,2qil£r!,(B'1)pq (BB<a0r))p, 0(t2J^^'® 0(f2i® bQq)}

{£ sliA^,'o(t2J+2'+1® c') 4»(t-2H+2i® b,.)}
IV

- Xhiwi {Z sit a^0 a> (t2J+2J+1 *2j'® b1s ]) o(t'2H®0')}

+ Zh'.4(K+i) {Zq.1 A^,)4>(t2J+2l+,®b1s)<J>(f2|-,+2i'®c')}

+ Ej!.j(K»i) {Zpli Af'<l>(t2Jt2|+,+2i'® c,)0(t"2j"1<»bls)}}*|f(X)}.
(6.5.49)

In order to proceed we need the following relations,

together with those defined above:

[c1 , [c' , b„|]] = bot , (6.5.50)

(which can be obtained from (6.5.5) and the fact that bot is an

odd supermatrix),
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rig _,i'| nQ n-]
^r=1^q=1 B(aOr)qt [ a0r , ^Oq ] = ^r=1^s=1 (D(a0r)D(a0r))st ^Os »

(6.5.51)
and

Esli(D(a0r)D(a0r))st b0s = -{(2< + 1)/4<} bot (6.5.52)

(see Appendix B(2)). Then, substituting (6.5.50) and (6.5.52)
into (6.5.49), performing some algebraic manipulations, and

taking the limit, it is found that

[ Lj, <t>(t2'' ® bot) ] yW

= limm_>_(Am\|/(>.)} - (2j"/k) 2ca <Ii(t2Jt2|'« b0t) VM

= -j' ®(t2J*2i'® bot) vW , (6.5.53)

provided that k = 4cA +1.

(c) Evaluation of [ Lj , 0(t2j+1 <8> b1t)]\jr(X), for \\r{1) e V(A):
As in the previous case

[ Lj , 4>(t2''*1 ® b1t) ] y(\)

- limm^.(AmV(>.)} - f(2j'+1)/k} 2ca <t.(t2J+2i'+1® b1t) v(M ,

(6.5.54)

where using the method of partial sums and the properties

(6.5.12) we get

!'mm-»«>{Am\}r(X)} =

243



{-HZj-MO-K) ^ r!i<£(t2J+2j®> a0r) <D(t~2j+2j'+1® [ a0r , b1t ])

+ Zj=.|K Ir!i <D(t2J+2j+2j'+1® [ a0r , b1t ]) <D(t"2j® a0r)}

+ ^{Zjm=r+i(1-K) Ip1=1 Xqll (B"1)pq 0(t2J+2j® b0p) O(t"2j+2j'+1 ®> [ boq, blt ])

-X™.ak Epli Eq1=1 (B"1)pq <t>(t2J+2j+2j'+1® [ t^p , b1t ]) 0>(t"2j® b0q)}
+ ^{Zh4K SpiiZjii (B-1)pq <D(t2J+2j+1® b1p)o(t-2j-1+2j,+1® [b,q , b1t])

-Zj=-i(K + 1) Epll Eqll (B"1 )pq <D(t2J+2j+2+2j'® [ b, p , b1t ]) o(t"2j"1® b1q)
- Ih'.{k o(t2J+2j+1® c') o(f2j+2j'® [ c' , b1t ])

- EJ!-|(k+d <t>(t2J+2j+1+2j'® [ c' , b1t ]) o(f2j"1® c')}}}v(X) .

(6.5.55)

Now defining Ftf* , T and by

[ c\ b„ ] = s"i, Ftf1 b0s , (6.5.56)

t tbq . b1t ] = c' , (6.5.57)
it can be easily checked using the invariance property of the
Killing form that

T,p = - 2si, F\f' (B ^ , (6.5.58)
In addition, with the definitions

[ ^0r > ^1t ] = £s-1 B^0r)st b1s i (6.5.59)

and
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[b-ip,b1t] = £r=i Bpt aor , (6.5.60)

it can be checked that

Bpt = (8B(a0r))lp. (6.5.61)

Thus relation (6.5.55) becomes

''^m-><»{AmV(^)} (6.5.62)

= limm^00{-^{Zj=j,+i(i-K)S r!t Esl1D(a0r)st^(t2J+2j®a0r)<D(t"2i+2j'+1®b1s)Iv

+ SjljK S"!i 2sli Q(a0r)st ®(t2Jt2i+2<'+'® b1s ) 4>(t"2i® a0r)}

+ ^H4K Sm 2q'-1 £r.°, (B-1)pq (BD(a0r))qt

x 0>(t2J+2j+1® b1p) <D(t"2^+2j® a0r)
m v">n1 v<n1 no

-Zjj=-|(K+1) ^ p=l =1 ^r=1 (§ 1 )pq (§B(3or))pt

x o(t2J+2j+2j'+2® ^r) o(t"2^"1® b1q)}
+ ^{-Sh--»k{ C-) ®(r2^® b0s)}1^.

Z"l, ®(t2J+2j+2+2'® b0s)®(r2H® c )}

+ Sr=M(i-K){2sli Rs" 'i>(t2J*2'® b0s) ®(t'2)+2<'+1® c')}

+SHK >{2sli Ft(,)0(t2J*2i+1+2l'®C) ®(f2'® b0s)}}V(X)} .

In order to proceed we need the following relations together
with those defined above:
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[c\[c\b1t]j = b1t , (6.5.63)

(which can be obtained from (6.5.5) and the fact that b1t is an

odd supermatrix),

nQ vn0 . .nl
^r=1^q=lQ(aor)qt [ a0r , ^1q ] = ^r=1 ^s=1 (Q (a0r)B(a0r))st ^1 s >

(6.5.64)

Zr=°i Zsli(D(a0r)D(a0r))st b1s = -{(24 + 1 )/4*} b1t (6.5.65)

(see Appendix B(2)). Then substituting (6.5.63) and (6.5.65)

into (6.5.62), after some further algebraic manipulations and

taking the limit, we find that

[ Lj. <I>(t2r+1® b1t) ] v(A.)

- limm^.{AmV(X)} - ^ti2cA4>(t2J+2i'*1®b1t) V(X)
= - y(2j'+1) <I>(t2J'>2i'',1® b„) V(X) , (6.5.66)

provided that k = 4cA +1.
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(d) Evaluation of [ Lj , <D(t2j +1® c' ) ] \j/(X), for \j/(X)eV(A):
Because

[ Lj ,0(t2j'+1® c')] v(X)

= limm_^{Am¥(X)} - {(2]'+1)/k} 2ca <D(t2J+2j'+1<8> c') V(X) ,

(6.5.67)

where

Amy(X) = (6.5.68)

- ^SW'*DO-K> 2pi, Spl, (B"1)pq ®(t2Jt2i® b0p) O(f2't2i't10 [ boq , c'])

+ 2,1-JK 2 pi, Iql, (B~1 )pq<I>(t2J+2|+2|'+1® [ b0p, c'] )®(t'2)® b0q)

+SH4K S"pl, 2ql, (B'1)pq <b(t2J+2'+1® b,p) ®(t-2^1t2i'® [ b,q , CD

+£jLi(k*i)Znpl,Xql1 (B'1)PqO(t2J+2''l2+2'®[b1p,c'])®(t"2'"1® b,q)}y(7.).
The above sum can be evaluated observing that

[ bop .<? ] - - Zsl, a'J" b1s, (6.5.69)

[ b,p ,c' ] = - Xsli Rf b0s, (6.5.70)

Defining the quantities Tpq by

[ b1p , boq] = Tpq c" , (6.5.71)

it can be easily deduced from the invariance property of the

Killing form and (6.5.69) to(6.5.71) that generally
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£sii Asq) Bps = - Xsli R*P) Bgq . (6.5.72)

With the help of (6.5.69) to (6.5.72), and after some standard

algebraic manipulations, after taking the limit m-><~ (6.5.68)
becomes

{- U:7U 2pl, £ql, (B-1)pq d>(t2J+2i'*1® [ [ c , ] , tg )

-

* 2pil (B-1)pq ®(t2J*2i'*1® [ [ C. b,p ] . ¥(X).

(6.5.73)

But it can be shown (see Appendix B(3)) that

2pi, 2,1, (B-')pq [ [C , t,p] . t^q]

= Spl, Sql, (B-1)pq [ E C\ b,p ] , tbq] = | . (6.5.74)
Thus, finally,

[ Lj , ®(t2<'+1® C) ] ¥W

= limm-,»(AmY(^)) - {(2j'+1)/k} 2ca ®(t2J*2iv'® c') V(X)

- - |(2j'+1) ®(t2J*2i'*1® c') ¥(>.) , (6.5.75)

provided that k = 4cA +1.
The results of sections (a) to (d) can be summarized in

the formula

[ Lj , <D(tj® apr)] = - f j <£(t2J+i ® apr) , (6.5.76)

for all j such that j mod 2 = p, for p = 0 and 1, for all r =

1,2,...,np, and J = 0,±1 provided that
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k = 4ca+1 . (6.5.77)

Having established the validity of (6.5.76) and (6.5.87), it is a

matter of straightforward algebraic manipulations to check

that

[ Lj . LK ] V = (J-K)Lj+k¥ (6.5.78)
for any \j/e V and all J,K e Z such that J+K * 0.

As usual the interest is in the case where J+K = 0. It

can be checked using the results (6.5.76) the generalized Lie

products of the operators O, properties (6.5.12), relations

(6.5.11) and (6.4.98) that

[ Lj , L _j ] \|/(A)

= 2j{-E"=°1<D(t°® a0r)O(t0® a*r) - <D(t°<S> b0p)O(t°® h* )}y(A)k k

+{4(no-ni)cAj 2 +4(1-n,)cAj + Mcaj}
12k 12k 2k

= 2J{L0 + ^ J(J2-1)CV} v(A) , (6.5.79)
where n0 is the dimension of C^, n1 = 21,

4(m-n)cA
cv = > (6.5.80)

with k being as in (6.5.78), and m and n being the even and odd

dimensions of C(*+1) respectively. Clearly m-n is the

superdimension of C(4+1).

L0 \|/(A) is then found to be

L0V(A) - 1 {{ S"f,<l>(t°®a0r)<J>(t°®a;r)k

-Ep^ <D(t°®b0p)O(t0®bJp)} + vl} #), (6.5.81)
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where v is given by

{supdim r(B(0/l))} cA
_ (l-nQcyy

v = -

4k " 4k ' (65'82)
r(B(0/J?)) being the representation of B(0/Jt) whose carrier

space is the subspace and supdim r(B(0/Jt)) being its

superdimension. From (6.5.81) we deduce that the

eigenvalues of L0 are given by

C2(A°) (1 - n 1 )cA
{ (2<+1)/2< } — + 4k A, (6.5.83)

where C2(A°) is the value of the second order Casimir

operator of the representation of B(0/£ ) with highest weight

A0 and k is given by (6.5.77). The factor in front of the first

term in (6.5.83) is the same as that of (6.5.28) and has to be

inserted to allow for the appearance of C2(A°). Clearly, any

highest weight A of C<2)(*+1) is reduced on the Cartan

subalgebra of £q(2)(=B(0/* )) to A0 .

250



6.5.2 Sugawara Construction for C(2)(i + 1)
in the "Neveu-Schwarz" case

The possibility of constructing "Neveu-Schwarz" type

superalgebras based on C<2)(*+1) (for X = 1,2,3,...) will now

be investigated. Consider first the values of j for the odd

elements of the 1°(2) and £,0(2) subspaces. In the Ramond case

these are given by j mod 2 = 0 and j mod 2 = 1 respectively,

or, equivalently, by j = 2k and j = 2k+1 respectively (for keZ).

For the Neveu-Schwarz case the simplest modification would

be to replace these by j = 2k+£ and j = 2k+1+f respectively

(for keZ). However, it can be easily checked that

[ ® Z°oIm•t2kV| ® Codd ] « <2m ® ^"0'even .

j

[ ® i°(2>d , t2k'+1 +J ® 1°^] t t4m.i ® £°(2»en ,(6.5.84)

and so on, for k, k', and m all taking values in Z, so that

closure is not achieved with this choice. Closer examination

shows that closure can only be obtained by taking the

exponents to be j for the I^even and £i°even subspaces and j+f
for the £o^odd and ^?(odd subspaces (with jeZ in all cases).
The resulting loop algebra has the form

2p-0 2JI.J I°P<2)) , (6.5.85)
where e = 0 or 1 depending on whether the basis element of

Ip(2) is even or odd respectively. However, it can be easily
seen that this is precisely the loop algebra of the Neveu-

Schwarz version of the untwisted superalgebra C(1)(* + 1)-
i

That is, there are essentially n_g. new "Neveu-Schwarz" type
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superalgebras based on the twisted superalgebras C(2)(4 + 1)

(for £ =1,2,3,...). Of course, for the superalgebra (6.5.85) the

results of Section III apply. That is, with Lj given by

Lj = S"°,: o(tJ+l® a0r) <J>(t% a*) :
IV '

- Xp1=t: 4>(tJ+i+' ®b0p )®(fli+l)®bjp) :

+ : <D(tJ+j<8> c') o(t"j<8> c,#) :

- Zp',t : <s(tJ+i+'® b,p ) o(t'<l+')®b"p ) :}}
+ t] 5j o I ,

(6.5.86)

the Virasoro algebra is satisfied provided

Cv = , (6.5.87)
k

k = 2ca +1 , (6.5.88)

and

ncA
H =- , (6.5.89)

where m is the even dimension and n the odd dimension of

C«+1).
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CHAPTER 7

CONCLUSION

The main objective of this thesis was on one hand to

give a complete description of the root system of the affine

Kac-Moody superalgebras B<1 )(0/J2), A<2)(2^-1/0), A(4)(2*/0)

and C<2)(£+1) and on the other hand to demonstrate the

relation of these superalgebras with the Virasoro algebra.

There are still fields of research related with these

affine superalgebras that one might look at. The explicit

knowledge of their root subspaces as was found in chapter 4

will facilitate for example, research in the classification of

involutive automorpisms of these superalgebras and

determination of their possible real forms.

Another field of research is related to the construction

of Vertex operators of affine Kac-Moody algebras. Such

construction have already appeared in the literature (see for

example Frappat et all (1988)) but their use in conformal

field theory is still at a speculative level.
An interesting problem that remains open is that of

unitarity of the representations of these affine

superalgebras, mainly in view of possible unitary

representations of the Virasoro algebra that can be obtained

by them. This is itself an extensive topic and is directly

related to the definition of a consistent adjoint operation.
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Let us finally comment on the results obtained from the

Sugawara construction

The analysis of chapter 6 shows that all the Sugawara

type constructions in the Ramond case can be put in a general
form as follows:

[ Lj , <t>(t' ® apr ) ] =■ -(j/q) apr) (7.1)

for all j such that j mod q = p, (for p = 0 q-1), and

cv = {2qcA(m-n)/k} , (7.2)

provided that the value of the normalization constant of the

Virasoro generators is given by

k = 2qcA + 1 . (7.3)

The corresponding results for the Ramond type

untwisted affine Kac-Moody superalgebras, the twisted

affine Kac-Moody algebras, and the untwisted affine Kac-

Moody algebras may then all be regarded as being given by

special cases of these formulae. Indeed, with q = 1 these

relations reduce to the corresponding relations obtained for
the untwisted affine Kac-Moody superalgebras. Similarly,
when the superalgebra involves no odd part but q*1, then we

obtain the corresponding relations for the twisted affine

Kac-Moody algebras (see Tsohantjis and Cornwell(1990)).

Finally, when the superalgebra involves no odd part and q = 1,

these relations reduce to the corresponding relations of the

untwisted affine Kac-Moody algebras (see Tsohntjis and

Cornwell(1990)). All of the above considerations would

imply that the "universal" formula for the Virasoro central

254



charge that has recently been obtained (see Gorman

et.al.(1989)) can be extended to include the above values too.

By contrast, in the Neveu-Schwarz case there are no

such general relations. Indeed, for the superalgebras

C(2)(* + 1), there are essentially no Neveu-Schwarz versions,

while for A<2)(2Jt-1/0) and A<4)(24/0) the results (4.117),
i

(4.118), and (4.126) indicate that there are no natural general

formulae which reduce to those of the untwisted case when

q = 1.

From the relations obtained in chapter 6 for the

eigenvalues of L0 and cv, it is possible to calculate

numerically all these eigenvalues for the standard

irreducible representations. By making use of (5.18), (5.19),

(5.20), (5.25), and the expressions of 8 found in chapter 4, we

can calculate cA which will give us cv immediately be means

of (7.1-3). Then (6.3.21), (6.3.24), (6.4.107), (6.4.129) and

(6.5.83) can be found by calculating the eigenvalue of the

Casimir operator involved in these relations, the latter being

a trivial procedure for irreducible highest weight

representations.

Another interesting observation from (6.5.82) is that the

Ramond construction for C(2)(2) gives zero value for cv and
thus the Virasoro algebra is reduced to a "rigid" conformal

algebra. This is exactly the same result that has been

obtained previously (see Jarvis and Zhang(1988),(1989)), for

the case of C<1)(2). Unitarity of a highest weight irreducible

representation of the Virasoro algebra would constrained the

eigenvalues (5.83) of L0 to be such that
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3C2(A°) Ca
-sr- - ^ = 0 (7-4)

thus constraining the value of cA to be cA = 6C2(A°).
We should mention that the relationship of L0 to the

I

operator O(d) can be easily obtained, since for q = 2 and 4 the

quantity {L0 + (1/q)0(d)} commutes with all the elements of

the twisted superalgebras considered here both in the

Ramond and in the Neveu-Schwarz cases. Thus

LoV(A) = {-(1/q)<t>(d) + (1/q)A(d) + h}y(A) , (7.5)

where A(d) is the eigenvalue of O(d) and h is the eigenvalue

of L0.

4
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TABLE I

Finite irreducible reduced root system

and their Dynkin diagrams

In this table ej (i = 1 n) denote orthonormal unit vectors

of E = IRn. The numbers above the vertices of the Dynkin

diagrams are the coefficients of the expansion of the

heightest root in terms of the simple roots.

Type ji > 1)

1 1 1

o o—o
a! a*-i a*

(i) Basis: aj = 8j-£i+1, for 1< i < I

(ii) A = { ± (£j - £j), for 1< i < j < Z +1 }

Type Bj ^ 1)

2 2 2 1

o O
a1 &2 a * -1

(i) Basis: aj = £j-£j+1l for 1< i < i. - 1 an = £*

(ii) A = { ±(£j ± £j), for 1 < i < j < ^, ± £j, for 1< i < i }
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Type CA (-g > 1)

1 1 2

o cx=o
a, a t - 1

a,

(i) Basis: aj = £j-£i+1, for 1< i < 2. - 1 a* = 2s*

(ii) A = { ±(£| ± £;), for 1< i < j < i, ± 2£j, for 1< i < i }

Type > 3)

o—
a.

a

. 1

(i) Basis: aj — £j - £i+i, for 1< i < i - 1 ai=£i.-)+£i

(ii) A = { ±(£j ± £;), for 1< i < j < i. }

For the next three types let E = [R8 and we define ej = £j
'8 , ^8

(1/9) Si=0£j , for Zi=0 e, = 0

Type E&

1 ( ) a(

o—a
«1 a2 a3

1 1

O O
a4 a5
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(i) Basis: aj = ej - ej+i (1< i < 5 ) a6 = e4+ e5 + e6

(ii) A = { ±(ej - ej), for 1< i < j < 6,
±(ej + ej+ ek), for 1< i < j < k < 6,
±( 2|'rf ei) 1

Type ez

(i) Basis. <Xj — ©j - ej+-j (1^ i ^ 6 ) oc7 — ©5+ ©8 + ©7

(ii) A = { ±(6j - ej), for 1< i < j < 7,
±(ej + ej+ ek), for 1< i < j < k < 7,
±( e1 +...+ ej +...+ e7 ), for 1< i < 7 }

Type Eg

(i) Basis: cxj ■ ej - ei+1 (1 < i < 7 ) a8 = e6+ e7 + e8

(ii) A = { ±(ej - ej), for 1< i < j < 8,

±(6j + ej+ ek), for 1< i < j < k < 8 }

259



Type F1 (Here E = IR3)

221 1

0—Cn=»—O
«1 «2 a3 a4

(i) Basis: cx-j = £2 ~ £3, ot2 = £3 ~ £4,

0.3 = £4 - j( £•) + £2 + £3 + £4) a4 = - f (£1 + e2 + £3 + £4)

(ii) A = { ±£j, for 1< i < 4, ±(ej + ej), for 1 < i < j < 4,
± ±( ±£1 ± £2 ± £3 ± £4) }

Type Go (Here E = IR3)

3 1

O^tQ
ai a2

(i) Basis: ct-| = £1 - £2 012 = "2e-i + £2 + £3

(ii) A = { ± (£i-£2, £2"e3> £1~£3> 2£i~£2 - £3, 2£2 "£l"£3

2e3 - £^£2 ) }
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TABLE II

Finite irreducible non-reduced root system

and its Dynkin diagrams.

In this table e-, (i = 1,..., 4) denote orthonormal unit vectors

of E = IR*. The numbers above the vertices of the Dynkin

diagrams are the coefficients of the expansion of the highest
root in terms of the simple roots.

Type BCd (3. > 1) or B(0/11

2 2 2 2 2

O—O OO##
0 0 0 0 0

ai a2 ai-2 a i - 1 Ct ^

(i) Basis: <Xj=£j-£j+1, for 1< i < i al=zi

(ii) A = { ± (£j ± £j), for 1<i<j<*, ± £j, for 1 < i < i?,
±2£j, for 1< i < i , }
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TABLE III

Affine irreducible reduced root system

and their Dynkin diagrams

In this table Ej (i = 1,..., n) denote orthonormal unit vectors

of E = IRn. The numbers above the vertices of the Dynkin

diagrams are the coefficients of the expansion (2.19) in
terms of the simple roots. They are often called numerical

marks.

Type A{"» a 1)

A|1) A{,)(<>2)

1 1 1/^ 1 1 ^\1
C£=X) o—o o—o
a0 ot 1 «o a1 ai-i a $

(i) Basis: ex; = ej - ei+i, for..1< i < 2. a0 = 8- e-\ + e*

(ii) Ar = { m5 ± (Ej - £;), for 1 < i < j < I +1, me Z }

> 3)
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(i) Basis: a0 = 5 - e1 - e2 , ctj = £j - ei+1, for 1< i < *-1,
= £*

(ii)Ar = { m5 ±(£j ± £;), for 1< i < j < I, m5 ± £j, for 1< i < i., meZ }

Type * 3)

0^=0
a^i a i

(i) Basis: a0 = 8 - £1 - £2 , aj = £j-£i+1, for 1<i<4-1,

Otjj =2 £4

(ii) Ar= { m8 ±(£j ± £j), for 1< i <j < J?, 2m5 ± 2£j, for 1< i < i, meZ }

Type C'1V<>2)

12 2 1

O /O CX Q
a0 a1 ai-1 a<

(i) Basis: a0 = 8 - 2e1 , a, = S, - £i+1, for 1< i < 4-1,

at =2 £jj

(ii) Ar= { m8 ±(£j ± £;), for 1<i<j<4, m8 ± 2Ei> for l£i£4, meZ}
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Type DfVl > 2)

b^=6 0=^0
a0 a1 a i. 1 a *

(i) Basis: a0 = £6 - , aj = £j - ei+1) for 1< i < *-1, a* = e*

(ii) Ar= { m8 ±(8j ± £j), for 1< i < j < I, ±m8 ± Sj, for 1< i < i, meZ}

Type A^}(1 > 1)

A?
(2)

> 2)

c^o 6=76 6=^0ocq ai / . / ™
a 0 a.

(i) Basis: a0= 5 - 2e1 , a, = 8; - ei+1, for 1 < i < ^-1, a* = e*

(ii) Ar= { mS±(£j ± 8j), for1<i<j<4, (2m+1)5±28i, for1<i<*,
m5 ± 8j, for 1< i < I, meZ }

Typo Dj1)(l > 4)

a

a,

a

a i -1
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(i) Basis: a0 = 5 - e1 - e2 , a, = e, - ei+1, for 1< i < J?-1,

a< = £^.') +

(ii) Ar= { m5 ±(£j ± 8j), for 1< i < j < I, me Z }

For the next three types let E = IR8 and define e; = £j -(1/9)
X® o £j, for X® 0 ej = 0

Typo Ee
(1)

U J a,

1

a
a,

a.c

o—o—o—o
a. a. a, a,

6
(i) Basis: a0 = 5 - ( Xi=0 e;) , a-, = e, - ei+1 (1< i < 5 ),

a6 = e4+ e5 + e6

(ii) Ar= { m5 ±(ej - ej), for 1< i < j < 6,
m5 ±(e, + ej+ ek), for 1< i < j < k < 6, m8 ±( X,6=0 ej ), meZ}

Type e7
(1)

2 f )a7
3 2 1

a 0 a1 a2 a3 a4 0C5 a6

1 2 3

OOO
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^ 6
(i) Basis: a0 = 5 - ( £i=0 e| ), aj = ej - ei+1 (1< i < 6 )

a7 = ©5+ ©6 + ©7

(ii) Ar= { m5 ±(e| - ej), for 1< i < j < 7,
m5 ±(ej + ej+ ek) for 1< i < j < k < 7,
0181(6!+ + ej + + e7 ) for 1< i < 7 , meZ}

Type ^1)

1 2 3 4 530tt84 2

a
o a 1 a2 a3 a4 a5 a6 a7

(i) Basis:a0 = 8 + e0 - e! , aj = ej - ei+1, for 1 < i <7

a8 = e6+ e7 + e8

(ii) Ar= { m8 ±(ej - ej), for 1< i < j < 8,
m8 ±(ej + ej+ ek) for 1< i < j < k < 8 , meZ}

Type f{1)
E = (R4

1 2 3 4 2

o—o—o=»—o
a

o a 1 a2 a3 tt4

(i) Basis: ao = 8 + 8-] * £2, a-) = £2 ■ £3, a2 = £3 ~ £4,

03 = 84 - f ( £•( + £2 + £3 + £4), a4 = -1( £■) + £2 + £3 + £4)
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(ii) Ar = { m5 ±£j, for 1< i < 4, m8 ±(ej + ej), for 1< i < j < 4,
m5 ± |( ±0! ± e2 ± £3 ± £4), me 2}

l¥E£-Ef
E = (R4

1 2 3/2 1

o—o—o£=o—o
a0 a1 a2 a3 a4

(i) Basis: ocq — 8 + £•) - £2, oc-) = £2 - £3, oc2 = £3 - £4,

a3 = ^£4, OC4 = - ( £■) + £2 + £3 + £4)

(ii) Ar = { 2m8 ± 2£|, for 1< i < 4, mS ±(£j + £j) for 1< i < j < 4,
2m8 ±(±£^^±£31 £4), me2 }

Type Gj1) (Here E = iR3)
1 2 3

o—o^o
a0 a! a2

(i) Basis: cxq = 8 + £•) + £2 -2 £3, oc 1 = £1 - £2,

(X2 = "2£-| + £2 + £3

(ii) Ar = { m8 ± (£r£2l £2-£3, ere3, 2e^-e2-e3, 2e2-z:-e3

2£3 - £r£2 ), me 2 }
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Type of
E = IR3

1 2 / 1
O ofeo
a0 a.) a2

(i) Basis: ocq = 8 - £•] - £3, oc-j = £■) - £31 (*2 =3 £3

(ii) Ar = { m8 ± (£1 *£2> £2*e3- £i"e3).
3m5 ± ( 2£r£2 - £3, 2£2 -£-\-e3, 2e3 - £r£2 ), meZ }
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TABLE IV

Affine irreducible non-reduced root systems

In this table et (i = 1,..., 4) denote orthonormal unit vectors

of E = IR*. The black nodes denote those simple roots such

that twice of them is a root of the system.

Type BOHO/l) (* > 1)

0#00 O—0=>®

(i) Ar = { mS ± (ej ± £j), for 1< i < j < 3. , m5 ± £,, for 1< i < S. ,

m5 ±2£|, for 1< i < i , meZ }

Type AW(2l/0^ (4 > 1)

o#=o—0-—O-O^#

(i) Ar = { m5 ± (e, ± £j), for 1< i < j < I £mS ± £j, for 1< i < Z ,

(2m+1)8+2£j, for 1<i<t, meZ }

Type A(2)(2l-1/Ch (t. > 3)

o—

(ii) Ar = { m8 ± (£j ± £j), for 1< i < j < I, m8 ± £j for 1< i < Z ,

2mS ±2£j, for 1< i < 2. , meZ }
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Type (< > 1)

O—0—-O

(i) Ar = { m5 ± (£| ± Ej), for 1< i < j < I, £m5 ± £j( for 1< i < i ,

m5 ±2£j, for 1< i < t , meZ }
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TABLE V

Figure 1. Generalised Dynkin diagram and Cartan

matrix of B<1)(0/1)

a. a.

A =

f 2

-4

1 \

Figure 2. Generalised Dynkin diagram and Cartan

matrix of B<1)(0/* ){* >2)

12 2 2

o#o-c—O—<
a. a. a, a $. 2 a 4 -1 a,

A=

Z' 2-1 00

-22-1 0

0-1 2-1

0 0-12

0 0 0 0

0 0 0 0

y 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Ns

2-1 0

1 2-1

0 -2 2 y

Figure 3. Generalised Dynkin diagram and Cartan

matrix of A<2>(3/0)

a. a. a.

A =

f 2 -1 0

-2 2 -2

0-12/V
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Figure 4. Generalised Dynkin diagram and Cartan
matrix of A<2)(2*-1/0)(4 >2)

a,

a.
---o

a i - 2 aM %

A=

/" 2 0-1 0
0 2-10

-1 -1 2 -1

0 0-12

0 0 0 0

0 0 0 0

V 0 0 0 0

0 0 o\
0 0 0

0 0 0

0 0 0

2-1 0

■ 1 2-1

0 -.2 2J

Figure 5. Generalised Dynkin diagram and Cartan
matrix of A<2>(2/0)

ot
«o ai

A =

f 2

- 2

2 ~\

2 y

Figure 6. Generalised Dynkin diagram and Cartan
matrix of A<4>(2*/0)(* >2)

11 1 1

O-H
an « a, a i-2 a i -1 a

A =

f 2 -1 00
-22-1 0
0-1 2-1
0 0-12

0 0 0 0
0 0 0 0

^ 0 0 0 0

0 0 0^
0 0 0
0 0 0
0 0 0

2-1 0
1 2-1
0-2 2j
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Figure 7. Generalised Dynkin diagram and Cartan

matrix of C(2>(2)

1 1

a0 ai

A =

/ 2

-2

2 ^
2

,

Figure 8. Generalised Dynkin diagram and Cartan

matrix of C<2)(i+1)(*>2)

ao °S
■o—O—O## A =

® 4 - 2 ® 4 - 1 ® i

f 2 -2 0 0
- 1 2-1 0
0-1 2-1
0 0-1 2

0 0 0 0
0 0 0 0

V 0 0 0 0

0 0 0^
0 0 0
0 0 0
0 0 0

2-1 0
1 2 -1
0-2 2 y

Figure 9. Generalised Dynkin diagram of B(0/4)(*>1)

o—o—-o
o o

a a2
0 0 0

a4-2 OlM at

Figure 10. Generalised Dynkin diagram of A(2£-1/0)(4>2)

O—O O—
0

tt1 «2 a 24-1 tt24
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Figure 11. Generalised Dynkin diagram of A(2*/0)(*>1)

—o—®
a. a,

o
a2i

o
a24 + 1

Figure 12. Generalised Dynkin diagram of C(<+1)(<>1)

®—o oo#o
oo ooo
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APPENDIX A

(1) The £(4-1) positive roots of D* (£>2)are given by:
V^k-1 ^ t-2Zj r=jar + 22j r=kar + ai-1 + ai>

V"«k-1

Zj r=jttr
with j,k = 1,2, ... , £-2, and j < k,

Xi-2r=jar + ai-l + ai>

Xi-2r=jar + ai-1

^i-2Zu r=jttr +

XI-2r=jttr
with j = 1,2, ... , £-2, together a^, c^..,

The quantities <aj, ak> of are given by:
1/2(£-1), with j = k (j = 1,2 £)

«Xj, ak> = -1/4(2£-1), with j = k ± 1 (j = 1,2 £-3);

j=£-2 with k = £-1, £; k = £-2 with j=£-1, £,

0 for all other values.

The fundamental weights of D* are given by:

Zi-2P=1 «p + with j = 1,

Aj = XV= 1 P«p + X'p2= j j«P + ?ia4-i + iia4-
with j = 2, ... ,£-2,
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i { Xp--i PaP + + (i<-Da< } with j = 4 -1,

¥ { Xp=i PaP + (i*-1 )«<-•!+ ¥*a* } With j = it.

(2) The 4 2 positive roots of B* (4>1)are given by

S4p = j ap with j « 1,2, ... ,4,

V '_ -j

2,p = jaP + 2 X*p = k ap with j, k = 1,2, ... ,4 and j<k,

Vk-i
2^ p = j ap with j, k = 1,2 4 and j<k.

The quantities <cxj, ak> of B* are given by:
1/(24-1), with j = k, (j = 1,2,...,4-1)

<cxj, ak> = 1/2(24-1), with j = k = 4

-1/(24-1), with j = k ± 1, with (j, k= 1,2,...,4)
0 for all other values.

The foundamental weights of B^ are given by:

X*p = 1 «p with j =1-

Aj = Xjp1=iPaP + Xp = jj«p With j = 1,2, ... ,4-1,

(1/2)X p = 1 P«p with j = 4.

(3) The positive roots of B(0/4)(4>1) are given by

(a) even positive roots

Xk-1p = j ap with j, k = 1,2,...,4 and j<k,

Xk -jp = jaP +2XV = jaP with j, k = 1,2 4 and j<k,
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2X*P = jaP with j = 1,2 4,
(b) odd positive roots

£*p = j otp with j = 1,2 4.

The quantities «Xj, ak> of B(0/4)are given by:
1/(24+1), with j - k, G - 1,2 4-1)

<ctj, ak> = 1/2(24+1), with j = k = 4

-1/(24+1), with j - k ± 1, with (j, k= 1,2 4)
0 for all other values.

\
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Appendix B

(1) Proof of (6.4.24), (6.4.48), (6.4.49) , (6.4.50) , (6.4.74) and

(6.4.87):

Let ¥(a0r) (r =1,...,n0) denote operators belonging to a

non-trivial representation (of dimension is np) that the £p(4)
subspace provides for lj(4) (for p = 1,2,3). Then the Casimir
operator of this representation, C2, will have the form10 :

C2 = <F(aorma0r) (B.1)

and its eigenvalues are given by

C2(A) = -(1/rip} tr { r(a0r)r(a0r)} . (B.2)

Thus, denoting the basis of the pth subspace by aps,

C2 ®ps' = " ^r_i £s?=i (E(3or)£(3or))s"s' aps"

-{1/np} tr { Xr®1 r(a0r)r(a0r)}aps. . (B.3)
Relations (6.4.24) ,(6.4.74) and (6.4.87) then follow

immediately if we also take in to account the relations

(6.4.7) or (6.4.8) and the fact that

r i ~°(4>
tr { G(a0r)G(a0r.)} = y BLo (a0r, a0r.) , (B.4)

where y is the Dynkin index of the representation and
B^o ( , ) is the Killing form of L p(4). The proof of (6.4.49)
goes through as above if we observe that, on defining SgS. by

[ a2s - a2s' ] = Sss. a0r , (B.5)

the invariance property of the Killing form implies that
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Ssrs. = - n(a0r))ss. . (B.6)

Similarly for (6.4.50) we observe that, on defining A^p. by
[ kip' . b3p ] = a0r > (B.7)

the invariance property of the Killing form implies that

^p'p = Q(a0r)pp' > (B.8)
with the rest of the proof following the same steps as above.

r"
For (6.4.48) the only new feature is that \r. = ad(a0r)r-r'. The
result (6.4.48) then follows using the same arguments as

above and the fact that the Dynkin index of the adjoint

representation is 1.

(2) Proof of (6.5.52) and (6.5.65):

Consider the Casimir operator of C(4+1) in the adjoint

representation, which is given by

C2(ad) - Z",°, -P(a0r) y(a*r) - l"pl, >F(b0p) T(b0*p)
+ >F(c') ¥ (c'#) - Zp-1 Y(b1p) <F(b»p) , (B.9)

(where the duals are as defined in section V.A.). Then from

the relation C2(ad) bot = bot, we find using (5.43) to (5.48) and

(5.50) that

hq „ _ rig _n-|
Sr=i ¥(a0r) X^/(a0r^ ^Ot = r=1 -^s=l(D(a0r)Q(a0r))st ^Os >

(B.10)
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- £pl, f(b0p) <P(bJp) bot = -S".0, £sli(B(a0r)D(a0r))stb0s,
(A.11)

- ^(b^) b0, = -(1/4*) bot, (B.12)

V(c') ¥(c'#) bot - -(1/4i)b0t. (B.13)

Then (6.5.52) is obvious. Also (6.5.65) follows by exactly the
same steps on using (6.5.56) to (6.5.61) and (6.5.63).

(3) Proof of (6.5.74):
On using the identity C2(ad)c' = c\ relations (6.5.69)-

(6.5.72) and the equality

B( [ c\ b0q ] , [ c\ b0p ] ) = B( [ c\ b1q ] , [ c\ b1p ] ) (B.14)
we obtain

" SM*(b0p) m'plC - T(btp)

= 2{ £",1,Esli2pli2:ql,{B-i)pq(B),sAiq,At<p)c'} - c\ (B.15)

thus proving (6.5.74).
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