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ABSTRACT

This thesis is a report of my research on the affine Kac-
Moody superalgebras B(1)(0/2), A®)(22-1/0), A(#)(22/0) and
C(2)(2+1). These are infinite dimensional complex Lie
superalgebras and are canonically associated to irreducible
non-reduced affine root systems. They were initially
introduced by Kac(1978).

First the axiomatic foundation of irreducible affine root
systems is summarised. Then, starting with a Cartan matrix
corresponding to the class of irreducible non-reduced affine
root systems, the above superalgebras are constructed at an
abstract level in terms of “generators” and “relations”.

The main interest lies in their explicit realisation
which leads to the complete description of their root
structure. This realisation is presented for all of the above
superalgebras and is based on the finite dimensional basic
simple classical complex Lie superalgebras B(0/2), A(22-1/0),
A(22/0) and C(2+1). In particular, the determination of the
root structure of A(2)(22-1/0), A*)(22/0) and C(3)(2+1)
involves certain automorphisms of the A(22-1/0) , A(242/0)
and C(2+1) superalgebras. These automorphisms are derived
and provide a neat way to determine the root structure.

Having achieved their realisation, a description of their
highest weight representations is presented which
facilitates the investigation of their relation with the
Virasoro algebra.

This relation is demonstrated by performing the

Sugawara construction. It is proved that these affine



superalgebras possess a semidirect sum structure with the
Virasoro algebra. Of special interest in physical applications
of these affine superalgebras might be the calculation of the
values of the central charge of the Virasoro algebra that has

been achieved.
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CHAPTER 1

INTRODUCTION

In recent years affine algebras and superalgebras have
become a important field of research and a line of
communication between mathematicians and particle
physicists. The remarkable success and richness of the
theory of affine Kac-Moody algebras and simple Lie
superalgebras has initiated in the last few years the study of
affine Kac-Moody superalgebras. Although their theory and
their applications have not yet been investigated in the same
depth as for the affine Lie algebras, one may say that they
have an even richer mathematical structure which might
allow for many interesting physical applications. There is,
however, a class of affine Kac-Moody algebras whose
structure and representations have been consistently
developed and which constitute a natural generalization of
affine Kac-Moody algebras. These are denoted by B(1)(0/%),
A(2)(22-1/0), A(4)(22/0), and C(2)(2+1). A consistent
exposition and investigation of their structure,
representations and relation with the Virasoro algebras will
be the central content of this thesis.

The development of the theory of affine Kac-Moody
algebras was initiated by Kac and Moody independently in the
late sixties (Kac(1968), Moody(1967,1968,1969)). The
motivating idea was to generalise the definition of the

Cartan matrix of finite dimensional semi-simple complex Lie

.



algebras and then attempt to construct Lie algebras in terms
of "generators" and "relations". Clearly this was a
generalisation of the process that Serre(1966) followed to
prove that all semi-simple complex Lie algebras can be
obtained starting from a Cartan matrix, instead of reaching
it as an end point (as was the case in Cartan's classification
of semi-simple complex Lie algebras).

The result of these attempts was the discovery of two
types of infinite dimensional Lie algebras which are known
as affine and indefinite Lie algebras. Moreover all the semi-
simple complex Lie algebras together with the affine and
indefinite Lie algebras, can be obtained from the generalised
Cartan matrices that they set up, and they constitute the
unique set of algebras obtained in this way. They are known
as Kac-Moody algebras and are special case of contragredient
Lie algebras. In particular, the semi simple Lie algebras and
the affine Kac-Moody algebras form the class of
contragredient Lie algebras of finite growth.

The theory of affine Kac-Moody algebras has been
considerably developed during the last twenty years. Their
structure is very similar to that of semi-simple Lie algebras
and many of the features of the latter algebras are
encountered in the former. The most striking new features
though are the infinite dimensionality and the concept of
imaginary roots. A consistent description of affine Kac-
Moody algebras can be found in Kac(1985) and
Cornwell(1989).

A few years after the discovery of affine Lie algebras,

the study of Lie superalgebras was initiated mainly for
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physical reasons. Their complete description first appeared
in Kac's celebrated paper "Lie superalgebras" (1977). These
are Z,-graded vector spaces endowed with a generalised Lie
product and generalised Jacobi identity. It is the class of
(finite dimensional) basic classical simple Lie superalgebras
that are of great importance both because of the remarkable
resemblance of their structure with that of simple Lie
algebras and their wide application in physics. Moreover they
can be obtained from a particularly chosen Cartan matrix in
terms of generators and relations. Kac, generalizing the
concept of contragredient Lie algebras to the superalgebra
case, proved that the basic simple Lie superalgebras
constitute the class of finite dimensional simple
contragredient Lie superalgebras of finite growth. For an
extensive presentation of basic simple Lie superalgebras one
may be referred to the above article or to Cornwell(1989),
Scheunert(1979), Kac(1977b).

With this almost parallel development of the above two
theories the obvious question to arise was whether one can
obtain infinite dimensional Lie superalgebras of a similar
type to the affine Kac-Moody algebras whose structures will
be determined from basic classical simple Lie superalgebras.

In 1972 when the basic concepts of affine Kac-Moody
algebras were still under development, Macdonald presented
an axiomatic description and classification of irreducible
affine root systems. He also generalised the Weyl
denominator formula of finite reduced irreducible root
systems (which are the root systems of semi-simple Lie

algebras) to the case of affine irreducible reduced root
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systems. Although the concept of affine root systems was
new, their Weyl groups, being the affine Weyl groups of finite
root systems, had been known for a long time (see Bourbaki,
"Groupes et algebre de Lie" ch. 4,5 et 6). It turned out that the
new formula gave rise to multivariable identities associated
to each one of the affine root systems, the simplest
examples being that of Jacobi's triple product identity.
Moreover they revealed the relation of affine irreducible
reduced root systems with the famous Dedekind's n-
function, n(X). The above article not only initiated
various applications in pure mathematics, in topics like
modular forms, theta functions, etc., but also the study of
three theories: the integrable highest weight representations
of affine Kac-Moody algebras, the affine Kac-Moody
superalgebras and their integrable highest weight
representations.

With the real root systems of affine Kac-Moody algebras
being the affine irreducible reduced root systems of
Macdonald's classification, Kac(1974, 1978)) showed that
Macdonald's formula was to be interpreted as the Weyl
denominator formula of their trivial representations. In
particular the concept of integrable highest weight
representations was first introduced together with the
construction of their character formula. It should be noted
that the concept of imaginary roots was absent from
Macdonald's description and in order to achieve the
generalisation he aimed at, he had to introduce certain
factors which in Kac's articles appeared naturally and which

corresponded to the imaginary roots.
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Together with the classification of irreducible reduced
affine root system, Macdonald also classified the non-reduced
irreducible affine root systems. In 1978 in an article by Kac
entitled "Infinite Dimensional Algebras, Dedekind's n-
Function, Classical Mobius Function and the Very Strange
Formula", these root systems were canonically associated
with four classes of infinite dimensional Lie superalgebras of
finite growth which are denoted by B(1)(0/2), A(2)(22-1/0),
A(4)(22/0), and C(2)(2+1). These names are not accidental.
Their explicit realization is based on the basic classical
simple complex Lie superalgebras B(0/2), A(22-1/0), A(22/0),
and C(2+1) respectively. The set of B(1)(0/2) affine
superalgebras are called untwisted because no non-trivial
automorphism of B(0/2) is needed in their realization. The
rest of the sets are called twisted because there are certain
non-trivial automorphisms of A(22-1/0), A(2%2/0), and C(2+1)
involved.

In the above article Kac established the abstract
structure of these superalgebras and outlined a method for
their explicit realization. One of the main objectives of this
thesis is to apply this method and give an explicit realization
of BU)(0/2), A2)(22-1/0), A4)(22/0), and C(@)(2+1).

The structure of all of the above affine superalgebras is
exceedingly similar to that of the case of affine Kac-Moody
algebras and most of the concepts and theorems of the latter
transfer smoothly to the former. This of course does not
imply that their superalgebraic nature plays a secondary role.
The generalised Cartan matrices are again the starting point

and are of affine type. These are the Cartan matrices
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obtained from the Dynkin diagrams of affine non-reduced
irreducible root systems. Moreover Kac described their
integrable highest weight representations and constructed
the character formula for them. For the ftrivial
representations this becomes the generalised Weyl
denominator identity for the non-reduced irreducible affine
root systems.

Although the development of affine Kac-Moody algebras
began in a pure mathematical context it soon accelerated
because of physical reasons and in particular because of the
increasing interest in two dimensional conformal field
theories. Affine Kac-Moody algebras (specially untwisted) and
their integrable highest weight representations became one
of the essential parts of string theories (for an extensive
review see for example Green et al.(1988), Goddard et al.
(1986), Lepowsky(1983)). They appear for example as the Lie
algebra of currents of fields defined in two dimensions.
Integrable highest weight representations of them are
obtained for example via the vertex construction or the
fermionic construction.

Although the affine Lie algebras have been used widely,
this is not the case of the affine superalgebras. Only recently
have they attracted the interest of mathematical physicists.
Untwisted superalgebras are involved for example in the
study of symplectic bosons (Goddard et al. (1987)) which
themselves appear in constructing superconformal ghosts of
fermionic string theories (see Friedan et al. (1986)).
Nevertheless, because of the boson-fermion correspondence

that they provide, the study of conformal field theories based
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on them looks quite promising. Obviously, in this context, one
can go further in the more attractive idea of constructing
conformal theories with twisted superalgebras following the
example of twisted string models (see Nepomechie(1986)).

All of the above considerations are of little value if one
has not established the relation of affine (super)algebras
with the central ingredient of any conformal field theory, the
Virasoro algebra. The Virasoro algebra arises naturally as
the central extension of the infinite dimensional Lie algebra
of the conformal group in two dimensions. The unitary
irreducible highest weight representations of the Virasoro
algebra have been studied extensively. These representations
are labeled by the specific values of the central charge C, and
the eigenvalue h of the Virasoro operator L, (see chapter 6).
The affine Kac-Moody algebras and the Virasoro algebras are
related in a semi-direct sum algebraic structure, which is
established via the Sugawara construction. The latter
involves obtaining an appropriate expression of the Virasoro
operators bilinear in operators of some representation of the
affine algebra such that the Virasoro algebra will be
satisfied. This process has an interesting consequence. It
provides us with representations of the Virasoro algebra
which are completely determined by those of the affine
algebra. Thus whether or not a conformal field theory that
incorporates an affine Lie algebra is physically meaningful
depends on the representations of the affine algebras.

This brings us to an other main objective of this thesis,
which is to establish the connection between the twisted
Kac-Moody superalgebras A(2)(22-1/0), A(4)(2%£/0), and

7



C()(2+1) and the Virasoro algebra. The case of untwisted
superalgebras has already been treated previously both from
algebraic and field theoretical point of view but it will also
be presented.

Following the historical development presented a while
ago, In chapter two we refer first to the definition and some
important properties of the generalised Cartan matrices
whose complete theory can be found in Kac(1985). This
presentation was necessitated by the fact that these
matrices are the corner stone both of root systems and
affine algebras. In particular, given an indecomposable
symmetrisable affine Cartan matrix, via the uniqueness (up to
isomorphism) of its realization we can obtain on one hand all
irreducible affine root systems and on the other hand we can
generate from it an affine Lie (super)algebra. In addition, a
considerable part of this chapter is also devoted to the
axiomatic foundation of affine irreducible root systems as
was presented by Macdonald(1972), mainly because it was the
classification of non-reduced irreducible root systems that
led Kac to associate them with the affine superalgebras.

In chapter three we set up the abstract structure of the
affine Kac-Moody superalgebras B(1)(0/2), A(2)(22-1/0),
A(4)(22/0), and C(2)(2+1). We followed a more modern
approach than the one presented by Kac in the original paper.
Clearly it was the structure of the derived superalgebras of
the above algebras that was given by Kac. Our apprcach is the
same as that of affine Kac-Moody algebras that appears in
Cornwell(1989) and Kac(1985). In fact the method presented

is valid for any contragradient Lie (super)algebra.
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Chapter four is devoted to the explicit realizations of
B(1)(0/2), A2)(22-1/0), A(4)(22/0), and C(2)(2+1). Certain
special automorphisms have been used to obtain the root
structure of A(2)(22-1/0), A(4)(22/0), and C(2(2+1). However,
the process presented here is of general validity. It can be
applied to any basic simple Lie superalgebra to obtain
untwisted Kac-Moody superalgebras and, if the former
possesses outer automorphisms, to obtain twisted Kac-Moody
superalgebras. This is suggested from the works of Frappat
et al. (1989), Serganova(1985) and Van der Leur(1985).

Chapter five is devoted to the presentation of integrable
irreducible representations of B(1)(0/2) A(2)(22-1/0),
A(4)(22/0), and C(2)(2+1). Again we slightly deviate from
Kac's original exposition, where the subject was treated for
the derived superalgebras of the above class.

Chapter six establishes a connection of the affine
superalgebras with possible physical applications in that it
demonstrate the relation of these superalgebras with the
Virasoro algebra. This has been done with the use of
Sugawara construction and the elements of the
representation theory of chapter five. The Sugawara
construction of untwisted superalgebras is not confined
merely to the case of B(1)(0/2) but applies to any untwisted
superalgebra based on a basic simple Lie superalgebra. This
construction has appeared a number of times in the literature
and it is treated here in less detail, but in a formulation that
is more consistent with other developments. However much
more detail will be given on the Sugawara construction based

on the twisted superalgebras A(2)(22-1/0), A(4)(22/0), and
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C(2)(2+1). Because of its originality and its complicated
nature, this construction will be explicitly presented.
Following the physical nomenclature we have distinguished
two cases, namely the Ramond case and the Neveu-Schwarz
case. Some interesting results concerning the values of the
central charge of the Virasoro algebra seem to suggest that
the expressions obtained are of a more general nature in that
they incorporate the cases of the Sugawara construction for
affine Kac-Moody algebras and untwisted Kac-Moody
superalgebras.

Finally  certain concluding remarks can be found in
chapter seven. Certain tables with Dynkin diagrams and
Cartan matrices of (super)algebras can be found at the end of
this thesis.

As a result of this thesis the following articles have
been published: _
(a) "Supercharacters and superdimensions of the irreducible

representations of B(0/2) orthosymplectic simple Lie

superalgebra”

|. Tsohantjis and J. F. Cornwell, International Journal of

Theoretical Physics, 29, 351(1989);

(b) "The complete root systems of the affine Kac-Moody
superalgebras”

|. Tsohantjis and J. F. Cornwell, Journal of Mathematical

Physics, 31, 1817(1990);

(c) "Sugawara type constructions of the Virasoro algebra
based on the twisted affine Kac-Moody superalgebras”

I. Tsohantjis and J. F. Cornwell, to appear in Journal of

Mathematical Physics.
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CHAPTER 2

GENERALIZED CARTAN MATRICES
AND AFFINE ROOT SYSTEMS

2.1 Introduction

In this chapter the aim is to present the basic concepts
of the axiomatic foundation of irreducible affine root
system, as given by Macdonald(1972) and the generalised
Cartan matrices as classified by Kac(1985). In the process
we shall briefly summarize the irreducible reduced and non-
reduced finite root systems which will help to develop the

formulation of the affine ones.
2.2 Generalised Cartan Matrices A

Consider any square matrix A with entries in C whose

rows and columns are labeled by an index set I= {0,...,n-1}.

Definition 2.1 Realization of A
A realization of a n x n matrix A of rank £, is the set

{#, 11V, 11}, where # is a complex vector space, I1V is a subset
of 7 which consists of n elements H, (for all j e I) of s, and
IT is a set of n linear functional «;(for all j e T) of the dual

space #*, defined on #, such that
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(a) aj(Hy) = Ay (2.1)
for all k, j € 1,

(b) the dimension of # is dim # = 2n-&,

(c) the elements H, (for allje I ) are linearly independent

(d) the elements «; are linearly independent.

A is called symmetrizable if it can be written as a product
of a symmetric matrix and a non-singular diagonal matrix and
it is called i[ndecomposable if it does not have the block form

A1l 0
[ i - } (2.2)

—

where A'! and A22 are non-trivial submatrices, nor can it be
put in this form by any reordering of the index set I.

The requirement of A being symmetrizable is equivalent to

the condition that for any sequence iy, ip, ..., ik, such that
0 < iy,...,, ik £ n-1 the following relation should hold:
Aijigeeseers Aiig Aiglyseeseess Aiji - (2.3)

Note that when detA = 0 the elements ij and o (for all j e
I ) on their own, do not form base of # and #* respectively.
Clearly n-2 bases elements have to be added in each of the
above spaces. When detA # 0 then dim # =dim #* = £ and
the elements HIi and Q form bases of # and #* respectively.

Two realizations {#, 11V, I1} and {#, I1Y4, I1;} are jsomorphic
if there exists a vector space isomorphism ¢ such that ¢(#) =
Hq, 6(ITY) =11V, and ¢(I1) = 1. If the matrix A is not

indecomposable then its realization is a direct sum of
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realizations in the following sense. Let us assume that A
can be put in the form (2.2) such that A1 and A2 are
indecomposable. Then a realization of A is given by

{ #,® 7, T1Vy x {0} U {0} x IIYy, Iy x {0} LU {0} x II,},
and is called direct sum of the realizations {#f, I1Y4, I1;} of

A' and {#6,, I1%,, T1,} of A2,

Proposition 2.1

For every square matrix A there exists a unique (up to
isomorphism) realization of A, and two such matrices A and
B are said to be isomorphic if and only if one can be obtained
from the other by a permutation of the index set I.
Proof (see Kac (1985))

Kac's classification on a particular set of matrices is given

in the following theorem.

P ot >

Let A be an x nindecomposable real matrix, with I its
index set, such that its entries are subject to the following
constraints

() Ak < 0 forjzk jkel,

(i) for j# k (ke L) Ay=0 if and only if Ay =0
Let u and v be column vectors, and adopt the convention that
u > 0 means that all the u; > 0 (i € I) there being a similar
convention for u < 0. Then A satisfies one and only one of the

following three possibilities at a time :
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(a) there exists a vector u > 0 such that Au > 0.
If v is a vector such that Av > 0 then v > 0. Moreover detA #
0 and all its principal minor are positive. These matrices are
called generalised Cartan matrices of finite type.

(b) there exists a vector u > 0 such that Au = 0.
If v is a vector such that Av > 0 then Av = 0. Moreover detA
= 0 and all its proper principal minors are positive. These
matrices are called generalised Cartan matrices of affine
type.

(c) there exists a vector u > 0 such that Au < 0. Ifvisa
vector such that Av >0 and v 20 thenv = 0. These matrices
are called generalised Cartan matrices of indefinite type.

Proof (see Kac (1985))

The matrices of interest form a subset of those involved in

the above proposition and are defined as follows.

Definition 2.2 Generalized Cartan matrix
Let A be a nx n matrix, with integer entries, rank £,

together with an index set 1= {0,1,...,n-1},which labels the
rows and columns of A such that the following conditions are
satisfied:

() Aj=2  for all je I

(i) Ajc is zero or a negative integer for j= k jkel,

(iii) for j# k (jk e 1) Ax =0 if and only if Ay =0 (jk € I).

It is obvious that for the matrices A of the above
definition, proposition 2.2 also applies. Then with the

requirement that A, is symmetrizable and indecomposable,
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part (a) of proposition 2.2, provides us with the Cartan
matrices of all the semi-simple complex Lie algebras
together with the basic classical complex Lie superalgebra
B(0/2). Part (b) provides us with the Cartan matrices of all
the affine Kac-Moody algebras. Finally part (c) provides us
with the Cartan matrices of the indefinite Kac-Moody
algebras.

Moreover as we shall see, there exists a class of affine
Kac-Moody superalgebras which are associated with a
generalized Cartan matrix of the type considered in
definition 2.1 and fall under part (b) of proposition 2.2.

As is well known, a very useful way of visualizing all
these cases is by associating a graph, called Dynkin diagram,
to each one of the Cartan matrices corresponding to the
(super)algebras just stated. It consists of a number of
verticesl equal to the dimension of Cartan matrix. Each
vertex is associated with a simple root. Two vertices i,j are
connected by lines if A;#0. The construction of these
diagrams is based in the following rules :

(i) To each ie I assign a vertex drawn as a circle

(i) Draw Lj lines from the vertex i to the vertex j where
Lij = max{ |A;l, |A; |}

(i) Add an arrow from the vertex i to j if |A; [ > 1
(iv) If |AjA;i | > 4, draw a thick solid line. (2.4)

Given a Dynkin diagram we can construct, up to isomorphism,
the Cartan matrix, making use of the above rules.
Before closing this subsection it is worth making some

remarks on the Cartan matrices of the basic simple classical
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Lie superalgebras other than B(0/2) and their affine partners
that have appeared in the literature (see for example
Kac(1977), Serganova(1983), Frappat et al.(1987)). These are
also associated with Dynkin diagrams which are constructed
using the same rules as above.

Consider first the case of the basic simple classical Lie
superalgebras other than B(0/2). Their structure and
classification can be found in Cornwell(1989), Kac(1977),
Scheunert(1978). The first important remark to be made is
that these superalgebras accept more than one, non-
isomorphic Cartan matrices because they accept more than
one non-equivalent (under the action of the Weyl group)
system of simple roots. Although each of these matrices is
indecomposable and symmetrisable and satisfies part (a) of
proposition 2.2, they are not generalized Cartan matrices in
the sence of the definition 2.2. They fail for example to
satisfy condition (i) of this definition since they always
possess at least one diagonal entry A;; = 0.

Things are more complicated for the case of the affine
partners of the above superalgebras, other than the ones that
we examine in this thesis. Their Cartan matrices,
nevertheless are indecomposable, symmetrisable, satisfy
(b), and have detA = 0, however certain of their proper
principal minors are not positive, and the requirement (a) of
proposition 2.2 is not satisfied.

Let us now describe first the finite irreducible root
systems. For a detailed account see Helgason (1978),
Humphreys (1972) and N. Bourbaki Group et algebres de Lie
ch.VI. (1968).

16



2.3 Finite irreducible root systems

Let E be a finite dimensional vector space over R
equipped with a symmetric, positive definite non-
degenerate bilinear form <, >. Let ¢ #0 be any element of E.
A reflection S; along ¢, in E, is an invertible linear
transformation such that S; e = .¢ and its fixed point set (i.e.
the set { e'e E| Sge' =¢' }) constitutes a hyperplane P in E
for which P, ={¢e'e E | <e'\e> = 0}. The action of S; on E is

well defined by
(See') =¢'- (2<eg,€e>/<e, e>)¢ (2.5)

and since any such transformation S, preserves the bilinear
form in E, S; is said to be gorthogonal (For a detailed
exposition on this realization of S¢ see, for example,
Bourbaki(1968) ch.V). A finite root system in E is defined as

follows.

Definition 2.3 Finite Root system

A finite root system A in E is a finite set of non-zero
vectors o of E which satisfy the following conditions
(i) A spans E
(i) for each a € A there exists a reflection S, along
a defined as in (2.5) and leaving A invariant

(i) the number 2<a, B>/<a, a> (o, B €A) is an integer.

Two root systems A and A' defined in the vector spaces E and
E' respectively, are said to be isomorphic if there exists a

vector space isomorphism E = E' sending A > A'.

17



Pr ition
Let o and B be proportional roots, i.e. « = mpB (meR). Then
m takes the values +, +1, £2.

Proof (see Helgason (1978)).

A root o € A such that $a ¢ A is called jndivisible.

Definition 2.4 Weyl group of A

The group generated by the reflections §, for all « € A

and leaves A invariant is called the Weyl group of A.

Definition 2.5 Reduced and non reduced finite root

system
The subsets A; and A, of a root system A that are

defined by
Ay ={oecA |a/2e A} Ap ={oaecA |20 ¢ A} (2.6)

are said to be reduced finite root systems in E. That is the
only proportional roots in Ay and A, are those for which m =
+1. If both of subsets A; and A, are proper, A is said to be
non-reduced.

The following proposition embodies the most important

properties of a finite root system.

P iti > 4
Let a, B be any roots of A.

(i) if a, B are linearly independent roots then

(a) 0 < 4<P, o>2/<a, a><P, B> < 3

18



(b) if 2<a, p>/<a,a> >0then a-B eA

(c) if 2<a, B>/<a,a> <O0then a + B e€A.

(i) if «, B are not proportional roots, then the set of roots of

the form B+ka is in the a-string containing B for every

integer k that satisfies the relation -p < k < gq. That is B+ka

is an arithmetic progression

B-pa,..., B—a, B,..., B+qa.

Moreover, p and q are such that

P-q = 2<B, a>/<a, o>

Proof (see Helgason (1978)).

Definition 2.6 Basis of A
A subset IT of A which is such that

(i) the elements of A form a basis of E, and

(i) each a €A can be written as a linear combination

of

elements from ITI with the coefficients all positive or all

negative integers is said to form a basis of A.

Consider the subset I1 of the above definition and denote its

elements by «; ,for all i =1,2,...,2 where £ is the dimension of

E
p i > 5

(a) Each root system has a basis II, any two bases II, IT' are

conjugate under a unique element from the Weyl group of A

and the integer 2<a;, ap/<a;, o> is non-positive for all a;, «;

that belong to II.
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(b) The Weyl group is generated by reflections relative to
the simple roots.

Proof (see Helgason (1978)).

Definition 2.7 Irreducible finite root system
A root system A is called irreducible if it can not be
decomposed in two disjoint non empty orthogonal subsets

with respect to the form <, > on V.

It can be proved that any root system decomposes
uniquely as the union of irreducible root systems. Its basis
elements also decompose in corresponding mutually
orthogonal subsets. Then the vector space E, in which the
root system is defined, accepts a direct sum decomposition
of mutually orthogonal subspaces too.

Let us briefly comment on the classification of finite
irreducible root systems.

Let IT = {a4, ay,..., 0y} be a basis of a root system A which
might be irreducible or not. Then the integers 2<a;,a>/<a;, o>
for all o, ;e I1 are the entries of a matrix A which is called
the Cartan matrix of the root system A. From proposition 2.4
and 2.5 we deduce that the only possible values of its non-
diagonal entries are 0, -1, -2, -3. It can be easily checked
that A is a generalised Cartan matrix of finite type. If A is
irreducible then A is indecomposable. If A is reducible then
A accepts a decomposition as a direct sum of indecomposable
submatrices of A which are the Cartan matrices of the

irreducible root systems. Let A be irreducible.
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Then it can be shown (c.f. Humphreys(1972)) that the Weyl
group acts irreducibly on the vector space E (if this was not
the case then E would be a direct sum of two mutually
orthogonal non-empty subspaces which would be invariant
under the action of W).

It should be noted that the Cartan matrix depends on the
ordering of the basis Il but this does not create any
complications since W acts transitively on the set of bases
and thus the Cartan matrix is independent of II. It can be
shown that given two bases Il= {a4, ap,..., ay} and II'= {a'y,
a'p,..., a'g}, if <o, aj> = <a'j, a'j>, then a bijection a;j-> a',
extends uniquely to an isomorphism E > E' mapping A-> A'.
This together with proposition 2.4 shows that the Cartan
matrix determines A completely. Thus classifying all the
irreducible indecomposable finite type Cartan matrices is
equivalent to classifying the irreducible finite root systems
and then using the rules of the previous section we can
construct their Dynkin diagrams.

Another equivalent method is by using connected Coxeter
graph (see Humphreys(1972), N. Bourbaki Group(1968)). This
is defined to consists of n vertices (n being to equal the
number of simple roots) such that the ith vertex is connected
with the jth by 4<aj,a><aj,0>/<a;, o> <oy, a;> lines, for all a;,
ajeIl. Then from these graphs it is possible to obtain the
Dynkin diagrams of all irreducible root systems and thus the
systems themselves with their Cartan matrices. In fact the
underlying theory of this method is related to the Weyl group.
It can be proved that the Weyl group of irreducible reduced

finite root systems is an irreducible Coxeter group
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of finite order. These are groups generated by reflections in
an Euclidean space and might be of finite or infinite order.

They are defined as follows .

Definition 2.8 Coxeter group

The group generated by a finite set of elements S; (ie I =

{1,..., n}) such that
()2 =1 and (S; S)Mij =1 (2.7)

where m; are positive integers or - is called a Coxeter
group.

These groups are associated with what we called above
Coxeter graph. They have been classified by Coxeter(1934).

The Dynkin diagrams and the root systems of all the finite
irreducible reduced root systems are listed in table |
together with a system of simple roots for each one of them.

There is only one finite irreducible non-reduced root

system which does not correspond to any complex simple Lie
algebra. From the known structure of the reduced root
systems it is now easy to determine this non-reduced one.
Let A be non-reduced. Take the subsets A; and A, of A which
are defined in (2.6). Since Ay, A, and A have the same Weyl
group, from table | we conclude that A;, A, should be B, or C,
and this is the only case. Thus we have only one non-reduced
system, denoted as BC, which is given in table Il together
with a basis which is that of B, (since the simple roots
should be indivisible). Clearly the Cartan matrix of BC, is
also of finite type. From the known structure of the basic
classical Lie superalgebra B(0/2)(see Cornwell(1989)) we

can easily identify its root system with BC, .
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2.4 Affine irreducible root systems

Let us now describe the affine irreducible reduced and non
reduced root systems. For a detailed exposition see
Macdonald(1972) and also Bourbaki(1968) ch.V, VI. Whenever
necessary we will recall some notions on affine spaces (c.f.

Mac Lane and Birkhoff ch. XIlI).

Definition 2.9 Affine spaces.

Let V be a finite dimensional vector space over a field K.
Then an affine space E over K is an non-empty set whose
elements are called points, on which the vector space V acts,
the action being described by a function V x E —» E defined as
(v, p) = v+p € E for any vector v of V and any point p of P such
that the following conditions are satisfied:

(i) for lany vectors v, v' of V and any point p of E

0+p=p, (v+V)+p=v+(V+p)

(ii) for any two points p and q of E there exists one and only
one vector v of V such that

v+Qq=p
(iii) the dimension of E is the dimension of V.

From the definition of the action of of V on E it can be
easily deduced that the elements of V translate the points of
E. Thus V is called the space of translations of E. The
symbol + denotes both the action of V on E and the usual sum
of two vectors. The dimension of E is the dimension of V.
Given any finite dimensional vector space over K we can

construct an affine space E by regarding any vector of V as a
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point in E and V as the space of translations. From the
definition we deduce that the difference of two points is a
vector and thus there exists a map E x E —» V. Given a point pg
of E, the map p —» p - pp is a bijection of E on to the
translation space V. We can identify E with V using this map
by considering po to be the origin in E.

An important characteristic of E is that given a list of
points pg, P1,..., P¢ Of E any other point can be uniquely written

as

o P (2.8)

p= Ef=1 kipi + po  where X |
where k; are scalars. In particular this set of points
constitute a frame in E if we chose py as an origin in E and if
the vectors p; - po form a basis of the translation space V of
E (see Mac Lane and Birkhoff(1978)). By definition every
linear transformation from an affine space E to an affine
space E' (over the same field as E) that preserves relations
(2.8) is called an affine transformation. For example every

translation is an affine transformation.

P - X

Let E and E' be two affine spaces over K and V, V' their
corresponding vector spaces of translations over K. Then to
each affine transformation f: E - E' there exist a unique

linear transformation (Df): V — V' such that

f(p + v) = (Df)(v) + f(p) (2.9)

for all v e V and all p € E. Also to each linear

transformation (Df): V — V' and two points p e E and p e E',
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there exists exactly one affine transformation f: E - E' with
f(p, ) = f(p,) defined by

f(p, + V) = (Df)(v) + f(p;) (2.10)

for all ve V.

Proof (see Mac Lane and Birkhoff ).

Following Macdonald (1972), we call f affine linear and Df
derivative of f. In the special case where f is the map f: E—» K
(here K is assumed to be an affine space too) we say that f is
an affine linear function defined on E if and only if there
exists a linear form Df: V —» K such that the above theorem is
satisfied. Taking an origin g in E and identify E with V, the
above theorem implies that every affine linear function f is
such that any point p: p - A + (Df)(p) where f(Fb ) =i e K
Then the set F of affine linear function f is a vector space
over K whose dimension is dim E +1.

By definition, the dual space V* of a vector space V over K
is V* = Homy(V,K) that is, it consists of all linear forms
®:V - K. Then D is a linear map from F to V* and its kernel is
the subset of F of all constant affine linear functions f (i.e.
functions such that f(p + v) - f(p) = 0 for all p of E and all v
of V). Note that Df does not mean D o f.

From now on we shall proceed assuming that K = R and that
the vector space V is of dimension £, and is equipted with a

symmetric positive definite non-degenerate bilinear form

uje

<, >. The lenght of a vector v is given as usual by |v|] = <v,v>
Then E is an Euclidean space and for any two points p and q of

E we denote by |p-q| the distance function on E. By Riesz
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representation theorem (2.9) takes the form

f(p + v) = < Df, v > + f(p) (2.11)

and Df is called the gradient of f. If f is a constant function
then Df = 0 and f is called jsotropic. We identify V and V* in
terms of the the bilinear form of V.

We can define a bilinear form Fx F —> R on F by

<f, f>=<Df Df > (2.12)

This is a positive. symmetric bilinear form because the left
hand side of (2.12) is the bilinear form on V* induced by the
one defined on V (note that Df € V*). If f is a constant
function then <f, f> = 0, so the bilinear form is positive semi

definite.

Definition 2.10  Affine hyperplane
The set P; of points p of E which satisfy the condition
f(p) = k (k e R), where f is a non-isotropic affine linear

function f, constitute an affine hyperplane P in E. That is,
Pi={pe E|f(p) =k}

Let us briefly recall some constructions that appear in E
because of the existence of hyperplanes which we will
encounter later.

Let P be a locally finite ensemble of hyperplanes of E. For
any two points p and q of E the equivalence relation "For
every hyperplane P; of P either p and q belong to P; or p and
q are contained in the same open subspace of E limited by

Ps", partitions E in classes of equivalence. We call these
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classes facettes relative to P. Obviously the set of facettes
is locally finite too. Consider a facette and a point p of it. A
necessary and sufficient condition for a hyperplane to
contain this facette is that p has to belong in this hyperplane.
It can be shown that the number of hyperplanes from the set
P, in which this point belongs is finite. @ They have as
intersection an affine subspace of E. We call this subspace
the affine support of the facette. Then (see Bourbaki(1968),
ch.V, p.58) the facette is an open convex set of its support.
Any facette C which is not contained in any of the
hyperplanes of P is called a chamber relative to the set P.
We call face of a chamber C every facette which is contained
in the closure C of the chamber C and whose support is a
hyperplane in E. Then every hyperplane which is a the support
of a face is called a wall of the chamber C. It is clear that
every wall of a chamber C belongs in the set P and is the
support of one an only one face of C. It can also be shown
that every hyperplane from the set P is the wall of at least
one chamber C. We can demonstrate some of the above
notions with an example that will be useful in what will
follow. We can define affine linear functions fg, f;,..., f on E
which assign a real number k; (i = 0, 1,..., £) to each point p of
E . For each of the affine functions define affine hyperplanes
in E, Py, Pq,..., Py, by fi(p) = 0. The set of points of E for which
fi(p) > 0 for all i =0, 1,..., 2 is called gpen simplex and
constitutes a chamber C relative to the set P of hyperplanes
Po, Py,..., Pg . lts closure C, is the set of points such that fi(p)
>0 foralli=0,1,., 2 Finally these hyperplanes are the

walls of C.
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Consider now linear invertible transformation w: E - E.
These transformations are often called affine isometries or
rigid motions of the Euclidean space E. From proposition
(2.9) we deduce that for all points p of E and all vectors v of

the translation space V

w(p + V) = w(p) + wW*(v) (2.13)

where w* is the unique linear transformation V — V
associated with w. In addition w* preserves the bilinear
form defined on the translation space V of the Euclidean
space E and w preserves the distances in E.

Consider the set P of hyperplanes defined by P;={pe E |
f(p) = 0 } for all non-constant affine linear functions f. We
are interested in those of the affine linear transformations
that leave invariant the hyperplanes Py and are involutive.
Such transformations will be denoted by S; and are called

orthogonal reflections with respect to the hyperplane P;.

Their action on any point p of E is defined by

St (p) = p - 2{f(p)/<f, f>}Df (2.14)

where < , > is as defined in (2.12).
Obviously this is involutive and if p € Ps then S¢(p) = p. By

transposition S; acts on any ' of F as
Si (f) = ' - 2{<f', f>/<f, f>5}f (2.15)

With the definition (2.14) the set consisting of S; (for all
non-constant f) together with the identity reflection forms a
group which will be denoted by W.

From the definition of an affine transformation (2.11) it is
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clear that to each such affine transformation S; there should
corresponds a unique linear transformation V-V, the
translation space of E (which in the general case of (2.13)
was denoted by w*) which preserves the inner product in V.
We call this the derivative of S; and denote it by DS;. Then
from (2.9), (2.11), (2.13) and (2.14) we obtain that

(DS )(v) = v - 2{<v, Df>/<Df, Df>}Df. (2.16)

Using (2.16) we can easily obtain that (DSs)2(v) = v and that
<(DSs )(v), (DSf )(v')> = "< v, v'>. Direct observation of (2.5)

shows that

DS = Spy (2.17)

where Df e V. Thus S; induces an orthogonal reflection in V
with respect to a hyperplane in V which consists of those
vectors v of V such that <Df, v> = 0.

Consider a set P of hyperplanes P; (f being non-constant)
defined as before in the Euclidean space E and the group W
consisting of reflections S; (for all f such that P; belongs in
P) such that the following conditions are satisfied:

(i) for every S of W and every P; of P, S(P;) belongs in P;

(i) W having the topology of a discrete group, acts properly
on E.

It can be shown that P is locally finite (see Bourbaki ch.V,
p.72 (1968)), and thus all constructions encountered a while
ago (facettes, chambers, etc.) can be applied.

Consider a chamber C of the Euclidean space which is
defined relative to those hyperplanes satisfying the

conditions (i), (ii) above. Then the following proposition is
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very important in the foundation of affine root systems that

will follow.

: s > 7
(a) For every p of E, there exists an element S of W such
that S(p) belongs in C,

(b) for any chamber C' of E there exists an element S of W
such that S(C') = C,

(c) W is generated by a set of orthogonal reflections
relative to the walls of C.

Proof (see Bourbaki ch.V, p.73-74 (1968))

We are now in a position to give the definition of an affine

root system on E.

Definition 2.11  Affine root system

Let A3' be the subsetof the set F of affine linear functions
which satisfies the following conditions:
(i) A3' spans F and the elements of A2 are non-isotropic
with respect to the form (2.12),
(i) the reflections S; (for all fe A2f) defined by (2.14)
leave A2f invariant,
(iii) the quantity 2<f, f'>/<f', f'> is an integer for all f, f'
of Aaf,
(iv) the group Waf generated by S (for all f of A2f) given as
in (2.14-15), (as a discrete group) acts properly on E,

Then A?3' is called an affine root system on E.

From now on we shall denote the members of A3 by greek

30



letters a, B,..., etc. We call W the affine Weyl group of A2f. As
in the case of finite root systems if ka is an affine root
proportional to the affine root o then k = +%, 1, +2. The
definitions of reduced and non-reduced affine root systems
are exactly the same as for the finite ones. The rank of A2f is
defined to be the dimension of E. If A3' and A2 are two affine
root systems defined on E and E' respectively, then an
isomorphism of A2' onto A2" is a bijection of A2f onto Aaf’
induced by an affine linear isometry of E onto E'. We call
direct sum of affine root systems the affine root system
which is the wunion of a finite number of mutually
orthogonal(with respect to (2.12)) affine root systems i.e. Aaf
= u; A@ . An affine root system D23 is said to be similar with
an affine root system A2fif D is isomorphic to the direct
sum u; kiA;2!, where A3f = u; A2' and k; are non-zero real
numbers. As in the case of finite root systems, every affine
root system is expressible as the direct sum of a finite
family of irreducible affine root system. This decomposition
is unique to within isomorpism. We call dual affine root
system A2 the one obtained from A3’ by substituting each
root a of A% by 2a/<a, a>.

For each affine root o« let P be the set of hyperplanes Py in
E defined by

Po={pe E|a(p) =0}

It is clear from the definition of the affine root system that
all such hyperplanes satisfy conditions (i) and (ii) mentioned
above and thus P is locally finite. Then all the constructions

mentioned above (i.e. facettes, chambers,e.t.c.) can be

31



demonstrated. In particular the chambers of Aaf relative to P

are defined as follows.

Definition 2,12  Chambers of Aaf.

Consider the set E - Ua Py. It is open in E and since E is
locally connected the connected components of this set are
also open. These connected components are the chambers of

the root system Aaf relative to the hyperplanes P,.

It is not difficult to see that _proposition 2.7 directly apply
to the chambers of the root system. In particular, all the
chamber of the affine root system are W-equivalent.
Moreover It can be shown that the Weyl group of Aaf acts
faithfully and transitively on the set of chambers (see
Macdonald(1972) and N. Bourbaki(1968), p.74 theorem1).

Assume from now on that A3' is irreducible, choose a
chamber C once and for all and points in C, pg, Py,--» Pg (2= dim
E), called vertices, such that every other point in C is written
asp=2;, kp; with X 1k =1andall ki > 0 (obviously
this is a property of any affine space). Consider now the set
of indivisible affine roots a (i.e. such that {a ¢ A3') with the
properties that

(i) a(p) > O for all p of C,

(i) Py is a wall of C.

Then the following proposition provides a basis for Aaf.

P . X
(a) The set consisting of the indivisible affine roots with

the properties (i), (i) above is a basis for the irreducible
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affine root system A3' and consists of £ +1 elements ag, ay,...,
oy which are called simple affine roots. It is also a basis of
the vector space F.

(b) Each affine root o is written as a linear combination of
the basis elements with integer coefficients which are all
positive or all negative. In the first case a is called positive
and in the second case negative.

Proof (see Macdonald (1972))

From proposition 2.7 (c) the following proposition is

straightforward

P o > ¢
The Weyl group of A3f is generated by reflections &, for

all j=0, 1,..., £, that is, reflections relative the walls of C.

Up till now nothing has been said about the relation of the the
affine root systems with the finite ones that we saw in the
previous section. The next proposition reveals their
connection.

Let F; (for each i=0, 1,..., 2) be the set of affine linear
functionals from F that vanish at a vertex p;of the chamber C
of A" and denote with Aff the subset of A3" which contains
those roots that vanish at p;. Also let W; be the subgroup of

W which fixes p;.

p it > 10
af v : ; Z
(a) the set A; forms a finite root system in F; which is

reduced if A is reduced.
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(b) Subtracting the simple root «; of A3 from the set of
the simple roots of A23' we get a basis of this finite root
system.

(c) The Weyl group is a subgroup of the Weyl group of A2f
Proof (see Macdonald (1972))

With the use of above theorem Macdonald achieved one way
of classifying all the irreducible reduced affine root systems
in terms of the known finite irreducible root systems and
their affine Weyl group. One can notice that if we associate
a Dynkin diagram with the irreducible affine reduced root
system, (using the same rules as in the finite root system
case) the above proposition implies that removing any vertex
from it the remaining diagram should be that of a finite
reduced system. Now although, it has not been explicitly
stated above, the Weyl group of the affine irreducible reduced
root systems as constructed by Macdonald, is an infinite
order irreducible group generated by reflection in the affine
Euclidean space E. All such groups have been classified and
found to correspond to the affine Weyl groups of irreducible
finite root systems. Moreover they are irreducible infinite
order Coxeter groups. Macdonald achieved the classification
by obtaining the Dynkin diagrams of the irreducible affine
reduced root systems from the Coxeter graphs that are
associated with the affine Weyl groups.

A more explicit construction and classification of the
affine irreducible reduced and non-reduced root systems that
Macdonald also achieved was based on the notion of the

gradient of the affine root system.
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Definition 2.13  Gradient of an affine root system
The set A = DA2' = { Da ; for all a of A2f } is called the

gradient of the affine root system A2f,

P . > 11
A is a finite root system in V, the translation space of E.
If A3" is irreducible A is too. The map D: S— DS, for all S € W,
is a homomorphism of the affine Weyl group to the Weyl
group of the finite root system. The kernel of this map is the
group of translation which is a subgroup of the affine Weyl
group.
Proof (see Macdonald (1972))

Note that if A2' is reduced then A can be either reduced or

non-reduced.

Definition 2.14  Special point for Aaf

A point p of E is called special point for A2f if there exists
affine roots vanishing at p, whose gradients form a basis of

A.

P - > 12

(@) There exists a special point for A2f which is also a
special point for its Weyl group.

(b) If C is a chamber of A2 then there exists a vertex of C
which is special point for A3

(c) Let A2f be irreducible. Fix a chamber C and a basis I1 =

{og, &q,..., g } corresponding to C. There exists a simple
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affine root «;, such that the gradients of the elements from
I1 - {a;} form a basis of the finite root system A = DA2f,

Proof (see Macdonald (1972)).

Note that if we consider the finite root system A?t of
proposition 2.14(c), obtained by taking the affine roots that
vanish at a point p; (not necessarily a special one) of the
chamber C, and consider its gradient A; = Da?f , then A, is a
subsystem of the finite root system A = DA3f and the gradient
map D: Aiaf—> A; is an isomorphism of finite root system.

Then we can prove the following.

Proposition 2.13

Assume that A?' is reduced and irreducible and a vertex
p; of C is a special point of A3, Let A; be the set of gradients
of the affine roots which vanish on p;. Then A; is the set of

indivisible roots of the finite root system A = DA2' .

Let p; be a special point for an irreducible affine root
system A3 and Do, (i=0, 1,...,2) be the gradients of the simple
roots of A3'. Then by proposition 2.12 , the elements Da; (for
j#i) form a basis of a finite irreducible root system. Since
< Da;, Daj > < 0 with j#i, <-Da; , Daj > 2 0. Thus -Da; is a
positive root of the finite root system A. Thus -Da; can be

written as
-Da; = ZHi kj Do (2.18)

where the coefficients k; are positive integers and Da; are

the basis of A. Consequently we can write (2.18) as
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Yok Doy =0 (2.19)

where k; = 1 and k; (for j#i) are as above. Now we can state a

very important proposition.

P i > 14
Let p; be a special point of an irreducible reduced affine
root system A3 . Then there exists a constant, positive on

the chamber C, affine linear function g defined on E which is

given by
2
T=Ej=0 kjaj (220)

where k; are positive integers such that for j=i k; =1. Every
other constant function belonging to the lattice generated by
the simple roots of A2f is an integral multiple of y.

Proof (see Macdonald (1972)).

Note that from the definition of an affine root system it is

obvious that y does not belong in A

Proposition 2.15

For each affine root a, let «, be the unique affine root such
that f, = a , - a is constant , positive and as small as
possible.

(a) If a e A%' and k € R, then o + k € A3 if and only if k is
an integral multiple of f, .

(b) If e A% and S e W2, then fg,, =1, .

(c) If A3f is reduced, o e A2 and 20 + k € A3 for some k e

R, then k = m f, where m is an odd integer.
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(d) f, is a positive integral multiple of y.
Proof (see Macdonald (1972)).

All of the above analysis makes obvious the direct
connection of finite and affine root systems. We shall now
describe explicitly the irreducible reduced affine root

systems.

2.5 Classification of irreducible reduced affine root

systems

Proposition 2.16

Let A be a reduced or non-reduced finite root system in a
finite dimensional real vector space V equipped with a
symmetric non-degenerate positive definite bilinear form
< , > Let E be the Euclidean space whose space of
translations is V. For each a € A and each jeZ the set of

affine linear functions defined on E of the form
f(p) =) + <o, p> (2.21)
where
je2 if fae A or je2Z +1 if ia e A. (2.22)

is a reduced affine root system.

Proof (see Macdonald (1972)).
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Clearly the above proposition together with the analysis on
gradient root systems gives the classification of all
irreducible reduced affine root systems since we know the
irreducible reduced and nonreduced finite ones. We just have
to choose a point p; of the chamber C and consider it as an
origin in E. Then the vector space of translations V is
identified with E by means of the identification of a point a p
of E with the vector p-p;in V. In this way an affine linear
function f on E is identify with a linear functional defined on
V and sending every vector to v — f(p;) + <Df, v> € R. Then we
can write the affine linear function as f(p;) + Df. If f(p;) = 0,
the affine linear function is identified with the linear
functional Df on V. Applying this method to affine root
systems, it is easily seen that Df would belong to the finite
root system which is the gradient of the affine one.

All the reduced irreducible affine root systems are listed
in table lll together with their Dynkin diagrams and a system
of simple roots.

We can deduce a Cartan matrix A for the irreducible reduced

affine root system by
Aj = 2< o, 0 >/ < @, & > = 2< Dayj, Doy > / < Dy, Doy > (2.23)

for all i,j = 0,1,..., 2 (the left hand side being a consequence of
(2.12)), where «; are the simple roots.

Clearly A is indecomposable since if it was not the Dynkin
diagram would be disconnected i.e. the root system would not
be irreducible. It is symmetrisable as it can be easily
deduced from the left hand side of (2.23). Also, from the left
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hand side notice that A; = 2 since a; are non-constant
functions and the form <,> is positive definite. Making use of
proposition 2.12(a) and (c) , A; is a negative integer for all i,
j =0,1,.,2 and A; = 0 implies that A; = 0 since the matrix is
symmetrizable. Consider the function given by (2.19) and
take the expressions 2<y, a>/<a;, o; > foralli= 0,1,.., £.
Then from (2.12) and (2.23) we obtain
Ak=0 and k>0

where k is a column vector with entries k; > 0. Thus the
matrix A of the affine irreducible reduced root system is a
Cartan matrix of affine type.

In view of the known classification of the irreducible
reduced affine root systems it is a straightforward matter to
enumerate all the non-reduced irreducible ones. We shall use
the tool of the gradient of the affine root systems.

Let A2f be an irreducible non-reduced affine root system.
Let A?f be the irreducible reduced root system which consists
of roots a of A2l such that fa ¢ A2f and let Aazf be the
irreducible reduced root subsystem which consists of roots «
of A3f such that 2a ¢ A3". Note that A?f, A;f and A3" have the
same Weyl group. Consider now the gradient root systems A,
= DA?‘, A, = DAY and A = DA®. Since A3 is non-reduced
according to proposition A is non reduced either (but it is
still irreducible). From table Il we can identify A with BC,
since it is the only irreducible finite non-reduced root
system. Similarly, for Ay and A, defined by (2.6) respectively,
direct observation of table | shows that A; = B, and A, = C, .
Then from table Il we can easily deduce that A?f should be

f 2 2
one of (i), sz” or Diﬂ and A; should be one of Aéf), A}M)J or
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The final step makes use of the fact that a?f, Agf must have
the same Weyl group. This occurs only for the pairs A?f- AZ

given by

(2)

2 2
a) Asp- C{) (221), (0) DY, - A% (22 1),

(c) B{" - A2 (223) and (d) D, - C{" (22 1).

We can assign a Cartan matrix to each class in the usual
way and the corresponding Dynkin diagrams are obtained
using the same rules as in the finite case. With the same
method as in the reduced case we can see that the Cartan
matrix of these root systems is of affine type too.

Up to similarity, these root systems are listed in table IV
with their Dynkin diagrams. The black nodes in the diagrams
of table IV denote that there is a non-simple root which is
twice the simple one corresponding to that node. These black
nodes will be identified later as the odd simple roots of the
superalgebras. Note that proposition 2.12 (c) is valid for
these non-reduced root systems too. Consequently if we
remove one of the vertices of the Dynkin diagram then the
remaining part is a Dynkin diagram corresponding to a non-
reduced irreducible or a reduced irreducible or a direct sum
of a reduced irreducible and a non-reduced irreducible finite

root system.
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Their respective names in terms of the superalgebras with
which they will be identified, are B(1)(0/2), A(4)(0/22),
A(2)(0/22-1) and C(2)(2+1) (the correspondence being from (a)
to (d)). In the next two chapters we shall see how this can be

done.
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CHAPTER 3

ABSTRACT STRUCTURE OF
AFFINE KAC-MOODY SUPERALGEBRAS

3.1 Introduction

In this chapter the aim is to set up at an abstract level a
complex affine Kac-Moody superalgebra, whose structure will
be determined solely from a particularly chosen generalized
Cartan matrix A of affine type and its unique, up to
isomorphism, realization. It should be noted that the method
that will be demonstrated in section 3.2 of this chapter is
closely related to that of Kac-Moody algebras (see Kac
(1985), Cornwell (1989)). We shall concentrate only on these
affine superalgebras that appear in Kac (1978) although many
of their properties apply to other contragradient Lie

superalgebras, affine or simple finite dimensional.

3.2 Abstract construction.

Let A be a (2+1) x (2+1) an indecomposable matrix, with
entries in 2, rank £, together with an index set 1= {0,1,...,4},
which labels the rows and columns of A and a non-empty
subset t of I (which may not necessarily be a proper one) such

that the following conditions are satisfied:
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(i) Aj=2 for all je I (3.1)
(i) Ak < 0 forj#k jkel (3.2)
(i) if je = then Ay is a non-positive even integer (3.3)

(iv) forj= k (keI Ax=0 ifandonlyif A;=0 (3.4)

In what follows it will always be assumed that A is
symmetrizable, i.e. can be written as a product of a
symmetric matrix and a non-singular diagonal matrix. as

follows

A =DB and Ajk = aijk for all j,ke L (3.5)

where D is the diagonal matrix with entries g and B is the
symmetric matrix with entries Bj.. Finally we set detA =0
and demand that every principal minor of A is positive. Thus
we take A to be of affine type.

With all of the above assumptions it can be easily
checked that A is the Cartan matrix for the irreducible non-
reduced affine root systems of chapter 2. In table V, all
these Cartan matrices and their corresponding Dynkin
diagrams are presented. The entries of these Cartan
matrices have been determined relative to the enumeration of
the vertices of the Dynkin diagrams as indicated. The
integers above the vertices are the entries of the unique, up
to a constant factor, vector v such that Av = 0.

According to the definition 2.1 of chapter 2, a
realization of A is a complex vector space # of dimension

2+2, together with a set of linearly independent elements
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He, (for all j e I) and a set of linearly independent elements
o (for all je I) of the dual space # * such that
ok(Hy) = A (3.6)

We denote by Q the lattice in 7 * defined by elements of
the form o = X_kjo; where k; are integers and let Q,
denote the subset of Q consisting of elements a such that k;
are positive integers. We call height of a linear functional «
e Q, and denoted by hta , the integer hta = X i1 k; .

We shall associate now with this Cartan matrix a Lie
superalgebra whose Cartan subalgebra will be # and whose
simple roots will be identified with the linear functionals a;
(for all je I).

Consider first an auxiliary complex Lie superalgebra 2'.;
whose set of generators are given by the basis elements of #
and the 2(2+1) elements E 4, , E.q; (for all je I). The

defining relations of i; are as follows:

(B, Ewl = dkH,  (forjke I (3.7)
[h,By] = ox(h) B, (for all k e 1) (3.8)
[h,E.q] = -ox(h)Eq, (orallkeI)  (3.9)

[h,h'] =0 (forall h, h'e #). (3.10)

The 2, grading is defined by

degh =0 (for all h € #), (3.11)
degE o, = degE.,, = 0 for all ke I\t (3:12)
degE,, = degE_ 4, = 1 for all ke 1. (3.13)

It should be noted that with h = Hy, (3.8) and (3.9) reduce, to
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[HaII ' Euk] = A]k Eak (314)

[ HU.] ’ E'O'-k ] = _Ajk E'(Ik- (31 5)

Here and in what follows [, ] denotes the commutator or the
anticommutator as is appropriate. 1; contains also all the

generalized Lie products of the form:

[E 0 Ea,); [Eays [EoyEq-1], @and so on, (3.16)

together with those of the form:

[E —uk:E-ak']n [E *Gk’[E 'U.k'rE Ol ] ]: etc" (3'1 7)

all subject to the generalized Jacobi identity. We denote by
L and 1, the subsuperalgebras of Z_ generated by Eq, and E,
(for all ke I) respectively.

The first thing that we have to establish is that Z_ has a

decomposition of the form

L =40 950 4 (3.18)

and the spaces 2. 2, are freely generated by the elements
E .o, and Eo, (for all ke I) respectively.

To achieve this we have to define a graded
representation of £_ . Let T(V) be the tensor superalgebra
over the Z2,-graded complex vector space V (see Scheunert
(1979)), whose basis elements are denoted by v, (for all ke
I). Clearly T(V) is by construction a 2-graded associative
superalgebra of the form
TV) =X, ® T(V)=Co®Ve (VO V)® (VO Ve V) &..

(3.19)

where
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V) =C, T'(V) =V, T3V) =V ® V, etc, (3.20)
with a consistent 2, grading inherited from V. Define an

action of the generators of Z's on T(V) as follows :

E o (V) = v ® v forany veT(V) and all ke I (3.21)
h () = A(h) (3.22)

h (Ve ® V) = - a(h)E o, ® V + v ® h(v), for ve T(V) (3.23)

for all ke I, h e ¥ and where A is a linear functional on #,

Ea,(l) = 0 (3.24)

Eay(Vk ® V) = 8jk Hoy(v) + (-1)%°90Rk Vi v, ® Eq,(v)  (3.25)

for ve TF'(V), forall j, k e I and | is the unit in T(V).

Now it can be easily proved, that this action provides a
representation of Z; on T(V). This can be done by checking
that relations (3.7) to (3.10) are satisfied. Moreover any
product of elements E,, E o and hlies in 2 + 3+2_.

Consider an element a of :'f.'s of the forma = 2.+ h + £,
where ¢, h, £, are elements of the &, #, 2, subspaces
respectively. Assume that a =0. Then in the representation
defined above a(l ) = £, (1) + A(h) | + & (I) = A(h)| + ®(2.)I = 0.
The structure of T(V) implies that A(h)l = 0 and ®(2.)l = 0.
Since A(h)l = 0 should hold for every A € #* we deduce that

h = 0. Now notice that under the map E ,, > v the
associative superalgebra T(V) is isomorphic with the
universal enveloping algebra U(L:) of L: and the map a. 2a .
(1) for all elements a. of :.: is the canonical even linear

mapping of 2 into U(Z). Consequential if 2. (I) = 0 then £.=0
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and thus £, = 0 too. Relation (3.18) is satisfied.

Since U(%) is the universal enveloping superalgebra of
:,L: by Poincare-Birkhoff-Witt theorem 4,: is freely generated
by E.q, . Next let us define the map

-~

$(Eq, ) =-Eq forallk el

—~

(Ey, ) = -(-1)9e9B E , for all k e I (3.26)
$(h) =-h forallhe 7
It can be easily checked that the map § can be uniquely
extended to become a graded automorphism of I's of order 4.
Using this automorphism observe that .t; is also freely
generated by E,, for all ke I.

Now by relations (3.8), (3.9) each of the generalized
products in (3.16) and (3.17) are eigenspaces of adh with

eigenvalues,

ah) = X ko () (3.27)

kel

where v:it are all negative or all positive integers and | xﬁ | is
the number of times that the element E o, or E, appears in
the commutators. That is, o belongs in the root lattice Q.
We shall denote the subspace corresponding to the linear
functional o by & , . Moreover since 2, and 2. are spanned by
elements of the form (3.16) and (3.17) respectively we obtain

that

L. =2 o 02, (3.28)
=X o 0t (3.29)

+
and £_ = (Zae% ea,a)@m(zaeo+ @) (3.30)
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where o # 0. From relations (3.27) and (3.28) we deduce that
for all kel the generators E,, and E_, are members of 1;, and
L', respectively, dimiy, = dim 1.4, = 1. By making the
obvious estimate that dim& , <(dimA)Mo, it follows dimi  <e.

Any ideal Iof Z_ has the form

P X ®(2, n1T) (3.31)

aeQ

and it is obviously 2, graded. The sum of all ideals that
intersect # trivially is the unique maximal ideal R that
intersects # trivially and it can be easily checked that it

possesses the decomposition :

R=(2.nR)®(2_.nR) (3.32)

We define the complex Kac-Moody superalgebra %, based

on the affine Cartan matrix A, to be the factor algebra

I -1 /R (3.33)

S
Consequently 3'.5 has no non-trivial ideals with trivial
intersection with #. We retain the same notation for the
elements Eq, , E.q, and h,, (for all ke I), under the natural
homomorphism of Z_ onto ?l,;/R. The commutative subalgebra

7 of is is still referred to as its Cartan subalgebra. Also the

set of elements a, of Zﬂ; that have the property
[h,a,] = a(h)a, (3.34)

for all h e s is again said to form the root subspace Z_,
corresponding to the root . The set of all non-zero roots of
Z_ will be denoted by A, the subset of positive roots by A,,
and the subset of negative roots by A.. Clearly A, =An Q, ,

A.=An -Q,.and A = A, u A.. The set of linear functionals «;

49



for all je I, are said to be the simple roots of .. If the root
subspace Z, belongs to the odd (even) part of Z then o is
said to be odd (even) root. We shall denote by A° and A! the
set of even and odd roots of Z,. Also relation (3.30) takes

the form

L, )0 HSD (Z(m+ ® 1) (3.35)

Finally the map ¢ defined by (3.26) induces a Cartan
automorphism ¢ of Z, , of order 4, defined as in (3.26). This

maps the root subspaces corresponding to positive roots to
those corresponding to negative roots and thus, If « € A, then

-o € A. and vice versa, and A, =- A. .We call the generators

E .o » By and Hy, (for all ke I) Chevalley generators. In the

same way as for the Kac-Moody algebras we can prove the

following.

P it 3.1

Let a belong to &, be such that [a , E.q, ] = O for all ke I.
Then a = 0. Also if a belongs to & and satisfies the relation
[a, &,]=0,forall ke I, then a = 0.

p it 3.0
With the generalized Cartan matrix defined as above, the

following relations hold in Z_ :

(@d B&)"Ax) B, = 0 (3.36)

and

(ad Eq )(1"AY Eq = O (3.37)
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Proof
To prove that (3.36) and (3.37) hold, it is sufficient to show
that

(adE.q, )(ad Ei)(1"AW) By = O (3.38)

(adEy, )(ad E.q)'"Ax) E.q, = 0 (3.39)

for all i, j, kel and j#k, and then make use of proposition 3.1.
Relations (3.38) and (3.39) can be shown to be true with the
use of the generalized Jacobi identity and relations (3.7-15).
Moreover if we prove (3.38) then (3.39) is obtained by using
the Cartan automorphism ¢.

From relations (3.36) and (3.37) and using the Leibniz
formula D™ [x,y] = 2" _, (+) [D™x, DM y] where
D is (adE 4, )(for k € I\t ) or (adE 4, )? (for k € ) we can find

that (adE 4, )(k € I) are locally nilpotent on %, .

As in the case of affine Kac- Moody algebras, the

following proposition holds.

r ition

The set of elements h of # such that

og(h) = 0 for all ke 1 (3.40)

form the centre C of the Lie superalgebra Zs and dm C =1,

Any heC is given by

h=2_, nHy, with X._ Ajn=0 (3.41)

ie 1]
where n; being real numbers.
The existence of the centre is a direct consequence that
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the generalized Cartan matrix is of affine type (see chapter 2
section 2.2). This can be shown by the second of the
relations (3.41), if we write it as An = 0 where n is a (2+1)
x 1 vector with entries n;. Then because A is of affine type,
there exists n > 0 such that An = 0. With appropriate scaling
n; can be taken to be positive integers.

We must make now the following important remark.

Since A is of affine type, # can have the decomposition

Ho=HS H" (3.42)

where #H' is the set of all linear combinations of H:j (for all
je ) and #" is a complementary subspace with dimension one.
It can be easily seen that the subspace of 1; generated by the
Chevalley generators, satisfying relations (3.7, 3.14-15) and
(3.34-35), together with all their commutators is a
subsuperalgebra of IS which differs with Zs in that it does
not contain the subspace #". This indicates that this
subsuperalgebra is the derived superalgebra , [ Z , Z_ ], of £_.
In Kac's original paper, both the abstract form and the
explicit realization of the Lie superalgebras presented there
concerned the derived superalgebra . Clearly the situation is
the same as in the construction of Kac-Moody algebras that
appeared in the original papers of Kac and Moody. Later
Kac(1985) demonstrated a general method of abstract
construction for the Kac-Moody algebras which includes the
subspace #" straight from the beginning.

This method with slight modifications to fit the superalgebra
case is Iadopted throughout this thesis. Clearly this additional

subspace guarantees the non-degeneracy of the bilinear form
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on # and #* as we shall see bellow.
3.3 The supersymmetric bilinear form

The next step is to define a supersymmetric invariant
non-degenerate bilinear form on Zs. That is, a bilinear form
that satisfies the following conditions
(i) B(a, b) = (-1)deg9adegbB(p a) (i.e supersymetric)

(i) B(a, [b, c])
(iii) there does not exists an ae ff.s with a # 0, such that
B(a, b) = 0 for all be %,.

Due to the fact that I,S is allowed to be infinite

B([a, b], ¢) (i.e invariant)

dimensional the process of constructing the desired form
should be carried out in stages. First let us state a theorem
due to Kac (1978) that guarantees the existence of a
supersymmetric invariant bilinear form on the derived
superalgebra [ Z, Z_ ], and is strictly related to the

properties of the Cartan matrix A.

P ition 3.4

Let A be an indecomposable generalized Cartan matrix.
If A is symmetrisable then the derived contragradient Lie
superalgebra with this Cartan matrix has a unique up to a
constant factor bilinear supersymmetric invariant form such

that

B( H, I—Li )> 0 forallje I and (3.43)

B(,, 24) = 0 ifa=-p for any roots a, p of Z . (3.44)

53



Proof (see Kac (1968,1978))
Note that Kac's theorem does not imply non-degeneracy of the
bilinear form.

Clearly this theorem does not state anything about how
the bilinear form should be defined on the elements of the
complementary subspace #" . Thus first we have to define
B( , ) consistently on the whole of the Cartan subalgebra #
and then extending it to the whole of i'.s such that the above
theorem would still be true. The process is identical with
that of affine Kac-Moody algebras.

We define B(, ) on # by

B(h,H,;)=ayh)g foralljeI andallhe % (3.45)
B(h,h)=0 and all h, h' e #" (3.46)

B(h,H;) = B(H,;, h) forallje I andallhe s" (3.47)

where ¢g; are the non zero diagonal elements of the matrix D
(see 3.5) which can be taken to be real and positive. In
particular from relations aj(Hy,) = Ay;, (3.5) and (3.47) for h =
Hy, it is found that

B( Hy .H,)= Bgecg  (forallj ke I) (3.48)

where By; are the entries of the symmetric matrix B of (3.5).

P » .
The bilinear form defined by (3.45) to (3.48) is non-

degenerate on #.

Proof (see Cornwell (1989))
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This proposition allow us to define for each linear
functional o on % a unique up to a constant factor element h,
of 4 by

B( hy , h) = a(h) (3.49)
and thus for any h,, hg we have

ha 4 hB = hﬂ+B (350)

This bilinear form induces a symmetric bilinear form on
#H* defined by

<a,p>= B(hy,hy)

and a(hg) = B(hy) =< B, a>. (38.51)

Then by (3.45) and (3.49) we can define "Weyl" type

generators h, of 7’ as

ha, = & Hy, (3.52)

Also, it is not difficult to show that

< Ok, 0> = Bkj=3]'1 Ajk! < Qj, (1j>=2/ﬁ (3.53)
and thus
Ajk = (2((1;. ()'.k>)/<l].j, (I.j> and (354)
Ho, = 2<o, o>"' hy, (3:55)
Pr ition 3.

The C-valued bilinear form defined by (3.45) to (3.48) is

the unique, up to a constant multiplicative factor, consistent
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invariant supersymetric non-degenerate bilinear form on Z.s
and such that (3.43) and (3.44) are satisfied and so for any

root vector a, of Is

[ag,8a]=B(ag , aq) ha (3.56)

Proof This can be proved by checking each of the
assumpt:ions of the theorem, inductively, on Ef.s, viewed as a
Z2-graded Lie superalgebra. (See last section of this chapter
for the 2-grading of Z.). Clearly the proof is the same as the
one appearing for Kac-Moody algebras in Kac(1985) , the only
difference here is that we demand that B( , ) has to be

supersymmetric.
3.4 The Weyl group

Consider now any linear functional B defined on # and
define the linear transformations 311 (for all je I) on the

elements of #* as

(Se; B)(h) = B(h) - B(Hy) aj(h) = B(h) - e b aj(h) (3.57)

<C|'.j C(.j)
for all h € 2. Clearly the S,i are reflections on #* relative to
the simple roots a;(h), the fixed point set of each S’i being
the set { L e #* | <}, ap> = 0} and (&, aj)(h) = - aj(h). These
reflections are called fundamental. If p = agx(h) then

(Su; o)) = oy (h) - Agoy(h) forallhe Handje I (3.58)

The set generated by the identity operator, the £+ 1
fundamental reflections Sli and all products of the

fundamental reflections S,,. forms a group and is called the
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Weyl group W of the affine Kac-Moody superalgebra Z .

Using the definition (3.57) it can be easily checked that
the form < , >, induced on #* from the bilinear form on % is
invariant under the action of the Weyl group.

For any aeA such that <a, a> > 0, we define an operator

S. acting on any linear functional B of #* as

(S B)(h) = B(h) - 2<a, B><a, a>1 a(h) (3.59)

and has the obvious properties

(i) (& oa)h) = -a(h),

(i) Sa (S B) =P for any linear functional f on #,

(i) < & P,Sy>=<B,y> forany B, y defined on #,

(iv) for any two linear functional B, y on % and any two
complex numbers A and p

Sa (AB + 1Y) =M B) + W(S V)

Clearly & defined above is a reflection relative to the root a.

As we shall see in the next section all the roots o that
satisfy the condition <a, a> > 0 are the roots with the
property that there exist an element S of the Weyl group and
a simple root oy such that « = S a;. Then this last relation and
(3.57), imply that § = 8§, S'. Thus & being a product of
fundamental reflections lies in W.

The structure of the Weyl group will be better
established, when we shall examine the explicit realization
of the affine Kac-Moody superalgebras in the next chapter.

Finally, recall the definition of the Coxeter group in the
previous chapter. With the fundamental reflections defined
as in (3.57) and the Cartan matrices given in table V, we can

verify (c.f. Kac (1985), proposition 3.13) that the Weyl group
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of i'.s is an infinite order Coxeter group (see definition 2.8
chapter 2). Moreover for any pair of fundamental reflections
(S« > Say ) (izk, € 1) the order myc of the product &, S, is
related to the entries of the Cartan matrix as follows:
if Ak Agj =0, 1,2 3or=24, then Mik =2, 3,4, 6o0r«
respectively, the convention being that (&, &, )= 1.
It should be noted that whenever mj, = o, this implies that
(SﬂLi S, ) is a translation (see of N. Bourbaki(1968) § 3, n° 4,
chapter V). For example from the Cartan matrix of B(1)(0/1),
in table V, (S, &, ) is a translation as will become apparent

in chapter 4.

3.5 The root system of % _.

s

Let us now investigate some fundamental properties of

root system of the affine superalgebras of table V.

> |

If a; is an odd simple root of

~

. then 20, is also a root
of £.. Moreover 3 is not a root of Z_.
Proof One has to notice that

[Ewap [By, By ] = 20 (Hi)Ey,; and that [ E.q, (adEy J2Ey ] = 0
implies that there does not exist a simple odd root such that

3a; is a root.
This can be easily generalised to all the odd roots of Zs

Definition 3.1 Real roots of Ef.s

A root a of :'f,s is called real if there exists an element S
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of the Weyl group and a simple root a; (jel) or a root 2a,

(je t) such that

o = Soj or a = 2Sa;. (3.60)

The set of real, positive real and negative real roots will be

denoted by A", A} and A'respectively.

Proposition 3.8

The real roots are characterized by the following
properties:
(a) if o e A then < a, o > >0;
(b) ifa € A" and B € A then there exist two non-negative
integers p and q (which depend on o« and B) such that B+ka is
in the a-string containing B for every integer k that satisfies
the relation -p < k < q. That is B+ka is an arithmetic
progression

B-pa,..., B—a, B,..., B+qa
Moreover, p and q are such that
p-q = 2<B, a><a, o>"1
and
S.B = B- 2<B, a><a, a>1 a

is a non-zero root . Moreover dim ISQB = dim ;
(c) the set AT is invariant with respect to the Weyl group and
dimigy = dim %, for any SeW and any Be A" .
(d) the root subspaces 4., of &, are all one dimensional for
any o e A
(e) if ais real even root of & then ka is a real root of & if
and only if k = +1. Similarly if « is real odd root of & then ka

is a real root of Z if and only if and k = +1, +2.
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Proof (see Cornwell (1989)).

Part (a) follows immediate from the definition of the real
roots, the invariance of the form < , > under the Weyl group
and the fact that <aj, aj > > 0 for all simple roots ;.

To prove (b) we just have to notice that the adjoint
representation is an integrable representation (see chapter
5). Then (b) follows from similar steps as in the affine
algebra case by making use of proposition 5.1 and 5.2 (see
also Kac(1985), (1978),(1968) or Cornwell(1989)).

Part (c) follows from (b) and (d) is obvious for the simple
roots and for the rest of the roots it follows from (c).

Part (e) is evidently true for the simple even and odd roots
and for the rest of the roots we can prove it by using the
definition of the real roots and part (c).

One thing that has to be pointed out is that property (e)
includes the cases k = +2. In the finite and affine Kac-Moody
algebra case these values do not appear since the finite or
affine root systems, are reduced root systems. That is if o
is a root of these root systems then ia is not. The
appearance of these values here reveals the non-reduced
character of the root system of the superalgebras under

consideration (see chapter 2).

Definition 3.2 Imaginary roots of %

A root a that is not real is called imaginary. That is
there does not exist any element of W such that when acting
on a simple root gives «.

The set of imaginary, positive imaginary and negative
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imaginary roots will be denoted by Ai. AL and Af respectively.
The following proposition can be proved in exactly the same
way as in Kac(1968) or Cornwell (1989), and provides us with

a criterion for the existence of imaginary roots.

Pr ition

Every one of the following three properties is equivalent
to a root a being imaginary:
(a) if a e Ai then there exists an S e W such that Sa = B e Ai+
and < B, a;><0 foralljel; (3.61)
(b) fae Athenae Alifandonlyif<a,a ><0
(c) if a € Al then kao € A for any integer k.
If o e Al and S € W then Sa € Ai. The set of imaginary roots
is Weyl-invariant.
Proof (See Kac(1978))

From part (a) and relation (3.27) we can write (3.61) as

<B,aj> =Eke I Kk <O o ><0
where x >0 for all k e I, or in a matrix form k >0 and Ak <
0. Then since A is an affine matrix, by proposition 2.2(b)
chapter 2, Ak < 0 implies that Ak = 0. Thus the affine Lie
superalgebra possesses imaginary roots. Moreover, <f, a> =0
for all jeTand < B, B > = 0 for every B e A

Let us concentrate for the moment on the subspace #" of
the Cartan subalgebra. As we saw above the subspace #" is
one dimensional and # is the direct sum of # ' and #". |Its
basis will be denoted by d and will be called the scaling
element or derivation of .. It is defined to be such that

ajd) =1ifj=0 and o4d) =0 ifj=1,2...2. (3.62)
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With these definitions it is clear that d does not belong in #".
From relations (3.50) to (3.50) we have that

Bd,d) =0 (3.63)

B(d, H, ) = <0y, o> if k= 0and B(d, H,) = 0 if k=1, 2,...2.
(3.64)
The basis of #f has thus been consistently established.
Consider a vector k > 0. Since A is of affine type Ak =0
and we can assume that the entries k; (ieI) of k after
appropriate scaling are positive integers. By the uniqueness
up to a constant factor, of such a vector we can take k; (iel
to be for example, the labels of the Dynkin diagrams of table
V (this is wusually the convention followed in the affine

algebra case). Now define a linear functional 8 on # by

§ =2 ki (3.65)

el

It can be easily seen from (3.6) and the affine character of

the Cartan matrix that

d(Hy, ) = 0 for all ieI. (3.66)
and consequently, 8(h) = 0, for all he #'. Moreover by (3.65),
(3.66) and (3.62)

3(d) = kg (3.67)
Moreover by (3.49), (3.50) the element hg of 2/ corresponding

to & is given by

ha =ZiEI ki I"I(;,,i = ZiEI ki Si'1 Hx

(3.68)

where (3.56) has also been used. Then it is trivial to show

that ax(hs ) = 0 and so by proposition 3.3 h;__belongs in the
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center C of 4.

Relation (3.66) states nothing but < 3, a; > = 0 for all je I
and < §, 8> = 0. Moreover all the conditions of proposition 3.6
are satisfied and thus §_is an imaginary root . In addition, by
proposition 3.9(c), j6 (je2) is also an imaginary root and thus
< j8, j6 > = 0 too.

What remains now is to complete the basis of #* by
defining in a consistent way a basis for #"* corresponding to
the scaling element d. Let Ay be the linear functional defined

on Has

Ao(Hy) = 1if k=0 and Ag(Hy) = 0 if k=1, 2,...,2.(3.69)

Using (3.49), (3.63-64) and the above relations, the element

hAo of #" corresponding to Ag is given by

hA =%<0t0, 0g> d. (370)

o]

Finally observe that because of (3.46) and (3.51)

<Ag, Ag> = 0. (3.71)

Also from (3.65) and (3.67)

and S(hAo ) = %(ao . C(.o>k0. (372)

Both the role of d or hy ~ and h; will become more
apparent in the explicit realization of the affine
superalgebras. One thing that can be said concerns the
functional Ay. Ap is not a root of the superalgebra since it
does not have the property (3.28). In the next chapter amongst
other things, we shall determine explicitly the root structure

of the affine Kac-Moody superalgebras.

63



3.6 L  viewed as a Z-graded Lie superalgebra.

Definition 3.3 M-graded Lie superalgebras.
An M-grading of a Lie superalgebra & with respect to an

abelian group M is a decomposition of 4 in to a direct sum of

subspaces as:

L =2 .0 2, (3.73)
such that

[&m"i'n] C 1'm + N (3-74)

dim&  <oo (3.75)

Then the Lie superalgebra is called M-graded.

An element a of & which belongs to the subspace 4., is
said to be homogeneous of degree m. A subspace 4'of 4 is
said to be M-graded if ' =2 memM® (L' N 2, ). For example
the superalgebra itself is graded with respect to Z,. The root
decomposition (3.30) is a Q-grading on 1.

Z-grading plays a very important role in the theory of
Lie algebras or superalgebras. It actually initiated the study
of what is now known as contragredient Lie algebras or
superalgebras (see Kac 1968,1977). These are 2-graded Lie
(super)algebras that are associated with an arbitrary matrix
A and {a set of relations (3.7-15). The affine superalgebras
together with the basic classical superalgebras are special
cases of contragredient Lie superalgebras.

Consider now the expression (3.38) appearing in the

definition of the height of a root. Let a, be an element of the
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root subspace %, corresponding to the root o of height je Z.
Setting dega, = ht o = (for all roots a) and degh = 0 (for all
h e ) we can introduce the structure of a Z-grading in i's

described by

x =):jez ® &4, &= Eaih,%j ® %, (3.76)

where

- -~ 2 ~ 2

%, =4, L, =2, C(Ey) L,=X,, C(Ey) (3.77)
I,=-XZ, oy L-X, o4 (3.78)

This is called the principal grading of Z.
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CHAPTER 4

EXPLICIT REALIZASION OF
AFFINE KAC-MOODY SUPERALGEBRAS

4.1 Introduction

The explicit realization of affine Kac-Moody
superalgebras is a natural generalization of the realization
of the affine Kac-Moody algebras (see Cornwell(1989), Kac
(1985)).

It should be noted that for any basic classical simple
complex Lie superalgebra and not only for A(22-1/0),
A(22/0), C(2+1) and B(0/2), there exists an affine Kac-Moody
superalgebra that has appeared in the literature. The
difference with our superalgebras is that the resulting
Cartan matrices are not those of the definition given in
chapter 3. It has been demonstrated (see Serganova(1983),
Van der Leur(1986)) that, with an approprately chosen
definition of a Cartan matrix, all the basic classical simple
complex Lie superalgebras and their affine (untwisted and
twisted) counterparts can be obtéined, (including the ones
that we are examining here), together with a complete
classification of their Dynkin diagrams. This set constitutes
all the contragradient Lie superalgebras of finite growth that
exist. Since a lot of the characteristics of the twisted
superalgebras that we shall investigate are essentially the
same as those of the untwisted superalgebra B(')(0/2)we

shall demonstrate them explicitly only for the untwisted
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superalgebras.

All information needed on the structure of A(22-1/0),
A(22/0), C(2+1) and B(0/2) needed in the explicit realization
will be given on the process. In particular their Dynkin
diagrams with the distinguished choice of simple roots can
be found in table V at the end of this chapter. For more
information see Cornwell(1989).

In presenting the method of constructing untwisted and
twisted superalgebras in sections 4.2 A and 4.3 B we shall
deal with the more general case of constructing such
superalg'ebras based on any basic classical simple complex
Lie superalgebra.

This set of basic classical simple complex Lie superalgebra
consits of

A(r/s)(= sl(r+1/s+1; C))(r>s20), A(r/r)(=sl(r+1/r+1; C))(r=1),
B(r/s)(= osp(2r+1/2s ; C))(r=0 and s>1),

C(s)(=osp(2/2s-2; C))(s=2 ),

D(r/s)(= osp(2r/2s; C))(r=2 and s=1), D(2/1; a)(a# 0,1,)
F(4) and G(3). For more information see Cornwell(1989).

For a basic classical simple complex Lie superalgebra
Zg it is assumed that BO( , ) is the Killing form (or if the
Killing form is identically zero then this is any other
supersymmetric invariant non-degenerate bilinear form),
that ig has rank 29, that # ° is its Cartan subalgebra, that
aE (for k = 1,2,...,20) are its simple roots and that AO, A?, and
A? are its non-zero, positive, and negative root systems
respectively. We fix a maximal solvable subalgebra for ig
such that the set of simple roots will be the distinguished

1

one.
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A Weyl-type canonical basis will be chosen for I,g (see
for example Cornwell(1989)). Its elements will be denoted
by hﬁg e 7° (for k = 1,2,...,29), together with egﬂ (for all o’ e
A%, and these are assumed to satisfy the usual commutation
and anti-commutation relations. In a realization of L. in
which the elements of ig are represented by supermatrices,
00

with e2 being represented by ey% the convention will be

adopted that

e’0 = -(ed9st (4.1)

for all o° of ai, the superscripts st indicating that the
supertranspose must be taken.

Since B°( , ) a is symmetric non-degenerate bilinear
form on 9{0, for each linear functional aoon 9{0 there exists

an element hQ of #° that is defined by by

B{h%hY = o%h9 for all h%e #°. (4.2)

Then a symmetric non-degenerate bilinear form < , > may be
defined in the dual space 9{0* of functionals defined on #°
by

<%’ = BYh%ohy (4.3)
for any pair of linear functionals «’and p°on #°. In addition
h3°+ hg°= hgo+30. Contrary to the case of simple Lie algebras

0 00, ; -
<o,o0 > is neither always real nor always positive.
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4.2 Explicit realization of affine untwisted

Kac-Moody superalgebras 39(1)
A. Basic concepts and definitions

Let C[t,t-1] be the associative algebra of Laurent
polynomials in the indeterminate t. We define first the |oop
superalgebra corresponding to the basic classical complex

simple Lie superalgebra i: as
5 %0 e
LoopEd) = Cltt] @ L2, (4.2.1)

This is an infinite dimensional complex Lie superalgebra and

the generalized Lie product is given by
[t®a%, tk®@b0] = t+® [ao, bO0] (4.2.2)

for all integers j and k and all a%,b% e L2, where the

generalized Lie product of the right-hand side of (4.2.2) is

that of L. The 2, graduation is defined such that

deg (i ® a% = deg a® for any homogeneous element a of Zf.:.
This superalgebra may be extended by introducing an

additional even element c, with the generalized Lie product

being modified to become
[t ®a0, tk ® b0] = titk ® [ &%, b0 ] + j5i*k0 BO(afbO0)c (4.2.3)

for all integers j and k and all a%b0%e Zg, and where it is

assumed that

[t ®a®,c] = O (4.2.4)
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for all integers j and all a% e Zg. This latter Lie superalgebra
may be enlarged by adding a further even element d, for

which it is assumed that

[dt®a’] = jt ® ao, (4.2.5)

for all integers j and all a° e 12, and that

[d,c] = 0. (4.2.6)

Clearly d acts as the operator t % on the loop superalgebra
and it can be easily seen that it is actually a superderivation
of it and is the extension of the derivation of the algebra of
Laurent polynomials from C[t,t"'] to Zi”. Also it can be
shown that the additional sum on the right hand side of
(4.2.3) is the extension of the loop superalgebra by a two-
cocycle which for our case has this particular form. The

untwisted complex Lie superalgebra ?ZS) is defined to be

£V - co o Ed @ (Citt]®L). (4.2.7)

Equation (4.2.3) shows that the set of elements t0® a?,
where ale ig, form a subalgebra of i’,sm that is isomorphic to

(1)

Z,. The maximal abelian subalgebra of I is given by

HY) - (Cc) @ (Cd) @ (10 ® #°) (4.2.8)

where #H %is the Cartan subalgebra of the basic classical
complex Lie superalgebra 12. Clearly dim # (") = 2042 where
20 is the dimension of 3 °. By construction X' has a one
dimensional center C = (Cc).

The derived superalgebra [ié”, Z;” ] is easily seen to
be given by
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~ (1)

(£, V) c (et e il e c. (4.2.9)

It can be checked that the following relations define a

unique (up to a constant) supersymmetric invariant non-
degenerate bilinear form B'"(, ) on £ "

B(t® a0tk ® b0) = §i*k.0 BO(a0,b0), (4.2.10)
08 oo et R iios st

B (ti® a%c) = B (ti®a0d) = 0, (4.2.11)
B e = B"dd =0, (4.2.12)
(1)

BN c,d) = 1, (4.2.13)

for all a% b0 e 20 and all integers j and k. Clearly Bm( )
coincides with BO( , ) on the subalgebra of Z(s” that is
isomorphic to Z.g.

The bilinear form defined above, being symmetric non-
degenerate on # ‘", induces a symmetric non-degenerate
biliear form on the space of linear functionals }[(”‘(the dual
of ). Then for every linear functional « of # (", there

exist an element h, of # ‘" defined by

B((h, he) = a(h) (4.2.14)

forall h e H‘. Consequently for any two functionals «, B

the induced form < , >(Mon # M is defined by

<a, B> = B)(hy, hg) (4.2.15)

Using the above two relations we deduce that

Pioch = Pl (4.2.16)
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a(hg) = B(hy) = < o, B> (4.2.17)

for all he, hgof # ") and all & and B of y M
Every linear functional a’defined on #° can be extended
to become a linear functional on # (') by the following

definitions

alt0® heg ) = alha?) (4.2.18)

alc) = 0 ald) = 0 (4.2.19)

for all k = 1,2,...,29. Consequently the same is true for all the
roots of 2. Next let us define a linear functional § on 2 (")

by

3(19® heg ) = 0 (forallk =1,2,...,29)

5(c) = 0 §(d) = 1. (4.2.20)

A non-zero linear functional o defined on # (") is called
a root of IS) if there exists at least one element aq of ZS)

such that

[h ag] =0 (h) ag (4.2.21)

for all h e #". The set of elements ay, for each such a, that "
satisfy the above relation form the root subspace ! of Z.".
Now the complete root system of ISJ can be found by

using the defining commutations relations (1.1.2-6) of Ei'.é”.
Let eg® be basis vectors corresponding to the root
a’of L2 and h% (for all k = 1,2,...,2°) be the basis elements

of #° Then from the commutation relations (4.2.2-6) we get:
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[t®h% , feed] = ol(t%®hl) (feedy | (4.2.22)
[c,tee] = 0, (4.2.23)

[d,t®el] = jfeel), (4.2.24)

for any a’e A° and for any integer j (and for k = 1,...,29).
Taking in to account the definition of 8 and the extensions of

0 ,
o, the above relations become

[h,t®el] = (j5(h)+ad(h)} (t®ely) (4.2.25)

for all he # ‘", Thus t®e2 corresponds to a root j5+a’ of
i;”. Moreover it is obvious that the root subspace I’izjihao)
has dimension dim Istzji.,mo) = 1 (except if i’.g = A(1/1) in which
case the odd root subspaces have dimension two) with the
root basis vector being tj®egﬂ. Similarly, for any B% A% and

any non-zero integer j

[f®h% , fohd] = 0, (4.2.26)
[c,t®h] = 0, (4.2.27)
[d,f®hd] = jiendy, (4.2.28)

and so, by the definition of 9,

[h, teh%] = js(h) (f®h (4.2.29)

for all h e #"). Thus t®@h% corresponds to a root j5 of L',
Moreover there are £° linearly independent elements with
this property, namely h% (for k = 1,2,...,29), and, as there are

no further elements of ié” to consider, the root subspace of
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j8 must have dimension 29 (for j # 0).
It follows from (4.2.14), and (4.2.10) to (4.2.11) that

hee = t®h% | (4.2.30)

for each a’e A° (and its extension), and hence by
(4.2.15),(4.3), (4.2.10), and (4.2.16) to (4.2.18) that

< SN = <«o°p%° (4.2.31)

for every pair ao,ﬁoe A% (and their extensions). Also
(4.2.12), (4.2.13), and (4.2.19) to (4.2.21) imply that

hs = ¢ (4.2.32)

) corresponding to the basis

That is, & is the root of L
element c. The above analysis reveals that the system of

non-zero roots of £’ is given by

A = {j5+aforalla®e A%and j e 2,

jo for all j € 2-{0} } (4.2.33)

and that Z.é” admits the decoposition

7 (N

7 (1)
I’ =7V e (X o i, (4.2.34)

We shall describe as gven roots the roots j& and the roots
j5 + a® , where o is an even root of Zi”. The odd roots are
of the form j8 + «®, where «® is an odd root of ES’(Note that
these definitions are direct consequences of the 2,-

; ~(1
graduation of J.i )

as defined above).
As in the case of affine untwisted Kac-Moody algebras
the simple roots ag, oy, ..., ag of the affine untwisted Kac-

Moody superalgebra are taken to be
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ap = & - ay,

a = a, fork =12, .. ,2° (4.2.35)

where the aE of (4.2.35) are the extensions of the simple
roots of L and aﬂ is the highest root of :t, Then the set A( )

of positive roots of &,i ¥ is given by

1
A{)

+

= {j5+a®foralla®e A’and j e 2,-{0},
]5 and ] € 2+'{0}}

0
ol for all a® e A, }

and we have a similar expression for the set A.m of negative
roots of ié”. The only exception is A(1)(1/1) in the case each
odd root is both negative and positive. Then for fi.;” we have
the following root decomposition of :

7 (1) (1) ()
i, = { Z @a-sua) } o { E‘:O «%e A0 ® 4‘5(]5-»(:0)}

~ (1) (1)
® {Z-uoeao ® 4"S(—uc’)} ® 5{(” ® {ZzoeA ® i'S(t.l":‘)}

7 (1) ~(1)
® { Z;‘:-o ® Lg55) tef Z‘j>o 2 a0 @ A5(5:00) }-

Proposition 4.1

) does not contain any non-trivial ideal ® such that
& n V= 0.
Proof . Assume that there exists such an ideal ®. Obviously it
is graded with respect to the root decomposition. Consider an

element ti® a0, of ® ,corresponding to some root j§ + a® of
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(1)
1"

Then for an element ti® a_,° we should have that

[t®as,ti®a_q9]e ®. Butclearly [ti® a0, ti® a_qa0 ]
e #Mand thus [ti® as0, ti® a_q0]e & ~ #". Since we
have assumed that ® N %"= 0, [t ® a0, 1 ® a_40 ] should

be zero which is a contradiction and thus ® = 0.
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B. The B(1)(0/2)(221) untwisted Kac-Moody superalgebra

The rest of the analysis we will be focused on 1| =
B(0/%) alone. Obviously all of the above considerations apply
unaltered in this case too so we will demonstrate only those
elements that will establish the isomorphism of B(1)(0/2)
with the affine Kac-Moody superalgebra Zs of chapter 3 with
Dynkin diagram and Cartan matrix given in figures 1,2 of
table V. All inform_ation needed on B(0/2) can be found in
appendix A(3) and table Il chapter 2.(See also
Cornwell(1989)).

(a) The root system of B(1)(0/%)

The simple roots a; (for all j=0,1,..,2) of B(1)(0/2)
according to the previous analysis are the extensions of the
even simple roots a?, af_,, of B(0/2) and the odd simple
root ay of B(0/2), together with ao. Since the highest root
of B(0/2) is even and is given by

. = BX o iy . (4.2.36)
it follows that
=207 i o (4.2.37)

which is an even root of B(1)(0/2).
If aﬁ is the extension of any simple root of B(0/%), then from
(4.2.10), (4.2.15), (4.2.30-32) folows that

B> = 0 forallk=1,..2 (4.2.38)
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<j8,j5> = 0 (4.2.39)

<ip+ajs+a% = <aa%’> 0 (4.2.40)

for every integer j and every non-zero root a’ of B(0/2).
Every non-zero root of the form j8 will be called "imaginary".
and every root of the form j8+a° "real". The adaptation of
these names is a direct consequence of propositions 3.5 and
3.6 of chapter 3. The latter are easily checked to be valid if
we take in to account the properties of the root system of
B(0/2) and the structure of the Weyl group of B(1)(0/2) which
will be demonstrated below.

We can express the roots of B(0/2) in terms of the
linearly independent functionals ¢; (i<j<?) defined on #H° (see
table Il and Cornwell(1989)). Then the set of real roots A,{;?
of B(1)(0/2) is given by

1 . a .
AL = (mst(gte) withisi<j<g,

md ¢ with 1<i< 2, md +2¢ with 1€i< 2, me2} (4.2.41)
and the simple roots are given by

ag=0-28; o =¢-Ej 1Si<2-1 oy=¢ (4.2.42)

(b) The Cartan matrix
We define the Cartan matrix A of B(1)(0/2) to be given by

A = 2<aj, ap/<a, o> for all ijj = 0,1,....,

where <, >=<, >{1) is evaluated taking in to account (4.2.31)

and the information given in appendix A(3). The following
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verify that this is actually an affine Cartan matrix according
to definition of chapter 3.

(i) The fact that it symmetrizable is straightforward.
From the above relation A can be written as A = DB where D
is non-singular and has diagonal entries €; = 2/<aj, aj> (i =
0,1,...,2). The matrix B has entries Bij = <aj, oj> and is
obviously symmetric.

(i) Ay = 2 (i=0,1,.,2).

(i) For i,j = 1,...,2, Ay are the entries of the Cartan
matrix of B(0/%2), which is a Cartan matrix of finite type. In
particular the root system of B(0/2) is the unique finite non-
reduced irreducible root system of type BC, and with a, being
the odd simple root, 2a, is also a (even) root of B(0/%).
Moreover Ay (j =1,..,2) is an even non-negative integer.

(iv) We have to show that Aj, and Ay are also non-
negative integers. The highest root of B(0/%2) is nothing but
the highest weight of the adjoint representation of B(0/%)

and thus it can be written in terms of the fundamental

0
r -

weight A;. As afi =2A =2 Efz, o

I 0 0 0 0
Ajo = 2<aj, 0p> /<aj, aj> = -4 Er=1 <Q, O >lj""“jtj 3 >0

Direct observation of appendix A(3) shows that

Ajp=-4if £ =1 and for £ 22 A, = -2 if j=1 and 0 in any
other case.

= 1, for j=1 and 0 in any other case. Thus Ay = -4 and A =
0 for j=2,...%.

For Ag (j = 1,...,%), similar arguments show that Ag # 0 if j=1
and in this case Agy = -1. Ag; = 0 in any other case.

(v) Finally we have to establish that A is of affine type.

79



From relation

0 ¢0 0
d = ag + oy =a0+22r_1 a, .

Let Hy,, k = 0,1,...,2, be the Chevalley basis of # (1) (see
below). Then, since 8(H, ) =0 forallk = 0,1,...,2, T §(Ha,)
= 0 which by the use of the above relation and the definition
of the Cartan matrix, imply that Ak = 0, where k is a vector
with entries ko = 1 and k; = 2 for all i=1,2,...,2. Thus A is of
affine type and det A = 0.

It is easily checked that the the generalized Dynkin
diagrams of B(1)(0/1) and B(1)(0/2) (for £ > 2) evaluated using
the above Cartan matrices are those of Figures 1 and 2

respectively.
(c) The Weyl group

Definition 4.2 Scaled root lattice QY of B(1)(0/2)
The scaled root lattice QV of B(1)(0/2) is defined to be
the set of all linear functional oV defined on " which have

the form

oV = Ejio kj o (4.2.43)

where ajv is given by
v .
o = {2/< o, o >}0& forall j=0,1,.., 2 (4.2.44)

and k; takes any integral value.
Since neither B(0/2) nor B(1)(0/2) are simply laced, in

general o¥Y +BY # (a + B)V.
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We can investigate now the structure of the the Weyl
group. - Since we have identified the Cartan matrix, from
section 3.4 we deduce that it is generated by reflections
relative to the simple roots as found above which act on any
functional B of # (" as in (3.56).

For every element oV of the scaled root lattice QVof
B(1)(0/2) and every linear functional B defined on % ("),
consider the following linear operator Tyv acting on B that is
defined by

Tev (B) = B+ <B, 8> a¥-{<B, a’> +1<a¥, a'><B, §>}5.(4.2.45)
In particular if B = o, where a e AY), or B = § then

Tov (@) =o- <o, a¥>3 and Tyv (8) =35 . (4.2.46)

As in the case of affine Kac-Moody algebras (see
Cornwell(1989), Kac(1978)) the following properties can be

easily established

Proposition 4.2
(a) For every two elements oV and BV of the scaled root

lattice QY
Tav TBV = Tav+ﬁv (4.2.47)
(b) For every element oV of the scaled root lattice QY
2 2
TaV = l_[l=1 (T(}.r )k] = I—'[J=1 ( SS—(:,S:,)kJ ’ (42'48)

where aiv are the scaled simple roots of B(1)(0/2), which are

extensions of the simple roots of B(0/¢2), and k; are the
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integers of the expansion (4.2.43). In particular

Ta' = SoSy  (=12..0). (4.2.49)

(c) The set T of elements of the form (4.2.42) is an invariant
abelian subgoup of the Weyl group of B(1)(0/2). Moreover, the
Weyl group of B(1)(0/2) has the semi-direct product structure

W =T®W, (4.2.50)

where W is the Weyl group of B(0/%) (i.e. the Weyl group of
the even part, C, , of B(0/2)).
Proof (see Cornwell(1989))

(d) The Chevalley generators

The basis vectors of the root subspaces corresponding

to the simple roots and their negatives are given by

Orq, = 0 ®€3g forallk=12..2 61, = ! ®e

(4.2.51)
Now note that
[ eas , 6% 1 = B%ed , 6% )hdo (4.2.52)
and thus
[ Cap» € a] =-10 @[ 63, e%0 ] + BYed , 6% )c
=B%eq , %0 ) {-1° ®hY + c} (4.2.53)

Consequently we may define an element hg, of s (1)

corresponding to the simple root og by
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heo = C-10 ® hgo . (4.2.54)
We can normalize egg and e?ag appropriately such that
0 0
BO(EQ , E%0 ) = 2/<ayy, oy’ (4.2.55)

where ES& , F_°ag denote the normalized vectors eﬁg and e?ag' .
A similar argument can be applied to e, (for all k = 1,2,...,2)
with BO(EQe, E%g ) = 2/<uf, a:>°. Then we get the "Chevalley”

type basis vectors E.o, and E.q, are given by

Eio, = 0 ®Eg forallk=12..2 and Eiq, = ' ® Edpo

0 0
Hao { 2/<(10, {10>}ha0 = 2/((1,_', aH>O {_ 0 ® hg?q + C}

Hoo = { 2<ak, x>} hey, = 2<ap, 0,5° {0 @ hQ}  (4.2.56)

k

for all k = 1,2,...,2. Then it can be easily deduced that all
relations (3.7) to (3.10) are satisfied and that the elements
(4.2.56) generate B(1)(0/2). Moreover the sets {Hq, for all k =
0,1,2,....2}, { ak for all k = 0,1,2,...,2} together with the (2+2)-
dimensional complex vector space H provide a realization
of the affine Cartan matrix of B(1)(0/2).

Finally in accordance with chapter 3, let Ay be the linear

functional defined on ! by

Ao(Hy) = 1if k=0, and Aq(Hy) =0 if k=1, 2,..,.8.  (4.2.57)

Let h,, be the corresponding element on 2 ("), It is easily

obtained that

83



Ao (hs ) = $<ayy, ap>® and Ag(hgd) = 0 ,

<A0 ; Ao) =0. (4258)

for any a’e A0 (and its extension). The set { Ag, ax for all k
= 0,1,2,...,2} provide a basis of 7 (",

Finally the even part of B(1)(0/2) is easily recognized to
be B(1)(0/2), = C!{".
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4.3 Explicit realization of affine twisted

Kac-Moody superalgebras Zém)
A. Basic concepts and definitions
Let i’.g be one of the basic classical simple complex Lie

superalgebras. Let ¢ be an graded automorphism of Zg of

finite order g#1, such that under its action, ig is decomposed

as

+0 g1 50()

I, = E o Lgy (4.3.1)
where Zo." are the subspaces of Z; that consists of all the

elements a° of ] such that

¢(a%) = e2mPi/q g0 | (4.3.2)

0(q)

where p = 0,1, ... ,g-1. That is, :L are eigenspaces of ¢ with

corresponding eigenvalues e-’-ﬂp"'q and (4.3.1)describes a Zg4-
graduation of ig . It follows that I (q) is a Lie
(super)algebra, and that for each p taking the value 1,2, ..., g-
1 the subspace io(q) provides a carrier space for a

representation I'P of&. (q) by the prescription

0

0 0 n 0.0
- P
[ag,ay-] = X P _ TP(ag), Ay

% (4.3.3)

0
for all aOr of &25;”, where np is the dimension of Z (C” and a,,

(forr =1,2, ... ,np) are the basis elements of aL “”.

We assume
that ¢ leaves invariant at least one simple component of the
even part of £

The main interest is the case in which ¢ is an guter

automorphism. The structure of the group Out(?lg) of outer
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automorphisms of 21 was demonstrated by
Serganova(1983,1985). Moreover Serganova has shown that if

¢ belongs to the connected component of the identity of the

group of automorphisms of Zt'.g , the twisted loop superalgebra
defined by
Q1 oy j+p o, 700
T B PR T

is not a subsuperalgebra of the loop superalgebra of ism, but
is actually isomorphic to the loop superalgebra of Z'.S ) These
untwisted and twisted loop superalgebras were termed
infinite-dimensional contragredient Lie superalgebras, and
their root systems, together with all their inequivalent
systems of simple roots (and Dynkin diagrams) were
presented by Serganova. Later in the work of Van der
Leur(1986) a more consistent description of them was
presented , in which it was shown that they are the only
infinite dimensional contragredient Lie superalgebras of
finite growth. Because of the their profound similarity with
the affine Kac-Moody algebras, they were termed affine too.
In this connection it may be noted that Frappat et al (1989)
have shown that it is sometimes possible by using non-

distinguished sets of simple roots to construct generalized

Dynkin diagrams for the basic simple Lie superalgebras
which possess rotational symmetries that do correspond to
outer automorphisms of these superalgebras. However this
is not possible in every case, the simplest example where it
cannot be done being A(2/0).

In addition they showed that by folding symmetric
generalized Dynkin diagrams of untwisted Kac-Moody

superalgebras we can construct twisted Kac-Moody
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superalgebras. In what follows we shall outline the explicit
realization of twisted Kac-Moody superalgebras and then we
shall study the affine Kac-Moody superalgebras A(2)(22-1/0),
A(4)(22/0), and C)(2+1).

We can associate with the outer automorphism ¢ a
subsuperalgebra ifsq) of i(s” whose set of basis elements
consists of ¢, d, and, for p = 0,1,..., and g-1, of all ti®a® for
every integer j that is such that j mod q = p and every basis
element a;. e L0 .
statement that

This may be summarized by the

= oo ~0
I- o) @ ©d) @ T 057 L inosq.p, @O LYY

(4.3.4)

or equivalently

1V-€o @ €d) @ ). 27tV PeilY) (435

(4.3.4) will be called affine twisted Kac-Moody superalgebra.
Its derived superalgebra is simply

7@ 5() g-1 s qj+p o 70(a)

[£,°, 27 ]=(€c) ® X)X . (1T ey

The generalized Lie products of Z, are then those inherited
from Ié” and so are given by (4.2.2) to (4.2.6). Let #O be the
Cartan subalgebra of ig and consider the subset #/0(q) of

elements of #© given by
#o@ = son LIV, (4.3.6)

It can be easlily seen that the maximal set of commuting

elements in (4.3.4) is then given by
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H@ = (Cc) & (Cd) ® °® H0w@) (4.3.7)

and thus consitutes the Cartan subalgebra of ifsq}.

The supersymmetric invariant non-degenerate bilinear
form B(, ) of Z;q) may be taken to be such that

B@@b) = uB"ab) (4.3.8)

for all a,b ei'.{sq), u being an arbitrary constant which may be

chosen in any way and B'/(a,b) is as in (4.2.10-13). As the
subset of elements of £'¥ of the form t°®a0® (for all the
elements a° ofig) form a subalgebra that is isomorphic to
<0
&

¢, a particularly convenient choice is to let u be such that

B()( , ) coincides with the supersymetric invariant non-

degenarate bilinear form Bov'(, ) of L0V that is, so that

B@)(108a0,10®b%) = Bov’(a0,b0) for all a%,b0 of L0V, (4.3.9)

Since BY( , ) is invariant under the automorphism ¢ it is not

0 0

difficult to show that for any two basis elements a, ans ag..

of the subspaces I:F(,q) and ?Cgé?} respectively,

BO(ag.aq) # 0 if and only if (p+p) mod q = 0 (4.3.10)

for all p,p' =1,.q01, r=1,..np,and r' = 1,...,n,.

Every linear functional «’defined on # (V) that is an
extension of a linear functional defined on #H 9 can be
restricted to become a linear functional on # (% by the

following definitions

aJto® h) = o«n), alc) =0, old) = 0  (4.3.11)

for all h e #°9 .  Consequently all the roots of Zg are

88



restricted to #°%%. Next let us define a linear functional & on

5(t°® h)= 0 (forallhe #%¥), §(c) = 0, 8(d) = 1.(4.3.12)

With these definitions the determination of the root
structure of i(sq) follows the same steps as in the untwisted
case.

A non-zero linear functional o defined on # (% is called a
root of ?L'(sq) if there exists at least one element a, of Zﬁ{:‘)

such that

[ h,ayg] =a (h) ag (4.3.13)

for all h e %9, The set of elements a,, for each such a, that
satisfy the above relation form the Lo_o_t_s_u_b_s_p_ap_eits? of Z(Sq).
We denote by Ag(q) the set of roots of zggq) and by Ag(q) (P

= 1,...,-1) the set of weights of the representations that the

pth subspace provide for i:éq), and by Ao(q) the set of all roots
and weights from Ag(q) (p = 1,...,g-1). All the elements of the

above sets are defined on # °(9.  With the obvious

modification of (4.2.22) to (4.2.25) becomes

[h,®eq] = {j5(h)+a(h) ((®eq) (4.3.14)

for all h e # ¥ all integers j such that jmodg=p and where
eqis the element of the Oth subspace corresponding to the
root of i'.g(oq’ or an element of the pth (p = 1,...,-1) subspace
corresponding to the weight a € As(q) (p = 1,...,g-1). Obviously
tj@e.OIL corresponds to the root j5+a of .i',(sq). Any such root
will be called 'real'.

(9

Similarly, for any Be A3 and hg ¢ #°@ and any non-
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zero integer j such that jmodq = 0, (4.2.29) imply that

[h tohg ] = js(h) (f@hg) (4.3.15)

for all h e %@, Thus t®hg corresponds to the root j5 of £."
such that jmodq = 0. Moreover there are £ linearly
independent elements with this property, corresponding to
the basis elements of # %@ Thus the root subspace of j5
such that jmodq = 0 must have dimension £ (for j # 0).

Finally for any zero weight of the q-1 representations
similar reasoning implies that there exist roots j& such that
jmodqg = p (p = 1,2,...,0-1) and their multiplicity is the
dimension of the corresponding weight subspaces. The roots
of the form |8
are called 'imaginary'.

Since BQ@)( , ) is symmetric non-degenerate in # (9 for
every linear functional o defined on HD an element hg of

% may be defined such that
B@(h, hy) = a(h) (4.3.16)
and thus a bilinear form on the dual space # (¥ is defined by

<a, B>@ = B@(h,, hg) (4.3.17)

The definition of B(d)( , ) together with (1.1.5-6) and (4.3.17)
imply that

hs = (1/p) ¢, (4.3.18)

<j5,j6>@ =0 and <jd+a, j5+B > = <a, B>  (4.3.19)

where a and B are extensions of non-zero linear functionals
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defined on #°@,

In what follows we shall establish using particular
automorphisms of A(22-1/0), A(22/0), and C(2+1), that the
corresponding superalgebras A(2)(22-1/0), A(4)(22/0), and
C()(2+1) (whose structures are given by (4.3.5)) are
isomorphic to the affine superalgebras :t".s of chapter 3, and
have the Dynkin diagrams and Cartan matrices as indicated in
figures 3 to 8. The existence and the order of the
automorphisms together with the explicit realization just
described was demonstrated by Kac(1978) for A(2)(22-1/0),
A(4)(22/0), and C(2)(2+1).

Consider the Dynkin diagrams of figures 3 to 8
corresponding to the Kac-Moody superalgebra i;m) and choose
the node corresponding to any simple root ak of iim}. Suppose

that the corresponding numerical mark is Nk. Let q be the

integer defined by

q = mNg . (4.3.20)

Then (see Kac(1978)) there exists an automorphism ¢ of ?;2 of
7 0(q)

order q such that (4.3.1) and (4.3.2) hold and such that 2,

is a Lie (super)algebra whose Dynkin diagram is the one that
remains from the Dynkin diagram of Iim) when the kth node is
removed together with all the lines attached to it.
Inspection of Figures 3 to 8 in table V shows that the only
possible values of q are 1, 2, and 4 and that &‘,gfﬁ’ is either
simple or is the direct sum of simple Lie superalgebras.
Clearly if ?l(sml has only one odd simple root and if the chosen

: ; 70 :
node corresponds to this odd simple root, then Ls(oq) will

contain no non-trivial odd part, and so in this case Iggq} will
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be a semi-simple Lie algebra. Also the I'' representation
which the igimsubspace provides on I,:éq) is irreducible.

We fix an enumeration of the nodes of the Dynkin
diagram as shown in Figures 3 to 8. The choice of the node to
be removed is the far right one for A(2)(22-1/0) and
A(4)(22/0), the middle one for A(2)(3/0) and the far left one
for C(2)(2+1). Thus q = 4 or 2 for A(2)(22-1/0), A(4)(22/0), and
C()(2+1) respectively. Moreover,direct observation of the
Dynkin diagrams of A(2)(22-1/0), A(4)(22/0), and C(2)(2+1)
shows that iggﬂ = Dy, B, and B(0/2) respectively. It should
be noted that the above reasoning can also be applied for
B(1)(0/2) by chosing for example the far right node with Nx =
2. This implies that g = 2. But B(0/2) does not posseses any
outer automorphisms and thus B(2)(0/2) = B(1)(0/%).

Thé obvious choice of the automorphism ¢ of order 4 of
the simple Lie superalgebra Zg (= A(22-1/0), A(22/0)) is the

"canonical" 4-fold automorphism y that is defined by

y(h0) = -hO (for all hO of #9), (4.3.21)

y(ed) = e

(if ao(e A% is even or is odd and negative), (4.3.22)
and
0y 0, ¢ O , .
v(ed) = -e%o (if a®(e AY is odd and positive) (4.3.23)

(see Scheunert (1978)). With this choice (4.3.2) implies that

(i) the basis elements of 128‘” may be taken to be:
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ego +e° o, for all even positive roots o’e AO;
(i) the basis elements of at. (q) may be taken to be:

emrJ +|e_0t for all odd positive roots aoe A
(i) the basis elements of :L (q) may be taken to be:

ea %0 for all even positive roots o’e A
and

hye , fork = 1,2,...,

(iv) the basis elements of Z (‘”

may be taken to be:

eao -:e_(,O, for all odd positive roots aoe AD.
This automorphism has been used by Golitzin(1988) to find
the simple roots and generators of A(2)(22-1/0) and
A(4)(22/0).

Although these basis elements are very straightforward,
the difficulties start arising with this choice of
automorphism when one tries to determine explicitly the
complete root structure of the Kac-Moody superalgebra Z’Lim).
The problem is that if the Cartan subalgebra of Zém) is chosen
to be in Lséq), (as in the case q = 1), it cannot consist of ¢, d
and elements of the form t®h o (for k = ,...,20), for the

elements hye are not members of Lséq).

Instead the simplest
choice is ¢, d, and certain linear combinations of
t0® (e +6%9 (for the even positive roots a’e A%Y. To find
the roots it is then necessary to evaluate the generalized Lie
products of these with all the elements of the sets (i) to (iv)
above, taking appropriate linear combinations of the latter in
order satisfy the root equation (4.3.13). Not only is this
messy, it also makes no direct use of the known root
structure of the simple Lie superalgebra ig. Indeed the

situation here is very similar to the one that occurs in the
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standard method of determination of the Iwasawa and

Langlands decompositions of the simple Lie algebras, and the

resolution of the problem is based on essentially the same

idea as that of the "direct" determination of these

decompositions that was given by Cornwell (1975, 1979).
The most general 4-fold automorphism ¢ of

£ (= A(22-1/0), A(22/0)) has the form

6 = 61yo (4.3.24)

where vy is the canonical 4-fold automorphism of . defined
above and 6 is any automorphism of ig. If 8 can be chosen so
that enough elements of the form t®hJ lie in L0 then the
roots of the Kac-Moody superalgebra will be very easy to
obtain. In investigating this condition it is useful to note
that if the simple Lie superalgebra i’.g is expressed in terms

of supermatrices with the graded partitioning

M =

N
0

B
4.3.25
D ] ( )

then

1>
g}

y(M) = -Mst = ( _ J (4.3.26)

wm
O

where A denotes the ordinary transpose of A.

As for the two-fold automorphism of C(2+1), one could
naturally. use y2 but as we shall see this would only lead to
L9 _ ¢, and not to B(0/2).

Incidentally, it is clear that the canonical 4-fold
automorphism v of 3’.2 is not associated with any rotation of
the usual generalized Dynkin diagram of Zg based on the

distinguished simple roots, because for
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A(22-1/0), A(22/0), and C(2+1) the generalized Dynkin
diagrams exhibited in Figures 10, 11 and 12 possess no
symmetries.

The choice of 6 will first be investigated first for the
Kac-Moody superalgebras of the form Af2)(22-1/0) (for ¢ =
23,... ).
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B. Root structure of A(2)(22-1/0) (for 2 = 2,3,... )
(a) The 4-fold automorphism

An explicit realization of the simple Lie superalgebra
A(22-1/0) is provided by s£(2%/1), considered as a complex
superalgebra, s£(22/1) being defined as the set of
(22+1)x(22+1) complex supermatrices with the grading

partitioning

X

that are subject to the supertrace condition that

0 >
1o

: ) (4.3.27)

strM = 0. (4.3.28)

(Here A, B, C, and D are of dimensions 22x22%, 22x1, 1x2%, and
1x1 respectively). The rank 20 of A(22-1/0) is given by £° =
22. The generalized Dynkin diagram of A(22-1/0) is shown in
Figure 10, which indicates that its distinguished simple
roots aﬁ are even for k = 1,2,...,22-1, but that agx is odd.

With the bilinear form B°( , ) being defined by

BO(M.N) = 2(22-1) str (UN), (4.3.29)

the basis elements of its Cartan subalgebra #° may be taken

to be

ngk ={1/2(22-1)} {ekk - ek+1,k+1}, (for k = 1,2,...,22-1) (4.3.30a)

and

h.ﬁgg = {1/2(22-1)} {g2¢,2¢ + €2241,2241} - (4.3.30b)
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Here e,sis the matrix of dimension (22+1)x(22+1) that is
defined by

(ers)k = drdsk (for jk = 1,2,...,2241), (4.3.31)
so that with this choice all the matrices of # ° are diagonal.
The positive even roots ﬁ?j‘k) and positive odd roots 8?” of
A(22-1/0) are given in terms of the distinguished set of
simple roots a?, ag, ,a;’g of A(22-1/0) by

k-1
B k) = E al (forjk = 1,2, ..., 22, with j < k), (4.3.32a)

r=]

and

0 22 0 . -
dj = E o (forj =12, ... ,22), (4.3.32b)

r=j
for which the corresponding basis elements of A(22-1/0)

may be taken to be

0 0

g’ﬁ?i,k) B 'e‘u(;+a3+1+...-luok-1 = Sik UArJoesless v s 2201 < OGE008)

0 0

e

”S?j) €j,224+1 (forj=1,2, ... ,22).(4.3.33b)

Sty oty 2
The basis elements belonging to the corresponding negative
roots may be chosen in accordance with (4.1).

Taking the node corresponding to the odd simple root oy
of A(2)(22-1/0) for £ = 3, and to the odd simple root a4 of
A(2)(22-1/0) (= A(2)(3/0)) for £ = 2, as the corresponding
numerical mark has value 2, (c.f. Figures 3 and 4) g = 4. It
follows from (4.3.2) that if the automorphism (4.3.26) is
employed then the subalgebra iig‘“ consists of the
supermatrices whose submatrices satisfy the conditions

-g:é, —§=g! §=§’ and -

fle i

=D,

which when taken together, along with the fact that D is 1x1,

imply that
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13>

=A, B=0, C=0, and D =0. (4.3.34)

~

Thus subalgebra Iggq) is isomorphic to the set of 242x22%

complex antisymmetric matrices and hence is isomorphic to
the simple complex Lie algebra Dg, which is simple if £ > 2
but is only semi-simple if & = 2, for then D> = Ay & Ay. As
expected from the comments of the previous section, none of
the basis elements of the Cartan subalgebra # 0 of A(22-1/0)

are members of this zﬂﬁ,“’ (because all the members of this

£ are non-diagonal matrices).
A realization of Dy in which the basis elements of the
Cartan subalgebra of Dy are given by diagonal matrices is

given by the 22x22 complex matrices A~ that satisfy the

condition
AG + GA” = 0 , (4.3.35)
where
' Q 1e
G = ( ] (4.3.36)
le  Q

This realization will be referred to as the "canonical" form
of Dgy. These matrices A  are related to the 22x22¢

antisymmetric matrices A by

IT1AT = A, (4.3.37)

where T is a certain 22x22 complex matrix that maps the Lie
algebra so(2N) in to its canonical form and satisfies the

condition

R
-
]
@

(4.3.38)
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(see Cornwell(1975) for the actual form of T). In what
follows only (4.3.38) is needed).

This mapping can be extended to an automorphism of 6 ofig
(= s2(22/1)) by the definition

(4.3.39)

=
X
[
e
o H
= 6
M,
X
Y )
o H
b=t 3
h

for all M of s2(22/1). Then, by (4.3.24), (4.3.38) and (4.3.39),

{

the automorphism ¢ of (4.3.40) will now be considered in

(4.3.40)

O >
O @
R
I
T,
! zul)
an
>
@ 2
R
N
—

The 4 subspaces i:;” (for p = 0,1,2,3) corresponding to

turn:
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(b) The subspace I\
~0(4) ;
By (4.3.2) the subalgebra 2 ,° consists of the
supermatrices whose submatrices satisfy the conditions
-GAG =4, -BG=C, 6€C =8B, and-§ =D,

which when taken together, along with the fact that D is 1x1,

imply that

>

G+GA=0,B=0,C=0, and D =0, (4.3.41)

-~ —

and so is isomorphic to the canonical form of Dy.

Before proceeding it will be useful to recall some
properties of the canonical form of Dy (see Konuma et
al(1963) and Cornwell(1975)). Its Killing form BPt( ) is
given by

A) = 2(2-1) tr(AA), (4.3.42)

(for all A and A" of the canonical form). Thus, by (4.3.3),

BO 5 & A2 BP¢(A,A") (4.3.43
([ 0 }( 0 0 }={(2£-1)/(1-1)} (A,A7) (4.3.43)

e

for all A and A" of the canonical form. This implies that
(4.3.8) is satisfied if

po= (2-1)/(22-1) . (4.3.44)

Denoting the simple roots of Dy by a'ﬁ* (for k = 1,2, ... ,2), the
corresponding basis elements of the Cartan subalgebra 9O+
of Dy defined by

BDg(hD!

~aDy?
u.kl

h) =ab(n) for all h e HP°t. (4.3.45)

are
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hot

{1/4(2-1)} {ekk - €k+2,k+2 "€k+1,k+1 + Eke2s1,ke2s1}s

~aEz

(fork = 1,2, ... ,2-1) (4.3.46)
and

D

heoe = {1/4(2-1)} {84-1,2-1 - €24-1,22-1 + €2, - 824,24} .(4.3.47)

4

The associated root subspace basis elements are

D
e é: = {1/2(2-1)H{ek k+1 - €k+2+1,k+2 },(for k = 1,2,...,2-1)(4.3.48)
and

D

,e,aé( = {1/2(2-1)} {e2-1,2¢ - €2,2¢-1} , (4.3.49)

the normalization factors being chosen so that

D
BP«(eDt Caper Eapd = 1, (4.3.50)

where, as usual,

D ~D
6% = ¢

o, = “€.0
""—Gk! Cl'-ki

(4.3.51)

The diagonal basis elements of L2\ will be considered
first. As they may be taken to consist of the set {ekk-€k+2,k+2
| for k = 1,2, ... ,2}, it follows that they are all members of
the Cartan subalgebra a°@ (= .'J{D‘) of Dy (as expected). As

£-1
Bk - Sketket = 222-1) D510} (4.3.52)

(for k = 1,2, ... ,2, by (4.3.30a)), the most general element of

9(0(4) has the form

22-1
T4 - kk(Ekk - Bketket) = 2(22-1) D1 pkh g ,(4.3.53)

where x1,K2, ..., kg are any complex numbers, and where

pk o~ 2r= 1 Kr (for k = 1!2! sen ,.Q),
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and

Pket = Droksr ke (fork =12, ... ,2-1).
0(4 :
Thus on #°® the simple roots of A(22-1/0) are given by

0

o (h) = xk-xke1 (fork =1,2, ... ,2-1), (4.3.54)
0

ag(h) = x1 +xg, (4.3.55)
0

g, o(h) = -(xk - kks1) (for k = 1,2, ... ,2-1), (4.3.56)
0

Os,(h) = -xg . (4.3.57)

However, from (4.3.46) and (4.3.47)

(fork = 1,2, ... ,2-2),

€2-1,2-1 - €22-1,22-1 =

and

€e,0-€2¢2¢ = 2(2-1)(

SO

£
Dk = ixk(Bkk - Ckatket) = 4(2'1)2 o

where

k
o= DXk (fork =12 .. ,2-2),

e

Het = $2 .1 Kr - 3Ky,

and

He = $X0q %
0(4)
Thus for h e """ (= #P)
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Bkk - Bkl k+t = 4(1-1){2

~ aD -
r=k Cf.rl

Dy
-h
Rats

D
i) g, (4.3.58)



at(h) = Kk-Keaq (for k = 1,2, ... ,2-1), (4.3.59)

and

a?‘(h) = Kg.1+Kg . (4.3.60)

Comparison of (4.3.54) to (4.3.57) with (4.3.59) and (4.3.60)
then shows that for h e ﬂ0(4) (= 9{0‘) of Dy the simple roots

ot of Dy and a, of A(22-1/0) are related by

a(h) = -ag,(h) = a(h) fork =12, ..,2-1, (4.3.61)
£-2
ad(h) = Zr=1aP‘(h)+aE‘(h) , (4.3.62)
and
ape(h) = tagt(h) - ta ¥(h) . (4.3.63)

(When 2 = 2 the first term of (4.3.62) do not appear).
Finally it follows from (4.2.10-11), (4.3.8), (4.3.16)
(4.3.46-47), and (4.3.52) that corresponding elements of the

Cartan subalgebra of the Kac-Moody superalgebra are

D 0 0
h“E‘ = t0®hul:h = {(22-1)/2(2-1)} t°®{h_ag - QQE“} (4.3.64)
(fork =1,2, ..., 2-1), and

: :
woc = P8 G5, = {(22-1)/2(2-1)) t°®{na2_1+22r=2 heo +hog, . I

(4.3.65)
The non-diagonal basis elements of £2. will now be
examined. They fall into 4 sets:
() Forjk =12, .., ¢, withj < k:

0 0
4.3.66
2Bk T Z-Bietkes) 48501
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0 0
where e 0 and e ﬂ
~B(j.k) —P(j+2,k+2)

As (4.3.61) implies that

are given by (4.1) and (4.3.33a).

k-1 p,

B?j.k)(h) = -Bﬂu,m)(h) = z,;a, (hy (4.3.67)

" (= #Py),

the basis element (4.3.66) corresponds to the root B(oj,k;(h) of
Dq.
(i) Forjk =12, .., &, withj < k:

(for jk = 1,2, ..., &, withj <k, and forall h e A

0 0

43,
2Bl T 2Bl ks (4.3.68)

“€k,jt Ej+e kst =

which corresponds to the root -B?j.k)(h) of Dg, where B?j,k)(h)
is given by (4.3.67).
(i) For jk =12, ..., &, with j < k:

0 0

€jk+e -~ Ekj+e = gﬁ?{j,ku) = gﬂ?k.id) . (4.3.69)
0 0 .
where gﬂ?j.ku) and chsz+“ are again given by (4.3.33a). As
(4.3.61) and (4.3.62) imply that for all h e #°*) (= 3Py

ﬁ?j,kq-i)(h) = B?k j+2)(h)

2” r(h)+22r o k(h) + gty (h) + ag(h)

(for jk = 1,2, ..., 2-2, with | < k),

2-2
Zr _or () + oty () + og'(h)

(forj=12, .., 2-2, and k = 2-1),

-2 p D
er=jart(h) + o, (h)

(4.3.70)
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(forj=1,2, ..., 2-2, and k = &), and
alt(h), (forj=2-1andk = 2),
the basis element (4.3.69) corresponds to the root Bf’j,km(h)
of Dg.
(iv) Forjk=12 .., 2%, withj<k:

0 0
Bj+2,k - €k+e,j = -g*ﬁ{k,ju) . 2 E_ﬁﬂlk”} : (4.3.71)

which corresponds to the root -B?j,k”)(h) of D¢, where
Bl.ks2)(h) is given by (4.3.70).

As expected the elements of (4.3.40), (4.3.42), (4.3.43),
and (4.3.71) are even members of A(22-1/0). It is easily
checked that the set of 22(£-1) non-zero roots of (i) to (iv)
above, together with the 2 zero roots, are all weights of the
adjoint representation of Dy. For £ > 4 the highest weight is

D D -2 p D D
A = A = at + 22k=2ak‘ + g+ 0, (4.3.72)

while for £ = 2 and 3 the second term on the right-hand side

of (4.3.72) does not appear and
£
A w Kokt w ZH ! (4.3.73)
as expected (see Appendix A(1)).

7 0(4)
(c) The subspace &,

By (4.3.2) the subspace 105{14) consists of the
supermatrices whose submatrices satisfy the conditions

-G

>

G =iA, -BG =iC, 6C =iB, and -D =1D,

which when taken together, along with the fact that D is 1x1,
imply that

A=0, D=0, and C =iBG . (4.3.74)
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The basis elements of Z* fall into 2 sets:
() Forj)=12 ..., %L

0 0
- Baasiiei = i 4.3,
€j,22+1 + 182241,j42 5% " 18 80 (4.3.75)

where gou_ and ig?g(j " are given by (4.1) and (4.3.33b). For

5(j)

all

he #°* (= %Py (4.3.61-63),imply that

sp(h) = -8(ae)(h)
21'2 Dq o2 (h) 4 1o .
r=i®r (h) + o q(h) + 3o, (h), forj<2-2,
- Lagh(h) + tadX(h) , forj = 2-1, (4.3.76)

-%a?_ﬂ(h) § %a?‘(h) , forj=2.

In all cases the basis element (4.3.75) corresponds to the
root 8)(h) of Da.
(i) Forj=12, .., %:

0

8%y, (4.3.77)

- €2¢41,j + i€j4g,2241 = gfgm + i
which corresponds to the weight —68)(h) of Dy (68)(h) being as
in (4.3.76)).

These weights all belong to a 22-dimensional

irreducible representation of D, with highest weight
-2 p D
A = A?‘ = 2k=1ak*+§af_‘1+%ag‘, (4.3.78)

(where for £ = 2 the first term on the right-hand side of
(4.3.78) does not appear). It should be noted that all the
elements of (4.3.75) and (4.3.77) are odd members of
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0(4)

<1 are odd.

A(22-1/0), so all the elements of L

(d) The subspace i',o.‘f“
~0(4) ;
By (4.3.2) the subalgebra 4 .,  consists of the
supermatrices whose submatrices satisfy the conditions
-Qg@ =-A, _Eg =-C, gg =-B, and 'Q =-D,

which when taken together, along with the fact that D is 1x1,

imply that

ang!

§'§é=gs §=gl c=g! (4379)

—~

with D being determined only by the supertrace condition tr A
=tr D. On using (4.3.30), the diagonal basis elements of 1‘,5";4’

may be taken to consist of the set

{1/2(22-1)} {ekk + €k+2,k+2 + 282041,22+1)

k+2-1 22

= 2ok had + 22 e a2 (4.3.80)
(for k = 1,2, ... ,2), which each corresponds to zero weight of
Dsq.
The non-diagonal basis elements of i’.:g” fall into 6 sets:
(i) Forjk =12, ..., &, with j < k:
| e = 8y ° 4.3.81
ik Bketjet = 85000 T8 Biiakee) (4.3.81)
0 0 :
where ,e_ﬁ?j'k) and Q—B(ju,ku) are given by (4.1) and (4.3.32a),
and

" (= 5%y vy

Bi.ky(h) (= -Blise.kse)(h)) is given for all h e
(4.3.67), so this basis element (4.3.81) again corresponds to

the root B?j’k)(h) of Dq.
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(i) Forjk =12, .., ¢, with j < k:

(4.3.82)

0 0
€k~ & = e - 8.0
Ekj - Bj+g,k+2 "—ﬂ{j,k) =B

which corresponds to the root -Bﬂ-‘k)(h) of D¢, where B?j,}()(h)
is given by (4.3.67).
(i) Forj=1,2, .., &:

0

e.0 . 4.3.82
“B(j.j+2) ( )

Bjj+e =

where g;?j j+z)) is given by (4.3.32a), which corresponds to the
weight Bﬂ,;+g) of D¢. By a further application of (4.3.61) and

(4.3.62) Bﬂ,j”)(h) can be rewritten for h ¢ #°* (= }(D‘) as
£-2 p, Dy Dy .
2 r=i%r (h) + ag’y(h) + ag(h) (forj =1,2, ..., 2-2),
D D :
Blisay() = agh(h) + a(h) (forj = 2-1), (4.3.84)
-agh(h) + a(h) (forj = 2).
(iv) Forj=1,2, ..., &:
. (4.3.59
...-]'!'-(.] il E,_BU,“‘} ] iR N )
which corresponds to the weight

BG.j+)(h) of Dy, where Bjs0)(h) is given by (4.3.84).
(v) Forjk=12, .., 2 withj<k:

0

0
gjnk"'" + 'e‘k’j+! = gﬂo(j.k‘l'-ﬂ) ¥ gﬁc('k,j'i'x) ' (4'3'86)
0 0
in given 4.3.32a). As
where g’ﬁ?j.ku) and gﬂ?k.ju) are again given by (4.3.32a)
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" (= 5% by

(4.3.70), so this basis element (4.3.86) again corresponds to

Bi.ks)(h) (= Blkje0)(n) is given for all h e

the root B k.e)(h) of De.
(vi) Forjk=1.2, .., 2, with <k

0 0
“€k+2,j- j+ek = g‘-ﬁ(j.km * ?,*lg(k'jd) ; (4.3.87)

which corresponds to the root -B?j.ku;(h) of Dg, where
Bg,k,,g,(h) is given by (4.3.70).

These 222+2 weights belong to a representation of Dy
which is the direct sum of the trivial 1-dimensional
irreducible representation with highest weight A = 0 and the
(222+2-1)-dimensional irreducible representation with
highest weight

A = 222 - 22235‘ b ooy + agt  (4.3.88)
(where for £ = 2 the first term on the right-hand side of
(4.3.88) does not appear). It should be noted that all the

elements of Z:é“ are even members of A(22-1/0).

7 0(4)
(e) The subspace &,

By (4.3.2) the subspace 105(34) consists of the
supermatrices whose submatrices satisfy the conditions
-GAG =-iA, -BG =-iC, 6€ =-iB, and - = -iD,

which when taken together, along with the fact that D is 1x1,

W

imply that
A=0 D=0, and C = -G . (4.3.89)
The basis elements of 03" fall into 2 sets:

() Forj=1.2, .., &
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; 0 .0
€j,2¢+1 - 182241 j+2 = Eﬁ?j) % l?,_gum ’ (4.3.90)
0 0
where 9-5?}, and ig o  are given by (4.1) and (4.3.32b). As

(i+2)

0
8(j)(h)

04 (= P2y by (4.3.76) so

the basis element (4.3.90) again corresponds to the root
80)(h) of Da.
(iy Forjw V& . &

(= 'Sgu)(h)) is given for all h e H

0

ICH (4.3.91)

-€2941,j - IBj4g, 2041 = ?.(_ng -
which corresponds to the weight —Sﬂ)(h) of Dy, Sﬂ-)(h) being as
in (4.3.76).

These two sets of weights are exactly the same as for

~0(4)

4., , so they all belong to a 22-dimensional irreducible

representation of D, with highest weight A is given by

(4.3.84) and (4.3.83). All the elements of Z:;“ are odd.

(f) The roots of A(2(22-1/0)

Defining &(h) as in (4.2.20), it follows from the above
analysis and relations that the roots «o(h) and the
corresponding basis elements e, of A(2)(22-1/0) are as
follows:

(i) a(h) = 4J8(h), (for J = 0,£1,£2, ... ). There are 2

, ; : k
linearly independent basis elements el

a

corresponding to this
root which may be labeled by an additional superscript, so

that
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ey = {(22-1)/2(2-1)} t9®{hop - hoo } (fork = 1,2, ... , 2-1),

and
(2)_ _ . J { 0 22-2 o 0 }
e, = {(22-1)/2(2-1)} t4®1h g * 2 E big hao + ha31-1 )

(which reduce to (4.3.64) and (4.3.65) in the special case J =
0).

(i) a(h) = 4J8(h) £ Bk)(h), (for jk = 1,2, ..., &, with | <
k, and for J = 0,+1,2, ... ), where ﬁ?j,k,(h) is the extension of
the weight of D, that is given by (4.3.67) and

- t4J -
! ®{e+ﬂ( K) ’e""'B(jd,ku)}'

(ii)) «(h) = 4J8(h)  Bksey(h), (for jk = 1,2, ..., £, with ]
< k, and for J = 0,+1,42, ... ), where B{k.e)(h) is the extension
of the weight of D, that is given by (4.3.70) and

0
o= t4J®{§iB{j,k+g) ) g;%(k,ju)}'

(iv) a(h) = (4J+1)8(h) = 8y(h), (for j= 1,2, ..., £, and for J
= 0,£1,£2, ... ), where 58}(h) is the extension of the weight of

D, that is given by (4.3.76) and

0
€q = t4J+1®{§i%m F }.

(v) a(h) = (4J+2)8(h), (for J = 0,+1,£2, ... ). There are 2
(k)

ie0
258(14)

linearly independent basis elements e, ' corresponding to this

root which may be labeled by an additional superscript, so

that

k
eék)=t4d+2®{ +2- 1h° " 22 rekse R o} for k= 1,2,..., )
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(vi) a(h) = (4J+2)8(h) + B(.ky(h), (for j= 1,2, ..., £, with |
< k, and for J = 0,£1,%2, ... ), where Bﬂ,k)(h) is the extension of

the weight of Dy that is given by (4.3.67) and

0

=|£U+£,k+2)}.

0
Pas 128le.g, ) "2

(i) a(h) = (4J+2)8(h) + B j.ey(h), (forj =1,2, .., ¢, and for

J = 0,#1,#2, ... ), where B?j.ju)(h) is the extension of the
0
By’
(viii) a(h) = (4J+2)8(h) £ Bﬂ,k”,(h), (for j,k = 1,2, ..., &,
with j < k, and for J = 0,%1,¥2, ... ), where ﬁ?j,k+g,(h) is the

weight of Dy that is given by (4.3.84) and ey = t4J+2®e

extension of the weight of Dy that is given by (4.3.70) and

0
— t4J+2
€a =1 ®{giﬂ(j,k+z) + g"ﬁ(k,ju)

(iX) o = (4J+3)8(h) £ 80y (h), (for j= 1,2, ..., £, and for J =

Ji

0,£1,£2,...), where 88)(h) is the extension of the weight of Dy

that is given by (4.3.76) and

0 . 0
€q = t4J+3®{gi%(]) + lgzg{j”)}.

(x) a(h) = 0, with ¢ and d as basis elements.
With p chosen as in (4.3.44) , it follows that

<a°,BO> = <(10,B0>D‘ (4.3.92)

where on the right-hand side of (4.3.66) o’ and Bo are any
pair of linear functionals defined on g1 %(%) (= 9{0‘), the
evaluation being performed with respect to the Killing form
of Dg, and where on the left-hand side of (4.3.92) «° and B°

denote the corresponding extensions to the Cartan subalgebra
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of the Kac-Moody superalgebra A(2)(22-1/0), the evaluation
being performed with respect to its supersymmetric bilinear
invariant form B( , ). As Dy is a semi-simple Lie algebra,
<a?a°>°‘ > 0 for every non-zero linear functional ao defined
on 9{D‘, SO <a°,a°> > 0 for the corresponding extension.

Moreover (4.3.18) imply that

hs = {(22-1)/(2-1)} ¢ . (4.3.93)

Thus, if aE is the extension of any simple root of 12, then

<S> = 0 (4.3.94)

and

<j8,j5> = 0 . (4.3.95)

Thus <j8,j8> = 0 for integer j, so every non-zero root of
A(2)(22-1/0) belonging to the sets (i) and (v) is "imaginary".
Moreover, because <j8+a°,j8+a°> = <C¢.0,(10>D£ and because
<a0,a0>D‘ > 0 for linear functional ao and its corresponding
extension (as has just been noted), it follows that every root
of A(2)(22-1/0) belonging to the sets (ii), (iii), (iv), (vi), (vii),
(viii), and (ix) is "real". All the elements mentioned in the
above sets are even, except for those in the sets (iv) and (ix),
which are odd.

In relating these roots to the simple roots of the Kac-
Moody superalgebra A(2)(22-1/0) it is necessary to consider
the cases 2 = 2 and ¢ > 2 separately because the labeling of
the generalized Dynkin diagrams of A(2)(22-1/0) is different

in the two cases.
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For A(2)(3/0) (i.e. for £ = 2) the simple roots may be

taken to be
ag=a102, o =8-aE{, a2=a52,
where
ol A Y (4.3.96)
is the highest weight of the representation of i:é“ for which
7 0(4) D2 D>

i, is the carrier space and a4° and a,” are the extensions
of the simple roots a? and ag of D2. As &, appears in the set
(iv) it follows that &, is odd, so o is an odd root of the Kac-
Moody superalgebra A(2)(3/0). All the other simple roots of
A(2)(3/0) are even.

For A(2)(22-1/0) for £ > 2 the simple roots may be taken

to be

ag = & - ay, (4.3.97)
and

ak = ogl (fork =01, ... 2-1) (4.3.98)
where

0 Dy E:*‘z D, D, Dy
ay = Ay = ket @k +EO0 + Fag (4.3.99)

is the highest weight of the representation of igéﬂ for which
2'.501(4) is the carrier space and the a,?‘ are the extensions of the
simple roots of D;. As &, appears in the set (iv) it follows
that e, is odd, so a¢ is an odd root of the Kac-Moody
superalgebra A(2)(22-1/0) (for 2 > 2). All the other simple

roots of A(2)(22-1/0) are even (for £ > 2).
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In terms of these simple roots the positive and negative
roots of A(2(22-1/0) are defined as in the case of B(1)(0/%).
The quantities <a°,a0>D* can be computed from appendix A(1).
It is then easily checked with arguments very similar to the
ones presented for B(')(0/%2) that the Cartan matrices of
A(2)(3/0) and A(2)(22-1/0) (for £ > 3) evaluated using
definition (2.15) are of affine type. Their corresponding
Dynkin diagrams are those given in Figures 3 and 4.

In terms of the linearly independent functionals g; (isj<%)
defined on HD*(see Cornwell(1985), and table | chapter 2) the
roots oflA(2)(2£-1/0) are given by
A={2md+ (g +e) with1<i<j<2, (2m+1)d + g with 1<i< g
(4m+2)38 + 2¢;, with 1< i < 2 all with me Z
and 2md with j20 and me Z}

(4.3.100)
The basis is given by
Og = €1+ € O = € = €j,1 1€i<2-1 ayg=98-¢
(4.3.101)
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C. Root structure of A(4)(22/0) (for & = 2,3,... )
(a) The 4-fold automorphisms

The general line of argument for A(4)(22/0) is very
similar to that given for A(2)(22-1/0) in the previous section,
so its presentation can be given more briefly. An explicit
realization of the simple Lie superalgebra A(22/0) is
provided by s£(22+1/1), considered as a complex
superalgebra, where s2(22+1/1) is defined as the set of
(22+2)x(22+2) complex supermatrices that satisfy the
condition (4.3.28). The grading partitioning may be taken to
be as in (4.3.27), but now A, B, C, and D are of dimensions
(22+1)x(22+1), (22+1)x1, 1x22+1), and 1x1 respectively. The
rank 20 of A(22/0) is given by

20=22+1. (4.3.102)
The generalized Dynkin diagram of A(22/0) is shown in Figure
11, which indicates that its distinguished simple roots o,
are even for k = 1,2,...,22, but that ag“, is odd. With the
bilinear form
BO( , ) being defined by

BO(M,N) = 42 str (MN), (4.3.103)

the basis elements of its Cartan subalgebra # © may be taken
to be

hee = {1/48) {ekk - €k+1,ks1}, (for k = 1,2,...,22) (4.3.104)

and
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hed,., = {1742} {82241,2041 + B22042,2042} - (4.3.105)

Now ersis the matrix of dimension (22+2)x(22+2) that is
defined by

(,.e.,f,S)jk = STJSSK (for j!k = 1’21"°:2£+2); (43106)

so that with this choice all the matrices of # ° are again
diagonal. The positive even roots Bf},k) and positive odd roots
Sﬂ) of A(22/0) are given in terms of the distinguished set of

simple roots oy, o, ... , dtay, ; Of A(22/0) by
k-1
Bl = E a’  (forjk =12, .., 22+1; j < k),(4.3.107a)

r=j

and

0 22+1 0 )
djp = Z a, (forj=12, .. ,22+1), (4.3.107b)

r=]
for which the corresponding basis elements of A(22/0) may

be taken to be

0

e

0 . .
gﬂ?j,k} =e °i+a?+1+---4ak.1= ejk (forjk =12, ..., 22+1;j < k),

(4.3.108a)
and
o a : forj=12, .. 22+1
26l) ~  ZotOft.dopey . Sh28+2 (forj=1.2, ...,22+1).

(4.3.108b)

The basis elements corresponding to the corresponding

negative roots may be chosen as stated in the introduction.

(For further information on A(22/0) see Cornwell(1989)).
Taking the node corresponding to the odd simple root oy

of A(4)(22/0) for 2 > 1, as the corresponding numerical mark
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has value 1, (c.f. Figures 5 and 6) q = 4 again. It follows
that if the automorphism y is employed then the subalgebra
I;’(‘,‘” consists of the supermatrices whose submatrices
satisfy the conditions (4.3.34), so that the subalgebra igff) is
isomorphic to the set of (22+1)x(22+1) complex
antisymmetric matrices and hence is isomorphic to the
simple complex Lie algebra B;. As expected none of the basis
elements of the Cartan subalgebra #H ° of A(22/0) are
members of this :’f.gg:'} (because all the members of this ff,gg‘”
are non-diagonal matrices).

A realization of By in which the basis elements of the
the Cartan subalgebra of By are given by diagonal matrices is
given by the (22+1)x(22+1) complex matrices A" that satisfy

the condition (4.3.9), but where now

9 Q
G = 0 9 Iz [. (4.3.109)
Q le Q

This realization will be referred to as the "canonical® form
of Bg. These matrices A" are related to the (22+1)x(22+1)

antisymmetric matrices A by

-~

T1AT = &%, (4.3.110)

where T is a certain (22+1)x(22+1) complex matrix such that
(4.3.110) maps the Lie algebra so(2N+1) into the canonical

form of B¢, and satisfies the condition

el

T = G, (4.3.111)

G being as defined in (4.3.109) (see Cornwell(1975) for the

actual form of T in this case too). In what follows again,
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only (4.3.111) is needed). This mapping can be extended to
an automorphism of 6 of Zg (= s2(22+1/1)) as in the previous
case.

The 4 subspaces f:g” (for p = 0,1,2,3) corresponding to
the automorphism ¢ of (4.3.14) will now be considered in

turn.
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(b) The subspaces %"

By (53) the subalgebra 3',05(04) consists of the
supermatrices whose submatrices satisfy the conditions
(4.3.41) (with G given by (4.3.109)),and so is isomorphic to
the canonical form of By.

Some properties of the canonical form of B, (c.f. Konuma
et al(1963) and Cornwell(1975)) will first be summarized.
Its Killing form BB¢(, ) is given by

BP«(A.A) = (2¢-1) tr(AA"), (4.3.112)
(for all A and A~ of the canonlcal form). Thus, by (4.3.103),
0
BY( ~ 7 = {42/(22-1)} BByA,A"
([ g }[ o } {42/(22-1)} B4(4,A")

(4.3.113)
for all A and A’ of the canonical form. This implies that

(4.3.8) is satisfied if

o= (22-1)/(42) . (4.3.114)

Denoting the simple roots of By by aE‘ (for k = 1,2, ... ,2), the
corresponding basis elements of the Cartan subalgebra 9Bt
of By defined by

BBh%: . h) = aPy(h) for all h e 5. (4.3.115)

cr.Bt 2

are

an ={1/(22-1)} {Ek+1,ks1 = Bk+ 241 k+2+1-8k+2,k+2 + Bk+2+2,k+ 242},

(fork = 1,2, ... ,2-1) (4.3.116)

and
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B
b—aél o= {1/(2£'1)} {§2+1.£+1 = §2£+1.2£+1} . (4'3-117)

The associated root subspace basis elements are

B
..e,a%! = {1/2(2¢2-1)} {§k+1,k+2 - Bk+2+2,k+2+1 b
(fork =1,2,...,2-1) (4.3.118)
and
B
ese = {12(22-1)}{e1,2¢41 - €241,1} , (4.3.119)
I 4

the normalization factors being chosen so that

By

B, B
B%(egs em) = 1. (4.3.120)
where, as usual,
e = Fo (4.3.120)

The diagonal basis elements of igg” will be considered
first. As they may be taken to consist of the set
{ek+1 k+1-Ck+2+1 ks241 | fOr kK = 1,2, ... ,2}, it follows that they
are all members of the Cartan subalgebra #°) (= 384 of B,

_ 1 -
(as expected). Thus the most general element of }[0( ) is of

the form
Dk = 1KK(BKat ke 1Bkt ka2 1) (4.3.122)
where xi1,x2, ..., k¢ are any complex numbers, which can be

rewritten, by (4.3.104), as

22
412k=zpknﬂe, (4.3.123)

where

pE = 211 ke (fork =2, ... ,241), (4.3.124)

and
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Pret = Dr-kxr (fork =2, .. ,2). (4.3.125)

Thus on #°* the simple roots of A(22/0) are given by

ash) = -xy , (4.3.1286)
ac(h) = xk1-xk (for k =23, ... ,2), (4.3.127)
ag,(h) = %1+ %K, (4.3.128)
o, () = (ki1 - xx) (for k = 2,3, ... ,2), (4.3.129)
0
Opguq(h) = kg,
which implies that on 79 (= }{B*)
0 0
ae(h) = -ap, () (fork =23, .. ), (4.3.130)
0 2+1 0
aj(h) = -%E ag(h) (4.3.131)
k=2
and
0 L0 0 o
agen(M) = dag() + 1) ). (4.3.132)

Consideration of a similar argument for the simple roots aE‘
of By then shows that on the Cartan subalgebra #°'*) (= 7B
of By the simple roots af‘ of B¢ and u.E of A(22/0) are related
by

ajth) = -2t=1a:3‘(h) , (4.3.133)
agh) = -ap () = o(h) (fork =23, ... ,2),

(4.3.134)

ag,,(h) = Zt;:a?‘(h)+2a?*(h), (4.3.135)
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Opeai(h) =  -ogk(h) (4.3.136)

Finally it follows from (4.3.104), (4.3.105), (4.3.116),
and (4.3.117) that corresponding elements of the Cartan

subalgebra of the Kac-Moody superalgebra are

B 0 0
g, = PONGL = (20201} gy -hog, )
(4.3.137)

(fork =1,2, ..., 2-1), and

B 28 0
s = PO = (20/(22-1) %@ {Zmngq?}.(zt.s.ma)

L

h

The non-diagonal basis elements of £o¢" will now be

examined. They fall into 6 sets:

() Forj)=1.2 . %

(4.3.139)

0
. icy < B = eo0 +e ,
=hijtl = Zjr24l,1 2B(1,j+1) T 2B jees)

where e

(4.3.108a

0 0 :
B°(1.j+1) and g—ﬂu,jun) are given by (4.1) and
):

As (4.3.133) and (4.3.135) imply that
2
B i+ty(h) = Blijrean(h) = -Z,=,-a?‘(h), (4.3.140)

04) (= 3(Bx)), the basis

element (4.3.138) corresponds to the root B?1lj+1)(h) of By.
(i) Forj=12 ..., %;

(forj=1,2, ..., 2, and forall h e H

0

§3?1.j+£+1) , (4.3.141)

0
- €411 + €1 = g +
€j+1,1 + €1 j+2+1 "‘,ﬂ(".jﬂ)

which corresponds to the root -B?Ljﬂ,(h) of By, where
B(1j+1)(h) is given by (4.3.140)).
(i) Forjk = 1,2, ..., £, with j < k:

0 0

. (4.3.142
2Bl thet) T EBetatirnen) )

€i+1,k+1 = Ek+241,j+2+1
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0
where e o

0 .
“B(j+1,k+1) and 9»—[?0,,“1.,(””) are given by (4.1) and

(4.3.108a).

As (4.3.134) implies that

0 : SIS
Bj+1,ke1)(N) = -B(isgst keest)(h) = r=j%r () , (4.3.143)

" (= 3By,

the basis element (4.3.142) corresponds to the root

(for jk =12, ..., &, withj <k, and forall h e %

B8+1,k+1}(h) of Be. (This set does not appear when ¢ = 1).
(iv) Forjk =12, ..,2, with j < k:

0 0

= e . + e- — e + e 0 L
Ek+1,j+1 Eji+2+1,k+2 +1 ”—g{j+1.k+” "BU””»"*“”

(4.3.144)

which corresponds to the root
-B{s1.ke1)(h) OF By, where B,1x.1y(h) is as in (4.3.143). (This
set does not appear when ¢ = 1).

(v) Forjk=1.2, .., ¢, withj<k:

0 0

£Blie1 ke 2a1) BTkt jotat) ° (4.3.145)

€j+1,k+2+1 = k41 e+

0
where e o and e o
“B(j+1,k+2+1) “B(k+1,j+2+1)

(4.3.108a). As (4.3.134) and (4.3.135) imply that

are given by (4.1) and

k1 g :
|38+1.k+£+1)(h) = B?k+1,j+x+1)(h) = Zhjar‘(h) + 2Zr=k0€?‘(h),

(4.3.146)

%) (< 3By,

the basis element (4.3.142) corresponds to the root

(for jk = 1,2, ..., 2, with j < k, and for all h e

Bﬂ+1,k+g+1,(h) of Be. (This set does not appear when ¢ = 1).
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(vij Forjk=12, .., ¢ withj<k:

0 0

-e . + : = e -€ *
Sk+2+1,j+1 + Bja2+1 k+1 ~~B(j+1,k+z+1) "—3(k+1.j+£+1)

(4.3.147)

This corresponds to —Ba+1,k+g+1,(h) of By, where Bﬂ+1,k+1)(h) is
given by (4.3.146)). (This set does not appear when 2 = 1).

As expected the elements of (4.3.139), (4.3.141-144),
and (4.3.147) are even members of A(22/0).

It is easily checked that the set of 222 non-zero roqts of
(i) to (vi) above, together with the 2 zero roots, are all
weights of the adjoint representation of Bg. For £ > 2 its

highest weight is

4
A =AY = ot o+ 2Zk=2af‘, (4.3.148)

while for £ = 1 it is

A = 288 = ot (4.3.149)

as expected ( Appendix A(2)).

(c) The subspace i':f”

By (4.3.2) the subspace 105(14) consists of the
supermatrices whose submatrices satisfy the conditions
-GAG =iA, -BG =iC, G€ =iB, and -f =D,

which when taken together, along with the fact that D is 1x1,

imply that
A=0,D=0, and C=iBG. (4.3.150)

—~

The basis elements of 2\ fall into 3 sets:
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(i} Forj=12;.::q2:

. 0
€j+1,2242 + 182442 j42+1 = €

.0
~a?j+1) - |g_g{j+“1) , (4.3.151)

0 0 :
where 9'8?,-+1} and g-§(j+£+1) are given by (4.1) and (4.3.108b).
As (4.3.134), (4.3.3135), and (4.3.136) imply that for j = 1,2,
..., 2 and for all h L (= 9{8‘)

0 0 ¢ By
8G+1)(h) = -B(sesy(h) = =@ (h) (4.3.152)

the basis element (4.3.50) corresponds to the weight Sﬂm(h)
of Bg.

(i) Forj=1.2, ..,2%:

“€2442,j4+1 + i,e_,j+.1t+1,2£+2 , (4.3.153)

g?g(jn) % igﬁ?jun)
which corresponds to the weight ‘8?j+1)(h) of By, where
8+1)(h) is given by (4.3.152).

(iif)  The single basis element:

: 0 .0
€1,2242 + 1822421 = 9,5?1) » lg_gm y (4.3.154)

where g_gt(:” and ig?_gm are given by (4.1). However, by
(4.3.130) to (4.3.132) 803)(h) = 0 for all h e ¥ (= 2®Y), so
(4.3.154) corresponds to a zero weight of Byg.

These weights all belong to a (22+1)-dimensional

irreducible representation of B, with highest weight

' 4
A o= e = 2k=1aﬁ‘. (4.3.155)

It should be noted that all the elements of (4.3.151),
(4.3.153), and (4.3.154) are odd members of A(22/0), so all

the elements of £\*) are odd.
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(d) The subspace 3;0254;

) consists of the

By (53) the subalgebra ios(;
supermatrices whose submatrices satisfy the conditions
-GAG =-A, -86 =-C, G =-B, and-D = -D,

which when taken together, along with the fact that D is 1x1,

1321

imply that

>

G-GA=0,B=0,C=0, (4.3.156)

—~ —

with D being determined only by the supertrace condition
tr A =trD. On using (4.3.104) and (4.3.105), the diagonal
basis elements of Z:;) may be taken to consist of the 2 sets:

(i) The single basis element

22+1
(1/42){e1.1 + 820422042} = 2 et hO. (4.3.157)

(i) Fork=12, ...,%

(1/42){€Kk+1 k1 + CK+2+1 k+241 + 2822422242}

k+2 22+1
- D ean% o+ 2D 2 h%.  (4.3.158)

Each of these corresponds to zero weight of B¢, so that the
zero weight has multiplicity 2+1.
The non-diagonal basis elements of 122{4) fall into 8 sets:
(i) Forj=12, ..,24:

0 0

£601.541) g‘—ﬂu,jun) v 8109

€1,j+1 + Ej+2+1,1 =

where are given by (4.1) and

e 0 d °
“B(1,j+1) & g—&u,jun)
(4.3.108a), andB(i jo1)(h)(= -B{1 js2+1)(h)) is given for all h e
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#%* (= 384 by (4.3.140), so this basis element (4.3.159)
again corresponds to the weight [3?1,j+1}(h) of By.

(i) Forj=12, .., %:

0

0
= §j+1,1 = ..e..‘l.j+£+1 - Q_B“'j_n) = %B‘iu””} ) (43160)

which corresponds to the weight
-B{1,j+1)(h) of Be, where By jo1y(h) is given by (4.3.140).
(i) For jk =1,2, ..., &, with j < k:

0 0

SBlistke1) ~ Z-Blaest kegat) (+8.161)

Ej+1,k+1 + Ck241,j42+1

-0 0
where e_o. and e B
“B(j+1,k+1) “—B(j+2+1,k+241)

(4.3.108a), and Bg+1,k+1)(h) (= 'B?j+£+1.k+£+1)(h)) is given for all
he #°% (= B4 by (4.3.143), so this basis element
(4.3.161) again corresponds to the weight Ba+1.k+1}(h) of Byg.

are given by (4.1) and

(This set does not appear when £ = 1).
(iv) Forjk =12, .. ,2, with j < k:

0

0
-g ; - e = g -e.0 .
Ek+1,j+#1 = €j+2+1 k+2 +1 ~—ﬂ(j+1,k+1} “B(j+2+1,k+241)

(4.3.162)

This corresponds to the weight - B?j+1‘k+1}(h) of By, where
B(+1.ks1)(h) is given by (4.3.143). (This set does not appear
when ¢ = 1).

(v) Forjk=12, .., &, with j < k:

0 0

' 3.1
gﬁ%i-‘l,k-l--{-!-‘l) * ‘e'Bc{’k+1,j+1t+1) 14.5.169)

j+1,k+2+1 + Bk+1,j+2+1 =

0
where e o

[ 4.1) and
~B(j+1,k+2+1) ang 'e'Bc('k+1,j+x+1) ara given by (4.1). @

(4.3.72), and B(s1 ksts1)(N) (= Blkst,jses1)(h)) is given for all h
e #°™ (= 3B by (4.3.146), so this basis element (4.3.163)
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again corresponds to the weight Bﬂ+1,k+g+;](h) of By. (This set
does not appear when £ = 1).

(viy Forjk=1,2, ..., &, with j < k:

0

0
-e : = e e + e -
Ek+2+1,j41 = Ej+2+1 k+1 "‘g(i” K+2+1) ”—[g(k+1 J+2+1)

(4.3.164)

This corresponds to the weight -B(.1ks2+1)(h) of B, where
Bg+1lk+g+1) is given by (4.3.146). (This set does not appear
when £ = 1).

(vii) Forj=1,2, ..,2:

0
€i+1,j+2+1 = gﬁ?j+1.j+£+1)’ (4.3.165)
0 N

where 'e'Bo(j+1,j+x+1) is given by (4.1) and (4.3.108a). Thus the

basis

element (4.3.165) corresponds to the weight Ba+1lj+1+1}(h) of
B¢, where (4.3.134) and (4.3.135) imply that

0 C B
B(j+1,j+£+1}(h) = 22 r=jar (h) , (4.3.166)

0(4)

(forj=1,2, .., ¢ andforall he # ' (= #BY).

(viii)y Forj=1,2, ... ,2:

0

‘e‘-ﬁ(j+1.j+£+1) , (4.3.167)

“Ej+2+1,j41

which corresponds to the weight —Bg+1,j+g+1)(h) of By, where
Bls+1,j+2+1)(n) is given by (4.3.166).

These 222+32+1 weights belong to a representation of By
which is the direct sum of the trivial 1-dimensional

irreducible representation with highest weight A = 0 and the
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(222+3¢)-dimensional irreducible representation with

highest weight

£
A = 2A = 22k=1af“. (4.3.168)

It should be noted that all the elements of Zgg” are even

members of A(22/0).
(e) The subspace Iy

By (53) the subspace Z:éq consists of the supermatrices
whose submatrices satisfy the conditions
-GAG =-iA, -BG =-iC, G€ =-iB, and -§ =-iD,
which when taken together, along with the fact that D is 1x1,

imply that

A=0 D=0, and C =-iBG . (4.3.169)

—~

The basis elements of £ fall into 3 sets:
(i) Forj=1,2, ..., &:

0

e -ie i e.o0
gj+1,22+2 £22+2,j+2+1 ""5(j+1)

.0
+|.e__gu_+“1) , (4.3.170)

0 0 .
where 9-8?;+1) and g_gm“” are given by (4.1) and (4.3.108b),

and

8041)(h) (= 80, 241)(h)) is given for all h e #°*) (= 2B4) by

(4.3.152), so this basis element (4.3.170) again corresponds
to the weight 8(,1)(h) of B.
(i) Forj=1,2, ..., &:

0

l§8%+£+1) , (4.3.171)

; 0
"€2442,j+1 " 1€j+241,2242 = g—g(jﬂ) -
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which corresponds to the root -88+1)(h) of Be, where S?j+1}(h)
is given by (4.3.152).
(i)  The single basis element:

0

€1,2¢42 - i€2242,1 = 250 *+ ‘3(1) (4.3.172)

where g_:c{:” is given by (4.1) and (4.3.107b). As 8%,(h) = 0 for

all h e 7°®

of Bg.

(= }[B‘), (4.3.71) corresponds to a zero weight
These weights all belong to a (22+1)-dimensional

irreducible representation of Bg; whose highest weight is

given by (4.3.155). All the elements of at. ( )are odd.
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(f) The roots and root basis vectors of A(4)(22/0)

Defining &(h) as before, it follows that the roots a(h)
and the corresponding basis elements e, of A(4)(22/0) are as

follows:

() a =4J3(h), (for J = 0,£1,£2, ... ).
There are 2 linearly independent basis elements eflk)
corresponding to this root which may be labeled by an

additional superscript, so that
(k) 0
= {22/(22-1)} t4J®{ e, ) (fork =12 .., 2-1),

and

(2) 2% 0
el = {20/(22-1)) &) " hlof,

(which reduce to (4.3.137) and (4.3.138) in the special case J
= 0).

(i) a(h) = 4J8(h) £ Bt js1)(h),
(forj=1,2, ..., &, and for J = 0,+1,£2, ... ), where B(y j+1)(h) is
the extension of the weight of B, that is given by (4.3.140)

and

}-

_ 14J
€q = tH® {"+B(11+1) "*l?(1j+z+1)

(i) a(h) = 4J8(h) + BGs1,ke1)(h),
(for jk = 1,2, ..., &£, with j <k, and for J = 0,£1,£2, ... ), where
Bﬂ+1,k+1)(h) is the extension of the weight of B,y that is given

by (4.3.143) and
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}.

a = t4J®{gig{j+1.k+1) * 9’*{?(1+2+1,k+2+1)
(iv) a(h) = 4J5(h) £ Bt keaen)(h),
(for j,k = 1,2, ... , &, with j < k, and for J = 0,£1,%2, ... ), where
Ba+1,k+g+1)(h) is the extension of the weight of By that is
given by (4.3.146) and

0 0
= t4J
o=t ®{‘e'iB(1+1,k+z+1} 238 ks 1 J+z+1)}

(v) a(h) = (4J+1)8(h)180+1)(h), (forj=1,2, ..., £, and for
J = 0,#1,%2, ... ), where Sﬂm(h) is the extension of the weight

of By that is given by (4.3.152) and

J+1 T
= ®"+%(j+1) 'g¢50(1+z+1)}'

(vi) a(h) = (4J+1)3(h), (for J = 0,£1,£2, ... ), with
= t4J+1 -

e ®{"5{1) 'g-gm}'
(vii) a(h) = (4J+2)8(h), (for J = 0,£1,£2, ... ). There are

(k) corresponding to

2+1 linearly independent basis elements e,
this root which may be labeled by an additional superscript,
so that

k+2 2241
eék) = t4J+2®{ r=k+1 h a, + 2 r=k+2+1 b..?x?} ,(fOF k= 1,2, '2)

and

(2+1) t4J+2®ZM+1

(vii) a(h) = (4J+2)8(h) + B?i,j,,”(h), (for j = 1,2, ... , &,
and for J = 0,+1,%2, ... ), where 3?1 j+1)(h) is the extension of

the weight of B¢ that is given by (4.3.140) and
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D

€q = t4J+2®{e

+ﬁ(1 q+1) +l§(1 J+z+1)}

(iX) a(h) = (4J+2)8(h) £ Blis1,ke1)(h),
(for j,k = 1,2, ..., &, with j < k, and for J = 0,+1,£2, ... ), where
Bﬂ-”,km(h) is the extension of the weight of By that is given

by (4.3.143) and

}

= t4J+2
: ®{”+B(J+1 k+1) ”*[?u+2+1 k+2+1)

(x) a(h) = (4J+2)8(h)  Bljs1.ke2s1)(h),
(for j,k = 1,2, ..., &, with j < k, and for J = 0,%1,+2, ... ), where
B8+1lk+g+1)(h) is the extension of the weight of By that is

given by (4.3.4146) and

= t4J+2
€o = tH*2®{e "'"‘ﬁ(]ﬂ Kk+241) g;‘?(k”-i”*”}.

(xi) a(h) = (4J+2)8(h) £ B{s1,js2+n)(h), (for j = 1,2, ..., &,
and for J = 0,£1,£2, ... ), where ﬁ?j+1lj+g+1)(h) is the extension

of the weight of B, that is given by (4.3.166) and

€y = t4J+2®
& “'+B(J+1 jees1)

(xii) a(h) = (4J+3)8(h) £ 5(j+1)(h), (forj=1,2, ..., 2, and
for J = 0,%1,+2, ... ), where 8?j+1)(h) is the extension of the
weight of By that is given by (4.3.152) and

0 0
= t4J+3 ie
€=t ®{9-1r%(,-+1) tie,

0 }.

d(j+2+1)

(xiii) a(h) = (4J+3)8(h), (for J = 0,+1,4£2, ... ), with

0
6o = 14+3®{e 0+ ie :
* {85ty * 124}
(xiv) a(h) = 0, with ¢ and d as basis elements.

With p chosen as in (4.3.114), it follows that
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<(£Bo> = <a0,BO>B‘ (4.3.173)

where on the right-hand side of (4.3.173) ao and Bo are any
%) (2 3Be), the

evaluation being performed with respect to the Killing form

pair of linear functionals defined on #H

of B, and where on the left-hand side of (4.3.173) «’and B’
denote the corresponding extensions to the Cartan subalgebra
of the Kac-Moody superalgebra A(4)(22/0), the evaluation
being performed with respect to its supersymmetric bilinear
invariant form B(, ). As By is a simple Lie algebra,

<on0,-::zo>Bt > 0 for every non-zero linear functional o’ defined
on HBt so <a°,a°> > 0 for the corresponding extension.

Moreover (4.3.114) imply that

hs = {42/(22-1)} ¢ . (4.3.174)

Thus, if aE is the extension of any simple root of ig, then

<S> = 0 (4.3.175)

<j8,j5> = 0 . (4.3.176)

Thus <jd,j8> = 0 for integer j, so every non-zero root of
A(4)(22/0) belonging to the sets (i), (vi), (vii), and (xiii) is
"imaginary". Moreover, because <j5+a°,j§+a°> = <a°,a°>8‘ and
because <(IO,CIO>B‘ > 0 for linear functional o’ and its
corresponding extension (as has just been noted), it follows
that every root of A(4)(22/0) belonging to the sets (ii), (iii),
(iv), (v), (viii), (ix), (x), (xi), and (xii) is "real". All the
elements mentioned in the above sets are even, except for

those in the sets (v), (vi), (xii) and (xiii), which are odd.
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For A(4)(22/0) for 2 > 1 the simple roots may be taken to

be
ag =8 - ay, (4.3.177)
a = o, (fork =101, ..,2-1) (4.3.178)
where
By = AT = 2;1(15‘ (4.3.179)

is the highest weight of the representation of ?Lgé‘” for which

L2 is the carrier spaceand the o,* are the extensions of the
simple roots of B¢. As &, appears in the set (v) it follows
that &, is odd, so a¢ is an odd root of the Kac-Moody
superalgebra A(4)(22/0). All the other simple roots of
A(4)(22/0) are even.

It is then easily checked that the Cartan matrices of
A(4)(2/0) and A(4)(22/0) (for £ > 2) evaluated using the
definition on section (4.1.5) correspond to the generalized
Dynkin diagrams given in Figures 5 and 6 respectively. The
quantities <a°,a°>B‘ can be found in appendix A(2).

In terms of the linearly independent functionals e¢;
(i<j<2) defined on # Bt(see Cornwell(1984) and table I,
chapter 2) the roots of A4)(22/0) are given by
A={2md t(gjteg) withi<i<j<2,md*eg with1<i<2

(4m+2)8 £ 2¢; with 1< i < £ all with me Z
and mdé with m#0 and me Z} (4.3.180)
The basis is given by

Opg =€y O =& - €4 1Si<2-1 og=0-¢ (4.3.181)
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D. Root structure of C(2)(2+1) (for £ = 1,2,3,... )

(a) The 2-fold automorphisms

An explicit realization of the simple Lie superalgebra
C(2+1) is provided by the orthosymplectic algebra
osp(2/2%;C), considered as a complex superalgebra, where
osp(2/24;C) is defined as the set of (22+2)x(22+2) complex

supermatrices with the grading partitioning

A B
M = ( J, (4.3.182)
c D

that are subject to the condition that

MStK + (-1)degHK M = 0, (4.3.183)
where
G Q
K = [ ], (4.3.184)
o J
with
0 11
G - , (4.3.185)
11 Q
and
0 le
J = , (4.3.186)
-le O

(Here A, B, C, D, K, G and J are of dimensions 2x2, 2x2%, 22x2,
28x28%, 22+42)x(22+2), 2x2, and 22x22 respectively). The
condition (4.3.2) implies that

AG + GA = 0, (4.3.187)
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BJ + JD = 0, (4.3.188)

and

BG - JC = 0. (4.3.189)

The rank £°Iof C(2+1) is given by 20 = 2+1.

The generalized Dynkin diagram of C(2+1) is shown in Figure
12, which indicates that its distinguished simple roots aﬁ
are even for k = 2,3,...,2+1, but that a; is odd. With the
bilinear form BY( , ) being defined by

BO(M,N) = -22 str (MN), (4.3.190)

the basis elements of its Cartan subalgebra #° may be taken

to be

hee = -{1/42}{e1,1- 82,2 + €33 - 243,243}, (4.3.191)

0
ha? = {1/42} {€k+1,ke1 = Eka241,ke241 = Ek42 k42 + €k+242 k+242}s

(4.3.192)
(for k = 2,3,...,2) and
hg?m = {1/22} {€ 442,242 - €2242,2242} - (4.3.193)

Again ersis the matrix of dimension (22+2)x(22+2) that is
defined by (4.3.186), so that with this choice all the
matrices of # 0 are again diagonal.

The positive even roots B?j}) and Bﬂ,‘k) and positive odd
roots 5?5 and S?jj of C(2+1) are given in terms of the

distinguished set of simple roots a?, ag, 5 a2+1 of C(2+1) by
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. k
Bk = E o (forjk =12, ...2,j<k), (4.3.194)

r=j+1
& k 0 E :‘ o 0
Bg-k) = Z o +2 Op + Qg q
r=j+1 r=k+1
(for jk = 1,2, ... ,2-1,j < k), (4.3.195)

0+ E :‘ o o .
B e = a, +o,,.q (forj=12, ..., 2-1), (4.3.196)

r=j+1

0+ £ 0 0 5
Bijy = 2 o +0,. 4 (forj=12, ...,2-1), (4.3.197)

I"=j+1
0 0
Bty = Oy, | (4.3.198)
0- § :j 0 .
dj) = a, (forj=1.2, ... ,2), (4.3.199)
r=1
j 2
58f= E a? + 2 E a? - a3+1 (forj = 1,2, ... ,2-1),
r=1 r=j+1

(4.3.200)

£41
B = E @ (4.3.201)
r=1

The corresponding basis elements of C(2+1) may be taken to
be

and

QBOd o = Sit2k+2 T Bkege2jre42 (forjk =12, ... ,2;j<Kk),

(4.3.202)
0 . .
foéf_k) = Bj+2,k+2+2 + Bk+2,j+242 , (fOor jk = 1,2, ... 2;j<k),
(4.3.203)
9:‘(’1.') = B1,j+2 + €res22, (forj =12, ... ,2), (4.3.204)
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and

0

95"(]*) = e1,j+2+2 - €js2,2, (forj =12, ... ,2). (4.3.205)

The basis elements corresponding to the corresponding
negative roots may be chosen in accordance with (4.1). (For
further information on C(2+1) see Cornwell(1989)).

Taking the node corresponding to the odd simple root ap
of C(2)(2+1), as the corresponding numerical mark has value
1, (c.f. Figures 7 and 8) q = 2. Moreover inspection of Figures
7 and 8 shows that the generalized Dynkin diagram with the
chosen node and attached lines removed corresponds to
B(0/2), the subalgebra 21> has to be isomorphic to B(0/2).

The complex simple Lie superalgebra B(0/2) may be
realized as osp(1/2¢;C), which is the set of (22+1)x(22+1)

supermatrices m of the form

b
m = [ - J (4.3.206)
c D

{e]

where b and ¢ are submatrices of dimensions 1x22 and 22x1

respectively that experience the constraint

B-Jdc = 0, (4.3.207)

and D is a 22x2¢2 submatrix such that

bJ+JD=0, (4.3.208)

(J being defined in (4.3.186)). This will be called the
canonical form of B(0/%).

One possible two-fold automorphism of C(2+1) is
provided by w2, where y is the automorphism of (4.3.26).

However, as
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. A -B
M = -(-Mst)st = ,
v2(H) = -4 [ & ]

it follows from (53) that if this automorphism is employed
then the subalgebra 1:(()2) would consist of the supermatrices
with B = C = 0, and with A and D satisfying (4.3.187) and
(4.3.188) respectively, so that the subalgebra ng) would
isomorphic to the even part of C(2+1), and not to the
superalgebra B(0/2). Consequently y2 is not an appropriate
choice of automorphism.

As will be demonstrated explicitly in the next

subsection the correct choice is actually given by

o(M) = L(-MsL (4.3.209)
where
12 0
L = ,
[ o ]
so that _
-A CJ
M) = . . ) 4.3.210
o ( -1 -g16 J ( )

It is easily checked that this provides a two-fold
automorphism of C(2+1).
The 2 subspaces 3'.;);2) (for p = 0,1) corresponding to the

automorphism ¢ of (4.3.28) will now be considered in turn:
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7 0(2)
(b) The subspaces &,

By (53) the subalgebra 1°%) consists of the
supermatrices whose submatrices satisfy the conditions - A
= A and CJ = B in addition to (4.3.187), (4.3.188), and
(4.3.189). Together these imply that A = 0 and that

-b
B = 2-%( : ] and C =2-D( -C g), (4.3.211)

where b and ¢ are submatrices of dimensions 1x22 and 22x1
respectively that experience the constraint (4.3.207). It is

easily checked that subject to these conditions the mapping

o b 0 B
np(( } , [ ] (4.3.212)
¢ D c D

is an isomorphic mapping of B(0/2) onto iféz), (the factors of
2-tin (4.3.211) being inserted to help give this result).
Some properties of the canonical form of B(0/2) and its
image under the mapping (4.3.212) will first be summarized
(the conventions being those of Cornwell(1989)). The Killing

form BB 'y is given by

BB m m1) = -(22+1) str(mm") . (4.3.213)

(for all m and m” of the canonical form of B(0/2)). Then, by
(4.3.212),

BRB(m,m) = -(22+1) str(¥(m)¥(m") .,  (4.3.214)
and so, by (4.3.190),
BO(¥(m),¥(m")) = {2¢/(22+1)} B®Y(m,m")(4.3.215)

for all m and m "~ of the canonical form. This implies that

(4.3.8) is satisfied if
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o= (22+1)/(24) . (4.3.216)

Denoting the simple even roots of B(0/2) by a2(®® (for k =
1,2, ...,2-1) and the simple odd root of B(0/2) by a2(%%) the
corresponding basis elements of the Cartan subalgebra
#BO) of B(0/2) defined by

B
BB(o;z)(nuE(gf)) h) = 2@y forallh e #BOYV (4.3.217)

e

are
B(0/2)
t‘*aEW“ ={1/(22+1){ks1,k+1~ Ek+2+1,ke2+1 “Bk42,k+2 + Bk+2+2,k+ 242}
(fork = 1,2, . .. 2-1) (4.3.218)
and
B(0/2 '
b—aétom) = {1/(22+41)} {e2+1,241 - €224+1,2241} .  (4.3.219)
Thus
B(0/2)
‘P(bﬁs(onl) ={1/(22+1 )}{§k+2.k+2 - Bk+2+2 k+2+2 "€k+3,k+3 +

Ek+2+3,k+2+3},

(fork = 1,2, ... ,2-1) (4.3.220)
and
B(0/2)
q’(nag(om) = {1/(22+41)} {e¢42,242 - €2242,22+2} .(4.3.221)
+0(2)

The diagonal basis elements of 4., will be considered
first. As they may be taken to consist of the set
{ek+2,k+2-BKk+2+2 k+2+2 | fOr k = 1,2, ... ,2}, it follows that they
are all members of the Cartan subalgebra #°® (= #B(O/%) of
B(0/2) (as expected). By (4.3.192) the most general element

of #°?) has the form
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Zi=1Kk(_e,k+2,k+2‘§,k+2+2,k+£+2) = 4£2k 2Pk 3

where x1,x2, ... , K¢ are any complex numbers, and where

-1
Pk = 2r=1 xp (fork=2, ... ),

and

Pat = $Dra1Kr

Thus on #°® the simple roots of C(2+1) are given by

alh) = -x1 , (4.3.222)
ag(h) = xi1-xk (fork =23, ... ,2), (4.3.223)
and
ag,((h) = 2xq, (4.3.224)
which implies that on #°%®@ (= 2/B(0/%)
ag, (h) = 22: 1a:(h). (4.3.225)

However, as (4.3.220) and (4.3.221) imply that

2 B(0/2)
zzk = 1Kk(BKk+2,k+2-Ck+242,k+242) = 2(2£+1)2k=1 ka(nagtom)

with

Hk = Zkr=1 xr (fork =12, ... ,2),
it follows that on #°(® (= 5/B(0/2))

aE“’"’(h) = xk+ Kk (fork =12, ... ,2-1), (4.3.226)
and

ag ¥8(h) Kg . (4.3.227)

Comparison of (4.3.222) to (4.3.224) with (4.3.226) and
(4.3.227) then shows that on the Cartan subalgebra on #°()
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(= #B1%%) of B(0/2) the simple roots aP(®’® of B(0/2) and

a,? of C(2+1) are related by

2
o0 = Dt oBOm (4.3.228)
ap(h) = oB ) (fork =23, ... ,4), (4.3.229)
and
ag,i(h) = 202 (h) . (4.3.230)

Finally it follows from (4.2.10) to (4.2.11), (4.3.8),
(4.3.16), (4.3.192), (4.3.193), (4.3.220), and (4.3.221) that
corresponding elements of the Cartan subalgebra of the Kac-

Moody superalgebra are

B(0/2) 0
ha‘?(W!l = tD@"P(hu?(ou}) = {22/(22+1)} t°®h_a2+1 (4.3.231)

(fork = 12;..,; ).
The non-diagonal basis elements of igéz} will now be

examined. They fall into 6 sets:

(i) Forjk =12 ..., 2, with j < ki For the basis element

g;o(i o Of (4.3.202), it is implied by (4.3.194) and (4.3.229)

that this corresponds to the root

- k-1
Blioth) = 2. B0, (4.3.232)

of B(0/2) (for j,k = 1,2, ..., £, with j < k, and for all h ¢ #°(®
(= }[B(Of-ﬂ)))-
(i) Forjk =1,2, .. ,2, with j < k:

0
B = e%. 4.3.233
Bk+2,j+2 + Bj+242,k+ 242 £-Bix ( )
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which corresponds to the root -ﬂgl'k}(h) of B(0/2), where
Biiy(h) is as in (4.3.232).

(i) Forjk =12, .., 2, with j < k: For the basis element
g;o(j o Of (4.3.203), it is implied by (4.3.195), (4.3.196),

(4.3.229), and (4.3.230)

that this corresponds to the root

k1
Bk = 2 aBOOn) 4+ 2D «BO(hy | (4.3.234)

of B(0/2) (for j,k = 1,2, ..., &, with j < k, and for all h e #°(2
(= 75 the first term on the right-hand side of (4.3.234)
not appearing if j = k).

(iv) Forjk =12, ...,2, withj < k:

"Bk+242,j42 - €j+2+2,k42 = (4.3.235)

eO
=Bk °
which corresponds to the root -B{i(h) of B(0/2), where
BOk(h) is as in (4.3.234).

(v) Forj=12, .., 2

)
"€j+2,1 + €422 + €2 4042 - €1,j4g42 = e + g o A , (4.3.236)
0
where eo- and e o+ are given b 4.1), (4.3.204) and
%) ,__50(“ g y (4.1), ( )

(4.3.205). As (4.3.199), (4.3.200), (4.3.201), (4.3.228),
(4.3.229), and (4.3.230) imply that

. 2
siith) = -8jth) = Z,=;a‘?‘°"’(h), (4.3.237)

(forj=12, ..., 2, and for all h e #°® (= 2B(/%)) the basis
element (4.3.236) corresponds to the root 8(;(h) of B(0/2).
(vi) Forj=12, ..., ¢
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0 0
€1,j+42 - €2,j+2 + €j+2+42,2 - €j4242,1 = 9,5%-} + g_g(h , (4.3.238)

where g:%-) and gf’au(j; are given by , (4.3.204) and (4.3.205),
which corresponds to the root -B?j;'(h) of B(0/%2), where Sﬁf(h)
is as in (4.3.238).

All the elements of the above sets are even members of
C(2+1), except for those of (4.3.236) and (4.3.239), which are
odd.

It is easily checked that the set of 22(2+1) non-zero
roots of (i) to (vi) above, together with the & zero roots, are
all weights of the adjoint representation of B(0/2), whose

highest weight is

£
A = 2aBO _ p¥ Bl (4.3.240)

(c) The subspace % %

By (4.3.2) the subspace Zos(f)

consists of the
supermatrices whose submatrices satisfy the conditions A =
A,DJ - JD = 0, and CJ = -B in addition to (4.3.187), (4.3.188),
and (4.3.189). Together these imply that D = O, that

b
B = 2—%( ) J and C =2%(¢ ¢), (4.3.241)

where b and ¢ are submatrices of dimensions 1x22 and 22x1
respectively that experience the constraint (4.3.207), and

that

a 0
A = [ ; (4.3.242)
0 -a

. 702 .
where a is any complex number. Thus 4.51( ) possesses a single

diagonal basis element
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2
(140(e11 - 222} = 40%, - Db,  (4.3.243)

which corresponds to a zero weight of B(0/2).

; ; 70(2 ;
The non-diagonal basis elements of 4.:1{ ) fall into 2 sets:

(Iy Forj=1.2 ..,

0 0
“€j+2,1 - €j4+22 + €2 j4242 + €1 j4242 = 9,5%”) + ?.._5?1.5 ,(4.3.244)

where g?o(i-} and g?s"{j‘} are given by (4.1), (4.3.204) and
(4.3.205), and 80y(h)(=-8()(h)) is given for j = 1,2, ... , &, and
for all h e #°%?® (= %BO%)y py (4.3.238), the basis element
(4.3.244) corresponds to the weight 8J5(h) of B(0/2).

(i) Forj=1,2, ..., 2:

0 0
€102 + 8242 + Ljrtr22 + Gjrts21 = B0 -8 f (4.3.245)

where ggch-) and 9-(-)60(1-‘, are given by (4.1), (4.3.204) and
(4.3.205), which corresponds to the root -83;(h) of B(0/2),
where 8(j(h) is as in (4.3.238).

The diagonal basis element (4.3.243) is an even element
of C(2+1), but all the non-diagonal elements of the sets (i)
and (ii) are odd members of C(2+1).

They form the carrier space of an irreducible
representation of B(0/2) of dimension 22+1 whose highest

weight is

A = ABOO Y BOY) (4.3.246)
(See Tsohantjis and Cornwell(1990) for a discussion of the

supercharacters and superdimensions of B(0/%)).
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(d) The roots of C(2)(2+1)

Defining &(h) as in subsection 4.2, it follows that the
roots a(h) and the corresponding basis elements e, of

C@)(2+1) are as follows:

() o =2J8(h), (forJ = 0,£1,%2, ... ). There are 2 linearly

(k)

independent basis elements e,  corresponding to this root

which may be labeled by an additional superscript, so that

el’= (20/(2241)) 9Ny (fork =12, ..., ),

(which reduces to (4.3.231) in the special case J = 0).
(i) a(h) = 2J8(h) £ Bl (h), (for jk = 1,2, ... , £, with j <
k, and for J = 0,£1,+2, ... ), where Bﬁ,’k)(h) is the extension of

the weight of B(0/2) that is given by (4.3.232) and

t2J®e+T3u )

(iii) a(h) = 248(h) B?jfk)(h), (for j,k = 1,2, ... , &, with j <
k, and for J = 0,£1,£2, ... ), where B?jfk)(h) is the extension of

the weight of B(0/2) that is given by (4.3.234) and

g = t2‘-1®e+%(j "

(iv) a(h) = 2J8(h)  83y(h), (for j = 1,2, ... , ¢, and for J =
0,£1,#2, ... ), where 8(j(h) is the extension of the weight of
B(0/2) that is given by (4.3.238) and

0
) t2J®{e“gm 243
(v) a(h) = (2J+1)8(h), (for J = 0,+1,£2, ... ), with

ou = 2918(2h%., + vy %0 ).
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(vi) a(h) = (2J+1)8(h) + 8(;(h), (for j = 1,2, ... , 2, and for
J =0,+1,+2, ... ), where Bﬂf(h) is the extension of the weight
of B(0/2) that is given by (4.3.238) and

0 0
ey = 12J®{e o- + e, q+}.
. te-35 * 218!

(vii) a(h) = 0, with ¢ and d as basis elements.

With p chosen as in (4.3.216) , it follows that

<S> = <a’p%BlOY) (4.3.247)

where on the right-hand side of (4.3.247) o’ and BO are any
pair of linear functionals defined on #°® (= 7/B(O/%)) the
evaluation being performed with respect to the Killing form
of B(0/2), and where on the left-hand side of (4.3.247) o’ and
[30 denote the corresponding extensions to the Cartan
subalgebra of the Kac-Moody superalgebra C(2)(2+1), the
evaluation being performed with respect to its
supersymmetric bilinear invariant form B( , ).

As < a>BO%) 5 0 for every non-zero linear functional o’

defined on #B% then <a’a’ > 0 for the corresponding

extension. Moreover (4.3.216) imply that

hs = {22/(22+1)}¢c . (4.3.248)

Thus, if aﬁ is the extension of any simple root of Z.g, then

B> = 0 (4.3.249)

and

<j8,j5> = O . (4.3.250)
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Thus <j8,jd> = 0 for integer j, so every non-zero root of

C(2)(2+1) belonging to the sets (i) and (v) is "imaginary".

. 0. O 0 0
Moreover, because <jd+a,jd+a > = <o, >2%)  and because
0 0 , . 0 . '
<a,a >20%) 5 0 for linear functional a and its corresponding

extension (as has just been noted), it follows that every non-
zero root of C(2)(2+1) belonging to all the above sets except
(i) and (v) is "real". All the elements mentioned in the above
sets are even, except for those in the sets (iv) and (vi), which
are odd.

For C(2)(2+1) the simple roots may be taken to be

% = b - ay, (4.3.251)

and

ak = 2 (fork=1,..,2) (4.3.252)

where
0 £
of = ABO L ML Bl (4.3.253)

is the highest weight of the representation of 2:2 for which

~0(2)
‘{'s‘[

the simple roots of B(0/2). As &, and &, appear in the sets

is the carrier space and the 2(”%) are the extensions of

(vi) and (iv) respectively, it follows that &, and &, are odd,
so ag and ag are odd roots of the Kac-Moody superalgebra
C()(2+1). All the other simple roots of C(2)(2+1) are even.

It is then easily checked that the Cartan matrices of
C)(2) and C(2)(2+1) (for £ > 2) when evaluated correspond to
the generalized Dynkin diagrams given in Figures 7 and 8.

The quantities <o’ a>B can be found in appendix A(3).
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In terms of the linearly independent functionals g; (i<j<%)
defined on ¢ B(0/%) (see Cornwell(1989)) the roots of
C(2)(2+1) are given by

A={2md £ (etg) withi1<i<j<2,md+eg with 1<i< 2

2md £ 2¢; with 1< i < 2 all with me Z

and md with m#0 and me Z} (4.3.254)
The basis is given by
Qg =0-€1 € O =€ - €9 for 1i<2-1 o, =¢,
(4.3.255)

This brings us in to the end of the description of the
structuré of the affine Kac-Moody superalgebras. All the
theory of the sections 4.2.B regarding the B(1)(0/2) can be
applied with minor but straight forward modifications to the
twisted superalgebras as well.

Before leaving this chapter it would be worth making
some relmarks. Had we chosen one of the far left nodes of
the Dynkin diagrams of A(?)(22-1/0) and A(4)(22/0) we would
eventualliy have come up with a second order automorphism
for A(2)(22-1/0), although that of A(4)(22/0) would still be
fourth oi-rder. However both cases would be different from
previously. ?Lﬁﬁ,‘” would be B(0/2) in both cases but the root
systems of A(2)(22-1/0) and A(%)(22/0) would not be the
same.

)
(q)

If we denote with € ,,,(Z the loop algebra of the

affine Kac-Moody superalgebra 'Y then the even parts of
A2)(22-1/0) and A#)(22/0) and C(2)(2+1) are given by

2
A)(22/0)y = CI212JE 0 (A © T 29 ), 25 1% g (Co) @ (Cd)
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C@(2+1)g = C[2t2)L ,0n(CL) @ 7. e g

i o k+2-1
A@)(22-1/0)g = C[12,t2)  0op(Asey) @ T _t49+2@( Y, 1=y 'n%

2¢
£ 202 h%) @ (Co) @ (Cd),

for k being one of the k = 1,2, ... , £ and ¢ being the basis of
the one dimensional abelian subalgebra of C(2+1),.

153



CHAPTER 5

HIGHEST WEIGHT REPRESENTATIONS OF AFFINE
KAC-MOODY SUPERALGEBRAS

5.1 Introduction

In this chapter we shall describe the structure of
highest weight representations of the complex affine Kac-
Moody superalgebras %, where I, denotes one of the B(')(0/2)
(for £ 21), A(@(22-1/0) (for 2 >2), A4)(22/0) (for £ =1), and
C@)(2+1) (for £ 21). These representations are almost
identical with those of the affine Kac-Moody algebras (see
Kac(1985), Cornwell(1990)), although some of their features
are the same as for the representations of the basic classical
simple complex Lie superalgebras. In fact, although it will
be not explicitly stated again, the carrier spaces will be Z,-
graded and all the operators acting on them will preserve
this grading. The analysis will be confined mainly to the very
interesting class of integrable irreducible highest weight
representations. It should be noted that the description of
such representations is not restricted only to these
superalgebras but also to any affine Kac-Moody algebra as
well. In particular the result on complete reducibility (see
section 5.3) was first obtained in Kac(1978) within a wider
content including the affine Kac-Moody algebra and

superalgebras. The integrable irreducible highest weight
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representations of the affine Kac-Moody algebra and
superalgebras that appeared in Kac(1978) are particular
examples of a more general theory of representations using
Verma modules. This theory refined and applied in the case
of affine Kac-Moody algebras can be found in Kac(1985) (see
also Dixmier(1974)). A byproduct of the representation
theory of these superalgebras is certain multivariable
identities for the non-reduced affine root systems which
were not included in Macdonald analysis of reduced ones but
which can be found in Kac(1978). Since the superalgebras
under consideration are infinite dimensional, their
representations are in general infinite dimensional, though
the weight subspaces will be finite dimensional. The general
notions (universal enveloping superalgebra, induced modules,
etc.) of Lie superalgebra representations can be found in
Kac(1977), Scheunert(1978) and Cornwell(1990).

5.2 Basic notions and definitions

The starting point in the representation theory is as
usual the universal enveloping superalgebra of the affine
Kac-Moody superalgebra . This is will be denoted by U(Z,)
and can be regarded as the infinite dimensional Z,-graded
complex vector space of polynomials in the elements of the
superalgebra Zs. It follows from the Poincare-Birkhoff-Witt
theorem that the basis elements of U(Z)(for some fixed
ordering of the basis of 1) are given by the set of

polynomials of the form
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(b )pi(h, )Pa....... (M, P22 X

(2)

(OON'E ¢ v r (M, r ), r ('ONS

(eﬁl)f 1,1(eﬂl)f 12 (e Bl)f l,v(eﬁz)fz.l(eBz)’Z,zu_(e Bz)fz,p ..... %
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(e, )11 (e )12 (o) (el Y21 (e )22 (NS 2n . (5.1)

K o :
where, (eiB)i) (k = 1,..., mult 4’13- ) are basis of the even root
|

subspace IiBi corresponding to the root %B;, (e{:;b(kﬂ,...,mult
i,, ) are basis of the odd root subspaces 2’}“ corresponding
to the odd roots =y;, h; are basis elements of the Cartan
subalgebra of Z, r;;, r;; and p; are non-negative integers

and s'; s;;e {0,1}.

Because of the triangular decomposition of £,2. @ % ® 2,

~

U(&,) can also be put in the form

UE) = Uk) ® U@ ® U,) (5.2)

where U(& ). .U(#) and U(&,) are the universal enveloping
superalgebras of the negative root subspace, the Cartan
subalgebra and the positive root subspace of :'fs respectively.
Now consider the sub-superalgebra B of Zg given by
B=H® &, (5.3)
We call B the Borel sub-superalgebra of Zs .
Using the method of the induced representation we can
construct highest weight irreducible representations of Zs

induced by a particular representations of B .
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Let V, be a one dimensional complex vector space with
basis denoted by w(A). Assume that a trivial Z>-gradiation is
defined on V, by (V, )o = V4 and (V, ); = @ (so deg y(A) = 0).
Let @(h) and ®(a,) (for all h of 2 and all « € A, be operators

acting on V, such that

(i) @(h)y(A) = A(h)y(A) forall h e #,

(i) d(ag)w(A) = 0 forallae A,; (5.4)

where A(h) is a linear functional. defined on # .
The operators are assumed to be Z,-graded. That is deg ®(h)
= 0 for all h e # and deg ®(a,) = 0 or 1 depending on whether
the a is even or odd root of Z,s. Clearly this action defines a
graded representation of the subsuperalgebra 8. The pair
(@, V,) consisting of the operators @, as defined above, and
the vector space V, is often called an even B-module. Since
(®, V, ) is a B-module it becomes naturally an U(B)-module,
where U(B) is the universal enveloping superalgebra of 3.
Consider now the Z,-graded space

Ux) e V, (5.5)
and for any element a of Z.S define operators ¥(a) acting on
the above space as

¥(a)(u®v)=(au) ®v (5.6)
forallu e U®) and all ve V,. Clearly this action defines a
graded representation of I and U(X) ® V, is its carrier
space. Now let a e U(Z) and be U(B). The elements of
U(,) ® V, of the form

(ab)® v - a ® ®(b)v, (5.7)

where @ (b) are operators defined in (5.4) and v € V, ,
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generate a subspace I of U(is) ® V, and it can be easily
checked by applying (5.6) on (5.7) that it is an invariant
subspace. We can form now the quotient space U(%) ® V, /I
and consider this as the carrier space of the representation.
This is called the tensor product space of U(I,s) and V, over
U(B) and is denoted by U(L,) ®y(5V,. Under the canonical
projection of U(Z) ® V, onto U&) ® V, /I, I projects on 0,
and thus in U(Z,) ®y(g)Va
(ab)® v = a ® d(b)v. (5.8)

The pair (¥(a), ¥ (A)) for all a of ,, where

V(A) = UE) ®ys) Va. (5.9)
and ¥(a) are operators acting on the carrier space V(A) by
left multiplication on the U(Z,) component, form a graded
representation of is induced by the representation of B as
defined in (5.4). It is called the induced Zs- module. From

Poincare-Birkhoff-Witt theorem the basis element of ¥V (A)

can be found to be

M 1y 170@ 112 M (rvia™ 2170?22 OIS
(&g ) (e g )2 (e )1 (e g ) (e g )22 (@ g )2 X

M 81 1,.3@ (812 M \s1viaM) 821/, 595 W) \sp
» ’ - * L] » oy » ..® A
) )51(e® 912, () 1) 210 922, (%) 520 ey ()

(5.10)

(k)
where, (e_Bi)
subspace .{.Bi corresponding to the negative root -B;,

k 5 5
e{_;i (k=1,...,mult aL_Yi Jare basis of the odd root subspaces aL.Yi

corresponding to the negative odd roots -y;, r;; are non-

(k = 1,..., mult Z"Bi ) are basis of the even root

negative integers and S;,j € {0,1}.
It is not difficult to show, by acting on the basis
elements with @ (h), that V (A) accepts the following
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decomposition

V)=, 7, (5.11)
where ¥, is the subspace of V (A) spaned by the elements
(5.10) such that the linear functional A defined on # is given

by

Since all the quantities appearing in the brackets are non-
negative the above expression can be simplified writing
A=A-X o Koy, (5.13)
where kj;are non negative integers and «; are the simple
roots of Z,s. We define by D(A) the set consisting of all linear
functional A defined on # and having the form (5.13). Then
(5.11) can be written as

V(A) = ®rcppa) V- (5.14)
The linear functional A is called a weight of the
representation if the corresponding supspace V,# 0, and V, is
called a weight subspace. The dimension of ¥, is the
multiplicity of the weight A.

Generally ¥V (A) contains proper invariant subspaces
graded with respect to (5.14). The quotient space of V(A)
with such a graded subspace is the carrier space of a highest
weight representation. The union of all these subspaces
constitute the unique maximal invariant subspace R(A). Then
the space V(A) = V(A)/R(A) is the carrier space of an
irreducible representation of iswith highest weight A. In

this case if A is any weight of the representation then A < A .
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Definition 5.1 The category #
The category « is defined to be the set of

representations (@, V) of Zf.s whose carrier space V satisfy
the following conditions

(i) @(h)y(r) = A(h)y(A) for all he % and y(A)e V,

(i) dim V; < e

(i) @(ag )Vy C Vyiq (o€ A)

(iv) chV = X

where ch denotes the character of the representation and E is

re se(dimVy)er e E
the space of all functions on #* which vanish outside the
union of a finite number of sets of the form D(A) (for more
information of the space £ see Kac(1978, 1985 §9.7) and
Dixmier(1977 §7.5)).

It can be shown that both V(A) and V(A) belong in #f. In
the Kac-Moody algebra case the module (®,V(A)) is the

equivalent of a Verma module (see Kac(1985) ch. 9)

Definition 5.2 The category %
The category %, is a subcategory of a¢ which consists of

those representations from a1 for which the operators
o (E _ai) (for all ieI) are locally nilpotent. That is ®(E -ai)"w(k)
= 0 for some positive integer n, all iel and every weight

vector y(A) of the carrier space of the representation.
From the definition of the Cartan matrix given in chapter

3, we obtain the following proposition which plays a very

important role in the study of the representations of i',s.
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P ition 5.1

Let A be a Cartan matrix as defined in chapter 3 and let
A' be the Cartan matrix obtained from A by dividing the ith
row and multiplying the ith column by 2 for every ie 1. Then
the affine Kac-Moody superalgebra 3'.8 corresponding to A
contains a subalgebra with generators Es, = Eai : E!,3ILi = E.mi ,

H}th = H‘jli , for all je I\t and

E'O‘.l = %[Eﬂ.‘ ' ECI.I' ] ’ E-'CL] = %[E -D‘.i 1 E-Ui ]’ H("}.; =%Hﬂ.i ’ for a“ jE T

which is isomorphic to a factor algebra of the Lie algebra
whose Cartan matrix is A’.

A direct consequence of the above proposition on the
structure of representations of is is revealed by the

following proposition.

p ition 5.2
Let (®, V) be a representation of Z such that

() V =&, Vy;

(i) @(Hy) w(A) = A(Hy) w(}) for all je Tand y(R)eV, ;

(i) @(ay )Va € Vasa

(iv) (1:)(E(Ii ) and cI:'(E_,Jti ) (ieI ) are locally nilpotent on V;

then, with respect to the three dimensional subalgebra

generated by Eg, , Ely; and Hy, (and being isomorphic to A4),

(®, V) is a direct sum of finite dimensional representations

of this subalgebra.

Proof Let w(A)e V, . Then the subspace of V of the form
V' = Em o 0 CH@(EG ))™(@(Ela; )" w(R), mn e 2.} is finite

dimensional since ®(Egy, ) and ®(Ely, ) are locally nilpotent on
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V. It can be easily proved that the action of @ (Ey, ), ®(Elq, )

and ®(Hg) leaves V' invariant. This proves the proposition.

This direct sum structure of a representation of Z.s defined
as above is an extremely useful property in describing the
weight system of such representations. In fact, as we will
see shortly, the representation of :Es with the properties of

this proposition are the most interesting ones.

5.3 Integrable highest weight representations.

Definition 5.3 Integrable representations
A representation (@, V) of ?LS is called integrable if the

following two npilpotency conditions are satisfied

(a) ®(Eq )y = 0

(b) ®(E o )"y = 0

for some positive integers nand n', all jel and every y of the

carrier space V of the representation.

If the integrable representation is of highest weight A
then condition (a) is redundant and we can say that the
highest weight representation is integrable if and only if
condition (b) is satisfied. This is a consequence of the fact
that ad(E o, ) (ie1 ) is locally nilpotent on Z_ and that
d)(EﬂLi Jw(A) = 0 . A highest weight representation together

with condition (b) of the above theorem is often called

quasisimple (see Kac(1978)).
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It should be noted that a representation of ?f,s can be
integrable without being a highest weight one. An example of
this case is the adjoint representation of IS. Its weights are
the roots of Z_. It is not a highest weight one, since it
contains roots of the form j§ for all integers j. Since we saw
in chapter 3 that ad(E o, ) and ad(E o, )(for all jeI) are locally
nillpotent on ?l'.s and since there exists a finite number of
times that ad(E g, ) and ad(E_(,li ) have to act on the generators
of L, to give zero, the adjoint representation of Z_ is

integrable (see Kac(1985) ch. 3).

Definition 5.4 Dominant highest weight
A highest weight A is called dominant if A(I--lIi ) is a non-

negative integer for all jel. In particular if jet, then A(Hy )

must be even.

P n 5 2

(a) The irreducible highest weight representation (®,V(A))
(where V(A) = V(A)/R(A)) is integrable if and only if A is
dominant.

(b) If (®,V(A)) (where V(A) = V(A)/R(A)) is an integrable

irreducible highest weight representation with dominant

highest weight A then,
V(A) = T(AY Zi o UE, ) {O(E o) A1) v, (5.15)

where U(.?f.s ) is the universal enveloping superalgebra of

1_and Hj=H, forall jel.

Proof To obtain the first part merely involves showing
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that @ (E.q) A(H)+1 yw(A) € R(A) if A(Hq,) satisfies the
requirements of definition 5.3 or else, ®(Eq)™ yw(A)e R(A) for
some j and all m. The second part is a consequence of the
first part. It is the equivalent of Harish-Chandra's theorem
(For details see Kac(1978,1985 ch.10 or Dixmier ch.7).

Since for integrable irreducible highest weight
representation of %, the highest weight is dominant, all
these representation can be described by the set of non-

negativel integers given by

2< A, oy >/< ay, o >=n, (forall k=0, 1,..., 2). (5.16)

If nc =0 for all k= 0, 1,..., 2 then the above equation accept
the solution of the form A =C(38). This corresponds to the
trivial representation of the derived superalgebra [Z, €]
with highest weight A(#") = 0 (where 3' = X, T(H, ) is the
Cartan subalgebra of derived superalgebra), and tola family
of one dimensional irreducible representations of %  defined
by

@(d) w(A) = A(d)y(A) =pd(d) y(A) =py(A) pe C

®(a) y(A) =0forallae [£, L] (5.17)

In fact an irreducible representation of IS will correspond
to the direct product of the above representation with one of
highest weight A(#') # 0. Also note that the trivial
irreducible representation is the one for which A(#) = 0.

The above analysis suggests a less formal proof of the

following proposition.
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: " 5 4
The restriction of an integrable irreducible highest

weight representation of i',s on to the derived superalgebra

[Z,, ] remains irreducible.

Proof It is essentially the same as that appeared in

Kac(1985)).

Definition 5.5 Standard irreducible representation
We call standard irreducible representation of £, an
integrable irreducible highest weight representation of i'.s
whose highest weight is given by
A= 22 nj Aj
j=0
where n; are nonnegative integers for which at least one is

non-zero and A; are the fundamental weights (see (5.18).

From definition 5.3 it follows that, the representation
considered in proposition 5.2 is an integrable representation
and thus belongs in #4,. Comparison of the definition 5.2 of
the category #, and the definition of the representation
considered in proposition 5.2, shows that this latter one
belongs "in My. Moreover every highest weight representation
which belongs in a4, is integrable and satisfies proposition
5.2. Finally the irreducible highest weight representations of
Z_ with dominant highest weight are by proposition 5.3(a)
integrable and thus belong in a¢, too.

After these remarks, using proposition 5.2 and 5.3 and the
second order Casimir operator (see section 5.5) it is possible
to prove the equivalent of Weyl's complete reducibility

theorem in the affine Kac-Moody algebra case.
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P i 5 5

Any integrable representation of ZS belonging in a1, is
completely reducible.

Proof (See Kac(1978))

In fact this proposition was derived by Kac for the Kac-
Moody algebras as well, and it was the major step regarding
their representation theory. A more elaborate exposition can
be found in Kac (1985, ch. 10)

5.4 The weight systems of integrable irreducible

highest weight representations.

We shall investigate now certain properties of the
weight systems of the above representations and in
particular those of definition 5.5 (i.e. the standard ones).

The following proposition embodies some of the most
important properties of the weight systems of the integrable
irreducible highest weight representations. It is heavily

based on propositions 5.2 and 5.3(a).

P e 5 €
Let (®,V) be an integrable irreducible highest weight

representations of Z_. Then

(a) if A is a weight of the representation then A+ o is also a

weight for each non-zero root a such that ®(e,)y(A) # O;

(b) for any weight A and any real root a, 2<A,a>/<a, o> is an

integer,;
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(c) for every simple root a; and a weight A of the
representation, there exist two non-negative integers p and g
such that A + ka; is in the aj-string of weights containing A
for every integer k that satisfies the relations -p<k<q and
p-q = 2<\A,a;>/<a, o> . The same is true for every real root a.
(d) The weight system of an integrable irreducible highest
weight representation of ?Cs is invariant under the Weyl group
of Z;

Proof (see Kac(1978), (1985), Cornwell(1990)).

For the 1imag:;inary roots, although one can notice that part (a)
and (d): are still apply, the situation in general is different

as the following theorem states.

P - 5.7
Let (®, V) be an integrable highest weight

representations of 2:5 . If X is a weight of the representation

and o is an imaginary root of Z.S then <A, a> =2 0. Moreover if

<A, a> > 0 then A - ka is a weight of the representation for

any non-negative integer k.

Proof (See Kac(1978)).

Definition 5.6 Fundamental weights
The linear functional of #* defined by

2< Aj, aj >/< o4, 0> =3 Ajd) =0 (5.18)

ij
for all i,j = 0, 1,..., £ are called fundamental weights.
In particular, comparison of the above definition with (3.67)

shows that Ay is the linear functional that corresponds to the
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scaling element d.

If we consider the submatrix A® of the Cartan matrix of
A of Z_ (see table V) obtained by deleting the row and column
of A corresponding to an odd node of the Dynkin diagram then
AC is the Cartan matrix of the semi-simple Lie algebra D, By,
or the basic simple Lie superalgebra B(0/2). Then for all i,je
I-{k} where k is the index of the removed node, these
relations (5.18) are nothing but the defining relations of the
fundamental weights of the above algebras. Then it is not

difficult to show that are satisfied with
A =AY + maA (5.19)
j i ko .
where
mj=-Zie i Aq((A%)); (5.20)

and je I-{k} with k=0 or 2 (see table V).

From relations (5.19) and (5.20) and the Cartan matrices of
table V, we can obtain all the possible fundamental weights
of A(2)(22-1/0) (for & 22), A(4)(22/0) (for £ 21), and C(2)(2+1)
(for £ 21). In fact it not difficult to see that all of the above
analysis of integrable irreducible highest weight
representation of 3'.5 when restricted to their subalgebras Dy,
B¢, or B(0/2) is nothing but the theory of finite dimensional
irreducible highest weight representations of these algebras.
In particular no problem arises for B(0/2) since all of its
representation of this kind are typical. Certain construction
of standard irreducible highest weight representation of
A(2)(22-1/0), A(4)(22/0), and C(2)(2+1) can be found in
Feingold and Frenkel(1985) and Golitzin(1986).
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Definition 5.7 Maximal weight

Let (@, V) be an integrable irreducible highest weight
representation of Z.S with dominant highest weight A and & be
the imaginary root of Z.S. A weight A of the representation is
called maximal if A + & is not a weight of the representation.
It will be denoted by A,.x. Moreover if lmax(l-}li) (for all ieI)

is a non-negative integer then A,,x IS called maximal

dominant weight.

Proposition 5.8

For every integrable irreducible highest weight
representation of % with dominant highest weight A:
(a) the highest weight A is a maximal dominant weight;
(b) if A is a weight of the representation then A - k& is also a
weight for all non-negative integer k.

(c) Any maximal dominant weight A, has the form
2
Amax = A= 2, kiaj=A (5.21)

where k; are non-negative integers and «;are the simple
roots.

(d) there exists only a finite number of maximal dominant
weights.

(e) with respect to the finite set of maximal dominant
weights A; (i=1,2,..., m) the set of the weights of the

representation is given by

{S(A;) - k3, for all Se W and any non-negative integer k}. (5.22)

Proof (See Kac(1978)).
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Definition 5.8 Level of a standard irreducible highest
weight representation
The level of a irreducible representation of highest

weight A is defined to be the number given by

level(A) = 2A(hs)/< oy, oy > (5.23)

where hg is the central element (appropriately normalized) of
the affine superalgebra and oy corresponds to one of the
simple roots of the Dynkin diagram of I  selected for the
explicit realization (see chapter 4). In particular since
< Ay, 8 > = i< oy, o > for k=0 or £ (see chapter 4) then
level(Ag) = 1

Generally if A is dominant then the level is always a non-
negative integer.

Consider the eigenvalues of the central element ¢ in
some irreducible highest weight representation of Z_. Since ¢

belongs in the Cartan subalgebra of &',S and commutes with

all the elements of S‘ZS, it follows that

d(c) =c, 1

®(c) y(A) =cy v(2)

for every weight A of the representation and where ¢, is a
number that depends on the highest weight A, and I is the
identity operator.

From the second of the above relations we can easily see that

with A = A the eigenvalues ¢, are given by

cx = A(C) (5.24)
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Then, consideration of the expressions of the element hg
obtained from the previous chapter (4.2.32, 4.3.93, 4.3.174,
4.3.248) and for a standard irreducible representation of % it
follows that
Ch = M<A, &> {5.25)

Expressing & in terms of the simple roots found in the
previous chapter, and with A given as in (5.18) it follows that
c, Is always a positive number except if A = 0. Then the
level can be expressed as level(A) = 2c, /< oy, oy >.

The final proposition is related with the tensor product of

two irreducible representation.

p iti X
Let ' =T'(Ay) ® '(A,) be a tensor product of two

irreducible representation of &'.S with dominant highest

weights A4, As.

Then T' is completely reducible and the highest weights of

the irreducible components of I' have the form A+ 1'2 -jd for j

>0and {A, } is a finite set of weights of I'(A,) and t takes all

non-negative integral values.

Proof (see Kac(1978)).

5.5 The generalized Casimir operator

We define a linear functional p on # by

2<p, a;>/<a;, a;> = 1 for all iel and p(d) = 0. (5.26)

Definition 5.9 The generalized Casimir operator
Let ek, and eX, be dual basis with respect to the

171



invariant supersymmetric non-degenerate bilinear form of
Zs corresponding to the positive roots a and k =1,..., m, m
being the multiplicity of the root subspace %, . That is
B(ek , eXa ) = 8 for all @ eA* . We also choose h; (i=1,2,...,
2+2) to be dual basis of 4. Finally let H, be the element of H
corresponding to the functional p defined above. Then in
analogy with the affine algebraic case the second order
Casimir operator of an integrable irreducible highest weight

representation of Is is defined by
2+2 2 m K K
Co = 20(Hy)+ L Ly @(h)2+ 2%, 2y (% )D(e%y)

(5.27)

where ® are the operators of the representation. Actually
this is a more general definition of any representation that
belongs in the category ar. In particular, it is the property of
the representations that belong in the category # to be
restricted,( that is, if for every weight vector y(A) of the
representation ®(e, )y(A) = 0 for all but a finite number of
positive roots « is ) which allows the definition (5.27). It
can be easily checked that C, commutes with all the
operators of the representation belonging in the category .
Since the representations that belong to this category are
restricteg, the third term when acting on any weight vector
v (A) giVes a finite result. Also since the first two terms
when acting in any wy(L) give <A+2p, A>, relation (5.27)

impliesthat
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Co W(A) = <A+2p, A>y(A) + 22 Zk , ®(eKqy YD (e )w(r) (5.28)

For a highest weight integrable irreducible representation

Co y(A) = <A+2p, A>y(A) (5.29)

for any y(A) of the representation with highest weight A.
5.6 The character formula

We shall now give the character formula for integrable
irreducible representation of dominant highest weight A. The
construction of the character formula follows the same steps
as for the affine algebras with only minor modifications
related with the existence of odd roots. The underlying
general theory of characters of representations of infinite
dimensional algebras or superalgebras is a consistent
modification of that of finite dimensional representations of
finite dimensional algebras or superalgebras.

Consider the space £ introduced in section 5.2 above and

define the function L on #* by

L = {eP I'Iaef,; (1- e« )}/ I1 aest (1+€) (5.30)

where each root is taken with its multiplicity.

Let B be any linear functional defined on # given by

pis s ZaEA+ Ko 0t

where ko is a non-negative integer if o eA}rJ and kg = 0,1 if a
eA:. The Kostant function K(B) defined on #* is the number of
finite sets {kq} in the above expression. It can be shown that
KL = eP.
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Let €, be a homomorphism from the Weyl group to the
multiplicative group {1,-1}, defined by &(&; ) = -1 for all jel,
S“i being the generators of W. Note that for any element S of
W, £(S) = (-1)®) where I(S) is the number of factors in the
shortest expression of S in terms of S‘*i . It can be proved
that for any S € W, S(L) = £(S)L.

For the module V(A) constructed in the beginning of the
chapter it can be easily obtained using the weight structure

of V(A) in relation with the properties of the space £ that

ch¥(A) = 2, 5, KA-A)eH (5.31)
and so since KL = e®,
L chV(A) = eAr. (5.32)
: ition 5.1C

For an integrable irreducible representation of dominant
highest weight A of an affine Kac -Moody superalgebra Is the

character formula is given by

chV = L't Zg_., €(S)eSiA+) (5.33)

or equivalently in its Weyl form

chV = X £(S)eSU+e) 1 X\, £(S)eSP) (5.34)

Sew

Proof (See Kac(1978))

To obtain (5.34) we have used relation (5.33) and the
fact that chV = 1 in the case where A = 0. In particular for
A = 0, (5.30) becomes the equivalent of Weyl's denominator

formula and is given by
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I (- 2 - W TT se ot (v o) = Locw E(S)eSPr (5.35)

Then the Kostant's formula is obtained by multipling both

sides of (5.33) with Ke PL

chVy = Zg_w €(S) K((A+p)-S(A+p)) (5.36)

Also the character formula (5.34) can be rewritten using the
weights A; - j8 (je Z) of multiplicity m;(j), where A; is the i-th

dominant maximal weight (see proposition ), as :

chV(A) = ZL {2, m(lel® L, eSHMYs (5.37)

where s is the number of the dominant maximal weight.
Finally it can be shown that (5.34) is equivalent to the so

called 'star' formula

2 €(S)dimVy,, g =0forie R(A) - A (5.38)

SeWw

where R(A) is the set of all weights of the module V(A).

Kac(1978) showed that from (5.30), under certain
manipulations involving the root structure of the
superalgebra, we can obtain the multivariable identities for
non-reduced irreducible root system that did not appear in
Macdonalds(1972) work.

As it is well known the carrier space of an integrable
irreducible representations carries a contravariant hermitian
form which allows for the definition of unitarity of
representations.

Clearly a similar similar notion for affine superalgebras is
still lacking. Actually, following the example of finite
dimensional Lie superalgebras, it would be interesting to

investigate the existence and reducibility of representations
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whose carrier spaces is endowed with a hermitian or
superhermitian form. This would also demonstrate how we

can define a suitable adjoint operation .
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CHAPTER 6

SUGAWARA CONSTRUCTIONS OF THE
AFFINE KAC-MOODY SUPERALGEBRAS

6.1. Introduction

Affine Kac-Moody (super)algebras together with the
Virasoro algebras play a central role in two dimensional
conformal field theories. It is well known that together they
possess a semidirect sum algebraic structure. This is
usually demonstrated by expressing the Virasoro generators,
which are related to the energy momentum tensor in two
dimensions, bilinearly in operators of some representation of
the Kac-Moody (super)algebra, the latter being considered to
correspond to currents. This idea dates back to
Sugawara(1968). Physical reasons demand that the Sugawara
construction has to be unitary. Thus the interest is in
unitary irreducible highest weight representations of the
Kac-Moody algebras which give unitary representations of
the Virasoro algebra. The main objective of this chapter is
to investigate the case of the Sugawara construction of the
twisted Kac-Moody superalgebras C(2)(2+1) A(@(22-1/0) and
A(4)(22/0), but we shall also demonstrate the Sugawara
construction of untwisted Kac-Moody superalgebras
(including B(1)(0/%2)). As the Sugawara construction requires
great care even in the simplest case of an untwisted affine

Kac-Moody algebra, its extension to the much more
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complicated situation of a twisted affine Kac-Moody

superalgebra is inevitably appreciably more elaborate.
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6.2. The Virasoro algebra

The Virasoro algebra (Virasoro(1970)) is the infinite-
dimensional Lie algebra with basis elements L; ( for J = 0, +1
*+2,....), and C,, satisfing the following commutation relations

relations:

[L k] = @K Lk + (1/12) CyJ(I%1)8yk,0 . (6.2.1)

[Ly ,Cv] = 0  (foralld =021,22,.). (6.2.2)

together with the Jacobi identity.

This algebra first appeared in the dual resonance models
for hadrons, or what is thought now to be the early days of
string theories (see Scherk(1970)). It arises naturally as an
extension of the infinite-dimensional Lie algebra of the
conformal group in two dimensions, the latter being given by
(6.2.1) without the second term. In this context the Virasoro
algebra is one of the basic ingredients of any two dimensional
theory that possess conformal invariance. Together with its
unitary highest weight representations, it has attracted the
interest of mathematicians and physicists since its
appearance, and it has beeen studied extensively both on its
own or in relation with physics. (See for example Kac and
Raina(1977), Friedan, Qiu and Shenker(1984b), Gorman
et.al.(1989), Goddard, Kent and Olive(1986), Goddard and
Olive(1988)).

Treating the basis of the Virasoro algebra as operators,
let V be a carrier space on which they act, provided with an

inner product (y, y) >0, for all y e V allowing the possibility
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of (v, v) =0 with y # 0. Assuming that V has no proper
invariant subspace the operators form an irreducible

representation of the Virasoro algebra, in which case

G =old, (6.2.3)

where c, is a constant known as the central charge of the
Virasoro algebra. If in addition there exists a vector y(h) of
V such that

Lyw(h) = 0 forallJd>0, (6.2.4)

Low(h) = hy(h) . (6.2.5)

then the set of Virasoro operators is said to form an
irreducible highest weight representation, the highest
weight vector being y(h). Then all the other basis elements
of V are obtained from wy(h) by succesive action of L,

according to the prescription

LJ1 LJ2 LJ3 ...LJn \]I(h) (626)

where n € 2, and (Ji, J2, J3, ... , Jn) is any set of negative
integers which satisfy the relation J1 < Jo <J3 <... < J,.

Unitarity is achieved by demanding that

(LJ)T =L 2J and (Cv )1'= Cv (527)

in which case c, is always real.
For unitary irreducible highest weight representations of the
Virasoro algebra for which the inner product on V is non-

negative it has been established (see Friedan, Qiu and
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Shenker(1984, 1984b) that the only possible values of ¢, and

h are restricted to be either

cy21andh2>0, (6.2.8)

or

1 6
S = 17 (m+2)(m+3)

(6.2.9)
and

{(m+3)p-(m+2)qg}2-1
4(m+2)(m+3) ’

h (6.2.10)

forme2,, p=12..,m+1,and q = 1,2,....,p. Ly has always a
spectrum which is bounded below.

Affine Kac-Moody algebras and superalgebras, as well as
being important mathematically, play a vital role in the
study of two-dimensional physical systems. In particular
untwisted Kac-Moody algebras (see Goddard and Olive(1986))
arise naturally in the study of current algebras in two space-
time dimensions and when the space itself is compact (e.g.
S'). The simplest case is that of the current algebra of free
massless fermions fields defined on the circle, where their
current algebra is recognized as an untwisted Kac-Moody
algebra with the central extension term identified as the so
called Schwinger term and representing second order
quantum effects. A more complicated example is that of
current algebras of boson fields.

Affine Kac-Moody algebras together with the Virasoro
algebras are the basic ingredients of any two dimensional
comformal field theory. They are related by means of a

semi-direct sum structure given by the relations
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[Ly,o(t*® a)] = -kot'*®a,), (6.2.11)

[Li,2()] = 0 (6.2.12)

for all k, J € 2 and where <.'c>(tk ® ag), ®(c) are operators
representing t*® ag and ¢, ag being any basis elements of the
simple Lie algebra on which the affine algebra is based. The
above relations imply that it is the derived algebra of the
affine algebra that possesses such structure with the
Virasoro algebra. _

This structure is usually demonstrated by expressing
the Virasoro generator, bilinearly in operators of some
representation of the Kac-Moody algebra. This idea
originated from Sugawara(1968) who proposed that the
energy-momentum tensor of four-dimensional theories can
be expressed bilinearly in terms of currents taking into
account the Schwinger term. In this context the Virasoro
generators correspond to the energy-momentum tensor and
the Kac-Moody generators to the currents.

That the Sugawara construction exists and satisfies the
relations (6.2.11-12) for untwisted and twisted algebras and
untwisted superalgebras has already been demonstrated. (see
Goddard and Olive(1986), Goddard, Nahm and Olive(1985),
Nepomechie(1986), Zheng and Kim(1990), Goddard and Olive and
Waterson(1986), Hennigson(1990)).

Another objective of the Sugawara construction is to
find the eigenvalues of Cy and Ly which might be of physical
interest, particularly in string theories. In this process

unitary irreducible highest weight representations of the
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Virasoro algebra are obtained from those of the affine Kac-
Moody algebra or superalgebra, which themselves may be
determined by the representations of their underlying
algebras or superalgebras (see Goddard, Kent and
Olive(1985,1986), Bernard and Thierry-Mieg(1987)).
Consequently the eigenvalues of Cy and Ly depend on the
highest weights of these latter representations. It should be
noted also that the existence of the Sugawara construction is
guaranteed by the existence of a second order Casimir
operator of the underlying algebras or superalgebras.

Finally it should be noted that there also exists
supersymmetric extensions of the Virasoro algebra, namely
the  Virasoro superalgebras which contain the Virasoro
algebra as their even part (for details on this subject see

Cornwell(1989)).

6.3. Sugawara construction for affine

untwisted Kac-Moody superalgebras

The Sugawara construction of the untwisted Kac-Moody
superalgebras obtained from basic simple Lie superalgebras
was first carried out in Goddard et al(1987) in a field
theoretical content closely related to string theories. This
was an intermediate stage for a more important result to
which we shall briefly refer because it reveals the crucial
role of affine (super)algebras in physics.

It is known that from a N-dimensional representation of
a finite dimensional compact Lie algebra 2, described by real

antisymmetric matrices we can obtain a representation of an
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untwisted Kac-Moody algebra associated with 4., by
intoducing N fermi fields (periodic or antiperiodic,
i.e.Ramond or Neveu-Schwarz) defined on the unit circle in
the complex plane. The Kac-Moody generators will then be
bilinear in these fields. The Sugawara construction of the
untwisted algebra will then give Virasoro operators
quatrilinear in the fields. There exists also a consrtuction of
the Virasoro algebra based on the energy-momentum of the
free fermion fields which is bilinear in the fields. The
equality __of these two constructions is achieved by means of
the symmetric space theorem.(For details see Goddard and
Olive(1986)).

Applying the same proccess, we can obtain now
representations of an untwisted Kac-Moody algebra from real
N'-dimensional symplectic representations of a possible non-
compact real Lie algebra 2 using N' boson fields. Then the
equality of the two constructions of the Virasoro algebra is
provided by means of the superalgebra theorem which states
that these two constructions are equal if and only if the
above mentioned representation is the one provided by the
odd part of a superalgebra whose even part contains & and
possessing a second order Casimir operator. In addition it
was also shown that the superalgebra theorem holds in the
most general case where 4 is a reductive Lie algebra.

At this stage the Sugawara construction for a Lie
superalgebra possessing a second order Casimir operator has
to be carried out. Then in order to put these two cases
described above, together, we can start with orthosymplectic

representations of a Lie superalgebra and express the even
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and odd generators of an untwisted Kac-Moody algebra
associated with it, bilinearly in the fermionic and bosonic
fields. Then it has been demonstrated that the Sugawara
construction of this untwisted superalgebra equals the sum
of the bilinear constructions of the Virasoro algebras of the
free fermions and the symplectic bosons by means of the
supersymmetric space theorem. (For details see Goddard
Olive and Waterson (1987)).

It should be noted that the demand of equality between
the two Virasoro constructions in any of the cases referred
to abové is very crucial. In the case of fermions for example,
by chosing an appropriate symmetric space as the symmetry
group of our theory we can reduce the study of interacting
fermions to free ones. This in turn has unexpected
consequences related to a highly non-linear theory, namely
the Wess-Zumino model, which now is quantum equivalent to
a free fermion theory.

We shall now briefly demonstrate the Sugawara
construction of untwisted Kac-Moody superalgebra using
algebraic methods.

Let 1;” be a complex untwisted Kac-Moody superalgebra

as described in chapter 4. Let m be the dimension of the even

0

~0 .
s» Where 2_ is

part and n the dimension of the odd part of %
one of the basic simple complex Lie superalgebras. We can
choose an even basis of I.g which, with respect to the Killing
form (or any other supersymmetric non-degenerate bilinear
form, if the Killing form is identically zero) of 2:2 can be

normalized as
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#
Bo(ap,a,) = 8,4 forallpg=1,..m, (6.3.1)

where ap# is called the "dual" of% and is defined such that

aﬁ =-a, Then BO( ap, ay ) = -38pq Such a choice is given for
example by
(i) iH; for all j = 1,2,...,29, where BO( H;, Hy) =3;, and H; are
basis of the Cartan subalgebra of Z.g and 29 is its rank,
(i) i {2B%( 8, @y )} ¥ (ag+ 8.4), - {2BO( @y, @4 )}H (8- aq)
for each positive even root o of ZL:.

~There exists a particularly convenient choice (see
Cornwell(1989)) for the odd basis elements b4,b,,...,b, oOf 12,

which is such that the matrix B? defined by

(Eo)pq = BO(by,bg) (for all p,q =1,...,n) (6.3.2)
is given by
(B9 ™ <l (6.3.3)

where J is a n x n antisymmetric matrix of the form

J =diag (B, B, B,......)

? 1 6.3.4
p,=[_1 0} (6.3.4)

It can be easily seen that with the choice of basis
(BO)'=-B%=y

and

Such a choice is realized by

(iii) b+ = {2BO( @, @)} (ag + a4 )
(iv) be- = {2B%( @y, a4)}# (8- aq)
for every positive odd root o.
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Then for each graded representation of Z,g, the second

order Casimir operator has the form

Ca = -ZM,@(a)0(ay - X1, @b ®(by) (6.3.5)

and identifing a, and b, as above, it takes the form

Co = I @(H)? + %o @) - I, e @(ho)
+ EM+ 2®(a_,)®(ay) / BO( a,, ay).

(6.3.6)

With this form of C, and for the adjoint representation of &:2
it can be proved that the eigenvalue of the second order
Casimir operator is 1 if o has non-zero Killing form and is 0
if it has identically zero Killing form.

Consider now the bosonic operators ®(f' ® a,), ®(c), ®(d)
and the fermionic operators ®(tk® by), for all p =1,...m, q =
1,..,n, and j e 2 and k e Z ork e 2+4%. Following the
terminology of Goddard et al(1987), and by analogy with the
usual nomenclature for the Virasoro algebras, the situation
for which j,k € 2 will be called the "Ramond"” case, and that
with j € 2 and k € Z+% will be referred to as the "Neveu-
Schwarz" case. (In this description the untwisted affine
Kac-Moody superalgebras B(1)(0/2) (for £ = 1,2, ... ) are
examples of the Ramond case). Let V(A) be a carrier space of
a highest weight representation of ig” on which the above
operators act, the highest weight vector being w(A). The

action of the operators on V(A) is described by

o(i®ap) y(A) = 0 forallp=1,..mandallj>0,
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Ot ® bg) w(A) = 0 forallg=1,..,nandallj> 0,
in the "Ramond" case and
O(ti+i ® bg) w(A) = 0 . forallg=1,.,nandallj20,

in the "Neveu-Schwarz" case, where j € 2, and

®(c) w(A) = cry(A) ,

©(d) w(A) = A(d) w(A). (6.3.7)

Let y(A) be any weight vector of V other than y(A). Then
there exists a non-negative integer K depending on the

weight A such that

o(i ® ap) y(h) = 0

D(ti+ e ® by) (1) = 0 (6.3.8)

forall j> K-tg (e2)p=1,..m q=1,.,nand where e= 0
and 1 for the Ramond and Neveu-Schwarz cases respectively.
Finally the generalized Lie products between the operators @
are those of chapter 4 for i(sn. Every y(A) will be obtained
from y(A) by the action of a linear combination of products of
a finite number of operators on it. On the subsuperalgebra of

3L

s Which is isomorphic to Z’Cg this representation will

provided a highest weight representation of ig. Moreover on
the even part of Z.g this will provide a highest weight
representation too.

Then the Sugawara construction for L, is given by

188



even odd

1 o : ‘
Lov = (L™ L7 Yy=- 20 Z7. o @ a)o(ti @ a)ly
1$" §n o0 g j ;
¥ szﬂ Xt Jeteb)etle b))y

+MEd oV, (6.3.9)

for every y € V(A) and where e = 0 and 1 for the Ramond and
Neveu-Schwarz cases respectively, xis an appropriate
"normalization" constant to be found together with n. Clearly
k has to be inserted to give the desired relations (6.3.12a,b)
below, thereby establishing the semi-direct sum of the

Virasoro algebra with ZS). The first sum is identified as
even

L, and the last two sums as L°Jdd. The normal ordering for

the bosonic operators is given by

ol ®a) ot ®ay) : =
ot ® ay) (" ® ay) , if j < k,
Ho( ® ap) o(t* ® ag) + B(t* ® ag) oI ® ap) , ifj =k,

ot ® ay) o ® ap) , if j > k. (6.3.10)

where j, k € 2, and for the fermionic operators

1 @(f ® by) B(*® by) : =

o ® by) ®(t* ® by) , if j <k,

H{o( ® by) d(t* ® by) - d(t* ® by) ®(f ® by) , if j = k,

- o(t ® by) (' ® by) , if j > k. (6.3.11)
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where j, ke 2, in the Ramond case and |, ke 2 + % in the
Neveu-Schwarz case.

It can be proved that with definition (6.3.9)

[L,ot®a)] = ot ®a), (6.3.12a)

[Ly ,o(t*®by)] = -ka(t'*™*® by), (6.3.12b)
forallje 2 and all k € 2 or 2+%,
[Ly ,®)] = O, (6.3.13)
provided that x is given by
Kk = 2c,+1 =2c, + Cy(ad) (6.3.14)

if ig has non-zero Killing form and

Kk = 2c,= 2¢c, + Cp(ad) (6.3.15)

if 12 has identically zero Killing form, where Cy(ad) is the
eigenvalue of C, in the adjoint representation.

Having established the above results we can check that
(for J+K # 0) Ly, Lg ]w(d) = (J-K)Ly,k w(A) in both the Ramond
and Neveu-Schwarz case. Finally the full commutation
relations of the Virasoro algebra are obtained by evaluating
the commutator [L;, Lx ] w(A) with J+K = 0. Since this step is
the most crucial one we should distinguish the two cases.

(a) The Ramond case

Without loss of generality we may assume that J > 0 and
thus K = -J < 0. By evaluating first [Ly , L°'J" 1 w(A) it is
found that

even

(L, L0y Tw(A) = (-(2U)Z0_, (" ® ap) o(t° ® ap)
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+ (112)J(J2-1)(2c,m/x)} w(A).  (6.3.16)

However Ly " w(A) is easily shown, by considering the L% °"

of (6.3.9) and taking into account the normal ordering and the

action on y(A), to be given by

even

Lo w(A) = 1; E;”=1 o(1° ® a,) o(t° ® ap) y(A) (6.3.17)

For [L , L% 1w(A) we get

Ly, L% y(A) = {(2IK)Z pet Toe14(0( ® by) o(t° ® b))

- (1712)Jd(J2-1)(2c,n/x)} w(A). (6.3.18)

By considering the L%dd of (6.3.9) and taking into account the
normal ordering and the action on y(A) we can easily find
that

Lo w(A) = %EL E:=1Jpq{¢(t° ®b) @ (t° ® b} y(A)(6.3.19)

Thus comparing (6.3.16) and (6.3.18) shows that in the
Ramond case

the value of the central charge c, is given by

Cy = 2c,(m-n)/x, (6.3.20)
and the eigenvalue ofl, is given by

Lw(A) = {CasA/x} v(A) (6.3.21)

where C,¢(A0) is the eigenvalue of the second order Casimir
operator in the representation of the Lie superalgebra 12
with highest weight A°.

(b) The Neveu-Schwarz case
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Again without loss of generality, we may assume that J > 0

and thus K = -J < 0. By evaluating first [L; , Le'_vfn lw(A) we

get exactly the same result as in the Ramond case.

For [Ly, L° 1 w(A) we get

Ly, L2 IW(A) = {@nea/x)f- (1712)d(J2-1) - (1/8)J}y(A).
(6.3.22)

Lgddw(A) is easily shown, by considering the Lc’,:,dd of (6.3.9)

and taking into account the normal ordering and the action on

y(A), to be given by

L W(A) = - (nca/8x) w(A) (6.3.23)

Thus in the Neveu-Schwarz case the central charge is as

before but the eigenvalue of L, is given by

Lyw(A) = (1/8x){ 8Ca0(Ag) - Nca} W(A) (6.3.24)

where Cgo(Ag) is the eigenvalue of the second order Casimir
operator of the representation of the even part of &:2 with
highest weight Ag.

The final stage is the determination of the relation of
@ (d) with the Virasoro algebra. It can be easily observed
that [ Ly, ®(d) ] commutes with all the operators of the
representation of I;” and thus by Schur's lemma and the

eigenvalues of Ly found above

Low(A) = {- ®(d) + A(d) + hhy(A), (6.3.25)

where h is given by (6.3.21) or (6.3.24).
Some important remarks are in order. We drescribe as

"critical representations" of Z(S” those representations for
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which the Sugawara construction fails. This is the case
where the constant x = 0 i.e. whenc, =-% orc, = 0. Consider
B(1)(0/2). According to chapter 5, in a standard irreducible
highest weight representation of B(1)(0/2) the eigenvalue c,
of such representation is given by ¢, =< A, 3 > where A is the
highest weight of the representation. From relations (5.19),
(5.20) of chapter 5 we deduce that c, is always positive and
thus no such representation is critical. Examples of critical
representations are provided by certain representations of
the real untwisted superalgebra osp(1)(22+1/¢; R)(see
Goddardl, Olive and Waterson(1987))

The existence of unitary irreducible highest weight
representations of 1(51 ) which will lead to unitary
representations of the Virasoro algebra, have recently been
investigated in Jarvis and Zhang((1988),(1989)). They
considered irreducible representations of the untwisted
superaglebras L!'")  built from unitary irreducible
representations of I,g. It was demonstrated that with
appropriately chosen adjoint operation on the elements of a
real untwited Kac-Moody algebra based on a real compact or
non-compact form of ig, unitarity will restrict the values c,
and c,. Constraints on c, were found and come both from the
even and odd roots of £J. It was shown that the only
candidates for unitary representations are untwisted
superalgebras obtained (i) from the compact real forms of
A(r/0) and C(2+1), su(r+1/1) and osp(2/2¢2;R) respectively,
(ii) the!. non-compact real forms of A(1/s), D(r/2) and B(r/1),
su(1,1/s+1), osp(2r/2; R) and osp(2r+1/2; R) respectively and
(iii) norg-compact real forms of D(2/1; a), F(4) and G(3)
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whose even parts are given by su(2) @ su(2) & su(1,1), su(1,1)
® so(7) and G, ® su(1,1) respectively. The representations of
the untwisted superalgebras are built from those of the
superalgebras mentioned above, the latter being such that
those of case (i) are unitary finite dimensional irreducible
and of highest weight but in the rest of the cases are unitary
irreducible but infinite dimensional. From case (ii) it is
obvious that we cannot obtain unitary representations of the
Virasoro algebra constructed as in (6.3.9) with ig being
osp(1/2%; R)(2#1). In the case of osp(1/2; R) we do obtain
such representations but we have to consider infinite
dimensional representations of osp(1/2; R). Finally it should
be noted that unitarity of representations of ig have recently

been investigated by Gould and Zhang(1990).
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6.4. Sugawara construction for A(2)(22-1/0)
and A(4)(22/0)

6.4.1. Choice of basis for the L' (p=0,1,2,3)

subspaces.

The first step in the construction is to define

appropriate normalisation amongst the basis of i%“”

subspaces with respect to the Killing form of A(22-1/0) and
of A(22/0) . A convenient choice is to work is with the dual

basis, a:r, of the 13(4) subspaces defined by

BO(ap, a5,) = 8pp By (6.4.1)

for all p,p' = 0,1,2,3, and all r =1,2,...,n,, r'=1,2,...,n, BO(, )
being the Killing forms of A(22-1/0) or A(22/0). Recall that

these as given by:
BO(M,N) = 2(22-1) str(M,N) (6.4.2)
for all M,N supermatrices of s2(22/1) ( = A(22-1/0) ) or
BO(M.N) = 42 str(1,N) (6.4.3)

for all M,N supermatrices of s2(22+1/1) ( = A(22/0) ) .

(i) Forp =0, £3*= D, or By, which has dimension ng =

2(22-1) or 2(22+1) respectively.  With basis elements

denoted by ag, (r = 1,...,ng), relation (4.1) gives:

BO(ay, , ag,.) = 3, forall rr=1,.,ne, (6.4.4)

195



7 0(4)

where agr. is the dual basis of g,. Since &, ° consists of

even elements, we can always choose the basis g, such that

B%(aq, , 8) = -8, , forallrr =1,.,ng, (6.4.5)

and thus their duals can be defined by

ag, = -8, , forallr=1,..,ne. (6.4.6)

It is also assumed that these basis satisfy the following
relations between the Killing forms of A(22-1/0) or A(22/0)

and D, or B, respectively(see chapter 4):

B%aor, @) = (22-1)/(2-1) B (aoy, @) = -8y, (64.7)

for all r,r' = 1,...,ng = 2(22-1).

BO(ag,, &) = (42)/(22-1) B*(ag, @) = -8, (6.4.8)

for all r,r' = 1,...,ng= 2(22+1).

(ii) For the E?(4) and 13(4) subspaces of A(2)(22-1/0) and
A(4)(22/0), which have dimensions nqy= n3= 22 and 22+ 1
respectively, all the elements are odd. Consequently the
basis elements will be denoted by by, and bz,, and relation

(6.4.1) becomes

#

BO(bip, bip) = Bpy . forallpp =1,...ny,  (6.4.9)

BO(bgp, byp) = Bpy . forallpp =1,...n5, (6.4.10)

where, as before, b?p and bgp are the duals of by, and bz,

respectively. It can be easily checked that b?p should belong

7 0(4) 7 0(4)

ind," " and bgp in 4, Thus we can define
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bfp = -bg , (6.4.11)

by = bip - (6.4.12)

(Note that such choice is consistent with (2.33a)).

(i) For the L°\*) subspace of A(2¢-1/0) and
A(4)(22/0), which has dimension n, = 222+¢ and 222+32+ 1
respectively, all the elements are even. Denoting its basis

elements by ayg for all s = 1,...,n,, relation (6.4.1) becomes

BO(as,a5) = B : (6.4.13)

# ; ,
where a, is the dual of a5s. Since apg are even basis we can
always orthonormalize them with respect to the Killing form

BO( , ) by requiring that

BO(azs,3s) = Bes (6.4.14)

and thus define ags = -ass. In the case of igm attention

should be concentrated on the fact that it provides a

representation of 53‘4)

which is the direct sum of the trivial
representation with the (222+2-1) or (222+32%)-dimensional
irreducible representation of D, or B, respectively. Thus a
particular basis element has to be picked out from the

commutative subspace of 13(4)

, which together with the rest
of the basis will satisfy (4.1) and be the basis of the trivial
representation. The choice of this element in terms of the
basis found in chapter 4 is unique in a sense that will become
apparent from the analysis below.

Let Cy(ad) be the quadratic Casimir operator of
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A(22-1/0) or A(22/0) in the adjoint representation. If a,g is

a basis element of L;'" then

Colad) aps = aps, (6.4.15)

with basis elements ag,, as, byp, and bz, satisfying (6.4.1).

Co(ad) is given by

Colad) = -Z'° ®(ap)®(ag) - L2 ®(azs)®(ass)

~2r;‘=1tb(b1p)¢(bfp) s E’;;cp(bapw(bgp) . (6.4.16)

where ® are operators of A(22-1/0) or A(22/0) belonging in

the adjoint representation. From (6.4.16) it follows that

C2(ad) dgs' = ‘Z?E-I‘D(aOr)d)(aOr) Ay - 2211(1)(325)@(3-25) dog'

'E:L‘I’(bw)‘b(bfp) apg: - E';id:(bsp)w(bgp) p¢.(6.4.17)

The first sum can be evaluated to give
n n n
X ,21‘1’(300‘1’(80:) Qg = -z ,.212511(Ez(aOr)Ez(aOr))s‘s' azs" »

(6.4.18)

where I'? is the representation of D, or By, provided by 3.3(4].

The second sum can be evaluated to give

- "2 d(ags)®(ags) ans = 20, Loz (CX(@0)LX(a0r)) s A2s" -
(6.4.19)

Similarly the third sum yields

- X0 D(brp)®(bip) Bze = -ZL, [brp, [z, bap 11, (6.4.20)

and the fourth sum can be evaluated to produce
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) E:L(D(b?*l’) (D(b:p) Qs = 223:1 [ B3, [@zs, D1p]]

- -):’;3:1 [bip, [ @z, bap 1].(6.4.21)

Thus it follows from (6.4.16) to (6.4.21) that
n
2 X " [byp, [azs, byp]]

n n
= 2 + 2X0 T 7 (IXa0)I%(0r) )srs' Bzs - (6.4.22)

If the basis element a,s: corresponds to the trivial
representation then the second term on the r.h.s. gives zero

and

Z;i-] [ b'lp [ g’ b3p 11 = "% dps' - (6.4.23)

On the other hand, if a5 belongs to the non-trivial

irreducible representation of Dy or B, then
n né [
20 X (T2(ap)T2(ag))s's Apst = - p=1(no/ny) ¥z s

(6.4.24)

(see Appendix B (1)), where y,is the Dynkin index of the non-
trivial representation of D, or B, , which is given by(see
Cornwell(1989):

Y, = (222+2-1)/{(22-1)(2-1)} or (222+32)/{(22-1)2}(6.4.25)
respectively, and p is given by (see (6.4.7) and (6.4.8)):

o= (22-1)/(2-1) or 42/(22-1)) (6.4.26)

respectively.  Then, from (6.4.22) and (6.4.24)-(6.4.26), it

follows that
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2, [bip, [8pebap 11 = {1/2(28-)} age , if L5 = D, (6.4.27)

3 0(4)

X [bip [Bosubsp 1] = (V4)ape , ifLg " =B, .(6.4.28)

A basis of the trivial representation of D, , that would
satisfy (6.4.23), (6.4.1), and belong in 13(4), can be chosen to

be

ﬁ co . (6.4.29)

where c0is the basis element of the even Abelian part of
A(22-1/0) given by ¢c0 = - (1/22-1)diag (124,1). Similarly for
the trivial representation of B, the basis element can be

chosen to be

1
mgo : (6.4.30)

where c0is the basis element of the even Abelian part of
A(22/0) given by ¢c0 = - (1/22)diag (12¢,1,1). Note that ¢c©

commutes with any even element of A(22-1/0) or A(22/0).
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6.4.2. Sugawara Construction for A(2)(22-1/0) and
A(4)(22/0) in the "Ramond" case

Let us now introduce the following operators which will
assumed to belong to a highest weight irreducible

representation of A(2)(2¢2-1/0) or A(4)(22/0) (as appropriate):

@ (14 ® ag,) (for all r = 1,...,ng and all je 2),
@ (t4+2 ® a,,) (for all s = 1,...,n, and all je 2), (6.4.31)
®(c) , ®(d) ,

which are all considered to be even, and

@ (t4+1 ® by,) (for all p = 1,...,ny and all je2),

@ (t4+3 ® bgp) (for all p = 1,...,n3 and all je2), (6.4.32)

which are all considered to be odd. Because all the exponents
j are assumed here to be integers, this will be referred to as
the "Ramond" case. These operators will act in a carrier

space V(A) with a highest weight vector y(A) such that:

d(t4 ® ag,) y(A) = 0 forallr=1,.,np and all j > 0,
O (t4+P ® apr) y(A) = 0

(forallj=0,and allr = 1,...,n,, with p =1,2,3),

@(c) w(A) = cpy(h) ,

@(d) w(A) = A(d) . (6.4.33)
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Let y(A) be any weight vector of V other than y(A). Then there
exists a positive integer K depending on the weight A such
that

O (t4i+P ® ap,) y(r) = 0 (6.4.34)

forall j>§( K-p), (€2), p =0,1,23, and r = 1,...,n,. Finally
the generalized Lie products are given by
[0t ® ay) , @t ®apy) ] =0t @[ ay, ay )

+ j81**:°BO( apr,apr) @(c) |,

[0, o(f®ap)] = jo('®apr),

[@(), o ®ap)] = 0,

[®(c) , ®(d)] =0, (6.4.35)
for all j mod 4 = p, Kk mod 4 = p', for p,p' = 0,...,.3, forr =
Tseli and r'=1,...,ny

We can now define the following highest weight
representation of the Virasoro algebra using the operators of
A(2)(22-1/0) or Al4)(22/0) discussed above:

1 2 o | . 4J+4] -4 # ..
Ly = ;{ Yjew Ly i@t @ ag ) ot ® a5 ) ¢
oo n " AL
o nt . 4J+4j+1 -4j-1 &
- XL Z oY eb, Yo ebl):

oo ng . 4J+4)+3 -4j-3 # .
- I Z R re e b, ot ®b3p).}

+ vol (6.4.36)

The normal ordering , : : ,is defined by

i _Aj- #
@ (P @ a ot P ay): =
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(VP @ ap et P @ ay) , if 4J+4j+p < -4j-p,
.+ - ._ # = -_ # .
Ho (" *P ga, )0 (4P ®a,) + o(tPoa] o (t***P a )
if 4J+4j+p = -4j-p ,

o(t4P e a:r)¢(t4J+4j+p ® ap,) , if 4J+4j+p > -4j-p, (6.4.37)

for all bosonic operators with p = 0 or 2 and with r = 1,...,n4

or n,, and by

Lot @ b (tUP @ b) 1 =
ot @ by )@ (tP @ by) |, if 4J+dj4p < -4j-p,
Ho M1 ® by ) (4P ®by,) - @ (t*Pob))® (t**41*P @b )}
if 4J+4j+p = -4j-p ,

- o(t“P @ bl )oY P @ by,) , if 4J+dj+p > -4j-p (6.4.38)

for all fermionic operators with p = 1 and 3 with and r =
1,...,nq Or Na.

In what follows we shall prove that the Virasoro
generators defined as above and the A(2)(22-1/0) (or
A*)(22/0) as appropriate) superalgebra together form a
semi-direct sum, with the Lj satisfying the relations (2.1).
We shall also find the values of Cy and the eigenvalues of L
(a) Evaluation of the product [ L,, ®(tY ® ags) Jy(1), for
y(A)e V(A):

After some algebra it can be shown that
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(L, ot ®aq) ] w() -

1

-] no . . )
K{ Yoo X o{o™* M @ a0t @ | a _ ag.])

r or
+ otV @ [ag, a,. Dot @ a )}
_ ij_ 2"21{®(t4d+4j+2 ® a2s)¢(t'4j'2+4j'® [ 3, , 2, 1)
+ DN g [a,,, a,. Do 42 e aEs)}
3 ijm 221:1{@(,[4J+4j+1 ® b1p)(b(t-4j-1+;1j'® [ %p ,ay.])
b DI g b, 3 1) ¢(t‘4j'1®b3p)}
) z{:n 223;1{¢(t4J+4j+3 ® bsp)(b(t-4j-3+4j' ® [b1p’ a )
+ ot e by, ay. et @b )}y

- (4j'/x) 2¢c, @ (t** @ ag) y(A) (6.4.39)

where (6.4.35) and (6.4.36) have been used. In order to
evaluate the infinite sums in (6.4.39), we have to introduce
partial sums and make use of (6.4.34)(For more information
on this method see Cornwell(1989), Knizhnik
Zamolodchikov(1984), Goddard and Olive(1985),
Todorov(1985), Goodman et al(1984,1984Db)).

Then the infinite sums in (6.4.39) can be written as

limy_, {Anv(N)} = (6.4.40)
: 1 T 4J+4 -4j+4j"
M - ZimkuZ vy 0 (174 @a0) ot 01 3 a,,])
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m Np §i rEn :
- Zj=kia Lpay @t @ 2, ag. ) ot @ a )

m

N2 4J+4j+2 -4j-2+4)"
j=i'-(K+2)/4 z"5=1(I)(t e a,,) Ot e [ a.a5,.])
m ng 4J+4j+2+4)" -4i.2
+ Ej='(K+2)}4 ES=1 q)(t B ® [ a25 'aOr' ]) (D( i ® %S)

m ny 4J+4j+1 -4j-1+4j'
+Zj=j'-(K+1)f4 Zp:iq)(t T @) TR e b2

1p Or]

m 2| 4J+4j+1+4j)" -4j-
+ Li (katya Zpoy QAU @ b Ay ]) ot e by)
m N3 . ,.4J+4j+3 -4j-3+4j"
- Ziljkeaye o @t @ by )o U e (b ay )
m n3 J+4j+3+4] -4j-
2L aayaZ o @I R b e ot b1p)}} v()).
Now observe that

r!'

[ 8o 8] _Z‘. T g (6.4.41)

r . .
where {. are antisymmetric structure constants of D, or By,

n;
[ dor' a2s] = E l" (aOr)ss aog' , (6-4-42)

where T'2(a,,) denotes the non-trivial representation of D, or
B, whose carrier space is the &0(4}
I'2(agr)ss = —-I?(agp)ss- (It should be noted that n, = 222+2-1

or 222+3¢ in the two cases). Also

subspace, and where

Z d i (aOr)pp b1p ’

[a0r1b1p] p'=

[ Qor » bap] = Zn?= I‘?'(E'im")p';:) bSp‘ ) (6.4.43)
p'=1

where T'!(agy) and I'3(apr) denote the representations of D, or

0(4) 0(4)

B, whose carrier spaces are provided by the £, ' and Z,
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subspaces respectively. It can be easily checked using the
invariance property of the Killing form that
Cl(agr)pp = -T3(@gr)pp- Defining D(ag,) = Ll(agy), relations

(6.4.41) can be written as
n
[aor,bip] = Ep-l=1 D(aor)pplip' »

n
[aor . bsp] =-Z 7 D(@or)pp bap - (6.4.44)

Using the above definitions, and after some algebra, (6.4.40)

becomes

M,  {AmW(A)}

. 1 m M0 <+n re 4J+4j"
= lim,__{- ;{Ej=m-j‘+1 b ) i IS W {0t ® [ ag.

» or ])

+ O ® ag)0 (U @ age) + (4d+4j+4f") 5444150 ¢, BO(agm a0} }

1 m N2 «n' i
= ;{Ej=m-j'+1 E&‘-=1 23-11 I'2(agr)ss {‘1)(1:4“”41 ® [ azs , azs 1)

F (04202, ) D (14420 8, )+ (4J+4j44]'+2) 54+41.0¢, BO(aps, a0} }

| m nq -
- = Z emget Z o E]L D(@or)pp { @ (1 @ [ bypr s bgp )

D (T4 @b )@ (VI @b )+ (4J+4j44)'+1)  §49+410C, BO(b; 51,b3p) } }

1 m n3a "
- o Zemier Zpn 22, Diaordppr {@ (14 @ [ b5y b1p )

Ai. i+4i'4+3
_ d’(t 4] 3 ® b1p) (b(t4J+4j+ |+ ® bap')

+ (4J+4j+4]'+3) 544410 ¢, BO( bay , b1p)}}} W(r).(6.4.45)

It may now be observed that
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I"'Io n "
Zrat Z0_ fp BOage, 8g) = O,

R
Y 2. T2(agr)es BOags ,aps) = 0, (6.4.46)
R 0

p=1 p'=1 D(at}r')p'p B (b‘lp' ,b3p) = 0,

n3 n
Zoo1 X7 D(aor)pp BO(bggr b1p) = O,

(because of the antisymmetry of frrr and the fact that the
trace of any representation of a semi simple Lie algebra is

zero). Consequently, for sufficiently large m, (4.45) becomes

limm o {Amv(A)} (6.4.47)

. 1 m 10 r' 4J+4j"
= lim ;{Ej:m—j'ﬂ Er=1 Er-0.=1 frr' ‘D(t e [ agr » Aor |) }

m—>m{-
1 m n, n, i
- ;{2j=m-j'+1 2521 Es-=1 I2(agr)s's (D(t4d+4] ® [ aps , Az ])}

1 m nq i
: ;{Ej:m-j‘ﬂ T o1 Z1, Daor)pp @™ ® [ by, byp 1)}

L {E e Zph Z12 D @ardpp 0894 @ [ b, bip D)

It can be easily checked that (see Appendix B(1))

0 <n "

e L0 fel o o 30r] = wlage (6.4.48)

En‘; Enz' I? -1 4.4
se1 Lot T2 (B0r)es [ 26 s Bpe] = Y, ! B0p (6.4.49)

2211 E;L1D(30r‘)p'p[ b1p‘ J b3p ])

N3 n
= 2521 202 D(@ordpp [ bapr» bip] = “vpu'age,  (6.4.50)
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where p and Y, are as in (6.4.25) and (6.4.26) and Yp is the

Dynkin index of the representation of D, or B, , provided by

70(4)

the 2," " and 2’;(4) subspaces, given by

o = {2(&-1)}' forDy, vy, = (22-1)1 for B, . (6.4.51)

Thus applying (6.4.48)-(6.4.51) to (6.4.47) and taking the

m
limit m—eco, we obtain (on noting that X j-m-js1 1 = | )

[L,, o(tY®ay) ] y(A) =
lim, L AARY (M)} - (8j7x) ¢y @(t**4' ® ag,)

= -jo*Y ® ay,), (6.4.52)

provided that

K = 8Cy+1 . (6.4.53)
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(b) Evaluation of [ L, O (t4'+2®ayg) 1 w(A), for yw(r)e V(A):

(1) Consider first the case where a,y is not a basis
element of the trivial representation of D, or B, , providedby

the subspace 3';(4). Relation (6.4.39) will have the form
[Ly, @(t4*2®ays) ] w(d)
1 ) No i -4i+4j'
= {= ;{ I Lot @ ag)ot i e [a  a,]1)
J+4j+4]'+2 -4j
+ o2 e 14y, a,, Dot @a )} }

1 w0 N2 4J+4)+2 -4j-+4j"
) K { Zi='°° 25‘.-:1{(1)(t e a2s) @ (t Re [325’325'])

+(1) (t4J+4]+4+4J‘ ® [ azs,azs']) d)(t'4j-2 ®a25)} }

1 oo n“ i . H 1
+ (D(t4J+4j+1 +4j' @ [ b.[ p, azsl]) (D(t-4j‘1 ®t!3p)} }

1 = n : _4i iy
= ; { ZJ_:_M E p3=1{d)(t4J+41+3 ® b3p) d)(t 4j-1+4j ® [ b o azsl] )

+ @t @ | bSp’ a,.) o(t43 e b1p)}}} v(A)

-{4(2)'+1)/x} e, @ ("M *2 ® ayg) y()).(6.4.54)

As in the previous case we shall use partial sums to evaluate

the infinite sums in (6.4.54)
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lim,,__{Amv(}) } (6.4.55)
. 1 m Np : 4i+4i"
= Ilmm_)m{-;{zj=j'+{-(2—}<) 2 ot @ ag,) ottt g [a ,a5])

no . - i
+ ek Xy o(tV420 12, a, ) (1Y © aor)}

- . tiaai
{ 2L Z 20" 2 @ a,) o ("' ® [a,_a,_))

A

m no 4J+4i+4 = _4i.
i Zj='%{K+2) Zs‘-=1 O (17 e [a2s’a25‘]) ot e 325)}

0y 4J+4j+1 -4i+1+4§' _
T { Lipea(1K) 2 pa @t ®b, ) ot @ [, 25])

m ny 4J+4j+3+4f" -4j-1
+ 2l (ket) Zpy QA @ [ b, 8, ) @ (1 ®b, )}
1pem n3 4J+4)+3 -4j-1+4f"
- Ay 20 g byp) (U @ [y, a,])

m n i i’ 4ij-
+ X 1 (Ke3) Ep~°;1 @ (1144544 g 1 byp, 85]) @t 43 g b1p)}}w(l).

Now since [ a5 , axs ] € 1.3(4) , define the quantities W.. by
n
[325 ' a2s'] = Er21 W;s' Qor - (6.4.56)

Then, using (6.4.42) and the invariance property of the Killing

form, it is easily shown that:

r

Wee = T?(agss - (6.4.57)
Similarly, defining the quantities Bg.'p and Tgp by
n Ll
[22s,bsp] = X1, BE by, (6.4.58)
n L}
[ azs bip] = Zp?=1 Tz'p Bap: (6.4.59)
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it can be easily shown using the invariance property of the

Killing form that
p' p :
By = By and Tg, = To. (6.4.60)

With the help of (4.56)-(4.60), and after some algebra, (4.55)

becomes
lim,_, {Anv(d) } = (6.4.61)
: 1 m N0« 7
limp_, - AZems T 22, T2(@0)ss{@ (2@ a0, azs))
+ ¢(t-4j-2 ® azs) ¢(t4J+4j+4J'+4 @ aOf)}}
1 m n' n HL
"';{ zj=m'j'+1 Es:‘ Er21 rz(aOr)s‘s{(p(tMMJ 2 ® [ az2s , Ao ])
+ @t ® ag,) OtV 2 ® ay )} }
1 m nq n p' J+4i"
+;{ Tiemit Zpa1 Zo BEp {0t "2 @ [ by, , byp )
- ¢(t-4}-3 ® b1p') ¢(t4J+4j+4j'+5 ® b1p)}}

1 m n3 n [ +47"
- Ziemger Zpoy B, Top {0t "2 @ [ by, , by )

~o(tY @ b3p) <I>(t4‘“4j+4j'+3 ® bgp) }}}w(k) ;

For sufficiently large m the second , fourth, sixth and eighth
m

terms of (6.4.61) give zero and, of course, Zj=m-j 1 = j' + 1.

Now observe that

o M '
Yot X T2(ag)ss [ @or» @5 1 = (no/ny) p' v, @z, (6.4.62)

and that

ny ' ny
Toe1 200 BE [ b1p, bip] = Zpot [ brp, [aps:, bap), (6.4.63)
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which is given by (6.4.27) or (6.4.28). Also,

n3 n3 p' n3
Z’|:J=1Z’F_-,'=1Ts'p [ b3p ’ bSp'] = ZF‘=‘|[ bSp ’ [ o, b1p]

ni

= -Zp__.1 [ b1p ) [ 323' 1 bap] J (6°464)

(because of the Jacobi identities). Then, substituting
(6.4.62)-(6.4.64) into (6.4.61) and after some algebra, we
finally deduce that

[L,, ®(t4*2®azs) ] (M)
= limy,, {Anv(A)} - {(4]'+2)/x} 2¢, ("2 @ a,0) (1)

= - 1(4)'+2) o(t"* 2 ® ape) W(A) (6.4.65)

provided x is given by (6.4.53).

(2) Consider the case where a,y is a basis element of the
trivial representation. If ass is the basis of the trivial
representation of D, or B, mentioned above then the only non-
zero contributions in the sums are obtained from the last
four sums of (6.4.54). These can be dealt in exactly the same
way as above, but now (6.4.63) is given by (6.4.23) instead of
(6.4.27) or (6.4.28). Again we get the same results as in
(6.4.65).

(c) Evaluation of [ L, @(t4'*1®bq,) ] w(A), for w(d) e V(A):

Using definition (6.4.36), properties (6.4.35), and

applying the method of partial sums we get
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[Ly, @@4+1®byy) 1w(A) = lim, ,_{Amy(n)
- {(47'+1)/x} 2, (Y @ by ) w(A) (6.4.66)
where, by properties (6.4.34), we find that

Mol AmY(A)} = (6.4.67)

. 1 m Ng . s o
= limp, - HAZ im0 Z 20t ® a,) o4+ g | a  bl)

+ Tk Dedy o g (2, b, ) ot @ g )
_{E j=i4(K+1) T ot g a,,) (1 e (86,01,])
* zm 4(Ks2) 2 21 o (1M g (@560, ]) @(t 9203, )}
+— {2‘.J L i E':,ch(t“**i”@bm) o (t**'® [by b, ])
) EL%(KHJ 221:1 q,(t4J+4j+2+4j' ® [ b1p’ b‘lp'] <b(t'4j'1®b3p)}

1pym 4J+4j+3 -4j-2+4]"
- {ZJ =j"4(K+2) E LTI e b,y ) ot @ [b,,. by,])

- X% 1ikea) ) NP T(a e XY byss by]) cb(t'4j'3®b1p)}}q;(k)}.
Defining the quantities ﬂ\;.p by
[bap,bip] = X% Al ag , (6.4.68)

and using (6.4.44) and the invariance property of the Killing

form, we deduce that

r
Ayp = D(@g)py - (6.4.69)

o o s P
Similarly defining S and Repr DY
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[bip. byl = L7285 a,,

et (6.4.70)

n
[as . bip] = 2 2R bg,, (6.4.71)

it is easily checked that

P’ s p'
R, = Rp and S, = -Rb. (6.4.72)

Using (6.4.68)-(6.4.72) in (6.4.67) and after some algebra we
find that

My, {Amv0)} (6.4.73)

; 1 np N .
= llmm—)m{;{z?lm-j' 2 rg1Ep1=1 D(aﬁr)pp'{q)(t4d+4j +1® [agr, b1p 1)

+ (143 ® byp) O(t4+4i+41+4 @ a)))

3 n n .
" ;{ij=m-j‘+1 2 r21 Ep1-_-1|:)(al:lr)pp' {¢(t4J+4J+1 ® [ Dbyp, an])

+ D (4 ® ag,) D(t4+4i+4'+1 ® by)} }

& l‘{E-"' ynt=ns) yrz pp

j=m-j'+1 p=1 s=1 Sp{'ﬂ:’(tJ"J""qj."‘1 ® azs bap )
+ @(t41 ® byp) D(t4I+4+41'+2 @ azs)}}

1 m ng ﬂ2 p H
) ;{Ef=m'j'+1zp=1zs=1ﬂsp‘ {ooiv o bap , @ 1)

+ O (142 ® apg) @(t49+41+4143 ® byp)}hw(n)}.

For sufficiently large m the second, fourth, sixth, and eighth

terms give zero. In order to proceed the following relations
are needed:

214



n n
Z 02l D(@odpp [0, bip] = -t (ng/ny) 15 by (6.4.74)

(see Appendix B(1)), where p, y, are given by (6.4.26) and

(6.4.51) for the two cases being considered,
Nq(=n3) «n ! n
2 B2 Ry [ags . byl = T2 [ aps , [ @z, by 1]

(=ng)
=E;‘l1 " [bap, [brp, bip]],  (6.4.75)

where (6.4.70) and (6.4.71) have been used. Using the Jacobi
identity, relation (6.4.68), and the fact that

(=n3)
2 by byp] = O, (6.4.76)

(6.4.75) becomes

nq(=ng) n{(=n3)
Epl‘l ° [bSp-[b1psb1p']] = 'Zpl1 ® [bip-[pr'rb:Sp]]
n ny(=n3) w<n
= - E1'31 Ep1=1 3 Z’r=0‘|Al:r)p‘ [aor ’ b1p]

ni(=ng3) vn
2:p~_j1 ’ Er—_€’1 D(aOr)pp' [ Qor » b1p]

= —p.‘l (n0/n1) ’YD b1p‘ . (6477)

Finally, substituting (6.4.74)-(6.4.77) in (6.4.73), we find

(after some algebra) that
[Ly, @(t4+1® byy) ] w(A)
= limp, {Aqy (M)} - {(4]+1)/x} 2c, 2t 4" @ by,) w(h)
= - 4@je1) ot @ b)) y() (6.4.78)

provided that x = 8c,+1.
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(d) Evaluation of [ L, ®(t4'*3 ® bap) 1 w(A), for w(A) e V(A):
Using definition (6.4.36), properties (6.4.35), and
applying the method of partial sums we get
[Ly, @(t4*3® bap) ] w(r) = lim,_,_{Any())}
- {(4]'+3)/x} 2c, @ (1" @ by ) w(A) (6.4.79)
where, by properties (6.4.34),

lim,,_, _{Amw(L)} = (6.4.80)
. 1 m n . Aisdi's
lim,,,_{- ;{Ej:j'+%(3-l() T ot @ a,) ottt g | a by )

m no 3 i Ai
+Zjeik L o(t*" 8 @ a, b, ) ot e am)}

3p'

1 rym n2 4J+4j+2 -4j+4j'+1
W1k 2 e @ @0, ) ot (8,6,05,1)

m no 4J+4j+5+4]" -4j-2
+Z0 ko) B gnq @MU @a, b sp)) @2 ®a,)}

1iym nq 4J+4)+1 -4j+4]'+2
+ AL ek T @t @b, o) @2 @ (b, b, )

m |"|1 . . i
j=-t(ket) Zpoy @A g b, by ot @ by )]

{ Tk T2 0 op ) ot ®[ b, , by, )
B iea) T @I R by by D) @ (14 90 )} vy
Defining the quantities N;p. by
[bip,bay] = ZON 2o, (6.4.81)

r=1
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it follows from relation (6.4.49) and the invariance property

of the Killing form that

Nopr = D(@or),, - (6.4.82)

Similarly defining M2, and P}, by

[ a5 , gy ] 5_‘."‘ , M5 By (6.4.83)

n
[bgp . boy] = X2, P a. (6.4.84)

it is easily shown using the invariance property of the Killing

form that

- M;; . (6.4.85)

On applying (6.4.81)-(6.4.85) to (6.4.80), and after some

algebra, we get
Mool Amv(M)} = (6.4.86)
M oo { £ {Z Ty 20020 D(@o)ppl @(149+413 @ 2, , bap )
+ @ (141 ® by, )d(t4I+4j+4j'+4 @ aOr)}
+ % {Ejn;m-j'ﬂ 0 2"1 D(aor)pp{ @ (14+41+3 ®[ by, , ap, 1)
D (4 @ ap,)® (14J+4i+4i+3 @ be)}}
—{2:J i “‘ P2 M { o(t49+443 @ [ agg, byy )
+ (43 ® by ) (t4I+4i+4146 © a,y)}

_{E] mj ﬂa Enz Mp { @ t4J+4J 4 ®[ b*lp » Aos ])
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+ D142 ® ay)d(149+41+41+5 ® by)}w(n)}.

For sufficiently large m the second, fourth, sixth, and eighth

terms give zero. Now observe that
n n
X2 X2 D(@o)pp [80r s bsp)) = 17! (No/N3) 1p bay (6.4.87)
(see Appendix B(1)). Also,

=ng)
T 2 ME L @55, bip 1) = 22, [ @4 [ 855, by 1] (6.4.88)

Zo1" [ byp, [ Dap o 11=-Zoiy3E 02, P2 [ a5, byp]
(6.4.89)

Then, using (6.4.85), from (6.4.89) and (6.4.88) we obtain

T2 [ L ags, bay]] = -Z017" [byp, [bgp bay 11,

(6.4.90)

Using now the Jacobi identity on the left of (6.4.90) in

relation with (6.4.76), it is easily seen that

(=n3)
T2 [z Lags, bap]]l = X1 [bap, [byp bgp 11

(6.4.91)

Finally, because of (6.4.81), (6.4.82) and (6.4.44), we obtain
n ny(=n3)
T2 lags [ags, byl = X7 [bgy , [byp by 1] (6.4.92)

nq(=ng)n .
EPL * 2,31 D(aor)pp [ bap » @or 1 = - 17! (No/N3) Ypbap' -
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Thus, on applying (6.4.87)-(6.4.92) on (6.4.86), we find after

some algebra that

[ Ly, D(t4+3 ® bay) ] w(h)
= limg, | ARy} - {(4+3)/x} 2¢, @t ® byp) (1)

= - 1((41+3) ("2 ® bay) () , (6.4.93)

provided that x = 8c,+1.
The results of (a)-(d) can be summarized in the single

formula:

[L.o{l®a,)]=-to+i®a,), (6.4.94)

which is valid for all j such that j mod p = 4, all p = 0,1,2,3,
allr = 1,2,...,np, and J = 0,%1,....., provided that

K = 8cp+1. (6.4.95)

Having established the (6.4.94), it is a matter of lengthy

but essentially trivial algebraic manipulations to check that

[Li,lklv = (K) Lukv (6.4.96)

for any y e V and all J,K € 2, such that J+K # 0. As usual the
interest is in the case where J+K = 0, which we will now
examine closely. Let y(A) be the highest weight vector. From

the definition (6.4.36) and the properties (6.4.35) we get

[Li, Lylw(A)

1 o No ; ; -4i # .
I (e Z oy { 0¥ @ ag) o(t* T ® a5,) (4))
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. -4 # i
- O(t4 ® ag) Ot @ al) (-4J+4j)}
o an { -4J+4j+2 4J-4j-2 # .
+ 27 X qof ® a,,.) ®(t ® af ) (4j+2)
- " |
-o(t*2 @ a, ) (P @ al) (-4J+4j+2)}

- 2L 2 et e by) @t @ bY ) (4j+1)

- ot @b ) ot @ bl ) (-4d+4j+1)}
oo n - i -4ij- i
- X2 I3 et e b, ) 0tV 0 e b3 ) (4j+3)

- ot e b, ) ot e b3 ) (-4J+4j+3)} y(A).(6.4.97)

Because of the properties (6.4.33), the sums that appear to be
infinite are actually finite, and each one of them can be spit

up in to three subsums as

O S AR 35 (6.4.98)

Then the first and the second terms of (6.4.97) will give a

contribution of the form

2J{ Trod 010 ® ag) (1 ® a')}y(a) A%K”—" JW2-1)y(A),
(6.4.99)

the second and the third terms of (6.4.97) will give a
contribution of the form

{i‘f‘z\_”Z

6x

the fifth and the sixth terms of (6.4.97) will give a

JJ2-1) + g‘f—zJ }wia), (6.4.100)

contribution of the form
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4CAn'| SCAn1
& o JWEN) - T 3} wa), (6.4.101)

and finally the last two terms of (6.4.97) will give a

contribution of the form

4CAn3 SCAns
{- 6 W) - J} wiA). (6.4.102)
Consequently
(L Lylw(a) = {20 Lo+7; JU21)ey} w(a), (6.4.108)

where the values of the central charge of the Virasoro
algebra are given by

8(m-n)cy 8(m-n)cy

8ce1 = ===, (6.4.104)

Cv

with m and n being the even and odd dimension respectively
of A(22-1/0) or A(22/0). Clearly m-n is the superdimension
of A(22-1/0) or A(22/0), which is positive. Lg y(A) is found

to be

Lo w(A) = {%E:‘; D (t° ®a,,) ®(t0 ®ay) + vI} y(A)(6.4.105)

where v is given by

(m-n)c,

T e (6.4.106)

and ag, are the basis elements of D, or B,. From (6.4.105) we
deduce that the eigenvalues of Ly are given by

C,(A9) (m-n)c,
+ ’
K 4x

(6.4.107)

where C,(A%) is the value of the second-order Casimir
operator of the representation of D, or B, with highest
weight A9. The factor p in front of the first term in (6.4.107)

is the same as that of (6.4.26) and has to be inserted to allow
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for the appearance of C,(A%). Clearly, any highest weight A
of A(2)(22-1/0) or A(4)(22/0) is reduced on the Cartan
subalgebra of 13{2) (= Dg or By) to AO.
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6.4.3. Sugawara Construction for A(2)(22-1/0) and

A(4)(22/0) in the "Neveu-Schwarz" case

| The first question to be discussed is the appropriate
definition of the "Neveu-Schwarz" superalgebras
corresponding to twisted Kac-Moody superalgebras. For an
untwisted Kac-Moody superalgebra the corresponding Neveu-
Schwarz superalgebra is obtained by allowing the exponent j
of the odd elements of the superalgebra to take values in 2+ 1
(as was mentioned in Section 6.3), and thus merely
corresponds to replacing j by j+: in the expressions for the
basis elements of the Kac-Moody superalgebra. However we
cannot follow exactly the same procedure for the twisted
superalgebras. The reason for this is associated with the
closure of the twisted superalgebra when the exponent j of
the odd1 elements takes half-integer values.
To see this consider the values of j for the odd
elements.of the L)% ang 1)¢

j mod 4 =1 and j mod 4 = 3, or, equivalently, by j = 4k+1 and

subspaces. These are given by

j = 4k+3 (for ke 2) respectively. In the Neveu-Schwarz case
one might think that they should be replaced by j = 4k+1+}
and j = 4k+3+% respectively (where again ke2). However with

7 0(4)

the values of j of the £, " and Z;m subspaces given by j = 4k

and j = 4k+2 (ke 2) respectively, it can be easily checked that
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7 0(4) 3 0(4)

[t4k+2 ® 1, , tAk'+1+3 ® 4_

[tk+2 @ X “‘0(4} K434 @ &0(4)]

0(4)

[t4k+1+«} R L , 14Kk'+3+1 ® ‘L

[ tak+1+} 0(4)

®:L t4"+1+i®:t.

7 0(4)

[tt‘-ﬂ\(+3+I ® &3

t4k'+3+ R i

] ¢ tme3+i @2,

0(4)

0(4)

0(4)

0(4)

tm+1+} @ 4,0(4)
(6.4.108)
] ¢ tmeId®,
] ¢ tme2g 4,2?(4]
| e wmzeil®
(6.4.109)

(for all k, k', and m taking values in 2).

Nevertheless there is a unique solution to the problem of

obtaining a closed superalgebra with half-integer exponents,

as we shall now demonstrate.
of j:
for the Lo
for the T5*
the 2

subspace let |

subspace let |

0(4)
for 1
(6.4.110)

for the Z9

subspace

subspace let j =

2k (ke2),
2k+1 (ke 2),

let j = 2k+

uje

2k+1+% (ke2).

Consider the following values

(ke 2),

The corresponding generalized loop algebra may then be taken

to be

Epo

=- with j mod 4q = ip
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Thus the "Neveu-Schwarz" version of the twisted
superalgebra is the unique subalgebra of the untwisted one
whose loop algebra given by (6.4.111)

We define operators

@ (t2 ® ag,) (for all r = 1,...,ny and all je 2),

@(t2i+1 ® ap,) (forall r = 1,...,n, and all je2),

®(c) , and @ (d) (6.4.112)
to be even, and

O (t2i+i ® a4,) (for all r

1,...,ny and all je 2),

@ (t2i+1+ ® agy,) (for all r = 1,...,n; and all je2) (6.4.113)

to be odd. These operators will be assumed to act in a
carrier space V(A) with a highest weight vector y(A) such
that:

D(t2 ® ag,) y(A) = 0 (for allj> 0),

@ (t2i+1 ® a,,) y(A) 0 (for allj = 0),

d(t2+ ® aq,) y(A) 0 (for allj= 0),

O (t2i+1+1 ® ag,) y(A) = O (for all j =2 0),

(c) w(A) = cpy(A),

®(d) y(A) = A(d) (6.4.114)
(forallp=0,123 and r = 1,...,np).

Let w(A) be any weight vector of V other than wy(A) ,then
there exists a positive integer K depending on the weight A

such that

o (t2i+iP ® a,,) y(A) = 0O (6.4.115)

for all j > $( K-3p) (je2), with p = 0,1,23, and r = 1,...,n,.

Finally the generalized Lie products are as in (6.4.35).
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From these operators a highest weight representation of

the Virasoro algebra can be obtained by the following

definition:

1 - e . 2J+2j -2 # ..

LJ = ;{Ej:‘” ET=1'¢(t +J®aOr)¢(t2]®a0r)'
+ 37 T2 oAt g a, ) e(td ' ®al ) :

o ML gy (120+2)+ N I P

- X7 X ettie b, ) ot ®by):

= ng . 2J+2j+1+% -4j-1-1 -
- LT Xl ottt e b, Yot @ by - )

+ T]BJ’oI (64116)

the normal ordering being as in (6.4.37) and (6.4.38).

Repeating the same procedure as in subsections (a)-(d) above,
we find that

[Ly, @@ ®a ) ] y(h)= - 1(2j+ip) @ (t**H P @a )

(6.4.117)
provided x is given by
x = 4cy+1 . (6.4.118)
Similarly it is found that
[Li,Lx]lv(R) = (KL gkv) (6.4.119)

for J+K # 0 and any y(A) of V(A).
As in the Ramond case, the main interest lies in the L g

term. In this case relation (6.4.97) becomes
[Ls, Lylw(a) =
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{ T T {otP P e ay) 0P U al) (2)
- D(12i® ag) P(tT @ a)) (-2J+2j)}
5 E {0 0 a,) 0P @ af) (@)
- o2 @ a,) o(tA2eal ) (-20+2j+1)}

oo n - 1 -2i- 9
- L. I {e® H @b, ) 0t @ bY )2+ §)

J:-m
+ ot @b, ) ot @ b )(-20+2j+1)}
- Ej:~mz ’;11{¢(t-2d+2j+1+§ ® by, ) @ (2= ®b§p(2j+1+%)

+ (121 ®b,, ) (1721 ®bgp )(-2J+2j+1+%) by (A).

(6.4.120)

Because of the properties (6.4.34), the sums that appear to be
infinite are actually finite, and each one of them can be spit
up into three subsums as in (6.4.98). The first and the second

terms of (6.4.120) will then give a contribution of the form

40_{\”0
12k

2J{1;EE1 {ot° ® ap) ©(1°® ag,) }Jw(A) + J(W2-1)y(A),

(6.4.121)

the second and the third terms of (6.4.120) will give a

contribution of the form

4cAn2 Cpn2
2_ b
{ 1o J(J=-1) + o J} y(A), (6.4.122)
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the fifth and the sixth terms of (6.4.120) will give a

contribution of the form

. 2. _
{ 1o JUE-1) = J} wia), (6.4.123)

and finally the last two terms of (6.4.120) will give a
contribution of the form

4CAH3 30;\”3
{- Tor JW21) - —gx—d}m(A). (6.4.124)

Consequently

[Li, Lulw(a) = {2J Lo +75 JW2-1)c,} w(A) ,(6.4.125)

where the values of the central charge of the Virasoro

algebra are given by

4(m-n)cp 4(m-n)cp
5 o= JH”L - J—KL , (6.4.126)

with m and n being the even and odd dimension respectively

of A(22-1/0) or A(22/0). It follows that

Low(A) = {TZ7 @10 ®ag) (12 ®ah) + 1} w(n),

(6.4.127)
where 1 is given by
(m-n)cy
0 =""g. (6.4.128)

and the ay, are the basis elements of D, or B,. From (6.4.127)
we deduce that the eigenvalues of Ly are given by

C,(A9) (m-n)c,
+ )
K 8x

(6.4.129)

where C,(A0) is the value of the second-order Casimir

operator of the representation of D, or B, with highest
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weight A% and x is given by (6.4.118). The factor u is given by
(6.4.26).
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6.5 Sugawara Construction for C(2)(2+1)

In this Section we shall denote by a,, (r = 1,2,...,n)) and
bop (P = 1,2,...,n) the even and odd basis elements of 13‘2’=
B(0/2) respectively, where n, = £(22+1) is the dimension of
C, and n, = 22 is the dimension of the irreducible
representation of C, provided by the odd subspace of B(0/%).
In addition the single even basis element (see chapter 4) of
£, will be denoted by ¢' and the odd basis elements of °®
will be denoted by by, (p = 1,2,...,ny).. We shall work again
with dual basis elements defined with respect to the Killing
form of C(2+1) that is given by It is always possible to
choose the even basis elements of Zg(z) in such a way that

B%(ag,aqr) = - 8,4, Which implies that we shall take

#
3y, = -Agr- (6.5.1)

For the odd basis elements of Zg(z) the situation is more
complicated. The odd basis elements can be chosen such that

the ny xny matrix B with entries given by

(ﬁ)pq = BO(bOp:qu) ’ (6.5.2)

(for all p, q = 1,...,ny and where BO( , ) is the Killing form of
C(241)), is antisymmetric and its nonzero entries take values
+1 or -1. (For more information on this choice of odd basis
see Cornwell(1989)). Defining by, by

bgp = 2211(§)pq boq | (6.5.3)

it can be easily checked that BO(bgp,bg,) = 1, for all p =

1,2,.:0.
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Turning now to the i?(z) subspace, the even basis element

may be chosen to be

1
Ve~ ( )

where ¢O is the basis element of the Abelian part of C(2+1)

that is given by

c® = ey - 822 (6.5.6)

so that

(c)* = -¢', (6.5.5)

The 22 odd basis elements of L.

can be chosen in the same
way as those of the 323‘2’ subspace. To this end let B' be the

n, xn antisymmetric matrix with entries given by

(B')pq = BO(bopbog) (forallp,q=1,...n), (6.5.7)

where BO9( , ) is the Killing form of C(2+1), and its nonzero

entries take values +1 or -1. Consequently we can take B'= B

~1

so B will be used henceforth in this role. Thus

# n
byp = Zq1=1(§)pq biq - (6.5.8)
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6.5.1 Sugawara Construction for C(2)(2+1)

in the "Ramond” case

As in the previous section let us introduce the following
operators belonging to an irreducible highest weight

representation of C(2)(2+1):

O(t2i ® ag,), P21 ®c), @), D(d) (6.5.9)

(for all r = 1,...,ng(=2(22+1)), and all je2), which are all even,

and

O(t2 ® by,), @(t%+! ® byy) (6.5.10)

(for all r = 1,...,ny(=22), and all je2), which are odd. As
before, because all the exponents | are assumed here to be
integers, this will be referred to as the "Ramond" case.
These operators satisfy relations (6.4.35) with the
appropriate values of j and k and act on a vector space V(A),
with highest weight vector wy(A), according to the

prescription:

Dt ®ag)y(A) = 0 , forallr=1,.,n5, and all j > 0,
O(t2+1 @ c') y(A) = 0 ,for alj=0,

@(t\s(2j) ® bgp) w(A) = 0, forallp=1,.,n; and all j>0,

O(t2+1 ® byp) y(A) = 0 , forallp=1,.,nj, and all j20,

(c) w(A) = c(A) y(A)= cyy(A),
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o(d) v(A) = A(d) w(A) forallje 2. (6.5.11)

Let w(A) be any weight vector of V other than y(A). Then
there exists a positive integer K depending on the weight A

such that

o(ti®ay)y() = 0 (6.5.12)

for all integers j such that j > K and j mod 2 = p, where p = 0
and 1, and where r = 1,...,n,,.

We define the generators L in the Ramond case by

1y no . 2042j 2 o Wi o
L= { Bisow {Zoras 1 Bl ® ag) @(tF@al):
-3l o e byo) @%@ bY) : }
+ 2. { oo c)otd'ec ¥):
N 2042)+1 251 o ¥y -
-2 o eb, ) orT ebt )}

p=1

+ VSJ‘oI, (6.5.13)

where the normal ordering : : is defined as follows:

O (t2*2HP @ 3) d(tAP @ a¥): =
o (t2*2*P @ 3) o (tAP @ a*) , if 2J+2j+p < -2j-p,
Ho (PP @ a) o (1A P @ a¥) + o (1A P ® a*) @ (12*2*P ® a))
if 2J+2j+p = -2j-p
ot P @ at)d (PP @ a) , if 2J+2j+p > -2j-p , (6.5.14)
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for all bosonic operators with p = 0 and 1 and a = a,, or c',

and

Lo @ b,) o(tAP@ byt =
(AP @ by) O(tHP @ by ), if 204214p < -2j-p,
HO (P2 b, )a(tHP @ b)) - @ (PR b )@ (12*2*P @ b, )}
if 2J+2j+p = -2-p ,

- o(tAPe b)) O(tP*AP @ by, if 2042j4p > -2j-p,(6.5.15)

for all fermionic operators with p = 0 and 1 and with r =

In order to prove that (6.5.13) satisfy the Virasoro
algebra and to find the values of v, cy and the eigenvalues of
L,we proceed as before evaluating separately the products

[L,,®] from the various subspaces of the superalgebra.

(a) Evaluation of [L;,®(t7 ® a,) 1 w(r), for y(A)e V(A):
Using (6.5.13), (6.4.35), and the fact that ¢' commutes

with all the even basis elements, we get

(L ot ®a )]v(r)
S LE {2 e He a0 e [ 5, .1, )
ot e a ,a 1) ot eay) }}

+ 2L Z (B )pq ot @by ) otFH @ [, .7, )
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+ (@8 pg @ H o[, 5. DotTeb, )}
+ Z]:-m Zp“=12q1=1{(§.1)pq ¢(t2J+2j+1® b1p) (D(t-{2j+1)+2j' ® [ b1q’ Ebr. )
+ (B Mpg @A ey 3 ) ot @b, )}} wir)

- (2jx) 2¢p @t @ a ) w(r) . (6.5.16)

Using the method of partial sums and the properties (6.5.12)

the infinite sums above may be evaluated as

Mool Am¥ (W} =
Iimm_,w{ {EJ-; 4K Er 1 @ (122 @ ag)) ¢(t'2j+2]'®[a0r ,a.])
+ Zitak Zity o2 g 8 ) (1% @ ag)}
ﬂ;{):j"lj-..;.( ¥ g Bk (B")pg @(t**F @by ) @7 [, , 8, ]
+Zinik Zput Zait (B)pq (23 e .3 1) @(t%e b))
¢ e Z bl Zal (B1)pg@ (@92 @ b Jo(t% Helb, g 1)
+Zi %(KH,EP 1Eq 1 (B")pq@(t**¥* ¥ @0, ,aor,])CD(t'25"®b1q)}}q;(:k)

(6.5.17).

Now we have to make use of the following relations:

No Np No P
ot [ 3,8, ] = Zrt Zeat fie age (6.5.18)

r - g
where f{, are antisymmetric structure constants of C, ,
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Zp-~1zq 1(B )pq [tbp a. ]='Ep- z"(:, 12 1(B" ) D(a )spbys »
(6.5.19)
221:12311(§'1)pq [bm’ . ]=- E:)L E:l12211(§'1)pq Q(%r,)spbgs ,

(6.5.20)

where Q(a}]r,) is the irreducible representation of C,, provided
by the odd subspace of B(0/2) and the odd subspace I?(z).

Then relation (6.5.17) becomes

Mool AmY ()} =
M, {-T{Zx Z2Z0 1 02 ea,) ot ea,)
% Zj";-’.‘K E‘:S;Z:E=1 frrr o (125 %'e ) (% ao,)]}
- {E K D i Te Tl (81)pqR (3, )sp® (P4*2® by )0 (14428 by,
+ Tk Z 12‘. Lyl (B"")pq D(a )sp @ (t2°*2*%'® by ) @ (1 ®b0q)}
—%{Ejn:j'-%(mn 211122112211(?’);):; D(a )sp x
o (1294201 ®b1p)<:b(t'2j'“2i'® b,.)
5 > B RT itl ) R T D(a, )sp

2J+2j+1 -2j-1+2f'
o b, ) o7 e b, )} H}w(1).(6.5.21)

The first two terms of the above relation become

236



1 ram o Mo )
+ i Ziemie T Zesy e {0 (22 @ [ 2y, agp )

+ o(t¥® ap) @t @ ag)by(r),  (6.5.22)
where we have used the fact that
no no "
Y1 Zrv_q tr B(agnagr) = O. (6.5.23)

The next two terms become

1 m 1 M
+ {Zjemie1 Z griZel1(D(agr)B)sq x (6.5.24)

{-ot2®b )o*?*¥e b )+ o(t?*F® by, bog N}v()

q

where we have used the relation

nq nq
z‘lq=12's=1(Q(‘-”-Or')g)sq qu = fr Q(aOr‘) = 0, (6-5-25)

and the fact that (B-')pq = (B)qp. Finally the last two terms

may be treated in the same way as (6.5.24) giving

1 m nq ny
—{Ziemit Zge1Zest (D(agr)B)sq (6.5.26)

{-ot2e® b1q)¢(t2~’*2i+"’i'® b,y) + @(t**F'® [byg , byg D}w).

Now observe that
no no i
z:r=1 Z"r“'=1 frr' [ Qor » aOf"]
No Eno C,
= Er"'=1 tr(gg(aOr‘)Qg(aOr'“))aOr'" = 2 =1 B7*(agp,a0p) g

(6.5.27)

where f,r,a = ad(ag,)r, 8ad( ) denotes the adjoint

representation, tr the trace, and BC‘( , ) is the Killing form
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of C¢. The relation between the Killing form of C(« +1) and
that of B(0/2)is given by

ROy 2?11 BB/ (6.5.28)
and since
BB, ) = (1-BOH( L) = B, ) (65.29)
then
BN ) = {a/(e+1)) BO( , ). (6.5.30)
Thus
Troat BCH( agp, agre) age = {(2+1)/2) agy . (6.5.31)

Defining the quantities ALIby

No
[bos, bog] = Ziet Agqaor, (6.5.32)

it can be easily proved that

r
Asq o (QQ(aOr))sq : (6.5.33)

Thus from (6.5.31) , (6.5.32) and (6.5.33)

2 2 (D(a0r)B)sq [ bos » bog] = ¥p {(2+1)/2) agy ,

(6.5.34)

where yp is the Dynkin index of the 22-dimensional
representation of Cy provided by the odd part of 2;,0(2), which

is given by

o = ({1/2(2+1)} . (6.5.35)

Similarly
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23_1_1 Z:__1_1 (Q(aOr') E)sq [ bys ; b‘lq] = Yp {(2+1)/¢} Aor ,

(6.5.36)

where we have defined

r

No
[bis.big] = Zrot Bygag, (6.5.37)
and proved that

Bsrq = (BR(ao))sq - (6.5.38)

Applying all of the above results to (6.5.21) and taking the

limit m—>«~ we get

[Ly. ot ®a )]vy@)

M fAmy (M)} - (2]75) 205 @(2*H ® 3 ) y(1)

I

o (1292 a.) w(A) (6.5.39)

provided that

K = 4cp +1. (6.5.40)
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(b) Evaluation of [L;, ot ® b ) 1w(A), for w(A) e V(A)

[Ly. @(t¥ ® by ] w(n)
- HEL{H{Z2 08 8 ag) 0(t5*%'s [ ay, , by, )
+ O (228 [ a5, boy ) @(t® ag,)})
+ T 2L {(B71)pq @(**F8 by) (1242 @ [ bg , by, )
- (B7)pq ©(t**#*H® [ bop , ag1 1) @(t%e by )} }
& Z:m {_(D(tEJ+2j+1® c) ¢(t-(2j+1)+2j'® [c, be ])
_ (D(t2J+2j+1+2j' ® [ c, b01 ]) (D(t-(2j+1) ® C')}

+ 2L el {(B )pq @2 0 b, ) ot G g | Bq Dot )
- (B ")pq @(t** A e [y, by ) @t '@ b, )} win)

- (2'/x) 2¢, @ (2% ® by, w(A) , (6.5.41)

where we have made use of the relation

n n n n
z’pl1 qu1 (@4 )pq (.B.)qt bOp = bOI it 'Ep1=1 Eqi=1 (§-1)pq (@)pt qu

Using the method of partial sums and the properties (6.5.14)

we get

liMm S e{Any(A)} =
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no . 9 iy
Mmoo - {EH 4K 2o @120 ag,) @12 [a, , by, )

m no . Vi 9
+ 2jmik Zpay (P @ [ag, , bg, ) @ (1@ ag,)}
1 m nq nq 7 Di an
+ A Z o4k E oy Zgat (B Mpg @(2*%® b ) (122 @ [byq, by )
- ER4kE pliZalt (B71)pg 0(2H2 2 g | Bp: bor ) @(t%® by, )}
1 m nq nq ; i "
+ AZie0n Z o Zaor (B1)pq 024+ @b, o (15742 [ by by )
m 1 M 1 2J+2j+1+2]' -2j-1
= Zj=4(K+1)2 pa12q=1 (B )pq @(t ®[h, . byl) ot '®b, )

m H H H
- Zjjqken) (Y @ ¢) (814U [ ¢ | by, ))

X (ke 1)@ (12042 42 g o bor D@ (t2'® ¢ )}}}w(r).(6.5.42)

Now defining As and Tq by
(¢, by] = Zers Ab,, . (6.5.43)
[b,.bot] = T.c. (6.5.44)

it can be easily checked using the invariance property of the

Killing form that

n1 (1)
Tp=-Zet A (B), (6.5.45)

In addition, with the definitions

n

1
[0, bot] = Lso1 D(agr)st bos . (6.5.46)

and

n
[bop.bot] = Zi2s A;;t aor , (6.5.47)
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it can be checked that

Apt = (BD(ag Nip - (6.5.48)

On applying (6.5.43)-(6.5.48) to relation (6.5.42) it is found
that

“mm—>m{AmW(R)} =
) 1 m No nq : DI
limm o {- {Zirik ZriZs o1 D(@on)st @ (2@ a0)0 (17 @by ))

m Np ny 3 A A
+ Ziegk Zro1Zs -1 D(@g)st @@ b 1) (P8 ag,)}

m

1 N4 ny Ng ; i o0
+ A{Z 4k pat Zget Zea1(B1) g (BR (30 1@ (1*2@b,, ) @ (12 ®a,,)

m n1 n1 no c 5 Y
- ZjeikZ po1Za-1Zr=1(B )pq (BD(a0)pt (14 ¥'® a)) @ (% b,,)}

1 m NG ‘ : 2j-1+2]
+ A- Zipaoen {ZeiA 00 ¢) ot e by )}

m g i i -2j-
- Zingken {ZemiAs 024812 by ) o (12 @c)}
m nq (1) ; _mi_ " ,
+ Zispken) { Zgmt A @ (2@ b, ) @12 1*2'e o)}

m N t - i -2j-
+ Zingket) {Z ot A @ (12424142'g ona (12 @b, )} w (W)}

(6.5.49)
In order to proceed we need the following relations,

together with those defined above:

[c'.[c',boy]] = 3g bot, (6.5.50)

(which can be obtained from (6.5.5) and the fact that bg is an

odd supermatrix),

242



no « M o M
Zra12g=10(00)qt [ B0r , boq] = ZratZs=1(D (a0 R{a0))st bos ,

(6.5.51)
and

3 T (D(ag)D(agr))st bos = -{(22+1)/42} by,  (6.5.52)

(see Appendix B(2)). Then, substituting (6.5.50) and (6.5.52)
into (6.5.49), performing some algebraic manipulations, and

taking the limit, it is found that

[Ly. o7 ®b )]y

Mmoo {AaW(A)} - (2i7%) 2c; @(2*3'® bgy) w(r)

= o by) w(1) , (6.5.53)

provided that x = 4c, +1.

(c) Evaluation of [ Ly, ®(t%*" ® byy) ] w(A), for y(d) € V(A):

As in the previous case
[Ly. o @by 1wn)
= limy_ Ay (A)} - {(2)'+1)/x} 2¢c, @(12*3*1® byy) w(A) ,

(6.5.54)

where using the method of partial sums and the properties
(6.5.12) we get

iMp 5 e{Amy ()} =
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. 1 m Ng < PYRCIN

IImm_,m{-;{zj.—.ju*U-K) 2 ,=1<I>{t2'j+2’® ag,) Ot 2j+2+1 g [ag , byt ])
m o 2J42)4+2]'+1 -2j

+ Zjejk Xy @t ® [ a5, byy ]) @(t%® ag,)}

+ {Zl =j'+$(1-K) 1 p=1 Z 1(B")pq @(t**¥e bop) O (1241 ® [ byg, byy 1)
¥ 4K Zp 1Eq 1 (B 1)pq @(t2+8+ g | By » D1t ]) @(tP@ b, )}

- Zitket) Zpht Tant (B )pq 0(12H2+242g | B, bul) et @b, )
- Ik 028 ¢) o182 [ ¢, by, )

- Zitpeny @21 [ by ) ot e o)} ) .

(6.5.55)
. ()
Now defining R’ , Ttp and 'I; by
ny
[¢,by] = Zely R by, (6.5.56)
[Bg bl = T, ¢, (6.5.57)

it can be easily checked using the invariance property of the

Killing form that

n1 (
Te = » Y. R (B (B, (6.5.58)

In addition, with the definitions

ny
[@or,Dyr] = Zs—1 D(ag)st bys (6.5.59)

and
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n r
[b1psb11] - Er21 Bpt apr , (6.5.60)

it can be checked that

B;:t = (BR(ap ip - (6.5.61)

Thus relation (6.5.55) becomes

liMm S e{Amy(A)} (6.5.62)
=|imm_)n{-1;{2jn;j'+%(1-}()z:21 2211Q(aOr)std)(t2J+2j®a0r)¢,(t-21+2j'+1®b15)
+ Zilik 21 ey Dlag)g o242 1g b, ) o(tde ay)
+l_{zjrzj'-%r< 2211 2::1=1 T (B")pq (BD(a0))qt

. o221 b,,) (1% ay)
- Eiigken Tkt Zatt Zrd (B1)pq (BD(a0d)py
« Q222 2g o ) (121 b1q)}
+ {-Zlk{ TR 0221 ) o1242s by,)
~Zgwen{ Zom RY 0 (1224242420 by (12710 o))

m nq 1 : _BiLon
+ Ej:j-qu-r(){z s=1 Fls( )(D(tz"*zjlz: b,e) @(t 2421 g c')}

+ Tt o Z oty RV 0(129424142'g ¢) o(1%® b )} w(n)} .

In order to proceed we need the following relations together

with those defined above:
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[e',[¢,byl]l = 25 b, (6.5.63)

(which can be obtained from (6.5.5) and the fact that by, is an

odd supermatrix),

no ny Np n4q
21X q=10(a0)qt [ @or, b1g] = Zr-1Zs=1(D(@0r)D(@0r))st D1s »

(6.5.64)

3 Teti(D(ag)D(ao))st bis = -{(22+1)/42) by, (6.5.65)

(see Appendix B(2)). Then substituting (6.5.63) and (6.5.65)
into (6.5.62), after some further algebraic manipulations and
taking the limit, we find that

[Ly. ('@ byy) ] y(1)

: 2]'+1 .
= limp,o{Any(W)} - = 204 (%@ byy) w(1)

=-4(2j'+1) @(t**F*1® byy) W(A) , (6.5.66)

provided that x = 4c, +1.
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(d) Evaluation of [ L;, ®(t3*'® c' )] y(1), for y(A)e V(A)

Because
(L, ot?™*'®c)]y(r)
= limp{Anw (M)} - {(2]'+1)/x} 2, (2@ ¢) y(i) ,

(6.5.67)

where

Anv(A) = (6.5.68)
1 I oA S A 2J+2 -2j+2j'+1 .
N ;{ =+0(1-K) Zpy 2q=1 (B )pq (@ by ) @t ® [ bogq , 1)
m T :
+ Dj=-iK E:;1 E:; (B")pq@(*+2* 8 g by, ¢ )0 (120 byq)
m ny nq B J+2j+1 -2j+1+2]' '
+2jej 4K Loy oy (B71)pq @(t2*24 e b,,) @& e[ by, D)

m n n 5 i o
+Zj k) Z oy Ty (B 1)pq@ (222 cor? e b, )hy().

The above sum can be evaluated observing that

nq

[bop €] = - AP b, (6.5.69)
nq

[bip.C] = -Xgy Fiff’ bos » (6.5.70)

Defining the quantities Tpq by

[bip.bog]l = TpqC, (6.5.71)

it can be easily deduced from the invariance property of the
Killing form and (6.5.69) to(6.5.71) that generally
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ny (q) ny
et AL Bog = - et R By (6.5.72)

With the help of (6.5.69) to (6.5.72), and after some standard
algebraic manipulations, after taking the limit m-« (6.5.68)

becomes

j'+1) 0 n +2j'+ :
{0 30 30 (8)q o2 e [ [0, 1, b))

- JE B il g g e, By 1. )} wih.

(6.5.73)
But it can be shown (see Appendix B(3)) that
2 Tl (B pq LI, by, 1, b ]
- E (B gl 1. B = (6.5.74)

Thus, finally,

[Ly ot?*'®c) 1y
= limm_o{AnvA)} - {(@+1)/x)} 2¢c, (124 ¢') y())

=-1(2j'+1) (e ) y(1) , (6.5.75)

provided that x = 4c, +1.
The results of sections (a) to (d) can be summarized in

the formula

[Ly,oW®ap)] = -ijo(t2dea,), (6.5.76)

for all j such that j mod 2 = p, for p = 0 and 1, for all r =
1,2,...,np,and J = 0,*1,....., provided that
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K = 4c,+1. (6:5.77)

Having established the validity of (6.5.76) and (6.5.87), it is a
matter of straightforward algebraic manipulations to check
that

[Li,Lkly = (I-K) Lk (6.5.78)
for any ye V and all J,K € 2 such that J+K # 0.

As usual the interest is in the case where J+K = 0. |t
can be checked using the results (6.5.76) the generalized Lie
products of the operators ®, properties (6.5.12), relations
(6.5.11) and (6.4.98) that

[Li, Lylw(a)

1 o # 1 M #
- 2J{;E,=1q>(t°® a0,) D (199 ag,) - ;Ep=1 D (198 bgp)®(1°® by by (A)

4(no-n1)Ca 4(1-nq)cp (1-n1)ca
+{TJ(J2-1) + TJ(.J2-1) + TJ} w(A)
= 2J{Lo + 1= J(U2-1)c,} w(A) , (6.5.79)

12
where n, is the dimension of Cg, ny = 2%,

4(m-n)cy

B = s (6.5.80)

with ¥ being as in (6.5.78), and m and n being the even and odd
dimensions of C(2+1) respectively. Clearly m-n is the
superdimension of C(2+1).

Lo w(A) is then found to be

Low(A) = %{{ 70 o(t0®a,,) @ (t0®a) )

-E:L O (10®bop) @ (10®by )} + vi} y(A), (6.5.81)
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where v is given by

_{supdim L (B(0/8))} cx (1-n4)ca

- = “ S (65182)

I (B(0/2)) being the representation of B(0/2) whose carrier
space is the 110(2) subspace and supdimTI (B(0/2)) being its
superdimension. From (6.5.81) we deduce that the

eigenvalues of Ly are given by

C,(A9) B (1-n1)cy

{ (2e+1)/2¢) = — T (6.5.83)

where C,(A0%) is the value of the second order Casimir
operator of the representation of B(0/2 ) with highest weight
A0 and xis given by (6.5.77). The factor in front of the first
term in (6.5.83) is the same as that of (6.5.28) and has to be
inserted to allow for the appearance of C,(A?). Clearly, any
highest weight A of C(2)(2+1) is reduced on the Cartan
subalgebra of Z:‘z)(=B(0/2 )) to AD .
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6.5.2 Sugawara Construction for C(2)(2+1)

in the "Neveu-Schwarz" case

The possibility of constructing "Neveu-Schwarz" type
superalgebras based on C(2)(2+1) (for £ = 1,2,3,...) will now
be investigated. Consider first the values of j for the odd

0@ and £)® subspaces. In the Ramond case

elements of the :L
these are given by j mod 2 = 0 and j mod 2 = 1 respectively,
or, equivalently, by j = 2k and ] = 2k+1 respectively (for ke 2).
For the Neveu-Schwarz case the simplest modification would
be to replace these by j = 2k+f and j = 2k+1+}% respectively

(for ke2). However, it can be easily checked that

0(2) 0(2) +0(2)
[t2k+ ® a"'0 odd 2K+t ® ‘t'(}tndd]‘E 2m ®a"Oewen ’

2
[ @kt @ LoGoq , P41 @ L1000 e tme1 @ 175, (6.5.84)

and so on, for k, k', and m all taking values in 2, so that
closure is not achieved with this choice. Closer examination
shows that closure can only be obtained by taking the

exponents to be j for the Z, (W)en and %, (e‘fen subspaces and j+3

for the LO odd and &1(0;(, subspaces (with je2 in all cases).

The resulting loop algebra has the form

oo o 10 107, (6.5.85)

where € = 0 or 1 depending on whether the basis element of

~0(2)
1,

seen that this is precisely the loop algebra of the Neveu-

is even or odd respectively. However, it can be easily

Schwarz version of the untwisted superalgebra C(1)(2+1).

|

That is, there are essentially no new "Neveu-Schwarz" type
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superalgebras based on the twisted superalgebras C(2)(2+1)
(for £ =1,2,3,...). Of course, for the superalgebra (6.5.85) the
results of Section Ill apply. That is, with L; given by

1 6 Nop . 1 | # .
L = S 2l ote ag) ot o) :
- E ot ey, o it ebt )

+ rote o) otie ¢ :

L S X -(i+4 -
- I reten, ) otebt ) })

p=1

+ Nyol,

(6.5.86)

the Virasoré algebra is satisfied provided

Cy = g(m—xn)ﬂ (6.5.87)

kK = 2c, +1 , (6.5.88)
and

e s %{1 , (6.5.89)

where m is the even dimension and n the odd dimension of

C(2+1).
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CHAPTER 7

CONCLUSION

The main objective of this thesis was on one hand to
give a complete description of the root system of the affine
Kac-Moody superalgebras B(1)(0/2), A(2)(22-1/0), A(4)(22/0)
and C(2)(2+1) and on the other hand to demonstrate the
relation of these superalgebras with the Virasoro algebra.

There are still fields of research related with these
affine superalgebras that one might look at. The explicit
knowledge of their root subspaces as was found in chapter 4
will facilitate for example, research in the classification of
involutive automorpisms of these superalgebras and
determination of their possible real forms.

Another field of research is related to the construction
of Vertex operators of affine Kac-Moody algebras. Such
construction have already appeared in the literature (see for
examplel Frappat et all (1988)) but their use in conformal
field théory is still at a speculative level.

An interesting problem that remains open is that of
unitarity of the representations of these affine
superalgebras, mainly in view of possible unitary
representations of the Virasoro algebra that can be obtained
by them. This is itself an extensive topic and is directly

related to the definition of a consistent adjoint operation.
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Let us finally comment on the results obtained from the
Sugawara construction

The analysis of chapter 6 shows that all the Sugawara
type constructions in the Ramond case can be put in a general

form as follows:
[Ly,ot®ay)] = - ot¥ie a,) (7.1)

for all j such that j mod q = p, (for p = 0,...,g-1), and

cv = {2qcp(m-n)/x} , (7.2)

provided that the value of the normalization constant of the

Virasoro generators is given by

K = 2qca+1 . (7.3)

The corresponding results for the Ramond type
untwisted affine Kac-Moody superalgebras, the twisted
affine Kac-Moody algebras, and the untwisted affine Kac-
Moody algebras may then all be regarded as being given by
special cases of these formulae. Indeed, with q = 1 these
relations reduce to the corresponding relations obtained for
the untwisted affine Kac-Moody superalgebras. Similarly,
when the superalgebra involves no odd part but g#1, then we
obtain the corresponding relations for the twisted affine
Kac-Moody algebras (see Tsohantjis and Cornwell(1990)).
Finally, when the superalgebra involves no odd part and q = 1,
these relations reduce to the corresponding relations of the
untwisted affine Kac-Moody algebras (see Tsohntjis and
Cornwell(1990)). All of the above considerations would

imply that the "universal" formula for the Virasoro central
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charge that has recently been obtained (see Gorman
et.al.(1989)) can be extended to include the above values too.

By contrast, in the Neveu-Schwarz case there are no
such general relations. Indeed, for the superalgebras
C(2)(2+1), there are essentially no Neveu-Schwarz versions,
while for A(2)(22-1/0) and A(4)(22/0) the results (4.117),
(4.118), and (4.126) indicate that there are no natural general
formulae which reduce to those of the untwisted case when
q="1.

From the relations obtained in chapter 6 for the
eigenvalues of L, and c,, it is possible to calculate
numerically all these eigenvalues for the standard
irreducible representations. By making use of (5.18), (5.19),
(5.20), (5.25), and the expressions of & found in chapter 4, we
can calculate ¢y, which will give us ¢, immediately be means
of (7.1-3). Then (6.3.21), (6.3.24), (6.4.107), (6.4.129) and
(6.5.83) can be found by calculating the eigenvalue of the
Casimir operator involved in these relations, the latter being
a trivial procedure for irreducible highest weight
represehtations.

Another interesting observation from (6.5.82) is that the
Ramond construction for C(2)(2) gives zero value for ¢y and
thus the Virasoro algebra is reduced to a "rigid" conformal
algebra. This is exactly the same result that has been
obtained previously (see Jarvis and Zhang(1988),(1989)), for
the cass:- of C(1)(2). Unitarity of a highest weight irreducible
representation of the Virasoro algebra would constrained the

eigenvalues (5.83) of L, to be such that
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3C,(A9) o
2x T 4k = (7.4)

thus constraining the value of ¢, to be c, = 6C,(A9).

We should mention that the relationship of Ly to the
operator! ®(d) can be easily obtained, since for q = 2 and 4 the
quantity {Ly, + (1/Q)®(d)} commutes with all the elements of
the twisted superalgebras considered here both in the

Ramond and in the Neveu-Schwarz cases. Thus

Low(A) = {-(1/q)®(d) + (1/Q)A(d) + h}y(A), (7.5)

where A(d) is the eigenvalue of ®(d) and h is the eigenvalue
of Lg.

e
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TABLE |
Finite irreducible reduced root system

and their Dynkin diagrams

In this table ¢; (i = 1,..., n) denote orthonormal unit vectors
of E=R". The numbers above the vertices of the Dynkin
diagrams are the coefficients of the expansion of the

heightest root in terms of the simple roots.

Type A, (22 1)
1 1 1
0,1 a£-1 a!
(i) Basis: o =€ - €y, for 15i <2

(i) A={%(g-g) for 1Si<j<2 +1}

Type B, (221)
2 2 2 1
) R —
O O —{ =)
C!.' az ag-‘l a’f
(i) Basis: =€ -€,q, for 1i<L-1 a,=¢,

(i) A={=x(€tg), for 1<i<j<g, tg, for 1<i<e}
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Type C,(221)

1 1 2
() Basis: o =€ -E,q, for 1Si<2-1 o, =2¢,

(Il) A={i(£ii'8}'), for 1S|<]S£, i2€i, for 1S|S£}

Type D, (2 > 3)
1
o
1 1 2
O"_" - = = 1
Oy bud Og g
(i) Basis: o =& -&,q, for 1< i<2-1 g =€4.14+ €y

(i) A={*Ete), for 1Si<j<2}

For the next three types let E = R® and we define e; = ¢, -
(1/9) TP e, for X7, =0
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(i) Basis:

=€ - €4 (1S|55) Og = €4+ €5 + €g

t(ej-¢) for 1<i<j<6,

t(e; + e+ ), for 1<i<j<k<6,

+H X0, ) )

ay %) 04

w

S
Q

w

aj =€ - €;,4 (1$|56) 7 = €5+ €g+ €7

(ii) A={j:(ei-ej), for 1€i<j<7,

Type Eg

(i) Basis:

(i) A = {

(e

i(ei+ej+ ek), for 1Si<j<ks7,

(e +.+e +.+e;), for 1<i<7}

o=€-€, (15i1<7) Og = €g+ €7 + €g

-¢), for 1<i<j<8,

t(ej + e+ €), for 1<i<j<k<8]
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Type Fy (Here E = R3)

2 2 1 1
4 G2 %3 %y
(i) Basis: oy =€r-€3, 0O =E€3-Ey,
O3 = €4-3(& +€ +E3+8€4) g =-3(E + & + €3+ &)

(ii)A={i£i, for 1Si<4‘ i(ei'"ej)- for 151(]54,

ti(1ey e, t €3 184)}

Type G,  (Here E = RY)

a4 aos
(I) Basis: ay =& -8 Op = '281 + €+ €3

(i) A = { £ (€1-€p, €2-€3, €(-€3, 284-€, - €3, 28, -€4-€3

2€3 - €1-€5 ) }
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TABLE I
Finite irreducible non-reduced root system

and its Dynkin diagrams.

In this table g; (i = 1,..., £) denote orthonormal unit vectors
of E=R% The numbers above the vertices of the Dynkin
diagrams are the coefficients of the expansion of the highest

root in terms of the simple roots.

Type BGC, (2 > 1) or B(0/2)

2 2 2 2 2
0 0 0 0 0
o, x5 Cg.2 Qg.y O
(i) Basis: Q=€ - E,q, fOr 1i<2 oy =g,

(ii) A={i(£ii€j), for 1Isisjs L, g, for 1Si< g,

+2¢;, for 1<i<2g, }
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TABLE 1l
Affine irreducible reduced root system

and their Dynkin diagrams

In this table ¢; (i = 1,..., n) denote orthonormal unit vectors
of E=R". The numbers above the vertices of the Dynkin
diagrams are the coefficients of the expansion (2.19) in

terms of the simple roots. They are often called numerical

marks.
Type A2 > 1)
1
AL A2 > 2)
1 1 15 1 1 21
oo o1 Qo oy xe.q o ¢
(i) Basis: o =€ -E,q, fOr.ISi< 2 og=23-¢€ +¢

(i) AT ={mdt(g-¢) for 1Si<j< 2 +1, me2 }

Type B{"(¢ > 3)

a
0
1 2 2
2
O O— ———(—X0)
o4 0 o g.q Oy
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() Basis: ag=938-€& -8, aj=¢€;-€j,4, for 1<i < 2-1,

ag=€£
(AT = { md t(g;+g), for1<i<j< 2 mdteg,for1<i< g, me2}

Type A2 (2 > 3)

() Basis: ag=08-€-€, aj=¢€-¢€j,q, for 1<i< -1,

Oy =2 Eg

(i) A'= { M3 +(g; £ €), for 1<i<j< 2, 2md + 2¢;, for 1< i< 2, me2 }

Type C{"(2 2 2)

1 2 2 1
o, o, i g

(i) Basis: ag=8-2¢;, a;=¢€-€,q, for 1<i<2-1,

Oy =2 Eg

(i) A= { md £(g; £ g), for 1Si<j< g, md % 2¢, for 1i1<¢, me?}
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() Basis: apg=38-€1, 0j=¢€-¢&jq, for 1i<2-1, a,=¢,

(i) A= { md (g tg), for 1<i<j< g $md g, for 1<i< 2, me2)

22> 1)

(2) (2)
A, A (R 22)
] : 2 1 ; 2 2 ; 2
o
(i) Basis: og=08-2€y, aj=¢€ -¢€,q, for 1<i<2-1, ay =€,

(i) A'={ mdi(g;t¢g), for1<i<j<q, (2m+1)s +2¢;, for1<i<y,

md g, for 1<i<¢, mel}

1
2 ai
____a ;
o 2.2
z Ag_q
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() Basis:apg=8-€;-€, a;=¢€;-¢€,q, for 1i<2-1,

ag=8g_1+ Eg
(i) A'™={md (g;+¢g), for 1Si<j< g, mel}

For the next three types let E = R® and define e, = g, -(1/9)
X2 €, for o, e =0

(1)
Type Eg
1 C"O
2 Qg
1 2 3 2 1
T N\
@, O O O O

(i) Basis: (10=5-(Zi6=0 e),a=€-6, (1i1£5H),

g = €4+ €5+ €5

(i) A'={ md (e - @), for 1<i<j<6,
ms (e + e+ ©), for 1<i<j<k<6, ms+(X’;e) me2)

(1
Type E."
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(i) Basis: o =8-(Zpg6) o =6-6, (1Si<6)
a7 = €5+ eg + e7
(i) A'={md (e;-e), for 1<i<j<7,

md *(e; + e+ ey) for 1<i<j< k<7,

mét(e + +e+ +e;)for1<i<7, me2)

Tipe £

(i) Basisicg=8+e€p-€;,aj=¢€;-¢,q, for 1<i<7

Og = €g+ €7 + €3

(i) A'={ md t(e;-e), for 1<i<j<8,
j

md t(e; + e+ € for 1<i<j<k <8, meZ}

Type F,"
E - R4
1 2 3 4 2
O0—O0——(CO—>x0—-=0
U/
Oy o 4 o, o, o,

(I) Basis: Qg = o + €1 -€Ep, a1 =€ -&3, 0o =E3-E&,y,

O3 = €4-3(€ +E +E€3+84), g =-3(€ +E +E3 +E&y)
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(i) A" = { md +g;, for 1<i<4, md t(e; +e), for 1<i<j<4,

mad i%( 1€, i82 x €3 i84), mEZ}

Tine €17

E=R*4

2 3 2 1
O—O0—00—0
J

1
Qo 4 )

() Basis: ag=8+ € -€5, ay=€x-€3 Op=Eg-Ey,

a3 = 2€4, CL4='(81+€2+83+84)
(i) A" = { 2md + 2¢;, for 1<i<4, md (g + &) for 1<i < < 4,
R

2md + (1€ t €5 £ €3 £ €4), Mel }

Type G!"  (Here E = R3)

1 2 3
Qo Qo 4 a2

() Basis: ap=8+€;+& -2€3, @y =E8q-Eyp,

0o = -281 + €+ &3

(i) A" = {md £ (e1-€5, €5-€3, €4-E3, 2€4-Ep - €3, 2€p -€4-E3

283 -€1-E» ), mel }
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(3)
Type D,

E=R3

(i) Basis: Qg = d - €1 - &3, gy = &4 - &y, 0o =3 ()

(i) A" = { md * (€4-€5, €5-€3, €1-€3),

3md £ ( 281'82 - €3, 282 -€4-E3, 283 -€1-€p ), me 2 }
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TABLE IV

Affine irreducible non-reduced root systems

In this table g; (i = 1,..., £) denote orthonormal unit vectors
of E = R% The black nodes denote those simple roots such

that twice of them is a root of the system.

Type B(1)(0/2) (£ > 1)

() AT={md t(gtg) for 1Si<j<, mdtg, fori<i<g,

md +2¢;, for 1<i<2 ,mel}
Type A(“)(22/0) (2 > 1)

(i) AT={md+t(gtg) for 1Si<j<L Fmdtg, for 1<i<g,

(2m+1)8 +2¢, for 1<i< ¢, meZ )

Type A(2(22-1/0) (£ = 3)
—O----0—0=9

(i) A"={md + (gjtg), for 1Si<j<g, mdtgforici<g,

2md +2¢;, for 1<i< 2, mel}
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Type C@)(2+1) (2 > 1)

*c0—0-—-0—C8

(i) A"={md £ (g;tg), for 1<i<j< imdzteg, foricicy,

md +2¢;, for 1<i<2, me2}
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TABLE V

'
N - O O

o o

Figure 1. Generalised Dynkin diagram and Cartan
matrix of B(1)(0/1)
1 2 2 1
o=>0 A-[. )
4 2
CCO U.1
Figure 2. Generalised Dynkin diagram and Cartan
matrix of B(1)(0/2)(2>2)
(2-1 0
-2 2 -1
1 2 2 2 2 2 0-1 2
(10 (‘.(,1 (12 Og.2 og.q o, 0 O
0 0
\ 0
Figure 3. Generalised Dynkin diagram and Cartan
matrix of A(2)(3/0)
1 2 1 2 1 0
0 1 2

271

o 90 O O

o O O O



Figure 4. Generalised Dynkin diagram and Cartan
matrix of A(2)(22-1/0)(2=2)

(2 0-10..000\

1 0 2-1 0...0 0 0

44 294 .,..00 0

%o : g 2 2 2 0 0 -1 2 0 0 0

o 0 0 0 O 10
1 o Qg.p Og.q1 Gy

2 %3 0 0. 1

Figure 5. Generalised Dynkin diagram and Cartan
matrix of A(2)(2/0)

Figure 6. Generalised Dynkin diagram and Cartan
matrix of A(4)(22/0)(2>2)

/ 2 .4 0 0 .:.0 0 0

-2 2-1 0...0 0 O

1 1 1 1 1 1 0'1 2‘1 . . 0 0 0
0 0-1 2...0 0 O

OEO—0—-O0—CO=@ A= °° 1200
o o o Ried g o, O 0 0 0...2-10
0 1 . -1 0 0 0 0...-1 2 -1
\ 0 0 0 0...0-2 2/
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Figure 7. Generalised Dynkin diagram and Cartan
matrix of C(2)(2)

Figure 8. Generalised Dynkin diagram and Cartan
matrix of C(2)(2+1)(2>2)

(2-2 0 0...0 0 0)

-1 2-1 0...0 0 0

1 i 5 ’ > " 0-1 2-1...0 0 0
0 0-1 2...0 00

@EO—0O--0O—0O=@ a-| 2012000
0 0 0 0...-1 2 -1
\ 0 0 0 0...0-2 2,

Figure 9. Generalised Dynkin diagram of B(0/2)(2>1)

Figure 10. Generalised Dynkin diagram of A(22-1/0)(2>2)
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Figure 11. Generalised Dynkin diagram of A(22/0)(2>1)

0 0
0 0
o, o, Cog  ®ogut

Figure 12. Generalised Dynkin diagram of C(2+1)(2>1)
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APPENDIX A

(1) The 2(2-1) positive roots of D, (2>2)are given by:

k-1 2-2
E r=j% + 2 E kO + Og g + O,
zm
r=jar J

with jk = 1,2, ..., 2-2, and j < k,

2-2
rujr + O g + O,

p I

r=jar + (1!_1
2-2

2r=jar + Oy,

b I

r=jai'

with j = 1,2, ..., 2-2, together a,, o, ; .

The quantities <aj, o> of D, are given by:
1/2(2-1), with j =k (j = 1,2,...,2)
<oy, 4> = -1/4(22-1), withj=k =1 (j =1,2,..,2-3);
j=2-2 with k = 2-1, &; k = 2-2 with j=2-1, &,
0  for all other values.

The fundamental weights of D, are given by:

2-2 . .
Zp=1 Op + 304 + 30, with j = 1,
j-1 2-2 . ,
Aj = Z p=1PC&p + Zp =jlep + %Jagq + %Jag’

with j = 2, ... 2-2,
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2-2 —_
p=1 POp + 32y 4 + (§2-1)a, } with j = 2-1,

L
——

34 z;'j pap + (3%-1)oy, + 32, } withj=2.

(2) The 22 positive roots of B, (¢>1)are given by
25 - jap withj=12, ... .2,

k- b
z pljap + 2 z“p -kap withj, k=12 ... 2 and j<k,

Zk;:jap with j, k = 1,2, ... ,2 and j<k.
The quantities <aj, o> of By are given by:
1/(22-1), with j =k, (j = 1,2,...,.2-1)
<oj o> = 1/2(22-1), with j = Kk = ¢
C-1/(28-1),  with | = k £ 1, with (j, k= 1,2,....2)
0  for all other values.

The foundamental weights of B, are given by:
2£p= 1 Op Wlthj = 1,

AJ = ZJF;1=1 pap ¥ Ep=j]ap Wlth j = 112t e 32-1:
(112)), p - 1 Pap With j = 2.

(3) The positive roots of B(0/2)(2>1) are given by
(a) even positive roots
25" jop with ], k = 1,2,..,2 and j<k,

k-1 o ;
Z p=j% + 22% -jop with j, k =1,2,..,2 and j<k,
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23 o jop with j = 1,2,...,2,
(b) odd positive roots
> -jop withj=1.2..2.

The quantities <oy, ax> of B(0/%)are given by:
1/(22+1), withj =k, (j = 1,2,...,2-1)
<oy, > = 1/2(22+1), withj=k = ¢
-1/(22+1), with j = k £ 1, with (j, k= 1,2,...,2)

0 for all other values.
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Appendix B

(1) Proof of (6.4.24), (6.4.48), (6.4.49) , (6.4.50) , (6.4.74) and
(6.4.87):

Let ¥(aq,) (r =1,...,ny) denote operators belonging to a

non-trivial representation (of dimension is n;) that the LD( )

subspace provides for &0( ) (for p = 1,2,3). Then the Casimir

operator of this representation, C,, will have the form10 :
C, = -Z° ¥(ap)¥(ao) (B.1)
and its eigenvalues are given by
gL
CalA) = -{imp}tr { 2™ T(ao)I(ao)} - (B.2)

Thus, denoting the basis of the pth subspace by aps,

Ng n
C2 Qs = - Er=1 2553:1 (E(aOr)E (aOr))s"s‘ Aps”

= -{imph tr { Z°, T(ao)C (a0} aps: - (B.3)

Relations (6.4.24) ,(6.4.74) and (6.4.87) then follow
immediately if we also take in to account the relations
(6.4.7) or (6.4.8) and the fact that

..0(4)
tr { G(ao)G(aor)} = ¥BZo (an aor) | (B.4)

where 7y is the Dynkin index of the representation and
~0(4) "
B4 (, ) is the Killing form of L%M). The proof of (6.4.49)

goes through as above if we observe that, on defining S;s. by

n
[as . 8] = X7 Sig aor (B.5)

the invariance property of the Killing form implies that
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Seer = - I'2(ap))ss - (B.6)

Similarly for (6.4.50) we observe that, on defining A by

r

[bip ,bapl=20 A ag, (B.7)

the invariance property of the Killing form implies that

Ap'p = D(aOr)pp' ' (BB)

with the rest of the proof following the same steps as above.
For (6.4.48) the only new feature is that ﬂ = ad(ag)p. The
result (6.4.48) then follows using the same arguments as
above and the fact that the Dynkin index of the adjoint

representation is 1.

(2) Proof of (6.5.52) and (6.5.65):
Consider the Casimir operator of C(2+1) in the adjoint

representation, which is given by

Colad) = Zeo ¥ (ao) w(al) - Z.1, ¥(by,) ¥(bk)

+ ¥(c) ¥(c™ - Z:‘=1 ¥(b, ) 'v(bfp) , (B.9)

(where the duals are as defined in section V.A.). Then from
the relation Cy(ad) by = by, we find using (5.43) to (5.48) and
(5.50) that

ng no ny
Er=1 ‘P(ao,) ‘P(agr) bgt = 'Zr=1 Zs=1(Q(aOr)Q(aOr))sl bOs ’

(B.10)
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- 221_1 ¥ (bg,) ‘P(bgp) Boy = z"r-1 Es 1(D(ao,)D(agy))st bos .
(A.11)
- T ¥, ¥(b}) b = -(1/42) by, (B.12)
¥(c') ¥(c®) by = -(1/42) by, . (B.13)

Then (6.5.52) is obvious. Also (6.5.65) follows by exactly the
same steps on using (6.5.56) to (6.5.61) and (6.5.63).

(3) Proof of (6.5.74):
On using the identity Cy(ad)c’ = ¢!, relations (6.5.69)-
(6.5.72) and the equality

B([ ¢\ byl [¢,b]) = B([c,byl,[¢,b 1) (B.14)
we obtain

- E L w(by,) Wbt ) - ZL ¥ (b, ) ¥ (b} )c
- 2{ T T8 g @) AP AP } - ¢, (B.15)

thus proving (6.5.74).
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