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Abstract. Cancer pathway is the name given to a patient’s journey from initial
suspicion of cancer through to a confirmed diagnosis and, if applicable, the def-
inition of a treatment plan. Typically, a cancer patient will undergo a series of
procedures, which we designate as events, during their cancer care. The initial
stage of the pathway, from suspected diagnosis to confirmed diagnosis and start
of a treatment is called cancer waiting time (CWT). This paper focuses on the
modelling and analysis of the CWT. Health boards are under pressure to ensure
that the duration of CWT satisfies predefined targets. In this paper, we first create
the visual representation of the pathway obtained from real patient data at a given
health board, and then compare it with the standardised pathway considered by
the board to find and flag a deviation in the execution of the cancer pathway. Next,
we devise a discrete event simulation model for the cancer waiting time pathway.
The input data is obtained from historical records of patients. The outcomes from
this analysis highlight the pathway bottlenecks and transition times which may
be used to reveal potential improvements for CWT in the future.

Keywords: Cancer pathway · Cancer waiting time · Discrete event simulation ·
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1 Introduction

Cancer is a condition where cells in some part of the human body reproduce at an un-
controllable rate. The cancer cells, instead of working together with the system, become
another entity of the body, which could potentially jeopardise human health and well-
being [6]. Patients with chronic cancer (e.g., lung cancer) have to undergo a series of
treatments to attempt the eradication of the disease [10].

In the UK, before a patient undergoes a set of procedures that have been agreed upon
by the board members and consultants, there is a period of waiting, usually ranging from
14 to 62 days1. This period of waiting before the decision to treat the patient is known
as Cancer Waiting Time (CWT) and has several planned activities depending on the
patient’s health condition, further tests evaluations and medical board meetings2.

? This research is partially supported by the DataLab.
1 https://www.england.nhs.uk/wp-content/uploads/2015/03/delivering-cancer-wait-times.pdf
2 Standards: https://www.isdscotland.org/Health-Topics/Waiting-Times/Cancer/Guidance/
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The CWT pathway for lung cancer treatment provided by the UK National Health
Service (NHS) board is illustrated on Figure 1. Within the first time period (first 2
weeks), patients will be referred by their general practitioner (GP) and then undergo
several tests. During the next 14 to 28 days, the patient will have further tests. Once
the board agrees on the first treatment, the decision will be made within the next 28
to 62 days. Usually, the waiting time for a decision should not exceed a 62 days pe-
riod. However, there are many cases when that happens. Further, lung cancer has a poor
prognosis: over half of people diagnosed with lung cancer die within one year of diag-
nosis and around 17.8% within the 5-year survival [10]. Hence, it becomes necessary
to decrease the waiting time from the GP referral to their first treatment.

Fig. 1. Lung Cancer Pathway based on NHS Board

By streamlining the process of analysing the CWT dataset (e.g., through simula-
tion) and comparing the ‘actual’ pathway patients experience versus what the NHS
Board considers the pathway to be, we can highlight bottlenecks and transition times
that exhibit high variability across patients. These insights will provide quantitative ev-
idence that might be useful to design follow-up interventions. For example, policies to
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reduce the variability of specific transition times between activities may lead to overall
improvements in CWT and reduction of the cumulative delays.

Discrete event simulation (DES) has been widely used in many sectors including for
healthcare processes management [3], [5], [8]. DES allows healthcare professionals, for
instance, to assess the efficiency of the existing healthcare delivery system. It has many
usages ranging from forecasting the impact of changes in patient flow [5], examining
the resources needed and available within a hospital [4], to observing the improvement
of patient experience in an emergency department [1]. Related to this work, a DES
model has been developed in the field of radiation therapy to reduce waiting time as
well as to improve the treatment process planning [2]. Another recent work [7] focused
on patient scheduling decisions related to chemotherapy in order to efficiently use med-
ical resources and provide timely access to cancer treatment. Hence, DES provides the
ability to investigate the complex relationship between various parameters (e.g., patient
arrival rates and activities service times) through a stochastic model able to produce
statistical estimates on the metrics of interest (e.g., waiting time).

The entities in a DES model (e.g., patients) are visiting service stations that com-
pose the process, and sometimes they need to wait until service can be provided. This
means that the demand for service has exceeded the capacity to provide the service
readily. This information allows the healthcare professional to observe operational pro-
cesses, simulating alternatives that can be used to reconfigure the existing pathway, to
improve its performance, and to plan (change or reduce) its activities, without altering
the present process execution while conducting such scenarios experiments [5], [8]. By
treating lung cancer care from the first GP referral to the first treatment as a series of
discrete events, we can simulate the cancer pathway with a DES approach allowing us
to understand the overall treatment process, its complexities, patient journey and bot-
tlenecks during the pathway.

This paper is structured as follows. In Section 2, we present the CWT dataset and the
extraction of quantitative information through database queries development. The simu-
lation modelling approach, the generated pathway and input modelling are discussed in
Section 3. In Section 4 we present the approach used to validate our simulation model.
Section 5 discusses the simulation scenarios and the findings. We conclude with sug-
gestions for further work in Section 6.

2 Data analysis and queries development

To analyse the cancer pathway dataset compatibility with the steps established by the
cancer pathway guideline as shown in Fig. 1, we acquired the dataset for lung cancer
from three different hospitals within an NHS health board. The dataset contains 642
patients from 2016 to 2019 with lung cancer within NHS Lothian. It gathers the in-
formation regarding the outpatient (i.e., patient not formally admitted to the hospital),
inpatient treatment (i.e., patient formally admitted to the hospital), and patients’ orders
(e.g., prescriptions, test’s appointments). It also contains the information related to the
type of the event (e.g., services for the outpatients, order item for orders), the event
start date (i.e., when the event is registered to the system), event execution date (i.e., the
exact start date of the event) and event finish date.
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The modelling effort proposed in this paper aims to help the health professionals
to analyse lung cancer pathway behaviour as a complex process (CWT) and assess its
execution issues. For the first milestone, we focus on the whole observed waiting time
without splitting the events based on each waiting time category (i.e., 0-14 days, 14-28
days, 28-62 days). Even though the board states the splitting, in reality, patients do not
strictly follow the procedure guideline.

The guideline establishes that several tests could be performed prior to a final de-
cision on the treatment, at any time, and it is up to the medical professionals to define
the ones appropriate to each case following the patient’s case development. The overall
care process is rather complex and could take considerable time to schedule appoint-
ments and tests, reschedule, execute procedures and analyse/deliver results, depend-
ing on available resources and specific test characteristics. Thus, after discussions with
healthcare professionals, we use the dataset to describe the behaviour of the CWT pro-
cess, and then use the gathered information to create the DES model. We are interested
in calculating the time patients spend on (parts of) the pathway (i.e., added time), and
the number of patients flowing throughout the process (i.e., between activities), as well
as calculate the elapsed days according to each milestone on the guideline, as follows:

– We calculate the number of patients in the dataset and the added service time ob-
served between the first GP Referral to the definitive Multidisciplinary Meeting
(MDM). MDM is an important event that happens at least once before starting the
patient’s treatment. In this meeting, the healthcare professionals determine whether
a patient needs further care. The definitive MDM is the last MDM before starting
the patient’ treatment (e.g., radiotherapy, surgery, palliative care).

– We calculate the number of patients undergoing each category of tests requested
(i.e., CT Scan, CT Biopsy, PET, Bronch/EBUS, Surgical staging/Biopsy).

– We calculate the added service time observed from the first outpatient (OP) ap-
pointment (in the Cancer Outpatient Clinic) to the definitive MDM.

– We calculate the number of patients who have more than one outpatient (OP) ap-
pointment prior to the definitive MDM.

– We calculate the added service time observed between Triage to the first OP ap-
pointment.

– We calculate the service time per order, i.e., for each test: CT Scan, PET Scan, CT
Biopsy, grouped by the type of first treatment given to the patients.

We design the SQL queries to get the information directly from the Trak Oracle
database to calculate each requested observation. The design of these queries is similar
to each other. First, we categorise the event based on the service (i.e., for the outpatient)
and order item (i.e., for orders). There are more than 1,000 different services and or-
der items. However, there is no list to categorise these events. Together with the health
professionals, we created a list of categories. For some services/order items, we use
keywords (e.g., CT, PET). Once we get the list of the services/order items (event), we
perform a manual check. For the other events without a reliable keyword, we choose the
event that was performed to a significant number of patients, i.e., more than 50 patients.

– Once we categorise the service, we calculated the elapsed days between the cate-
gorised events and the first treatment date.
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– With the elapsed days, we determine the first (or last) events (i.e., the definitive
MDM is the one which has the highest elapsed days).

– Hence, we can calculate the added service time and the number of patients between
various events.

From these observations we can derive an observed pathway which is the basis of
our simulation model.

3 Simulation modelling and DES

After analysing the dataset, we simulate the CWT process by creating a discrete event
simulation (DES). We want to compare the pathway in the guideline (refer to Fig. 1) and
the pathway that emerged from the data. By knowing the difference between the two,
we can then further investigate and perform analysis for the CWT process within the
health board. In this case study, we applied a simulation modelling process [8] in four
basic steps (problem statement, process activities identification, flow analysis, metric(s)
of interest, and model refinement) as follows.

1. Problem statement: we aim to simulate the pathway from the first time patients
are being referred by their general practitioner (GP)/the first time the patients are
seen in the hospital until the start of their first treatment. The time elapsed between
these two events is defined as cancer waiting time. We are interested in finding
the events/occasions when elapsed days exceed 62 days (i.e., the recommended
maximum days for cancer waiting time according to the guideline).

2. Process activities and execution flow: we abstract the activities and process be-
haviour from the guideline as shown in Fig. 1 as well as matching with the available
CWT data. We determine the composition of the process in terms of entities (e.g,
patients) and activities/events (e.g., CT Scan, MDM, and so on) that we assign into
the appropriate simulation flow. The process starts with patient arrival event (GP
referral) and ends with first treatment referral, for each patient. Each activity in the
process represents a service (an event) to a patient performed within a service time
distribution. The process flow can contain one or more decision gateways, each in-
dicating two or more output probabilities (or conditions) to follow. In our case, we
present two gateways ruled by probabilities. The event scheduling process of DES
tools[8] presents a time advance mechanism that guarantees that at least one event
is scheduled when simulation starts and that it will consume an event list during
execution. The simulation execution captures quantitative information until a de-
fined stop criteria is reached. Usually, the arrival event configuration dictates the
simulation continuance (or halt), i.e., the maximum number of entities arrivals to
simulate. Also a desired simulation length (e.g., duration in days) can be defined
prior to execution.

3. Metric(s) of interest: once all the activities of the process (i.e., events in the model)
have been defined, we choose the performance metric to assess within our simula-
tion (i.e., waiting time, elapsed days between activities, and so on). Variables and
counters can be coded by the simulation analyst to provide additional quantitative
results on the sample journeys, as long as required.
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4. Model refinement: after the process flow and activities have been defined, we in-
dicate the model parameters. They represent fitted probability distributions to be
applied at each activity (event) determining their behaviour expressed as service
times, and as inter-arrival time regarding the patients arrival (GP referrals). The
output probabilities on gateways are acquired from further statistical analysis over
the dataset concerning all patients’ journey. Once these timing information are set
for each component in the DES, we can run the model and perform refinements
on parameters, counters, variables, and overall behaviour to match the actual pro-
cess according to the validation framework adopted, until we have a coherent base
model checked through a statistic measurement of the dataset.

Before we simulate the CWT, we simplify the pathway as shown in Fig. 2. The fo-
cus is on finding the process bottleneck that may represent delays on the most common
procedures (events) the patients undergo from their first GP appointment to their first
treatment. Hence, for our model, we choose several events during the CWT pathway
based on the number of occurrences and categorised them in four activities in which
a patient can be at any time: (1) First appointment (First OP), such as Triage, Cancer
Outpatient appointment; (2) CT Scan (i.e., primary test before further tests); (3) Most
common further tests (i.e., CT Biopsy and PET Scan); and (4) MDM. The GP referral
and First treatment referral are considered as start and end events in the pathway, re-
spectively. After choosing and categorising these events, we update the current pathway.
Fig. 2 shows the simplified pathway with activities and events within the milestones.

Fig. 2. Simplified lung cancer pathway obtained by dataset analysis

Further, we compare the simplified pathway with the pathway captured from the
dataset. From the dataset, we find that the CWT does not strictly follow the guideline
regarding the pathway. Instead, the pathway is an iterative process as shown in Fig. 3.
From our observation, any event can happen in any particular order. Tests, appoint-
ments, and discussions are events that may happen several times in a patient journey.

Thus, Fig. 3 also represents the DES model. The start event ruled by patient inter-
arrival time distribution is GP referral. The end event ruled by a probability within an
exclusive decision gateway is First treatment referral. The remaining activities in the
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Fig. 3. Observed lung cancer pathway as a simulation (DES) model

model are First OP, MDM, CT Scan, CT Biopsy, PET Scan. These activities represent
scheduled events in the simulation core, and at each iteration they are also computed
as states reached during execution to further compile the entities routing statistics. We
added queues in the simulation behaviour to reproduce the actual CWT accumulated
delays, i.e., to buffer patients on each activity thus simulating the transitions where the
patients do not undergo any tests, appointments, or MDM but surely they are buffered
waiting for their next activity in the pathway.

We focus on determining the process activities (or in this case, also its events) and
the process flow (i.e., including activities partial ordering) as the other simulation pa-
rameters and components are correctly handled by the simulation framework Salabim3.

Salabim is an open-source object-oriented developed for DES of complex control in
logistics and production environments. It follows the methodology of process descrip-

3 More information on simulation framework can be found on https://www.salabim.org/
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tion as demonstrated in Simula and later in Prosim, Must and Tomas. As a python pack-
age, it allows the use of other powerful python libraries (e.g., for statistical processing,
presentation, machine learning). It also has an integrated animation engine which eases
the manual observation of process flow for the user (i.e., the healthcare professionals).

The model description we presented in Fig.3 is coded within the Salabim simulation
core, which is illustrated in Fig. 4 with important routines and main program flow.

Fig. 4. Simulation core flow (DES routines)

To determine the distributions for the simulation parameters, we use the Kolmogorov-
Smirnov test (kstest). The kstest compares the two sample statistical distributions. It is
a non-parametric test which does not require the data to follow the normal distribution.
When we compare the possible distributions (e.g., normal, exponential) to the dataset,
we get the D statistic and p value. The D statistic is the maximum absolute difference
between two distribution functions. By comparing the D statistic and p value for each
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Algorithm 1: FIT BEST DISTRIBUTION

Input: data
Result: best distribution, parameters
distributions← list of distributions

dist results← []

for dist in distributions do
parameters← dist.fit(data)

D, p← kstest(data, dist, parameters)

dist results.append((dist, D, p, parameters))
end

best distribution, parameters← best(dist results)

distribution (i.e., minimum value), we can determine the best fit distribution for the data.
The procedure is shown in Algorithm 1. The list of distributions is composed of 12 dis-
tributions, i.e., we identified six types of events, and for each event, we fit two distinct
distributions. One distribution for the time needed for patients to undergo the particular
event, and the second distribution is for the transition time between the current event to
the next one. Table 1 shows each activity and its service time distribution provided by
the dataset statistical analysis.

Table 1: Cancer Waiting Time pathway simulation information

EVENTS/ACTIVITIES FITTED PROBABILITY DISTRIBUTIONS

GP Referral arrival Interval time: norm (2.33, 1.76)
GP Referral transition Interval time: genextreme (-0.36, 4.77, 4.86)
First OP Service time: constant (1 day).
First OP transition Service time: genextreme (-0.23, 8.53, 7.56)
CT Scan Service time: genextreme (-0.73, 4.70, 4.73)
CT Scan transition Service time: genextreme (-0.45, 7.25, 6.27)
CT Biopsy Service time: exponweib (1.47, 1.94, -0.997, 14.92)
CT Biopsy transition Service time: genextreme (-0.13, 6.36, 4.18)
PET Scan Service time: genextreme (-0.037, 13.69, 4.29)
PET Scan transition Service time: genextreme (-0.13, 6.36, 4.18)
MDM Service time: constant (1 day)
MDM transition Service time: genextreme (-0.42, 8.65, 9.18)

The execution flow (refer to Fig. 3) schedules events to patients in a FIFO (First-
in/First-out) policy, and the flow can reach two possible decision gateways. The first
gateway represents a decision on the test(s) a patient will undergo during the pathway
(i.e., schedule new event). This one determines, from the set of events, which one is
the next to be scheduled in the simulation core, following the current simulation state
(i.e., current activity the patient is undergoing) and simulation time counters. The sec-
ond gateway determines a two-way probability that defines whether the entity (patient)
will remain in the pathway executing activities (i.e., schedule new event), or leave the
simulation since it received first treatment referral after MDM (i.e., schedule the end
event). For the output probabilities, we calculate the number of transition from each ac-
tivity (i.e., state). For each state, we set a different probability for determining the next
state (e.g., according to the dataset, more than 50% of the patients will undergo First
OP after GP Referral).
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Figure 5 show the transition probabilities matrix used within the first decision gate-
way. The second gateway presents a conditional probability determining if patient had
at least one MDM in his/her pathway. According to dataset, 49% of patients get their
first treatment after MDM.

Fig. 5. Transition matrix with routing probabilities (%)

Fig. 6. Number of services for the CWT events

Even though our dataset contains no information regarding the number of resources
(i.e., staff availability and the number of machines), we still incorporated the resources
as parameters to guide the events scheduling. This way, we simulate varied scenarios
of having more healthcare professionals and machines to the overall pathway activities.
We calculate the number of resources by observing the maximum number of services
and test orders that can happen in any days from our dataset. Fig. 6 shows the num-
ber of services for the event we selected from 2016 to 2019, i.e., 1,150 days (3-year
dataset). Though these numbers may not be an accurate representation of the number of
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resources, we can use it as starting point before we obtain the information (e.g., from
interviews, survey or new dataset) regarding the resources capacity and availability.

4 Model validation

The input data modelling provided fitted distributions to service times in all activities
as well as patient inter-arrival rate concerning GP referrals. Also, the decision gateways
probabilities are set with the compilation of all occurrences in the complete pathway, for
all patients in the dataset. These input parameters were also discussed with healthcare
professionals that actively participate in the CWT. After running the model for 365
simulated days, we observe the output (i.e., the sampling on the waiting time metric) in
order to compare with real data, i.e., the average waiting time.

(a) Real patients’ waiting time distribution (b) Simulated patients’ waiting time distribution

Fig. 7. Patients’ waiting time distribution in days

Fig. 7 shows the waiting time distribution for both real data and simulation. Because
the waiting time is not normally distributed, we use KS-test to compare both dataset
distributions [9]. The result is KS-statistic = 0.06984 and p-value = 0.152. We know that
if the KS statistic is small or the p-value is high, then we cannot reject the hypothesis
that the distributions of the two samples are the same.

Table 2: Patients’ waiting time descriptive statistic

MEASURES ACTUAL (DATASET) SIMULATED

Mean 64.42 65.87
Std deviation 37.67 39.04

25% percentile 38 37
50% percentile 61 56
75% percentile 82 84

From the KS-test result, the p-value is high (more than 5% level of significance).
Hence, we cannot reject that the distributions of the two samples are the same. The result
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of the descriptive statistic for both datasets as shown in Table 2 supports the close cor-
respondence between the simulated and observed outcome. Therefore, our model can
provide reasonable approximation and observation of the expected system behaviour.

5 Simulation Results

The purpose of creating a DES model of the CWT pathway is to simulate alternative
scenarios to analyse bottlenecks and assess how to improve the current process. Table 3
shows the simulation scenarios and their respective results. We built multiple simulation
models varying parameters such as Service Capacity (SC), Waiting Transition Time
(WTT), and Service Time (ST). Thus, for each scenario, we modify the number of
resources available (e.g., the number of machines), the transition time needed between
each event, and the time needed for the service execution, respectively. The applied total
simulation length is 365 days to collect statistics.

Results demonstrate that increasing in 50% the SC for MDM (Scenario (3)) or limit-
ing the WTT after MDM in 5 days (Scenario (4)) we achieve the best improvements for
patients, i.e., getting the first treatment before 62 days. Regarding Scenario (3), results
show 62% of the patients started the treatment before 62 days whilst in the Scenario 4
the result is even better with 74% of patients simulated. These results show that MDM
can be a bottleneck in the whole process because almost all patients will undergo MDM
before getting their first treatment.

Table 3: CWT pathway simulated scenarios and their results

# SIMULATED SCENARIOS MEAN WAITING TIME %

(varying parameters SC, WTT, and ST) 95% CI (lower, upper) (< 62days)

(1) 50% increase SC for First OP 67.06 (59.78, 74.32) 56

(2) limit WTT after First OP (5 days) 63.99 (56.72, 71.25) 60

(3) 50% increase SC for MDM 59.85 (53.89, 65.82) 62

(4) limit WTT after MDM (5 days) 49.45 (44.14, 54.76) 74

(5) 50% increase SC for CT Scan 63.91 (56.97, 70.85) 59

(6) decrease ST on CT Scan (max 5 days) 64.44 (55.75, 73.13) 59

(7) limit WTT after CT Scan (5 days) 64.30 (57.61, 70.98) 58

(8) 50% increase SC for CT Biopsy 65.97 (59.12, 72.81) 53

(9) decrease ST on CT Biopsy (max 5 days) 69.56 (58.72, 80.40) 51

(10) limit WTT after CT Biopsy (5 days) 65.81 (58.11, 73.51) 54

(11) 50% increase SC for PET Scan 65.80 (54.37, 77.38) 53
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(12) decrease ST on PET Scan (max 5 days) 65.03 (53.03, 77.05) 53

(13) limit WTT after PET Scan (5 days) 65.80 (54.37, 77.28) 53

We also observe that most delays are caused by the transition time instead of the
service time/availability of resources (i.e., from the First OP and MDM). This is pos-
sible to check on Table 1, for instance, regarding CT Scan activity with probability
distribution genextreme(-0.73, 4.70, 4.73) compared to CT Scan transition with distri-
bution genextreme(-0.45, 7.25, 6.27), where the service time may not be an issue in the
pathway, but the transition delay between services. The later can include another tasks
that may delay the CWT, like bureaucracy and scheduling, just to name a few.

Adding more resources (e.g., by increasing the service capacity) for CT Scan, PET
Scan or CT Biopsy has less impact on the overall patient waiting time, according to
the results from Scenario (5) to Scenario (13). However, comparing the improvements
in those three tests services show that CT Scan has better results when adding more
resources. Thus, maybe CT Scan has a bottleneck and it is the test activity that needs
more resources to not exceed 62 days period. As shown in Table 3, the probability of
MDM or First OP as the next state is higher when compared to the likelihood for the
tests (i.e., CT Scan, PET Scan, CT Biopsy ). Hence, the less impact.

Even though we can simulate the lung CWT events, our model has many limitations.
First, we do not consider the other services (e.g., MRI, Head CT, Pulmonary function
tests) by merging all of the other services into queue transition after the states. During
the simulation run, due to the fitted distribution function (e.g., exponential, gen-extreme)
the simulation result may contain more outliers compared to the dataset as shown in
Fig. 7. Also, the number of resources in our model is based on estimations.

In the future, we can improve the simulation by incorporating more services and
update the resource number and service time with the information given by the hospital
(e.g., by interview or another dataset extraction). We can also improve the simulation
by adding more detailed characteristics, such as adding the type of the first treatment
of the patients. This may increase the simulation accuracy because the average waiting
time is very based on the patients’ first treatment, as shown in Table 3.

6 Conclusion

Overall, simulations scenarios can provide valuable information for improvements in
the whole CWT process. Even with the model limitation such as the number of re-
sources (e.g., number of CT Scan machines), we can highlight the process bottleneck
related to the board meeting resources (e.g. doctors, professionals) availability and give
a close observation regarding alternative scenarios for the lung CWT.

The main bottlenecks of the lung CWT are related to the board meeting, i.e., the
MDM state and the MDM transition. Additionally, regarding the tests’ activities we
exposed that the CT Scan is the one which could improve the CWT if more resources
were available. Once we can add more activities, such as other tests, in the pathway from
collecting integral CWT dataset within hospital database, we can fine-tune the service
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time and number of resources. DES can help to provide insights on process bottlenecks
and improve the overall cancer care for the lung CWT. In future, more detail should be
added in the simulation model to gain a better understanding of the process behaviour
and clarify the transition delays in CWT.
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