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Abstract 

 

 The Archean ocean supported a diverse microbial ecosystem, yet studies suggest that 

seawater was largely depleted in many essential nutrients, including fixed nitrogen (N). This 

depletion was in part a consequence of inefficient nutrient recycling under anoxic conditions. Here 

we show how hydrothermal fluids acted as a recycling mechanism for ammonium (NH4
+) in the 

Archean ocean. We present elemental and stable isotope data for C, N, and S from shales and 

hydrothermally altered volcanic rocks from the 3.24 Ga Panorama District in Western Australia. 

This suite documents the transfer of NH4
+ from organic-rich sedimentary rocks into underlying 

sericitized dacite, similar to what is seen in hydrothermal systems today. On the modern Earth, 

hydrothermal fluids that circulate through sediment packages are enriched in NH4
+ to millimolar 

concentrations because they efficiently recycle organic-bound N. Our data show that a similar 

hydrothermal recycling processes dates back to at least 3.24 Ga, and may have resulted in localized 

centres of enhanced biological productivity around hydrothermal vents. Lastly, our data provide 

evidence that altered oceanic crust at 3.24 Ga was enriched in N and, when subducted, satisfies 

the elemental and isotopic source requirements for low N, but 15N-enriched, deep mantle N 

reservoir as sampled by mantle plumes. 

 

Introduction 

 

Early life on Earth thrived in an anoxic ocean where the supply of key nutrients was likely 

suppressed (Lyons et al., 2014). High rates of biomass burial on the seafloor due to scarcity of 

oxidants limited the recycling of organic-bound nutrients, which on the modern Earth is a major 

driver of biological productivity (Kipp and Stüeken, 2017; Kipp et al., 2021). Nevertheless, we 

have a notable record of life from the Archean eon (Buick, 2007), which opens the question of 

how biological productivity could be sustained under such nutrient-limited conditions? Trace 

element data indicate that the Archean ocean saw enhanced levels of hydrothermal activity 

(Viehmann et al., 2015). Hydrothermal circulation could therefore have played an important role 

in replenishing marine nutrient supplies. Today, hydrothermal metal fluxes are dispersed widely 
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across the ocean (Ardyna et al., 2019), and Precambrian banded iron formations indicate that a 

similar dispersal occurred throughout Earth’s history (Isley and Abbott, 1999). Further, there is 

evidence from modern black smokers that hydrothermal fluids are able to recycle sedimentary 

NH4
+ back into the water column (Lilley et al., 1993). However, it is unknown if hydrothermal 

circulation affected the availability of N in the Archean and if it could have mitigated the absence 

of respiratory biomass recycling that dominates the ocean’s nutrient budget today (Kipp and 

Stüeken, 2017). To address this question, we investigated N, organic C and S geochemistry in the 

3.24 Ga Panorama district in Western Australia. This area contains the oldest known volcanogenic 

massive sulfide deposit (VMS) (Vearncombe et al., 1995) and offers an opportunity to study 

hydrothermal N cycling in the Archean.   

 

Geological Setting 

  

The Panorama district on the East Pilbara craton in Western Australia comprises three 

geologic units (Fig. 1): (i) The Sulphur Springs Group, 3235-3238 Ma (Buick et al., 2002), is 

composed of a 2 km-thick sequence of volcanic rocks ranging from tholeiites at the base to 

dacites/andesites at the top. Rhyolite domes occur locally. Absence of explosive textures, and 

presence of pillow lavas, are interpreted as evidence for deep marine eruption below ca.1000 m 

(Vearncombe et al., 1995). The volcanic pile is capped by a 20 m-thick bed of silicified sediments, 

called the marker chert. VMS mineralisation is localised within the dacites and the marker chert 

horizon (Vearncombe et al., 1995). (ii) The Strelley granite intruded the Sulphur Springs Group in 

two phases, at 3239 ± 2 and 3238 ± 3 Ma (U-Pb zircon age), i.e. indistinguishable from the eruption 

of the extrusive volcanic rocks (Buick et al., 2002). The intrusion of granitoids likely acted as a 

heat source for hydrothermal circulation within the Sulphur Springs Group (Brauhart et al., 1998). 

Granophyres occur at the upper contact of the granitoids. (iii) The Soanesville Group turbidites 

unconformably overlay the Sulphur Springs Group and reach over 1.6 km in thickness (Van 

Kranendonk et al., 2006). Reworking of solidified marker chert rip-ups indicates a depositional 

hiatus between the Sulphur Springs Group and the Soanesville Group; however, the similarity in 

regional peak metamorphic grade (prehnite-pumpellyite facies, Brauhart et al., 1998) and in 

deformation suggest that the age difference is small (Buick et al., 2002). Cross-cutting mafic sills 

dated at 3200 Ma provides a minimum age for the Soanesville Group (Van Kranendonk, 2002). 

The entire succession is tilted by 50-60°, such that subsequent erosion has exposed a cross 

section of the paleo-seafloor (Brauhart et al., 1998). Relics of massive sulfide deposits occur at 

roughly 5-7 km spacing. Measurements of alteration minerals and oxygen isotopes have revealed 

that these intervals correspond to hydrothermal convection cells, consisting of recharge and 

discharge zones (Brauhart et al., 1998; Brauhart et al., 2000; van Ruitenbeek et al., 2012). The 

recharge zone closer to the seafloor shows enrichment in K associated with sericite alteration; 

deeper parts of the volcanic pile and the hotter discharge zone are characterized by (plagioclase-

)quartz-chlorite alteration (Brauhart et al., 1998; Brauhart et al., 2001). We selected 39 drill core 

samples from core VSD007 (21.1768° S, 119.2278° E), supplemented by 14 outcrop samples 

(Table A1). The drill core intersects turbidites from the Soanesville Group, the marker chert and 

the upper portion of sericitized dacite in the Sulphur Springs Group in a hydrothermal recharge 

zone. The outcrop samples capture quartz-chlorite (± plagioclase) alteration zones of basaltic-

andesitic volcanic rocks as well as the granophyre intrusion at the base of the volcanic pile. These 

samples were decarbonated and analysed for organic C, total N and total S content and isotopic 

composition with an EA-IRMS, following standard protocols (Appendix A1). For N-poor samples, 
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the abundance and stable N isotope values were verified with a second method employing offline 

sealed-tube combustion (Boocock et al., 2020) (Appendix A2). Where both methods were used, 

δ15N data agree to within 1.0 ‰ on average; TN abundances agree to within 20% and show 

identical trends (Figure A1). For consistency, the discussion is based mostly on the EA dataset; 

the sealed-tube combustion data are used where we were unable to obtain EA data (see Table A2). 

Major and minor element data for a subset of core samples were obtained from the Geological 

Survey of Western Australia. Outcrop samples were sent to Australian Laboratory Services in 

Dublin for major element analyses by ICP-MS (Appendix A3). 

 

Results 

 

 From the shales to the chert in core VSD007, total organic carbon (TOC) decreases by a 

factor of 17 from 4900 ± 1900 μg/g to 298 ± 198 μg/g (with one outlier of 1780 μg/g) (Fig. 2). 

Similarly, total nitrogen (TN) decreases by a factor of 16 from 91 ± 25 μg/g to 6 ± 6 μg/g (with 

one outlier of 54 μg/g). Between the chert and the sericitized dacite, TOC decreases by another 

factor 9 down to 20 ± 13 μg/g whereas TN roughly doubles relative to the chert to 15 ± 6 μg/g. TN 

concentrations in the sericitized dacite thus exceed those of the deeper volcanic pile and 

granophyre (around 4 ± 1 μg/g with slightly higher values of 8-14 μg/g towards the top). The low 

N concentrations found in these deeper parts of the Archean seafloor are comparable to those of 

unaltered oceanic basalts elsewhere (1.4 ± 1.3 ug/g, Johnson and Goldblatt, 2015). The sericitized 

dacite is clearly enriched in nitrogen down to at least 280 m and possible up to 650 m (Fig. 2, 3c), 

independent from TOC (Fig. 3a), with similar N concentrations to altered Phanerozoic oceanic 

basalts (Busigny et al., 2019). The observed difference between the sericite zone and the combined 

granophyre and quartz-chlorite discharge samples, which are furthest away from the recharge area 

and probably reflect magmatic background, is statistically highly significant (p < 10-5). Across the 

chert and altered dacite, K/Al ratios plot close to those of muscovite, interpreted to reflect 

sericitization (Fig. 3d). Quartz-chlorite(-plagioclase) phases define a different trend, reflecting 

scarcity of sericite in these rocks. 

δ15N values decrease slightly across the same interval from +1.5 ± 0.7 ‰ in the shales and 

+0.8 ± 1.7 ‰ in the chert to +0.1 ± 1.2 ‰ in the altered dacite and -3.6 ± 0.6 ‰ in the deeper 

volcanic pile (Fig. 2). The shale data agree with previous measurements of the unaltered 

Soanesville Group (Stüeken et al., 2015b) while the data from the deeper volcanic rocks are 

comparable to the mean mantle δ15N of -5 ± 3 ‰ (Cartigny and Marty, 2013). Total sulfur (TS) is 

heterogeneous across the section, driven by local enrichments of secondary sulfides. Broadly 

speaking, abundances are higher in the altered dacite and chert (1600 ± 2600 μg/g) than in the 

shales (700 ± 400 μg/g). C/S ratios are therefore highest in the shales (Fig. 2) with a slight increase 

from ca. 10 to 40 up section. Previous measurements of the upper, more distal Soanesville Group 

shows C/S ratios tightly clustered around a mean of 33 ± 7 (n = 9) (Stüeken et al., 2015a). Most 

samples analysed in this study fall below this value (Fig. 3b). δ34S values are relatively uniform 

throughout the section with a mean value of +2.0 ± 1.3 ‰, similar to previous data from distal 

Soanesville shales +1.1 ± 0.9 ‰ (Stüeken et al., 2015a) and reflecting a largely volcanic origin.  

 

Discussion 

 

Hydrothermal ammonium mobilization 
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 Sericitization of the dacite (Fig. 3d), silicification of the lowermost sedimentary unit (the 

marker chert) and enrichment in S throughout most of the drill core reflect extensive hydrothermal 

fluid flow through this sequence shortly after emplacement at 3.24 Ga (Huston et al., 2001; 

Johnson and Wing, 2020). Hydrothermal circulation has altered at least the lowermost 20-50 m of 

the Soanesville Group in this area, based on the relatively low C/S ratios compared to background 

values in distal parts of the Soanesville Gp (Stüeken et al., 2015a). Oil inclusions in hydrothermal 

barite deposits in the Sulphur Springs Gp have been interpreted as evidence of hydrothermal 

alteration of organic matter based on the isotopic similarity in δ13C to the organic-rich shales of 

the Soanesville Gp (Rasmussen and Buick, 2000). Hence, there is extensive evidence for 

hydrothermal fluid circulation through both the volcanic and sedimentary packages. 

 The interaction between organic matter and hot fluids alters organic amines into aromatic 

rings permitting the mobilisation of NH4
+ (Ader et al., 2006; Boudou et al., 2008). NH4

+ can 

migrate away from source rocks (Koehler et al., 2019), and due to the +1 charge and similar radius 

to Rb+ and K+, NH4
+ can be incorporated into potassic phyllosilicate phases (e.g., Schroeder and 

McLain, 1998). In the case of Sulphur Springs, the sericite in the upper few hundred meters of the 

volcanic pile (Brauhart et al., 1998; van Ruitenbeek et al., 2012) provides the most likely mineral 

host for liberated NH4
+ sourced from the organic-rich shales in the Soanesville Gp. We note that 

N and K are not correlated in the sericite zone (r2 = 0.001, Figure 3c); however, if the NH4
+ was 

derived from organic-rich sediments, it likely postdates the onset of sericitization, which has been 

linked to downwelling of K-bearing seawater and probably started before sediment deposition 

(Brauhart et al., 2001). Correlation between N and K abundances is therefore not expected. 

Importantly, our data reflect hydrothermal transport of NH4
+ from organic-rich sediments into the 

upper oceanic crust, independently from organic C as evidenced by the very low C/N ratios of the 

altered oceanic crust (Fig. 2). Hydrothermal mobilization of organic N does not impart a significant 

isotopic fractionation (Boudou et al., 2008), consistent with the close isotopic match between the 

Soanesville shales and the Sulphur Springs sericitized dacite. In contrast, the deeper parts of the 

Sulphur Springs Gp and the intrusive granophyre show δ15N data that are isotopically 

indistinguishable to Earth’s mantle (Cartigny and Marty, 2013). These samples may thus reflect 

the presence of primary magmatic N that has not been overprinted by hydrothermally-sourced 

NH4
+. If so, then hydrothermal N enrichment appears to be present in at least the upper 100 m of 

the Archean seafloor, where the δ15N values are several permil heavier than the mantle value. This 

conclusion matches observations from the modern Pacific ocean, where hydrothermal fluids have 

enriched the upper 150 m of oceanic crust in N to ca. 20 μg/g (Li et al., 2007). 

 

Hydrothermal ammonium recycling 

Today, hydrothermal vent fluids that are discharged from the modern seafloor are enriched 

in NH4
+ up to 20 mM concentration if the vent site is associated with a sedimentary cover (Von 

Damm et al., 1985; Lilley et al., 1993). This concentration is 2-3 orders of magnitude greater than 

background levels of fixed N in the open ocean and in anoxic marine basins such as the Black Sea 

(Brewer and Murray, 1973). Hydrothermal convection is therefore evidently more efficient in 

mobilising NH4
+ from organic matter than diffusive processes from sediments alone. While NH4

+ 

can build up to high concentrations in sedimentary pore-waters and support diverse ecosystems 

locally (D'Hondt et al., 2004), vents can disperse nutrients over hundreds of kilometers and into 

the photic zone (Ardyna et al., 2019), making them basin-scale nutrient sources. Based on our 

data, we postulate that hydrothermal NH4
+ recycling operated already during the Archean. 

Hydrothermal vents of the Sulphur Springs Gp thus likely discharged NH4
+ in the Archean ocean 
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(Fig. 4), recycled from the lower Soanesville sedimentary package. This is consistent with previous 

work which links the hydrothermal expulsion of oil and pyrobitumen in discharge zones of the 

Sulphur Springs Gp to the Soanesville shales (Rasmussen and Buick, 2000). Microfossils 

associated with the ore deposit indicate that these vents were inhabited (Rasmussen, 2000), and 

therefore it is conceivable that these organisms were taking advantage of local nutrient supplies 

from the vent. Hence these vent sites may have created basin-scale hotspots of biological 

productivity in an anoxic world where nutrient recycling by respiration was otherwise suppressed 

(Kipp and Stüeken, 2017). 

   

The source of 15N-enrichment in mantle-derived samples? 

Lastly, our data provide an Archean example for N transfer from organic matter into 

oceanic crust, which has implications for interpreting the record of N in mantle-derived igneous 

rocks. Previous studies documented N with sediment-like δ15N values (range from -2 to +8 ‰, 

Cartigny and Marty, 2013) in mantle plume-derived ocean island basalts (OIB) and carbonatites 

from the Kola peninsula (Russia). A difficulty in explaining these data has been the low abundance 

of N in these rocks (< 2 μg/g), which is orders of magnitudes lower than in sedimentary source 

rocks (560 ± 230 μg/g) (Johnson and Goldblatt, 2015). A potential mechanism for transferring 

trace amounts of sedimentary N into the mantle is hydrothermal enrichment of oceanic crust, 

followed by subduction. This model has been posited for the Phanerozoic (Halama et al., 2014; 

Busigny et al., 2019), and our data from the Panorama District reveal that during the Archean 

transfer of NH4
+ from sediments into altered oceanic crust was significant and perhaps similar in 

magnitude to the modern. The subduction of hydrothermally altered igneous oceanic crust in the 

Archean is therefore a feasible mechanism for generating N-depleted but 15N-enriched mantle 

domains in the Archean mantle. 

 

Conclusions 

 

Our data reveal that hydrothermal N cycling dates back to at least 3.24 Ga. Similar to today, 

hydrothermal fluids in the Archean were able to mobilise NH4
+ from organic-rich sediments. 

However, unlike today, this recycling mechanism of fixed N may have represented an important 

basin-scale nutrient source in an otherwise nutrient-starved world. Furthermore, our data provide 

evidence that small amounts of sedimentary NH4
+ were trapped in altered oceanic crust and may 

have constituted a relatively N-poor source flux with sedimentary δ15N signatures into Earth’s 

mantle over the past few billion years. 
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Figures 

 

 

 
 

Figure 1: Map of the Panorama District with sampling sites and inferred hydrothermal circulation. 
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Figure 2: Recharge zone profiles. 100-280m = core VSD007, 400-2100m = outcrop. Error bars 

are mostly smaller than symbols. 
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Figure 3: (a) TN vs. TOC. (b) δ34S vs organic C to total S ratios. Distal shale data from Stüeken 

et al. (2015a). (c) Total N vs. K, excluding one chert point at 54 µg/g N and 1.02 wt.% K. (d) K 

vs. Al. (e) δ15N versus C/N ratios. (f) δ15N versus TN abundances. 
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Figure 4: Schematic of hydrothermal NH4
+ transport. NH4

+ is mobilised from lower Soanesville 

sediments. Some NH4
+ is trapped in sericitized volcanic rocks. Deeper chloritized rocks are N-

poor. As in modern vents, significant NH4
+ is discharged into the ocean. 
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