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Abstract. Dung beetles (Coleoptera: Scarabaeinae) mediate many ecological functions that
are important to maintain the ecosystem functioning of terrestrial environments. Although
a large amount of literature explores the dung beetle-mediated ecological processes, little is
known about the individual contribution from distinct species. Here, we aimed to examine
the intra and interspecif c variations in dung burial rates performed by two roller dung
beetle species (Canthon smaragdulus Fabricius, 1781 and Canthon sulcatus Castelnau, 1840).
Furthermore, we evaluated the relationship between dung beetle biomass and dung burial
rates. We set up a laboratorial experiment with three treatments (two males, two females,
and a couple) and 10 replicates per treatment for each dung beetle species, and dung
burial rates were measured after exposing 100 g of mixed pig and human excrement for
48 hours. Our results demonstrate that dung burial rates of males, females, and couples
within each species do not differ. However, C. smaragdulus individuals performed a larger
dung burial than C. sulcatus individuals did. In addition, we found no effect of individual
biomass on the amount of dung burial on intra and interspecif c levels. These f ndings
highlight the need for further research considering that distinct species, even from the same
genus, may perform different rates of ecological processes, as well as about the importance
for considering the beetle biomass when measuring their ecological functions. We call
for studies to f ll in the knowledge gap about the individual species’ contribution to the
maintenance of different dung beetle-mediated ecological processes.
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Introduction

Anthropogenic disturbances have caused wide-
spread species extinctions, with further conse-
quences on ecosystem processes and ecological
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services triggered by organisms (Hooper et al.,
2005; Kremen et al., 2007). Much of the debate
about the impacts of biodiversity loss on ecosys-
tem functioning has thus far focused on higher
organizational levels by considering the role of
species groups instead of those from individual
species and organisms (Loreau et al., 2001; Bellard
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et al., 2012). However, understanding the functional
role of organisms and individual species becomes
crucial to further predict their ecological importance
and contribution to ecosystem functioning processes
(Covich et al., 1999; Thrush et al., 2006).

Despite the almost exponential increase in re-
search on ecological functions and further benef ts to
human well-being and environmental maintenance,
contributions at individual or even specif c levels
remain poorly studied. On the other hand, func-
tional groups have been used to better represent the
relationship between functional diversity and eco-
system functioning (Slade et al., 2007; Nichols et al.,
2013a; Griff ths et al., 2016a). Overall, studies have
shown that the loss of both taxonomic and func-
tional diversities leads to negative effects on ecosys-
tem functioning (Hooper et al., 2005), but ecological
processes in perturbed ecosystems can also be buf-
fered by functionally redundant species (Barragán
et al., 2011). Few studies, however, have explored the
individual contribution and the inf uence of the sex
of organisms on ecosystem processes; interspecif c
variation and species intraspecif c differences have
also been poorly considered (Wohlfahrt et al., 1999;
Crutsinger et al., 2006; Carvalho et al., 2018).

Dung beetles (Coleoptera: Scarabaeidae: Scara-
baeinae) are a recognized bioindicator group used
for ecological investigations (Barlow et al., 2016;
França et al., 2016a, b) and for research on ecosystem
functioning (Braga et al., 2013; Griff ths et al., 2015,
2016a). These detritivore beetles mediate a variety
of relevant ecological processes, such as secondary
seed dispersal, nutrient cycling, soil bioturbation,
and parasite suppression (reviewed by Nichols
et al., 2008). The ecological functions performed
by these insects mainly result from their nesting
and resource allocation strategies. Among dung
allocation strategies, roller (or telecoprid) dung
beetles are those that make dung balls and roll them
for distances ranging from a few centimeters to
several meters. Once the nesting place is reached,
the balls are buried in tunnels and chambers that
have been built (Halffter and Matthews, 1966;
Halffter and Edmonds, 1982), which benef ts the
soil environment and plant productivity (Bang et al.,
2005; Yamada et al., 2007; Griff ths et al., 2016a).

Here, we used a laboratorial experiment to
investigate the intra and interspecif c contributions
of two roller dung beetle species (Canthon (Go-
niocanthon) smaragdulus Fabriciuys, 1781 (Nunes
et al., 2018) and Canthon sulcatus Castelnau, 1840)
to the dung burial function. Canthon (Peltecanthon)
sulcatus is a diverse genus of dung beetle, distributed
throughout the American continent (Vaz-de-Mello,
2000; França et al., 2016c). However, the ecology and
behaviour of this genus is poorly known (Vaz-de-
Mello et al., 2014). In particular, we evaluated the
relationship between the dung beetle individuals’

biomass and the dung burial rates they performed,
as this function is considered to be one of the
most important dung beetle-mediated ecological
processes. Dung consumption and burial can lead
to other crucial incidental functioning processes
(Nichols and Gardner, 2011; França et al., 2018),
such as secondary seed dispersal (Santos-Heredia
and Andresen, 2014; Griff ths et al., 2015), microbial
transport across the soil surface (Slade et al., 2016),
and soil bioturbation (Nichols et al., 2008; Braga et al.,
2013). We assessed how dung beetle biomass would
inf uence dung burial rates, as this functional trait
has been shown to inf uence dung beetle-mediated
ecological processes (Gregory et al., 2015). We
hypothesized that (1) males, females, and couples
of the same species remove dung at different rates;
(2) different species remove dung at different rates;
and (3) there is a positive relationship between
individual biomass and the amount of dung burial
on intra and interspecif c levels.

Materials and methods

Study region

We sampled individuals of the dung beetle
species C. smaragdulus and C. sulcatus in January
2015, during the rainy season, at RioDoce State Park,
in the state of Minas Gerais, southeastern Brazil
(19°48 18 –19°29 24 S and 42°38 30 – 42°28 18 W).
This state park has an area of approximately 36,000
ha and is considered one of the largest preserved
Atlantic forest areas within the state of Minas Gerais
(Coelho and Ribeiro, 2006). Although it presents a
mosaic of vegetation categories, it is considered a
tropical rainforest domain, classif ed as submontane
semidecidual stationary forest (Antunes, 1986). The
region presents a transition of mesothermic humid
tropical and mesothermic rainy tropical climate
(Antunes, 1986), with a mean temperature between
20 °C and 22 °C and a well-def ned dry season
fromApril to September and a rainy season between
October and March (Antunes, 1986).

Sampling design

We used 25 pitfall traps (25 × 5.2 cm), placed
linearly 25 m apart in a transect within a forest
fragment. Pitfall traps were made by cutting the
neck off from 2-Lplastic bottles. The tapering part of
the bottlewas cut off and placed upside down on the
top of the bottle, forming a funnel, which allowed
the beetles to be trapped while also preventing
them from escaping. Traps were buried with their
openings at the ground level. We placed a small
amount of soil and leaf litter inside each pitfall
trap (below the funnel) to accommodate and avoid
stressing the trapped dung beetles. To attract the
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dung beetles, we placed a small container with 25 g
of pig dung above each trap andweused a plastic lid
supported by bamboo sticks as a rain cover. All traps
remained in the f eld for 72 hours and dung beetles
were collected every 24 hours, when the traps were
rebaited. Living dung beetles collected were kept in
plastic containers (15 × 9.4 cm) half f lled with a
humidif ed mixture of soil (70%) and sand (30%).

After f eldwork, live dung beetles were trans-
ferred to the Insect Ecology and Conservation
Laboratory at the Federal University of Lavras
(Brazil), where containers were kept within a
controlled room (humidity 65%± 10%, temperature
26 °C±1 °C, and 12 h/ 12 h light/ dark photoperiod).
The beetles were reared following the methodology
of Favila (1993).

Selection of individual dung beetles

Prior to the experiment, individual dung beetles
were f rst separated by species and then by sex.
Due to the absence of sexual dimorphism in C.
smaragdulus specimens, we opted to separate males
from females by observing their reproductive beha-
viour, as described by Belles and Favila (1983) and
Favila (2001). Males made dung balls with resources
that were provided to them. We then observed
that they stood on the ground, raising their bodies
while keeping both hind legs extended, which
was interpreted as the moment when pheromones
are emitted. When a female approached, sexual
recognition was made through contact between
heads and antennae. The female then climbed onto
the resource ball and the male rolled it to a location
where copulation occurred. Here, we observed the
male approaching the female andmounting her. The
female remained in a favourable position for him
to attempt copulation. We used this attempt by the
male to copulate with the female to consider them
as a couple and to identify each sex. All individuals
that failed to display reproductive behaviour were
excluded from the trial.
Canthon sulcatus specimens present sexual di-

morphism, which allowed us to separate indi-
viduals by observing their anterior tarsal claws:
males present bidentate tarsal claws, whereas the
female’s anterior tarsal claw is simple dentate. We
further dissected 10 individuals of each sex from
both species to conf rm our sex classif cation. The
high number of matches (100%) conf rmed that our
techniques were precise for sexing this dung beetle
species.

After sexing the beetles, we separated 10 couples,
20 males, and 20 females of each species, and placed
them in separate plastic containers. There were 10
containers with one couple in each container, 10
containers with two males each, and 10 containers
with two females each.

Experimental design for dung burial evaluation

To evaluate dung burial capacity (f rst hy-
pothesis), three treatments were performed with
two individuals of the same species: males (MM),
females (FF), and distinct-sex couples (MF). A total
of 10 replicates were performed for each treatment,
totalling 30 replicates for each species (for the second
hypothesis). Each repetition comprised a bucket
with 5 kg of a humidif ed substrate, prepared with
70% soil and 30% sand. Two individuals of each
respective treatment (MM, FF, andMF) of one of the
species and 100 g of pig dung mixed with human
excrement (80:20 pig-to-human ratio, following
Marsh et al., 2013) were placed in each bucket, which
was then covered by canvas to prevent any beetle
from escaping. Before being placed in a bucket, the
beetle biomass was weighedwith a Shimatzu AY220
balance scale (Shimadzu Corporation, Kyoto, Japan)
accurate to within ± 0.0001 g to further analyse it
(third hypothesis). Beetles were not fed for 7 days
prior to the experiment, and beetle-mediated dung
burial was quantif ed 48 hours after the beginning of
the experiment.

We prepared 10 additional buckets following the
same methodology above, but without placing any
beetle, to account for any humidity loss/ gain that
could inf uence the measurement of dung removal
rates. In each of these ‘humidity control’ buckets, the
changes in humidity from the dung were calculated
and themean valuewas subtracted from the amount
of dung buried by the beetles in each replicate. The
positions of the buckets, both those corresponding
to the treatments and those of the humidity control,
were randomized to avoid any inf uence of bucket
placement.

Statistical analysis

All data were analysed using the software R (R
Core Team, 2017). A general linear model assuming
quasi-Poisson distribution was used to examine
whether the biomass varied among treatments
within each species (males, females, and couples)
or between species (C. smaragdulus and C. sulcatus).
The average biomass of the two individuals of each
bucket was considered the dependent variable, and
the treatment levels and the species of beetle were
the explanatory variable. We used general linear
models (GLMs) assuming quasi-Poisson distribu-
tion to examine whether the dependent variable
(dung burial rates) varied among treatments (three
levels:MM, FF, andMF) and the twoCanthon species
(C. smaragdulus and C. sulcatus) (f rst and second
hypothesis). Biomass was used as a covariable in
the model, because it could inf uence the response
variable (third hypothesis). On both models when
signif cant differences were detected in formed
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interactions, we performed a contrast analysis
to determine which categories were different in
relation to the response variable. All models were
submitted to residual analysis to verify the ad-
equacy of distribution errors (Crawley, 2002, 2013).
The quasi-Poisson distribution was performed as
recommended to deal with overdispersed data (Ver
Hoef and Boveng, 2007). We performed Shapiro–
Wilk tests of normality with the response variable
and model residuals in the shapiro.test function in
stats package (R Core Team, 2017). The signif cance
level of the analysis was alpha = 0.05.

Results

Biomass in the intra and interspecif c levels

There were no signif cant differences in mean
biomass when we considered the interaction of
treatment with C. smaragdulus (MM pairs 0.241 ±
0.012 g; FF pairs 0.246 ± 0.007 g; 0.230 ± 0.011
g) (Fig. 1A) and with C. sulcatus (MM pairs 0.149
± 0.004 g; FF pairs 0.163 ± 0.006 g; MF pairs
0.162 ± 0.006 g) (F2,54 = 1.033; P = 0.363) (Fig. 1B).
However, the mean biomass of individuals differed
between species (F1,56 = 152.235, P < 0.01). Canthon
smaragdulus individuals (0.239±0.006 g) had greater
biomass than C. sulcatus individuals (0.156± 0.04 g)
(Fig. 1C).

Dung burial rates in the intra and interspecif c levels

We did not f nd signif cant differences in mean
dung buried when we considered the interaction of
treatment with C. smaragdulus (MM pairs 19.91 ±
7.22 g; FF pairs 17.63 ± 4.84 g; MF couples 18.82 ±
3.52 g; mean ± SE) and with C. sulcatus (MM pairs
11.74 ± 2.28 g; FF pairs 8.84 ± 2.94 g; MF couples
7.95 ± 1.23 g; mean ± SE) (F2,53 = 0.49; P = 0.61)
(f rst hypothesis). However, supporting our second
hypothesis, we found a difference in the amount
of dung buried by species, where C. smaragdulus
(18.78 ± 3.03) buried more dung than C. sulcatus
individuals (8.07 ± 1.38; mean ± SE) (F1,58 = 7.12,
P < 0.01) (Fig. 2).

Relationship between individual biomass and the
amount of dung burial on intra and interspecif c levels

No signif cant effect on the amount of dung
buried was observed when considering the interac-
tion between the biomass of the beetles, treatments
within each species, and species (F2,48 = 0.05, P =
0.95). We found no effect on the amount of dung
buried when we considered the interaction between
biomass and C. smaragdulus and C. sulcatus (F1,52 =
0.21, P = 0.65) (third hypothesis).

Fig. 1. Mean and standard error of the biomass of
individuals (A) males, females, and couples of Canthon
smaragdulus, (B) males, females, and couples C. sulcatus,
and (C) of C. smaragdulus and C. sulcatus. Different
letters indicate statistical difference between treatments as
indicated by GLM at 5% signif cance, n = 60.

Discussion

Our study provides empirical evidence that dif-
ferent dung beetle species remove different amounts
of dung, therefore supporting previous research
demonstrating that bigger beetles may perform
larger amounts of dung beetle-mediated ecological
functions (Gregory et al., 2015). Dung consumption
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Fig. 2. Mean and standard error of the amount of dung
buried by Canthon smaragdulus and C. sulcatus. Different
letters indicate statistical difference between treatments as
indicated by GLM at 5% signif cance, n = 60.

and burial by dung beetles are key processes for
the occurrence of other ecological functions, such as
soil bioturbation from the construction of tunnels,
seeddispersal, and the increase in plant productivity
(Nichols et al., 2008; Braga et al., 2013; Griff ths et al.,
2015; Santos-Heredia et al., 2016; Braga et al., 2017).

We found no differences in dung burial rates
by males, females, or couples within each species.
Previous research has shown that dung beetle sex
is an important driver for tunnel depth (Gregory
et al., 2015) and that dung burial behaviour may
change between sexes (Emlen, 1997). However, the
resource offered was incompletely buried in either
of our replicates. This demonstrates that the amount
of dung offered in this experiment may be too
large, and that there was no competition between
the individuals placed within each bucket. While
we concede that beetles in this experiment did not
reallocate the resource as quickly as they usually
do (Hanski and Cambefort, 1991), future studies are
needed to evaluate the effect of different densities of
beetle individuals on dung burial rates.

Our results also demonstrate that the biomass of
males, females, and couples of each species had no
relation to dung burial within the examined species.
Larger intraspecif c variation in biomass within a
species increases the probability of relationships
between the individual biomass and the functions
they perform (Braga, unpublished observations). If
this variation in intraspecif c biomass is low (or does
not exist), the relationship of biomass to ecological
function will most likely not exist. This is a likely
explanation for the patterns found here, as therewas
no intraspecif c variation in the biomass frommales,
females, and distinct-sex couples in this experiment.

Individuals of C. smaragdulus performed more
dung burial than C. sulcatus. Although C. smarag-

dulus species has a higher biomass than C. sulcatus,
our results demonstrate that the biomass of the
individuals of each species had no direct relation to
dung burial rates. In studies with dung beetles at the
community level, the biomass of individuals in the
community has had a relation to the amount of dung
buried by the beetles (Andresen, 2002; Slade et al.,
2007; Nichols et al., 2013b). Communities that have
dung beetles with greater biomass have a higher
capacity for dung burial (Horgan, 2001; Anduaga,
2004). Although this relationship is valid in studies
with dung beetle communities, it did not exist in the
species weworkedwith. The biomass of individuals
will only be an ecologically considerable trait for
dung burial in those species with large biomass
and presenting a high capacity for dung burial,
like those of the genusDichotomius (Andresen, 2003;
Anduaga, 2004; Braga, unpublished observations).
This demonstrates the need for research using other
factors, such as different functional traits and envir-
onmental contexts in which the beetles are found
(Nichols et al., 2013b; Griff ths et al., 2015, 2016b).

Our work addressed the individual contribution
of two roller dung beetle species to dung burial rates
and demonstrated that each species may contribute
differently. In addition, the dung burial rates were
indirectly related to the biomass of each species,
but the larger species performed higher dung burial
rates. Thus, it is important to understand the beha-
viour and ecology of the species and their inf uence
on the capacity for dung burial, one of the main
ecological functions performed by dung beetles
(Nichols et al., 2008). Further studies are needed to
evaluate the contribution of other individual species
of dung beetle for dung burial. We believe that f ne-
scale data based on individuals can be useful for
better understanding and valuating the ecological
function provided by dung beetles. Further studies
are needed to evaluate the contribution of other
individual species of dung beetle for dung burial
and the other ecological processes they mediate.
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