
Llama - Low Latency Adaptive Media Algorithm
Tomasz Lyko, Matthew Broadbent, Nicholas Race

Lancaster University, United Kingdom
{t.lyko, m.broadbent, n.race}@lancaster.ac.uk

Mike Nilsson, Paul Farrow, Steve Appleby
British Telecommunications plc, United Kingdom
{mike.nilsson, paul.farrow, steve.appleby}@bt.com

Abstract—In the recent years, HTTP Adaptive Bit Rate (ABR)
streaming including Dynamic Adaptive Streaming over HTTP
(DASH) has become the most popular technology for video
streaming over the Internet. The client device requests segments
of content using HTTP, with an ABR algorithm selecting the
quality at which to request each segment to trade-off video
quality with the avoidance of stalling. This introduces high
latency compared to traditional broadcast methods, mostly in
the client buffer which needs to hold enough data to absorb
any changes in network conditions. Clients employ an ABR
algorithm which monitors network conditions and adjusts the
quality at which segments are requested to maximise the user’s
Quality of Experience. The size of the client buffer depends
on the ABR algorithm’s capability to respond to changes in
network conditions in a timely manner, hence, low latency live
streaming requires an ABR algorithm that can perform well
with a small client buffer. In this paper, we present Llama -
a new ABR algorithm specifically designed to operate in such
scenarios. Our new ABR algorithm employs the novel idea of
using two independent throughput measurements made over
different timescales. We have evaluated Llama by comparing it
against four popular ABR algorithms in terms of multiple QoE
metrics, across multiple client settings, and in various network
scenarios based on CDN logs of a commercial live TV service.
Llama outperforms other ABR algorithms, improving the P.1203
Mean Opinion Score (MOS) as well as reducing rebuffering by
33% when using DASH, and 68% with CMAF in the lowest
latency scenario.

I. INTRODUCTION

Video streaming has been the largest service on the internet
for years and it continues to grow, this includes live video
streaming, as seen in the most recent Cisco report [1].

At the moment, many video streaming services use HTTP
Adaptive Streaming technologies such as MPEG Dynamic
Adaptive Streaming over HTTP (DASH) [2], where content is
split into short segments (usually from 2-10 seconds), encoded
at multiple bit rates and then hosted on a standard HTTP
server. A manifest file is created that indicates the encoded
bit rates and where the content can be obtained. The client
requests the manifest file, then makes HTTP requests for
consecutive segments of content at bit rates selected by an
Adaptive Bit Rate (ABR) algorithm, which takes into account
measurements of the network conditions to maximise the
Quality of Experience (QoE) of the viewer. When using DASH
for live content services, the client can only request segments
after they become available on the server, as indicated by the
manifest file.

The use of DASH for live video streaming usually causes
high end to end latency compared to traditional broadcast

methods due to client buffering to queue segments prior to
playback to allow time for the ABR algorithm to adapt changes
in network conditions. If the client buffer is depleted, the
playback will stall, and the QoE will be reduced. For live
streaming, the maximum amount of data that could be queued
in the client buffer depends on the end to end latency, as
only data that has been captured and encoded but not yet
presented to the user can be buffered. For example, if the
client is playing content three segment durations behind live,
the maximum client buffer fill is three segments. Recently,
the Common Media Application Format (CMAF) [3] has been
standardised, enabling segments to be divided into chunks to
aid low latency live streaming.

In this paper, we present Llama, an ABR algorithm specif-
ically designed to operate at low buffer levels to offer better
QoE for low latency live streaming scenarios. It can be used
with HLS, DASH and CMAF. We compare the performance
of Llama against four popular ABR algorithms in terms of
multiple QoE metrics, across multiple client settings, and in
various network scenarios based on CDN logs from a com-
mercial live TV service. In order to perform such an extensive
evaluation, we have developed and verified a simulation model
which supports live DASH and CMAF.

II. BACKGROUND AND RELATED WORK

A. ABR Algorithms

Bentaleb al. [4] published a survey of ABR algorithms used
in HTTP Adaptive Streaming. They outlined the main goal of
an ABR algorithm is to maximise viewer QoE. This involves
trying to maximize the average video quality, while trying to
minimize the number of rebuffering events, the time spent in
the rebuffering state, and the frequency of changes of video
quality. They note that most of these goals are in competition
with each other, and therefore require a reasonable trade-off.
This survey classifies client-side ABR algorithms into the
following five classes: available bandwidth-based, playback
buffer-based, proprietary solutions, mixed, and Markov Deci-
sion Process (MDP)-based. Available bandwidth-based ABRs
select video quality based on estimates of the available band-
width, usually by calculating the throughput of the previously
fetched segment(s). Playback buffer-based ABRs select video
quality based on the buffer level alone, usually only selecting a
video quality once its buffer level threshold has been reached.
Proprietary solutions include ABR algorithms from adaptive
streaming solutions and player implementations, such as Apple
HTTP Live Streaming (HLS) [5]. Mixed ABR algorithms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/396174405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


include those that take into account multiple metrics such as
bandwidth estimation, buffer level, and segment duration when
selecting video quality. MDP-based ABR algorithms select
video quality using the Markov Decision Process.

Popular ABR algorithms mentioned by the survey above
are: Panda [6], Festive [7], MPC [8], and Bola [9]. Panda
is an available bandwidth-based ABR which uses a probe-
and-adapt approach similar to TCP’s congestion control. It
determines a target average data rate, based on which the
appropriate video quality is selected. It monitors throughput
and adjusts the target average data rate accordingly, as well as
calculating the inter-request time for each segment to allow
the buffer level to move towards the configured minimum
buffer level. Festive is a mixed ABR which employs a random
scheduler and estimates bandwidth using a harmonic mean.
Harmonic mean is robust to outliers, which improves band-
width estimation; additionally, the random scheduler requests
segments independently of player’s start time, which improves
the fairness between players operating in parallel. MPC is
a mixed ABR which solves an optimization problem for a
number of segments ahead and uses throughput prediction. It
requires both throughput estimation and buffer level to solve
this, optimizing towards a set of defined QoE metrics. We have
used the RobustMPC variant of MPC, but will use the term
MPC for the remainder of this paper. Bola is a playback buffer-
based ABR that employs Lyapunov optimization techniques in
order to minimize rebuffering and maximize video quality. It
primarily uses buffer level to solve this optimization problem
to calculate the appropriate video quality for future segments.

B. QoE Factors

Quality of Experience factors in video streaming are an
active area of research. Allan et al. [10] conducted a subjective
test with 630 participants to investigate how different QoE
factors affect users. They concluded that rebuffering events
were the most annoying to users. They also found that two
short rebuffering events were more annoying to users than one
longer rebuffering event of the same duration. Ghadiyaram
et al. [11] found that rebuffering events at the beginning
of the stream were less annoying to users than at the end,
and attributed it to the hysteresis affect first observed by
Seshadrinathan et al. [12].

Garcia et al. [13] published a survey of QoE user studies.
They concluded that rebuffering events have the most neg-
ative impact on overall QoE. Frequent quality switches also
decrease the overall QoE, as do abnormal quality changes;
however, gradual quality changes can be acceptable to some
users. The survey also concluded that users are willing to
accept longer video start-up delay if it leads to less rebuffering.

Barman et al. [14] published the most recent survey on QoE
factors in HTTP Adaptive Streaming. They concluded that re-
buffering events are the most annoying to users, with both the
duration and frequency of rebuffering events being relevant,
and hence concluded that an ABR algorithm should aim to
minimize both. They also noted some research suggesting that
very short rebuffering events are not noticeable, and therefore,

are less annoying to users. The survey mentions switching
quality as another important QoE factor, where a high number
of switches can have a negative impact on the overall QoE.
They also noted that multi-level quality switches, where the
quality jumps across more than one quality level, can also be
detrimental to overall QoE.

C. Latency

Shuai et al. [15] found, that the main contributor to latency
in adaptive streaming over HTTP is the client buffer. This
buffer holds fetched video segments that are queued for
playback. Its size is determined by an ABR algorithm’s ability
to adapt to changing network conditions in a timely manner.
It needs to be large enough to give the ABR algorithm enough
time to measure network conditions and change video quality
before any rebuffering occurs. Hence, an insufficient buffer
size will lead to a high level of rebuffering events.

Lohmar et al. [16] outlined four sources of delay that are
specific to HTTP streaming. The most significant is again the
client buffer, and the other three are as follows. Asynchronous
fetching of media segments, where a client may issue an
HTTP GET request for a segment some time after it is
made available. HTTP download time, where segment size
and available bandwidth determine how fast a segment can be
fetched. Segmentation delay which is the result of video being
divided into segments which introduces a delay of at least one
segment duration. CMAF reduces this source of delay to at
least one chunk duration as segments can be further divided
into smaller units [3]. Swaminathan et al. [17], as well as,
Bouzakaria et al. [18] demonstrated how HTTP/1.1 Chunked
Transfer, which allows for partial HTTP responses, can be
utilized to reduce latency in regular DASH.

D. Common Media Application Format

The Common Media Application Format (CMAF) [3] al-
lows a segment to be created as a sequence of chunks. Whereas
a DASH segment must be completely written to a server before
it is addressable and can be requested, a segment with CMAF
chunks can be requested as soon as the first chunk is written to
the server. This reduces the minimum latency in live streaming
from one segment duration to one chunk duration, although it
is still only possible to change the video quality and video
bitrate at segment boundaries. HTTP/1.1 Chunked Transfer
enables subsequent chunks of a segment to be delivered as
soon as they become available without additional requests
from the player.

Essaili et al. [19] and Viola et al. [20] demonstrated the
reduction in latency due to CMAF chunks combined with
HTTP/1.1 Chunked Transfer. In our previous work [21], we
found that CMAF can improve ABR performance at low
latency settings, enabling rebuffering to be reduced by 43%-
71%. However, we also found that not all of the ABR
algorithms we tested performed better with CMAF, and hence
concluded that an ABR algorithm needs to be designed to
taking CMAF into consideration.



TABLE I
ANALYSIS OF THROUGHPUT TRACES

Total temp. increases Total temp. decreases Traces affected

Base measurements 7304 2572 3618

Moving arithmetic mean 108 16 113

Moving harmonic mean 37 6 43

Fig. 1. Sample trace with base measurements and moving harmonic mean
plotted.

As chunk delivery at the live edge is restricted by the
encoder, estimation of network throughput is difficult for
applications that have no direct visibility of any idle periods
between chunks. Bentaleb et al. [22] attempted to solve this
problem by ignoring throughput measurements for chunks that
contain idle time in their download times. As our simulation
model calculates the delivery time of chunks correctly, we do
not consider this issue further.

III. LLAMA DESIGN

Table I shows some characteristics of the 7,000 throughput
traces we used in the experiment, and which are described in
Section IV-C. The table shows the number of temporary in-
creases in available bandwidth, where the bandwidth increases
by more than 500 kbps and then decreases by more than 500
kbps within 10 seconds, as well as, the number of temporary
decreases in bandwidth, where the bandwidth decreases by
more than 500 kbps and then increases by more than 500
kbps in less than 10 seconds. The table also shows the number
of throughput traces that experienced at least one temporary
decrease or increase in bandwidth. The first row demonstrates
how unstable the bandwidth is, with over half of the traces
including at least one temporary change in bandwidth, and
with a total of 7,304 temporary increases and 2,572 temporary
decreases in available bandwidth. A smoothing function is
often used to reduce the effect of temporary changes in
bandwidth. The table shows the impact of smoothing using a
moving arithmetic mean and a moving harmonic mean, each
using 20 measurements over a period of 40s, showing that
the moving harmonic mean is more effective, reducing the
number of temporary changes in bandwidth and the number of
traces that experience at least one temporary change. Figure 1
shows one of the traces with base measurements and moving

harmonic mean plotted. It shows how using a smoothing func-
tion decreases the number of temporary changes in estimated
bandwidth. At around 160s, the available bandwidth decreases
for 20s, however, the moving harmonic mean smooths this out
by estimating a higher value for the available bandwidth.

Our goal was to create an ABR algorithm designed specifi-
cally for low latency live streaming scenarios, where the client
buffer level must be low to achieve the desired low latency.
For example, when the client is operating only two segments
behind live then its potential maximum buffer fullness is only
two segments, which with segments of duration 2s, gives the
ABR algorithm at most 4s to detect and respond to changing
network conditions. In order for an ABR algorithm to perform
well in such conditions, it needs to able to react quickly to
adverse changes in network conditions, while perhaps being
cautious when network conditions appear to be improving.
Overall, the lower the latency the less time the ABR algorithm
has to adapt to changing network conditions.

We have developed an ABR algorithm termed Llama which
employs a novel idea of implementing two independent
throughput measurements, one for decisions about reducing
video quality and one for decisions about increasing video
quality. This results in the ABR algorithm being quick to react
to worsening network conditions in order to avoid rebuffering,
but also being careful about increasing quality to improve
video quality stability.

Our first design goal was to avoid rebuffering as it is the
most detrimental factor to overall QoE. In low latency live
streaming, to avoid rebuffering, the ABR algorithm needs to
act on the first signs of deteriorating network conditions and
reduce the quality at which segments are requested before the
client buffer is depleted. As seen in Table I and Figure 1, using
a smoothing function will eliminate some temporary decreases
in throughput and hence prevent rapid response to worsening
network conditions. Hence, Llama measures the bitrate at
which the most recent segment was fetched and uses this to
decide whether to switch to a lower quality representation,
switching down to the next lower quality representation if
the bitrate of the current representation is higher than the
throughput of the last segment. This decision takes priority
over all other ABR decisions.

Our second design goal was to increase quality stability
as high quality variance can also be detrimental to overall
QoE. As seen in Table I, if we had used the same throughput
measurement as above to decide whether to switch to a higher
quality, large variations in quality would occur as the quality



would increase and decrease following temporary changes
in available bandwidth. To avoid this issue we decided to
implement a second throughput measurement calculated as the
harmonic mean of the bitrate at which each of the past twenty
segments had been fetched. Harmonic mean is robust to large
outliers, but sensitive to smaller outliers and can provide a
smoothed estimate of the available bandwidth. This estimate
is used by Llama to decide whether to request the next segment
at a higher quality, choosing to do so when the harmonic mean
bitrate is higher than the encoded bitrate of the higher quality
segment. This allows the ABR algorithm to avoid temporary
increases in quality when the available bandwidth increases
only for a short time.

Algorithm 1 Llama
1: harmonicMeanSize← 20
2:
3: for segment, n do
4: lastThroughput← segmentThroughput(n− 1)
5: harmonicMean← calculateHarmonicMean(n− 1)
6: if lastThroughput < currentQualityBitrate then
7: Reduce quality representation by one if possible
8: else if harmonicMean > nextQualityBitrate then
9: Increase quality representation by one if possible

10: else
11: Keep the same quality representation
12: end if
13: end for
14:
15: function SEGMENTTHROUGHPUT(s)
16: throughput← segmentSize[s]/downloadT ime[s]
17: return throughput
18: end function
19:
20: function CALCULATEHARMONICMEAN(s)
21: sum← 0
22: sampleSize← 0
23: for i← (s, s− harmonicMeanSize) do
24: if i > 0 then
25: throughput← segmentSize[i]/downloadT ime[i]
26: sum← sum+ (1/throughput)
27: sampleSize← sampleSize+ 1
28: end if
29: end for
30: mean← sum/sampleSize
31: return (1/mean)
32: end function

Algorithm 1 demonstrates how Llama works. It has one
parameter, harmonicMeanSize, which specifies the number of
segments that are used for the harmonic mean calculation. The
more segments that are used, the more smoothing is applied
to the throughput measurements, and the more conservative
are decisions to switch to higher quality. The use of fewer
segments in this calculation would lead to higher mean video
quality at the cost of more variation of quality. By default, the
harmonicMeanSize is set to twenty segments, for both DASH
and CMAF - where chunks are aggregated into segments.
When there are fewer than harmonicMeanSize segments avail-
able, all available segments are used for the harmonic mean

calculation. The quality representation is only changed if
possible, that is, if there is a lower quality representation
available when trying to decrease it, or if there is a higher
quality representation available when trying to increase it.
Otherwise, the quality representation stays the same.

IV. METHODOLOGY

In order to perform an extensive evaluation of all five ABR
algorithms in reasonable time, we developed a simulation
model which supports DASH and CMAF. The simulation
model allows for faster than real-time evaluation as a single
run of a four-minute video clip takes only 2-3 seconds in
the simulation model compared to taking the whole duration
of the video clip when using a real DASH player. In this
section we describe our simulation model and its configuration
parameters, as well as, the selected video encoding parameters
and QoE metrics used for performance comparison.

A. Simulation Model

Our simulation model was developed in a discrete-event
network simulator NS-3 [23] and is available on GitHub
[24]. It supports live DASH, as well as, CMAF chunks. The
implementation is based on an existing model [25] which
supports on-demand DASH. We have extended the model
to support live DASH, latency configuration, CMAF chunks,
more ABR algorithms, and accurate traffic shaping between
the client and the server. We have confirmed the accuracy of
our simulation model by comparing it against a real DASH
player in our previous work [21]. It has five parameters: Mode,
ABR Algorithm, Throughput Profile, Live Delay, and Join
Offset.

Mode sets the client into DASH or CMAF mode. When
in DASH mode, the client requests segments from the server
after they have been fully written to the server, and they are
then delivered by the server as whole segments. When in
CMAF mode, the client requests segments from the server
as soon as the first chunk of each segment has been written
to the server; the server responds by delivering CMAF chunks
as soon as they become available, emulating the delivery of
CMAF chunks when transmitted using HTTP chunked transfer
encoding.

The ABR Algorithm parameter determines which of the five
ABR algorithms, Llama, Panda, Festive, MPC and Bola, is to
be used by the client for segment selection. Llama operates as
described above, while the parameters of each of the other four
ABR algorithms are set to the default values presented in their
respective papers. The ABR algorithm simply provides the
player with the quality at which to request the next segment.

The Throughput Trace specifies the file that contains times-
tamps and bandwidth values in kbps, which are used to adapt
the bandwidth of the link between the client and server over
time.

The Live Delay parameter specifies which segment the
client requests first: a value of one indicates that the most
recent segment available on the server is requested first, two



0 1 2 3 4 5
Throughput (Mbps)

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

Fr
eq

ue
nc

y

Fig. 2. Histogram showing the distribution of throughput measurements below
5 Mbps in the 7,000 throughput traces.

indicates the second most recent available segment is the first
to be requested, and so on.

The Join Offset parameter determines the time at which
the client first requests a segment relative to the time at which
segments are made available on the server. When set to 0s, the
client requests a first segment as soon as a segment becomes
available on the server, although which segment is requested
is determined by the Live Delay parameter. When the segment
duration is 2s and the Join Offset is set to 1s, the client requests
a first segment mid-way between consecutive segments being
made available on the server.

After the first segment has been delivered, the client requests
subsequent segments as soon as the previous one has been
delivered, or when they become available on the server,
whichever is later.

The Live Delay and Join Offset parameters affect the end to
end latency, that is, the time between a segment being encoded
and the segment being played out by the client. Live Delay
also affects the potential maximum buffer level of the client,
as does Join Offset, but only with CMAF and a chunk duration
less than Join Offset.

B. Video Encoding

We selected the first four minutes of the BigBuckBunny
movie [26] and encoded it using x264 [27] at bitrates of {400,
800, 1200, 2400, 4800} (kbps) with resolutions {426x240,
640x360, 854x480, 1280x720, 1920x1080}. The encoded
video was then segmented using MP4Box [28] into 2s seg-
ments for DASH, and into 2s segments with 0.5s chunks for
CMAF. The resulting segments/chunks were used in DASH.JS
framework described below, but the simulation model only
required knowledge of their sizes.

C. Throughput Traces

We used CDN logs from a live BT Sport 1 service to set
the bandwidth of the link between the client and server as a
function of time. The CDN logs contained the request time,
segment size and download time of each segment for every
streaming session over a whole day. From these we produced
a throughput trace file for each streaming session in the CDN
logs, where each trace file contained pairs of timestamp, equal
to the segment request time, and throughput, calculated as the
size of the segment divided by its download time.

We discarded trace files shorter than our four minute video
clip and cropped the others to the first four minutes. We
discarded trace files that had mean throughput higher than our
highest encoding bitrate of 4800 kbps. Additionally, since we
wanted to study ABR performance, we discarded trace files
where all of the throughput measurements were between the
same two encoding bitrates.

This left 7,000 throughput traces to use in the experiments.
The distribution of throughput in these traces is shown as a
histogram in Figure 2, which shows the relative frequencies of
throughput measurements below 5 Mbps. About 89% of the
measurements are below the highest encoding bitrate of 4.8
Mbps.

D. QoE Metrics

We used the following metrics to evaluate the performance
of the five ABR algorithms. Video Quality is the arithmetic
mean of the indices, in the range 0 to 4, of the quality at which
the segments are requested. Quality Variability is the standard
deviation of the encoded bitrates of the requested segments.
Rebuffer Ratio is the ratio of the total rebuffering time to
playback time. P.1203 MOS is the overall Mean Opinion
Score (MOS) computed using the ITU-T Recommendation
P.1203 QoE model which combines bitrate, resolution, frame
rate and stall duration into a single value between 1 and 5
[29]. We used a standalone implementation of the model [30].

V. RESULTS

In this section, we present the results of our evaluation. We
compare the performance of Llama against Panda, Festive,
MPC and Bola firstly when the client is in DASH mode, and
then when the client is in CMAF mode.

We have used the following parameters for both evaluations.
The Live Delay was set to values ranging from 1 to 3 segments
with the Join Offset set to 0s, 0.5s, 1s, and 1.5s for each Live
Delay setting. All 7,000 throughput traces were used for each
combination of Live Delay and Join Offset resulting in 84,000
runs per ABR algorithm for one mode of client. In total, the
content was delivered to the client 840,000 times, including for
all five ABR algorithms and both DASH and CMAF clients.

We report the performance of all ABR algorithms using the
QoE metrics previously described, averaged over the 7,000
runs with different throughput profiles. We combined Live
Delay and Join Offset into a single value termed Join Delay,
being equal to the time between the first segment being created
and it being requested, measured in segment periods, and
calculated as Live Delay added to Join Offset divided by two
seconds.

A. DASH

For this evaluation, the client was configured in DASH
mode and used with segments of duration of two seconds.
Figure 3 shows the performance of all five ABR algorithms
in terms of average Video Quality, Quality Variability, and
Rebuffer Ratio, as well as, the percentage of sessions expe-
riencing rebuffering for each value of Join Delay. Figure 4



Fig. 3. The performance of the five ABR algorithms when used in DASH clients, in terms of average Video Quality, Quality Variability, and Rebuffer Ratio,
as well as, the percentage of sessions experiencing rebuffering.

Fig. 4. Average P.1203 MOS as a function of Join Delay for each ABR
algorithm when used in DASH clients.

shows the average P.1203 MOS as a function of Join Delay
for each ABR algorithm.

Performance in terms of rebuffering. Llama achieved the
second lowest average Rebuffer Ratio out of all five ABRs
between Join Delays of 1 and 2, with MPC achieving the
lowest. However, MPC also achieved the lowest average Video
Quality for these settings, which we comment on later. Above
Join Delay of 2 Llama outperformed all other ABRs. At
Join Delay of 1 the average Rebuffer Ratio achieved by
Panda, Festive, MPC, Bola, and Llama was 1.49%, 1.51%,
0.22%, 1.41%, and 1.02% respectively. At Join Delay of 2,
average Rebuffer Ratio decreased to 0.79%, 0.83%, 0.19%,
0.49%, and 0.3% for Panda, Festive, MPC, Bola and Llama
respectively. At Join Delay of 3, it decreased further for Panda,
Festive, Bola and Llama to 0.49%, 0.53%, 0.43%, and 0.15%
respectively. However, in case of MPC it increased to 0.28%.

Most ABRs had a high percentage of sessions with re-
buffering events at the lowest value of Join Delay, and a
decreasing percentage as the value of Join Delay increased. At
Join Delay of 1, the percentage of sessions with rebuffering
events for Panda, Festive, MPC, Bola, and Llama equalled
to 100%, 100%, 40.16%, 99.74%, and 100% respectively.
At Join Delay of 2, it decreased to 52.19%, 48.89%, 9.3%,
10.26%, and 40.13% for Panda, Festive, MPC, Bola, and
Llama respectively. At Join Delay of 3, it decreased further for
Panda, Festive, Bola and Llama to 21.16%, 27.14%, 6.33%,
and 8.89% respectively, while for MPC the percentage of
sessions with rebuffering events increased to 24.7%.

As Join Delay increased, the average Rebuffer Ratio and
the percentage of sessions with rebuffering events for Llama
always decreased, indicating that Llama is able to increase
its performance by not only taking advantage of higher Live
Delay settings, but also higher values of Join Offset.

Performance in terms of video quality. Llama achieved the
highest average Video Quality for Join Delays between 1 and
2.5, and the second highest for Join Delays between 2.75 and
3.25 where MPC achieved the highest. Above Join Delay of
3.25, Llama achieved lower average Video Quality than MPC
and Bola, the former one achieving the highest. At Join Delay
of 1, the average Video Quality achieved by Panda, Festive,
MPC, Bola, and Llama was equal to 1.62, 1.61, 0.02, 1.13,
and 1.67 respectively. At higher values of Join Delay, Festive
and Llama maintained the same average Video Quality, and
Panda slightly decreased its average Video Quality to 1.61 at
the highest Join Delay. MPC’s average Video Quality stayed
low for Join Delays up to 2 where it was equal to 0.17, and
started to increase significantly at Join Delay of 2.25 where
it increased to 1.18. MPC achieved the highest average Video
Quality for Join Delays of 2.75 and higher, peaking at 2.13
when at the highest Join Delay. Bola’s average Video Quality
started to decrease at Join Delay of 1.5, and stayed low at less
than 0.16 for Join Delays between 2 and 3. At Join Delay of
3.25 it started to increase again, peaking at 1.94 when at the
highest Join Delay.

Llama achieved near constant average Quality Variability
across all values of Join Delay, with differences within 0.51
and peaking at 521.7. Panda and Festive also achieved constant
average Quality Variability, with differences within 7.88 and
0.65 along with peaks at 394.82 and 411.28 respectively.
MPC’s average Quality Variability was below 49.02 up to the
Join Delay of 1.75, and significantly increased as Join Delay
increased beyond 1.75 with peak value of 881.38 at the highest
Join Delay. Bola had average Quality Variability of 534.08-
530.62 for Join Delays of 1-1.5, which decreased between
Join Delays of 1.5 and 2 to 83.9 and stayed within 0.6 up
to Join Delay of 3. Its average Quality Variability increased
beyond Join Delay of 3 and peaked at 656.61 when at the
highest Join Delay.

Llama achieved the highest average Video Quality for values
of Join Delay up to 2.5, and remained consistently high for



Fig. 5. The performance of the five ABR algorithms when used in CMAF clients, in terms of average Video Quality, Quality Variability, and Rebuffer Ratio,
as well as, the percentage of sessions experiencing rebuffering.

Fig. 6. Average P.1203 MOS as a function of Join Delay for each ABR
algorithm when used in CMAF clients.

higher values of Join Delay. It also achieved near constant
Quality Variability for all values of Join Delay resulting in
much more stable Video Quality than MPC at Join Delay of
2.5 and higher.

Overall performance. For Join Delays between 1 and 2.75,
Llama outperformed all other ABRs in terms of P.1203 MOS.
At Join Delay of 3, it was still the highest, along with MPC
which achieved the same P.1203 MOS. Beyond Join Delay
of 3, Llama was outperformed by MPC and Bola which
achieved slightly higher P.1203 MOS. At Join Delay of 1,
Panda, Festive, MPC, Bola and Llama had P.1203 MOS of
2.43, 2.56, 1.94, 2.35, and 2.87 respectively. At Join Delay of
2, P.1203 MOS increased to 3.71, 3.66, 2.51, 2.95, and 3.91
for Panda, Festive, MPC, Bola, and Llama respectively. At
Join Delay of 3 it further increased to 3.98, 3.89, 4.04, 3.0,
and 4.04 with peaks of 4.03, 3.96, 4.17, 4.2, and 4.05 at the
highest Join Delay for Panda, Festive, MPC, Bola, and Llama
respectively.

B. CMAF

For this evaluation, the client was configured in CMAF
mode and used with segments of duration two seconds and
chunk duration of 0.5 seconds. Figure 5 shows the perfor-
mance of all five ABRs in terms of average Video Quality,
Quality Variability, and Rebuffer Ratio, as well as, the per-
centage of sessions experiencing rebuffering for each value
of Join Delay. Figure 6 shows the average P.1203 MOS as a
function of Join Delay for each ABR algorithm.

Performance in terms of rebuffering. For Join Delays be-
tween 1 and 1.5, Llama achieved the second lowest average
Rebuffer Ratio and MPC achieved the lowest. For higher
values of Join Delay, Llama achieved the lowest average
Rebuffer Ratio. At Join Delay of 1, the average Rebuffer Ratio
for Panda, Festive, MPC, Bola, and Llama equalled to 1.01%,
0.89%, 0.11%, 0.77%, and 0.32% respectively. At Join Delay
of 2 it changed to 0.79%, 0.58%, 0.23%, 0.41%, and 0.17%
for Panda, Festive, MPC, Bola, and Llama respectively. At
Join Delay of 3 it changed further to 0.61%, 0.39%, 0.17%,
0.43%, and 0.11% for Panda, Festive, MPC, Bola, and Llama
respectively.

Llama had less sessions with rebuffering events than Panda
and Festive at all Join Delays, and the lowest percentage of
sessions with rebuffering events at Join Delays of 2.25-3.75.
At Join Delay of 1, the percentage of sessions with rebuffering
events for Panda, Festive, MPC, Bola, and Llama was 28.61%,
39.2%, 3.24%, 33.64%, and 20.13% respectively. At Join
Delay of 2, it increased to 11.44% for MPC, and decreased to
19.31%, 22.83%, 5.86%, and 6.73% for Panda, Festive, Bola,
and Llama respectively. At Join Delay of 3, it increased to
7.14% for Bola, and decreased to 13.87%, 14.31%, 6.97%,
and 3.66% for Panda, Festive, MPC, and Llama respectively.

With Llama, both average Rebuffer Ratio and the percentage
of sessions with rebuffering decreased as the Join Delay
increased, indicating that Llama is able to take advantage
of higher Live Delay and Join Offset values to increase its
performance with CMAF, just as it did with DASH.

Performance in terms of video quality. Llama achieved the
highest average Video Quality at Join Delays between 1 and
1.75, and remained consistently high for higher values of Join
Delay. It outperformed Panda and Festive at all values of Join
Delay, but was outperformed by MPC for Join Delays of 2-
3.75, as well as, by Bola for Join Delays of 2.75-3.75. At Join
Delay of 1, the average Video Quality was equal to 1.39, 1.63,
0.02, 0.73, and 1.73 for Panda, Festive, MPC, Bola, and Llama
respectively. It remained constant for Festive and Llama across
all Join Delays, and near constant for Panda as it decreased
by only 0.01 at the highest Join Delay. MPC’s average Video
Quality was low for the first two Join Delays, at 0.02-0.16,
but started to significantly increase at the third Join Delay,
outperforming all other ABRs at Join Delays of 2-3.75. Bola’s



TABLE II
PERCENTAGE OF SESSIONS FOR WHICH LLAMA ACHIEVED BETTER P.1203

MOS THAN OTHER ABR ALGORITHMS

DASH

Join Delay Panda Festive MPC Bola
1 90% 85% 98% 88%
2 57% 63% 98% 97%
3 42% 55% 40% 95%

CMAF

Join Delay Panda Festive MPC Bola
1 92% 65% 99% 84%
2 92% 60% 66% 96%
3 90% 55% 37% 23%

average Video Quality at the lowest Join Delay was 0.73, then
decreased to less than 0.18 for Join Delays between 1.25 and
2.25, and started to significantly increase at Join Delays of
2.5-3.75 - peaking at 2.06 when at the highest Join Delay.

Average Quality Variability achieved by Llama remained
near constant across all values of Join Delay with differences
within 1.24. This was also the case for Panda and Festive,
with differences within 0.74 and 0.79 respectively. MPC’s
average Quality Variability was low at the lowest Join Delay,
and sharply increased as the Join Delay increased, peaking at
969.65 when at the highest Join Delay - approximately twice
as high as Llama’s average Quality Variability. Bola’s average
Quality Variability was lower than Llama’s up to Join Delay of
2.75, and higher for Join Delays of 3-3.75 - peaking at 697.36
when at highest Join Delay. Llama was much more stable than
MPC for most values of Join Delay, and Bola for Join Delays
values of 3-3.75. However, it was also slightly less stable than
Panda and Festive.

Overall performance. Llama achieved the highest average
P.1203 MOS for Join Delays of 1-2.5, and only up to 0.04
lower average P.1203 MOS than MPC for Join Delays of 2.75-
3.75, where both of the ABRs were slightly outperformed by
Bola. At Join Delay of 1, average P.1203 MOS achieved by
Panda, Festive, MPC, Bola, and Llama was 3.82, 3.97, 2.06,
3.27 and 4.12 respectively. At Join Delay of 2, it decreased to
3.01 for Bola, and increased to 3.86, 4.04, 4.03, and 4.15 for
Panda, Festive, Bola, and Llama respectively. At Join Delay
of 3, it increased to 3.88, 4.07, 4.17, 4.23, and 4.16 for Panda,
Festive, MPC, Bola, and Llama respectively.

VI. DISCUSSION

Llama outperformed the other ABR algorithms in terms of
P.1203 MOS for both DASH and CMAF at the two lowest
settings of Live Delay, which are crucial to get low latency.

With DASH, Llama achieved 0.31-0.93 better average
P.1203 MOS than the other ABR algorithms when the Join
Delay was equal to 1, that is, when the latency is just
one segment duration, as well as achieving up to 33% less
rebuffering. The only ABR algorithm which had lower average
Rebuffer Ratio at these settings was MPC which achieved
a value 78% lower than Llama. However, this low average

Rebuffer Ratio is a result of MPC having significantly lower
average Video Quality, equal to 0.02 and indicative of mostly
choosing the lowest level of quality, compared to Llama’s
average Video Quality of 1.67. This is reflected in the average
P.1203 MOS, with Llama achieving 0.93 higher than MPC. At
Join Delay of 2, Llama achieved 0.2-1.4 better P.1203 MOS
than other ABR algorithms, and up to 64% less rebuffering.
Table II shows the percentage of sessions for which Llama
achieved better P.1203 MOS than other ABRs at different Join
Delay settings. Llama achieved better P.1203 MOS than the
other ABR algorithms for 85-98%, and 57-98% of sessions at
Join Delays of 1 and 2 respectively.

CMAF has been developed to enable reduced latency in
live streaming, where the use of CMAF chunks can reduce the
minimum latency from one segment duration to a single chunk
duration. CMAF chunks combined with HTTP/1.1 Chunked
Transfer Encoding allow for the use of small chunks without
additional network overhead. We have tested our new ABR
algorithm when used in a client which supports CMAF chunks.
At Join Delay of 1 and 2, Llama achieved 0.15-2.06 and
0.11-1.14 better average P.1203 MOS than the other ABR
algorithms, while also reducing rebuffering by up to 68% and
79% respectively. Table II shows Llama achieved better P.1203
MOS than the other ABR algorithms for 65-99%, and 60-96%
of sessions at Join Delays of 1 and 2 respectively. These results
clearly demonstrate that Llama can be used with CMAF and
is capable of utilizing CMAF chunks to boost its performance.

One of the design goals for our new ABR algorithm was
to improve video quality stability. This requires the ABR
algorithm to minimise the number of unnecessary quality
switches. In our results we can observe the impact of video
quality stability on overall QoE. At the highest value of Join
Delay, MPC achieved the highest average Video Quality and
the second lowest average Rebuffer Ratio, but it did not
achieve the highest average P.1203 MOS as this was negatively
impacted by its frequent quality switches - which can be seen
on the average Quality Variability charts where MPC was the
highest by a significant margin. This was the case for both
DASH and CMAF. In CMAF mode, at the highest Join Delay,
Llama achieved 52% lower average Quality Variability and
24% lower average Video Quality than MPC, but its P.1203
MOS was only 0.03 lower.

Llama was outperformed by Bola and MPC at higher values
of Join Delay in terms of average P.1203 MOS and Video
Quality in both DASH and CMAF modes. In DASH mode
at the highest Join Delay, when compared to Llama, MPC
achieved 28% higher average Video Quality and 0.12 better
average P.1203 MOS, while Bola achieved 16% higher average
Video Quality and 0.15 better average P.1203 MOS. However,
the average Rebuffer Ratio achieved by MPC and Bola was
109% and 346% respectively higher when compared to Llama.
As seen in Table II, at Join Delay of 3, Llama achieved better
P.1203 MOS for 40% and 95% of sessions when compared to
MPC and Bola respectively in DASH, and for 37% and 23%
of sessions when compared to MPC and Bola respectively in
CMAF. Our new ABR algorithm is too conservative in terms



of selecting higher quality bitrates when compared to MPC
and Bola at higher values of Join Delay. In order for Llama
to be deployed in environments without very low latency, it
needs to be adjusted to make it less conservative. This could
be done for example by reducing the number of segments used
for the harmonic mean throughput calculation.

VII. CONCLUSION

In this paper, we have presented Llama - a new ABR
algorithm specifically designed to operate in low latency
live streaming scenarios. In such scenarios, the client buffer
level is low, and hence, the ABR reaction time is severely
limited. Llama employs a novel idea of using two throughput
measurements made on different timescales, one to influence
the decisions of whether to decrease the video quality and one
for the decisions of whether to increase the video quality. This
approach enables our ABR algorithm to react to deteriorating
network conditions quickly, while maintaining stable video
quality by ignoring temporary increases in available band-
width. We have evaluated Llama by comparing it against four
popular ABR algorithms, Panda, Festive, MPC, and Bola, with
multiple client settings and using network scenarios based on
7,000 throughput traces obtained from CDN logs of a commer-
cial live TV service. The performance of the ABR algorithms
was presented using a range of QoE metrics, including the
ITU-T Recommendation P.1203 QoE model which combines
multiple QoE factors into a single value. At the two lowest
Live Delay settings, giving latency of one and two segment
durations, Llama outperformed the other ABR algorithms. In
DASH mode, the P.1203 MOS improved by 0.31-0.93 and
0.2-1.4 respectively, and rebuffering reduced by up to 33%
and 64% respectively, while in CMAF mode, Llama again
outperformed the other ABR algorithms, achieving 0.15-2.06
and 0.11-1.14 respectively better P.1203 MOS and reducing
rebuffering by up to 68% and 79% respectively.

REFERENCES

[1] V. Cisco, “Cisco visual networking index: Forecast and trends, 2017–
2022,” White Paper, vol. 1, 2018.

[2] I. 23009-1, “Information technology-dynamic adaptive streaming over
http (dash)-part 1: Media presentation description and segment formats,”
2019.

[3] K. Hughes and D. Singer, “Information technology–multimedia applica-
tion format (mpeg-a)–part 19: Common media application format (cmaf)
for segmented media,” ISO/IEC, pp. 23 000–19, 2017.

[4] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann,
“A survey on bitrate adaptation schemes for streaming media over http,”
IEEE Communications Surveys Tutorials, vol. 21, no. 1, pp. 562–585,
2019.

[5] R. 8216, “Http live streaming,” 2017. [Online]. Available:
https://tools.ietf.org/html/rfc8216

[6] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran,
“Probe and adapt: Rate adaptation for http video streaming at scale,”
IEEE Journal on Selected Areas in Communications, vol. 32, no. 4, pp.
719–733, April 2014.

[7] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive,” IEEE/ACM
Transactions on Networking, vol. 22, no. 1, pp. 326–340, Feb 2014.

[8] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over http,” SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 325–338, Aug. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2829988.2787486

[9] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “Bola: Near-optimal bi-
trate adaptation for online videos,” in IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications,
April 2016, pp. 1–9.

[10] B. Allan, M. Nilsson, and I. Kegel, “A subjective comparison of broad-
cast and unicast transmission impairments,” SMPTE Motion Imaging
Journal, vol. 128, no. 6, pp. 1–15, 2019.

[11] D. Ghadiyaram, J. Pan, and A. C. Bovik, “A subjective and objective
study of stalling events in mobile streaming videos,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 29, no. 1, pp. 183–
197, 2019.

[12] K. Seshadrinathan and A. Bovik, “Temporal hysteresis model of time
varying subjective video quality,” 06 2011, pp. 1153 – 1156.

[13] M. . Garcia, F. D. Simone, S. Tavakoli, N. Staelens, S. Egger,
K. Brunnström, and A. Raake, “Quality of experience and http adaptive
streaming: A review of subjective studies,” in 2014 Sixth International
Workshop on Quality of Multimedia Experience (QoMEX), Sept 2014,
pp. 141–146.

[14] N. Barman and M. G. Martini, “Qoe modeling for http adaptive video
streaming–a survey and open challenges,” IEEE Access, vol. 7, pp.
30 831–30 859, 2019.

[15] Y. Shuai and T. Herfet, “Towards reduced latency in adaptive live
streaming,” in 2018 15th IEEE Annual Consumer Communications
Networking Conference (CCNC), Jan 2018, pp. 1–4.

[16] T. Lohmar, T. Einarsson, P. Fröjdh, F. Gabin, and M. Kampmann,
“Dynamic adaptive http streaming of live content,” in 2011 IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks, June 2011, pp. 1–8.

[17] V. Swaminathan and S. Wei, “Low latency live video streaming using
http chunked encoding,” in 2011 IEEE 13th International Workshop on
Multimedia Signal Processing, 2011, pp. 1–6.

[18] N. Bouzakaria, C. Concolato, and J. Le Feuvre, “Overhead and perfor-
mance of low latency live streaming using mpeg-dash,” in IISA 2014,
The 5th International Conference on Information, Intelligence, Systems
and Applications, 2014, pp. 92–97.

[19] A. E. Essaili, T. Lohmar, and M. Ibrahim, “Realization and evaluation
of an end-to-end low latency live dash system,” in 2018 IEEE Interna-
tional Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB), 2018, pp. 1–5.

[20] R. Viola, A. Gabilondo, A. Martin, J. F. Mogollón, M. Zorrilla, and
J. Montalbán, “Qoe-based enhancements of chunked cmaf over low
latency video streams,” in 2019 IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting (BMSB), 2019, pp.
1–6.

[21] T. Lyko, M. Broadbent, N. Race, M. Nilsson, P. Farrow, and S. Appleby,
“Evaluation of cmaf in live streaming scenarios,” in Proceedings of
the 30th ACM Workshop on Network and Operating Systems Support
for Digital Audio and Video, ser. NOSSDAV ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 21–26. [Online].
Available: https://doi.org/10.1145/3386290.3396932

[22] A. Bentaleb, C. Timmerer, A. C. Begen, and R. Zimmermann,
“Bandwidth prediction in low-latency chunked streaming,” in
Proceedings of the 29th ACM Workshop on Network and Operating
Systems Support for Digital Audio and Video, ser. NOSSDAV ’19.
New York, NY, USA: ACM, 2019, pp. 7–13. [Online]. Available:
http://doi.acm.org/10.1145/3304112.3325611

[23] “Ns-3,” 2020, https://www.nsnam.org/.
[24] “A simulation model for live dash with cmaf chunks support,” 2020,

https://github.com/tomlyko/ns3-dash-cmaf-model.
[25] H. Ott, K. Miller, and A. Wolisz, “Simulation framework for http-based

adaptive streaming applications,” in Proceedings of the Workshop on
Ns-3, ser. WNS3 ’17. New York, NY, USA: ACM, 2017, pp. 95–102.
[Online]. Available: http://doi.acm.org/10.1145/3067665.3067675

[26] “Bigbuckbunny,” 2020, https://peach.blender.org/.
[27] “x264,” 2020, https://www.videolan.org/developers/x264.html.
[28] “Mp4box,” 2020, https://gpac.wp.imt.fr/mp4box/.
[29] W. Robitza, S. Göring, A. Raake, D. Lindegren, G. Heikkilä, J. Gustafs-

son, P. List, B. Feiten, U. Wüstenhagen, M.-N. Garcia, K. Yamagishi,
and S. Broom, “HTTP Adaptive Streaming QoE Estimation with ITU-T
Rec. P.1203 – Open Databases and Software,” in 9th ACM Multimedia
Systems Conference, Amsterdam, 2018.

[30] “Itu-t rec. p.1203 standalone implementation,” 2020,
https://github.com/itu-p1203/itu-p1203.


