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Abstract 

Technological innovations generate knowledge spillovers—non-innovators benefit through the 

adoption, imitation, and extension of new technologies.  International trade facilitates technology 

diffusion by providing importing countries access to technical knowledge that they can potentially 

internalize. Previous studies of the effect of trade on technology diffusion typically only consider 

the impact of direct (bilateral) trade on indirect measures of technology (e.g., TFP). We contend 

that the analysis of trade’s impact on technology diffusion would be more accurately assessed by 

using direct measures of specific technologies (e.g., intensity levels) and by allowing for the 

influence of both the direct and indirect effects of trade in the analysis.  The latter is accomplished 

by modeling the international trade system as a weighted network, which quantifies both direct 

and indirect trade linkages.  Combining trade data with data on the adoption of various 

technologies, we find that the network effects of trade play a significant role in technology 

diffusion. In most cases, countries that are better-connected on the trade network have higher 

technology intensities. Further support for the importance of trade is provided by the finding that 

for “outdated” technologies, better-connected countries have lower technology intensities due to 

their adoption of newer, substitute technologies. 

 

JEL codes: F10, O33 

Keywords: Technology Diffusion, Trade Network, Average Geodesic Distance 

                                                           
* The authors would like to thank Gisela Rua of the Federal Reserve Board, two anonymous referees, and the 
participants of the 2013 International Workshop on “Networks and Trade” at KU Leuven, the 2011 Southern 
Economic Association Conference, and the economics seminars at the University of Arkansas and IMT Lucca for 
their insightful comments.  Any remaining errors are the responsibility of the authors. 
§ Gary D. Ferrier, University of Arkansas, Department of Economics, Sam M. Walton College of Business, 1 
University of Arkansas, Fayetteville, AR 72701, Tel: (479) 575-6223, gferrier@walton.uark.edu.  
† Javier Reyes, University of Arkansas, Department of Economics, Sam M. Walton College of Business, 1 University 
of Arkansas, Fayetteville, AR 72701, Tel: (479) 575-6079, reyes@uark.edu.  
‡ Zhen Zhu, LIME lab, IMT Institute for Advanced Studies, Piazza S. Ponziano, 6, 55100, Lucca, Italy, Tel: +39 
05834326611, zhen.zhu@imtlucca.it.  



2 
 

1. Introduction 

Technological progress has long been viewed as a critical engine for sustainable economic growth 

and poverty reduction. However, since technological innovation occurs almost exclusively in a 

few high-income countries (Keller, 2004, 2010), the technological progress at a global level largely 

depends on knowledge “spillovers” through technology diffusion.1 In principle there exist several 

possible economic channels that facilitate the diffusion of new technologies across countries, the 

most frequently studied are international trade and foreign direct investment (FDI). 2  The 

international flow of goods and services through trade and FDI provide first-hand knowledge about 

the existence, uses, and benefits of new technologies.3  This paper adds to the literature on the 

effects of trade on the diffusion of technologies across countries by modeling trade as a network 

of both direct and indirect relationships as well as by examining trade’s effect on the diffusion of 

specific technologies rather than on an aggregate proxy for technology such as total factor 

productivity (TFP). 

When empirically testing the effects of trade on technology diffusion, the previous literature 

typically considers only the direct (bilateral) trade relationships across countries (e.g., Coe and 

Helpman, 1995; Keller, 1998; and Comin and Hobijn, 2004). Furthermore, empirical results have 

often been at odds, perhaps because different measurements have been used to assess trade 

relationships. For example, Coe and Helpman (1995) use imports to weight foreign R&D 

expenditures and find a significant relationship between the import-weighted foreign R&D 

expenditures and domestic total factor productivity (TFP), offering evidence of technology 

diffusion through trade.  Using Coe and Helpman’s (1995) dataset, Keller (1998) employs the 

summation of foreign produced R&D over time rather than import-weighted foreign R&D to 

examine the relationship between technology and TFP. In contrast to Coe and Helpman (1995), 

Keller’s (1998) results suggest that knowledge spillovers are independent of trade and are therefore 

global, rather than local, in nature.  Conversely, Keller (2002) argues that trade is concentrated 

                                                           
1 The terms “technology diffusion,” “technology transfer,” and “technology adoption” are often used interchangeably 
in the literature. 
2 For more detail, see Hoffman (2013) who notes that there is a large literature across multiple disciplines on the links 
between technology diffusion and both international trade and FDI.  
3 While international trade has received empirical support as an important channel for technology diffusion, the FDI 
channel has been harder to validate.  This may be because, as Keller (2004) observed, testing the FDI channel has 
been largely restricted to company-level case studies.  Section 2 briefly discusses the role of FDI. 
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because of transportation costs and thus knowledge spillovers are localized. Keller (2004) also 

concludes that knowledge spillovers are localized because of the nature of technology—

understanding technology requires interaction between innovator and adopter; trade may provide 

the needed interaction. 

The hypothesis to be tested is that countries that are better-connected on the trade network will 

have higher technology intensities, which implies greater technology diffusion.  We contend that 

the effect of trade on technology diffusion is not confined to the direct trading partners of the 

innovator. Once knowledge is received by an innovator’s direct trading partners, it can diffuse 

further to the trading partners of trading partners—i.e., there are spillover effects beyond the initial 

exchange with an innovating trade partner due to network effects. Thus, the impact of trade would 

be more accurately assessed by accounting for both direct and indirect trade relationships. This 

can be done by considering the international trade system as a (weighted) network of trade 

relationships. 

Higher order degrees of “connectivity” can be controlled for when using network indicators that 

consider the effects of direct (bilateral) trade linkages and their magnitudes as well as the indirect 

effects that allow countries to gain access a technology even without a direct trade linkage to the 

innovating country.  “Connectivity” on the trade network is quantified by the proximities among 

countries on the network. For example, it is possible to analyze the dynamics of technology 

diffusion by considering core-periphery dynamics in which a number of more technologically 

advanced “core” countries are connected to each other, while countries in the periphery can extract 

information from the core even without direct connections to it. 

Annual bilateral trade data from the NBER-United Nations Trade Data (Feenstra et al., 2005) are 

used to build a representation of the international trade network, where countries are the nodes of 

the network and the values of the bilateral trade flows denote the links between them. The trade 

network data are merged with the Cross-country Historical Adoption of Technology (CHAT) 

dataset (Comin and Hobijn, 2009) to study technology diffusion dynamics, where both direct and 

indirect trade linkages on the networks are posited to be the conduits of technology diffusion across 

countries. The combination of these datasets yields a three-dimensional panel of 145 countries and 

24 technologies over the 39-year period from 1962 to 2000. Our central finding is that both direct 

and indirect network effects of trade appear to play significant roles in technology diffusion. In 
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most cases, there is strong and robust evidence that better-connected countries tend to adopt or 

assimilate (measured by intensity of use) newer and more advanced technologies faster. 

Interestingly, our dataset includes some technologies for which clear substitutes have emerged; for 

these, the analysis shows that countries with higher levels of connectivity tend to have much lower 

levels of adoption of such technologies through time. These two findings together provide strong 

evidence of the importance of trade in the process of technology diffusion. The latter finding 

supports the assumptions of quality-ladder models (Aghion and Howitt, 1992) in which older 

(lower quality) products are continuously replaced by newer (higher quality) products.  

The remainder of the paper is organized as follows: Section 2 reviews the relevant literature.  

Section 3 introduces the trade data and formally defines the trade network. Section 3 describes the 

technology data and examines technology diffusion on the trade network. Section 4 specifies our 

empirical methodology and summarizes our major findings. Finally, Section 5 provides some 

discussions and concludes the paper. 

2. Literature Review 

Our literature review focuses on macroeconomic-level studies. Thus, our review is by no means 

comprehensive, but rather discusses the works that are most germane to our study. More 

comprehensive surveys of the extensive literature on technology diffusion are presented in Saggi 

(2002) and Keller (2004, 2010). 

2.1 Why Is Technology Diffusion Important? 

An important finding of empirical studies of economic growth is that cross-country differences in 

per capita income can be attributed to differences in TFP, rather than to differences in the levels 

or initial allocations of factors of production (Prescott, 1998; Hall and Jones, 1999; and Restuccia 

et al., 2008). 4  TFP, or the Solow Residual, is a “black box” 5  that can be interpreted as 

technological, institutional, cultural, or any other factors besides labor and (physical and human) 

capital inputs that influence productivity. Since most of these other factors are unobservable, it is 

                                                           
4 Another view is that cross-country differences are due to differences in capital per worker, where capital includes 
both physical and human capital. Mankiw et al. (1992) is an influential work in this area.  
5 Abramovitz (1956) characterizes the Solow residual as a “measure of our ignorance” about TFP growth. 
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difficult for economists to quantify their contributions to TFP. However, most economists would 

agree that technology plays a key role in determining TFP.  

Innovation is difficult and costly, but once generated it is non-rival good—it can be used 

simultaneously by multiple agents without reducing the other’s access to it (Romer, 1990). 

However, as Saggi (2002) points out, non-rivalry does not mean that technology is available at 

zero cost; technology can only be adopted if an agent who has access to it and is willing to pay the 

cost of adopting it.  Knowledge spillovers reduce the cost of technical change by allowing non-

innovators to adopt or imitate the technologies developed by others. Knowledge spillovers are 

important; Keller (2004, 2010) reports that for most countries, foreign technology account for 90% 

or more of domestic productivity growth.  

Keller (2004, 2010) notes that international technology diffusion, through its effects on TFP, 

affects both the distribution and the growth of world incomes.  Whether countries’ incomes 

converge over time depends on whether technology diffusion is global or local. A better 

understanding of technology diffusion therefore provides insights into how less developed 

countries might catch up with richer ones. Furthermore, stronger cross-country technology 

diffusion raises the rate at which the world’s technology frontier advances.6 Thus, it is difficult to 

overstate the importance of the dynamics of technology diffusion on global economic growth and 

poverty reduction. 

2.2 Technology Diffusion in Theory 

Theoretical links have been established among technology, technology diffusion channels 

(primarily trade and FDI), and economic growth. One strand of the literature on technology 

diffusion investigates the technology diffusion and economic growth linkage, while another strand 

examines the link between technology diffusion and diffusion channels; a third strand of the 

literature combines the first two (Eaton and Kortum, 2001). We begin by discussing studies that 

focus on relationship between technology diffusion and economic growth.  

                                                           
6 Recognizing that technological innovation and adoption of technology are two different phenomena, Nishimizu and 
Page (1982) present a decomposition of total factor productivity (TFP) change into technology change (shifts in the 
production frontier) and efficiency change or “catching up” (movements toward the production frontier). 



6 
 

Who benefits from technological progress? Is it the case that technical innovation becomes 

immediately available everywhere and each country enjoys the same level of technology (Solow, 

1956; Mankiw et al., 1992)? Or do countries only improve productivity through their own 

innovation (Romer, 1990; Aghion and Howitt, 1992)? Eaton and Kortum (1999) argue that reality 

falls somewhere between these two extremes, with global productivity growth driven by the 

innovations of a small set of countries and subsequent knowledge spillovers that allow other 

countries to imitate and adopt the innovations.  

A natural starting point for studying technology diffusion is to modify the standard neoclassical 

growth model by assuming that there is access to new technology and introducing the cost of 

adopting it. Parente and Prescott (1994) emphasize barriers to technology adoption as a key 

determinant of differences in per capita income across countries. In their model, although any firm 

can access the underlying stock of knowledge in the world economy, the cost of such access differs 

across countries due to differences in legal, regulatory, political, and social factors. Thus in their 

view, some countries make it inherently more costly for their firms to adopt new technologies and 

thereby retard the development of the entire economy.  

A drawback of Parente and Prescott’s (1994) approach, and of the neoclassical growth model in 

general, is that technological change itself remains unexplained. Without a solid explanation of 

technological change, it is difficult to explain the diffusion of technology. For this reason, the 

endogenous growth model has become attractive. Two widely used theories of endogenous growth 

are the expanding varieties (Romer, 1990) and quality ladders models (Aghion and Howitt, 1992). 

The former captures the horizontal innovation process, the latter the vertical innovation process. 

The key difference between these two approaches is that in the varieties model new products do 

not make old ones obsolete, while in the quality ladders model new products will replace older 

ones.  Barro and Sala-i-Martin (2004) use the varieties model in an empirical study technology 

diffusion and growth, while the empirical work of Eaton and Kortum (1996) and Howitt (2000) is 

based on the quality ladders model. Interestingly, Barro and Sala-i-Martin (2004) note that similar 

results could be obtained from either the varieties or quality ladders models. The key idea is that 

follower countries tend to catch up with the leaders because the adoption and imitation of new 

discoveries are cheaper than the development of new technologies. Klenow and Rodriguez-Clare 

(2005) stress two features shared by both models. The first is that, in steady state, all countries 
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grow at the same rate due to technology diffusion. The second is that differences in policies or 

other country parameters (e.g., diffusion barriers) generate differences in TFP levels rather than in 

growth rates. 

The primary channels for technology diffusion are international trade and FDI through which 

knowledge is transferred in both embodied and disembodied forms (Helpman, 1997). Traditional 

theories of trade typically assume that exogenous technical change gives rise to trade because of a 

comparative advantage provided by locally available technologies. Recent studies have 

incorporated dynamic relationships and endogenous technical change. Thus, while technology can 

affect trade patterns, international trade and FDI also affect differences in technology by serving 

as channels for diffusion (Grossman and Helpman, 1995). As noted in Helpman (1997), trade and 

FDI contribute to technological progress by making available the processes, products, and services 

that embody foreign knowledge, thus providing knowledge that would otherwise be unavailable 

or very costly.   

2.3 Technology Diffusion in Practice 

Technology and its diffusion are not directly measurable, so they must be quantified by observable 

proxies. As discussed in Keller (2004, 2010), empirical studies use three indirect measures to proxy 

technology—R&D (an input measure of technology), patents (an output measure of technology), 

and productivity (an outcomes measure of technology). Technology diffusion can transpire 

directly through market transactions or indirectly through spillovers. Market transactions typically 

involve royalty payments for the use of patents, licenses, and copyrights. Although data on market 

transactions is available for most industrial economies, many economists believe that most 

international technology diffusion occurs not through market transactions but rather through 

spillovers, with international trade and FDI, among other factors, serving as conduits for these 

spillovers. 

A common hypothesis is that technology diffusion is shaped by geography (Keller, 2010)—

diffusion is a form of “contagion,” with the probability of transmission from one party to another 

decreasing with distance.  Two implications of the hypothesis are that technology diffusion within 

countries is stronger than across countries and that technology diffusion weakens as distance 

increases. The evidence generally supports these hypotheses. For example, Eaton and Kortum 
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(1999) find that within the Group of 5 (G5) countries (UK, France, Germany, Japan, and US), the 

rate of domestic technology diffusion is much higher than for non-G5 countries.  Based on data 

for 14 OECD countries for 1970-1995, Keller (2002) finds a statistically significant negative 

relationship between the distance from the G-5 countries and the technology diffusion of their 

innovations to the other nine countries. 

While geography appears to matter, the estimated geographic effects may be due to unobserved 

heterogeneity across countries. In the remainder of this section we address heterogeneity by 

reviewing some empirical studies that focus on specific diffusion channels.   

International trade is one of the most frequently mentioned channels of technology diffusion. Trade 

can be further divided into the roles played by imports and exports.7  To improve productivity and 

enhance competitiveness, firms/countries can “learn-by-exporting.”  Case studies of the export 

success of a number of East Asian countries in the 1960s emphasize learning-by-exporting effects 

(Rhee et al., 1984).  Based on a non-parametric dynamic model of productivity, Ferrier et al. (1998) 

find that Yugoslav co-operatives that adopted an export orientation performed better than those 

that did not. More recently, De Loecker (2010) finds substantial firm-level productivity gains from 

entering export markets. As for imports, Coe and Helpman (1995) find positive and significant 

effects of import-share-weighted foreign R&D stock on domestic TFP for a group of OECD 

countries. However, as is the case with many pioneering works, Coe and Helpman’s (1995) results 

have been challenged. For instance, Keller (1998) uses randomly assigned import shares to 

construct foreign R&D stock and obtains better results than Coe and Helpman (1995). 

Furthermore, instead of using overall trade as in Coe and Helpman (1995), Xu and Wang (1999) 

find that technology diffusion is specifically associated with the trade of differentiated capital 

goods. 

FDI as a channel of technology diffusion is also the subject of much research, with a distinction 

often made between inward and outward FDI.  For example, a case study of Intel’s FDI into Costa 

Rica provides evidence that a major high-tech company can trigger enormous technical change in 

a relatively small country (Larrain et al., 2000). As another example, Iacovone et al. (2009) report 

                                                           
7 Theoretically, technology may be diffused through both importing and exporting. Empirical evidence strongly 
supports the importing channel, while the exporting channel is relatively harder to justify. See Keller (2004, 2010) for 
a detailed survey. 
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that when Walmart brought its centralized distribution system, use of palettes, and other supply 

chain modernizations to its Mexican subsidiary Walmex, the innovations quickly diffused among 

other major retail chains in Mexico. To draw more general implications than can be provided by 

case studies, Xu (2000) uses the Bureau of Economic Analysis data on US outward FDI into 40 

countries over almost 30 years and finds a positive relation between FDI and domestic productivity 

growth, which is stronger in developed countries than in less developed ones. Xu and Wang (2000) 

examine the effects of both trade and FDI on technology diffusion; they conclude that while trade 

in capital goods and outward FDI are associated with the diffusion of technology, inward FDI is 

not. 

2.4 Network Effects on Technology Diffusion 

As an empirical study of the trade network’s effect on technology diffusion, this paper belongs to 

the literature pioneered by Coe and Helpman (1995).  Before discussing our contributions, it is 

worth noting two potential drawbacks of Coe and Helpman (1995).  First, they only consider direct 

bilateral trade. However, technology may also spread through indirect trade relationships (i.e., 

network effects). Second, there is a potential endogeneity problem associated with their model 

specification, an issue that will be discussed in more detail below. 

To illustrate how technology diffusion can occur in the absence of direct linkages, assume that 

there are only three countries in the world—A, B, and C.  Suppose that A only trades with B, while 

B trades with both A and C (see Figure 1). In Coe and Helpman’s (1995) model, the lack of bilateral 

trade between A and C disallows the diffusion of A’s technology C. However, because A trades 

with B, and B trades with C, A indirectly “trades” with C and thus technology may diffuse from 

A to C through B; i.e., the network effects of trade may result in “contagion.” 

Recently, the literature has given more attention to the indirect trade effects.  For example, 

Lumenga-Neso et al. (2005) make a distinction between “produced” R&D and “available” R&D. 

“Produced” R&D resides in the country that created it, but can be transmitted to other countries 

through direct trade; once transmitted to another country it becomes part of the importer’s 

“available” knowledge.  “Available” knowledge can spillover to any country—obviating the need 

for a direct trade link between the knowledge creator and potential knowledge recipients; i.e., once 

knowledge flows from one country to another, it is indirectly available to other countries. 
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Lumenga-Neso et al. (2005) find that the indirect trade effects on domestic TFP are at least as 

important as the direct bilateral trade effects. Franco et al. (2011) argue that while geographic 

distance between countries affects diffusion, the “economic distance” (“trade rounds” in their 

paper) between them also matters. Using bilateral import data, Franco et al. (2011) build a country-

by-country “average propagation length” matrix and then use it to weight each country’s domestic 

R&D expenditures to obtain the “relative stock” of R&D available in each country. The relative 

stock of R&D includes foreign R&D accessed through both direct and indirect trade. Comparing 

estimation results across models that include and exclude the indirect effect of trade, Franco et al. 

(2011) conclude that the indirect effects of trade play a significant role in determining domestic 

TFP. While these studies focus on the trade’s indirect effects, there are at least two differences vis-

à-vis our study. First, the previous studies are based on calculating the weighted foreign R&D 

stock, while ours is based on an explicit network indicator to capture the interconnectedness 

between countries. Second, we use specific technologies rather than TFP as the dependent variable, 

which should mitigate endogeneity concerns. 

Network analysis is well suited to identifying the indirect trade effects. Briefly speaking, a network 

is a description of the pattern of connections between a collection of nodes (or vertices) and links 

(or edges) (Watts, 2003; Newman, 2010). Networks differ in their structures; indicators such as 

shortest paths, centrality, and clustering coefficients characterize their structures (Newman, 2010). 

Network analysis has been widely applied in a diverse set of disciplines such as information 

technology, biology, and sociology to study the interconnectedness of nodes in a network (Watts, 

2003; Newman, 2010). Within the economics literature, network analysis has received growing 

attention and has been used to explain economic development, economic integration, and financial 

contagion (Reyes et al., 2008; Kali and Reyes, 2010; Schiavo et al., 2010) at the macro level, and 

the importance of “network externalities” (Shapiro and Varian, 1998; Goyal, 2007) at the micro 

level, among other phenomena. 

Previous studies have noted the role that geographical distance plays in technology diffusion.8  

Recently, the role of “economic distance” has been considered. This paper also considers the role 

of “economic distance” by constructing network indicators to test how trade network distance 

                                                           
8 Comin et al. (2012) argue that the requisite knowledge to adopt technology is often acquired through interactions 
between agents.  They find strong empirical evidence that the interactions are influenced by geography. 
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affects the diffusion of specific technologies. Importantly, while geographical distance is fixed 

over time, network distance displays rich dynamics over time. Thus, network analysis provides a 

novel and important tool for exploring technology diffusion. 

Network effects measure the “connectivity” structure of a network based on both direct and 

indirect links between nodes. We use the shortest paths algorithm to calculate the average geodesic 

distance—a commonly used measure of connectedness—between countries in the trade network.  

This measure is then included as a regressor in an econometric model to examine its effect on 

technology diffusion.9  It is important to note that the direct path between two nodes is not 

necessarily the shortest path between them; instead, the shortest path may be an indirect one that 

runs through intermediate countries.  

As noted above, endogeneity is a potential problem with econometric models that specify domestic 

TFP (an outcome measure of technology) as the dependent variable while using domestic and 

foreign R&D stocks (input measures of technology) as independent variables. Since a country with 

higher productivity will likely engage in more R&D activities, the causal effects, if any, could go 

from dependent variable to independent variables. One way to address this problem is to use direct 

measures of technology.  Direct measures are available through Comin and Hobijn’s (2004) 

pioneering work on historical technology adoption data. The Cross-country Historical Adoption 

of Technology (CHAT) dataset (Comin and Hobijn, 2009) contains direct measures of diffusion 

for 104 technologies across more than 150 countries. Examining specific technologies in the 

CHAT dataset, Comin and Hobijn (2004) find that trade openness, human capital, and institutions 

are all determinants of the speed of technology adoption. The issue of endogeneity is alleviated 

because it is reasonable to assume that the use of a specific technology as a dependent variable 

should not reversely affect aggregate control variables such as GDP, trade openness, and human 

capital. 

3. Trade Network and Technology Data 

In our empirical analysis we use the bilateral trade flows reported in the NBER-United Nations 

Trade Data (Feenstra et al., 2005) to construct the trade network and combine it with the CHAT 

                                                           
9 Actually, what we find is the significant impact of the average geodesic distance on country’s technology intensity 
level. The implicit assumption here is that technology intensity is mainly the result of technology diffusion. 
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dataset (Comin and Hobijn, 2009) on the diffusion of technologies over time.  After merging the 

international trade network and technology datasets, our sample includes data on 24 technologies 

and 145 countries over the period 1962-2000. 

The trade database covers the years 1962-2000 and 203 countries and areas. 10 The data are 

organized in an 𝑁𝑁 × 𝑁𝑁 bilateral trade matrix B for each year, where 𝑁𝑁 = 203 and each cell 𝐵𝐵𝑖𝑖,𝑗𝑗 

represents the trade flows from country 𝑗𝑗 to country 𝑖𝑖, with 𝐵𝐵𝑖𝑖,𝑖𝑖 = 0. Reported imports are used to 

build the bilateral trade flows, where the imports of country i from country j correspond to the 

exports of country j to i.11 A total trade approach is used to compute the total trade (symmetric) 

matrix 𝑊𝑊 = 𝐵𝐵 + 𝐵𝐵′, where 𝑊𝑊𝑖𝑖,𝑗𝑗 = 𝐵𝐵𝑖𝑖,𝑗𝑗 + 𝐵𝐵𝑗𝑗,𝑖𝑖 = 𝑊𝑊𝑗𝑗,𝑖𝑖. 

The technology measures in the CHAT dataset are converted into intensity measures to assure that 

cross-country comparisons are meaningful. 12  Table 1 contains descriptions of the intensity 

variables for 24 technologies we investigate. With the exception of three “general” technologies 

(computers, electricity production, and internet usage), the CHAT dataset sorts technologies into 

8 industries—agriculture, finance, health, steel, telecommunications, textiles, tourism, and 

transportation. Agriculture, finance, and tourism are excluded from our analysis because the sizes 

and natures of these industries differ substantially across countries and it is difficult to define 

appropriate intensity measures for these technologies. 

 [Insert Table 1 here] 

To capture both the direct and indirect effects of trade on technology diffusion, the “economic 

distance” between counties on the trade network must be measured.  For each country, distance in 

                                                           
10 To account for historical unification or fragmentation of countries, we always consider the geographically larger 
economy as the only predecessor or the only successor so that the methodology is consistent with the technology data. 
For example, we consider Russia as the only successor of Former USSR and all other Former USSR countries as 
completely new countries after 1991. Also, since the former Federal Republic of Germany is geographically larger 
than the former German Democratic Republic, we consider the Federal Republic of Germany as the only predecessor 
of Germany before 1991.  See Table A1 in the Appendix for information on how the trade data were merged. 
11 Arguably, data reported by importing countries is more reliable and complete than the data reported by exporting 
countries.  This is, in part, because tariffs are often collected on imports. 
12 Following Comin and Hobijn (2004), the following intensity measures are computed: 1) percentages of population 
for the health industry, e.g., percent of children aged 12-23 months who received a DPT immunization before the 
age of one year; 2) production shares for the steel, textiles, and transportation industries, e.g., fraction of the total 
crude steel produced in blast oxygen furnaces; 3) volume/amount per unit of real GDP measures for the steel and 
transportation industries; e.g., aviation cargo (ton-kilometers) per unit of real GDP; 4) per capita measures for the 
telecommunications and transportation industries, e.g., televisions per capita. 
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the trade network is measured by average geodesic distance—the mean of the shortest path 

(number of links or relations) between a country and all other countries in the network. A country’s 

closeness centrality (Jackson, 2010; Newman, 2010) is the reciprocal of the average geodesic 

distance: 13 

𝐶𝐶𝑖𝑖 =  𝑁𝑁−1
∑ 𝑑𝑑(𝑖𝑖,𝑗𝑗)𝑗𝑗≠𝑖𝑖

                                                                    (1) 

where N is the number of countries in the trade network and d(i,j) is the shortest distance between 

countries i and j. 14 Closeness centrality measures how strongly nodes interact with one another.  

The larger the value of Ci the shorter the average distance from the country to any other country 

on the network (i.e., there are fewer intermediaries between them), and therefore the more likely 

it is to transmit knowledge spillovers to other countries. For an unweighted network,15 the geodesic 

distance is simply the minimum number of links connecting any two nodes. For a weighted 

network, measuring geodesic distance is more complicated because links are heterogeneous. 

Dijkstra (1959) solves the geodesic distance measurement problem for a weighted network by 

considering costs as the weights.16 The solution is to find the path with the lowest costs. In most 

networks, however, the weights measure the strengths, rather than the costs, of the links.17 For the 

technology diffusion network, the weights (strengths) can be divided into two parts—bilateral 

trade volume and foreign technology intensity. First, greater bilateral trade volume leads to 

stronger trade relationships and hence easier access to technology. Second, for a given country in 

the network, the technology intensity levels of its trading partners also matter because the higher 

                                                           
13 There are a number of node centrality measures.  In addition to closeness centrality there are degree centrality (the 
number of links the node has) and betweenness centrality (the number of the shortest paths crossing the node). See 
Jackson (2010) and Newman (2010) for details.  
14 There are other definitions of closeness centrality; for example, some define closeness centrality as the average 
geodesic distance (the reciprocal of the measure used here). 
15 An unweighted network is also called binary because the links are homogeneous and merely represent the 
presence or not for a certain kind of relationship. A weighted network would take into account other characteristics 
of the links, such as volume, frequency, costs, etc., depending on the context. 
16 For example, in a transportation network, the weights may be the traffic volume. The higher the traffic volume, 
the more costly it is to get through that link. 
17 For example, in a social network, the weights may be the count of interactions between any two people. The more 
frequent interactions, the stronger the link and therefore the less costly to communicate with each other. 
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it’s trading partners’ technology intensities, the greater is the likelihood that technology will 

diffuse to it through trade.18  

Let 𝑌𝑌𝑗𝑗 be country j’s technology intensity.  Combining this with 𝑊𝑊𝑖𝑖,𝑗𝑗 , the bilateral trade volume 

between countries 𝑖𝑖 and 𝑗𝑗, we define the weight of the link between countries 𝑗𝑗 and 𝑖𝑖 as 𝑌𝑌𝑗𝑗 ∙ 𝑊𝑊𝑖𝑖,𝑗𝑗. 

The greater the value of 𝑌𝑌𝑗𝑗 ∙ 𝑊𝑊𝑖𝑖,𝑗𝑗, the less costly it is for technology to diffuse from 𝑗𝑗 to 𝑖𝑖. 

Following Newman (2001) and Brandes (2001), Dijkstra’s (1959) algorithm for calculating 

geodesic distance is implemented by defining costs as the reciprocals of the weights. To allow for 

a wider range of specifications, we follow Opsahl et al. (2010) and introduce a tunable parameter, 

α, in the measure of direct path length. As a result, we define a direct path length matrix, 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑, 

where each element 𝑃𝑃𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑 is the direct path length from country 𝑗𝑗 (the country with a technology) 

to country i, (the country to which the technology may diffuse) and is calculated as: 

𝑃𝑃𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑 = 1
�𝑌𝑌𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗�

𝛼𝛼                                                                     (2) 

where 𝛼𝛼 ≥ 0.19  The matrix 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 is asymmetric because 𝑃𝑃𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑃𝑃𝑗𝑗,𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑 are only equal if the two 

countries have exactly the same technology intensity, which is unlikely to be the case. As in 

Newman (2001), Brandes (2001), and Opsahl et al. (2010), the indirect path length is calculated 

by summing the direct paths that link countries i and j: 

                   𝑃𝑃𝑖𝑖,𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑖𝑖,ℎ𝑑𝑑𝑑𝑑𝑑𝑑 + ⋯+ 𝑃𝑃𝑔𝑔,𝑗𝑗
𝑑𝑑𝑑𝑑𝑑𝑑 = 1

�𝑌𝑌ℎ𝑊𝑊𝑖𝑖,ℎ�
𝛼𝛼 + ⋯+ 1

�𝑌𝑌𝑗𝑗𝑊𝑊𝑔𝑔,𝑗𝑗�
𝛼𝛼                                 (3) 

where 𝛼𝛼 ≥ 0 and ℎ, … , 𝑔𝑔 are the intermediate countries between 𝑖𝑖 and 𝑗𝑗. 

Figure 1 illustrates the notions of direct and indirect path lengths for the case of three countries, 

A, B, and C, which trade with one another. Notice that the link between countries is both weighted 

(link width) and directed (arrow). The direct path length from C to A is 𝑃𝑃𝐴𝐴,𝐶𝐶
𝑑𝑑𝑑𝑑𝑑𝑑, while the indirect 

                                                           
18 It is this second aspect that makes the network directed; i.e., asymmetric. For example, say, A trades with B but 
only A has the technology in question. Then there is a link pointing from A to B, but no (directed) link from B to A. 
19 The tunable parameter “balances” the influence of the number of connections a node has with other nodes and the 
strength of those connections.  The original form of Dijkstra’s (1959) algorithm for weighted networks has α = 1. 
When α = 0, the network is unweighted; when 0 < α < 1, more costs are associated with a given number of intermediate 
links; and when α > 1 lower costs are associated with a given number of intermediate links. In Section 4, we run 
benchmark regressions using 𝛼𝛼 = 1. The robustness of results is examined using 𝛼𝛼 = 0.5 and 𝛼𝛼 = 1.5.  
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path length from C to A is 𝑃𝑃𝐴𝐴,𝐶𝐶
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃𝐴𝐴,𝐵𝐵

𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑃𝑃𝐵𝐵,𝐶𝐶
𝑑𝑑𝑑𝑑𝑑𝑑  with country B serving as an intermediary 

between A and C.  As noted above, the indirect path 𝑃𝑃𝐴𝐴,𝐶𝐶
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 may be shorter than the direct path 

𝑃𝑃𝐴𝐴,𝐶𝐶
𝑑𝑑𝑑𝑑𝑑𝑑. 

[Insert Figure 1 here] 

Let 𝑷𝑷𝑖𝑖,𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 be the set of all possible indirect paths from country 𝑗𝑗 to country 𝑖𝑖. Then the geodesic 

distance (i.e., the shortest path) from 𝑗𝑗 to 𝑖𝑖 is: 

                       𝑆𝑆𝑖𝑖,𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑃𝑃𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑, 𝑷𝑷𝑖𝑖,𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� .                                                      (4) 

Finally, the average geodesic distance to all 𝑛𝑛 technology-available trading partners for country 𝑖𝑖 

is given by: 

                        𝐷𝐷𝑖𝑖 =
∑ 𝑆𝑆𝑖𝑖,𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
 .                                                                   (5) 

Comin and Hobijn (2004) use the trade-share-weighted average of technology intensity level of 

adoption of trading partners as a control variable: 

                      𝑇𝑇𝑇𝑇𝑖𝑖 =
∑ 𝑌𝑌𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑚𝑚
𝑗𝑗=1

∑ 𝑊𝑊𝑖𝑖,𝑗𝑗
𝑚𝑚
𝑗𝑗=1

 ,                                                                   (6) 

where 𝑚𝑚 is the number of countries with which country 𝑖𝑖 has bilateral trade relationships.  Note 

that the trade shares in equation (6) are based only on bilateral trade; hence, network effects are 

ignored.  To control for the direct effects of trade on technology diffusion, we include TWi as a 

regressor in our econometric analysis. 

Before proceeding to the econometric model and empirical results, it is worth briefly discussing 

summary statistics of the technology data, the technology diffusion networks, and the average 

geodesic distance measures. Figure 2 shows plots of the cross-country average technology level 

over time. As can be seen, most technologies have an upward trend over time, indicating that the 

level of adoption has been increasing. The intensity levels for “CableTV,” “Newspaper,” and 

“Railway_passenger” are roughly constant at the end of the sample period, suggesting that they 

are mature technologies. Finally, some technologies—“Steel_OHF,” “Mail,” “Telegram,” 

“Textile_artificial,” and “Railway_cargo”—show clear patterns of decline in recent years, 
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suggesting that they are becoming obsolete.  To further explore whether a technology is becoming 

obsolete we examine fitted kernel density distribution functions for selected years. To illustrate, 

we use “Cellphone” as a typical new technology and “Telegram” as a typical obsolete technology. 

The top row of Figure 4 contains the kernel functions for log measures of “Cellphone” and 

“Telegram.” Clearly, the mode of “Cellphone” has moved to the right along the horizontal axis, 

which confirms that “Cellphone” is a relatively new technology that continues to diffuse over time. 

In contrast, the distribution of “Telegram” has shifted leftward over time, suggesting that it is 

becoming an obsolete technology. A similar conclusion can be drawn by comparing the growth 

rate distributions for these two technologies, which are illustrated in the bottom row of Figure 3. 

[Insert Figures 3-4 here] 

A simple way to check the dynamics of the technology diffusion networks is to calculate network 

density over time. Let 𝑞𝑞𝑘𝑘,𝑡𝑡 be the number of existing links for year 𝑡𝑡 and technology 𝑘𝑘 and 𝑀𝑀 =

145 be the number of countries in the trade-technology-combined data. The network density in 

year 𝑡𝑡 for technology 𝑘𝑘 is: 

                                            𝜑𝜑𝑘𝑘,𝑡𝑡 = 𝑞𝑞𝑘𝑘,𝑡𝑡
𝑀𝑀(𝑀𝑀−1) ,                                                                (7) 

where 𝑀𝑀(𝑀𝑀 − 1) is the total number of possible links since the network is directed.  Figure 4 

illustrates the network densities for each technology over time. The obsolete technologies “Mail” 

and “Telegram” show a clear decline in network density, while relatively new technologies such 

as immunization technologies, “Internet”, and “PC”, have increasing densities over time. However, 

because the presence of a link requires both the presence of (foreign) technology and the presence 

of bilateral trade, the density fluctuates a lot for transportation technologies, some 

telecommunication technologies, and “Electricity.”  

Table 2 contains summary statistics on indirect paths. The first column lists the 24 technologies 

analyzed. Column 2 reports the average percentage of all shortest paths that are indirect paths, 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

. Column 3, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒
𝑑𝑑𝑑𝑑𝑑𝑑_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

, provides the average percentage of direct paths that are replaced by 

indirect shortest paths. Finally, the last column, 1 − 𝑑𝑑𝑑𝑑𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 , reports the average percentage of 

indirect shortest paths for which there is no direct path between two countries.  As can be seen 

from the values in Columns 2 and 3, the shortest paths are dominated by indirect paths.  Moreover, 
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a significant portion of the shortest paths are cases for which two nodes are not directly linked to 

each other but are only connected through intermediate nodes (see Column 4). 

[Insert Table 2 here] 

4. Empirical Model, Results, and Robustness Checks 

A country-fixed-effects model with the tuning parameter set at 𝛼𝛼 = 1 is the benchmark we use to 

test the hypothesis that countries adopt new technologies more quickly the more closely connected 

through trade they are to prior adopters:20 

𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 = 𝛽𝛽1𝑖𝑖𝐶𝐶𝑖𝑖 + 𝛽𝛽2𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘 + 𝛽𝛽3𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 + 𝛽𝛽4𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖 + 𝛽𝛽5𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
𝑘𝑘 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑘𝑘 .                     (8) 

The dependent variable, 𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘, is the intensity level of technology 𝑘𝑘 for country 𝑖𝑖 in year t and 𝐷𝐷𝑖𝑖𝑖𝑖, 

the regressor of primary interest, is the network effects indicator measured by average geodesic 

distance. Control variables include country-specific fixed effects, Ci,, real GDP per capita 

(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖), the ratio of nominal trade volume to nominal GDP (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖), and the trade-share-

weighted average of technology intensity levels of trading partners �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
𝑘𝑘�.21 The coefficient of 

on D measures the impact of the average geodesic distance on the level of technology adoption. If 

being better connected on the trade enhances the technology diffusion process, D and Y would be 

negatively related. Summary statistics of the distance variables used in the benchmark regressions 

are reported in Table 3.   

[Insert Table 3 here] 

We estimate equation (8) separately for each of the 24 technologies in our dataset. This allows the 

estimated coefficients to vary across technologies, reflecting the heterogeneous impacts that 

                                                           
20 This specification can be viewed as an extension of Comin and Hobijn (2004). 
21 RGDP is calculated based on the CHAT dataset. Openness is extracted from the Penn World Table 7.0 (Heston et 
al., 2011). Another possible control variable is education.  Increases in education enhance the capacity to absorb 
knowledge spillovers.  Common proxies for education include the primary school enrollment and the secondary school 
enrollment rates. Unfortunately, data on school enrollment is not available in many cases.  Therefore, to ensure a large 
number of observations, and to avoid problems of multicollinearity, we don’t include the education (human capital) 
variables in the regression models reported in the body of the text. Regression results for models with education 
variables are reported in Table A6 and A6 in the Appendix; qualitatively, the results don’t differ across the two 
specifications. 
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average geodesic distance and the control variables likely have on the diffusion of different 

technologies.  Regression results are reported in Table 4.22 

[Insert Table 4 here] 

Our central findings can be summarized as follows: 

1) The estimated coefficient on the distance variable, D, is statistically significant for 22 of 

the 24 technologies.  This supports our hypothesis that stronger linkages, both direct and 

indirect, on the trade network affect technology diffusion.  The estimated coefficient is 

statistically significantly negative for 17 of the 24 technologies examined.  For example, 

the negative relationship between technology adoption and distance is well supported in 

the health industry, as both types of immunization (DPT and measles) have statistically 

significant negative signs for 𝛽𝛽2.23 

2) For older (“obsolete”) technologies, for which clear substitutes have emerged, the 

estimated coefficients on D are either statistically significantly positive (5 technologies—

“CableTV,” “Mail,” and “Telegram” in the telecommunications industry, and “Railway” 

(both passenger and cargo) in the transportation industry) or insignificant (2 technologies—

“BOF” in the steel industry and “Textile_artificial”). This suggests that better connected 

countries can more easily adopt newer technologies to replace those that are becoming 

obsolete. 

Our findings provide strong evidence of the importance of trade in the process of technology 

diffusion—better connected countries tend to perform better by more quickly adopting relatively 

newer technologies and by casting away older, “obsolete” technologies.   

As noted earlier, there is a potential endogeneity problem in Coe and Helpman (1995).  As argued 

above, it’s reasonable to assume that there isn’t reverse causality between the adoption of specific 

technologies, the dependent variable, and the macroeconomic regressors RGDP and Openness. 

                                                           
22 We test whether serial correlation is present in our panel data model (Wooldridge, 2002; Drukker, 2003). With the 
exception of “Autoloom,” serial correlation is present.  As a result, we use Arellano’s (1987) serial 
correlation/heteroskedasticity robust estimator to obtain standard errors. 
23 The other technologies with statistically significantly negative relationships between trade and adoption are  
“Steel_EAF,” “Cellphone,” “Newspaper,” “Radio,” “Telephone,” and “TV” in the telecommunications industry, 
“Textile_synthetic” in the textile industry, “Aviation” and “Car” in the transportation industry, as well as the general 
technologies “Electricity” and “Internet.”  
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However, there is a potential endogeneity bias with respect to the regressors D and TW. In 

particular, the technology intensity of country i may enter the construction of D and TW in other 

countries. Like Comin et al. (2012), we argue that, even if endogeneity bias is present, it is likely 

negligible because our sample contains a large number of countries. Thus, the effect of a single 

country’s technology intensity has a relatively small effect on the sizes of D and TW for other 

countries since these two measures are weighted averages based on all the countries in the dataset.  

Nonetheless, we examine potential endogeneity bias in our model. The diffusion of technology is 

not instantaneous; therefore, we re-estimated equation (8) after replacing the contemporaneous 

values of D and TW with their one-period lagged values. Results based on the lagged variables, 

reported in the Appendix, indicate that both the signs and significances of the estimated 

coefficients on D are quite robust. 

As a further robustness check, equation (8) was re-estimated using the values of average geodesic 

distance generated using 𝛼𝛼 = 0.5 and 𝛼𝛼 = 1.5 as the values of the tuning parameter.  The average 

number of intermediate links is higher when 𝛼𝛼 = 1.5 (the number of intermediate links matters 

less), and is lower when 𝛼𝛼 = 0.5 (the number of intermediate links matters more).24  Estimation 

results based on  𝛼𝛼 = 0.5 and 𝛼𝛼 = 1.5 are reported in Tables A3 and A4, respectively, in the 

Appendix.  With three exception, both the signs and significance levels of the estimated 

coefficients on 𝐷𝐷 are very robust to the value of the tuning parameter.25, 26 

Finally, equation (8) was augmented with the regressors G7 and G7*D, where G7 is a dummy 

variable for the Group of 7 (G7) countries (US, UK, Japan, Germany, Canada, France, and Italy).  

The G7 countries are arguably the most innovative in the world.27  Interestingly, G7*D does not 

                                                           
24 See Table A2 in the Appendix for the average number of intermediate links for each technology based on these 
alternative values of α. 
25 The exceptions are “Steel_BOF,” “Steel_OHF,” and “Autoloom.” For “Steel_BOF” the coefficient on D remains 
insignificantly negative when α = 1.5, but the coefficient is statistically significantly negative when α = 0.5.  
“Steel_OHF” has negative and significant coefficients on D when α = 1 and α = 1.5, but an insignificant positive 
coefficient when α = 0.5. Finally, “Autoloom” has negative and significant coefficients on D when α = 1 or α = 1.5, 
but an insignificant negative coefficient on D when α = 0.5. 
26 For the control variables, results with α = 1.5 is more robust than those with α = 0.5. I.e., results are more robust 
when the number of intermediate links matters less (i.e., when more indirect paths are identified as the geodesic 
distances). 
27 In recent years, the contribution to global innovation from other advanced economies and developing countries, 
such as China and India, has increased rapidly. However, since our sample is restricted within 1962-2000, the G7 is 
still a fairly informative representation of the world technological frontier back to that time. 



20 
 

matter for most technologies (see Table A5 in the Appendix). However, when it does matter, it is 

significantly positive and offsets the negative impact of D (except for the steel industry). That is, 

compared with the “imitators,” the “innovators” tend to have higher technology intensity level the 

farther away they are from the rest of the network. This may be the case for two reasons.  First, 

this may be the result of “protection” efforts by the innovators. Innovators have strong incentives 

to protect their technological advances from imitators so that they can extract greater economic 

benefits from their R&D efforts. As a consequence, innovators may tend to develop and intensify 

technologies for which they are farther away from the potential imitators.  Second, it means that 

better connectedness would benefit imitators, which also fits our intuition. 

5. Concluding Remarks 

Theoretically, trade serves as a major channel of technology diffusion; empirical evidence 

supports the theory. To empirically test the effects of trade on technology diffusion, previous 

literature typically considers the direct (bilateral) trade effects on the indirect measures of 

technologies (TFP). We argue that the impact of trade on technology diffusion would be more 

accurately measured when the indirect network effects are also taken into account and when 

direct, rather than indirect, measures of technology diffusion are used. In the weighted trade 

network, technology can be diffused bilaterally between two countries as well as through 

network effects (i.e., indirectly through trade with intermediate countries).  To examine network 

effects we include an indicator of network structure, average geodesic distance, in our empirical 

analysis. Our results suggests that the network effects of trade play a significant role in 

technology diffusion. That is, better-connectedness on the trade network increases the rates at 

which countries adopt newer technologies and cast away older, perhaps obsolete, technologies 

for which clear substitutes have emerged. The latter finding is consistent with quality-ladder 

models (Aghion and Howitt, 1992) in which older (lower quality) products are continually 

replaced by newer (higher quality) products. 
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Figure 1:  Direct and Indirect Paths in the Trading Network 
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Figure 2 Cross-Country Average Technology Intensity Levels 

 

Note: The number of countries may vary across different technologies and different years. 
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Figure 3: Estimates of the Distribution of Countries According to Log Intensity levels and 
Average Growth Rates of Cellphone and Telegram 

 

Notes: The above figure shows that, for both the log level and average growth rate measures, the relatively new 
technology “Cellphone” has distributions shifting rightward over time while the relatively old technology 
“Telegram” has distributions shifting leftward over time. 
For “Cellphone” on the bottom left, the growth rate in 1995 refers to the geometric average of the growth rates 
between 1990 and 1995 and the growth rate in 2000 refers to the average between 1995 and 2000. 
For “Telegram” on the bottom right, the growth rate in 1980 refers to the average between 1970 and 1980 and the 
growth rate in 1990 refers to the average between 1980 and 1990. 
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Figure 4: Network Density 
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Table 1:  Technology Intensity Variables and Descriptions 

INTENSITY VARIABLES VARIBLE DESCRIPTION 
I. HEALTH  
1. Immunization_DPT Percent of children aged 12-23 months who received a DPT (diphtheria, 

pertussis, and tetanus) immunization (including all three doses) before the age 
of one year 

2. Immunization_measles Percent of children aged 12-23 months who received a measles immunization 
(one dose only) before the age of one year 

II. STEEL  
3. Steel_BOF Fraction of crude steel production (in metric tons) in blast oxygen furnaces (a 

process that replaced Bessemer and OHF processes) 
4. Steel_EAF Fraction of crude steel production (in metric tons) in electric arc furnaces (a 

process that complemented and improved upon Bessemer and OHF processes) 
5. Steel_OHF Fraction of crude steel production (in metric tons) in open hearth furnaces (a 

process that complemented the Bessemer process) 
III. TELECOM  
6. CableTV Number of households that subscribe to a multi-channel television service 

delivered by a fixed line connection per capita 
7. Cellphone Number of users of portable cell phones per capita 
8. Mail Number of items mailed/received per capita 
9. Newspaper Number of newspaper copies circulated daily per capita 
10. Radio Number of radios per capita 
11. Telegram Number of telegrams sent per capita 
12. Telephone Number of mainline telephone lines connecting a customer’s equipment to the 

public switched telephone network per capita as of year end  
13. TV Number of television sets in use per capita 
IV. TEXTILES  
14. Autoloom Fraction of operable looms (of a certain size) in place at year end that are either 

automatic or have automatic attachments (as opposed to ordinary looms) 
15. Textile_artificial Fraction of weight of fibers used in spindles that are artificial (cellulosic) 
16. Textile_synthetic Fraction of weight of fibers used in spindles that are synthetic (non-cellulosic) 
V. TRANSPORTATION  
17. Aviation_passenger Civil aviation passenger-KM traveled on scheduled services by companies 

registered in the country concerned per capita 
18. Aviation_cargo Civil aviation ton-KM of cargo carried on scheduled services by companies 

registered in the country concerned per unit of real GDP 
19. Railway_passenger Passenger journeys by railway in passenger-KM per capita 
20. Railway_cargo Ton-KM of freight carried on railways (excluding livestock and passenger 

baggage) per unit of real GDP 
21. Car Number of passenger cars (excluding tractors and similar vehicles) in use per 

capita 
VI. GENERAL  
22. Electricity Gross output of electric energy (inclusive of electricity consumed in power 

stations) in KwHr per unit of real GDP 
23. Internet Number of people with access to the worldwide network per capita 
24. PC Number of self-contained computers designed for use by one person per capita 
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Table 2: Summary Statistics of Indirect Paths 

Technology 
𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

 
𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊_𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓
𝒅𝒅𝒅𝒅𝒅𝒅_𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂

 𝟏𝟏 −
𝒅𝒅𝒅𝒅𝒅𝒅_𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
 

Immunization_DPT 98.14% 96.45% 47.75% 
Immunization_measles 98.11% 96.32% 48.22% 

Steel_BOF 94.63% 93.51% 18.00% 
Steel_EAF 95.34% 94.38% 20.81% 
Steel_OHF 91.85% 87.62% 26.14% 
CableTV 86.72% 85.02% 14.69% 
Cellphone 88.90% 87.53% 25.74% 

Mail 90.81% 88.78% 20.51% 
Newspaper 98.09% 96.65% 41.77% 

Radio 95.40% 93.97% 41.69% 
Telegram 87.97% 85.06% 22.87% 
Telephone 97.64% 95.51% 43.92% 

TV 97.99% 96.50% 40.72% 
Autoloom 97.09% 95.94% 25.40% 

Textile_artificial 96.95% 95.72% 24.39% 
Textile_synthetic 96.24% 94.83% 23.49% 

Aviation_passenger 97.68% 96.31% 36.45% 
Aviation_cargo 97.41% 96.05% 34.09% 

Railway_passenger 97.25% 95.95% 32.09% 
Railway_cargo 97.48% 96.14% 33.34% 

Car 97.76% 96.29% 38.28% 
Electricity 97.84% 96.45% 40.34% 

Internet 97.10% 95.85% 31.66% 
PC 86.43% 81.76% 29.22% 

Notes: 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 measures the average percentage of indirect paths out of all the shortest paths. 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

, measures the average percentage of direct paths that are replaced by indirect shortest paths out of all the 

available direct paths.  

1 − 𝑑𝑑𝑑𝑑𝑑𝑑_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

, measures the average percentage of indirect shortest paths given no direct paths available out of all 
the shortest paths. 

 

 

 

 

 



32 
 

Table 3: Summary Statistics of 𝐷𝐷 Used in the Benchmark Regressions 

Technology Obs. Mean Std. Dev. Min Max 
Immunization_DPT 2243 2.31E-05 3.54E-05 3.92E-06 0.000969 

Immunization_measles 2194 3.03E-05 5.51E-05 3.71E-06 0.001094 
Steel_BOF 1240 5.43E-06 3.07E-05 2.21E-07 0.000911 
Steel_EAF 1869 1.36E-05 1.89E-05 1.38E-06 0.000135 
Steel_OHF 762 0.000017 3.15E-05 2.19E-06 0.00027 
CableTV 662 6.36E-06 0.000016 8.99E-10 5.44E-05 
Cellphone 1191 1.05E-05 9.36E-06 1.51E-07 3.08E-05 

Mail 1668 0.00027 0.000199 5.82E-06 0.001189 
Newspaper 3755 7.7E-06 8.47E-06 5.62E-07 0.000049 

Radio 3999 0.001071 0.004525 2.03E-05 0.031423 
Telegram 1612 0.042019 0.113242 0.004865 3.3143 
Telephone 3202 2.15E-05 0.000508 1.3E-06 0.028709 

TV 3777 1.83E-05 2.17E-05 1.96E-07 0.000108 
Autoloom 1018 0.000892 0.015194 1.82E-06 0.48149 

Textile_artificial 964 0.000082 5.02E-05 0.000025 0.00068 
Textile_synthetic 814 0.000153 0.000253 1.36E-05 0.001523 

Aviation_passenger 2682 0.011408 0.259034 4.58E-05 13.341 
Aviation_cargo 2420 1.193418 34.193 0.001917 1676.8 

Railway_passenger 2203 0.000297 0.00026 4.64E-05 0.001233 
Railway_cargo 2431 0.000369 0.00034 9.25E-05 0.0078 

Car 3400 1.05E-05 0.000289 4.15E-08 0.016832 
Electricity 3974 9.7E-10 1.13E-08 4.39E-12 6.92E-07 

Internet 878 6.32E-05 8.17E-05 7.12E-08 0.000283 
PC 1043 3.99E-05 0.000394 1.07E-07 0.005741 

         Notes: E-x means 10−𝑥𝑥.  
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Table 4: Fixed-Effects Regression Results (𝛼𝛼 = 1) 

  HEALTH  STEEL  TELECOMMUNICATION 

  DPT Measles  BOF EAF OHF  CableTV Cellphone Mail Newspaper Radio Telegram Telephone TV 

                 
RGDP  -.01103 .06259***  -.01744 -.06683*** -.13302***  2.38232*** .26009 .79838*** .24869*** -.02074 .12915* 1.34310*** .40808*** 

  .01738 .01804  .02250 .02070 .03267  .34510 .30800 .04121 .02721 .03035 .06621 .03167 .06500 
Openness  .00115 -.01366  .08652** .10942*** -.03834  -.33172 -.20692 .07839 -.02756 -.09386** -.16048 .49447*** -.07790 

  .01532 .01556  .03683 .02824 .05837  .31238 .20994 .06473 .03665 .04048 .09801 .04478 .08170 
TW  .35468*** .27460***  .73754*** .54904*** 1.28743***  .29314*** 1.25201*** .01973* .05333 .62208*** .45253*** -.17745*** 1.63784*** 

  .03594 .03743  .04176 .05965 .07705  .07169 .02396 .01137 .04341 .04114 .01711 .01917 .05133 
D  -.08531*** -.08838***  -.00630 -.00799** -.01831**  .10721*** -.19281*** .08299*** -.03772*** -.22344*** .18100*** -.14797*** -.24951*** 
  .00429 .00502  .00389 .00379 .00836  .01497 .02484 .01194 .00809 .00771 .01837 .00770 .01333 

Cons.  -.52936*** -.56726***  .13288*** .27893*** .20689*  -1.33189* -5.86350*** -3.72302*** 2.55252*** -3.54093*** -4.18329*** .68630*** -9.23435*** 
  .03540 .03641  .03904 .04782 .11154  .75382 .56627 .07362 .28497 .07877 .12031 .09565 .23249 
                 

Adj-R2  .7976 .7731  .7264 .8295 .8425  .8944 .9072 .9671 .9655 .8894 .8508 .9649 .8679 
# Obs.  2243 2194  1240 1869 762  662 1191 1668 3755 3999 1612 3202 3777 
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Table 4 (cont.): Fixed-Effects Regression Results (𝛼𝛼 = 1) 

  TEXTILE  TRANSPORTATION  GENERAL 

  Autoloom Artificial Synthetic  A_passenger A_cargo R_passenger R_cargo Car  Electricity Internet PC 

               

RGDP  .33121*** -.01339 .06861***  1.46435*** .89207*** .41622*** -.59475*** 1.04611***  -.04379 -.62575 1.19113*** 

  .07070 .01504 .02445  .04021 .06418 .03960 .04140 .03695  .02935 .43846 .15713 

Openness  .09083 .04112* .05921*  .37714*** .64215*** -.19521*** -.24638*** .10181**  .14096*** -.64128** .39508*** 

  .11301 .02474 .03066  .05509 .08233 .06392 .06593 .04964  .03954 .32575 .12768 

TW  -.17963 .24396** .19805*  .50907*** .51094*** .14641*** .16724*** .36525***  .21234*** 1.49612*** 1.27616*** 

  .15528 .10979 .11567  .02082 .02856 .05418 .02540 .03021  .02722 .03027 .03442 

D  -.01136* .00320 -.02406***  -.04107*** -.03915*** .03940*** .10201*** -.09352***  -.17525*** -.14204*** .06487*** 

  .00606 .00498 .00541  .00774 .01144 .01086 .01503 .00811  .00556 .01796 .01650 

Cons.  .32014*** .11964** -.27671***  -4.29382*** -5.25608*** -2.20457*** -1.12390*** -1.37353***  5.38341*** -4.79911*** -4.77985*** 

  .09147 .04671 .03722  .08238 .25347 .08466 .10728 .13688  .37725 .68418 .25664 

               

Adj-R2  .3764 .7357 .6501  .9481 .8587 .9523 .9542 .9459  .8836 .9128 .9530 

# Obs.  1018 964 814  2682 2420 2203 2431 3400  3974 878 1043 

Notes: Significance levels:  ***1%, **5%, *10%.  
Robust standard errors are in italics. 
Definitions of dependent variables can be found in Table 1. 

 


