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A B S T R A C T

Several vaccines elicit lower efficacy or impaired immune responses in rural compared to urban settings, and in
tropical low-income countries compared to high-income countries. An unresolved hypothesis is that im-
munomodulation by parasitic infections such as helminths (prevalent in rural tropical settings) contributes to
suppression of vaccine responses. Among 1–17-year-old Ugandan residents of rural Schistosoma mansoni (Sm)-
endemic islands and proximate urban communities with lower helminth exposure, we assessed plasma antibody
and whole blood assay cytokine responses to tetanus toxoid (TT) and purified protein derivative of
Mycobacterium tuberculosis (PPD). These were taken to represent recall responses to tetanus and BCG vaccination
in infancy. PPD-specific responses are additionally induced by tuberculous and non-tuberculous mycobacterial
exposure. Urban-rural comparisons showed that PPD-specific IFN-γ and IL-13 and TT-specific IL-13 and IgG
concentrations were lower in the rural setting, but that PPD-specific IgE concentrations were higher. Among
rural participants, Sm infection was inversely associated with PPD-specific IFN-γ, while nematode infection was
positively associated with PPD-specific IgG. Among urban participants, Sm infection was positively associated
with PPD-specific responses but inversely associated with TT-specific responses, while nematode infection was
inversely associated with TT-specific IgG and IgG4, but no associations were observed with PPD-specific re-
sponses. Despite these associations, for the urban-rural comparisons there were no notable changes in test sta-
tistics after adjusting for current helminth infections, suggesting that helminths were not the sole explanation for
the urban-rural differences observed. Helminths likely work in concert with other environmental exposures and
operational factors to influence vaccine response.

1. Introduction

Effective vaccines play a major role in control of infectious diseases;
however, several licensed [1–4] and candidate [5–7] vaccines are less
efficacious, and vaccine-specific immune responses impaired, in tro-
pical compared to higher latitudes. This phenomenon is best docu-
mented for Bacillus Calmette-Guérin (BCG) [2,3]; however, similar
trends have been observed for other vaccines. For example, levels of
neutralising antibodies against yellow fever vaccine are lower, and
wane faster, in Uganda compared to Switzerland [1]. Responses to
novel viral-vectored vaccines are lower among African individuals

compared to their United Kingdom counterparts [6,7]. Some enteric
vaccines also show variable efficacy between low- and high-income
countries [8,9]. In the tropics, rural settings appear more affected
[10–13]. For example, influenza and tetanus vaccine responses have
been shown to be lower in rural compared to urban Gabon [12,13].

Why several vaccines are less efficacious in tropical low-income
countries compared to high-income countries, and in rural versus urban
settings, is incompletely understood. BCG vaccine efficacy in migrant
and native populations in England is comparable [14], hence genetic
differences may not fully explain population differences in vaccine re-
sponse. Prior exposure to the target, or related, organisms, may mask
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the benefit of the vaccine [15]: exposure to non-tuberculous myco-
bacteria pre- [16] and post-BCG immunisation [15] was shown to
modify protection induced by BCG in mice. However, pre-immunisation
exposure cannot explain observations for vaccines against rare patho-
gens, such as Ebola [7].

Another long-held hypothesis is that helminth infections, which are
highly prevalent in rural tropical settings, modulate vaccine responses
by suppressing the Th1 responses necessary for protection against
several pathogens targeted by vaccines [17,18]. In animal models,
helminths generally impair priming and accelerate waning of vaccine
responses, but effects vary with helminth species and vaccine type [19].
In humans, treating geohelminths has been shown to improve responses
to BCG [20,21] and oral cholera vaccine [22], and a recent study in
Uganda suggested that treatment of schistosomiasis improves the
measles-booster response in children [23].

We surveyed helminth-endemic Lake Victoria islands of Koome,
Uganda [24–27] and proximate mainland urban communities with
lower helminth exposure [28] as part of a set of studies on helminths
and allergy-related outcomes. Vaccine responses were measured as a
secondary outcome in these surveys. Logistics did not permit us to
administer the corresponding vaccines; however, we anticipated that
assessment of vaccine-specific immune responses among survey parti-
cipants would contribute to planning of further studies designed spe-
cifically to examine effects of environmental and parasite exposures on
vaccine efficacy. Here, we present results from an urban-rural com-
parison of immune responses to mycobacterial and tetanus vaccine
antigens, and explore the hypothesis that differences, if any, are attri-
butable to differential helminth exposure intensity between the two
settings. Understanding drivers of urban-rural differences in vaccine
response may be key to maximising the effectiveness not only of li-
censed, but also of candidate vaccines, in the tropics.

2. Methods

2.1. Study settings and procedures

Samples for the present analysis were obtained from 1 to 17-year-
old participants of two cross-sectional surveys conducted in Uganda,
one in 26 helminth-endemic rural fishing villages of the Lake Victoria
Koome islands and the other in Entebbe municipality, an urban setting
with lower helminth infection exposure, located on the northern shores
of Lake Victoria, approximately 35 km from Koome.

The “rural survey” was the outcomes survey (September 2015 –
August 2016) following three years of the Lake Victoria Island
Intervention Study on Worms and Allergy-related diseases (LaVIISWA;
ISRCTN47196031), a cluster-randomised trial of community-based
standard versus intensive anthelminthic treatment, described pre-
viously [24,26]. The “urban survey” (September 2016 – September
2017) was designed purposely to collect data for comparison with the
rural survey [28]. Urban survey participants were not randomised to
standard versus intensive anthelminthic intervention; however, all
other procedures were designed to be equivalent between the two
surveys.

The primary outcomes for both surveys were allergy-related
[26,28]. This paper reports results for the pre-specified secondary
outcomes of immune responses to tetanus and BCG vaccination. Both
vaccines had been administered by the Uganda National Expanded
Programme on Immunisation (UNEPI) in infancy with good reported
coverage [29]. The Ministry of Health (Uganda) also recommends te-
tanus booster immunisation in adolescence (but coverage is variable)
and during pregnancy [30]. For logistical reasons it was not possible for
the research team to administer the vaccines during this project.

The surveys collected socio-demographic and clinical data from
consenting / assenting individuals. Data included history of im-
munisations, including with BCG and tetanus in infancy, obtained from
health cards where available; in the absence of health cards, parent/

caregiver's recall, another person's recall or a participant's own response
was recorded. Stool and blood were also obtained for laboratory ana-
lyses.

Both surveys were approved by research ethics committees of
Uganda Virus Research Institute (refs: GC/127/12/05/03 and GC/127/
16/02/547) and London School of Hygiene and Tropical Medicine (refs:
6187 and 10709), and the Uganda National Council for Science and
Technology (refs: HS1183 and HS2036).

2.2. Laboratory methods

To assess infection with Schistosoma mansoni (Sm) and other in-
testinal helminths, one stool sample per participant (two slides, dif-
ferent technologists) was examined using the Kato-Katz (KK) technique
[31]. The remaining sample was suspended in 70% ethanol and stored
at −80 °C for later determination of Sm, Necator americanus and
Strongyloides stercoralis infections using multiplex real-time PCR
[32,33].

Outcomes for the current analysis were cytokine and antibody re-
sponses to tetanus toxoid (TT) and purified protein derivative (PPD),
used here to denote responses to tetanus and BCG vaccination, re-
spectively. Additionally, PPD-specific responses are elicited by exposure
to tuberculous and non-tuberculous mycobacteria.

We assessed stimulated interferon (IFN)-γ (T helper [Th]1), inter-
leukin (IL)-5, IL-13 (both Th2) and IL-10 (regulatory) production in a
six-day whole blood assay (previously described [34]), among all urban
and rural survey participants from whom we obtained a sufficient blood
sample both for this assay, and related cellular assays (not reported
here). Briefly, we diluted heparinised blood to a final concentration of
1-in-4 using RPMI 1640 medium supplemented with glutamine, strep-
tomycin, HEPES buffer and penicillin (all from Life technologies, UK)
and cultured it (at 37 °C, 5% CO2) in 96-well, round-bottomed plates
(Corning, USA) with PPD (10 μg/ml) or TT (12 Lf/ml) [both from
Statens Serum Institut, Denmark] or phytohaemagglutinin (PHA,
10 μg/ml; Sigma, UK), or left it unstimulated. On culture day six, su-
pernatants were harvested and stored at −80 °C. Supernatants were
later thawed and analysed for cytokine levels using commercial ELISA
kits (Becton Dickinson, USA). We calculated the net cytokine levels in
each antigen well by deducting the concentration in the unstimulated
well. Net cytokine concentrations that were negative or lower than the
assay dynamic range were set to zero. For both surveys, whole blood
assays were conducted using the same antigen batches and assay con-
ditions. Each ELISA assay plate comprised samples from both surveys.
All assays were conducted by the same technicians (JK, JN).

Tetanus toxoid- and PPD-specific immunoglobulin (Ig)G, IgG4 and
IgE were measured in plasma using an in-house ELISA. Full details for
each assay are described in this article's supplementary information.
Briefly, 96-well plates were coated overnight at 4 °C with 5 μg/ml of
PPD or TT and two-fold dilutions of human IgG or IgG4 or IgE stan-
dards. Plates were blocked at room temperature with 1% skimmed milk
and incubated overnight at 4 °C with diluted plasma samples. Specific
IgG was detected using polyclonal rabbit anti-human IgG conjugated to
horseradish peroxidase. Specific IgG4 or IgE was detected using bioti-
nylated monoclonal mouse anti-human IgG4 or IgE and a streptavidin-
horseradish peroxidase conjugate. O-phenylenediamine was used as a
substrate. Reactions were stopped with 2 M sulphuric acid. Optical
density values were measured at 490 nm (reference wavelength
630 nm) using an ELISA reader. Antibody concentrations (ng/ml) were
interpolated from standard curves using a five-parameter curve fit.

2.3. Statistical methods

Data were analysed using Stata 15.0 (College Station, TX, US).
Baseline characteristics were tabulated and compared between urban
and rural settings using chi-squared tests. Analyses were initially con-
ducted on data merged from the two surveys, to assess whether PPD-
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and TT-specific responses differed between urban and rural settings.
Thereafter, analyses were conducted separately for each survey com-
paring PPD- and TT-specific cytokine and antibody responses between
(1) Sm infected and uninfected individuals, and (2) individuals infected
with any nematode (A. lumbricoides, N. americanus, T. trichiura, or S.
stercoralis) and uninfected individuals. Linear regression was used for
the above analyses. All responses to PPD and TT were log10 (con-
centration + 1)-transformed for analysis and the results back-trans-
formed to obtain geometric means (GM) and geometric mean ratios
(GMR) with 95% confidence intervals (CI). To assess differences in PPD-
and TT-specific responses between Sm infected and Sm uninfected
subjects in the individual surveys, and between the urban and rural
setting, both crude analyses and multivariable analyses adjusted for
age, sex, BCG scar and place of birth were conducted. History of BCG or
tetanus immunisation was not adjusted for, owing to the similarly high
proportions of participants who reported and/or showed evidence of
immunisation in both settings. In the combined analysis, to assess the
potential role of helminth infection on differences in vaccine responses
between urban and rural settings, additional adjustment for infection
with Sm or any nematode was done and GMRs and p values before and
after adjusting for helminths compared. Study design was accounted for
in all the analyses: we used “svy” commands in Stata to allow for the
non-self-weighting clustering by village in the rural survey and for
clustering by sub-ward in the urban survey [28]. We used a 5% sig-
nificance level for all analyses.

3. Results

3.1. Participants' characteristics

Blood samples were collected from 2961 rural survey participants,
of whom 986 were aged 1–17 years: 754 of these samples were sti-
mulated with TT and PPD (in a whole blood culture) for cytokine
production. Data on plasma TT- and PPD-specific antibodies were ob-
tained from 923 samples (Fig. 1). Blood samples were collected from
1356 urban survey participants, of whom 534 were aged 1–17 years:
270 of these samples were stimulated with TT and PPD (in a whole
blood culture) for cytokine production. Data on plasma TT- and PPD-
specific antibodies were obtained from 348 samples.

Several characteristics of participants for whom we obtained data
on cytokine and/or antibody responses differed between urban and
rural settings (Table 1). The prevalence of helminths, P. falciparum

positivity (blood smear) and HIV was higher in the rural compared to
the urban setting. Rural participants were significantly more likely to
report anthelminthic or malaria treatment in the last year compared to
urban participants. There were no urban-rural differences in sex dis-
tribution, but rural participants were somewhat younger on average
than urban participants. Over 90% of participants in both settings re-
ported and/or showed evidence of immunisation with BCG or tetanus in
infancy, with marginally higher prevalence of any immunisation among
urban participants. Urban participants were significantly more likely to
have a BCG scar compared to rural participants (Table 1).

3.2. Urban-rural comparisons of PPD- and tetanus toxoid-specific responses

PPD-specific IFN-γ (p < .001) and IL-13 (p < .001), and TT-spe-
cific IL-13 (p = .003) and IgG concentrations (p = .002) were sig-
nificantly lower among rural, compared to urban survey participants,
after adjusting for age, sex, place of birth and BCG scar (Table 2). In
contrast, PPD-specific IgE concentrations (p = .022) were significantly
higher among rural participants.

3.3. PPD- and TT-specific responses, and associations with age and sex

In the rural survey, mean PPD-specific cytokines and PPD-specific
IgG concentrations increased gradually with age; however, in the urban
survey, age differences in PPD-specific cytokine and antibody responses
were not apparent (Fig. 2). In both surveys, mean TT-specific cytokine
concentrations were significantly lower in five- to eight-year olds
compared to one- to four-year olds (p < .001), after which they either
plateaued or increased gradually with age.

There were no significant differences in PPD-and TT-specific re-
sponses between males and females in either the rural or the urban
setting (data not shown).

3.4. Associations between current Schistosoma mansoni infection status and
PPD- and tetanus toxoid-specific immune responses

Table 3 summarises associations between Sm infection (KK+ and/or
PCR+) and responses to TT and PPD separately in each setting.

In the rural survey, there was a weak inverse association between
Sm infection and PPD-specific IFN-γ (adjusted GMR [95% CI]: 0.70
[0.50, 0.99], p = .043); however, there were no significant age- and
sex-adjusted associations with any other PPD- or TT-specific cytokine or

Fig. 1. Study flowchart.
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Table 1
Participants' characteristics.

Characteristic Urban Rural P value*

n/N¶(%)# n/N¶(%)#

Male sex 161/350 (46.0) 500/966 (49.3) 0.293
Age

1–4 116/350 (33.1) 404/966 (40.5)
5–8 87/350 (24.9) 299/966 (29.0)
9–12 64/350 (18.3) 159/966 (17.2)
13–17 83/350 (23.7) 104/966 (13.4) 0.026

Place of birth
City 17/345 (4.9) 11/963 (1.5)
Town 302/345 (87.5) 56/963 (5.6)
Village 26/345 (7.5) 896/963 (92.9) <0.001

Occupation
Student or child 329/345 (95.4) 937/963 (97.1)
Unemployed or house wife 3/345 (0.9) 7/963 (0.9)
Agricultural, fishing or lake related 2/345 (0.6) 13/963 (1.0)
Professional or service providers (Shops, saloons, bars, restaurants, entertainment) 11/345 (3.2) 6/963 (0.9) 0.042

Ever received immunisation
Any 338/346 (97.7) 619/662 (93.3) 0.047
Bacille Calmette–Guérin (BCG) 315/336 (93.8) 586/619 (92.6) 0.757
Diphtheria, Pertussis and Tetanus (DPT) 313/336 (93.2) 571/619 (90.1) 0.420

Source of information about immunisation
Health card 95/346 (27.5) 217/623 (32.5)
Self/parent/guardian reported 242/346 (69.9) 401/623 (66.0)
No information 9/346 (2.6) 5/623 (1.6) 0.509
Presence of BCG scar 263/350 (75.1) 645/955 (66.3) 0.008

Helminth infections
S. mansoni (KK) 27/282 (9.6) 285/834 (35.4) <0.001
S. mansoni intensity (KK)

Uninfected 255/282 (90.4) 549/834 (64.7)
Light 13/282 (4.6) 140/834 (17.1)
Moderate 11/282 (3.9) 80/834 (10.2)
Heavy 3/282 (1.1) 65/834 (8.1) <0.001

S. mansoni (PCR) 46/277 (16.6) 417/830 (51.9) <0.001
Any nematode¥ 18/276 (8.0) 179/830 (23.3) <0.001
A. lumbricoides (KK) 0/282 (0.0) 8/834 (0.7) 0.349
N. americanus (KK and/or PCR) 9/276 (3.3) 62/830 (7.2) 0.031
T. trichiura (KK) 7/282 (2.5) 112/834 (11.9) 0.003
S. stercoralis (PCR) 3/277 (1.1) 20/830 (2.2) 0.289
Any anthelminthic treatment in last year 263/346 (76.0) 800/961 (81.4) 0.026
P. falciparum positivity (blood smear) 0/334 (0.0) 64/960 (7.2) <0.001
Malaria treatment in the last year 147/344 (42.7) 710/963 (72.9) <0.001
HIV infection 3/337 (0.9) 12/513 (2.8) 0.019

KK: Kato-Katz; PCR: Polymerase Chain Reaction; ¶denominators for each characteristic represent the number of participants that responded to the respective
questions or for whom a sample was available for laboratory analysis; *P values obtained from Pearson chi square test, values in bold are significant at 0.05;
¥infection with any of A. lumbricoides, N. americanus, T. trichiura, or S. stercoralis; #Percentages adjusted for survey design.

Table 2
Purified protein derivative- and tetanus toxoid-specific responses: urban-rural comparisons.

Vaccine antigen Cytokine / Antibody Geometric meanβ Unadjusted Adjusted for age, sex, BCG scar and place of birth

GMR (95% CI)# P value§ GMR (95% CI)# P value§

Urban* Rural
PPD IFN-γ 831.3 164.0 0.20 (0.13, 0.30) <0.001 0.22 (0.14, 0.35) <0.001

IL-5 13.8 14.2 1.02 (0.67, 1.57) 0.917 1.04 (0.43, 2.52) 0.932
IL-13 34.9 8.4 0.24 (0.17, 0.35) <0.001 0.22 (0.12, 0.40) <0.001
IL-10 37.8 28.1 0.74 (0.52, 1.06) 0.098 0.55 (0.27, 1.10) 0.086

IgG 19,700.9 22,549.0 1.15 (1.01, 1.30) 0.033 1.07 (0.94, 1.21) 0.295
IgE 92.7 115.2 1.24 (0.09, 1.72) 0.182 1.56 (1.07, 2.29) 0.022
IgG4 92.0 94.7 1.03 (1.00, 1.06) 0.026 1.02 (0.96, 1.09) 0.501

TT IFN-γ 14.6 7.3 0.50 (0.24, 1.08) 0.077 0.69 (0.27, 1.78) 0.435
IL-5 5.5 3.7 0.66 (0.36, 1.23) 0.185 0.64 (0.34, 1.19) 0.152
IL-13 11.2 3.0 0.27 (0.13, 0.52) <0.001 0.36 (0.19, 0.68) 0.003
IL-10 5.3 5.8 1.07 (0.78, 1.47) 0.652 0.96 (0.63, 1.48) 0.859
IgG 51,760.4 47,418.3 0.92 (0.84, 0.99) 0.041 0.83 (0.74, 0.93) 0.002
IgE 504.7 679.0 1.35 (1.01, 1.79) 0.042 1.12 (0.53, 2.39) 0.758
IgG4 14,006.7 12,289.7 0.88 (0.76, 1.02) 0.080 0.82 (0.64, 1.05) 0.109

*reference category is urban setting; βCytokine concentrations in pg/ml, antibody concentrations in ng/ml; #Geometric mean ratios (GMR) and 95% CI adjusted for
survey design; §P values in bold are significant at 0.05; PPD: purified protein derivative; TT: tetanus toxoid; 95% CI: 95% confidence interval.
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Fig. 2. Age-stratified mean concentrations of PPD- and TT-specific cytokines and antibodies. A: Mean purified protein derivative (PPD)-specific antibody and
cytokine responses stratified by age (in years) in the rural and urban surveys. B: Mean tetanus toxoid (TT)-specific antibody and cytokine responses stratified by age
(in years) in the rural and urban surveys. Plotted results are from all participants, irrespective of Schistosoma mansoni infection status.
*Mann-Whitney test was used to assess differences in cytokine responses between 1 and 4-year olds and 5–8-year olds. P < .001 for all four TT-specific cytokines.
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antibody responses (Table 3A). We did not observe a dose-response
relationship with Sm infection intensity (supplementary Table S1).

In the urban survey, the picture was more complex. There were
significant positive associations between Sm infection and PPD-specific
cytokine and antibody responses, as observed for PPD-specific IL-13
(aGMR 1.75 [1.19, 2.56], p = .007) and IgG4 responses (aGMR 1.12
[1.00, 1.26], p = .046) [Table 3B]. Conversely, for associations be-
tween Sm and TT-specific responses, geometric mean concentrations of
cytokine and antibody responses were lower among infected partici-
pants, although only the association with TT-specific IFN-γ reached
statistical significance (aGMR 0.35 [0.13,0.91], p = .033).

3.5. Associations between current nematode infection status and PPD- and
tetanus toxoid-specific immune responses

Prevalence of infection with each of the nematodes A. lumbricoides,
N. americanus, T. trichiura, and S. stercoralis was low; therefore, they
were grouped to form one variable representing infection with any
nematode. Table 4A summarises associations between ‘any nematode’
infection and responses to TT and PPD in the rural survey. Infection
with ‘any nematode’ was positively associated with PPD-specific IgG
(aGMR 1.10 [1.02, 1.19], p = .013) but not with any other PPD- or TT-
specific responses.

In the urban survey, infection with ‘any nematode’ was inversely
associated with TT-specific IgG (aGMR 0.84 [0.71, 0.99], p = .036) and
IgG4 (aGMR 0.68 [0.53, 0.86], p = .003) [Table 4B]. However, there
were no significant associations between nematode infections and PPD-
specific cytokine and antibody responses or TT-specific cytokines.

3.6. Urban-rural differences in PPD- and tetanus toxoid-specific immune
responses: A role for helminths?

To assess for any potential role of helminth infections in urban-rural
differences in PPD- and TT-specific responses, we conducted additional
adjustment for current infection with Sm or any nematode (Table 5).
For PPD-specific IgE and for TT-specific IL-13 and IgG responses,
modest differences in GMRs before and after adjustment were observed.
However, for the rest of the responses, there were only very small
changes in GMRs before and after adjustment for helminth infections.

4. Discussion

In rural helminth-endemic Ugandan fishing villages and nearby
urban communities with lower helminth infection intensity, we ex-
amined cytokine and antibody responses to purified protein derivative
and tetanus toxoid, and show that these responses differ between urban
and rural populations. We hypothesised that adjusting for current hel-
minth infections would abrogate statistically significant urban-rural
differences in PPD- and TT-specific concentrations; however, changes in
results after adjustment were, at most, modest. Associations between
PPD- / TT-specific concentrations and Sm and nematode infections did
not follow a consistent pattern between settings, or types of infection:
both inverse and positive associations were observed.

Rural participants resided in a high helminth exposure setting;
prevalence of infection with Sm in this group is likely to be much higher
than shown here by the Kato-Katz and PCR tests: prevalence by the
urine circulating cathodic antigen (CCA) surpasses 80% [26]. There-
fore, a considerable number of Kato-Katz and PCR negative participants

Table 3
Association between current S. mansoni infection status and PPD- and tetanus toxoid-specific responses in the rural and urban setting.

Vaccine antigen Cytokine / Antibody Geometric meanβ Unadjusted Adjusted for age, sex, BCG scar and place of birth

GMR (95% CI)# P value§ GMR (95% CI)# P value§

A: Rural survey
Sm-* Sm+

PPD IFN-γ 180.9 143.1 0.79 (0.57, 1.07) 0.123 0.70 (0.50, 0.99) 0.043
IL-5 16.7 13.2 0.79 (0.48, 1.31) 0.350 0.72 (0.42, 1.25) 0.232
IL-13 10.0 7.6 0.76 (0.51, 1.12) 0.161 0.75 (0.48, 1.19) 0.211
IL-10 28.7 26.8 0.93 (0.61, 1.44) 0.752 0.98 (0.65, 1.47) 0.901
IgG 20,696.3 24,511.4 1.18 (1.08, 1.30) 0.001 1.04 (0.96, 1.13) 0.315
IgE 97.8 128.8 1.32 (0.89, 1.96) 0.166 1.40 (0.90, 2.18) 0.131
IgG4 92.8 95.1 1.03 (0.99, 1.07) 0.197 1.03 (0.98, 1.07) 0.286

TT IFN-γ 7.2 6.6 0.92 (0.47, 1.79) 0.804 0.94 (0.51, 1.71) 0.821
IL-5 4.1 3.1 0.76 (0.49, 1.20) 0.238 0.83 (0.49, 1.40) 0.472
IL-13 3.3 2.6 0.80 (0.54, 1.17) 0.241 0.86 (0.57, 1.30) 0.465
IL-10 5.9 5.1 0.86 (0.61, 1.22) 0.407 0.98 (0.67, 1.43) 0.916
IgG 49,742.5 44,871.3 0.90 (0.82, 0.99) 0.036 0.95 (0.86, 1.04) 0.272
IgE 702.1 637.5 0.91 (0.58, 1.42) 0.662 0.96 (0.60, 1.55) 0.873
IgG4 11,763.9 12,533.5 1.07 (0.91, 1.25) 0.431 1.17 (0.97, 1.41) 0.095

B: Urban survey
PPD IFN-γ 787.0 915.8 1.16 (0.78, 1.73) 0.430 1.02 (0.72, 1.43) 0.916

IL-5 13.4 14.4 1.08 (0.44, 2.64) 0.861 1.21 (0.63, 2.34) 0.545
IL-13 31.0 49.5 1.60 (0.94, 2.71) 0.080 1.75 (1.19, 2.56) 0.007
IL-10 38.6 38.3 0.99 (0.62, 1.59) 0.977 0.88 (0.55, 1.41) 0.574
IgG 18,794.9 24,511.1 1.30 (1.14, 1.49) <0.001 1.14 (1.00, 1.31) 0.054
IgE 93.7 107.3 1.15 (0.66, 2.00) 0.615 1.20 (0.70, 2.06) 0.497
IgG4 91.3 101.3 1.11 (0.99, 1.24) 0.065 1.12 (1.00, 1.26) 0.046

TT IFN-γ 15.9 4.6 0.29 (0.11, 0.76) 0.015 0.35 (0.13, 0.91) 0.033
IL-5 5.5 2.7 0.49 (0.23, 1.06) 0.068 0.79 (0.37, 1.69) 0.519
IL-13 11.9 4.0 0.33 (0.16, 0.71) 0.007 0.53 (0.24, 1.20) 0.117
IL-10 5.4 4.6 0.85 (0.55, 1.32) 0.451 0.98 (0.62, 1.53) 0.907
IgG 51,109.5 41,861.6 0.82 (0.71, 0.95) 0.011 0.92 (0.79, 1.07) 0.257
IgE 493.3 353.4 0.72 (0.20, 2.52) 0.586 0.73 (0.23, 2.26) 0.560
IgG4 13,176.7 12,644.4 0.96 (0.67, 1.38) 0.814 1.13 (0.84, 1.52) 0.399

Sm+: positive Kato-Katz and/or PCR test for diagnosis of current infection with Schistosoma mansoni;Sm-: negative Kato-Katz and PCR test for diagnosis of current
infection with Schistosoma mansoni; *reference category is Schistosoma mansoni uninfected group; βCytokine concentrations in pg/ml, antibody concentrations in ng/
ml; #Geometric mean ratios (GMR) and 95% CI adjusted for survey design; §P values in bold are significant at 0.05; PPD: purified protein derivative; TT: tetanus
toxoid; 95% CI: 95% confidence interval.
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were probably lightly infected, with Kato-Katz / PCR positivity being
mostly indicative of moderate-to-heavy Sm infection. The urban setting
also had a considerable prevalence of light helminth infections. None-
theless, the two settings are still relatively dissimilar, as helminth in-
fection prevalence is significantly higher in the rural compared to the
urban setting, providing an important opportunity for exploring the
role of helminths in urban-rural differences in response to vaccine an-
tigens.

Responses to PPD and TT are herein taken to represent recall im-
mune responses to BCG and tetanus vaccination in infancy. Vaccine
responses may wane over time; however, PPD- or TT-specific con-
centrations in our study were either generally similar across age groups
or appeared to increase gradually with age. The exception was TT-
specific cytokine responses, which were significantly higher in one- to
four-year olds compared to five- to eight-year olds, after which they
either plateaued or increased gradually with age, perhaps due to im-
munisations given later in life. It is also plausible that the gradual in-
crease with age is due to continuous exposure to environmental anti-
gens that are cross-reactive with vaccine antigens. Our questionnaires
enabled collection of data on history of immunisations; there were no
substantive differences between comparison groups. However, BCG scar
prevalence was higher among urban compared to rural participants.
Differences in scar prevalence might reflect differences in im-
munological response to BCG vaccination, probably influenced by dif-
ferential environmental sensitisation between the two settings. Of note,
our findings were similar regardless of whether or not BCG scar was
adjusted for in the analysis. It is also important to note that the vaccines
were not administered by our study team; therefore, some of the ob-
served differences may be based on differential vaccination provision/

uptake.
Mutual inhibition of Th1- and Th2-type immune responses and the

distinct ability of several vaccine targets and helminth antigens to in-
duce Th1 and Th2 responses [35], respectively, initially underlay the
hypothesis that helminths may impair vaccine responses. The inverse
association between Sm infection and PPD-specific IFN-γ among rural
survey participants is consistent with this hypothesis. Our observations
of inverse associations between ‘any nematode’ infection and TT-spe-
cific IgG and IgG4 in the urban survey further support a role for by-
stander effects of helminth-mediated immunoregulation [36].

We observed positive associations between Sm infection and PPD-
specific IL-13, and IgG4 in the urban survey, and between nematode
infection and PPD-specific IgG in the rural survey. There have been
observations from other human and animal studies suggesting that in
some instances specific helminth antigens may enhance or bias vaccine-
specific responses to a particular immune phenotype. A study in
Ecuador showed a positive association between maternal geohelminth
infection and infant IgA responses to oral polio vaccine and rotavirus
vaccine [37], while in Uganda, maternal Strongyloidiasis was asso-
ciated with enhanced responses to pertussis toxin, Haemophilus influ-
enzae B and hepatitis B vaccine antigens in infancy [38]. In mice, the
Onchocerca volvulus activation-associated secreted protein (Ov-ASP-1)
was shown to boost Th1-biased cellular and antibody reactivity to in-
fluenza vaccines [39,40], and early studies in mice suggested that Tri-
chinella spiralis infection potentiated cellular immune responses to BCG
[41,42].

As discussed in our review [19] effects of helminth infections on
vaccine responses are complex. Helminth species, life stage and ex-
posure timing and intensity may influence vaccine response. The type

Table 4
Association between current infection with any nematode and PPD- and tetanus toxoid-specific responses in the rural and urban setting.

Vaccine antigen Cytokine / Antibody Geometric meanβ Unadjusted Adjusted for age, sex, BCG scar and place of birth

GMR (95% CI)# P value§ GMR (95% CI)# P value§

A: Rural survey
Nm-* Nm+

PPD IFN-γ 159.3 149.5 0.94 (0.61, 1.44) 0.761 0.81 (0.46, 1.42) 0.445
IL-5 14.5 14.8 1.02 (0.74, 1.41) 0.897 0.92 (0.63, 1.36) 0.661
IL-13 8.5 8.4 0.98 (0.75, 1.28) 0.887 0.90 (0.61, 1.34) 0.597
IL-10 27.5 27.4 1.00 (0.78, 1.27) 0.967 1.00 (0.76, 1.32) 0.998
IgG 21,838.4 26,564.9 1.22 (1.12, 1.32) <0.001 1.10 (1.02, 1.19) 0.013
IgE 112.3 119.2 1.06 (0.77, 1.47) 0.709 1.08 (0.83, 1.41) 0.558
IgG4 92.9 98.8 1.06 (1.00, 1.13) 0.037 1.06 (1.00, 1.13) 0.065

TT IFN-γ 6.8 6.9 1.00(0.53, 1.89) 0.994 0.93 (0.57, 1.53) 0.777
IL-5 3.8 2.6 0.70 (0.48, 1.02) 0.065 0.73 (0.53, 1.02) 0.064
IL-13 3.0 2.4 0.81(0.60, 1.11) 0.178 0.83 (0.62, 1.12) 0.209
IL-10 5.7 4.5 0.78 (0.59, 1.03) 0.076 0.88 (0.70, 1.09) 0.242
IgG 47,359.2 45,680.6 0.97 (0.87, 1.07) 0.480 0.98 (0.89, 1.08) 0.716
IgE 655.6 725.4 1.11 (0.73, 1.68) 0.622 1.18 (0.80, 1.76) 0.389
IgG4 12,001.9 12,923.3 1.08 (0.82, 1.41) 0.577 1.11 (0.86, 1.43) 0.405

B: Urban survey
PPD IFN-γ 790.4 1163.6 1.47 (0.96, 2.26) 0.074 1.39 (0.92, 2.10) 0.109

IL-5 13.3 17.8 1.34 (0.36, 5.01) 0.649 1.52 (0.46, 5.03) 0.467
IL-13 33.6 37.2 1.11 (0.42, 2.89) 0.826 1.21 (0.53, 2.78) 0.637
IL-10 37.9 49.3 1.30 (0.90, 1.87) 0.146 1.27 (0.84, 1.92) 0.235
IgG 19,452.7 22,875.3 1.18 (1.05, 1.32) 0.008 1.05 (0.93, 1.19) 0.409
IgE 97.1 79.0 0.81 (0.39, 1.72) 0.572 0.78 (0.33, 1.86) 0.561
IgG4 92.3 102.5 1.11 (0.88, 1.40) 0.362 1.12 (0.89, 1.41) 0.315

TT IFN-γ 13.1 7.4 0.56 (0.21, 1.53) 0.240 0.68 (0.29, 1.57) 0.337
IL-5 4.8 4.4 0.92 (0.20, 4.30) 0.913 1.25 (0.32, 4.88) 0.735
IL-13 10.2 4.6 0.46 (0.09, 2.37) 0.327 0.62 (0.14, 2.86) 0.518
IL-10 5.2 4.5 0.86 (0.36, 2.08) 0.722 0.95 (0.43, 2.10) 0.888
IgG 50,320.9 37,708.1 0.75 (0.64, 0.88) 0.001 0.84 (0.71, 0.99) 0.036
IgE 469.7 421.3 0.90 (0.16, 4.96) 0.896 1.02 (0.19, 5.48) 0.979
IgG4 13,485.6 8291.7 0.62 (0.50, 0.76) <0.001 0.68 (0.53, 0.86) 0.003

Nm+: positive Kato-Katz or PCR test for diagnosis of current infection with any of A. lumbricoides, N. americanus, T. trichiura, or S. stercoralis;Nm-: negative Kato-Katz
and PCR test for diagnosis of current infection with any of A. lumbricoides, N. americanus, T. trichiura, or S. stercoralis; *reference category is uninfected group;
βCytokine concentrations in pg/ml, antibody concentrations in ng/ml; #Geometric mean ratios (GMR) and 95% CI adjusted for survey design; §P values in bold are
significant at 0.05; PPD: purified protein derivative; TT: tetanus toxoid; 95% CI: 95% confidence interval.
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and characteristics of the vaccine may also determine whether helminth
infections will have suppressive or enhancing effects: live and non-live,
oral and parenteral, priming and boosting vaccines may be affected
differently. Furthermore, helminths interact extensively with gut mi-
crobiota [43], with possible long-term immunological consequences
[44,45], including modulation of vaccine-specific responses [46]. All
these factors should be considered in large immunoepidemiological
studies investigating the role of environmental sensitisation on vaccine-
specific immune responses and efficacy.

We conducted many statistical tests, but did not adjust for multi-
plicity. However, we focus on patterns of associations and on biological
credibility of results based on other published works. Our observations
of urban-rural differences are consistent with previous studies [10–13],
especially with regard to lower concentrations of PPD- and TT-specific
cytokines and antibodies in the rural compared to urban survey. Our
rural setting has a significantly higher prevalence of Sm and geo-
helminth infections compared to the urban setting. The implication of
this for the urban-rural differences in vaccine response was inconclusive
from our data; helminths likely work in concert with other environ-
mental exposures to influence vaccine response. Further studies de-
signed specifically to examine effects of environmental and parasite
exposures on vaccine efficacy are warranted.
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