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Abstract

Background

The ability of cluster-randomized trials to capture mass or indirect effects is one reason for

their increasing use to test interventions against vector-borne diseases such as malaria and

dengue. For the same reason, however, the independence of clusters may be compromised

if the distances between clusters is too small to ensure independence. In other words they

may be subject to spillover effects.

Methods

We distinguish two types of spatial spillover effect: between-cluster dependence in out-

comes, or spillover dependence; and modification of the intervention effect according to

distance to the intervention arm, or spillover indirect effect. We estimate these effects in

trial of insecticide-treated materials against the dengue mosquito vector, Aedes aegypti, in

Venezuela, the endpoint being the Breteau index. We use a novel random effects Poisson

spatial regression model. Spillover dependence is incorporated via an orthogonalized

intrinsic conditional autoregression (ICAR) model. Spillover indirect effects are incorpo-

rated via the number of locations within a certain radius, set at 200m, that are in the inter-

vention arm.

Results

From the model with ICAR spatial dependence, and the degree of surroundedness, the

intervention effect is estimated as 0.74—favouring the intervention—with a 95% credible

interval of 0.34 to 1.69. The point estimates are stronger with increasing surroundedness

within intervention locations.
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Conclusion

In this trial there is some evidence of a spillover indirect effect of the intervention, with the

Breteau index tending to be lower in locations which are more surrounded by locations in

the intervention arm.

Author summary

Control methods for dengue, and other diseases which are transmitted by mosquitoes, are

often tested in cluster-randomized trials. This means that whole groups of people, often

defined by geographical area, are randomly allocated to receive the control method or not.

These control methods often have a mass effect so that they may be stronger if applied to a

whole area together. However, if the areas (clusters) are not very far apart then the effects

may ‘spill over’ from one to another. In this paper we use a new spatial statistical method

to re-analyse data from a cluster-randomized trial which was done in a town in Venezuela.

The idea was to use insecticide treated curtains and water tank covers to try to control the

mosquitoes which transmit dengue. To assess the spillover effect we calculate how much

each location was surrounded by locations which got the control method. We found

some evidence that the greater the surroundedness then the stronger the effect of the

intervention.

Introduction

Cluster-randomized trials have been increasingly used for interventions against infectious—

and particularly vector-borne—diseases because of their ability to capture mass or indirect

effects [1]. For example, people who live close to bednet-users may have lower average malaria

incidence, even if they do not use a bednet themselves [2–4]. Standard methods for analysis of

cluster-randomized trials assume that clusters are independent, so that any mass effects pertain

only within each cluster. Such independence may be difficult to achieve, however, given that

diseases may be spatially correlated over kilometres [5], or even tens of kilometres [6]. In fact,

the scale of spatial correlation may be unknown when designing the trial. It may therefore be

useful to adjust for any between-cluster effects when comparing the arms of the trial. This is to

see such ‘spillover’ effects as a problem, or statistical nuisance parameters. On the other hand,

the ability to measure such effects could be an opportunity, because their existence would be a

positive feature of the intervention.

Various methods have been used for spatial analysis of cluster-randomized trials but they

have generally been ad hoc additions to a standard analysis. We have developed a method

which simultaneously incorporates both the cluster-randomization design, and the spatial con-

figuration of the individuals and clusters. We distinguish two types of spatial spillover effect

that may occur in a cluster-randomized trial.

The first is between-cluster dependence in outcomes, which we call spillover dependence.
This means spatial autocorrelation across different clusters. In turn, spatial autocorrelation is a

way to quantify Tobler’s first law of geography that “everything is related to everything else,

but near things are more related than distant things” [7]. For example, in a cluster-randomized

trial of a typhoid vaccine, individual risk of typhoid was associated with the risks of people

living nearby [8]. The second type of spillover effect is an increase or decrease of the interven-

tion effect, depending on the proximity of individuals in the control arm to those in the
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intervention arm: we call this spillover indirect effect. For example, in a post hoc analysis of a

trial of bednets in Haiti, the proportion of containers positive for Aedes mosquitoes was found

to be lower in those control arm houses which were within 50m of a house in the bednet arm

[9]. In the current paper we estimate these effects in a previously reported cluster-randomized

trial of insecticide-treated materials against dengue mosquito vectors in Venezuela [10].

Materials and methods

Trial design and interventions

The trial was carried out between January and November 2003 in the Santa Rosa suburb of

Trujillo town, Trujillo State, Venezuela [10]. All households were eligible to participate, and

99.5% (1116/1122) agreed to do so. Of these, 1091 have spatial coordinates and are included in

the current analysis. Eighteen geographically defined clusters of households were randomized

to insecticide treated materials or to control. This sample size was chosen on the basis of the

objectives of the original trial. The current analysis uses all available data without a further

power calculation. The interventions were applied at house level. Intervention houses received

i) PermaNet curtains, with netting treated with long lasting insecticide, specifically, deltame-

thrin at 50 mg/m2 (Vestergaard-Frandsen, Denmark), and ii) circular water jar covers made of

the same PermaNet netting with an elastic rim. Curtains were hung loosely at the windows.

Covers were provided for all household water drums (typically 150-200 l), where most vector

breeding occurred. The curtains were impregnated again after five to six months with lamba-

cyhalothrin. Control houses received no interventions, and therefore the study was not blind.

The clusters were pair-matched taking into account housing conditions—such as density,

typical house size, and the condition and number of walls—and baseline values of Breteau

index and house index. The Breteau index is the number of water containers per 100 houses

that are positive for immature stages—larvae or pupae—of the mosquito vector species, Aedes
aegypti. The house index is the percentage of houses with any immature stages. This matching

was semi-quantitative, with baseline Breteau index being the most important variable, due to

the infeasibility of simultaneously matching all pairs closely on all variables. This approach

lacked reproducibility but, at the time, constrained randomization was not a well-established

option for cluster-randomized trials [11]. The primary outcome was the Breteau index.

Georeferencing and spatial data processing

Residences were geo-referenced in terms of latitude and longitude using a hand-held Global

Positioning System (GPS). For analysis the coordinates were converted to Universal Trans-

verse Mercator (UTM) zone 19, with the World Geodetic System 1984 (WGS84) datum. Of

the 1116 consenting households, 1091 were georeferenced. At the final survey, 730 had non-

missing values for the number of water containers positive for immature vector stages. House-

holds with identical coordinates were merged, giving 702 distinct locations. To define the

neigbourhood structure we use the so-called Dirichlet tessellation [12] which partitions the

area into a set of convex polygons called tiles, each being the subset of the area for which the

given location is closer than any other. A set of points enclosing the study region is used to

externally truncate the tiles [13]. Figs 1–4 were generated by the authors from said GPS data

and processing.

Statistical methods

The statistical methods for the spatial analysis are described in detail in S1 Text. In brief, we

use spatial regression models with Gaussian random effects, where the individual outcomes
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have marginal distributions overdispersed relative to the Poisson distribution. The random

effects represent spillover dependence in terms of an intrinsic conditional autoregression

(ICAR) model [13], modified via an orthogonalization which i) avoids spatial confounding

[14] and ii) ensures that the relevant model parameter can be interpreted as a between-arm

ratio of expected values. Model equations are summarized in S1 Text. Our models are

Fig 1. Spatial distribution of individuals in the Trujillo trial where each point represents a location, i.e. a house or, in the case of identical

coordinates, a set of houses. There is one tile for each point, obtained using by Dirichlet tessellation. Dark tiles are intervention locations, white ones

are control. Double lines are tile borders between clusters. The insets to the right are zoomed versions of the areas inside the rectangles.

https://doi.org/10.1371/journal.pntd.0008576.g001
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constructed to have the ‘constant variance property’, so that intervention effects are estimated

efficiently [15].

Inferences are made from Bayesian methodology for generalized linear mixed models

(GLMMs) [16] and integrated nested Laplace approximations (INLA) [17]. To compare

goodness of fit of different models, we use the logarithm of the pseudo-marginal likelihood

(LPML), calculated from the data’s conditional predictive ordinates [18]. Prior distributions of

the parameters, and further information on goodness of fit measures, are included in S1 Text.

We define two locations to be neighbours if and only if their corresponding Dirichlet tiles

share a line boundary or even a point (so called queen type neighbours). In the Bayesian

framework, the prior distributions are updated based on the model and data, to yield posterior

distributions, from which point and interval estimates (credible intervals) are obtained.

A spillover indirect effect is an impact on an index location by surrounding locations in the

intervention arm. We measure surroundedness in terms of the number of locations, within a

Fig 2. Pairing of clusters in the Trujillo trial. Darker clusters are in the intervention arm. Clusters with the same number are in

the same matched pair (one in the intervention and one in the control arm). Hatching is used to show different sections of

clusters which appear to be non-contiguous, due to limited GPS accuracy and steep terrain.

https://doi.org/10.1371/journal.pntd.0008576.g002
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Fig 3. Number of containers positive for immature stages of the mosquito vector species Aedes aegypti, at each

location, plotted at the centre of the corresponding tile. The Breteau Index, the endpoint of the trial, is the number

of such containers per 100 houses. The dark solid lines surround the intervention clusters.

https://doi.org/10.1371/journal.pntd.0008576.g003
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Fig 4. Choropleth map of the Dirichlet tiles around each location. Darker shadings indicate greater surroundedness

by intervention locations according to the disc measure, i.e. number of intervention locations within a radius of 200m.

Control regions are those inside the white boundary.

https://doi.org/10.1371/journal.pntd.0008576.g004
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certain radius of the index location, that are in the intervention arm. We call this the ‘disc’

measure of surroundedness. A spillover indirect effect may occur whether the index location is

in the control arm or the intervention arm, and here we allow the magnitude of these effects to

differ. The exponential of each regression coefficient of the disc measure is interpreted as the

factor by which the expected Breteau index changes for each additional surrounding location.

We show the results in terms of the ‘total intervention effect’ and the ‘pairwise intervention

effect’ [15]. Both of these measures incorporate the direct effect of the intervention, and its

spillover indirect effects mediated by surroundedness. The total intervention effect is the

between-arm ratio in the sum of expected rates. The pairwise intervention effect is the

between-arm ratio of expected rates for two locations with the same specified value of sur-

roundedness, in opposing arms. For the current trial, they are between-arm ratios of expected

Breteau index. A protective effect corresponds to a value less than 1.

Ethics

Ethical approval for the original trial was given by the Universidad de los Andes, Venezuela,

and the Liverpool School of Tropical Medicine, both in 2003. The former does not have a ref-

erence number, while for the latter it is 03.27.

Results

The study area of Trujillo town is shown in Fig 1, and the cluster pairings in Fig 2. The ran-

domized allocation has agglomerated the clusters into two contiguous regions per arm, with

one of the control regions being interdigitated with one of the intervention regions. Fig 3

shows the number of positive containers at each location. Crudely, the Breteau index over all

control locations is 16.2 (60 positive containers in 370 houses at 360 locations), and 12.8 over

all intervention ones (46 positive containers in 360 houses at 342 locations), giving a ratio, or

effect measure, of 0.79. From the model with ICAR spatial dependence and the disc measure

of surroundedness, the intervention effect is 0.74, with a 95% credible interval of 0.34 to 1.69.

In terms of possible spillover indirect effect, crudely, the Breteau Index is 10.8 in those con-

trol locations with at least one intervention neighbour, and 18.3, or 1.7 times higher, in those

control locations with no intervention neighbours. Comparing the latter subgroup with the

intervention locations gives a stronger effect measure of 0.70 (12.8/18.3). Fig 4 shows a less

crude measure of surroundedness, the number of intervention locations within a 200m radius.

High values of this disc measure are concentrated in the central part of the study area. In other

words, the locations in that central part (in both arms) are largely surrounded by intervention

ones. Again, this suggests a possible influence on the intervention effect.

The pairwise intervention effect was estimated by allowing the intervention effect to vary

with the surroundedness by intervention locations. Fig 5 shows the posterior distributions of

the pairwise intervention effect for various values of the disc measure of surroundedness. For

this model, using a radius of 200m, the LPML is -0.419. Models with radius 100m or 300m

had similar but slightly lower (less well-fitting) values of -0.421 and -0.422, respectively. As

surroundedness increases, the posterior of the pairwise intervention effect shifts to the left

and away from one, giving more evidence of an intervention effect in the corresponding

subgroups.

Discussion

Insecticide-treated materials (ITMs) may exert mass effects against mosquitoes. For Aedes,
this has been found in several [19–21], but not all [22, 23], of the published cluster-randomized

trials. Spillover indirect effect is a specific kind of mass effect, in which the intervention
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influences nearby areas which did not necessarily receive it. Some evidence for this kind of

effect has previously been found in a trial in Haiti [9], as well as the one in Venezuela [10]

which is the subject of the current paper. Trials of ITMs against Anopheles vectors of malaria

have found mass effects [24–28]. Evidence of a more specific spillover indirect effect of insecti-

cide-treated materials has also been found for Anopheles vectors of malaria, in a cluster-rando-

mised trial of bed nets [29]. In houses within 300m of an intervention village, the abundance

of Anopheles funestus was less than half that in houses which were 600m or more away. This

was a secondary analysis of a trial in which the main endpoints were child mortality and mor-

bidity [30], and did not include cluster as a factor, nor take into account spatial autocorrela-

tion. This analysis found a smaller effect on Anopheles gambiae, consistent with the findings of

Sinka et al. [31].

Fig 5. Pairwise intervention effect by surroundedness. Posterior distributions of the pairwise intervention effect (solid thick lines) for

increasing values of surroundedness within intervention locations. The thickness of the solid lines is proportional to this surroundedness. The

posterior distribution of the intervention effect from the standard (non-spatial) model is plotted with a dotted line.

https://doi.org/10.1371/journal.pntd.0008576.g005
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In the current paper we used novel methods to re-analyse data from a trial of insecticide-

treated materials against the dengue vector Aedes aegypti [10], taking into account spatial

structure as well as the cluster-randomized design. We found some indication of an indirect

intervention effect, in the form of an inverse association between infestation in control houses

and the degree to which they were surrounded by houses in the intervention arm, as opposed

to the control arm. Evidence for an intervention effect is stronger in those houses which are

most surrounded by intervention ones, and progressively weaker in those which are less sur-

rounded (Fig 5). This may well be because clusters abutted each other, usually separated by no

more than the width of a street. Defining clusters so close together may hinder the estimation

of environmental risk factors which vary over a larger scale, although this would be secondary

to estimating the intervention effect.

A related concern is that of geographical balance. If spillover indirect effects are a concern

at the design stage, then it may be beneficial to limit the contiguity of clusters in the same arm,

e.g. by constraining the randomization [11, 32]. However, the notion of geographical balance

may be hard to quantify. For example, despite lying in just two contiguous regions per arm, 17

of the 18 Trujillo clusters border at least one in the opposite arm. One approach may be to

impose a minimum proportion of between-cluster boundaries which separate clusters in dif-

ferent arms.

The statistical method is currently limited to data which are georeferenced as points, as

opposed to areas, and which are counts, as opposed to being binary or continuous. Also, loca-

tions must currently be specified in two dimensions, rather than three. Depending on the

application, it could be relevant to use distance in three dimensions (including elevation). If

so, then the measures of surroundedness would need to be generalized, for example the disc

measure would become spherical. In terms of software implementation, code for the R soft-

ware has been provided with the companion paper [15], but this requires several detailed com-

ponents to be specified, and has not yet been developed as an R package.

A recent systematic review [33] concluded that ‘there is no consensus on how to account

for spatial effects with in CRTs [cluster-randomized trials] and more work needs to be done to

evaluate and develop spatial methodology within the context of a range of CRTs.’ The original

analysis of the Trujillo trial [10] included a secondary post hoc spatial analysis of baseline-

infested houses in the control arm which became negative, and found that those within within

50m of a house in the intervention arm were 3.5 times more likely to become negative. The

current analysis supports these conclusions, while taking into account the randomization and

using all locations in the trial.

Conclusion

This re-analysis of a cluster-randomized trial estimates intervention effects while taking

account of spatial spillover, and provides further evidence that deployment of insecticide-

treated materials may impact neighbouring locations.

Supporting information

S1 Text. Detailed statistical methods.

(PDF)

S1 Data. Georeferenced numbers of positive containers per location. A tab-delimited file

with three columns: ‘EASTING’, ‘NORTHING’, and finally ‘RESPONSE’ which is the number

of containers positive for Aedes aegypti immature stages (larvae or pupae) at each location. As

explained in the Methods section, some houses had identical GPS coordinates and were
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merged to the same location.

(TXT)

S2 Data. Dirichlet tessellation of the study area, shapefile shape format (.shp). First of a set

of four files which make up the ESRI (Environmental Systems Research Institute) shapefile for-

mat. To read into R, the four files should be placed in the same folder (directory), for example

the working directory, and imported using the ‘readOGR’ function of the ‘rgdal’ package.

(SHP)

S3 Data. Dirichlet tessellation, shapefile shape index format (.shx). Second of a set of four

files which make up the ESRI shapefile format.

(SHX)

S4 Data. Dirichlet tessellation, shapefile attributes format (.dbf). Third of a set of four files

which make up the ESRI shapefile format. This file is included for compatibility and does not

contain any real attributes of the data.

(DBF)

S5 Data. Dirichlet tessellation, shapefile projection metadata format (.prj). Fourth of a set

of four files which make up the ESRI shapefile format.

(PRJ)
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