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Abstract

Background: Greenspace has been associated with health benefits in many contexts. An important pathway may
be through outdoor physical activity. We use a novel approach to examine the link between greenspace
microenvironments and outdoor physical activity levels in the HEALS study conducted in Edinburgh (UK), the
Netherlands, and Athens and Thessaloniki (Greece).

Methods: Using physical activity tracker recordings, 118 HEALS participants with young children were classified
with regard to daily minutes of moderate to vigorous physical activity (MVPA); 60 were classified with regard to the
metabolic equivalent task (MET)-minutes for each of the 1014 active trips they made. Greenspace indicators were
generated for Normalised Difference Vegetation Index (NDVI), tree cover density (TCD), and green land use (GLU).
We employed linear mixed-effects models to analyse (1) daily MVPA in relation to greenspace within 300 m and
1000 m of residential addresses and (2) trip MET-minutes in relation to average greenspace within a 50 m buffer of
walking/cycling routes. Models were adjusted for activity, walkability, bluespace, age, sex, car ownership, dog
ownership, season, weekday/weekend day, and local meteorology.

Results: There was no clear association between MVPA-minutes and any residential greenspace measure. For
example, in fully adjusted models, a 10 percentage point increase in NDVI within 300 m of home was associated
with a daily increase of 1.14 (95% CI − 0.41 to 2.70) minutes of MVPA. However, we did find evidence to indicate
greenspace markers were positively linked to intensity and duration of activity: in fully adjusted models, 10
percentage point increases in trip NDVI, TCD, and GLU were associated with increases of 10.4 (95% CI: 4.43 to 16.4),
10.6 (95% CI: 4.96 to 16.3), and 3.36 (95% CI: 0.00 to 6.72) MET-minutes, respectively. The magnitude of associations
with greenspace tended to be greater for cycling.

Conclusions: More strenuous or longer walking and cycling trips occurred in environments with more greenspace,
but levels of residential greenspace did not have a clear link with outdoor MVPA. To build on our research, we
suggest future work examine larger, more diverse populations and investigate the influence of greenspace for trip
purpose and route preference.
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Background
Increased residential greenspace (e.g., parks) or green-
ness (e.g., street trees) has shown to be associated with
beneficial health, such as better self-reported health and
reduced all-cause and cardiovascular mortality [55]. Re-
search has now progressed to explore potential causal
mechanisms. As strong links have been made between
physical activity (PA) and numerous health outcomes,
particularly for cardiovascular outcomes [59], an import-
ant pathway to health may be access to areas in which to
engage in PA. Moreover, though still an active research
area, exercise specifically undertaken in green areas may
enhance the proven benefits of PA [46].
Nevertheless, research on the importance of green-

space for exercise has produced mixed results. Cross-
sectional studies relying on self-reported data to assess
the relationship between residential greenspace and PA
identified positive associations in populations in
Australia [2], Canada [35], and the US [52], while other
work in Denmark [44], Netherlands [33], and Scotland
[37] found no such links. With the emergence of low-
cost GPS-equipped sensors and devices [32], researchers
can now better track objective measures of PA and ac-
tual greenspace use, though these studies too have found
equivocal results: the amount of residential greenspace
was related to higher levels of overall moderate to vigor-
ous PA (MVPA) [23], but in another study, associations
were found only with PA when undertaken within green
areas (i.e., not overall PA) [53].
Recommendations from agencies, including the World

Health Organization (WHO), prescribe a minimum
weekly dose of 150min of moderate intensity or 75min of
vigorous PA, yet a recent global survey found over a quar-
ter of individuals were not achieving these salubrious
levels [18]. Though greenspace may help promote active
travel and facilitate outdoor PA, for example, through ap-
pealing tree-lined streets or accessible parks, other neigh-
bourhood attributes, such as overall walkability (e.g., street
connectivity, population density, mixed use development)
and access to services, have been found to be more im-
portant [14, 22]. Even if a positive link with greenspace is
established, a further complicating factor is that self-
selection may bias findings if healthier individuals choose
to live in greener areas with more options for outdoor ex-
ercise [10]; if present, this bias would result in exaggerated
health benefits of greenspace.
Our study explored two distinct research questions to ad-

vance our understanding of the association of greenspace and
PA within the built environment: 1) whether the availability
of residential greenspace is associated with increased MVPA
and 2) whether individuals choose routes with on average
higher greenspace levels for longer/more active journeys. In
addition, for the second question, we also assessed the green-
space associations separately for walking and cycling trips.

Methods
Study design and population
Data were obtained from the EU-funded study, Health
and Environment-wide Associations based on Large
population Surveys (HEALS; http://www.heals-eu.eu),
which employed indoor and personal sensors to charac-
terise the environments of families with young children.
The study included a sample of households concentrated
in Edinburgh, UK; Utrecht and elsewhere in the
Netherlands; and Thessaloniki and Athens, Greece. Indi-
viduals aged 18 years or older with a young child (< 3
years of age) were eligible to participate in the HEALS
study (n = 131) and were recruited through advertising
via universities, childcare groups, and word of mouth.
Informed written consent was provided by all partici-
pants. Personal monitoring periods lasted approximately
1 week during 2015 and 2016 and entailed indoor moni-
toring of air pollutants and noise and the participant
wearing a physical activity tracker device. Questionnaires
were developed in the HEALS study to gather household
data, including socioeconomic position (SEP) (see sup-
plementary material).

Greenspace
We assigned three indicators of urban greenspace: the
Normalised Difference Vegetation Index (NDVI), tree
cover density (TCD), and green land use (GLU), similar to
a previous analysis using the HEALS dataset published by
the authors [36]. Each indicator provides potentially over-
lapping, but distinct, perspectives of greenspace: NDVI (−
1 to + 1) represents the overall greenness of a given area,
TCD provides the percentage (0–100%) of an area covered
by the canopy of trees as visible from satellites, and GLU
indicates areas used for specific types of green land (parks,
forests, sports pitches, etc.) (see Fig. 1).
For each study area, NDVI values were calculated

using Sentinel-2 satellite images available from the Co-
pernicus Open Access Hub at 10-m spatial and five-day
temporal resolutions. NDVI raster data with values of <
− 0.1 represent water or ice and were excluded from
greenness calculations [15]. Images from summer with
cloud coverage of < 10% were selected to maximise
spatial contrasts of greenness. Images produced within 1
year of the personal monitoring periods were retrieved,
except for those in and around Edinburgh, due to cloud
coverage (See Table S1 for exact image dates). Average
annual TCD based on Sentinel-2 and Landsat 8 satellite
images (20 m spatial resolution) for Europe in 2015 was
also obtained from the Copernicus Hub. Coastal waters
were excluded in the calculation of TCD values. GLU
was based on CORINE land use data (2012), which has
been refined subsequently through data fusion with
other spatial datasets (e.g., Urban Atlas, OpenStreet
Map) and is publicly available as a 100 m raster dataset
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[40]. Unlike the original CORINE dataset, this enhanced
version distinguishes between green and non-green sport
and leisure facilities. The following categories were com-
bined to create a GLU map: green urban areas, green

sport and leisure facilities, broad-leaved forest, conifer-
ous forest, mixed forest, natural grasslands, moors and
heathland, sclerophyllous vegetation, and transitional
woodland-shrub. Mean values of NDVI and TCD, and

Fig. 1 Maps of Edinburgh, UK to illustrate a Normalised Difference Vegetation Index (− 0.1 to 1.0), b tree cover density (0–100%), and c green
land use. Basemap from©OpenStreetMap contributors (www.openstreetmap.org), available under the Open Database License
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the proportion of GLU, were calculated in 300 m and
1000 m radial buffers around home addresses. These
sizes were selected to represent a reasonable walking dis-
tance to greenspace (300 m; [56]) and to reflect a larger,
neighbourhood scale (1000 m; [3]). Additional details of
the methods for each indicator can be found in Mueller
et al. [36].

Physical activity
During the personal monitoring periods, study partici-
pants wore a Fitbit flex device (original version) on their
wrist (Fitbit Inc., San Francisco, CA, USA) [12] and in-
stalled the ‘Moves’ app (moves-app.com) [13] on their mo-
bile phones; participants were asked to keep their Fitbit
and phone with them whenever possible. Fitbits recorded
the total number of steps completed each minute and the
Moves app recorded GPS locations and the duration, dis-
tance, and activity (i.e., walking, running, cycling, vehicle
transport) based on its algorithm to identify discrete trips.
The Fitbit flex has been found to reliably record steps
compared to gold standards (Optogait system and Active-
PAL device) [28], and the Moves app can correctly record
the location and type of separate trips [4, 47].
To take advantage of both the physical activity sensor

and mobile phone app deployed in the HEALS study, we
derived two PA metrics that made use of the particular
data provided by each sensor: daily minutes of MVPA
steps (Fitbit) and Metabolic Equivalent Task minutes
(MET-minutes) (Moves app); METs represent the en-
ergy cost of an activity relative to a resting state [1].
Daily steps were calculated by summing minutes with
≥100 steps as recorded by the Fitbit flex (equivalent to
≥3 METs) [41] across the monitoring period. These daily
values were then divided by the number of days with at
least 12 h of data (i.e., 75% complete data, assuming 8 h
of sleep), where at least four such days had been re-
corded during the monitoring period. Out of 133 indi-
viduals who were provided Fitbits (some households had
multiple participants), 124 (93%) provided sufficient data
for analysis.
MET-minutes were calculated by assigning a specific

MET to those trips identified by the Moves app to be
‘walking’, ‘running’, or ‘cycling’, depending on the activ-
ity; average speed (based on distance and duration, as re-
corded by Moves); and overall grade change (steepness)
during each trip using values set out in Ainsworth et al.
[1]. To account for steepness in the calculation of METs,
topographical GIS maps (30 m resolution) were acquired
from the Japan Aerospace Exploration Agency, based on
the Advanced Land Observing Satellite (ALOS-2; [50]).
Where no METs were specified by Ainsworth et al. [1]
for a given combination of activity/speed/grade, values
were interpolated or extrapolated (n = 3) (see Table S2
for a complete list of METs used in analysis). METs

were multiplied by the duration of each trip to calculate
MET-minutes. GPS points were converted to lines in
QGIS v.3.10.1 [39] and visual inspection was used to re-
move trips either with straight lines that did not appear
to follow road networks or that traversed bodies of water
(n = 16). Only six trips were assigned as ‘running,’ which
were subsequently excluded from analysis. Values above
five standard deviations (SD) in excess of the mean were
excluded for MET-minutes (n = 7) and duration (n = 2).
To select trips that occurred outdoors, those of < 3 min
in duration or < 100 m in distance were excluded from
analysis. As with the daily steps calculation, Moves data
were used only from individuals with at least 18 h (i.e.,
75%) of complete data on four or more days during the
monitoring period. Out of 123 individuals who down-
loaded Moves onto their phones, 69 (56%) provided suf-
ficient data for analysis. Since few (n = 4) participants in
Thessaloniki generated sufficient Moves data, this study
centre was excluded from the trip-based analysis.

Walkability
As certain features of the built environment may be
more likely to encourage physical activity [14], we calcu-
lated walk scores to capture the degree of walkability of
residential and travel environments. Similar to previous
studies (e.g., [19, 22, 57]), walk scores were calculated
based on GIS data using three factors: population dens-
ity, intersection counts, and land use mix. As well as
walking, these same built environment factors may also
encourage cycling [26]. Population density was based on
global 1 × 1 km gridded estimates for 2015 [7]. Intersec-
tion counts were calculated using QGIS via road net-
works from OpenStreetMap shapefiles downloaded
during March–April 2019 from Geofabrik (https://
download.geofabrik.de/). Auto-oriented (i.e., non-
pedestrian accessible) roads were removed by deleting
feature classes for ‘motorway’, ‘service’, or ‘trunk’, and
the processing tool in QGIS, ‘v.clean’, was employed to
identify intersections of two or more distinct roads. Land
use mix was based on the refined CORINE dataset, in-
cluding ‘commercial/service facilities’, ‘public facilities’,
and ‘sport and leisure green/built-up’. Z-scores of each
walk score (i.e., mean population density, total intersec-
tion counts, and presence of specific land uses) were cal-
culated across all home addresses for the 300 m and
1000 m buffers and were summed to create a walk score.
Walk scores calculated separately within and across
study areas were highly correlated for both 300 m (r =
0.88) and 1000m (r = 0.91) buffers; the latter metric was
used for analysis.
To examine the association of greenspace and MET-

minutes between different trips taken by the same indi-
vidual, linear buffers of 50 m were generated for each
trip for which mean values of NDVI and TCD, as well as
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the proportion of GLU, were calculated; a smaller buffer
size has been shown to be most strongly associated with
MVPA [21]. To account for different trip distances, the
number of intersections within each trip buffer was di-
vided by the total distance, which was then used to cal-
culate walk scores in a similar fashion as described
above.

Other covariates
As well as walkability, we adjusted for bluespace, daily
meteorology, and season as other environmental factors.
We accounted for bluespace by identifying any bodies of
water in residential and trip buffers, as bluespace has
been shown to be positively correlated with physical ac-
tivity, especially walking [16, 38]. We included in our
definition of bluespace the following CORINE land cover
types: ‘water courses’, ‘water bodies’, ‘coastal lagoons’,
‘estuaries’, and ‘sea and ocean’. We obtained for the
dates of the personal monitoring periods weather data,
including daily maximum temperature and wind speed,
and total precipitation from the US National Centers for
Environmental Information [27] from the following sta-
tions (latitude, longitude): Edinburgh Royal Botanic Gar-
den (55.967, − 3.210); Schiphol, Netherlands (52.316,
4.790); and Hellinikon, Greece (37.900, 23.750). Season
was assigned to each monitoring period based on the
majority of dates that occurred in a given season. As
noted above, during the monitoring periods, participants
also completed questionnaires on SEP and other infor-
mation, including employment status (e.g., working, in
school, caring for family), highest education completed,
car ownership, and household pets.

Statistical analysis
We used mixed regression methods to examine associa-
tions between greenspace and physical activity metrics.
Each greenspace metric (mean NDVI score, mean TCD,
and proportion of GLU,) was rescaled such that regres-
sion coefficients represented the change in outcome for
a 10 percentage point increase in the relevant parameter,
an approach adopted by Mueller et al. [36].
Models were developed to assess:

(i) the between-individuals association of MVPA with
residential greenspace (seeking to answer the
question of whether people living in greener areas
have higher levels of MVPA),

and

(ii) the association, within individuals, of MET-minutes
with trip-based greenspace (seeking to answer the
question of whether longer/more active journeys

are undertaken in areas with more greenspace com-
pared with shorter/less active journeys).

For (i), with daily MVPA-minutes as the outcome, re-
gression models with a random intercept for study centre
were separately developed for residential greenspace
metric at 300m and 1000m buffers around the home.
Model results are presented with various levels of pre-
specified confounder adjustment: (1) an unadjusted
model, (2) a model adjusted for age using cubic splines
with three knots, sex, season, and bluespace (any), and (3)
a model with additional adjustment for car ownership,
dog ownership, walk score, education, and employment.
For (ii), regression models with random intercepts for

both study centre and individual and robust standard er-
rors were separately developed for each of the three
greenspace metrics: NDVI, TCD, and GLU. Results are
again presented with adjustment for different sets of
pre-specified confounders: (1) an unadjusted model, (2)
a model with adjustment for age, sex, season, and blue-
space (any), and (3) a model with additional adjustments
for education, employment status, walk score, day of
week, weather conditions on the day of activity, mean
residential greenspace (1000 m buffer), car ownership,
and dog ownership. Effect modification by activity (i.e.,
walking and cycling) was examined by including in the
models an interaction term between greenspace metric
and activity. Cubic splines were included into the model
for age and temperature. Geospatial analysis was per-
formed using QGIS and statistical analysis was under-
taken using Stata v15 [48].

Results
A total of 131 households enrolled in the HEALS study
across the four study centres, with personal monitoring
periods spanning from March 2015 to June 2016. There
were 118 and 60 individuals who provided sufficient data
and for whom covariate data were available in the neigh-
bourhood and trip-based greenspace analyses, respect-
ively. Descriptive characteristics pertaining to those
individuals are presented in Table 1. The mean duration
of MVPA-minutes was just under 12 min per day, with a
maximum of nearly 40 min. The number of trips re-
corded for each participant ranged from one to 96, with
a mean of 30.3 (SD = 23.8); the mean trip duration was
just over 9 min. There was a total of 1014 trips, of which
676 (66.7%) were walking and 338 (33.3%) cycling; 89.9%
(n = 304) of the cycling trips were in the Netherlands.
The mean METs for each trip was 3.8; when accounting
for duration, mean MET-minutes equated to 37.0.
Mean residential greenspace values were slightly

higher for the 1000m compared to the 300 m buffer
(Table 1). The average trip-based NDVI was 0.27, with
minimum and maximum values of − 0.04 and 0.83,
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Table 1 Descriptive characteristics of the study participants

Characteristics Mean (SD) or N (%)

Neighbourhood Greenspace (n = 118) Trip-based Greenspace (n = 60)

Age (years) 35.0 (5.1) 34.8 (4.0)

Sex

Male 43 (36.4%) 20 (33.3%)

Female 75 (63.6%) 40 (66.7%)

Daily MVPA-minutes 11.9 (9.8) –

METs – 3.8 (1.3)

MET-minutes – 37.0 (39.0)

Duration (minutes) – 9.3 (7.7)

Valid data days – 6.5 (2.9)

Walk score

300 m residential −0.02 (2.31)

1000 m residential −0.04 (2.34)

50 m trip-based 0.02 (1.86)

Study Centre Participants

Athens 25 (21.2%) 20 (33.3%)

Edinburgh 26 (22.0%) 11 (18.3%)

Thessaloniki 23 (19.5%) 0 (0.0%)

Utrecht 44 (37.3%) 29 (48.3%)

Car owner 104 (88.1%) 58 (96.7%)

Dog owner 5 (4.2%) 4 (6.7%)

Season monitored

Winter 13 (11.0%) 4 (6.4%)

Spring 39 (33.1%) 15 (23.8%)

Summer 49 (41.5%) 35 (55.6%)

Autumn 17 (14.4%) 9 (14.3%)

University educated 88 (74.6%) 54 (90.0%)

Employed 93 (78.8%) 52 (86.7%)

Any bluespace 13 (11.0%) 19 (31.7%)

NDVI (−0.1 to 1.0)

300 m residential 0.31 (0.16)

1000 m residential 0.35 (0.18)

50 m trip-based – 0.27 (0.15)

TCD (Percentage)

300 m residential 10.5 (10.4)

1000 m residential 11.7 (11.2)

50 m trip-based – 9.2 (10.6)

GLU (Proportion)

300 m residential 0.07 (0.11)

1000 m residential 0.13 (0.13)

50 m trip-based – 0.08 (0.16)

Meteorological factors

Temperature (°C) – 22.1 (6.6)

Days with rain – 2.0 (4.5)

Wind speed (knots) – 13.5 (5.7)
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respectively. Trip-based TCD levels ranged from 0 to
73.5%, with 85.5% (n = 864) of trips containing tree
cover. The percentage of trips with any GLU was 31.2%
(n = 316), with three (0.3%) trips occurring entirely in
places of GLU. The greenspace metrics were weakly to
moderately correlated, with NDVI and TCD consistently
having the strongest associations. Greenspace metrics
were mostly negatively correlated with walk score. There
was little apparent correlation between residential green-
space metrics and daily MVPA-minutes. By contrast,
trip-based greenspace was moderately correlated with
MET-minutes, with coefficient values ranging from 0.44
(GLU) to 0.59 (TCD) (Table 2).
The analysis of residential greenspace and MVPA-

minutes did not provide clear evidence of associations
with greenspace at either the 300m or 1000m buffers
(Table 3). Coefficients of the increase in MVPA were gen-
erally small, and confidence intervals included 0 in fully
adjusted models for all greenspace metrics (Table 3). Of
the covariates, only walk score in the NDVI model (300m
buffer) showed a clear positive trend (1.13 MVPA-
minutes [95% CI: 0.03 to 2.23]) per 1-unit increase in walk
scores in fully adjusted models (data not shown).
All average trip-based greenspace coefficients were

positively associated with MET-minutes in the un-
adjusted and adjusted models. NDVI and TCD were
most strongly related to MET-minutes, compared to
GLU, with very similar coefficient values (10.41 [95% CI:
4.43 to 16.39] and 10.63 [95% CI: 4.96 to 16.30] add-
itional MET-minutes per 10 percentage point increase,
respectively). Although less precise, estimates of the ab-
solute increase in MET-minutes for cycling trips were
consistently higher than those for walking (Table 4). Se-
lect environmental covariates also were positively linked
with MET-minutes across the greenspace models, par-
ticularly walk score and the presence of bluespace (data
not shown).

Discussion
Proximity to greenspace, typically in a residential setting,
has been associated with a host of positive health out-
comes. In this study, we used objective indicators to ex-
plore greenspace and outdoor PA as a potential
underlying mechanism for health. We found no evidence
to suggest individuals who lived in greener neighbour-
hoods engaged in greater levels of MVPA than those res-
iding in less green areas. On the other hand, we found
strong support that individuals choose greener settings
for physically active travel of higher intensity and/or lon-
ger duration.

Residential greenspace
We found no clear evidence that the amount of green-
space around the home was associated with overall

MVPA. A similar finding has been reported in some
studies [53, 54] but not in others [23, 43], with some of
the earlier work examining comparable residential
greenspace metrics and objective PA, the majority of
which examined GLU as the exposure of interest. The
number of parks within a 1 km residential buffer, but
not the residential distance to the nearest park, was as-
sociated with objective MVPA in a group of US adults
[42]. Likewise, the number of parks within 500 m and 1
km buffers was also found to be the strongest indicator
for MVPA minutes in an eight-country study; park area
within those same buffer sizes (a metric similar to the
GLU metric in the current study) did not indicate a cor-
relation with PA [45]. Sallis et al. [43] also found parks
within 500 m of residential addresses to be positively as-
sociated with objective MVPA, after adjusting for walk-
ability features (also significant), in a large sample of
individuals from 10 countries. A study examining GLU
(i.e., parks and other green land uses) and objective
MVPA in Dutch adults aged 45–65 years found positive
results, but only with smaller buffers (25–400 m) [23].
Triguero-Mas et al. [53] found overall MVPA activity
was not associated with GLU situated within 300 m of
home addresses in European adults, but was associated
with contact and exercise specifically in natural outdoor
environments; researchers did not account for walkabil-
ity. We identified only one previous study that examined
residential NDVI, which found no statistical links with
overall objectively measured MVPA, and an inverse rela-
tionship with MVPA within a 1 km home buffer, in a
sample of adult trail users in the US, [54]. We are un-
aware of any previous studies that compare the amount
of residential tree canopy to objective measures of PA.
While some studies have found positive correlations

between residential greenspace and objective MVPA, al-
beit mainly with the number of nearby parks, the exist-
ing evidence is neither consistent nor comprehensive.
Our study found a mix of positive and negative green-
space effects, which may have achieved statistical signifi-
cance (in either direction) with a larger sample size.
Sample size notwithstanding, there are several reasons
that may explain the lack of stronger findings: walkabil-
ity indicators have typically been shown to be as or more
important than nearby greenspace [54] (identified in the
current study), the physical environment may be less im-
portant to influence exercise in parents of young chil-
dren [6], PA in nearby parks has been found to
constitute a small proportion of overall PA [49], and
perhaps most pertinent is that MVPA may have oc-
curred outside the 300 m and 1000m buffers employed
in the present study. Most participants in our study
owned a car; Hillsdon et al. [20] found that car owners
engaged in more than 60% of outdoor PA outside of the
neighbourhood, as defined by an 800 m residential
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buffer. Thus, the amount of greenspace within a residen-
tial area may not be as important for people with access
to a vehicle.

Path-based greenspace
In our analysis of trip-specific data, we found positive
links between the amount of vegetation (NDVI) and tree
coverage, and to a lesser degree GLU, with longer and
more active journeys. Few studies have used a GPS ap-
proach to combine greenspace exposure with objective
PA in adults, but all have found some indication of a

positive trend with PA. James et al. [22] assessed mo-
mentary exposure to NDVI, as opposed to trip-level av-
erages as analysed in the current study, in female nurses
in the US and found a positive relationship with acceler-
ometer counts per minute, particularly when walkability
was low. A study of a similar design to that of James
et al. recruited trail users in the US and found NDVI to
be positively associated with a higher likelihood of
MVPA [51]. Houston [21] used a land cover map (in-
cluding greenspace as tree canopy, irrigated grass cover,
or non-irrigated grass cover/bare soil) and identified

Table 2 Correlation matrix for the a) 300 m and b) 1000 m residential address buffers, and c) 50 m trip-based buffer (values from −1
to + 1 are presented from dark red to dark green, respectively)
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significant positive associations with the likelihood of
adults engaging in MVPA. The amount of GLU at trip
origin and end was associated with a higher probability
of walking in a study in France, which found that trip-
level characteristics outweighed those of the residential
environment [8]. A study of adults in Barcelona that also
used the Moves app found both the proportion of large
parks and tree density along routes to be positively asso-
ciated with walking minutes [58].
We found higher effects of greenspace on cycling com-

pared to walking, though the former had a wider range
of possible effects. Few previous studies have examined
greenspace with objective adult physical activity mea-
sures of both walking and cycling. Le et al. [31] quanti-
fied the built environment surrounding bicycle and
pedestrian counters in 20 US cities and found a greater
positive effect on cycling than walking (though green-
space and bluespace were combined in their analysis).

Our results with objective measures support studies of
self-reported cycling. Commuters in Barcelona were
more likely to be cyclists with higher greenness in the
study/work environment; interestingly, the greenness of
the route was not significant, though commuting jour-
neys were estimated by shortest distance rather than
those actually travelled [11]. Questionnaire respondents
in Stockholm reported greenery to be one of the most
important factors to stimulate cycle commuting [60]. Al-
though we looked at all active trips (i.e., not just those
for commuting), our results build on this earlier research
to suggest that greenness, through both overall vegeta-
tion and trees, might enhance and encourage all active
transport by providing a more pleasant route.

Overall findings
We examined both residential and active transport envi-
ronments, which provided an opportunity to compare

Table 3 Regression analysis results of residential greenspace and daily minutes of moderate to vigorous intensity steps (MVPA-
minutes)

Model Greenspace
metric

Change in daily MVPA-minutes (95% CI) for a 10 percentage point increase in greenspace
marker based on buffer around place of residence

300m 1000m

Model 1: unadjusted NDVI −0.71 (−2.21 to 0.78) −1.10 (−2.53 to 0.33)

TCD − 0.42 (− 2.44 to 1.61) − 0.63 (− 2.44 to 1.17)

GLU −0.89 (− 2.45 to 0.68) − 1.43 (− 2.81 to − 0.04)

Model 2: model 1 + adjustment for
age + sex + season + bluespace

NDVI − 0.45 (− 1.84 to 0.94) − 0.60 (− 1.88 to 0.69)

TCD − 0.13 (− 2.03 to 1.77) − 0.42 (− 2.09 to 1.25)

GLU − 0.91 (− 2.47 to 0.64) − 1.13 (− 2.52 to 0.25)

Model 3: model 2 + adjustment for
walk score + car + dog + education
+ employment

NDVI 1.14 (− 0.41 to 2.70) 0.39 (− 1.09 to 1.86)

TCD 0.27 (− 1.73 to 2.28) − 0.59 (− 2.30 to 1.12)

GLU − 0.49 (− 2.16 to 1.17) − 0.97 (− 2.40 to 0.47)

n = 4 study centres; n = 118 individuals

Table 4 Regression analysis results of MET-minutes with trip-based greenspace for overall and activity-specific findings

Model Greenspace
metric

Change in MET-minutes (95% CI) per 10 percentage point increase in mean trip-
greenspace (50m buffer)

MET-minutes

Overall Walkinga Cyclinga

Model 1: unadjusted NDVI 7.34 (2.25 to 12.44) 4.24 (2.57 to 5.91) 13.65 (6.23 to 21.07)

TCD 9.16 (2.63 to 15.69) 6.34 (3.78 to 8.91) 23.91 (2.85 to 44.97)

GLU 3.15 (0.12 to 6.17) 2.96 (0.60 to 5.32) 7.29 (− 2.94 to 17.53)

Model 2: model 1 + adjustment for
age + sex + season + bluespace

NDVI 7.20 (2.39 to 12.01) 4.30 (2.83 to 5.77) 13.73 (5.83 to 21.67)

TCD 8.56 (3.04 to 14.09) 5.89 (3.91 to 7.87) 23.32 (2.54 to 44.09)

GLU 3.18 (− 0.01 to 6.37) 2.90 (0.40 to 5.39) 7.89 (− 2.70 to 18.48)

Model 3: model 2 + adjustment for walk
score + residential greenspace + car + dog
+ education + employment + weekday
+ weather

NDVI 10.41 (4.43 to 16.39) 7.81 (4.12 to 11.50) 15.53 (8.60 to 22.45)

TCD 10.63 (4.96 to 16.30) 8.10 (4.93 to 11.28) 22.79 (5.24 to 40.34)

GLU 3.36 (0.00 to 6.72) 3.29 (0.27 to 6.30) 6.00 (− 3.34 to 15.34)

n = 3 study centres; n = 60 individuals; n = 1014 trips
aAdjusted for interaction between greenspace and activity
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and contrast these exposures using the same dataset. We
found no evidence to support the residential environ-
ment being associated with objective MVPA, though our
analysis was based on steps and therefore would have
only pertained to walking or running. This analysis also
only related to the availability of greenspace, not neces-
sarily its use. We also examined greenspace levels of the
entire route for those trips involving walking or cycling.
Whereas contemporaneous momentary designs (i.e.,
matching exposure and PA at points in time) are more
likely to reveal typical behaviours in certain settings (e.g.,
less PA in commercial areas and more PA in natural
areas, such as greenspaces) [9], our analysis took into ac-
count average characteristics of the entire route. There-
fore, our approach was more equipped to answer the
question: given an individual has decided to undertake
PA, how is greenspace associated with the intensity and
duration of activity? In other words, how does the pres-
ence of greenspace factor in the selection of environ-
ments through which individuals choose to travel or
exercise? We found clear evidence indicating both NDVI
and TCD as greenspace markers were positively linked
to intensity and duration of activity, while adjusting for
other characteristics of the built environment. Certain
such characteristics, namely walk score, were consist-
ently related to higher levels of PA; nevertheless, the dif-
ferent scales of greenspace markers and walk score
render it difficult to identify which is the more influen-
tial factor for PA. We also found positive links to MVPA
with the proportion of GLU along a route, but not spe-
cifically for cycling trips. The use of a particular green-
space for a specific activity, namely cycling in this case,
may be more dependent on certain features, including
size, cycling routes, and wooded areas, which were not
quantified explicitly in the overall area-based GLU
metric employed in our study [44]. In addition, the
GLU map we used was based on a lower spatial reso-
lution (100 m) than the NDVI (10 m) or TCD (20 m)
metrics. Therefore, the use of this coarser resolution,
with greater aggregation of features and potential ex-
clusion of smaller parks, might help explain the
weaker associations we observed between GLU and
PA indicators [30].

Strengths and limitations
Our study had several key strengths. We assessed the
importance of both the residential and active route
settings, thus developing dynamic and multi-
contextual environmental exposures [29], with two
objective MVPA indicators. We also used three differ-
ent objective indicators to help characterise green-
space features of the built environment, with two
different residential buffer sizes to help address the
modifiable areal unit problem [21]. These advantages

notwithstanding, there were some limitations to our
research. Although we did not explicitly address rea-
sons for choosing residential locations, we attempted
to control for self-selection in the trip-based analysis
by including residential greenspace levels and found
our results to be unchanged. Several greenspace and
PA studies have attempted to account for self-
selection by including reasons for choosing to live in
their neighbourhood (e.g., access to places that sup-
port PA, access to local services). Associations with
PA have persisted after adjustment for such factors
[24, 34]. Therefore, it is not likely that residential
self-selection would have strongly biased our results.
However, it would have been beneficial for our ana-
lysis, and understanding of the importance and role
of greenspace, to know the purpose(s) of each trip.
While the Moves app has been shown to accurately

provide location, speed, and duration, the software has
had challenges identifying multi-modal trips, which
may have been included as discrete events in our ana-
lysis [4]. In addition, there was a lower proportion of
participants with complete Moves data than that pro-
vided by the Fitbit; this might be due to phones run-
ning out of batteries or being switched off. Our sample
size was quite modest, and our study demographic was
limited to parents of young children, which could re-
strict the generalisability of key findings. Although Can-
delaria et al. [5] found little difference in the amount of
objective MVPA recorded between parents of young
and older children and non-parents, the mean MVPA-
minutes in our sample was much lower than Candelaria
et al. and in studies with other demographics [25] (~ 12
vs > 30 mins/day). If MVPA steps were underestimated
in our study, any association with residential green-
space levels might have been hindered. The majority of
our study sample was university educated and owned a
car, indicative of a higher SEP; lower SEP individuals
might experience different relationships between green-
space and MVPA [17]. As noted above, the environ-
ments of study/work may be important, but we did not
have this information for all study participants. We also
were not able to distinguish whether study subjects
were currently working or on maternity/paternity leave.
We characterised surrounding streets and intersections
using maps from 2019, though personal monitoring
took place over 2015–2016; therefore, some misclassifi-
cation of walkability may have been introduced by any
road network changes occurring in the intervening
years, but it is expected that any impact on our results
would have been minimal. Each subject participated in
only one personal monitoring period in the HEALS
study; repeating data collection with participants during
different times of the year may provide insights into the
role of temporal/seasonal factors of greenspace and PA.
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Conclusion
We examined PA as a potential explanatory pathway for
observed associations between health and greenspace,
assessing both residential and trip-specific environments.
We found little evidence to suggest residential green-
space was associated with higher levels of MVPA, re-
gardless of where that may take place. On the other
hand, we found clear, positive associations between in-
tensity and duration of activities with the average
amount of greenness and tree coverage along a route,
which was true for both walking and even more so for
cycling. We suggest future research to build on this pro-
posed model of specific pathways by examining larger,
more diverse populations, while also investigating the in-
fluence of greenspace for trip purpose and route
preference.
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