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ABSTRACT

Neonates regulate iron at birth and in early postnatal life. We reviewed literature from PubMed and Ovid Medline containing data on umbilical

cord and venous blood concentrations of hepcidin and iron, and transferrin saturation (TSAT), in human neonates from 0 to 1 mo of age. Data from

59 studies were used to create reference ranges for hepcidin, iron, and TSAT for full-term-birth (FTB) neonates over the first month of life. In FTB

neonates, venous hepcidin increases 100% over the first month of life (to reach 61.1 ng/mL; 95% Cl: 20.1, 102.0 ng/mL) compared with umbilical
cord blood (29.7 ng/mL; 95% CI: 21.1, 38.3 ng/mL). Cord blood has a high concentration of serum iron (28.4 umol/L; 95% Cl: 26.0, 31.1 umol/L)
and levels of TSAT (51.7%; 95% Cl: 46.5%, 56.9%). After a short-lived immediate postnatal hypoferremia, iron and TSAT rebounded to
approximately half the levels in the cord by the end of the first month. There were insufficient data to formulate reference ranges for preterm

neonates.  Curr Dev Nutr 2020;4:nzaa104.
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Introduction

Iron homeostasis during pregnancy

Three important mediators of hepcidin synthesis—iron status, inflam-
mation, and erythropoiesis—are all altered during pregnancy (1-4).
Iron demand on the mother increases significantly to support expanded
maternal erythropoiesis and iron requirements of the growing fetus
(5-9). During pregnancy, the placenta transfers ~270 mg Fe from the
mother to the fetus via the placenta (10, 11). Syncytiotrophoblasts in
the placental villi take up transferrin-bound iron from the maternal
circulation by endocytosis via transferrin receptor 1 (TFR1) (Figure
1) (12, 13). As reviewed in Cao and Fleming (14) and Fisher and
Nemeth (15), iron is released from TFR1 and transferred from the
acidified endosome into the syncytiotrophoblast cytoplasm by divalent
metal transporter 1 (13), zinc and iron related protein 8 (ZIP8) (16),
and zinc and iron related protein 14 (ZIP14) (17). Ferroportin trans-
ports iron out of placental syncytiotrophoblasts, and then ceruloplas-
min, hephaestin, and zyklopen assist in the oxidization of Fe?* to Fe**,
helping it pass through the endothelium to reach the fetal circulation
(18-20).

Maternal control of fetal and early neonatal iron
metabolism

Increases in maternal dietary iron uptake and placental iron trans-
fer occur in the second and third trimesters (21, 22), when maternal
hepcidin decreases to trigger increased duodenal iron absorption (23),
splenic macrophage iron recycling, and the release of maternal hep-
atic iron stores (24-26). The resulting increased circulating maternal
iron is then freely available for transfer to the fetus. Factors that are
thought to contribute to maternal hepcidin suppression in the second
and third trimesters include maternal iron deficiency, erythropoiesis
in the mother or fetus (25), estrogen (26), and progesterone recep-
tor membrane component-1 (27). Conflicting evidence now exists as
to whether pregnancy-induced plasma dilution may also play a role
(15, 28).

Fetal control of fetal and early neonatal iron metabolism

Eighty percent of all the iron transference from the mother to the fetus
occurs in the last trimester (29). An illustration of the fetal demand for
iron [amounting to 1.6-2.0 mg - kg~ - d~! (30)] is that umbilical cord
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FIGURE 1 Placental iron transfer between mother and fetus. Syncytiotrophoblasts in the placental villi take up Tf-bound iron from the
maternal circulation by endocytosis via TFR1. Iron is released from TFR1 in acidified endosomes and transferred into the
syncytiotrophoblast cytoplasm. Ferroportin transports iron out of placental syncytiotrophoblasts, and then ceruloplasmin, hephaestin, and
zyklopen oxidize Fe?* to Fe3*, helping it pass through the endothelium to reach the fetal circulation. It is still unclear as to whether newly
transported iron enters the fetal circulation as NTBI or bound to fetal Tf. Fetal-derived hepcidin is believed to regulate ferroportin
expression on the fetal basal side of placental syncytiotrophoblasts (12, 25). Maternal-derived hepcidin is believed to play a role in
regulating TFR1 expression on the maternal side of placental syncytiotrophoblasts (31). Apo-Tf, unsaturated transferrin; CP, ceruloplasmin;
DMT1, divalent metal transporter 1; fetal Tf, fetal-derived transferrin; Fe?*, ferrous iron; Fe3*, ferric iron; HEPH, hephaestin; NTBI,
non-transferrin-bound iron; Tf, transferrin; TFR1, transferrin receptor 1; STEAP, six-transmembrane epithelial antigen of prostate; ZIP, zinc

and iron related protein; ZP, zyklopen.

blood contains a higher serum iron concentration than in the mater-
nal circulation and at delivery infants have higher total body iron per
kilogram than that measured in their mothers or in healthy adults (32—
43). This pattern is seen even in anemic mothers and their infants (30,
42, 44, 45). The relative roles of maternal and fetal hepcidin concentra-
tions in controlling placental iron transport are unclear and may change
during the course of gestation (24, 28, 41, 43, 44, 46-54). As iron be-
comes more available in the last months of pregnancy, the fetus synthe-
sizes hepcidin probably to control the rate of placental iron transfer and
thereby to protect itself from iron-overload (15, 28, 55). Evidence show-
ing the importance of fetal hepcidin includes: 1) umbilical cord hep-
cidin concentrations at birth are higher than maternal concentrations
before and during delivery (24, 46, 43, 53, 56, 57); and 2) in pregnancies
with multiple gestations, differences in cord hepcidin between siblings
explained a greater fraction of variability in cord hemoglobin, serum

ferritin, soluble transferrin receptor, and erythropoietin than maternal
hepcidin concentrations (49).

Placental control of fetal and early neonatal iron
metabolism

The placenta may also independently regulate iron transfer to the fetus
in some scenarios (58). A reduction of ferroportin expression on the
apical fetal-facing membrane of placental syncytiotrophoblasts during
maternal iron deficiency, in addition to increased expression of TFR1 on
the maternal-facing side supports this hypothesis (28). Sangkhae et al.
(28) propose that during maternal iron deficiency, iron is held in the pla-
centa to ensure that its metabolic homeostasis is maintained. Placental
protein synthesis and critical transfer mechanisms can then continue,
ensuring the more detrimental condition of placental dysfunction does
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not occur. These findings were observed in murine and in vivo human
trophoblast models, but not in respect to the human pregnancies ana-
lyzed (28).

Impact of labor and delivery on hepcidin

Childbirth is an intensely stressful event. Inflammatory pathways (in-
cluding IL-6-mediated pathways) are induced at the onset of human
labor, even in the absence of intrauterine infection (59-66). Initiating
stimuli for IL-6 production and release could involve the endocrine
events of labor (65-67), mechanical distension of the membranes and
cervix (smooth muscle) (59, 67-70), placental hypoxia and/or hypo-
perfusion (67, 71), fetal hypoxia-acidemia (72), pain (73), or exposure
to infective agents (64, 66, 67, 74). The production of IL-6 leads to an
increase in hepcidin concentrations along with a massive influx of im-
mune cells (predominantly neutrophils) into the cervix, decidua, my-
ometrium, chorioamnionic membranes, and amniotic fluid (65, 75).
This further exacerbates the rise in IL-6 and other cytokines (73, 76).
The increase in postdelivery maternal hepcidin concentrations is larger
with cesarean deliveries (550% increase) than with standard vaginal
deliveries (300% increase) (77). This is most likely due to the surgi-
cal procedure and the subsequent inflammation. Similar increases in
serum hepcidin are seen postoperatively during other abdominal surg-
eries (78). The effect of this maternal rise in hepcidin before, during, and
immediately after childbirth on the late fetal/early neonatal iron status
is unknown, although like IL-6 (79), hepcidin is not thought to cross the
placenta (80).

Effects of infection on neonatal serum hepcidin
concentrations

Intra-amniotic infections can cause an increase in fetal hepcidin (81).
Multiple studies have documented an association of chorioamnionitis,
perinatal acidosis, and neonatal sepsis with high umbilical cord hep-
cidin concentrations (81-86). For example, an extremely high cord hep-
cidin concentration (437.6 ng/mL) was found in a neonate with con-
firmed Enterococcus faecalis early-onset sepsis (84). Similarly, very-low-
birth-weight, premature neonates with late-onset culture-confirmed
sepsis exhibit elevated concentrations of hepcidin (83). Nevertheless,
despite the well-documented regulatory pathways of infection and in-
flammation on iron regulation, it is important to note that multiple pub-
lications have shown a lack of correlation between hepcidin, IL-6, and
C-reactive protein (CRP) in sick neonates (84, 87). This is likely due to
differences in the biochemical kinetics of these molecules. IL-6 concen-
trations spike very early in the course of perinatal infection, whereas the
rise of CRP is delayed.

Standardizing hepcidin measurements

Multiple assays, including MS and immunochemistry ELISA methods,
are available to quantify hepcidin in various body fluids (urine, serum,
and plasma) (88). However, in the studies included in this state-of-the-
art review, none of these methods were calibrated using the same stan-
dards and, as a result, there were significant differences in hepcidin val-
ues between studies (89, 90).

In 2016, van der Vorm et al. (89) harmonized many of the available
hepcidin ELISA assays using native, lyophilized plasma with cryoly-
oprotectant as a commutable candidate reference material. Linear equa-
tions were formulated to standardize the hepcidin assays (89). These
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equations can now be used to conduct post hoc standardization of non-
calibrated test results, aiding the retrospective comparison of data from
previous publications. We have used these equations in this state-of-
the-art review to generate standardized hepcidin values (Supplemental
Table 1). Standardized reference material, which was refined in 2019,
is now available for purchase, allowing hepcidin measurements to be
standardized in all laboratories (90).

To our knowledge, this is the first time that retrospective compar-
isons have been made between serum hepcidin concentrations in dif-
ferent studies, using post hoc standardized values to calculate weighted
mean averages in umbilical cord and venous blood.

This state-of-the-art review contributes this comparative analysis
and also offers an example for how other authors could approach
retrospective comparisons of hepcidin concentrations from different
studies.

Methods

In March 2019, we reviewed the literature searching 2 databases—
PubMed and Ovid Medline—with no restrictions on language. The
original search was for human studies only published during the date
range of 1 January, 1975 to 1 December, 2019. Corresponding au-
thors of extracted publications were not contacted. One individual car-
ried out the inclusion/exclusion process of the retrieved studies, and
there was no assessment of bias or the quality of studies as seen in a
systematic review process. Table 1 displays the search strategy used.
Figure 2 shows the flow diagram of the literature search. The search
generated publications containing data on cord and venous concentra-
tions of hepcidin and serum iron, and levels of transferrin saturation
(TSAT), in the neonatal period. Studies that analyzed healthy neonates
were included. Mean, median, or range of the gestational age of the
study population was a requirement for inclusion. Neonates >37 wk
at delivery were regarded as full-term-birth (FTB) neonates. Studies or
study groups with a gestational age <37 wk were classed as premature
[preterm-birth (PTB)] neonates. Retrieved publications had to report a
mean time of bleed 0-720 h postdelivery to be analyzed. Mean (SD or
95% CI) or median (range, IQR, or 95% CI) data were extracted from
the included publications. Studies reporting means (95% CIs) were in-
cluded in the calculation of weighted means (95% Cls) and the associ-
ated Figures 3-5. Reference ranges for adults and children were pre-
sented for comparison (91, 92). Many retrieved publications did not
stratify results by birth weight; as a result, this variable was not recorded
in Tables 2-7. Publications were not stratified by sample type (serum or
plasma) owing to the overall lack of studies. If multiple publications on
the same study population were retrieved, only 1 was included in the
analysis.

The standardization of hepcidin values generated by different ELISA
assays was performed using the slopes and intercepts from van der
Vorm et al. (89). This was performed for studies that used ELISA test
kits from DRG [Hepcidin-25 (human) enzyme immunoassay (EIA)
Kit, DRG], Bachem (Hepcidin-25 EIA Kit, Bachem), and Intrinsic
Lifesciences (Intrinsic Hepcidin ELISA Kit, Intrinsic Lifesciences). It
was not possible to standardize hepcidin values acquired using the
ELISA from Hangzhou Eastbiopharm (Hangzhou Eastbiopharm Co.
Ltd.) and mass spectroscopy (MCProt Biotechnology), used in Basu et
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TABLE 1 Literature search strategy'

Parameter Database Search strategy
Hepcidin Ovid Medline (Human) AND (neonate OR neonates OR infant OR infants OR baby OR babies OR cord OR “umbilical
cord”.mp.) AND (hepcidin OR prohepcidin.mp.)
PubMed (Human) AND (neonate OR neonates OR infant OR infants OR baby OR babies OR cord OR “umbilical cord”)
AND (hepcidin OR prohepcidin)
TSAT Ovid Medline (Human) AND (neonate OR neonates OR infant OR infants OR baby OR babies OR cord OR “umbilical
cord”.mp.) AND (“transferrin saturation” OR TSAT.mp.)
PubMed (Human) AND (neonate OR neonates OR infant OR infants OR baby OR babies OR cord OR “umbilical cord”)
AND (“transferrin saturation” OR TSAT)
Serum iron Ovid Medline (Human) AND (neonate OR neonates OR infant OR infants OR baby OR babies OR cord OR “umbilical
cord”.mp.) AND (“serum iron” OR iron.mp.)
PubMed (Human) AND (neonate OR neonates OR infant OR infants OR baby OR babies OR cord OR “umbilical cord”)

AND (“serum iron” OR iron)

TSearches conducted via PubMed and Ovid Medline. TSAT, transferrin saturation.

al. (51) and Ichinomiya et al. (82), respectively. Prohepcidin was not
included in the analysis because it is a poor proxy for biochemically ac-
tive hepcidin-25 (93-98).

The software packages Stata IC version 15 (StataCorp LP) and R
(R: A Language and Environment for Statistical Computing, R Foun-
dation for Statistical Computing, 2020) were used to analyze the data.
To calculate the CI around the weighted mean, the weighted variance
was calculated using the wtd.var function from the R package Hmisc.
The SE derived from this weighted variance was then used to calculate
the ¢ statistic (i.e., weighted mean divided by weighted SE), from which

the 95% CI was derived. GraphPad Prism version 8 (GraphPad Soft-
ware) software was used to produce the graphical representation of the
results.

Results

The initial search of 2 electronic databases for 3 different iron mark-
ers yielded 13,931 publications. After the exclusion of duplicated stud-
ies and selection criteria filtering, 20 publications were included in

[ Hepcidin ] [ TSAT } [ Serum Iron ]
Ovid MedLine PubMed Ovid MedLine PubMed Ovid MedLine PubMed

(n=97) (n=177) (n=119) (n=333) (n=2809) (n=10,396)

J

! I G B IS

Records Identified
Filtered by Species (Humans)

Records Identified
Filtered by Species (Humans)

Filtered by Species (Humans)

Records Identified

(n=274) (n=452) (n=13,205)
] S I
4
Duplicates Removed Duplicates Removed Duplicates Removed
(n=179) (n=117) (n =2485) Reasons for Exclusion
N J (n =11,047):
Reviews, Letter, Commentaries,
: Book Chapters, Conference
.| Abstracts, Patents, Full-text Not|
v v Available, No Gestational Age,
Animal Studies, Sick Neonates,
Publications in Analysis Publications in Analysis Publications in Analysis Medicated Neonates, Study
(n=20) (n=23) (n=51) Population Duplicated, Venous
Blood Collection >720 h,
No Outcome Data,
[ Full-Term Publications (n = 59) | Preterm Publications (n = 16) ] Measuring Prohepcidin.

FIGURE 2 Flow diagram of the literature search and selection criteria for retrieving publications on hepcidin, TSAT, or serum iron in

neonates over the first month of life. TSAT, transferrin saturation.
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FIGURE 3 Standardized hepcidin over the neonatal period. (A) Full-term neonates: « shows the weighted mean (95% Cl) for all studies
seen in Supplemental Figure 1A; B, x, and & show Prentice et al. (99); § shows Kulik-Rechberger et al. (46). (B) Preterm neonates: a shows
the weighted mean (95% Cl) for all studies seen in Supplemental Figure 1B; B shows Uijterschout et al. (100).

the analysis for hepcidin, 23 publications for TSAT, and 51 publica-
tions for serum iron. Many of these studies were found to contain in-
formation on multiple parameters of interest. Overall, we identified
59 publications containing data on hepcidin, serum iron, or TSAT in
FTB neonates. Sixteen publications were found to contain data on PTB
neonates.

In publications detailing the effects of cord clamping interventions,
all retrieved cord blood values were from groups that underwent 60 s
of delayed cord clamping. This is consistent with current WHO pol-
icy (101). Cord blood weighted mean values are shown in Tables 2-
7 and are represented by a dashed line in Supplemental Figures 1-
3 and & (95% CI) in Figures 3-5.

Hepcidin

Standardized weighted mean umbilical cord blood hepcidin con-
centrations were higher in FTB neonates (29.7 ng/mL; 95% CI:
21.1, 38.3 ng/mL) than in PTB neonates (8.4 ng/mL; 95% CI: 2.0,
14.7 ng/mL) (Supplemental Figure 1A, 1B, Tables 2, 3). Full-term
cord blood hepcidin concentrations were >100% higher than in adult
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male (13.1 ng/mL; 95% CI: 1.4, 43.2 ng/mL) and female (10.6 ng/mL;
95% CI: 1.4, 43 ng/mL) reference ranges (Table 2). FTB standardized
venous hepcidin concentrations increased (61.1 ng/mL; 95% CI: 20.1,
102.0 ng/mL) over the first 4 d of life (Figure 3A). This trend is unclear
for PTB neonates owing to the lack of studies (Table 3, Figure 3B). No
studies were retrieved that assessed postdelivery venous blood samples
>77 hin FTB or >168 h in PTB neonates.

TSAT

The weighted mean TSAT in cord blood was higher in FTB neonates
(51.7%; 95% CI: 46.5%, 56.9%) than in PTB neonates (36.5%; 95% CI:
0.8%, 72.1%) (Tables 4, 5, Supplemental Figure 2). Cord blood TSAT in
FTB neonates was double the reference levels found in adults (23.5%;
95% CI: 12%, 38.8%) and children aged 1-5 y (19.4%; 95% CI: 8.2%,
32.9%) (Table 4). The weighted mean average of TSAT decreased by
~50% from cord blood to venous blood in FTB neonates (down to
25.2%; 95% CI: 20.1%, 30.3%) (Figure 4A). This hypoferremic response
in FTB neonates was followed by a steady increase from 21.8% (95% CI:
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FIGURE 4 Transferrin saturation over the neonatal period. (A) Full-term neonates: o shows the weighted mean (95% Cl) for all studies
seen in Supplemental Figure 2A; B, y, and § show Prentice et al. (99); x shows Al-Tawil et al. (102); ¢ shows Balogh et al. (94); ¢ shows
Andersson et al. (103); n shows Milman et al. (39); « shows Kitajima et al. (104); ¢ shows Yamada and Leone (105). (B) Preterm neonates: «
shows the weighted mean (95% ClI) for all studies seen in Supplemental Figure 2B; B shows Lackmann et al. (106); x shows Celik et al.
(107); 8 shows Yamada and Leone (105); ¢ shows Kitajima et al. (104). All values are means (95% Cls), unless marked with ° [median (range)]
or e [median (95% ClI)]. Lackmann et al. (106) (8) data from the 3 study groups (<32 wk, 33-34 wk, and 35-36 wk) were averaged because
all groups are classed as preterm neonates and were bled at the same time of life. TSAT, transferrin saturation.

18.8%, 24.7%) to 44.2% (95% CI: 32.1%, 57.8%). No trend was identifi-
able in PTB neonates owing to the lack of data (Table 5, Figure 4B).

Serum iron

Unlike TSAT values, serum iron concentrations in cord blood were
higher in PTB neonates (46.8 umol/L; 95% CI: 29.7, 63.8 ;umol/L) than
in FTB neonates (28.4 umol/L; 95% CI: 26.0, 31.1 umol/L) (Supplemen-
tal Figure 3). Like TSAT, a similar 50% decrease in the weighted mean
average of venous blood compared with cord blood is seen in FTB (13.8
umol/L; 95% CI: 10.8, 16.9 umol/L) (Table 6) and PTB neonates (16.2
pumol/L; 95% CI: 15.3, 17.0 umol/L) (Table 7). Figure 5 suggests that af-
ter the initial reduction (in the first 48 h of life), concentrations of serum
iron remain consistent over the first month of life in (A) FTB and (B)
PTB neonates. Serum iron was lowest between 0 and 48 h postdelivery
(Tables 6, 7).

Discussion

Hypoferremia in FTB neonates

The weighted mean average for cord blood hepcidin was calculated us-
ing data from 11 studies. Almost all included studies reported a mean
value between 11 and 41 ng/mL, apart from Kulik-Rechberger et al.
(46). This study reported a much higher cord blood hepcidin value
(67.9 ng/mL; 95% CI: 59.3, 76.5 ng/mL), as Supplemental Figure 1A
shows. In addition, this study also recorded higher hepcidin concen-
trations in venous samples collected at 72 h (92.9 ng/mL; 95% CI: 83.3,
102.3 ng/mL) (46) than in those collected by Prentice et al. (99) at 77 h
(55.6 ng/mL; 95% CI: 47.1, 65.5 ng/mL).

When all the data are reviewed together (Figure 3A), hepcidin in-
creases from within the first 2-11 h of life (99) and then contin-
ues to increase <82 h postdelivery. At all times the hepcidin concen-
trations are much higher than those recorded in adults. This excess
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FIGURE 5 Serum iron over the neonatal period. (A) Full-term neonates: « shows the weighted mean (95% Cl) for all studies seen in

Supplemental Figure 3A; 8, §, and n show Prentice et al. (99); x shows Patidar et al. (108); ¢ shows Balogh et al. (?4); ¢ shows Szabé et al.
(109); ¥ shows Andersson et al. (103); ¢ shows Milman et al. (39); ¢ shows Tsuzuki et al. (110); k shows Tiker et al. (111); & shows Yapakg! et
al. (112); u shows Ozkiraz et al. (113); v shows Yamada and Leone (105). (B) Preterm neonates: « shows the weighted mean (95% ClI) for all
studies seen in Supplemental Figure 3B; B shows Lackmann et al. (106); x and § show Tiker et al. (111); & shows Tsuzuki et al. (110); ¢

shows Schiza et al. (114); y shows Yapakgi et al. (112); 5 shows Celik et al. (107); ¢ shows Yamada and Leone (105). All values are mean (95%
Cl), unless marked with * [mean (range)], ° [median (range)], or e [median (95% Cl)]. Lackmann et al. (106) (8) data from the 3 study groups
(<32 wk, 33-34 wk, and 35-36 wk) were averaged because all groups are classed as preterm neonates and were bled at the same time of

life.

hepcidin production may provide a quick, comprehensive, and rela-
tively long-lasting (0-3 d) hypoferremic response to aid protection dur-
ing this vulnerable period (99). After the first few days, TSAT gradually
increases as do serum iron concentrations, eventually reaching a plateau
at ~1 mo of age.

Iron metabolism biomarker data gaps in the first month of
life in full-term infants

Gaps in the time course of the concentrations of hepcidin and serum
iron and the level of TSAT in the first month of life in full-term neonates
still exist. This hinders our understanding of neonatal iron metabolism,
particularly because hepcidin, TSAT, and serum iron are transient and
dynamic iron parameters. At the point in which hypoferremia is be-
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lieved to be maximal, publications detailing the concentrations and lev-
els in early (<12 h) venous samples are lacking in both groups (FTB,
n = 2; PTB, n = 1). Further research at this time point is required to
fully elicit the strength and consistency of this response, as well as to
understand the process in greater detail.

Lack of data on preterm neonates during the first 24 h

After analysis of the current literature, the extent of the role that hypo-
ferremia plays in neonates with a gestational age <37 wk is still unclear.
This is primarily due to the limited number of publications document-
ing hepcidin (n = 5), TSAT (n = 6), and serum iron (n = 13) in the first
month of life in preterm neonates. The variability between the studies is
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o '§ vast and further complicated by the complex, intensive, and inconsistent
2 3 el % care of premature neonates worldwide.
g N N
Ei& q b & Data analysis of the retrieved publications suggests that preterm
5 ) 2 . .
" N ° neonates have lower cord hepcidin than full-term neonates, or infants
5 g s 5 . . .
g = 3 and healthy adults. Weighted cord mean values are 250% higher in full-
9 .
z _ % term (29.7 ng/mL; 95% CI: 21.1, 38.3 ng/mL) neonates than in preterm
é < |3 g ; é (8.4 ng/mL; 95% CI: 2.0, 14.7 ng/mL) neonates. We speculate that this
Ele Tlo - -
3 5 ; ~ o < g could be due to very early preterm neonates (<30 weeks of gestation)
= s e 5 L . .
3 &l © < g possessing circulatory monocytes with decreased surface expression of
o) ~N o<
N % toll-like receptor 4 (TLR4), lower mRNA expression of TLR4, and re-
c
0| o 2 duced cytokine production (122). An effect on the production of IL-6
c2 9 T §oR83 at delivery might then lead to a reduced ability to stimulate hepcidin
5 <uf ‘f.é w | : : : E expression as suggested in full-term infants.
a5 8l o2& ccol® . , L .
i S - Qa2 Our analysis proposes that peripheral venous hepcidin values in
~N 0 W0 ™M O «—| —<
g: = N T § preterm neonates increase to 44 ng/mL at 168 h. However, decreases in
c =
3 |5 = = [ TSAT between the cord and venous samples are not observed (36.5%—
al ) < o < R E ..
2_ [T a2 33 8 45.6%). We propose that this is due to a lack of data on TSAT levels
§O|g R 9 . . .
2| ds g3 : in preterm neonates over the first hours of life, potentially due to the
Sl 2 oI 2 complex ethical questions around bleeding preterm neonates so early
2 m N -é in postnatal life. This results in the collection of skewed data, focusing
_ = = £ only on later time points in the first month of life.
o © = ko]
e} - ~ o
= | | =
c - < | 2
4 8 2 & -
3 3 = v e el .
J2 808 s Limitations
£ s The aim of this state-of-the-art review was to evaluate our current
o © . . .
_31.6 ~ o= & knowledge on neonatal iron homeostasis in preterm and full-term
(S T O =4
Eg 2 J a3 Q2 5 neonates. As a result of the dearth of publications detailing the param-
H HH = 5 . . . . . .
M % ™ - = N ; e eters of interest during this period, our review has several limitations
© L NoTe) - =
5 B é - - @2 2 discussed below. First, we were unable to stratify by geographical loca-
o © g . . . . .
B o tion. Many studies do not stratify their study groups by gestational age
©
Q o . é (preterm: <37 wk, full-term: >37 wk). Subsequently, we have had to as-
% 5 ; ;, L s sign each study group or population by the mean gestational age. This
b t - . . . e .
5 3 39 g © will result in a reduction of any natural variation potentially caused by
2 ° 2 [ gestational age between the reviewed populations. This is also the case
©
2 EEEEEa z 5 with respect to birth weight and hemoglobin concentration.
proe] “ o|35 3 £EES58 - ®
6 2lc 285" ¢E £ 5 & imi i i
5 228833583 = g & Similarly, the studies on preterm neonates are made up of multiple
> Sslpoppesé 8 g < : g . .
o 388388 S 43 2 small sample size subgroups with different gestational ages. Owing to
g _ £ 3 é g the lack of preterm studies, we have had to combine these study groups
= o 3
S € g 29FEE 8 5% 8 to formulate weighted means and figures. This in itself could distort
o £ < - — E o . )
z S5=E5% % S £33 - the impact of gestational age on our results, because data from the very
2 F8gEESS : 28 8
€ Bl SsES S 5 22 L& early preterm newborns are combined with those from the late preterm
= S 9333 8 598 g2
o oeLUmm 5 o= o neonates.
4 = Z 6§32 E¢®©
g_ ER- s T & The retrieval of gestational age was a crucial aspect of the search
9 2 c
c SIS -] 2 58 fﬁ»é strategy; however, few studies documented the method used. There are
= g g5 oE . . . .
5 g £g Zv large differences in the accuracy of different techniques (123).
= o g 2 52 S . 1. .
5 §l. <2 o 2 2 °2 33 Post hoc standardization of different hepcidin ELISA kits has, to our
— = © - o = . ©
€ R E 23 303 72 g5k knowledge, never been completed before with retrospective data. How-
Q 6} ] O T g a . .
o - z 5 35kt ever, care should be given to the accuracy of the standardized values, be-
5 o o . -
S o m o o 2 o8 _g % é cause standardization was only possible for DRG, Bachem, and Intrinsic
s 2 = T o R
-_g IR RS\ § gz § 22 Lifesciences ELISA test kits. Studies that used alternative methods (124)
O © = € 2 =) . . s
g 5 - Z E2gg® were not included in summary statistics.
% 59 S g N < § § § % “; An essential criterion of inclusion in this publication was that all
- = _ — - o © - .
SEg _ L 55 Seo 548282 neonatal data came from healthy newborns. However, documentation
— 5 ° o 0 2 s £ 820¢@
o slge® S35 fEB3F 2E8I0Se flab tices (includi de of delivery) and postnatal 1
w §I88F S8 $3TS8Eigsged oflabor practices (including mode of delivery) and postnatal care, along
g % 5 E g 2 g 55 e § 23 % g._ﬁ % 5 with postnatal medication, lack detail in the publications retrieved.
o< 8 £ 902w 582 =& . . . . :
= 2859 25 2273 E[F T8RS Vaginal delivery is occasionally referred to as the method of delivery;
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however, the use of inflammation-inducing forceps, cesarean delivery,
or vacuum delivery is not consistently reported in each publication.

Conclusion

Currently available data suggest that hepcidin and serum iron concen-
trations and TSAT levels for adults and infants are much lower than
those found in cord blood and venous blood from neonates during
the first month of life. We have strengthened the evidence that FTB
neonates possess the ability to produce a hepcidin-mediated hypofer-
remic response postdelivery. Whether this mechanism is found in PTB
neonates is still unclear. This is predominately due to the lack of studies
on healthy preterm neonates during the first hours of life. If premature
or low-birth-weight neonates are unable to mount a hypoferremic re-
sponse, this could enhance their risk of early neonatal infections. Con-
versely, if the hypoferremic response is seen in both preterm and full-
term neonates, it will further support the hypothesis that regulation of
iron distribution plays a fundamental role as an innate mechanism of
protection against infection.

In summary, serum hepcidin is likely triggered by the inflammatory
effect of labor and delivery. We suggest that this intrinsic mechanism of
protection protects newborns with immature immune systems as they
transition from a semi-allogeneic, protected fetal setting to a microbe-
rich extrauterine environment (146, 147). Hepcidin-induced hypofer-
remia then potentially provides a broad-action innate bacteriostatic ac-
tion against invading micro-organisms, when physiological adaption to
postnatal life is so critical for survival.
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