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Abstract 

Background: Anti‑malarial drugs play a critical role in reducing malaria morbidity and mortality, but their role is 
mediated by their effectiveness. Effectiveness is defined as the probability that an anti‑malarial drug will successfully 
treat an individual infected with malaria parasites under routine health care delivery system. Anti‑malarial drug effec‑
tiveness (AmE) is influenced by drug resistance, drug quality, health system quality, and patient adherence to drug 
use; its influence on malaria burden varies through space and time.

Methods: This study uses data from 232 efficacy trials comprised of 86,776 infected individuals to estimate the 
artemisinin‑based and non‑artemisinin‑based AmE for treating falciparum malaria between 1991 and 2019. Bayesian 
spatiotemporal models were fitted and used to predict effectiveness at the pixel‑level (5 km × 5 km). The median and 
interquartile ranges (IQR) of AmE are presented for all malaria‑endemic countries.

Results: The global effectiveness of artemisinin‑based drugs was 67.4% (IQR: 33.3–75.8), 70.1% (43.6–76.0) and 71.8% 
(46.9–76.4) for the 1991–2000, 2006–2010, and 2016–2019 periods, respectively. Countries in central Africa, a few in 
South America, and in the Asian region faced the challenge of lower effectiveness of artemisinin‑based anti‑malarials. 
However, improvements were seen after 2016, leaving only a few hotspots in Southeast Asia where resistance to 
artemisinin and partner drugs is currently problematic and in the central Africa where socio‑demographic chal‑
lenges limit effectiveness. The use of artemisinin‑based combination therapy (ACT) with a competent partner drug 
and having multiple ACT as first‑line treatment choice sustained high levels of effectiveness. High levels of access to 
healthcare, human resource capacity, education, and proximity to cities were associated with increased effectiveness. 
Effectiveness of non‑artemisinin‑based drugs was much lower than that of artemisinin‑based with no improvement 
over time: 52.3% (17.9–74.9) for 1991–2000 and 55.5% (27.1–73.4) for 2011–2015. Overall, AmE for artemisinin‑based 
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Background
The Global Burden of Disease (GBD) study estimated 
that 619,800 (95% uncertainty intervals: 440,100–
839,500) malaria deaths occurred worldwide in 2017 
[1], with over 80% of deaths occurring in sub-Saharan 
Africa [2]. Malaria mortality has decreased substan-
tially over the last two decades through increased 
investment in the availability of effective treatments, 
such as artemisinin-based combination therapy (ACT) 
and preventive measures such as long-lasting insec-
ticidal nets [3–5]. Anti-malarial treatments are key to 
curbing malaria burden and mortality as they reduce 
the individual’s risk of severe disease and death in 
incident cases [6, 7] while also decreasing the infec-
tious reservoir of individuals from where mosquitoes 
can acquire a blood meal. Reaching global malaria 
reduction targets requires a detailed understanding 
of current treatment coverage levels as well as factors 
limiting their effectiveness. Coverage of anti-malarial 
effectiveness in the population necessitates that: (i) 
all patients with confirmed malaria infection access 
an anti-malarial treatment; (ii) the provided drug is 
of high efficacy and good quality; and, (iii) all patients 
receive an optimal dosing and adhere to the treatment 
regimen. This covers all relevant providers involved in 
managing malaria patients, including private sector, 
both formal and informal. Whilst efficacy, which drives 
most of the drug policy decisions, is primarily dictated 
by the evolution of drug-resistant parasite phenotypes, 
anti-malarial drug effectiveness (AmE) is a composite 
measure that encompasses clinical efficacy (the per-
formance of the medicine under controlled conditions) 
and other real-world clinical practice limitations. AmE 
is influenced by: (i) patient-specific responses to the 
treatment, including absorption, genetics, co-morbidi-
ties, special conditions such as pregnancy, very young 
age, or drug-drug interactions; (ii) patient adherence to 
the drug’s use instructions; (iii) healthcare providers’ 
skill, knowledge and prescription practises; (iv) health 
system performance; (v) access to the healthcare sys-
tem; (vi) healthcare expenditure; and, (vii) other socio-
demographic characteristics that limit the appropriate 
use of anti-malarial drugs.

The World Health Organization (WHO) recommends 
the use of ACT for treatment of uncomplicated  falcipa-
rum malaria [8], as this species causes the most severe 
forms of malaria and subsequently death. Currently, ACT 
is used by most malaria-endemic countries and territo-
ries [9, 10] as first-line treatment for falciparum malaria 
(Additional file 1: Section 1), and its use has been wide-
spread. For example, 82% of febrile children treated with 
an anti-malarial received an ACT medicine in public 
health facilities within sub-Saharan Africa between 2015 
and 2018 [11]. High efficacy of ACT for Plasmodium 
falciparum infection has been reported in sub-Saharan 
Africa, with no artemisinin resistance confirmed in this 
region [12]. Historically, anti-malarial resistance has been 
a major obstacle in the fight against malaria [3, 12–15]. 
Chloroquine (CQ) resistance was first observed in South-
east Asia and in South America in the late 1950s, and 
later spread to Africa. It was replaced by sulfadoxine-
pyrimethamine (SP), to which resistance quickly emerged 
and spread from Southeast Asia to most endemic areas, 
and the drug became ineffective [16]. Evidence support-
ing the high efficacy and safety of artemisinin derivatives 
when paired with a partner drug became available in the 
late 1990s [17–19]. However, the emerging artemisinin 
resistance reported since the mid-2000s poses a signifi-
cant threat to the recent gains in malaria control. Resist-
ance to artemisinin was first identified in the Greater 
Mekong Sub-region (GMS), and there are concerns that 
it has spread to densely populated countries like India 
and recently to parts of sub-Saharan Africa [3, 14, 20–30]. 
The historical use of artemisinin as a monotherapy [12, 
14, 15], or the use of partner drugs with similar modes 
of action and cross-resistance [31, 32], are among the 
primary factors fuelling the development of resistance. 
Other potential factors include the use of sub-standard 
and falsified medicines, high prevalence of self-treat-
ment, poor adherence to drug use protocols, weak health-
care systems, and unmonitored treated cases [33–37]. 
All these underscore the need for a full understanding of 
the spatiotemporal pattern of ACT effectiveness in all P. 
falciparum endemic countries. Likewise, the effective-
ness of non-artemisinin anti-malarials remains impor-
tant as they are still first-line treatments for falciparum 

and non‑artemisinin‑based drugs were, respectively, 29.6 and 36% below clinical efficacy as measured in anti‑malarial 
drug trials.

Conclusions: This study provides evidence that health system performance, drug quality and patient adherence 
influence the effectiveness of anti‑malarials used in treating uncomplicated falciparum malaria. These results provide 
guidance to countries’ treatment practises and are critical inputs for malaria prevalence and incidence models used to 
estimate national level malaria burden.
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malaria in some countries [11] and widely used in many 
areas despite adaptation of WHO recommendations 
[12]. Together the ACT and non-ACT results from this 
research will provide crucial information for assessing 
the impact of effectiveness on falciparum malaria burden, 
monitoring emerging resistance (including multi-drug 
resistance), and better characterizing anti-malarial drug 
distribution, quality, access, and use [17, 37–40]. When 
it comes to saving lives, effectiveness of drugs used for 
treatment is a key control intervention, and the need to 
characterize changing patterns of AmE is evident [41]. 
A global assessment of anti-malarial drug efficacy was 
published in 2010; existence of recently conducted and 
published anti-malarial efficacy trials [42] emphasizes 
the rationale for deriving updated global AmE estimates 
that will inform researchers, stakeholders and countries’ 
malaria control programmes [14, 20, 43–46].

To precisely monitor and compare AmE over space and 
time, and at a global scale, standardized data and meth-
odologies are required. Clinical efficacy data are a key 
input for such analyses, and several databases catalogu-
ing this metric have been established. As the databases 
were created for differing research purposes, they have 
inconsistent structures and varying foci, including spe-
cific drugs, regions or time periods [44, 47–56] (Addi-
tional file  1: Section  1). Most of these databases do not 
provide patient-specific data to support further statisti-
cal analysis, and contain location-based drug efficacy 
estimates derived using different methodologies, in both 
design and analysis [48]. The WorldWide Anti-malarial 
Resistance Network (WWARN) responded to the chal-
lenge of comparing varying anti-malarial drug efficacy 
estimates by: (i) acquiring individual-patient-level data 
from efficacy trials conducted and published since 1960 
[57]; (ii) re-analysing the patient-level data using a con-
sistent methodology (modified Intention-To-Treat analy-
sis); and, (iii) using standardized indicator definitions to 
produce comparable drug efficacy estimates [58, 59]. The 
result of WWARN’s work is the most comprehensive, 
standardized and accessible anti-malarial drug efficacy 
database yet created. Critically, WWARN dataset pro-
vides comparable results within and between countries, 
and over time thus supporting a spatiotemporal analysis.

Clinical drug efficacy trials suffer from various com-
plications, including non-compliance, protocol with-
drawals and deviations (e.g., co-morbidity, exposure to 
new infections and health worker mistakes) that may 
result in participants being dropped during the analy-
sis phase. The Intention-To-Treat analytical approach 
is advantageous because it includes all study partici-
pants according to the initial randomization, regard-
less of deviations from the protocol, such as participant 
withdrawals from the study or re-infection [59–61]. 

This method gives more conservative and unbiased effi-
cacy estimates that are closer to what would happen in 
clinical practice and are proxy for effectiveness [62–64] 
(study endpoints by WHO and WWARN—Additional 
file 1: Section 1). There are deficiencies in existing rou-
tine health information systems for adequately moni-
toring responses to malaria treatment, and few studies 
have assessed effectiveness of anti-malarials globally. 
As such, analysing WWARN estimates within geospa-
tial models that (i) include health system, socio-demo-
graphic and environmental factors, while (ii) adjusting 
for adherence and quality of drugs, provides a reason-
able basis for deriving measures of AmE [65]. Further-
more, the covariates introduce information linked to 
effectiveness rather than efficacy, thereby allowing the 
model to amplify or reduce the gap between efficacy 
and effectiveness based on local conditions.

This analysis generates fine-scale, global temporally 
dynamic maps of AmE for uncomplicated falciparum 
malaria. This metric defines the treatment success rate 
of an anti-malarial drug when administered to P. falci-
parum-infected individuals under typical use conditions 
(e.g., drugs obtained from facilities or pharmacies). This 
considers all individuals with parasitological- or clinically 
confirmed malaria infections that subsequently received 
an anti-malarial drug for treatment, regardless of whether 
they had a malaria-attributable fever, a fever attributable 
to a co-infection, or no fever. Effectiveness is estimated 
for both artemisinin-based and non-artemisinin-based 
treatment in all malaria-endemic countries from 1991 to 
2019. The AmE models include covariates for health sys-
tem factors, climate and environmental variables, socio-
demographic, malaria transmission risks, and population. 
The estimates are adjusted for quality of anti-malarial 
drugs and adherence to dosage regimens [33, 66]. The 
rationale for modelling AmE rather than clinical efficacy 
is threefold: (i) effectiveness is a more relevant metric 
for assessing anti-malarial impacts when administered 
within a real-world clinical setting (i.e., after it becomes 
a front-line treatment for malaria within a country); (ii) 
modelling effectiveness allows use of spatially varying 
covariates that can feasibly be related to effectiveness but 
are unlikely to influence efficacy; and, (iii) effectiveness 
is an essential input for calculating malaria mortality in 
the GBD study. The GBD study includes annual, national-
level estimates of morbidity and mortality attributed 
to malaria, with accompanying high-spatial-resolution 
(5 × 5  km) maps produced by the Malaria Atlas Project 
(MAP) [67, 68]. Prior to use in modelling malaria bur-
den, the results of this research (AmE) are combined with 
proportional anti-malarial use and treatment-seeking 
rates to generate estimates of effective treatment with 
anti-malarials, which are then used for modelling P. 
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falciparum prevalence and estimating the proportion of 
cases that are not successfully treated.

Methods
Data
The response data used in this research consisted 
of 232 anti-malarial drug efficacy studies conducted 
between 1991 and 2016, comprising 756 treatment 
arms, and information on 86,776 individuals. Among 
the studies used for analysis, 203 were extracted from 
the WWARN database, and comparable metrics were 
extracted from additional studies (n = 29) obtained 
through a review of articles assembled in the WWARN 
clinical trials publication library [61]. For consistency, 

these additional studies were selected using the same 
criteria applied when generating the WWARN data-
set (i.e., additional studies focused on treatment of 
falciparum malaria, did not include pregnant women, 
and used a modified Intention-To-Treat approach). 
The WWARN database consists of publicly available 
aggregated results harmonized and summarized from 
anti-malarial drug efficacy studies, including both arte-
misinin-based (including artesunate monotherapy) and 
non-artemisinin-based therapy (Additional file  1: Sec-
tion 1). Information of the trials included in the analy-
sis is presented in Table 1. Additional file 1: Section 2 
illustrates distribution and number of studies by treat-
ment type, country and year.

Table 1 Characteristics of anti-malarial drug efficacy trials

a Some studies assessed both drugs, hence counted twice

Africa Asia South America Totala

Number of ACT‑studies (%) 133 (69.4) 65 (28.0) 6 (2.6) 204

Number of non‑ACT‑studies (%) 62 (100) 0 0 62

Number of subjects (%) 64,553 (74.4) 21,168 (24.4) 1,055 (1.2) 86,776

Study year, range 1993–2015 1991–2016 2004–2016 1993–2016

Age at enrolment (no of studies)

 Under 5 years of age 67 2 0 69

 All ages 128 63 6 197

Treatment studied (no of treatment arms in efficacy study)

 ACT (including monotherapy)

  Artesunate 21 24 1 46

  Artemether–lumefantrine (AL) 169 32 2 203

  Artesunate–amodiaquine (ASAQ) 94 6 1 101

  Artesunate–mefloquine (ASMQ) 15 62 3 80

  Artesunate–sulfadoxine–pyrimethamine (ASSP) 41 47 0 88

  Dihydroartemisinin piperaquine (DHAP) 50 53 1 104

 Non‑ACT 

  Chloroquine (CQ) 35 0 0 35

  Sulfadoxine–pyrimethamine (SP) 69 0 0 69

  Others 30 0 0 30

Efficacy %, median

 ACT (including monotherapy) 97.9 100 100 99.3

  Artesunate 86.4 100 100 95.5

  Artemether–lumefantrine 97.8 97.4 100 98.4

  Artesunate–amodiaquine 97.8 94.9 97.1 96.6

  Artesunate–mefloquine 99.3 99.2 100 99.5

  Artesunate–sulfadoxine–pyrimethamine 97.7 100 98.9

  Dihydroartemisinin piperaquine 98.4 100 99.2 99.2

 Non‑ACT 83.1 83.1

  Chloroquine 61.1 61.1

  Sulfadoxine–pyrimethamine 91.3 91.3

  Others 82.3 82.3
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Covariates
Covariates used for modelling were identified from 
several procedures. First, publications describing fac-
tors influencing treatment failure, effectiveness of anti-
malarials, quality of anti-malarials, anti-malarial usage, 
and adherence, were identified with a literature review 
that followed an established methodology [69]. Second, 
a comprehensive search of the WWARN clinical tri-
als publication library, which includes all available and 
published anti-malarial efficacy studies, was performed. 
Papers were considered if they studied P. falciparum 
only, did not include pregnant women, used a modified 
Intention-To-Treat statistical analysis approach, and had 
a follow-up time of at least 28 days. A total of 733 out of 
1178 publications that reported efficacy matched these 
criteria, and all these were reviewed to extract informa-
tion on covariates related to anti-malarial efficacy. Third, 
using similar criteria, an additional 47 papers focusing on 
malaria risk mapping were identified from publication 
databases and included for review. This literature review 
identified factors related to malaria infection, transmis-
sion and risk that are relevant when assessing the per-
formance of anti-malarial drugs in real-world settings. 
Finally, grey literature, including WHO Malaria reports, 
was examined. The databases searched were PubMed, 
Embase, the Web of Science library, and Google Scholar. 
All covariates mentioned as having an influence on anti-
malarial drug efficacy, malaria treatment effectiveness or 
malaria infection in the compiled literature were identi-
fied. Additional file  1: Section  3—Table  S3.1 presents 
some of literature reviewed, identified factors and their 
importance to this analysis.

The Institute for Health Metrics and Evaluation 
(IHME) [70] and MAP [71] provided the covariates used 
in this analysis [69, 72]. IHME collates and produces 
country- and annual-level variables, including health sys-
tem access and metrics characterizing socio-economic 
status. MAP compiles, maintains and generates gridded 
global covariates characterizing environmental and cli-
matic conditions, which are primarily derived from tem-
porally dynamic and high-resolution satellite images and 
include temperature, rainfall, vegetation indices, popula-
tion, night-time lights, and accessibility to cities [69, 72–
75]. Data were obtained for 69 factors (Additional file 1: 
Section  3—Tables S3.2 and S3.3). Six transformations 
(natural logarithm, reciprocal, squared, cubed, exponen-
tial) were applied to all continuous variables to incorpo-
rate potential non-linear relationships with the response.

Variable selection procedures
Following assessment of the collated covariates, 38 
out of 53 IHME covariates were dropped as they were 

unavailable for all countries (e.g., they were only mod-
elled for Africa and not globally). Similarly, 3 out of the 
16 MAP covariates were excluded due to incomplete 
geographical coverage. The selection of the remaining 
variables was performed separately for artemisinin-based 
and non-artemisinin effectiveness by fitting generalized 
linear models with study site-specific random effects. The 
artemisinin-based and non-artemisinin anti-malarials 
were modelled separately because (i) the performance 
of the drug classes had markedly different temporal 
effectiveness patterns, and (ii) trials on non-artemisinin-
based drugs were clustered in Africa, whereas trials on 
artemisinin-based drugs were performed worldwide. The 
non-artemisinin-based anti-malarials were combined 
because too few efficacy studies were available to model 
them independently. Bivariate analyses relating each 
response variable with all covariates were performed, and 
the estimated odds ratios (with associated confidence 
intervals) and Wald’s p-values were used to assess the 
significance of the association. This initial process was 
performed to remove non-significant variables, as the 
final variable selection was completed later while fitting 
the geostatistical model. Pearson’s correlation coefficient 
was used to detect highly correlated covariates. Col-
linear covariates (r > 0.6) were excluded by ranking them 
based on their goodness-of-fit, assessed through Akaike 
Information Criteria (AIC), as well as the residual devi-
ance [76], and removing the less predictive covariates of 
collinear pairs. Further, multicollinearity was checked 
by assessing the Variance Inflation Factor (VIF) and per-
forming the Farrar-Glauber test [77]. The selected set of 
covariates was used in the next steps of model develop-
ment (Additional file 1: Section 3—Table S3.4).

Structure of predictive model
The analysis utilized a modelling approach that character-
ized the spatial process and temporal patterns explicitly 
to derive predictions and estimate uncertainties [4]. The 
AmE, for location k and year  j , Ykj , was assumed to follow 
a binomial distribution denoted Ykj ∼ Binomial

(

nkj , θkj
)

 
where nkj was the sample size (the number of patients 
involved) and θkj was the probability of treatment suc-
cess. The relation between the estimates of AmE, covari-
ates, and random effects was modelled via the logit link 
function:

logit
(

θkj
)

= ln

(

θkj

1− θkj

)

= ηkj

ηkj = β0 + x
⊤
kjβ + ψk + ξj ,
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where ηkj was the linear predictor, β0 the intercept, x⊤kj 
was the matrix of covariates and β =

(

β1,β2, . . . ,βp
)

 was 
the vector of regression coefficients assumed to follow a 
zero mean Gaussian distribution,µβ = 0 , and a vari-
ance�β . ψ = (ψ1, . . . ψk)

T which denotes the spatial ran-
dom effect which accounted for the spatial dependence. 
This was assumed to follow a multivariate normal distri-
bution with Matérn covariance function and zero mean 
(i.e.,ψ ∼ MVN (0,

∑

) ). With this specification, the dis-
tance at which the spatial correlation is close to 0.1, the 
spatial range,r , and the spatial variance σ 2 were esti-
mated. ξj ∼ N

(

ρξj−1, τ
2
)

, j > 1 represent the auto-corre-
lated temporal error terms, whileξ1 ∼ N

(

0, τ 2
)

 ; τ and ρ 
are the precision and correlation parameters, respec-
tively. This was a stationary autoregressive process of 
order one (i.e., AR1), with a Markovian temporal struc-
ture, in which the AmE of year  j − 1 influenced the AmE 
in year j . Inclusion of the independent and identically 
distributed (i.i.d.) site-specific random effects was tested 
in all model formulations and assessed to see if it 
improved the fit.

The described model was used to predict AmE, defined 
as the proportion of individuals with falciparum malaria 
infection effectively treated with the anti-malarial drug 
at different places and periods in the context of the 
actual clinical setting, while accounting for the health 
system, climate, environment, and socio-demographic 
factors. Models were fitted in a Bayesian framework 
using R-INLA [78, 79]. The Bayesian model formulation 
was completed by assigning a prior distribution to all 
unknown parameters and hyperparameters. The initial 
model assumed non-informative priors [78] and was fur-
ther refined to include weakly informative priors if doing 
so improved model performance.

Model validation and selection
A sensitivity analysis was done to examine the choice 
of priors for the hyperparameters, the likelihood of the 
outcome and inclusion of space–time interaction. For 
the temporal component, i.i.d., first-order random walk 
(RW1), second-order random walk (RW2), and first-
order autoregressive (AR1) models were tested [80]. For 
the spatial components, range and variance, the effect of 
a non-informative prior was compared to penalized com-
plexity (PC) priors [81], and a fixed range. Both beta and 
binomial distributions were considered for the outcome 
variable. Furthermore, a model with an overall tempo-
ral trend common to all spatial units and an overall spa-
tial  effect  common  to all  time  periods was compared 
against a model that allowed variation over space and 
time. Watanabe Akaike information criterion (WAIC), 

β ∼ N
(

µβ ,�β

) root mean squared errors (RMSE), and the correlation 
between the observed data and the predicted values, the 
 R2, were used to compare the model fits. Using the vari-
ables retained from the first selection process, the space–
time geostatistical model was built sequentially, starting 
with Model 1 containing no covariates; Model 2 with 
national level covariates; Model 3 with environmental 
and climate covariates; and, Model 4 with a combination 
of environmental, climate and national level covariates. 
All models included an annual time variable. Models 
were subjected to validation and calibration procedures 
using conditional predictive ordinate (CPO) and prob-
ability integral transform (PIT) to assess predictive per-
formance [82–87].

Additional out-of-sample prediction was performed 
using a threefold cross-validation (~ 30/70 rule) in which 
the response data were split randomly into 3 non-over-
lapping subsets. Two sub-sets were used for model train-
ing, while the third sub-set was used for validation. This 
process was repeated 12 times for 4 different splits of the 
data. Through this method each observation was used in 
a test and training set. RMSE and  R2, calculated between 
the observed and predicted data are used to assess model 
performance. Furthermore, in-sample and out-of-sample 
estimates of the RMSE were compared to assess over- 
or under-fitting. The statistics for model comparisons, 
together with results of validation/calibration and predic-
tive ability, were used to select the best model. The mod-
els were fitted using 1991–2016 data. To forecast AmE 
for 2017, 2018 and 2019, the spatial pattern was assumed 
to be constant after 2016 and thus the pixel-level tem-
poral trends in AmE were interpolated linearly from the 
time series models. The modelling framework is further 
explained in Additional file 1: Section 3—Figure S3.1.

Calculation of final AmE estimates and presentation 
of results
The estimates obtained from the model were then 
adjusted for drug quality and patients’ adherence. Due 
to very limited available information on these impor-
tant factors, uniform values were used for all regions 
and all time periods. First, based on the review by 
Ozawa et al., a penalty of 19.1% was applied to account 
for the prevalence of sub-standard or falsified anti-
malarials [88]. Then a 5.0% penalization was used to 
account for the imperfect adherence to treatment [66]. 
To present the spatial distribution, the years between 
1991 and 2019 were categorized to 1991–2000, 2001–
2005, 2006–2010, 2011–2015, and 2016–2019. The 
last period is considered a forecasted period. The 
year ranges used in this categorization were selected 
based on temporal clustering of clinical efficacy tri-
als and benchmark years for anti-malarial drug usage, 
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including the WHO’s recommendation on ACT in 
2001, peak of malaria burden in 2005, and high degree 
of adoption of ACT as first-line treatment in sub-Saha-
ran Africa in 2011. Non-artemisinin-based anti-malar-
ial effectiveness was not considered for the period after 
2015 due to few non-artemisinin clinical efficacy trials 
being conducted after 2010. The resulting maps present 
the average AmE levels for the stated periods. Median 
and interquartile ranges (IQR) are used to report due 
to the asymmetric distribution of the AmE estimates. 
To capture uncertainty and spatial heterogeneity in 
the predicted AmE levels, stochastic realisations from 
the models’ posterior distributions were generated 
and then summarized to obtain mean and uncertainty 
estimates for national and sub-national administrative 
units.

Results
Study characteristics
The observed data covered the period 1991–2016. Tri-
als on artemisinin-based anti-malarials (ACT + mono-
therapy) accounted for 88% of the studies included in 
this analysis. Most studies were performed in Africa 
(69.4%) and the most commonly tested anti-malar-
ial was artemether–lumefantrine (n = 169) (Table  1). 
Among countries, Thailand (28 studies, 73 treatments), 
India (6 studies, 45 treatments), and Uganda (21 stud-
ies, 44 treatments) had the most studies on artemisinin-
based anti-malarials. Uganda (32 treatments) and 
Madagascar (14 treatments) had the most studies on 
non-artemisinin-based anti-malarials (Additional file 1: 
Section  2). Descriptive analysis of all the treatments 
indicated that efficacy of artemisinin-based anti-malar-
ial drugs remained high in most regions throughout 
the study period, while that of non-artemisinin-based 
declined over time. The median levels for artemisinin-
based drugs obtained from the trials for the periods 
were 99.3% (1991–2000), 97.1% (2001–2005), 98.2% 
(2006–2010), and 98.8% (2011–2016). For the non-
artemisinin drugs, these were 83.2% (1991–2000), 

81.5% (2001–2005), 88.7% (2006–2010), and 51.6% 
(2011–2016).

Model selection
The final specification of the model, with binomial like-
lihood and variation over space and time, used non-
informative priors for the regression coefficients, PC 
priors for spatial effects and an AR1 structure for the 
temporal effects. The in-sample validation and model 
calibration indicated good performance of the models. 
Similar findings were obtained for the threefold cross-
validation. The RMSE of the training set did not differ 
much from that of the validation set indicating that over-
fitting was not an issue. The  R2 between observed and 
predicted ranged between 0.86 and 0.89 (artemisinin-
based) and 0.63 and 0.66 (non-artemisinin), depending 
on the set of covariates used. Model 4 had the best fit, as 
indicated by the lowest WAIC, and high predictive abil-
ity as indicated by high  R2 (Table  2). Performance met-
rics for the final geostatistical models fitted for both drug 
types are shown in Table 2.

Anti‑malarial drug effectiveness
The AmE of artemisinin-based and non-artemisinin anti-
malarial drugs was predicted annually for the period 
1991–2019 for all malaria-endemic countries then aggre-
gated into multi-year categories as indicated above. 
High-resolution maps (5 × 5  km) of AmE, adjusted for 
the drug quality and adherence, show the global spatial 
distribution and country-to-country variations (Figs.  1 
and 2). Maps of the corresponding uncertainty measure, 
the IQR, are shown in Additional file 1: Section 4.

Artemisinin‑based anti‑malarial drugs
The global AmE of artemisinin-based drugs was 67.4% 
(IQR: 33.3–75.8), 68.8% (IQR: 39.2–75.8), 70.1% (IQR: 
43.6–76.0), 70.7% (IQR: 45.5–76.2), and 71.8% (IQR: 
46.9–76.4) for the 1991–2000, 2001–2005, 2006–2010, 
2011–2015, and 2016–2019 periods, respectively. Mod-
elled AmE was 29.6% lower, on average, than the lev-
els obtained from trials, largely due to the adjustments 
applied for drug quality and patient adherence. The 

Table 2 Model assessment and selection in estimation of anti-malarial drug effectiveness

Model 1—no covariates; Model 2—national level covariates; Model 3—environmental and climate covariates; Model 4—a combination of environmental, climate and 
national level covariates

WAIC Watanabe Akaike information criterion, RMSE root mean squared errors

Metric Non‑ artemisinin anti‑malarial drugs Artemisinin‑based anti‑malarial drugs

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

WAIC 3897.03 3760.59 3757.10 3749.13 4898.14 4855.83 4838.53 4800.72

RMSE 0.171 0.167 0.165 0.165 0.039 0.038 0.037 0.037

R‑squared 0.635 0.654 0.664 0.665 0.86 0.87 0.88 0.89
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relatively stable estimates over time indicated that AmE 
of artemisinin-based drugs remained high and increased 
by 6.5% from the years before 2000 to those after 2016 
(Fig. 1). In the years before 2000, countries in sub-Saha-
ran Africa, South America, India, and on the islands of 
the Indonesian archipelago were predicted to have lower 
AmE levels (< 60%) (Fig. 1). The situation improved sub-
stantially by the 2011–2015 period, with few remaining 

pockets of low AmE in sub-Saharan Africa. The levels of 
AmE dropped in Southeast Asian countries, including 
Thailand, Myanmar, Cambodia, and Laos. Little improve-
ment in AmE was predicted for P. falciparum-endemic 
countries in South America including Guyana, Suriname, 
and parts of Brazil, Venezuela and Colombia. Generally, 
the model predicts improved AmE for artemisinin-based 
drugs for the period 2016–2019 (Fig. 1).

Fig. 1 Spatiotemporal distribution of effectiveness of artemisinin‑based anti‑malarial drugs for periods 1991–2000, 2011–2015, and 2016–2019. 
Maps for 2001–2005 and 2006–2010 are presented in Additional file 1: Figure S4.1
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AmE levels often remained stable in countries where 
multiple ACT medicine was used as the first-line drug of 
choice, a practice which became more widespread in the 
mid-2000s. Noteworthy examples include Ghana, Nige-
ria, Senegal, Angola, and India. Factors positively related 
to ACT effectiveness in the analysis include access to 
health care, human resource capacity (skilled birth 
attendants as a proxy), education levels, and accessibility 
to cities. In contrast, AmE dropped in countries includ-
ing Indonesia, Thailand and Vietnam where Dihydroar-
temisinin piperaquine (DHAP) was the sole first-line 
treatment and resistance emerged to either artesunate or 
the partner drug (Fig. 1).

Non‑artemisinin‑based anti‑malarial drugs
The global AmE of non-artemisinin-based drugs was 
much lower than the AmE of artemisinin-based drugs, 
and these estimates also had higher associated lev-
els of uncertainty. Predicted AmE levels were 52.3% 
(IQR: 17.9–74.9), 53.1% (IQR: 21.6–74.0), 55.9% (IQR: 
22.6–73.5), and 55.5% (IQR: 27.1–73.4) for the 1991–
2000, 2001–2005, 2006–2010, and 2011–2015 periods, 

respectively. Predictions for these drugs beyond 2015 
were not made due to data limitations. Globally, the 
AmE levels indicated an increase of 6.1% from the 
1991–2000 period to the 2011–2015 period (Additional 
file 1: Section 4—Figure S4.2). The predicted AmE lev-
els were approximately 36% lower than the mean val-
ues of measured effectiveness in a controlled trial 
setting. For all periods, the AmE estimates were lowest 
in sub-Saharan Africa and in Asia with a few countries 
observed to regain slight increases in effectiveness after 
2011 (Fig.  2). In contrast to patterns elsewhere, the 
AmE of non-artemisinin-based drugs in Central and 
South America remained moderate and stable (Fig. 2).

National level covariates strongly affected the pre-
dicted effectiveness of non-artemisinin-based anti-
malarial drugs. Health system and infrastructure 
factors, including coverage of skilled human resources, 
universal coverage, health care access, and accessibil-
ity to cities, were associated with increasing effective-
ness. Factors negatively correlated with effectiveness 
included high levels of out of pocket expenditure and 
urbanization.

Fig. 2 Spatiotemporal distribution of effectiveness of non‑artemisinin anti‑malarial drugs for periods 1991–2000 and 2011–2015. Maps for 
2001–2005 and 2006–2010 are presented in Additional file 1: Figure S4.2



Page 10 of 15Rathmes et al. Malar J          (2020) 19:374 

Discussion
This study is the first attempt to produce high-resolution 
maps of spatiotemporal patterns of AmE, while account-
ing for the prevalence of sub-standard and falsified anti-
malarials and patient adherence in all malaria-endemic 
countries. The resulting temporal patterns highlight 
changes in AmE from 1991 to 2019 while the spatial 
patterns illustrate heterogeneity between and within 
countries. Effectiveness of anti-malarial drugs used for 
treatment has a direct link to the progress of impact 
indicators, such as rates of malaria incidence and mor-
tality in the population, which makes knowledge of this 
metric essential to control programmes. These findings 
provide additional evidence on practical considerations 
for implementing malaria treatment policies to ensure 
adequate anti-malarial effectiveness, including high-
lighting the roles that drug quality, adherence and health 
system quality play in AmE. Despite high clinical effi-
cacy levels obtained under controlled conditions, AmE 
in artemisinin-based drugs dropped by at least a third 
when applied in the routine care delivery system. The 
drop was higher for the non-artemisinin-based drugs, 
likely due to increased level of resistance to those treat-
ments. Overall, the results show that artemisinin-based 
anti-malarials have higher and more stable AmE com-
pared to non-artemisinin-based drugs. For artemisinin-
based anti-malarials, areas of lower AmE include the 
central and eastern part of sub-Saharan Africa, remote 
areas of South America, and Southeast Asia. The findings 
from this analysis suggest that non-artemisinin drugs 
remained effective for uncomplicated falciparum malaria 
in the South and Central American regions through 2015, 
but performed poorly elsewhere. However, this finding 
is associated with high levels of uncertainty due to little 
clinical efficacy data within the Americas. As such, this 
result should be viewed cautiously, and careful monitor-
ing of both anti-malarial drug efficacy and health system 
performance metrics associated with effectiveness should 
accompany the continued use of non-ACT as front-line 
treatment in Central American countries. Resistance 
to non-artemisinin-based drugs has been observed in 
Africa since the 1980s [89] and inspired treatment pol-
icy changes to ACT since 2003 [90]. The WHO critical 
threshold for clinical efficacy is set at > 90%, but no docu-
mented threshold is set for AmE. Further investigation is 
needed in areas with low predicted effectiveness levels to 
determine factors driving the gap between the two met-
rics. Nevertheless, these findings suggest that, despite the 
availability of efficacious anti-malarials and over 80% of 
endemic countries adopting them as first line treatments, 
policy implementation gaps and challenges remain and 
impact malaria incidence and mortality. The emergence 
of resistance of artemisinin derivatives in Southeast Asia 

and its possible extension in other endemic regions may 
very negatively impact AmE, repeating patterns observed 
for non-artemisinin-based drugs in the past.

Time was an important parameter for modelling pat-
terns of artemisinin-based AmE. In the early 2000s ACT 
was introduced, proved to be highly effective at treat-
ing malaria, and thus was adopted by many countries 
as a first-line drug to treat falciparum malaria. Prior to 
this period, artemisinin-based  monotherapy was widely 
used, but this approach has since fallen out of favour as 
it is believed to promote emergence of drug resistance 
[14, 16]. In some regions, despite ACT being adopted 
as first-line treatment policy, their implementation has 
faced a number of challenges. Demographic  and health 
survey and malaria indicators survey and other litera-
ture have shown that health workers still prescribe other 
anti-malarials for a range of reasons including patient 
preference, provider perception on specific types of anti-
malarials, ACT stock-outs, costs including those incurred 
when accessing care, and higher availability and access to 
non-recommended anti-malarials. These multifaceted 
drivers of AmE have been reported across Africa, includ-
ing in Kenya [91], Cameroon [92], Democratic Republic 
of Congo (DRC) [93], and Madagascar, and have slowed 
progress towards increasing AmE and reducing malaria 
burden [94]. The long term use of single anti-malarial 
drugs results in high drug-based selective pressure, which 
has been proven to decrease parasite sensitivity [95], and 
could explain the decreasing AmE patterns observed in 
some settings. Some countries introduced multiple ACT 
as first-line treatment options, which appears to have 
maintained the high AmE of ACT by reducing drug pres-
sure. These policies also provided treatment choices to 
patients, which may have increased adherence. Coun-
tries adopting this strategy include Angola, Brazil, Bur-
kina Faso, Nigeria, Senegal, Togo, Sierra Leone, China, 
and Myanmar [12, 96, 97]; countries with low ACT AmE 
could potentially use this as a mechanism for improving 
treatment success.

With the exception of Central America, where non-
artemisinin-based AmE was higher in 2011–2015 than 
in 1991–2000, non-artemisinin drugs had reducing effec-
tiveness in most areas and their efficacy changed less 
over time. This result is supported by the continued use 
of chloroquine as first-line treatment in several Central 
American countries [11]. For example, in Belize, Costa 
Rica, and El Salvador, first-line falciparum malaria treat-
ment consists of chloroquine combined with primaquine 
(one-day dose) [11]. Using non-artemisinin-based drugs 
in combination and short-term dosing requirements may 
have slowed the development of drug resistance, increase 
patient adherence, efficacy and effectiveness, and led to 
the patterns observed in the findings (Additional file  1: 
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Section  1) [11].  However, these findings are some-
what speculative as very few datasets on performance 
of anti-malarial drugs were available from Central and 
South America, resulting in more uncertain estimates. 
An unexpected finding of this work was a resurgence in 
non-ACT AmE in places where they have been banned, 
such as in Malawi [98]. However, as very few clinical tri-
als on non-ACT have been conducted since the wide-
spread adoption of ACT, this finding is driven by model 
covariates (e.g., improvements in health systems) rather 
than response data, and should be interpreted cautiously. 
By aggregating all ACT within a single analysis, direct 
assessment of known AmE limitations related to the 
efficacy of the partner drug (e.g., Artesunate–sulfadox-
ine–pyrimethamine) were not possible. These limita-
tions include administration aspects, such as duration of 
treatment and the number of tablets in the dose regimens 
of the partner drugs [99, 100]. This could be a possible 
explanation for the lower drug effectiveness observed in 
Djibouti, Ecuador, India, Pakistan, and Sudan. Some of 
these countries changed their treatment policies to other 
ACT, such as Artemether–lumefantrine or DHAP, to 
increase effectiveness. However, even the most recently 
developed ACT, DHAP, faces a threat of resistance in 
some parts of the Greater Mekong Region [101]. Cur-
rent efforts to sustain effective treatment of falciparum 
malaria in such areas include introduction of the triple 
artemisinin-based combination therapy (TACT) [99]. 
Lack of data on drug resistance prevented this important 
parameter from being included within the AmE models.

Health system factors are associated with anti-malarial 
AmE. Access to health care and human resource capac-
ity influence how and which drugs are prescribed and 
used. With low access to health care, a significant num-
ber of cases will not reach the health care system. Such 
cases will either not receive any treatment or obtain 
treatment through other sources, the latter of which may 
result in the use of a non-first-line treatment and failure 
to record the type, quality and dosage of the drug within 
official statistics. In areas where drug monitoring is not 
effective, irrational provision and unregulated use of 
anti-malarials might be high, including sub-optimal dos-
age and increased use of falsified, sub-standard, or non-
recommended medicines, all of which may lead to low 
effectiveness. Health workers’ skills and compliance with 
treatment guidelines, along with drug availability, deter-
mine which drugs are provided to patients and whether 
the treatments are properly managed, both of which are 
linked to an effective response to drugs [102]. Socio-
demographic factors, including education and accessi-
bility to cities, may have effects similar to those of access 
to health care and the knowledge of both the patient and 
health care provider. Political and economic upheaval are 

also likely to impact treatment AmE. For example, since 
the mid-1990s, the DRC and Central Republic of Africa 
have experienced high levels of violence, population dis-
placement, and destruction of infrastructure, including 
health facilities. These factors reduced access to care, 
increased rates of infection, and led to poorer manage-
ment [103]. Similarly, outbreaks of Ebola virus and SARS-
CoV-2 (COVID-19) have shown the ability to devastate 
or overwhelm health care systems, which may disrupt 
access to core malaria interventions [41, 104]. The poor 
state of the health care systems within low-resource set-
tings could explain low estimates of AmE in areas facing 
political instability despite the adoption of ACT as first-
line treatment in these locations. In the Greater Mekong 
Region, malaria transmission patterns are rapidly evolv-
ing and there is vast spatial heterogeneity. International 
borders where transmission remains high are of particu-
lar concern, as these areas have poorer access to health 
care facilities and malaria surveillance measures [105]. 
Furthermore, malaria control measures are very hard to 
establish and implement effectively within highly mobile 
migrant populations [106–109].

This analysis has several noteworthy limitations that 
should be considered when evaluating estimates. First, 
the sparsity of efficacy trial data, particularly outside sub-
Saharan Africa, led to high levels of uncertainty within 
the AmE result. This outcome stems from the challenges 
of conducting efficacy trials, which are costly in terms 
of money, time and effort, and are rarely conducted in 
regions with no evidence of treatment failure. Results of 
efficacy trials conducted by countries or the WHO are 
not systematically published or made available to stake-
holders, nor is individual patient data shared which limits 
standardization of drug efficacy outcomes. Regional cir-
cumstances that are known to affect anti-malarial inter-
vention programmes may also prevent clinical trials from 
being conducted (e.g., chronic warfare has hampered 
the implementation of malaria control interventions in 
South Sudan [110]). To mitigate these important data 
limitations, countries are urged to explore potential 
mechanisms to utilize routine surveillance systems for 
continuous  assessment of anti-malarial drugs perfor-
mance. Future analysis utilizing these estimates may ben-
efit from including country-specific primary data related 
to utilization of health services and anti-malarials. Rou-
tine data from countries provides opportunities to refine 
this estimate iteratively. A second noteworthy limitation 
is that this study did not utilize patient-level or pharma-
cokinetic/pharmacodynamic  (PK/PD)  data. Such data 
would provide patient and drug information (e.g., para-
sitaemia levels, status of fever, genetics, drug concen-
tration, and biological processes) that could be used to 
refine estimates [111]. Third, individuals are included in 
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clinical trials only if they meet eligibility criteria, which 
may result in under-representation of the segments of the 
population most affected by malaria. This could occur, 
for example, if clinical trials over-represent adults when 
children under five years represent the majority of cases. 
As a result, trial results may not be generalizable to the 
real-world population. Fourth, due to non-availability of 
data on adherence and quality of anti-malarials medicine 
used for treatment, a constant adjustment was applied 
uniformly over space and time. These metrics are likely 
to vary, therefore this scaling may over- or underestimate 
AmE. Fifth, the socio-demographic covariates used in 
this analysis were modelled using a limited set of predic-
tor variables and are somewhat collinear despite a vari-
able selection process conducted. This could hinder the 
interpretation of results by producing circularity within 
downstream assessments of causal relationships between 
AmE and metrics of national development. While this is 
worth noting, this is not a critical limitation to the study, 
but should be considered if these results are used in an 
analysis with other GBD covariates. Sixth, most of the 
covariates are modelled products that are associated with 
uncertainty, which is difficult to fully propagate within 
modelling frameworks. The noise inherited in the effi-
cacy estimates from the WWARN database is expected 
to be the largest contributor of uncertainty in the AmE 
estimates, as suggested by the random effects, and thus 
uncertainty in the covariates was comparatively minor 
but could still lead to underestimated uncertainty in 
the final results. Finally, the uncertainty related to AmE 
estimates varies across space and time, which is charac-
terized by producing multiple realisations of AmE for 
each year. By summarizing these realisations, mean and 
uncertainty maps are produced and made available for 
download so that other researchers can propagate these 
uncertainties through their analyses appropriately.

Conclusions
This work utilized data from clinical efficacy trials to 
produce global-scale predictions of anti-malarial drug 
effectiveness, while also incorporating information on 
drug quality and patient adherence. Triangulating mod-
elling and policy decision thresholds, these predictions 
provide new insights and help characterize spatial pat-
terns in effectiveness, which provide evidence-based 
and geographically explicit guidelines for optimal med-
ication-based malaria control worldwide. Most malaria-
endemic countries are progressing towards elimination, 
with anti-malarial drugs playing a key role in driving 
down malaria burden. Prompt diagnosis and effective 
treatment of cases remain an important strategy in the 
management and control of malaria in all endemic coun-
tries. As such, understanding the state of anti-malarial 

drug effectiveness becomes a crucial component. Find-
ings from this study provide evidence that ACT remains 
highly effective as first-line treatment for uncomplicated 
falciparum malaria compared to non-artemisinin based 
anti-malarials. However, the drug efficacy levels reported 
in clinical settings are unlikely to reflect real-world effi-
cacy. Results obtained from this analysis suggest that 
strategies used in different countries to sustain the effec-
tiveness of these drugs are working, including the use of 
multiple options for first-line treatment and combining 
artemisinin with other anti-malarial drugs that remain 
effective locally. These findings are relevant for guid-
ing policy decisions on targeted interventions towards 
malaria and contribute to global malaria burden esti-
mates in the World Malaria Report and the GBD study.
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