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ABSTRACT 
CENTAUR aims to provide an innovative, cost effective, local autonomous data driven in-sewer
flow control  system whose operation  will  reduce  urban flood risk.  The  system comprises  of  a
specially designed flow control device and a wireless local water level monitoring and control
system. A data driven algorithm has been developed that is able to analyse the water level data and
issue  instructions  to  the  flow  control  device  to  reduce  flood  risk  at  the  downstream  flooding
location. This Fuzzy Logic control algorithm has been linked to a SWMM model to allow virtual
testing to take place and provide the basis for a Genetic Algorithm to optimise the Fuzzy Logic
membership functions. Methods for generating the initial starting membership functions for input to
the Genetic Algorithm have also been investigated. Results confirm that the best Genetic Algorithm
optimised Fuzzy Logic controllers reduce flood volume by up to 25% depending on the timestep at
which the algorithm is run and the membership function initialisation method.
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1 INTRODUCTION

The effects of climate change, population growth and urbanisation are putting increasing pressure
on sewer and drainage networks both in the UK and overseas. The capacity of networks to cope
with runoff at the required rate often falls short of requirements leading to localised floods and/or
increased CSO spills to receiving waters. Smart Water/ Wastewater Network technologies have the
potential to deliver improved service to customers and cost-effective performance improvements for
the water industry. Innovative solutions such as Real-Time Control (RTC) to optimise the usage of
existing capacity in sewer and drainage networks are both timely and required. CENTAUR [1, 2] is
a system designed to take advantage of the local unused storage capacity in the upper parts of many
networks, thus attenuating the flow at flood-threatened downstream locations. The system uses a
low  cost  Flow  Control  Device  (FCD)  and  local  sensing  system combined  with  a  data  driven
approach based on Fuzzy Logic (FL), which processes local real-time in-sewer level information
and  reflects  expert  and  local  knowledge  of  network  behaviour,  which  in  this  work  is  further
optimised by an evolutionary process. FL is particularly suited to wastewater applications, where
phenomena  can  be  understood  but  where  their  behaviour  are  characterised  by  variability.  FL
algorithms  can  capture  various  information  including  expert  knowledge,  the  conclusions  of
laboratory and field experiments, and modelling outputs around a particular phenomenon, and can
also cope with their variability.
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Developing a robust FL system necessitates the understanding of the control mechanism’s impact
on water levels in the network. The selection of the input variables was conducted such that the FL
algorithm can regulate the FCD in order to reduce downstream flood risk while incorporating fail
safe rules in order to prevent any additional upstream flooding.

This  paper  describes  the  optimisation  of  the  FL Membership  Functions  (MF)  using  a  Genetic
Algorithm (GA). Unlike in previous work where the vertices of the MFs have been predefined
manually  and  based  on  expert  knowledge  [3],  this  optimisation  allows  the  algorithm  to  be
automatically tuned for sites with different characteristics and also enable it to be re-tuned in case of
changes within a sewer network. It can also provide a better understanding of the FL controller
sensitivity and provide a useful range of MF parameters. 

To investigate the effect of different initialisation on the speed of the GA and objective function
value, three methodologies are compared. The GA optimisation has been carried out using a design
rainfall event which results in a total flood volume larger than the available storage to give the
objective function a suitable target. Performance of these three approaches and different time steps /
GA settings are presented for the test network. 

2 BACKGROUND

Control  algorithms based  on Artificial  Intelligence  (AI)  have  been  widely  applied  in  different
engineering fields. FL was selected as the most appropriate AI solution for CENTAUR because of
the less onerous data needs (the latest generation of deep learning artificial neural networks require
‘big data’) and the greater transparency of its logic based reasoning than some other AI solutions
and also the ability to incorporate expert knowledge. FL can be used to enable a degree of certainty
to be placed on a classification or output. 

In a FL algorithm, input data are mapped to MFs which relate to a set of predefined rules to create
output data. Each input variable can relate to several membership functions and the value of the
data is used to assign a degree of membership between 0 and 1 to each relevant MF. FL rules are
built from combinations of (or individual) MFs, the input data will have a degree of truth for each
rule also between 0 and 1. The outputs of all rules are then aggregated into a single output fuzzy
MF. Defuzzification is then applied to the output fuzzy set to obtain a single valued output. FL
controllers have been applied in a number of wastewater applications including for treatment [4].

Optimisation of the FL membership functions was investigated through the use of GAs which have
been previously  applied  in  similar  applications  [5].  A GA is  a  search  procedure  based on the
mechanics of natural selection and genetics [6]. They are highly parallel, mathematical algorithms
that  transform  a  set  (population)  of  mathematical  objects  (typically  strings  of  ones  and  zeros
referred to as genes) into a new population. They function by combining survival of the fittest for
individual genes; these are then passed on to the next generation. As the successful (fittest) genes
breed over generations they quickly converge to optimal solutions after examining only a small
fraction of the search space. Mutation and crossover operations are also included in generations to
ensure that a string of genes that may help provide an optimal solution are not lost too early. GAs
and other evolutionary algorithms have been successfully applied to many complex engineering
optimisation problems and extensively for water resources engineering and management [7]. GAs
have the advantage that, in principle, they can be applied to any search space, as long as a point in
the space can be represented by a bit string and are particularly useful for optimising problems that
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are not well formed. However, care must be taken with framing the problem, and constraining the
space.

3 METHODS

3.1 FL controller

The FL algorithm uses water level data provided by a local sensing network as input data, the FL
rules implement expert knowledge and the output adjusts the setting of the FCD. The selection of
the input variables for CENTAUR has to be done such that the FL algorithm can control the FCD to
reduce  downstream flood risk without  causing  any additional  upstream flooding.  Level  data  is
recorded at the downstream flood location and upstream of the FCD. The CENTAUR FL algorithm
uses four sets of input data, each has 3 MFs with triangular or trapezoidal shapes defined by 11
vertices in total. The MFs for one of the level data inputs are: Normal (N), High (H) or Very High
(VH), as shown in Figure 1, these MF labels give a textual definition of the categorisation, e.g.
Normal represents a normally expected depth of flow in dry weather and minor (low return period)
rainfall. The output variable, Change Position (CP), has five MF labels, corresponding to changes in
the FCD position, e.g. Big Close (BC), Small Close (SC), Zero change (Z). This output is used to
adjust the FCD by the given percentage per minute until the next run of the FL.

The FL rules are expressed in the form of IF-THEN fuzzy rules written using expert knowledge.
This expert knowledge takes into account the expected response of drainage networks during and
after rainfall events and also the concept of when the FCD should activate – e.g. when the water
level at the downstream location is close to flooding, close the FCD. The CENTAUR FL control
algorithm was developed with the MATLAB Fuzzy Logic toolbox, it uses the Mamdani method [8]
and applies the min-max-centroid method. In each rule a minimum value is selected among the
input MFs involved in the IF-part. In this way the strength of the rule is formed which defines the
intensity of the MF of the output variable involved in the THEN-part. Output MFs of every rule are
combined by the maximum value.  The output value for CP is  calculated by using the centroid
method for defuzzification. The FL output is a crisp value but not an integer, post processed as
needed. 

Figure 1 An example of the MFs for level data
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3.2 Sewer network modelling

The water levels used as input to the FL during the GA optimisation are generated by a SWMM
hydrodynamic model which is controlled from Matlab using MatSWMM [9]. This ‘virtual testing’
modelling methodology and the sewer network used are as described in [3]. In this paper, a single
Flood Estimation Handbook (FEH) design rainfall  event of 5 years return period (20% Annual
Exceedance Probability) and 120 minutes duration (M5-120) has been used. FEH design events are
Gaussian shaped rainfall time series which are scaled to different return periods and duration.

3.3 GA optimisation
A software module to optimise the FL input MFs has been developed using the Global Optimisation
toolbox. As detailed in 3.1, the rules and the shapes of MFs were predetermined based on expert
knowledge. MFs were chosen as the decision variable for the GA as during manual tuning of the FL
algorithm it  was  found to  be  sensitive  to  changes  in  the  locations  of  the  input  MFs  vertices.
Conversely the rule base design was based on expert knowledge of the problem domain and the
rules followed robust logic with little flexibility for any reasonable further adjustment.

The GA optimisation module is therefore used to determine the optimum locations of the vertices of
the  MFs’  relevant  edges  for  the  four  sets  of  input  data,  the  vertices  which  are  part  of  the
optimisation are highlighted for one of the level MFs in Figure 1, each input dataset has 7 MF
vertices which can be optimised, hence a total of 28 values are optimised. The objective of the GA
is to minimise the total flood volume.

To investigate the influence of the starting point on the rate of convergence and hence reaching an
optimal  solution in the quickest possible  time,  three methodologies were compared:  the default
(expert) set of MFs, a randomised set and a pseudo-randomised set (perturbation of the expert set).
Figure 2 shows a flow diagram of the GA optimisation module for the randomised and pseudo-
randomised sets, the default set has a single starting point which is the result of manual tuning of
the input MFs and hence skips from the first step straight to ‘Run main GA …’. The starting point
for the randomised and pseudo-randomised sets  is  selected from the results  of 10 mini-runs as
described in Figure 2. Prior to running the FL, the randomised / pseudo-randomised values are first
sorted to maintain the shape and cross-overs (unless otherwise specified). Appropriate lower / upper
bounds, linear inequality constraints and tolerance checks were implemented at this stage. The M5-
120 rainfall event was selected for the optimisation because it results in a total flood volume larger
than the available storage, thus giving the objective function a suitable target. The GA stop criteria
is based on having no improvement in the objective function for a number of generations. 

The results presented in this paper are from 25 generations with a population size of 200, a stall
limit of 5 generations with a function tolerance of 1x10-6, there has been some experimentation with
these GA parameters and these values were found to be a useful compromise between run times and
improvement in the objective function.
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Figure 2. Flow diagram for GA optimisation module

4 RESULTS AND DISCUSSION

4.1 Results

Figure 3 presents time series results for four control cases using the network model and rainfall
event described in 3.2, these results all use a 1 minute FL time step (i.e. the FL algorithm runs and
can adjust the FCD once per minute). The water depth in the sewer is presented as a percentage,
where 100% is the ground level and hence values greater than 100% indicate flooding, an FCD
opening of 100% indicates the FCD being fully open. For the control case when the FCD remains
fully open (Figure 3a), it can be seen that flooding occurs for 4.9 hours and results in a total flood
volume of 247.14 m3. Using the manually tuned FL (Figure 3b), the flooding duration drops to 2.9
hours and the volume to 111 m3. The optimisation using the manually tuned FL as the starting point
(Figure 3c) reached a stall point after 15 generations, the duration of flooding is still 2.9 hours, but
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there is a small improvement in the volume of flooding to 108.4 m3. Finally, the randomised starting
point (Figure 3d) reduces the flooding duration to 2.8 hours and the volume to 103.0 m3.

a) FCD inactive (control). b) Default expert, un-optimised.

c) Default expert, single start optimised. d) Random, sorted, forced cross-over.

Figure 3. Time series results for control, un-optimised and optimised cases, FL run at 1 minute step

Table 1 presents the total flood volume for a greater range of starting points and includes results for
the three different FL time steps investigated. Also included is a completely randomised starting
point (i.e. not sorted or forced cross-overs), which results in a relatively early stall and the minimum
flood volume is the highest of all optimised versions, however it does beat the manually tuned MFs
which resulted in a flood volume of 141.2 m3 for the 5 minute FL step. For reference, the manually
tuned MFs give a flood volume of 113.4 m3 for the 2 minute FL step.
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Table 1. GA results of total flood volume for varying time steps and starting points

Starting point FL time step (min) Generations run Flood volume (m3)

Completely randomised 5 9 (Stall) 122.1

Default expert 5 25 114.9

Default expert 2 25 109.3

Default expert 1 15 (Stall) 108.4

Randomised 5 13 (Stall) 107.0

Randomised 2 21 (Stall) 103.7

Randomised 1 11 (Stall) 103.0

Pseudo-random 5 22 (Stall) 106.4

Pseudo-random 2 23 (Stall) 104.1

Pseudo-random 1 9 (Stall) 103.1

4.2 Discussion

The optimisation results in a flooding reduction of 2-25% when compared to the flood volumes
resulting from the un-optimised expert  membership functions. The larger benefits  (14-25%) are
however seen with the 5 minute FL time step which has the largest un-optimised flood volume. For
the 1 and 2 minute FL time steps, the improvement is between 2 and 9%. While the un-optimised
results show that the control algorithm is sensitive to the time step at which it is run (this could be
expected as the FL time steps investigated are within the same order of magnitude as the time over
which significant changes in flow could occur), the optimisation can reduce the impact of running
the FL algorithm less frequently, which may be desirable to optimise battery life.

Investigating the different staring points indicates that the random and pseudo-random approaches
converge more quickly to a better solution than the default expert starting point, the resulting flood
volumes being 5-7% better than the default expert starting position. The sorting with forced cross
over appears to benefit  the final solution,  the completely randomised starting point gives a 6%
higher flood volume. The number of generations to reach a stalling point varies inconclusively
between the randomised and pseudo-randomised starting points, however both do appear to reach
the final solution more quickly than the default expert starting point.

This paper presents the initial work on the GA development, there is clearly significant further work
to be undertaken, including use of non-Gaussian rainfall events, using multiple events in the GA
and applying the GA to different drainage networks. It is also intended to investigate the inclusion
of output MFs in the optimisation (total 38 variables), to test different GA options, such as the
algorithmic  cross-over  functions,  and  to  investigate  multi-objective  optimisation  (e.g.  include
number of FCD movements, total time storage is used, total flood duration, etc.). The CENTAUR
system has been installed at  a pilot  site in Coimbra,  PT, hence this  will  provide an alternative
network and an opportunity to test the optimised MFs in a live situation.

5 CONCLUSIONS

The  CENTAUR  FL  control  algorithm  has  been  constructed  to  autonomously  adjust  the  FCD
opening in order to reduce downstream flood risk without increasing upstream flood risk. A genetic
algorithm optimisation tool which uses the outputs from a SWMM hydrodynamic model has been
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written  to  optimise  the  input  MFs of  the  control  algorithm.  Results  confirm that  the  best  GA
optimised input MFs result in up to a 25% decrease in flood volume compared to the MFs selected
by experts, although the benefit is significantly higher for the longer FL time step of 5 minutes than
1 and 2 minute time steps. The randomised and pseudorandomised approaches for the initial starting
point give 5-7% lower flood volumes than using the expert default MF starting position.

Alongside  computer  model  studies,  CENTAUR is  being  developed  and  tested  in  a  full  scale
laboratory  facility  and  is  currently  being  installed  into  a  live  sewer  network  in  Coimbra,  PT.
Additional information on the CENTAUR project is available at www.shef.ac.uk/centaur.
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